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Dear Reader,

This book contains essential topics of data warehousing that everyone embarking 
on a data warehousing journey will need to understand in order to build a data 
warehouse. It covers dimensional modeling, data extraction from source systems, 
dimension and fact table population, data quality, and database design. It also 
explains practical data warehousing applications such as business intelligence, 
analytic applications, and customer relationship management. All in all, the 
book covers the whole spectrum of data warehousing from start to finish.

I wrote this book to help people with a basic knowledge of database systems 
who want to take their first step into data warehousing. People who are familiar 
with databases such as DBAs and developers who have never built a data ware-
house will benefit the most from this book. IT students and self-learners will 
also benefit. In addition, BI and data warehousing professionals will be interested 
in checking out the practical examples, code, techniques, and architectures 
described in the book.

Throughout this book, we will be building a data warehouse using the 
Amadeus Entertainment case study, an entertainment retailer specializing in 
music, films, and audio books. We will use Microsoft SQL Server 2005 and 2008 
to build the data warehouse and BI applications. You will gain experience designing 
and building various components of a data warehouse, including the architecture, 
data model, physical databases (using SQL Server), ETL (using SSIS), BI reports 
(using SSRS), OLAP cubes (using SSAS), and data mining (using SSAS). 

I wish you great success in your data warehousing journey.
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Preface

Friends and colleagues who want to start learning data warehousing sometimes ask me to
recommend a practical book about the subject matter. They are not new to the database
world; most of them are either DBAs or developers/consultants, but they have never built a
data warehouse. They want a book that is practical and aimed at beginners, one that contains
all the basic essentials. There are many data warehousing books on the market, but they usu-
ally cover a specialized topic such as clickstream, ETL, dimensional modeling, data mining,
OLAP, or project management and therefore a beginner would need to buy five to six books to
understand the complete spectrum of data warehousing. Other books cover multiple aspects,
but they are not as practical as they need to be, targeting executives and project managers
instead of DBAs and developers.

Because of that void, I took a pen (well, a laptop really) and spent a whole year writing
in order to provide a practical, down-to-earth book containing all the essential subjects of
building a data warehouse, with many examples and illustrations from projects that are easy
to understand. The book can be used to build your first data warehouse straightaway; it cov-
ers all aspects of data warehousing, including approach, architecture, data modeling, ETL,
data quality, and OLAP. I also describe some practical issues that I have encountered in my
experience—issues that you’ll also likely encounter in your first data warehousing project—
along with the solutions. 

It is not possible to show examples, code, and illustrations for all the different database
platforms, so I had to choose a specific platform. Oracle and SQL Server provide complete
end-to-end solutions including the database, ETL, reporting, and OLAP, and after discussions
with my editor, we decided to base the examples on SQL Server 2005, while also making them
applicable to future versions of SQL Server such as 2008. I apologize in advance that the exam-
ples do not run on SQL Server 2000; there is just too big a gap in terms of data warehousing
facilities, such as SSIS, between 2000 and 2005.

Throughout this book, together we will be designing and building a data warehouse for
a case study called Amadeus Entertainment. A data warehouse consist of many parts, such as
the data model, physical databases, ETL, data quality, metadata, cube, application, and so on.
In each chapter, I will cover each part one by one. I will cover the theory related to that part,
and then I will show how to build that part for the case study. Specifically, Chapter 1 introduces
what a data warehouse is and what the benefits are. In Chapters 2–6, we will design the archi-
tecture, define the requirements, and create the data model and physical databases, including
the SQL Server configuration. In Chapters 7–10 we will populate the data stores using SSIS, as
well as discuss data quality and metadata. Chapters 11–12 are about getting the data out by
using Reporting Services and Analysis Services cubes. In Chapters 13–15, I’ll discuss the appli-
cation of data warehouse for BI and CRM as well as CDI, unstructured data, and search. I close
the book with testing and administering a data warehouse in Chapters 16–17. 

xv
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The supplementary material (available on the book’s download page on the Apress web
site, http://www.apress.com) provides all the necessary material to build the data warehouse
for the case study. Specifically, it contains the following folders:

Scripts: Contains the scripts to build the source system and the data warehouse, as
explained in Chapters 5 and 6.

Source system: Contains the source system databases required to build the data ware-
house for the case study in Chapters 7 and 8.

ETL: Contains the SSIS packages to import data into the data warehouse. Chapters 7 and
8 explain how to build these packages.

Report: Contains the SSRS reports explained in Chapter 11.

Cubes: Contains the SSAS projects explained in Chapter 12.

Data: Contains the backup of data warehouse database (the DDS) and Analysis Services
cube, which are used for reporting, OLAP, BI, and data mining in Chapters 11, 12, and 13.
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Introduction to Data
Warehousing

In this chapter, I will discuss what a data warehouse is, how data warehouses are used today,
and the future trends of data warehousing.

I will begin by defining what a data warehouse is. Then I’ll walk you through a diagram of
a typical data warehouse system, discussing its components and how the data flows through
those components. I will also discuss the simplest possible form of a data warehouse. After
you have an idea about what a data warehouse is, I will discuss the definition in more detail.
I will go through each bit of the definition individually, exploring that bit in depth. I will also
talk about other people’s definitions.

Then, I will move on to how data warehouses are used today. I will discuss business intel-
ligence, customer relationship management, and data mining as the popular applications of
data warehousing. I will also talk about the role of master data management and customer
data integration in data warehousing.

Finally, I will talk about the future trends of data warehousing, such as unstructured data,
search, real-time data warehouses, and service-oriented architecture. By the end of this chap-
ter, you will have a general understanding of data warehousing.

What Is a Data Warehouse?
Let’s begin by defining what a data warehouse is. A data warehouse is a system that retrieves
and consolidates data periodically from the source systems into a dimensional or normalized
data store. It usually keeps years of history and is queried for business intelligence or other ana-
lytical activities. It is typically updated in batches, not every time a transaction happens in the
source system.

In the next few pages, I will discuss each of the italicized terms in the previous para-
graph one by one. But for now, I’ll walk you through a diagram of a data warehouse system,
discussing it component by component and how the data flows through those components.
After this short walk-through, I will discuss each term in the previous definition, including
the differences between dimensional and normalized data stores, why you store the data
in the data store, and why data warehouses are updated in batches. Figure 1-1 shows a dia-
gram of a data warehouse system, including the applications.

1
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Figure 1-1. A diagram of a data warehouse system

Let’s go through the diagram in Figure 1-1, component by component, from left to right.
The source systems are the OLTP systems that contain the data you want to load into the data
warehouse. Online Transaction Processing (OLTP) is a system whose main purpose is to cap-
ture and store the business transactions. The source systems’ data is examined using a data
profiler to understand the characteristics of the data. A data profiler is a tool that has the capa-
bility to analyze data, such as finding out how many rows are in each table, how many rows
contain NULL values, and so on.

The extract, transform, and load (ETL) system then brings data from various source
systems into a staging area. ETL is a system that has the capability to connect to the source
systems, read the data, transform the data, and load it into a target system (the target sys-
tem doesn’t have to be a data warehouse). The ETL system then integrates, transforms, and
loads the data into a dimensional data store (DDS). A DDS is a database that stores the data
warehouse data in a different format than OLTP. The reason for getting the data from the
source system into the DDS and then querying the DDS instead of querying the source sys-
tem directly is that in a DDS the data is arranged in a dimensional format that is more
suitable for analysis. The second reason is because a DDS contains integrated data from
several source systems.

When the ETL system loads the data into the DDS, the data quality rules do various data
quality checks. Bad data is put into the data quality (DQ) database to be reported and then
corrected in the source systems. Bad data can also be automatically corrected or tolerated if it
is within a certain limit. The ETL system is managed and orchestrated by the control system,
based on the sequence, rules, and logic stored in the metadata. The metadata is a database

CHAPTER 1 ■ INTRODUCTION TO DATA WAREHOUSING2
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containing information about the data structure, the data meaning, the data usage, the data
quality rules, and other information about the data.

The audit system logs the system operations and usage into the metadata database. The
audit system is part of the ETL system that monitors the operational activities of the ETL
processes and logs their operational statistics. It is used for understanding what happened
during the ETL process.

Users use various front-end tools such as spreadsheets, pivot tables, reporting tools, and
SQL query tools to retrieve and analyze the data in a DDS. Some applications operate on a
multidimensional database format. For these applications, the data in the DDS is loaded into
multidimensional databases (MDBs), which are also known as cubes. A multidimensional
database is a form of database where the data is stored in cells and the position of each cell is
defined by a number of variables called dimensions. Each cell represents a business event, and
the values of the dimensions show when and where this event happened.

Figure 1-2 shows a cube with three dimensions, or axes: Time, Store, and Customer.
Assume that each dimension, or axis, has 100 segments, so there are 100 ✕ 100 ✕ 100 = 1 mil-
lion cells in that cube. Each cell represents an event where a customer is buying something
from a store at a particular time. Imagine that in each cell there are three numbers: Sales Value
(the total value of the products that the customer purchased), Cost (the cost of goods sold +
proportioned overheads), and Profit (the difference between the sales value and cost). This
cube is an example of a multidimensional database.

Figure 1-2. A cube with three dimensions

Tools such as analytics applications, data mining, scorecards, dashboards, multidimen-
sional reporting tools, and other BI tools can retrieve data interactively from multidimensional
databases. They retrieve the data to produce various features and results on the front-end
screens that enable the users to get a deeper understanding about their businesses. An example
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of an analytic application is to analyze the sales by time, customer, and product. The users can
analyze the revenue and cost for a certain month, region, and product type.

Not all data warehouse systems have all the components pictured previously. Even if a
data warehouse system does not have a data quality mechanism, a multidimensional data-
base, any analytics applications, a front-end application, a control system or audit system,
metadata, or a stage, you can still call it a data warehouse system. In its simplest form, it is
similar to Figure 1-3.

Figure 1-3. Simplest form of a data warehouse system

In this case, the data warehouse system contains only an ETL system and a dimensional
data store. The source system is not part of the data warehouse system. This is pretty much the
minimum. If you take out just one more component, you cannot call it a data warehouse sys-
tem anymore. In Figure 1-3, even though there is no front-end application such as reports or
analytic applications, users can still query the data in the DDS by issuing direct SQL select
statements using generic database query tools such as the one hosted in SQL Server Manage-
ment Studio. I will be discussing data warehouse architecture in Chapter 2.

Now that you have an idea about what a data warehouse system is and its components,
let’s take a look at the data warehouse definition in more detail. Again, in the next few pages,
I will discuss each italicized term in the following data warehouse definition one by one: a
data warehouse is a system that retrieves and consolidates data periodically from the source
systems into a dimensional or normalized data store. It usually keeps years of history and is
queried for business intelligence or other analytical activities. It is typically updated in batches,
not every time a transaction happens in the source system.

Retrieves Data
The data retrieval is performed by a set of routines widely known as an ETL system, which is
an abbreviation for extract, transform, and load. The ETL system is a set of processes that
retrieve data from the source systems, transform the data, and load it into a target system. The
transformation can be used for changing the data to suit the format and criteria of the target
system, for deriving new values to be loaded to the target system, or for validating the data
from the source system. ETL systems are not only used to load data into the data warehouse.
They are widely used for any kind of data movements.

Most ETL systems also have mechanisms to clean the data from the source system
before putting it into the warehouse. Data cleansing is the process of identifying and correct-
ing dirty data. This is implemented using data quality rules that define what dirty data is.
After the data is extracted from the source system but before the data is loaded into the ware-
house, the data is examined using these rules. If the rule determines that the data is correct,
then it is loaded into the warehouse. If the rule determines that the data is incorrect, then
there are three options: it can be rejected, corrected, or allowed to be loaded into the ware-
house. Which action is appropriate for a particular piece of data depends on the situation,
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the risk level, the rule type (error or warning), and so on. I will go through data cleansing and
data quality in more detail in Chapter 9.

There is another alternative approach to ETL, known as extract, load, and transform
(ELT). In this approach, the data is loaded into the data warehouse first in its raw format. The
transformations, lookups, deduplications, and so on, are performed inside the data ware-
house. Unlike the ETL approach, the ELT approach does not need an ETL server. This approach
is usually implemented to take advantage of powerful data warehouse database engines such
as massively parallel processing (MPP) systems. I will be discussing more about the ELT
approach in Chapter 7.

Consolidates Data
A company can have many transactional systems. For example, a bank may use 15 different
applications for its services, one for loan processing, one for customer service, one for tellers/
cashiers, one for ATMs, one for bonds, one for ISA, one for savings, one for private banking,
one for the trading floor, one for life insurance, one for home insurance, one for mortgages,
one for the call center, one for internal accounts, and one for fraud detection. Performing
(for example) customer profitability analysis across these different applications would be
very difficult.

A data warehouse consolidates many transactional systems. The key difference between
a data warehouse and a front-office transactional system is that the data in the data ware-
house is integrated. This consolidation or integration should take into account the data
availability (some data is available in several systems but not in others), time ranges (data in
different systems has different validity periods), different definitions (the term total weekly
revenue in one system may have a different meaning from total weekly revenue in other sys-
tems), conversion (different systems may have a different unit of measure or currency), and
matching (merging data based on common identifiers between different systems).

Let’s go through the previous concepts one by one:

Data availability: When consolidating data from different source systems, it is possible that
a piece of data is available in one system but is not in the other system. For example, system
A may have seven address fields (address1, address2, address3, city, county, ZIP, and coun-
try), but system B does not have the address3 field and the country field. In system A, an
order may have two levels—order header and order line. However, in system B, an order has
four levels—order header, order bundle, order line item, and financial components. So
when consolidating data across different transaction systems, you need to be aware of
unavailable columns and missing levels in the hierarchy. In the previous examples, you can
leave address3 blank in the target and set the country to a default value. In the order hierar-
chy example, you can consolidate into two levels, order header and order line.

Time ranges: The same piece of data exists in different systems, but they have different
time periods. So, you need to be careful when consolidating them. You always need to
examine what time period is applicable to which data before you consolidate the data.
Otherwise, you are at risk of having inaccurate data in the warehouse because you mixed
different time periods. For example, say in system A the average supplier overhead cost is
calculated weekly, but in system B it is calculated monthly. You can’t just consolidate
them. In this example, you need to go back upstream to get the individual components
that make up the average supplier overhead cost in both systems and add them up first.
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Definitions: Sometimes the same data may contain different things. In system A, a col-
umn called “Total Order Value” may contain taxes, discounts, credit card charges, and
delivery charges, whereas in system B it does not contain delivery charges. In system A,
the term weekly traffic may refer to unique web site visitors, whereas in system B it means
nonunique web site visitors. In this matter, you always need to examine the meaning of
each piece of data. Just because they have the same name doesn’t mean they are the
same. This is important because you could have inaccurate data or meaningless data
in the data warehouse if you consolidate data with different meanings.

Conversion: When consolidating data across different source systems, sometimes you
need to do conversion because the data in the source system is in different units of meas-
ure. If you add them up without converting them first, then you will have incorrect data in
the warehouse. In some cases, the conversion rate is fixed (always the same value), but in
other cases the conversion rate changes from time to time. If it changes from time to time,
you need to know what time period to use when converting. For example, the conversion
between the time in one country to another country is affected by daylight savings time,
so you need to know the date to be able to do the conversion. In addition, the conversion
rate between one currency and another currency fluctuates every day, so when convert-
ing, you need to know when the transaction happened.

Matching: Matching is a process of determining whether a piece of data in one system is
the same as the data in another system. Matching is important because if you match the
wrong data, you will have inaccurate data in the data warehouse. For example, say you
want to consolidate the data for customer 1 in system A with the data for customer 1 in
system B. In this case, you need to determine first whether those two are the same cus-
tomer. If you match the wrong customers, the transaction from one customer could be
mixed up with the data from another customer. The matching criteria are different from
company to company. Sometimes criteria are simple, such as using user IDs, customer
IDs, or account IDs. But sometimes it is quite complex, such as name + e-mail address +
address. The logic of determining a match can be simply based on the equation sign (=) to
identify an exact match. It can also be based on fuzzy logic or matching rules. (I will talk
more about data matching in Chapter 9.)

When building the data warehouse, you have to deal with all these data integration issues.

Periodically
The data retrieval and the consolidation do not happen only once; they happen many times
and usually at regular intervals, such as daily or a few times a day. If the data retrieval happens
only once, then the data will become obsolete, and after some time it will not be useful.

You can determine the period of data retrieval and consolation based on the business
requirements and the frequency of data updates in the source systems. The data retrieval
interval needs to be the same as the source system’s data update frequency. If the source sys-
tem is updated once a day, you need to set the data retrieval once a day. There is no point
extracting the data from that source system several times a day.

On the other hand, you need to make sure the data retrieval interval satisfies the business
requirements. For example, if the business needs the product profitability report once a week,
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then the data from various source systems needs to be consolidated at least once a week.
Another example is when a company states to its customer that it will take 24 hours to cancel
the marketing subscriptions. Then the data in the CRM data warehouse needs to be updated
a few times a day; otherwise, you risk sending marketing campaigns to customers who have
already canceled their subscriptions.

Dimensional Data Store
A data warehouse is a system that retrieves data from source systems and puts it into a
dimensional data store or a normalized data store. Yes, some data warehouses are in dimen-
sional format, but some data warehouses are in normalized format. Let’s go through both
formats and the differences between them.

A DDS is one or several databases containing a collection of dimensional data marts.
A dimensional data mart is a group of related fact tables and their corresponding dimension
tables containing the measurements of business events categorized by their dimensions.

A dimensional data store is denormalized, and the dimensions are conformed. Con-
formed dimensions mean either they are exactly the same dimension table or one is the
subset of the other. Dimension A is said to be a subset of dimension B when all columns of
dimension A exist in dimension B and all rows of dimension A exist in dimension B.

A dimensional data store can be implemented physically in the form of several different
schemas. Examples of dimensional data store schemas are a star schema (shown in Figure 1-4),
a snowflake schema, and a galaxy schema. In a star schema, a dimension does not have a sub-
table (a subdimension). In a snowflake schema, a dimension can have a subdimension. The
purpose of having a subdimension is to minimize redundant data. A galaxy schema is also
known as a fact constellation schema. In a galaxy schema, you have two or more related fact
tables surrounded by common dimensions. The benefit of having a star schema is that it is sim-
pler than snowflake and galaxy schemas, making it easier for the ETL processes to load the data
into DDS. The benefit of a snowflake schema is that some analytics applications work better
with a snowflake schema compared to a star schema or galaxy schema. The other benefit of a
snowflake schema is less data redundancy, so less disk space is required. The benefit of galaxy
schema is the ability to model the business events more accurately by using several fact tables.

■Note A data store can be physically implemented as more than one database, in other words, two
databases, three databases, and so on. The contrary is also true: two or more data stores can be physi-
cally implemented as one database. When designing the physical layer of the data store, usually you tend
to implement each data store as one database. But you need to consider physical database design factors
such as the physical data model, database platform, storage requirement, relational integrity, and backup
requirements when determining whether you will put several data stores in one database or split a data
store into several databases. Putting one data store in one database is not always the best solution. (I will
discuss physical database design in Chapter 6.)
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Figure 1-4. Star schema dimensional data store

Normalized Data Store
Other types of data warehouses put the data not in a dimensional data store but in a normal-
ized data store. A normalized data store is one or more relational databases with little or no
data redundancy. A relational database is a database that consists of entity tables with parent-
child relationships between them.

Normalization is a process of removing data redundancy by implementing normalization
rules. There are five degrees of normal forms, from the first normal form to the fifth normal
form. A normalized data store is usually in third normal form or higher, such as fourth or fifth
normal form. I will discuss the normalization process and normalization rules in Chapter 5.

Figure 1-5 shows an example of a normalized data store. It is the normalized version of
the same data as displayed in Figure 1-4.
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Figure 1-5. Normalized data store

A dimensional data store is a better format to store data in the warehouse for the purpose
of querying and analyzing data than a normalized data store. This is because it is simpler (one
level deep in all directions in star schema) and gives better query performance. A normalized
data store is a better format to integrate data from various source systems, especially in third
normal form and higher. This is because there is only one place to update without data redun-
dancy like in a dimensional data store.

The normalized data store is usually used for an enterprise data warehouse; from there
the data is then loaded into dimensional data stores for query and analysis purposes.
Figure 1-6 shows a data warehouse system with a normalized data store used for an enter-
prise data warehouse (labeled as “EDW” in the figure).
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Some applications run on a DDS, that is, a relational database that consists of tables with
rows and columns. Some applications run on a multidimensional database that consists of
cubes with cells and dimensions. I will go through cubes and multidimensional database con-
cepts later in this chapter and in Chapter 12.

Figure 1-6. A data warehouse system that uses an enterprise data warehouse

I will discuss more about dimensional data stores, dimensional schemas, conformed
dimensions, normalized data stores, the normalization process, and third normal form in
Chapter 5 when I talk about data modeling.

History
One of the key differences between a transactional system and a data warehouse system is
the capability and capacity to store history. Most transactional systems store some history,
but data warehouse systems store very long history. In my experience, transactional systems
store only one to three years of data; beyond that, the data is purged. For example, let’s have a
look at a sales order–processing system. The purpose of this system is to process customer
orders. Once an order is dispatched and paid, it is closed, and after two or three years, you
want to purge the closed orders out of the active system and archive them to maintain sys-
tem performance.

You may want to keep the records for, say, two years, in case the customer queries their
orders, but you don’t want to keep ten years worth of data on the active system, because that
slows the system down. Some regulations (which differ from country to country) require you
to keep data for up to five or seven years, such as for tax purposes or to adhere to stock
exchange regulations. But this does not mean you must keep the data on the active system.
You can archive it to offline media. That’s what a typical transaction system does: it keeps
only two to three years of data in the active system and archives the rest either to an offline
media or to a secondary read-only system/database.

A data warehouse, on the other hand, stores years and years of history in the active sys-
tem. I have seen ten years of historical data in a data warehouse. The amount of historical data
to store in the data warehouse depends on the business requirements. Data warehouse tables
can become very large. Imagine a supermarket chain that has 100 stores. Each store welcomes
1,000 customers a day, each purchasing 10 items. This means 100 ✕ 1000 ✕ 10 = 1 million sales
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order item records every day. In a year, you will have 365 million records. If you store 10 years
of data, you will have 3.65 billion records. A high volume like this also happens in the telecom-
munications industry and in online retail, especially when you store the web page visits in the
data warehouse. Therefore, it is important for a data warehouse system to be able to update a
huge table bit by bit, query it bit by bit, and back it up bit by bit. Database features such as
table partitioning and parallel query would be useful for a data warehouse system. Table parti-
tioning is a method to split a table by rows into several parts and store each part in a different
file to increase data loading and query performance. Parallel query is a process where a single
query is split into smaller parts and each part is given to an independent query-processing
module. The query result from each module is then combined and sent back to the front-end
application. I will go through parallel database features such as table partitioning in Chapter
6, when I discuss physical database design.

Most transaction systems store the history of the transactions but not the history of the
master data such as products, customers, branches, and vehicles. When you change the prod-
uct description, for example, in my experience most of the transaction systems update the old
description with the new one; they do not store the old description. There are some exceptions,
however; for example, some specialized applications such as medical and customer service
applications store historical master data such as old customer attributes.

In a data warehouse, on the other hand, storing the history of the master data is one of
the key features. This is known as a slowly changing dimension (SCD). A slowly changing
dimension is a technique used in dimensional modeling for preserving historical information
about dimensional data. In SCD type 2, you keep the historical information in rows; while in
SCD type 3, you keep the historical information in columns. In SCD type 1, you don’t keep the
historical information. Please refer to Chapter 5 for more information about SCD.

Also related to history, a data warehouse stores a periodic snapshot of operational
source systems. A snapshot is a copy of one or more master tables taken at a certain time.
A periodic snapshot is a snapshot that is taken at a regular interval; for example, the bank-
ing industry takes snapshots of customer account tables every day. The data warehouse
applications then compare the daily snapshots to analyze customer churns, account bal-
ances, and unusual conditions. If the size of a source system is, say, 100MB, then in a year
you would have accumulated 37GB. Storing source system daily snapshots could have a
serious impact on data warehouse storage, so you need to be careful.

Query
Querying is the process of getting data from a data store, which satisfies certain criteria. Here
is an example of a simple query: “How many customers do you have now?”1 Here is an exam-
ple of a complex query: “Show me the names and revenue of all product lines that had a 10
percent loss or greater in Q3 FY 2006, categorized by outlet.”

A data warehouse is built to be queried. That is the number-one purpose of its existence.
Users are not allowed to update the data warehouse. Users can only query the data ware-
house. Only the ETL system is allowed to update the data warehouse. This is one of the key
differences between a data warehouse and a transaction system.
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If you refer once again to Figure 1-1, you can ask yourself this question: “Why do I need to
get the data from the source system into the DDS and then query the DDS? Why don’t I query
the source system directly?”

For the purpose of simple querying and reporting, you usually query the source system
directly. But for conducting heavy analysis such as customer profitability, predictive analysis,
“what if?” scenarios, slice and dice analytical exercises, and so on, it is difficult to do it on the
source system.

Here’s why: the source system is usually a transactional system, used by many users. One
important feature of a transactional system is the ability to allow many users to update and
select from the system at the same time. To do so, it must be able to perform a lot of database
transactions (update, insert, delete, and select) in a relatively short period of time. In other
words, it should be able to perform database transactions very quickly. If you stored the same
piece of data—say, unit price—in many different places in the system, it would take a long
time to update the data and to maintain data consistency. If you stored it in only one place, it
would be quicker to update the data, and you wouldn’t have to worry about maintaining data
consistency between different places. Also, it would be easier to maintain the concurrency and
locking mechanism to enable many people to work together in the same database. Hence, one
of the fundamental principles of a transaction system is to remove data redundancy.

Performing a complex query on a normalized database (such as transactional systems) is
slower than performing a complex query on a denormalized database (such as a data ware-
house), because in a normalized database, you need to join many tables. A normalized data-
base is not suitable to be used to load data into a multidimensional database for the purpose
of slicing-and-dicing analysis. Unlike a relational database that contains tables with two
dimensions (rows and columns), a multidimensional database consists of cubes containing
cells with more than two dimensions. Then each cell is mapped to a member in each dimen-
sion. To load a multidimensional database from a normalized database, you need to do a
multijoin query to transform the data to dimensional format. It can be done, but it is slower.
I will go through normalization in more detail in Chapter 5 and data loading in Chapter 8.

The second reason why you don’t query the source systems directly is because a company
can have many source systems or front-office transactional systems. So, by querying a source
system, you get only partial data. A data warehouse, on the other hand, consolidates the data
from many source systems, so by querying the data warehouse, you get integrated data.

Business Intelligence
Business intelligence is a collection of activities to understand business situations by per-
forming various types of analysis on the company data as well as on external data from third
parties to help make strategic, tactical, and operational business decisions and take neces-
sary actions for improving business performance. This includes gathering, analyzing,
understanding, and managing data about operation performance, customer and supplier
activities, financial performance, market movements, competition, regulatory compliance,
and quality controls.

Examples of business intelligence are the following:
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• Business performance management, including producing key performance indicators
such as daily sales, resource utilization, and main operational costs for each region,
product line, and time period, as well as their aggregates, to enable people to take tac-
tical actions to get operational performance on the desired tracks.

• Customer profitability analysis, that is, to understand which customers are profitable
and worth keeping and which are losing money and therefore need to be acted upon.
The key to this exercise is allocating the costs as accurately as possible to the smallest
unit of business transaction, which is similar to activity-based costing.

• Statistical analysis such as purchase likelihood or basket analysis. Basket analysis is a
process of analyzing sales data to determine which products are likely to be purchased
or ordered together. This likelihood is expressed in terms of statistical measures such as
support and confidence level. It is mainly applicable for the retail and manufacturing
industries but also to a certain degree for the financial services industry.

• Predictive analysis such as forecasting the sales, revenue, and cost figures for the pur-
pose of planning for next year’s budgets and taking into account other factors such as
organic growth, economic situations, and the company’s future direction.

According to the depth of analysis and level of complexity, in my opinion you can group
business intelligence activities into three categories:

• Reporting, such as key performance indicators, global sales figures by business unit and
service codes, worldwide customer accounts, consolidated delivery status, and
resource utilization rates across different branches in many countries

• OLAP, such as aggregation, drill down, slice and dice, and drill across

• Data mining, such as data characterization, data discrimination, association analysis,
classification, clustering, prediction, trend analysis, deviation analysis, and similarity
analysis

Now let’s discuss each of these three categories in detail.

Reporting
In a data warehousing context, a report is a program that retrieves data from the data ware-
house and presents it to the users on the screen or on paper. Users also can subscribe to these
reports so that they can be sent to the users automatically by e-mail at certain times (daily or
weekly, for example) or in response to events.

The reports are built according to the functional specifications. They display the DDS
data required by the business user to analyze and understand business situations. The most
common form of report is a tabular form containing simple columns. There is another form of
report known as cross tab or matrix. These reports are like Excel pivot tables, where one data
attribute becomes the rows, another data attribute becomes the columns, and each cell on the
report contains the value corresponding to the row and column attributes.

Data warehouse reports are used to present the business data to users, but they are also
used for data warehouse administration purposes. They are used to monitor data quality, to
monitor the usage of data warehouse applications, and to monitor ETL activities.
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Online Analytical Processing (OLAP)
OLAP is the activity of interactively analyzing business transaction data stored in the dimen-
sional data warehouse to make tactical and strategic business decisions. Typical people who
do OLAP work are business analysts, business managers, and executives. Typical functionality
in OLAP includes aggregating (totaling), drilling down (getting the details), and slicing and
dicing (cutting the cube and summing the values in the cells). OLAP functionality can be
delivered using a relational database or using a multidimensional database. OLAP that uses
a relational database is known as relational online analytical processing (ROLAP). OLAP that
uses a multidimensional database is known as multidimensional online analytical processing
(MOLAP).

An example of OLAP is analyzing the effectiveness of a marketing campaign initiative on
certain products by measuring sales growth over a certain period. Another example is to ana-
lyze the impact of a price increase to the product sales in different regions and product groups
at the same period of time.

Data Mining
Data mining is a process to explore data to find the patterns and relationships that describe
the data and to predict the unknown or future values of the data. The key value in data min-
ing is the ability to understand why some things happened in the past and to predict what
will happen in the future. When data mining is used to explain the current or past situation,
it is called descriptive analytics. When data mining is used to predict the future, it is called
predictive analytics.

In business intelligence, popular applications of data mining are for fraud detection
(credit card industry), forecasting and budgeting (finance), developing cellular/mobile pack-
ages by analyzing call patterns (telecommunication industry), market basket analysis (retail
industry), customer risk profiling (insurance industry), usage monitoring (energy and utili-
ties), and machine service times (manufacturing industry).

I will discuss the implementation of data warehousing for business intelligence in
Chapter 13.

Other Analytical Activities
Other than for business intelligence, data warehouses are also used for analytical activities in
nonbusiness purposes, such as scientific research, government departments (statistics office,
weather office, economic analysis, and predictions), military intelligence, emergency and
disaster management, charity organizations, server performance monitoring, and network
traffic analysis.

Data warehouses are also used for customer relationship management (CRM). CRM is
a set of activities performed by an organization (business and nonbusiness) to manage and
conduct analysis about their customers, to keep in contact and communicate with their cus-
tomers, to attract and win new customers, to market product and services to their customers,
to conduct transactions with their customers (both business and nonbusiness transactions),
to service and support their customers, and to create new ideas and new products or services
for their customers. I will discuss the implementation of data warehouses for CRM later in this
chapter and in Chapter 14.
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Data warehouses are also used in web analytics. Web analytics is the activity of under-
standing the behavior and characteristics of web site traffic. This includes finding out the
number of visits, visitors, and unique visitors on each page for each day/week/month; referrer
sites; typical routes that visitors take within the site; technical characteristics of the visitors’
browsers; domain and geographical analysis; what kind of robots are visiting; the exit rate of
each page; and the conversion rate on the checkout process. Web analytics are especially
important for online businesses.

Updated in Batches
A data warehouse is usually a read-only system; that is, users are not able to update or
delete data in the data warehouse. Data warehouse data is updated using a standard mecha-
nism called ETL at certain times by bringing data from the operational source system. This
is different from a transactional system or OLTP where users are able to update the system
at any time.

The reason for not allowing users to update or delete data in the data warehouse is to
maintain data consistency so you can guarantee that the data in the data warehouse will be
consistent with the operational source systems, such as if the data warehouse is taking data
from two source systems, A and B. System A contains 11 million customers, system B contains
8 million customers, and there are 2 million customers who exist in both systems. The data
warehouse will contain 17 million customers. If the users update the data in the data ware-
house (say, delete 1 million customers), then it will not be consistent with the source systems.
Also, when the next update comes in from the ETL, the changes that the users made in the
warehouse will be gone and overwritten.

The reason why data warehouses are updated in batches rather than in real time is to cre-
ate data stability in the data warehouse. You need to keep in mind that the operational source
systems are changing all the time. Some of them change every minute, and some of them
change every second. If you allow the source system to update the data warehouse in real time
or you allow the users to update the data warehouse all the time, then it would be difficult to
do some analysis because the data changes every time. For example, say you are doing a
drilling-down exercise on a multidimensional cube containing crime data. At 10:07 you notice
that the total of crime in a particular region for Q1 2007 is 100. So at 10:09, you drill down by
city (say that region consists of three cities: A, B, and C), and the system displays that the
crime for city A was 40, B was 30, and C was 31. That is because at 10:08 a user or an ETL
added one crime that happened in city C to the data warehouse. The drilling-down/summing-
up exercise will give inconsistent results because the data keeps changing.

The second reason for updating the data warehouse in batches rather than in real time is
the performance of the source system. Updating the data warehouse in real time means that
the moment there is an update in the source systems, you update the data warehouse imme-
diately, that is, within a few seconds. To do this, you need to either

• install database triggers on every table in the source system or

• modify the source system application to write into the data warehouse immediately
after it writes to the source system database.

If the source system is a large application and you need to extract from many tables (say
100 or 1,000 tables), then either approach will significantly impact the performance of the
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source system application. One pragmatic approach is to do real-time updates only from a
few key tables, say five tables, whilst other tables are updated in a normal daily batch. It is
possible to update the data warehouse in real time or in near real time, but only for a few
selected tables.

In the past few years, real-time data warehousing has become the trend and even the
norm. Data warehouse ETL batches that in the old days ran once a day now run every hour,
some of them every five minutes (this is called a mini-batch). Some of them are using the push
approach; that is, rather than pulling the data into the warehouse, the source system pushes
the data into the warehouse. In a push approach, the data warehouse is updated immediately
when the data in the source system changes. Changes in the source system are detected using
database triggers. In a pull approach, the data warehouse is updated at certain intervals.
Changes in the source system are detected for extraction using a timestamp or identity col-
umn. (I will go through data extraction in Chapter 7.)

Some approaches use messaging and message queuing technology to transport the data
asynchronously from various source systems into the data warehouse. Messaging is a data
transport mechanism where the data is wrapped in an envelope containing control bits and
sent over the network into a message queue. A message queue (MQ) is a system where mes-
sages are queued to be processed systematically in order. An application sends messages con-
taining data into the MQ, and another application reads and removes the messages from the
MQ. There are some considerations you need to be careful of when using asynchronous ETL,
because different pieces of data are arriving at different times without knowing each other’s
status of arrival. The benefit of using MQ for ETL is the ability for the source system to send
out the data without the data warehouse being online to receive it. The other benefit is that
the source system needs to send out the data only once to an MQ so the data consistency is
guaranteed; several recipients can then read the same message from the MQ. You will learn
more about real-time data warehousing in Chapter 8 when I discuss ETL.

Other Definitions
I will close this section with data warehouse definitions from Bill Inmon and from Ralph Kim-
ball, the fathers of data warehousing:

• According to Bill Inmon, a data warehouse is a subject-oriented, integrated, non-
volatile, and time-variant collection of data in support of management’s decisions.2

• According to Ralph Kimball, a data warehouse is a system that extracts, cleans, con-
forms, and delivers source data into a dimensional data store and then supports and
implements querying and analysis for the purpose of decision making.3

Both of them agree that a data warehouse integrates data from various operational source
systems. In Inmon’s approach, the data warehouse is physically implemented as a normalized
data store. In Kimball’s approach, the data warehouse is physically implemented in a dimen-
sional data store.

In my opinion, if you store the data in a normalized data store, you still need to load the
data into a dimensional data store for query and analysis. A dimensional data store is a better
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format to store data in the warehouse for the purpose of querying and analyzing the data,
compared to a normalized data store. A normalized data store is a better format to integrate
data from various source systems.

The previous definitions are amazingly still valid and used worldwide, even after 16
years. I just want to add a little note. It is true that in the early days data warehouses were
used mainly for making strategic management decisions, but in recent years, especially with
real-time data warehousing, data warehouses have been used for operational purposes too.
These days, data warehouses are also used outside decision making, including for under-
standing certain situations, for reporting purposes, for data integration, and for CRM
operations.

Another interesting definition is from Alan Simon: the coordinated, architected, and peri-
odic copying of data from various sources into an environment optimized for analytical and
informational processing.4

Data Warehousing Today
Today most data warehouses are used for business intelligence to enhance CRM and for
data mining. Some are also used for reporting, and some are used for data integration. These
usages are all interrelated; for example, business intelligence and CRM use data mining, busi-
ness intelligence uses reporting, and BI and CRM also use data integration. In the following
sections, I will describe the main usages, including business intelligence, CRM, and data min-
ing. In Chapters 13 to 15, I will go through them again in more detail.

Business Intelligence
It seems that many vendors prefer to use the term business intelligence rather than data
warehousing. In other words, they are more focused on what a data warehouse can do for a
business. As I explained previously, many data warehouses today are used for BI. That is, the
purpose of a data warehouse is to help business users understand their business better; to
help them make better operational, tactical, and strategic business decisions; and to help
them improve business performance.

Many companies have built business intelligence systems to help these processes, such as
understanding business processes, making better decisions (through better use of information
and through data-based decision making), and improving business performance (that is, man-
aging business more scientifically and with more information). These systems help the busi-
ness users get the information from the huge amount of business data. These systems also help
business users understand the pattern of the business data and predict future behavior using
data mining. Data mining enables the business to find certain patterns in the data and forecast
the future values of the data.

Almost every single aspect of business operations now is touched by business intelli-
gence: call center, supply chain, customer analytics, finance, and workforce. Almost every
function is covered too: analysis, reporting, alert, querying, dashboard, and data integration.
A lot of business leaders these days make decisions based on data. And a business intelligence
tool running and operating on top of a data warehouse could be an invaluable support tool for
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that purpose. This is achieved using reports and OLAP. Data warehouse reports are used
to present the integrated business data in the data warehouse to the business users. OLAP
enables the business to interactively analyze business transaction data stored in the dimen-
sional data warehouse. I will discuss the data warehouse usage for business intelligence in
Chapter 13.

Customer Relationship Management
I defined CRM earlier in this chapter. A customer is a person or organization that consumes
your products or services. In nonbusiness organizations, such as universities and government
agencies, a customer is the person who the organization serves.

A CRM system consists of applications that support CRM activities (please refer to the
definition earlier where these activities were mentioned). In a CRM system, the following
functionality is ideally done in a dimensional data warehouse:

Single customer view: The ability to unify or consolidate several definitions or meanings
of a customer, such as subscribers, purchasers, bookers, and registered users, through
the use of customer matching

Permission management: Storing and managing declarations or statements from cus-
tomers so you can send campaigns to them or communicate with them including
subscription-based, tactical campaigns, ISP feedback loops, and communication
preferences

Campaign segmentation: Attributes or elements you can use to segregate the customers
into groups, such as order data, demographic data, campaign delivery, campaign
response, and customer loyalty score

Customer services/support: Helping customers before they use the service or product
(preconsumption support), when they are using the service or product, and after they
used the service/product; handling customer complaints; and helping them in emer-
gencies such as by contacting them

Customer analysis: Various kinds of analysis including purchase patterns, price sensitivity
analysis, shopping behavior, customer attrition analysis, customer profitability analysis,
and fraud detection

Personalization: Tailoring your web site, products, services, campaigns, and offers for a
particular customer or a group of customers, such as price and product alerts, personal-
ized offers and recommendations, and site personalization

Customer loyalty scheme: Various ways to reward highly valued customers and build
loyalty among customer bases, including calculating the customer scores/point-based
system, customer classification, satisfaction survey analysis, and the scheme
administration

Other functionality such as customer support and order-processing support are better
served by an operational data store (ODS) or OLTP applications. An ODS is a relational, nor-
malized data store containing the transaction data and current values of master data from the
OLTP system. An ODS does not store the history of master data such as the customer, store,
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and product. When the value of the master data in the OLTP system changes, the ODS is
updated accordingly. An ODS integrates data from several OLTP systems. Unlike a data ware-
house, an ODS is updatable.

Because an ODS contains integrated data from several OLTP systems, it is an ideal place
to be used for customer support. Customer service agents can view the integrated data of a
customer in the ODS. They can also update the data if necessary to complement the data from
the OLTP systems. For example, invoice data from a finance system, order data from an ERP
system, and subscription data from a campaign management system can be consolidated in
the ODS.

I will discuss the implementation of data warehousing for customer relationship manage-
ment in Chapter 14.

Data Mining
Data mining is a field that has been growing fast in the past few years. It is also known as
knowledge discovery, because it includes trying to find meaningful and useful information
from a large amount of data. It is an interactive or automated process to find patterns des-
cribing the data and to predict the future behavior of the data based on these patterns.

Data mining systems can work with many types of data formats: various types of data-
bases (relational databases, hierarchical databases, dimensional databases, object-oriented
databases, and multidimensional databases), files (spreadsheet files, XML files, and struc-
tured text files), unstructured or semistructured data (documents, e-mails, and XML files),
stream data (plant measurements, temperatures and pressures, network traffic, and telecom-
munication traffic), multimedia files (audio, video, images, and speeches), web sites/pages,
and web logs.

Of these various types of data, data mining applications work best with a data warehouse
because the data is already cleaned, it is structured, it has metadata that describes the data
(useful for navigating around the data), it is integrated, it is nonvolatile (that is, quite static),
and most important it is usually arranged in dimensional format that is suitable for various
data mining tasks such as classification, exploration, description, and prediction. In data min-
ing projects, data from the various sources mentioned in the previous paragraph are arranged
in a dimensional database. The data mining applications retrieve data from this database to
apply various data mining algorithms and logic to the data. The application then presents the
result to the end users.

You can use data mining for various business and nonbusiness applications including the
following:

• Finding out which products are likely to be purchased together, either by analyzing the
shopping data and taking into account the purchase probability or by analyzing order
data. Shopping (browsing) data is specific to the online industry, whilst order data is
generic to all industries.

• In the railway or telecommunications area, predicting which tracks or networks of
cables and switches are likely to have problems this year, so you can allocate resources
(technician, monitoring, and alert systems, and so on) on those areas of the network.

• Finding out the pattern between crime and location and between crime rate and vari-
ous factors, in an effort to reduce crime.
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• Customer scoring in CRM in terms of loyalty and purchase power, based on their
orders, geographic, and demographic attributes.

• Credit scoring in the credit card industry to tag customers according to attitudes about
risk exposure, according to borrowing behaviors, and according to their abilities to pay
their debts.

• Investigating the relationship between types of customers and the services/products
they would likely subscribe to/purchase in an effort to create future services/products
and to devise a marketing strategy and effort for existing services/products.

• Creating a call pattern in the telecommunication industry, in terms of time slices and
geographical area (daily, weekly, monthly, and seasonal patterns) in order to manage
the network resources (bandwidth, scheduled maintenance, and customer support)
accordingly.

To implement data mining in SQL Server Analysis Services (SSAS), you build a mining
model using the data from relational sources or from OLAP cubes containing certain mining
algorithms such as decision trees and clustering. You then process the model and test how it
performs. You can then use the model to create predictions. A prediction is a forecast about
the future value of a certain variable. You can also create reports that query the mining mod-
els. I will discuss data mining in Chapter 13 when I cover the implementation of data
warehousing for business intelligence.

Master Data Management (MDM)
To understand what master data management is, we need to understand what master data is
first. In OLTP systems, there are two categories of data: transaction data and master data.
Transaction data consists of business entities in OLTP systems that record business trans-
actions consisting of identity, value, and attribute columns. Master data consists of the
business entities in the OLTP systems that describe business transactions consisting of iden-
tity and attribute columns. Transaction data is linked to master data so that master data
describes the business transaction.

Let’s take the classic example of sales order–processing first and then look at another
example in public transport.

An online music shop with three brands has about 80,000 songs. Each brand has its own
web store: Energize is aimed at young people, Ranch is aimed at men, and Essence is aimed
at women. Every day, thousands of customers purchase and download thousands of different
songs. Every time a customer purchases a song, a transaction happens. All the entities in this
event are master data.

To understand which entities are the transaction data and which entities are the master
data, you need to model the business process. The business event is the transaction data. In
the online music shop example, the business event is that a customer purchases a song. Mas-
ter data consists of the entities that describe the business event. Master data consists of the
answers of who, what, and where questions about a business transaction. In the previous
example, the master data is customer, product, and brand.

Here’s the second example: 1,000 bus drivers from 10 different transport companies are
driving 500 buses around 50 different routes in a town. Each route is served 20 times a day,
which is called a trip. The business process here is driving one trip. That is the transaction.
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You have 50 ✕ 20 = 1000 transactions a day. The master data consists of the business entities
in this transaction: the driver, the bus, and the route. How about the companies? No, the com-
pany is not directly involved in the trip, so the company is not master data in this process.
The company is involved in a trip through the buses and the drivers; each driver and each
bus belong to a company. The company, however, may be a master data in another business
process.

In the previous examples, you learned that to identify the transaction data and the master
data in a business process, you need to identify what the business event is in the process first.
Then, you identify the business entities that describe the business event.

Examples of master data are the supplier, branch, office, employee, citizen, taxpayer,
assets, inventory, store, salespeople, property, equipment, time, product, tools, roads, cus-
tomer, server, switch, account, service code, destination, contract, plants (as in manufacturing
or oil refineries), machines, vehicles, and so on.

Now you are ready to learn about MDM, which is the ongoing process of retrieving,
cleaning, storing, updating, and distributing master data. An MDM system retrieves the mas-
ter data from OLTP systems. The MDM system consolidates the master data and processes
the data through predefined data quality rules. The master data is then uploaded to a master
data store. Any changes on master data in the OLTP systems are sent to the MDM system,
and the master data store is updated to reflect those changes. The MDM system then pub-
lishes the master data to other systems.

There are two kinds of master data that you may not want to include when implementing
an MDM system:

• You may want to exclude date and time. A date explains a business event, so by defini-
tion it is master data. A date has attributes such as month name, but the attributes are
static. The month name of 01/11/2007 is November and will always be November. It is
static. It does not need to be maintained, updated, and published. The attributes of a
customer such as address, on the other hand, keep changing and need to be main-
tained. But the attributes of a date are static.

• You may want to exclude master data with a small number of members. For example,
if your business is e-commerce and you have only one online store, then it may not be
worth it to maintain store data using MDM. The considerations whether to exclude or
include a small business entity as master data or not are the number of members and
frequency of change. If the number of members is less than ten and the frequency of
change is less than once a year, you want to consider excluding it from your MDM
system.

Now let’s have a look at one of the most widely used types of master data: products. You
may have five different systems in the organization and all of them have a product table, and
you need to make sure that all of them are in agreement and in sync. If in the purchase order
system you have a wireless router with part number WAR3311N but in the sales order system
you have a different part number, then you risk ordering the incorrect product from your sup-
plier and replenishing a different product. There is also a risk of inaccuracy of the sales report
and inventory control. It’s the same thing with the speed, protocol, color, specification, and
other product attributes; they also expose you to certain risk if you don’t get them synchro-
nized and corrected. So, say you have five different systems and 200,000 part numbers. How
do you make sure the data is accurate across all systems all the time? That’s where MDM
comes into play.
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An MDM system retrieves data from various OLTP systems and gets the product data. If
there are duplicate products, the MDM system integrates the two records. The MDM system
integrates the two records by comparing the common attributes to identify whether the two
records are a match. If they are a match, survivorship rules dictate which record wins and
which record loses. The winning record is kept, and the losing record is discarded and
archived. For example, you may have two different suppliers supplying the same product but
they have different supplier part numbers. MDM can match product records based on differ-
ent product attributes depending on product category and product group. For example, for
digital cameras, possible matching criteria are brand, model, resolution, optical zoom, mem-
ory card type, max and min focal length, max and min shutter speed, max and min ISO, and
sensor type. For books, the matching is based on totally different attributes. MDM can merge
two duplicate records into one automatically, depending on the matching rule and survivor-
ship rules that you set up. It keeps the old data so that if you uncover that the merge was not
correct (that is, they are really two different products), then MDM can unmerge that one
record back into two records.

Once the MDM has the correct single version of data, it publishes this data to other sys-
tems. These systems use this service to update the product data that they store. If there is any
update on any of these applications to product data, the master store will be updated, and
changes will be replicated to all other systems.

The master data is located within OLTP systems. There are changes to this master data in
the OLTP systems from time to time. These master data changes flow from OLTP systems to
the master data store in the MDM system. There are two possible ways this data flow happens.
The OLTP system sends the changes to the MDM system and the MDM system stores the
changes in the master data store, or the MDM system retrieves the master data in OLTP sys-
tems periodically to identify whether there are any changes. The first approach where the
OLTP system sends the master data changes to the MDM system is called a push approach.
The second approach where the MDM system retrieves the master data from the OLTP sys-
tems periodically is called a pull approach. Some MDM systems use the push approach, and
some MDM systems use the pull approach.

MDM systems have metadata storage. Metadata storage is a database that stores the
rules, the structure, and the meaning of the data. The purpose of having metadata storage in
an MDM system is to help the users understand the meaning and structure of the master
data stored in the MDM system. Two types of rules are stored in the metadata storage: sur-
vivorship rules and matching rules. Survivorship rules determine which of the duplicate
master data records from the OLTP system will be kept as the master data in the MDM sys-
tem. Matching rules determine what attributes are used to identify duplicate records from
OLTP systems. The data structure stored in metadata storage explains the attributes of the
master data and the data types of these attributes.

MDM systems have a reporting facility that displays the data structure, the survivorship
rules, the matching rules, and the duplicate records from OLTP systems along with which rule
was applied and which record was kept as the master data. The reporting facility also shows
which rules were executed and when they were executed.

The master data management system for managing product data such as this is known
as product information management (PIM). PIM is an MDM system that retrieves product
data from OLTP systems, cleans the product data, and stores the product data in a master
data store. PIM maintains all product attributes and the product hierarchy in the master data

CHAPTER 1 ■ INTRODUCTION TO DATA WAREHOUSING22

9314ch01final.qxd  11/15/07  10:24 AM  Page 22



store and keeps it up-to-date by getting the product data changes from OLTP systems. PIM
publishes the product data to other systems.

It is important to remember that the master data in the MDM system’s master data store
needs to be continuously updated. There is no point in synchronizing all the systems today
when next week they will be out of sync again.

Now that you understand what MDM is, how does it relate to data warehousing? It relates
for two reasons:

• If all the master data is clean, then it would make the tasks of creating and maintaining
a data warehouse much easier. The data is already integrated and cleaned. All the data
warehouse has to do is connect to this MDM store and synchronize all its dimensions
with it. Of course, you would still have to maintain the surrogate key and SCD,5 and so
on, but the task is easier.

• You could use a data warehouse to store the master data. If you already have a data
warehouse in place that pulls data from many different systems, cleans them, and inte-
grates them in one place, then why don’t you set up a service to publish this data and
get those systems to subscribe or consume this service?

There is one more point that I need to discuss: hierarchy. Hierarchy is a structure where
the master data is grouped into several categories, and the categories are classified into
related levels. The top-level category has one or more second-level categories. Each of these
second-level categories has one or more third-level categories. The same applies for further
lower levels. The lowest-level categories have the individual master data as their members.
Hierarchy is used to determine which attributes are applicable to which data. Hierarchy is
also used when moving an item from one category to another.

For example, a product such as Canon EOS 400D belongs to a product category, such
as SLR Digital Camera. A product category belongs to a product group, such as Digital
Camera. A product group belongs to a product family, such as Camera. A product family
belongs to a product type, such as Electronics. If you want to change the Camera product
family to Video and Photo Camera and move the Video Camera product group under it,
then you can do it in one place: the MDM hub. The MDM will then distribute this new
hierarchy to other systems.

It is important that an MDM system is capable of maintaining hierarchy; otherwise, the
product data in different applications would not be in sync, and you are exposed to those
risks. And it is not an easy task; application A can have only three levels of product hierarchy,
whereas application B has four levels.

Customer Data Integration
Customer data integration (CDI) is the MDM for customer data. CDI is the process of retriev-
ing, cleaning, storing, maintaining, and distributing customer data. A CDI system retrieves
customer data from OLTP systems, cleans it, stores it in a customer master data store, main-
tains the customer data, keeps it up-to-date, and distributes the customer data to other
systems.
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A CDI system enables you to have a cleaner, single, reliable version of customer data that
other applications in the enterprise can use. This in turn can deliver business benefits such as
increased customer satisfaction and better business analysis, and it reduces the complexity of
the processes that use customer data. Of all the various kinds of master data management,
CDI is the most widely used because every organization has customers. CDI provides clean
integrated data for customer relationship management.

The importance of having a single accurate source of customer data is illustrated in the
following examples. If in the customer service system you have Carol Goodman’s date of birth
as May 12, 1953, but in the policy management system it is May 12, 1973, then you are risking
underwriting her life policy incorrectly. It’s the same thing with the address and phone num-
ber, which also expose you to certain risks if you don’t get them synchronized and corrected,
just like the case with the product data discussed previously. CDI has different matching crite-
ria compared to products, of course; for example, it can match customer records based on
name, date of birth, Social Security number, telephone number, address, credit card number,
and many other attributes. This time the criteria are not different from product group to prod-
uct group, but rather universal. A human being is a human being, not like products that have
different attributes for each product type.

Future Trends in Data Warehousing
Several future trends in data warehousing today are unstructured data, search, service-
oriented architecture, and real-time data warehousing.

Unstructured Data
Data that is in databases is structured; it is organized in rows and columns. I have talked in
great length in previous sections about data warehousing using structured data; that is, the
source system is a database. It can be a relational database (tables, rows, and columns), and it
may be an object-oriented database (classes and types) or a hierarchical database (a tree-like
structure). However, they all have data structure.

Unstructured data, on the other hand, does not have a data structure such as rows and
columns, a tree-like structure, or classes and types. Examples of unstructured data are docu-
ments, images (photos, diagrams, and pictures), audio (songs, speeches, and sounds), video
(films, animations), streaming data, text, e-mails, and Internet web sites. Arguably, some
people say this kind of data is semistructured data, with the argument that there is some
structure, so it has attributes. For example, an e-mail has attributes such as from, to, date sent,
date created, date received, subject, and body; a document has attributes such as title, subject,
author, number of pages, number of words, creation date, and last-modified date.

How do you store unstructured data in the data warehouse? And, after you store it, how
do you get the information that you need out of this data? Well, the answer to the first ques-
tion is for each unstructured data item you define the attributes and then organize these items
according to the attributes. You can store the unstructured data items in a relational database
as a binary object column, with the attributes as other columns. Or you can store the unstruc-
tured data items in the file systems and just store the pointer to the file in the database.

Each type of unstructured data has different physical and content attributes. These attrib-
utes can be stored in a relational or multidimensional database to enable the users to easily
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find a particular piece of unstructured data. The content of the unstructured data itself can be
analyzed, extracted, categorized, and stored to assist information retrieval.

For example, let’s say you have 1 million e-mails as your unstructured data. They have
attributes, such as from, to, cc, bcc, subject, date created, date sent, attachments, number of
words in the body, host address, originator address, recipient address, and so on. You then
store these attributes in a relational table, and the e-mails are stored as files with the file name
and location stored in the table.

In addition to the physical attribute of the e-mail, you can also uncover the content
attributes of the e-mail body. First, you do some text cleansing on the e-mail body to remove
noises such as numbers and adjectives; convert past-tense verbs into present; correct plu-
rals into singulars; eliminate meaningless words such as ah, the, in (well, they are not really
meaningless, but what you are looking for are verbs and nouns); convert synonyms using a
dictionary; and so on. Then you can count how many times each word occurs, giving a score
depending on how far a word is located from another word and categorizing the items to a
certain hierarchy that you have created based on the words, the statistical properties of
these words, and the score for these words. Then you can put these categories and proper-
ties in those attribute columns to assist information retrieval.

It is probably not fair if we say that unstructured data is new. Text analytics have been
around for a long time. It’s just that recently people have started realizing that most of their
data is stored in unstructured data, especially text such as documents and e-mails, and only
a little bit of their data is structured data. So why do we spend a lot of effort storing and ana-
lyzing structured data (such as numbers) and only a little effort on unstructured data? Hence,
structured data has become one of the current trends in data warehousing.

Search
This section answers the second question, how do you get the information out? The answer is
by searching. To get the information out of structured data, provided that you know the struc-
ture, you can do a select query, whether using a static report or manual interactive ad hoc
queries. If you use a BI application, the application can go through the metadata and display
the structure of the data and then assist you in navigating through the data to retrieve the
information you need.

To get the information out of unstructured data, especially text data such as documents,
e-mails, and web pages, you do a search. Like on the Internet, the search engine has already
crawled the data warehouse and indexed the unstructured data. The search engine has cate-
gorized the unstructured data based on their types and their properties and, in the case of web
pages, their links.

You can now type what you want to find in a search box, and the search engine will go
through its index, find the locations of the information, and display the results. It can also
offer predefined searches, wrapped in a nice hierarchical structure for you to navigate and
choose. It can also memorize user searches that could assist you in defining what to type
when searching.

If the unstructured data contains links to other data—for example, hypertext documents
such as XML or HTML—the search engine can utilize what it knows best in the Internet world,
which is to use the links to score the relevance of the information when displaying the search
results to the users. For searching images, the search engine could use the words around or
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near the image to verify the title or tag of the image. This is also applicable for other multime-
dia types, such as video and music.

Search in the Internet world has been around for quite a while (10 to 15) years, but in
data warehousing it is relatively new (2 to 3 years). If the information in the data warehouse
is huge, often it is easier to search than to browse. For example, a top international organi-
zation with 100 branches located in 50 countries could have 100 data marts totaling 100
terabytes for sales, purchases, finance, inventory, human resources, and a huge amount of
documents. This is especially true for new users who have not learned the structure of the
data warehouse, what reports are available, and how to navigate around the data using the
OLAP interface. With search, you have only one box, and you can type whatever you want.
What user interface could be simpler than that?

That is why currently search has become a trend in business intelligence and data ware-
housing—first, because people collect their unstructured data in a huge amount, and second,
because search is easier to use, even for structured data.

Service-Oriented Architecture (SOA)
SOA is a method of building an application using a number of smaller, independent compo-
nents that talk to each other by offering and consuming their services. These components can
be distributed; in fact, they can be located on different sides of the world.

Almost every large application can benefit from an SOA approach. You don’t build one
giant application anymore. Instead, you build many smaller pieces that talk to each other. It
is the nature of the IT industry that applications will need to be replaced every several years
(I’d say every four to eight years). It could be because of obsolete technology or because of
the functionality. Bankruptcy, mergers, and takeovers are also the other drivers to this.

If you make one giant application, it would be costly to replace it. If you make it from a
number of smaller, independent components, it is easier to replace it. SOA gives us more flexi-
bility to replace the components. In other words, you can do it in stages piece by piece without
affecting the functionality. This is because the components are independent; that is, they don’t
care how the other components work internally as long as externally they get the responses
they require. This enables you to rebuild one component with newer technology without
affecting the others.

How does this SOA relate to data warehousing? If you refer to Figure 1-1, a data ware-
house system consists of many components: source systems, ETL systems, a data quality
mechanism, a metadata system, audit and control systems, a BI portal, a reporting applica-
tion, OLAP/analytic applications, data mining applications, and the database system itself.
You can build it as one giant application with all the components tightly coupled; that is, you
cannot replace one component without affecting the other components. Or you can build it in
service-oriented architecture—you build it as a number of smaller, independent components
that talk to each other by offering and consuming their services.

Let’s take a look at an example: ETL. During a recent project I was involved with, the
project team built the ETL system as a service. It had various data retrieval services (for
example, getService, getAccount, and getTransaction), which retrieved the data from the
source system, wrapped it around XML messages, and sent it to a message queue. It had a
scheduler service that acted as a mini-batch system; it invoked various data retrieval services
at a certain frequency that we set, such as every 5 or 30 minutes. It had a queue management
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service that controlled the message queue. It had data transformation and data loading serv-
ices that transformed and loaded the data into the data warehouse.

More and more data warehousing applications on all fronts are built using SOA: ETL,
reporting, analytics, BI applications, data mining, metadata, data quality, and data cleansing.
In the future, it would be easier to update one component without impacting the others and
to connect different components that are made using different technologies.

Real-Time Data Warehouse
A data warehouse, a few years ago, was usually updated every day or every week. In the past
two to three years, there has been more and more demand to increase the frequency of updates.
The users want to see the data in the data warehouse updated every two minutes or even in
real time. A real-time data warehouse is a data warehouse that is updated (by the ETL) the
moment the transaction happens in the source system.

For example, you can put triggers on the sales transaction table in the source system so
that whenever there is a transaction inserted into the database, the trigger fires and sends the
new record to the data warehouse as a message. The data warehouse has an active listener
that captures the message the moment it arrives, cleanses it, DQs it, transforms it, and inserts
it into the fact table immediately. I’m talking about a two-second time difference here,
between the moment a customer purchased a product on the web site and the moment data
is available in the fact table.

The other approach of implementing a real-time data warehouse is to modify the oper-
ational source application to write to the data warehouse staging area, immediately after it
writes the data in its internal database. In the staging database, you place triggers that
would be invoked every time there is a new record inserted, and these triggers update the
data warehouse.

Near real-time approaches can be implemented by using a mini-batch with two- to five-
minute frequency, which pulls the data from the stage area instead of using triggers. This mini-
batch also does the normal ETL job—transforming the data and loading it into the data
warehouse dimensional database. The mini-batch can also pull the data directly from the
source system, eliminating the need of modifying the source system to update the staging area.

Summary
This chapter introduced data warehousing. I showed many examples, with the hope that they
would make the concepts easier to understand and would enrich your experience. I discussed
a bit of today’s situation so you know how it is now, and a bit of the future trends so you know
what is coming. In the next chapter, I will discuss the architecture.
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Data Warehouse Architecture

A data warehouse system has two main architectures: the data flow architecture and the
system architecture. The data flow architecture is about how the data stores are arranged
within a data warehouse and how the data flows from the source systems to the users through
these data stores. The system architecture is about the physical configuration of the servers,
network, software, storage, and clients. In this chapter, I will discuss the data flow architecture
first and then the system architecture.

Specifically, I will start this chapter by going through what the data flow architecture is,
what its purpose is, and what its components are. Then I will discuss four data flow architec-
tures: single DDS, NDS + DDS, ODS + DDS, and federated data warehouse. The first three use
a dimensional model as their back-end data stores, but they are different in the middle-tier
data store. The federated data warehouse architecture consists of several data warehouses
integrated by a data retrieval layer.

I will then discuss the system architecture, which needs to be designed to suit the data
flow architecture. So, the data flow architecture is determined first before you design the sys-
tem architecture. The system architecture affects the actual performance of a data warehouse
system delivered to the end users.

Toward the end of this chapter, I will introduce a case study that we will be using through-
out the book. In subsequent chapters, I will show how to build a data warehouse for the com-
pany in the case study, Amadeus Entertainment Group. You can use this case study to learn all
the data warehousing aspects covered in this book: architecture, methodology, requirements,
data modeling, physical database design, ETL, data quality, metadata, reporting, multidimen-
sional databases, BI, CRM, testing, and administration.

Data Flow Architecture
In data warehousing, the data flow architecture is a configuration of data stores within a
data warehouse system, along with the arrangement of how the data flows from the source
systems through these data stores to the applications used by the end users. This includes
how the data flows are controlled, logged, and monitored, as well as the mechanism to
ensure the quality of the data in the data stores. I discussed the data flow architecture
briefly in Chapter 1, but in this chapter I will discuss it in more detail, along with four data
flow architectures: single DDS, NDS + DDS, ODS + DDS, and federated data warehouse.

The data flow architecture is different from data architecture. Data architecture is about
how the data is arranged in each data store and how a data store is designed to reflect the
business processes. The activity to produce data architecture is known as data modeling. I will
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not discuss data architecture and data modeling in this chapter. I will discuss those topics in
Chapter 5.

Data stores are important components of data flow architecture. I’ll begin the discus-
sion about the data flow architecture by explaining what a data store is. A data store is one or
more databases or files containing data warehouse data, arranged in a particular format and
involved in data warehouse processes. Based on the user accessibility, you can classify data
warehouse data stores into three types:

• A user-facing data store is a data store that is available to end users and is queried by
the end users and end-user applications.

• An internal data store is a data store that is used internally by data warehouse compo-
nents for the purpose of integrating, cleansing, logging, and preparing data, and it is
not open for query by the end users and end-user applications.

• A hybrid data store is used for both internal data warehouse mechanisms and for query
by the end users and end-user applications.

A master data store is a user-facing or hybrid data store containing a complete set of data
in a data warehouse, including all versions and all historical data.

Based on the data format, you can classify data warehouse data stores into four types:

• A stage is an internal data store used for transforming and preparing the data
obtained from the source systems, before the data is loaded to other data stores in
a data warehouse.

• A normalized data store (NDS) is an internal master data store in the form of one or
more normalized relational databases for the purpose of integrating data from various
source systems captured in a stage, before the data is loaded to a user-facing data store.

• An operational data store (ODS) is a hybrid data store in the form of one or more nor-
malized relational databases, containing the transaction data and the most recent
version of master data, for the purpose of supporting operational applications.

• A dimensional data store (DDS) is a user-facing data store, in the form of one or more
relational databases, where the data is arranged in dimensional format for the purpose
of supporting analytical queries.

I discussed the terms relational, normalized, denormalized, and dimensional in 
Chapter 1, but I’ll repeat the definitions here briefly:

• A relational database is a database that consists of entity tables with parent-child
relationships between them.

• A normalized database is a database with little or no data redundancy in third normal
form or higher.

• A denormalized database is a database with some data redundancy that has not gone
through a normalization process.

• A dimensional database is a denormalized database consisting of fact tables and com-
mon dimension tables containing the measurements of business events, categorized 
by their dimensions.
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Some applications require the data to be in the form of a multidimensional database
(MDB) rather than a relational database. An MDB is a form of database where the data is
stored in cells and the position of each cell is defined by a number of variables called
dimensions. Each cell represents a business event, and the value of the dimensions shows
when and where this event happened. MDB is populated from DDS.

Extract, transform, and load (ETL) is a system that has the capability to read the data
from one data store, transform the data, and load it into another data store. The data store
where the ETL reads the data from is called a source, and the data store that the ETL loads
the data into is called a target.

Figure 2-1 shows a data flow architecture with four data stores: stage, ODS, DDS, and MDB.

Figure 2-1. A data flow architecture with a stage, ODS, DDS, and MDB

The arrows in Figure 2-1 show the flows of data. The data flows from the source systems
to a stage, to ODS, to DDS, and then to the applications used by the users. In Figure 2-1 there
are three ETL packages between the four data stores. A stage ETL retrieves data from the
source systems and loads it into a stage. ODS ETL retrieves data from a stage and loads it
into ODS. DDS ETL retrieves data from ODS and loads it into DDS.

An ETL package consists of several ETL processes. An ETL process is a program that is
part of an ETL package that retrieves data from one or several sources and populates one tar-
get table. An ETL process consists of several steps. A step is a component of an ETL process
that does a specific task. An example of a step is extracting particular data from a source data
store or performing certain data transformations. The ETL packages in the data warehouse
are managed by a control system, which is a system that manages the time each ETL package
runs, governs the sequence of execution of processes within an ETL package, and provides
the capability to restart the ETL packages from the point of failure. The mechanism to log the
result of each step of an ETL process is called ETL audit. Examples of the results logged by
ETL audits are how many records are transformed or loaded in that step, the time the step
started and finished, and the step identifier so you can trace it down when debugging or for
auditing purposes. I will discuss more about ETL in Chapters 7 and 8.

The description of each ETL process is stored in metadata. This includes the source it
extracts the data from, the target it loads the data into, the transformation applied, the parent
process, and the schedule each ETL process is supposed to run. In data warehousing, meta-
data is a data store containing the description of the structure, data, and processes within the
data warehouse. This includes the data definitions and mapping, the data structure of each
data store, the data structure of the source systems, the descriptions of each ETL process, the
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description of data quality rules, and a log of all processes and activities in the data ware-
house. I will discuss more about metadata in Chapter 10.

Data quality processes are the activities and mechanism to make sure the data in the data
warehouse is correct and complete. This is usually done by checking the data on its way into
the data warehouse. Data quality processes also cover the mechanism to report the bad data
and to correct it. A data firewall is a program that checks whether the incoming data complies
with the data quality rules. A data quality rule is the criteria that verify the data from the source
systems are within the expected range and in the correct format. A data quality database is a
database containing incoming data that fails data quality rules. Data quality reports read the
data quality violations from the data quality (DQ) database and display them on paper or on
the screen. I will discuss more about data quality in Chapter 9.

Figure 2-2 shows a data flow architecture complete with the control system, the metadata,
and the components of data quality processes.

Figure 2-2. A data flow architecture with control system, metadata, and data quality process

A data flow architecture is one of the first things you need to decide when building a data
warehouse system because the data flow architecture determines what components need to
be built and therefore affects the project plan and costs. The data flow architecture shows how
the data flows through the data stores within a data warehouse.

The data flow architecture is designed based on the data requirements from the appli-
cations, including the data quality requirements. Data warehouse applications require data
in different formats. These formats dictate the data stores you need to have. If the applica-
tions require dimensional format, then you need to build a DDS. If the applications require
a normalized format for operational purposes, then you need to build an ODS. If the appli-
cation requires multidimensional format, then you need to build an MDB. Once you deter-
mine the data stores you need to build, you can design the ETL to populate those data
stores. Then you build a data quality mechanism to make sure the data in the data ware-
house is correct and complete.

In the following four sections, I will discuss four data flow architectures with their advan-
tages and disadvantages:
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• The single DDS architecture has stage and DDS data stores.

• The NDS + DDS architecture has stage, NDS, and DDS data stores.

• The ODS + DDS architecture has stage, ODS, and DDS data stores.

• The federated data warehouse (FDW) architecture consists of several data warehouses
integrated by a data retrieval layer.

These four data flow architectures are just examples. When building a data warehouse,
you need to design the data flow architecture to suit the data requirements and data quality
requirements of the project. These four architectures are by no means exhaustive; you should
design your own data flow architecture. For example, is it possible to have a data flow architec-
ture without a stage? Yes, it is possible, if you can do the transformation on the fly in the ETL
server’s memory, especially if you have a low data volume. Can you have a data flow architec-
ture without a DDS? Yes, you can have stage + NDS data stores only if you want to have a nor-
malized data warehouse rather than a dimensional one. Is it possible to have two DDSs? Yes,
of course you can have multiple DDSs—you can have as many as you need.

Now I’ll go through these four data flow architectures one by one.

Single DDS
In this section, you will learn about a simple data flow architecture that consists of only two
data stores: stage and DDS. In this architecture, the core data warehouse store is in dimen-
sional format.

In single DDS architecture, you have a one dimensional data store. The DDS consists of
one or several dimensional data marts. A dimensional data mart is a group of related fact
tables and their corresponding dimension tables containing the measurements of business
events, categorized by their dimensions. An ETL package extracts the data from different
source systems and puts them on the stage.

A stage is a place where you store the data you extracted from the store system tem-
porarily, before processing it further. A stage is necessary when the transformation is
complex (in other words, cannot be done on the fly in a single step in memory), when the
data volume is large (in other words, not enough to be put in memory), or when data from
several source systems arrives at different times (in other words, not extracted by a single
ETL). A stage is also necessary if you need to minimize the time to extract the data from the
source system. In other words, the ETL processes dump the extracted data on disk and dis-
connect from the source system as soon as possible, and then at their own time they can
process the data.

The physical form of a stage can be a database or files. The ETL that extracts data from
the source system inserts the data into a database or writes them as files. A second ETL pack-
age picks up the data from the stage, integrates the data from different source system, applies
some data quality rules, and puts the consolidated data into the DDS. Figure 2-3 describes
a general model of this architecture.
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Figure 2-3. Single DDS data warehouse architecture

In Figure 2-3, the “Control + Audit” box contains the ETL control system and audit, 
as I discussed earlier. They manage the ETL processes and log the ETL execution results. The
metadata database contains the description of the structure, data, and processes within
the data warehouse.

The data warehouse applications, such as business intelligence (BI) reports, read the data
in the DDS and bring the data to the users. The data in the DDS can also be uploaded into
multidimensional databases, such as SQL Server Analysis Services, and then accessed by the
users via OLAP and data mining applications.

Some ETL architects prefer to combine the two ETL packages surrounding the stage in
Figure 2-3 into one package, as pictured in Figure 2-4. In Figure 2-4, the stage ETL, the DDS
ETL, and the data quality processes are combined into one ETL. The advantage of combining
them into one package is to have more control over the timing of when the data is written to
and retrieved from the stage. In particular, you can load the data directly into the DDS without
putting it to disk first. The disadvantage is that the ETL package becomes more complicated.

Figure 2-4. Data architecture where the stage ETL and DDS ETL are combined

An advantage of a single DDS architecture is that it is simpler than the next three architec-
tures. It is simpler because the data from the stage is loaded straight into the dimensional data
store, without going to any kind of normalized store first. The main disadvantage is that it is
more difficult, in this architecture, to create a second DDS. The DDS in the single DDS archi-
tecture is the master data store. It contains a complete set of data in a data warehouse,
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including all versions and all historical data. Sometimes you need to create a smaller DDS
containing a subset of the data in the master DDS for the purpose of specific analysis where
you want to be able to change the data or you want the data to be static. To create this smaller
DDS, you would need to create a new ETL package that retrieves data from the master DDS
and populates the smaller DDS. You need to build this ETL package from scratch. You cannot
reuse the existing ETL package because the existing ETL package retrieves data from the stage
and populates the master DDS. It’s a totally different data flow altogether.

For example, the users may require a static smaller DDS containing only order data for
the purpose of analyzing the impact of a price increase across different customer accounts.
They want the BI tool (Business Objects, Cognos, or Analysis Services, for example) to run on
this smaller DDS so they can analyze the price increase. To create this smaller DDS, you need
to write a new ETL package.

You would use a single DDS architecture when you need only a one dimensional store
and you don’t need a normalized data store. It is used for a simple, quick, and straightforward
analytical BI solution where the data is used only to feed a dimensional data warehouse. A
single DDS solution is particularly applicable when you have only one source system because
you don’t need additional NDS or ODS to integrate the data from different source systems.
Compared to the NDS + DDS or ODS + DDS architecture, the single DDS architecture is the
simplest to build and has the quickest ETL run time because the data is loaded straight into
DDS without going into the NDS or ODS data store first.

NDS + DDS
In NDS + DDS data flow architecture, there are three data stores: stage, NDS, and DDS. This
architecture is similar to the single DDS architecture, but it has a normalized data store in
front of the DDS. The NDS is in third normal relational form or higher. The purpose of having
NDS is twofold. First, it integrates data from several source systems. Second, it is able to load
data into several DDSs. Unlike the single DDS architecture, in the NDS + DDS architecture you
can have several DDSs. Figure 2-5 shows the NDS + DDS data flow architecture.

Figure 2-5. NDS + DDS data flow architecture

In the NDS + DDS architecture, NDS is the master data store, meaning NDS contains the
complete data sets, including all historical transaction data and all historical versions of mas-
ter data. Historical transaction data means the business transactions that happened in the
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past. Data from every single year is stored in the NDS. The DDS, on the other hand, is not the
master data store. It may not contain all transaction data for every single year. NDS contains
all historical versions of master data. If there is a change in master data, the attributes are not
overwritten by new values. The new values are inserted as a new record, and the old version
(the old row) is kept in the same table.

Similar to an OLTP source system, there are two types of tables in the NDS: transaction
tables and master tables. A transaction table is a table that contains a business transaction or
business event. A master table is a table that contains the people or objects involved in the
business event. A sales order table is an example of a transaction table. A product table is an
example of a master table. The NDS transaction tables are the source of data for the DDS fact
table. In other words, the fact tables in the DDS are populated from the transaction tables in
the NDS. The NDS master tables are the source of data for DDS dimension tables. That is, the
dimension tables in the DDS are populated from the master tables in the NDS. I will discuss
more about NDS in Chapter 5 when I talk about dimensional modeling.

NDS is an internal data store, meaning it is not accessible by the end user or the end-user
applications. Data from NDS is loaded into DDSs in dimensional format, and the end users
access these DDSs. The only application that is able to update NDS is the NDS ETL. No other
application should be able to update NDS.

The principles about the stage, control, audit, and metadata discussed earlier are also
applicable here. Some entities can fly through directly to NDS without being staged to disk
first. In that case, the data integration/transformation is performed online in the memory of
the ETL server. The ETL reads the data from the source system, transforms or integrates the
data in memory, and writes the data to NDS directly without writing anything to the stage.
Data transformation is converting, calculating, or modifying the data to suit the target data-
base. Data integration is combining the same record from several different source systems
into one record or combining different attributes of master data or transaction data.

In the NDS + DDS architecture, the DDS ETL that loads data into the DDS is simpler than
the one in the single DDS architecture because the data in the NDS is already integrated and
cleaned. In some cases, the DDS ETL needs to feed the data only incrementally to the DDS with-
out any transformation. Most, if not all, fact table calculations have been done in the NDS.

The data in the NDS is uploaded to the DDSs. The flexibility of using a centralized NDS is
that you can build a DDS that you need at any time with the scope of data as required. The
ability to build a new DDS at any time is useful to satisfy requirements from projects involving
data analysis. The ability to set the scope of data when building a new DDS means you can
pick which tables, columns, and rows you want to transfer to the new DDS. For example, you
can build a DDS containing only a customer profitability data mart (one fact table and all its
dimensions) that contains only the last three months of data.

To populate a new DDS, you can use the existing DDS ETL. You just need to point the ETL
to the new DDS. If you build the DDS ETL correctly, you can rebuild any DDS quickly, in other
words, the only time we need is the time to run the ETL. You don’t have to spend days or weeks
to build a new ETL package to load the new DDS. To get this flexibility, the DDS ETL needs to be
parameterized; that is, the date range, the fact tables, and the dimensions to be copied across
are all set as parameters that can easily be changed to point to a new DDS. The database con-
nection details are also written as parameters. This enables you to point the ETL to another
database.

In NDS + ODS architecture, you can have several DDSs. But there is one DDS you have to
build and maintain: the one that contains all the fact tables and all the dimensions. This one is
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sort of obligatory; all other DDSs are optional—you build them as you need them. You need to
have this one obligatory DDS because it contains a complete set of data warehouse data and is
used by all BI applications that require dimensional data stores.

The NDS tables use surrogate keys and natural keys. A surrogate key is the identifier of the
master data row within the data warehouse. In the DDS, the surrogate key is used as the pri-
mary key of dimension tables. The surrogate key is a sequential integer, starting from 0. So, it
is 0, 1, 2, 3, …, and so on. Using the surrogate key, you can identify a unique record on a dimen-
sion table. Surrogate keys also exist in the fact tables to identify the dimension attributes for a
particular business transaction. Surrogate keys are used to link a fact table and the dimension
tables. For example, using surrogate keys, you can find out the details of the customer for a
particular order. In the NDS + DDS architecture, the surrogate keys are maintained in the NDS,
not in the DDS.

A natural key is the identifier of the master data row in the source system. When loading
data from the stage to NDS, you need to translate the natural key from the source system to
a data warehouse surrogate key. You can do this by looking up the surrogate key in the NDS
for each natural key value from the source system. If the natural key exists in the NDS, it
means the record already exists in NDS and needs to be updated. If the natural key doesn’t
exist in the NDS, it means the record does not exist in the NDS and needs to be created.

Only internal administrative applications access the NDS directly. These are usually appli-
cations that verify the data loaded into NDS, such as data quality routines that check NDS
data against certain firewall rules. End user applications, such as BI reports, access the DDS
(dimensional model) and some applications, such as OLAP applications, access the multidi-
mensional databases that are built from the DDSs. You need to understand what kind of data
store is required by each application to be able to define the data flow architecture correctly.

The main advantage of this architecture is that you can easily rebuild the main DDS; in
addition, you can easily build a new, smaller DDS. This is because the NDS is the master data
store, containing a complete set of data, and because the DDS ETL is parameterized. This
enables you to create a separate static data store for the purpose of specific analysis. The sec-
ond advantage is that it is easier to maintain master data in a normalized store like the NDS
and publish it from there because it contains little or no data redundancy and so you need to
update only one place within the data store.

The main disadvantage is that it requires more effort compared to the single DDS archi-
tecture because the data from the stage needs to be put into the NDS first before it is uploaded
into the DDS. The effort to build ETL becomes practically double because you need to build
two ETL sets, while in single DDS it is only one. The effort for data modeling would be about
50 percent more because you need to design three data stores, whereas in single DDS you
have two data stores.

The NDS + DDS architecture offers good flexibility for creating and maintaining data
stores, especially when creating a DDS. The NDS is a good candidate for an enterprise data
warehouse. It contains a complete set of data, including all versions of master data, and it is
normalized, with nearly no data redundancy, so data updates are more easily and quickly com-
pared to the dimensional master data store. It also contains both source systems’ natural keys
and data warehouse surrogate keys, enabling you to map and trace data between the source
systems and data warehouse.

You would use an NDS + DDS architecture when you need to make several DDSs for dif-
ferent purposes containing a different set of data and when you need to integrate data in a
normalized form and use the integrated data outside of the dimensional data warehouse.
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ODS + DDS
This architecture is similar to an NDS + DDS architecture, but it has an ODS in the place of the
NDS. Like NDS, ODS is in third normal form or higher. Unlike the NDS, the ODS contains only
the current version of master data; it has no historical master data. The structure of its entities
is like an OLTP database. The ODS has no surrogate keys. The surrogate keys are maintained in
the DDS ETL. The ODS integrates the data from various source systems. The data in the ODS is
cleaned and integrated. The data flowing into the ODS has already passed the DQ screening.
Figure 2-6 shows ODS + DDS data flow architecture.

Figure 2-6. ODS + DDS data flow architecture

Like NDS, ODS contains transaction tables and master tables. The transaction tables
contain business events, and the master tables contain the people or objects involved in
the business events. The fact tables in the DDS are populated from the transaction tables
in the ODS. The dimension tables in the DDS are populated from the master tables in
the ODS. Unlike NDS, ODS’s master tables contain only the current version of master data.
ODS does not contain the historical versions of master data.

Unlike NDS, which is an internal data store, ODS is a hybrid data store. This means ODS
is accessible by the end users and end-user applications. In NDS + DDS applications, NDS is
not accessible by the end users and end-user applications. Unlike NDS, ODS is updatable.
End-user applications can retrieve data from the ODS, but they can also update the ODS. To
ensure the quality of the data in the ODS, data quality rules are also applied to these updates.
The end-user application must not update the data coming from the source systems; it can
update only the data that itself generates to complement the source systems’ data. If the ODS
is used to support a CRM customer support application, data such as status and comments
can be written on ODS directly, but all the customer data is still from the source systems.

In the ODS + DDS architecture, the DDS is the master data store. Unlike an NDS + DDS
architecture, in an ODS + DDS architecture you have only one DDS. The DDS contains a com-
plete set of fact tables and the dimension tables. The DDS contains both the current version
and all historical versions of master data.

The principles about the stage, control, audit, and metadata discussed in regard to the
single DDS architecture are also applicable here. Some entities can fly through directly to the
ODS without being staged first. Integration and transformation happen in the memory of the
ETL server. The DDS ETL is simpler than the one in the single DDS architecture because the
data in the ODS is already integrated and cleaned. In many cases, it is literally feeding DDS
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incrementally without any transformation. Most, if not all, fact table calculations have been
done in the ODS.

In the ODS + DDS architecture, applications can access the data warehouse in three
places in three different formats: those that need the data in normalized form can access the
ODS, those that need the data in relational dimensional format can access the DDS, and those
that need the data in multidimensional format can access the MDBs.

This architecture has these advantages:

• The third normal form is slimmer than the NDS because it contains only current values.
This makes the performance of both ODS ETL and DDS ETL better than the ones in the
NDS + DDS architecture.

• Like the NDS + DDS architecture, in the ODS + DDS architecture you have a central
place to integrate, maintain, and publish master data.

• The normalized relational store is updatable by the end-user application, making it
capable of supporting operational applications at the transaction level.

The disadvantage of this architecture is that to build a new, small DDS (say, 2007 Q4 sales
data), you need to get it from the main DDS and cannot utilize the existing DDS ETL to do that.
You need either to write custom queries (in other words, create table from select), which is
not preferred because of standardization and consistency reasons, or to build a new ETL, which
is not preferred either because of the effort, especially if it is a one-off, throwaway thing.

You would use an ODS + DDS architecture when you need only a one dimensional data
store and you need a centralized, normalized data store to be used for operational purposes
such as CRM. The ODS contains detailed, current-valued, integrated data that is useful for
transactional queries.

Federated Data Warehouse
A federated data warehouse consists of several data warehouses with a data retrieval layer on
top of them. A federated data warehouse retrieves data from existing data warehouses using
an ETL and loads the data into a new dimensional data store. For example, because of merger
and acquisition activities, you could have three data warehouses. Perhaps the first one is a
dimensional data warehouse, the second one is a third normal form normalized data ware-
house, and the third one is a relational data warehouse with a few big transaction tables
referencing many reference tables. Figure 2-7 shows a federated data warehouse.

The granularity of the FDW data is the same as the highest of the granularities of source
data warehouses. If the granularities of the source data warehouses are G1, G2, and G3, then
the granularity of the FDW data is the highest of (G1, G2, G3). This is because you can consoli-
date data only on the same granularity and because you can transform data only from lower
granularity to higher granularity, not the reverse direction. For example, if G1 is daily, G2 is
weekly, and G3 is monthly, then the granularity of FDW is monthly. This is because you can
transform G1 and G2 to monthly, but you cannot transform G3 to daily or weekly.

The ETL that extracts data from the source data warehouses needs to be aware of the tim-
ing of the data. The data in the source data warehouses may not arrive at the same frequency.
The FDW ETL needs to match the frequency of the source DWs. If the source DWs have differ-
ent update frequencies, the FDW ETL needs to run several times to match the frequency of
each source DW.
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Figure 2-7. A federated data warehouse from several data warehouses

The FDW ETL needs to integrate the data from source DWs based on business rules.
The ETL needs to identify whether records from one source data warehouse are duplicates
of records from the other source data warehouses. Duplicate records need to be merged.
The business rules need to be applied to determine which record should survive and which
attributes need to be updated. In addition, the FDW ETL needs to transform the data from
different source DWs into a common structure and common format.

You also need to bear in mind that the number of subject areas in the FDW is probably
narrower than the number of subject areas in the source DWs. This is because the FDW is at
a higher level than the source DWs, and at this level, not all subject areas are applicable and
useful for the business users. For example, in the global data warehouse, you may be inter-
ested in sales and employees and leave inventory and campaigns in the regional data
warehouses.

When you have several data warehouses like this, it is possible to implement enterprise
information integration (EII) rather than ETL, as described in Figure 2-8, especially if the
source data warehouses are similar. EII is a method to integrate data by accessing different
source systems online and aggregating the outputs on the fly before bringing the end result to
the user. Everything is done the moment a user requests the information. There is no storage
of any form that stores the aggregated or integrated data. The main advantage of using EII is
the data freshness; in other words, the result is truly real time. In Figure 2-8, even if data ware-
house DW3 was changed a second ago, the end result will still include that last second change.
Even though there is no integrated data warehouse, sometimes this architecture is also called
federated data warehouse. For example, if the organization consists of three geographical
regions, such as Asia Pacific, America, and EMEA, then each region has a different ERP system
and different IT organizations; hence, they have three data warehousing projects. But they all
agreed to standardize on the same structure: dimensional data warehousing with fact and
dimension tables.

Instead of integrating several data warehouses, federated data warehouse can also be
implemented when there are several nonintegrated data marts in the organization, as shown
in Figure 2-9.
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Figure 2-8. Federated data warehouse using enterprise information integration

Figure 2-9. A federated data warehouse from several data marts

The source data marts in Figure 2-9 can be in many different forms. They can be dimen-
sional, normalized, or neither. These marts could be two conformed fact tables surrounded by
four to eight conformed dimensions in star schema format, properly designed using the Kim-
ball dimensional modeling approach. They could be in a snowflake format where the dimen-
sions are normalized. They could be in third normal form (or higher). And in many cases, they
might not be data marts at all; in other words, they don’t follow any formal data warehousing
design approach and instead are just a collection of tables with good data inside them, and
the users call these tables data marts. You can use FDW to integrate these data marts.

The same principles described previously when integrating data warehouses are still
applicable, specifically, level of granularity, matching/deduplicating, reformatting, dealing
with timing issues, and platform diversity. In some cases, you may want to consider bypassing
some marts and accessing the source systems directly, especially if the same source system is
supplying the same data to different data marts.

You can also still use the EII approach here when integrating the data marts. That is, you
don’t have a permanent data store at the federated level but can access the source data marts
on the fly when users issue their requests.
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The main advantage of this architecture is that you can accommodate existing data ware-
houses, and therefore the development time will be shorter. The main disadvantage is that,
practically speaking, it is difficult to build a good-quality warehouse from such diverse stan-
dards found in the source data marts or data warehouses.

You would use federated data warehouse architecture when you want to utilize existing
data warehouses or where you want to integrate data from several data marts.

System Architecture
The previous sections covered data flow architecture. They showed how the data is arranged
in the data stores and how the data flows within the data warehouse system. Once you have
chosen a certain data flow architecture, you then need to design the system architecture,
which is the physical arrangement and connections between the servers, network, software,
storage system, and clients. Designing a system architecture requires knowledge about hard-
ware (especially servers), networking (especially with regard to security and performance
and in the last few years also fiber networks), and storage (especially storage area networks
[SANs], redundant array of inexpensive disks [RAID], and automated tape backup solutions).
Figure 2-10 shows an example of a system architecture.

Figure 2-10. Example of a system architecture for data warehouse

In this example, the system architecture consists of three servers: one ETL server, one
database server, and one reporting server. The source system is an electronic point-of-sale
system that records retail sales in the stores running on Oracle 9.2 on Sun Solaris. The ETL
server is Informatica PowerCenter 7 installed on Red Hat Enterprise Linux. The data ware-
house data stores (stage, DDS, and MDB) are hosted in the SQL Server relational database
engine and Analysis Services, running on Windows Server 2003. The data is physically stored
in a DAS consisting of fifteen 146GB disks, making the raw capacity 2TB. The disks are config-
ured in RAID 1 and RAID 5 for data resilience. (I will discuss RAID in Chapter 6 when I cover
physical database design.) The reports are created and managed using SSRS installed on
Windows Server 2003.

CHAPTER 2 ■ DATA WAREHOUSE ARCHITECTURE42

9314ch02final.qxd  11/15/07  10:22 AM  Page 42



I chose this example because it represents a typical architecture for a medium system.
We have a dedicated ETL server, separated from the database server. It’s a medium size of
data; the raw capacity of 2TB is about 400GB to 500GB final usable database space, assum-
ing we have both development and production environments. The platform is a bit of a
mixture, as typically found in organizations: the source system and ETL are not Microsoft.
The Informatica was probably already there when the data warehouse project started, so
they have to use what they already have. Therefore, you can create a system architecture
with different platforms.

A data warehouse architect does not usually design the system architecture of a data
warehouse infrastructure, but in my opinion, it is helpful if they know these subjects—per-
haps not at a very detailed level, but they need to know at a high level. For example, they don’t
need to understand how to build a four-node cluster using Windows 2003 servers, but they
need to know what kind of high availability can be achieved using clustering technology.

To design a data warehouse system architecture, you first establish the technology
stack you want to use for ETL, the database, and BI, such as Microsoft SQL Server (SSIS,
SSAS, SSIS), Informatica + Oracle 9i + Cognos, and so on. This is determined based on
product capability and based on the company standard. After you determine the technol-
ogy stack, you do a high-level design on the servers, network configuration, and storage
configuration that supports the chosen technology, including high-availability design.
Then you determine the detailed technical specification of the servers, network, and stor-
age. This is done based on capacity and system performance requirements. You then order
the hardware and software and build the system in the data center together with the hard-
ware and network vendor. You then install and configure the software. Designing and
building the environment is fundamental and critical to the performance and stability of
the data warehouse system that you are going to build on top of it.

The other factor that greatly affects the system architecture is the choice of software in
building the data warehouse, such as specific versions of SQL Server, Oracle, or Teradata. The
system architectures required to run this software are different. For example, Teradata runs on
massively parallel processing hardware. It does not share the storage between the nodes. On
the other hand, a SQL Server cluster uses central storage. It shares the storage between the
nodes.

In terms of software, there are two different types of database software: symmetric multi-
processing (SMP) and massively parallel processing (MPP). An SMP database system is a data-
base system that runs on one or more machines with several identical processors sharing the
same disk storage. When an SMP database system runs on more than one machine, it is called
a clustered configuration. The database is physically located in a single disk storage system.
Examples of SMP database systems are SQL Server, Oracle, DB/2, Informix, and Sybase. An
MPP database system is a database system that runs on more than one machine where each
machine has its own disk storage. The database is physically located in several disk storage
systems that are interconnected to each other. An MPP database system is also known as a
parallel database system. Examples of MPP database systems are Teradata, Neoview, Netezza,
and DATAllegro.

The machines in SMP and MPP database systems are called nodes. An MPP database sys-
tem is faster and more scalable than an SMP database system. In an MPP database system, a
table is physically located in several nodes, each with its own storage. When you retrieve data
from this table, all nodes simultaneously read the data from their own storage, so the process
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of reading the data from disk is quicker. Similarly, when you load data into this table, all nodes
simultaneously load a bit of the data into their disks. In SMP database systems, there is a bot-
tleneck on the disk storage. SMP database systems, on the other hand, are simpler, are easier
to maintain, and have lower costs.

In this book, I’ll show how to use SQL Server 2005 to build a data warehouse, but it also
runs on SQL Server 2008. I will use SSIS for the ETL tool, I will build the NDS and DDS on SQL
Server 2005 databases, and I will use SSRS for reporting and SSAS for OLAP and data mining.

Case Study
I will be using the following case study throughout this book. In this chapter, you will be
studying the data warehouse architecture using this case study. In all further chapters, you
will be using this case study to learn the subjects discussed in those chapters in a real project
situation. For example, in Chapter 5, I will show how to create the data model; in Chapter 6,
I will show how to design the database; in Chapters 7 and 8, I will show how to build the ETL,
and so on.

This case study needs to cover all the aspects you want to learn in this book: architecture,
methodology, requirements, data modeling, database design, ETL, data quality, metadata,
data stores, report, multidimensional databases, BI, CRM, testing, and data warehouse admin-
istration. Ideally, I want the case study to be simple enough to understand and to deliver as a
project, but I don’t want it to be too simple because it will not cover some areas mentioned
previously. So, it needs to simple but not too simple.

Some industries are “data warehousing friendly,” meaning the nature of the data is ideal
for data warehousing. Retail, utilities, telecommunication, health care, and financial services
are some of them. In this case study, I chose the retail sector because the business operations
are easier to understand since we experience them in our daily lives.

Amadeus Entertainment is an entertainment retailer specializing in music, films, and
audio books. It has eight online stores operating in the United States, Germany, France, the
United Kingdom, Spain, Australia, Japan, and India. It has 96 offline stores operating in those
countries as well.

Customers can buy individual products such as a song, an audio book, or a film, or they
can subscribe to a certain package, which enables them to download a certain quantity of
products in a certain period. For example, with the Primer package, you can download 100
songs, 50 books, and 50 films a month for $50. Customers can also listen or watch a song, a
book, or a film once for 1⁄10 the cost of purchasing it. So if a film is $5, to watch it once it’s only
50 cents. Customers use online streaming for this, so a good Internet connection is required.

Amadeus Entertainment has four main delivery channels: Internet, mobile phone,
cable TV, and post. There are several payment models for customer subscriptions, such as
annual, in advance, and monthly direct debit. The company purchases the products in bulk,
such as any 10,000 songs from a record company, of any title, for a certain cost. For online
streaming, the company pays a central provider (Geo Broadcasting Ltd.) based on usage
(monthly invoice).

The company uses WebTower9, a custom-developed .NET-based system for dynamic
web sites, multimedia trading, broadcasting, sales order processing, and subscription man-
agement, all running on an Oracle database. The back-end enterprise resource planning (ERP)
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system is Jupiter, an off-the-shelf AS/400-based business system running on DB2. This is
where the inventory, products, and finances are managed. The Jupiter database size is about
800GB with about 250 tables and views.

Business activities in the offline stores are managed in Jade, which is a custom Java-based
system running on Informix. This includes sales, customer service, and subscriptions.
WebTower9 and Jade interface with Jupiter products and finances on a daily basis, but sales
and customer data (including subscriptions) are kept on WebTower9 and Jade.

The company uses the SupplyNet system for interfacing with suppliers. It is a web
services–based industry-standard supplier network in the online entertainment industry
including music and film. WebTower9 and Jupiter are hosted in Amadeus Entertainment’s
head office. Jade is hosted in an outsourced company in Bangalore, India. The Jupiter over-
night batch starts at 11 p.m. Eastern standard time (EST) for three to four hours. An offline
backup job kicks off immediately after the overnight batch and runs for one to two hours.
The Jade tape backup starts at 3 a.m. EST for two to three hours.

The IT architecture team decided to standardize the database platform on Microsoft
SQL Server and use web-based services for its application platform. Hence, in this case
study, I will show how to build a data warehouse system for Amadeus Entertainment using
Microsoft SQL Server 2005. You can also use SQL Server 2008 to build it. I will be using NDS
+ DDS data warehouse architecture outlined earlier in this chapter. Figure 2-11 shows the
system architecture for the production environment.

Figure 2-11. System architecture for the production environment for Amadeus Entertainment
data warehouse
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In Figure 2-11, Integration Services, Reporting Services, and Analysis Services will be
installed on separate machines. We will be using SAN with a raw capacity of 12TB. The final
storage capacity could be much less than the raw capacity. When I cover physical database
design in Chapter 6, I will be using this system architecture as the basis of the design.

This is only a tentative architecture as an illustration of how it could be implemented. The
server specifications in Figure 2-11 are high, probably too high for this project. When we get
the requirements, we can further detail the design. For example:

• High-availability requirements (how many hours can they tolerate the data warehouse
to be down) affect the clustering decision of the database servers.

• The volume of the data from the source systems affects the number of processors and
the memory of the ETL server and whether we need to put SSIS on a separate machine.

• The volume of the data in the data warehouse affects the storage size and backup
requirements. The SAN raw disk size may be less or more than 12TB depending on the
actual requirements.

• The number and sizes of the OLAP cubes affect the memory and processors of the
OLAP server and whether you need to put Analysis Services on a separate server.

You need to bear in mind, especially when budgeting for infrastructure (hardware and
software), that you need to make a second set for the testing environment (widely known as
quality assurance [QA]) and another set for the development environment (or dev, for short).
Unlike in OLTP, in data warehousing it is essential that QA has an identical capacity as produc-
tion. This is because in data warehousing you need to do performance and volume testing. If
your QA is only half the capacity of production, your measurement in performance testing will
be incorrect. An ETL batch that in production runs for three hours in QA may run for seven
hours.

The dev environment can be of lower specifications than production. For example, in the
Amadeus Entertainment case study, dev can be just one server; in other words, the database
engine, Integration Services, Analysis Services, and Reporting Services are all installed in one
server. This is because the primary purpose of dev is functionality development. Performance
testing is conducted in QA.

The most difficult questions to answer when designing the system architecture are about
sizing and/or capacity. In particular, infrastructure suppliers usually ask these two questions:

• How much disk space do you require (how big is your data)?

• How much processing power do you need (in terms of processor and memory)?

We will go through physical database design in more detail in Chapter 6, along with the
infrastructure considerations.
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Summary
In this chapter, I discussed several data warehouse architectures. The single DDS, NDS + DDS,
and ODS + DDS architectures have dimensional data warehouse. The single DDS does not have
a normalized store, while the others have a normalized store. The federated data warehouse
architecture consists of several data warehouses integrated by a data retrieval layer. I also dis-
cussed the system architecture in particular for implementation using SQL Server 2005.

You’ll use the case study introduced in this chapter to help you understand the subjects
in later chapters. In Chapter 5, when I discuss dimensional modeling and entity relationship
modeling, I will go through the data warehouse design in more detail. In Chapter 6, when I
discuss physical database design, I will go through the elements of system architecture in
more detail.
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Data Warehouse Development
Methodology

Some people believe they do not need to define the business requirements when building
a data warehouse because a data warehouse is built to suit the nature of the data in the organ-
ization, not to suit the people. I believe that all IT systems of any kind need to be built to suit
the users. A system must be usable. If the system is not used, there is no point in building it.
This usability concept is fundamental to this chapter, so keep that in mind.

In this chapter, I will explain the process, or methodology, of building a data warehouse.
In software engineering, the discipline that studies the process people use to develop an infor-
mation system is called the system development life cycle (SDLC) or the system development
methodology. There are two main variants: waterfall and iterative. The waterfall methodology
is also known as the sequential methodology. The iterative methodology is also known as the
spiral or incremental methodology.

The waterfall methodology is one of the oldest methodologies (it has been around for
about 30 years) and is widely used by many organizations to build their systems, including
their data warehouse systems. The iterative methodology is very different from waterfall. It is
not as widely used as waterfall, but it gives good benefits if used correctly. Some people prefer
waterfall and some people prefer iterative, so I will compare the two and describe their advan-
tages and disadvantages, along with some personal experience in implementing them in data
warehousing projects, from which I hope we can all learn.

Waterfall Methodology
In a waterfall system, you have certain steps that need to be accomplished one way after the
other, in a particular sequence, like going down the stairs or like a multistep waterfall (which
is where it gets its name from). There are many variations of the steps’ names, but in general
they are feasibility study, requirements, architecture, design, development, testing, deploy-
ment, and operation. Figure 3-1 describes these steps in order.
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Figure 3-1. Waterfall methodology

Some variations of the step names are proposal, analysis, business requirement defini-
tion, technical architecture, functional design, technical design, unit testing, system testing,
integration testing, user acceptance testing, rollout, implementation, maintenance, and sup-
port. Some variations turn bigger steps into smaller ones; for example, design is split into
functional design and technical design, and testing is split into system testing, performance
testing, integration testing, and user acceptance testing. Some of the names are synonyms; for
example, instead of calling it deployment, some people call it rollout or go live.

Next, I will explain what needs to be done during each of these steps. But before I do that,
I’ll add two more boxes (labeled “Infrastructure Setup” and “Project Management”) and
rearrange all the boxes horizontally, as shown in Figure 3-2.
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Figure 3-2. Waterfall methodology with infrastructure setup and project management

I’ll now discuss the boxes in the figures one by one, detailing what you need to do when
building a data warehouse:

Feasibility study: You gather the requirements at a high level (for example, determining
why you need a data warehouse and whether data warehousing is the right solution), you
have a quick look at the source systems to find out whether it is possible to get the data
you need, you get sample data to assess the data quality, and you write a proposal (some
people prefer to call this document the business case). The important things to mention in
the proposal are the benefits, how long it will take, how much it will cost, and the business
justifications. Other things that you probably need to put in the proposal are the require-
ments (just the summary), the project organization (including external resources such as
consultants and contractors), and the project plan (it’s very important to know who will
be doing what when).

As you can see, in order to produce a decent proposal, you have to know everything in
advance: the requirements, the solution, the architecture, the design, the infrastructure,
the data quality, what tasks are required, and how you would resource it (external or inter-
nal). All these are required to find out how long it will take to build the data warehouse
and how much will it cost. This step requires experience. It can really be done only by
those people who have built data warehouse systems several times. For example, at this
early stage, how would you know the specification of the servers and how long it would
take to build the ETL system?
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I find that it is best to set the feasibility study step as its own project on separate budget.
In this phase, the work is to analyze the requirements and data volume at a high level and
determine a suitable architecture and toolset so you can produce a rough estimate. For
this work, you need a business analyst to analyze the requirements, a data warehouse
architect to determine the architecture, and a project manager to produce the estimate
and high-level project plan. The number of resources varies from project to project; for
example, you may need more than one business analyst if several distinct business areas
are involved. Other types of resources that may be required during the feasibility study
phase are a hardware and infrastructure person (to verify the details of the proposed
architecture), a business owner (such as a customer service manager), and the source
system DBA (to get information about the data volume).

Requirements: You talk to the users to understand the details of the processes, the
business, the data, and the issues. Arrange site visits to get firsthand experience. Dis-
cuss the meaning of the data, the user interface, and so on, and document them. You
also list the nonfunctional requirements such as performance and security. I will go
through the requirements in more detail in the next chapter.

Architecture: I discussed this in the previous chapter. Basically, you need to determine
which data flow architecture you are going to use and what system architecture you are
going to use, in detail, including the specification for database servers, the type of net-
work, the storage solution, and so on. It is important to have somebody who has done this
many times; if you don’t have anybody in the organization with these skills, then hire
from outside. It is not common to find data warehousing and infrastructure skills in one
person. This is a critical step, meaning that if the architecture is wrong, you may have to
redesign everything from scratch or restart the project from the beginning.

Design: You need to design three main parts of the data warehouse system: the data
stores, the ETL system, and the front-end applications. These require different skill sets so
potentially it could require different people. I will go through the data stores in Chapters 5
and 6, the ETL system in Chapters 7 and 8, and the front-end applications in Chapters 11
to 15. In addition, you need to design two other parts: data quality systems and metadata,
which I will discuss in Chapters 9 and 10. Some people consider data quality and meta-
data as part of the ETL system.

Development: You need to build the three parts that you design: the data stores, the ETL
system (including data quality system and metadata), and the front-end application. I’ll
discuss these topics in the relevant chapters mentioned in the previous paragraph. With
some caution and consideration, these three parts can be built in parallel. The most
important consideration when building in parallel is to define accurate interfaces
between the parts.

Testing: Basically, you need to test the data stores, the ETL, and the front-end applica-
tions. This is potentially the weakest point in the whole project. In many projects I’ve
worked on that used the waterfall approach, testing has always been the problematic
part. Everything is quiet until the development finishes and testing begins. Why? Well, this
is the first time all the components are put together and the first time the whole architec-
ture runs as a system. This is the first time the users see the data warehouse. This is the
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first time the test environment and the production environment are used. This is the first
time you try to run the system at maximum capacity (for performance testing). The
go-live date is approaching fast, and you cannot risk any errors in the production
environment. There are so many “first-time” happenings at the time of testing, it’s no
wonder there are many surprises. As a result, you spend a lot of time and money fixing the
problems. (I will discuss data warehouse testing in Chapter 16.) You can mitigate these
problems by putting together these components and running the whole architecture
several times during development. Another way to mitigate these problems is by doing
prototyping to discover problems early.

Deployment: Once the system is ready, you put all the components in the production
boxes: the ETL system, the data stores, and the front-end applications. You do the initial
load; that is, you load the data from the source system for the first time. You do a few tests
in the production environment to make sure the data warehouse is populated correctly
and the front-end applications are producing the correct figures. You produce the user
guide, the operation guide, and the troubleshooting guide for the operations team. You
train the users and the operations team. You support the system, the users, and the opera-
tions team for a few weeks. You hand over the system to the operations team, and you
close the project. I will discuss deployment in Chapter 16 when I discuss testing.

Operation: The users continue to use the data warehouse and the application. The opera-
tions team continues to administer the data warehouse and to support the users. There
are basically three types of support: solving errors or problems that happen when using
the system, administering new users and their access rights (and of existing users), and
helping new and existing users using the system (kind of “how do I…?” questions). Users
will also have enhancement requests: to add more data to the data warehouse (or change
existing data), to add a feature to the front-end applications, or to create a new report or
a new cube. The operations team will then pass these requests to you in the development
team. You prioritize the requests, and then either you reject them or you do them and
include them in the next release.

Infrastructure setup: One of the biggest tasks when you build an application is to prepare
the production environment where you are going to run the application and to build the
development and testing environment. This task consists of creating system architecture,
doing technical design, procuring goods (buying the hardware and software), installing
hardware, installing and configuring software, connecting networks (including firewall
changes), testing the infrastructure, producing infrastructure documentation, and hand-
ing it all over to the operations team. It is a project in itself and needs to be managed as
such. At the very least it should be managed as a subproject. In my experience, many
people underestimate the scale of this task, which usually results in the data warehouse
project being delayed because the infrastructure is not ready.

Project management: This is when you maintain the project plan (that means at any time
you have to know the status of each task and who will be doing what and when), maintain
good communication with all stakeholders (project sponsors, users, and developers)
including status reports and meetings, and attack the risks aggressively (rather than
resolving them when they become issues).
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Iterative Methodology
The basic principle of the iterative methodology is to release bigger and bigger portions of
the complete project to discover problems early and make necessary adjustments when the
requirements cannot be adequately defined by users. In the waterfall methodology, you go live
once, and prior to that you have a period of testing when you try to fix errors. In the iterative
methodology, you release a version of the system several times into production to be used by
selected users. For example, say it will take eight months to build a data warehouse system;
using the waterfall methodology, it is going live in month 8. If you use the iterative methodol-
ogy, you will be releasing a version in months 3, 6, and 8 (three times) into production.

You build the data warehouse in pieces horizontally. In each iteration, you build a piece
from end to end. In other words, in each iteration you do the requirements, design, build, test,
put it into production, and have the users use it. And you build all the necessary components
to support that piece in production. For example, if you want to deliver a data mart, you build
the ETL, the data stores, and the front-end application. Figure 3-3 shows this concept.

Figure 3-3. Building a data warehouse in multiple iterations

You can also picture the iterative methodology as a circle or spiral where each cycle con-
sists of design, development, testing, and deployment. The architecture needs to be done only
in the first iteration. Figure 3-4 describes this.

When working on the sections labeled as “Design” in Figure 3-4, you need to define the
requirements too. Also, you need to do a feasibility study before the section labeled as “Arch”
in Figure 3-4. To be completely thorough, after the last “Deploy” section, you can add the
“Operation” segment too.
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Figure 3-4. Iterative cycles

The main reason for doing the project this way is to minimize the risks. One of the bottle-
necks in a waterfall methodology, as I explained previously, is the testing period. The testing
period is the riskiest time in a waterfall methodology because of the following reasons:

• This is the first time all the components are put together and the first time the whole
architecture runs as a system.

• This is the first time the users see and use the data warehouse.

• This is the first time the test environment and the production environment are used.

• This is the first time you try to run the system at maximum capacity (for performance
testing).

• The go-live date is approaching fast, and you cannot risk any errors in the production
environment. There are many “first-time” happening at the time of testing.

■Note To be fair, there are ways to mitigate these risks in the waterfall methodology. For example, you
can build a prototype where you put all the components together and run them as a whole architecture to
detect potential issues early. Also, by building a prototype, the business users are able to see the user inter-
face early.
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The iterative methodology eliminates all five risks and problems mentioned earlier! All
five of them have been done since iteration 1 so that at the final go-live date (iteration 3), the
system will run a lot more smoothly. Let’s go through this process step by step:

1. In the first iteration, you run the whole architecture as a system.

2. In the first iteration, the users see and use the data warehouse.

3. In the first iteration, the test and production environments are used.

4. In the first iteration, you run the system at maximum capacity for performance testing.

5. In the first iteration, you deploy to production (go live).

And by the time you reach the last iteration, there are no “first times” left! This eliminates
those risks and problems.

Perhaps it is easier to explain with an example. Let’s use the Amadeus Entertainment case
study that I described in Chapter 2. Say, for example, the solution for this particular project is
to build four data marts: sales, purchasing, inventory, and CRM. Let’s say for argument’s sake
that CRM is the most complex data mart and purchasing is the easiest data mart. You will see
the detailed design of these data marts in Chapter 5 when I discuss dimensional modeling,
but for now let’s concentrate on how to use the iterative methodology. Let’s also say that the
system architecture that you are going to use is similar to Figure 2-11. You will be using the
NDS + DDS data architecture (please refer to Chapter 2). There will be five full-time people
working on the project: a project manager (PM), a data warehouse architect (DWA), a business
analyst (BA), and two developers.

In this particular project, you will go live three times. The focus of the first iteration is the
architecture. This doesn’t mean you don’t deliver any functionality. You do deliver functional-
ity by building the easiest data mart (purchasing). In fact, you are building the entire system,
from ETL to data stores to reports to cubes. But the focus in the first iteration is on architec-
ture, which is why you don’t want to take the most difficult data mart to build during the first
iteration. In the Rational Unified Process (RUP) methodology, this type of iteration is called
elaboration, where you focus on the architecture. RUP is one of the methodologies that uses
an iterative approach.

The focus of the second iteration is the functionality. Therefore, in the second iteration,
you pick the most complex data mart (CRM). Because it is the most difficult data mart, if you
can do this mart, all other marts should not be a problem. In RUP, the type of iteration where
you focus on functionality is also an elaboration phase.

Now that you have made sure the architecture works and that you can build the most
demanding functionality, in the third iteration you just need to work like a factory to produce
code as efficiently as possible. In RUP, this type of iteration is called construction, where you
do mass production to complete the system. In RUP, there is one more type of iteration called
inception (which is the first iteration), where you focus on getting the stakeholders to agree
on the objectives, the rough architecture, and the high-level schedule.

In the Amadeus Entertainment case study, iteration 1 will run for three months, produc-
ing a live system in the production environment. The system is not necessarily ready for use
by all users, because not all functionality is built yet. The main goal of this iteration is to prove
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that the system architecture and data architecture work. You do this by getting the easiest data
mart (purchasing) up and running in the production system. The DWA will specify the system
architecture technically (as in Figure 3-5), and the PM will coordinate with infrastructure peo-
ple to get it purchased, installed, and set up, including the necessary connectivity to and from
different parts of the network to build the architecture. The DWA will supervise the installation
technically, for example, the disk carving of the SAN and the configuration of SQL Server. The
infrastructure team (internal or external contractors) will get production, quality assurance
(QA), and development environment set up and ready. The result is an up-and-running sys-
tem architecture and infrastructure, as shown in Figure 3-5.

Figure 3-5. System architecture built in iteration 1

The BA and DWA will work together to design and create part of the NDS and DDS data-
bases required by the purchasing data mart, as shown in Figure 3-6. They will also specify the
front-end application for three reports and one OLAP cube. The two developers will build the
ETL and the report and set up the OLAP cube. The system will extract the purchase order table
from the Jupiter, Jade, and WebTower9 systems every day and load the data into the NDS data-
base. The DDS ETL will get the data into the DDS database, as shown in Figure 3-6.
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Figure 3-6. Data flow architecture built in iteration 1

At this time, the NDS will contain perhaps seven tables, and the DDS will contain per-
haps five tables—only the necessary entities, fact tables, and dimension tables required to
support the purchasing data mart to function properly. The purchasing cube will be
refreshed periodically. The report will display the correct figures, in the correct layout. The
security in the reports and the cubes will be configured properly. The ETL for purchasing the
data mart will be tested, be completed, and be functioning. The corresponding data quality
routines are built, and the metadata is set up and populated. And most importantly, the users
will use the purchasing reports and browse the purchasing cube.

You might say, “Wow, that’s a lot of work for three months.” Well, the point is if getting
just the easiest part of the system up and running in production is this complex, then what
are the chances of getting the entire system correctly running in production in one go? I
think the answer is “no chance.” So, that is the core of the iterative methodology. You do all
the system components (ETL, stage, NDS, DDS, DQ, control, cubes, reports)—including the
training and the handover to the operations team—but on a smaller scale.

My point is that development is only half of the entire delivery. In other words, even if you
get everything built in the development environment, you are only 50 percent done. The other
50 percent that is usually underestimated includes setting up test environments, doing system
testing, fixing errors, conducting user acceptance testing, incorporating user feedback, setting
up the production infrastructure, migrating to production, doing the initial production load-
ing, doing production testing, creating the user manual, creating the user guide, creating the
usability guide, creating the operation guide, troubleshooting the guide, and handing every-
thing over to the operations team.

In contrast to the waterfall methodology, in the first iteration you already experience all
those remaining 50 percent activities, and you deliver a production system that is used by the
users. This enables immediate user feedback, which could be incorporated in the following
iterations. This approach also eliminates the five eminent risks mentioned earlier that usually
appear in the testing period. In return for that benefit, the iterative methodology requires the
production environment up front, which is needed for deploying the system into production.

The second iteration will focus on delivering the functionality. In this iteration, you will
build the most difficult data mart, that is, the CRM data mart. You will do the same activities
as the first iteration, from defining the requirements to handing everything over to the opera-
tions team. This iteration will take approximately three months. During this period, you will
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build all the components required to support the CRM mart: the ETL, the data stores, the
application, the data quality, and the metadata. This second iteration is usually easier than the
first iteration because the people now have the experience to develop, test, and deploy to pro-
duction. In addition, the development, quality assurance (QA), and production environments
are already set up and configured properly, and the users know what to expect, so there are no
surprises there.

The last iteration will deliver the remaining functionality, the sales and inventory data
marts. In this iteration, you can accommodate change requests based on the user feedback
on the first two iterations. You will do the same activities as the previous two iterations: from
gathering the requirement to handing everything over to the production team. You will build
the same components: the ETL system, metadata system, data quality system, data stores,
and front-end applications.

The advantage of using this iteration methodology is obvious: it minimizes the risks. In
other words, the project has more of a chance to be successful, and the delivered system will
have a better quality. The main disadvantage is that the infrastructure needs to be delivered
up front.

Summary
The waterfall methodology is commonly used in software development including in data
warehousing. There are three main streams of work: ETL, data stores, and front-end applica-
tions. In the waterfall methodology, you go live once, while in the iterative methodology you go
live many times. With waterfall, the riskiest period is during testing. This is because it is the first
time the whole architecture runs as a system, the first time the users see the data warehouse,
and the first time the production environment is used. It’s also risky because the go-live date is
approaching fast, and you cannot risk any errors in the production environment.

The iterative methodology overcomes those problems by bringing deployment to produc-
tion up front. By doing this, you do all the critical things in the first iteration. You minimize the
risks because you go live with only one piece of the system.
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Functional and Nonfunctional
Requirements

It is important to define functional and nonfunctional requirements when building a data
warehouse system to make sure that the system we build will help users achieve the business
objectives. Functional requirements define what the system does. They contain the features
that the data warehouse system should have. Nonfunctional requirements guide and constrain
the architecture.

Sometimes the best way to learn something is by doing it. In this chapter, I will use the
Amadeus Entertainment case study described in Chapter 2 to show how to gather functional
and nonfunctional requirements. First, we will find out about Amadeus Entertainment’s
business issues and challenges. Then we will identify the business areas that would benefit
from a data warehouse system. We will then dive into each of these areas and learn about
the business operations within that area. By that I mean the purpose, the processes, the
roles, the exceptions, and the issues. We will need this understanding later when we do data
modeling in the next chapter.

After we understand the business operations, we will define the functional requirements,
that is, the things that define what the data warehouse system does, such as the questions or
issues that a data warehouse system will be able to answer, the data that will be stored in the
data warehouse, and the analysis the users will be performing. We will also define the non-
functional requirements, such as security, availability, and performance. An example of a
nonfunctional requirement (in this case, availability) is that the data warehouse is expected
to be up and running with downtime of less than one hour a month.

We will then investigate the operational systems (Jupiter, WebTower9, and Jade) and con-
duct a data feasibility study to find out whether the data that we need is available in the source
systems and whether it is accessible. We will research the amount of data, the condition of the
data, and the quality of the data and try to identify any potential risks in the project that could
prevent us from delivering a data warehouse system that satisfies those functional and non-
functional requirements.

Identifying Business Areas
In the case study, Amadeus Entertainment is a worldwide online and offline retailer specializ-
ing in music, films, and audio books, with outlets in eight countries. Let’s name the key people
in this case study: the business project manager is Grace, the data warehouse architect is
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David, and the project manager is Natalie. They met with various managers and directors from
various parts of the business and talked about the business operations and the business issues
that the managers were facing. They then visited several physical stores, talked to the store
managers and employees, and studied the details of how the business works in the stores.

They also visited the online stores and looked at the product categories and the sales
order process. They also created a few orders in WebTower9 (the online store system) and fol-
lowed up these orders into the back end of the system. Let’s say that from these activities they
found the following business challenges and issues:

• Because Amadeus Entertainment spans several countries and operates on three differ-
ent systems, it has difficulty aggregating worldwide sales (including returns) at any
time. The company also needs to analyze sales by product and geographic area.

• The company needs to evaluate supplier performance based on delivery lead time and
promptness, order volume and quantity, trading and payment history, and store stock
fluctuation records, regardless of brand, country, and transaction system. Historically,
this activity has also been laborious.

• The company wants to be able to select certain customers based on demographic
attributes, order history, and communication permissions and send them newsletters
via e-mails containing promotional offers, regardless of which systems they are on, and
record the customer responses, such as opening the e-mails and visiting the company
web sites.

They then grouped these issues and challenges into three business areas: sales, purchas-
ing, and CRM.

Understanding Business Operations
Grace (the business project manager) and David (the data warehouse architect) then went
back to the business users and drilled down into each area to understand the business opera-
tions in each area. They tried to understand the processes, the roles, and the issues in each
area. In particular, they were looking for business events, status, levels, and roles.

• An event is an activity that happens repeatedly every few seconds or minutes. Or it
could be every few hours or days. For example, in the purchasing area, we have a
document called a purchase order. This document contains a request to the supplier
(a music record company, for example) to supply the company with some products
(CDs or MP3 songs, for example). Every week Amadeus Entertainment creates hun-
dreds of these documents and sends them to various suppliers. This purchase order
creation is an event. Another example of an event is when a customer buys a record
or downloads a song from the online stores.

• A status is a condition of an object at a particular point in time. For example, a song can
have a status of active or obsolete. A customer subscription can have a status of sub-
scribed, unsubscribed, or does not exist.
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• A level is a quantitative measurement of an object at a particular point in time, such as
account balance, inventory level, and number of customers. These quantitative meas-
urements change from time to time.

• Roles are the who, whom, and what involved in the event. For example, the roles in the
purchase order event are supplier, account manager, and product. The account man-
ager raises a purchase order for a supplier for a particular product. The roles in the sub-
scriber event are customer, package, and store; in other words, a customer subscribes
to a package in a store.

After talking to business users about these three areas, Grace and David found out that
the events, status, and levels in Amadeus Entertainment were as follows: sales event, browsing
event, subscribe event, customer class, customer band, purchase order event, campaign sent
event, campaign opened event, campaign click-through event, inventory level, package rev-
enues, and package costs. They then worked with the business people to get all the roles and
attributes associated with each event and process. In this activity, they tried to understand the
business terminology and the business principles in the corporation.

David and Grace spent some time again exploring the WebTower9, Jupiter, and Jade sys-
tems. They examined in detail how these processes happen and how these events are captured
in these systems. David then sat down with the SQL Server, DB/2, and Informix DBAs for a few
hours and conducted a brief walk-through of the database of each system.

Defining Functional Requirements
After understanding the business operations in each area, the business project manager
(Grace) discussed with the business users the functional requirements, that is, the features
and functions of the data warehouse. In other words, what does the system do? In the end,
they agreed that the Amadeus Entertainment data warehouse system has the functional
requirements shown in Table 4-1. The users collectively agreed that the business priorities
of the requirements are as per the Priority column in Table 4-1.

Table 4-1. Amadeus Entertainment Data Warehouse System Functional Requirements

No. Requirement Priority

1 The business users need to be able to analyze “product sales” (that’s when a High
customer is buying a product rather than subscribing to a package) over time 
by geographic area, by customer demographic, by stores and sales territory, 
and by product hierarchy. The users also need to know the revenues, the costs, 
and the margin in U.S. dollars. Local currencies will be converted to U.S. 
dollars.

2 The business users need to be able to analyze “subscription sales” (that’s High
when a customer is subscribing to a package rather than purchasing a product) 
over time by geographic area, by customer demographic, by stores and sales 
territory, and by product hierarchy. In addition, the users also need to analyze 
subscription sales by subscription duration and lead source (in other words, 
where the customers are coming from). The users need to know the 
revenues, costs, and margins, evaluated every day for a period of one month.

Continued
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Table 4-1. Continued

No. Requirement Priority

3 The business users will be able to analyze “subscriber profitability,” which is High
defined as the projected annual revenue of the subscribing customer minus 
the annualized costs (including proportional indirect costs), expressed as a 
percentage of the projected annual revenue. This is analyzed over time, by 
geographic area, by customer demographic attributes, by stores and sales 
territory, and by product package.

4 The business users need to be able to allocate subscribers to specific “classes” Medium
based on the customer’s projected annual revenue and allocate them to certain 
“bands” based on the profitability. The classes and bands are used in the loyalty 
programs. These two attributes are updated daily.

5 The business users will be able to analyze “supplier performance,” which is the Low
weighted average of the totals spent, costs, value of returns, value of rejects, 
title and format availability, stock outages, lead time, and promptness.

6 The system will enable CRM users to select customers based on communica- High
tion permissions (subscribed/unsubscribed, e-mail/phone/post, and so on), 
geographic attributes (address, city, and so on), demographic attributes (age, 
gender, occupation, income, hobby, and so on), interests (music taste, book 
topic interests, favorite film types, and so on), purchase history (order values, 
order dates, number of items, store locations, and so on), subscription details 
(details of packages, subscription dates, durations, store locations, and so 
on), and the attributes of the products purchased (for example, music genre, 
artist, film type, and so on) for the purpose of sending CRM campaigns.

7 The system will enable CRM users to analyze campaign results by viewing the Medium
following measures for each campaign sent to customers: the number of mes-
sages sent by communication channels (mobile phone text message, e-mail, 
or post), the number of messages delivered successfully, and the number of 
messages failed to be delivered (including the reason). For e-mail messages, 
the users need to analyze the following additional information: open rate, 
click-through rate, complaint rate, spam verdict, and trap hit rate.

8 For CRM analysis purposes, the data warehouse will store the customers’ old Low
occupations, incomes, addresses, e-mail addresses, and telephone numbers, 
especially the subscribers (as opposed to the purchasers).

9 The data warehouse will store the previous region and division of each store. Low
There is a plan to reorganize the store hierarchy; that is, currently there are 
only five regions in the United States, but in a few months’ time there will be 
eight regions. Online stores are currently in a separate division, but in the 
future they will be in the same division as their offline colleagues. Reorganiza-
tion like this rarely happens. This is the first time it has happened in the six-
year history of Amadeus Entertainment. You can expect the new structure to 
last at least three years.

10 For requirements 1 to 7, when the data warehouse goes live, two years of Medium
historical transactional data needs to be loaded into the warehouse, except 
requirement 5, which should be one year.

11 The data warehouse will store the data up to five years online and five years Low
offline. The offline data should be able to be accessed online with two days of 
notice.

12 The system will enable the store managers to view the data of just their own High
stores. This is because each store manager is responsible for different stores. 
This is applicable for both offline and online store managers.
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No. Requirement Priority

13 At the store level, the ability to view the daily data in the past few weeks is High
important. The system should enable the store managers to see the ups and 
downs of sales, costs, and profitability, and they need to be able to drill down to 
any particular day to understand the causes of low sales or low profitability, 
that is, which products, titles, media, or customers caused the issue.

14 The data warehouse system will enable the global managers to understand Medium
the global trends and break them down by country. They do not need store-
level data or daily data. If a certain store or country is having a problem with 
a particular media, title, or product (for example when they are experiencing 
negative trends), then the managers needs to be able to communicate this to 
all stores as early as possible.

15 The report and OLAP will have an easy-to-use user interface. As long as the user Low
interface enables the company to perform the analysis in this table and it is easy 
to use, the users do not really care about the details of the user interface. The 
numbers are much more important to the users than the layout. The data ware-
house users understand that their job is to deliver business performance, and 
these numbers are the enabler.

16 The system will be able to display the figures and charts and will be able to print. Low
The users collectively agree that they will need charts and graphs, but if this fea-
ture is not available, they can export to Excel and do the graphs there. They will 
need an export to Excel (or to CSV) feature.

David, Grace, and Natalie reviewed these functional requirements, documented them,
and obtained the necessary sign-off. They reviewed the requirements in terms of complete-
ness, feasibility, and data availability. They documented them in the form of use cases. The
business users reviewed the use cases and signed off on them.

Defining Nonfunctional Requirements
Meetings with the IT architecture and operations teams and discussions with the business
users revealed the nonfunctional requirements described in Table 4-2. Functional require-
ments determine what the system does (the features), whereas nonfunctional requirements
do not specify the features. Instead, nonfunctional requirements provide guides and con-
straints to the system architecture. Some of them are from the company IT standards, some
are from the IT architecture team, some are from source system restrictions (requests from
the source system DBAs and operations manager), and some are from the user needs (require-
ments from the business users). There are also nonfunctional requirements related to project
management or how the project should run, such as requirements related to the time, resources,
locations, and budgets.
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Table 4-2. Amadeus Entertainment Data Warehouse System Nonfunctional Requirements

No. Requirement

1 All data warehouse users must be able to access the data warehouse front-end applications
(reports and OLAP) without logging in again. They just need to log in once to Windows on
their PC or laptop.

2 The data warehouse front-end applications must not be accessible from outside the
company network.

3 All front-end applications are ideally web-based, accessible from anywhere within the
company network.

4 All users access the front-end applications from a central portal. The user interface layout
and design need to follow company standards and guidelines.

5 Some users are allowed to access data from their own country only, but some users are
allowed to access data from any country.

6 Some “power” users are given access to the dimensional store to perform direct SQL
queries.

7 Certain sensitive data is viewable by certain people only.

8 The maximum response time for any report, query, or OLAP view is 30 seconds.

9 The standard minimum specification for the client is Internet Explorer 6 on Windows XP
running on a PC or laptop with Intel Pentium D 820 (or mobile/AMD equivalent) with
512MB memory and SVGA resolution (1024✕768 pixel).

10 The data warehouse must be available for 24 hours a day, 7 days a week. The downtime is
expected to be no more than one hour a month.

11 The downloads from Jupiter can occur only from 4 a.m. to 5 a.m. U.S. Eastern standard
time.

12 It is preferred that no application or database changes are made in the WebTower9, Jupiter,
and Jade systems, including trigger or schema changes.

13 The data warehouse system must notify the appropriate data owner within 24 hours when a
data quality issue arises.

14 The company preference is to use Microsoft SQL Server to build the data warehouse from
end to end, including the ETL tool, reporting, and OLAP. Specific front-end BI applications
may be used if required. The data warehouse should be upgradable to SQL Server future
versions.

15 We need to utilize this project to satisfy data integration needs too. As you know, Amadeus
Entertainment has disparate front-end applications. In particular, it would be ideal if this
project could create a stepping-stone for master data management.

16 The data warehouse needs to be flexible so we can enhance it easily and adapt to changes
that happen in the transaction systems. In particular, it needs to include enhancements
such as bringing new pieces of data into the warehouse, adding new reports/cubes/data
quality rules, or modifying existing ones.

17 “Who accessed what and when” must be auditable.

18 All servers must be rack mountable, preferably from the Amadeus Entertainment’s favored
hardware supplier.

19 The data warehouse must be backed up to offline media daily, and the backup must be
tested every six months by restoring it from the media. Fairly recent media must be stored
off-site.
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No. Requirement

20 If the ETL failed because of power failure in the data center, the data in the data warehouse
should not be corrupted or compromised; it must be recoverable, and there should not be
any data loss.

21 The number of users is estimated to be between 300 and 500. About 20 percent of these
users are estimated to be heavy and frequent users; the rest are occasional.

22 To protect investments, we need to use the same storage area network (SAN) as the file and
e-mail servers rather than creating a new, separate SAN.

David, Grace, and Natalie reviewed these requirements, documented them, and obtained
the necessary sign-off. They reviewed the requirements in terms of completeness, feasibility,
and effect on the system architecture. They documented these requirements in supplementary
specification format, with the following sections: usability, reliability, performance, supporta-
bility, design constraints, user documentation and help, interfaces, and applicable standards.
The business users, IT architecture group, and operations team reviewed the documents and
signed off on them.

Conducting a Data Feasibility Study
After defining the functional and nonfunctional requirements, now it is time to understand
the data and the source system in detail. A data feasibility study is a process to explore the
source system, to understand the data by listing the main data risks and verifying them, and to
determine whether it is possible to deliver the project as per the requirements. Exploring the
source system means examining the database platform, examining the database structure,
and querying the tables. Understanding the data means finding out where the data is located
for each functional requirement and understanding the meaning and the quality of the data.
The risks are identified by finding out whether there are gaps between the requirements and
the data, that is, whether for each requirement the data is available and accessible.

The purpose of doing a data feasibility study is to get an idea about whether there are
any data risks that could fail the project. Data risks are project risks associated with data
availability and data accessibility. Data availability risks are risks of not being able to satisfy
a requirement because the data is not available. For example, a requirement could specify
two years of historical data, but you have only six months worth of data. Data accessibility
risks are project risks of not being able to satisfy a requirement because the ETL system can-
not extract the data and bring it into the warehouse. For example, we may not be able to
identify updates in a table because there is no “last updated” timestamp, because we are not
allowed to install a trigger in the source table, and because the table is too big to extract the
whole table every time.

For the Amadeus Entertainment case study, Table 4-3 lists a few examples of the data
risks.
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Table 4-3. Amadeus Entertainment Data Warehouse Risks

No. Risk

1 It is impossible to do data extraction in Jupiter in the one-hour limitation, as specified in the
nonfunctional requirements.

2 The functional requirements cannot be satisfied because we do not have the data in the
source systems. The way to identify this is to go through the functional requirements and
query the source system to find out whether we have the data for each requirement.

3 The data is there, but we cannot get to it. Similarly, the way to identify this is to go through
the functional requirements, locate the data for that requirement, and check whether we
can query the data.

4 We can get to the data, but it is a mess and needs to be restructured and cleansed first. In
this case, we need to find out how much effort would be required to cleanse the data.

5 A requirement states that we need to use the same SAN as the file and e-mail servers rather
than creating a new, separate SAN. There is a risk here that we are not able to use the same
SAN because the amount of data in the data warehouse exceeds the maximum capacity of
the existing SAN. Of course, we will buy new disks, but there is a risk that the maximum
number of disks that the SAN can handle is less than what we require. For example, the
existing SAN may be able to hold only 120 disks and 50 are already used by the file and
e-mail servers. If the data warehouse requires more than 70 disks, then we cannot use the
existing SAN.

6 The daily incremental load may slow the source system down. We can determine whether
the incremental load will slow down the source system by simulating the data extraction
runs while the source system is being used. This is preferably done in the test environment.

7 The users may not be able to use the front-end application without logging into the data
warehouse. The first nonfunctional requirement states that all data warehouse users must
be able to access the data warehouse front-end applications without logging in again. They
just need to log in once to Windows on their PC or laptop. We need to investigate whether
we would be able to implement Windows integrated security to enable this.

8 The initial data load could take considerably longer than predicted, such as a month,
impacting the project timeline. This could happen if we use the operational ETL to do initial
data load, particularly when the operational ETL is in a message-based architecture.

It is important to verify these risks and make sure they are mitigated. If we don’t do that,
we are really risking the data warehouse project to fail. So, let’s address these risks one by one.

For risk 1, is it possible to extract data from Jupiter within the one-hour limitation? We
cannot answer that until we know what data to extract from Jupiter. And for that we need to
model the data first. But we know it’s going to be inventory data that we need from Jupiter
(sales data is from WebTower9 and Jade). We can quickly build a simple SQL Server Integration
Services (SSIS) package to extract one-week data from Jupiter inventory tables. If this package
takes five minutes to run, then roughly speaking we are safe from this risk. If this is too sim-
plistic for your project, build a package that extracts one day of equivalent data from several
large tables from the source system.

For risk 2, is there any data that is not available or difficult to get? Speak to the business
project manager or somebody who knows the front end of the source systems very well. Ask
them whether, to their knowledge, there is data required by the business requirements that is
unavailable in Jupiter, Jade, or WebTower9. Data such as the company fiscal calendar, per-
formance targets, product costs, holiday data, customer classification, and overhead costs
may not be available in the source system. Discuss with the business project manager whether
someone can arrange these data items to be supplied to you in text files or spreadsheets.
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For risk 3, we need to find out whether we can get to the data. We need to understand
what RDBMS the source systems are running on. Most companies uses popular RDBMSs for
their OLTP systems, such as Oracle, Informix, DB/2, Ingress, Progress, mysql, Sybase, or SQL
Server, and these RDBMSs supports ADO.NET, ODBC, JDBC, or OLEDB, so we can get to the
data using SSIS, assuming we have cleared the security permission. But if we hear that one of
the source systems is on a proprietary system, not on an RDBMS, then we need to find out
whether we can get to the data. If we can’t find any ODBC or JDBC drivers for this proprietary
system, we need to speak to the DBA about whether it is possible to arrange for the data to be
exported periodically to text files.

Connectivity is another obstacle that could prevent us from getting to the data. For exam-
ple, the production database server may sit behind a firewall. We may need to open a firewall
hole, that is, raise a network request allowing database traffic through the firewall to and from
a particular database server.

For risk 4, some data in the source system may require cleansing. We can find this out by
querying the source system. Some of the data quality issues are incomplete data, incorrect/
inaccurate data, duplicate records (because no hard database constraints are applied, such as
primary keys or unique constraints), data is in free text format, a column is available but most
values are null, orphan records, and so on.

For risk 5, unfortunately, without designing the DDS and NDS, we would not be able to
understand the size of the data stores. If we try to estimate the storage at this stage, it could be
inaccurate. I don’t suggest we shouldn’t estimate it, though. We should. The earlier we do the
estimate, the better. But we need to be aware of how accurate the estimate is. When we com-
plete data modeling (discussed in the next chapter), then we will be able to estimate the
storage much more accurately.

Here is how we can estimate the data storage at this stage, without having the data model
in hand:

• For each point in business requirements 1 to 7, assume there will be a fact table and a
summary table. At this stage, we do not know the data structure of our dimensional
model, so we need to make a lot of assumptions. Estimate the width of the fact table by
assuming the number of key columns and fact columns. For a rough estimate, assume
5 key columns for a simple fact table and 15 for a complex one.

• Estimate the width of dimension tables by assuming the number of columns. For a
rough estimate, assume 10 columns for a simple dimension and 50 columns for a com-
plex dimension. Most columns are 4 to 8 characters, but some are 100 to 200 characters,
so for an estimate assume that on average each column is 50 characters.

• Assume that the size of the summary table is 10 to 20 percent of the fact tables.

• The depth of the fact table depends on volume. For transactional fact tables, look at the
source system to figure out how many transactions there are a day. For daily snapshot
fact tables, look at the source system to figure out how many records there are per snap-
shot. Multiply this by the period—how long you plan to use the storage (take two to
three years if you have no idea). For example, if on average there are 500,000 purchases
a day, the size of the Product Sales fact table would be 500,000 ✕ 365 ✕ 2 ✕ the width of
fact table as estimated earlier.
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• Query the source system to estimate the number of records for each dimension. For
example, for the product dimension, we query the inventory master table in Jupiter.

• Estimating the size of the NDS or ODS could vary widely. We cannot estimate it based
on the size of the DDS. We can query the source system tables to estimate the size of
each of the NDS or ODS tables.

Risk 6, the risk that the daily incremental load may slow the source system down, also
depends on the data model and source system mapping, which we will do in the next chapter.
But it is possible to mitigate this risk by building some simple SSIS packages that extract the
data specified in the business requirements. The SSIS packages simulate the daily incremental
load, extracting data from the main tables on the source systems. When this package is run-
ning, we use the source systems as normal for OLTP activities and measure whether there is
any degradation in performance. For example, entering an order that usually takes a split sec-
ond when saving to a database now takes three to four seconds. If this is the case, we should
schedule the daily incremental load to run after-hours, such as from 2 a.m. to 4 a.m. I will go
through how to build an ETL package using SSIS in Chapters 7 and 8.

For risk 7, the single login requirement can be mitigated by building a simple report and
a simple OLAP cube and then applying the security. To enable the single login requirement
(the customer doesn’t need to log in again to the data warehouse system once they log in to
Windows), we need to apply Windows integrated security, both on SQL Server Reporting Ser-
vices (SSRS) and on SQL Server Analysis Services (SSAS). I will go through the steps of build-
ing reports in Chapter 11 and building OLAP cubes in Chapter 12.

Risk 8, initial data load, can be estimated by querying the source system according to the
criteria specified in functional requirement 10. We can query the main transaction tables in
the source system to find out how many records you have to load to the data warehouse to
satisfy the historical data requirement. In the case of Amadeus Entertainment, functional
requirement 10 specifies that we need to load two years of historical data for sales and CRM
and one year for purchasing. We can then go to the source system and query the sales order
table with something like select count(*) where sales order date >= [2 years ago] to find
out how many historical rows we need on the initial data load for sales data. We then do the
same for the CRM subscription data and purchase order data.

Summary
In this chapter, we defined the functional requirements for the case study. We also defined
the nonfunctional requirements and verified that the data and the source systems support
the requirements, meaning that, up to this point, we don’t see anything that poses a serious
risk to the project or prevents us from delivering the data warehouse.

In the next chapter, I will show how to design a data model that satisfies these require-
ments. The discussion about events, levels, status, and roles in this chapter will be useful in
the next chapter.
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Data Modeling

In this chapter, we will design the data stores for the Amadeus Entertainment case study. We
will use the NDS + DDS architecture. Apart from the benefits outlined in Chapter 2, the pur-
pose of choosing this architecture for this case study is so that you can have the experience
of designing a normalized store and a dimensional store.

We will begin by looking at the business requirements and then design the dimensional
data store (DDS) accordingly. We will define the meaning of the facts and dimensional attrib-
utes. We will also define the data hierarchy.

Then we will map the data in the DDS with the source systems; that is, we will define
the source of the columns in the fact and dimension tables. Sometimes one column in the
DDS is populated from several tables in the source system (for example, from column 1 of
table A and column 1 of table B) and sometimes from more than one source system. We will
define the transformations (formula, calculation logic, or lookups) required to populate the
target columns.

Then we will design the normalized data store (NDS) by normalizing the dimensional
data store and by examining the data from the source systems we have mapped. The normal-
ization rules and the first, second, and third normal forms are described in the appendix. We
will use these rules to design the NDS.

Designing the Dimensional Data Store
So, let’s start by designing the DDS. The users will be using the data warehouse to do analysis
in six business areas: product sales, subscription sales, subscriber profitability, supplier per-
formance, CRM campaign segmentation, and CRM campaign results. So, we need to analyze
each business area one by one to model the business process in order to create the data
model. Let’s do the first business area: product sales. An order-item data mart in the retail
industry is a classic example of data warehousing.

A product sales event happens when a customer is buying a product, rather than sub-
scribing to a package. The roles (the who, where, and what) in this event are the customer,
product, and store. The levels (or in dimensional modeling terms, the measures) are the quan-
tity, unit price, value, direct unit cost, and indirect unit cost. We get these levels from the
business requirements in Chapter 4; in other words, they’re what users need to perform their
tasks. We put the measures in the fact table and the roles (plus dates) in the dimension tables.
The business events become the fact table row. Figure 5-1 describes the result.
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Figure 5-1. Product Sales fact table and its dimensions

quantity, unit_price, and unit_cost measures are derived from the source system, but
the other three measures (sales_value, sales_cost, and margin) are calculated. They are
defined as follows:

• sales_value = unit_price ✕ quantity

• sales_cost = unit_cost ✕ quantity

• margin = sales_value – sales_cost

The four keys in the Product Sales fact table link the fact table with the four dimensions.
According to Ralph Kimball, it is important to declare the grain of the fact table. Grain is the
smallest unit of occurrence of the business event in which the event is measured. In other
words, grain is completing this sentence: “One row in the fact table corresponds to. . . .” In this
case, the grain is each item sold—one row in the Product Sales fact table corresponds to each
item sold.

It is easy to define simple measures for our case study such as sales value, sales cost, and
margin, but in practice when doing data modeling we have to deal with complex events, fea-
tures, exceptions, and logic that are industry specific, such as discounts, taxes, promotional
items (for example, “three for the price of two,” “buy one get one free,” and so on), bundles,
and returns.

The general rule for dealing with complex events and exceptions is to always look at the
source system. We have to replicate or mimic the source system logic. This is because the out-
put of the data warehouse application must agree with the source system. If the source system
includes the discount in the unit price, we should not implement discounts as line items
because if we aggregated the discount, it would not match the source system. In any case,
always talk to the businesspeople first about the business logic because they know the busi-
ness rules. Then it is wise to always confirm the data model and business logic with the source
system. It is important to get the data model and business logic correct to ensure that the out-
put of the data warehouse reflects the correct business conditions.
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Some of the business logic is quite complex, such as cost allocations and customer prof-
itability calculations. Cost allocation is where you need to allocate a total cost to each business
event. Usually, it is an overhead or indirect cost occurring periodically, such as the cost of rent-
ing a building. Customer profitability is where you calculate the profit you are making for each
customer for a certain period. For complex business logic such as this, you could have a dis-
agreement between the businesspeople and the source system code, meaning that the busi-
nesspeople want the data warehouse business logic to be different from the one implemented
in the source system. In this case, advise the business project manager of the discrepancy you
found and ask her to decide which one to implement in the data warehouse. This happens in
practice, and I have experienced it myself several times: “I know that the source system calcu-
lates the annual revenue with that logic, but in the data warehouse I want to calculate the
annual revenue differently.” In this case, my belief is that you should implement as per the
requirement from the businesspeople; however, it is essential to always let the business proj-
ect manager facilitate this. It should be documented and should require sign-off. The reason
for this is it is perfectly valid for the data warehouse users to have a requirement (about busi-
ness logic) that is different from the source system. For instance, perhaps there have been
some changes in the business situation, or perhaps they want to analyze the data differently.

In retail, alongside sales transactions, you also have sales tax (value-added tax [VAT]) that
varies depending on country, state, and product. VAT can be implemented in several ways. In
some implementations, VAT is not included in the sales fact table because the business wants
to analyze product sales only (to them, taxes obscure the real transaction value). In other
implementations, they build a sales tax fact table, with the granularity at one row per order
line. In this fact table, they analyze the taxes. In still other implementations, discounts are
included in the unit price (rather than as a transaction line). In other words, if the normal
price is $5 and there is a 20 percent discount, the unit price is reduced to $4.

Let’s now return to the fact table and continue our dimensional design. In Figure 5-1,
you can see there are two columns in the fact table: order_id and line_number. They are
called degenerate dimensions. A degenerate dimension is a dimension with only one attrib-
ute, and therefore the attribute is put in the fact table. order_id and line_number are the
identifiers of the order line in the source system. We need to always bear in mind that we may
be dealing with more than one source system, so it is possible that two source systems have
the same order ID. Because of this, we want to include a source system ID column to differ-
entiate them. Also, it is a good idea to always put a timestamp column in the fact table, that
is, the time when the record was loaded into the fact table. This column enables us to deter-
mine when the fact row (or dimension row) was loaded into the data warehouse data store.
In many cases, we need a second timestamp column to store the time the record was last
updated. This column enables us to determine when the fact row (or dimension row) was last
modified. These two columns are in addition to the transactional date/timestamp column.
The transaction timestamp explains when the order (or order line) was created, shipped,
canceled, or returned, but it does not explain when the record was loaded into the data ware-
house and when it was last modified.

The next step in the fact table design is to determine which column combination
uniquely identifies a fact table row. This is important because it is required for both logical
and physical database design in order to determine the primary key(s). We ordinarily would be
able to uniquely identify a fact table row by using the combination of all dimensional columns
in the fact table. However, it is still possible to have duplicate rows. Sometimes we need to use
the degenerate dimension to make it unique. In our Amadeus Entertainment case study, the
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fact table contains one row for each item sold. So, it seems that the combination of the cus-
tomer, date, product, and store dimensions will be enough to uniquely identify a fact table
row. What if customer A bought song B in online store C on date D at 10 a.m. and then she
came back at 7 p.m. on the same day to the same store and bought the same song again? Ah,
we have two rows with those four dimensional columns having identical values. But the order
ID and line number are different. So, to differentiate these two fact rows, we use the order ID
and line number. Therefore, we can use order_id and line_number for the primary key candi-
dates. Or we can create a new fact table key column and use it as the primary key candidate.

■Note I will discuss the primary keys and cluster indexes in the next chapter because determining primary
keys and cluster indexes are part of the physical database design process.

This collection of a fact table and its dimension tables is called a data mart. There are
more complex forms of data marts, such as when you have more than one fact table, but for
now let’s consider only one fact table. Bear in mind that this concept of a data mart is applica-
ble only if the data warehouse is in a dimensional model. If the data warehouse is not in a
dimensional model—that is, when we are talking about a normalized data store—there is no
data mart. A data mart is a group of related fact tables and their corresponding dimension
tables containing the measurements of business events, categorized by their dimensions. Data
marts exist in dimensional data stores.

With the timestamp columns, the Product Sales fact table (and its dimensions) now looks
like Figure 5-2.

Figure 5-2. Product Sales table (and its dimensions) with timestamp columns
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We then define the data type for each column. All key columns have integer data types
because they are surrogate keys, that is, simple integer values with one increment. The meas-
ure columns are usually numeric or currency, so in SQL Server, their data types are decimal or
money. The three timestamp columns have datetime data types. The source system code is an
integer because it contains only the code, and the description is stored in the source system
table in the metadata database.

Then we add the description for each column. We also provide a sample value so we are
clear about the data we are going to store in each column. We can get a sample value by query-
ing the source system. Table 5-1 describes the final form of the Product Sales fact table.

Table 5-1. Product Sales Fact Table

Column Name Data Type Description Sample Value

sales_date_key int The key of the date the customer pur- 108
chased the product

customer_key int The key of the customer who purchased 345
the product

product_key int The key of the product purchased by the 67
customer

store_key int The key of the store where the customer 48
made the purchase

order_id int WebTower9 or Jade order ID 7852299

line_number int WebTower9 or Jade order line number 2

quantity decimal(9,2) How many units of the product the 2
customer purchased 

unit_price money Price of one unit of the product pur- 6.10
chased in the original currency

unit_cost money Direct and indirect costs for one unit of 5.20
the product in the original currency

sales_value money quantity ✕ unit_price 12.20

sales_cost money quantity ✕ unit_cost 10.40

margin money sales_value – sales_cost 1.80

sales_timestamp datetime When the customer purchased the 02/17/2008 
product 18:08:22.768

source_system_code int The key of the source system from which 2
this record was coming from

create_timestamp datetime When the record was created in DDS 02/17/2008
04:19:16.638

update_timestamp datetime When the record was last updated 02/17/2008
04:19:16.638

In multinational companies, you may need to define additional columns to store the
measures in the “global enterprise currency,” along with the currency rate. When a business
has branches in many countries, the business transactions occur in different local currencies.
These transactions are stored in the fact table columns listed in Table 5-1. Usually, there are
also requirements to analyze transaction data globally. To do this analysis, the transactions
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need to be converted and stored in a single global currency. The currency rates that were used
to convert the transaction values from the local currencies to the global currency are also
stored in the fact table. In addition, we need to have a currency key column in the Product
Sales fact table, containing the currency in which the transaction occurred. This key column is
linked to the currency dimension where the name of the currency is stored. To accommodate
these multicurrency requirements in the fact table, we can create the additional columns
shown in Table 5-2.

Table 5-2. Additional Columns on the Product Sales Fact Table

Column Name Data Type Description Sample Value

currency_key int The key of the currency in which the trans- 3
action occurred

unit_price_usd money Price of one unit of the product purchased 6.10
in U.S. dollars

unit_cost_usd money Direct and indirect costs for one unit of the 5.20
product in U.S. dollars

sales_value_usd money quantity ✕ unit_price, in U.S. dollars 12.20

sales_cost_usd money quantity ✕ unit_cost, in U.S. dollars 10.40

margin_usd money sales_value – sales_cost, in U.S. dollars 1.80

currency_rate money Conversion rate between the local currency 1.97
and U.S. dollars

Dimension Tables
Now that we have discussed the fact table, let’s discuss the dimension tables. A dimension
table is a table that contains various attributes explaining the dimension key in the fact
table. As mentioned earlier in this chapter, the fact table stores business events. The attrib-
utes explain the conditions of the entity at the time the business event happened. For
example, in the fact table in Figure 5-1, we have a dimension key called customer_key.
Table 5-1 says that this column contains the key (or the ID) of the customer purchasing the
product. In Figure 5-1, you can see that the customer dimension table is “linked” to the fact
table using the customer_key column. The customer_key column is a primary key in the cus-
tomer dimension table, and it is a foreign key on the fact table. This is known in the database
world as referential integrity.

Referential integrity is a concept of establishing a parent-child relationship between two
tables, with the purpose of ensuring that every row in the child table has a corresponding par-
ent entry in the parent table. The referential integrity can be “hardened” or “enforced” physi-
cally as a physical database constraint (data warehouse people call this hard RI). A database
constraint is a rule governing the permissible values on a certain column. Alternatively, the
referential integrity can managed by the ETL and not enforced as a physical data constraint
(data warehouse people call this soft RI). The ETL checks that the values on the fact table
dimensional keys exist in the dimension tables.

The dimension tables contain various attributes explaining the conditions of the entities
involved in the business event stored in the fact table. The attributes are stored as columns in
the dimension tables. They are known as dimensional attributes. The customer dimension
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contains columns that describe the condition of the customer who made the purchase,
including the data about customer name, address, telephone number, date of birth, e-mail
address, gender, interest, occupation, and so on. The product dimension contains columns
that describe conditions of the product purchased, including the data about product name,
product type, product category, media, SKU, minimum order level, product code, unit cost,
and unit price.

Now that you understand what a dimension is, let’s go through the four dimensions in
Figure 5-1—date, customer, product, and store—to complete the design of the product sales
data mart. We will define each dimension one by one. We will begin with the date dimension
first and then discuss the other three dimensions. We will also talk about the concept of slowly
changing dimension (SCD). SCD is a data modeling technique to store historical values of
dimensional attributes. It is important to discuss it in the context of dimensions because of its
capability to preserve historical attribute values. OK, let’s start with the date dimension.

Date Dimension
Almost every single data mart has the date dimension in it. This reflects the nature of a
dimensional data mart in that the fact table rows are business events that happened on cer-
tain dates. Because the date dimension is used in almost every data mart in the data ware-
house, it is important to model the date dimension correctly. It is important for the date
dimension to contain the attributes required by all fact tables in all data marts.

Why don’t we have a time dimension instead of a date dimension? Well, it is not practical.
A date dimension with 10 years of data has 3,650 rows. If it were a time dimension with preci-
sion to the second, it would have 315 million rows and would impact the data warehouse
performance because it’s used everywhere. Instead, we use either the timestamp column in
the fact table (99 percent of the cases) or a time of day dimension (1 percent of the cases). A
timestamp column in the fact table stores the date and time the business event happened
and, therefore, eliminates the need to have a time dimension. A time of day dimension con-
tains all the possible minutes (or seconds) in one day. A time of day dimension is used when
a different period in a day has a different meaning or label, such as “happy hour,” “off-peak
period,” “night shift,” and “migration slot.” If labels such as these are not required, the time-
stamp column is easier (for calculation) and better (for performance).

The columns or attributes in a date dimension can be categorized into four groups:

Date formats: The date format columns contain dates in various formats.

Calendar date attributes: The calendar date attributes contain various elements of a date,
such as day, month name, and year.

Fiscal attributes: The fiscal attribute columns contain elements related to the fiscal calen-
dar, such as fiscal week, fiscal period, and fiscal year.

Indicator columns: The indicator columns contain Boolean values used to determine
whether a particular date satisfies a certain condition, such as whether it is a national
holiday.
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Typically used date format columns in the date dimension are as follows (with examples
for February 17, 2008):

• date such as “02/17/2008”

• sql_date such as “02/17/2008 00:00:00.000”

• ansi_date such as “2008-02-17”

The sql_date column contains the date in the SQL Server datetime data type, whereas the
date and ansi_date columns contain the date in the varchar data type. The date column can
be formatted according to the custom in the local geography; for example, mm/dd/yyyy is
usually used in the United States. We can also create a column for other places; for example,
the dd/mm/yyyy format is usually used in the United Kingdom.

The calendar date attribute columns contain the parts or elements of a date. Table 5-3
shows typically used calendar date attributes in the date dimension, with examples for Febru-
ary 17, 2008. The columns are listed from the smallest unit of measure.

Table 5-3. Calendar Date Attributes Columns

Column Sample Values Notes

week_day 7 Monday = 1, Tuesday = 2, …, Sunday = 7.

week_day_name Sunday

day 17 You can call it day_of_the_month, but most users prefer the
short version.

day_of_the_year 48

week_number 7 The week starts on Monday.

month 2

short_month_name Feb

long_month_name February

quarter Q1

year 2008

The columns that end with the word name (such as short_month_name and week_day_name)
probably need to be in several languages if you are a multinational organization. If we use sev-
eral languages, we also need to correctly set the SQL collation of the database according to the
character set used by the languages.

It is true that we can derive the attributes in the date dimension (such as month name,
week number, day name, and so on) by using Transact SQL functions such as datepart. The
reason for providing those attributes in the date dimension is because when we are in the fact
table, all we have is the date key, so in the date dimension rather than going to the sql_date
column and then deriving the month, we can go directly to the month column.

After the calendar date attribute columns, the next group of columns in the date dimen-
sion is the fiscal attribute columns. These columns contain the fiscal property of a date, such
as the fiscal year and fiscal week. The values of fiscal attributes are dependent upon when the
fiscal year starts and when it ends. Those values are also affected by how many fiscal periods
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exist in a fiscal year and how many fiscal weeks exist in a fiscal period. Some companies have
13 equal fiscal periods of 4 weeks each. Some companies use a fiscal calendar that has fiscal
periods containing an unequal number of fiscal weeks.

Assuming that the fiscal year starts on September 1 and that there are 12 fiscal periods in
a year with four or five weeks each, the fiscal calendar attributes commonly used in the date
dimension are shown in Table 5-4, with examples for February 17, 2008. The columns are
listed from the smallest unit of measure.

Table 5-4. Fiscal Calendar Attribute Columns

Column Sample Values

fiscal_week 27

fiscal_period 9

fiscal_quarter FQ2

fiscal_year FY2008

The final columns in the date dimension are the indicator columns. Indicator columns
are columns in the date dimension that have only two possible values: 1 or 0 (Boolean). Indi-
cator columns are used to determine whether a particular date satisfies a certain condition
such as whether the day is a weekend. Each indicator column serves a different purpose, so
you need to choose the ones suitable to your case. The following indicator columns are com-
monly used: week_day (1 if it’s Monday to Friday; 0 otherwise), national_holiday (1 if it is a
holiday; several columns if you operate in several countries), last_day_in_month (1 if it is the
last day in the month; sometimes this would come in handy), period_end (1 if it is the last day
in a fiscal period), and short_day (1 if the offline stores’ opening hours are shorter than normal
opening hours).

Table 5-5 describes the date dimension of all four groups of columns explained earlier. A
surrogate key is an incremental integer. It is unique and not null.

Table 5-5. Date Dimension

Column Name Data Type Description Sample Value

date_key int The surrogate key of date dimension. This 2019
is the primary key of the date dimension. It 
is unique and not null.

date char(10) Full date in mm/dd/yyyy format. 02/17/2008

ansi_date char(10) Full date in yyyy-mm-dd format. 2008-02-17

sql_date datetime Full date in SQL Server datetime data type. 17/02/2008
00:00:00.000

day int The day of the month. 17

day_of_the_week int The day of the week; 1 for Monday, 7 for 7
Sunday.

day_name varchar(9) The name of the day in a week. Sunday

day_of_the_year int The number of elapsed days since January 1, 48
aka Julian date.

Continued
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Table 5-5. Continued

Column Name Data Type Description Sample Value

week_number int The number of elapsed weeks since Jan- 7
uary 1; weeks start on Monday.

month int The number of the month. 2

month_name varchar(9) The full name of the month in English. February

short_month_name char(3) The short name of the month in English. Feb

quarter char(2) Three-month period in calendar year, Qn Q1
format.

year int The calendar year of the date. 2008

fiscal_week int The number of elapsed weeks since Sep- 27
tember 1.

fiscal_period char(4) A period consists of four or five weeks FP9
depending on the fiscal calendar. Usually, 
the pattern used in this company is 454, 544, 
or 445, in FPn format. A fiscal year always 
consists of 12 periods.

fiscal_quarter char(3) A fiscal quarter is three fiscal periods, from FQ2
September 1, FQn format.

fiscal_year char(6) Fiscal year begins on September 1, in FY2008
FYnnnn format.

week_day tinyint 1 if it is Monday to Friday; 0 otherwise. 0

us_holiday tinyint 1 if it is a national holiday in the United 0
States; 0 otherwise.

uk_holiday tinyint 1 if it is a statutory holiday in the United 0
Kingdom; 0 otherwise.

month_end tinyint 1 if it is the last day in the month; 0 otherwise. 0

period_end tinyint 1 if it is the last day in a fiscal period; 0 0
otherwise.

short_day tinyint 1 if on that day the offline stores’ opening 0
hours are shorter than normal opening hours; 
0 otherwise. This is applicable only for off-
line stores.

The date_key column is the primary key of the date dimension. In SQL Server implemen-
tations, it is also the cluster index.

Slowly Changing Dimension
Now that I have discussed the date dimension, before I discuss the other three dimensions,
I’ll cover something called SCD, which is a technique used to store the historical value of
dimension attributes. The values of dimensional attributes change as time goes by. When
these attribute values change, you can overwrite the old values with the new ones, or you can
preserve the old value. There are two methods of preserving the old attribute values: you can
store the old values as rows, or you can store them as columns. For example, say that store 7
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was in region 1, but it is now in region 2. You want to store the historical information—the
fact that it was in region 1. You can do this in two ways: by storing it as a row or by storing it
as a column. Table 5-6 shows an example of historical information stored as a row.

Table 5-6. Storing Historical Information As a Row

key store region status

1 7 1 expired

2 7 2 active

In Table 5-6, you can see that the active row is row 2, but you still have the previous region
(region 1) stored in the first row. To understand when row 1 became expired and when row 2
became active, you can add two columns in Table 5-6: effective_date and expiry_date.

You can also store the historical information (the old attribute values) as columns instead
of rows. Table 5-7 shows how historical information is stored as a column. In Table 5-7, the
current region of store 7 is region 2, and previously store 7 was in region 1.

Table 5-7. Storing Historical Information As a Column

key store current_region old_region effective_date

1 7 2 1 11/18/2007

In Table 5-7, you can see that there is a column called old_region that stores the previous
value of the region (region 1). To record the date when store 7 moved from region 1 to region 2,
you can add a column called effective_date, such as the one shown in Table 5-7.

Of course, the question now is, what if store 7 moves region again, to region 3, for exam-
ple? Well, because you have only two columns, the oldest value is not stored. You can store
only the last two values. If you want to store three values, you need to have three columns:
current_region, old_region, and old_region2. What if you want to store ten values? Well, you
need to have ten columns. This is the distinct disadvantage of storing the historical value as
columns, compared to storing them as rows.

Now that you understand how historical values are stored in the dimension table (that is,
as rows or columns), I’ll talk about three types of SCD:

• SCD type 1 overwrites the old values of the attributes so the old values are not kept.

• SCD type 2 keeps the old values by creating a new row for each change, just like 
Table 5-6.

• SCD type 3 keeps the old values by putting them in another column, just like Table 5-7.

Generally, SCD type 2 is more flexible for storing the historical value of dimensional
attributes, because you can store as many old versions as you want without altering the table
structure. SCD type 3 is using columns to store old values, which is why it is not flexible. It is
ideal for situations where you don’t have many old versions (five or fewer) and you know there
will be only a certain number of versions. Type 3 is also ideal when the changes in this attrib-
ute affect a large number of rows. In other words, a lot of dimension rows change the value of
this attribute at the same time (simultaneously). For a detailed explanation of SCD, please
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refer to Ralph Kimball and Margy Ross' book, The Data Warehouse Toolkit (Wiley, 2002). You
can store the historical values using other ways, such as by putting them in another table, but
SCD types 1, 2, and 3 are the most popular, so let’s just get on with it.

OK, now you understand that SCD is about storing historical values. The question that
some people ask me is, how slow is slow? The perception about how slow is slow (in SCD) is
different from industry to industry. As a guide, if on average the dimension attribute changes
once a quarter or less, the attribute is slowly changing. If on average the dimension attribute
changes once a month or more frequently, the dimension is rapidly changing and is handled
differently (as explained in a moment).

This guide of classifying a dimension attribute as slowly or rapidly changing is not a firm
rule and has several considerations. The first consideration is the size of the dimension,
namely, the number of rows. The larger the dimension, the greater the tendency to classify the
attribute as rapidly changing. The second consideration is the relationship between the attrib-
ute with the other attributes in the dimension. The looser the coupling between the attribute
with the other attributes in the dimension, the more tendency to classify the attribute as rap-
idly changing. The third consideration is how often the other attributes in the dimension
change. The less often the other attributes change, the more we tend to classify the attribute
as rapidly changing.

The other questions about SCD that people ask me are, how about the rapidly changing
dimension (RCD)? How do we store the historical information? If, on average, the rows in the
dimension tables change once a month or more frequently, how do we store the historical
value of dimensional attributes? The answer is that we store them in the fact table. Say we
have a customer dimension with ten attributes. Attributes 1 to 9 change once a year. Attribute
10 changes every day. We should remove the 10th column from the customer dimension and
put it as a degenerate dimension column in the fact table, as shown in Figure 5-3. As men-
tioned, a degenerate dimension column is a dimension with only one attribute. Because it has
only one attribute, rather than putting this attribute in a separate dimension table, you put it
in the fact table. A degenerate dimension doesn’t have a dimension key.

Figure 5-3. Moving a rapidly changing dimension attribute to the fact table as a degenerate
dimension column
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Product, Customer, and Store Dimensions
Now that we have discussed the concept of SCD, let’s discuss the other three dimensions:
the product dimension, the customer dimension, and the store dimension. Unlike the date
dimension that we just discussed, product attributes vary widely from industry to industry.
Hence, when you model data in a different industry, keep in mind that the product attributes
can be totally different from the ones discussed in this section. This is where industry experi-
ence becomes useful. For Amadeus Entertainment, the product attributes are product ID (just
a number to identify the product, which is maintained by Jupiter), name, description, title (the
title of the song/film/book), artist (the singer, cast, or author), product type (music, film, or
book), product group (which is a large grouping; that is, for film, it is thriller, comedy, action,
documentary, children, Asian, and so on), product category (a smaller grouping; that is, for an
Asian film it is Indian, Chinese, and martial arts), media (WMA, MP3, and so on), unit price,
and unit cost.

Business requirements 8 and 9 in Chapter 4 mentioned that we need to store the old
attribute values of the customer and store dimensions, but nothing was mentioned about the
product dimension. Because we don’t have a requirement to store historical values of the
product attribute, we will use SCD type 1, meaning we will overwrite the old attribute values.

To create the product dimension, we look at the source system. The case study in Chapter
2 specifies that the inventory and products in Amadeus Entertainment are managed in the
Jupiter system, not in the Jade or WebTower9 system. So, we get the product dimension
columns from the product tables in the Jupiter system. In the operational source system, the
product tables may be normalized, and we need to denormalize them to get a flat structure for
the product dimension. We do this by joining the product tables in the source system on their
primary and foreign key columns. We then get data types and the length for each column from
the source system. We write a description for each column and provide a sample value. Table
5-8 describes the complete structure of the product dimension. As we discussed, a surrogate
key is simply an incremental integer. It is unique and not null.

Table 5-8. Product Dimension

Column Name Data Type Description Sample Value

product_key int The surrogate key of the product dimen- 3746
sion. It is unique, is not null, and is the 
primary key of product dimension.

product_code varchar(10) Natural key. Product code is the identifier FGA334288
and primary key of the product table in 
Jupiter. It is in AAA999999 format.

name varchar(30) Product name. The Panama
Story DVD

description varchar(100) Product description. Panama Story
movie in DVD
format

title varchar(100) The song/film/book title. The Panama
Story

artist varchar(100) The singer, star, or author. Mark Danube

Continued
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Table 5-8. Continued

Column Name Data Type Description Sample Value

product_type varchar(20) Level 1 of the product hierarchy, such as Film
music, film, book.

product_category varchar(30) Level 2 of the product hierarchy; for film, Action
it could be thriller, western, comedy, 
action, documentary, children, Asian, 
and so on.

media varchar(25) Format of the media, such as MP3, MPG, DVD
CD, or DVD.

unit_price money Price for one item. 4.75

unit_cost money Allocated direct and indirect costs. 3.62

status varchar(15) Upcoming if we have signed contract Active
with the supplier, Active if it is still being 
offered to the customer, and Expired if  
it is no longer being offered.

source_system_code int The key of the source system where this 2
record was coming from.

create_timestamp datetime When the record was created in DDS. 02/05/2008

update_timestamp datetime When the record was last updated. 02/05/2008

The product_key column is the primary key of the product dimension, and it is also the
cluster index. product_code is the primary key of the product table in the Jupiter system. We
call product_code the natural key, which is a column in the source system that we can use to
identify the record. It must be unique and not null, and it is usually a primary key in the
source system table.

Now let’s look at the customer dimension with SCD type 2. A customer dimension table
looks like the one described in Table 5-9.

Table 5-9. Customer Dimension

Column Name Data Type Description Sample Value

customer_key int The surrogate key of customer 84743
dimension.

customer_id varchar(10) Natural key. The primary key of the DH029383
customer tables in WebTower9 and 
Jade. WebTower9 customer_id format 
is AA999999. and Jade is AAA99999.

account_number int The account number for subscription 342165
customers. 0 for nonsubscription 
customers.

customer_type char(1) Subscriber, purchaser, or member. S

name varchar(100) Customer’s full name. Charlotte
Thompson

gender char(1) M for male; F for female. F
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Column Name Data Type Description Sample Value

email_address varchar(200) Customer’s e-mail address. charlotte.
thompson@
earthlink.net

date_of_birth smalldatetime Customer’s date of birth. 04/18/1973

address1 varchar(50) First line of address. 570
Greenfield
Boulevard

address2 varchar(50) Second line of address. Suite 2100

address3 varchar(50) Third line of address.

address4 varchar(50) Fourth line of address.

city varchar(50) Village, town, or city of customer’s Jacksonville
residence.

state varchar(40) For non-U.S. address, it’s county or Florida
region.

zipcode varchar(10) Postal code. 32228

country varchar(50) Country. USA

phone_number varchar(20) Telephone number including area code. (904) 402-8294

occupation varchar(50) Customer’s job/profession. DBA

household_income varchar(20) Range of household income in U.S. 50–60k
dollars.

date_registered smalldatetime The date when the customer first pur- 11/23/2007
chased or subscribed.

status varchar(10) Active if the customer is currently a Active
member or made a purchase in the last 
12 months.

subscriber_class varchar(3) Classification of subscribers based on R1
projected annual revenue.

subscriber_band varchar(3) Classification of subscribers based on A
profitability.

effective_timestamp datetime For SCD type 2, when the data in the 1/1/1900
row becomes effective; this defaults to 
1/1/1900.

expiry_timestamp datetime For SCD type 2, when the data in the 12/31/2999
row is no longer valid; this defaults to 
12/31/2999.

is_current int For SCD type 2, 1 if this is the current 1
record; 0 otherwise.

source_system_code int The key of the source system where 2
this record was coming from.

create_timestamp datetime When the record was created in DDS. 02/05/2008

update_timestamp datetime When the record was last updated. 02/05/2008
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According to business requirement 8 in Chapter 4, the columns that we need to pre-
serve the history are occupation, household_income, address1, address2, address3, address4,
city, state, zipcode, country, phone_number, and email_address. In Chapter 8, we’ll discuss
how to monitor and maintain the changes in these columns. The is_current column,
effective_timestamp column, and expiry_timestamp column are for accommodating
SCD type 2. I will discuss how to maintain these columns in Chapter 8.

To accommodate multiple e-mail/postal addresses and landline/cell phone numbers for
a customer, we can have multiple sets of addresses, telephones, and e-mail addresses in the
customer dimension if we use a star schema. If we use a snowflake schema, we normalize the
customer dimension by putting the e-mail/postal address and phone numbers in subtables
branching out from the customer dimension.

In Table 5-9, we have the subscriber_class and subscriber_band columns. The purpose of
these two columns is to satisfy business requirement 4 from Chapter 4. The requirement was
to allocate each subscriber to a specific “class” based on their projected annual revenue. The
business requirement also expected us to allocate each customer to a certain “band” based on
the profit that the customer generated. The class and band are used in the loyalty program.

Now let’s design the final dimension: store. Business requirement 9 in Chapter 4 indicates
that there could be a reorganization of the stores. That is, currently there are only five regions
in the United States, but in a few months there will be eight regions. Online stores are cur-
rently in one division, but in the future they will be in the same division as their offline col-
leagues. It is said that a reorganization like this rarely happens. This will be the first time in
six years, and we can expect the new structure to last at least three years.

This store dimension is an ideal case for SCD type 3 because, as we discussed earlier,
type 3 is suitable if we don’t have many changes in the attributes (five or fewer) and if we
know that there will be only a certain number of old versions. We also discussed that type 3 is
suitable when the change involves a large number of rows in the dimension. In other words,
a lot of rows are updated simultaneously. We will have a column for the current region, a col-
umn for the old region (and the date), and a similar one for the division. Table 5-10 describes
the structure.

Table 5-10. Store Dimension

Column Name Data Type Description Sample Value

store_key int The surrogate key of the store dimension. 12

store_number int Natural key. The common store identi- 56
fier used in Jupiter, WebTower9, and Jade.

store_name varchar(40) Name of the store, usually based on Los Angeles
location.

store_type varchar(20) Store size, in terms of product variety. Large

store_address1 varchar(50) First line of store address. 725 South
Pacific
Avenue
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Column Name Data Type Description Sample Value

store_address2 varchar(50) Second line of store address. Suite 800

store_address3 varchar(50) Third line of store address.

store_address4 varchar(50) Fourth line of store address.

city varchar(50) Town or city where the store is located. Los Angeles

state varchar(40) For non-U.S. address, it’s county or California
region.

zipcode varchar(10) Postal code. 90017

country varchar(50) Country. USA

phone_number varchar(20) Store’s main/public telephone number. (213) 454-5555

web_site varchar(100) Direct URL to store website. http://www.
amadeus.
com/LA

region varchar(30) Current allocated region. West

prior_region varchar(30)

prior_region_date datetime

division varchar(30) Current allocated division. USA

prior_division varchar(30)

prior_division_date datetime

source_system_code int The key of the source system where 2
this record was coming from.

create_timestamp datetime When the record was created in DDS. 02/05/2007

update_timestamp datetime When the record was last updated. 02/05/2007

When the new store organization is announced, the current region will be moved to the
prior_region column, and the new region will be placed in the region column. The date the
move happens will be recorded in the prior_region_date column. We will also do similar
things for division. This way, after the new organizational structure has been implemented,
the business users use both the old store organizational structure and the new structure.

To do a sales analysis of different periods by comparing the old organization structure
and the new structure, we query the product sales data mart by joining the fact table with the
date and store dimensions. We pick region, prior_region, division, and prior_division
columns from the store dimension and use this information to organize the data from the fact
table in a report or a BI application.

Figure 5-4 shows the final diagram of the data mart. It is a good idea to write the fact table
grain just underneath the fact table name to remind us what facts can and cannot go into the
fact table.
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Figure 5-4. Dimensional star schema for product sales data mart
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Subscription Sales Data Mart
Now that we have done the product sales data mart, we can do the other data marts the
same way. In other words, we start with the fact table, determine the dimensional key col-
umn in the fact table, set the fact table grain, and then create the dimension tables, taking
into account the SCD. If the dimension table in this new data mart already exists in the pre-
vious mart, we don’t create a new one. Instead, we reuse the existing dimension. If this new
mart needs an attribute that does not exist in the dimension yet, we add that attribute to the
existing dimension.

The other requirements that we have from the case study are subscription sales, sub-
scriber profitability, supplier performance, CRM campaign segmentation, and CRM campaign
results. Generally, the steps to design these marts are the same; they just require different
business knowledge to design them. A data mart (the fact table and its dimensions) stores a
collection of business events in a certain business area. To design the fact tables and dimen-
sions, we need to have business knowledge in that business area. For example, to determine
what columns we need to have in the Campaign Results fact table, we need to have a certain
level of business knowledge in CRM.

There are a few things that I want to mention at this point. First, for performance rea-
sons as well as design simplicity and consistency, it is better to stick to a star schema rather
than a snowflake, at least as much as we can. As I discussed in Chapter 1, a star schema is
simpler and is more consistent than a snowflake schema because it has only one level in all
dimensions. Because a star schema is simpler, it is easier for the ETL processes to load the
data into it. A snowflake schema is when you normalize a dimension into several smaller
tables with a hierarchy structure. It is used when you want to benefit from less data redun-
dancy. The benefit of a snowflake schema is that some analytics applications work better
with a snowflake schema than a star schema. The other benefit of a snowflake schema is that
less disk space is required. A snowflake schema can decrease query performance, but it can
also increase query performance. It decreases the fact table query performance because we
have to join more tables to the fact table. It increases the query performance when we want
to get the distinct value of a particular dimension attribute. If this attribute is normalized
into its own subdimension table, the select distinct query runs more quickly.

Second, if the dimension already exists, we use the existing one instead of creating
another version. For example, do not create another customer dimension. If we need more
attributes, extend the dimension columns. We need to be careful when doing this so we don’t
repeat columns with the same meaning. Also, we need be careful not to make the dimension
table too wide (more than 40 columns). Also, we should not put nonrelated attributes into
the same dimension table; they need to go to their own dimension tables linked separately to
the fact table. If we need a higher level of granularity (such as a week dimension), we create a
view on top of it. This means we create a view that takes the data solely from the dimension
physical table. When creating the view, we filter irrelevant rows on the where clause and select
only required columns on the select clause of the view definition.

Third, we have to be consistent with our data definitions. The definition for each meas-
ure and each dimension attribute must be accurate and unique. The same term used as a
measure or attribute should not be used anywhere else in the data warehouse with a differ-
ent meaning. For example, if date_registered is defined as “the date when the customer
first purchased or subscribed,” we should use this term consistently with the same meaning
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throughout the data warehouse. We should not use this term elsewhere in the data ware-
house to mean something else.

Now, let’s do the other data marts one by one. Subscription sales analysis (that is when a
customer subscribes to a package rather than buying a product) and subscriber profitability
analysis can be satisfied with one data mart, as mentioned in business requirements 2 and 3
in Chapter 4. Business requirement 4 is also relevant to this fact table. Let’s repeat those three
requirements here:

Requirement 2: The system will be able to analyze subscription sales over time by geo-
graphic area, by customer demographic, by stores and sales territory, and by product
package. In addition, the users need to analyze by subscription duration and lead source
(where the customers are coming from). They need to know the revenues, costs, and
margins, evaluated every day for a period of one month. So, they have monthly revenue,
monthly direct costs, monthly indirect costs, and monthly margin.

Requirement 3: The system will be able to analyze the subscriber profitability, which is
defined as the projected annual revenue of the subscribing customer minus the annu-
alized costs (including proportional indirect costs), expressed as a percentage of the
projected annual revenue. This is analyzed over time by geographic area, by customer
demographic attributes, by stores and sales territory, and by product package.

Requirement 4: The system will be able to allocate subscribers to a specific “class” based
on their projected annual revenue and allocated to a certain “band” based on the prof-
itability. The class and band are used in the loyalty program. These two attributes are
updated daily.

For this, we will need to create a periodic snapshot fact table. A periodic snapshot fact
table captures the state or condition of the business at a particular point in time. A periodic
snapshot fact table is different from the one we did for the Product Sales fact table, where
each row in the fact table corresponds to a certain business event. A fact table that contains
a collection of business events is called a transaction fact table.

To design a period snapshot fact table that satisfies these three requirements, the first
thing we need to do is determine the period, that is, how often we need to capture the busi-
ness condition or state and put the snapshot in the fact table. Requirement 2 states that “the
revenues, costs, and margins need to be evaluated every day,” so the period is daily.

The next step is to determine the measures. The measures are determined based on
what data the user needs to analyze. Requirement 2 mentioned that the users need to ana-
lyze monthly revenue, monthly direct costs, monthly indirect costs, and month margin.
These are the measures. These measures are calculated from quantity and unit costs, so we
need to include them as measures.
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Then we need to determine the dimensions for this fact table. To do this, we need to find
out by what the users need to analyze the measure. Requirement 2 mentioned that the users
need to analyze the data by geographic area, by customer demographic, by stores and sales
territory, by product package, by subscription duration, and by lead source. The geographic
area and customer demographic are covered by the customer dimension. Stores and sales
territory are covered by the store dimension. So, we need to have customer, store, product
package, start + end subscription dates, and lead time as the dimensions of this fact table.

Next, we need to determine the fact table grain, that is, what constitutes a row in the fact
table. The lowest level that we can capture the monthly revenue, monthly direct costs,
monthly indirect costs, and monthly margin is per individual subscription. We can capture it
per customer, but subscription is a lower level. So, the grain of this fact table is one row per
subscription, and the period is daily.

If Amadeus Entertainment has 500,000 customer subscriptions, every day we will create
500,000 rows in this fact table. Each row will contain the revenues and costs of each subscrip-
tion. This enables us to analyze the profitability of each customer by the hierarchical attrib-
utes, for example, by city, by state, by country, by occupation, by gender, and by household
income, on a daily basis and compare them with other days.

The business requirement states that we need to evaluate the subscription sales every
day. This is described in functional requirement 2 in Chapter 4 (and earlier in this chapter).
The revenues and costs are dynamic, and they change every day. If the customer downloads
more songs this week, the cost increases. If the customer downloads fewer films, the cost
goes down. If the title unit cost increases, the cost incurred by Amadeus Entertainment for
that customer increases. If the customer gets some single titles, the revenue increases.

It is important to be clear about the grain of the fact table. The grain of this fact table is
one row for each subscription per day, not one row for each subscriber (customer) per day. It
is possible for a customer to have more than one subscription, for example, when a customer
subscribes to two different packages.

When drawing the dimensional star schema, I like to write the fact table grain under-
neath the fact table name to remind me what fact can and cannot go into the fact table. This
fact table has six dimensional key columns: three of them already exist (we created them
when we did the product sales data mart), and three of them are new dimensions. The three
existing dimensions are date, customer, and store. The three new dimensions are package
(for example, with a basic package, you can download x quantity of film, music, and audio
books), format (as in type of media), and lead (the source where the subscription sales were
originated from).

Figure 5-5 describes the Subscription Sales fact table and its dimensions. The three exist-
ing dimensions were mentioned in Figure 5-4, so the column names are not shown here.
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Figure 5-5. Dimensional star schema for subscription sales data mart

Let’s go through the measures in the fact table one by one. You need to understand the
definition of the measures in order to populate them correctly. These descriptions will be used
to drive the ETL processes. Table 5-11 describes each measure in the Subscription Sales fact
table, along with the data type, description, and sample value.

Table 5-11. Subscription Sales Fact Table

Column Name Data Type Description Sample Value

subscription_revenue money Last four weeks of income from mem- 25.00
bership payments.

single_title_revenue money Last four weeks of income from addi- 7.50
tional single-item downloads (some 
items are outside the subscription 
coverage and are billed separately).

monthly_revenue money subscription_revenue + single_ 32.50
title_revenue.
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Column Name Data Type Description Sample Value

music_quantity int Number of music products down- 18
loaded by the subscriber in the last 
four weeks.

music_unit_cost money Weighted average of the unit cost of all 0.65
music items, regardless of subscriber, in 
the last four weeks.

monthly_music_cost money music_quantity ✕ music_unit_cost. 11.70

film_quantity int Number of films downloaded by the 5
subscriber in the last four weeks.

film_unit_cost money Weighted average of the unit cost of all 1.25
films, regardless of subscriber, in the 
last four weeks.

monthly_film_cost money film_quantity ✕ film_unit_cost. 6.25

book_quantity int Number of audio books downloaded by 2
the subscriber in the last four weeks.

book_unit_cost money Weighted average of the unit cost of all 3.65
audio books, regardless of subscriber, 
in the last four weeks.

monthly_book_cost money book_quantity ✕ book_unit_cost. 7.30

monthly_indirect_cost money Last four weeks of store, head office, 2.14
infrastructure, and technology costs, 
allocated to each subscriber. The allo-
cation is weighted on price and quan-
tity of the items downloaded by the 
customers.

monthly_cost money monthly_music_cost + monthly_film_ 27.39
cost + monthly_book_cost + monthly_
indirect_cost.

monthly_margin money monthly_revenue – monthly_cost. 5.11

annual_revenue money One-year projection of monthly_revenue, 131.47
using the last three months of data. If
the subscriber was registered within 
the last three months, we use all data 
that we have about that subscriber.

annual_cost money One-year projection of monthly_cost, 103.25
using the last three months of data.

annual_profit money annual_revenue – annual_cost. 28.21

subscriber_ money annual_profit calculated as a 21.46
profitability percentage of annual revenue.

For the subscription sales data mart shown in Figure 5-5, every day we need to take a
snapshot of all subscription data and put it in the fact table. If we have 1 million subscriptions,
we will add 1 million new records every day. This way we can analyze the revenue, cost, and
profitability of each customer and can roll it up by any of the criteria defined in the require-
ment, that is, by geographic area, by customer demographic, by stores and sales territory, by
product package, by subscription duration, and by lead source. We can analyze the data by all
these criteria because they are defined as dimensions.
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We created this fact table as a periodic snapshot because we need to capture the revenues,
costs, and margins at a regular interval. We cannot create this fact table as a transaction fact
table because unlike the Product Sales fact table, the Subscription Sales fact table does not cap-
ture business events.

Business requirement 4 mentioned that we need to calculate the subscriber class and
band based on annual revenue and annual profitability daily. This means we need to update
the value of the subscriber_class and subscriber_band columns in the customer dimension
based on today’s set of customer subscription data. For this purpose, it is best to keep today’s
set of data in a separate table. It is faster to calculate today’s value of the subscribers’ classes
and bands on a table that contains today’s data only rather than on a table that contains
months or years of subscription data. It is also faster than querying the source system because
today’s subscription data is stored locally on the DDS and because the annual revenue and
annual profitability have been calculated.

Supplier Performance Data Mart
Figure 5-6 shows the dimensional star schema for the supplier performance data mart.

Figure 5-6. Dimensional star schema for the supplier performance data mart
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The grain of the fact table is one row per product supplied per week. It is not one row per
supplier per week. This enables us to drill down to the product level and to roll up to the sup-
plier level. The type of the fact table is a periodic snapshot.

It has a week dimension in addition to the date dimension. The week dimension is
referred to by the week_key, which is the week when the supplier performance was evaluated.
The date dimension is referred to by the start_date_key, which is the date the supplier started
supplying that product to Amadeus Entertainment. The week dimension is a view created on
top of the date dimension, filtering columns that are not relevant at week level, by constrain-
ing on a particular day. It has the same key as the date dimension.

The supplier performance data mart has four dimensions: date, week, supplier, and prod-
uct. The supplier dimension supports SCD type 2, indicated by the effective and expiry time-
stamp and the is_current column. The address columns in the supplier dimension are similar
to the columns in the customer dimension, except contact_name and contact_title, which
indicate the contact person in the supplier’s organization.

The purpose of this data mart is to support the user to analyze “supplier performance,”
which is the weighted average of the total spent, costs, value of returns, value of rejects, title
and format availability, stock outages, lead time, and promptness. To define the measure on
the fact table, we need to determine the period on which we want to evaluate the perform-
ance. This can be done by discussing the requirement with the business. In this example, we
will assume that the cost is calculated based on the last three months.

Table 5-12 contains the column names of the measures on the fact table, as well as the
description, data type, and sample values. These definitions will be required to populate the
fact table. These descriptions will be used to drive the ETL processes.

Table 5-12. Supplier Performance Fact Table

Column Name Data Type Description Sample Value

order_quantity int How many units of that product were 44
ordered from that supplier in the last 
three months.

unit_cost money The average price that Amadeus 2.15
Entertainment paid to its supplier for 
this product in the last three months.

ordered_value money order_quantity ✕ unit_cost. 94.6

returns_quantity int How many units of this product 1
Amadeus Entertainment received back 
from the customer and subsequently 
returned to the supplier in the last 
three months.

returns_value money returns_quantity ✕ unit_cost. 2.15

rejects_quantity int How many units were returned to the 1
supplier without it being supplied to 
a customer first, in the last three months.

rejects_value money rejects_quantity ✕ unit_cost. 2.15

total_spend money ordered_value – returns_value –
rejects_value. 90.3

Continued
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Table 5-12. Continued

Column Name Data Type Description Sample Value

title_availability decimal (9,2) The percentage of product titles avail- 100 percent
able in the last three months when 
Amadeus Entertainment ordered them.

format_availability decimal (9,2) The percentage of products available in 100 percent
the format that we requested in the last 
three months when ordering them.

stock_outage decimal (9,2) The number of days our inventory 0
was out of stock in the last three 
months for that particular product, 
divided by total days in the last 
three months.

average_lead_time smallint The number of elapsed days between 4
the date the order was placed and 
the product was delivered, averaged 
for the last three months.

CRM Data Marts
The business requirements for the CRM campaign segmentation are (from Chapter 4): to
enable CRM users to select customers based on communication permissions (subscribed/
unsubscribed, e-mail/phone/post, and so on), geographic attributes (address, city, and so on),
demographic attributes (age, gender, occupation, income, hobby, and so on), interests (music
taste, book topic interests, favorite film types, and so on), purchase history (order values,
order dates, number of items, store locations, and so on), subscription details (details of pack-
ages, subscription dates, durations, store locations, and so on), and attributes of the products
purchased (for example, music genre, artist, film type, and so on) for the purpose of sending
CRM campaigns.

Communication subscriptions need to be added in a separate fact table (for enabling
subscription to multiple communications). Communication permissions and communication
preferences (or interests) need to be added to the customer dimension. Purchase history and
subscription details are available in the product sales and subscription sales data marts.
Attributes of the products purchased are also available in the product sales data mart.

Before we proceed, I’ll clarify some CRM terminology first. Communication subscription
is when a customer subscribes to a communication, such as a weekly newsletter. Communi-
cation permission is when a customer allows us or third-party partners to contact them (or
communicate with them) either via telephone, e-mail, post, and so on. Communication pref-
erences has two meanings: communication channel preferences and communication content
preferences. The channel is about how they want to be contacted, such as via telephone,
post, e-mail, or text messages. The content is about the subject they want to know, such as
pop music, comedy films, or certain favorite authors. Communication content preferences
are also known as interests.
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Let’s put the communication subscription in a fact table, and let’s put the communication
permission and communication preferences in the customer dimension. Figure 5-7 shows the
communication subscription fact table and its dimensions.

Figure 5-7. Dimensional star schema for communication subscription data mart

For simplicity in this case study, a customer has only one e-mail address, one telephone
number, and one postal address. But in a real CRM data warehouse, of course this is not the
case. A customer can have multiple e-mail/postal addresses and landline/cell phone num-
bers. If this is the case, in the subscription fact table in Figure 5-7 we need to have contact_
address_key, and we need to have a “contact address” dimension. This dimension stores
which e-mail address is subscribed to the newsletter. This dimension also stores which cell
phone number is subscribed to the SMS feed and which postal address is subscribed to pro-
motional mailings. This enables the same customer to be subscribed to a newsletter using
different e-mail addresses, which is not the case when we have only one e-mail address for
a customer. When we design the normalized data store later in this chapter, we will accom-
modate having multiple postal/e-mail addresses and phone numbers for each customer by
normalizing the data.

Now let’s add communication permission and preferences in the customer dimension.
Table 5-13 shows the additional attributes in the customer dimensions to incorporate permis-
sion and preferences. Content preferences or interests are usually obtained via customer
surveys, and the questionnaire can be based on the product hierarchy.

CHAPTER 5 ■ DATA MODELING 97

9314ch05final.qxd  11/15/07  10:16 AM  Page 97



Table 5-13. Additional Customer Dimension Attributes to Incorporate Communication
Preferences

Column Name Data Type Description Sample Value

permission1 int 1 if the customer allows us to contact 1
them; 0 otherwise. The default is 0.

permission2 int 1 if the customer allows third-party 1
partners to contact them; 0 otherwise. 
The default is 0.

preferred_channel1 varchar(15) First preferred communication channel. E-mail

preferred_channel2 varchar(15) Second preferred communication Text
channel.

interest1 varchar(30) First interest/preferred content. Pop music

interest2 varchar(30) Second interest/preferred content. Computer
audio books

interest3 varchar(30) Third interest/preferred content. New films

With the Communication Subscriptions fact table and additional attributes in the cus-
tomer dimension, the CRM users can now select the customers based on various criteria for
the purpose of sending CRM campaigns. This selection process is called campaign segmenta-
tion. A campaign is communication sent to customers either regularly or on an ad hoc basis
via a delivery mechanism such as e-mail, posts, RSS, or text messages.

So, that’s business requirement 6, which is to enable CRM users to select customers. Now
we get to business requirement 7, which is to let CRM users analyze campaign results by view-
ing the several measures for each campaign sent to customers. Those measures are as follows:

• The number of messages sent by communication channel (mobile phone, text mes-
sage, or e-mail)

• The number of messages delivered successfully

• The number of messages failed to be delivered (including the reason)

The same business requirement also states that for e-mail messages the users will ana-
lyze the open rate, click-through rate, complaint rate, spam verdict, and trap hit rate. Open
rate is the number of mail messages that were opened by the customer, divided by the num-
ber of messages sent. Click-through rate is the number of hyperlinks embedded in the e-mail
messages that were clicked, divided by the number of e-mail messages sent. Complaint rate
is the number of customers who rated the e-mail as spam, divided by the total number of
e-mails sent. Spam verdict is the probability that an e-mail would be classified as spam either
by the ISP or by the spam filter software. Trap hit rate is the number of e-mails delivered to
dummy e-mail addresses created by the ISP.

To satisfy this requirement, we need to design a Campaign Results fact table and intro-
duce two new dimensions: campaign and delivery status. Figure 5-8 describes the Campaign
Results fact table and its dimensions. Some of the measures in the fact table such as opened,
clicked_through, and spam_verdict are not applicable for postal campaigns.
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Figure 5-8. Dimensional star schema for campaign results data mart

Now let’s discuss the data mart shown in Figure 5-8. The grain of the Campaign Results
fact table is one row for each intended campaign recipient. If a campaign is planned to be
sent to 200,000 recipients, then there will be 200,000 rows in this table for that campaign,
even though the campaign was actually sent to 199,970 recipients because (for example) 10
had invalid e-mail addresses and 20 customers explicitly asked not to be contacted for any
marketing purposes.

Table 5-14 defines the fact table columns.

Table 5-14. Campaign Results Fact Table

Column Name Data Type Description Sample Value

campaign_key int The key of the campaign that was sent to 1456
customers.

customer_key int The key of the customer who was 25433
intended to receive this campaign.

communication_key int The key of the communication to which 5
the campaign belongs. For example, this 
campaign is an instance of a communica-
tion called “Amadeus music weekly news-
letter” dated 02/18/2008.

Continued
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Table 5-14. Continued

Column Name Data Type Description Sample Value

channel_key int The key of the communication channel 3
to which this campaign is sent. For 
example, a campaign could be sent to 
200,000 customers, 170,000 by e-mail 
and 30,000 by RSS.

send_date_key int The key of the date when this campaign 23101
was actually sent.

delivery_status_key int The key of the delivery status. 0 means 1
not sent. 1 means successfully delivered. 
2 to N contains various reasons why the 
campaign failed to be delivered to the 
intended recipient, such as the mailbox 
was unavailable, the mailbox did not 
exist, and so on.

sent int 1 if the campaign was actually sent to 1
the recipient (out of our system); 0 if it 
was not sent. Examples of reasons for 
not sending are failed e-mail address 
validation and no customer permission.

delivered int 1 if the campaign was successfully 1
delivered (for example, if it is an e-mail 
campaign, it is SMTP reply code 250 on 
the DATA command); 0 if it failed to be 
delivered. If it failed, the delivery_
status_key column will contain the 
reason.

bounced int 1 if the campaign was hard-bounced 0
(SMTP client received permanent rejec-
tion message); 0 otherwise.

opened int 1 if the campaign e-mail was opened or 1
viewed; 0 otherwise.

clicked_through int 1 if the customer clicked any of the links 1
in the campaign e-mails; 0 otherwise.

complaint int 1 if the customer clicked the Spam 0
button (available on some e-mail pro-
viders such as Yahoo, AOL, Hotmail, and 
MSN and we get the information via 
feedback loop); 0 otherwise.

spam_verdict int 1 if the content of the campaign is iden- 0
tified as spam either by the ISP or by
spam filter software such as Spam 
Assassin; 0 otherwise.

source_system_code int The key to the source system where this 2
record was coming from.

create_timestamp datetime When the record was created in DDS. 02/05/2007

update_timestamp datetime When the record was last updated. 02/05/2007
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The Delivery Status dimension contains the failure reason codes if the delivered fact
is 0. If the delivered fact is 1, then delivery_status_key is 1, which means OK. delivery_
status_key being 0 means that the campaign was not sent out to the particular customer.
The category column in this dimension contains, for example, a severity level based on
SMTP reply codes. If the reply code is 550 (mailbox unavailable), then we can categorize it
as severe.

Data Hierarchy
In dimension tables, there is a certain structure called hierarchy. Hierarchy is important
because it provides you with paths that you can use to roll up and drill down when analyzing
the data. In this section, I will discuss data hierarchy in the dimension tables and how it can
be used for rolling up the data.

In the dimension tables, sometimes an attribute (column) is a subset of another attribute,
meaning that the attribute values can be grouped by the other attribute. The attribute that can
be used to group is said to be on a higher level than the attribute that is being grouped. That is,
if A is a subset of B, then A is on a higher level than B. These levels in the dimensions tables are
called dimensional hierarchy. For example, a year consists of four quarters, and a quarter con-
sists of three months. In this case, the highest level is year and then quarter, and the bottom
level is month. You can roll up a fact from a lower level to a higher level. For example, if you
know the sales value of each month in the quarter, you know the sales value of that quarter.

All four dimensions of the Product Sales fact table have hierarchies. The hierarchies of the
date, store, customer, and product dimensions are shown in Figure 5-9 and Figure 5-10.

Figure 5-9 shows that fiscal week rolls up to fiscal period, but week does not roll up to
month. The sqldate, system_date, julian_date, day, day_of_the_week, day_name, and so on
are at the same level as date, so they can also roll up to week, month, and fiscal week.

Figure 5-10 shows that store can roll up to regional structure and geographical structure.
Customers roll up to their geographical locations.

Figure 5-9. Hierarchy of the date dimension
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Figure 5-10. Hierarchies of the store, customer, and product dimensions

To apply hierarchy in your own situation, first look at the columns (attributes) in the
dimension tables to find whether there are any groupings or subsets. Arrange the attributes
in the appropriate levels, meaning that you need to put the higher-level attribute on top of
the lower-level attribute. Test the data to prove that all the members of the lower-level attrib-
ute can be grouped by the higher-level attribute. Identify whether there are multiple paths
(branches) in the hierarchy structure; for example, store in Figure 5-10 can be grouped by
both city and region. You can do all this by using the data profiling tool. Hierarchy is an
integrated part of dimension design.

Source System Mapping
In this section, I will discuss why and how to do source system mapping. Source system map-
ping is an exercise in mapping the dimensional data store to the source systems.

After we complete the DDS design, the next step is to map every column in the DDS to
the source systems so that we know where to get the data from when populating those
columns. When doing this, we also need to determine the transformations or calculations
required to get the source columns into the target column. This is necessary to understand
the functionality that the ETL logic must perform when populating each column on the DDS
tables. Bear in mind that a DDS column may come from more than one table in the source
system or even from more than one source system, because the ODS integrates data from
multiple sources. This is where the source_system_code column becomes useful because it
enables us to understand from which system the data is coming. I’ll give an example using
the Product Sales data mart.

Refer to Table 5-1 again, which shows the Product Sales fact table. The first step is to find
out from which tables the columns are coming. When we designed the DDS, we created the
DDS columns (fact table measures and dimensional attributes) to fulfill the business require-
ments. Now we need to find out where we can get the data from by looking at the source
system tables. We write the source tables and their abbreviations in brackets so we can use
them later in the mapping table. Then we write the join conditions between these source
tables so that we know how to write the query later when we develop the ETL.

The following list specifies the target table, the source tables, and the join conditions.
It shows where the Product Sales fact table is populated from and how the source tables
are joined.
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Target table in DDS: Product Sales fact table

Source: WebTower9 sales_order_header [woh], WebTower9 sales_order_detail [wod],
Jade order_header [joh], Jade order_detail [jod], Jupiter item_master [jim], Jupiter
currency_rate table [jcr]

Join condition: woh.order_id = wod.order_id, joh.order_id = jod.order_id,
wod.product_code = jim.product_code, jod.product_code = jim.product_code

In this case study, the inventory is managed in Jupiter, and the sales transaction is stored
in the two front-office systems, WebTower9 and Jade, which is why we have the link between
the Jupiter inventory master table and the order detail tables in WebTower9 and Jade. If you
need to recall the Amadeus Entertainment case study, see Chapter 2.

Then we add two columns to Table 5-1: source and transformation. In the source column,
we refer to the source table abbreviations that we wrote earlier—woh, wod, joh, jod, and jim.
We can determine which table we sourced the column from by understanding the data in the
source system. So, Table 5-1 becomes like Table 5-15. I removed the data types and sample val-
ues so there’s enough space, but I kept the Description column to remind us of what those
columns are.
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Table 5-15. Product Sales Fact Table Source System Mapping

Column Name Description Source Transformation

sales_date_key The date the customer pur- woh.order_date, Key lookup on date 
chased the product joh.order_date dimension based on

date column.

customer_key The customer who purchased woh.customer_id, Key lookup on customer
the product joh.customer_number dimension based on

customer_id column.

product_key The product purchased by wod.product_code, Key lookup on product 
the customer jod,product_code dimension based on

product_code column.

store_key The store where the customer woh.store_number, Key lookup on store 
made the purchase joh.store_number dimension based on

store_number column.

order_id WebTower9 or Jade order ID woh.order_id, Trim and convert to 
joh.order_id uppercase character if

required.

line_number WebTower9 or Jade order line wod.line_no, Remove leading zeros.
number jod.line_no

quantity How many units of the product wod.qty, jod.qty None.
were purchased by the customer 

unit_price Price of one unit of the product wod.price, jod.price Divided by jcr.rate for 
purchased in U.S. dollars that date. Round to four

decimal digits.

unit_cost Direct and indirect costs for one jim.unit_cost Divided by jcr.rate for 
unit of the product in U.S. dollars that date. Round to four

decimal digits.

Continued
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Table 5-15. Continued

Column Name Description Source Transformation

sales_value quantity ✕ unit_price This fact table quantity column ✕
unit_price column.
Round to four decimal
digits.

sales_cost quantity ✕ unit_cost This fact table quantity column ✕
unit_cost column.
Round to four decimal
digits.

margin sales_value – sales_cost This fact table sales_value – sales_
cost column. Round to
four decimal digits.

sales_timestamp When the customer pur- woh.timestamp, Convert to mm/dd/yyyy 
chased the product joh.timestamp hh:mm:ss.sss format.

source_system_code The source system from which 1 for WebTower9, Lookup in source sys-
this record is coming from 2 for Jade, 3 for Jupiter tem table in metadata

database.

create_timestamp When the record was created Current system time None.
in DDS

update_timestamp When the record was last Current system time None.
updated
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We don’t need to map the time dimension because it does not come from any source sys-
tem. Instead, it is calculated internally in the data warehouse. I recommend spending a few
hours writing a SQL script that generates the values for calendar columns, with beginning and
end dates as input parameters. You can do this by looping from the start date to the end date
and inserting a record at a time containing various date attributes. You can find an example of
such a script in the dim_date.sql file in the /Scripts/DDS folder on the book’s website. I prefer
that approach than calculating them in a spreadsheet because we can rerun the script repeat-
edly. This comes in handy when developing, testing, and migrating to production.

Fiscal and holiday columns are usually imported from the source system or spread-
sheets by loading them into a temporary table using SSIS and then imported into the DDS
by the previous script. These sources need to be mapped to a date dimension, as shown in
Table 5-16, by comparing the source system columns with the DDS columns. The purpose of
doing this mapping is to enable us to write the date dimension population script that I men-
tioned earlier.

Source: Jupiter fiscal_calendar table [jfc], holidays.xls [xh],
Jade store_hours [jsh]
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Table 5-16. Date Dimension Source System Mapping

Column Name Description Source Transformation

fiscal_week The number of elapsed weeks since jfc.week None
September 1.

fiscal_period A period consists of four or five weeks jfc.period Remove lead-
depending on the fiscal calendar. ing zero, prefix 
Usually, the pattern used in this com- with FP
pany is 454, 544, or 445, in FPn format. 
A fiscal year always consists of 12 periods.

fiscal_quarter A fiscal quarter is three fiscal periods, jfc.quarter Add FQ prefix
from September 1, in FQn format.

fiscal_year Fiscal year begins on September 1, in jfc.year Add FY prefix
FYnnnn format.

us_holiday 1 if it is a national holiday in the US; 0 xh.us.date Lookup to con-
otherwise. vert to 1 and 0

uk_holiday 1 if it is a statutory holiday in the UK; 0 xh.uk.date Lookup to con-
otherwise. vert to 1 and 0

period_end 1 if it is the last day in a fiscal period; 0 Calculated based select max
otherwise. on fiscal period (date) group 

column by fiscal period

short_day 1 if the offline stores’ opening hours is jsh.start, 1 if (start-end) 
shorter than normal opening hours; jsh.end < 12, else 0
0 otherwise.

As usual, we write the source tables with abbreviations in square brackets. We also write
the join criteria between the source tables, as follows:

Source: Jupiter item_master [jim], Jupiter product_type [jpt],
Jupiter category table [jc], Jupiter media table [jm],
Jupiter currency rate [jcr], Jupiter product_status [jps]
Join criteria: jim.type = jpt.id, jim.category = jc.id,
jim.media = jm.id, jim.status = jps.id

Table 5-17 shows the source system mapping for the product dimension.

Table 5-17. Product Dimension Source System Mapping

Column Name Description Source Transformation

product_key The surrogate key of product dimen- Identity column None
sion. It is unique, is not null, and is with seed 1 and 
the primary key of product dimension. increment 1.

product_code Natural key. Product code is the jim.product_code Convert to 
identifier and primary key of the uppercase
product table in Jupiter. It is in 
AAA999999 format.

name The product name. jim.product_name None

description The product description. jim.description None

Continued
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Table 5-17. Continued

Column Name Description Source Transformation

title The song/film/book title. jim.title None

artist The singer, star, or author. jim.artist None

product_type Level 1 of product hierarchy, such as jpt.description None
music, film, or book.

product_category Level 2 of product hierarchy; for film, jc.name None
it could be thriller, western, comedy, 
action, documentary, children, Asian, 
and so on.

media Format of the media, such as MP3, jm.name None
MPG, CD, or DVD.

unit_price Price for one item.  jim.unit_price Divide by
jcr.rate for
that date

unit_cost Allocated direct and indirect costs. jim.unit_cost Divide by
jcr.rate for
that date

status Upcoming if we have signed contract jps.description None
with the supplier, Active if it is still 
being offered to customer, Expired if 
it is no longer being offered.

Now we need to complete similar exercises with the customer and store dimensions, that
is, write down the source system tables with abbreviations in square brackets, write the join
criteria between the source system tables, map the dimension columns to the source system
tables and columns, and write the transformations. Then we do the same thing with all the
other fact and dimension tables in other data marts.

The end result is that the dimensional data store that we designed in the previous section
will be completely mapped to the source systems. Therefore, we know where every single col-
umn will be sourced from, including the transformations.

Designing the Normalized Data Store
Now that we have designed the dimensional data store and mapped every column in every
table to the source systems, we are ready to design the normalized data store, which is a nor-
malized database that sits between the stage and the DDS. Please refer to the data flow archi-
tecture diagram in Figure 2-5 in Chapter 2. The NDS is a master data store containing the
complete data sets, including all historical transaction data and all historical versions of mas-
ter data. The NDS contains master tables and transaction tables. A transaction table is a table
that contains a business transaction or business event. A master table is a table that contains
the persons or objects involved in the business event. In this section, you will learn how to
design the data model for NDS.

First, we list all the entities based on the source tables and based on the fact and dimen-
sion attributes in the DDS. We list all the tables in the source system that we have identified
during the source system mapping exercise in the previous section. We then normalize DDS
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fact and dimension tables into a list of separated normalized tables. We then combine the
two lists by eliminating the same tables and separating them into different subject areas.
Figure 5-11 shows the results; it contains several groups of tables that have been categorized
into business areas. Related tables are put into the same group.

Figure 5-11. Listing the entities

We then arrange the entities according to their relationships to enable us to establish
the referential integrity between the entities. We do this by connecting the parent table to
the child table. A child table has a column containing the primary key of the parent table.
Figure 5-12 shows the result; it shows the tables listed in Figure 5-11, but the parent and
child tables have been connected. The DDS fact tables become child (transaction) tables
in NDS. The DDS dimension tables become parent (master) tables in the NDS.

As an example, let’s take the Subscription Sales fact table. This fact table in the DDS has
six dimensions: lead, package, format, store, customer, and date. So, the subscription sales
transaction table in the NDS in Figure 5-12 is connected to lead, package, format, store, and
customer. We don’t model the DDS date dimension in the NDS because we put the date in
the transaction tables. We normalize the package type column in the package table into a
separate table. We normalize the media column in the format table into a separate table.
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Figure 5-12. Arranging the entities

Ideally, the NDS diagram includes the cardinality in “crow’s feet” format to reflect the rela-
tionship between entities such as one-to-many. The crow’s feet format consists of the symbols
of circle (zero), line (one), or fork (many) near a table, as shown in Figure 5-13.

Figure 5-13. Crow’s feet symbols
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The J boxes are junction tables to enable many-to-many relationships. Some people call
them bridge tables. For example, the customer_address junction table links between the
customer table and the address table. This junction table has three main columns: customer_
address_id, customer_id, and address_id. The first column is the primary key of this table. The
last two columns are the primary key of the customer table and the address table. Some people
prefer to make the customer_id and address_id columns a composite primary key and not use
customer_address_id at all. This junction table also has the standard supporting columns such
as create_timestamp and update_timestamp.

To support multiple DDSs consistently, all data warehouse keys need to be defined and
maintained in the NDS so that all DDSs have consistent keys. In addition to the natural keys
from the source system, all the NDS tables in Figure 5-12 need to have a data warehouse key.
I will discuss NDS key maintenance in Chapter 8 when I discuss ETL. Some people disagree
with this approach and say it is better to generate the DW keys in DDS because surrogate keys
are used in the DDS. If you have only one DDS or if you source the secondary DDSs from one
main DDS, I agree this is the best approach because you don’t have to have a surrogate key in
two places (the NDS and the DDS). But if you have more than one DDS and you intend to gen-
erate the DDSs from NDS, it is better to maintain the data warehouse keys in the NDS because
it will maintain surrogate key’s consistency between multiple DDSs.

From a data integration point of view, we need to have a DW key for every table in the
NDS. We need it for mapping the reference data from several source systems. To create the
mapping, we identify the primary key of the table in the source system and match it with the
DW key in the NDS table. When populating the NDS tables, we build ETL according to this
mapping. For example, if Jade has 30,000 artists and WebTower9 has 60,000 artists, we need to
have an artist_key in the NDS artist table and map Jade artist_id and WebTower9 artist_id
to it. Not only does this make the DDS population easier (because it deals only with one sys-
tem), but also makes the data integration from many source systems easier in the NDS.

The date table is maintained in the NDS too. As we defined in the previous section,
the date table is sourced from the fiscal_calendar table, holiday table, and opening_hours
tables. But most columns of the date table are generated internally using a population
script. This includes the week number, last day flag, system date, Julian date, week day
name, month name, and so on.

When designing the NDS, we need to follow the normalization rules. The purpose of nor-
malization is to remove redundant data and make it easier to maintain the data. We need to
bear in mind that normalization could impact the performance. There is no definitive rule
that we need to design the NDS to the third normal form. In some cases, it makes more sense
to design some tables to the second normal form. In other cases, we need to implement other
normal forms such as the Boyce-Codd normal form (BCNF) or the fourth normal form.

■Note Please refer to the appendix for normalization rules and a quick summary of the first, second, third,
Boyce-Codd, fourth, and fifth normal forms.

When doing normalization, we need to be careful when reaching 3NF and BCNF. They are
best practice, but there are cases when they are not practical. For example, if we want to bring
the customer table to 3NF, we need to break some columns into their own table. Gender and
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status, which probably have only two or three possible values, according to 3NF rules, need to
go into their own tables, linked by a foreign key to the customer table.

The next step is to list the columns. We base this on the DDS columns and on the source
system columns. We don’t want to bring all source system columns into the NDS. We want to
bring only the relevant ones. We get the data types from the source systems. If a particular col-
umn is sourced from two different source systems, take the longest one. For example, perhaps
email in Jade is varchar(100) and in WebTower9 it is varchar(255). If one is an integer and the
other is a varchar (in the case of the order ID, for example), make it a varchar. Be careful when
defining decimal and float, because different RDBMSs have different precision. Also, we need
to be careful when dealing with date and timestamp data types; again, different RDBMSs have
different formats and behaviors.

As in many cases, an example is the best way to understand. Let’s do a customer table for
an example, as shown in Table 5-18.

Table 5-18. NDS Customer Table

Column Name Data Type Description Sample Value

customer_key int The surrogate data warehouse key of 84743
customer table.

customer_id varchar(10) Natural key. The primary key of the DH029383
customer tables in WebTower9 and 
Jade. The WebTower9 customer_id for-
mat is AA999999, and Jade is AAA99999.

account_number int For subscription customer; blank 342165
otherwise.

customer_type_id int Foreign key (FK) to customer_type 2
table where the customer type is stored.

name varchar(100) Customer’s full name. Charlotte
Thompson

gender char(1) M for male; F for female. F

date_of_birth smalldatetime Customer’s date of birth. 04/18/1973

occupation_id int FK to occupation ID where the cus- 439
tomer occupation is stored.

household_income_id int FK to household income table where 732
the customer household income is 
stored.

date_registered smalldatetime The date when the customer first pur- 11/23/2007
chased or subscribed.

status int FK to customer_status table where the Active
customer status is stored (active if the 
customer is currently a member or 
made a purchase in the last 12 months).

subscriber_class_id int FK to subscriber_class table where 3
the subscriber class is stored. It is a 
classification of subscribers based 
on projected annual revenue.
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Column Name Data Type Description Sample Value

subscriber_band_id int FK to subscriber_band table where the 5
subscriber band is stored. It is a classifi-
cation of subscribers based on profitability.

effective_timestamp datetime For SCD type 2, when the data in the row 1/1/1900
becomes effective; defaults to 1/1/1900.

expiry_timestamp datetime For SCD type 2, when the data in the row 12/31/2999
is no longer valid; defaults to 12/31/2999.

is_current int For SCD type 2, 1 if this is the current 1
record; 0 otherwise.

source_system_code int The key to the source system where this 2
record was coming from.

create_timestamp datetime When the record was created in NDS. 02/05/2008

update_timestamp datetime When the record was last updated. 02/05/2008

Then we do the same thing with all the NDS tables; in other words, we list their columns.
The next step is to write down the source and transformation. This should not be difficult
because we defined them when we did the source system mapping in the DDS.

Now the NDS is complete. It has all the tables necessary to create the DDS. It is highly
normalized. We have defined all columns in all tables, along with the source and transforma-
tion for each column. We can now return to the DDS and redefine the source for each DDS
column in the NDS. This is required for building the ETL between NDS and DDS. We can do
this by identifying the source table in the NDS for each DDS table. Then we identify the cor-
responding NDS column that contains the source data for each DDS column.

Summary
In this chapter, we designed the dimensional data store and the normalized data store of the
Amadeus Entertainment case study. We started from the business requirements and modeled
the DDS. We defined the fact tables and the dimension tables. We did the source system map-
ping where we identified the source for each column and the required transformation.

Then we designed the NDS. We listed all the entities and then defined the relationships.
Next, we listed the required columns, and we defined their sources and transformations. We
went back to the DDS and redefined the source of each column in the NDS.

In the next chapter, you’ll see how to physically implement these databases on the SQL
Server platform.
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Physical Database Design

Having designed the logical model of the dimensional data store and normalized data
store in the previous chapter, this chapter will cover how we implement those data stores
physically as SQL Server databases. For an experienced DBA, this should not be a problem.
In the previous chapter, we defined all the columns, all the data types, and the relationships
between tables. It should be quite straightforward to now create those tables, right?

Although this is partially true, we need to consider a few details before taking the plunge
and creating those tables. For example, we need to deal with issues such as the hardware
platform, storage considerations, partitioning, and indexes. I will cover these topics in this
chapter.

Hardware Platform
In Chapter 2, we drafted the system architecture for Amadeus Entertainment. Figure 6-1
shows the system architecture diagram for your convenience.

In the system architecture shown in Figure 6-1, we have one ETL server, two database
servers (clustered), two report servers (load balanced), and two OLAP servers. We have 12TB
raw disk space in the SAN consisting of 85 disks, each with 146GB capacity and 15,000 RPM.
All the network connections to the SAN are via a fiber network, and for high availability we
have two Fibre Channel switches. We estimated that the number of client PCs that will be
using the data warehouse is between 300 and 500. 

■Note In this chapter, we will be doing the physical database design. To do the physical database design,
it is important to understand the physical system architecture on which the database will be operating. Phys-
ical database design is a fundamental part of data warehouse design. The performance of a data warehouse
is largely affected by the physical design of the underlying databases and the environment where the data-
bases are running.
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Figure 6-1. System architecture for the Amadeus Entertainment data warehouse

Now let’s look once again at the nonfunctional requirements from Chapter 4. Nonfunc-
tional requirement 10 mentioned that the data warehouse must be available for 24 hours
a day, 7 days a week, and the downtime is expected to be no more than one hour a month.
The Amadeus Entertainment data warehouse is used to support CRM activities, both cus-
tomer analytics and campaign management operations. This means the campaign response
data needs to be loaded into the data warehouse many times a day, and the campaign seg-
mentation needs to query the data warehouse many times a day. Users need to run purchase
analyses against the order data in the data warehouse several times a day. As such, it is impor-
tant for the data warehouse to be available 24 hours a day, because it supports the revenue
generation from CRM activities.

The previous high-availability requirement means we cannot implement the SQL Server
database engine on a single server, because the data warehouse must be available all the time.
As we know, it must not be down more than one hour a month. Therefore, we need to imple-
ment it in a failover cluster. A failover cluster is a configuration of SQL Server installations on
several identical servers (nodes). The SQL Server database instances are running on an active
node, but when the active node is not available, the database instances automatically switches
over to a secondary node. 

SQL Server Reporting Services (the web or Windows service part) also needs to be
deployed in a network load balanced (NLB) cluster, and the Reporting Services database is
installed in the failover cluster described in the previous paragraph. NLB is a configuration of
servers where the incoming traffic is distributed to several identical servers. SQL Server
Reporting Services (SSRS) has two components: a web service and a database. To make SSRS
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available all the time, the SSRS web service needs to be installed on NLB servers. The SSRS
database needs to be running on a failover cluster so that when one server is not available, the
database will still be operational because the system automatically switches to another server.

To support this high availability requirement, Analysis Services also needs to be installed
in a failover cluster, either in the same cluster as the database engine or in a separate cluster.
In SQL Server 2005 and 2008, unlike SQL Server 2000, Analysis Services is cluster-aware. If
your budget permits, I recommend installing Analysis Services in a separate cluster, because
you can optimize and tune the memory and CPU usage separately. This means you need to
create another failover cluster (separate from the failover cluster that we use for the database
engine) specifically for running Analysis Services. This is shown in Figure 6-1, where Analysis
Services is installed in a two-node failover cluster.

The allocated disk space on the SAN for Analysis Service should ideally be separated from
the database server for the same reason—so that you can optimize and tune the disk usage
separately. This is done by configuring the disks on the storage area network (SAN) into two
separate sets of logical drives. One is attached to the database engine to store the databases,
and the other one is attached to the Analysis Services server to store the multidimensional
databases (cubes).

Unfortunately, SQL Server Integration Services is not a cluster-aware application. This
means we cannot put SSIS in a failover cluster, which means that if the SSIS server is unavail-
able, there is no secondary server to take over. This also means that (unlike other ETL software
such as Informatica), we cannot distribute the ETL load to several SSIS servers in the NLB con-
figuration. But SSIS does not impact the 24✕7 availability requirement to the end users. The
data warehouse data stores are still available to the applications and to the end users to query.
But if SSIS is down for a period of time, it will impact the data currency. The system architec-
ture diagram in Figure 6-1 shows SSIS installed on a single server.

Some considerations in the network that you may want to consider are as follows. Between
the SSIS server and the database server, and between the database server and the OLAP server,
try to put in a Gigabit network (capable of performing at 1Gbps throughput), rather than the
normal 100Mbps Ethernet. This will help Analysis Services performance, especially when you
use relational OLAP (ROLAP), where the aggregates are stored on the relational database server.
It also improves SSIS performance because it increases the data-loading rate from the SSIS into
the data stores on the database server.

In many organizations, the SAN is typically used not only for data warehousing but for
other systems too, such as Microsoft Exchange and a file server, so it’s probably worth putting
in a fiber network (2Gbps or 4Gbps), depending on the network traffic to the SAN. If many
other applications are utilizing the SAN, you need to put in a fiber network. To match the high
availability of the SAN’s RAID disks and the OLAP and database server failover cluster, you
need to use two redundant Fibre Channel switches. There is no point in having a high-speed
network but a single point of failure.

The next questions that your hardware and network department will be asking you are
about the server technical specifications. Typical questions involve how much memory, how
many CPUs, how much disk space, which version of Windows Server, and which version of
SQL Server to license. I will explain several considerations here, but the answers depend on
many factors and vary from project to project. I will also discuss the SSRS server, SSIS/ETL
server, SSAS server, and database server.

The Reporting Services web farm (also known as a scale-out deployment) does not require
a high server specification. For a situation like Amadeus Entertainment, with 300–500 users,
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two or three nodes with two CPUs and 2GB or 4GB RAM on each node would probably be
enough, depending on the report complexity. If you have 1,000 users, consider adding one or
two other nodes, depending on light or heavy usage. Sizing a Reporting Services web farm is
similar to sizing the web servers for a web site. It all depends on the amount of traffic served
by the servers. If the performance statistics show a lot of contention in the WWW service, con-
sider adding another web server.

Several factors determine the specification of the ETL server. The ETL server typically per-
forms intense calculations and therefore will benefit from CPU power. This is determined
from the complexity of transformation logic in the ETL processes. The amount of memory
required depends on the size of the online lookup in the transformations. For the Amadeus
Entertainment case study, based on the data model we did in Chapter 5 and based on the
business requirements and data feasibility study we did in Chapter 4, four CPUs with 8GB to
16GB memory will be more than enough for its current condition, and this will also guarantee
future growth. In other words, it will be safe for the next two to three years. If the CPUs are
hyperthreaded and/or dual-core, we need to adjust the number of CPUs accordingly. A dual-
core CPU practically halves the number of CPUs (minus overhead), while a hyperthreaded
CPU performs better than single-threaded ones. So, for the Amadeus Entertainment case
study, if we use a dual-core hyperthreaded CPU, we use two CPUs instead of four. For an ETL
server, you need to take into account the future growth by estimating new data warehouse/
ETL projects and enhancement requests that may happen in the future. You may have only
ten SSIS packages on the first day to start with, but after a year you may have 100 packages
running on it, some of which might not be data warehousing packages but other projects/
systems.

Some considerations for OLAP server cluster hardware are the number of large cubes that
will be running on Analysis Services, the number of partitions (the more partitions we have,
the more memory we need), whether there will be OLAP queries running while the partitions
are being processed (if there are, we need more memory), the requirements of a large file sys-
tem cache (the larger the cache, the more memory we need), the requirements of a large
process buffer (the larger this is, the more memory we need), the number of large replicas
required (a replica is a subset of a dimension to accommodate dynamic security), and the
number of heavy relational database queries and OLAP queries running simultaneously (lots
of parallel queries require more memory). All of these factors affect the memory requirement.
The number of CPUs affects the aggregate calculations and cube-processing times. For cur-
rent requirements and the amount of data in the Amadeus Entertainment case study, four
CPUs with 8GB RAM on each node will be enough, including accommodating the future
growth of more cubes and data. The best guide for sizing Analysis Services is the SQL Server
2005 Analysis Services Performance Guide document, available on the Microsoft web site at
http://www.microsoft.com/technet/prodtechnol/sql/2005/ssas2005perfguide.mspx.

The database server is probably the most difficult one to size, because it is largely
dependent on how heavily and frequently applications access the databases, but we can’t
really determine how heavy the queries are until the applications are built. We are doing
active/passive failover clustering, so it’s only the performance of each server that matters.
Active/passive failover means that only one node is working at a time. So, even though we
have two servers, only the performance of one server matters, because only one server is
working. The second server is not working. Some considerations for sizing the database
server of a data warehouse are as follows: 
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The number and complexity of reports, applications, and direct queries hitting the DDS:
The main factor that determines the specification of the database server is the work-
load from application queries. As I discussed in Chapter 2, the DDS is the user-facing
database. So, it is the one that the users and BI/CRM applications will be querying. A
database server used for data warehousing is predominantly used for queries. It is
probably 10 to 20 percent of the time used for loading the data (such as one to three
hours a day), and the rest (80 to 90 percent of the time) is used to satisfy user and
application queries. The heavier the queries, the more memory and CPU we need in
the database server. 

Whether we’re taking an ELT or ETL approach in populating the NDS/ODS: An ELT
approach loads the data into the database server in raw format (in other words, the same
as the source system format) and then uses the power of the database server to transform
the data into the NDS or ODS format in a set-based operation via stored procedures,
whereas the ETL approach transforms the data using the power of the ETL server. If we
use the ELT approach in loading the data, we need a more powerful database server than
the ETL approach.

Calculation from the stage to the NDS/ODS and the complexity of firewall rules: If these
processes run on a separate ETL server, then they don’t affect the database server sizing.
But if they run on the database server (as stored procedure or triggers), then they impact
the performance of the database server. The more complex the calculation and the fire-
wall rules, the more CPU we need.

The number and size of data stores: The more user-facing data stores we have, the more
memory and CPUs we need because we would have more connections from the users.
The size of the data stores affects the number of records involved in the ETL processes.
The larger the size of the data store, the more records inserted/updated/selected/deleted
by the ETL processes. To complete a larger ETL process in the same amount of time, we
need more powerful hardware for the database server (faster disk, larger memory, and
better CPU).

How the data stores are physically designed (indexing, partitions, and so on): Physical data-
base design affects database server configuration because if we utilize certain physical
database features, we can improve loading and query performance without significant
changes to the server hardware. For example, we can load data into the data warehouse
faster if we partition the table physically and if we put the tables in databases on different
disks.

The number of other databases hosted in the same server and future growth: For cost rea-
sons, the database server may be utilized to host other databases, not just the data
warehouse. This will affect the number of CPUs, the cache size, and the amount of mem-
ory we need on the database server. We also need to take into account two to three years
of projected growth. 

For a system like Amadeus Entertainment, four CPUs with 8GB to 16GB RAM will be
suitable for the database server considering the data warehouse workload and its future
growth. This is determined based on the business requirements in Chapter 4, the data
model in Chapter 5, the architecture in Chapter 2, and all the considerations I described
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previously, as well as from Microsoft’s RDBMS Performance Tuning Guide for Data Ware-
housing at http://www.microsoft.com/technet/prodtechnol/sql/2000/maintain/
rdbmspft.mspx. It is on SQL Server 2000, but the principles are highly applicable for SQL
Server 2005. Microsoft’s Project REAL (http://www.microsoft.com/sql/solutions/bi/
projectreal.mspx) is also a good reference. 

Once we have determined the server configurations for the SSIS, SSAS, SSRS, and data-
base servers, we need to determine which operating system and SQL Server editions we need
and which licensing model best suits the architecture. I’ll discuss the operating system first,
then the SQL Server hardware levels (32-bit or 64-bit), then the SQL Server editions (Standard
Edition or Enterprise Edition), and finally the licenses.

Regarding the operating system, Windows 2003 R2 Enterprise Edition (EE) supports up
to eight processors and 64GB RAM, so it is suitable for the Amadeus Entertainment database
server mentioned previously (four CPUs with 8GB to 16GB RAM). The next level up is Win-
dows 2003 R2 Datacenter Edition, which supports up to 64 processors and 128GB RAM, but
in the Amadeus Entertainment case study, there is no need to use this. 

We need to determine whether we need the SQL Server 32-bit or 64-bit edition for the
Amadeus Entertainment case study. On the 32-bit platform, even though the SQL Server data-
base engine can use all the RAM available in the server (limited only by the operating system),
Analysis Services can use only 3GB RAM. So if we use the 32-bit edition for the SSAS server, it
won’t be able to use the entire 8GB RAM that we have in the server. Because of this, we need
the 64-bit edition. 

Regarding the database server, on the 32-bit edition some SQL Server database engine
resources such as sort space, join hash tables, aggregate hash tables, and index creation do not
use RAM more than 3GB. For these reasons, in the Amadeus Entertainment case study, we
need to use the 64-bit version. 

SQL Server is available in six editions: Express, Evaluation, Developer, Workgroup, Stan-
dard, and Enterprise. The first four are for trial, development, and small applications. For
enterprise-class data warehousing solutions in a production environment like in the Amadeus
Entertainment case study, practically speaking we can use only the last two, the Standard Edi-
tion or Enterprise Edition. SQL Server Standard Edition supports four CPUs and unlimited
RAM. These capabilities suit the Amadeus Entertainment case study. But because of the high-
availability and performance requirements, for the Amadeus Entertainment case study we
need SQL Server Enterprise Edition. The primary reason is that the following features are not
available in the Standard Edition:

Table and index partitioning: These features enable us to physically divide a table into
smaller chunks that we can load and query separately. When dealing with a fact table con-
taining billions of rows, this feature is a must-have if we need to have good performance.

Report server scale-out deployment: This means we can run Reporting Services on multi-
ple web servers, all accessing the same reporting services database in the same SQL
Server instance. This enables us to serve hundreds or thousands of users simultaneously
and achieve high availability. Both are requirements in the Amadeus Entertainment case
study: 300–500 client PCs/laptops and 24✕7 availability, with only one hour of downtime
per month (99.86 percent uptime).
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Analysis Services partitioned cubes: This feature enables us to divide a cube into smaller
chunks that we can load and query separately. This is important because it means less
cube-processing time and higher query performance.

Semiadditive aggregate functions: These are functions that work with measures that can
be summed up in some dimensions but not in other dimensions. This is important
because it enables us to deal with semiadditive measures such as account balances.

Parallel index operations: This feature enables us to create or rebuild an index using mul-
tiple processors simultaneously. It is useful in data warehousing when we deal with large
fact tables.

Online index operation: This enables us to create or rebuild an index when users are
querying or updating data on the table being indexed. This is important in data ware-
housing to maximize data store availability.

Number of nodes for failover clustering: In Standard Edition, the maximum number of
nodes is two, which limits future growth because we cannot add more active nodes when
we need more capacity or performance. In Enterprise Edition, we don’t have a limitation
on the number of nodes.

Now that I have discussed the editions, we need to deal with the licenses. Generally
speaking, there are two SQL Server licensing models: 

Per-processor license: We buy a license for each processor in the server. It does not matter
how many users we have. Prices vary between countries, but in the United States the
retail price of Enterprise Edition for a per-processor license is about $25,000.1

Server + CAL license: We buy a license for the server and a client access license (CAL) for
each client accessing the server. A client can be per user or per computer. For Enterprise
Edition in the United States, the retail price for one server license is about $14,000 (which
includes 25 CALs). Each additional client license is about $162.

The way SQL Server is licensed means that for every single component we need to buy a
separate license. Because for the Amadeus Entertainment case study we are installing SSIS,
SSRS, SSAS, and the database engine on separate servers, this means we need to buy SQL
Server licenses separately for each of those servers. 

For the Amadeus Entertainment case study, if we license it per processor, we will need 16
per-processor licenses: four for the database cluster (the passive node does not require a
license), four for the Analysis Services cluster, four for the report server farm (two servers ✕
two CPUs each, because each node requires a license), and four for the SSIS server. The cost
would be 16 ✕ $25,000 = $400,000. If we use Server + CAL licenses, for 500 users we need five
server licenses (one for the database cluster, one for the Analysis Services cluster, two for the
report server farm, and one for the SSIS server) and 375 additional CALs (from the five server
licenses we get 5 ✕ 25 CALs). So, the cost would be (5 ✕ $14,000) + (375 ✕ $162) = $130,750.
In this case, the server + CAL licensing model is better.
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Storage Considerations
The next thing we need to purchase for the infrastructure is the disk space. In Chapter 4, I said
it was not possible to estimate the amount of storage properly at that stage, because we had
not completed the DDS and NDS design. Now that we have completed the database design,
we can do the estimation. 

This is done by calculating the size of the fact and dimension tables to get the size of the
DDS. Then we estimate the size of the NDS based on the row size and the number of rows for
each table. Then we estimate the size of the stage database based on the source system tables
and data extraction method. Let’s start with the DDS, then the NDS, then the stage database,
then the metadata database, and finally the disk configuration.

Let’s examine the Product Sales fact table illustrated in Table 5-1 in Chapter 5. It has
eight int columns, one decimal column, ten money columns, and three datetime columns.
Integers are 4 bytes, decimals are 5 bytes, and money and datetime are 8 bytes, so the row
size is 8 ✕ 4 + 1 ✕ 5 + (10 + 3) ✕ 8 = 141 bytes. Allow 50 percent to accommodate extra col-
umns in the future, which makes it 212 bytes. The percentage is determined based on how
many columns we will add in the future. If the source system shows that on average there
are 500,000 sales per day (make it 600,000 to allow for growth—or more, based on projected
growth) and we are planning to purchase storage capacity for two years (see Chapter 4),
then the size of the fact table is 600,000 ✕ 365 ✕ 2 ✕ 212 bytes = 86GB. We will add fill factor
and overhead later for the whole database, not per table.

The Subscription Sales fact table has 12 int columns, 16 money columns, and 4 datetime
columns, so the row size is 208 bytes. Some people call row size record length, which is the
term inherited from the sequential file era. Allowing 50 percent for extra columns makes it
312 bytes. If the store system shows that Amadeus Entertainment has 800,000 subscribers
(make it 1 million to allow for growth) and we store daily data for the last four weeks and
weekly data for the last two years (refer to Chapter 5), the size of the fact table is 1 million ✕
(4 ✕ 7 + 2 ✕ 52) ✕ 312 bytes = 38GB.

We do the same exercise for all fact and dimension tables, and we will get the size of all
tables in the DDS. It’s the same principle in the NDS. We calculate the row size by multiplying
the number of columns of each data type with the bytes for that data type. We estimate the
number of rows by querying the source system. The number of rows in the NDS table would
be roughly the same as the number of rows in the source system. We need to keep in mind that
if we have several source systems, the number of rows in the NDS depends on how much over-
lap we have between the source systems. For example, if the product table in source system A
contains 600,000 rows and the product table in source system B contains 400,000 rows, of
which 250,000 exist in source system A, then the number of rows in the NDS product table
would be 600,000 + 150,000 = 750,000.

To estimate the size of the stage database, we need to list all the source tables that we did
in Chapter 5 when we did the source system mapping. For each table, query the source system
to determine the row size and the number of rows. If the extraction method to the stage is
incremental, count how many rows are inserted or updated per day in the source system. For
example, say there are 300 million rows in the sales order item table but there are only 900,000
rows updated or inserted for each day. If the extraction method to the stage is “truncate and
reload,” use the number of rows in the whole table. We will go through data extraction from
the source system in Chapter 7.

Remember that you may need to get only some columns from the source system table
into the data warehouse, not all columns in the table. Let’s say the width of the sales order
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table in WebTower9 is 2,000 bytes but the total bytes of the columns that you download is only
half of this. This affects the sizing of the stage database. Another factor that affects the stage
database sizing is that you may want to store three or five days’ worth (or more, depending on
backup strategy) of data in the stage before purging it in case you need to reload it to the NDS
for some reason. So in this case, the size of the order item stage table would be 1.1 million ✕ 5
✕ 1000 bytes = 5GB. We adjust the daily rows from 900,000 to 1.1 million to allow for two years
of growth.

The other database that we will create is metadata. It is not big, probably 10–20GB. Allo-
cating 50GB will be sufficient. This is estimated based on the content of the metadata
database. The metadata database stores seven kinds of metadata: data definition and map-
ping metadata, data structure metadata, source system metadata, ETL processes metadata,
data quality metadata, audit metadata, and usage metadata. 

You may also want to allocate some space for two or three smaller DDSs, such as for data
mining purposes or specific analysis projects. The reason for having a separate DDS for these
projects and activities is because they may need to update the data to reflect certain business
scenarios. 

Say, for argument’s sake, the result of the previous calculation is as follows: the DDS is
400GB, the NDS is 300GB, the stage is 100GB, the metadata database is 50GB, so the total is
850GB. To get the size of the data files (MDB), we need to allow some space for indexes and
for RDBMS overhead such as the table header, row ID, block header and trailer, fill factor,
page splits, and other SQL Server internal DBMS mechanisms. Take 30 percent for indexes
and 15 percent for internal mechanisms, which makes it 1233GB. Allow 20 percent for esti-
mation tolerance, which makes it 1479GB. The percentages for indexes vary depending on
how heavily we index the tables; in other words, it can be 50 percent for some tables, and it
can be 10 percent for other tables. My general estimate of 30 percent for index space is just a
high-level estimate. If you need a more precise estimation, use the Microsoft guide at http://
msdn2.microsoft.com/en-us/library/ms190620.aspx (this page is also available in Books
Online). The 20 percent estimation tolerance is to cover unknown factors—those things we
are not aware of at the time we do the estimating. 

TERMINOLOGY

Let’s clear up some terminology commonly used in data storage, especially disk and volume, before we con-
tinue. We will use the terminology later in this chapter. A disk is a single SCSI drive (we tend not to use IDE
drives for database servers because the IDE is perceived more for home use rather than for industrial use
because of their reliability and durability). The capacity of a SCSI drive varies from 36GB to 73GB to 146GB to
300GB. The speed varies from 10,000 RPM to 15,000 RPM. Some people use the term spindle to refer to a
disk. A volume is several disks arranged together according to a certain RAID configuration. Redundant Array
of Inexpensive Disks (RAID) is a method to configure several disks as one unit to make them more resilient by
creating some physical data redundancy.

The popular RAID configurations (some people say RAID level) are RAID 0, RAID 1, RAID 5, and RAID
1+0 (some people say RAID 10). If you have four 146GB SCSI disks and arrange them in RAID 0 configura-
tion, the resulting volume is 146 ✕ 4 = 584GB. If you arrange them in RAID 5, the resulting volume is 146 ✕
3 = 438GB. If you arrange them in RAID 1+0, the resulting volume is 146GB. RAID 1 can be made only with
two disks. If you have two 146GB disks, the resulting RAID 1 volume is 146GB. We will use these four RAID
levels in this example.
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We will place each database in several data files spread over several physical volumes. For
this we will create as many RAID 5 volumes as we can (at least four, but ideally eight or more—
spreading the database files onto more disk volumes makes the loading and query performance
better), but we don’t want the size of each volume to be too small. The ideal size is between 300
and 500GB. Less than 250GB is not practical for maintaining large databases. This will give you a
lot better performance than a single RAID 1+0 volume, because we’re spreading the workload
across more physical disks. Let’s put the transaction log file (LDF) of each database on different
volumes to increase the data-loading performance because the work is distributed across sev-
eral disks. So, we’ll create four RAID 1 volumes for transaction logs: one for the DDS, one for the
NDS, one for the stage, and one for the data quality and metadata.

TempDB is one data file per CPU, possibly 10–20GB each, depending on query complex-
ity (SQL Server uses TempDB to store the immediate results of a query). TempDB is ideally
located on a separate RAID 1+0 volume and is set to a large initial size with autogrow. RAID
1+0 would help get us optimum performance because this RAID level is both striped (efficient
in reading and writing) and resilient (safe in the case of failure). Putting TempDB on a separate
dedicated volume will ensure there is no contention with other SQL Server disk read and write
activities. The backup volume is expected to be between one and two times the size of the data
disk (the log files are usually small), depending on backup strategy, located on RAID 0 or RAID
5 volumes.

A file system volume is used for ETL temporary storage, probably 20 percent to 30 per-
cent of the size of the data volume, in RAID 5. This percentage is determined based on which
source system tables would need to be staged in files rather than in a database. In reality, the
file system volume is usually used to store other files too, such as project and application
files, not just for ETL, so allow for this by reserving some extra space. The OLAP volume is
probably the most difficult to estimate; in the Amadeus Entertainment case study, it is prob-
ably between two to five times the size of the DDS, depending on aggregate density, ideally
spread over several volumes. 

We also need to create a quorum volume to support the failover cluster, on RAID level 1.
A quorum volume is a drive accessible by any node in the cluster. It is used for arbitration
between cluster nodes and to store data that is used for recovery after a communication fail-
ure within the cluster.

With an individual disk raw size of 146GB (formatted capacity 133GB), the disk space cal-
culation is described in Table 6-1.

Table 6-1. Disk Space Calculation

Required Actual 
Volume Size (GB) RAID Level No. of Disks Size (GB)

Data 1-6 1479 6 ✕ RAID 5 6 ✕ 4 6 ✕ 399

Log 1-4 200 4 ✕ RAID 1 4 ✕ 2 4 ✕ 133

TempDB 100 RAID 1+0 4 ✕ 1 133

Quorum 10 RAID 1 2 ✕ 1 133

Backup 2200 RAID 5 1 ✕ 18 2261

File system 600 RAID 5 1 ✕ 6 665

OLAP 1-4 1600 RAID 5 4 ✕ 5 4 ✕ 532

Total 82 8246
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Eighty-two disks are required, and the total usable space is 8.2TB. The previous exercise is
known as logical unit number design. With 85 disks in the cabinet, we have three disks for SAN
hot spare. Hot spare is a standby disk used automatically to replace a failed disk. It is best to
use disks with the same capacity and RPM throughout the SAN. If you use disks with a differ-
ent capacity or RPM, you must remember that they require different hot spare disks. A RAID
volume is built from several disks. If one of these disks fails, the SAN controller automatically
assigns the hot spare disk to temporarily replace the failed one. For this to happen, the hot
spare disk must have the same capacity as the one being replaced.

If you can afford it, a large quantity of smaller disks (such as 73GB) is better than fewer
bigger disks (such as 146GB). This is because the workload is distributed to more disks. A high
RPM (such as 15,000) is absolutely essential in any case, because it gives better performance
than a lower RPM (such as 10,000). Hewlett-Packard has reported that the I/O throughput per-
formance of a 15,000 RPM disk can be as much as 25 percent higher than the equivalent
10,000 RPM,2 whereas IBM has reported 50 percent.3 TempDB is ideally in a RAID 1+0 volume,
as explained earlier. It is faster than RAID 5 or RAID 1, both at reading and writing. For data
warehousing, a very large TempDB (10–20GB per CPU, depending on the query complexity)
on a good-performance RAID 1+0 volume is crucial. The default is 8MB, which is way too
small for DW. 

I’ve heard suggestions to partition the RAID 1 quorum volume and allocate a little portion
(say 10GB) for the quorum and the remainder (say 123GB) for the log files. I am against this
idea because the quorum is the core of a cluster build; I prefer not to risk it. Get a smaller disk
if you want for the quorum (36GB, for example), but dedicate it just for the quorum alone.
Microsoft recommends assigning a dedicated LUN for quorum resources and not storing user
data on any volume on the quorum LUN.4

Bear in mind that you need to allocate some amount of disk space for your QA environ-
ment. Ideally, the QA environment has the same capacity as production. This enables us to
unload production data into the QA environment to test a modification or enhancement to
ensure that the modifications will run OK in production. Having a QA environment with the
same capacity as the production environment is also useful for performance testing, when we
load the QA environment with the same amount of data (if not more) as the production envi-
ronment. With some calculation, we also can get a reasonable idea about how a production
environment will perform based on tests in a smaller QA environment.

Configuring Databases
Now that we have designed the databases, let’s create them in SQL Server. Here are some
points you may want to consider when creating the databases. Let’s take the Amadeus Enter-
tainment case study as an example in these points:
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• Keep database names short and concise. DDS, NDS, Stage, and Meta will do. We need to
keep them short because they will be used as prefixes to ETL process names and stored
procedure names.

• Remember to keep the collation of all data warehouse databases the same, preferably
as per the company’s SQL Server installation standard defined by the SQL Server DBA.
Database collation defines how SQL Server handles character and Unicode data, such
as case-sensitivity, sort order, and code page. If they are different, there will be conver-
sion problems when populating the NDS from the stage and populating the DDS from
the NDS; for example, when trying to do column comparisons for UPSERT, set the server
collation as well in case you need to create a new DDS in the future. 

• Consider case sensitivity very carefully. Query results will be different depending on the
case sensitivity. We need to set case according to the user requirements for sorting
order. For the Amadeus Entertainment case study, we will use SQL Server default colla-
tion, SQL_Latin1_General_CP1_CI_AS, so it will be case-insensitive.

• For each database we will create six filegroups, located on six different physical disks on
RAID 5, with one transaction log file located in the designated log disk of RAID 1. File-
groups are a collection of database files. Set the database default location in the server
property to match this. This is necessary so that when we create a new database (for
example, a new DDS), SQL Server will put the database data and log files in the correct
locations. This is done by right-clicking the SQL Server name in Management Studio
and choosing Properties. Click Database Settings, and modify the default database
locations.

• Arrange the data files to support the previous filegroup arrangement, meaning that
when creating the database, place data files as per the filegroup locations. We have six
physical disks for data, so use them well by spreading the filegroups into different phys-
ical disks. Put the log files of each database on different log disks, as specified in the
previous section. Set the initial size of the data files for six to twelve months of growth
by specifying the initial size correctly when creating the database. Maintain the data
and log files manually; do not rely on autogrowth. If there is a data load operation that
requires more log space than what’s available, the operation will take a long time to
complete because it has to wait until the grow operation completes. Growing a data-
base by little increments causes a performance problem because of file and disk
fragmentation. We still need to turn on autogrow (with a large increment) but use it
only for emergency measures.

• Based on the estimated database size in the previous section (400 and 300 over two
years), aiming for six months I would set the initial size of the DDS to 100GB with a
growth increment of 25GB and the initial size of the NDS to 75GB with a 15GB growth
increment. The initial sizes for the DDS and the NDS (100 and 75GB) are calculated by
taking the linear proportion of the two-year projection (400GB and 300GB) for six
months. If you have initial load, then add this amount to the initial sizes. For example,
if the initial load is 30GB, then the initial sizes for the DDS and the NDS become 130GB
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and 105GB. We need to remember that these initial sizes are collective overall figures, so
we need to divide them among the six files. Set the growth increment to 20 to 25 per-
cent of the initial sizes to minimize the SQL Server grow operation. Remember that we
need to maintain the size of the data and log files manually (say every six months, with
monitoring every month); we should use autogrowth only for emergencies. 

• If the expected daily load is 5GB to 10GB and we keep five days of data on the stage, set
the stage database’s initial size to 50GB with a growth increment of 10GB. For the
metadata database, we expect it would be about 10GB in a year and to be 20GB in two
years, so let’s set the initial size to 10GB with a 5GB increment. The principle to setting
the increment is that it is only for emergencies; we should never have to use auto-
growth because we increase the file size manually. The increment for the earlier stage
database was set to 20 percent to 25 percent as per the DDS and the NDS. This large
percentage is selected to minimize fragmentation if the database file did become full.
The increment for the metadata database is set to 50 percent (5GB) because the meta-
data database contains audit and usage metadata that could fluctuate by significant
amounts depending on ETL processes.

• The log file size depends on the size of the daily load, recovery model, and the loading
method (ETL or ELT, stage or not stage; I’ll discuss this in the next chapter) as well as
index operations. Let’s set it to a 1GB initial size with a 512MB increment for both the
DDS and the NDS. For the stage, set a 2GB initial size with a 512MB increment. For
metadata, set it to 100MB with a 25MB increment. The transaction log contains data-
base changes. The transaction log space required depends on how much data we load
into the database. One way to estimate how much log space is required is to use the
ETL processes to load one day’s data into the stage and then into the NDS and then into
the DDS. If we set the initial size and the increment of these three databases to a small
amount (say 1MB to 2MB), during this process the log file will grow so that after the ETL
processes are completed, the transaction log sizes of these three databases will indicate
the required log sizes. 

• For the recovery model, choose simple rather than bulk. All the changes in the data
warehouse are from the ETL processes. When recovering from failure, we can roll for-
ward using ETL by reapplying the extracted source system data for the particular day.
We don’t require the bulk recovery model to roll forward to a certain point in time using
differential backup or transaction log backup. We fully control the data upload on the
ETL, and the ETL process is the only process that updates the data warehouse. For the
stage, the NDS, and the DDS, the full recovery model is not necessary and causes over-
head. The full recovery model requires log backup, whereas the simple recovery model
doesn’t. The simple recovery model reclaims the log space automatically. The full recov-
ery model is suitable for OLTP systems where inserts and updates happen frequently all
day from many users and we want to be able to recover the database to a certain point
in time. In data warehousing, we can recover the data store by restoring the last full
backup followed by applying differential backups and then applying the daily ETL
loads.
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• If you use the ODS + DDS architecture, you may want to consider the full recovery
model in the ODS especially if ETL is not the only process that updates the ODS. Unlike
the NDS, the ODS is updatable. End-user applications can retrieve data from the ODS,
but they can also update the ODS (please refer to Chapter 2 where ODS + DDS architec-
ture is explained). Because the ODS is continuously updated by the users, it is useful to
implement the full recovery model so we can recover the ODS to any point in time.

• For a metadata database, we need to set the recovery mode to full. The data quality and
front-end application will also write to metadata, in addition to the daily ETL process,
mainly for audit purposes such as report stored procedures, data quality stored proce-
dures, and the administration of ETL processes. Because the metadata database is
continuously updated, it is useful to implement the full recovery model so we can
recover the metadata database to any point in time.

• Leave the maximum degree of parallelism at 0 to utilize all processors. The degree of
parallelism is the number of processors used to execute a single SQL statement in par-
allel. If we leave it set to 0 (which is the default), SQL Server will utilize all the available
processors.

• Disable full-text indexing if you are not using it. Full-text indexing enables us to search
for patterns in character columns a lot faster than the LIKE predicate in SELECT state-
ments. The Microsoft Search service uses system memory for the full-text indexing
process.

• It is different from DBA to DBA, but you may want to disable autoshrink and enable
automatic statistics update, especially in the DDS. A database with autoshrink may lead
to fragmentation and cause performance issues. Automatic statistics updating is neces-
sary for the SQL Server query optimizer to know the best path to execute the query. SQL
Server collects the statistics of the indexes and column data in the database. The query
optimizer uses these database statistics to estimate the selectivity of a column or index
and to estimate the costs of different query plans.

For an example, let’s create the DDS database. Say we want to make the total size of the
data files 100GB. Because we will have six files located on six different physical files, we allo-
cate 100GB / 6 = 17GB for each file. A few months later, these files will not be the same size.
A few months later, file 1 could be 18GB, file 2 could be 30GB, and file 3 could be 20GB. To
allow for this natural possibility of uneven growth, we will set the initial size for each file to
30GB—the maximum growth. The size of each disk is 399GB, so you can set the max size of
each file to 150GB or 170GB if you want, which is 40 percent of the disk size, not 100 percent,
because other databases will reside on the same disk too.

The growth increment for the DDS, as mentioned previously, is 25GB. Spread over six
disks, that’s 4.2GB each, roughly. A growth increment is a figure that tells SQL Server how
much we want to expand the file when it’s full. It doesn’t have the uneven growth problem
mentioned previously, so we will allocate 5GB in each file. As I said previously, we should not
rely on autogrowth, because the DWA should have a script monitoring this allocated data
space. This script shows the percentage of data files used for each data warehouse data store.

The database creation script for the DDS is as follows. It shows that the initial size is 30GB,
as mentioned previously, and the file growth is 5GB. It uses six data files. The log file is 1GB
with a 512MB increment, as discussed previously. This script is included in the /script folder

CHAPTER 6 ■ PHYSICAL DATABASE DESIGN126

9314ch06final.qxd  11/15/07  10:13 AM  Page 126



at the book's web site (http://www.apress.com/). To execute this script on a stand-alone lap-
top or desktop, you just need to replace the drive letter (h) with a local drive such as c or d.

use master
go

if db_id ('DDS') is not null
drop database DDS;

go

create database DDS 
on primary (name = 'dds_fg1'
, filename = 'h:\disk\data1\dds_fg1.mdf'
, size = 30 GB, filegrowth = 5 GB)
, filegroup dds_fg2 (name = 'dds_fg2'
, filename = 'h:\disk\data2\dds_fg2.ndf'
, size = 30 GB, filegrowth = 5 GB)
, filegroup dds_fg3 (name = 'dds_fg3'
, filename = 'h:\disk\data3\dds_fg3.ndf'
, size = 30 GB, filegrowth = 5 GB)
, filegroup dds_fg4 (name = 'dds_fg4'
, filename = 'h:\disk\data4\dds_fg4.ndf'
, size = 30 GB, filegrowth = 5 GB)
, filegroup dds_fg5 (name = 'dds_fg5'
, filename = 'h:\disk\data5\dds_fg5.ndf'
, size = 30 GB, filegrowth = 5 GB)
, filegroup dds_fg6 (name = 'dds_fg6'
, filename = 'h:\disk\data6\dds_fg6.ndf'
, size = 30 GB, filegrowth = 5 GB)
log on (name = 'dds_log'
, filename = 'h:\disk\log1\dds_log.ldf'
, size = 1 GB, filegrowth = 512 MB)
collate SQL_Latin1_General_CP1_CI_AS
go

alter database DDS set recovery simple 
go
alter database DDS set auto_shrink off
go
alter database DDS set auto_create_statistics on
go
alter database DDS set auto_update_statistics on
go

h:\disk\data1 to h:\disk\data6 and h:\disk\log1 to h:\disk\log4 are the mount points
of the six data volumes and four log volumes that we built in the SAN (please refer to the previ-
ous section). A mount point is the drive letter assigned to a volume created from several
physical disks in a RAID configuration. This drive letter is used by the operating system to
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access the data in that volume. For other databases, the scripts are similar, apart from the file
locations and sizes. Put the NDS log file on h:\disk\log2, the stage on h:\disk\log3, and the
metadata on h:\disk\log4.

For the stage database, we don’t need automatic statistic updating because we don’t usu-
ally index tables. We still want the simple recovery model, and we still don’t need autoshrink
for the stage database. Remember to put the stage log file on a different disk from the NDS
and DDS logs; this is important for ETL performance because it minimizes the contention of
log traffic between data stores. Because of the size and the nature of loading, we don’t need to
split the stage database over six disks. Three of four would be more than enough because we
can allocate different stage tables in three to four different disks that can be loaded simultane-
ously. We can use data disks 1–4 for the stage.

Remember to set the recovery mode to full for the metadata database. Because the size
of the metadata database is small and because the way we use the metadata database is
more like an OLTP type query than a data warehouse query (in other words, it is frequently
updated), we don’t need to spread it across six disks. Two disks are good enough because the
size is only 10–20GB, as discussed previously. We can use data disks 5 and 6 for metadata.
We still need to put the metadata log file on a separate disk, though, not for the benefit of
the metadata database itself but so that we don’t affect the performance the NDS, the DDS,
and the stage log files. 

■Note Because you will be creating the databases in your development environment, which in the case of
a stand-alone desktop or laptop probably doesn’t have multiple disks or drivers and a large amount of disk
space, you can reduce the figures from gigabytes to megabytes so the databases will be enough for your
disk space. Just create a folder called disk and create ten folders called data1 to data6 and log1 to log4
under this disk folder. This simulates the six data disks and four log disks discussed earlier. You can put the
database data files and log files in these ten folders.

Now that we have created all four databases, we are ready to create the database struc-
ture—the tables.

Creating DDS Database Structure
After we created the databases, we can now create the tables based on the logical design that
we created in the previous chapter. Let’s start with the DDS. It has five fact tables and fourteen
dimensions. Let’s do the Product Sales fact table first. We’ll do the four dimensions that it uses
first and then the fact table. We defined these four dimension tables in the previous chapter.
So, open SQL Server 2005 Management Studio, connect to your development SQL Server
instance, and start creating the tables. You can use Management Studio’s point-and-click func-
tionality if you want, or you can script it. 

Either way, create the date dimension table as follows:
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use DDS
go

if exists 
(select * from sys.tables 
where name = 'dim_date')

drop table dim_date
go

create table dim_date
( date_key             int        not null 
, date char(10) not null
, system_date          char(10)   not null
, sql_date             datetime   not null
, julian_date          int        not null
, day tinyint not null
, day_of_the_week      tinyint    not null
, day_name             varchar(9) not null
, day_of_the_year      smallint   not null
, week_number          tinyint    not null
, month                tinyint    not null
, month_name           varchar(9) not null
, short_month_name     char(3)    not null
, quarter              char(2)    not null
, year smallint not null
, fiscal_week          tinyint    
, fiscal_period        char(4)
, fiscal_quarter       char(3)
, fiscal_year          char(6)
, week_day             tinyint    not null
, us_holiday           tinyint
, uk_holiday           tinyint
, month_end            tinyint    not null
, period_end           tinyint
, short_day            tinyint
, source_system_code   tinyint    not null
, create_timestamp     datetime   not null
, update_timestamp     datetime   not null
, constraint pk_dim_date 
primary key clustered (date_key) 
on dds_fg6

) on dds_fg6
go
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if exists 
(select * from sys.indexes 
where name = 'sql_date'
and object_id = object_id('dim_date'))

drop index dim_date.sql_date
go

create unique index sql_date
on dim_date(sql_date)
on dds_fg6

go

In SQL Server 2005 and 2008, the sys.tables catalog view replaces sysobjects used in
SQL Server 2000. You can use sys.objects if you want (notice the dot there), but you need to
specify where type = 'U'. The sys.objects catalog view contains all the database objects such
as tables, views, triggers, primary keys, and stored procedures. By specifying type = 'U', we
filter the rows for user-defined tables only. Catalog views contain information used by the SQL
Server database engine, such as tables, columns, and primary keys.

The dimension key needs to be assigned as the primary key of the table and as the clus-
tered index. This means that the table will be physically ordered on the date_key column. This
will be useful for query performance. We don’t need to make the dimensional key column an
identity column because all keying will be done in the NDS. Columns that should not contain
NULL such as weekdays and month ends should have the NOT NULL constraint. 

I don’t advise putting a check constraint in the DDS dimensions because it will negatively
affect the loading performance. Instead, it would be better to put it in the data quality (DQ)
routine inside the ETL because the check will be processed in a set-based statement rather
than row by row, so it’s faster. I’ll talk about DQ in Chapter 9. Don’t put default gettime() in
the create_timestamp or update_timestamp column, because we want all rows inserted or
updated during the same batch to have the same timestamp, so we will set this timestamp in
the ETL.

You may want to put in a bit of code that checks and drops the foreign key constraints
before dropping and creating the table, like in the following code. This prevents orphan or
invalid foreign keys on the related tables.

if exists
(select * from sys.foreign_keys
where name = 'fk_fact_campaign_result_dim_date'
and parent_object_id = object_id('fact_campaign_result'))

alter table fact_campaign_result
drop constraint fk_fact_campaign_result_dim_date

go

And after creating the table, re-create the foreign key that you dropped, like this:
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if exists
(select * from sys.tables
where name = 'fact_campaign_result')

alter table fact_campaign_result
add constraint fk_fact_campaign_result_dim_date
foreign key (send_date_key)
references dim_date(date_key)

go

This way, the individual script can be executed independently of the other scripts. Don’t
forget to use Unicode (nchar and nvarchar) if you operate in countries with non-Latin char-
acters. If the width is fixed, such as date, use char rather than varchar; char is slightly faster
because it has a fixed position and is slightly smaller because it doesn’t have the 2 bytes off-
set. If you have three varchar(10) columns, the storage is 2 + (3 ✕ 2) + (3 ✕ 10 bytes) = 38
bytes. If you use three char(10) columns, the storage is 30 bytes. To get the row size, you need
to add 4 bytes for the row header and 3 bytes for the null bitmap (this is the total for the row,
not for each column). The null bitmap is an indicator whether a column may contain null.
So, if we use varchar, the row size is 45 bytes, and if we use char, the row size is 37 bytes. If,
however, you know that on average the varchar column will be only 60 percent full, use var-
char, because the storage is 2 + (3 ✕ 2) + (3 ✕ 10 bytes ✕ 60 percent) = 26 bytes. 

Every time you use int, ask yourself whether the value of that column will ever reach
2 billion. In many cases, you can use tinyint (up to 255) and smallint (up to 32k). If you use
decimal or number, always specify the precision, 9 or lower if possible. Precision 9 uses 5
bytes, whereas precisions 10 to 19 use 9 bytes. The default precision is 18. For dimension
tables, you can just set all columns to Unicode and int because they are small (probably a
few thousand rows except for the customer dimension, which could be millions). But for a
fact table with billions of rows, you may want to consider the right data type to save the disk
space and maximize data loading and query performance.

Every time you use money (8 bytes), ask yourself whether the value will ever reach
214,000. If not, use smallmoney, which is only 4 bytes. Also, ask yourself whether you need
more than four digits after the decimal point, for example, for the currency rate. If you do, use
decimal rather than money. Some people use smalldatetime rather than datetime when they
need only the date and don’t need the time element. You probably want to reconsider this
because smalldatetime is only up to year 2079, and it starts from 1900.

Perhaps you also noticed there are two dds_fg6 on the create table statement previously
mentioned. They are the filegroups. Filegroups are collections of database files. You need to
specify the filegroup; otherwise, it will be stored in the primary filegroup, which is on disk 1.
The first one is where the primary key’s clustered index is physically stored. The second one is
where the table is physically stored. To keep track of what table goes to which filegroup, it is
useful if you make a filegroup allocation table, as shown in Table 6-2. As we discussed earlier, it
is important to spread the tables in the data store on different disks, using filegroups, to maxi-
mize query performance and data-loading performance.
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Table 6-2. Filegroup Allocation Table for the DDS

Table Name Table Type Filegroup

dim_week Dimension 6

dim_store Dimension 6

dim_campaign Dimension 6

dim_channel Dimension 6

dim_communication Dimension 6

dim_customer Dimension 6

dim_date Dimension 6

dim_delivery_status Dimension 6

dim_format Dimension 6

dim_lead Dimension 6

dim_package Dimension 6

dim_product Dimension 6

dim_subscription_status Dimension 6

dim_supplier Dimension 6

fact_product_sales Fact 2

fact_subscription_sales Fact 3

fact_supplier_performance Fact 3

fact_communication_subscription Fact 5

fact_campaign_result Fact 5

Fact tables’ PKs and indexes 4

Dimension tables’ PKs and indexes 6

To maximize query performance and data-loading performance on the DDS database,
in Table 6-2 we allocate all dimension tables to filegroup 6, the Product Sales fact table to
filegroup 2, the Subscription Sales and Supplier Performance fact tables to filegroup 3, the
two CRM fact tables to filegroup 5, and the fact table indexes to filegroup 4. We won’t use the
primary filegroup yet. We will use this for the summary fact table later. 

If we put a fact table and dimension table on different disks, we reduce the disk con-
tention and therefore increase the query performance. The performance increase depends on
how large the dimension tables being joined to the fact table in the query are. We reduce the
contention further by putting the fact indexes on a separate disk from the fact tables. Ideally,
the dimension table and index should also be separated, but because they are a lot smaller
than fact tables, I prefer to put the dimension indexes in filegroup 6 together with dimension
tables rather than, for example, putting them in filegroup 2 with the large Product Sales fact
table.

OK, let’s continue creating the product dimension as follows:
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use DDS
go

if exists
(select * from sys.objects 
where name = 'dim_product')

drop table dim_product
go

create table dim_product
( product_key          int not null
, product_code         varchar(10)
, name varchar(30)
, description          varchar(100)
, title                varchar(100)
, artist               varchar(100)
, product_type         varchar(20)
, product_category     varchar(30)
, media                varchar(25)
, unit_price           money
, unit_cost            money
, status               varchar(15)
, source_system_code   tinyint 
, create_timestamp     datetime
, update_timestamp     datetime
, constraint pk_dim_product 
primary key clustered (product_key)
on dds_fg6

) on dds_fg6
go

And then let’s create the customer dimension:

use DDS
go

if exists 
(select * from sys.tables 
where name = 'dim_customer')

drop table dim_customer
go
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create table dim_customer
( customer_key         int not null
, customer_id          varchar(10)
, account_number       int
, customer_type        char(1)
, name varchar(100)
, gender               char(1)
, email_address        varchar(200)
, date_of_birth        datetime
, address1             varchar(50)
, address2             varchar(50)
, address3             varchar(50)
, address4             varchar(50)
, city varchar(50)
, state                varchar(40)
, zipcode              varchar(10)
, country              varchar(50)
, phone_number         varchar(20)
, occupation           varchar(50)
, household_income     varchar(20)
, date_registered      datetime
, status               varchar(10)
, subscriber_class     varchar(3)
, subscriber_band      varchar(3)
, permission           tinyint
, preferred_channel1   varchar(15)
, preferred_channel2   varchar(15)
, interest1            varchar(30)
, interest2            varchar(30)
, interest3            varchar(30)
, effective_timestamp  datetime
, expiry_timestamp     datetime
, is_current           tinyint
, source_system_code   tinyint
, create_timestamp     datetime
, update_timestamp     datetime 
, constraint pk_dim_customer 
primary key clustered (customer_key)
on dds_fg6

) on dds_fg6
go

CHAPTER 6 ■ PHYSICAL DATABASE DESIGN134

9314ch06final.qxd  11/15/07  10:13 AM  Page 134



And then let’s create the store dimension:

use DDS
go

if exists 
(select * from sys.tables 
where name = 'dim_store')

drop table dim_store
go

create table dim_store
( store_key            int not null
, store_number         smallint
, store_name           varchar(40)
, store_type           varchar(20)
, store_address1       varchar(50)
, store_address2       varchar(50)
, store_address3       varchar(50)
, store_address4       varchar(50)
, city varchar(50)
, state                varchar(40)
, zipcode              varchar(10)
, country              varchar(50)
, phone_number         varchar(20)
, web_site             varchar(100)
, region               varchar(30)
, prior_region         varchar(30)
, prior_region_date    datetime
, division             varchar(30)
, prior_division       varchar(30)
, prior_division_date  datetime
, source_system_code   tinyint
, create_timestamp     datetime
, update_timestamp     datetime
, constraint pk_dim_store
primary key clustered (store_key)
on dds_fg6

) on dds_fg6
go

And finally, we’ll create the Product Sales fact table:
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use DDS
go

if exists 
(select * from sys.objects 
where name = 'fact_product_sales' and type = 'U')

drop table fact_product_sales
go

create table fact_product_sales
( sales_date_key     int       not null
, customer_key       int       not null
, product_key        int       not null
, store_key          int       not null
, order_id           int       not null
, line_number        int       not null
, quantity           int
, unit_price         smallmoney
, unit_cost          smallmoney
, sales_value        money
, sales_cost         money
, margin             money
, sales_timestamp    datetime
, source_system_code tinyint   not null
, create_timestamp   datetime  not null
, update_timestamp   datetime  not null
, constraint pk_fact_product_sales 
primary key clustered (order_id, line_number)
on dds_fg4

, constraint fk_fact_product_sales_dim_date
foreign key (sales_date_key)
references dim_date(date_key)

, constraint fk_fact_product_sales_dim_customer
foreign key (customer_key)
references dim_customer(customer_key)

, constraint fk_fact_product_sales_dim_product
foreign key (product_key)
references dim_product(product_key)

, constraint fk_fact_product_sales_dim_store
foreign key (store_key)
references dim_store(store_key)

) on dds_fg2
go
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create index fact_product_sales_sales_date_key
on fact_product_sales(sales_date_key)
on dds_fg4

go

create index fact_product_sales_customer_key
on fact_product_sales(customer_key)
on dds_fg4

go

create index fact_product_sales_product_key
on fact_product_sales(product_key)
on dds_fg4

go

create index fact_product_sales_store_key
on fact_product_sales(store_key)
on dds_fg4

go

I’ll discuss the indexes and how to choose primary keys in more detail when I talk about
indexing later in this chapter because it is closely related with how to choose a cluster index.
For now let’s suffice it to say that for the primary key we need to choose a column or columns
that make the row unique. There could be several candidates for the primary key.

Some people prefer not to put referential integrity (foreign keys) in a data warehouse.
They say that data integrity is controlled in the ETL so we don’t need a foreign key. The sec-
ond argument is that a foreign key slows down the loading. But on the other hand, the query
optimizer uses constraint definitions such as the primary key and the foreign key to build a
high-performance query execution plan. If you have a primary key - foreign key relationship
between two tables, it indicates to SQL Server that the two tables have been optimized to be
combined in a query that uses the key as its criteria. This is particularly useful on optimizing
queries that join several tables, the choice is yours. I prefer putting the foreign key on first and
seeing how the loading performs. If loading is slow at a particular table, consider taking that
particular foreign key off (not all of them) before the loading begins and put it back afterward. 

About the column names, some people prefer to abbreviate the column name such as
sh_mon_nm. I think it is better to use the full words because they are easier to understand. 

■Note Regarding table naming, some people prefix table names with dim_ and fact_, some prefix them
with d and f, some put the word dim or fact at the end as in order_fact, and some people don’t use
underscores as in PurchaseOrderFact (this is what Microsoft recommends in MSDN, but many SQL Server
2005 system views use underscores, as in sys.foreign_key). Again, the choice is yours, but please be
consistent.
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We do the same thing with all other tables in DDS. For the complete DDS table creation
scripts, please refer to the web site accompanying this book at http://www.apress.com/; the
scripts are in the /script folder.

When you have completed all five fact tables and fourteen dimension tables, create a
batch file using sqlcmd, as shown next, and call those scripts one by one. sqlcmd is a SQL Server
utility that enables you to enter Transact SQL statements and script files at the command
prompt. Start with the database creation, then the dimensions, and finally the facts. They
need to be in this order because of the foreign key in the fact tables.

h:
cd "h:\dw\scripts\dds"
sqlcmd -i db_dds.sql >> ddsout.txt
sqlcmd -i dim_campaign.sql >> ddsout.txt
sqlcmd -i dim_channel.sql >> ddsout.txt
sqlcmd -i dim_communication.sql >> ddsout.txt
sqlcmd -i dim_customer.sql >> ddsout.txt
sqlcmd -i dim_date.sql >> ddsout.txt
sqlcmd -i dim_delivery_status.sql >> ddsout.txt
sqlcmd -i dim_format.sql >> ddsout.txt
sqlcmd -i dim_lead.sql >> ddsout.txt
sqlcmd -i dim_package.sql >> ddsout.txt
sqlcmd -i dim_product.sql >> ddsout.txt
sqlcmd -i dim_store.sql >> ddsout.txt
sqlcmd -i dim_subscription_status.sql >> ddsout.txt
sqlcmd -i dim_supplier.sql >> ddsout.txt
sqlcmd -i dim_week.sql >> ddsout.txt
sqlcmd -i fact_product_sales.sql >> ddsout.txt
sqlcmd -i fact_subscription_sales.sql >> ddsout.txt
sqlcmd -i fact_supplier_performance.sql >> ddsout.txt
sqlcmd -i fact_communication_subscription.sql >> ddsout.txt
sqlcmd -i fact_campaign_result.sql >> ddsout.txt

The parameter –i [filename] means “input file.” Instead of >> [filename], you use 
–o [filename] or > [filename] to create the output file, but it will replace the content of the
output file. If your development SQL Server environment is not local, you need to specify 
–S followed by the server name: sqlcmd –S server1. You may also need to specify the user-
name and password using the –U and –P parameters: sqlcmd –S server1 –U user1 –P
password1. You can specify the password just once in the environment variable using set
sqlcmdpassword=. If you don’t specify –U and –P, the default is –E, which means use a trusted
connection. You can also string all the script file names together in one line: sqlcmd –i file1,
file2, file3, ....

Here are two examples:

sqlcmd –i file1.sql –S server1 –U user1 –P password1
sqlcmd –i file1.sql file2.sql –S server1 –E

The first example connects to server1 using user1 and password1 credentials and then
executes the statements in file1.sql.

The second example connects to server1 using a trusted connection (Windows inte-
grated security) and executes the statements in file1.sql and file2.sql.
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Creating the Normalized Data Store
The NDS is a little bit different from the DDS. The main difference is the normalization. In the
next few pages, I will discuss the tables in Figure 6-2 and how to create them physically. I will
also discuss how to arrange the tables in different filegroups located on different disks.

Figure 6-2. Schema of Amadeus Entertainment normalized data store

The tables in the NDS can be categorized into three groups: transaction tables, master
tables, and attribute tables. Transaction tables contain business events and are derived from
the DDS fact tables. Master tables contain business entities and are derived from the DDS
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dimension tables. Attribute tables contain the attributes of business entities and are derived
from dimension attribute columns. For example, let’s discuss the three tables at the bottom of
the diagram: 

communication_subscription: The communication_subscription table is a transaction
table. It was derived from the Communication Subscriptions fact table in the DDS. It
contains the business event of when a customer subscribes to a newsletter.

communication: The communication table is a master table. It was derived from the com-
munication dimension in the DDS. It contains business entities, such as the newsletters
to which the customers can subscribe.

language: The language table is an attribute table. In the DDS, language is a column
(attribute) in the communication dimension. Because in the NDS we need to normalize
the tables, we have to place language in its own table. This is necessary to remove data
redundancy. 

The communication_subscription table is created as follows:

use NDS
go

if exists 
(select * from sys.tables 
where name = 'communication_subscription')

drop table communication_subscription
go

create table communication_subscription
( customer_key              int      not null 
, communication_key         int      not null
, channel_key               int      not null
, subscription_start_date   int
, subscription_end_date     int
, subscription_status_key   int
, source_system_code        tinyint  not null
, create_timestamp          datetime not null
, update_timestamp          datetime not null
, constraint pk_communication_subscription
primary key clustered (customer_key, communication_key, channel_key)
on nds_fg6

, constraint fk_communication_subscription_customer
foreign key (customer_key)
references customer(customer_key)

, constraint fk_communication_subscription_communication
foreign key (communication_key)
references communication(communication_key)

, constraint fk_communication_subscription_channel
foreign key (channel_key)
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references channel(channel_key)
, constraint fk_communication_subscription_subscription_status
foreign key (subscription_status_key)
references subscription_status(subscription_status_key)

) on nds_fg4
go

The primary key of the communication_subscription table has the same granularity as the
fact table—one row per subscription. If the customer unsubscribes, we will just mark it in the
same row, subscription_end_date. If the customer resubscribes to the same newsletter, we
will mark the subscription_start_date column and clear the unsubscribe date. We don’t cre-
ate a new row. We need to include a channel in the primary key because it is possible that a
customer subscribes to (for example) the Amadeus Entertainment Music weekly newsletter
via two channels: e-mail and RSS feed.

Just as we did in the DDS, we need to place the tables in different filegroups located on a
different physical disk. The main principle here is to avoid putting large transaction tables on
the same disk. For the NDS, I usually split them according to the subject areas, as follows
(please refer to Figure 6-2): 

• Subject area 1 is sales, physically located on the primary filegroup.

• Subject area 2 is customer, physically located on filegroup 2.

• Subject area 3 is geographic, physically located on filegroup 3.

• Subject area 4 is CRM, physically located on filegroup 4.

• Subject area 5 is supplier, physically located on filegroup 5.

Table 6-3 lists all the NDS tables, along with the table type (master, transaction, or attrib-
ute), the subject area (one of the five mentioned previously), and the filegroup where they are
located.

Table 6-3. Filegroup Allocation Table for NDS

Table Name Table Type Subject Area Filegroup

supplier Master Supplier 5

contact Attribute Supplier 5

supplier_performance Transaction Supplier 5

product Master Product 5

format Master Product 5

media Attribute Product 5

product_status Attribute Product 5

product_type Attribute Product 5

product_category Attribute Product 5

package Master Sales Primary

package_type Attribute Sales Primary

Continued
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Table 6-3. Continued

Table Name Table Type Subject Area Filegroup

lead Master Sales Primary

subscription_sales Transaction Sales 3

order_header Transaction Sales Primary

order_item Transaction Sales Primary

currency Master Sales Primary

currency_rate Attribute Sales Primary

store_type Attribute Geographic 3

store Master Geographic 3

region Attribute Geographic 3

division Attribute Geographic 3

city Attribute Geographic 3

state Attribute Geographic 3

country Attribute Geographic 3

customer Master Customer 2

occupation Attribute Customer 2

interest Attribute Customer 2

interest_junction Junction Customer 2

permission Attribute Customer 2

subscriber_band Attribute Customer 2

subscriber_class Attribute Customer 2

customer_status Attribute Customer 2

customer_type Attribute Customer 2

address Attribute Geographic 3

address_type Attribute Geographic 3

address_junction Junction Geographic 3

phone_number Attribute Customer 2

phone_number_type Attribute Customer 2

phone_number_junction Junction Customer 2

email_address Attribute Customer 2

email_address_type Attribute Customer 2

email_address_junction Junction Customer 2

communication_subscription Transaction CRM 4

subscription_status Master CRM 4

campaign Master CRM 4

channel Master CRM 4

channel_junction Junction CRM 2
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Table Name Table Type Subject Area Filegroup

communication Master CRM 4

campaign_result Transaction CRM 4

business_unit Attribute CRM 4

communication_category Attribute CRM 4

language Attribute CRM 4

delivery_status Master CRM 4

delivery_status_category Attribute CRM 4

We then put indexes in filegroup 6 to separate them from the tables. For performance rea-
sons, we generally want to have indexes and tables on separate disks. The Primary filegroup
has three transaction tables, so to balance everything, we can put the Subscription Sales table
in filegroup 3. Filegroup 2 doesn’t have a transaction table, but the customer master and
attribute tables are generally larger than other subject areas. 

The communication table contains (amongst other things) the newsletter that we send to
customers. It is created as follows:

use NDS
go

-- Remove FK if exists (otherwise you can't drop the table):
if exists
(select * from sys.foreign_keys
where name = 'fk_communication_subscription_communication'
and parent_object_id = object_id('communication_subscription'))

alter table communication_subscription
drop constraint fk_communication_subscription_communication

go

if exists
(select * from sys.foreign_keys
where name = 'fk_campaign_result_communication'
and parent_object_id = object_id('campaign_result'))

alter table campaign_result
drop constraint fk_campaign_result_communication

go

-- Drop the table if exists:
if exists 
(select * from sys.tables 
where name = 'communication')

drop table communication
go
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-- Create the table:
create table communication
( communication_key    int not null identity(1,1)
, title                varchar(50) not null
, description          varchar(200)
, format               varchar(20)
, language_key         int
, category_key         int
, issuing_unit_key     int
, start_date           smalldatetime
, end_date             smalldatetime
, status               varchar(10)
, source_system_code   tinyint not null
, create_timestamp     datetime not null
, update_timestamp     datetime not null
, constraint pk_communication
primary key clustered (communication_key)
on nds_fg6

, constraint fk_communication_language
foreign key (language_key)
references language(language_key)

, constraint fk_communication_communication_category
foreign key (category_key)
references communication_category(communication_category_key)

, constraint fk_communication_business_unit
foreign key (issuing_unit_key)
references business_unit(business_unit_key)

) on nds_fg4
go

-- Create FK:
alter table communication_subscription
add constraint fk_communication_subscription_communication
foreign key (communication_key)
references communication(communication_key)

go

alter table campaign_result
add constraint fk_campaign_result_communication
foreign key (communication_key)
references communication(communication_key)
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-- Build indexes:
if exists
(select * from sys.indexes
where name = 'communication_title'
and object_id = object_id('communication'))

drop index communication.communication_title
go

create unique index communication_title
on communication(title)
on nds_fg6

go

The language table is an attribute table of the previous communication table. The
communication table has a foreign key pointing to the language table. The language table is
created as follows:

use NDS
go

-- Remove FK if exists:
if exists
(select * from sys.foreign_keys
where name = 'fk_communication_language'
and parent_object_id = object_id('communication'))

alter table communication
drop constraint fk_communication_language

go

-- Drop the table if exists and create the table:
if exists 
(select * from sys.tables 
where name = 'language')

drop table language
go

create table language
( language_key          int not null identity(1,1)
, language_code         char(3) not null
, language_name         varchar(20) not null
, source_system_code    tinyint not null
, create_timestamp      datetime not null
, update_timestamp      datetime not null
, constraint pk_language
primary key clustered (language_key)
on nds_fg6

) on nds_fg4
go
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-- Create FK:
alter table communication
add constraint fk_communication_language
foreign key (language_key)
references language(language_key)

go

-- Build indexes:
if exists
(select * from sys.indexes 
where name = 'language_code' 
and object_id = object_id('language'))

drop index language.language_code
go

create unique index language_code
on language(language_code)
on nds_fg6

go

When using the sys.foreign_keys catalog view to find out whether a foreign key already
exists, you need to specify the table name to which the foreign key belongs. For example:

select * from sys.foreign_keys where name = 'name1'
and parent_object_id = object_id('table1')

This is important to ensure that the foreign key belongs to the correct table. It is possible
that two foreign keys belonging to two different tables have the same name.

Likewise, when checking indexes on sys.indexes, always specify object_id. For example:

select * from sys.indexes where name = 'name1'
and object_id = object_id('table1')

When naming the primary key and the foreign key, use a consistent convention. I usually
name the primary key as pk_tablename and the foreign key as fk_childtable_parenttableN
where N is a number from 1,2,3…. N is used only if we have more than one foreign key between
the same two tables. Microsoft recommends mixed case without any underscores.

The relationship between the communication_subscription table, the communication table,
and the language table is simple. This is essentially a fact table connected to a master table, of
which an attribute table describes a particular attribute in the master table.

The relationships between the transaction table, master table, and attribute table are not
always that simple. One fact table in the DDS may need to be normalized into two transaction
tables in the NDS. For example, the Product Sales fact table in the DDS is normalized into an
order_header table and an order_item table in the NDS.

A dimension table may not link directly to the attribute table. If the relationship is many-
to-many, we need to use a junction table (aka bridge table). The junction table contains the
primary key of both the dimension table and the attribute table, which is the customer dimen-
sion. In the NDS, the customer dimension is normalized into 18 tables. There are 17 attribute
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tables. Attribute tables that are one-to-many, such as the occupation table, are connected
directly to the customer table. Attribute tables that are many-to-many, such as the
email_address table, are connected to the customer table using a junction table. 

The customer table is the most complex table in the NDS. It has 17 attribute tables. It ref-
erences six other tables and is being referenced by eight other tables. This table is the core
table in this system. We will create it in filegroup 2, with the index in filegroup 6. The customer
table is created as follows:

use NDS
go

-- Remove FK if exists:
if exists
(select * from sys.foreign_keys
where name = 'fk_address_junction_customer'
and parent_object_id = object_id('address_junction'))

alter table address_junction
drop constraint fk_address_junction_customer

go

if exists
(select * from sys.foreign_keys
where name = 'fk_phone_number_junction_customer'
and parent_object_id = object_id('phone_number_junction'))

alter table phone_number_junction
drop constraint fk_phone_number_junction_customer

go

if exists
(select * from sys.foreign_keys
where name = 'fk_email_address_junction_customer'
and parent_object_id = object_id('email_address_junction'))

alter table email_address_junction
drop constraint fk_email_address_junction_customer

go

if exists
(select * from sys.foreign_keys
where name = 'fk_interest_junction_customer'
and parent_object_id = object_id('interest_junction'))

alter table interest_junction
drop constraint fk_interest_junction_customer

go
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if exists
(select * from sys.foreign_keys
where name = 'fk_subscription_sales_customer'
and parent_object_id = object_id('subscription_sales'))

alter table subscription_sales
drop constraint fk_subscription_sales_customer

go

if exists
(select * from sys.foreign_keys
where name = 'fk_communication_subscription_customer'
and parent_object_id = object_id('communication_subscription'))

alter table communication_subscription
drop constraint fk_communication_subscription_customer

go

if exists
(select * from sys.foreign_keys
where name = 'fk_campaign_result_customer'
and parent_object_id = object_id('campaign_result'))

alter table campaign_result
drop constraint fk_campaign_result_customer

go

if exists
(select * from sys.foreign_keys
where name = 'fk_channel_junction_customer'
and parent_object_id = object_id('channel_junction'))

alter table channel_junction
drop constraint fk_channel_junction_customer

go

-- Create customer table (drop it first if exists):
if exists 
(select * from sys.tables 
where name = 'customer')

drop table customer
go

create table customer
( customer_key           int not null identity(1,1)
, customer_id            varchar(10) not null
, account_number         int
, customer_type_key      int
, name varchar(100) not null
, gender                 char(1)
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, date_of_birth          datetime
, occupation_key         int
, household_income_key   int
, date_registered        datetime
, customer_status_key    int
, subscriber_class_key   int
, subscriber_band_key    int
, permission_key         int
, effective_timestamp    datetime not null
, expiry_timestamp       datetime not null
, is_current             tinyint not null
, source_system_code     tinyint not null
, create_timestamp       datetime not null
, update_timestamp       datetime not null
, constraint pk_customer 
primary key clustered (customer_key)
on nds_fg6

, constraint fk_customer_occupation
foreign key (occupation_key)
references occupation(occupation_key)

, constraint fk_customer_household_income
foreign key (household_income_key)
references household_income(household_income_key)

, constraint fk_customer_customer_status
foreign key (customer_status_key)
references customer_status(customer_status_key)

, constraint fk_customer_subscriber_class
foreign key (subscriber_class_key)
references subscriber_class(subscriber_class_key)

, constraint fk_customer_subscriber_band
foreign key (subscriber_band_key)
references subscriber_band(subscriber_band_key)

, constraint fk_customer_permission
foreign key (permission_key)
references permission(permission_key)

) on nds_fg2
go

-- Create FK from other tables to this table:
alter table address_junction
add constraint fk_address_junction_customer
foreign key (customer_key)
references customer(customer_key)

go
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alter table phone_number_junction
add constraint fk_phone_number_junction_customer
foreign key (customer_key)
references customer(customer_key)

go

alter table email_address_junction
add constraint fk_email_address_junction_customer
foreign key (customer_key)
references customer(customer_key)

go

alter table interest_junction
add constraint fk_interest_junction_customer
foreign key (customer_key)
references customer(customer_key)

go

alter table subscription_sales
add constraint fk_subscription_sales_customer
foreign key (customer_key)
references customer(customer_key)

go

alter table communication_subscription
add constraint fk_communication_subscription_customer
foreign key (customer_key)
references customer(customer_key)

go

alter table campaign_result
add constraint fk_campaign_result_customer
foreign key (customer_key)
references customer(customer_key)

go

alter table channel_junction
add constraint fk_channel_junction_customer
foreign key (customer_key)
references customer(customer_key)

go
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-- Build indexes:
if exists
(select * from sys.indexes 
where name = 'customer_id' 
and object_id = object_id('customer'))

drop index customer.customer_id
go

create unique index customer_id
on customer(customer_id)
on nds_fg6

go

As you can see, it has its own data warehouse key called customer_key. The DDS will
be using this key too. We do key management in the NDS. The NDS is where the key is
assigned and maintained. If you notice, there is no address_key, email_address_key, or
phone_number_key in the Customer table. This is because we are using junction tables to
implement a many-to-many relationship for these three entities. The customer table has
occupation_key, household_income_key, customer_status_key, subscriber_class_key,
subscriber_band_key, and permission_key, because they have a many-to-one relationship. 

For key columns, to avoid confusion and maintain consistency, I prefer to use int rather
than tiny or small int, even though it takes up more space. This is because if you have a foreign
key on a key column, the data type must match exactly. If one table uses tinyint and the other
table uses smallint, SQL Server won’t create the foreign key. With so many tables to link, 14 in
this customer table, remembering which one is smallint, which one is tinyint, and which one is
int causes a headache.

The additional space is not that much anyway; in other words, using 2 or 3 bytes extra and
the dimensions that can use tinyint as their dimension keys means that they have less than
255 rows anyway. Remember that key columns are identity (1,1), meaning that even though
the number of rows is currently 200, it is possible that the max(key) is 300, because the other
100 rows have been deleted over time. If we set the key column as tinyint, we would have a
problem.

Here is the order_header table:

use NDS
go

-- Remove FK if exists:
if exists
(select * from sys.foreign_keys
where name = 'fk_order_detail_order_header'
and parent_object_id = object_id('order_detail'))

alter table order_detail
drop constraint fk_order_detail_order_header

go
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-- Create the table (drop it first if exists):
if exists 
(select * from sys.tables 
where name = 'order_header')

drop table order_header
go

create table order_header
( order_id              int not null
, sales_date            datetime
, customer_key          int
, store_key             int
, source_system_code    tinyint not null
, create_timestamp      datetime not null
, update_timestamp      datetime not null
, constraint pk_order_header
primary key clustered (order_id)
on nds_fg6

) on [primary]
go

-- Create FK:
alter table order_detail
add constraint fk_order_detail_order_header
foreign key (order_id)
references order_header(order_id)

go

-- Build indexes:
if exists
(select * from sys.indexes
where name = 'order_header_order_id'
and object_id = object_id('order_header'))

drop index order_header.order_header_order_id
go

create unique index order_header_order_id
on order_header(order_id)
on nds_fg6

go

if exists
(select * from sys.indexes
where name = 'order_header_sales_date'
and object_id = object_id('order_header'))

drop index order_header.order_header_sales_date
go
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create unique index order_header_sales_date
on order_header(sales_date)
on nds_fg6

go

if exists
(select * from sys.indexes
where name = 'order_header_customer_key'
and object_id = object_id('order_header'))

drop index order_header.order_header_customer_key
go

create unique index order_header_customer_key
on order_header(customer_key)
on nds_fg6

go

if exists
(select * from sys.indexes
where name = 'order_header_store_key'
and object_id = object_id('order_header'))

drop index order_header.order_header_store_key
go

create unique index order_header_store_key
on order_header(store_key)
on nds_fg6

go

Notice that we created four indexes for the order_header table, because the query traffic
could come from those four possible directions. The order_header table references customer
and store tables and is being referenced by the order_detail table. 

Here is the email_address_table, with the email_address_junction and email_address_
type tables:

use NDS
go

if exists
(select * from sys.foreign_keys
where name = 'fk_email_address_junction_email_address'
and parent_object_id = object_id('email_address_junction'))

alter table email_address_junction
drop constraint fk_email_address_junction_email_address

go
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if exists
(select * from sys.foreign_keys
where name = 'fk_supplier_email_address'
and parent_object_id = object_id('supplier'))

alter table supplier
drop constraint fk_supplier_email_address

go

if exists 
(select * from sys.tables 
where name = 'email_address')

drop table email_address
go

create table email_address
( email_address_key   int not null identity(1,1)
, email_address       varchar(200)
, source_system_code  tinyint not null
, create_timestamp    datetime not null
, update_timestamp    datetime not null
, constraint pk_email_address 
primary key clustered (email_address_key)
on nds_fg6

) on nds_fg2
go

alter table email_address_junction
add constraint fk_email_address_junction_email_address
foreign key (email_address_key)
references email_address(email_address_key)

go

alter table supplier
add constraint fk_supplier_email_address
foreign key (email_address_key)
references email_address(email_address_key)

go

if exists
(select * from sys.indexes
where name = 'email_address_email_address'
and object_id = object_id('email_address'))

drop index email_address.email_address_email_address
go
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create unique index email_address_email_address
on email_address(email_address)
on nds_fg6

go

Here is the email_address_junction table:

use NDS
go

if exists 
(select * from sys.tables 
where name = 'email_address_junction')

drop table email_address_junction
go

create table email_address_junction
( email_address_junction_key  int not null
, customer_key                int not null
, email_address_key           int not null
, email_address_type_key      int
, source_system_code          tinyint not null
, create_timestamp            datetime not null
, update_timestamp            datetime not null
, constraint pk_email_address_junction
primary key clustered (email_address_junction_key)
on nds_fg6

, constraint fk_email_address_junction_customer
foreign key (customer_key)
references customer(customer_key)

, constraint fk_email_address_junction_email_address
foreign key (email_address_key)
references email_address(email_address_key)

, constraint fk_email_address_junction_email_address_type
foreign key (email_address_type_key)
references email_address_type(email_address_type_key)

) on nds_fg2
go

if exists
(select * from sys.indexes
where name = 'email_address_junction_customer_key_email_address_key'
and object_id = object_id('email_address_junction'))

drop index
email_address_junction.email_address_junction_customer_key_email_address_key

go
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create unique index email_address_junction_customer_key_email_address_key
on email_address_junction(customer_key, email_address_key)
on nds_fg6

go

Here’s the email_address_type table:

use NDS
go

-- Remove FK if exists:
if exists
(select * from sys.foreign_keys
where name = 'fk_email_address_junction_email_address_type'
and parent_object_id = object_id('email_address_junction'))

alter table email_address_junction
drop constraint fk_email_address_junction_email_address_type

go

-- Create the table (drop it first if exists):
if exists 
(select * from sys.tables 
where name = 'email_address_type')

drop table email_address_type
go

create table email_address_type
( email_address_type_key    int not null identity(1,1)
, email_address_type_code   char(2)
, email_address_type        varchar(10)
, description               varchar(30)
, source_system_code        tinyint not null
, create_timestamp          datetime not null
, update_timestamp          datetime not null
, constraint pk_email_address_type
primary key clustered (email_address_type_key)
on nds_fg6

) on nds_fg2
go

-- Create FK:
alter table email_address_junction
add constraint fk_email_address_junction_email_address_type
foreign key (email_address_type_key)
references email_address_type(email_address_type_key)

go

CHAPTER 6 ■ PHYSICAL DATABASE DESIGN156

9314ch06final.qxd  11/15/07  10:13 AM  Page 156



The email_address_type table is used to determine, for example, which e-mail address
is the home e-mail address and which e-mail address is an office e-mail address. Similarly,
address_type and phone_number_type are used for the same purpose. If you use a junction
table, you don’t have key columns on both child and parent tables. Both child and parent
key columns are in the junction table. Remember to set all primary key columns in all tables
to identity (1,1).

■Tip It is useful to name the foreign key as fk_childtable_parenttable. If, for example, you make
a small change in the email_address table and want to run the script and it says “Cannot drop the email
address table because it is being used in FK relationship with other table,” then you need to find out which
table referenced to it. But with this naming, you can query with select * from sys.foreign_keys

where name like '%email_address'.

With that, we have finished creating the NDS. Just like we did in the DDS, you just need
to create a batch file that contains sqlcmd to call all these scripts. Be careful with the sequence
of how you build the tables. Because of the referential integrity (foreign keys), you need to
build them in a particular order. And the script may need several passes to build successfully
because the foreign key creation is put on the table creation script (if we create all tables first
and then create all the foreign keys afterward, we need only one pass). For a complete list of
scripts for all the tables in the NDS, please refer to http://www.apress.com/. The NDS table
creation scripts are located in the /script folder.

Using Views
A view is a database object with columns and rows like a table but not persisted on disks. A
view is created using a SELECT statement that filters columns and rows from a table or a com-
bination of several tables using a JOIN clause. In a data warehouse, views are used for three
purposes:

To create conform dimensions in dimensional data stores: Conformed dimensions mean
they are either the same dimension table or one is the subset of the other. As I discussed
in Chapter 1, dimension A is said to be a subset of dimension B when all columns of
dimension A exist in dimension B and all rows of dimension A exist in dimension B.

To shield users from physical tables, making it simpler for the users as well as to restrict
access: A view creates a virtual layer on the top of physical tables. Users do not access the
physical tables anymore. Instead, they are accessing the views. This additional layer
enables us to create a virtual table that gets data from several tables. The additional layer
also enables us to restrict users from accessing certain columns or certain rows.

To increase the availability, particularly to make the data warehouse up and running
when we are populating it: This is used in user-facing data stores such as the DDS. For
every dimension table and every fact table, we create two physical tables and one view
that selects from one of these two tables. When table 1 is being populated, the view selects
from table 2. Conversely, when table 2 is being populated, the view selects from table 1.
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Let’s discuss these three uses of views one by one. 
The first one is to create a conform dimension. Sometimes when creating a data mart,

the dimension that we need in that mart already exists. But we can use the existing dimension
because the granularity is different. We need a dimension with higher granularity, and there-
fore only certain columns are applicable. In this case, we create a view from that existing
dimension to select only certain rows and certain columns. We make this view a new dimen-
sion with a higher grain for that data mart. 

The new dimension conforms to the existing dimension. When we have conformed
dimensions between two data marts, we can drill across from one mart to another mart. The
benefit of using views to create conform dimensions is that we don’t have to populate the
higher-grain dimension. When the data in the underlying dimension changes, the data in the
higher-grain dimension automatically changes.

For example, in the supplier performance data mart, there is a dimension called week.
The week dimension contains one row for each week in the year. This dimension is not a phys-
ical table but a view created from the date dimension. It is created by filtering only certain
days (this can be any day of the week) and selecting only relevant columns, as follows:

use DDS
go

if exists 
(select * from sys.objects
where name = 'dim_week' and type = 'V')

drop view dim_week
go

create view dim_week as select
date_key, date, system_date, sql_date, julian_date, day, 
day_of_the_year, week_number, month, month_name, short_month_name, 
quarter, year, fiscal_week, fiscal_period, fiscal_quarter, fiscal_year,
source_system_code, create_timestamp, update_timestamp
from dim_date where day_of_the_week = 1
go

The week dimension and date dimension are conformed. This is an example of con-
formed dimensions that consist of two entities. Two dimensions are said to be conformed if
they are identical or one is a subset of the other.

The second usage is to create a virtual layer on top of the physical tables to make it sim-
pler for the users. Three typical uses are the data mart view, last month view, and specific
store view. Two other uses are for SCD type 2 and SCD type 3 current view. A slowly changing
dimension contains both the current values and the historical values. We use a current view
to select only the current values.

A data mart view is where we create a view on top of a fact table and its dimension tables,
giving the end users who have direct DDS access a single virtual table sourced from many
physical tables. For example, in the Amadeus Entertainment case study to analyze product
sales by date, customer, product, and store, the SQL query is as follows:
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select f.quantity, f.price, f.value, f.cost, f.margin
d.date, d.day_name, d.fiscal_week, d.fiscal_period,
c. name, c.email_address, c.city, c.country, c.subscriber_class,
p.name, p.title, p.artist, p.product_type, p.product_category,
s.city, s.country, s.store_type, s.region, s.division
from fact_product_sales
left join dim_date t on f.date_key = d.date_key
left join dim_customer c on f.customer_key = c.customer_key
left join dim_product p on f.product_key = p.product_key
left join dim_store s on f.store_key = s.store_key

These key columns from the main dimension tables are accessed over and over again,
and every time users have to type those long left-joins. In certain cases, the column names
on the tables are not short and nice like previously shown but rather long and confusing,
such as wk_rev_sub_sgl_ttl, fs_prd_nm, and tot_rgn_div. To avoid this problem in the first
place, we should use descriptive names for all database objects including columns, tables,
views, indexes, primary keys, and foreign keys. For these users, a view like the following
would make it a single table with the necessary columns:

create view sales as
select f.quantity, f.price, f.value, f.cost, f.margin
d.date, d.day_name, d.fiscal_week, d.fiscal_period,
c. name, c.email_address, c.city, c.country, c.subscriber_class,
p.name, p.title, p.artist, p.product_type, p.product_category,
s.city, s.country, s.store_type, s.region, s.division
from fact_product_sales
join dim_date t on f.date_key = d.date_key
join dim_customer c on f.customer_key = c.customer_key
join dim_product p on f.product_key = p.product_key
join dim_store s on f.store_key = s.store_key

I have experienced this myself: some users are so used to writing these queries that they
know the date_key value for yesterday and the store_key value for their stores, as in select *
from fact_sales where date_key = 12201 and store_key = 324. In the first few weeks, they
write this:

select * from sales_fact f 
join dim_date d on f.date_key = d.date_key 
join dim_store s on f.store_key = s.store_key
where d.sql_date = 'mm/dd/yyyy' and s.name = 'Paris'

but because they get so used to it (also to make it shorter), in the end they type date_key and
store_key directly. My point is, if they use the views, it would be much easier for them.

Another example where a view is used to create a virtual layer to make it simpler for the
users is the last month view. The last month view is a view with the where clause where d.month
= datepart(m,getdate())-1. This is frequently used because last month was a complete
month, and it was recent. This month is not complete yet, so you can’t really compare it.
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A specific store (or country, or branch, or locale, or region) is another view that is fre-
quently used, as shown previously but with a where clause to limit to a certain store, branch,
or region. This is because the users are responsible only for that store or region.

When you have a slowly changing dimension, most of the time the users just want the
current view. So, a view with a where clause such as where is_current = 1 is greatly welcomed
by the users. That’s for SCD type 2. For type 3, the view is something like create view as
select store_id, address, city, region2 as region, division2 as division, ignoring the
prior region and prior division. This is especially useful when your current region is called
region2, but last year it was region1.

The last usage of view is to increase availability. When you populate a fact table, chances
are, you will be locking this table from access. There are two purposes of locking the table
when loading data: to speed up loading and to avoid data volatility, such as in ever-changing
values, which could cause user confusion. So, your infrastructure is excellent, is clustered, and
has a web farm with dual fiber switches, but still the data warehouse will be inaccessible for
three hours every day. If the data warehouse is used worldwide, there is no “nighttime.” Night-
time in the United States is daytime in Asia. You can’t schedule the batch-loading process for
3 a.m. EST because Singapore and London are using the data warehouse.

A common technique is to use a view. We have two physical tables and one view that
point to one of these two tables. For example, say we have two physical tables: fact_product_
sales_1 and fact_product_sales_2. We create a view called fact_product_sales as create
view fact_product_sales as select * from fact_product_sales_N, with N = 1 or 2, depend-
ing on which day. Monday it is 1, Tuesday it is 2, Wednesday it is 1, Thursday it is 2, and so on.
Assume that today is Monday. Your active fact table is fact_product_sales_2. On the stage, you
have a table containing today’s data. So, you load this data (Monday data) into fact_product_
sales_1. After you load it, you drop the fact_product_sales view and do this: create view
fact_product_sales as select from fact_product_sales_1. Notice that now fact_product_
sales_2 is out-of-date because it contains Sunday data.

Tomorrow, your stage table contains Monday data and Tuesday data. You load the
Monday and Tuesday data from the stage into fact_product_sales_2. Then you drop the
fact_product_sales view and do this: create view fact_product_sales as select from
fact_product_sales_2. Notice that now fact_product_sales_1 is out-of-date because it
contains Monday data. The BI or CRM applications are shielded from what’s happening.
From an application point of view, they only access a fact table called fact_product_sales,
which is always available, and the data is always up-to-date. In reality, the fact table is actu-
ally a view sourced alternately from two different physical tables.

This technique is not only for loading fact tables but also for loading dimension tables.
Rather than a multiday implementation as described previously, you can also use this tech-
nique for an intraday implementation, as follows:

1. Set the view to point to table 2.

2. Load today’s data into table 1.

3. Set the view to point to table 1.

4. Load today’s data into table 2.
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By using this technique, your data warehouse will be up all the time. Dropping and
re-creating a view takes only a few seconds. This technique is commonly used to increase the
data warehouse availability, both in packaged applications running on a normalized data
warehouse as well in custom-developed data warehouses.

Summary Tables
Out of the many things that can improve data warehouse performance, the summary table
is at the top of the list. (The second one is table partitioning, and the third one is indexing.)
This is because the data that the users need is already precalculated. We will discuss these
three things one by one in the next three main sections.

Say you have a report that displays a graph of the summary of weekly sales data for the
last 12 weeks by product group or by stores. Let’s say that within a week you have 1 million
rows. So the stored procedure behind that report must process 1 million rows and display the
data on the screen as a graph, while the user waits. Let’s say that this takes 45 seconds.

If you produce a table called weekly_sales_summary, which runs the same query, and put
the result in this summary table, when the user accesses the report, the stored procedure or
the SQL statement behind the report needs to access only this summary table. The response
time of the report is greatly improved; it’s probably only one or two seconds now.

The summary table needs to be at least 10 times smaller (in terms of the number of rows),
ideally 100 times smaller or more. Otherwise, there is no point creating a summary table. If
you wonder where 10 and 100 come from, the guideline to determine whether it is worth cre-
ating the summary table is to compare the performance improvement with the time required
to build it. What I meant by “performance improvement” is how much faster querying the
summary table compared to querying the underlying table directly is. If the performance
improvement is insignificant (say less than 10 percent), if it takes a long time to build the table
(say one hour), and if the query is not used frequently, then it’s not worth building a summary
table. Remember that a summary table needs to be updated every time the underlying fact
table is updated. If the number of rows in the summary table is much less than the underlying
table, such as 10 or 100 times smaller, usually the performance improvement is significant.
The ideal time to refresh the summary tables is immediately after the population of the under-
lying fact table.

As we discussed in Chapter 5, we have three types of fact table: the transactional fact
table, the periodic snapshot fact table, and the accumulative snapshot fact table. A summary
fact table is suitable for a transaction fact table. For a periodic snapshot fact table, we have the
“latest summary table.” A latest summary table contains only today’s version of the snapshot.
For example, the Subscription Sales fact table contains a daily snapshot of all the membership
subscriptions. If we have 1 million customer subscriptions, the table would contain 1 million
records every day. Over two years, there would be 730 million rows in the fact table. In this
case, we can create a table called fact_subscription_sales_latest that contains only today’s
rows so it contains only 1 million rows and is therefore faster. This latest summary table is use-
ful if you need information that depends on the today value only.
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Partitioning
Out of many things that can improve the performance of a data warehouse, I would say parti-
tioning is the second most important. In SQL Server 2005 and 2008, we have a new feature for
partitioning for a physical table. Previously, in SQL Server 2000, we could partition only a view;
we could not partition a table.

There are two types of partitioning: vertical partitioning and horizontal partitioning.
Vertical partitioning is splitting a table vertically into several smaller tables, with each table
containing some columns of the original table. Horizontal partitioning is splitting a table hori-
zontally into several smaller tables, with each table containing some rows of the original table.
In this section, I’m talking about horizontal partitioning, not vertical partitioning. 

Imagine if the Subscription Sales fact table were horizontally partitioned like the one in
Figure 6-3.

Figure 6-3. Partitioned and nonpartitioned Subscription Sales fact table

The nature of the fact tables in dimensional data warehouses is that their content is
chronological according to time. If it is a transactional fact table, such as Product Sales, the
rows coming into the fact table are the sales records from the previous day. If it is a periodic
snapshot fact table, such as Subscription Sales, the rows coming into the fact table are the
snapshot of all subscriber records as they were on that day.

Because of this natural characteristic, it is best to physically organize the table by date. It
makes the loading a lot quicker. It makes the query faster if the information you need is from
the same month or the same year. The left part of Figure 6-4 shows the loading and query of a
nonpartitioned Subscription Sales fact table, physically clustered on store_key. The records
are loaded to various parts of the table. The queries fetch the data also from various different
places within the table.
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Figure 6-4. Loading and query of partitioned and nonpartitioned table

The right part of Figure 6-4 shows a partitioned Subscription Sales fact table. The loading
of today’s data hits only a particular partition, which is faster because the data is loaded into
one place (physically clustered sectors on disk), rather than scattered over different sectors
and disks. Queries are faster too. The response time of a query with where column1 = value1 is
better if run on a partitioned table with column1 as the partitioning key, compared to running
it on a nonpartitioned table because it encourages SQL Server to execute the query in parallel.
A test on SQL Server 2005 running on Unisys ES7000 with EMC Clarion SAN managed to load
2.5 billion rows into a partitioned fact table in about one hour.5

Let’s partition our Subscription Sales table. In this example, we have a fact table storing
customer subscriptions. We will partition the table into monthly partitions; in other words,
each month will go into its own partition. In this example, we will use January until December
2008. Here is the table creation script:

use dds
go

if exists 
(select * from sys.tables 
where name = 'fact_subscription_sales')

drop table fact_subscription_sales
go

if exists
(select * from sys.partition_schemes
where name = 'ps_subscription_sales')

drop partition scheme ps_subscription_sales
go
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if exists
(select * from sys.partition_functions
where name = 'pf_subscription_sales')

drop partition function pf_subscription_sales
go

create partition function pf_subscription_sales (int)
as range left for values 
(10365, 10396, 10425, 10456, 10486, 10517
, 10547, 10578, 10609, 10639, 10670, 10700, 10731)
go

create partition scheme ps_subscription_sales
as partition pf_subscription_sales to 
(dds_fg2, dds_fg3, dds_fg5, dds_fg2, dds_fg3, dds_fg5
, dds_fg2, dds_fg3, dds_fg5, dds_fg2, dds_fg3, dds_fg5
, dds_fg2, dds_fg3)
go

create table fact_subscription_sales
( date_key                  int      not null
, customer_key              int      not null
, package_key               int      not null
, format_key                int      not null
, store_key                 int      not null
, start_date_key            int      not null
, end_date_key              int      not null
, lead_key                  int      not null
, subscription_id           int      not null
, subscription_revenue      money
, single_titles_revenue     money    
, monthly_revenue           money
, music_quantity            int
, music_unit_cost           money
, monthly_music_cost        money
, film_quantity             int
, film_unit_cost            money
, monthly_film_cost         money
, book_quantity             int
, book_unit_cost            money
, monthly_book_cost         money
, monthly_indirect_cost     money
, monthly_cost              money
, monthly_margin            money
, annual_revenue            money
, annual_cost               money
, annual_profit             money
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, subscriber_profitability  decimal(9,2)
, subscribe_timestamp       datetime
, unsubscribe_timestamp     datetime
, source_system_code        tinyint
, create_timestamp          datetime
, update_timestamp          datetime
, constraint pk_fact_subscription_sales 
primary key clustered
( date_key, customer_key, subscription_id ) 
on ps_subscription_sales(date_key)

, constraint fk_fact_subscription_sales_dim_date1
foreign key (date_key)
references dim_date(date_key)

, constraint fk_fact_subscription_sales_dim_customer
foreign key (customer_key)
references dim_customer(customer_key)

, constraint fk_fact_subscription_sales_dim_package
foreign key (package_key)
references dim_package(package_key)

, constraint fk_fact_subscription_sales_dim_store
foreign key (store_key)
references dim_store(store_key)

, constraint fk_fact_subscription_sales_dim_date2
foreign key (start_date_key)
references dim_date(date_key)

, constraint fk_fact_subscription_sales_dim_date3
foreign key (end_date_key)
references dim_date(date_key)

, constraint fk_fact_subscription_sales_dim_lead
foreign key (lead_key)
references dim_lead(lead_key)

) on ps_subscription_sales(date_key)
go

First we drop the table, the partition function, and the partition scheme, if they exist.
Then we create a partition function called pf_subscription_sales. We specify the boundary
values. Because we will partition the table based on the date_key column, we need to specify
the boundary values of each partition. Partition 1 is for records before 1/1/2008, partition 2 is
for January 2008, partition 3 is for February 2008, partition 4 is for March 2008, partition 5 is
for April 2008, …, partition 13 is for December 2008, and partition 14 is for records on or after
1/1/2009. 

In the data warehouse, we’ll set date_key for 1/1/2007 as 10,000. This enables us to go back
10,000 days if necessary; in other words, if we need to create 2006 records (which we do need at
some point before we go live to load the history), it would be assigned date_key 9635 to 9999.
You don’t have to set it to 10,000. You can customize it to your needs. Setting the date_key of the
first operational day of the data warehouse to 10,000 enables us to go back 27 years. If you need
only three years, then you can start the date key with 1100 (3 ✕ 365).
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The date keys for 2008 records are 10365 to 10730. So in the partition function, we specify
that the boundary values are 1/1/2008 (date_key 10365), 2/1/2008 (date_key 10396), and so
on. We then create the partition scheme by assigning the partitions to filegroups.

After creating the partition scheme, we then create the table by specifying the partition
scheme with the partitioned column in brackets at the end of the DDL. This is to inform SQL
Server that we want to partition the table using that partition scheme. A common mistake is to
specify a filegroup for the clustered primary key as follows: constraint pk_tablename primary
key clustered(PK columns) on dds_fg4. This will produce the following message:

The filegroup 'dds_fg4' specified for the clustered index
'pk_fact_subscription_sales' was used for table 
'fact_subscription_sales' even though partition scheme 
'ps_subscription_sales' is specified for it.

What happened was that SQL Server put the table and the clustered index on dds_fg4,
rather than on dds_fg2, dds_fg3, and dds_fg5 as we specified in the partition scheme. This is
because the leaf nodes of the clustered index are the physical table pages. When creating a
partition table, if the constraint filegroup is different from the table filegroup, SQL Server will
do whatever is specified in the constraint filegroup and ignore the table filegroup.

The partition index is best placed in the same filegroup as the partition table because it
enables SQL Server to switch the partitions efficiently. In this case, we say that the index is
aligned with the table. Aligning the partition index with the partition table helps when we
implement a sliding window for archiving partitions and when we add new partitions to the
table. To enable us to switch or move partitions, the index must be aligned with the table.
When we move or transfer a partition, we don’t actually move the data. Instead, we change
the metadata only around where the data is. 

Partition maintenance is the activity of administering a partitioned table so that it is ready
for data loading and query. If we implement partitioning using monthly sliding windows, we
can do partition maintenance monthly or annually. Every month we can drop the oldest parti-
tion (and archive it) and add this month’s partition. Or we can do this every December: drop
12 partitions for the oldest year and add 12 new partitions for the coming year.

Indexes
Indexing can significantly improve the query and loading performance of data warehousing.
In this section, I will discuss how to implement indexing in a data warehouse. I will discuss
choosing the primary key and clustered index and indexing small tables, including indexes
and partitioned indexes.

In the DDS, we have fact tables and we have dimension tables. They require different
indexing and primary keys. I will discuss dimension tables first and then the fact tables. Each
dimension table has a surrogate key column. This is an identity (1,1) column, and the values
are unique. We make this surrogate key column the primary key of the dimension table. We
also make this surrogate key column the clustered index of the dimension table. The reason
for doing this is because in the DDS, the dimension tables are joined to the fact table on the
surrogate key column. By making the surrogate key a clustered primary key, we will get good
query performance because in SQL Server a clustered index determines the order of how the
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rows are physically stored on disk. Because of this, we can have only one clustered index on
each table. 

Dimension tables contain attribute columns, typically having a character data type.
Attribute columns that are often used in the where clause of the queries need to be set as a
nonclustered index—but only if the selectivity is high. If the attribute column has many
duplicate values, it may not be worth indexing. 

For the fact table in SQL Server data warehousing, we have two approaches in terms of
determining the primary key and the clustered index. Note that this is specifically for SQL
Server; it does not apply to other database engines such as Oracle or Teradata.

• The first approach is to create a fact table surrogate key column. This is an identity (1,1)
column that functions as a single-column unique identifier of the fact table row. We set
this column as the primary key and the clustered index of the fact table.

• The second approach is not to have a fact table surrogate key column. Instead, we
select the minimum combination of columns that make a row unique as the primary
key. In some cases, the combination of all dimensional surrogate key columns makes
a row unique. In other cases, they don’t, and we have to identify other columns that
make a row unique, such as the degenerate dimension columns.

If you want to implement the first approach, create a new column for every single fact
table. Call this column fact_key. It is an identity (1,1) column. The data type is bigint. It is not
worth taking the risk of using the int data type to save 4 bytes, unless you are certain you are
not going to hit 9 billion. Remember that the max(key) can be higher than the number of
rows, as I explained earlier. The bigint data type is 9 quintillion (18 zeros), so it should be
enough. Create a clustered primary key in this column. The advantages of this approach are
that the loading can be twice as fast (because the clustered index key is an identity column,
so there is no need to reorganize the fact table rows when loading new data), and the non-
clustered indexes can be four to five times smaller than the second approach (because the
clustered index key is 8 bytes).

If you want to implement the second approach, find out what makes the fact table row
unique. For example, in our Subscription Sales fact table, the grain is one row for each cus-
tomer subscription per day. So, date_key and customer_key must be part of the primary key.
What if the customer subscribes to two packages? We need to include the subscription_id
in the primary key to make it unique, so the primary key is date_key, customer_key, and
subscription_id. We cluster the table in these primary key columns, so the table will physi-
cally be organized/sorted according to date, customer, and then subscription ID. 

This will make the query fast if the where clause contains the date and customer, because
the table is physically sorted by the date and then the customer. This could be 10 times faster
than if the date and customer are not indexed. That’s the advantage of the second approach.
The loading speed of the second approach could be twice as slow as the first approach (as dis-
cussed previously), but we have fewer indexes to maintain. Overall, on the SQL Server
platform, the fact table surrogate key approach is preferred because there is no need to reor-
ganize the clustered index when loading, which results in better loading performance, while
the query performance can be supported by a nonclustered index. The second reason is func-
tionality: we can uniquely identify a fact table row using a single column, which is useful when
we need to refer to a fact table row either from another fact table (drilling across) or from the
same fact table itself (self-join).
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For the Communication Subscriptions fact table, the grain is one row for each subscrip-
tion, so the columns that make a row unique are customer_key, communication_key, and
start_date_key. So, we make these three columns the clustered primary key. For the Supplier
Performance fact table, the grain is one row per week for each product supplied. The columns
that make a row unique are week_key, supplier_key, and product_key, so we make these three
columns the clustered primary key. For the Campaign Results fact table, the grain is one row
for each intended recipient. The columns that make a row unique are campaign_key, customer_
key, and send_date_key, so we make them the clustered primary key.

For the Product Sales fact table, the grain is one row for each item sold. The columns
that make a row unique are order_id and line_number, so we make them the clustered pri-
mary key. The disadvantage of the second approach is that, potentially, the nonclustered
indexes are three to four times larger, because the clustered index may consist of three or
four columns. The disadvantage of the first approach (the fact table surrogate key) is that
there are more indexes to maintain, which could impact query performance. How much it
impacts the query performance depends on whether the index covers the column on the
where clause of the query.

The Subscription Sales fact table has eight dimensional key columns and one degenerate
dimension column (subscription_id). If you create the fact table clustered primary key based
on the combination of eight dimension keys plus subscription_id, all nonclustered indexes
would become very large, in other words, nine columns (which is as big as the table itself).
This is not a good idea because in SQL Server the clustered index key is used by all nonclus-
tered indexes. The loading performance could be two times slower (or worse) as SQL Server
and must physically reorganize the fact table based on these nine columns as the data is
loaded into the fact table. 

It is not worth indexing the small tables, such as some dimension tables and some attrib-
ute tables on the NDS. The overhead (index maintenance at loading) outweighs the benefit
(query performance). The guideline I usually use is 1,000 rows (this is determined by querying
two tables with and without an index). If it is less than 1,000 rows, I generally don’t index.
Dimension tables between 1,000 and 10,000 rows I rarely index; I think twice or even three
times before indexing them, probably examining the execution plan first. For example, in the
Amadeus Entertainment store table, the query where city = value1 takes 0 milliseconds,
whether we have a nonclustered index on city or not. The loading is impacted, though. An
insert select into the table (empty) takes 0 milliseconds without an index, 93 milliseconds
with an index only on the city column, and 2560 milliseconds with indexes on 17 columns.

Indexing is a two-step process. The first step is to determine what column to index based
on application and business knowledge. If the column will be used when analyzing the data,
we consider that column for indexing. This is done when doing data modeling and physical
database design. For example, on the customer dimension, we think we need to put a non-
clustered index on the occupation column because the business user needs to analyze the
product and subscription sales by income. We also need to index on the permission column,
because the CRM segmentation process will need to get a list of customers who have given
their permissions.

The second step is to fine-tune the indexes based on the query workload using the Query
Execution Plan and the Database Engine Tuning Advisor. This is done after we load the data
into the NDS and DDS, still in the development environment. We can identify slow-running
queries by measuring how many milliseconds each query runs. This is done using SQL Server
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Profiler to capture the SQL statement execution duration into a table that we can analyze.
After we identify the slow-running queries, we examine the execution plan of those queries.
For example, we may find some SQL queries use columns that we have not indexed in their
where clause. We can improve these queries by creating a nonclustered index on those
columns.

OK, let’s move on with our indexing. In the dimension table, let’s create the indexes in
columns that are used in the queries. For example, the day of the week column is used on
dim_week, so we index on that column, like this:

if exists 
(select * from sys.indexes 
where name = 'dim_date_day_of_the_week'
and object_id = object_id('dim_date'))

drop index dim_date.dim_date_day_of_the_week
go

create index dim_date_day_of_the_week
on dim_date(day_of_the_week)
on dds_fg6

go

Which dimension column do we index? In the first step of indexing, during data modeling
and physical database design, we create the indexes based on our application and business
knowledge. In the second step, we fine-tune the indexes based on the result of query execu-
tion results that we capture using SQL Server Profiler.

For a fact table, it generally helps the performance of queries that join the fact table and
the dimension tables if we create one column nonunique nonclustered index for each dimen-
sional surrogate key column in the fact table. The SQL Server query optimizer can then use the
combination of these one-column indexes when executing the query with where dim_key1 =
... and dim_key2 = ... and dim_key3 = .... Some people call this type of indexing index
intersection, and some people call it index bitmapping. Here is an example of index inter-
section that creates an index for each dimensional surrogate key column in the fact table:

create index fact_product_sales_sales_date_key
on fact_product_sales(sales_date_key)
on dds_fg4

go

create index fact_product_sales_customer_key
on fact_product_sales(customer_key)
on dds_fg4

go

create index fact_product_sales_product_key
on fact_product_sales(product_key)
on dds_fg4

go
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create index fact_product_sales_store_key
on fact_product_sales(store_key)
on dds_fg4

go

To help index intersection and speed up certain queries, sometimes it is better to create
a covering index. A covering index is an index that contains all the columns referenced in the
query. The benefit of using a covering index is that the SQL Server query engine doesn’t have
to go to the table itself to get any data. It can find all the data it needs on the index. For exam-
ple, if the where clause in the SQL statement is where column1 = value1, column2 = value2,
then the covering index needs to contain column1 and column2.

The order of columns in the where clause does not matter, but the order of columns in the
covering index does matter. So, be careful when specifying the order of columns in the cover-
ing index. For the first column, we need to choose the most used dimension key. For the
second column, choose the second most-used dimension key. For the Product Sales fact table,
I’ll set the three covering indexes as follows:

• Date, customer, store, product

• Date, store, product, customer

• Date, product, store, customer

We may have to swap the third and fourth columns depending on the queries. Note that
even if you have all columns covered, the SQL Server query optimizer may not use the index if
the selectivity is low. Selectivity is the ratio between the number of rows that satisfy the criteria
and the total rows. If this ratio is high, the selectivity is low, and the index is not useful and
may not be useful. A unique index has the highest selectivity because it returns only one row.

To create indexes in a partitioned table, we just have to mention the partition schema
instead of the normal filegroup. Here are some of examples for the Subscription Sales fact
table we partitioned earlier:

create index date_key
on fact_subscription_sales(date_key)
on ps_subscription_sales(date_key)
go

create index package_key
on fact_subscription_sales(package_key)
on ps_subscription_sales(package_key)
go

create index customer_key
on fact_subscription_sales(customer_key)
on ps_subscription_sales(customer_key)
go

The indexed column must be of the same data type as the partitioning function. This is
another reason why we need to keep all the dimension key column data types as int (not
smallint or tinyint), in addition to the foreign key reason we discussed earlier. 
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Summary
Well, this was quite a long chapter. Database design is the cornerstone of data warehousing.
We will build the ETL and applications on this foundation, so we must get it right. In this
chapter, we discussed the details of the hardware platform and system architecture, the disk
space calculation, database creation, and table and view creation. 

We also covered the top three factors that can improve data warehouse performance:
summary table, partitioning, and indexing. We need to make sure they are set correctly from
the beginning—in other words, when we create the databases, not later when we have per-
formance problems.

Now that we have built the databases, in the next two chapters you will learn how to
extract the data from the source systems and populate our NDS and DDS databases, widely
known as ETL, which stands for Extract, Transform, and Load.
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Data Extraction

Now that we have created the tables in the NDS and the DDS, it is time to populate them.
Before we can populate them, though, we need to retrieve the data from the source system.
This is what data extraction is all about.

First I’ll discuss the general principles of data extraction, different kinds of source sys-
tems, and several data extraction techniques. Then I’ll introduce the tool that we will be using,
SQL Server Integration Services. After introducing the tool, I’ll then show how to use it to
extract the data from the source systems in our case study: Jade, WebTower, and Jupiter.

Introduction to ETL
ETL stands for Extract, Transform, and Load. It is the process of retrieving and transforming
data from the source system and putting it into the data warehouse. It has been around for
decades, and it has developed and improved a lot since its inception.

There are several basic principles to understand when extracting data from a source sys-
tem for the purpose of populating a data warehouse. First, the volume of data being retrieved is
large, probably hundreds of megabytes or tens of gigabytes. An OLTP system is designed so that
the data is retrieved in little pieces, not in large amounts like this, so you have to be careful not
to slow the source system down too much. We want the extraction to be as fast as possible, such
as five minutes if we can, not three hours (this depends on the extraction method, which I’ll
cover later in this chapter). We also want it to be as small as possible, such as 10MB per day if
we can, not 1GB per day. In addition, we want it to be as infrequent as possible, such as once a
day if we can, not every five minutes. We want the change in the source systems to be as mini-
mal as possible, such as no change at all if we can, not creating triggers for capturing data
changes in every single table.

The previous paragraph talks about a fundamental principle in data extraction. If there
is only thing that you will take away from this chapter, I hope it is this: when extracting data
from a source system, you have to be careful not to disturb the source system too much.

After we extract the data, we want to put it into the data warehouse as soon as possible,
ideally straightaway, without touching the disk at all (meaning without storing it temporarily
in a database or in files). We need to apply some transformations to the data from the source
system so that it suits the format and structure of the data in the NDS and the DDS. Some-
times the data transformation is just formatting and standardization, converting to a certain
number or date format, trimming trailing spaces or leading zeros, and conforming into stan-
dards. Other times the modification is a lookup, such as translating customer status 2 to
Active or translating the product category “Pop music” to 54. Another transformation that is
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frequently used in data warehousing is aggregation, which means summarizing data at
higher levels.

We also want the data we put into the warehouse to be clean and of good quality. For
example, we don’t want invalid telephone numbers, an e-mail address without the character @
in it, a product code that does not exist, a DVD with a capacity of 54GB, an address with a city
of Amsterdam but a state of California, or a unit price of $0 for a particular audio book. For
this purpose, we need to do various checks before putting the data into the warehouse.

Two other important principles are leakage and recoverability. Leakage happens when
the ETL process thinks it has downloaded all the data completely from the source system but
in reality has missed some records. A good ETL process should not have any leakage. Recov-
erability means that the ETL process should be robust so that in the event of a failure, it can
recover without data loss or damage. I will discuss all this in this chapter.

ETL Approaches and Architecture
There are several approaches of implementing ETL. A traditional approach is to pull the
data from the source systems, put it in a staging area, and then transform it and load it into
the warehouse, as per the top diagram of Figure 7-1. Alternatively, instead of putting the
data in a staging area, sometimes the ETL server does the transformation in memory and
then updates the data warehouse directly (no staging), as shown in the bottom diagram of
Figure 7-1. The staging area is a physical database or files. Putting the data into the staging
area means inserting it into the database or writing it in files.

Figure 7-1. To stage on disks or do transformation in memory
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Transforming the data in memory is faster than putting it on disk first. If the data is
small enough, you can transform in memory, but if the data is big, you need to put it on disk
first. Whether you can put the data into memory depends on how much memory the ETL
server has.

The alternative to the two ETL approaches shown in Figure 7-1 is called Extract, Load, and
Transform (ELT), as shown in the bottom half of Figure 7-2. In the ELT approach, we pull the
data from the source systems, load it into the data warehouse, and then apply the transforma-
tion by updating the data in the warehouse. In the ELT approach, essentially we copy the
source system (OLTP) data into the data warehouse and transform it there. People usually take
the ETL approach if they have a strong ETL server and strong software that is rich with all
kinds of transformation and data quality processes.

Figure 7-2. ETL and ELT: choices of where to perform the transformations

People usually take the ELT approach if they have a strong data warehouse database sys-
tem, usually MPP database systems. Massively parallel processing (MPP) is a group of servers
(called nodes), and each node has its own memory, processor, and disk. Examples of MPP
database systems are Teradata, Netezza, and Neoview. When you cluster two or more SQL
Servers, you get high availability and each node has its own memory and processor, but you
still share the disks. In MPP database systems, each node has its own memory, processor, and
disk. It is known as a share nothing architecture. An MPP database system is more powerful
than systems with shared disks because data loading is happening in parallel across multiple
nodes that have their own disks.

The main advantage of MPP database systems is that the performance increase is linear.
If you put ten SQL Servers in an active-active cluster, the performance increases, but not 10✕ a
single SQL Server. In MPP database systems, if you put in ten nodes, the performance is
almost ten times the performance of a single node.
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In terms of who moves the data out of the source system, we can categorize ETL methods
into four approaches (see Figure 7-3):

• An ETL process pulls the data out by querying the source system database regularly.
This is the most common approach. The ETL connects to the source system database,
queries the data, and brings the data out.

• Triggers in the source system database push the data changes out. A database trigger is
a collection of SQL statements that executes every time there is an insert, update, or
delete on a table. By using triggers, we can store the changed rows in another table.

• A scheduled process within the source system exports the data regularly. This is similar
to the first approach, but the program that queries the database is not an external ETL
program. Instead, it is an internal exporter program that runs in the source system
server.

• A log reader reads the database log files to identify data changes. A database log file
contains a record of the transactions made to that database. A log reader is a program
that understands the format of the data in the log file. It reads the log files, gets the data
out, and stores the data somewhere else.

Figure 7-3. Four ETL approaches based on who moves the data out of the source system

In terms of where the processes that move the data out are executed, we can categorize
ETL into three approaches (see Figure 7-4):

• Execute the ETL processes in a separate ETL server that sits between the source system
and the data warehouse server. This approach provides the highest performance. The
ETL runs on its own server, so it does not use the resources of the data warehouse
server or the source system server at all. It is more expensive than the next two options
because you have to purchase additional server and software licenses.

• Execute the ETL processes in the data warehouse server. This approach can be used if
we have spare capacity in the data warehouse server or if we have a time slot when the
data warehouse is not used (at night for example). It is cheaper than the first approach
because we don’t need to provide additional servers.
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• Execute the ETL processes in the server that hosts the source system. This approach is
implemented when we need real-time data warehousing. In other words, the moment
the data in the source system changes, the change is propagated to the data warehouse.
This is can be achieved using database triggers in the source system. In practice, this
approach is implemented in conjunction with either of the previous approaches. That
is, this approach is used only for a few tables, and the remaining tables are populated
using the first two approaches.

Figure 7-4. Choices of where to put ETL processes

General Considerations
The system we are extracting from may not be a database. It could be a file system, a queue,
a service, or e-mails. If the data is in a database, usually we retrieve the data using ADO.NET,
ODBC, OLEDB, JDBC, or proprietary database connectivity. These days, most databases are
relational, but occasionally we come across hierarchical databases, such as Adabas and ISM,
or sequential file storage, such as ISAM. To extract the data from them, we need to have the
right database driver or write a data export script using the database-specific language.

If the data is in a file or files, it could be structured, semistructured, or unstructured.
A structured file is like this:

ID Date Store Product Quantity
2893    2/1/08   32       A160       150
2897    2/4/08   29       B120       240

which is a fixed position file, meaning that the fields are in certain column positions. Or it
could be like this:
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ID|Date|Store|Product|Quantity
2893|2/1/08|32|A160|150
2897|2/4/08|29|B120|240

which is a delimited file. In this case, it is pipe delimited.
A structure file contains tabular (table) data, meaning that the data is essentially in

columns and rows format. A semistructured file contains tabular data and nontabular data.
A semistructured file looks like this XML file:

<order ID="2893">
<date>2/1/08</date>
<store>32</stores>
<product>A160</product>
<quantity>150</quantity>

</order>

<order ID="2897">
<date>2/4/08</date>
<store>29</stores>
<product>B120</product>
<quantity>240</quantity>

</order>

<customer ID="83">
<name>John Smith</name>
<email>jsmith@aol.com</email>

</order>

The first two sections (order data) are tabular, but the third one (customer data) is not
tabular.

Unstructured data is like this: “On 2/1/2008 we received order ID 2893 from store 32,
requiring 150 units of product A160. Three days later store 29 asked for 240 pieces of B120.”
It is the typical content of e-mails. We extract the information in unstructured data using text
mining.

Sometimes, the data extraction can be done only during certain times, such as after a
batch, or it cannot be done at certain times, such as at backup times or during month-end
processing. Sometimes, if we are lucky, we can access the source data at any time, such as
when there is a secondary read-only server specifically provided for ad hoc queries and ETL.
Table 7-1 lists the potential problems in data extraction, the scenarios, and the common tech-
niques in those scenarios.
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Table 7-1. Potential Problems in Data Extraction

Common Technique to 
Potential Problem Scenario Overcome

Data is available only at A long batch schedule runs Negotiate a time slot with the 
certain times. overnight followed by a big OLTP DBA. Break the 

database backup. Extracting extraction into smaller 
data during the day would chunks.
slow the OLTP.

The OLTP database is not On the first day of every month, Skip extraction on that day. 
available on certain days. OLTP runs a month-end batch Tell users the reasons for this 

for the whole day. limitation.

The OLTP DBA is concerned The project team consists of Ask the DBA to give “read-
that our ETL could “mess up” external consultants who are only” access. Ask the OLTP 
their system. just learning the OLTP internals. DBA to export data for you.

There is a concern that ETL will There are no “quiet times” Read from the secondary 
strain/overload the OLTP because the OLTP is a global OLTP database. Use a less 
database. database. frequent extract for large

tables, such as only Sundays.

The OLTP DBA is concerned There is an emergency situa- Tell the DBA they may ter-
that they can’t stop ETL pro- tion in OLTP that requires server minate you at any time (tell 
cesses in an emergency. restart. them how) but rerun

afterward (manual invoke).

They can’t start ETL processes. There is an OLTP backup Program the ETL to rerun 
overrun. automatically later.

One of the most important things at this stage of the project (the beginning of ETL) is to
get to the data, that is, to be able to connect to the source data. Sometimes it takes time to be
in a position where we can query the source system (if it is a database) or read the files (if it a
file system). Sometimes the source database server is physically located on another continent
and there is no connectivity to that server. I’ve worked on several projects where we had to
arrange for the network connectivity to be opened, that is, to allow certain TCP traffic to flow
through the firewall so that we could get to the data. Table 7-2 lists the common reasons for
not being able to get to the source data, as well as their common solutions.

Table 7-2. Reasons for Not Being Able to Get the Source Data

Reason Common Solution

There is no connectivity to the target database, Ask the network engineer to open the firewall. 
probably because of no routing or the traffic is Provide the source IP address, the destination 
blocked on the firewall. IP address, and the port number to open. Use

the NATed IP address if required.

The target database requires a specific driver. Obtain or purchase the driver and install it on 
We cannot use ODBC, ADO.NET, or OLEDB. the ETL server.

The target server name is not recognized. Try it with IP first. If this works, ask the network
team to add the name on the DNS. Some data-
base systems such as Teradata add a suffix to
the name.

Continued
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Table 7-2. Continued

Reason Common Solution

We can reach the database but cannot query Ask the OLTP DBA to create two accounts: a 
because we have no access to the tables or views. personal account for development and a

functional account for production. Always ask
for read-only access.

The database version of the OLTP is newer than Upgrade the driver.
the driver on the ETL server.

The RDBMS requires a specific language or tool, Either obtain the ODBC version of the driver 
such as Progress 4GL. (which accepts normal SQL queries) or ask the

DBA to write a script to export the data.

In the next three sections, I’ll discuss extracting data from databases, file systems, and
other source types.

Extracting Relational Databases
After we connect to the source data, we can then extract the data. When extracting data from a
relational database that consists of tables, we can use one of four main methods:

• Whole table every time

• Incremental extract

• Fixed range

• Push approach

Whole Table Every Time
We use the whole table every time when the table is small, such as with a table with three inte-
ger or varchar(10) columns consisting of a few rows. A more common reason is because there
is no timestamp or identity column that we can use for knowing which rows were updated
since the last extract. For example, a general decode table like Table 7-3 could be extracted
using the “whole table every time” method.

Table 7-3. A General Decode Table

Table Code Description

PMT 1 Direct debit

PMT 2 Monthly invoice

PMT 3 Annual in advance

STS AC Active

STS SU Suspended

STS BO Balance outstanding

SUB S Subscribed

SUB U Unsubscribed

…
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This code-decode table is used throughout the system. Rather than creating a separate
table for the payment code, customer status, subscription status, and so on, some business
systems use a common table, that is, a single decode table serving the whole system. Of
course, this is less flexible, but I’ve seen this implemented in a source system. Because there
was no timestamp, no transaction date (it’s not a transaction table), and no identity column
either, there was no way we could possibly download the data incrementally, because we
couldn’t identify which rows were new, updated, or deleted. Luckily, the table was only about
15,000 rows and took about a minute to extract to the stage.

In my experience, a table that contains 1,000 to 5,000 rows (say 10 to 30 columns, or up
to 500 bytes in width) on a 100Mbps LAN normally takes one to five seconds to download
from DB/2 on an AS/400 using an iSeries OLE DB driver, or from Informix on Unix using an
Informix native OLE DB driver into a staging table with no index in SQL Server 2005 or 2000
on a Windows 2000 or 2003 server, configured with RAID 5 for MDF and RAID 1 for LDF using
15,000 RPM disks, running on Dell 2850 with 8MB memory, performed using SSIS or DTS,
with no transformation or scripting (just plain column-to-column mapping with data con-
version). I cannot give you the formula of how to calculate the time it would take in your
environment because different hardware and software configurations have different results,
but I can give you a guide: you can estimate the time it would take in your production envi-
ronment by measuring how long it takes to run the ETL routine on your development or test
environment against the test OLTP system.

If the table is small enough, say up to 10,000 rows (this number is based on my experi-
ence; it may be different in your environment), it is usually quicker to download the whole
table than to constrain the query with a certain where clause in the query. If we specify, for
example, select * from stores where (createtimestamp > 'yyyy-mm-dd hh:mm:ss' and
createtimestamp <= 'yyyy-mm-dd hh:mm:ss') or (updatetimestamp > 'yyyy-mm-dd
hh:mm:ss' and updatetimestamp <= 'yyyy-mm-dd hh:mm:ss'), it will take the source database
engine a few seconds to do the previous four comparisons with every row to identify the rows
that we are looking for. This is especially true if the table is not indexed in any of those four
columns (and most tables are not indexed in timestamp columns). It would be faster to put
just select * from stores so that the source database engine can start returning the rows
straightaway, without doing any preprocess calculation first.

For tables with fewer than 10,000 rows, I recommend you measure the time it takes to
download the whole table and compare it with the time to download it incrementally with
some constraints on. We can measure the time it takes to download by using SQL Profiler, by
storing “before” and “after” timestamps into a table/file, or by looking at the SSIS log.

Incremental Extract
The transaction tables in major organizations are large tables, containing hundreds of thou-
sands of rows or even hundreds of millions of rows (or more). It could take days to extract the
whole table, which is a very disk-intensive operation, decreasing the transactional perform-
ance on the front-end application because of a database bottleneck. It is not a viable option
(because of the time required to extract), so we need to find a way to extract the data incre-
mentally.

Incremental extraction is a technique to download only the changed rows from the source
system, not the whole table. We can use several things to extract incrementally. We can use
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timestamp columns, identity columns, transaction dates, triggers, or a combination of them.
Let’s explore and study these methods one by one.

Imagine that the order header table in Jade is like the one in Table 7-4.

Table 7-4. Jade Order Header Table

Order ID Order Date Some Columns Order Status Created Last Updated

45433 10/10/2007 Some Data Dispatched 10/11/2007 10/12/2007 
10:05:44 11:23:41

45434 10/15/2007 Some Data Open 10/16/2007 10/17/2007 
14:10:00 15:29:02

45435 10/16/2007 Some Data Canceled 10/16/2007 10/17/2007 
11:23:55 16:19:03

…

This table is ideal for incremental extract. It has a “created” timestamp column and a “last
updated” timestamp column. It has an incremental order ID column. It has an order date that
shows when the order was received.

First we need to check whether the timestamp columns are reliable. A reliable timestamp
means that every time the row in the table changes, the timestamp is updated. This can be
done by examining the value in both timestamp columns and comparing them with the order
date. If they contain dummy values such as 1900-01-01, blank, or null, or if they differ from the
order date significantly (say by five months), or if the “last updated” date is less than the “cre-
ated” date, it’s an indication that we may not be able to rely on them.

We can also do further checks by comparing the timestamp columns to the order ID col-
umn; that is, the created date of an order between order ID 1 and order ID 2 should be between
their created dates. Note that this does not apply in situations where IDs are assigned in blocks
to multiple DB servers. If the timestamp columns are in a good order, we can then use them for
incremental extraction in SSIS as follows (see Figure 7-5).

Figure 7-5. Incremental extraction logic using LSET and CET

Here’s how to extract incrementally using the current extraction time (CET) and the last
successful extraction time (LSET):
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1. Retrieve the LSET from the metadata database. LSET acts like a watermark. It memo-
rizes the time when data was last extracted.

2. Get the CET, which is passed in by the top-level ETL package. CET is the time the ETL
package started, not when the current task started. The purpose of using the start time
of the ETL package rather than the task start time is so that all ETL tasks in the package
have the same CET so it’s easier to restart if the package failed.

3. Extract the data using select * from order_header where (created >= LSET and
created < CET) or (last_updated >= LSET and last_update < CET).

4. If the extract is successful, update the metadata database by writing CET as the new
LSET value.

This logic is fault tolerant, meaning that if it doesn’t run or it failed to run, we could just
rerun it with no risk of missing the data or loading data that we loaded earlier. For example,
if the ETL has not been running for two days because of a connection problem to the source
system (or the extraction failed for other reasons), it will pick up two days of data because
the LSET would still be two days ago.

The purpose of restricting the upper limit with the CET is to exclude orders that were cre-
ated after the ETL process started. This way, the next time the ETL process runs, it will pick up
the orders created after the ETL process started. If we don’t put CET as the upper limit, the
orders created after the extract begins will be extracted twice.

If the timestamp is not in good order, we can use the order date column. It is a transaction
date that reflects when the event happened. But we need to be careful when using the order
date column. Although the two timestamp columns are system generated, the order date col-
umn is input. Therefore, it is possible that the operative set it to last week’s data instead of
today, because the order happened last week but just entered into the system today (past-
dated orders).

If we apply the previous logic to the order_date column, we will miss past-dated orders.
To pick up the past-dated orders, we need to add a grace period, as follows: select * from
order_header where order_date >= (LSET – 28 days) and created < CET. The grace period
is obtained from the business rule implemented in the source system application as a restric-
tion or validation; for example, if you try to put the order date as 29 days ago, Jade wouldn’t
allow it and would generate an error message. This is not ideal, compared to a reliable last-
updated date column, so use it as the last resort and test for data leakage (which I’ll discuss
in a moment).

If there is no source application restriction on the order date, another way of doing incre-
mental extract is to use the order ID as follows (see Figure 7-5, where the logic is the same):

1. Retrieve the Last Successfully Extracted ID (LSEI) from the metadata database.

2. Select max(order_id) from order_header, and put this in CEI variable as the current
extraction ID.

3. Extract the rows between the LSEI and CEI as follows: select * from order_header
where order_id >= LSEI and order_id < CEI.

4. If the extract is successful, store the CEI in the metadata database as the LSEI.
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The previous discussion of fault-tolerant and missed orders still applies; that is, the LSEI
provides a fault-tolerant mechanism, and the CEI prevents the orders created after the extract
begins from being missed. The past-dated orders and the grace period are also applicable.

How about deletion? How do we know which orders have been deleted? The source sys-
tems don’t delete the order header records from the previous table. Instead, the orders that
have been canceled are marked as canceled in the order status column. This is the ideal con-
dition for ETL, which is known as a soft delete, meaning that they don’t physically delete the
record in the table but mark them only in certain columns.

If for some reason the rows are physically deleted, then there are two ways we can detect
the deletion:

By comparing the primary key between the source table and the warehouse table: If we find
a primary key that exists in the warehouse table but not in the source table, it means that
the row was deleted from the source system. We can then mark the data warehouse row as
deleted.

Using deletion trigger; that is, when a record is deleted, the trigger inserts a row into an
audit or event table containing the primary key of the deleted row: The ETL then reads the
audit table incrementally to find out which rows were deleted from the source system,
and we mark the data warehouse rows as deleted.

In addition to detecting deletion, we can use triggers to detect updates and inserts too,
which benefits us because it provides a means of capturing the data changes in the source sys-
tem so we can extract incrementally. We can create separate triggers for delete, update, and
insert. A trigger is the most reliable approach in ETL. It is the best way to detect the changes
happening in the source systems. The drawback of installing triggers in the source system is
an overhead of about 20 to 100 ms per trigger depending on the complexity (these are typical
values; I’ve seen 16 and 400 ms too). This may or may not be a problem depending on your
OLTP application, that is, whether it can wait that long or not for a database transaction to
complete.

There is one thing we need to be careful of when installing triggers that insert the primary
key of the deleted row into an event table: multiple updates. If we write the primary key only
of the updated row, we may not be able to get the changed value if there is another update
before we read the row. Here is the scenario: in the customer table, row 37 contains the name
John. That row was updated at 10:47, changing the name to Alex. The update trigger fired and
inserted the primary key of row 37 into the event table. At 10:48, row 37 was updated again,
changing the name to David. The trigger fired again and inserted the primary key of row 37
into the event table again. When we read the event table, there were two rows there, both
pointing at row 37. When we read the customer table, the name is now David. There is no way
we can get the intermediate value (Alex) because it has been overwritten.

In some situations, it is acceptable not to get the intermediate value, but in certain cases
it is not acceptable. If it is not acceptable, we can create an audit table that contains all the
columns of the source table. When the update trigger fires, it inserts a row into the audit table
containing the values of all columns of the updated row, as well as inserting a row into the
event table containing just the primary key and a timestamp. Compared with implementing
an event table, it takes more overhead to implement an audit table, but we can see the full his-
tory of data changes.
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Fixed Range
If it is not possible to extract the whole table because the table is too large—and it is not possi-
ble to do incremental extraction, for example, because there are no timestamp columns or the
timestamp columns are not reliable, because there is no reliable incremental identity column,
and because it is not possible to install triggers in the source system—there is one more
approach we can do. We can use the “fixed range” method.

Basically, we extract a certain number of records or a certain period of time. For example,
say we extract the last six months of data, based on the transaction date. As before, we get the
duration of the period from the source application if there is a restriction on the front-end
application. For example, once the month-end processing is done, the rows can’t be changed.
In this case, we can download the last five weeks of data every time the ETL process runs or
where the transaction date is after the month-end date.

If there is no transaction date column in the table and we cannot extract the whole table
because it is a huge table, we can use the system-assigned row ID to extract a fixed range, such
as the last 100,000 rows. What I meant by row ID is a hidden column in every table containing
system-assigned sequential values. Not all database systems have row IDs; for example, Oracle
and Informix have row IDs, but SQL Server and DB/2 don’t. (In DB/2, the row ID is a data type,
not a hidden column.) When using the row ID, we have no restrictions on the front-end appli-
cation, so we need to monitor the source system and find out how many we need to extract
every time. Download the primary key column(s) every day, and compare between each daily
download to detect the changes. Identifying new rows and deleted rows by comparing pri-
mary keys is quite straightforward. Let’s have a look at Table 7-5.

Table 7-5. Comparing Daily Download to Detect New and Deleted Rows

10/1 10/2 10/3 10/4 10/5

5467 5467 5467 5467 5467

8765 8765 3422 3422 3422

3422 6771 6771 6771

1129 1129

In this table, 8765 was deleted on 10/3, 6771 was created on 10/3, and 1129 was created
on 10/4. But identifying updates is more difficult. For example, it seems that there are no new
or deleted rows on 10/5, but in fact there is an update on row 3422. Updates can be detected
using checksum, but we need to download the columns that we want to compare to the stage
first, and this will be time-consuming if the table is large. Assuming table1 contains yester-
day’s data and table2 contains today’s data, we can do the checksum comparison as
illustrated here:

create table table1 (col1 int, col2 int, col3 int)
insert into table1 values(3434, 4565, 2342)
insert into table1 values(2345, 3465, 6321)
insert into table1 values(9845, 9583, 8543)
go
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create table table2 (col1 int, col2 int, col3 int)
insert into table2 values(3434, 4565, 2342)
insert into table2 values(2345, 8888, 8888)
insert into table2 values(9845, 9583, 8543)
go

alter table table1 add col4 as checksum(col1, col2, col3)
alter table table2 add col4 as checksum(col1, col2, col3)
go

select * from table1
select * from table2
select * from table1 t1
where not exists
( select * from table2 t2
where t1.col4 = t2.col4 )

go

After we are able to identify the changed rows, we can now define how far back we need
to download the data every time the ETL process runs, that is, the last 10,000 rows, the last
100,000 rows, the last three weeks, the last two months, and so on.

Related Tables
If a row in the source table is updated, we need to extract the corresponding row in the related
table too. For example, if order ID 34552 in the order header table is updated and extracted to
the data warehouse, the rows for order ID 34552 in the order detail table need to be extracted
to the data warehouse too, and vice versa. For example, if a row in the order detail is updated
and that row is extracted into the data warehouse, the corresponding row in the order header
needs to be extracted too.

This is also the case for inserts and deletes. If a new row (a new order) is inserted into the
order header in the source system, the corresponding order detail rows need to be inserted
into the data warehouse order detail table too. If a row is marked as canceled (soft delete) in
the order header in the source system, the corresponding order detail rows need to be can-
celed too. We can do this in the data warehouse application too, but ideally it is done in the
data warehouse database. If a row is physically deleted in the order header, it needs to be
marked as deleted in the data warehouse order detail.

To do this, we identify the changed rows in the first table, and then using the primary
key and foreign key relationship, we identify the rows in the second table, and vice versa.
For example, in the case of the order header and order detail tables, we find the changed
rows on the order header first, then we identify the changed rows in the order detail, and
finally we extract both sets of rows from both tables into the data warehouse.
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Testing Data Leaks
If we do either incremental extraction or period range extraction, it is essential that we test for
data leaks. Say we think we have extracted all changes in the source system into our data ware-
house. Now let’s test it. We need to build the incremental or fixed-range ETL and run it every
day (or four times a day or any other frequency). After a few weeks, we compare the number
of rows between the source system and the data warehouse. Then we identify whether there
are any missing rows or missing updates by comparing the checksum. That is, table1 contains
the data from the ETL that has been running for two weeks, and table2 contains the data from
the source system as it is today, so we compare the checksum columns from both tables:

select * from table2 where not exists
( select * from table1
where table1.checksum_column = table2.checksum_column )

The reverse is also true. For rows that exist in table1 but do not exist in table2, use this:

select * from table1 where not exists
( select * from table2
where table1.checksum_column = table2.checksum_column )

If we don’t have any missing rows or any missing updates, then our incremental ETL
process is reliable. Let it run for a few more weeks while you develop other parts of the DW
system, and then do the previous test again. If you find missing rows, check your ETL logic,
the LSET, the CET, and so on. If the ETL logic is correct, then consider another approach; for
example, use a trigger to capture data changes or use a fixed-period extract if there is no reli-
able timestamp column.

If we extract from a relational database, it is very important to always test for data leaks.
If we missed some rows or some updates, it means that the data in our data warehouse is not
reliable. Remember that no matter how good the data warehouse functionality is, if the data
in our warehouse is wrong, then it is unusable.

Extracting File Systems
The most common type of files acting as sources in the ETL process are flat files. Two exam-
ples of flat files, fixed-position files and pipe-delimited files, were shown earlier in the chapter.
Flat files are common because they provide the best performance. Importing or exporting
from a flat file is probably the fastest, compared to importing from other types of files (XML,
for example). SQL Server’s bulk insert and bulk copy utility (bcp) work with flat files.

bulk insert is a SQL command to load data from a file into a SQL Server table. bulk
insert is executed from within the SQL Server query editor like a regular Transact SQL com-
mand. A typical usage of bulk insert is to load a pipe-delimited file into a table:

bulk insert table1 from 'file1' with (fieldterminator = '|')
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The bulk copy utility is executed from a command prompt. To use the bulk copy utility to
load data from a pipe-delimited file into a table, a typical usage is as follows:

bcp db1.schema1.table1 in file1 –c –t "|" –S server1 –U user1 –P password1

It is quite a common practice in data warehousing for the source system to export the
data into flat files, and then an ETL process picks them up and imports them into the data
warehouse. Here are some of the things you need to consider when importing from flat files:

• Agree with the source system administrator about the structure of the file system.
This includes the file naming convention (fixed file name such as order_header.dat or
dynamic file names such as order_header_20071003.dat), the directory structure (one
directory per day), and so on. Guidelines: In my experience, it is more useful to use
dynamic file names so we can leave the last n days of extract files on disk before delet-
ing them.

• Make sure you have access to the agreed-upon location. It could be a shared network
folder. It could be an FTP server. Whatever and wherever the location is, you need to
have access to it. You may need permissions to delete files as well as read the files. Find
out what user ID you must use to connect to the file server or FTP server. Do not under-
estimate this, because it can take a long time. Guidelines: Start raising the change
requests for having read-write access to the file location as soon as possible. Do this for
the development, QA, and production environments.

• Agree on the process; for example, after processing each file, do you need to delete the
files or move them to an archive directory? If you move them to an archive directory,
who will be deleting them from there later? How long will the files be stored in the
archive directory? Will it be a year, six months, and so on? Guidelines: Determine the
archive period based on backup procedure. That is, don’t delete from disk before it’s
backed up to tape. Modify the extraction routine to include the movement of extracted
files to the archive directory and to delete archived files older than the archive period.

• Agree on failure handling. For example, if for some reason the source systems are
unable to produce the files yesterday, when their export process works again today,
will the files be placed in the yesterday directory or the today directory? If both the
yesterday and today data goes into the today directory, will it be two files or one file?
Guidelines: I’d put them in the today directory. The main principle of failure handling
is that the ETL process must be able to be rerun (or miss a run) without causing any
problems.

• Agree on the frequency that the source systems run their export. Is it once a day, four
times a day, and so on? Guidelines: This loading frequency depends on how often they
export and on how often the business needs to see the data. The ideal loading fre-
quency is the same as the export frequency (loading: put the data into the DW;
exporting: retrieve the data from the source system).
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• Agree on the file format. Will it contain a column heading, is it going to be a delimited
file or a fixed-position file (delimiter is better, because the file sizes are smaller), what is
the delimiter (don’t use commas because the data can contain a comma; a pipe is a
good choice), are you enabling Unicode (the 2-byte characters), what’s the maximum
line length, and what’s the maximum file size? Guidelines: In my experience, it is not
good to use tabs, commas, colons, backslashes, or semicolons. I usually test the OLTP
data for pipes (|). If the data does not contain a pipe, then I use a pipe as the delimiter.
Otherwise, I use a tilde (~) or this character: ¬. Both are rarely used/found in the data.
Also test for newline characters, and if you find any, replace them when exporting.

• Agree on which columns are going to be exported by the source system and in what
order. This is so that you can prepare column-to-column mapping for your import rou-
tine, whether you are using SSIS or bcp. Guidelines: For simplicity, consider leaving the
order as is but choose and export only required columns. Refrain from exporting all
columns. This is useful to minimize incremental extract size, especially if the table is
very large (more than 1 million rows) and the data changes frequently.

If you are importing spreadsheet files such as Excel files, the guidelines are more or less
the same as the previous ones. The main difference is that you don’t need to worry about the
delimiter. You can’t use bcp or bulk insert for importing Excel files. In SQL Server we use SSIS
for importing Excel files. Spreadsheets are quite commonly used for source files because they
are widely used by the business users. For example, annual budgets or targets may be stored in
Excel files.

Web logs are the log files of a web site, located within the web servers. Each web log is a
text file containing the HTTP requests from the web browsers to the servers. It contains the
client IP address, the date and time of the request, which page was requested, the HTTP code
reflecting the status of the request, the number of bytes served, the user agent (such as the
type of web browser or search engine crawlers), and the HTTP referrer (the page this request
came from, that is, the previous page from which the link was followed).

People are interested in web logs because they can give useful browsing and shopping
information in an e-commerce web site, that is, who browsed for what and when. The purpose
of extracting from web logs into a data warehouse (instead of using web analysis software) is
to integrate the web traffic data with the data already in the warehouse, such as to monitor the
results of a CRM campaign, because the page requests in the campaign have additional query
strings identifying the particular e-mail campaign from which they originated.

Web logs come in different formats. Apache HTTP Server 1.3 uses Common Log Format
and Combined Log Format. IIS 6.0 uses W3C Extended Log Format. Once we know the format,
we can parse each line of the log files into a separate entry/field, including the client IP
address, username, date, time, service, server name, and so on. We can then map each field
into a column in the data warehouse target table and load the data.

Although they’re not as common as flat files and spreadsheets, database transaction log
files and binary files can also be used as a source of ETL processes. Database transaction
log files (in Oracle this is known as redo logs) are utilized by applying the transactions in
the log files into a secondary copy of the database by using log shipping or by reading the files
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and processing them using specialized software (a different tool is used for each RDBMS).
Transaction logs are very useful because we do not touch the primary database at all. They
come at no cost to us. The transaction logs are produced and backed up for the purpose of
recovering the database in the event of a failure. They are there doing nothing if you like. By
reading them and extracting the transactions into our data warehouse, we avoid touching the
source database. And the logs are quite timely too; for example, they contain a constant
stream of data from the database. This is probably the only extraction method that does not
touch the source relational database.

To do this, you need a specific tool or software that can read the transaction log files of
your source system database. Different database systems have different log file formats and
transaction log architecture. An example of such a tool or software is DataMirror. If the source
system is a SQL Server, we can apply the transaction log files into a secondary server using log
shipping. Then we read the data from the secondary server.

Binary files containing images, music samples, film trailers, and documents can also be
imported into a data warehouse by using tools such as ADO.NET (or other data access tech-
nologies) and storing them as binary or varbinary data types in SQL Server tables.

These days, XML files are becoming more and more commonly used as source data in
the ETL. We can use SSIS to read, merge, validate, transform, and extract XML documents
into SQL Server databases. To do this, we use the XML task in the SSIS control flow and spec-
ify the operation type. Validation can be done using the XML schema definition (XSD) or
document type definition (DTD). To do this, we specify the operation type as Validate in the
SSIS XML task. Note that the DTD is now superseded by XSD. We can also use XML bulk load
COM objects or OpenXML Transact SQL statements to read and extract XML documents. To
use OpenXML, we call sp_xml_preparedocument first to get the document handle. We can then
do select * from openxml (doc handle, row pattern, mapping flag) with (schema
declaration) to read the content of the XML document.

Extracting Other Source Types
Relational database and flat files are the most common types of source data for the ETL
processes of a data warehouse system. I have also briefly mentioned spreadsheet files, web
logs, hierarchical databases, binary files, database transaction logs, and XML files. Other types
of source data are web services, message queues, and e-mails. I’ll discuss these types in this
section so you can understand what they are, how they are normally used, and how to extract
them in our ETL processes into a data warehouse.

A web service is a collection of functions that perform certain tasks or retrieve certain
data, exposed by a web interface to receive requests from web clients. Well, we don’t really
extract a web service, but we use a web service to get the data. In a service-oriented architec-
ture (SOA) environment, we don’t access the database directly. Instead, the data is “published”
using a collection of web services. We can, for example, request a list of products (with their
attributes) that were updated in the last 24 hours.

The benefit of using a web service to get the data is that the source system can have a sin-
gle, uniform mechanism to publish its data. All the consumers of this data are sure that the
data they receive is consistent. I have been on a data warehouse project where the source
system had already published its data using a web service so the data consumers (the data
warehouse is one of them) can just tap into this service. Although this is fine for operational
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purposes where the data is a trickle feed (in other words, a small amount), the web service
approach cannot be used for initial bulk loading where we need to load large volumes of data.
The performance would be poor. For example, if each transaction takes tens or hundreds of
milliseconds, it would take weeks or months to load millions of rows of initial data. We need
to use another mechanism for initial data loading.

A message queue is a system that provides an asynchronous communication protocol,
meaning that the sender does not have to wait until the receiver gets the message. System A
sends messages to the queue, and system B reads the messages from the queue. A queue
manager starts and stops the queue, cleans up unprocessed messages, sets threshold limits
(maximum number of messages in the queue), logs the events, performs security functions
such as authentications, deals with errors and warnings such as when the queue is full, gov-
erns the order of the queue, manages multicasting, and so on. To put a message queue into
ETL context and to understand the implementation of message queues for ETL systems, let’s
go through an example from a project.

A source system captures the changes using insert, update, and delete triggers. The
system has several event log tables to record the changes that happened in the system. At
certain periods (typically between one and four hours, which is determined based on the
business requirement, that is, how recent we need the DW data to be), the ETL routines read
the event logs incrementally and retrieve the changed data from the source database using
web services that return the data in XML format. The ETL routines then wrap the XML in
outer envelopes (also in XML format) and send them as XML messages to message queues
over a VPN. These message queues are located in the global data warehouse, so other sub-
sidiary companies also use the same message queues for sending their data. The global data
warehouse then reads the messages in the message queues in a multicast mode; that is, there
were two redundant ETL routines reading each message from the same queue into two
redundant relational stores within the data warehouse. In this case, the global data ware-
house reads the MQ as an ETL source.

E-mails are stored in e-mail servers such as Microsoft Exchange and Java Email Server
(JES). E-mails are accessed using application programming interfaces (APIs), Collaboration
Data Objects (CDO), ADO.NET, or an OLEDB provider. For example, OLE DB for Exchange
Server enables us to set up an Exchange Server as a linked server in SQL Server so that the e-
mails stored in Exchange Server are exposed in a tabular form and so we can use a normal SQL
select statement within SSIS to retrieve the data.

Extracting Data Using SSIS
Now let’s try to extract data from Jade into the stage database using SSIS. Before we start, let’s
go through an overview of what we are going to do. To extract data from Jade into the stage
database, in the next few pages we will be doing the following steps:

1. Create the source system database and a user login.

2. Create a new SSIS project.

3. Create data sources for Jade and the stage.

4. Create a Data Flow task.
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5. Probe the source system data.

6. Create a data flow source.

7. Create a data flow destination.

8. Map the source columns to the destination.

9. Execute the SSIS package.

Before we open Business Intelligence Development Studio and start creating SSIS pack-
ages to extract data from Jade, we need to create a Jade database first. To simulate a Jade
database, which in the Amadeus Entertainment case study is an Informix database, we will
create a database called Jade in SQL Server. To create this database, we will restore it from a
backup available on the Apress web site using the following steps:

1. Download the file called Jade.zip (about 6MB) from this book’s page on the Apress
web site at http://www.apress.com/.

2. Uncompress it to get Jade.bak from that file.

3. Put Jade.bak in your development SQL Server, say on c:\. This file is a backup of a SQL
Server database named Jade, which we will use to simulate Jade as the source system.

4. Open SQL Server Management Studio, and restore the Jade database from Jade.bak,
either by using SQL Server Management Studio or by typing the following in a query
window, replacing [sqldir] with the SQL Server data directory:

restore database Jade from disk = 'c:\Jade.bak'
with move 'Jade_fg1' to '[sqldir]\Jade_fg1.mdf',
move 'Jade_log' to '[sqldir]\Jade_log.ldf'

We need a stage database for the target, and we created a stage database in Chapter 6. We
also need to create a login to access Jade and the stage databases. To create a login called ETL
with db_owner permission in both the stage and Jade databases, and with the default database
set to the stage, do the following:

create login ETL with password = '[pwd]', default_database = stage
go
use Jade
go
create user ETL for login ETL
go
sp_addrolemember 'db_owner', 'ETL'
go
use Stage
go
create user ETL for login ETL
go
sp_addrolemember 'db_owner', 'ETL'
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go
use Meta
go
create user ETL for login ETL
go
sp_addrolemember 'db_owner', 'ETL'
go

Replace [pwd] with a complex password that meets SQL Server security standards, or use
Windows integrated security (Windows authentication mode). In the previous script, we also
create a user for that login in the metadata database. This is to enable the ETL login to retrieve
and store the extraction timestamp in the metadata database, which we will do in the next
section.

Open Business Intelligence Development Studio. Click File ➤ New ➤ Project, select Inte-
grated Services Project, and name the project Amadeus ETL. Click OK to create the project.
The screen will look like Figure 7-6.

Figure 7-6. Business Intelligence Development Studio initial project screen
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Now let’s set up a data source for Jade:

1. In the top-right corner, right click Data Sources, and choose New Data Source. In the
Data Source Wizard, click New.

2. In the Provider drop-down list, you would select IBM OLE DB Provider for Informix,
but for this case study we will choose Microsoft OLE DB Provider for SQL Server in
order to simulate the connection to Informix (in practice, if your source system is SQL
Server, choose SQL Native Client).

3. Enter your development server name, select Use SQL Server Authentication, type ETL
as the username along with the password, check “Save my password,” and select Jade
for the database name. If you use Windows integrated security, choose Use Windows
Authentication.

4. The screen should look like Figure 7-7. Click Test Connection, and click OK.

5. Ensure that servername.Jade.ETL in the Data Connections box is selected, and click
Next. Name it Jade, and click Finish. You will see now that under Data Sources we have
Jade.ds.

Figure 7-7. Using the Connection Manager dialog box to set up a connection to Jade
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Repeat the same process to set up another data source for the stage, as follows:

1. Choose SQL Native Client as the provider.

2. Type the server name, username, and password the same as before.

3. Enter the database name as Stage.

4. Click Test Connection, and click OK if succeeds.

5. Make sure servername.Stage.ETL in the Data Connections box is selected, and click
Next.

6. Name it Stage, and click Finish. Notice that you now have two data sources in the top-
right corner.

Double-click the Data Flow task in the Toolbox on the left side. A Data Flow task will
appear in the top-left corner of the design surface. Double-click that Data Flow task in the
design surface, and the design surface will change from Control Flow to Data Flow. Double-
click OLE DB Source under Data Flow Sources in the Toolbox on the left side. The OLE DB
Source box will appear in the design surface, as shown in Figure 7-8.

Figure 7-8. Creating the OLE DB source in the Data Flow task

When we are facing an unknown source system, we need to be careful. It could be a huge
table containing 500 million rows. It could contain strange characters in Extended Binary
Coded Decimal Interchange Code (EBCDIC). Perhaps we are not even familiar with the table
names and column names. Perhaps we are even not familiar with the syntax of the SQL lan-
guage in that platform. The last thing we want is to cripple that source system with our
queries. Here I will illustrate how we can “probe” an unknown source system carefully.

First we need to know how many rows are in the source table. In practice, the source sys-
tem may not be an SQL Server, so we can’t query it directly. Therefore, we use SSIS to count the
rows as follows:

1. Click the OLE DB Source box on the design surface.

2. Hit F2, and rename it to Jade order_header.
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3. Double-click the “Jade order_header” box.

4. In the OLE DB Connection Manager, click New.

5. Select servername.Jade.ETL, and click OK.

6. In the Data Access Mode drop-down list, choose SQL Command.

7. Click Build Query, and Query Builder window opens.

8. Click the rightmost icon, Add Table. This is so that we know what the tables are in the
source system.

9. Click Close.

10. In the SELECT FROM section of the window, type select count(*) from order_header,
and click OK.

11. Click Preview. If it takes a long time and it shows a big number (such as a few million
or more), we need to be careful not to extract the whole table.

12. Click Close to close the table list.

Modify the SQL Command Text box to say select top 10 * from order_header, and click
Preview. Every RDBMS has a different syntax, as follows:

Informix: select first 10 * from order_header
Oracle: select * from order_header where rownum() <= 10
DB/2: select * from order_header fetch first 10 rows only
Mysql and Postgres: select * from order_header limit 10
Sybase: set rowcount 10; select * from order_header;
Teradata: select * from order_header sample 10

Figure 7-9 shows the result.

Figure 7-9. Previewing the first ten rows
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This selection of the first ten rows has three purposes:

• To know the column names. We need these names for further queries. If the source sys-
tem DBA provides us with the data dictionary, that’s great. If not, here the names are. If
you are familiar with the system tables of your source system and your user account has
administrative privileges, you can query the source system metadata to get the column
names. For example, in SQL Server it’s catalog views, in Teradata it’s DBC, and in Oracle
it’s system tables.

• To understand the content of the data for each column, scroll the window to the right.
In particular, look for columns containing nonstandard characters (usually shown as
little blank rectangles) and the date format.

• If count(*) is large, this “ten rows” query enables us to understand whether the source
system has good response time or is very slow. If the table is huge but it is partitioned
and indexed well, we should expect the first “ten rows” query to return in less than two
seconds. Bear in mind that the response time is also affected by other factors such as
system load, hardware and software configuration, throttling, and so on.

Then select the changed data by typing this in the SQL Command Text window:

select * from order_header
where (created > '2007-12-01 03:00:00'
and created <= '2007-12-02 03:00:00')
or (last_updated > '2007-12-01 03:00:00'
and last_updated <= '2007-12-02 03:00:00')

Change the dates to yesterday’s date and today’s date, and click Preview. Don’t worry
about the dates being hard-coded; later in this chapter you’ll learn how to make this dynamic
by retrieving and storing into the metadata database. Don’t worry about the risk that it will
return 400 million rows in 4 hours; SSIS will return only the first 200 rows because SSIS limits
the output when previewing data. Scroll down and scroll to the right to examine the data. If
everything looks all right, change the data access mode to Table or View, choose order_header
as the name of table, click Preview, click Close, and then click OK.

Scroll down in the Toolbox. Under Data Flow Destination, double-click SQL Server Desti-
nation. The SQL Server Destination box will appear in the design surface. Click that box, press
F2, and rename it to Stage order header. Resize the box if necessary. Click the “Jade order
header” box, and pull the green arrow to the “Stage order header” box. Double-click the “Stage
order header” box. In the “OLE DB connection manager” drop-down list, click New. In the
Data Connection box, select servername.Stage.ETL, and click OK.

You can create the destination table in the stage manually, based on the source system
column data types. You can also create it on the fly using the New button to the right of the
table or the View drop-down list. I prefer to create it manually so I can be sure of the data
types, table name, column name, constraints, and physical location/filegroup, as follows (of
course you can use SQL Server Management Studio rather than typing the SQL statement):
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create table order_header
( order_id          int
, order_date        datetime
, customer_number   int
, store_number      int
, created           datetime
, last_updated      datetime
) on stage_fg2
go

Click OK in Create Table window to create the order_header table in the stage database.
In the table or view, choose order_header that we just created. Click Preview, and it shows an
empty table. Click Close, and then click Mapping on the left side. Figure 7-10 shows the
outcome.

Figure 7-10. Mapping source columns to the stage table columns

If the column names are different, you need to map them manually. If the column names
are the same, they are mapped automatically. Click OK to close this window. Press F5 or the
green triangle icon in the toolbar to run the package. It will fail with a “Stage order_header”
box marked in red, as shown in Figure 7-11.
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Figure 7-11. Running the SSIS package

Click the Progress tab. You will see that it says “You do not have permission to use the bulk
load statement.” Press Shift+F5 or the blue rectangle to stop running the package. SSIS shows
the Execution Results tab, displaying the same error message. This is a common error. The
cause was that the user ETL does not have the bulk insert.

Click the Data Flow tab, and then click the “Stage order_header” box. Scroll down the
properties on the right side, as shown in Figure 7-12.

Figure 7-12. Bulk insert properties

The SQL Server destination uses the bulk insert to load data into SQL tables. Therefore,
the login that we use needs to have a bulkadmin server role. You can use SQL Server Manage-
ment Studio or SQL statement to assign this role. The SQL statement is sp_addsrvrolemember
'ETL', 'bulkadmin'.
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Rerun the package. Now both boxes in the Data Flow tab should be green, meaning that
SSIS has successfully imported those rows from the source table to the stage table. Click Stop,
or press Shift+F5. Click the blue disk button (or select File ➤ Save) to save your SSIS package.
Go to SQL Server Management Studio, and query the order_header table in the stage database
to verify that you have the rows in the stage.

Memorizing the Last Extraction Timestamp
Memorizing the last extraction timestamp means that we memorize the last timestamp of the
data we extracted so that on the next extraction we can start from that point. We have just suc-
cessfully extracted the order header records from Jade into the stage. But we used fixed values
for the date range. Now let’s store the last extraction timestamp in the metadata database so
that every time the ETL process runs it will extract different records. The ETL process will
extract only those records that were added after the last extract.

Before we begin, let’s go through an overview of what we are going to do. In the next few
pages, we will use the last extraction timestamp to control the next extraction. This enables us
to extract the source table incrementally. To do that, in the next few pages we will be doing the
following steps:

1. Create a table in the metadata database to store the timestamps.

2. Create a data source for the metadata database.

3. Modify the data flow as follows:

a. Store the current time.

b. Get the last extraction timestamp from the table.

c. Add timestamps to the extraction query as parameters.

d. Update the timestamps in the table.

4. Clear the target table in the stage database.

5. Set the initial timestamps in the metadata table.

6. Execute the package to populate the target table.

So first, let’s create the data_flow table as follows:

use meta
go

if exists
( select * from sys.tables
where name = 'data_flow' )

drop table data_flow
go
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create table data_flow
( id int not null identity(1,1)
, name varchar(20) not null
, LSET     datetime
, CET      datetime
, constraint pk_data_flow
primary key clustered (id)

)
go

create index data_flow_name
on data_flow(name)
go

declare @LSET datetime, @CET datetime
set @LSET = '2007-12-01 03:00:00'
set @CET = '2007-12-02 03:00:00'
insert into data_flow (name, status, LSET, CET)
values ('order_header', 0, @LSET, @CET)

insert into data_flow (name, status, LSET, CET)
values ('order_detail', 0, @LSET, @CET)

insert into data_flow (name, status, LSET, CET)
values ('customer', 0, @LSET, @CET)

insert into data_flow (name, status, LSET, CET)
values ('product', 0, @LSET, @CET)

go

■Note LSET stands for Last Successful Extraction Timestamp, and CET means Current Extraction
Timestamp.

Verify that we have that order_header row in the data_flow table: select * from
data_flow. You should see four rows, as shown in Table 7-6.

Table 7-6. data_flow Table

id name LSET CET

1 order_header 2007-12-01 03:00:00.000 2007-12-02 03:00:00.000

2 order_detail 2007-12-01 03:00:00.000 2007-12-02 03:00:00.000

3 customer 2007-12-01 03:00:00.000 2007-12-02 03:00:00.000

4 product 2007-12-01 03:00:00.000 2007-12-02 03:00:00.000
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OK, now let’s modify our order_header Data Flow task in our Amadeus ETL package so
that it first sets the CET to the current time and then reads the LSET. If the data flow is success-
fully executed, we update the LSET and status for that data flow. If it fails, we set the status to
fail, and we don’t update the LSET. This way, the next time the data flow is run, it will pick up
the records from the same LSET.

So, let’s create a new data source called Meta that connects to the metadata database
using the ETL user. The procedure is the same as the last time. This is why in the previous
section, when we created the Jade database, we also assigned the user ETL as db_owner in the
metadata database. Now we will set the CET to the current time for all rows.

1. In the Toolbox on the left side, double-click the Execute SQL task. There will be a new
box on the design surface labeled Execute SQL Task. Right-click, and rename this box
as Set CET.

2. Double-click this box. In the SQL Statement section, click the Connection drop-down
list, and select <New connection…>, as shown in Figure 7-13.

Figure 7-13. Configuring the connection for the Execute SQL Task

3. Choose the servername.Meta.ETL data connection, and click OK.

4. In the SQL Statement field, type update data_flow set CET = getdate() where name =
'order_header'. Click OK to close the Execute SQL Task Editor dialog box.

In steps 5 to 7 we are going to retrieve the last successful extraction time and the cur-
rent extraction time from the data flow metadata table.
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5. In the Toolbox, double-click the Execute SQL task again to create a new task in the
design surface. Rename this box to Get LSET.

6. Double-click the box to edit it. Set the connection to servername.Meta.ETL. Set Result-
Set to Single Row.

7. In the SQL Statement field, type select LSET, CET from data_flow where name =
‘order_header’. Click Parse Query to verify.

In steps 8 to 12, we are going to store the query result in variables. They will be used
later to limit the order header query.

8. In the left column, click Result Set. Click Add. Change NewResultName to LSET.

9. Click the Variable Name cell, expand the drop-down list, and choose <New vari-
able…>. Leave the container set to Package, which means that the scope of the
variable is the SSIS package, not just the Get LSET task, which means we can use the
variable in other tasks.

10. Change the name to dtLSET. Leave Namespace set to User.

11. Change Value Type to DateTime. Set the value as 2007-10-01 00:00:00 (or any date you
like), and click OK.

12. Click Add again to add another variable. Set Result Name as CET and Variable Name as
a new variable called dtCET of type DateTime. The result will look like Figure 7-14.

Figure 7-14. Storing the result set in variables
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13. Click OK to close the Execute SQL Task Editor dialog box.

In steps 14 to 16 we will connect the tasks on the design surface and tidy up the layout.

14. Connect the green success arrow from the Set CET box to the Get LSET box. Rename
the Data Flow task to Extract Order Header, and connect the green arrow from the
Get LSET box to this box.

15. In the Toolbox, double-click the Execute SQL task to create a new box, and rename it to
Set LSET. Connect the green arrow from Extract Order Header box to this Set LSET box.

16. Let’s tidy up the layout a little bit. In the menu bar, select Format ➤ Auto Layout ➤
Diagram. The result looks like Figure 7-15.

Figure 7-15. Arranging the layout after connecting the task boxes

In steps 17 to 20, we will modify to extract order header task to include the timestamp
as parameters to limit the query.

17. Double-click the Extract Order Header box, and in the Data Flow design surface dou-
ble-click the Jade Order Header box to edit it.

18. Update the SQL command text by changing all the fixed dates to question marks, as
follows:

select * from order_header
where (created > ? and created <= ?)
or (last_updated > ? and last_updated <= ?)

19. Click the Parameter button, and set parameter 0 to User::dtLSET, parameter 1 to
User:dtCET, parameter 2 to User::dtLSET, and parameter 3 to User::dtCET, as shown in
Figure 7-16.
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Figure 7-16. Making the date range in the Data Flow task dynamic

20. Click OK, and click OK again to close the windows and return to the data flow design
surface.

In steps 21 to 22 we will modify the Set LSET task to update the timestamps stored in
the data_flow table.

21. On top of the design surface, click the Control Flow tab. Double-click the Set LSET box,
and set the connection to servername.Meta.ETL.

22. Set the SQL statement to update data_flow set LSET = CET where name =
'order_header', and click OK. Save the package by pressing Ctrl+S.

In steps 23 to 25, we will prepare for the package execution by emptying the target
table and setting the timestamp value.

23. Before we run the package, delete all rows from the order_header table in the stage, as
follows: truncate table stage.dbo.order_header.

24. Set the CET column for order_header on the data_flow table in the metadata database
to yesterday’s date and the LSET column to the day before yesterday, as follows: update
meta.dbo.data_flow set LSET = getdate()-2, CET = getdate()-1 where name =
'order_header'.

25. Verify the rows in Jade’s order_header table that we are going to extract by using the fol-
lowing query:

select * from jade.dbo.order_header
where (created between getdate()-1 and getdate())
or (last_updated between getdate()-1 and getdate())

CHAPTER 7 ■ DATA EXTRACTION 205

9314ch07final.qxd  11/15/07  10:10 AM  Page 205



Note how many rows this query returns.

In steps 26 to 29, we will execute the package and check the execution results.

26. Go back to Business Intelligence Development Studio, and press F5 (or click the green
triangle button in the toolbar) to run the package. All four boxes become yellow and
then green one by one, as shown in Figure 7-17.

Figure 7-17. Running SSIS package that memorizes the last extraction time

27. If one of them becomes red, don’t panic. Click the last tab (Progress) and see the error
message. You can debug by right-clicking the boxes on the control flow and choosing
Edit Breakpoints. The Set Breakpoints dialog box will pop up, as shown in Figure 7-18,
and you can choose when you want the breakpoint to occur. You can also specify
whether the breakpoint always happens or only at a certain count, that is, how many
times the breakpoint is ignored before the execution is stopped.

You can also see the value of the variable by clicking the Watch 1 or Locals tabs in the
bottom-left corner of the screen. Figure 7-19 shows that we can observe the value of
the local variables when the execution is suspended at a breakpoint. For example, the
value of user variable dtCET_OH is 06/10/2007 21:47:22 and the data type is DateTime.

28. Press Shift+F5 to stop the package running. Click the Execution Results tab, and verify
that all tasks were executed successfully.

29. Open SQL Server Management Studio, and check that the LSET and CET columns for
order_header in the data_flow table in the metadata database are updated correctly to
current time. Also check that order_header in the stage database contains the correct
number of rows from the Jade order_header table, as noted earlier.
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Figure 7-18. Setting up a breakpoint

Figure 7-19. The Locals window showing the variable value and data type

30. At the moment, the name of the SSIS package in Solution Explorer is Package.dtsx.
Rename it to order_header.dtsx by right-clicking it. When asked “Do you want to
rename the package object as well,” click Yes. By default SSIS renames only the package
file, but internally the object name is not changed (you can see the object name by
clicking the View menu and choosing Properties Window). By answering yes, we
rename the package object as well as the package file.

31. Click the File menu, and choose Save All to save the entire solution. Click the File
menu, and choose Close Project to close the package.

With that, we’re finished going through the basics of extracting data incrementally from a
relational database. Before we close this chapter, let’s do a data extract from a file because in
real data warehouse projects this happens a lot.
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Extracting from Files
Now that we have extracted data from a database, let’s try to extract data from files. In the next
few pages, we will extract data from a flat file. For the purpose of this exercise, we have ISO
country data supplied to us in pipe-delimited files. We will import this file to the stage data-
base. The file will be supplied once a week, from an external data provider.

In the following pages we will create an SSIS package to import the flat file into the stage
database. After importing successfully to the stage, we will archive the file by moving it to
another directory. We will accomplish this by doing the following steps:

1. Download the flat file containing the ISO country data.

2. Open the flat file to see the content.

3. Create the target table in the stage database.

4. Create a new SSIS package.

5. Create an Execute SQL task to truncate the target table.

6. Create a Data Flow task to load the flat file to the stage database.

7. Create a File System task to archive the file.

8. Execute the package.

The SSIS package that we are building looks like Figure 7-20. It truncates the target table,
extracts data from the country flat file, and then archives the file.

Figure 7-20. SSIS package to extract data from file

OK, so let’s get started. First download the flat file from the book’s web site at
http://www.apress.com/. It is located in the folder /data/external. The file name is
country.dat (8KB). Put this file in your local drive, for example: c:\.

Let’s open the country.dat file using Notepad to see the content. It looks like this:
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Code|Country
ad|Andorra
ae|United Arab Emirates
af|Afghanistan
ag|Antigua and Barbuda
ai|Anguilla
al|Albania

This consists of two columns, and it is pipe delimited. The first column is a two-character
ISO country code, and the second column is the country name. The first line contains the col-
umn header: Code for the first column and Country for the second column.

Now that we know the content and format of the file, let’s create the SSIS package to
load this file into the stage. But before that, we need to create the stage table first. If we look
at the data file, the longest country name is 34 characters (Saint Tome (Sao Tome) and
Principe), so for this exercise we will set the width of the country name column to 50 char-
acters. Let’s open Management Studio and create the target table called country on the stage
database as follows:

create table country
( country_code        char(2)
, country_name        varchar(50)
)

Now we can create the SSIS package:

1. Open Business Intelligence Development Studio, and open the Amadeus ETL project
(select File ➤ Open ➤ Project, navigate to Amadeus ETL.sln, and double-click it).

2. In Solution Explorer, right-click SSIS Packages, and choose New SSIS Package. A blank
design surface opens.

3. To be able to run the package many times, we need to truncate the target table before
we load the data. Click the Control Flow tab, and double-click the Execute SQL task in
the Toolbox.

4. Rename the box Truncate Country Table, and double-click the box to edit it. Set the
connection to servername.Stage.ETL.

5. Set the SQL statement to truncate table country, and click OK. Click OK again to
close the Execute SQL Task Editor dialog box.

6. Now let’s create a Data Flow task to load the flat file to the stage database. Double-
click Data Flow Task in the Toolbox, and rename the new box Load Country Flat File.
Connect the green arrow from Truncate Country Table to Load Country Flat File.

7. Double-click Load Country Flat File to edit it. Let’s add the country flat file as a
source. Double-click Flat File Source in the Toolbox, and rename the new box
Country Flat File.

8. Double-click the Country Flat File box, and click the New button.
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9. The Flat File Connection Manager Editor dialog box opens, as shown in Figure 7-21.
Set the name and description as Country Flat File, click Browse, and choose the
country.dat file you downloaded earlier. Set the other properties as shown on
Figure 7-21.

Figure 7-21. Configuring the flat file connection properties

10. In the pane on the left, click Columns, and specify the column delimiter as Vertical Bar
{|}. Leave the row delimiter as {CR}{LF}.

11. Because the country code is two characters wide, we need to set the output column
width accordingly. In the page on the left, click Advanced, and change the Output-
ColumnWidth for the Code column from 50 to 2, as shown in Figure 7-22. Leave the
Country column width as 50 because this column is 50 characters, as we discussed
earlier.

12. Click OK to close the Flat File Connection Manager Editor and return to the Flat File
Source Editor window. Click Preview to see the sample data, and then click Close. Click
OK return to the design surface.

13. Now let’s create a Data Conversion transformation to convert the flat file output, which
is in Unicode, to suit the column on target table, which is an ANSI character string.
Double-click the Data Conversion transformation in the Toolbox, and connect the
green arrow from Country Flat File to Data Conversion.
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Figure 7-22. Configuring the properties of each column

14. Double-click Data Conversion to edit it, and check both the Code and Country
columns under Available Input Columns. In the Data Type column, choose string
[DT_STR] for both the Code and Country columns, as shown in Figure 7-23.

Figure 7-23. Data Conversion Transformation Editor
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15. In the Toolbox, double-click SQL Server Destination, and rename the new box to
Country Stage. Connect the green arrow on the Data Conversion box to the Country
Stage box. Double-click the Country Stage box, and set the OLE DB connection man-
ager to servername.Stage.ETL.

16. Set “Use table or view” to country, which we created earlier. In the panel on the left,
click Mappings. Click and drag the Copy of Code column on the left to the
country_code column on the right. Click and drag Copy of Country column on the left
to the country_name column on the right, as shown in Figure 7-24.

Figure 7-24. Mapping the source columns to the target columns

17. Click OK to return to the design surface. Click the Control Flow tab on the top of the
design surface. We need to add one more task here, which is to archive the country flat
file by moving it to another directory.

18. Double-click the File System task in the Toolbox, and rename the newly created box
Archive Country Flat File.

19. Double-click the Archive Country Flat File box to edit it. Set Source Connection to
point to the country flat file. Set Destination Connection to point to an empty folder.
Set Operation to Move File, as shown on Figure 7-25.

20. Click OK to return to the design surface. Let’s tidy up the layout a little bit. Click the
Edit menu, and choose Select All. Click the Format menu, choose Auto Layout, and
choose Diagram. The three boxes are now aligned and evenly spaced.

21. Click the File menu, and choose Save All to save the entire solution. Hit F5 to run the
package. It should now run OK. Each box should turn yellow and then turn green, as
shown in Figure 7-26.
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Figure 7-25. Configuring the File System task to archive the file

Figure 7-26. Importing country data from flat files into the stage

Even though we are not extracting incrementally here, we still have to add the metadata
bit as we did previously when extracting the order header. This means we need to store the last
successful run timestamp in the data_flow table. Recording the result of every single ETL data
flow is important so that when the ETL fails and we want to restart from failure, we know
where to restart from because we know which tasks were successful and which tasks failed to
run. We do this by storing the execution result in the same data_flow metadata table as shown
in Figure 7-27. (I will be discussing metadata in Chapter 10.)

Figure 7-27. The data_flow metadata table stores execution status, the LSET, and the CET
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Summary
This chapter started with the approaches and architectures for ETL systems, that is, ETL, ELT,
using a dedicated ETL server or not, push vs. pull, choices of which server to place the ETL
processes, and so on. Then it went through different kinds of source systems, such as rela-
tional databases, spreadsheets, flat files, XML files, web logs, database log files, images, web
services, message queues, and e-mails. It also discussed how to extract incrementally a whole
table every time using fixed ranges and how to detect data leaks.

Then I showed how to extract order header data from Jade to the stage using SSIS. We put
some processes in place to memorize the last extract so we could extract incrementally. We
also extracted the country flat file into the stage database using SSIS.

This chapter gave you a good foundation of data extraction principles, as well as a clear
understanding of how to do it using SSIS. In the next chapter, we will bring the data that we
have imported to the stage into the NDS and the DDS.
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Populating the Data Warehouse

Now that we have extracted the data from the source system, we’ll populate the normalized
data store and dimensional data store with the data we have extracted. In this chapter, I will
discuss five main subjects regarding data warehouse population in the sequence they occur
in a data warehouse system:

1. Loading the stage: We load the source system data into the stage. Usually, the focus is
to extract the data as soon as possible without doing too much transformation. In
other words, the structure of the stage tables is similar to the source system tables. In
the previous chapter, we discussed the extraction, and in this chapter, we will focus
on the loading.

2. Creating the data firewall: We check the data quality when the data is loaded from the
stage into the NDS or ODS. The check is done using predefined rules that define what
action to take: reject the data, allow the data, or fix the data.

3. Populating a normalized data store: This is when we load the data from the stage into
the NDS or ODS, after the data passes through the data firewall. Both are normalized
data stores consisting of entities with minimal data redundancy. Here we deal with
data normalization and key management.

4. Populating dimension tables: This is when we load the NDS or ODS data into the DDS
dimension tables. This is done after we populate the normalized data store. DDS is a
dimensional store where the data is denormalized, so when populating dimension
tables, we deal with issues such as denormalization and slowly changing dimension.

5. Populating fact tables: This is the last step in populating the data warehouse. It is done
after we populate the dimension tables in the DDS. The data from the NDS or ODS (or
from the stage, depending on the architecture; see Chapter 2) is loaded into DDS fact
tables. In this process, we deal with surrogate key lookup and late-arriving fact rows.

In this chapter, I will also discuss and compare batches, mini-batches, and the near real-
time approach, because the latter two approaches are becoming more and more popular
these days. I will close the chapter by discussing real-time ETL, which means that the data is
pushed into the warehouse rather than being pulled.

I will also cover how to use SSIS for populating the NDS and managing data warehouse
keys and how to use SSIS to populate the dimension tables and fact tables in the DDS. I will
also show how to use related SSIS tasks and transformations (such as the Slowly Changing
Dimension transformation, the Lookup transformation, and the Execute SQL task) to popu-
late NDS and DDS. 215
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Stage Loading
In the previous chapter, we extracted the data from the source system into a stage. The stage
can be a file system or a database.

When using files as a data warehouse stage, it is necessary to plan the file naming and
directory structure carefully, in particular when incorporating the dates into the file names or
directory names. We need to have access rights and permission to the stage folders. We need
to define the deletion and archiving process, the failure handling, and the loading frequency.
Most important, we need to define the details of the file format. Capacity on the allocated
disk is also important at the planning stage. This is a simple point but has caused problems,
so ensure that you won’t run out of disk space, and ensure that your ETL process will be able
to handle this situation gracefully rather than abruptly. The disk space for the stage area is
planned based on the maximum daily data extraction volume from the source system and
how long we will be archiving the data for.

If your stage is a database, which is common, it is better not to put any indexes or con-
straints (such as not null, primary keys, or check constraints) in the stage database. The main
reason for this is not because of performance but because we want to capture and report the
“bad data” in the data quality process. We want to allow bad data such as null and duplicate
primary keys into the stage table so we can report it. If we restrict our stage table to reject
null and duplicate primary keys, then the data quality process that sits between the stage and
the NDS would not be able capture these DQ issues and report them for correction in the
source system. For example, if we restrict the stage table with a unique constraint on the pri-
mary key column, when we have two duplicate rows, the second row will not be inserted into
the stage. It is better to allow them into the stage. This way, when we populate the NDS, we
can implement a set of comprehensive and stringent rules that filter out bad data into the
data quality quarantine area for reporting and further processing such as cleansing, fixing,
reimporting, or archiving.

Indexing stage tables is generally not necessary. This is because of the way the stage tables
are structured and selected. The best way to do this is to load the data into empty stage tables
without any indexes and then select all records from those tables for loading into the NDS. If
you plan to keep, say, five days of stage data, in case you need them in the event of failures, it
is better not to keep the previous day’s data in the same table. The first reason why we can’t go
back to the source system and restage is because the source system data may have changed.
The second reason is performance. In other words, it is quicker to reload the NDS from the
stage than to retrieve data from the source system again.

Figure 8-1 shows three different approaches of how stage tables are structured:
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Approach 1 keeps the previous day’s data in the same table: This approach is simple to
implement because you have only one table. You store the time each record was loaded
into the stage table by having a column called loaded_timestamp in the stage table. The
loaded_timestamp column is a datetime column that indicates when the record was
loaded into the stage.

Approach 2 keeps each day in a separate table: Even though it is more complex than
approach 1, approach 2 gives better performance because you load into an empty table
and select all records when retrieving the data. When implementing approach 2, you cre-
ate the Today table before the loading begins and drop the Day 1 table after the loading
has completed successfully.

Approach 3 is to have just one table and truncate the table every time before loading: This
approach is even simpler than approach 1. We don’t keep the previous day’s data in the
stage database. If we need to restore the stage data retrieved a few days ago, we have to
restore from database backup. Well, the number of days of the stage database backup to
keep is different for each company. It is determined based on the extraction frequency
(from the source system into the stage) and the loading frequency (from the stage to the
NDS, ODS, or DDS).

Figure 8-1. Different approaches for stage loading

I said earlier that indexing the stage table is generally not necessary. So, when is it neces-
sary to index the stage table? It may be necessary to index a stage table when you implement
approach 1 (keeping the previous day’s data in the same table) and the stage table is used by
multiple applications, not just the data warehouse. It depends on the data volume. In other
words, indexing is useful only if the volume is large enough. In this case, indexing the stage
table on the loaded_timestamp column will assist the application’s ETL in selecting the rows
relevant to a particular day when loading from the stage into the application’s data store.
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Data Firewall
The data firewall is important in data warehousing because the data firewall blocks bad data
from going into the data warehouse. In this section, I will discuss what a data firewall is and
how it is used to filter out bad data.

The term data firewall was probably inspired by the functionality of a firewall in network-
ing. In networking, when you have a firewall between network segments, by default everything
is blocked. So, to have connectivity between segment A and segment B, you need to allow cer-
tain network traffic through the firewall. It is like making a hole in the firewall. The “hole” is
different for each type of network traffic, meaning that when you allow certain network traffic
through the firewall, you have to specify the type of traffic. You do this by specifying the port
number. For example, the hole for web HTTP traffic is different from the hole for ODBC traffic.

To help visualize this, please refer to Figure 8-2. The figure shows three holes. Each hole is
applicable only for a certain type of network traffic. For argument’s sake, let’s say that the cir-
cle hole allows HTTP traffic, the rectangle hole allows ODBC traffic, and the triangle hole
allows FTP traffic. Each hole on the firewall has a specific purpose.

Figure 8-2. Different holes in the firewall are for different types of traffic.

The concept of a data firewall is similar to the firewall concept in networking. The data
firewall is a program that checks the incoming data. Physically, it is an SSIS package or a
stored procedure. We place a data firewall between the stage and the NDS, which will allow
or reject data depending on the data quality rules that we set. Like network firewalls, data fire-
walls also have mechanisms to report what data has been rejected, by what rule, and when.
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This is because every time the data firewall captures or finds bad data (as defined by the data
quality rule), the bad data is stored in the data quality database, along with which rule was
used to capture the bad data, what action was taken, and when it happened. We can then
report from this data quality database. We can also set the data quality system to notify the
appropriate people when certain data quality rules are violated.

Unlike a network firewall, a data firewall can also fix or correct bad data. When the data
firewall detects bad data, we can set it to do one of these three actions: reject the data (not
load it into the data warehouse), allow the data (load it into the data warehouse), or fix the
data (correct the data before loading it into the data warehouse).

A data firewall is an important part of data warehouse loading because it ensures data
quality. Before we load the data into the normalized data store (or into a DDS if we use DDS-
only architecture), we check the data by passing the data through firewall rules.

Populating NDS
In the NDS + DDS architecture, we need to populate the tables in the NDS before we popu-
late the dimension and fact tables in the DDS. This is because we populate the DDS based
on the NDS data. Populating a normalized data store is quite different from populating the
stage. This is because when populating the NDS, we need to normalize the data, while when
populating the stage, we don’t need to normalize the data. We extract some data from the
stage table or straight from the source system and then load it into the NDS database. If the
record does not exist in the NDS, we insert it. If the record already exists, we update it.

When populating the NDS, we need to consider several issues:

Normalization: In the NDS, the tables are normalized, so when loading the data from the
stage, we need to normalize it to fit the NDS structure. This means we need to populate
certain tables first before we can populate the main table.

External data: It is possible that the data from external sources does not match the data
from the source system. This means that when we load data into the NDS, we may need
to do some data conversion.

Key management: In the NDS, we need to create and maintain internal data warehouse
keys, which will also be used in the DDS. When loading data into the NDS, we need to
manage these keys.

Junction tables: The junction tables enable us to implement many-to-many relationships.
When populating junction tables, we need to follow a certain sequence.

We will discuss each of these four topics one by one in the following pages. Let’s begin
with the first one, normalization. The NDS is a normalized store. But the source systems may
not be normalized, so we have to normalize the data to fit the NDS normalized structure. For
example, consider the store table in the source system, shown in Table 8-1.
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Table 8-1. Non-normalized store Table in the Source System

store_number store_name store_type

1805 Perth Online

3409 Frankfurt Full Outlet

1014 Strasbourg Mini Outlet

2236 Leeds Full Outlet

1808 Los Angeles Full Outlet

2903 Delhi Online

We need transform it into the table shown in Table 8-2.

Table 8-2. A Normalized store Table in the NDS

store_number store_name store_type_key

1805 Perth 1

3409 Frankfurt 2

1014 Strasbourg 3

2236 Leeds 2

1808 Los Angeles 2

2903 Delhi 1

The store_type column in the source system in Table 8-1 is normalized into its own table,
as shown in Table 8-3.

Table 8-3. store_type Table in the NDS

store_type_key store_type

1 Online

2 Full Outlet

3 Mini Outlet

Figure 8-3 shows the entity relationship diagram of the store and store_type tables in the
source system and in the NDS. The diagram on the right shows that the store table is normal-
ized in the NDS. Each store has one store type. Each store type relates to zero or many stores.
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Figure 8-3. Entity relationship diagram of the store table in the source system and the NDS

If in the source system we have the store_type table, we just need to bring it to the NDS.
But if we don’t have a store_type table in the source system, we need to populate the NDS
store_type table using the data in the store table. If the store table contains a new store type,
we need to insert it into the store_type table. In practice, whether you use an ODS or NDS in
your data warehouse architecture, many of the reference entities are available in the source
system.

But there are always a few entities that are not available in the source system, so you
need to create them based on the data in the main entities. You can do this by inserting new
data from the main entity into the subentity. In the store example, the source system doesn’t
have a store_type table. So in the NDS, you need to create and populate the store_type table
based on the data available in the store table. Suppose we get the three rows from the source
system, as shown in Table 8-4.

Table 8-4. Incoming Data from the Source System

store_number store_name store_type

2009 Dallas Online

2237 London Full Outlet

2014 San Francisco Distribution Center

The first and second rows (Dallas and London) are fine because their store types
already exist in the NDS store_type table (shown earlier in Table 8-3). But the third row
(San Francisco) has a store type of Distribution Center. We don’t have this store type in the
NDS store_type table. So, we insert this new Distribution Center store type into the NDS
store_type table, as shown in Table 8-5.

Table 8-5. Adding a New Store Type

store_type_key store_type

1 Online

2 Full Outlet

3 Mini Outlet

4 Distribution Center
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Then we use the new store type key when we insert the row in the NDS store_type table,
as shown in Table 8-6.

Table 8-6. Adding the Three New Rows into the NDS store Table

store_number store_name store_type_key

1805 Perth 1

3409 Frankfurt 2

1014 Strasbourg 3

2236 Leeds 2

1808 Los Angeles 2

2903 Delhi 1

2009 Dallas 1

2237 London 2

2014 San Francisco 4

The second thing we want to consider when populating the NDS (or the ODS) is that we
may bring data from external sources, such as the ISO country table that we loaded in the pre-
vious chapter. So, the country table in the NDS has several more columns than the stage or the
source, as illustrated in Table 8-7.

Table 8-7. The country Table in NDS with Additional Columns

country_ country_ country_ source_ last_
key code name system_code active created updated

1 cg Congo 4 1 09/15/2007 10/02/2007

2 ch Switzerland 4 1 10/21/2007 11/14/2007

The issue with using external data is not how to look up the country key for a particular
country name or how to find out whether a country is still active. The issue here is whether a
country exists in the table but under a different name. For example, in the source system, the
customer record in Kinshasa has the country name “Congo (Zaire),” whereas the external data
is “Congo.” Therefore, when we do a lookup for the country name, we won’t find it. In this case,
if we create “Congo (Zaire)” as a new row, we will end up having two entries in the country
table for “Congo.” This is similar for “Bosnia-Herzegovina” and “Yugoslavia.” In this case, we
may want to consider applying a rule in the data quality routine to replace “Congo (Zaire)”
with “Congo” as we bring the data into the NDS. This problem occurs because we are using
external data for reference data that does not match the master data in the source system.

In Figure 8-4, the source system supplies “Congo (Zaire)” in the customer table, and the
external data supplies “Congo” for the country table. The country table in the NDS is popu-
lated with “Congo” from the external data. The data firewall replaces “Congo (Zaire)” from the
customer table in the source system with “Congo” so that when the NDS ETL looks up “Congo”
in the NDS country table, it finds it. This is necessary to prevent the ETL from creating dupli-
cate entries in the NDS country table. This example illustrates the data matching that needs to
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be done when we have more than one data source. When populating the NDS, matching is the
base activity for integrating the data.

Figure 8-4. Using the DQ rule to correct incoming data to prevent duplicate data in the NDS

The third consideration is key management. We want to implement key management
when doing NDS population. Consider a simple table in Jade like the one shown in Table 8-8.

Table 8-8. product_status Table in Jade

status_code description

AC Active

QC Quality Control

IN Inactive

WD Withdrawn

The product_status table in the NDS has a surrogate key column and an unknown row, as
shown in Table 8-9.

Table 8-9. product_status Table in NDS

product_status_key product_status_code product_status other columns

0 UN Unknown

1 AC Active

2 QC Quality Control

3 IN Inactive

4 WD Withdrawn

The purpose of having our own keying system in the data warehouse is twofold. First, it
enables integration with the second source system, and second, we want to be able to adapt
the key changes in the source system(s). Data warehouse keying is in the form of simple incre-
mental integers (1, 2, 3, 4, and so on). The data warehouse key is known as a surrogate key
(SK). The source system key is known as a natural key (NK). The SK enables the integration
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of several source systems because we can map or associate the NK with the SK. For example,
say Jupiter has the product status shown in Table 8-10.

Table 8-10. product_status Table in Jupiter

status_code description

N Normal

OH On Hold

SR Supplier Reject

C Closed

The SK in the data warehouse enables us to arrange in the ETL to have Normal in Jupiter
associated with Active in Jade. In addition, both should be mapped to SK 1, both Inactive and
Closed should be mapped to SK 3, and the remaining two codes from both systems are main-
tained so that the resulting product_status table looks like Table 8-11. Figure 8-5 shows the
mapping.

Table 8-11. product_status Table in NDS Combining Jade and Jupiter

product_status_key product_status_code product_status control columns

0 UN Unknown …

1 AC Active …

2 QC Quality Control …

3 IN Inactive …

4 WD Withdrawn …

5 OH On Hold …

6 SR Supplier Reject …

What I meant by “control columns” in Table 8-11 are active flag, source system code,
created, and last updated. In the NDS, we have a source_system table that contains a list
of source systems feeding the NDS. In this source system table, we define 1 for Jade, 2 for
WebTower, 3 for Jupiter, and 0 for unknown or not applicable, as shown in Figure 8-5. We set
the source system code for On Hold and Supplier Reject to 3, Unknown to 0, and the remain-
ing four rows to 1. Figure 8-5 shows the mapping between the source system tables and the
NDS. It also shows the source_system table.
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Figure 8-5. The mapping for the product_status table between the source systems and the NDS

If Quality Control was deleted later from Jade, we would change the active flag for
Quality Control from T to F (please see the active column on the NDS product_status table
in Figure 8-5). It is better to apply soft deletion in the NDS, rather than hard deletion. Some
regulations in certain countries may require hard deletion on certain data; for example,
French and UK customers may request that their e-mail addresses be physically deleted from
a marketing-related database.

Junction tables are the fourth and last consideration. In Chapter 5 when we did the data
modeling, we created five junction tables in the NDS: address_junction, phone_number_
junction, email_address_junction, channel_junction, and interest_junction. The purpose
of these tables is to implement many-to-many relationships between the customer table and
address, phone_number, email_address, channel, and interest tables. Now we need to popu-
late these junction tables. Let’s take one junction table for this example: the phone_number_
junction. Table 8-12 shows the customer table in the source system. It has three customers
with their phone numbers. Some are home phone numbers, some are office phone num-
bers, and some are cell phone numbers.
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Table 8-12. customer Table in Source System

home_phone_ office_phone_ cell_phone_
customer_id customer_name number number number

56 Brian Cable (904) 402-8294 (682) 605-8463 N/A

57 Valerie Arindra (572) 312-2048 N/A (843) 874-1029

58 Albert Amadeus N/A (948) 493-7472 (690) 557-3382

The target tables in the NDS are the customer table, the phone_number table, the
phone_number_junction table, and the phone_number_type table. Figure 8-6 shows the entity
relationship diagram, and Tables 8-13 to 8-16 shows the NDS tables.

Figure 8-6. Entity relationship diagram for NDS phone number tables

Table 8-13. NDS customer Table

customer_key customer_id customer_name

801 56 Brian Cable

802 57 Valerie Arindra

803 58 Albert Amadeus
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Table 8-14. NDS phone_number_junction Table

phone_number_ phone_number_
junction_key customer_key phone_number_key type_key

101 801 501 1

102 801 502 2

103 802 503 1

104 802 504 3

105 803 505 2

106 803 506 3

Table 8-15. NDS phone_number Table

phone_number_key phone_number

0 unknown

501 (904) 402-8294

502 (682) 605-8463

503 (572) 312-2048

504 (843) 874-1029

505 (948) 493-7472

506 (690) 557-3382

Table 8-16. NDS phone_number_type Table

phone_number_type_key phone_number_type

0 Unknown

1 Home phone

2 Office phone

3 Cell phone

In the previous case, we remove all three phone columns in the customer table and put
them in the junction table, with the customer_key, phone_key, and phone_type_key columns
each referring to their own table. Alternatively, rather than linking the phone_number_type table
to the phone_number_junction table, we can link the phone_number_type table to the phone
number table, as shown in Figure 8-7.
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Figure 8-7. Alternate ERD for NDS phone number tables

The NDS tables are normalized, which is good in terms of no data redundancy. This
means there is only one place to update if you have a data change. It’s just that this transfor-
mation is a little bit tricky to do in the ETL. In the ETL, we need to populate the customer table
and phone_number table first, and then we populate the junction table by looking up the cus-
tomer key and phone number key. The phone_number_type table is static; we populate it when
we initiate the data warehouse.

Using SSIS to Populate NDS
In this section, you will learn how to populate a table in the NDS using the Slowly Changing
Dimension Wizard in SSIS. The best way to learn about data warehouse population is by doing
it. It is good to know the theory, but if you haven’t actually done it, then you won’t encounter
any problems (or their solutions). So, let’s populate the NDS using SSIS. Open BIDS, and open
the Amadeus ETL SSIS package that we created in the previous chapter.

In the previous chapter, we created SSIS packages that populate the stage tables from the
source systems. In this chapter, we will create packages for populating the NDS and DDS tables.
All the packages that populate the stage tables are available on this book’s web page at http://
www.apress.com/. In the /ETL folder, there is an SSIS solution file called Amadeus ETL.sln. The
stage packages are named according to the frequency they are run and the extraction method,
as follows:

[destination data store] [frequency] [extraction method]

The first element is the target data store, such as the stage, the NDS, or the DDS. The sec-
ond element is the frequency that the ETL package is executed, such as daily, weekly, monthly,
or ad hoc. The third element is the extraction method, such as incremental, full reload, or
external data. There are five stage packages in the Amadeus ETL SSIS solution:

• Stage daily incremental.dtsx contains the order header, order detail, customer, prod-
uct, and store.

• Stage monthly incremental.dtsx contains the currency rate.
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• Stage daily full reload.dtsx contains the product status, customer status, product
type, household income, product category, interest, currency, package, and package
type.

• Stage weekly external data.dtsx contains the country and language.

• Stage adhoc full reload.dtsx contains the region, division, and state.

In the previous chapter, we loaded country data from an external source into the stage.
Now let’s create a package to load the country data from the stage to the NDS. We will do this
using the Slowly Changing Dimension Wizard. If the country already exists in the NDS country
table, the Slowly Changing Dimension Wizard will update the target row. But if the country code
doesn’t exist in the NDS country table, the Slowly Changing Dimension Wizard will insert it as
a new row. The stage country table contains only the country_code and country_name columns,
but the NDS country table contains three additional columns: source_system_code, create_
timestamp, and update_timestamp. In this exercise, we will also populate these three additional
columns.

1. Create a new package in SSIS. In Solution Explorer, right-click SSIS Packages, and
choose New SSIS Package to create a new SSIS package.

2. We want to load the data from the stage to the NDS. The task suitable for this job is
the Data Flow task, so let’s create a Data Flow task on the design surface and rename
it to Country.

3. Double-click it to edit the data flow and create an OLE DB source. Call this OLE DB
source Stage Country, and point the connection to the servername.Stage.ETL OLE
DB connection. Set the data access mode to Table or View and the table name to
country.

4. Click Preview to see the data, and click Close. Click OK to close the OLE DB source edi-
tor window.

5. In the Toolbox, find a transformation called Derived Column, and drag it onto the
design surface. Connect the green arrow from the stage’s Country column to the
Derived Column. Double-click Derived Column to edit it.

6. Click the cell under Derived Column Name, and type source_system_code. Then
set Expression to 2 and Data Type to a single-byte unsigned integer, as shown in
Figure 8-8. The source_system_code data type is defined as a single-byte unsigned
integer because the destination data type in the NDS is tinyint. The source_
system_code value is defined as 2 because the data originated from Jupiter 
(Jade = 1, Jupiter = 2, WebTower = 3).

7. Create two more columns called create_timestamp and update_timstamp, set
Expression to getdate() for both columns, and set Data Type to database time-
stamp, as shown in Figure 8-8. Click OK to close the Derived Column Transfor-
mation Editor dialog box.
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Figure 8-8. Setting the constants in the Derived Column transformation

8. In the Toolbox, scroll down and find Slowly Changing Dimension. Drag it onto the
design surface, and put it under the Derived Column box. Connect the green arrow
from the Derived Column box to this new Slowly Changing Dimension box.

9. Double-click the Slowly Changing Dimension box, and the Slowly Changing Dimen-
sion Wizard will open. Click Next. Set the connection manager to servername.NDS.ETL
by clicking the New button. Set the “Table or view” drop-down list to country. Click
“Not a key column” for country_code, and change it to “Business key.” Figure 8-9 dis-
plays the result.

10. Click Next. On the next page, click the blank cell under Dimension Columns, and select
country_name. Set Change Type to “Changing attribute.” Do the same for source_
system_code and update_timestamp. We don’t want to update the create_timestamp
column for existing records because it is set once at record creation only. Figure 8-10
shows the result. We set the three columns shown in Figure 8-10 to “Changing attrib-
ute” because we want them to be updated when the stage data changes. But we want
the create_timestamp column to be static because it shows when the row was created.

11. The “Changing attribute” option is for SCD type 1 (overwriting existing values), and
“Historical attribute” is for SCD type 2 (preserving history by writing the new values
into new records). Click Next. Leave the Changing Attribute check box unchecked
because we don’t have outdated records in the country dimension.

12. Click Next. Uncheck “Enable inferred member support.” Inferred dimension member
happens when a fact table references a dimension row that has not been loaded yet.
We will map the unknown dimensional value in the fact table to the unknown dimen-
sion record later in this chapter.
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Figure 8-9. Selecting dimension table and keys in the Slowly Changing Dimension Wizard

Figure 8-10. Setting the change type for dimension columns
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13. Click Next, and then click Finish to complete the Slowly Changing Dimension Wizard.
Rename the OLE DB Command box to Update Existing Rows, and rename the Insert
Destination box to Insert New Rows. Figure 8-11 shows the result.

Figure 8-11. Completed Slowly Changing Dimension task

Figure 8-11 shows we have five boxes on the design surface. The Stage Country box is the
source table in the stage. The Derived Column box sets the values for the three additional
columns. The Slowly Changing Dimension box splits the data into two branches: existing rows
and new rows. The Update Existing Rows box updates the data in the NDS country table. The
Insert New Row box inserts new rows into the NDS country table.

Click the Debug menu, and choose Start Debugging to run the package. The boxes should
all be green if the package runs successfully. Query the country table in both the stage and the
NDS databases using SQL Server Management Studio to make sure that the country records
have been loaded successfully into the NDS. Figure 8-12 shows the NDS country table after
loading.

Figure 8-12. NDS country table after loading
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Figure 8-12 showed that there is a row with country_key set to 0. This row is called the
unknown record. On every master table in the NDS, we need to add the unknown record with
the data warehouse key equal to 0. An unknown record is a row with all the columns set to
dummy values, used when we have an unknown value in the main table. We can create the
unknown record using the following Transact SQL:

set identity_insert country on
insert into country
( country_key, country_code, country_name, source_system_code,
create_timestamp, update_timestamp )

values
( 0, 'UN', 'Unknown', 0,
'1900-01-01', '1900-01-01' )

set identity_insert country off

We need to set identity_insert to ON because the country_key column is an identity col-
umn and we are inserting a specific value in this column. Some people prefer to set the key
value to 0 for the unknown records, and others prefer to set it to –1. I have seen some imple-
mentations with the key value equal to 1 for unknown records; 0 or –1 is better than 1 because
you can have your surrogate key as a positive integer. Whatever the value is, you need to be
consistent; for example, once you have defined it as 0, use 0 throughout (in the DDS too).

Generally, the value of an unknown record is 0 for numeric columns; Unknown or a
blank string for char or varchar columns; and a low-value date for the date columns, such as
1900-01-01 for smalldatetime, 1753-01-01 for datetime, and 0001-01-01 for the new SQL 2008
datetime2 data type. We should not use NULL in the unknown record to differentiate from a
row that doesn’t actually have a value. The purpose of having an unknown record is so that
the referential integrity in the NDS is maintained, even if the code value in the transaction
table is not known.

Now that we have populated the country table, let’s do the state table using the same
process. The SQL command for the OLE DB source is as follows:

select state_code, state_name, formal_name,
admission_to_statehood, population,
capital, largest_city,
cast(2 as tinyint) as source_system_code,
getdate() as create_timestamp,
getdate() as update_timestamp

from state

The unknown record initialization is comprised of the following SQL statements:

set identity_insert state on
insert into state
( state_key, state_code, state_name, formal_name,
admission_to_statehood, population,
capital, largest_city, source_system_code,
create_timestamp, update_timestamp )
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values
( 0, 'UN', 'Unknown', 'Unknown',
'1900-01-01', 0,
'Unknown', 'Unknown', 0,
'1900-01-01', '1900-01-01' )

set identity_insert state off

When you execute the package for the first time, it should insert records into the destina-
tion, but when you run it for the second time, it should update the records in the destination,
as shown in Figure 8-13.

Figure 8-13. Using SCD transformation for loading the state table

Figure 8-14 shows the NDS state table. It consists of all the columns in the stage state
table from state_code to largest_city, plus three control columns (source_system_code,
create_timestamp, and update_timestamp). It has an unknown record with state_key equal
to 0.

Figure 8-14. NDS state table after loading
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As before, we query both the stage and the NDS state table to make sure that all data has
been correctly loaded into the NDS. We can do this using the following query, which tests the
existence of each stage row in the NDS. If no row is returned, it means all the rows in the stage
have been loaded into the NDS.

select * from stage.dbo.state a
where not exists
( select * from nds.dbo.state b
where a.state_code = b.state_code )

Now that the “initial loading” is done, let’s test whether a change in the stage data will be
correctly loaded into the NDS by the previous SCD transformation. For that purpose, let’s
update the population of Arizona in the stage database. Issue the following SQL statements
one by one against the stage database in SQL Server Management Studio:

use stage
select population from state where state_code = 'AZ' --6166318
update state set population = 6167318 where state_code = 'AZ'

Notice that the population was 6,166,318 and we updated it to 6,167,318. Before we run
the SSIS package, run this query to check the value of the Arizona population in the NDS:

select population from nds.dbo.state where state_code = 'AZ'

Notice that in the NDS the population is 6,166,318. Now let’s run the SSIS package and
then run the previous NDS query. The population in the NDS should now be 6,167,318 as
expected. Set the stage back to 6,166,318, and rerun the SSIS package to put it back as it was.

Upsert Using SQL and Lookup
What the previous SCD transformation does is commonly known as upsert—in other words,
update if exist, insert if not exist. It is a basic operation in data warehousing, and you will
come across this operation many times when building a data warehouse ETL system. There
are two other methods that are commonly used in practice to do upsert using SSIS. The first
one is using a SQL statement. The second one is using the Lookup transformation.

The following Transact SQL shows how to do an UPSERT operation using a SQL statement.
I’ll use the same example as mentioned previously: country, which is simpler than the state
example. The first statement (update ...) updates the rows in the NDS table that have coun-
try names different from the ones on the stage table. The second statement (insert ...) loads
the rows on the stage table that do not exist in the NDS.

update nds.dbo.country
set country_name = s.country_name,
source_system_code = 2,
update_timestamp = getdate()

from the stage.dbo.country s
inner join nds.dbo.country n
on n.country_code = s.country_code

where n.country_name <> s.country_name
and n.country_key <> 0
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insert into nds.dbo.country
( country_code, country_name, source_system_code,
create_timestamp, update_timestamp )

select s.country_code, s.country_name,
2 as source_system_code,
getdate() as create_timestamp,
getdate() as update_timestamp

from the stage.dbo.country s
left join nds.dbo.country n
on s.country_code = n.country_code

where n.country_key is null

To implement the previous SQL statement approach in SSIS, create a new SSIS package,
and rename it to NDS country using SQL. In the Toolbox, drag the Execute SQL task onto the
design surface, and rename it to Update NDS Country. Drag another Execute SQL task onto
the design surface, and rename it to Insert NDS Country. Set the connection to servername.
NDS.ETL for both of them. Set the SQL statement to the previous statements, and leave SQL-
SourceType as direct input. Connect the green arrow from the Update NDS Country box to the
Insert NDS Country box. Figure 8-15 describes the package execution result. The resulting
data is the same as in Figure 8-12.

Figure 8-15. Using Execute SQL tasks to do an upsert operation

The second method is to use a Lookup transformation. Let’s use the same example as
mentioned previously (country) so it is easy to understand the differences between the two:

1. In Solution Explorer, right-click SSIS Packages, and choose New SSIS Package to create
a new SSIS package.

2. Drag a Data Flow task from the Toolbox onto the design surface, and double-click the
box to edit it.

3. To set the country table in the stage as a source, drag an OLE DB source from the
Toolbox onto the design surface, and rename it to Stage Country. Configure the con-
nection to point to the stage. To retrieve both columns from the source table and add
the three additional columns, set the data access mode to SQL Command, and set the
SQL command to the following:
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select country_code, country_name,
cast(2 as tinyint) as source_system_code,
getdate() as create_timestamp,
getdate() as update_timestamp

from country

4. Click Preview to make sure the SQL statement is correct and the data is there, and then
click OK.

5. Let’s create a Lookup transformation to check whether the row already exists in the
NDS. In the Toolbox, under the Data Flow Transformation section, find an icon called
Lookup, and drag it onto the design surface. Name this box Lookup Country Code.
Connect the green arrow from Stage Country to the Lookup Country Code box.
Double-click the box to edit it.

6. Now we need to configure the Lookup transformation to check whether the country
code exists in the NDS country table. To do that, set the connection to NDS. Select “Use
the results of an SQL query,” and set the query as select country_code from country.
This is so that only one column is retrieved from disk into memory. If you select “Use
table or view,” all columns will be retrieved into memory. Click Preview to make sure
the data is there. Figure 8-16 shows the settings.

Figure 8-16. Configuring the data source and SQL query for the Lookup transformation
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7. Click the Columns tab. There should be a line connecting country_code from Available
Input Columns on the left to the country_code from Available Lookup Columns on the
right, as shown in Figure 8-17. If there isn’t, drag country_code from the left to the right
to map it. You don’t need to check the box on country_code; in fact, leave it unchecked.
We are not using any output column from this Lookup transformation. We use the
Lookup transformation only for checking whether all the country codes on the stage
table exist on the NDS table.

Figure 8-17. Specifying the join column

8. Click the Advanced tab. On this tab, we can tune the memory usage by setting the
cache size closer to the byte size of the lookup column(s). Tuning the memory usage
means we allocate how much memory we want to use for caching the lookup table.
The lookup table is the output of the lookup SQL statement. If the lookup table is
small, we don’t want to waste memory by allocating too much memory to contain the
output. If the lookup table is large and we allocate too little memory, SSIS will put the
lookup table on disk, and it will slow down the lookup process. Check the “Enable
memory restriction” box, and set the cache size to 1MB to minimize memory usage.
The country code is only two characters wide, and there are fewer than 250 countries
in the stage table. Change the SQL statement to select country_code from country
where country_code = ?, as shown in Figure 8-18.

9. Click OK to close the Lookup Transformation Editor dialog box.
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Figure 8-18. Configuring the cache memory size and SQL statement

10. Next, we need to update the countries that already exist in the NDS, setting the coun-
try names to be the same as the ones in the stage table. In the Toolbox, find the OLE DB
command, and drag it onto the design surface. Name it Update Existing Row. Connect
the green arrow from Lookup Country Code to the Update Existing Row box. Double-
click the box to edit it.

11. To set the country name of the row in the NDS table to be the same as the country
name in the stage table, under the Connection Manager column set the Connection
drop-down list to servername.NDS.ETL. Click the Component Properties tab, and set
SqlCommand to this:

update country
set country_name = ?,
source_system_code = 2,
create_timestamp = getdate(),
update_timestamp = getdate()

where country_code = ?

12. In the previous Transact SQL, we have two question marks. They are parameters. The
first question mark is Param_0, and the second question mark is Param_1. To feed the
input columns coming from the Lookup Country Code box to these parameters, click
the Column Mappings tab, and connect country_code to Param_1 and country_name to
Param_0, as shown in Figure 8-19. Click OK to close this editor.
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Figure 8-19. Configuring column mappings in the OLE DB command

13. Next, we need to insert rows in the stage table that do not exist in the NDS table. In the
Toolbox, find SQL Server Destination, and drag it onto the design surface. Name it
Insert New Rows. Connect the red arrow from the Lookup Country Code box to this
box. Click OK in the dialog box.

14. Double-click the Insert New Rows box to edit it. Set the connection to NDS. Set Table
to country, and click Preview to verify that it is country table that we selected.

15. Click Mappings, and configure the mappings between the input columns and destina-
tion columns, as shown in Figure 8-20.

16. Click OK to close the SQL Server Destination Editor dialog box.

17. To test the package, we can prepare the data by issuing the following SQL statements
against the NDS database. The first statement updates Andorra’s country name in the
NDS to Andorra1 and is, therefore, not the same as the country name in the stage. The
second statement deletes Turks and Caicos Island from the NDS.

update nds.dbo.country set country_name = 'Andorra1'
where country_code = 'ad'

delete from nds.dbo.country where country_code = 'tc'

18. Query the NDS country table to check that the data changes were successfully made.
To execute the package, click the Debug menu, and choose Start Debugging (F5). Fig-
ure 8-21 shows how the final package looks.
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Figure 8-20. Mapping the columns on the SQL Server destination

Figure 8-21. Upsert using the Lookup transformation

19. Check the NDS country table to see whether Andorra was corrected and whether
Turks and Caicos Island was reinserted into the table. Also, check that both the
create_timestamp and update_timestamp columns for these two records are set to
today.

The question that many people ask is, which one is the best method, or which one gives
the best performance? The SQL method is simpler and easier to use. Which method gives the
best performance depends on the size of data, the complexity of the lookup, and the specifi-
cation of the ETL server, in particular the memory. If the lookup table can be cached into the
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memory of the ETL server, then the lookup and SCD methods are faster than the SQL state-
ment method. But if the lookup table cannot be cached into memory, the SQL statement
method is faster. The performance of the SQL statement method also depends on the indexes
and partitions. If performance is really critical in your data warehouse project, the best thing
to do is to test both methods and compare the performance.

Normalization
Normalization is a key part of NDS population. Earlier in this chapter, we discussed how to
normalize stage tables in NDS. In this section, we will discuss how to load the stage data
(which is not normalized) into the normalized NDS tables. We will use the store table as an
example. In the NDS, we normalized the stage store table into four tables: store, store_type,
address, and phone_number. In this section, you will learn that to populate the NDS store table,
you need to load the address, store_type, and phone_number tables first. We will also learn how
use SSIS to load the store table.

Consider the store table in the stage database, as shown in Table 8-17.

Table 8-17. store Table in the Stage Database

store_number store_name store_type other columns

1010 Paris Mini Outlet …

1011 Lyon Full Outlet …

1012 Toulouse Full Outlet …

1013 Nice Full Outlet …

1014 Strasbourg Distribution Center …

1015 Nantes Mini Outlet …

We can see that the store_type column is not normalized. Let’s now refer to the target
table in the NDS, as shown in Table 8-18.

Table 8-18. store Table in the NDS

store_key store_number store_name store_type_key other columns

0 0 Unknown 0 …

562 1010 Paris 19 …

607 1011 Lyon 18 …

576 1012 Toulouse 18 …

531 1013 Nice 18 …

585 1014 Strasbourg 17 …

547 1015 Nantes 19 …

515 2703 Osaka 18 …
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In the previous table, we can see that to load the NDS store table we need store_type_
key. We get this store_type_key from the store_type table. This is also the case with the
address and phone_number columns. To insert a record into the store table, we need store_
type_key, address_key, and phone_number_key, so we need to do a lookup on those three
tables. But before we can do a lookup, if there is any new store type, address, or phone num-
ber, we need to load them first. So, diagrammatically, the process is like the one described in
Figure 8-22.

Figure 8-22. Loading the NDS store table

When populating the address table, we need to check whether there are any new cities
because we need the city key to populate the address table. If there are new cities, we need to
insert them into the city table. The state and country tables have their own data feed from
the source system, so we do not need to normalize them. We only need to do a lookup to get
their key values.

So, let’s create the SSIS package for loading the store table:

1. Open BIDS, create a new package, and call it NDS store. Drag the Execute SQL task
from the Toolbox onto the design surface, and call it Insert New Store Types.

2. Double-click it to edit it, and set the connection to NDS. Set the SQL statement as
follows:

insert into nds.dbo.store_type
( store_type, source_system_code,
create_timestamp, update_timestamp )

select
distinct store_type as store_type,
1 as source_system_code,
getdate() as create_timestamp,
getdate() as update_timestamp

from stage.dbo.store s
where not exists
( select * from nds.dbo.store_type t
where t.store_type = s.store_type )
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The earlier SQL statement looks for new store types—those that exist in the stage store
table but do not exist in the NDS store_type table. It then inserts the new store types
into the NDS store_type table.

You can also build the SQL statement by clicking the Query Builder button in the
SSMS. This will open the Query Builder, which is shown in Figure 8-23.

Figure 8-23. Using Query Builder to build the SQL statement

3. Similarly, create an Execute SQL task, call it Insert New Phone Number pointing to the
NDS database, and set the SQL statements as follows. The following SQL statement
looks for new phone numbers that exist in the stage but not in the NDS and then
inserts these new phone numbers into the NDS phone_number table.

insert into nds.dbo.phone_number
( phone_number, source_system_code,
create_timestamp, update_timestamp )

select
distinct s.phone_number as phone_number,
1 as source_system_code,
getdate() as create_timestamp,
getdate() as update_timestamp

from stage.dbo.store s
where not exists
( select * from nds.dbo.phone_number p
where p.phone_number = s.phone_number )
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4. We then insert new cities and addresses, using the Execute SQL task, with the SQL
statements as follows. The first statement inserts the new cities into the NDS city
table, and the second statement inserts the new addresses into the NDS address table.

insert into city
( city_name, source_system_code,
create_timestamp, update_timestamp )

select
distinct s.city as city_name,
1 as source_system_code,
getdate() as create_timestamp,
getdate() as update_timestamp

from stage.dbo.store s
where not exists
( select * from nds.dbo.city c
where c.city_name = s.city )

insert into nds.dbo.address
( address1, address2, address3, address4,
city_key, post_code, state_key, country_key,
source_system_code, create_timestamp, update_timestamp)

select
distinct s.address1, s.address2, s.address3, s.address4,
c.city_key, s.zipcode, st.state_key, co.country_key,
1 as source_system_code,
getdate() as create_timestamp,
getdate() as update_timestamp

from stage.dbo.store s
left join nds.dbo.city c
on s.city = c.city_name

left join nds.dbo.state st
on case when s.state = 'N/A' then 'Unknown'

else s.state end = st.state_name
left join nds.dbo.country co
on s.country = co.country_code

where not exists
( select * from nds.dbo.address a
where coalesce(a.address1,'') = coalesce(s.address1,'')
and   coalesce(a.address2,'') = coalesce(s.address2,'')
and   coalesce(a.address3,'') = coalesce(s.address3,'')
and   coalesce(a.address4,'') = coalesce(s.address4,'')
and   coalesce(a.city_key,0) = coalesce(c.city_key,0)
and   coalesce(a.post_code,'') = coalesce(s.zipcode,'')
and   coalesce(a.state_key,0) = coalesce(st.state_key,0)
and   coalesce(a.country_key,0) = coalesce(co.country_key,0) )
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In the previous SQL statement, we have a case statement in the join with the state
table. The purpose of this case statement is to map N/A in the source data to the
unknown record. This is because for online stores, the address columns are popu-
lated with N/A, which essentially means unknown. If we don’t do this mapping, we
will end up with two unknown records in the address table: one for N/A and 1 for
unknown. In a more sophisticated data warehouse system, this comparison is ideally
performed in metadata so that it is easier to maintain.

As you saw earlier, unlike the store type, phone number, and city, the identification of
a unique record in the address table depends not only on one column, but on eight
columns. This is why, in the earlier where clause, we see eight conditions. The purpose
of those eight conditions is to identify whether a record in the address already exists
in the NDS.

■Tip When comparing a nullable column to another nullable column, use coalesce to replace NULL with
either '' (blank string) or 0. This is because NULL cannot be compared to NULL. For example, if you write
a.post_code = s.zipcode, the value of both sides of the equation can be NULL, and the comparison will
fail. To avoid that, you need to add coalesce to convert NULL to a blank string as follows:
coalesce(a.post_code,'') = coalesce(s.zipcode,'').

5. Now we are ready to create the Execute SQL task for the store table using the following
SQL statement. This statement finds the new stores that do not exist in NDS; converts
their store type, address, phone number, and region into their keys; and then inserts
the new stores into the NDS.

insert into nds.dbo.store
( store_number, store_name, store_type_key,
address_key, phone_number_key, web_site, region_key,
source_system_code, create_timestamp, update_timestamp )

select
s.store_number as store_number,
s.store_name as store_name,
t.store_type_key as store_type_key,
z.address_key as address_key,
p.phone_number_key as phone_number_key,
s.web_site as web_site,
r.region_key as region_key,
1 as source_system_code,
getdate() as created_timestamp,
getdate() as update_timestamp

from stage.dbo.store s
inner join nds.dbo.store_type t
on s.store_type = t.store_type
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inner join
( select a.address_key, a.address1, a.address2, a.address3,

a.address4, a.post_code as zipcode, c.city_name as city,
st.state_name as state, upper(co.country_code) as country

from address a
inner join city c on a.city_key = c.city_key
inner join state st on a.state_key = st.state_key
inner join country co on a.country_key = co.country_key

) z
on coalesce(s.address1,'') = coalesce(z.address1,'')
and coalesce(s.address2,'') = coalesce(z.address2,'')
and coalesce(s.address3,'') = coalesce(z.address3,'')
and coalesce(s.address4,'') = coalesce(z.address4,'')
and coalesce(s.zipcode,'') = coalesce(z.zipcode,'')
and coalesce(s.city,'') = coalesce(z.city,'')
and coalesce(case when s.state = 'N/A' then 'Unknown'

else s.state end,'') = coalesce(z.state,'')
and coalesce(s.country,'') = coalesce(z.country,'')
inner join nds.dbo.phone_number p
on s.phone_number = p.phone_number

inner join nds.dbo.region r
on s.region = r.region_name

where not exists
( select * from nds.dbo.store n
where n.store_number = s.store_number )

In the previous SQL statement, we join the address table with the store_type, address,
phone_number, and region tables to get the surrogate key. We use inner joins rather than
left joins because we previously made sure that all store types, addresses, phone num-
bers, and regions exist; if they don’t, we insert them.

The previous SQL statements filter out the stores that already exist in the NDS store
table. They use coalesce to avoid comparing NULL to NULL. They also use the case state-
ment to map N/A to Unknown.

6. Next, we update the NDS store table for records that already exist and for which the
value has changed. For that, create another Execute SQL task, label it as Update Store,
set the connection to NDS, and set the SQL statements as follows:

update nds.dbo.store
set store_name = s.store_name,
store_type_key = st.store_type_key,
address_key = a.address_key,
phone_number_key = pn.phone_number_key,
region_key = r.region_key,
web_site = s.web_site,
update_timestamp = getdate()
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from stage.dbo.store s
inner join nds.dbo.store n
on s.store_number = n.store_number

inner join nds.dbo.store_type st
on n.store_type_key = st.store_type_key

inner join nds.dbo.address a
on n.address_key = a.address_key

inner join nds.dbo.phone_number pn
on n.phone_number_key = pn.phone_number_key

inner join nds.dbo.region r
on n.region_key = r.region_key

inner join nds.dbo.city c
on a.city_key = c.city_key

inner join nds.dbo.state sta
on a.state_key = sta.state_key

inner join nds.dbo.country co
on a.country_key = co.country_key

where coalesce(s.store_name,'') <> coalesce(n.store_name,'')
or coalesce(s.store_type,'') <> coalesce(st.store_type,'')
or coalesce(s.address1,'') <> coalesce(a.address1,'')
or coalesce(s.address2,'') <> coalesce(a.address2,'')
or coalesce(s.address3,'') <> coalesce(a.address3,'')
or coalesce(s.address4,'') <> coalesce(a.address4,'')
or coalesce(a.city_key,0) <> coalesce(c.city_key,0)
or coalesce(a.post_code,'') <> coalesce(s.zipcode,'')
or coalesce(a.state_key,0) <> coalesce(sta.state_key,0)
or coalesce(a.country_key,0) <> coalesce(co.country_key,0)
or coalesce(s.phone_number,'') <> coalesce(pn.phone_number,'')
or coalesce(s.web_site,'') <> coalesce(n.web_site,'')

This SQL statement updates the NDS stores that have a different store name, store
type, address, phone number, or web site from the ones in the stage. Just like the
insert statement, in the previous SQL statement we join the address table with the
city, state, and country tables to compare the address. We also use coalesce to avoid
the NULL-against-NULL comparison.

7. The control flow of the package now looks like Figure 8-22, which we discussed earlier.
Save and run the package.

8. Query the five NDS tables (city, address, phone number, store type, and store) to
ensure that they are populated properly by comparing them to the source system.
Figure 8-24 shows the result (the NDS store table).
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Figure 8-24. The NDS store table after loading

Practical Tips on SSIS
So, we have covered how we populate the NDS. Before I discuss how to populate the DDS, I’ll
share some practical tips on SSIS. I hope you will find them useful in doing your work later.

• To format your data flow quickly, press Alt+O, and then press Enter twice. This will
invoke Auto Layout, which will arrange the boxes on your data flow design surface
(sources, transformation, and targets) in a nice top-to-bottom order. If you want to do
the same on the control flow design surface, press Alt+O, then press L, and finally hit
Enter.

• On a data conversion task, to quickly select all columns, press Alt+A, and tick one check
box. This is useful when the table has many columns.

• To quickly build a data flow similar to an existing one, select the objects, and then copy
and paste. First you need to create an empty data flow. Then you open an existing data
flow, select the object you want to copy, and press Ctrl+C to copy the object into mem-
ory. Open the new empty data flow, and press Ctrl+V to paste the objects from memory.
This is useful when you have a lot of similar data flows to create in a package.

• To see the variable in a package, right-click the design surface, and choose Variable.
This will open the Variables window. This is useful when you have several data flows all
using LSET and CET datetime variables. You can select which columns to display by
clicking the Properties button. The value column is very useful because it enables you
to know the values of all variables in one go.

• It is better to define the variables when creating the Execute T-SQL Statement task (on
the Result Set pane) rather than in the Variables window mentioned earlier. This is
because in the Result Set pane you can define the scope of the variable, such as which
container you want to create the variable in.
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• If your SSIS package is big and doesn’t fit into one screen, click the four arrow icons at
the bottom-right corner of the design surface to navigate around the design surface. It’s
much better and quicker to move around the workflow to control flow objects than
using scroll bars.

• In the Lookup transformation, on the Columns tab, to delete all lines between the left
table and the right table, click the background, press Ctrl+A, and then press Delete.

• On the Data Conversion transformation, set the output data type according to the tar-
get column (see Table 8-19); otherwise, SSIS will produce a data conversion error when
you run the package. In Table 8-19, I list some of the most popular used data types (in
the target column) and what the data conversion output should be.

Table 8-19. Data Conversion Output for Popular Data Types

Target Column Conversion Output Notes

int 4-byte signed integer [DT_I4]

tinyint Single-byte unsigned integer 
[DT_UI1]

datetime Database timestamp 
[DT_DBTIMESTAMP]

decimal Numeric [DT_NUMERIC] Don’t choose decimal because you can
specify only the scale and cannot specify the
precision.

money Currency [DT_CURRENCY] There is only one data type for currency.

char, varchar String [DT_STR] Don’t forget to specify the correct length;
otherwise, a data conversion warning or error
occurs.

Populating DDS Dimension Tables
Now that I have discussed how to populate the NDS, I’ll discuss how to populate the DDS.
The DDS is a dimensional store. The tables in the DDS are denormalized. Just like when load-
ing data into the NDS, when loading data into the DDS, we also do an UPSERT operation to
update or insert the source row depending on whether it exists in the target.

We have two main types of DDS tables: fact tables and dimension tables. In this section,
I will discuss how to load data into dimension tables. In the next section, I will discuss how
to load data into the fact tables. I will show how to use SSIS to load the data. I will show how
to use the Slowly Changing Dimension Wizard to load the data into dimension tables. When
loading data into dimensional tables in the DDS, you need to consider several issues: incre-
mental loading, key management, denormalization, and slowly changing dimension. I’ll
discuss these four topics first, and then we will create an SSIS package to load the data into
customer dimension.

CHAPTER 8 ■ POPULATING THE DATA WAREHOUSE250

9314ch08final.qxd  11/15/07  10:09 AM  Page 250



Incremental loading: When populating the dimension tables in the DDS, we have the lux-
ury of incremental loading. We don’t have to worry about how to extract the data incre-
mentally from the NDS because in the NDS everything is timestamped. When loading the
stage data into the NDS, we always put the current time on the last-updated timestamp
column. So, we know when each record was last updated. This enables us to load the NDS
data into the DDS incrementally. In other words, we load only the NDS rows that changed
since the last ETL run.

Key management: In the DDS, we don’t have to maintain the surrogate keys. Surrogate
keys are managed in the NDS. This makes the UPSERT operation simpler, because every
row in the dimension table has a surrogate key. The surrogate keys that we use in the DDS
are the same as the surrogate key that we use in the NDS. Bear in mind that in the NDS +
DDS architecture we can have multiple DDS data stores. Because we define and manage
the data warehouse surrogate key in the NDS, we can guarantee that all DDSs use the
same surrogate key.

ODS, on the contrary, does not have surrogate keys, and we need to create and manage
the surrogate keys in the DDS. In the ODS + DDS architecture, we can have only one
DDS, so we don’t have an issue of synchronizing the surrogate keys between DDSs. Ear-
lier in this chapter when I discussed populating the NDS, I talked about surrogate key
management. If you use the ODS + DDS architecture, you need to apply this method to
manage the surrogate key in the DDS.

Denormalization: The dimension tables in the DDS are denormalized, whereas in the
NDS they are normalized. Therefore, to load a single dimension table in the DDS, we
need to get data from several tables in the NDS by joining them. For example, to load
the store dimension in the DDS, in the NDS we need to join the store table with the
store_type table. This is because the NDS store table has only the store type keys.
Please refer to Figure 8-3 and Tables 8-1 to 8-3. To get the store type, we need to join
the store table with the store_type table.

Slowly changing dimension (SCD): The dimension tables in DDS have either SCD type 1
(overwrite), SCD type 2 (rows), or SCD type 3 (column). Please refer to Chapter 5 for
more information about SCD. In the Amadeus Entertainment case study, the product
dimension is SCD type 1, the customer dimension is SCD type 2, and the store dimen-
sion is SCD type 3. If the dimension is SCD type 1, we just overwrite the old attribute
values with the new values. If the dimension is SCD type 2, we need to create a new row
containing the new attribute values and expire the old row. If the dimension is SCD type
3, we need to put the old values into another column and put the new values in the
main attribute column.

A good way to learn more about these four topics in SQL Server data warehousing is by
implementing them using SSIS. So, let’s populate our customer dimension using SSIS, and I’ll
explain these topics as we go along:

1. Open BIDS. Create a new SSIS package, and name it DDS Customer.

2. Drop an Execute SQL task onto the design surface, name it Set Customer CET, set the
connection to the metadata database, and set the SQL statement as follows:

CHAPTER 8 ■ POPULATING THE DATA WAREHOUSE 251

9314ch08final.qxd  11/15/07  10:09 AM  Page 251



update data_flow
set status = 3, CET = getdate()
where name = 'dds_customer'

This statement sets the status of the dds_customer data flow in the ETL metadata to in
progress and sets the current extraction time to now.

3. To extract incrementally from the NDS, we need to retrieve the last successful extrac-
tion time (LSET) into a variable so that we can use it in the Execute SQL task to limit
the extraction query. To do this, create a row for the dds_customer task in the data_flow
table in the metadata database by issuing the following SQL statement using SQL
Server Management Studio (set the LSET to last week and CET to today). You can use
Query Builder to compose the SQL statement by clicking the Query menu and choos-
ing Design Query in Editor.

insert into data_flow (name, status, LSET, CET)
values ('dds_customer', 0, 'yyyy-mm-dd', 'yyyy-mm-dd')

4. Now let’s read the LSET from the data_flow table in the metadata database into a
variable. Drop an Execute SQL task onto the design surface, name it Get Customer
LSET, set ResultSet to “Single row,” set the connection to NDS, and set the SQL state-
ment to select LSET, CET from dataflow where name = 'dds_customer', as shown
in Figure 8-25.

Figure 8-25. Retrieving the last successful extraction time into a variable to 
extract incrementally

5. To map the output of the query to variables, click Result Set on the left side, click
Add, and set the result name to CET. In the Variable Name column, create a new
variable called dtCET_Customer, set the namespace to User, set the value type to
DateTime, type 2007-01-01 in the Value field, and leave the “Read only” box
unchecked. Do the same for LSET; map it to a new variable called dtLSET_Customer
with the Namespace, Value type, Value, and “Read only” boxes set the same as you
did for CET, as shown in Figure 8-26.
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Figure 8-26. Mapping the result set to variables

6. Now we can create a task to retrieve the data from NDS incrementally using the CET
and LSET that we have put into variables. To do this, drop a Data Flow task (some peo-
ple call it DFT) onto the design surface, and name it Populate Customer Dimension.
Double-click it to edit it. Add an OLE DB source, name it Customer NDS, set the con-
nection to NDS, set the data access mode to SQL Command, and set the command text
as follows:

select * from customer
where (create_timestamp >= ? and create_timestamp < ?)
or (update_timestamp >= ? and update_timestamp < ?)

The previous SQL statement gets customer records from the NDS that were created or
updated within a certain date range.

7. The previous SQL statement has four parameters (indicated by four question marks).
We need to map these parameters to the CET and LSET variables so that the where
clause in the previous SQL statement is limited by the variables. Click the Parameters
button, and specify the variables for each parameter, as shown in Figure 8-27. Then
click OK.
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Figure 8-27. Mapping the parameters to variables to extract incrementally

8. We need to denormalize the customer dimension by looking up the values of
customer_type_key, customer_status_key, occupation_key, household_income_key,
and permission_key to get the customer type, customer status, occupation, household
income, and permission, and then we need to insert the whole record into the cus-
tomer dimension. We will use the Lookup transformation to look up the surrogate
keys. Drop a Lookup transformation onto the design surface, name it Customer Type,
connect the green arrow from the customer NDS into it, set the connection to NDS,
select “Use results of an SQL query,” and set the query as follows:

select customer_type_key, customer_type_code
from customer_type

9. Next, we need to specify the lookup column and the output column. On the Columns
tab, map the customer_type_key column, and select the customer_type_code check box,
as shown in Figure 8-28.

10. Now that we have completed the lookup of customer_type, let’s do the same with
customer_status, occupation, household_income, and permission. Figure 8-29 shows
the data flow with the NDS customer table as the source and the five Lookup transfor-
mations that search surrogate keys to obtain the customer type, customer status,
occupation, household income, and permission.
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Figure 8-28. Mapping the customer type columns on the Lookup transformation

Figure 8-29. Lookup transformations for populating the customer dimension
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11. The five attributes we did in the previous step link directly to the NDS customer table.
But there are some attributes that are linked to the customer table using junction
tables, such as email_address, phone_number, and address. So, we need to look up the
customer surrogate keys in the junction tables to get this data. To do this, drop a
Lookup transformation on the design surface, name it Email Address, and double-
click it to edit it. Point the connection to NDS, and set the SQL query as follows:

select j.customer_key, e.email_address
from email_address_junction j
join email_address e on j.email_address_key = e.email_address_key
join customer c on j.customer_key = c.customer_key

This SQL statement gets email_address_key in the email_address_junction table and
then goes to the email_address table to get the email address.

12. We need to define the lookup column and the output column for the Lookup transfor-
mation. On the Columns tab, map customer_key on the input side to customer_key on
the lookup side, as shown in Figure 8-30. Also select the email_address check box to
output that column.

Figure 8-30. Configuring the junction table lookup

13. The lookup for phone_number_junction is similar to email_address_junction because
both have one lookup column. The SQL query for phone number lookup is as follows.
This SQL statement finds phone_number_key for the customer and then gets the phone
number:

select j.customer_key, p.phone_number
from phone_number_junction j
join phone_number p on j.phone_number_key = p.phone_number_key
join customer c on j.customer_key = c.customer_key
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14. The lookup for the address junction is a little bit different because we need to join with
three other tables and because it has multiple output columns. The SQL query for the
address lookup is as follows. This SQL statement gets the address key from the junction
table and then gets the customer address, including the city name, state name, and
country name.

select j.customer_key, a.address1, a.address2,
a.address3, a.address4, ci.city_name as city,
a.post_code, st.state_name as state,
co.country_name as country

from address_junction j
join address a on j.address_key = a.address_key
join customer c on j.customer_key = c.customer_key
join city ci on a.city_key = ci.city_key
join state st on a.state_key = st.state_key
join country co on a.country_key = co.country_key

The purpose of naming the previous output columns (city, state, and country) is to
match the column names in the dimension table so that the SCD transformation can auto-
matically map the columns. Figure 8-31 shows the key mapping and output columns.

Figure 8-31. Key mapping and output columns for address lookup

In this data flow, so far we have looked up all the customer attributes from the correspon-
ding tables: customer_type, customer_status, occupation, household_income, permission,
email_address, phone_number, and address. We now have a full customer record from the NDS,
ready to be loaded into the customer dimension in the DDS. Remember that the customer
dimension has SCD type 2 (see Chapter 5 for more information). We are going to load the cus-
tomer data into the DDS using the Slowly Changing Dimension Wizard. The Slowly Changing
Dimension Wizard will produce a data flow that will do the UPSERT operation into the DDS cus-
tomer dimension table. This means loading new customers and updating existing customers.
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1. Open the Slowly Changing Dimension Wizard. Drop the Slowly Changing Dimension
from the toolbar onto the design surface. Double-click it to edit.

2. Define a new connection to the DDS database. Choose dim_customer as the target
table. Immediately after choosing the table name, you should see that most columns
are automatically mapped because they have the same names and the same data
types, as shown in Figure 8-32.

Figure 8-32. Mapping the columns of customer table on the Slowly Changing
Dimension Wizard

3. Select customer_key as the business key, as shown in Figure 8-32. Some columns are
not mapped automatically because they have different names. For these columns,
choose the right input columns. In the case study, we need to map the post_code col-
umn to zipcode. Leave effective_date, expiry_date, and is_current unmapped. We
will be using them for SCD later. After you have mapped all the columns, click Next
to move to the next step.

4. The next screen is Slowly Changing Dimension Columns, shown in Figure 8-33. On this
screen, we define the change type for each column such as “Fixed attributes,” “Chang-
ing attributes,” or “Historical attributes.” Let’s go through what these three change
types mean.
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Fixed attributes means that the value should not change; changes are treated as
errors (by processing the error output). For example, you may want to consider
create_timestamp, date_of_birth, date_registered, and gender columns to be fixed
attributes.

Changing attributes means that the new values will overwrite existing values.
Select this type when you don’t need to store the history, such as when you need
only the latest version. For example, you may want to consider source_system_code,
update_timestamp, subscriber_band, subscriber_class, interest, and preferred_
channels columns as changing attributes because you don’t need to store their pre-
vious values.

Figure 8-33. Assigning the change type for each dimension attribute

Historical attributes means SCD type 2; in other words, SSIS will create a new row con-
taining the new attribute values. The existing row will be marked as outdated. The new
row will be marked as current, meaning that it is the active row containing the valid
attribute values. Most columns in the customer dimension would be in this category.
For example, you may want to make the address columns (including city, state,
country, and post_code), phone_number, email_address, customer_type, customer_id,
status, name, occupation, and household_income historical attributes, if you need to
store the previous values either for analysis purposes or for data traceability. When you
have assigned the correct change type to every column, click Next to go to the next
screen.
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5. For the fixed attributes, we have the option to fail the SCD transformation when
changes are detected, meaning that the package execution will stop. If you prefer this
option (for example, because you can’t load the target table), select the check box. For
changing attributes, we have the option to change all matching records when changes
are detected. This includes outdated records. If you prefer this option, select the check
box. For this case study, leave both check boxes unselected.

6. Click Next to go to Historical Attribute Options, as shown in Figure 8-34. On this
screen, we have two options to implement SCD 2: we can use a single column, or we
can use start and end dates. In the customer dimension, I have prepared for both
options so you can learn both of them. We have an is_current column, and we have
effective_timestamp and expiry_timestamp. Each approach has its own advantage
and disadvantage.

Using the is_active column is better for selecting the current values because we can
constrain the dimension table with where is_active = 1. Most of the data warehouse
queries are asking for the active row. In other words, they just need the current version.
The drawback of using a single column is that we wouldn’t be able to know the value of
an attribute at a certain point in the past. Using this approach, we will know the value
of an attribute only as it is now.

Using date columns enables us to get the value of an attribute as it was on a certain
date in the past. With this approach, each row has a start date and an end date, so we
can find out which row was active on, say, October 30, 2007. This feature is useful for
business analysis, such as to report the business situation “as it was.” It is the main rea-
son why we implemented SCD type 2 in the first place. In other words, the reason to
preserve the old values is to use them at some point. If we never use the old attribute
values, why do we need to use SCD type 2? We may as well be using type 1. So, can we
have both? Unfortunately, the Slowly Changing Dimension Wizard asks you to choose
only one, as shown in Figure 8-34.

7. Fortunately, you can modify the result of the Slowly Changing Dimension Wizard to
add the other one. So, let’s choose the start and end dates, specify effective_timestamp
as the start date column, and specify expiry_timestamp as the end date column. Set
“Variable to set date values” to dtCET_Customer, which we created earlier, and click
Next.

8. The next screen is Inferred Dimension Members, as shown in Figure 8-35.

In a dimensional data store, a fact row may arrive before the corresponding dimension
row. There are three common solutions to this: not loading the fact row, loading the
fact row and pointing it to the dimension’s unknown record, or creating a dummy row
in the dimension table. The screen shown in Figure 8-35 enables us to create a dummy
dimension row. In this case, the fact table will reference a customer dimension row,
which has not been loaded. This is done by creating a dummy row in the dimension
table that contains just the customer key. When the dimension row is finally loaded,
SSIS will update that dummy row. This dummy row is called an inferred dimension
member. This situation is commonly referred to as late-arriving dimension rows. There
is another situation called late-arriving fact (see the next section).
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Figure 8-34. Historical attribute options in the Slowly Changing Dimension Wizard

Figure 8-35. Inferred Dimension Members screen

There are two ways to tell SSIS that a row is an inferred member: when an indicator
column is true or when all columns are null (except the key column). Let’s enable the
inferred member support and leave the option as “all columns with a change type are
null.”
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9. Click Next, and then click Finish. Rename the boxes as shown in Figure 8-36.

Figure 8-36. Result of the Slowly Changing Dimension Wizard

I’ll discuss the resulting boxes one by one so you know what they are. The Slowly
Changing Dimension box splits the data flow into three output flows. The left output
is the historical attributes/old rows, the middle output is the new rows, and the right
output is the changing attributes. So, the rows on the left output need to be marked as
expired, the rows on the middle output need to be marked as effective, and for the
rows on the right output the values need to be updated.

10. The “Update DDS Customer” box updates the customer dimension with the new val-
ues for columns that we marked earlier in the Slowly Changing Dimension Wizard as
changing attributes using the following SQL statement. The ten parameters (the ques-
tion marks) are mapped to the corresponding input columns with the matching
names.

UPDATE dim_customer
SET interest1 = ?, interest2 = ?, interest3 = ?,
preferred_channel1 = ?, preferred_channel2 = ?,
source_system_code = ?, subscriber_band = ?,
subscriber_class = ?, update_timestamp = ?

WHERE customer_key = ? AND expiry_timestamp IS NULL
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11. The “Set old row’s expiry date” box assigns the dtCET_Customer variable to the
expiry_timestamp column so that the expiry date of the old row is updated with the
current extraction time. The “Expire the old row” box updates the expiry_timestamp
column of the old row, using the following SQL statement, to the dtCET_Customer vari-
able set previously. The purpose of doing this is to expire the old row because we are
going to insert a new row containing the current attribute values.

UPDATE dim_customer SET expiry_timestamp = ?
WHERE customer_key = ? AND expiry_timestamp IS NULL

12. The Union All box (shown in Figure 8-37) combines the output of the previous “Expire
the old row” box with the middle output of the SCD box (the new rows to be inserted).
This prepares the new customer rows containing the current, valid attribute values.
Double-click the Union All box to see the properties in Figure 8-37.

Figure 8-37. Union All transformation to combine two outputs
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13. The “Set new row’s effective date” box assigns the dtCET_Customer variable to the
effective_timestamp column so that the new rows that will be inserted have the cor-
rect start dates.

14. The last box, which is marked as “Insert rows to DDS customer,” inserts the new rows
into the customer dimension in the DDS. You can double-click this box to see the col-
umn mapping, which is shown in Figure 8-38.

Figure 8-38. Final mapping of the columns before inserting into dimension table

Sometimes you get a warning saying truncation may happen on column X, such as if the
subscriber class lookup is varchar(30) but on the customer dimension it is varchar(20). To
solve this error, you can adjust the column width on the customer dimension table.

If there is no warning or error, save the package and run it. Check that the customer
dimension is populated properly by comparing it to the NDS tables. Change some values in
various columns in the customer table in the source system (the Jade database), and run the
stage and NDS package to bring the data to the NDS. Do this by opening the SSIS package and
then clicking the Debug menu and choosing Start Debugging (or pressing F5 for short). Then
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run the package we just created by pressing F5 to bring the data to the customer dimension
and check whether the changes have been propagated properly. This is done by checking that
the changes we made in the Jade database are propagated to the customer dimension in the
DDS.

So, I have now covered the four points mentioned at the beginning of this section: incre-
mental loading, key management, denormalization, and slowly changing dimension. Two more
topics are worth mentioning here: deletion and SCD type 3. If you detect deletion in the source
system (using delete triggers or primary key comparison; please refer to Chapter 7) and if the
dimension is SCD type 2, then the deleted row is simply marked as expired. If you use the
is_current flag, set the flag to 0.

If your dimension is SCD type 3 (preserve previous attributes in columns), such as the
store dimension in the case study, unfortunately you cannot use the Slowly Changing Dimen-
sion Wizard because there is no facility for it in SSIS. I’ll explain the mechanism for loading
SCD type 3 dimension tables using a simplified store dimension in Figure 8-39. I have removed
the nonrelevant columns from the diagram (address, phone_number, web_site) so we can con-
centrate on the region and division columns.

Figure 8-39. A simplified store dimension with SCD type 3

Both region and division are SCD type 3. They both have a prior value column, and they
both have a prior date column. Although the previous example has only one prior value col-
umn, in practice we can have many prior value columns. In this scenario, we have 11 regions
and three divisions, as shown in Figure 8-40.

Figure 8-40. Regions and divisions of Amadeus Entertainment before reorganization
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Let’s suppose that Amadeus Entertainment does reorganize and there are only two divi-
sions: High Street Business and Online Business. Under the High Street Business division there
are three regions (North and South America, Europe and Africa, and Asia and Australia), and
under the Online Business there are also three regions (North and South, Europe and Africa,
and Asia and Australia).

We need to create a temporary table (we can use a table variable if the rows are not that
numerous) containing the map between the old regions and divisions to the new ones. We
then put the current values in the prior value column, and we put today’s date in the prior
date column. Then, using the map table, we update the current columns to the new values,
as shown in Figure 8-41.

Figure 8-41. The simplified store dimension after the changes are loaded

In this section, I discussed how to load dimension tables in the DDS. I discussed incre-
mental loading, key management, denormalization, and SCD. In the next section, I will
discuss how to populate the fact tables in the DDS.

Populating DDS Fact Tables
In this section, I will discuss the mechanism for loading the data from the NDS into the fact
tables in DDS. I will also discuss updating and deleting fact table rows, populating a periodic
snapshot fact table, and loading a fact table row where the corresponding dimension row has
changed.

The basic mechanism in populating the fact table is reading the source rows from the
NDS, looking up the dimensional keys, and inserting the keys into the fact table, as shown in
Figure 8-42. Therefore, fact table population needs to be done after the dimension tables are
populated.

CHAPTER 8 ■ POPULATING THE DATA WAREHOUSE266

9314ch08final.qxd  11/15/07  10:09 AM  Page 266



Figure 8-42. Data flow in fact table population

The data flow in SSIS is similar to the one shown in Figure 8-29. In other words, one OLE
DB source is followed by a series of Lookup transformations. We can also use the Execute SQL
approach, similar to the one I discussed earlier in this chapter when populating the NDS. For
example, the SQL statement for inserting into the Product Sales fact table is as follows:

insert into fact_product_sales
( sales_date_key, customer_key, product_key,
store_key, order_id, line_number, quantity,
unit_price, unit_cost, sales_value,
sales_cost, margin, sales_timestamp,
source_system_code,
create_timestamp, update_timestamp )

select oh.order_date, oh.customer_number, od.product_code,
oh.store_number, oh.order_id, od.line_no, od.qty,
od.price, od.unit_cost, od.qty * od.price as sales_value,
od.qty * od.unit_cost as sales_cost,
od.qty * (od.price - od.unit_cost) as margin,
oh.order_date as sales_timestamp,
1 as source_system_code,
getdate() as create_timestamp,
getdate() as update_timestamp

from nds.dbo.order_header oh
left join nds.dbo.order_detail od
on oh.order_id = od.order_id
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The previous SQL statement selects the rows from the order_header and order_detail
tables in the NDS and inserts them into the Product Sales fact table in the DDS. In the fact
table, we don’t store the natural keys such as customer number, product code, and store
number; instead, we store the surrogate keys. So, we need to get the surrogate key from the
dimension tables. The SQL statement to do that is as follows:

select coalesce(dd.date_key, 0) as date_key,
coalesce(dc.customer_key, 0) as customer_key,
coalesce(dp.product_key, 0) as product_key,
coalesce(ds.store_key, 0) as store_key,
oh.order_id, od.line_no, od.qty,
od.price, od.unit_cost, od.qty * od.price as sales_value,
od.qty * od.unit_cost as sales_cost,
od.qty * (od.price - od.unit_cost) as margin,
oh.order_date as sales_timestamp,
1 as source_system_code,
getdate() as create_timestamp,
getdate() as update_timestamp

from nds.dbo.order_header oh
left join nds.dbo.order_detail od
on oh.order_id = od.order_id
left join dim_date dd
on dd.sql_date = oh.order_date
left join dim_customer dc
on dc.customer_number = oh.customer_number
left join dim_product dp
on dp.product_code = od.product_code
left join dim_store ds
on ds.store_number = oh.store_number

The previous SQL statement selects rows from the NDS order_header and order_detail
tables and then gets the surrogate keys from the relevant DDS dimension tables. It then
inserts the fact rows into the Product Sales fact table in the DDS.

In some data warehouses, we only do INSERTs on the fact tables. In other systems, we do
both INSERTs and UPDATEs. If we need to update the fact table as well, we use the UPSERT tech-
nique. We can use either the SQL statement method or the Lookup transformation method.
Fact tables are normally large tables (in terms of the number of rows). Table partitioning can
speed up the update operation significantly when correctly applied to a fact table.

Whether it is better to drop the indexes before updating the fact table depends on what
portion of the fact table we are updating and whether the fact table is partitioned. If we are
updating a large number of rows, then it is probably worth it to drop the indexes. I’m talking
about the index on the measure columns, not the dimensional key indexes. The dimensional
key index is required to find the row that we want to update, so we should not drop them.

To determine whether it is beneficial to drop the measure column indexes, compare the
time required to update the rows (without dropping the index) with the time required to drop
the index first, update the rows, and then re-create the index. In most cases, I have found that
dropping fact table indexes is not necessary. If the table is partitioned, there is no need to drop
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the indexes and re-create them afterward. Indexes do not slow down insert operations too
much (depending on how many indexes exist on the table); it is the update operation that is
more affected by indexes.

We don’t usually delete from the fact table (except when purging). Cancellations or
returns are implemented as inserts with negative quantities or with different transaction
types. For example, in our case study, if a customer returns a product, we can insert a row in
the Product Sales fact table with the quantity set to –1.

A periodic snapshot fact table requires a different loading method because it does not
contain incremental transactional data. A periodic snapshot fact table is a fact table that cap-
tures the state or condition of the business at a particular point in time at a certain interval.
An example of a periodic snapshot fact table is the Subscription Sales fact table in our
Amadeus Entertainment case study (see Figure 5-5).

The source of this fact table is not from the order header and order detail in the NDS but
from the customer dimension where customer type = subscriber. We read all active customers
from the customer dimension; then join (or look up) with the store, lead, date, package, and
format dimensions to get the dimensional keys; and then we load the rows into the fact table.

One interesting phenomenon in fact table population is a late-arriving fact. This is dif-
ferent from a late-arriving dimension row, which I discussed earlier. A late-arriving fact
happens when we receive fact table rows with transaction dates in the past (say, a few weeks
ago or a few months ago). As usual, we do a lookup in the dimension tables to get the dimen-
sional keys and then load the row into the fact table.

But, when the transaction is a few months old, the dimension row may have changed. If
the dimension table is using SCD type 2, we will have several rows in the dimension table. We
need to find which row corresponds to the transaction that we load into the fact table. To do
this, we use the effective date and expiry date columns in the dimension table. The correct
dimension row for this transaction is the one where the fact table transaction date is between
the effective date and expiry date.

For example, the customer dimension we populated in the previous section uses SCD
type 2. The customer dimension row for this late-arriving fact row may have changed; for
example, there may be four rows for this customer. Three of them are marked as inactive, and
one of them is marked as active. Because we have the effective date and the expiry date, we
can find which one of those three inactive rows is the correct one to apply for this late-arriving
fact table transaction.

Batches, Mini-batches, and Near Real-Time ETL
Most of the data warehouse ETL processes run daily, weekly, or monthly. Many people refer to
these ETL processes as batches. When people say daily batch, for example, they are referring
to the ETL processes that run daily.

In recent years (the past two to three years), I have heard the term mini-batch more and
more often. When people talk about a mini-batch, what they mean is a group of ETL processes
(that brings data into the data warehouse) that runs hourly, typically between one to six hours.
Only some of the ETL processes are included in the mini-batch. The rest still run in batches,
such as daily, weekly, monthly, and so on.

In the Amadeus Entertainment case study, there is no business benefit in populating the
Subscription Sales fact table hourly. The business requirement indicates that the revenues,
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costs, and margin associated with the subscription sales, subscription duration, and lead
sources need to be evaluated every day (please refer to Chapter 4). There is also no business
benefit for the Supplier Performance fact table to be loaded hourly. But it could be beneficial
to run the Product Sales mart hourly in order to manage the inventory better, for example. The
Campaign Results fact table could benefit from a mini-batch too. For example, it would enable
the marketing department to know within an hour which customers clicked which links in the
campaign e-mails so marketing can respond accordingly.

Because of this latest development (in other words, the mini-batch), data warehouses
now have a new function. Ten years ago, data warehouses were intended for analysis purposes
and not as operational systems. Now they can have an operational role.

Near real-time ETL is the term people use when the time lag between the data in the data
warehouse and the data in the source systems is less than one hour, typically between 10 and
30 minutes. Again, in near real-time ETL, only some tables are set in that fashion. In the Ama-
deus Entertainment case study, not only could the Campaign Results fact table benefit from
mini-batch, but also it would benefit from near real-time ETL. For example, to enable the
marketing department to know within ten minutes which customers are interested in which
products, they can react accordingly by using automated response rules.

Just like batch processes, both the mini-batch and near real-time ETL are based on pull
approaches. The ETL processes pull the data from the source system into the data warehouse.
The main difference between the three of them is the frequency they run. The batch ETL runs
daily, weekly, or monthly; the mini-batch runs hourly; and the near real-time ETL typically
runs every 10 to 30 minutes. The near real-time ETL is also known as a micro-batch.

To apply a micro-batch or near real-time ETL, you need to analyze the DDS fact tables
and determine which one would benefit if they were loaded every few hours (or less). Ideally,
you need to pick only one or two fact tables to minimize the negative impact on performance.
The next step is to determine which dimensions associated with these fact tables need to be
loaded at the same frequency. Then you can change the execution interval of the ETL
processes.

Pushing the Data In
Data warehouse population has traditionally been done using ETL. The ETL processes pull the
data from the source system and then load it into the data warehouse. In recent years, because
of their operational functions, some data warehouses need to be updated as soon as the
source system changes. In this case, the source systems push the data into the warehouse. In
this approach, the source systems have triggers. They typically contain insert and update trig-
gers but sometimes delete triggers too. Please refer to Figure 8-43.

Figure 8-43. Push approach for loading data
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As the application inserts or updates or deletes data from the source system database,
these triggers are invoked, and they insert the changed data into the ODS. The tables in the
ODS also have triggers that send the data changes to a message queuing (MQ) system in the
form of XML messages. On the other end of the MQ, an ETL application constantly polls and
processes the XML messages from the MQ, unwraps them, shreds them, assigns or looks up
the data warehouse keys, and inserts them into appropriate dimensions and fact tables in the
data warehouse. Or, leaving the MQ out, in the case of a DDS-only architecture (please refer to
Chapter 2), the triggers in the source system update the DDS directly. A DDS-only architecture
is more suitable for the push approach because there is no intermediary data store such as an
NDS or an ODS. The typical lead time is between 5 and 30 seconds, happening in real time.

Three years ago, we heard this approach implemented only for enterprise application
integration (EAI). Today, it is implemented for data warehouse population. Some people refer
to this push approach as real-time data integration.

Let’s understand how we can benefit from this technology. If we can push the data
changes into the warehouse within 30 seconds, then in the case of Amadeus Entertainment,
the marketing department can respond to customer shopping behavior. When an online cus-
tomer is currently browsing the site looking for products or subscriptions but then abandons
the shopping process and leaves the site, marketing can respond accordingly using the CRM
system in almost real time.

One important consideration when loading large fact tables in real time is that we need to
arrange the ETL so that we can insert into the fact table only. We can’t possibly do an update or
a delete, because this will take a few seconds and we don’t have a few seconds. We have only a
few milliseconds. When the daily batch runs, along with flipping the fact table views (see
Chapter 6), we can process today’s inserted data and do the updates in batches.

Summary
This chapter started with a brief discussion on stage loading, including the three approaches
of stage tables. Then I talked a little bit about the data firewall, followed by several points that
you need to consider when loading the NDS: normalization, external data, key management,
and the many-to-many relationship. Then I showed how to load the data into the NDS using
SSIS.

I showed how to use three different methods in SSIS to load the data: SQL statements,
Slowly Changing Dimension transformations, and Lookup transformations. Then we popu-
lated the dimension tables and fact tables in the DDS, including SCD. And finally I discussed
the batch, mini-batch, and near real-time (or micro-batch) ETL approaches, followed by the
push approach.
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Assuring Data Quality

In this chapter, we’ll explore why data quality is important, and I’ll explain why there is no
point having a data warehouse if we cannot trust the data in the warehouse. Then I will dis-
cuss the data quality process and explore the architecture elements that are involved in the
process.

In addition, I will discuss data cleansing and explore the three types of matching logic:
exact, fuzzy (approximate), and rule based. I’ll show how to do a Fuzzy Lookup transformation
in SSIS to identify duplication in artist names based on the similarity scores. I will also discuss
cross-checking with external sources. Then I’ll talk about the three categories of data quality
rules: incoming data, cross-references, and internal rules.

I’ll discuss the three choices of what to do with the data when a data quality rule is vio-
lated: we can reject it, allow it into the warehouse, or fix/correct it. I’ll also talk about logging,
which is basically storing the failed rows in the data quality (DQ) database, along with addi-
tional audit information, such as the time it happened, which rule was violated, and the
correction status; this is for the purpose of auditing and reporting later. We will then end the
chapter with reporting and notification so that someone can correct the data.

So, why is data quality important? It is easy to answer this simple question. Say you can’t
trust the data in your data warehouse, perhaps because some data is incorrect (accuracy),
because some data is missing (completeness), because some data is not in sync with other
data (consistency), because some data is only a rough estimate (precision), or because some
data is out-of-date (timeliness). In these cases, would it still be possible for you to use the data
warehouse? If you use the data for making important decisions and the data is incorrect, how
much will the mistake cost the company? And how bad will it be for your career?

Further, if you cannot trust the data in your data warehouse, what is the point of having
a data warehouse? To prevent this disaster, when building a data warehouse, it is important
to think about data quality as early as possible, preferably at the beginning of the project. The
essence of maintaining data quality is to prevent bad data from getting into the data ware-
house and to fix the bad data as early as possible in the process chain (ideally at the source
system). To implement this, we need to set up rules that define what “bad data” is and put
additional components in the architecture to filter the bad data out and to enable reporting,
monitoring, and cleaning mechanisms.
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Data Quality Process
The data quality process includes the activities to make sure the data in the data warehouse
is correct and complete. This is usually done by checking the data on its way into the data
warehouse. The data quality process also includes the mechanism to report the bad data and
to correct it. So, there are three aspects of the data quality process: checking, reporting, and
correcting.

For example, in the Amadeus Entertainment case study, customers can purchase a prod-
uct, or they can subscribe to a package. The date a customer subscribes to a package for the
first time is called the first subscription date, and the most recent date they canceled their sub-
scriptions is called the last cancellation date. Suppose one day the ETL process extracted a
customer record with the last cancellation date earlier than the first subscription date. This is
not a valid condition. Either the last cancellation date is wrong or the first subscription date is
wrong, or both. The data quality process detects this condition and reports it to the people
responsible for the subscription data. They then correct the data in the source system, and the
data is loaded into the data warehouse.

To understand the mechanism of how the data quality process works, look at Figure 9-1.
It shows the ODS + DDS architecture discussed in Chapter 2, with the data quality compo-
nents added.

Figure 9-1. Data quality components in the data warehouse architecture

The DQ components in Figure 9-1 are shaded and are as follows:

• The data firewall is a program that checks the incoming data. Physically it is an SSIS
package or a stored procedure.

• Metadata is a database that stores the data quality rules, such as “The last cancellation
date must be greater than the first subscription date.”

• The DQ database stores the bad data detected by the data firewall.

• DQ reports and notifications read the DQ database and inform the people responsible
for data quality.

• Correction is a process to correct the data in the source system.
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In Figure 9-1, the stage ETL extracts the data from the source system and loads it into the
stage database. The data firewall then checks the data according to the data quality rules from
the metadata database, such as “The first subscription date is greater than or equal to the last
cancellation date.” If the data satisfies the DQ rule, the data is passed to the ODS ETL, which
will then put the data into the ODS. If the data fails the DQ rule, it is put in the DQ database.

When the data is placed in the DQ database, certain auditing information is recorded too,
such as which source system the data is coming from, which table in the source system it is
from, what time (and date) this happened, which rule(s) failed the data, and what table/mart/
area this data is for. 

DQ reports and notifications read the DQ database at regular intervals, such as daily. In
the DQ database, we have many records from different DQ rules. For example, we could have
2,000 records from 100 different DQ rules, or an average of 20 for each rule. The DQ database
also contains information about who is responsible for each rule; for example, the customer
service department is responsible for rules 1 to 10, which are about customer data, and the
finance department is responsible for rules 11 to 20, which are about financial data. 

DQ reports and notifications read the records in the DQ database rule by rule and report
them to the appropriate people at a regular interval. The people fix the data in the source sys-
tem so that the next time that data is extracted by the stage ETL, it is already correct. The
purpose of these reports and notifications is to notify the users to get the data corrected.
They contain the previous day’s (or previous week’s) errors.

There is another group of data quality reports whose purpose is to analyze the data qual-
ity in the data warehouse. One indicator of the quality of the data in the data warehouse is the
number of times each rule was violated. The reports contain the number of DQ rule violations
for a certain period.

This analysis can also be done using data quality dashboards. Dashboards are business
intelligence applications that give a quick summary of the data quality in graphical gadgets,
typically gauges, charts, and indicators. By clicking these gadgets, we can drill down to lower-
level details. We will discuss more about data quality dashboards later in this chapter.

■Tip If you implement a data warehouse for the purpose of business intelligence, you may think it is a
good idea to use the same notification mechanism for alerting certain managers about time-dependant
business warnings such as a period of low sales. This idea is usually inspired by the fact that this is the
earliest point in the system where the data is coming into the warehouse. The earlier the managers know
about this alert, the better, right? Well, no. The data coming into the data firewall is not a complete set
where you can examine it in a true business sense. For business alerts like this, your notification service
needs to operate off the ODS (or the DDS) after it is fully loaded, not in the middle of the loading process;
for example, we can put it at the end of the ETL batch.

In the box marked as Correction in Figure 9-1, the people responsible for the appropriate
areas (product sales, subscriptions, customers, products, currency, and so on) then fix the data
in the source system so that when the data is loaded again the next day (or whenever), the data is
already correct. We can fix the data automatically on its way into the data warehouse, but gener-
ally this is not a good practice because it is still wrong in the source system. Other applications
that may be using the same data (or the source system itself) will publish incorrect data.
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Can the correction in the source system be automated? The simple answer is yes. But we
need to be careful when doing this. First, the rule for automatic correction must be checked
and double-checked to make sure it is 100 percent correct. Second, it is generally better to
understand how the bad data is created in the source system and why this happens. If it is
within our control, let’s fix it so it doesn’t happen again. That is better than automatically
correcting it every day.

In reality, the boundary between good data and bad data is not always clear. For exam-
ple, if the data value is 5,000 or more, it is good. If the value is 3,000 or less, it is bad. But if the
value is between 3,000 and 5,000, it is not good but not too bad. So, in practice, we need to set
how we want to react accordingly. For example, we may have a different treatment for each
range. Or, a certain range qualifies as a “warning,” and a certain range qualifies as an “error,”
and so on. In this example, if the data value is between 3,000 and 5,000, we want to classify it
as a warning, but if the value is lower than 3,000, it is an error.

In Figure 9-1, instead of putting the data firewall before the ODS ETL, we can put it
before the stage ETL. The data quality checks the data as the data is being loaded into the
stage tables. If the data satisfies the DQ rule, it is loaded into the stage tables. If it fails the
DQ rules, the data is placed in the DQ database for reporting and correction. The extraction
process is slower, but this means the bad data does not touch any area of the data ware-
house at all, not even the stage. 

We can also check the data on the source system and not extract bad data; in other
words, the where clause is dynamically set. For example, we can use select product_code,
product_name, description, status, … etc… where product_code <> 19331. The data from
the source is clean, but the extraction is slower. The other disadvantage is that we can’t report
the bad data comprehensively because that data is not extracted.

The problem in data quality is usually not about a particular record but about a collection
of records. For example, usually in a medium-sized branch there are about 20,000 to 60,000
transactions a day, with total sales of $0.6 million to $6 million (for small or large branches, the
metrics are different). If the number of transactions is less than 10,000 or the total sales is $0.5
million, it is probably an indication of extraction or loading failure, so we want this condition
to be reported.

One way to do this is to have what we call an ODS firewall, in Figure 9-2. The ODS firewall
is a program that runs after the data has been loaded into the ODS but before it is loaded into
the DDS. The ODS firewall reads the ODS database and checks the data according to the DQ
rules from the metadata database.

Figure 9-2. The ODS firewall (bottom right) checks the data against the DQ rules.
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If the collection of data fails the DQ rules, we put the data on the DQ database, along with
the auditing information such as which table in the source system it is from, what time (and
date) this happened, which rule(s) failed the data, and what table/mart/area this data is for.
We could let the data remain in the ODS (and be subsequently loaded into the DDS), or we
can remove the data from the ODS (and not be loaded into the DDS) until the problem is fixed.
The approach we need to take depends on the nature of the data. If it is more important for
the data to be present in the data warehouse even though it is not complete, then we load the
data into the DDS. But if the incompleteness causes problems in the business analysis or deci-
sion making, then we remove the data from the ODS.

If we allow the data to stay in the ODS (and load it into the DDS), we need to mark the
data quality. We do this by adding up to five data quality keys on each row of data: accuracy,
precision, timeliness, completeness, and consistency. These keys refer to the five data quality
dimensions. We don’t have to use all five keys. We can just use two of them (such as accuracy
and precision), depending on which ones we need. 

Alternatively, we can just have a single DQ key on each row. This single DQ key is called
reliability, which is calculated based on the scores of the five DQ base dimensions. For exam-
ple, the calculation can simply be a weighted average such as reliability = A * accuracy + B *
precision + C * timeliness + D *completeness + E * consistency, where A, B, C, D, and E are per-
centages that add up to 100 percent. This reliability “stamp” on each row enables the users to
know how much they can trust the data. The disadvantage of this approach is that the calcula-
tion could become a little bit tricky. For example, if an aggregate is calculated by averaging
fifty rows all with an accuracy of 5 but there are two rows with an accuracy of 1, how would
you score the accuracy of the aggregate?

Now that you understand the mechanism of data quality in the data warehouse, how data
quality is implemented in the architecture, which components are affected, and the alterna-
tive approaches, I’ll discuss the details of each component, such as the rules, the actions, the
logging and auditing, and the reporting. But before I do that, I’ll talk about two other areas in
data quality, namely, data cleansing and external data.

Data Cleansing and Matching
What is data cleansing? Why is it important in data quality? Put simply, data cleansing, or
data scrubbing, is the process of identifying and correcting dirty data. Dirty data means
incomplete, wrong, duplicate, or out-of-date data. I’m not sure why, but people in the data
warehousing community prefer to use the words cleanse and scrub rather than clean, which
is simpler and more descriptive. An example of data cleansing is checking stores’ tables to
make sure the store names, store numbers, store types, and store addresses are all correct.
Other examples are making sure that there are no duplicate customer records, that the price
lists are correct, that obsolete products are flagged accordingly, that all subscriptions refer to
existing packages, and that the song and film titles are correctly spelled. 

In data cleansing, it is important to be able to determine that one data item is the same
as another data item. This is called data matching. Data matching is used to identify dupli-
cate records when doing a lookup on reference data. Matching is particularly relevant for
character-based data types, including large value data types, such as varchar(max), because
for numerical or datetime data types, we can simply use the equal sign. For character-based
data types, it may not be that clear. For example, when loading the address table in the NDS,
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we may find that the city name is “Los Angles,” which does not exist in the city table. In this
case, we need to match “Los Angles” to “Los Angeles.” Another example is the customer name
“Robert Peterson.” We need to match/recognize that “Robert Peterson” is the same as “Bob
Peterson.” 

Numeric data is not as tricky as character data. We can just use the equal sign; 5 is 5
whatever way we look at it, and 5 is different from 6. So, we can just use = for matching
numeric data. For example, “if A = B, then….” The only possible problem is rounding; for
example, is 5.029 the same as 5.03? If the precision is two decimal digits, they are the same,
but if the precision is three decimal digits, then they are different.

For date and time data, if the data is stored as a datetime data type, it’s not a problem.
We can just use the equal sign like the numeric data. But if it is stored as a character data
type, it could be a little bit tricky because of the date format and time zone. For example, is
03/01/2008 the same as 01/03/2008? Is it the same as 2007-03-01T00:00:00Z+06? We need a
little bit of logic here to match them, such as by comparing the components or by compar-
ing the date, month, and year. 

In SQL Server we have three types of matching logic: exact, fuzzy (approximate), and
rule based. Exact matching is where all characters are the same, for example “Los Angeles”
and “Los Angeles.” In SSIS this is done using a Lookup transformation. Fuzzy logic matching
finds how similar a set of data is to another set of data. For example, using the Fuzzy Lookup
transformation in SSIS, “You can’t hurry love” and “You cannot hurry love” have a similarity
score of 0.81666672 and a confidence level of 0.59414238. You can then decide for example
that if the similarity score is greater than 0.75 and the confidence level is greater than 0.5,
then it’s a match. 

To determine the threshold for the similarity score and confidence level (0.75 and 0.5 in
the previous case), we need to run the data through a Fuzzy Lookup transformation with the
similarity threshold set to zero. This will output the similarity scores for all the rows in the
source data. We then manually examine the score to find the appropriate threshold. We will
do this (finding the threshold) later in this section.

Rule-based logic is where we use certain rules and data to identify a match. For example,
we can define (in a table) that for name data the string “Bill” is the same as “William” or in
product names “movie” is the same as “film.” In SSIS this is implemented with database
lookup. We can also define a rule, such as “For product code, omit the spaces when compar-
ing” so that “KL 7923 M” is the same as “KL7923M.” Here’s another example: “Omit prefix
9000 in the supplier number” so that “900089123” and “89123” are the same. SSIS logic like
the previous can be implemented with Script Component. 

Let’s open Business Intelligence Development Studio (BIDS) and construct a fuzzy logic
and a rule-based logic solution. As they say, the devil is in the details. And without trying it, we
wouldn’t know the details. In this scenario, we have a table in Jade called artist2. The table
contains 20 artists that we are going to load into NDS. The artist2 table also contains city
and country, as shown in Table 9-1.
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Table 9-1. artist2 Table in the Jade Source System

artist_code artist_name genre country city

CAT011 Catherine Jarrette CJ Poland Warsaw

NIC003 Nicoleta Jadyn BF Andorra Andorra la Vella

ADE006 Adellais Clarinda BX Zambia Lusaka

CHE019 Cheyanne Chantelle BA Australia Canberra

HUG005 Hughie Violet BE Norway Oslo

PAL002 Palmira Charlie BE Israel Jerusalem

LUC003 Luciana Chrysanta CC Nigeria Abuja

CEL008 Celeste Vitolia AH Nicaragua Managua

EVE002 Evete Mona CH Mauritius Port Louis

ALI004 Alienor Hambert CG Kazakhstan Astana

CHL003 Chloe Ignatius AJ United States Washington DC

HUG005 Hugh Clarity AW Taiwan Taipei

SUS002 Susan Johansen BN Belgium Brussels

TAN001 Tania Balumbi AW Pakistan Islamabad

VIC001 Victor Robinson CE Luxembourg Luxembourg

THO001 Thomas Clark AJ Japan Tokyo

TIM001 Tim Lewis AJ Germany Berlin

LAU002 Laura Scott AN Congo Kinshasa

PET001 Peter Hernandez AP Spain Madrid

ADA001 Adam Baxter BQ Egypt Cairo

Out of these twenty artists, nine are new artists. Eleven of those twenty, however, actually
already exist in the NDS, but their names are slightly different. For example, one that already
exists in the NDS is “Catherine Jarrett,” but the incoming data is “Catherine Jarrette.” 

We are going to use a Fuzzy Lookup transformation with certain similarity levels to deter-
mine whether the artists already exist in the NDS. If they exist, we update the NDS. If they
don’t exist, we will insert them into the NDS. In this case, we will find first what the confidence
level should be by pointing the output of the Fuzzy Lookup transformation to a file and setting
up a data viewer. The city and country need be translated into keys using normal lookup
(exact match). As with every NDS table, we also need to populate the source_system_code,
create_timestamp, and update_timestamp columns. We’ll use a Derived Column transforma-
tion to populate these three columns. Using a Derived Column transformation, we can create
new columns containing constant values or calculations based on the input columns.

In Chapters 7 and 8 I discussed how to extract and load data using SSIS and gave quite a
lot of detailed exercises, so you should be quite familiar with it by now. Let’s get started:

1. Define a new SSIS package, and call it NDS Artist.

2. Create a Data Flow task on the design surface, and call it Load Artist.

3. Double-click it to edit it. 
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4. Create an OLE DB connection (please refer to Chapter 7), call it Jade Artist, and point
this connection to the Jade database.

5. Set Data Access Mode to table or view and the name of the table to Artist2. Click Pre-
view to check; there should be 20 rows. In the column pane, ensure that all columns
are selected.

6. Create a Lookup transformation, name it Lookup City, and connect the green arrow
from Jade Artist to it. Point the connection to the NDS, set the SQL as select
city_key, city_name from city, and map the incoming city column to the
city_name column on the lookup table. Define one output column, and call it
city_key, as shown in Figure 9-3. Click OK to close Lookup City.

Figure 9-3. Looking up the city key using a normal lookup

7. Repeat step 6 for country. When doing a lookup like this, you can (you should, really)
redirect the error output to a file for further processing (for example, to prevent the
next step from loading the data into the DDS or for analyzing the failed data) as well as
for auditing purposes.

8. After you are done with country, create a Derived Column transformation. This is to
add the source_system_code, create_timestamp, and update_timestamp columns. Name
the transformation Source Code & Timestamps, and configure it as per Figure 9-4.
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Figure 9-4. Using derived column to define source system code and timestamps

9. The resulting data flow will be similar to the one in Figure 9-5. The last two boxes in
Figure 9-5 (Lookup Artist Names and Flat File Destination) are not done yet. We’ll do
them next. 

Figure 9-5. Data flow for loading the artist2 table using fuzzy lookup
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10. In the Toolbox, find the Fuzzy Lookup transformation, and drag it to the design sur-
face. Connect the green arrow from Source Code & Timestamp to it, and call it Lookup
Artist Names. Double-click it to edit it, set the connection to NDS, and choose artist as
the reference table, as shown in Figure 9-6.

Figure 9-6. Setting the reference table on the Fuzzy Lookup transformation

11. Now we want to look up the artist record in the NDS (target) based on the artist
name on the stage (source). For that, click the Columns tab. Ensure that all the Pass
Through check boxes are checked so that the input columns are included in the out-
put. Delete the artist_code and genre mappings, leaving only artist_name. This is
because we want to do the lookup based only on the artist name. Check artist_name
in the Available Lookup Columns list, and set Output Alias to artist_name1, as shown
in Figure 9-7.

12. Click the Advanced tab. Leave the maximum number of matches at 1. Leave the simi-
larity threshold at 0, and leave the token delimiters as they are, as shown in Figure 9-8.
The purpose of doing this is so that we get the similarity score for all the rows in the
table. Click OK to close the Fuzzy Lookup Transformation Editor dialog box.
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Figure 9-7. Configuring the lookup columns on the Fuzzy Lookup transformation

Figure 9-8. Advanced tab of the Fuzzy Lookup transformation

13. Now let’s add a file destination and a data viewer so we can see and examine the
data, along with the similarity score and confidence level. Create a flat-file destina-
tion. Point it to a new folder called Output in your ETL directory. Set the format to
Delimited. In the column pane, set the column delimiter to a vertical bar (|). Leave
everything else as is, and click OK. Right-click the green connector between the
Fuzzy Lookup and the Flat File destination, and select Data Viewers. Click Add, and
choose Grid. Click the Grid tab, and select all columns. Click OK twice to return to
the Data Flow transformation. 
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14. Run the package, and it will stop at the data viewer. The data viewer shows the similar-
ity and confidence columns, as shown in Figure 9-9.

Figure 9-9. Data viewer showing the similarity and confidence columns

15. The data viewer shows that the similarity figures for the first 11 rows are all greater
than 87 percent. This means the source data is similar to the target data in the NDS. In
other words, we found a match for these 11 rows. You can compare the artist_name
and artist_name1 columns to see the slight differences. artist_name is the incoming
data, and artist_name1 is the data in the NDS artist table. However, the similarity for
Hugh Clarity (NDS record Hue Clarity) is only 65 percent, about the same as Susan
Johansen (NDS record Susana Johnnie), which gets 69 percent. Four gets 0 (none
matching), two gets between 20 percent and 30 percent, and 1 gets 40 percent. This
means that the Fuzzy Lookup transformation did not find similar records in the NDS.
In other words, there are no matches for these records. Based on this, we can decide to
set the similarity level to about 85 percent because this threshold will allow good
records to be loaded onto NDS, yet it will prevent the bad data from going through. 

16. Click the green arrow in the top-left corner of the data viewer to continue executing
the package. The package completes, and the flat file is populated. The first ten lines of
the flat file are shown here:

artist_code|artist_name|genre|country|city|city_key|country_key|
source_system_code|create_timestamp|update_timestamp|
artist_name1|_Similarity|_Confidence
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CAT011    |Catherine Jarrette|CJ|Poland|Warsaw|380|173|
1|2007-04-06 22:30:42.546000000|2007-04-06 22:30:42.546000000|
Catherine Jarrett|0.93352449|0.5|0.93352449
NIC003    |Nicoleta Jadyn|BF|Andorra|Andorra la Vella|413|1|
1|2007-04-06 22:30:42.546000000|2007-04-06 22:30:42.546000000|
Nicoletta Jadyn|0.94442153|0.5|0.94442153
ADE006    |Adellais Clarinda|BX|Zambia|Lusaka|300|241|
1|2007-04-06 22:30:42.546000000|2007-04-06 22:30:42.546000000|
Adelais Clarinda|0.93737274|0.5|0.93737274
CHE019    |Cheyanne Chantelle|BA|Australia|Canberra|111|14|1|
2007-04-06 22:30:42.546000000|2007-04-06 22:30:42.546000000|
Cheyanne Chantel|0.88881922|0.5|0.88881922
HUG005    |Hughie Violet|BE|Norway|Oslo|421|160|
1|2007-04-06 22:30:42.546000000|2007-04-06 22:30:42.546000000|
Hughie Violetta|0.87504929|0.5|0.87504929
PAL002    |Palmira Charlie|BE|Israel|Jerusalem|317|100|
1|2007-04-06 22:30:42.546000000|2007-04-06 22:30:42.546000000|
Palmira Carlie|0.92811567|0.5|0.92811567
LUC003    |Luciana Chrysanta|CC|Nigeria|Abuja|405|157|
1|2007-04-06 22:30:42.546000000|2007-04-06 22:30:42.546000000|
Luciana Chrysanta|1|1|1
CEL008    |Celeste Vitolia|AH|Nicaragua|Managua|293|158|
1|2007-04-06 22:30:42.546000000|2007-04-06 22:30:42.546000000|
Celeste Vitalia|0.92354828|0.5|0.92354828
EVE002    |Evete Mona|CH|Mauritius|Port Louis|260|147|
1|2007-04-06 22:30:42.546000000|2007-04-06 22:30:42.546000000|
Evette Mona|0.91588253|0.5|0.91588253
ALI004    |Alienor Hambert|CG|Kazakhstan|Astana|204|120|
1|2007-04-06 22:30:42.546000000|2007-04-06 22:30:42.546000000|
Alienor Humbert|0.92823803|0.5|0.92823803

17. Press Shift+F5 to stop the package and return to the designer. Now let’s delete the Flat
File destination because we want to direct the output of the Fuzzy Lookup transforma-
tion to the NDS. To load the output into the NDS, we need to split the output into two
depending on whether the artist record already exists in the NDS. If the record already
exists, we update it. If it does not exist, we insert it. For that let’s add a Conditional Split
transformation and connect the green arrow from Fuzzy Lookup to it. Name the box
Split Based on Similarity, and double-click it to edit it. Under Output Name, type Sim-
ilar, and under Condition, type [_Similarity]>=0.85, as shown in Figure 9-10. 
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Figure 9-10. Splitting the output of the Fuzzy Lookup transformation based on similarity

18. Now that we have split the output into two branches, we need to feed both branches
into two separate destinations. The first destination is for insert, and the second one is
for update. If the artist name is the same or similar to the ones in the target (the NDS),
we want to update the target. On the other hand, if the artist name does not exist (Not
Similar), we want to insert (create) that artist into the NDS. For that, let’s set Default
Output Name to Not Similar and click OK. Now we need to configure the insert and
update. Let’s do the insert first. Drag an SQL Server destination onto the design sur-
face, and name it Insert to NDS Artist. Connect the green arrow from the Split Based
on Similarity box, and the Input Output Selection will pop up. In the Output drop-
down list, select Not Similar, and click OK. Double-click the SQL Server destination,
and set the connection to NDS. Point it to the artist table, and configure the column
mappings as per Figure 9-11.
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Figure 9-11. Column mappings for inserting nonsimilar rows

19. From the Toolbox, drag an OLE DB Command transformation onto the design surface,
and call it Update NDS Artist. Connect the green arrow from the Split box onto it; this
time the Input Output Select doesn’t pop up. It will just choose Similar because Similar
is the only output left from the Split box without connection. Double-click the Update
NDS Artist box to edit it. Set Connection Manager to NDS. 

20. Click the Component Properties tab to display the common and custom properties, as
shown in Figure 9-12. On this tab we need to set the SQL statement that updates the
artist record in the NDS. 
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Figure 9-12. Common properties and custom properties in the Advanced Editor

21. Set the SQL statement on the SqlCommand property, as shown in Figure 9-12. Please note
that SqlCommand here is a property of the OLE DB Command SSIS transformation, not the
.NET Framework class on the System.Data.SqlClient namespace. We need to set the
SqlCommand property as follows:

update artist set artist_code = ?,
artist_name = ?, genre = ?,
city_key = ?, country_key = ?, source_system_code = ?,
update_timestamp = ?
where artist_name = ?

Notice that we don’t update create_timestamp in the previous SQL because we are updat-
ing the row, not creating the row. On the Column Mappings tab, configure the mappings as
shown in Figure 9-13, and click OK to close the Update NDS Artist OLE DB command.
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Figure 9-13. Column mappings for the OLE DB command for updating similar rows

Add two data viewers, one for the update branch and one for the insert branch, as shown
in the bottom two boxes in Figure 9-14. 

Figure 9-14. The data flow after adding split, insert, and update components
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The bottom part of Figure 9-14 is basically an UPSERT operation (insert if it does not exist
and update if it exists), but it uses fuzzy lookup to determine approximate matches. In Fig-
ure 9-14, the Lookup Artist Names box checks whether the incoming artist names match the
NDS artist table using fuzzy lookup. The Split Based on Similarity box splits the flow based
on the fuzzy lookup similarity score. The flow is split into an “insert branch” that inserts the
incoming data into the artist table and an “update branch” that updates the existing rows in
the artist table.

Save and execute the package, and notice that the first data row (the insert one) shows the
eleven rows with similarity greater than 85 percent. Click Continue (the green arrow). The sec-
ond data viewer then shows the nine rows that don’t exist in the NDS with similarity less than
70 percent. Check the NDS artist table to make sure that eleven rows in the destination artist
NDS table are updated and nine are inserted.

So, we have created a SSIS package that imports the artist data from the stage table and
loads it into the NDS database, using the Fuzzy Lookup transformation instead of using an
exact match. If the artist name on the stage table is “similar” to the one in the NDS, we update
the NDS record. Otherwise, we insert it into the NDS. We defined the “similarity” criteria by
determining the similarity threshold by allowing all records from the stage to flow through the
Fuzzy Logic transformation to score them. Once we determined the similarity threshold, we
set the Fuzzy Logic transformation to split the data from the source into two branches. For the
“similar” branch, we update the NDS based on the source data, and for the “nonsimilar”
branch we insert the source data into NDS.

Cross-checking with External Sources
Some data-cleansing activities are done internally, such as checking 100 stores including
their store types, locations, phone numbers, web sites, store numbers, regions, and divisions.
In this case, we manually verify that the store details in the system are accurate and correct
them if they are wrong.

Some data cleansing is done by cross-referencing with external data sources, such as
checking and fixing names and addresses in the customer table, identifying duplicate cus-
tomer records (individual level, household level, or company level), and flagging deceased
customers. We can also use external sources for enriching our data, such as by adding tele-
phone numbers to the customer data. 

Cross-referencing with external data can be done by using data from post office organiza-
tions such as Address Information Systems (AIS) and NCOA Link from the U.S. Postal Service.
Or, in the United Kingdom, this can be done using the Royal Mail Postcode Address File (PAF).
In some countries, other possible data sources are voter registration and the electoral roll.
Another example of external data is reference data from the International Standard Organiza-
tion, such as country names and languages, as we discussed in Chapter 7. 

External data sources are delivered in various formats and in various ways. This affects
the way we integrate the external data with our data warehouse. Some are delivered as files on
CD-ROMs, some are delivered as a system (you need to install the system to use it, with auto-
matic weekly updates via the Internet, for example), some are using EDI, and some are
delivered online using web services. 

We need to work with the providers to be able to use their data or services appropriately
in our data warehouse. Looking at how the external data is integrated into the data warehouse,
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we can classify these different delivery mechanisms into two big approaches. With the first
approach, we bring the external data into the data warehouse. The provider gives us the data,
and we store it in the data warehouse. With the second approach, we don’t bring the external
data into our data warehouse. Instead, we leave the data with the provider, and we “tap” the
data as and when we need it. This “tapping” is done, for example, using web services.

Data Quality Rules
Data quality rules are essentially filters to prevent dirty data from getting into the warehouse.
Based on the data location, there are three kinds of data quality rules:

• Incoming data validation

• Cross-reference validation

• Data warehouse internal validation

Incoming data validation is where we check the incoming data only on its own, without
referring to the data already in the warehouse (the ODS, NDS, or DDS). Incoming data valida-
tion is performed on the fly when the data is being loaded into the warehouse. These rules
verify that the data from the source systems is valid, in other words, within the expected range
and in the right format. Examples are that the product code is in AAA999AA format, the prices
for a certain product range are greater than $1, the song duration is between one and ten min-
utes, and the subscription duration is greater than or equal to one month. Here are three real
examples from my projects: 

• ∑(col1, col2, col3) > 0 where col4 > 0 and col5 > 0

• Value of data limited to list: value1, value2, value3, value4 

• Fiscal period <= 13

Cross-reference validation is where we check the incoming data against the data in the
warehouse. The objective is to make sure that the value of the incoming data is within a cer-
tain range that is calculated based on the data already in the warehouse: the incoming data is
expected to be within a 25 percent range of the average of col1, the number of downloaded
songs per week is less than 50 times the registered devices (the number of registered devices is
data already in the warehouse, while the number of downloaded songs is incoming data from
the source systems), and the incoming unit cost is within 15 percent of the average of the last
three months of supplier costs. Like incoming data validation, cross-reference validation is
performed on the fly when the data is being loaded into the warehouse.

Data warehouse internal validation is where we check the data already in the warehouse.
We don’t check the incoming data. The purpose of doing this is to verify the quality of the data
in the warehouse at the aggregate level. In other words, the details data (record level) might be
correct, but the totals might be incorrect. This can be done by comparing the totals over a
period of time against a known standard value. Examples of data warehouse internal valida-
tion are that the number of new subscriptions last week is less than or equal to 5,000; the
average number of copies for each title in the last three weeks is between 10 and 20; and the
average unit cost of last week’s title is within 10 percent of the average of the last three months.
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Unlike the previous two, data warehouse internal validation is performed after the incoming
data is fully loaded into the warehouse. 

The DQ rules for internal data warehouse validation have different running frequencies.
That is, some are run every few hours, some are daily, and some are weekly or monthly. The fre-
quency depends on how critical the data is and how quickly the business needs to be informed
if some inaccuracies happen. If the data is critical (such as data that has direct impact on the
revenue or has potential risks of breaking government regulations), the business may need to
know quickly, so we need to set up the DQ rules at short frequencies such as every four hours or
twice a day. The frequency also depends on the volume and seasonality of data. For example, if
the number of subscriptions varies widely every day, we may want to compare it weekly rather
than daily.

We need to be careful with the last two categories (cross-reference validation and data
warehouse internal validation), because it can potentially impact the ETL performance.
Here’s why. When the DQ rules involve a statistical calculation, such as “within 15 percent of
the average of the last three months of supplier costs,” it could take a long time to calculate
the statistics. So if we tried to calculate the statistics on the fly, we would face a bottleneck,
and the ETL process would be very slow. One common technique is to calculate the statisti-
cal figures beforehand, such as the day before. This way, when the DQ rule runs, the statistics
are already calculated and stored in the warehouse as constant numbers. So, the validation
will be fast because we are comparing against constant numbers rather than a formula.

Not all DQ rules are errors. Some DQ rules are only warnings. For warnings, we still want
the occurrence to be reported, but we are not rejecting the data. We allow the data to be
loaded into the warehouse. For example, if the data is more than 35, it is good, and if it is less
than 30, it is an error. But if it is between 30 and 35, it is a warning. Even though we load the
data into the warehouse, the data still needs to be reported to the business users and subse-
quently corrected in the source systems so that the next time that data is loaded into the
warehouse, it is already correct.

Some DQ rules are neither an error nor a warning but are informational only. In other
words, there is no issue whatsoever with the data. An example of this kind of DQ rule is if the
national sales amount on a weekday is more than $3 million, we need to inform the national
sales manager. This is neither an error nor a warning, but is informational only. On the con-
trary, the reverse (too little rather than too much) might be an error or a warning; for example,
if the national sales amount on a weekday is less than $300,000, then there may be a problem
with the ETL, perhaps because not all source sales data is loaded properly into the data ware-
house for that day.

I have found that it is good practice in a data warehouse project for the business user to
write a document called Data Quality Business Rules. It essentially describes all the business
rules, what type they are, which data warehouse attributes they are applicable to, what is the
appropriate course of action (for example, reject, allow, or fix; see the next section), and who
should be notified when a violation to a rule occurs. The document is written in pure English
with no SQL code or pseudocode. For example, rather than where (prd_type = 'FL' and
unit_cost < 2.25) or (prd_type = 'AB' and unit_cost < 1.43), we should describe it as
“The incoming unit cost should be less than 2.25 for films and less than 1.43 for audio books.”
The developer can then translate this to SQL when implementing the rules in SSIS. I have
found that throughout the development process we kept referring to this handy document. 
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■Tip When defining DQ rules, define them based on the risk, in other words, the impact or damage. It is
useful to know that if rule #34 is violated, all the marts will be totally inaccurate and useless, whereas if rule
#17 is violated, the impact is almost negligible, and we have nothing to worry about. It is very useful to have
this attribute in the previously mentioned document and on the DQ reports (see the DQ report section later in
this chapter). We can then define the urgency and service-level agreement (SLA) based on the risk level. For
example, risk level 5 rules need to be solved next day, whereas risk level 1 has a four-week period.

The DQ rules are described in a table called dq_rules. The purpose of this table is to
describe the details of each data quality rule including the following:

• The objective of the rule (including the calculation if any, in English)

• Whether it is an error, is a warning, or is informational

• What type of validation it is (whether it is an incoming data validation, cross-reference
validation, or internal validation)

• How critical the rule is (measured by the risk), from level 1 (low risk) to level 5 (high
risk)

• What actions to take, such as reject the data, allow the data into the warehouse, or fix it

• The status of the rule (whether it is active or disabled)

• Who to notify when there is a violation to this rule

This table is used by the data firewall to check the incoming data before loading it into the
NDS or ODS. In some implementations, the DQ rule table is placed in the metadata database;
in other implementations, the DQ rule table is placed in the DQ database. For performance
reasons, in my opinion, it is better to put it in the DQ database because it is referenced by the
DQ tables, even though technically it is a metadata table (I’ll discuss metadata in the next
chapter). Essentially the DQ rule table contains the same columns as the Data Quality Business
Rules document, in other words, rule_id, rule_name, rule_description, rule_type (error or
warning), category (incoming data, cross-reference, or internal), risk_level (1 to 5), status,
action, notification, create_timestamp, and update_timestamp. This table will be cross-
referenced by the DQ audit tables. DQ audit tables store the records that fail the DQ rule
validation. We’ll discuss DQ rules table in more detail in the next chapter.

Action: Reject, Allow, Fix
When a data quality rule is violated, we have three choices of what to do with the data: we can
reject the data, allow the data into the warehouse, or fix/correct the data. These are known as
actions. Which action is appropriate for a particular piece of data depends on the situation,
the risk level, the rule type (error or warning), and so on. 
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The reject action means that we do not allow the data into the warehouse. We put it in an
audit table in the DQ database. The data will then be reported to the business users and cor-
rected before it is loaded into the data warehouse. Typically, the structure of the audit table is
the same as the structure of the source system table, but with five additional columns: dq_id,
rule_id, dq_timestamp, dq_action, and dq_status. If on the source system we have 60 tables,
then there will be 60 audit tables in the DQ database. If these are your 60 tables in your source
system:

artist
channel
customer
customer_status
customer_type
format
…
product_type
store

then these are the audit tables in the DQ database:

artist
channel
customer
customer_status
customer_type
format
…
product_type
store

Yes, the table names are the same, and they have all the columns in the original table,
plus five additional columns: dq_key, rule_key, dq_timestamp, dq_action, and dq_status.
dq_key contains a sequential identity(1,1) column. rule_key is the identifier of the DQ rule
that causes this row to be rejected by the data firewall and put in the quarantine table (see
the previous section for the dq_rule table). dq_timestamp is the time when this row was
rejected by the data firewall. dq_action is the action taken to the incoming data (reject,
allow, or fix). dq_status is the correction status (fixed or not fixed).

So, if we reject a row of address data, instead of going into the address table in the NDS (or
the ODS or the DDS, depending on your DW architecture), the row goes to the address audit
table in the DQ database. The row will be reported (see the section “Data Quality Reports and
Notifications” later in this chapter) to the relevant people, fixed in the source system, and
reloaded into the NDS (or the ODS or the DDS). If the address table is extracted using “the
whole table every time” approach, it’s not a problem. In other words, the row will be loaded
automatically in the data warehouse on the next ETL batch that occurs after the row is cor-
rected. If the address table is extracted incrementally, we need to “memorize” the failed row,
and we need to keep extracting the row on the ETL batch until it is corrected. One way to do
this is by modifying the extraction SQL, adding something like this: … union select [columns]
from source.dbo.address src join dq.dbo.address d on src.address_id = dq.address_id
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and dq_status <> 'C'. And when the row has been loaded successfully, we mark the row on
the audit table as C (or closed). In SSIS, as an alternative to the Execute SQL task, we can also
use a merged join or a Lookup transformation for this purpose.

Instead of fixing it in the source system, we can also take the approach of correcting
the failed row stored in the DQ database and reloading it to the data warehouse. Although
this is less favorable because we leave the source system incorrect, at times it is more prac-
tical, because it has a quicker turnaround time, resulting in the row being loaded into the
warehouse sooner. The drawback of choosing this approach is that the source system is
still incorrect so that the next time the data is retrieved from the source system, we will
still face the same problem. That’s why it is usually used for data that does not change fre-
quently, such as reference data. This approach is usually used as a temporary measure,
while waiting for the data change request to be implemented in production (which could
take, say, two to three weeks).

Instead of rejecting the dirty data, we can allow it into our warehouse. Wait a minute,
why do we want to do this? Well, there are several reasons. One reason is because perhaps it
is only a warning, not an error; for example, the rule may say that single-title revenue should
be between $1 and $4. If it is between 0 and 1 or between 4 and 10, allow it in. But if it is less
than 0 or greater than 10, reject it. This is because (for example) the majority of the products
(say, 99 percent) are priced between $1 and $4. Sometimes (the 1 percent) products are
priced very low for sale or promotional reasons (between 0 and $1) and very high for sea-
sonal reasons (between $4 and $10). That is why these two ranges are only a warning, not an
error. But a negative price or prices more than $10 never happens in the business for that
product type, so that is why in this example the “< 0” and “> 10” are classified as errors.

The second reason for allowing the data into the warehouse is that other data in the same
row is required for data integrity. Each fact table row is essentially a business transaction. If we
don’t load some rows, the total of that day would not be correct because there is some missing
data. For example, a Subscription Sales fact table contains eight dimension keys and nineteen
facts. Say one column does not satisfy a DQ rule; for example, the subscribe_timestamp col-
umn contains an invalid date. All the other facts are OK; subscription_revenue, single_title_
revenue, monthly_revenue, music_quantity, music_unit_cost, monthly_music_cost, film_quan-
tity, film_unit_cost, monthly_film_cost, book_quantity, book_unit_cost, monthly_book_cost,
monthly_indirect_cost, monthly_cost, monthly_margin, annual_revenue, annual_cost,
annual_profit, and subscriber_profitability are all correct. We have two choices: if we reject
the fact row, the total of all these facts will be incorrect. If we allow the row in, the total of all
these facts will be correct, and the subscribe_timestamp will be set to unknown. The invalid
date will still be logged, reported, fixed, and reloaded next time.

The third possible action is to automatically fix the data based on certain rules. In this
case, when the data firewall detects a certain value, it automatically replaces it with another
value, based on certain criteria. For example, say in the source system we have “NA,” “ N/A,”
“N.A.,” and “Not Applicable.” We create a DQ rule to replace “NA,” “N/A,” and “N.A.” with
“Not Applicable.” This way, the data in the data warehouse is clean, even though the data in
the source system is not. Here’s another example: in the source system store 17 is in region 1.
This is incorrect. Store 17 should be in region 2. We create a DQ rule to update the region
automatically. Here’s another example: when the total customer purchase is between $500
and $1,000 in the source system, it is classified as band C. In the data warehouse, this range is
classified as band D. We create a DQ rule to update the customer band from C to D. Note that
in a way, this is like an ETL transformation, because we update the data as we load it into the
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data warehouse. We need to be careful when implementing autofix actions like this, because
the data in the source system is still wrong. It is (always) better to fix the data in the source
system than to fix it in the data warehouse. But if we cannot change it in the source system,
this could be an alternative solution. Or perhaps it’s possible to fix the data in the source sys-
tem, but it will take a long time. In that case, we could implement this temporarily.

One example of a good use of a DQ rule with autofix action is formatting, for example, to
convert to mixed case or to remove spaces. For example, in the format column of the product
table in the source system, we have the following entries: “DVD 5,” “DVD-5,” and “DVD5,” and
in the ODS or NDS the entry is “DVD-5.” When loading the product table from the source sys-
tem, we can create a DQ rule with an action to convert them to “DVD-5.” Some people argue
that this should be implemented as a normal “transformation” in the ETL logic, so why would
we want to put it as a DQ rule? Well, the main difference between an ETL transformation and a
DQ rule is the reporting aspect. We know that this inconsistency between “DVD 5,” “DVD-5,”
and “DVD5” is an issue in the source system. In other words, there is no referential integrity
from the product table to the format table. We have reported this to the source system owner
and the data will be fixed in the next few weeks, but in the meantime we need to keep the data
warehouse up and running, so we put this rule in. Because it is a DQ rule with an autofix
action, it is reported to the appropriate people regularly, so we know when it is fixed. If it is
implemented as an ETL transformation, it won’t be reported and monitored. Well, actually you
can report and monitor ETL transformation, but it will slow the ETL processes down if you
need to report and monitor all the transformations. Also, an ETL transformation is not as rich
as a DQ rule; for example, it doesn’t have the following:

• The objective of the rule (including the calculation if any)

• Whether it is an error, is a warning, or is informational

• What type of validation it is (whether it is an incoming data validation, cross-reference
validation, or internal validation)

• How critical the rule is (measured by the risk), for example from level 1 (low risk) to
level 5 (high risk)

• What actions to take, such as reject the data, allow the data into the warehouse, 
or fix it

• The status of the rule (whether it is active or disabled)

• Who to notify when there is a violation to this rule

Logging and Auditing
When a DQ rule is violated, we store that event in the data quality database. We store the time
that violation happened, which rule was violated, what action was taken, and the correction
status. We store all of this information in a table called the data quality log, or DQ log for short.
We also need to store the rows that failed the DQ rule. This process of recording the DQ rule
violation events, along with the rows that failed the DQ rules, is called data quality logging.
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The failed rows are also stored in the DQ database, but not in the DQ log table. They are
stored in a number of tables called data quality audit tables. The structures of the audit tables
are the same as the target data warehouse tables. So if the target table has ten columns, the
audit table also has ten columns, with each column having the same name and the same data
types as the target tables. This process of analyzing the data quality rules violation by querying
the DQ log table and DQ audit tables is called data quality audit.

We store the failed rows in the corresponding audit table; for example, if the failed rows
were for the customer table, we store them in the customer audit table. If the failed rows were
for the subscription table, we store them in the subscription audit table. Whether the action of
the DQ rule is to reject, allow, or fix, we still need to put the failed rows in the audit tables.

One additional column in the audit tables makes them different from the target data
warehouse table: the primary key. The primary key of an audit table is a surrogate integer col-
umn. This primary key is stored in the DQ log table as a foreign key. This is how the audit
tables are linked to the DQ log table, as shown in Figure 9-15. 

Figure 9-15. The DQ log table and the DQ audit tables

As we can see in Figure 9-15, the DQ log table stores four pieces of information related to
the violation event: which rule was violated (rule_key), when it happened (dq_timestamp),
what action was taken (dq_action), and the correction status (dq_status). In Figure 9-15,
log_key is the primary key of the dq_log table.

Figure 9-15 shows that the DQ log tables contain three other key columns: table_key,
dq_key, and row_key. These three key columns point to the failed rows stored in the DQ audit
tables.
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• The first column, table_key, determines on which audit table the failed row is stored.
table_key contains the SQL Server object_id of the audit table. We can get the table
name by querying the data structure metadata tables.

• The second column, dq_key, is the primary key of the audit tables. Together with
table_key, dq_key can pinpoint the exact location of the failed row.

• The third column, row_key, contains the row identifier. It is the natural primary key.
It is the primary key of the row in the source table. For example, for the address table,
row_key is address_id. We can also use the combination of table_key and row_key to
point to the failed row.

This way, if the same source row failed two rules, there would be only one copy of that row
stored in the audit table, but we’ll have two rows in the DQ log table. 

A data quality audit means querying the DQ audit tables and DQ log table for the purpose
of finding out when a DQ rule was violated, which/how many data rows are impacted, which/
how many source/target tables were impacted, what action was taken, what is the status, and
what were the values of the source data. All of these questions should be able to be answered
just by querying the log table, except the last one, which is answered by querying the associ-
ated audit table. 

The ultimate purpose of a DQ audit is to find out the quality of the data in the data ware-
house. This can be done by evaluating how many DQ rules were violated in the recent months
(say, the last three months or the last six weeks), how many cases of each rule, and whether
the rule is critical to the continuity of the business. Of course, one other important factor is
how long the DQ problem occurred before being fixed. If a business critical accuracy issue is
left opened for two weeks, the impact is more serious than if it were open for only two days.

The audit tables and log table need to be purged regularly. Purging means deleting (per-
manent removal) or archiving (moving the data somewhere else) to keep the number of rows
in the main table to a minimum. Of course, we purge or archive only those records that have
been resolved. Purging is necessary for performance, especially when doing dynamic SQL for
joining the log table and the audit tables. To give you a picture of the frequency and duration,
a typical purging scenario for audit and log tables (they are always done together) is done
once a month, keeping the last six months of rows in the main table and the prior twelve
months of rows in the archive table. It is rarely necessary to purge on a weekly basis.

Data Quality Reports and Notifications
The main purpose of DQ reports and notifications is to get somebody correcting the data. In
any DQ system, it is important to have a “closed loop,” in other words, the corrections. The
correction forms a closed loop in the data quality process because, if you refer to Figure 9-1 at
the beginning of this chapter, the correction connects the reporting and notifications back to
the source systems. 

The secondary purpose of DQ reports and notifications is to make the users aware that a
particular area of the warehouse has a data quality issue, such as when the subscription sales
for the introductory package were late by one week. Say that usually we receive the sales fig-
ures within a day after the sale transactions happened. But because of log file problem, in
that particular month we received the subscription sales data one week late. This made the

CHAPTER 9 ■ ASSURING DATA QUALITY298

9314ch09final.qxd  11/15/07  10:07 AM  Page 298



introductory package have zero sales for a week. This would subsequently be flagged by the
data quality reports and notifications, showing that there is a problem with the subscription
sales for the introductory package.

When a DQ system is first put into operation, sometimes the number of DQ issues
reported is high. Afterward, when the system is running, corrections are done, so the DQ
issues should be decreasing steadily. For example, Figure 9-16 shows the exponential decrease
for a six-month implementation. The decrease will be faster if a person is dedicated for this
responsibility. Have you heard the old saying “You get what you measure”?

Figure 9-16. Decreasing number of DQ issues reported 

Note that the tail in the chart in Figure 9-16 is not zero. It will never be. There will always
be DQ issues happening, and that is normal. Also, we need to be aware that a valid possible
course of action is to change the DQ rule itself rather than doing data correction, perhaps
because some rules are capturing unnecessary events or because those events do not need
to be captured.

We can e-mail different DQ reports to different users, according to their groups. For
example, in the case of Amadeus Entertainment, we can classify users into four business
areas: product sales, subscription sales, supplier performance, and customer relationship
management. So, we can create four groups, one for each of these business areas, and put the
business users into these groups. When we have any DQ issues related to product sales, we
send the DQ reports to the product sales group. When we have a DQ issue related to CRM, we
send the DQ report to the CRM group. This can be done using SQL Server Reporting Services
(SSRS), which enables data warehouse users to subscribe to the different data areas for which
they are responsible. Reporting Services enables the reports to be web-based so that on the
DQ e-mail we can just put the links (URLs) to the reports, rather than the reports themselves.
There are two benefits of this: 

• Lighter e-mail content 

• More flexible because the users can set different report parameters themselves
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The DQ rule violations can also be sent to the users using notifications. For this we can
use SQL Server Notification Services. For example, we can set the Notification Services to read
the DQ log table and DQ audit tables and deliver the newest records to the users. 

We can also create a dashboard application to display the overall data quality status for
the whole warehouse, along with the key data quality indicator of each business area. The
dashboard can also contain some data quality reports and selected data quality charts, such
as the one shown in Figure 9-17. 

Figure 9-17. Data quality dashboard

Summary
In this chapter, I discussed what data quality is and why it is so important. I discussed the data
quality process and the components involved in the process. I talked about data cleansing and
data matching, and I showed how to do a Fuzzy Lookup transformation in SSIS. 

I discussed the categories of data quality rules in terms of validation and the choices of
what to do with the data when a data quality rule is violated: reject, allow, or fix. I talked about
logging and auditing, and I finished the chapter by talking about reporting and notification in
order to get somebody correcting the data.

Of all the various aspects of data warehousing, data quality is probably the most impor-
tant one. Simply speaking, this is because if the data is wrong, we cannot use the data
warehouse.
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Metadata

In general, metadata means data that describes data. For example, in photography, we store
our photographs as RAW or JPG files. That is the data. But we also store the following infor-
mation: which camera we used to take the photographs, the aperture and ISO settings of the
camera, the resolution of each photograph, where it was taken, when it was taken, and a few
words describing the content of the photo. That is all metadata.

Metadata in data warehousing is different from photography, though. In this chapter,
I will discuss what metadata is in a data warehousing context, why metadata is important in
data warehousing, what it is used for, how to store it, and how to maintain it.

Metadata in Data Warehousing
In data warehousing, metadata contains the definitions of data (the meaning and source
of each column), the definition of the data warehouse itself (in other words, the data store
structure, the ETL processes, and the data quality), the definition of the related systems (for
example, the source systems), the audit information (what processes ran and when they ran),
and the usage (which reports and cubes are used by whom and when). So, we have seven
kinds of metadata:

• Data definition and mapping metadata contains the meaning of each fact and dimen-
sion column and where the data is coming from.

• Data structure metadata describes the structure of the tables in each data store.

• Source system metadata describes the data structure of source system databases.

• ETL process metadata describes each data flow in the ETL processes.

• Data quality metadata describes data quality rules, their risk levels, and their actions.

• Audit metadata contains a record of processes and activities in the data warehouse.

• Usage metadata contains an event log of application usage.

I’ll discuss these briefly here, and in the subsequent sections I will discuss them in more
depth.

The data definition metadata contains the meaning of each fact, dimension key, and
dimension attribute within the data warehouse. “Meaning” is the business description of the
data in the context of the organization where the data warehouse is implemented or used.
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This is necessary so that all users have a common understanding about what the facts and
attributes mean. For example, in Chapter 5, we defined title availability as the percentage
of the product titles being available in the last three months when Amadeus Entertainment
ordered them. Having a definitive meaning of title availability stored in a metadata database
and viewable by the users is useful to avoid confusion and misperception. The users can view
the data definitions either via reports created using SSRS or via direct query using Enterprise
Manager. Data definition metadata also contains the business description of each column in
the NDS or ODS.

Data mapping metadata (sometimes called data lineage metadata) is about where each
piece of data is coming from. For example, the music_unit_cost fact in the Subscription Sales
fact table in the DDS is from the unit_cost column in the product table in the NDS. The
unit_cost column in the product table in the NDS is from the unit_cost column in the
product table in the stage database. And the unit_cost column in the product table in the
stage database is from the unit_cost column in the product table in the Jade source system.
The data lineage metadata makes it easier to perform the impact analysis. Impact analysis is
an activity to understand the effect of a particular change to different elements of the data
warehouse. For example, when the source system DBA says that the unit_cost column in the
Jupiter product table will not contain intercompany trading figures, we can understand what
columns on the ODS, NDS, and DDS will be impacted.

Data structure metadata describes the structure of the DDS, NDS, ODS, and stage data-
bases. It contains an entry for every table in the data warehouse. It contains the data types for
each column in every table, including the collation, whether the column is a primary or a for-
eign key, and whether the column is an identity column or can contain null. For the DDS, it
also contains the dimensional hierarchy and SCD details and the index, view, and partition
information. Why don’t we just use SQL Server object catalog views directly instead of building
data structure metadata? The reason is that we need to reference the database objects in the
ETL metadata, DQ metadata, and data description metadata in order to understand their
structure.

Source system metadata describes the data structure of all the source systems feeding
into the data warehouse. It contains the data type, collation, primary key, foreign key, view,
index, and partition. It also contains volumetric data and data profiling information. Source
system metadata is used to help users understand the source of the data.

Audit metadata contains the results of all processes and activities in the data warehouse,
such as ETL processes, data modification, DQ rule validation, security log, system patches,
purging, indexing, and partitioning activities. Audit metadata is used for administering the
data warehouse such as to verify whether the ETL processes ran successfully.

Usage metadata contains a log that records which reports and cubes are used by whom
and when. Usage metadata is used to understand the access and usage pattern of the data
warehouse applications. For example, how many times is a particular report accessed and
by which users or departments?

ETL metadata contains the description of each data flow, where they extract from, what
the destination is, what transformation is applied, the parent process, and the schedule when
it is supposed to run. Along with the data mapping metadata, ETL metadata is useful to
understand the data flow and transformation. ETL metadata is also used to determine the
sequence each task is run in an ETL batch.

Data quality metadata describes each data quality rule, along with the rule types, which
table and column they are applicable for, their risk level, and their actions. Data quality meta-
data is used to determine what action to take when “bad data” is detected.
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Why do we need metadata? The primary reason is to describe and explain the data and
the data warehouse (the structure and processes) to the users. This explanation enables the
users to use the data warehouse better. This explanation also makes it easier to enhance and
maintain the data warehouse. For example, data definition metadata helps new users under-
stand the meaning of each fact and dimension attribute, along with its sample values. Data
definition metadata also helps avoid misunderstanding among existing users about the mean-
ing of certain columns. Data mapping metadata helps us understand the impact if a column
in the source system is deprecated or if we want to add a new column in the data warehouse.
This is possible because data mapping metadata explains the source of each piece of data.

The secondary reason is for audit purposes to understand what happened, where it hap-
pened, and when it happened. For example, when an ETL process stopped unexpectedly, the
audit metadata helps us understand which steps have been executed, what the results of those
steps are, and which steps have not been executed so we can pinpoint the exact point in the
ETL process where it failed. This is because audit metadata contains the results of all pro-
cesses and activities in the data warehouse, including ETL processes, data modification, and
DQ rule validation. That will make it easier to find out the cause of failure, and it enables the
ETL processes to recover from the point of failure the next time it runs.

Metadata is also used by the system to run operational tasks, such as determining the
required action when “bad data” is detected by a data quality rule and the order the ETL tasks
need to be executed.

For maintainability, we use normalized forms in the metadata database; in other words,
the table names and column names are stored in data structure metadata. Data definition,
data mapping, ETL metadata, and audit metadata refer to the data structure metadata by stor-
ing the table keys and column keys. By using normalized forms, we need to modify only one
place when we want to change something in the metadata database.

Data Definition and Mapping Metadata
Data definition metadata is a list of all columns from every table in the DDS, ODS, and NDS
(depending on which architecture we chose; see Chapter 2), along with their meanings and
sample values. Instead of mentioning the data store names, table names, and column names,
data definition metadata uses the table key and column key defined in the data structure
metadata.

Mapping metadata describes where each piece of data comes from in the source system.
Mapping metadata is also known as data lineage metadata. If the mapping metadata contains
only the source system column name, it can be put on the same table as the data definition
metadata. But if the mapping metadata contains the complete data lineage between the DDS,
the NDS/ODS, the stage, and the source systems, then it is usually placed in a separate table.
The benefit of putting the mapping metadata in the same table as the data definition meta-
data is that the structure is simpler. The benefit of putting mapping metadata in separate
tables is that the structure is more flexible and has less data redundancy.

Table 10-1 contains an example of data definition and mapping metadata. Table 56 is the
product table, and table 68 is the campaign result fact table. The source column is located on
the database one step earlier in the process; in other words, if it is a DDS column, we put the
NDS column as the source. If it is an NDS column, we put the stage column as the source. If
it is stage column, we put the source system column as the source.
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Table 10-1. Data Definition Metadata

table_key column_key description sample_value source_column_key

56 112 The surrogate key of the product 3746 88
dimension. It is unique, is not null, 
and is the primary key of the product 
dimension.

56 113 Natural key. Product code is the FGA334288 89
identifier and primary key of the 
product table in Jupiter. It is in 
AAA999999 format.

56 114 The product name. The Panama 90
Story DVD

56 115 The product description. The Panama 91
Story movie on 
DVD format

56 116 The song/film/book title. The Panama 92
Story

56 117 The singer, star, or author. Mark Danube 93

56 118 Level 1 of product hierarchy; in other Film 94
words, music, film, or book.

56 119 Level 2 of product hierarchy; in other Action 95
words, for film, it could be thriller, 
western, comedy, action, documen-
tary, children, Asian, and so on.

56 120 Format of the media; in other words, DVD 96
MP3, MPG, CD, or DVD.

56 121 Price for one item. 4.75 97

56 122 Allocated direct and indirect costs. 3.62 98

56 123 Upcoming if we have signed contract Active 99
with the supplier, active if it is still 
being offered to the customer, 
expired if it is no longer being offered.

68 251 The key of the campaign that was 1456 124
sent to customers.

68 252 The key of the customer who was 25433 145
intended to receive this campaign.

68 253 The key of the communication to 5 165
which the campaign belongs. For 
example, this campaign is an instance 
of a communication called “Amadeus 
music weekly newsletter” dated 
02/18/2008.

68 254 The key of the communication 3 178
channel to which this campaign is 
sent. For example, a campaign could 
be sent to 200,000 customers, 
170,000 by e-mail and 30,000 by RSS.

68 255 The key of the date when this 23101 189
campaign was actually sent.
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table_key column_key description sample_value source_column_key

68 256 The key of the delivery status. 0 means 1 193
not sent. 1 means successfully 
delivered. 1 to N contains various dif-
ferent reasons why the campaign 
failed to be delivered to the intended 
recipient, such as the mailbox was 
unavailable, the mailbox does not 
exist, and so on.

68 257 1 if the campaign was actually sent to 1 204
the recipient (out our door); 0 if it was 
not sent. Examples of reasons for not 
sending are failed e-mail address 
validation and no customer permission.
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The Data Definition Language (DDL) of the data definition table in Table 10-1 is as follows
so you can create the table for the case study:

use meta
go

create table data_definition
( column_key          int  not null
, table_key           int  not null
, column_type_key     int  not null
, description         varchar(200)
, sample_values       varchar(50)
, source_column_key   int  not null
, create_timestamp    datetime not null
, update_timestamp    datetime not null
, constraint pk_data_definition
primary key clustered (column_key)

)
go

create index data_definition_description
on data_definition(description)
go

The table_key column is optional, because the column key links to the data structure
metadata column table that also has a table key. The index on the description column helps
querying a column with a particular meaning. To enable sophisticated word searches, you
may want to build a full-text index on the description column instead, as follows:

create fulltext catalog data_definition_fulltext_catalog
in path 'd:\disk\data6'
as default
go
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create fulltext index
on data_definition (description)
key index pk_data_definition
go

Columns in data warehouse tables serve different purposes. A column type indicates
these purposes. A column type helps differentiate, for example, dimensional attributes from
the fact column. Table 10-2 lists various column types and their descriptions. Column types
can be put on data structure metadata or on data definition metadata.

Table 10-2. Column Types

Column Type Location Description

Surrogate key DDS dimension tables A single not null column that uniquely identifies a
row in a dimension table.

Natural key DDS dimension tables Uniquely identifies a dimension row in the source
system.

Dimensional DDS dimension tables Describes a particular property of a dimension.
attribute

Degenerate DDS fact tables Identifies a transaction in the source system. A 
dimension natural key of a dimension without any attributes.

SCD support DDS dimension tables Columns that support slowly changing dimension
such as is_active, effective_date, and expiry_date.

Measure DDS fact tables Columns in the fact table that contain business
measurements or transaction values.

Fact key DDS fact tables A single not null column that uniquely identifies a
row on a fact table.

System All data stores Auxiliary columns created by the system for system
usage such as create_timestamp and update_
timestamp.

Transaction ODS and NDS tables Column in normalized tables containing business
transaction values, such as order tables.

Master ODS and NDS tables Columns in normalized tables that contain master
data such as stores, products, and campaigns.

Stage Stage tables Columns in stage tables containing business data.

In addition to table columns, we can also include report columns in data definition meta-
data. We do this by adding the report columns in the metadata_definition table. This way, the
meaning of every column in every report is explained properly. This helps avoid confusion
among the users about the meaning of particular columns in a report. For example, a column
called profitability can have many different meanings.

As I described earlier, if we want to describe full data lineage, we need to put data map-
ping metadata in a separate table. If we put the source column in the data definition table
shown in Table 10-1, we can refer to only one level of data source, in other words, only the
source system. But if we put the source column on data mapping metadata, we can refer to
multiple levels of data stores, not only the source system but also the DDS, NDS, and stage.
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It also enables us to refer to more than one source, which is useful if a column is sourced
from two or three different sources. There are two benefits of sourcing a column from multiple
sources: the ability to perform calculations based on several source columns and getting more
complete data as the source columns complement each other.

The Data Definition Language (DDL) of the data mapping table is as follows:

use meta
go

if exists
( select * from sys.tables
where name = 'data_mapping')

drop table data_mapping
go

create table data_mapping
( data_mapping_key    int not null identity(1,1)
, column_key          int not null
, source_column_key   int
, create_timestamp    datetime not null
, update_timestamp    datetime not null
, constraint pk_data_mapping
primary key clustered (data_mapping_key)

)
go

Figure 10-1 shows the data flow diagram between data stores in a data warehouse. It
shows the three DW data stores: the stage, the ODS, and the DDS, along with the source sys-
tems and the application layer. The solid stripes are columns on the tables within the data
store. For example, column 249 is on a table in the ODS. Figure 10-1 shows the data lineage
(or data mapping) for two columns in the DDS: column 378, which is populated from col-
umn 249 in the ODS, and column 442, which is populated from columns 251 and 289 in
the ODS. Table 10-3 shows the corresponding sample data on the data mapping table for
the data flow in Figure 10-1.

Figure 10-1. Data flow diagram showing data lineage between data stores
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Table 10-3. Data Mapping Table for the Data Flow in Figure 10-1

data_mapping_key column_key source_column_key create_timestamp update_timestamp

1 378 249 2007-10-24 09:23:48 2007-11-18 14:10:08

2 249 190 2007-10-24 09:28:36 2007-11-19 11:05:16

3 190 77 2007-10-24 09:31:13 2007-10-24 09:31:13

4 442 251 2007-11-04 17:01:55 2007-12-18 15:09:42

5 442 289 2007-11-04 17:03:29 2007-11-04 17:03:29
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DDS tables are populated from the ODS. The ODS tables are populated from the stage
tables. The stage tables are populated from the source systems’ tables. Because of that, the
data mapping table is a linked list. Both column_key and source_column_key refer to the col-
umn table in the data structure metadata (see the next section). To query the data mapping
table, we need to use a recursive query. A recursive query is a SQL query from a table that joins
to the same table (self-join). We need to be careful when doing a recursive query because we
could potentially be caught in an endless loop. To prevent it, we need to limit the number of
loops/self-joins.

It is better if the source system metadata is put in the same place with the data ware-
house data structure metadata. This way, source_column_key in the data mapping table needs
to refer to only one table. Source system metadata contains a list of tables and columns in all
source systems, along with their data types. Data structure metadata contains a list of tables
and columns in the data warehouse (for example, stage, ODS, DDS), along with their data
types. If we put both of them in the same table, the data mapping table needs to refer to this
one table. But if we put them in two different tables, the data mapping needs to go to two dif-
ferent tables to get the data structure. If it is a source system data store, it goes to table 1, and
if it is a data warehouse data store, it goes to table 2.

Data Structure Metadata
Data structure metadata contains the tables and columns in all data stores in the data ware-
house (for example, DDS, NDS/ODS, and stage) along with their data types. Data structure
metadata also contains table definitions, indexes, referential integrity (primary keys, foreign
keys), constraints (null, unique), identity details, partition details, and views. Data structure
metadata when combined with data definition metadata is also known as the data dictionary.

The main purpose of creating data structure metadata is to expose and explain the struc-
ture of the data warehouse to the users, and as such, there is no need to go into the details
such as the full-text indexes, stored procedures, custom data types, and trigger’s definition.
Database and data warehouse administrators, developers, and architects have access to SQL
Server object catalog views, and therefore there is no need to include the minute details such
as the physical location of database files, statistics settings of the database, shrink settings,
database access mode, and recovery mode. The system (the data warehouse) does not use
data structure metadata, because the data structure of each database is available internally
to the system.
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We do need to describe, however, at the very least, the data store, tables, and columns. In
other words, we need to describe—with good business descriptions—how many data stores
there are in the data warehouse; how many tables are in the DDS, NDS, and stage; and how
many columns there are in each table. It is absolutely useless for the business users if we
describe dim_communication as communication dimension and dim_channel as channel dimen-
sion. What the business users need, especially those who are new to CRM, is an explanation of
what communication and channel are. So, descriptions such as these are much more useful:
“A communication is printed or electronic media issued at a regular or irregular interval that
customers can subscribe to, such as a newsletter or an RSS feed” and “A channel is a medium
to deliver communications to customers, such as an e-mail, an RSS feed, a cell/mobile phone
text message, and a telephone call.”

The second purpose of creating data structure metadata is for a reference to other meta-
data. Data structure metadata contains the name, data type, and description of all the tables
and columns in all data stores. Other metadata needs to refer to data structure metadata to get
this information. As listed earlier, these are seven types of metadata. Many of them refer to
data structure metadata. For example, as you learned in the previous section, data definition
and mapping metadata refer quite frequently to the data structure metadata. Rather than
rewriting the column names and data types, they simply refer to the column table in the data
structure metadata.

Data structure metadata consists of five tables: ds_data_store, ds_table, ds_table_type,
ds_column, and ds_column_type. (DS stands for data structure.) Table 10-4 lists the tables for
data structure metadata.

Table 10-4. Data Structure Metadata Tables

Table Name Description

ds_data_store Lists all data stores in the data warehouse

ds_table Lists tables in each data store

ds_table_type Lists table types such as dimension table, fact table, and so on

ds_column Lists all columns in each table

ds_column_type Lists column types such as the surrogate key column, measure, and so on

Tables 10-5 to 10-8 describe an example of the data structure metadata tables.
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Table 10-5. Data Structure Metadata: ds_data_store Table

current_
key data_store description collation size growth

1 Stage Staging area SQL_Latin1_General_CP1_CI_AS 70 10

2 NDS Normalized data store SQL_Latin1_General_CP1_CI_AS 125 25

3 DDS Dimensional data store SQL_Latin1_General_CP1_CI_AS 150 25

4 Meta Metadata SQL_Latin1_General_CP1_CI_AS 10 5

9314ch10final.qxd  11/15/07  10:05 AM  Page 309



Table 10-6. Data Structure Metadata: ds_table Table

key name entity_type data_store description

1 dim_campaign 1 3 DDS campaign dimension. A
campaign is an instance of a
communication, such as
“Amadeus weekly music
newsletter dated 19 December
2007.”

2 dim_channel 1 3 DDS channel dimension. A
channel is a medium to deliver
a communication to cus-
tomers, such as e-mail, RSS
feed, mobile phone text, and
telephone calls.

3 dim_communication 1 3 DDS communication
dimension. A communication
is printed or electronic media
that issues at a regular or
irregular interval that cus-
tomers can subscribe to, such
as a newsletter or an RSS feed.

4 dim_customer 1 3 DDS customer dimension. A
customer is an individual or
organization that purchased
a product, subscribed to a
communication, subscribed to
a package, or registered on a
web site.

11 fact_product_sales 2 3 DDS Product Sales fact table.
Contains purchases made by
customers.

12 fact_subscription_sales 2 3 DDS Subscription Sales fact
table. Contains subscriptions
made by customers to
packages.

13 fact_campaign_result 2 3 DDS Campaign Result fact
table. Contains the send and
delivery status of the campaign
to each intended recipient.

28 product 3 2 NDS product master table.
Contains active products
offered to customers for pur-
chase including artist, format,
and unit cost, as well as
inactive products.

29 order_detail 4 2 NDS order detail transaction
table. Contains order line
records for each purchase
including product code,
quantity, and price.

…
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Table 10-7. Data Structure Metadata: ds_table_type Table

key table_type description

1 dimension Dimension table

2 fact Fact table

3 master Master table

4 transaction Transaction table

5 stage Stage table

6 metadata Metadata table
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Table 10-8. Data Structure Metadata: ds_column Table

is_
column_key table_key column_name data_type is_PK is_FK is_null identity

…

126 21 customer_key int Y Y N N

127 21 communication_key int Y Y N N

128 21 channel_key int N Y N N

129 21 subscription_start_date_key int Y Y N N

130 21 subscription_end_date_key int N Y N N

131 21 subscription_status_key int N Y N N

132 21 source_system_code tinyint N N N N

133 21 create_datetime datetime N N N N

134 21 update_datetime datetime N N N N

…

Some data structure metadata can be populated from SQL Server object catalog views, as
follows (other tables are populated manually):

use dds
go

select coalesce(t2.table_key, 0) as table_key
, c.name as column_name
, case when ty.name in ('char', 'varchar')
then ty.name + '(' + convert(varchar, c.max_length) + ')'
else
case when ty.name in ('decimal', 'float')
then ty.name + '(' + convert(varchar, c.precision)
+ ',' + convert(varchar,c.scale) + ')'

else ty.name
end
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end as data_type
, case coalesce(a.index_column_id, 0) when 0 then 'N' else 'Y' end as is_PK
, case coalesce(fkc.parent_column_id, 0) when 0 then 'N' else 'Y' end as is_FK
, case c.is_nullable when 0 then 'N' else 'Y' end as is_null
, case c.is_identity when 0 then 'N' else 'Y' end as is_identity
from sys.tables t
inner join sys.columns c
on t.object_id = c.object_id

inner join sys.types ty
on c.system_type_id = ty.system_type_id

left join
( select i.object_id, ic.index_column_id
from sys.indexes i
inner join sys.index_columns ic
on i.object_id = ic.object_id
and i.index_id = ic.index_id
and i.is_primary_key = 1
) a
on t.object_id = a.object_id
and c.column_id = a.index_column_id
left join sys.foreign_key_columns fkc
on t.object_id = fkc.parent_object_id
and c.column_id = fkc.parent_column_id
left join meta.dbo.ds_table t2
on t.name = t2.table_name

order by table_key, c.column_id
go

Table 10-9 shows the output of the previous script.
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Table 10-9. Output of the Script to Populate Data Structure Metadata

table_key column_name data_type is_PK is_FK is_null is_identity

…

11 customer_key int Y Y N N

11 communication_key int Y Y N N

11 channel_key int Y Y N N

11 subscription_start_date_key int N Y N N

11 subscription_end_date_key int N Y N N

11 subscription_status_key int N Y N N

11 source_system_code tinyint N N N N

11 create_timestamp datetime N N N N

11 update_timestamp datetime N N N N

…
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The core of the previous query is interrogating the sys.tables and sys.columns object
catalog views to list all the columns in the data store, including getting the null and identity
attributes of the column. The query then goes to sys.index_columns and sys.foreign_key_
columns to identify whether the column is a primary key or a foreign key. The output columns
are converted into Y and N using a case statement. The data_type column is then formatted
using a case statement as follows:

• If the column is char or varchar, it includes the maximum length.

• If the column is a decimal or float, it includes the precision and scale.

Finally, the table names are converted into table keys.
It is, of course, possible to populate the data structure metadata manually, but it is handy

to be able to populate it automatically using scripts like the previous one for consistency and
accuracy. The output of the previous script needs to be “upserted” into the column table, in
other words, updated when it exists and inserted when it does not exist. But, regardless of the
script, the table description columns still need to be filled in manually with meaningful and
useful business descriptions. There are tools that can produce data structure information of
a database, such as table and column names, data types, and data length, but we still have to
type the business description of each column and table manually.

Source System Metadata
Source system metadata is similar to data structure metadata. In other words, it contains the
data structure of the source system. Like data structure metadata, at the least it needs to con-
tain the database level, table level, and column level. This information is required because
data mapping metadata stores only the column key. When the application needs to display the
column names and data types, it gets this information from the source system metadata.
Additionally, source system metadata can also contain other information such as the refresh
frequency for particular tables. The refresh frequency is useful when we try to optimize the
ETL process. Other information that is useful on source system metadata is a data profile,
such as minimum and maximum values, row count, and the number of NULLs.

The main purpose of creating the source system metadata is to expose and explain the
structure of the source systems to the data warehouse users. This, in a way, acts as an exten-
sion to the data warehouse structure exposed by the data structure metadata. As such, there is
no need to go down to the technical details of the source systems, such as the indexes, backup
interval, triggers, and detailed database properties.

The second purpose of creating source system metadata is to serve as a reference for the
other metadata. For example, the source column on the data mapping metadata refers to the
columns on the source systems, which exist in the source system metadata. ETL processes
metadata and data quality metadata also contain the source system columns, and therefore
they need to refer to the source system metadata. This other metadata stores only the column
key. When the application needs to display the column name and data types, it gets this infor-
mation from the source system metadata.

As I explained earlier, it is best to place the source system metadata in the same place as
the data structure metadata, rather than creating it on its own set of tables. They have the
same structure, so they can be put in the same set of tables. This way, it is easier to query
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because we don’t have to conditionally join two different set of tables, which will make the
query slower. For example, on the full data lineage/mapping table, if we place the source sys-
tem metadata columns in the data structure metadata column table, we have only the table
to link to, regardless of whether it is a stage, NDS, or source system column.

Tables 10-10, 10-11, 10-12, and 10-13 show the data structure metadata tables. Data
structure metadata consists of three core tables: ds_data_store contains a list of data stores,
ds_table contains a list of tables, and ds_column contains a list of columns. In these tables we
put the data stores, tables, and columns of both the data warehouse and the source systems.
Table 10-10 shows the ds_data_store table, which contains both the data warehouse data
stores and the source system data stores. Table 10-11 shows the ds_tables table, which con-
tains both the data warehouse tables and the source system tables. Table 10-12 shows the
ds_table_type table, which describes the types of tables, such as dimension table or fact table.
Table 10-13 shows the ds_column table, which contains both the data warehouse columns and
the source system columns.
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Table 10-10. Data Structure + Source System Metadata: ds_data_store Table

data_ data_ current_
store_key store_name description DBMS collation size growth

1 Stage Staging area. SQL Server 2005 SQL_Latin1_ 70 10
General_CP1_
CI_AS

2 ODS Operational data store. SQL Server 2005 SQL_Latin1_ 225 25
General_CP1_
CI_AS

3 DDS Dimensional data store. SQL Server 2005 SQL_Latin1_ 350 25
General_CP1_
CI_AS

4 Meta Metadata database. SQL Server 2005 SQL_Latin1_ 10 5
General_CP1_
CI_AS

5 Jade A custom Java-based system Informix Dynamic Unicode 430 30
running on Informix. This Server 10
includes sales, customer 
service, subscriptions, and 
front-office functions.

6 WebTower A custom-developed .NET- Oracle 10g R2 ANSI 845 65
based system for dynamic 
web sites, multimedia trading, 
broadcasting, sales order pro-
cessing, and subscription 
management, running on 
Oracle Database.

7 Jupiter The back-end enterprise DB2 Enterprise 9 EBCDIC 800 50
resource planning (ERP) sys-
tem. An off-the-shelf AS/400-
based business system run-
ning on DB2.
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Table 10-11. Data Structure + Source System Metadata: ds_table Table

table_key table_name table_type data_store description

1 dim_campaign 1 3 DDS campaign dimension. A cam-
paign is an instance of a communi-
cation, such as “Amadeus weekly
music newsletter dated 19 Decem-
ber 2007.”

2 dim_channel 1 3 DDS channel dimension. A channel
is a means to deliver a communi-
cation to customers, such as e-mail,
an RSS feed, a mobile phone text,
and a telephone call.

3 dim_communication 1 3 DDS communication dimension.
A communication is printed or elec-
tronic media that issues at a regular
or irregular interval to which cus-
tomers can subscribe, such as a
newsletter or an RSS feed.

4 dim_customer 1 3 DDS customer dimension. A cus-
tomer is an individual or organiza-
tion that purchased a product,
subscribed to a communication,
subscribed to a package, or regis-
tered on a web site.

11 fact_product_sales 2 3 DDS Product Sales fact table. Con-
tains purchases made by customers.

12 fact_subscription_sales 2 3 DDS Subscription Sales fact table.
Contains subscriptions made by
customers to packages.

13 fact_campaign_result 2 3 DDS Campaign Result fact table.
Contains the send and delivery
status of the campaign to each
intended recipient.

28 product 3 2 NDS product master table. Con-
tains active products offered to
customers for purchase including
artist, format, and unit cost, as well
as inactive products.

29 order_detail 4 2 NDS order detail transaction table.
Contains order line records for
each purchase including product
code, quantity, and price.

Continued
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Table 10-11. Continued

table_key table_name table_type data_store description

71 artist 7 5 Jade artist table. Contains artist
reference data including artist
name, genre, and country, mainly
used by the Jade product table.

79 supplier_performance 8 5 Jade Supplier Performance table.
Contains supplier and purchase
order transaction data such as
ordered, rejected and returned
quantities (and their associated
values), title and format availability,
stock outage, and lead time.

…
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Table 10-12. Data Structure + Source System Metadata: ds_table_type Table

key table_type description

1 dimension Dimension table

2 fact Fact table

3 master Master table

4 transaction Transaction table

5 stage Stage table

6 metadata Metadata table

7 source reference Source system reference table

8 source transaction Source system transaction table

Table 10-13. Data Structure + Source System Metadata: ds_column Table

column_ table_ column_ data_
key key name type PK FK null identity

…

126 21 customer_key int Y Y N N

127 21 communication_key int Y Y N N

128 21 channel_key int N Y N N

129 21 subscription_start_date_key int Y Y N N

130 21 subscription_end_date_key int N Y N N

131 21 subscription_status_key int N Y N N

132 21 source_system_code tinyint N N N N

133 21 create_datetime datetime N N N N

134 21 update_datetime datetime N N N N

192 79 supplier_id integer Y Y N N
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column_ table_ column_ data_
key key name type PK FK null identity

193 79 product_id integer Y Y N N

194 79 start_date date N N Y N

195 79 ordered_quantity integer N N Y N

…

How do we populate source system metadata? Unlike data structure metadata, which can
be obtained automatically (well, semiautomatically to be precise, because we still have to put
in the description), in most cases we are not able to populate the source system metadata
automatically, because it is not under our control. We need administrative rights to the source
system databases, and this kind of access is usually possessed only by the DBA. So, we need to
populate the source system metadata manually. We usually get the information that we need
to populate the source system metadata when we do source system analysis (also known as
the data feasibility study; please refer to Chapter 4). For some of us who are lucky enough (or
unlucky, depending on how you look at it) to be the DBA of the source systems, we will be able
to automate the population by accessing the system information schema or table definitions
and be able to create a script in the source system to export its structure into a text file, which
we can then import into metadata tables.

There is one thing that source system metadata has but that does not exist in data struc-
ture metadata: a source data profile. A source data profile contains statistics and volumetric
information describing the source data such as minimum value, maximum value, average
value, and number of distinct values for each column. It also contains the number of rows,
row size, and number of columns for each table. A source data profile is useful when creating
ETL processes to extract the data out of the source system. It is also useful when we need to
modify the ETL processes after the data warehouse has been deployed in production.

We get the information required for populating the source data profile usually when doing
source system analysis. Tables 10-14 and 10-15 show an example of a source data profile. To put
it into context, in the following example, table 71 is the artist table, 72 is the customer table, and
79 is a supplier performance table, all from the Jade source system.

Table 10-14. Source System Metadata: Source Table Data Profile

table_key rows row size columns has_timestamp

…

71 5768 240 5 N

72 2415832 877 28 Y

79 4103841 85 15 N

…
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Table 10-15. Source System Metadata: Source Column Data Profile

column_key table_key unique_values minimum maximum average max length null

…

192 79 12894 110921 219032 159281 0

193 79 45120 3 50394 27291 0

194 79 1609 03/19/1998 12/19/2007 05/07/2002 120

195 79 78 0 134 2 0

…
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In Table 10-14, we can see the number of rows, row size, and number of columns for each
table. Table 10-15 lists the number of unique/distinct values, the minimum value, the maxi-
mum value, and the average value for each column. Table 10-15 also shows the number of
rows with nulls in that column. For char or varchar columns, we can have minimum length,
maximum length, and average length. We can also have other useful statistics such as the
count of the most and least frequent values for each column.

ETL Process Metadata
ETL process metadata consists of a data flow table, a package table, and a status table. The
data flow table describes the name and description of each SSIS data flow, what table they
extract from, the destination table, what transformations are applied (only a descriptive text,
not the exact formula), the parent package, their current status, the last successful extraction
time (LSET), and the current extraction time (CET). This information is used by the ETL pro-
cesses to determine which records to extract from the source system. Sometimes on the data
flow table, we have a column called order. This column contains the sequential order when
the data flow needs to run, in relative position to other data flow. When using SSIS, we don’t
actually need this column, because we have precedence constraints defining the workflow
between data flows. We need it when we use stored procedures for ETL.

The package table contains the name and description of each SSIS package, their sched-
ule (only descriptive text; the actual schedule is set when creating the SQL Server Agent Job to
execute the SSIS package), their status, and the last time they ran. The status table contains
the status code and description. To be able to restart an ETL batch from the point of failure
(not from the beginning), we need to know exactly where it failed, what was executed, and
what was not executed. The status column on both the data flow table and the package table
enables this. In its simplest form, the status values are success, failed, and in progress. In a
more sophisticated implementation, other status values are “about to run” and “canceled.”
These two additional statuses enable us to understand the more precise state of each ETL
process, which helps us troubleshoot when there is a problem with the ETL.

Tables 10-16 to 10-18 show the tables that form the ETL processes metadata. There are
three tables: data_flow, package, and status. The data_flow table contains a list of ETL pro-
cesses. An ETL process contains several ETL tasks, such as transformations. The package table
contains a collection of ETL processes. The status table contains the state of each data flow.
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Table 10-16. ETL Processes Metadata: data_flow Table

key name description source target transformation package status LSET CET

…

8 stage_product Extracts Jade and Jade. stage. Adds 9000 on 4 1 11/27/2007 11/27/2007

Jupiter product product, product Jupiter product 04:06:09 04:06:09

tables incre- Jade. code; dedupe 

mentally based product_ two source 

on the last- detail, systems 

updated date Jupiter. based on 

and puts them prod_hd, product 

in the product Jupiter. group and 

stage table. prod_dt product code.

9 nds_product Loads product state. stage. Upsert 11 1 11/27/2007 11/27/2007 

data from the product product and key- 04:07:11 04:07:11

stage to the NDS. ing; DQ 

unit_cost

with rule 29

…

Table 10-17. ETL Processes Metadata: package Table

key name description schedule

…

4 Stage daily This SSIS package extracts the following data from the source Runs every day 
incremental system incrementally and loads it onto the stage: customer, including weekends 

permission, product, store, product purchases, package sub- at 3 a.m.
scription, and communication subscription.

5 Stage daily This SSIS package extracts the following data from the source Runs every day at 
full reload system by downloading the whole table: customer type, cus- 3 a.m.

tomer status, interest, household income, occupation, cur-
rency, artist, product status, product type, product category, 
package, and package type.

11 NDS This loads product-related tables from the stage to the NDS, Runs daily at 3 a.m.
product in other words, the ones with product, product status, product 

type, product category, package, and package type data.

12 NDS This loads customer-related tables from the stage to the NDS, Runs daily at 3 a.m.
customer in other words, the ones with customer, customer status, cus-

tomer type, address, address type, e-mail address, e-mail 
address type, permission, phone number, phone number type, 
household income, occupation, and interest data.

…
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Table 10-18. ETL Processes Metadata: status Table

key status

…

0 Unknown

1 Success

2 Failed

3 In progress

…

Table 10-17 shows that the stage ETL packages are grouped into packages according to
the frequency they run (daily, weekly, monthly, ad hoc, and so on) and the extraction method
(full reload, incremental, or fixed period). Table 10-17 also shows that the NDS ETL packages
are grouped into packages according to the subject area, such as product, customer, product
purchase, package subscription, CRM subscription, and so on.

The main purpose of having ETL metadata is to control the ETL packages in SSIS. For
example, as we did in Chapter 7, the LSET and CET columns enable us to extract incremen-
tally by memorizing the last time a successful extract was run. The status columns enable the
SSIS packages or the whole ETL batch to restart from the point of failure. When we restart an
ETL package, we can use the status column to determine which ETL processes have not been
executed, and we can restart from that process onward, rather than from the beginning. To be
able to restart from failure, the ETL processes need to be re-runnable. In other words, we need
to be able to run the same process over and over without causing any problem.

The second purpose of having ETL metadata is to describe the ETL processes. It describes
what the ETL process or package does, such as “Stage daily incremental: this SSIS package
extracts the following data from the source system incrementally and loads it into the stage:
customer, permission, product, store, product purchases, package subscription, and commu-
nication subscription. Runs every day including weekend at 3 a.m.” Being able to query such
descriptive text for every package and data flow is very useful to most data warehouse admin-
istrators, provided that the descriptions are kept up-to-date. We can automate it a little bit,
such as by querying sysjobs, sysjobsteps, sysjobschedules, and sysschedules tables in the
msdb database to determine the SQL Server Agent job steps and schedule. We can also query
sysjobhistory to determine what jobs have been executed.

Data Quality Metadata
Data quality metadata contains the data quality rules that we discussed in the previous chap-
ter, including the rule name and description, rule type (for example, error or warning), rule
category (for example, incoming data validation, cross reference validation, or internal data
warehouse validation; see Chapter 9), risk level (for example, business or financial risk if this
rule is violated, on the scale of 1 to 5), status (active or not), action (reject, allow, or fix; see
Chapter 9), notification, create timestamp, and update timestamp. The notification column
contains a link to the DQ notification table that contains who to notify and how to notify them
(for example, an e-mail or a cell/mobile phone text message). We can have other features such
as how many times to notify, at what interval, acknowledgment status, escalation timeframe,
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escalation person/second level, and so on. We also need to have a third table containing the
user details, in other words, name, department/business area, role/position, e-mail address,
cell phone number, group number, and so on. And potentially we need a fourth table for
describing the user groups when we have a lot of users and we want to assign the data quality
tasks to a group of users rather than to individual users. It is usually better to start with some-
thing simple, such as without escalation/second level. If it is proven to be successful, we can
enhance it further.

Tables 10-19 to 10-21 contain data quality metadata. There are three main tables: DQ
rules, DQ notification, and DW user. The DQ rules table contains the data quality rules. The
DQ notification table specifies which DW users to notify for each rule. The DW user table
describes the data warehouse users including their e-mail addresses.
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Table 10-19. Data Quality Metadata: DQ Rules Table

rule_ rule_ rule_ rule_ risk_ create_ update_
key name description type category level status action timestamp timestamp

…

7 The product Product code needs to be in E I 3 A R 10/21/2007 11/27/2007 
code format AAA999AA format. Reject if 11:41:33 14:07:11

it is not in this format, and 
notify product manager by
e-mail.

8 The unit Within 25% of last three W C 1 A A 09/18/2007 10/12/2007
price months’ average. 12:04:33 09:27:55

…

Table 10-20. Data Quality Metadata: DQ Notification Table

key rule_key recipient_type recipient method

…

11 7 I 3 E

12 8 G 9 E

…

Table 10-21. Data Quality Metadata: Data Warehouse User Table

key name department role email_address phone_number group

…

3 Brian Hill Merchandising Product brian.hill@ 0983475052 9
Manager amadeus.com

4 Sarah Finance Costing sarah.fairbank@
Fairbank Assistant amadeus.com 9

…
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In Table 10-19, the rule_type column is linked to the rule_type table, which has two
entries: E for errors and W for warnings. This enables us to determine whether it is an error
or warning. The rule_category column is linked to the rule_category table, which has three
entries: I for incoming data validation rules, C for cross-reference validation rules, and D for
internal data warehouse validation rules (see Chapter 9). This enables us to determine the
type of data quality issue we are facing.

The risk_level column is linked to the rule_risk_level table, which has five entries:
level 1 for no business impact to level 5 for severe damage to business financial positions. This
enables us to determine how big the impact of the data quality issue is. The status column is
linked to the rule_status table, which has two entries: A for active and D for decommissioned.
This enables us to add new rules and deactivate obsolete rules. The action column is linked to
the rule_action table, which contains R for reject, A for allow, and F for fix. This enables us to
determine what kind of action was taken against each data quality issue.

■Tip rule is a SQL Server keyword, which specifies the acceptable values that can be inserted into
a column. In SQL Server 2008, it is replaced by check constraints. So, be careful when you want to use
rule as a table name, because you need to use brackets ([rule]) every time you use the table name. A
practical approach is to change the table name to dq_rule, which is more descriptive. For consistency,
you need to name the rule type, rule category, and rule status tables as dq_rule_type, dq_rule_
category, and dq_rule_status. Underscores are used for naming SQL Server system views, such
as sys.foreign_keys, sys.default_constraint, sys.service_queues, sys.sql_modules, and
sys.backup_devices. I prefer to use underscores because it gives better readability compared to
joined words with no underscore.

In Table 10-20, the recipient type column is linked to the recipient_type table, which
has two entries: I for individual and G for group. This enables us to send the notification to
a group of users, rather than to an individual user. The recipient column contains the key of
the individual or the group on the user table, depending on the value of the recipient_type
column. Table 10-21 contains the user details, with the last column (group) being the group
key of each user to enable sending a DQ notification for a particular rule to several people
simultaneously.

This is only one design. Of course, you could and should alter or enhance it according
the needs of your projects and situations. The purpose of giving the previous example is just
for illustration to help you understand the practical implementation. For instance, in some
projects, it is required to extend the DQ rule table by creating a parameter column. This col-
umn contains a value that is used in the rule. For example, if the rule is “the unit cost of
product family AG9 needs to be greater than 1.25,” then the number 1.25 is actually stored
as a value in the parameter column, not hard-coded in SSIS data flow logic. This makes it
easier to update the value later. To accommodate more than one parameter, the parameters
are placed in a separate parameter table and linked to the DQ rule table on the rule key col-
umn. You can add “data type” column in the parameter table to handle the issue of
parameters being of different data types.
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Audit Metadata
Audit metadata contains the results of every process and activity in the data warehouse,
including data loading process (ETL), creation of specific purpose DDS (mart), manual data
modification (for example, updating DQ user table), DQ rule validation, security log/breach
(for example, web portal login), system enhancements and modifications (for example,
patches, schema changes and upgrades), data purging and archiving, database tuning, and
maintenance (indexing and partitioning activities).

Audit metadata is used for administering the data warehouse, including monitoring ETL
processes, monitoring data quality, enhancements requests, installation patches, and moni-
toring security access. For example, the purpose of one of the daily operation reports (or
manual query using SQL script) is to verify whether the ETL processes ran successfully. This
report or script accesses the audit metadata to get the number of rows loaded for each table.
It is used to see when the last purging, indexing, or partitioning was done on a particular
table. Another example of administrative usage is to support enhancement requests. By
examining or querying the audit metadata, we know what patch was applied and when. We
will go though these administrative tasks in Chapter 17 when we discuss data warehouse
administration.

The secondary usage of audit metadata is for troubleshooting. When there is a problem
or issue, you can query audit metadata to know what happened in the last few hours. Say
you got a call from a user saying that a package subscription report or cube is missing some
data. You know that this cube is fed from the Subscription Sales fact table in the DDS, and it
turns out that today this fact table was not loaded. In this case, you can query how many
records were loaded into the stage, how many into NDS, and how many into DDS. It helps
you to pinpoint where the cause of the problem lies.

In its simplest form, audit metadata is an event log table containing every single event
that happened in the data warehouse populated by every single process and activity in the
data warehouse. The processes use insert SQL statements to add rows into the event log
table. It contains the event type, event category, which data warehouse object is involved in
the event (linked to data structure metadata), the data flow initiating the event (linked to
the data flow table), the number of rows involved, the timestamp when the event occurred,
and a note. Table 10-22 gives an example of this event log table.

In the event_type table described in Table 10-22, the key column is an identity (1,1)
containing a sequential number for identifying the log entry. The type column contains the
event type, linked to the event_type table shown in Table 10-23. The category column con-
tains the event category, linked to the event_category table shown in Table 10-24. The
object column contains the table key, linked to the ds_table table in the data structure
metadata. For ETL processes, the data_flow column contains the SSIS data flow, linked to
the data_flow table in the ETL processes metadata. For ETL processes, the rows column
contains the number of rows affected. The event_log table is purged regularly, such as
every month, leaving only the last 12 months of data. This enables us to maintain query
and reporting performance. The purge frequency and number of months to keep depends
on the administrative requirements, performance requirements, regulatory issues, and
company standards.
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Table 10-22. Audit Metadata: event_log Table

event_
key event_type category timestamp object data_flow rows note

…

12418 26 5 2007-11-24 03:04:09 56 12 23102

12419 27 6 2007-11-24 03:05:19 87 23 23102

12420 28 7 2007-11-24 03:06:11 112 38 23102

12581 39 18 2007-11-25 14:36:06 29 Login 
successful

15013 59 21 2007-11-26 00:09:15 35 Applying
patch 19

…
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Table 10-23. Audit Metadata: event_type Table

key event_type

…

26 Load Stage customer

27 Run DQ rule17

28 Load NDS customer

39 Login

59 Bug fix

…

Table 10-24. Audit Metadata: event_category Table

key event_category

…

5 Stage ETL

6 Data Quality

7 NDS ETL

18 Security

21 System modification

…

Usage Metadata
Usage metadata is similar to the audit metadata in that it contains an event log. But this time,
the events are the usage of the Reporting Services reports, Analysis Services cubes, and data
mining model. In one implementation, the reports, cubes, and mining model could be
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accessed via a web portal. Before the link on the portal redirects to the report (or cubes or
mining model), it inserts a record into this usage metadata first. So, we know which reports or
cubes were accessed and when they were accessed. The access patterns are useful for doing
performance tuning and capacity planning. For example, they enable us to avoid the busy
times when processing the cubes.

Another implementation is to populate the usage metadata from the SQL Server stored
procedures, which are invoked by the Reporting Services reports. For this, the reports must
not contain direct SQL statements; instead, they must call the stored procedures.

Usage metadata is used to understand (for example) how many times a particular
report is accessed and by which users or departments. We can use an IIS log to record the
number of hits on the links on the data warehouse portal page, but usage metadata is more
flexible. It could be reported using SSRS, so it would have a more consistent look with other
data warehouse reports. An IIS log, on the other hand, requires some kind of web log analy-
sis software in order for us to understand how many times a report is accessed and by which
users. Each entry on the IIS log contains the date and time the activity occurred, the client
IP address, the username of the authenticated user who accessed the server, the target page
or report, the Universal Resource Identifier (URI) query, the bytes sent, and the length of
time that the action took (in milliseconds). Each hit on the report produced an IIS log entry
with all the previous information. This way, a full collection of IIS log entries enables us to
determine the usage or access pattern of the report.

One simple implementation of usage metadata is a usage_log table. The log table con-
tains the user, the object, and the timestamp, and if applicable, it also contains the
parameters. Table 10-25 shows an example of this usage_log table.

Table 10-25. Usage Metadata: usage_log Table

key user object timestamp parameters note

…

7834 12 56 2007/11/03 16:09:33 FG45

7892 20 114 2007/12/05 11:39:05

…

The user column on Table 10-25 is linked to the data warehouse user table shown in
Table 10-21. The object column is linked to the ds_table table in the data structure meta-
data shown in Table 10-6. The timestamp column shows when the object is accessed.

When the authentication method in SSRS is Windows integrated security, the user ID can
be obtained using system_user. system_user is a SQL Server internal system variable that con-
tains the login name (if using SQL authentication) or the Windows login identification name
(if using Windows authentication).

Maintaining Metadata
It is important to keep the metadata up-to-date. An out-of-date data structure or outdated
data mapping metadata, for example, may lead the users to the wrong understanding of the
data warehouse. Also, the system may take an incorrect action if the metadata is incorrect.
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Conducting a change request impact analysis based on out-of-date data mapping metadata
could lead to ETL problems, such as because we misinterpreted where a piece of data is com-
ing from or because the data type was not correct.

Data definition and mapping metadata is usually defined and created at an early phase of
a data warehousing project. Once created, they are then maintained through change request
procedures. Rather than changing it directly on the metadata tables, the change needs to be
implemented using a data change script. The data change script is a Transact SQL script con-
taining the rollback section, the change request details (which go to the event log table), and
the roll forward.

The DW administrator needs to prepare a script to change the metadata and submit this
script to be executed under a change request process. The script contains three sections: log,
rollback, and implementation.

• The log section records the change request details into the event log table. The reason
for doing this is for traceability and troubleshooting if something goes wrong.

• The rollback section tries to “undo” the change. This is necessary to prove that we can
revert the changes.

• The implementation section applies the change to the metadata database.

The following is an example of a metadata change request. This example updates the risk
level of rule 8 in Table 10-19 from level 1 to level 2.

/* Change request number: CR023
Date created: 12/14/2007
Created by: Vincent Rainardi
Description of change: Change the risk level for rule 8 from 1 to 2
Schedule for production implementation: 12/18/2007
*/

use meta -- switch to metadata database

-- Event Log section
insert into event_log (event_type, event_category,
event_timestamp, object, dataflow, rows, note)
values (7, 3, getdate(), 371, 0, 8,
'update risk level from 1 to 2')

-- Rollback section
update dq_rules set risk_level = 1 where rule_key = 8

-- Implementation section
update dq_rules set risk_level = 2 where rule_key = 8

Some data structure metadata can be maintained automatically using SQL Server object
catalog views. A query gets the data from the object catalog views and inserts or updates the
appropriate metadata tables. For example, we can use the query shown earlier in this chapter.
Some data structure metadata still needs to be maintained manually, such as object business
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descriptions, dimensional hierarchy, and SCD details. Source system metadata is usually cre-
ated and populated during the source system analysis phase and then maintained during the
development phase by using a data change script to update the metadata tables (illustrated
earlier), according to the change request process. After the data warehouse is released, the
source system metadata is maintained using data change scripts, governed by a change request
procedure.

ETL process metadata is created and populated during the development of the SSIS pack-
ages. We need to update the ETL process metadata every time we modify the SSIS packages.
Similarly, data quality metadata (DQ rule table, and so on) needs to be updated every time we
modify the SSIS packages. Ideally, we need to use a standardized data change script to update
the metadata tables, rather than using direct SQL statements to update the tables. All updates
to metadata need to be recorded on the audit metadata event log table. So, this needs to be
included in the data change scripts.

Audit metadata and usage metadata are maintained as the data warehouse is used. Audit
metadata is populated by the ETL processes, patch release processes, and security processes.
Usage metadata is populated by the stored procedure or the web portal.

Summary
This chapter defined what metadata in a data warehouse is and what it contains. It listed
seven kinds of metadata: data definition and mapping metadata, data structure metadata,
source system metadata, ETL processes metadata, data quality metadata, audit metadata,
and usage metadata. I discussed them one by one so you can understand what they are used
for, how to create them, and how to populate/maintain them.

Metadata helps us understand the structure and definition/meaning of the data in the
data warehouse. It also helps us understand the structure and definition of the data ware-
house itself. Metadata is also used for auditing and troubleshooting purposes, in other words,
to understand what happened (and what is happening) in the data warehouse, where it hap-
pened, and when it happened.

In the next few chapters, I will discuss how to get the data out of the data warehouse. I
will discuss how to use SQL Server Reporting Services and SQL Server Analysis Services to
create reports and cubes to bring the data from the data warehouse to the users.

CHAPTER 10 ■ METADATA 327

9314ch10final.qxd  11/15/07  10:05 AM  Page 327



9314ch10final.qxd  11/15/07  10:05 AM  Page 328



Building Reports

Earlier in this book, you learned how to build a data warehouse, including defining the
architecture, selecting the methodology, gathering the requirements, designing the data
models, and creating the databases. In the past few chapters, I discussed how to populate
the data warehouse, including extracting from the source system, loading the data stores,
maintaining the data quality, and utilizing the metadata.

Now that we have loaded the data into the warehouse, in this chapter and the next few
chapters, I will discuss how to get the data out to the users and how to use the data in the
warehouse. Two of the most popular ways to present the data to the users are using reports
and using multidimensional databases. So in this chapter, I will discuss reports, and in the
next chapter, I will talk about multidimensional databases.

Two of the most popular uses of data warehouses are for business intelligence (BI)
and customer relationship management (CRM). In Chapters 13 and 14, I will discuss these
two uses, and in Chapter 15, I will discuss other uses such as customer data integration
and unstructured data. Reporting and multidimensional databases are used quite inten-
sively in BI.

In this chapter, you will learn how to use SQL Server 2005 Reporting Services to create
reports to bring the data from the data warehouse to the users. I’ll first explain what data
warehouse reports are, and then I will show how to use Reporting Services to actually build a
report. When building the report, you will learn some key features in reporting such as query-
ing the data, arranging the report layout, using parameters, sorting the data, and filtering the
data. I will also discuss how to create a pivot table report, how to follow the principle of sim-
plicity, and how to report from a multidimensional database. I will close this chapter by
discussing how to deploy and administer the reports.

This chapter will give you enough knowledge to start building the reports for your data
warehouse. There is no doubt that you will need to refer to Books Online along the way for
more detailed instructions, but this chapter will provide you with a good starting point.

Data Warehouse Reports
In the data warehousing context, a report is a program that retrieves data from the data ware-
house and presents it to the users on the screen or on paper. Users also can subscribe to these
reports so that they can receive them automatically by e-mail at certain times (daily or weekly,
for example) or in response to events.

Which data stores do data warehouse reports usually retrieve data from? Data warehouse
reports usually retrieve data from a dimensional data store (DDS), an operational data store
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(ODS), a data quality database, or a metadata database. They can also retrieve data from a
multidimensional database (MDB). (Please refer to Chapter 1 for an explanation of what
a multidimensional database is.)

In the next few pages, I will show you two examples of BI reports. The first one is a simple
store listing. The second one is Amadeus Entertainment’s Weekly Product Sales report, which
contains the total sales amount for each product type for every single week in a particular
quarter in a particular division. Keep in mind that there are data warehouse (DW) reports that
are not for BI. (For a definition of what BI is and what DW is, please refer to Chapter 1.) A data
quality report, a campaign effectiveness report, and an audit report are three examples of DW
reports that are not BI reports.

A simple report retrieves a few columns from a database table and presents them in tabu-
lar format on the screen. Figure 11-1 shows an example of such a report.

Figure 11-1. An example of a simple tabular report

Figure 11-1 shows the store number, store name, store type, region, and division of all
Amadeus Entertainment stores from our case study. The report simply lists the data in a tabu-
lar format. The report was created using SQL Server Reporting Services (SSRS). On the top of
the report there are buttons to navigate to the next page, zoom in/zoom out, set up the page
layout, and print the report. The disk icon exports the report to Excel, a text file, a PDF, or XML.

The report queries the store dimension in the DDS using the SQL query shown in
Listing 11-1.
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Listing 11-1. SQL Query for the Store Details Report

select store_number, store_name,
store_type, region, division
from dim_store
where store_key <> 0

As you can see, the Transact SQL query in Listing 11-1 retrieves data only from the store
dimension table where the store key is not 0 (the store key 0 is the unknown record). You can
replace the <> in the SQL statement with > because store_key is an identity (1,1) column. In
other words, it’s a positive integer, with the exception of 0 for the unknown record, as I dis-
cussed in Chapters 5 and 6.

A more typical data warehouse report retrieves data from fact and dimension tables in a
dimensional data store. Figure 11-2 shows an example of such a report.

Figure 11-2. A typical report presenting data from a dimensional data warehouse

The report in Figure 11-2 shows the weekly product sales of Amadeus Entertainment in a
particular quarter for a particular division. On the top of the report there are three drop-down
lists that enable the users to select the year, quarter, and division. The report was created using
SSRS by querying data from the Product Sales fact table and joining with the date, product,
and store dimensions, as shown in Listing 11-2.
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Listing 11-2. SQL Query for Weekly Product Sales Report

select d.week_number, p.product_type
, sum(f.sales_value) as [Sales Value]
from fact_product_sales f
inner join dim_date d
on f.sales_date_key = d.date_key

inner join dim_product p
on f.product_key = p.product_key

inner join dim_store s
on f.store_key = s.store_key

where d.quarter = @pQuarter
and d.year = @pYear
and (s.division = @pDivision
or @pDivision = ' All')

group by d.week_number, p.product_type

The output columns of this query (week number, product type, and sales value) are then
arranged into a cross-tab table. The columns of the cross-tab table are the week numbers, the
rows are the product types, and the cells are the sales values.

When to Use Reports and When Not to Use Them
Data warehouse reports are used to present the business data to users, but they are also used
for data warehouse administration purposes. Reports such as the one shown in Figure 11-2
are called dimensional reports. Their main purpose is to present DDS data to the users in a
cross-tab format. Other data warehouse reports have different purposes or different ways of
operating:

Data quality reports: These report the statistics of data quality rule violation events. They
primarily query a metadata database. I discussed them in Chapter 9.

Audit reports: These reports read the event log table in a metadata database to get the
results and status of data warehouse processes and activities, such as ETL processes, mart
creation, security logs, system enhancements, data purging, database maintenance, and
so on.

Usage reports: These reports read the usage log table to retrieve which reports, cubes, and
mining models were used/ran, when, and by whom.

ODS reports: In the ODS + DDS architecture, the ODS acts as an integration point from
multiple source systems, as well as acts as the data store for an operation application such
as a customer service center application. ODS reports read the ODS to check that the data
from various source systems is integrated correctly, as well as check that the dimension
hierarchies are correct, including the customer and product hierarchies.
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DDS single dimension reports: Some DDS reports do not join a fact table to several dimen-
sions but report only from a single dimension for a specific business purpose, such as to
check the store/region/division structure.

DDS drill-across dimensional reports: Some DDS reports drill across from a fact table to
another fact table, such as combining the Subscription Sales fact table, the Communica-
tion Subscriptions fact table, and the Campaign Results fact table to understand the
effectiveness of particular campaigns and their impact on revenue streams.

The previous are examples of where and when data warehouse reports are used. But
not all cases are suitable for reports. Sometimes it is not appropriate to use data warehouse
reports:

• Some operational reporting such as “when was order X dispatched?” and “what is the
address of customer X?” are best performed using the reports in the source system,
such as OLTP, rather than using data warehouse reports. Source system reports contain
more up-to-date data than data warehousing reports. The data in the source system
reports is up-to-the-minute, whereas the data in the data warehouse reports could be
one day old or one week old depending on how frequently the ETL updates the data
warehouse.

• In some cases, it is more suitable to use OLAP tools to explore the data in the ware-
house (particularly the DDS) than using reports. Reports are more rigid. For example,
it is difficult for the users to change the dimensions and the attributes they want to
view. We can use drop-down lists to make them a little bit more flexible, but that’s
about it. OLAP tools such as Analysis Services enable the users to choose the dimen-
sions and attributes they require. Well, we also have some degree of flexibility in SSRS.
For example, we have other methods of entering parameters and the ability to toggle
views including charts, and so on, but it’s less flexible than OLAP tools.

On the other hand, you need to be aware of the following in regard to the previous two
cases:

• Regarding the first point, sometimes we need to report not just from one source system
but from several source systems. In this case, it may be more appropriate to report from
the data warehouse because it integrates several operational source systems.

• Regarding the second point, in certain cases reports are preferred over OLAP tools:

• To use OLAP tools, the users need to understand how the data is structured and
organized, while to use reports we don’t, so it is easier for the users.

• If we use OLAP tools, we need to populate and process the OLAP cubes every day
to refresh the data in the cubes, but when using reports, we don’t need to populate
and process. So, reports are simpler to maintain.

• OLAP tools are suitable to report from the DDS because the DDS is in dimensional
format. It is easy and natural to create OLAP cubes from the DDS. Creating OLAP
cubes from the ODS is not that easy, because the ODS is in normalized format, not
in dimensional format. So if you need to report from the ODS, it is easier to use
reporting tools than to use OLAP tools.
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Now that you understand what data warehouse reports are and when to use them, let’s
create a report. I’ve found that “learning by doing” is the fastest way to learn data warehousing
reports, so like Chapter 7 when you learned ETL and SSIS, you’ll complete a hands-on exercise
in this chapter. We’ll create the report shown in Figure 11-2. We’ll build it gradually. In the next
section, we’ll build the query. In the section after that, we will define the report layout, and
then we will add the parameters, and so on. At the end of each section, I will add some other
points that are useful to know but are not covered by the exercise. By the end of the whole
exercise, you should have practical knowledge to build a data warehouse report that you can
then expand upon.

If you are new to data warehousing and also new to SSRS, following the exercise in the
next few sections is probably the fastest way to get you into the heart of the matter. This exer-
cise will take a only few hours to do, yet you will get first-hand experience in dimensional
reporting, which is used quite a lot for BI, as well as basic and advanced topics in Reporting
Services such as data sets, queries, matrixes, layout, parameters, grouping, subtotals, filtering,
and sorting.

In choosing and explaining the exercise, I will focus on the core functionalities that are
relevant for data warehousing reports. Out of hundreds of features that SSRS has, I will prob-
ably cover only 30 percent of them. But those 30 percent are the ones you need to build the
simple report and dimensional report illustrated in the previous section. After finishing this
chapter, you will have enough knowledge to build simple data warehouse reports and com-
plex dimensional reports, using SSRS, for your own data warehouse project. If you want to
master the remaining 70 percent functionality, you need to complete your knowledge by
reading a book that specifically explains every aspect of SSRS from cover to cover. The most
complete source of documentation for SSRS is, of course, Books Online.

OK, enough about the approach. Let’s start building the dimensional report shown in
Figure 11-2 by using SSRS. The first step is to use the Report Wizard to create the report
including defining the SQL query.

Report Wizard
Follow these steps to start creating the report:

1. Let’s begin by restoring the DDS database on your development SQL Server. The
backup file of the DDS database that you need to restore is dds.bak, located in the
/data folder on the book’s page on the Apress web site at http://www.apress.com/.
Ensure that you have a login called ETL, and create a user with db_owner permission
on the DDS database. (Please refer to Chapter 7 for information on how to restore a
database and create the user.)

2. After restoring the DDS database, open Business Intelligence Development Studio,
and start a new project (File ➤ New ➤ Project). Choose the Business Intelligence Pro-
jects project type, choose the Report Server Project Wizard template, enter Amadeus
Reports as the project name, set the location to a working directory on your com-
puter, keep the solution name as Amadeus Reports, and ensure that “Create directory
for solution” is ticked. Verify that it looks similar to Figure 11-3, and click OK.
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Figure 11-3. Creating a new report server project

3. Click Next on the welcome page. On the Select the Data Source page, set the name to
DDS, keep the type as Microsoft SQL Server, and click Edit. The Connection Properties
dialog box will open. Set the server name as your development SQL server. Choose Use
Windows Authentication, or use the username ETL and the password (we created this
login in Chapter 7). Under “Select or enter a database name,” choose DDS from the
drop-down list. The dialog box should look like Figure 11-4.

4. Click Test Connection. Microsoft Visual Studio should respond with “Test connection
succeeded.” Click OK to close the response window. Click OK to close the Connection
Properties dialog box. If you want to reuse this data source for other reports, check the
“Make this a shared data source” box. The Select the Data Source page should look like
Figure 11-5.
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Figure 11-4. Setting the database connection in the Report Wizard

Figure 11-5. Select the Data Source page in the Report Wizard
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5. Click Next on the Select the Data Source page. You should now see the Design the
Query page. Click the Query Builder button. Click the Generic Query Designer button
(the leftmost button). The Query Builder page pops up. Maximize the Query Builder
dialog box so you can see it better. On the toolbar on the top of the page, click Add
Table (the rightmost icon with a yellow + on it). Using the Control button, select these
three tables: dim_date, dim_product, and fact_product_sales. Then click Add to add
these tables to Query Builder. Click Close. Query Builder now looks like Figure 11-6.
Please notice that Query Builder automatically adds the relationship between the three
tables because we have defined the relationship on the database using foreign keys.

Figure 11-6. Building the query

In Query Builder, the top pane is called the diagram pane. The middle pane is called
the grid pane. The bottom pane is called the SQL pane. In the diagram pane, we define
which tables we want to query from, the relationship between tables, and which
columns we want to use.

We use the grid pane to define which column we want to display on the report, the fil-
ter criteria (the where clause), the summary values (the group by clause), and the sort
order (the order by clause). The SQL pane displays the SQL statement of the query,
which we can edit if we need to do so.
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6. Scroll down on the date dimension (the dim_date table in the diagram pane), and find
the week_number column. Select this column by ticking its check box. Selecting a col-
umn in the diagram pane brings the column to the grid pane so we can use it later
either for displaying the column on the report or for applying a filter, grouping, or
sorting order.

Select the product_type column from the product dimension and the sales_value
column from the Product Sales fact table.

7. Click the Use Group By icon on the grid pane (the second one from the right). In the
grid pane, look at the Group By column. Keep week_number and product_type as Group
By, but change sales_value to Sum. In the Alias column, set the alias of sales_value to
[Sales Value]. The Alias column is used to label the column that we select so that it can
have a nice name. The Alias column is particularly useful for aggregate columns (such
as SUM) because, by default, aggregate columns have no column name. Query Builder
now looks like Figure 11-7.

Figure 11-7. Selecting the columns and creating a grouping

8. Click OK to close Query Builder, and click Next on the Design the Query page. On the
Select the Report Type page, choose Matrix, and click Next. On the Design the Table
page, put week_number as Columns, product_type as Rows, and sales_value as Details,
as shown in Figure 11-8.
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Figure 11-8. Configuring the fields for the matrix

9. Click Next. Choose the report style, and click Next. Type Amadeus Entertainment
Product Sales as the report name, and click Finish. The Business Intelligence Develop-
ment Studio Report Wizard will open a new project, create the report, and display the
layout of the report on the screen, as shown in Figure 11-9.

Figure 11-9. The output of the Report Wizard

10. Notice that there are three tabs: Data, Layout, and Preview. We are now on the Layout
tab. The Layout tab displays the design of the report. The Data tab displays the SQL
query. The Preview tab shows how the report looks when it’s running. The data on the
Preview tab is retrieved from the database based on the SQL query on the Data tab.
Click the Data tab to see the design of the SQL query. It looks exactly like Query Builder
with its three panes: the diagram pane, grid pane, and SQL pane. Click the Preview tab
to see how the report looks, which is shown in Figure 11-10.
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Figure 11-10. Preview of the report after finishing the Report Wizard

The query we just built is quite simple, but it reflects the most popular type of query used
in dimensional reporting. We joined a fact table with two dimension tables. We group on two
columns and sum a column from the fact table. In a real project when querying a dimensional
data store, it is likely that you will be dealing with more dimensions and more numbers of
facts or measures. But the principles are the same. Now let’s continue with perfecting the
report layout. By that I mean enhancing the report appearance such as fixing the report title,
formatting the numbers, adding column headings, and adjusting the column size. We will
then add some parameters to the report.

Report Layout
In Figure 11-10, the word Sales in the title falls on the second row. The figures on the cells con-
tain four decimal points, but the third and fourth ones are all zero. They need to be changed to
two decimal points. The first column has no title, and the product types are wrapped onto two
lines. So, let’s tidy up the layout.

CHAPTER 11 ■ BUILDING REPORTS340

9314ch11final.qxd  11/15/07  10:03 AM  Page 340



1. First, let’s fix the word Sales in the report title. Click the Layout tab. Click the title.
Notice that now there are eight little white boxes around the title. Click the right-center
box, and drag it to the right until the word Sales appears on the title line. Click the Pre-
view tab to verify that the title is now on one line.

2. Now let’s change the figures on the report cells to two decimal points. Click the Layout
tab. Right-click the report cell, the one that contains =Sum(Fields!Sa…, and select Prop-
erties. The Textbox Properties dialog box appears. Click the Format tab. Click the …
button next to the “Format code” text box. Underneath Standard, select Number, and
click 1,234.00, as illustrated in Figure 11-11. Click OK to close the Choose Format dia-
log box. Then click OK again to close the Textbox Properties dialog box.

Figure 11-11. Setting the format of the report cells

3. Click the Preview tab to check that the figures on the report cells have been formatted
correctly to two decimal points.

4. Now let’s fix the width of the first column. Click the Layout tab. Click the first column.
Notice on the ruler that the width of the first column is 2.5 centimeters. Click the verti-
cal line between the first and second columns, and drag it to the right to make the
column width 4 centimeters. Click the Preview tab to verify that the product types are
not wrapped onto two lines.

5. Now let’s give the first column a heading. Click the Layout tab. Double-click the first
cell of the first column. Type Product by Week, and click the Preview tab to verify that
the first column now has a heading.

6. Last, let’s resize the columns containing the weekly sales figure. Click the Layout col-
umn. Click the second column. Click the line on the right of the second column, and
drag the line to the left to make the column width 1.5 centimeters; for example, on the
ruler it should be from 4.0 to 5.5 centimeters. Click Preview to verify.
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Now that we have completed fixing the layout, let’s run the report by pressing F5. Business
Intelligence Development Studio should say, “The project cannot be debugged because no
starting report is specified.” This is because we have not specified the starting point of the
project, so we need to specify which report to execute when we run the project. So, click the
Project menu, and select Amadeus Reports Properties. On the StartItem, select Amadeus
Entertainment Product Sales. Click OK. Press F5 again to run the report. Figure 11-12 shows
how the report looks.

Figure 11-12. How the report looks after tidying up the layout

We can tweak the layout in many other ways, including adding columns, adding a page
header and footer, changing the font, setting the alignment, and setting the spacing as well as
specifying all the text box properties shown in Figure 11-11. You can also create a report in tab-
ular form instead of matrix form. I encourage you to explore those Reporting Services layout
features and use them in your reports.

Report Parameters
Report parameters are an important feature in a data warehouse dimensional report. In
a dimensional model, the core data is stored in a fact table, which has links to dimension
tables so that we can filter and group by the dimensional attributes. Refer to the SQL query
in Listing 11-2. In this query, we can choose any fact columns from the Product Sales fact
table—grouped by any columns from the date, product, customer, or store dimension
table, as well as filtered by any conditions in any dimension columns. That is a very
powerful query!
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In the report we just created in the previous two sections, we have not put any conditions
on the query. There is no where clause in the query (refer to Figure 11-6). We have select, from,
and group by clauses, but we don’t have a where clause. In this section, you will learn how to
add some conditions to the query, such as the where clause, using parameters.

We’ll add three parameters to the report (Year, Quarter, and Division) as three drop-down
lists. The values of these parameters will then be passed to the SQL query. These parameters
will be passed to the where clause of the SQL query, as shown in Listing 11-3.

Listing 11-3. The where Clause of Weekly Product Sales Query

where d.quarter = @pQuarter
and d.year = @pYear
and (s.division = @pDivision
or @pDivision = ' All')

A parameter name always begins with @. I usually name the parameter the same as the
column but add a p prefix. For example, for the quarter column, I name the parameter
@pQuarter. This is so that I can find out quickly which parameter is for which column. But you
can name your parameters differently; there are no restrictions for this. OK, let’s start.

1. Let’s return to our report in Business Intelligence Development Studio. If the report is
still running, close it. Click the Layout tab. Click the Report menu, and choose Report
Parameters. Click Add. Set the name to pYear, the data type to String, and the prompt
to Year. Leave everything else as is, and click OK.

The reason why I add the p prefix in the parameter name is because in the Report
Parameters dialog box (see the later Figure 11-14), we don’t have the @ sign on the
parameter names. So if we name the table column Year, the parameter Year, and the
data set Year, it’s difficult for us to know which one is which. If we name the column
Year, the parameter pYear, and the data set dsYear, it is easier to differentiate them. I’ll
explain about data sets in the next paragraph. This is not really a Hungarian naming
convention because the prefix does not indicate the data type. In Hungarian naming
conventions (such as sSupplierName, nQuantity, and dOrderDate), the prefix indicates
the data type (s = string, n = numeric, and d = date).

2. When the user clicks the Year drop-down list, we want the list to display all the years
that exist in the orders in the Product Sales fact table. For that, we need to create a data
source for the drop-down list. So, click the Data tab. Click the DDS data set drop-down
list, and choose <New Dataset…>. Set the name to dsYear, the data source to DDS, and
the command type to Text, as shown in Figure 11-13.
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Figure 11-13. Setting up the data source for the Year parameter

3. Set the query string as shown in Listing 11-4, and click OK to close the Dataset dialog
box.

Listing 11-4. SQL Query for dsYear Data Set

select distinct d.year
from fact_product_sales f
inner join dim_date d
on f.sales_date_key = d.date_key

I need to mention here that populating the Year drop-down list by selecting from a fact
table like this is quite an expensive query to run, especially on large databases. If the
performance is not satisfactory, consider creating a little parameter table containing
the distinct year values of the sales date column on the fact table. You can then use this
little parameter table to populate the Year drop-down list. The year values on this little
table need to be maintained by the ETL process to keep them up-to-date.

4. Click the exclamation mark (!) to run the query. It displays 2006 and 2007 on the out-
put grid.

5. Click the Report menu, and choose Report Parameters. Click the pYear parameter to
select it. Under Available Values, click From Query. Set the data set to dsYear, the Value
field to Year, and the Label field to Year, as shown in Figure 11-14.
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Figure 11-14. Setting up the Year parameter

6. We have just created a parameter. So, let’s see how the report looks now. Click the Pre-
view tab. There is a drop-down list called Year there, as shown in Figure 11-15. Click
this drop-down list to see its list of values. It contains 2006 and 2007 as per our query.

Figure 11-15. Year parameter as it looks on the report

7. Now let’s link this parameter to the SQL query so that when the user selects 2007
and clicks View Report, the report will contain only 2007 data. For that, click the
Data tab, and make sure that the DDS data set is selected; if not, select the DDS data
set. Click the … button next to the DDS data set drop-down list. Click the Parame-
ters tab. In the Name column, type @pYear, and under the Value column, select
=Parameters!pYear.Value from the drop-down list. Click OK to close the Dataset
dialog box.
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8. For the dim_date table, scroll down to find the year column, and tick the check box.
Notice that the year column now appears on the grid pane (the middle pane). On the
grid pane, clear the Output check box for year. Change the Group By column from
Group By to Where. In the Filter column, type =@pYear, and press Enter. The data set
now looks like Figure 11-16.

Figure 11-16. Adding the Year parameter to the where clause of the data set query

9. Notice that there is a where clause in the query now. Also notice there is a funnel icon
on the dim_date’s year column.

10. Now that we have added the Year parameter to the data set query (on the where clause),
let’s test the report. Click Preview. In the Year drop-down list, select 2006, and click
View Report. Memorize the value of the data in a few cells. Now select 2007, and click
View Report again. Notice that the values on those cells are different.

11. Now let’s add the second parameter: Quarter. This second parameter (Quarter) is
dependent on the first parameter (Year). For 2006, we have four quarters of data in the
Product Sales fact table. But for 2007, we have only Q1 and Q2 data. So, when we
choose 2006 on the Year parameter, the Quarter parameter should show four quarters.
But when we choose 2007 on the Year parameter, the Quarter parameter should show
only Q1 and Q2. The same technique can be implemented on the Division and Region
parameters on the store dimension hierarchy.
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12. Let’s now create the Quarter parameter. Click the Report menu. You’ll find that Report
Parameters is grayed out. This is because we are currently on the Preview tab. Report
Parameters is not available on the Preview tab; it is available only on the Data and
Layout tabs. Click the Layout tab. Now click the Report menu again. Now Report Para-
meters is active. Click Report Parameters. Click Add. Set the name to pQuarter, the type
to String, and the prompt to Quarter, and then click OK. Click the Data tab, create a
new data set, and then set the name to dsQuarter and the query string to Listing 11-5.

Listing 11-5. SQL Query for dsQuarter Data Set

select distinct d.quarter
from fact_product_sales f
inner join dim_date d
on f.sales_date_key = d.date_key
where d.year = @pYear

I shall repeat my previous warning that this is quite an expensive query to run, espe-
cially on large fact tables. To enhance the performance, we can enhance the little
parameter table I mentioned previously. We can enhance the little table so that it con-
tains a distinct year-quarter combination from the sales_date column. We can then
source the dsQuarter data set from this little table.

13. Click OK to close the Dataset dialog box. Click the exclamation mark (!) to run the
query. In the Define Query Parameters dialog box, enter 2007 in the Parameter Value
column, as shown in Figure 11-17, and click OK.

Figure 11-17. Creating the dsQuarter data set

14. You should see Q1 and Q2 in the result set window. Now run the data set query again,
but this time enter 2006 as the parameter value for pYear. You should see Q1, Q2, Q3,
and Q4 in the result set window.
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15. Now that the data set for Quarter is created, let’s use it on the parameter. Click the
Report menu, and select Report Parameters. Click pQuarter. Under Available Values,
click From Query. Set the data set to dsQuarter, and select quarter for both Value Field
and Label Field. Click OK to close the Report Parameters dialog box.

Please notice that you don’t have to click the Parameters tab of the data set to define
the pQuarter parameter. This is an optional step. Reporting Services will automatically
create it for you if you don’t define it.

16. Click the Preview tab to see the report. Notice that the Quarter parameter is there but
is grayed out. This is because it is dependent on the value of the Year parameter. Select
2006 for Year. Notice that now the Quarter parameter is active, and it contains Q1, Q2,
Q3, and Q4. Select 2007 for Year, and notice that the Quarter parameter contains Q1
and Q2 only, as shown in Figure 11-18.

Figure 11-18. A parameter that is dependent on the value of another parameter

17. Select Q1, and click View Report. Notice that it still contains data from week 1 until
week 17, which means the Quarter parameter is not working. In Q1, we have week 1 to
week 13 only. Change the quarter to Q2, and click View Report. Notice that the data on
the report is the same, and it also contains week 1 to week 17. This is because we have
not put the Quarter parameter on the where clause of the main data set.

18. Let’s add the Quarter parameter to the main data set query. Click the Data tab. Ensure
that the DDS data set is selected, and if not, select it. Scroll down on the dim_date table
to find the quarter column. Tick the check box on this column to select it. Notice that
the quarter column has now been added to the grid pane. Clear the Output check box
for the quarter column, and change the Group By column from Group By to Where. In
the Filter column, type =@pQuarter, and press Enter.

19. Now that we have added Quarter parameter to the main data set, if we select 2007 Q1
on the parameters, the report should display only 2007 Q1 data. Let’s try it. Click the
Preview tab. Select 2007 for Year, select Q1 for Quarter, and click View Report. Now it
contains only weeks 1 to 13. Press F5 to run the report. Figure 11-19 shows the result.
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Figure 11-19. Product Sales report with the Year and Quarter parameters

20. Now that we have added two parameters to the report, let’s add the third one. This time
it is not from the date dimension but from the store dimension. This third parameter is
Division. This time it has one additional value in the drop-down list, which is All. So,
the users will be able to select a division, but they can also select all divisions.

21. Because we have already done it twice, this time I’ll skip the details. Add a parameter
called pDivision with a label called Division. Define a data set called dsDivision, with
the query string as shown in Listing 11-6.

Listing 11-6. SQL Query for dsDivision Data Set

select distinct s.division
from fact_product_sales f
inner join dim_store s
on f.store_key = s.store_key
union
select 'All' as division

The query retrieves the distinct values on the division column from the Product Sales
fact table. It adds one more value, which is ‘All,’ using the union operation.
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■Tip If you want to ensure that ‘All’ is on the top of the list, you can add a space in front of it.

Perhaps you’re wondering why we want to restrict the values on the drop-down list
only to the items that have records in the fact table. In other words, in the previous
example, why do we want to restrict the Year, the Quarter, and the Division parame-
ters to only the ones that have sales? Doesn’t it make the query more expensive? The
answer is that there is no point displaying divisions, years, or quarters that have no
sales. About a year ago I had a UAT in a SQL Server data warehousing project where
we used SSRS for reporting. The users were not happy having drop-down lists con-
taining many values when only a few of them actually had sales. For example, out of
50 branches, only 5 of them had sales for that particular product type on that day.
Why couldn’t the report be intelligent enough to filter them for us, they asked? If in
your project you have only three divisions and 99 percent of the time all three always
have sales, then of course you want to populate the Division drop-down list from the
division table and display all three divisions all the time.

22. Click the Report menu, and select Report Parameters again. Click the pDivision, and
get the values from dsDivision data set. Set both Value Field and Label Field to division.

23. On the DDS data set, click the Add Table icon (the rightmost icon), and add the
dim_store table. Click Close. Scroll down in the dim_store table until you find the Divi-
sion column, and select it. On the grid pane, clear the Output check box, and change
the Group By column to Where. In the Filter column, enter =@pDivision.

24. Click the Preview tab, and you should see three parameters now: Year, Quarter, and
Division. Select 2007 for Year, Q1 for Quarter, and Online Business for Division, and
then click View Report. Notice that the report is now sparser than before; that is,
there are some blank cells. This is because it displays only the Online Business divi-
sion. Change the Division parameter to All, and click View Report. The report is
blank. Why is the report blank? Well, there is no division called All. So, the query
returns no results.

25. To fix this, click the Data tab. Click the Generic Query Designer icon (the one with a
yellow pencil). Update the where clause from WHERE (dim_date.year = @pYear) AND
(dim_date.quarter = @pQuarter) AND (dim_store.division = @pDivision) to what’s
shown in Listing 11-7.

Listing 11-7. Updating Main Data Set’s where Clause to Include All

WHERE dim_date.year = @pYear
AND dim_date.quarter = @pQuarter
AND (dim_store.division = @pDivision or @pDivision = 'All')

So now if you select All on the Division parameter, the @pDivision = 'All' will evalu-
ate to true so the expression in parentheses will also evaluate to true.

CHAPTER 11 ■ BUILDING REPORTS350

9314ch11final.qxd  11/15/07  10:03 AM  Page 350



26. Let’s test it now. Click the Preview tab. Select 2007 for Year, Q1 for Quarter, and All for
Division, and click View Report. It displays all data for 2007 Q1. Change the division to
Europe, Middle East & Africa (EMEA), and click View Report. The report displays only
EMEA sales data, as shown in Figure 11-20.

Figure 11-20. Weekly Product Sales report after adding the Division parameter

If you want, you can also set the value of the parameters as a list of static/constant values.
To do this, in the Report Parameters window, choose Non-Queried. On the report that we have
just built, when the report starts, the parameters are blank. You can define a value that will
automatically be selected when the report starts. For example, you may want the division to
be set to Online Business when the report starts. To set this in the Report Parameters window,
change the default value from null to either From Query or Non-Queried. You can also set the
starting value to a function. For example, you may want the year to be set to this year when
the report starts. To do this, enter =year(now) in the Non-Queried box, or click the fx button
to get a list of functions and their descriptions.

Grouping, Sorting, and Filtering
So far, you have learned how to use the Report Wizard to produce a matrix report, how to
specify SQL queries, how to touch up the layout, and how to use parameters to dynamically
change the query. Now you’ll learn about grouping, sorting, and filtering. Grouping means
classifying multiple rows (or columns) into one collection. You can group data by fields or
expression. Grouping is usually used to provide logical selection of data within a table or
matrix or to calculate subtotals, counts, or any other expression in the group header or footer.
Sorting is used to order a particular column as either ascending or descending.

Filtering means limiting the rows according to a certain criteria. Using parameters, you
can filter the data at run time. For example, when the users select Online Business for the Divi-
sion parameter, Reporting Services adds where division = 'Online Business' to the SQL
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query. This will then filter the data that is displayed on the report. There is another way to filter
the data that we display on the report—by adding a where clause to the main data set query at
design time. This type of filtering cannot be changed by the users at run time. The purpose of
doing this is to limit the rows returned by the query according to certain criteria. For example,
you may want to have a report that specifically deals with business customers. In this case, we
filter the query with where customer_type = 'Business' or something similar. In this section,
we will be doing the type of filtering that uses the where clause at design time.

First, we’ll include the product category column on the SQL query, and then we’ll add it as
a group to the Weekly Product Sales report that we built. Then, we will change the order of the
column, add a sorting order, and, finally, apply a filter.

1. To start, click the Data tab. Add dim_product.product_category on both the select
clause and group by clause, and reformat the query a little bit, as shown in Listing 11-8.

Listing 11-8. Adding the Product Category on the SQL Query

select dim_date.week_number, dim_product.product_type,
sum(fact_product_sales.sales_value) AS [Sales Value],
dim_product.product_category

from dim_date
inner join fact_product_sales
on dim_date.date_key = fact_product_sales.sales_date_key

inner join dim_product
on fact_product_sales.product_key = dim_product.product_key

inner join dim_store
on fact_product_sales.store_key = dim_store.store_key

where dim_date.year = @pYear
and dim_date.quarter = @pQuarter
and (dim_store.division = @pDivision or @pDivision = 'All')

group by dim_product.product_type, dim_date.week_number,
dim_product.product_category

In SSRS, we have two tools to build queries. One is called Query Builder, and the other
is Generic Query Designer. Query Builder is the graphical tool that we used with the
Report Wizard. Generic Query Designer is the plain-text editor that we used to add
@pDivision or @pDivision = 'All' to the report query.

A lot of SQL developers find that SQL query formatting is sometimes annoying if it is
not up to their standards or their style. For example, where to break to a new line, the
abbreviation of table names, the number of spaces for indentation, the choice of
uppercase or lowercase, whether to put the comma at the beginning or at the end of
the line, and where to put brackets…all these are little things that sometimes make us
uncomfortable if the formatting is different from our own style.

Other than the ability to control the details such as the join syntax, style is another rea-
son (but not the primary one) why some SQL developers choose to not use Query
Builder and instead use the plain-text Generic Query Designer.
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2. We want to add the product category to the report to understand how the sales figure
splits between music, film, and audio books. For that, let’s now add the product cate-
gory as a new group to the report. Click the Layout tab. Click the heading of column 1
(Product by Week). Right-click the cell above Product by Week, and choose Add Row
Group. The Grouping and Sorting Properties dialog box will pop up. Set the name to
ProductCategory, and set Expression to '=Fields!product_category.Value, as shown
in Figure 11-21. Next, click OK.

Figure 11-21. Setting the properties of the product category group

3. Click the Preview tab, fill in the parameters (such as 2007, Q1, and All Divisions), and
click View Report. The product category is positioned as the second column in the
report, as shown in Figure 11-22.

4. There are only three product categories (music, films, and audio books), but there are
many product types. The product category is on a higher level than the product type.
One product category contains many product types. So in Figure 11-22, the product
category should be located to the left of the product type. Let’s now swap the product
category column and the product type column. Click the Layout tab. Click the product
category cell. Click the line surrounding the product category cell, and drag it to the
left of the product type column, as shown in Figure 11-23.

5. Click the Preview tab, and view the report again. It now looks like Figure 11-24.
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Figure 11-22. Product Sales report with product category column added

Figure 11-23. Swapping product category and product types

Figure 11-24. Product Sales report after swapping the product category and product type columns

I’ll now discuss the sorting order for groups. Let’s put the sorting order on the product
category column so that Music is at the top, Films is second, and Audio Books is at the bot-
tom. Click the Layout tab. Right-click the product category cell, and choose Edit Group. The
Grouping and Sorting Properties dialog box appears. Click the Sorting tab, set Expression to
=Fields!product_category.Value, and set Direction to Descending. Click OK. Click the Pre-
view tab to view the report.

CHAPTER 11 ■ BUILDING REPORTS354

9314ch11final.qxd  11/15/07  10:03 AM  Page 354



The sorting order on the product category column is now what we wanted; that is, Music
is at the top, Films is in the middle, and Audio Book is at the bottom. But at the very top,
before Music, we have Unknown. This is because we have an unknown record on both the
product category dimension and the product type dimension in the DDS. So, let’s filter out the
unknown record.

1. Click the Layout tab. Right-click the Product Category cell, and choose Edit Group.

2. Click the Filter tab, set Expression to =Fields!product_category.Value, Operator to !=,
and Value to Unknown. Click OK.

3. Click the Preview tab to view the report again. The unknown record is no longer there,
and the report now looks like Figure 11-25.

Figure 11-25. Sorting on the product category and filtering the unknown record

Grouping is usually used to provide a logical grouping of data within a table or matrix or
for calculating subtotals, counts, or any other expression on the group header or footer. As the
last task in this section, let’s now add a subtotal in the product category column and a grand
total.

1. Click the Layout tab. To add the subtotal to the product category column, right-click
the Product Type cell, and choose Subtotal. You will see a new row with Total in the sec-
ond column with a little green triangle in the corner of the cell.

2. To add the grand total, right-click the product category cell, and choose Subtotal.

3. Click the Preview tab to view the report. Scroll down to see the subtotal for the Music
category and the Films category.

4. On the toolbar, click the Next Page icon (the blue triangle) to go to page 2. Verify that
you can see the subtotal for the Audio Books category as well as the grand total on the
last row, as shown in Figure 11-26.
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Figure 11-26. Product Sales report with subtotal and grand total

Simplicity
Sometimes users ask for very complex reports. A request to be able to group four facts from
the fact table by twelve different attributes from four different dimensions is an example of
such complex reports. A request to have five different subreports within a single report is
another example of a complex report.

Sometimes users ask for many similar reports querying the same information but pre-
senting it in many different ways. As a result, we have many reports doing similar or the same
things.

When you have many complex reports or many similar reports doing the same things, it
pays to investigate whether the user requests would be better satisfied using OLAP tools. From
the very start of the project, we need to keep in mind the advantages as well as the limitations
of reports. Reports are, almost by definition, simple and rigid. In my opinion, products such as
Microsoft SQL Server Reporting Services and Business Objects Crystal Report XI have been
very successful in taking reporting to its vertical limit. But a report is still a report; it runs
according to the design, and there is very little flexibility at run time.

OLAP tools such as Microsoft SQL Server Analysis Services 2005, ProClarity, and Cognos
Powerplay, on the other hand, are designed to be extremely flexible at run time. Users can
view the totals of any facts against any dimension attributes. They can swap one attribute with
another attribute just by dragging and dropping. They can drill down along the dimension
hierarchy just by clicking the dimension. OLAP tools are designed to explore the data. Reports
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are not. So if you get very complex reporting requests, it’s worth finding out whether the users
need to explore the data. If so, OLAP tools would satisfy their needs better than reports.

Another means of exploring the data is using SQL queries. I have found that if the busi-
ness user understands a little bit about SELECT statements, it takes only a day or two to explain
the structure of the dimensional data store and how to use a join to query the structure. If they
don’t understand how to use SELECT statements, many tools help build SQL queries through a
GUI. Reporting Services has Query Builder, which does this. Excel has Query Wizard, which is
a query design tool with a GUI interface. A lot of other BI applications also have reporting
tools with GUI interfaces for designing queries.

The business users understand the data and the meaning of each fact and attribute, and
that’s why it’s quicker for them to query the fact and dimension tables. This is especially true if
you consistently use a star schema, because once you spend a day explaining how to query
one data mart, the other marts have the same structure. Querying can be done from Manage-
ment Studio or from Excel via an ODBC or OLEDB connection (or SQL Server native if you
install the driver on the client’s PC).

Different users have different needs. Some users need to use a static report only to view
the facts related to their area of responsibility. Some users need to explore and analyze the
data to find out the root cause of a particular problem such as a period of low sales. Some
users need to run “what if?” scenarios. Some users need to investigate whether the data has
certain consistent patterns.

SSRS is a sophisticated reporting tool with a lot of capabilities and features. But we need
to keep in mind that there are better ways and tools to satisfy exploration needs. Reports are
designed for something simple and fixed. So, we need to keep reporting simple. That’s the
principle of simplicity in reporting.

Spreadsheets
It is also possible to present or report the data in the data warehouse to the users using
spreadsheets such as Excel. Many data warehouse business users are familiar with spread-
sheets, and spreadsheets are the perfect compromise between SSRS reports, which are static,
and OLAP tools, which are very flexible. Using spreadsheets, users can query the data in the
data warehouse and present it either in a simple tabular format or in a pivot table.

I’ll show some examples of how it looks if we use spreadsheets to present the data.
In these examples, I will use Excel as the spreadsheet. Figure 11-27 shows the Amadeus
Entertainment Store Details report, which is in tabular format. It is essentially the same as
Figure 11-1, but this one was created in Excel. I’ll explain how to create and populate this
Excel spreadsheet after the next paragraph.

Figure 11-28 shows the Amadeus Entertainment Weekly Product Sales report that we cre-
ated earlier in this chapter. It also has the year, quarter, and division parameters like the ones
shown earlier in Figure 11-2. Of course, we can also enhance the layout, such as adding a
report title, tidying up the column headers, and fixing the column width.
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Figure 11-27. The Store Details report created using Excel

Figure 11-28. The Weekly Product Sales report created using Excel
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Creating these reports is easy. Let’s start.

1. Open Excel, and click Data ➤ Import External Data ➤ New Database Query. Define a
new data source, and connect to the data source as follows: select <New Data Source>
on the Databases tab, as shown in Figure 11-29, and click OK.

Figure 11-29. Creating a new data source

2. In the Create New Data Source dialog box (see Figure 11-30), name the data source
DDS. Select SQL Server as the driver, and click Connect.

Figure 11-30. Filling in the details in the Create New Data Source dialog box

3. The SQL Server Login dialog box will open, as shown in Figure 11-31. Select your SQL
Server, uncheck Use Trusted Connection, and supply the login details (we discussed
this in Chapter 7). Click the Options button, and select the DDS database. Click OK to
go back to the Create New Data Source dialog box in Figure 11-30. Optionally, you can
select dim_store as the default table. Click OK.
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Figure 11-31. Supplying SQL Server login details

4. You are now in Excel’s Query Wizard. Choose the columns you need from the tables
(in this case, it is from the dim_store table), as shown in Figure 11-32.

Figure 11-32. Choosing the columns in Excel’s Query Wizard

5. Click Next. On the Filter Data page, specify store_number not equal 0 as the criteria,
and then click Next. On the Sort Order page, just click Next. On the final page, click
Finish.

To create the Weekly Product Sales pivot table report, do the following steps:
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1. Click the Data menu, and select Pivot Table. Choose External Data Source, and click
Next.

2. Click Get Data, and select DDS as the data source. Choose the columns (week_number,
quarter, and year from dim_date; product_code from dim_product; division from
dim_store; and sales_value from fact_product_sales). Excel’s Query Wizard will say
that you can’t continue because of the join criteria. This is because it cannot find the
date_key column in the fact_product_sales table to join it with the dim_date table. Just
click Yes in the dialog box and join date_key on dim_date to sales_date_key on
fact_product_sales manually, as shown in Figure 11-33.

Figure 11-33. Joining the tables

3. Click the Return Data icon, and click Next in the dialog box.

4. Click Layout, and specify the layout, including the week number in the column, the
product code in the row, the sales value in the cells and year, and the quarter and
division on the page, as shown in Figure 11-34.

5. Click OK, and then click Finish. You will get the pivot table shown in Figure 11-28.
You can then tidy up the layout by adding a report title, setting the column width,
and so on.
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Figure 11-34. Setting up the layout of the pivot table

The problem with Excel reporting is the distribution. We practically need to distribute
the Excel file to all users and set up the data source on every PC that needs to run the report
(unless you put it on a server with the web-based Excel viewer). It can be made easier by uti-
lizing a file data source name (DSN), which is located on a common network drive, but the
deployment overhead is still there. And security is a nightmare. Simply speaking, we need to
create views in the data warehouse to restrict user access. For example, say you have a table
called payment containing a column called credit_card_number. We can create a view called
payment_v containing all payment table columns except the credit card number column. We
grant SELECT permission to the user on this view, but we revoke SELECT permission from the
user on the base table (payment table). If we simply grant the db_datareader role to the users,
they will be able to access all columns on all tables.

SSRS, on the other hand, is deployment friendly. The reports are web-based, so we don’t
have to install anything on any of the users’ PCs. Setting up security is very simple. We can
even utilize the Windows accounts to authenticate the users so the users don’t have to log in
again. We’ll discuss more about deployment later in this chapter. But, reports are more or
less static.

Access to DDS using Excel would suit a handful of business analysts who can write a SQL
query, can understand the DDS structure, are very familiar with Excel, are happy to set up
DSN themselves, and are able to create the Excel reports. They can manipulate the data in any
way they like in their Excel files. They can turn the pivot tables in any way they like. They can
format the reports in any way they like, and they can also create some charts.

Multidimensional Database Reports
So far in this chapter, you have learned that from SSRS you can access relational data stores
within the data warehouse, such as the DDS database. But a data warehouse may also con-
tain multidimensional databases or cubes. (Please refer to Chapter 1 for an explanation of
what a multidimensional database or cube is.) From SSRS, we can also access multidimen-
sional databases.
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By their very nature, cubes are meant to be accessed using OLAP tools or cube browsers
or by using an application framework such as ADOMD.NET. In most cases, cube data is
accessed independently of relational data, but occasionally we need to combine the data from
a relational store and from a cube in one report or in one set of reports.

Let’s learn how to create a report that retrieves data from a cube. The fastest and best
way to learn this is by doing it. So, let’s get started. This time we will not use the Report Wiz-
ard. Instead, we will create it manually, including the query and the layout. In the next
chapter, we will learn how to create a cube, but for now we will use an existing cube. For that,
please restore the Amadeus Entertainment.abf cube backup from the /data folder on this
book’s web site (http://www.apress.com). You can use SQL Server Management Studio to
restore the cube backup. You just need to connect to your Analysis Services server, right-click
Databases in Object Explorer, and choose Restore.

1. In Solution Explorer of BIDS, define a new data source. To do this, right-click Shared
Data Sources, and choose Add New Data Source. Set the name to Cubes, and set the
type to Microsoft SQL Server Analysis Services, as shown in Figure 11-35.

2. Click the Edit button. Set the server name to your development SQL Server, and in the
database name drop-down list choose the Analysis Services database where the cube is
located. Click OK. Leave the Credential tab as Use Windows Authentication (Integrated
Security), and click OK.

Figure 11-35. Creating a shared data source for accessing Analysis Services cubes

3. In the Solution Explorer pane, right-click the Reports, and choose Add ➤ New Item.
Choose Report (not Report Wizard). Give it a name, such as Cube Report.rdl, and
click Add.
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4. In the Dataset drop-down list, choose <New Dataset…>. Give it a name (such as
dsCube), choose the Data Source to Cubes (shared), leave the command type set to
text, and leave the query string empty. Click OK. MDX Query Designer, similar to the
one shown in Figure 11-36, will be displayed.

Figure 11-36. MDX Query Designer

5. Drag the following fact and attributes from the Metadata pane to the center pane:
Product Type from Dim Product, week_number from Dim Date, and Sales Value meas-
ure from Fact Product Sales, as shown in Figure 11-36 previously.

6. Drag Year and Quarter from Dim Date to the <Select dimension> area. Tick the Para-
meters check boxes for both Year and Quarter, as shown in Figure 11-36. Reporting
Services automatically creates those two parameters.

7. To verify, click the Report menu, and choose Report Parameters.

8. Click the Layout tab. In the left pane, click the Toolbox tab, and drag Matrix from the
Toolbox to the canvas, as shown in Figure 11-37.

9. Click the Datasets tab in the left pane, and drag product_type, week_number, and
sales_value from dsCube to the matrix. Specifically, drag product_type to the Rows
cell, week_number to the Columns cell, and sales_value to the Data cell.

10. Save the report, and click the Preview tab. Select Year to 2007, Quarter to Q1, and click
View Report. The report looks similar to Figure 11-38.
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Figure 11-37. Creating the report layout

Figure 11-38. Report that retrieves data from a cube

11. If the product type column is not wide enough, you can adjust it on the Layout tab, as
well as the 13 columns containing the sales values. You can also add a report title.

And with that, we have finished created our report that retrieves data from a cube!
If you notice, we did not write any Multidimensional Expressions (MDX) at all. This is

because we were using the MDX Query Designer. If you want to see what the MDX looks like,
click the Data tab, and click the … button next to the dsCube Dataset drop-down list. You will
see that the MDX query is like the one in Listing 11-9.

Listing 11-9. The MDX Query for the Cube Report

SELECT NON EMPTY { [Measures].[Sales Value] }
ON COLUMNS, NON EMPTY
{ ([Dim Product].[Product Type].[Product Type].ALLMEMBERS

* [Dim Date].[week_number].[week_number].ALLMEMBERS ) }
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DIMENSION PROPERTIES MEMBER_CAPTION, MEMBER_UNIQUE_NAME ON ROWS
FROM
( SELECT ( STRTOSET(@DimDateQuarter, CONSTRAINED) ) ON COLUMNS
FROM ( SELECT ( STRTOSET(@DimDateYear, CONSTRAINED) ) ON COLUMNS

FROM [DDS]))
WHERE ( IIF( STRTOSET(@DimDateYear, CONSTRAINED).Count = 1,
STRTOSET(@DimDateYear, CONSTRAINED),
[Dim Date].[Year].currentmember ),
IIF( STRTOSET(@DimDateQuarter, CONSTRAINED).Count = 1,
STRTOSET(@DimDateQuarter, CONSTRAINED),
[Dim Date].[Quarter].currentmember ) )

CELL PROPERTIES VALUE, BACK_COLOR, FORE_COLOR,
FORMATTED_VALUE, FORMAT_STRING,
FONT_NAME, FONT_SIZE, FONT_FLAGS

It is handy that Reporting Services uses MDX Query Designer to help us create the MDX
query. It makes reporting from cubes so much easier.

Deploying Reports
After we have built the reports, we want to publish them in a web server so the business users
can access them through their web browsers. This action is commonly known as deploying
reports. Reports are deployed to a place called Report Manager on the web server. Let’s take a
step back for a moment and try to understand what a Report Manager is.

When we install Reporting Services on a web server, it creates a web site called Report
Manager. Report Manager is usually located at http://servername/reports (that’s the default
location). We use Report Manager to upload reports, view reports, create data sources, organ-
ize reports in folders, subscribe users to a report, configure site properties, and manage report
security (which users can access which reports). Figure 11-39 shows how Report Manager
looks on the web browser.

Figure 11-39. Report Manager
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Now that you understand what deploying a report means and what Report Manager is, I’ll
explain how to deploy a report. First, we need to make sure that Reporting Services is up and
running. Check the SQL Server Configuration Manager, and start it if it’s not running. Figure
11-40 shows how to start Reporting Services in Configuration Manager.

Figure 11-40. Starting Reporting Services in Configuration Manager

After starting Reporting Services, we need to configure our report project in BIDS to point
to the target server. Click the Project menu, choose Properties, and set the Target Data Source
Folder, Target Report Folder, and Target Server URL options, as shown in Figure 11-41. Keep
Overwrite Data Source as false, because we don’t want to overwrite data source information
on the production server. Usually, the data source details on the production server are differ-
ent from the development server. Target Data Source Folder is the folder name on the Report
Manager where we want the data sources to be deployed. Target Report Folder is the folder
name on the Report Manager where we want the reports to be deployed. Target Server URL is
the web server where Reporting Services is installed.

Now after Reporting Services is started and the report project is configured, we can
deploy the reports. To deploy all the reports in our project, as well as the data sources, in Solu-
tion Explorer right-click the root folder of the report project, as shown in Figure 11-42, and
choose Deploy.
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Figure 11-41. Configuring project properties for report deployment

Figure 11-42. Deploying reports

Listing 11-10 shows the output log of this deployment.

Listing 11-10. Deployment Output

------ Build started: Project: Amadeus Reports, Configuration: Debug ------
Build complete -- 0 errors, 0 warnings
------ Deploy started: Project: Amadeus Reports, Configuration: Debug ------
Deploying to http://localhost/ReportServer
Deploying data source '/Data Sources/Cubes'.
Deploying data source '/Data Sources/DDS'.
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Deploying report '/Amadeus Reports/Amadeus Entertainment Product Sales'.
Deploying report '/Amadeus Reports/Cube Report'.
Deploying report '/Amadeus Reports/Store Details'.
Deploy complete -- 0 errors, 0 warnings
========== Build: 1 succeeded or up-to-date, 0 failed, 0 skipped ==========
========== Deploy: 1 succeeded, 0 failed, 0 skipped ==========

Instead of deploying all reports and data sources as discussed earlier, you can also deploy
only a particular report or a particular data source. To do so, in Solution Explorer, right-click
the report or data source you want to deploy, and choose Deploy.

Now that the reports are deployed, you can view them in Report Manager. To do that,
open your web browser (Internet Explorer, Firefox, Opera, Safari, or whatever), and go to the
Report Manager URL at http://servername/reports, where servername is the name of the web
server (IIS) where Reporting Services is installed. Report Manager will display two folders:
Amadeus Reports and Data Sources, as shown previously in Figure 11-39.

Let’s view the Product Sales report we created earlier in this chapter. Click the Amadeus
Report link. It shows the three reports we have in BIDS: Amadeus Entertainment Product
Sales, Store Details, and Cube Report. Click Amadeus Entertainment Product Sales to view it.
Figure 11-43 shows the result.

Figure 11-43. How the Product Sales report looks when deployed

To increase the scalability, we can also deploy the report on a web farm. Reporting Ser-
vices also supports the report server database to be installed on a SQL Server cluster.
Clustering increases the availability of the reports.

Now that we have deployed the reports, the next thing to do is manage them, which we
will discuss next.

CHAPTER 11 ■ BUILDING REPORTS 369

9314ch11final.qxd  11/15/07  10:03 AM  Page 369

http://servername/reports


Managing Reports
After we deploy the reports to the Reporting Services server, we need to manage them. In par-
ticular, we need to manage three areas: security, subscriptions, and execution:

• Security is about authentication and authorization. Authentication is verifying the
user’s identity, for example, by checking the user ID and password. Authorization is
about allowing certain users to access certain objects (such as reports) and keeping
everybody else out.

• A subscription is a request to deliver a particular report to a particular user using a par-
ticular method (such as e-mail or a file share) at a particular time in a particular format.

• Execution is about the process of running the reports. We can execute a report in three
ways: on demand, on demand from the cache, or from a snapshot. A snapshot is a static
copy of the report output, produced at a specific time. We can schedule certain reports
to run at certain frequencies or for the snapshots to be created at a certain interval.

Managing Report Security
In some data warehouse implementations, all users can access all reports. But that is rare. In
most implementations, certain users may access only certain reports, or at least there are cer-
tain reports that some users are not allowed to access. This is usually done by configuring the
report security. A good way to configure report security is to create groups of users and assign
those groups to security roles in Reporting Services. The groups are ideally created in Active
Directory on the domain, the same place where all the Windows user accounts are.

The benefit of using groups rather than adding individual users is easier maintenance.
If you have a new data warehouse user, all you have to do is add her to the appropriate
groups. If a user leaves the company, all you have to do is remove her from the groups.
You could arrange the groups by individual report, such as Report1_Readers, Report1_
Writers, Report2_Readers, and Report2_Writers. Users who can view report1 are placed only
in the Report1_Readers group, and users who can edit report1 are placed in the Report1_
Writers group.

In Reporting Services, you can create a folder and put several reports into that folder.
You can then arrange the groups by folders (instead of arranging them by reports), such as
Folder1_Readers, Folder1_Writers, Folder2_Readers, and Folder2_Writers. Users who can
view only those reports in folder1 will be in Folder1_Readers, and users who can create and
edit all reports in folder1 will be in Folder1_Writers. You can always go down to the report
level if needed. For example, if a particular user needs to view all ten reports in folder1,
except report5 that she needs to edit, you still add her to the Folder1_Readers group but
on top of that you will add her as an individual user in report5 with write access.

Now that I have discussed the approach, let’s configure the security for the reports in our
case study. We’ll give a group called Group1 read access to all reports in the Amadeus Report
folder. In the Report Manager, to assign a user or a group to a folder, we click the Property tab
and click the Security link in the menu on the left. OK, open Report Manager by going to
http://servername/reports in your web browser. Navigate to the Amadeus Report folder,
and then click the Properties tab, as shown in Figure 11-44.
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Figure 11-44. Configuring report security

Click Edit Item Security. Reporting Services will display a warning that the security is cur-
rently inherited from the parent folder. This is because, by default, a folder inherits its parent’s
security settings. Click OK on this warning. Click New Role Assignment. To give read access on
all reports under this folder to Group1, type Group1 in the “Group or user name” box, and tick
the Browser role check box, as shown in Figure 11-45.

Figure 11-45. Assigning a Browser role to a security group

As displayed in Figure 11-45, a user (or a group of users) can have one of five security
roles: Browser, Content Manager, My Reports, Publisher, and Report Builder, with the descrip-
tions shown in Figure 11-45. You can also define a new role by clicking the New Role button.
Click OK, and Group1 will be added to the list of groups for this folder (and all the reports and
folders in it), as shown in Figure 11-46.
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Figure 11-46. Adding a group with browser role to report security

Now, if a user who does not belong to Group1 tries to access the Amadeus Report, he will
not see any report in the folder. Instead, the folder will be empty, so he cannot access the
reports.

Managing Report Subscriptions
As I said earlier, a subscription is a request to deliver a particular report to a particular user
using a particular method at a particular time in a particular format. For example, users can
subscribe to the Product Sales report, requesting the report to be delivered to them at 8 a.m.
every Tuesday morning in Excel format via e-mail as an attachment. This way, they don’t have
to open Report Manager, navigate to the report, and run it. Instead, it would be ready for them
in their e-mail inbox when they arrive in the office at 9 a.m. every Tuesday.

To subscribe to a report, open the report you want to subscribe to, and click the New Sub-
scription button. The New Subscription page looks like Figure 11-47.
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Figure 11-47. Creating a new subscription

Then choose the report delivery option, such as e-mail or file share. If you choose e-mail,
fill in the To text box with the recipient’s e-mail address, and choose the delivery option, either
Include Report or Include Link. Include Report means the e-mail will contain the report,
whereas Include Link means the e-mail will contain only the URL of the report. For Include
Report, if you choose Web Archive as the render format, the report will be embedded in the
body of the e-mail. If you choose any other render format (CSV, Excel, PDF, HTM, XML, or
TIFF), the report will be sent as an attachment to the e-mail.

If you choose the report delivery option of File Share, specify the file name and folder
where you want the file to be created, the format (CSV, Excel, PDF, HTM, XML, or TIFF), the
credential to access the file, and whether you want to overwrite the existing file.

Next, you can set the schedule when you want the report to run, such as every Tuesday
at 8 a.m. Finally, you can set the parameters. Figure 11-48 shows the result.
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Figure 11-48. Configuring report subscription

The users can then monitor the status of their subscriptions using the My Subscription
page, which is located in the upper-right corner of the Report Manager. On this page, they can
see when the subscription was last run as well as the status of the subscription, such as if the
report failed to be sent or if it was successfully written to a file.

Managing Report Execution
We can execute a report in three ways: on demand, on demand from the cache, or from a
snapshot. On demand means that when we run the report, Reporting Services will always
retrieve the data from the database. On demand from the cache means that when we run
the report, Reporting Services will take the data from the cache, not fresh from the database.
Reporting Services will still run the report, but not take data from the database. From a
snapshot means that every certain period Reporting Services will run the report and store
the report output, including the layout and the data. This report output is called a snapshot.
Snapshots are stored in the report server database. In this case, Reporting Services does not
execute the report when the users access the report. It simply displays the snapshot to the
screen (or in an e-mail).
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To configure the execution method, navigate to the report you want to configure, and
then click the Properties tab. Then click the Execution link in the left pane. Figure 11-49 shows
the Execution page.

Figure 11-49. Configuring report execution

To set the report to be run on demand, choose “Always run this report with the most
recent data” and “Do not cache temporary copies of this report.” To set the report to be run on
demand from the cache, choose “Always run this report with the most recent data” and one of
the “Cache a temporary copy of the report. Expire copy of report…” options. To set the report
to be run from a snapshot, choose “Render this report from a report execution snapshot.”

With that, we’ve finished going through the three things about reports that we need to
manage after we have developed them: security, subscription, and execution. Data warehouse
users usually access the reports via a web portal rather than using the Report Manager.

Summary
Reports are one of the two primary means of getting the data out of the data warehouse (the
other one is using an OLAP/BI tool). Because of this key role, reports are important in data
warehousing. Reports can retrieve data from a relational database as well as from a multidi-
mensional database.

Reports are used by both the business users as well as data warehouse administrators in
the form of data quality reports, audit reports, and usage reports. For business purposes,
reports are mostly used for business intelligence.

In the next chapter, I will discuss the other way of presenting the data from the data ware-
house to the business users: using OLAP tools.
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Multidimensional Database

In the previous chapter, I discussed reporting, which is one of the most popular ways of
getting the data out of the data warehouse and presenting it to the users. In this chapter, I
will discuss another popular way of getting the data out—using multidimensional databases
(MDBs). Multidimensional databases are mainly used for analytics and data mining appli-
cations. While you are learning in this chapter what multidimensional databases are, what
they are for, how to design them, how to populate them, and how to query them, you need
to remember that the final purpose of data warehousing is to get the data to the users, not to
get the data into the warehouse.

There is no point in collecting data from various source systems throughout the enter-
prise into one central place if you are not going to retrieve the data and present it to the
users. If you remember only one thing from this book, I hope it is this one: we can spend a
million dollars and two years setting up the servers, architecting the data warehouse, design-
ing the databases, building the ETL systems, and populating the data stores, but if the data is
not retrieved and presented to the users, then the data warehouse is useless. It is very impor-
tant to get the data out and presented in such a way that gives good business value to the
users. In fact, the entire data warehouse should be designed to support this.

In this chapter, I’ll cover, step by step, what MDBs are, what they are for, how to design
them, how to populate them, how to query them, and how to administer them.

What a Multidimensional Database Is
In this section, I’ll discuss what multidimensional databases are, what they look like, what
they are used for, their advantages and disadvantages, how they are different from OLAP, and
the system to manage them.

A multidimensional database is a form of database where the data is stored in cells and
the position of each cell is defined by a number of hierarchical called dimensions. Each cell
represents a business event, and the value of the dimensions shows when and where this
event happened.

The structure stores the aggregate values as well as the base values, typically in com-
pressed multidimensional array format, rather than in RDBMS tables. Aggregate values are
precomputed summaries of the base values.

Examples of multidimensional databases are Microsoft Analysis Services, Hyperion
Essbase, and Cognos PowerCube. The other terms that people use for a multidimensional
database are hypercube, cube, OLAP cube, multidimensional database (abbreviated as MDB,
MDD, or MDDB), and multidimensional data store (MDDS).
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Physically, an MDB is a file. To help you understand how an MDB file is internally struc-
tured, you can visualize it as a matrix or a cube, as shown in Figure 12-1 and Figure 12-2.
Figure 12-1 shows an MDB with two dimensions; it looks like a matrix. The two dimensions
are customer and product. The combination of these two dimensions points to a cell in the
matrix. The cell contains one or more measurement values (or none/empty). A cell represents
a business event. The value of the dimensions shows when and where this event happened.
Event A is created by customer C1 and product P1.

Figure 12-1. Visualization of a multidimensional database with two dimensions

Figure 12-2 shows an MDB with three dimensions; it looks like a cube. An MDB with four
or more dimensions is called a hypercube. Although logically an MDB looks like a cube (for
three dimensions) or a hypercube (for four or more dimensions), physically it is stored as
compressed multidimensional arrays with offset positioning. The cube in Figure 12-2 has
three dimensions: customer, product, and time. The combination of these three dimensions
points to a cell in the cube. Each cell represents a business event. The value of the dimensions
shows when and where this event happened. In Figure 12-2, the business event is “A customer
buys a product.” Business event A is a transaction where customer C1 buys product P1 at time
T1. In Figure 12-2, the cell contains three measure values: the revenue, the cost, and the profit.

Multidimensional databases are typically used for business intelligence (BI), especially
for online analytical processing (OLAP) and data mining (DM). The advantages of using
multidimensional databases for OLAP and DM rather than a relational database such as a
dimensional data store (DSS) are that they use less disk space and have better performance.
A multidimensional database occupies less disk space compared to a relational dimensional
database (like DDS) because it is compressed and because it does not use indexing like a
DDS. Instead, it uses multidimensional offsetting to locate the data. A multidimensional
database performs better on OLAP operations because the aggregates are precalculated and
because the way the data is physically stored (compressed multidimensional array format
with offset positioning) minimizes the number of IO operations (disk reads), compared to
storing tables in an RDBMS.
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Figure 12-2. Visualization of a multidimensional database with three dimensions

On the other hand, the drawback of using a multidimensional database compared to
using a relational database is the processing time required for loading the database and calcu-
lating the aggregate values. Whenever the relational source is updated, the MDB needs to be
updated or reprocessed; in other words, the aggregate cells need to be recalculated (it doesn’t
have to be done in real time). The second drawback is the scalability: an MDB may not scale
well for a very large database (multiple terabytes) or a large number of dimensions.

■Note The term multidimensional database is often confused with the term online analytical processing,
but these terms have different meanings. An MDB is the database, and OLAP is the activity used to analyze
the database. The confusion is caused by the word OLAP cube. An OLAP cube has the same meaning as an
MDB; it means a multidimensional database. We’ll talk about OLAP in the next section.

Most people in the database world know that an RDBMS is the system that manages a
relational database. What do we use to manage multidimensional databases? The system that
manages and operates multidimensional databases is called a multidimensional database sys-
tem (MDBMS). Multidimensional database systems are also known as OLAP servers or cube
engines. Examples of an MDBMS are Microsoft SQL Server Analysis Services, Hyperion Ess-
base, and Cognos PowerCube. Business Objects and MicroStrategy don’t have an MDBMS;
they use ROLAP (I’ll talk about ROLAP in the next section).

The standard interface to connect to an MDBMS is XML for Analysis (http://www.
xmlforanalysis.com/), which is known as XMLA. For example, using SQL Server Reporting
Services, we can connect not only to Analysis Services cubes but also to Hyperion Essbase
cubes using XMLA. Microsoft, Hyperion (now owned by Oracle), SAP, and SAS support XMLA.
ADOMD.NET is a .NET data provider that uses XMLA to communicate the analytical data
sources.
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Online Analytical Processing
Online analytical processing is the activity of interactively analyzing business transaction
data stored in the dimensional data warehouse to make tactical and strategic business deci-
sions. Typically, people who do OLAP work are business analysts, business managers, and
executives. An example of OLAP is analyzing the effectiveness of a marketing campaign by
measuring sales growth over a certain period. Another example is analyzing the impact of a
price increase on the product sales in different regions and product groups during the same
period of time.

OLAP helps solve these types of problems by summing up the measure values within
the MDB according to certain criteria that reflect the business conditions. OLAP also
enables the business users to drill down to a particular area of the MDB to view the data 
at a more detailed level.

How about analyzing business transactions data stored in operational systems such as
enterprise resource planning (ERP) systems or an operational data store (ODS)? Is that classi-
fied as OLAP? No, it is not OLAP. It is business analysis, but it is not OLAP. For the analysis to be
OLAP, it needs to be performed against a dimensional data warehouse, either stored in rela-
tional format or stored in multidimensional format.

What if it is not interactive, but only a one-way interaction such as reading and analyz-
ing reports? Is that OLAP? No, that is reporting, not OLAP. OLAP is interactive; in other
words, the business analyst queries, and the system responds, repeatedly, as illustrated in
Figure 12-3. The response time is typically within seconds, not hours (although certain
OLAP scenarios take hours).

Figure 12-3. OLAP is interactive.

OLAP activities are part of BI. There are three widely used BI activities: reporting, OLAP,
and data mining. OLAP tools are the interactive tools that business analysts use to query a
data warehouse to perform business analysis. Examples of OLAP tools are SSAS, Cognos BI 8
Analysis, Business Objects XI Release 2 Voyager, and ProClarity Analytics 6.

OLAP functionalities can be delivered using a relational database or using a multidimen-
sional database. OLAP that uses a relational database is known as relational online analytical
processing (ROLAP). ROLAP leaves the data in tables and relies on SQL select statements with
sum and group clauses to summarize the detail-level data. The precalculated summary data
(called aggregates) is stored in summary tables. When receiving queries, ROLAP chooses the
best summary tables to be used to satisfy the query and then supplements the results with
select statements to the base tables.
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OLAP that uses a multidimensional database is known as multidimensional online
analytical processing (MOLAP). MOLAP precalculates the summary of measure values in
the MDB and stores the aggregates within the MDB structure. An example of ROLAP is
MicroStrategy OLAP Services. Examples of MOLAP are Cognos BI 8 Analysis and ProClarity
Analytics 6. Microsoft SQL Server Analysis Services (SSAS) supports both ROLAP and
MOLAP, plus it supports Hybrid Online Analytical Processing (HOLAP). HOLAP uses both
relational and multidimensional databases. SSAS databases can store the data in a rela-
tional database, a multidimensional database, or both. When we set SSAS to store the data
in HOLAP mode, the base data (leaf level) is stored in SQL Server relational database tables,
and the aggregate data is stored in an MDB.

Creating a Multidimensional Database
Let’s create a multidimensional database from the DDS database in the Amadeus Entertain-
ment case study. In this exercise, we will create the Product Sales multidimensional
database that was used for reporting in the previous chapter. For that, open BIDS, and fol-
low these steps:

1. Click the File menu, and select New ➤ Project.

2. Choose Business Intelligence Projects for the project type, choose Analysis Services
Project as the template, and name it Amadeus Analysis Services, as shown in Fig-
ure 12-4. Then click OK.

Figure 12-4. Creating a new Analysis Services project
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3. We need to connect to the DDS database. The scripts mentioned in Chapter 6 created
the DDS database and the tables within it. The steps in Chapters 7 and 8 populated the
DDS tables. You can also download the completed DDS at the Apress website (http://
www.apress.com/). It is in the /data folder, and the file name is dds.zip (7MB). Uncom-
press this file, and restore the database on your development SQL Server.

4. Let’s create a data source pointing to the DDS database so we can use the DDS as a
data source for our MDB. In Solution Explorer, right-click Data Sources, and choose
New Data Source. Click Next on the welcome page.

5. On the Data Source wizard page, click New to create a new connection. Because the
DDS is a SQL Server database, choose SQL Native Client as the provider.

6. Select your development SQL Server in the Server Name drop-down box, and select
Use Windows Authentication (or supply the credential if you use SQL Server authenti-
cation). Choose DDS for the database to connect to, as shown in Figure 12-5.

Figure 12-5. Creating the data connection to the DDS database

7. Choose servername.DDS.ETL as the data connection, and click Next.
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8. On the Impersonation Information page, choose “Use the service account” (or supply
the credential if you use SQL Server authentication), and then click Next.

9. Name the data source DDS, and click Finish. Now in Solution Explorer, there is a new
data source called DDS.

Now let’s create a data source view, which is the relational model for this data source. In
this data source view, we will put in only the dimension and fact table that we need to create
the product sales cube, which are: date dimension, product dimension, store dimension, and
Product Sales fact table. For that, follow these steps:

1. Right-click Data Source Views in Solution Explorer, and choose New Data Source View.

2. Click Next on the welcome page.

3. Select DDS for Relational Data Sources, and click Next.

4. Double-click the date, product, and store dimensions, as well as the Product Sales
fact table, and bring them to the Included Objects box on the right side, as shown in
Figure 12-6. Then click Next.

5. Click Finish to complete the wizard.

Figure 12-6. Selecting tables for the data source view

The result is a new data source view with one fact table and three dimensions, as shown
in Figure 12-7.
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Figure 12-7. Creating a new data source view for the product sales data mart

Now let’s create the multidimensional database (cube):

1. Right-click Cubes in Solution Explorer, and choose New Cube.

2. Click Next on the welcome page.

3. Choose “Build Cube using a data source,” and ensure that the Auto Build box is
checked. In the drop-down list, you’ll see two options: “Create attributes and hierar-
chies” or “Create attributes.” Selecting the former will make SSAS build the hierarchies
(levels) for the dimensions, whereas the latter does not create the dimensional hierar-
chies. Choose the former, and click Next.
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4. Auto Build makes recommendations based on the data source view structure. When
building a cube in SSAS, we have two choices: we can either build it manually or select
Auto Build. When building the cube manually, we specify the measures in the fact
tables, the data types, the dimensions, and the hierarchies. With Auto Build, the Cube
Wizard will detect the cube structure based on the tables in the data source view. Select
DDS for the data source view, and click Next.

5. The wizard analyzes the relationship between tables in the data source view, as shown
in Figure 12-8. The wizard identifies which tables are the fact tables and which tables
are the dimension tables. Click Next.

Figure 12-8. Detecting fact and dimension tables

6. The wizard correctly identifies dim_product and dim_store as dimension tables, but
it incorrectly identifies dim_date as both a fact and dimension table. To correct this,
uncheck the fact check box for dim_date so that date, product, and store are set as
dimensions and Product Sales is set as a fact table. The wizard does not identify the
time dimension, so in the “Time dimension table” drop-down list, choose dim_date,
as shown in Figure 12-9.
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Figure 12-9. Selecting the fact and dimension tables when creating the cube

7. The next page is Select Time Periods. On this page, we need to specify the hierarchy of
the time dimension. Set the Year, Quarter, and Week time properties by selecting the
appropriate columns from the date dimension table, as shown in Figure 12-10. Then
click Next.

Figure 12-10. Selecting time periods
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8. The next page is Select Measures. On this page, we need to select the measure we want
to include in the cube. By default the wizard selects all available measures, but in this
case we want to select only some of them. Select Quantity, Sales Cost, and Sales Value,
as shown in Figure 12-11. Then click Next.

9. The Cube Wizard will scan the dimensions to detect the hierarchies. For each dimen-
sion, the wizard tries to identify whether a column is a parent or a child of another
column based on the data values in that column. In the Amadeus Entertainment case
study, we have Product Category and Product Type as the hierarchies in the product
dimension; Year, Quarter, and Week in the date dimension; and Division and Region in
the store dimension. Click Next.

10. The next page is Review New Dimension. Expand each dimension, and check that the
wizard has successfully identified the hierarchies. Click Next on this page.

11. Name the Cube Product Sales, and click Finish.

Figure 12-11. Selecting measures

Figure 12-12 shows the resulting cube. It has three dimensions: store, product, and
time. We have created a data source for the DDS database. We then created a data source
view for three dimensions and one fact table. And finally, we created a cube based on that
data source view.
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Figure 12-12. Product Sales cube structure

Processing a Multidimensional Database
As you have just seen, if you have a dimensional relational data warehouse (also known as a
dimensional data store), you can easily create the multidimensional database or cube. Before
you can browse this cube or query this cube for reporting, though, you need to process the
cube first. Processing a cube means calculating the aggregates from the cube cells.

And before you can process the cube, you need to build it and deploy it first:

• Building a cube means checking the internal structure of the cube including the facts,
dimensions, hierarchy, and connections to the data source to make sure the structure
we created is valid.

• Deploying a cube means creating the cube structure that we have designed in a multi-
dimensional database engine (aka OLAP server or cube engine), which, in this case, is
an Analysis Services server.
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Let’s build and deploy the cube we just created:

1. Click the Build menu, and choose Build Amadeus Analysis Services. In the bottom-left
corner you’ll see “Build started,” followed by “Build succeeded.”

2. Ensure that the Analysis Services server is up and running. Click Start ➤ All Programs
➤ Microsoft SQL Server 2005 or 2008 ➤ Configuration Tools ➤ SQL Server Configura-
tion Manager. Right-click the SQL Server Analysis Services, and choose Start, as shown
in Figure 12-13.

Figure 12-13. Starting Analysis Services

3. Now let’s deploy the cube. In the Solution Configuration drop-down list on the toolbar
(the one next to the green Play button), choose Development. Click the Build menu,
and choose Deploy Amadeus Analysis Services.

4. When the project has been successfully deployed to the Analysis Services instance, the
deployment progress will be like the one in Figure 12-14, and the output script will be
like Listing 12-1. Figure 12-14 tells us that SSAS has successfully created the cube struc-
ture in the MDB and populated it with the data from the DDS tables. When it says
“Processing Measure Group Fact Product Sales completed successfully,” it means that
SSAS has loaded all the values on the measure columns in the fact_product_sales
table in the DDS into the cube structure. When it says “Processing Dimension
dim_store completed successfully,” it means that SSAS has loaded the distinct values
for each column in the store dimension in the DDS into the cube structure, including
the hierarchy structure.
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Figure 12-14. Progress script of a successful deployment

Listing 12-1. Successful Output Script

------ Build started: Project: Amadeus Analysis Services, 
Configuration: Development ------
Started Building Analysis Services project: Incremental ....
Build complete -- 0 errors, 0 warnings
------ Deploy started: Project: Amadeus Analysis Services, 
Configuration: Development ------
Performing an incremental deployment of the 'Amadeus Analysis Services' 
database to the 'localhost' server.
Generating deployment script...

Add RelationalDataSource DDS
Process Database Amadeus Analysis Services

Done
Sending deployment script to the server...
Done
Deploy complete -- 0 errors, 0 warnings
========== Build: 1 succeeded or up-to-date, 0 failed, 0 skipped ==========
========== Deploy: 1 succeeded, 0 failed, 0 skipped ==========

5. What we just did was deploy the cube design into a physical structure. In other words,
we were creating the cube in SSAS based on what we designed in BIDS. So, let’s see the
cube we just created. Open SQL Server Management Studio, and connect to the Analy-
sis Services instance. The Object Explorer shows the measure groups of the cube along
with the three dimensions, as shown in Figure 12-15.
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Figure 12-15. Object Explorer of the deployed Analysis Services project

6. Now that we have built and deployed the project, we are ready to process the cube.
In BIDS, click the Database menu, and choose Process. The Process Database page
opens, as shown in Figure 12-16. The Impact Analysis button lists which other SSAS
objects are affected by the processing task. There are three main types of SSAS objects:
server objects (such as data sources and data source views), dimension objects (such
as attributes and hierarchies), and cube objects (such as measures and partitions).

The Change Settings button enables us to change the processing order (whether the
objects are processed sequentially, which means one object at a time, or in parallel,
which means all objects simultaneously) and the transaction mode if we process
sequentially (process in one transaction or in separate transactions); it also enables
us to handle dimensional errors (whether to convert to an unknown record or discard
the record, how to handle invalid keys, null keys and duplicate keys, and so on) and
(whether or not to) process affected objects.
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Figure 12-16. Process Database dialog box

7. In our case, we are quite happy to go with the default settings, so just click Run. Analy-
sis Services will process the cube and display the progress as it goes along, as shown in
Figure 12-17. It will end with a message “Process succeeded.” Click Close to close the
Process Progress dialog box. Click Close again to close the Process Database dialog
box.
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Figure 12-17. Processing the cube

So, we have built, deployed, and processed a cube: product sales with its dimensions. The
cube is populated from the Product Sales fact table. We have not included all the dimensions
and measures from this fact table. We included only three dimensions (date, product, and
store) and three measures (quantity, sales value, and sales cost). A typical scenario in a simple
data warehouse project is to include most of the dimensions and measures. I prefer to build
the cube bit by bit. For example, if the mart has six dimensions and ten measures, I would
probably start the cube with three dimensions and three to five measures; add member for-
mulas, additional aggregations, and dimension intelligence; build and deploy the cube; make
sure it’s working fine before adding the remaining dimensions and measures; and then build
and deploy it again. This makes it easier to troubleshoot if we have problems.
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When building a cube, we do not have to include all the dimensions and measures in the
fact table. It is normal to not include some measures or dimensions in the cube. It is a per-
fectly valid scenario to have multiple cubes from the same fact table with different sets of
dimensions and measures.

Then we move on, building the cubes for the other fact tables. In the case study, we have
four other fact tables to build the cubes from: Subscription Sales, Supplier Performance, Com-
munication Subscriptions, and Campaign Results fact tables. Not all fact tables need cubes.
Some fact tables are accessed only in their relational format. We build the cubes only if we
need to browse them in multidimensional format.

Some BI tools don’t require cubes to be built because they are ROLAP or reporting tools.
These tools read from relational databases such as the ODS or the DDS. Some tools such as
ProClarity and data mining tools work better with cubes.

We don’t have to build a cube from just one fact table. We can build a cube from two (or
more) fact tables. When doing this, we need to bear in mind dimensional conformity. Con-
formed dimensions mean they are either the same dimension table or one is the subset of the
other. Dimension A is said to be a subset of dimension B when all columns of dimension A
exist in dimension B and all rows of dimension A exist in dimension B. In doing this, we are
drilling across, in other words, joining two (or more) fact tables that have conformed dimen-
sions between them.

Querying a Multidimensional Database
Now that the cube has been processed, we can query the cube. The easiest way to query a
cube is by browsing it. Browsing a cube means querying the cube and displaying the cube data
on the screen in a particular format and order. Let’s try to re-create the Weekly Product Sales
report that we did in the previous chapter. But in the previous chapter it was a report, and this
time it will be a cube browser.

1. Click the Browser tab, as shown in Figure 12-18.

Figure 12-18. Selecting the row and column to browse a cube

2. Expand the date dimension by clicking the + sign next to it. Click week_number, and
drop it onto the Drop Column Fields Here area, also shown in Figure 12-18.
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3. Expand the product dimension by clicking the + sign next to it. Click the Product Type,
and drop it onto the Drop Row Fields Here area.

4. Expand Measures, and expand Fact Product Sales by clicking their + signs. Click Sales
Value, and drop it onto the Drop Totals or Detail Fields Here area. Figure 12-19 displays
the outcome.

Figure 12-19. Displaying the sales amount by product type and week number

5. Remember that in the previous chapter we constrained the output by year and quar-
ter? Let’s do the same here. On the tree pane on the left, click Year under Dim Date.
Drag and drop it onto the <Select dimension> area.

6. Expand the Filter Expression drop-down list, and select 2007. Notice that the figures in
the main table are updated automatically to reflect only 2007.

7. There is another way to filter the result; you can use the Drop Filter Fields Here area.
Let’s use it to filter the output to a particular quarter. Drag Quarter from the date
dimension, and drop it onto the Drop Filter Fields Here area.

8. Click the little blue triangle next to Quarter, and choose Q2. Notice that the output
changes automatically. Figure 12-20 shows the result.
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Figure 12-20. Adding filters to the cube output

As you can see in Figure 12-20, there are two ways of putting a filter on the cube out-
put: using filter expression (as we did with the year) or using filter fields (as we did with
the quarter).

You have just seen that you can query the cube using the Analysis Services cube browser.
There are other ways to query an Analysis Services cube to get the data out and present it to
the users:

• You can query the Analysis Services cube from Reporting Services using MDX queries,
as we did in the previous chapter when I discussed reporting.

• You can browse Analysis Services cubes using a third-party BI tool such as ProClarity.

• You can use data mining to analyze an Analysis Services cube.

• You can use ADOMD or XMLA to query the cube.

Administering a Multidimensional Database
Once we have built, deployed, processed, and queried the cubes, we need to administer them.
There are three common administrative tasks with regard to Analysis Services cubes. The first
one is to secure the cube; for example, only people who are authorized to access the cubes
should be able to access them. The second one is to keep the data within the cubes up-to-
date. For this we need to process the cube regularly, such as once a day or a few times a day,
depending on the following:

CHAPTER 12 ■ MULTIDIMENSIONAL DATABASE396

9314ch12final.qxd  11/15/07  10:01 AM  Page 396



• How frequently the source DDS is updated

• How up-to-date the users need the data to be

The third one is to make sure we can restore the cubes if they are out of order, for exam-
ple, taking backups regularly.

■Note Before we go through these three items, I’d like to clarify two Analysis Services terms that are often
misunderstood and used incorrectly. In the multidimensional world, the term cube has the same meaning as
the term multidimensional database. In Analysis Services, they are different. In Analysis Services, a cube is a
single n dimensional structure consisting of n dimensions and m measures, whereas a multidimensional
database (or a database for short) is a collection of cubes.

Multidimensional Database Security
To secure the cubes, we need to understand Analysis Services security architecture. Unlike a
SQL Server database engine, Analysis Services doesn’t have SQL Authentication mode. It has
Windows Authentication mode only. So, a user needs to be created in Windows before we can
give the user access to Analysis Services cubes. Analysis Services has two different roles: the
server role and the database role. Users with server roles have access to everything. They can
access all multidimensional databases and the cubes within them, create and delete multi-
dimensional databases, create and delete database users, and perform administrative tasks.
Users with database roles can access only a specific multidimensional database and the cubes
within them.

To grant a server role to a user, in Management Studio right-click the Analysis Services
server instance, and choose Properties. Click Security, and then click Add. Type the username,
and click Check Names, as shown in Figure 12-21. Click OK. Alternatively, you can also click
the Advanced button and then click Find Now to get a list of users.
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Figure 12-21. Analysis Services server role

To give a user access to a particular multidimensional database, in Management Studio
go to the multidimensional database that you want to give access to, right-click Roles, and
choose New Role. The Create Role dialog box will be displayed, as shown in Figure 12-22.

You’ll see the following tabs:

• On the General tab (shown in Figure 12-22), we can give the role a name and a
description. We can also choose the database permissions: Full Control has access to
everything in the database, Process Database can process a cube or a dimension, and
Read Definition can access the definition of the database.

• On the Membership tab, we can add the users to the role.

• On the Data Sources tab, we can give access to the data source (this is mainly used for
data mining).

• On the Cubes tab, we can give the user read or write access to the individual cubes
within the database and specify whether the user can drill through, create local cubes,
or process the cube, as shown in Figure 12-23.
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Figure 12-22. Analysis Services database role

Figure 12-23. Setting up cube permissions

• On the Cell Data tab, we can give the user read or write access to the cell data. Note
that the cell data is limited by the cube permission. For example, if a role has write
access on a cell but the role has only read access on the cube, then the role can only
read on that cell.

• On the Dimensions tab, we can give the user read or write access to the individual
dimension, read the dimension definition, and process the dimension.

• On the Dimension Data tab, we can specify the access to an individual member and
hierarchy within each dimension.

Processing Cubes
Earlier in this chapter, you learned how to process a cube manually using BIDS. In practice,
once we have built and deployed the cube in the production server, we need to schedule it to
be processed regularly to keep the data up-to-date with the DDS. For this we use SSIS. Open
BIDS, and go through the process:

CHAPTER 12 ■ MULTIDIMENSIONAL DATABASE 399

9314ch12final.qxd  11/15/07  10:01 AM  Page 399



1. Create a new Integrated Services project by clicking File ➤ New ➤ Project. Choose
Business Intelligence Projects for the process types and the Analysis Services project
for the templates.

2. Create a new package: in Solution Explorer, right-click SSIS Packages, and choose
New SSIS Package. A blank design surface opens.

3. Drag the Analysis Services processing task from the Toolbox onto the design surface.

4. Let’s name the task. Double-click the task to edit it. On the General tab, type Process
Product Sales Cube for the name and description.

5. Ensure that Analysis Services is running. In Server Configuration Manager, right-click
the SQL Server Analysis Services, and choose Start, as shown previously in 
Figure 12-13.

6. We need to establish a connection to the Analysis Services cube. Click the Analysis
Services tab, and click New in the Connection Manager drop-down list. Click Edit to
define a new connection, and enter the details of your Analysis Services server, as
shown in Figure 12-24.

Figure 12-24. Setting the connection to the Analysis Services database
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7. Click Add in the object list, and select the database, cubes, measure groups, partitions,
and dimensions to process, as shown in Figure 12-25. In this case, we need to select
only the Product Sales cube; there’s no need to select any of the dimensions. SSAS will
automatically process the measure groups and dimensions for that cube.

Figure 12-25. Selecting the Analysis Services object to process

8. You can also specify the processing order, transaction mode, dimension errors, dimen-
sion key error log path, and whether to process affected objects by clicking the Change
Settings button, as shown in Figure 12-26.

The parallel processing order makes the tasks run simultaneously in a single transac-
tion. To do this, click Change Settings, and select Parallel. Sequential processing order
means Analysis Services will execute the processes one by one, either in a single trans-
action or in a separate transaction. If it is a single transaction, when a single process
fails, the whole job is rolled back, and the entire job fails. If it is a separate transaction,
when a single process fails, only the failed process is rolled back, and the other
processes in the job continue.

Processing affected objects means processing all objects that have a dependency on
the object that we selected. It is normally used when processing dimensions; for exam-
ple, when we process a dimension, we may want to process all the cubes that use that
dimension.
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Figure 12-26. Setting up the Analysis Services processing task

9. Now that we have set up the task to process the cube, let’s execute it. Click OK to close
the Analysis Services Processing Task Editor dialog box. Right-click the Process Product
Sales Cube task, and execute the task. Figure 12-27 shows the result.
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Figure 12-27. The execution result of processing the Analysis Services cube

Now that we have successfully executed the task, we need to schedule the SSIS package
like a normal SSIS job. Let’s go through how to schedule the job:

1. In Management Studio, connect to the database engine.

2. In Object Explorer, double-click SQL Server Agent. You need to start SQL Server Agent
if it doesn’t start automatically.

3. Right-click Jobs, and choose New Job. Type Process Analysis Services cubes for the
name on the General tab.

4. Click the Steps tab. Click New to define a new step, name it Process Product Sales
cube, and choose the SQL Server Integration Services package for the type.

5. On the General tab, in the Package Source drop-down list, choose File System and
select the DTSX file containing the “Process Analysis Services cube” SSIS package we
created earlier, as shown in Figure 12-28. Click OK to finish the step creation process.

■Note It is also possible to store the SSIS package in the SSIS server. If this is the case, in the “Package
source” drop-down list, choose SSIS Package Store instead of “File system.”
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Figure 12-28. Setting up a job to process the cube regularly

6. Click the Schedule tab, and click New to create a new schedule to set the regular time
when you want the cube to be processed, as shown in Figure 12-29, just like when cre-
ating a regular SQL job. Click OK twice to create the scheduled job.

7. In Management Studio Object Explorer, right-click the job you just created, and choose
Start Job to execute the job to make sure it runs OK.
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Figure 12-29. Setting up the schedule to process the cube

Backup and Restore
Now that we have created the multidimensional database, set up the security access, and
arranged for it to be processed regularly, we need to back up the multidimensional database
regularly. The backup frequency is determined based on how often the cube is processed.
One important thing that some people forget is that when we have backed up the multi-
dimensional database, we need to restore the backup. If we don’t prove that the backup can
be restored successfully, we still have a great risk. It is necessary to schedule the backup regu-
larly (say, every day), but it is also necessary to schedule the restore regularly (say, every
quarter). This is not a real restore, but only a test restore. So, let’s go through the process of
backing up and restoring an Analysis Services multidimensional database.

Before we get down to the details, let’s understand an important concept first when back-
ing up a multidimensional database (MDB). If the MDB storage is in ROLAP mode, the data is
not stored in the MDB. The data (both the base data and the aggregates) is stored in the tables
in a normal relational database. Therefore, the backup of the MDB contains only the meta-
data. The backup does not contain the data.
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If the MDB is in MOLAP mode, then the data (base data and aggregates) is stored in the
MDB. Therefore, the backup of the MDB contains the data, the aggregates, and the metadata.
The metadata contains the structure of the multidimensional database (the hierarchy, dimen-
sion, measures, partition, and so on) and the aggregate navigations (which aggregates to use
for certain conditions).

If the MDB is in HOLAP mode, the base data is stored in tables in a relational database,
but the aggregates are stored in the MDB. Therefore, the backup file contains only the meta-
data and the aggregations. It does not contain the base data.

So if we use SSAS for the cube engine and SQL Server for the relational engine and if we
set the SSAS database in ROLAP mode in addition to backing up the SSAS database, then we
also need to back up the SQL Server database (the DDS tables) because the base data is stored
there. In the cube designer in BIDS, on the Partitions tab, we can specify the store mode
(MOLAP, ROLAP, or HOLAP) by clicking the … button in the Aggregations column and select-
ing the storage and caching options, as shown in Figure 12-30.

Figure 12-30. Specifying the storage mode for the partition

Now that you understand what will be stored and what will not be stored in the backup
file, let’s go through the backup and restore process. The easiest way to regularly back up the
Analysis Services database is to create an XMLA script using Management Studio and execute
that script using SSIS. XMLA is the de facto standard for accessing multidimensional data-
bases (MDBs). We then use SQL Server Agent to execute the script.

CHAPTER 12 ■ MULTIDIMENSIONAL DATABASE406

9314ch12final.qxd  11/15/07  10:01 AM  Page 406



Let’s create the XMLA script for backing up the MDB:

1. In Management Studio’s Object Browser, connect to the Analysis Services instance.
Right-click the database you want to back up, and select Backup.

2. Set the path and name of the backup file, and set the options to allow overwriting
an existing backup file and to compress or encrypt the backup file, as shown in
Figure 12-31.

Figure 12-31. Creating XMLA script for backing up the database

3. To create the XMLA script, click Script at the top. The result is similar to Listing 12-2.

Listing 12-2. XMLA for Backing Up a Multidimensional Database

<Backup xmlns="http://schemas.microsoft.com/analysisservices/2003/engine">
<Object>
<DatabaseID>Amadeus Analysis Services</DatabaseID>

</Object>
<File>h:\data\backup\MDB\Amadeus.abf</File>
<AllowOverwrite>true</AllowOverwrite>

</Backup>
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4. Now we need to run this script in SSIS. So, open BIDS, create a new SSIS project, and
create a new package.

5. Drag the Analysis Services Execute DDL task from the palette onto the design surface.
Double-click it to edit it.

6. On the General tab, we can give the task a name and description.

7. On the DDL tab, we set the connection to our Analysis Services instance. We can leave
the SourceType as Direct Input and paste the XMLA script in Listing 12-2 directly. Or,
we can set the SourceType as File and specify the file path to the XMLA script, as
shown in Figure 12-32.

Figure 12-32. Configuring an SSIS task to execute the XMLA script

8. Click OK to close the task editor and execute the task.

9. Check that the backup file is produced at the specified location.

10. Using SQL Server Agent, we can then schedule the SSIS package to run at a specified
time, such as after the cube is processed successfully.

To test restoring the backup regularly, we create an XMLA file using the same process as
earlier. To restore into a new database with a different name, just modify the <DatabaseName>
element in the XMLA file. Then execute it using the SSIS task as done earlier. Alternatively, if it
is one time only, we can just use Management Studio to restore the backup.
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Summary
In this chapter, you learned about MDBs, OLAP, and the difference between them. I also dis-
cussed the differences between ROLAP, MOLAP, and HOLAP. We created a multidimensional
database for our Product Sales fact table, and you learned how to process, query, secure, and
back up the multidimensional database.

As I emphasized in the beginning of this chapter, the main purpose of having a data
warehouse is to get the data out and present it to the user community. In the previous two
chapters, I discussed how to get the data out of the data warehouse using reports and analyti-
cal tools. In the next three chapters, I’ll discuss how to use data warehouses for BI and CRM,
as well as for other purposes.
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Using Data Warehouse for
Business Intelligence

In this chapter and the next two chapters, I will discuss the applications of data warehouses.
In this chapter, I will discuss business intelligence (BI), which is by far the most widely used
data warehouse application. The next chapter describes customer relationship management
(CRM), and in Chapter 15, I will discuss customer data integration (CDI), unstructured data,
and search.

BI is a collection of activities to get an understanding and insights about a business by
performing various types of analysis on the company data as well as on external data from
third parties to help make strategic, tactical, and operational business decisions and take the
necessary actions to improve business performance. The key words here are “improve busi-
ness performance.” The purpose of any BI activity is to improve business performance. Some
of the most popular examples of BI implementations are analyzing customer profitability,
studying product profitability, evaluating sales figures across different products and regions,
exploring accounts profitability, examining supplier performance, and discovering customer
risk patterns.

It is important to bear in mind that business intelligence activities are not limited to the
data in the data warehouse. Business intelligence applications can query the ODS or ERP or
any other systems in the enterprise to perform the necessary analysis for improving busi-
ness performance. But in this chapter, I’ll discuss only BI applications that query the data
warehouse.

You can classify the various BI applications into six categories: reporting applications,
analytic applications, data mining applications, dashboards, alerts, and portal. Reporting
applications query the data warehouse and present the data in static tabular or pivot format.
Analytic applications query the data warehouse repeatedly and interactively and present the
data in flexible formats that users can slice and dice. Data mining applications explore the
data warehouse to find patterns and relationships that describe the data. Reporting applica-
tions are usually used to perform lightweight analysis. Analytic applications are used to
perform deeper analysis. Data mining applications are used for pattern finding.

Dashboards are a category of business intelligence applications that give a quick high-
level summary of business performance in graphical gadgets, typically gauges, charts,
indicators, and color-coded maps. By clicking these gadgets, we can drill down to lower-level
details. Alerts are notifications to the users when certain events or conditions happen. A BI
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portal is an application that functions as a gateway to access and manage business intelligence
reports, analytics, data mining, and dashboard applications as well as alert subscriptions.

In the rest of the chapter, I will discuss these six categories of BI applications. I’ll discuss
what they are, why we use them (why are they important), and their advantages and disadvan-
tages, and I will provide some examples of each.

Business Intelligence Reports
As discussed in Chapter 11, reports query the data warehouse and present the data in tabular
format or pivot format. We can also produce various types of charts. We can add parameters
on the reports to make them dynamic. In a data warehousing context, a report retrieves data
from the data warehouse and presents it to the users on the screen or on paper. Users also can
subscribe to these reports so that the reports can be sent to the users automatically by email at
certain times (daily or weekly, for example). In Chapter 11, we discussed reports in great detail,
including when to use reports (and when not to), how to create them, how to deploy them,
and how to administer them. So in this section, I’ll be brief so as not to repeat the topics I
already discussed in Chapter 11.

The main advantage of using reports in BI is their simplicity. Reports are simple to cre-
ate, simple to manage, and simple to use. We usually use reports (instead of analytics or
data mining applications) in BI when the presentation format requirements are fairly sim-
ple and static. The disadvantages of using reports are that they are not flexible or inter-
active. If users want to swap a piece of data with another piece or want to view the data at
a higher or lower level, we need to redesign the report. By comparison, the other types of
business intelligence applications such as analytic applications are more flexible. We don’t
have to redesign the application if the user wants to present another piece of information.
We just “plug” the analytic application on top of some cubes, and the user can explore all
the data in those cubes.

With SSRS we can do charting (line chart, bar chart, pie chart, and so on) or present the
data in simple tables or pivot table format. We can group, sort, and filter the data. We can drive
the content of the report using parameters and make the report a little bit dynamic. Users can
also change the sort order of the report at run time. Users can subscribe to a report to receive
it via e-mail automatically at certain intervals. The report can be attached to the e-mail, or the
e-mail can just contain the link to the report. We can also create a subreport within a report.
We can store or cache the report output for quick retrieval later. We can add a link to another
report by passing certain parameters to tailor the content.

BI reports are not limited to just the data warehouse. BI reports can query other data
sources within the enterprise. Most relational databases (SQL Server, Oracle, Teradata, DB/2,
mySQL, Informix, Sybase, and many others) can be accessed using ADO.NET, OLE DB, Open
Database Connectivity (ODBC), and Java Database Connectivity (JDBC). Instead of using
ODBC to access SQL Server, we can also use the SQL Native Client driver. Most multidimen-
sional databases can be accessed using XML for Analysis (XMLA) and ADOMD.NET. We can
access, for example, data stored in the ERP systems (production, HR, sales, and purchasing
information), the call center application (customer applications, complaints, and new con-
tacts), the ODS (integrated master data, reference codes, account and policy information,
up-to-date prices, and currency conversion rates), or even Windows Active Directory (security
information and usernames). Using reports we can combine the stored results of a saved
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query and the fresh output of an online query. We can combine the data from ERP systems,
the ODS, and the data warehouse in a single report or in a set of reports.

BI reports are usually managed and published in one central place, such as an intranet.
Using SSRS we can secure the reports, allowing only the people who should be able to access
the reports and keeping everybody else out. We can set the security access so that different
people or departments can administer the content of different reports. We can also integrate
the report security with Windows Active Directory so the users don’t have to login again to
access the reports.

Business Intelligence Analytics
Henry Morris coined the term analytic applications in 1997. He defined analytic applications
as applications that “provide guidance in the decision-making process by accessing time-
based data from multiple sources.”1 Users use analytic applications to access a dimensional
data warehouse interactively. Analytic applications, or analytics for short, are also known as
OLAP applications. Users can slice and dice the data, drilling up and drilling down.

I’d like to clarify the terminology that people use in analytics (such as slicing, dicing,
drilling up, and drilling down) to make sure we have a common understanding. Slicing is the
process of retrieving a block of data from a cube by filtering on one dimension, as shown in
Figure 13-1. Dicing is the process of retrieving a block of data from a cube by filtering on all
dimensions, as shown in Figure 13-2.

Figure 13-1. Slicing
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Figure 13-2. Dicing

In Figure 13-1, we are filtering only on dimension 1; in other words, dimension 1 = [val-
ues]. We do not constrain or filter dimensions 2 and 3. In Figure 13-2, we filter on all three
dimensions; in other words, dimension 1 = [values], dimension 2 = [values], and dimension 3
= [values].

Now let’s discuss drilling up and drilling down. Figure 13-3 displays the store hierarchy of
Amadeus Entertainment. On the bottom level we have stores. Moving up the hierarchy we
have regions, then divisions, and finally the whole Amadeus Entertainment group.

Figure 13-3. Dimension hierarchy, drilling up and drilling down

Drilling up means presenting the data at a higher level on the dimension hierarchy (from
detail level to summary level), such as going from the store level to the region level. Drilling
down means presenting the data at a lower level on the dimension hierarchy (from summary
level to detail level), such as going from the region level to the store level.

To illustrate the process of drilling up, please look at the subscription revenue of Amadeus
Entertainment stores for a particular week in Table 13-1.
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Table 13-1. Subscription Revenue for a Particular Week at Store Level

Store Subscription Revenue

Store 1 72,663

Store 2 61,899

Store 3 36,409

Store 4 61,994

Store 5 75,786

Store 6 34,049

Store 7 34,937

Store 8 41,012

When we drill up from store level to region level, we will get the subscription revenue for
each region, as displayed in Table 13-2.

Table 13-2. Subscription Revenue for a Particular Week at Region Level

Region Subscription Revenue

Region 1 134,562

Region 2 98,403

Region 3 109,835

Region 4 75,949

We can then drill up further to division level and to group level. Drilling down is the
reverse, going from a higher level to a lower level. When drilling down, we get more detail
information.

Analytics are what most people mean when they say BI applications. Depending on
which industry you are in, you can use analytic applications to evaluate business perform-
ance, analyze product and customer profitability, and study how to lower inventory costs.
Some analytic applications have their own multidimensional database management system
(MDBMS) such as SQL Server Analysis Services, Cognos 8 BI Analysis, Hyperion System 9 BI
Essbase Analytics, and SAP Business Warehouse. Some analytic applications can use other
vendors’ MDBMSs; for example, Business Objects OLAP Intelligence can read Microsoft
Analysis Services, Hyperion Essbase, SAP BW, and DB2 OLAP cubes,2 while ProClarity reads
Microsoft Analysis Services cubes.

All these applications are called MOLAP applications; they’re analytic applications that
read from multidimensional databases. Some analytic applications do not read from multidi-
mensional databases. They read from relational databases instead, such as MicroStrategy
OLAP. These are called ROLAP applications. To be able to respond quickly to a query such as
“What is the total revenue for fiscal week 4 in 2008 from all stores in region 4?”, ROLAP appli-
cations store the totals (known as aggregates) in summary tables. These aggregates are
calculated and stored in summary tables when the ROLAP structure is processed. This way,
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when end users submit their queries, the ROLAP application doesn’t need to access a lot of
records on the fact table. The ROLAP application can just access the summary table to get the
precomputed total.

Some applications can read from both relational and multidimensional sources and com-
bine the data internally before presenting the data to the end users. Whether the applications
read from a relational or multidimensional data source, the data source ideally needs to be in
dimensional data warehouse (Kimball) form, consisting of fact and dimension tables that
make conformed data marts. Some analytic applications can supplement this dimensional
data with data from a normalized database; for example, to get more accurate descriptions
(product descriptions, account descriptions, and so on).

Using analytic applications, we can get an overview of the current business performance,
such as sales, production, purchasing, or profitability (probably by region) and compare it
with the budget or targets. We can then drill down into specific areas that have problems and
try to find out the cause of the problems. That is a typical scenario of BI analysis. But there
are also other scenarios; for example, in the telecommunications industry we can analyze the
line usage patterns (by weekly time slots) against the bandwidth cost. Or in the waste man-
agement industry we can weigh the revenue stream (which is by volume) vs. the disposal cost
(which is by weight). Using analytic applications in monetary and technical organizations,
such as combustion engine laboratories, nationwide economic management, and weather
measurement stations, are totally different from the “normal” business organizations (com-
panies) mentioned earlier.

We can also do charting, “what if?” analysis, planning exercises, and key performance
indicator monitoring from analytic applications. We can swap any dimension with another
dimension to get a different business perspective, going up and down the dimensional hier-
archy to get different levels of summary, and we can pick certain dimension members and
focus our attention on them. Using analytic applications, we can perform ad hoc queries, drill
across to another cube, analyze data from several cubes, find and locate certain data, and per-
form various kinds of formatting and manipulation with regard to the results, such as adding
or removing columns and performing calculations.

The main advantage of using analytic applications is the flexibility. If the users don’t
know what they are trying to find in advance, then this is the right tool for them. Using ana-
lytic applications, we have the whole data warehouse at our fingertips. This is especially
useful for companies and organizations that make business decisions based on data rather
than instincts, such as performing quantitative analysis to justify the decisions. The main
disadvantage of analytic applications is the complexity. It takes some time for the users to
get familiar with the tools. Also, the multidimensional databases’ data sources need to be
maintained properly. But once everything is set and ready, then it’s easy to keep the opera-
tion going.

In analytic applications, a multidimensional database (cube) is fundamental, because
that’s where the data is stored. In the previous chapter, I discussed how to create, process, and
browse cubes using SSAS. I also discussed how to query the cubes and how to administer
them. Hence, I’m not going to repeat those topics here, so let’s continue with data mining.

Business Intelligence Data Mining
Data mining is the process of exploring data to find the patterns and relationships that
describe the data and to predict the unknown or future values of the data. The key value of
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data mining is the ability to understand why some things happened in the past and the ability
to predict what will happen in the future. To refer to predicting the future with regard to data
mining, some people use the term forecasting, and some call it predictive analytics. On the
other hand, when data mining is used to explain the current or past situation, it is called des-
criptive modeling, descriptive analytics, or knowledge discovery.

Implementing data mining in the business is growing by the day, both through descrip-
tive and predictive analytics. Using data mining, we can find the correlation between purchase
patterns and customer demographics. For example, in our Amadeus Entertainment case study,
we can find whether there is a relation between the sales of a music product type and the cus-
tomer interest or occupation. In the financial services industry, data mining is traditionally
used for credit scoring, for example, to predict the ability and willingness to pay the loan
based on (each country has different factors) payment behavior, past delinquency, current debt,
credit history, number of inquiries, address, bankruptcies filed, and customer demography.

There are many examples of data mining implementation for CRM, which we will discuss
in the next chapter. In business intelligence, popular applications of data mining are for fraud
detection (credit card industry), forecasting and budgeting (finance), cellular/mobile package
development by analyzing call patterns (telecommunication industry), market basket analysis
(retail industry), customer risk profiling (insurance industry), usage monitoring (energy and
utilities), and machine service times (manufacturing industry).

We need to do four steps to implement data mining in SQL Server 2005 Analysis Services:

1. Define what we want to achieve: In this step, we formulate the question that we will try
to answer. For example, in our Amadeus Entertainment case study, the question is this:
“Is there a correlation between the sales of music, film, and audio book product types
and the customer interest or occupation?”

2. Prepare the data: In this step, we make sure we have the relevant data and check the
data quality. In our case study, the data is already cleansed and ready in the data ware-
house, but to answer the previous question, we need to prepare the data in a separate
table that records whether the customers have purchased music, film, or audio book
products.

3. Build the mining models: We then create a mining structure that consists of one or
more data mining models. The mining models can use different mining algorithms.
Mining models can be built from relational sources or from OLAP cubes. We then
process the models and test how they perform.

4. Deploy and maintain the models in production: We can then use the models to create
predictions, either using the SQL Server data mining language (DMX) or using Predic-
tion Query Builder. A prediction is a forecast or a guess about the future value of a
certain variable. For example, in the Amadeus Entertainment case study, we can use
the model to forecast the sales of music products in the next quarter. We can also cre-
ate reports that query the mining models by creating an Analysis Services data set. We
may need to process the models regularly to keep them up-to-date, either using XML
for Analysis (XMLA) or using Analysis Management Objects (AMO).

Let’s go through the process of creating and processing the mining models in SQL Server
for the Amadeus Entertainment case study. Open Management Studio, and create the follow-
ing table in the DDS database. We will use this table to build mining models to find the
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correlation between the music purchases and demographic attributes. We will also group the
rows on this table into ten clusters with similar characteristics to enable us to analyze and pre-
dict the behavior of each cluster.

create table dm_purchase_pattern
( customer_key int
, gender       char(1)
, interest     varchar(30)
, occupation   varchar(50)
, music        char(1)
, film char(1)
, audio_books  char(1)
, constraint pk_dm_purchase_pattern
primary key clustered (customer_key)

)
go

Now let’s store music, film, and audio book purchases in this table, along with the cus-
tomer demographic attributes such as interest, gender, and occupation.

Listing 13-1 inserts customer demographic information into the dm_purchase_pattern
table, along with indicators whether they have purchased music, film, or audio book products.

Listing 13-1. Creating and Populating Purchase Pattern Table for Data Mining

insert into dm_purchase_pattern
(customer_key, gender, interest, occupation, music, film, audio_books)
select c.customer_key, c.gender, c.interest1, c.occupation
, case sum(case p.product_category when 'Music' then 1 else 0 end)
when 0 then 'N' else 'Y' end as music

, case sum(case p.product_category when 'Films' then 1 else 0 end)
when 0 then 'N' else 'Y' end as films

, case sum(case p.product_category when 'Audio Books' then 1 else 0 end)
when 0 then 'N' else 'Y' end as audio_books

from fact_product_sales f
join dim_product p on f.product_key = p.product_key
join dim_customer c on f.customer_key = c.customer_key
group by c.customer_key, c.gender, c.interest1, c.occupation
go

Now open BIDS, and open the Analysis Services project we created in Chapter 12.
(You can also create a new project if you want.) Edit the DDS data source view by double-
clicking it in Solution Explorer. Right-click the canvas, and choose Add/Remove Tables.
Add the dm_purchase_pattern table we just created to the data source view.

Right-click Mining Structures in Solution Explorer, and choose New Mining Structure.
Click Next on the welcome page, and choose “From existing relational database or data ware-
house” on the next page. Choose “Microsoft Decision Trees” for Data Mining Technique, and
then choose DDS for the data source view. On the Specify Table Types page, choose
dm_purchase_pattern as the case table. The case table is a table that contains the training data
that we want to use to train the mining model.
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On the next page (Specify the Training Data), we have three usage types for each column.
We can use a column as a key, as an input, or as a predictable. The key column uniquely identi-
fies a row in a table. The input column provides the information used by the mining model to
make the predictions. The predictable column is the value we are trying to predict.

Choose customer_key for the key column; gender, interest, and occupation for the input
columns; and music for the predictable column, as shown in Figure 13-4.

Figure 13-4. Specifying the training data

Before we move to the next page, let’s go through one concept first: content type. In the
database world we have data types, such as integer, varchar, decimal, datetime, and so on. As
the name implies, data types define the type of data we can have for a particular column. For
example, an integer column can have only “whole” numeric values, such as 1, 2, 3, and so on,
whereas a varchar column can contain “string” values. In a mining model, we have five data
types for a column: date, double, long, text, and boolean. These data types describe the type of
data but not the behavior of data, such as whether the values are ordered. Because of that, in
data mining we have the concept of content type, which describes the behavior of the data.

There are eight content types: discrete, continuous, discretized, key, key sequence, key
time, ordered, and cyclical:

• A discrete column contains a set of values. There are only certain possible values for
that column such as city name and gender.

• A continuous column contains any values of certain types; for example, the revenue
column can contain any numerical values.

• A discretized column contains continuous values that have been converted into several
buckets of discreet values.

• A key column acts as a unique identifier of the row.

CHAPTER 13 ■ USING DATA WAREHOUSE FOR BUSINESS INTELLIGENCE 419

9314ch13final.qxd  11/15/07  9:49 AM  Page 419



• A key sequence column is a key column, but the values represent a sequence of events.
The values are ordered, as in 1, 2, 3, 4, 5, …. They don’t have to have the same distance
between them. For example, 1, 3, 4, 6, … are valid key sequence values.

• A key time column is a key column, but the values are datetime values. The values are
ordered, as in 2007-10-22 00:00:00, 2007-10-23 00:00:00, 2007-10-24 00:00:00, and so on.

• An ordered column is a discreet column, but the values are ordered. For example, the
customer class column may contain discreet values of A, B, C, and D.

• A cyclical column is an ordered column, but the values are repeating. For example, the
month number goes from 1 to 12 and then repeats from 1 again.

Only certain data types are valid for certain content types. For example, for a continuous
column we can have only date, double, and long; we cannot have text or boolean data types.
Table 13-3 shows the valid data types for each content type.

Table 13-3. Valid Data Types for Mining Structure Content Types

Content Types Date Double Long Text Boolean

Discrete Yes Yes Yes Yes Yes

Continuous Yes Yes Yes No No

Discretized Yes Yes Yes No No

Key Yes Yes Yes Yes No

Key Sequence Yes Yes Yes Yes No

Key Time Yes Yes Yes No No

Ordered Yes Yes Yes Yes Yes

Cyclical Yes Yes Yes Yes Yes

Now that you understand the concepts of content types and data types, let’s continue
with the Data Mining Wizard. The next page is Specify Columns’ Content and Data Type,
where we specify the content type and the data type for each column, as shown in Figure 13-5.
On this page, we can ask Analysis Services to detect the content types and data types, or we
can specify them manually. In this case, click Next because they are already correct.

On the next page, specify the mining structure name as Purchase Pattern and the mining
model name as Decision Trees, and check the “Allow drill through” box. This option allows us
to explore the source data. The Mining Structure designer opens, showing the
dm_purchase_pattern table, as shown in Figure 13-6.
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Figure 13-5. Specifying content types and data types

Figure 13-6. Mining Structure designer

Before we move on, let’s go through the five tabs on the Mining Structure designer:

• The Mining Structure tab (displayed in Figure 13-6) contains the columns in the mining
structure and the table that the data source view contains. We can use this tab to mod-
ify the mining structure and explore the underlying source data.

• The Mining Models tab contains the mining models we created using the Data Mining
Wizard, based on the mining structure displayed on the Mining Structure tab. We use
this tab to manage existing models and to create new models.
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• The Mining Model Viewer tab is used to visually explore the mining models.

• The Mining Accuracy Chart tab is used to test the accuracy of the mining model’s pre-
diction. This tab contains tools to filter the data and to display the accuracy results.

• On the last tab, Mining Model Prediction tab, we can specify the mining model and
input tables, map the columns, add functions to the query, and specify the criteria for
each column.

Next, click the Mining Models tab. The Decision Trees mining model is displayed there.
We’ll create another mining model using a different clustering algorithm so we can compare
different data mining algorithms. A clustering algorithm, also known as a segmentation algo-
rithm, divides data into groups with similar properties, whereas the decision trees algorithm
(also known as the classification algorithm), on the other hand, predicts a variable (or more)
based on the other variables in the data set.

Right-click anywhere on the table, and choose New Mining Model. Name the model Clus-
tering, and choose Microsoft Clustering. The Mining Models tab now looks like Figure 13-7.

Figure 13-7. Creating the second mining model

Now that we have created the models, we need to build, deploy, and process the models.
This is to create the mining structure in SQL Server Analysis Services, populate the structure
with raw data, and calculate the result using the correct data mining algorithms. Right-click
anywhere on the table shown in Figure 13-7, and choose Process Mining Structure and All
Models. BIDS will ask whether we want to build and deploy the model first. Click Yes. After
building and deploying the model, BIDS displays the Process Mining Structure dialog box, as
shown in Figure 13-8.
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Figure 13-8. Processing the mining structure

In this window we specify the settings we want to use when processing the mining struc-
ture. When processing a mining structure, we have four process options:

• Process Full drops and repopulates data in all mining models in the mining structure.

• Process Structure populates the mining structure with source data.

• Process Clear Structure removes all training data from the mining structure.

• Unprocess drops the data in all mining models in the mining structure.

The Impact Analysis button lists which other SSAS objects are affected by the processing
task. The Change Settings button enables us to change the processing order (whether the min-
ing models are processed sequentially, one model at a time, or parallel, which is all models
simultaneously), the transaction mode if we process sequentially (process in one transaction
or in separate transactions), how to handle dimensional errors (whether to convert to an
unknown record or discard the record, how to handle invalid keys, null keys and duplicate
keys, and so on), and whether the processes affected objects.
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In this case, we are happy to go with the default settings, so just click Run. BIDS will dis-
play the progress as we go along, as shown in Figure 13-9.

Figure 13-9. The progress of processing a mining structure

After the processing is completed, click Close. Click Close again to close the Process Min-
ing Structure dialog box. Click the Mining Model Viewer tab. The viewer displays the Decision
Trees model using Microsoft Tree Viewer. As shown in Figure 13-10, there are 298 customers
with interest = ‘Pop Music’, and 264 of them (88 percent) purchased music products from
Amadeus Entertainment. The Y and N equates to purchasing music because when populating
the case table (dm_purchase_pattern), we store music purchases in the music column (see
Figure 13-4), and when creating the mining model, we set music as the predictable column
(as shown earlier in Listing 13-1).

In the figure, the shaded part shows how many customers in that segment purchased
music products, and the unshaded part shows how many didn’t. The group of customers who
are interested in romance, management, and business are all unshaded, meaning that none of
them purchased the music products. Classic and Asian Music, on the other hand, have long
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shaded lines, meaning that the majority of them purchased music products. You can display
the numeric details of each box by placing the cursor on those boxes. We can show more levels
by moving the slider. We can move and navigate around the canvas easier by clicking the +
sign on the bottom-right corner of the canvas.

Figure 13-10. Examining the correlation between interest and music purchase

Click the Dependency Network tab to see the relationship between the demographic fac-
tors (gender, interest, and occupation) and music purchases, as shown in Figure 13-11. You
can understand the strength of the relationship using the slider on the left. When we move the
slider down, the arrow with the weak relationship will disappear.

A dependency network diagram shows the relationship or dependency between the
input columns and the predictable columns (please refer to Figure 13-4 when we specified
the columns in our mining model). These columns are called nodes (represented as ellipses
in Figure 13-11). When we select a node (by clicking it), the nodes are color-coded; the
selected node is in light blue, the input columns are in red, the predictable columns are in
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dark blue, and if a column is used for both input and predictable, it is in purple. For exam-
ple, although the colors aren’t shown in Figure 13-11, Music is the selected node, and
Interest and Occupation are the input columns.

Figure 13-11. Relationships between nodes

In the dependency network diagram, only input columns that affect the predictable col-
umn are shown. Figure 13-11 shows that only interest and occupation affects music purchase;
gender doesn’t.
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We can move the slider downward to find out which demographic factor has stronger
influence on the music purchase: occupation or interest. Figure 13-12 shows what happens
when we move the slider downward to the bottom. It shows that occupation has stronger
influence because it is the only node with an arrow pointing to music. The arrow on the inter-
est node has disappeared.

Figure 13-12. Moving the slider downward shows the strongest link.
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We can also view the other model that we built using the clustering algorithm by choosing
the model in the drop-down list. BIDS will ask whether we want to build and deploy the model
first. Say Yes to this offer. Figure 13-13 shows the result.

Figure 13-13. The mining model using the Microsoft clustering algorithm

The Microsoft clustering algorithm uses iterative techniques to group the rows in our
dm_purchase_pattern table into ten clusters that contain similar characteristics. Figure 13-13
shows how the ten clusters are similar to each other; in other words, the darker the line
between two clusters, the more similar those clusters are. By default, the graph displays the
population size; in other words, the bluer the cluster box, the more customers in that cluster.
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In Figure 13-13, we can change what data the shading color is showing. For example, we
can show interest in gardening by changing the Shading Variable drop-down list to Interest
and the State drop-down list to Gardening, as shown in Figure 13-14.

Figure 13-14. Changing the shading variable on the cluster diagram

We can see the profile of each cluster by clicking the Cluster Profile tab, as shown in
Figure 13-15.

Figure 13-15. The profile of each cluster
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We can use the cluster profiles to find out whether a particular demographic attribute
affects the music purchase. For example, let’s compare clusters 2 and 9 in Figure 13-15. Clus-
ters 2 and 9 have similar interests, similar occupations, and very different genders (cluster 2 is
mostly female, and cluster 9 is mostly male); however, they have similar music purchases. This
indicates that gender does not have much influence on music purchases.

We now need to test the accuracy of the models, meaning we want to determine how well
the models perform the predictions. Click the Mining Accuracy Chart tab, click Select Case
Table, and choose the dm_purchase_pattern table.

Before we continue to the Lift Chart tab, I’ll discuss what a lift is. A lift is an improvement
in response compared to the normal rate. For example, say that the usual music marketing
campaign purchase rate in Amadeus Entertainment is 0.1 percent; in other words, if we send
music campaign e-mails to a random 1 million recipients, we expect that about 1,000 cus-
tomers will make a purchase. But if we pick these 1 million recipients, say, using predictions
from data mining and we manage to get a 0.5 percent purchase rate, then the lift is 0.4 per-
cent. In this case, to get 1,000 purchases, we need to send only 200,000 campaign e-mails. If
the data mining predictions are 100 percent accurate (in other words, always right and never
wrong), then to get 1,000 purchases we need to send only 1,000 campaign e-mails. A lift chart
is a graphical representation of the change in lift that the mining model causes.

Now that you understand what lifts and lift charts are, click the Lift Chart tab to com-
pare the accuracy between the Decision Trees model and the Clustering model, as shown in
Figure 13-16. Accuracy is the percentage of the predictions that are correct.

Figure 13-16. Test model accuracy using lift chart

In Figure 13-16, the straight line shows the ideal scenario where the prediction is always
correct. In this case, the prediction is whether a customer will purchase music products. The
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line closest to ideal shows the Decision Trees model, and the line below that shows the Clus-
tering model. We can see that when the x-axis is at 100 percent population, the Decision Trees
model is 85 percent correct, whereas the Clustering model is 69 percent correct. This means
that when using all the data in the dm_purchase_pattern table to guess which customers made
music purchases and which ones did not, the Decision Tree model was 85 percent correct,
while the Clustering model was only 69 percent correct. This shows that the Decision Trees
model is more accurate than the Clustering model for predicting music purchases based on
demographic attributes.

You may ask, why is the Decision Tree model more accurate than the Clustering model?
Is this always the case? You may also ask, when do I use the Decision Trees model and when
do I use Clustering model? Even though in this particular case the Decision Tree model is
more accurate than the Clustering model, in other cases it might not always be true. Both
the Decision Tree model and the Clustering model are good for predicting a discreet column,
such as a music purchase (which is a Yes or No value). But for predicting a continuous col-
umn, the Decision Tree model is better. Please refer to the discussion about content types
earlier in this section about the differences between discreet and continuous columns. The
Clustering model is better for finding groups of similar items, such as segmenting customers
into groups based on demographic data for targeted mailings.

The next step is to deploy this mining structure into production and use it to predict
whether a potential customer would be interested in purchasing music products. For the pur-
pose of this exercise, we will use data from the same table. For that, let’s click the Mining
Model Prediction tab, click Select Case Table, and choose dm_purchase_pattern. Set the source,
field, show, and criteria/argument columns, as shown in Figure 13-17, to select what columns
we want to display in the output.

Figure 13-17. Using the model to predict future values
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The rows on the table at the bottom of Figure 13-17 correspond to the columns we want
to display in the prediction output in Figure 13-18. In this case, we want to display three
columns in the prediction output: customer key, music, and prediction probability. The first
row means we want to display the customer_key column from the dm_purchase_pattern table
in the output. The second row means we want to display music purchases from the Decision
Trees model. The third row means we want to display the probability of the music purchase
prediction using the PredictProbability function, in other words, how certain we are about the
result. The probability level is expressed as a decimal number between 0 and 1; 0 means not
sure at all, and 1 means 100 percent certain. PredictProbability is a Data Mining Extensions
(DMX) function that users cannot configure. It returns the probability of a given value in a
discreet column.

To view the prediction results, click the first icon in the toolbar. Figure 13-18 shows the
result.

Figure 13-18. The prediction output

In Figure 13-18, customers 6, 7, and 8 are likely to purchase music products, with the
probability levels of 0.78, 0.57, and 0.87. This means the prediction for customers 6 and 8 are
more certain than the prediction for customer 7. Customers 1, 2, 9, 11, and 12 almost certainly
won’t purchase music products. The model predicts that customer 10 won’t purchase music
either, but it’s not so certain.

Business Intelligence Dashboards
Dashboards are a category of business intelligence applications that give a quick high-level
summary of business performance in graphical gadgets, typically gauges, charts, indicators,
and color-coded maps. By clicking these gadgets, we can drill down to lower-level details.
Dashboard applications that are based on a data warehouse are typically updated daily, but
sometimes weekly or monthly, depending on how frequently business performance measure-
ments are required. Real-time dashboards are becoming increasingly popular, querying data
from operational systems rather than from a data warehouse.

Figure 13-19 shows an example of a dashboard for Amadeus Entertainment. It shows the
top-level key performance indicators (KPIs) in four key areas: product sales (actual sales year-
to-date vs. target), subscription sales (the number of subscriptions compared to the target),
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supplier performance (one for each product category plus streaming media), and customer
relationship management (bounce rate, open rate, click-through rate, and CRM revenue).

Figure 13-19. Amadeus Entertainment BI dashboard

Dashboard applications were initially used by upper-level management (senior managers
and C-level executives) to analyze business performance. Today all levels of management use
dashboards as the applications become increasingly closer to operational level rather than for
analysis. Dashboard applications have become important and useful tools for managing busi-
ness operations and driving business performance. If there are problems in achieving business
targets and budgets, operation managers and directors need to know as early as possible so
they have the time to take action to rectify the problems; in other words, if the target is
monthly, they want the data daily. The critical factor for the successful implementation of
dashboard applications is to determine the correct KPIs and regularly update these indica-
tors with the correct data. The old saying is true: we get what we measure.

Key performance indicators are metrics that reflect business objectives. Different busi-
ness areas have different KPIs. For sales departments, weekly or monthly sales revenue and
profit margin, by region or store, are important KPIs, especially if they are compared against
the target figures. For finance, debtor days, operating profit, and return on equity are some
KPIs. KPIs are different from organization to organization. Other examples of popular KPIs are
customer churns, market share, employee turnover, customer satisfaction rating, and product
profitability.

Dashboard applications incorporate these KPIs into visual gadgets that are very clear and
easy to understand and keep up-to-date. It can also show the trend or progress (in other
words, down or up) of the KPI by comparing the current value to a previous period. The main
advantages of dashboard applications are the ability to understand the overall status of the
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entire business in a quick glance (because of the visual gadgets and because of the correct
KPIs) and the ability to drill down to a more detailed level if necessary. The disadvantages are
that they are not easy to build and must be updated regularly. Reports are the easiest applica-
tion to build, OLAP analytics are second, and data mining (in my opinion) is the third most
complicated. The difficulty level of building dashboard applications is somewhere between
OLAP analytics and data mining. The complexity is because we need to be able to drill down
to lower-level details and because of the interactive behavior characteristics of the visual
objects. For example, if you mouse over a U.S. state in the map object, the sales gauge shows
red/green/yellow depending on the sales volume.

SSAS provides a facility called KPI where we can display various KPIs with their trends in
the form of visual gadgets such as gauges, thermometers, traffic lights, or color-coded cylin-
ders. It does not provide the ability to drill down to the lower level of details, but it’s still very
useful. So, let’s explore this feature a little bit. Open the Amadeus Analysis Services project that
we used for data mining in the previous section. Open the Product Sales cube that we created
in Chapter 12. The project is also available in the book download on the Apress website; in the
Cubes\ Amadeus Analysis Services folder you’ll find a file named Amadeus Analysis
Services.sln. Click the KPI tab. Click the New KPI button on the toolbar.

Let’s complete the details of the new KPI we just created. Name it Sales, as shown in
Figure 13-20. “Associated measure group” is the group of fact table measures in the product
sales cube that we want to put on the KPI. This affects which dimensions are available when
the users browse this KPI. In our case, there is no difference between setting it to <All> (as
shown in Figure 13-20) or setting it to Fact Product Sales because we have only one measure
group in the cube.

Figure 13-20. Setting up KPIs
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“Value expression” in Figure 13-20 contains the value of the KPI. To put the sales value as
a KPI, let’s set this to [Measures].[Sales Value]. “Goal expression” contains the goal value of
the KPI. For this exercise, let’s set it to [Measures].[Sales Cost]*1.4, which means the target
for the KPI is for the sales value to be greater than or equal to 1.4 * Sales Cost.

“Status indicator” determines the type of visual gadget for this KPI. Set it to Gauge. “Status
expression” controls the status of the gauge, in other words, when it is green, yellow, or red.
The gauge will be green if the status expression is 1, yellow if 0, and red if -1. It will be between
green and yellow if the status expression is 0.5 and between yellow and red if the status expres-
sion is -0.5. Set the status expression as follows:

case when [Measures].[Sales Value] > [Measures].[Sales Cost]*1.6 then 1
when [Measures].[Sales Value] > [Measures].[Sales Cost]*1.3 then 0.5
when [Measures].[Sales Value] > [Measures].[Sales Cost] then 0
when [Measures].[Sales Value] > [Measures].[Sales Cost]*0.8 then -0.5
else -1

end

This language is Multidimensional Expressions (MDX), which is a scripting language that
is used to specify a subset of cube data or to specify an expression when dealing with multi-
dimensional databases (MDBs). Using MDX, you can do the following:

• Create, drop, and work with MDB objects.

• Retrieve and manipulate data from/in MDB.

• Create MDX scripts to manage the scope, context, and program flow.

• Use MDX operators and functions for manipulating data retrieved from MDB.

We can use MDX in SSIS, SSRS, and SSAS, as well as for performing ad hoc queries in
BIDS. Basically, MDX is the scripting language for dealing with cubes.

In Figure 13-20, “Trend indicator” is the graphic that represents the trend value, such as
up, down, or flat. There are four choices: standard arrow (black arrow), status arrow (green
arrow), reverse status arrow (green arrow but with reverse direction), and faces (yellow smi-
ley). Let’s set the trend indicator to a standard arrow (or any other one if you like).

“Trend expression” is an MDX expression that returns the trend value; 1 means up, -1
means down, and 0 means flat. Let’s set the trend expression as follows:

case when isempty([Dim Date].[week_number].PrevMember) then 0
when [Measures].[Sales Value] > ([Dim Date].[week_number].PrevMember,

[Measures].[Sales Value] * 1.2) then 1
when [Measures].[Sales Value] > ([Dim Date].[week_number].PrevMember,

[Measures].[Sales Value]) then 0
else -1

end

The previous code sets the trend to up when this week’s sales value is higher than 1.2
times last week’s sales, flat when it’s between 1 and 1.2, and down when this week’s sales value
is lower than last week.

Let’s create another KPI called Profit. This time select the status indicator as a traffic light
so we can compare it to the previous KPI, which is a gauge. The settings are similar to the first
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KPI that we just set. Set “Associated measure group” to <All>, because we have only one
measure group in the cube. Set the value expression to [Measures].[Sales Value]-
[Measures].[Sales Cost] to describe that Profit = Sales – Cost. Set the goal expression to
[Measures].[Sales Value]*0.5, meaning that the goal is to have a profit equal to half of the
sales value. Set the status indicator to a traffic light; in other words, the status is green, yellow,
or red. Set the status expression as follows:

case when ([Measures].[Sales Value]-[Measures].[Sales Cost]) >
[Measures].[Sales Value]*0.5 then 1
when ([Measures].[Sales Value]-[Measures].[Sales Cost]) > 0 then 0
else -1

end

The previous code sets the Profit KPI to green when the profit is greater than 0.5 * sales,
yellow when the profit is greater than 0 but less than 0.5 * sales, and red when the profit is
negative. Set the trend indicator as a standard arrow and the trend expression as follows:

case when isempty([Dim Date].[week_number].PrevMember) then 1
when ([Measures].[Sales Value]-[Measures].[Sales Cost]) >
1.2 * ([Dim Date].[week_number].PrevMember,
([Measures].[Sales Value]-[Measures].[Sales Cost])) then 1

when ([Measures].[Sales Value]-[Measures].[Sales Cost]) >
1.1 * ([Dim Date].[week_number].PrevMember,
([Measures].[Sales Value]-[Measures].[Sales Cost])) then 0.5

when ([Measures].[Sales Value]-[Measures].[Sales Cost]) >
([Dim Date].[week_number].PrevMember,
([Measures].[Sales Value]-[Measures].[Sales Cost])) then 0

when ([Measures].[Sales Value]-[Measures].[Sales Cost]) >
([Dim Date].[week_number].PrevMember,
0.9 * ([Measures].[Sales Value]-[Measures].[Sales Cost])) then -0.5

else -1
end

The previous code sets the profit trend to up when the profit is greater than 1.2 of last
week’s profit, half up (pointing to 2 o’clock direction) when the profit is between 1.1 and 1.2
of last week’s profit, flat (pointing to the right) when the profit is between 1 and 1.1, half
down (pointing to 4 o’clock direction) when the profit is between 0.9 and 1, and down when
the profit is less than 0.9.

After everything is set up, click the ABC button to check that the syntax is correct. Click
the Build menu, and choose Deploy. After deployment is completed successfully, click the
Reconnect icon (it’s the third icon from the left). This is necessary to reconnect to the Analysis
Services cube after the KPIs have been added to the cube to pick up the changes we just made.
To see the KPIs, with their values, goals, status, and trends, click the Browser View button (it’s
the second icon from the right). Let’s pick up a certain product category and certain week to
check whether the values, goals, status, and trends are correct for that week. Set the product
category to Music and the date dimension to week 10 (you can pick other product categories
and other weeks if you want), as shown in Figure 13-21.
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Figure 13-21. Viewing the KPIs

The condition of the visual gadgets depends on the criteria that we specify in the MDX.
Figure 13-21 shows that the status of Profit is yellow, meaning it is between 0 and 0.5 of the
sales value. The trend for Profit is up, meaning it is more than 1.2 times the value in the previ-
ous period. The sales status is between yellow and green, which means it is between 1.3 and
1.6 times the sales cost. The sales trend is flat, meaning it’s between 1 and 1.2 times the previ-
ous period.

In SQL Server, we can deliver a dashboard using SSAS and KPIs, as discussed. We can then
put the KPIs that we built in SSAS as web parts and host them in SharePoint to create dash-
board applications. ProClarity (now part of Microsoft), Microsoft Office Performance Point,
and Business Scorecards Manager also have the ability to deliver dashboard applications.

Business Intelligence Alerts
Alerts are notifications to the users that a certain event or condition has happened. Examples
of such events or conditions are the following:

• When a daily sales figure in any particular store falls under a certain percentage of the
target

• When the number of account closures across the whole country is beyond a certain
figure

• When the profit margins for certain product types across the whole region are lower
than a preset limit

Again, remember that BI covers a wider area than just the data warehouse. A BI tool such
as alert system can access the ODS and operational systems as well as the data warehouse.
Therefore, we can distinctly differentiate BI alerts into two categories according to which sys-
tem they get the data from: data warehouse alerts and operational system alerts. The main
difference between these two is that the scope of operational system alerts is per transaction,
whereas data warehouse alerts are at an aggregate level; for example, they can be weekly
across product types or daily across regions. Examples of operational system alerts are an
e-mail, pager, or SMS notification in the event that the stock level falls below a certain mark
or when a booking order value is more than the customer credit limit.
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The main purpose of having BI alerts is to be able to react early in order to prevent some-
thing that is about to happen or to rectify something before it gets worse. The main advantage
of delivering BI information using alerts as opposed to the other four methods (reports, analyt-
ics, data mining, and dashboards) is the timing. An alert proactively notifies the user when the
situation occurs or when the event happens, whereas with the other methods, the user needs
to actively run or invoke reports, analytics, data mining, or dashboard applications (with the
exception of subscription-based reports). The main disadvantage is that alerts usually contain
only simple data, as opposed to the rich data delivered by data mining or dashboard applica-
tions. But, alerts can contain links or URLs to the web pages that contain rich information.

So, how do we deliver alerts in SQL Server? The answer is SQL Server Notification Ser-
vices. Notification Services is a platform for developing and deploying applications that
generate and send notifications to subscribers. Notification Services has four components:
Subscription Management, Event Collection, Subscription Processing, and Notification
Delivery. The Subscription Management component stores the subscribers, the information
to be delivered, and the preferred delivery channels. The Event Collection component gath-
ers the events from databases, file systems, or applications and sends these events to a
notification application. Standard event providers are SQL Server (T-SQL queries), Analysis
Services (MDX queries), and file system watcher (XML files). The Subscription Processing
component evaluates the subscriptions to find a match against the collected events and then
generates the notifications. The Notification Distribution component transforms the notifi-
cation data into a readable message (web, file, or e-mail), formats the message, and sends it
to the subscribers via the correct delivery channels.

Business Intelligence Portal
A BI portal is an application that functions as a gateway to access and manage business
intelligence reports, analytics, data mining, and dashboard applications as well as alert sub-
scriptions. It can be developed as a custom-built application (using Visual Studio .NET, for
example) or using an off-the-shelf solution. Some BI vendors have products to construct a
BI portal that put various reports, OLAP, scorecards, and dashboards (usually their own BI
applications) into one place for easier and simpler access, including MicroStrategy 8
Dynamic Enterprise Dashboards, Hyperion 9 Interactive Reporting Dashboard Studio, and
Cognos Portlets for IBM WebSphere Portal. Microsoft Office Business Scorecard Manager
2005 and Microsoft Office SharePoint Server 2007 also have a BI portal as a built-in sample
application.

The main benefit of using a BI portal is that all BI applications are available in one central
place. The second benefit is centralized security management. In other words, users need to
log in only once to the portal, and they don’t need to log in again to access each application.
So, it is simpler for the administrator to manage the security. These days most BI portals are
web-based so that users across different geographical regions can access them via the com-
pany intranet, extranet, or other platform. It is also common to place the BI documentation
and user guides, as well as the support phone numbers and the link to the help desk applica-
tion, on the BI portal for easy access by the users. You can also put BI and data warehouse
news and announcements such as when you have new dashboards or when a particular sales
report shows good results. Figure 13-22 shows an example of a BI portal.
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Figure 13-22. Example of a BI portal

So, how do we build a BI portal? Well, in its simplest form, it is a web page containing
many links to various reports and BI applications. So, we can use ASP.NET to build it. With
some documentation, a user guide, and other useful information added, it would become a
good starting point for the BI users. For the implementation of business intelligence on the
SQL Server platform, some people build the BI portal using SharePoint to take advantage of
integrating Reporting Services web parts with SharePoint. (Reporting Services provides Share-
Point components that we can include in the SharePoint portal. These components are called
web parts.) Examples of Reporting Services SharePoint web parts are RsReportInfo,
RsReportView, RsReportParameters, and RsReportExport. You can use RsReportInfo to get the
report details. RsReportView is used for viewing the reports, so it’s probably the most useful
web part. RsReportParameters is for setting up reporting parameters. RsReportExport is for
exporting reports to PDF, XML, Excel, or text files. On the SharePoint portal, you can also pro-
vide the link to the Reporting Services main page, where all the reports are kept in folders.

Summary
There are several types of BI applications such as reporting, analytics, data mining, dash-
boards, and alerts. In this chapter, I discussed each of these types one by one. I went through
the detailed steps of creating key performance indicators in SQL Server Analysis Services 2005.
I also discussed BI portals, which unify all the previous applications in one central place and
simplify the security administration.
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All these BI applications give you information about the condition of your business. You
need to implement the correct actions to improve your business performance and verify that
these actions are correct by looking at these BI applications again. If the performance is
improving, your actions are correct. If not, it’s wrong, and you need try another action. With-
out doing anything, there is no point having the BI applications. If there is only one point that
you take from this chapter, I hope it is this one: take action!
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Using Data Warehouse for
Customer Relationship
Management

Customer Relationship Management (CRM) is the activity of establishing contact and man-
aging communications with customers, analyzing information about customers, campaigning
to attract new customers, performing business transactions with customers, servicing cus-
tomers, and providing support to customers. Customers are the people (or parties) who a
company or an organization serves; they’re the ones who consume its products or services.
If the organization is not a company or business (for example, a school or university, govern-
ment agency, nonprofit organization, social club, political party, and so on), you can replace
the word customers in the earlier definition with students, constituents, citizens, taxpayers,
users, applications, stakeholders, and so on, whichever is most appropriate.

A CRM application is a system that a company or organization uses to create and send
campaigns, analyze customers’ personal and demographic information, analyze and predict
customer behavior including purchases, perform customer scoring, manage customer per-
missions, manage customer support/service, integrate customer data, manage customer
loyalty programs, and manage customer contacts (including complaints and resolutions).
Some CRM applications cover only some of the functionalities listed here. CRM applications
can be hosted internally in-house or hosted externally with an application support provider
(ASP), meaning the application and data is hosted outside the company and the users access
it remotely, usually via the Internet. An example of a hosted CRM solution is Salesforce.com,
which offers customer data management, customer analysis, customer response manage-
ment, and customer relationship history hosted on its servers over the Internet. CRM
applications can be sold as part of an Enterprise Resource Planning (ERP) product suite, such
as in the case of Siebel, SAP, and PeopleSoft, or it can be a stand-alone product such as Infor
(Epiphany), Microsoft Dynamics CRM, and Teradata CRM.

Customer data can be stored centrally in a data warehouse or in an operational data store,
where the customer data is integrated to produce a single-customer view (SCV). An SCV is an
integrated collection of customer data from various data sources in one central place so you
can have a holistic view of your customers. An SCV is important because it gives you a better
understanding of your customers. I will discuss SCVs in more detail in the next section. The
other major benefit of storing integrated customer data in the data warehouse is to perform
customer analytics and data mining—both descriptive analytics (discovering the patterns in
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customer data) and predictive analytics (forecasting customer behaviors). Also, a dimensional
data warehouse is an ideal platform to perform customer scoring (calculating the value of a
customer using a particular formula, for example, based on their purchases), especially when
the algorithm for scoring involves demographics and purchase analysis.

In this chapter, I will discuss how to use a data warehouse to perform CRM activities,
including creating a single customer view, performing campaign segmentation, managing
permissions, monitoring deliverability, performing customer analysis, managing customer
support, managing personalization, and administering loyalty schemes.

Single Customer View
Organizations make contacts with their customers at various points. This results in various
views or definitions of customers. If we asked our order-processing department about who
our customers are, they would probably say, “Individuals who have purchased a product or
service from us.” If we asked our CRM department, they would probably have a different view.
Their concept of a customer might be “Individuals who have purchased something from us,
plus anybody who is currently subscribed to our newsletters.” Another department, such as
customer service, could have a different view of a customer. Their concept of a customer may
be “Individuals who have put something in a shopping basket, even though they don’t con-
tinue to the checkout.” Finance may have a different view of a customer: “A customer is
anybody who has paid us or owes us money.”

The previous paragraph illustrates a common situation where different parts of the enter-
prise have their own view, or definition, of customers. Because of these different views, “the
number of customers” is different from department to department. If we ask the order-
processing department, they may say that the number of customers is 25 million, whereas
the marketing department may say that the number of customers is 60 million.

This situation may be even worse if different departments are using different systems or
applications. Marketing may be using Omniture, finance may be using SAP, and CRM may be
using Siebel. In this situation, the customer data is scattered across several different systems,
and each system has a different list of customers. Therefore, it is very difficult to compose a
single definitive list of customers.

The concept of an SCV is to have a single definition about who a customer is. Only when
we have a single common definition across all departments can we have a definitive list of
customers. An SCV is an integrated collection of customer data from various data sources in
one central place so we can have a holistic view of our customers.

Let’s illustrate this with our case study, Amadeus Entertainment. A customer in Amadeus
Entertainment can be a purchaser, subscriber, registered user, or various other definitions,
depending on the department. Say that we have the following definitions of customers. These
quantities are just some examples to show the effect of overlaps on the total (they don’t come
from our DDS sample database).

• Twenty-five million individuals have purchased Amadeus Entertainment’s products.

• Thirty-five million individuals subscribe to its communications.

• Twenty million individuals have registered on the web sites.
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• Forty-four million individuals have asked for quotes.

• Fifty-five million individuals have browsed its web sites.

• Thirty-one million individuals have downloaded something from the web sites.

• Twelve million individuals have participated in one of its online competitions.

• Seven million individuals have sent the company e-mails or called.

• Twenty-four million individuals have made payments to Amadeus Entertainment.

• Seventeen million individuals have accounts with Amadeus Entertainment.

This situation can be drawn in the Venn diagram shown in Figure 14-1. The circles on the
diagram show the different customer definitions. The sizes of the circles reflect the quantities.
Each circle intersects with other circles, meaning that the same customers can be included in
several definitions. If the common definition of a customer of Amadeus Entertainment
includes all of the previous (purchaser, subscriber, registered user, and so on), then the total
number of customers that the company has is identified by the total area of the Venn diagram.

Figure 14-1. Intersections between different customer definitions

Because of the overlap, the total number of customers that Amadeus Entertainment
has is not 25 million + 35 million + 20 million + 44 million + 55 million + 31 million +
12 million + 7 million + 24 million + 17 million = 270 million, but probably much less than
that. In Figure 14-1, the total area is probably 1.5 of the largest circle (B/S, 55 million), giv-
ing us only 82.5 million. This situation is illustrated in the customer table shown in
Table 14-1.
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Table 14-1 shows the simplified concept of an SCV, without any customer attributes or
links to other areas. When we want to know how many customers we have, all we need to do
is use select count (*).

Table 14-1 probably looks simple, but in practice there are two things that we need to
consider when creating an SCV. First, how do we identify, match, and deduplicate a cus-
tomer? This is fundamental to SCV. If we have a new customer registered on the web site
today, say her name is Orsola Velia and her e-mail address is man33@yahoo.com, is she the
same person as the customer on the last row in Table 14-1? Maybe not. What if we know only
her e-mail address but not her name? Then it’s even more difficult for us to identify or match
the customer. Some applications have user IDs or account IDs (for example, when the user
is registered) that uniquely identify each customer. But some applications may not have user
IDs or account IDs (for example, when a user subscribes to a newsletter). So, we need to
agree on the business rules for identifying, matching, and deduplicating customers; for
example, we could agree that a customer can be identified by an account ID if available and,
if not, by an e-mail address and the source system. Matching (to determine whether two cus-
tomers are the same customer) is quite a risky business, so we want to get it right the first
time. If we are not careful, orders from customer A could be under customer B’s name. Surely
we don’t want that to happen.

The second issue to consider when creating an SCV is the customer attributes. Because
the definition of a customer is different across different departments in an organization (as
described earlier), the customer attributes have different levels of richness (the number of
attributes). For example, if it is a subscriber, we know only the name and e-mail address. If it is
a purchaser, we know their name, e-mail address, address, and phone number. If it is a com-
petition participant (they filled in a customer survey), we know their name, e-mail address,
address, phone number, date of birth, occupation, and interests. So when using the SCV data,
we need to be aware that we don’t have all the attributes for all the customers. For example,
perhaps we have addresses only for 60 percent of our customers, we have names for 80 per-
cent of our customers, and for email address we have 95 percent coverage.

Table 14-1. Customer Table Containing Different Customer Definitions

Name Email Address P S RU QP B/S CP E/C B/P AH

Chloe Nicoletta chloe@han.com Y Y Y Y Y

Nicolina Luigia nicolina@earth.org Y Y

Deni Hudd deni@bc.org Y Y

Bernardine Avril bavril@msn.com Y Y

a_ilaria@gmail.com Y

Jojo Emilie jojo@aol.com Y Y Y

Serafina Hodge serafin@giant.es Y Y Y Y

tina@hans.com Y

a_harvey@can.it Y

Orsola Velia man33@yahoo.com Y Y

P stands for Purchaser, S stands for Subscriber, RU stands for Registered User, QP stands for Quoted Person, B/S stands
for Browser/Shopper, CP stands for Competitor Participant, E/C stands for E-mailed/Called, B/P stands for
Billing/Payment, and AH stands for Account Holder.
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In many organizations, customer data is scattered across different systems. The systems
may have different applications (ERP systems) between the stores and the e-commerce web
sites or between marketing contacts and promotions. They may use different agencies for
e-mail promotions (which means that the data is even more scattered). For example, an inter-
national business group consists of different individual legal entities (companies or agencies),
which are composed of many brands that may be located in many countries. Some occurred
by acquisitions; in other words, the group purchased a subsidiary company. Some happened
via merger; in other words, two big business groups joined together. We could be talking about
30 to 100 individual legal entities (worldwide). There is no way that all these companies are
using the same application to manage their business. But if you are talking about a small
business with three offices all under one legal entity, it is possible that they have a single
application to manage their business, at least with regard to where the customer data is
stored. But for an international business that exists in 50 countries, it is unlikely. This means
the customer data is likely to be scattered all over the place.

So, is it possible to have a centralized customer database containing personal informa-
tion, their orders, their preferences, their quotes, their e-mail promotions, their downloads,
their contact details, their interests, their subscriptions, their complaints, their queries, their
credit score, their loyalty score, their browsing/shopping history, their account details, their
competition participations, their payments, their registration details, and their security details
all in one central place? Luckily, the answer is yes. It’s hard work, but it is possible. Many CRM
initiatives started by integrating customer data. Projects such as Customer Data Integration
(CDI) hubs and Operational Data Stores (ODS) centralize customer data into one place; they
probably also publish this data for other applications to consume via a software as a service
(SaaS) scheme in a Service Oriented Architecture (SOA). Sometimes, in less than ideal situa-
tions, they don’t have CDI hubs or an ODS, and the only place where customer data is
integrated is in the data warehouse, in other words, in the customer dimension.

An SCV is important because it gives us a better understanding of our customers; basi-
cally, it gives us a more complete view. We get different attributes from different sources. For
example, from the registration database, we get their user IDs, names, and addresses. From
the order-processing system, we get contact telephone numbers, e-mail addresses, billing
addresses (which may be different from the registered address), and perhaps the credit card
details. From the promotion and competition system, we could get their occupation, marriage
status, number of children, salary range, interests/communication preferences, and permis-
sions (for us to send them marketing-related material), and perhaps they can even subscribe
to one or two newsletters. From customer service systems, perhaps we can get information
about which products they don’t like or which service they like best. Perhaps from customer
loyalty programs, we can get their input about what products and services need to be
improved, which benefits are valuable or not valuable to them, and what we can do to help
them more. When we combine the data from various systems, we get a more complete view
about the customers. The more we know about our customers, the more we can tailor our
products and services to meet their interests and needs, and the business becomes more suc-
cessful. So, an SCV is about an integrated view of our customers from various sources.

What are the advantages of having an SCV in the data warehouse, compared to having it
in the ODS or CDI, for example? The first advantage is a slowly changing dimension (SCD),
particularly type 2. SCD is a technique used in dimensional modeling for preserving histori-
cal information about dimensional data. In SCD type 2, we keep the historical information in
rows, while in SCD type 3, we keep the historical information in columns. In SCD type 1, we
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don’t keep the historical information. (Please refer to Chapter 5 for more information about
SCD.) The advantage of having historical information is the data richness. With an SCD, we
have richer customer data in the data warehouse, because of historical information. For
example, in the case of the customer dimension, we can use SCD type 2 to store the previous
address, the previous occupation, or, more important, the previous loyalty scores and sub-
scriber bands. The last two are calculated based on their purchases and subscriptions and
based on the revenue and/or profit the customer produced. So for customers who were pre-
viously on higher bands, we may want to tailor our offerings a little bit by presenting them
with more suitable products or services, thus potentially resulting in more revenue from
customers.

The second advantage of using a data warehouse for an SCV is the analytical nature of a
dimensional data warehouse, enabling us to perform better customer analysis, which results
in a better understanding of the customers. This can potentially drive the business to be more
successful. A dimensional data warehouse is an ideal place for performing analysis, such as
analyzing customer purchase behavior or subscription dynamics to get the customer score
and subscription band, which can then be persisted as a customer attribute. I’m not saying
that we can’t do this in the ODS, CDI, or ERP; I’m saying that data warehouse is a better place
to perform that analysis. In terms of performance, this analysis is better performed on a
dimensional database than on a normalized database, particularly on a star schema. This is
because in a normalized database we need to do a lot of joins between tables. Analyzing five
years of order data against 20 million customers (with SCD type 2) using data mining algo-
rithms will probably affect the operational performance of our normalized ERP, CDI, or ODS.
Say it is 30 million order lines per year. Say that SCD type 2 on average creates one historical
row for each customer, so we are talking 40 million rows on customer data. Say we use three
algorithms: Decision Trees, Clustering, and Naive Bayes. So, we are talking about running
analysis on the ODS or ERP for 150 million order data items against 40 million customer data
items and say 10,000 product data items using three algorithms. How long would it take to
run? It could take from a few hours to a few days. I’m sure the internal front-end users won’t
be happy that the system performance is so slow during the hours the analysis runs. Can you
imagine the impact on revenue if customers can’t add an item to a shopping basket or if the
checkout system is affected in any way? No, I don’t think anybody would run this kind of
analysis on anything that affects the front-end systems. By having SCV customer data on the
data warehouse, the customer purchase and subscription analysis results will be better in
terms of performance.

The third advantage of using a data warehouse for an SCV is the computational power
of a data warehouse system. A data warehouse system is designed and built to be able to
handle large data-processing requirements. A data warehouse system is designed to be able
to process queries involving large data sets efficiently such as by having physical table parti-
tions. If the data is 10MB to 20MB, it probably won’t matter on which platform we perform
the SCV, for example doing deduplication and customer matching, but for large data (say
greater than 1TB), it matters. You can analyze your situation by running analytical queries
on your current platform. Extracting information from marketing data, registration data,
order data, competition data, and subscription data and then updating the customer data
including matching and deduplication for upsert (update and insert) is best performed on
platforms specifically designed for large queries.

The fourth advantage of using a data warehouse for SCV is that the customer data in the
data warehouse is already integrated from various source systems, so it enables us to combine
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customer attributes from different sources. If we have an ODS or a CDI hub, then we could do
SCV there, subject to the earlier considerations. But in many cases where there is no ODS or
CDI, the data warehouse can be the only integration point of customer data in the organiza-
tion. So when we do an SCV in the data warehouse, we will work with complete customer data
that has been integrated from various source systems.

Campaign Segmentation
A campaign is a communication sent to customers regularly or on an ad hoc basis via e-mail,
post, RSS, or text messages and containing marketing promotions (cross-sale, up sale, and so
on) or notifications. Weekly newsletters, new product tactical promotions, and price increase
notifications are examples of campaigns. An order confirmation e-mail is an example of a
communication sent to customers that is not a campaign. It is considered to be a trans-
actional communication.

Before we move on, let me introduce some of the campaign terminology normally used
in CRM. A campaign is a communication sent to customers. A delivery channel is the media
used to send the campaign, such as post, e-mail, text message, or RSS. RSS is a web feed
used to publish frequently updated content. Some delivery channels have several content
formats. For example, in e-mail messages, there are two content formats: HTML format and
text format.

Open rate and click-through rate are terms used in e-mail campaigns. Open rate is the
number of e-mail messages that were opened by the customer divided by the number of mes-
sages sent. For example, if we sent 100,000 e-mail messages and 20,000 of them were opened,
the open rate is 20 percent. The click-through rate, commonly abbreviated as CTR, is the num-
ber of customers who clicked the hyperlink embedded in the e-mail messages to go to the web
site divided by the number of e-mail messages sent. For example, if we sent 100,000 e-mail
messages and 4,000 of them were clicked, then the CTR was 4 percent.

The delivery rate is the number of e-mail messages that are delivered successfully divided
by the number of e-mail messages sent. The bounce rate is the number of e-mail messages
that are not delivered successfully to the intended recipient divided by the number of e-mail
messages sent. For example, if we sent 100,000 e-mail messages and 98,000 were delivered
successfully, then the delivery rate is 98 percent, and the bounce rate is 2 percent.

Now let’s continue our discussion about campaigns. A campaign is a fundamental corner-
stone of CRM activity. Put simply, the process of creating a CRM campaign is roughly as
follows (bear in mind that this is different from company to company):

1. Based on the business need, we decide which customers we want to target (and
quantify roughly how many), what message we want to deliver to them (just a brief
paragraph describing the idea), the frequency of the campaign (for example, every
week or one time only), the batch sizes (for example, in chunks of 150,000/day), the
delivery channel (for example, 10 percent by RSS and 90 percent by HTML e-mail), and
the expected results (for example, 15 percent open rate, 5 percent click-through rate,
and $200,000 additional revenue/month). For example, we want to offer service Y to
customers who purchased product X in the last six months.

2. Create a selection query that selects from a database a list of customers who satisfy
certain criteria, such as customers who purchased product X in the last six months.
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3. Compose the content of the campaign, one for each delivery channel and format.
We check all the links in the content and test the campaign appearance/cosmetics on
every major e-mail and RSS client to ensure that our customers will see the campaign
as it was designed to be.

4. Set up the campaign in the campaign management system, paste the selection query,
load the content file, add the control group, execute it, send it to testers, obtain final
approval, execute it, and send it out to customers.

5. Monitor the delivery rate, bounce rate, open rate, click-through rate, and the revenue
increase resulting from the campaign.

A campaign targets a list of customers. This list, as illustrated in step 2, is called a seg-
ment. The simplest form of a campaign is where we have only one segment. This is called an
unsegmented campaign. It is rather strange that it is called unsegmented even though it has
one segment, but that’s the term used in CRM. A more complex campaign contains more
than one segment. For example, we can divide the list based on where the customer lives; in
other words, we send different offers for different areas. Or we can divide the list based on
their preferred communication channel and format. We need to prepare separate content
files for each campaign format, for example, one for HTML e-mail and one for text-only e-
mail. When a campaign is segmented, each segment receives different campaign content,
because the content is tailored to each segment. For example, we could have a campaign tar-
geting two different segments: male and female, each with different content. It’s not only the
content that is different for each segment, but the actions could be different too, specifically
the sending times, the number of send retries, the bounce treatments, and the further selec-
tions, to suit the segment we are targeting. For example, for segment 1 the best sending time
is at lunchtime, and for segment 2 the best sending time is in the morning. The combination
of content and actions that we apply to a particular segment is called treatment.

Whether the campaign is segmented (several lists of customers each receiving different
campaign treatments) or unsegmented (one list of customers receiving one campaign treat-
ment), we need to query the customer data to get lists of customers. This process is
commonly known as the list selection process, and the SQL query is known as the selection
query. Some tools do the segmentation first and then perform the selection query for each
segment, and some tools combine the selection queries for different segments together in
one query. To give you an idea, Listing 14-1 shows the simplest form of selection query for
an unsegmented campaign.

Listing 14-1. Example of a Selection Query

select c1.email_address
from fact_subscription f
inner join dim_customer c1
on f.customer_key = c1.customer_key

inner join dim_campaign c2
on f.campaign_key = c2.campaign_key

where c2.campaign_name = 'Music Newsletter'
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The selection query in Listing 14-1 retrieves the customer e-mail addresses for an e-mail
campaign called Music Newsletter. There is no further selection on the query, which is why it
is called an unsegmented campaign.

In my experience, there are four types of selection queries: permission, demographic
data, customer activities, and campaign response:

Permission: Permission is basically the consent from a customer that we can send them
this communication, such as a subscription to a newsletter on our web site. A permission
selection query is basically a query selecting a list of customers from whom we have con-
sent to send this communication. For any campaign we must always have a permission
selection query. Listing 14-1 is an example of a selection query for permission.

Demographic data: Demographic data is a customer’s personal attributes, such as age,
gender, location, occupation, income, interest, and number of children. A demographic
data selection query retrieves a list of customers based on these customer attributes, such
as where calculate_age(date_of_birth) between 20 and 30 or where occupation =
'Student'.

Customer behavior: Every business or organization conducts transactions or activities
with their customers. Customer behaviors are the actions that the customers do or don’t
do within these activities or transactions. Each industry has different customer behavior.
For the retail and e-commerce industry, it is browsing and purchasing behavior; for tele-
communications and utilities, it is usage behavior; and for financial services it is account
activities. Examples of customer behavior selection queries are a list of customers who
made an order more than 12 months ago (known as sleeping customers) or customers who
use their cell phone less than 10 times a month.

Campaign response: When a customer receives an e-mail campaign from us, the cus-
tomer can have three responses: delete the e-mail (or do nothing), open the e-mail, or
click a link on that e-mail. These three possible actions are called campaign responses.
So, we can have a selection query producing a list of customers who have opened the
previous three campaigns but have not made any purchase in the last three months and
then target them specifically in the next campaign.

What is the benefit of using a data warehouse for campaign selection and segmentation?
Well, it is easier and faster. Producing a list of customers who made an order more than 12
months ago is more easily done on a data warehouse than in an operational system. Con-
sider a query to get a list of customers who have purchased certain product types in the last
12 months but did not purchase other product types, who have not been sent a campaign in
the last three days, who have given permission for us to send them promotional campaigns,
who live in certain cities, and whose customer status is active. This query runs faster (min-
utes rather than hours) in a dimensional data warehouse than in an OLTP system because
the data model in an operational system is not specifically designed to support an analytical
query like this. The main difference between an OLTP query and an analytical query is that
an OLTP query retrieves a few records (in other words, where order_id = X), whereas an ana-
lytical query summarizes millions of records (such as the query I mentioned earlier). An
OLTP system is primary designed to insert or update a particular record(s) with split-second
performance. It is not designed to summarize millions of records. Hence, it could take hours

CHAPTER 14 ■ USING DATA WAREHOUSE FOR CUSTOMER RELATIONSHIP MANAGEMENT 449

9314ch14final.qxd  11/15/07  9:45 AM  Page 449



to run analytical-type queries, not because of the hardware but because of the way the data-
base is designed.

A regular campaign’s segmentation queries may run once a week when it is operational.
But when designing the campaign, the business user needs to run the segmentation queries
many times to get the counts of intended recipients. This is a repetitive process, and if it takes
hours to complete the counts, then it slows down the business process and decreases the user
friendliness.

The other benefit is capacity. Campaign delivery and response data are large. A data ware-
house can naturally cope with such demand using the Campaign Results fact table described
in Figure 5-6 in Chapter 5. In that structure, various statuses are easily loaded into the fact
table: sent, delivered, bounced, opened, clicked through, and so on. This campaign response
data can then be used for the selection query on future campaigns, as described earlier.

Permission Management
We must send campaigns only to those customers from which we have consent. This consent
is known as permission. Maintaining permissions is the most important thing in CRM opera-
tions because sending a campaign without a customer’s permission means we are spamming.
In some countries, the laws are very strict and include heavy penalties for spammers, includ-
ing the Spam Bill in Australia, Penal Code Article 226-18 in France, and the CAN-SPAM Act in
the United States.

There are four types of customer permission:

General permission: In this type of permission, the customer gives consent for us to send
them any marketing-related communications. Sometimes the consent is extended to
“affiliates” or “carefully selected partners” as well. This is usually done via a little check
box when the customer registers, accompanied with very small print, or on a marketing
preferences web page. This is generally known as opt-in. In CRM, it is common practice to
do double opt-in. In other words, we send an e-mail to the customer’s e-mail address, and
the customer needs to click a link in that e-mail to confirm their consent. There are two
major benefits of double opt-in:

• Customers can submit only their own e-mail address.

• The list contains only valid and tested e-mail addresses.

Specific permission: In this case, the customer allows us to send a specific type of commu-
nication, for example only transaction-related communications such as order confirma-
tion e-mails, payment receipts, and e-tickets. Or they want to receive only e-mails related
to products that they have purchased, such as a flight reminder, destination guide (for
gifts), download link (for computer products), or product withdrawal notice. We cannot
use specific permissions to send any other e-mails such as new products announce-
ments. Specific permission also can be channel specific, such as “you can e-mail me,
but you cannot call me.”
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Subscription: This type of permission is very specific. In this case, the customer sub-
scribes to a specific campaign, such as subscribing to a weekly newsletter or music news
(as in the case study Amadeus Entertainment). We can send them only the campaigns
that the customer asked for in the format and delivery channel that the customer asked
for. The permission cannot be used to send them anything else in any format.

Negative permission: Sometimes customers ask us not to send them anything. They
don’t want to receive any marketing material, news, announcements, product support,
customer support, and transaction-related e-mails including order confirmation e-
mails or payment receipts. For this kind of request where the customer revokes their
consent, we could list them in a “banned e-mail addresses” table, and in every cam-
paign we add the selection criteria like: where e-mail_address not in (select e-mail_
address from banned_e-mail_addresses). Alternatively, we could use where not exist.
This table or list is also known as a block list or black list. Many CRM campaign man-
agement and e-mail delivery systems have this functionality; for example, we just need
to configure them to point to the right table, and the system will filter it out when exe-
cuting or sending campaigns.

Now that you know what permission is, what is the benefit of using a data warehouse for
implementing permission? Permission is used in the selection query, and a dimensional data
warehouse gives good performance when performing selection queries.

Subscription management is a transactional process and captured by the front-end appli-
cations, such as on the web site and customer service systems. General permission is also
transactional in nature; that is, it is usually captured when customers register on the web site
or when they become customers.

So, permission usually happens in the front-end applications, and it is used as a
selection query when composing a list of customers for campaign recipients. Therefore,
permission data needs to be transported from the front-end applications to the CRM data
warehouse. This can be done via a daily ETL incremental feed, based on the created and last
updated timestamps. The structure of the data warehouse to store the permission varies
depending on which type of permission it is. For general permission, we can put it on the
customer dimension, as follows: alter table dim_customer add permission bit. We then
set the ETL to populate it with “True” or “False” based on the front-end permission data.
Specific permission is also usually incorporated on the customer dimension as several
True/False columns. Each column represents one specific permission. For example:

alter table dim_customer
add transaction_permission bit,
promotion_permission bit,
newsletter_permission bit

The implementation of subscriptions in the data warehouse is very different from the
generic and specific permission. Subscriptions are usually implemented as a fact table, as
shown in Figure 14-2, as we discussed in Chapter 5 when doing dimensional modeling.
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Figure 14-2. Communication Subscriptions fact table

The fact table in Figure 14-2 is called Communication Subscriptions (not just the Sub-
scription fact table) because in the Amadeus Entertainment case study we have another kind
of subscription: membership subscription, which is a kind of pay-monthly product where the
customer can download n number of music and films.

The diagram in Figure 14-2 basically shows who subscribes to what and on which chan-
nel. Table 14-2 shows some sample data.
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Table 14-2. Sample Data for the Communication Subscriptions Fact Table

subscription_ subscription_ subscription_
customer_key communication_key channel_key start_date_key end_date_key status_key

1 1 1 241 0 1

2 2 1 219 0 1

3 1 2 178 298 2

3 2 2 169 0 1

Each subscription is implemented as a row in the fact table on Table 14-2, with a start
date and an end date. We also have a status to indicate whether the subscription is still active.
If the subscription is still active (status_key = 1), the subscription_end_date_key is 0
(unknown). If the subscription is not active (status_key = 2), the subscription_end_date_key
is populated with the date the customer unsubscribed.

It is possible that the same customer subscribed to two different communications. In
Table 14-2, customer 3 subscribed to communications 1 and 2. His subscription to communi-
cation 1 is not active, but communication 2 is still active.
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The channel key column in the fact table shown in Table 14-2 indicates how the campaign
will be delivered, such as by e-mail, text message, or RSS. The campaign format, however (text,
HTML, and so on), is not in the fact table; but it is in the communication dimension instead,
because the format is an attribute of a communication. A communication is something that
we deliver to the subscribing customer on a regular or semiregular basis (many times, not one
time only), such as a weekly newsletter or news alert. As you can see in Figure 14-2, a commu-
nication has a start date, end date, and status to indicate whether a communication is active.
The category attribute groups common communications together and acts as a hierarchy, such
as weekly or ad hoc tactical. A channel also has a start date, end date, and status to indicate
whether it is active. In some implementations, particularly in multibrand and multinational
organizations, we may want to add a brand and locale or country attribute in the communica-
tion dimension to indicate which company owns that communication.

Listing 14-2 shows the Data Definition Language (DDL) for Figure 14-2.

Listing 14-2. DDL for Implementing Subscription in a Data Warehouse

create table fact_communication_subscription
( customer_key                 int      not null
, communication_key            int      not null
, channel_key                  int      not null
, subscription_start_date_key  int      not null
, subscription_end_date_key    int      not null
, subscription_status_key      int      not null
, source_system_code           tinyint  not null
, create_timestamp             datetime not null
, update_timestamp             datetime not null
, constraint pk_fact_communication_subscription
primary key clustered
( communication_key, customer_key, subscription_start_date_key )

)

create table dim_communication
( communication_key    int not null
, title                varchar(50)
, description          varchar(200)
, format               varchar(20)
, language             varchar(50)
, category             varchar(20)
, issuing_unit         varchar(30)
, issuing_country      char(3)
, start_date           datetime
, end_date             datetime
, status               varchar(10)
, source_system_code   tinyint   not null
, create_timestamp     datetime  not null
, update_timestamp     datetime  not null
, constraint pk_dim_communication
primary key clustered (communication_key)

)
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create table dim_subscription_status
( subscription_status_key    int not null
, subscription_status_code   char(2)
, description                varchar(50)
, source_system_code         tinyint
, create_timestamp           datetime
, update_timestamp           datetime
, constraint pk_dim_subscription_status
primary key clustered (subscription_status_key)

)

create table dim_channel
( channel_key          int not null
, name varchar(20)
, description          varchar(50)
, start_date           smalldatetime
, end_date             smalldatetime
, status               varchar(10)
, source_system_code   tinyint   not null
, create_timestamp     datetime  not null
, update_timestamp     datetime  not null
, constraint pk_dim_channel
primary key clustered (channel_key)

)

While we are on the permission management topic, it is relevant to talk about opting
out, or revoking the permission. It is mandatory that the customer is able to unsubscribe or
revoke their permission at any time from any campaign. If it is an e-mail campaign, we need
to have a link on every campaign pointing to an unsubscribe page. This page will update the
front-end database that will then be propagated to the data warehouse. As a result, the sub-
scription will be deactivated, in other words, by updating the subscription end date and
status. It is important that the propagation of unsubscription information to the CRM data
warehouse is frequent, ideally intraday or at least once a day, so that we can make sure cus-
tomers who have revoked their permissions do not get subsequent campaigns. If it is a
general or specific permission, the ETL will update the corresponding permission column
on the customer dimension from Y to N.

Delivery and Response Data
Campaign delivery data is about whether the campaign that we sent is delivered to the
intended recipient. For example, if the campaign is delivered using an e-mail message, it may
not get into the target mailbox because the mailbox is full. Campaign response data is about
the reaction from the customer after receiving our campaign. For example, they may be inter-
ested in a particular offer in the e-mail and click it to purchase the product.

To understand campaign delivery and response data, let’s go through the process of cam-
paign delivery. Take the Amadeus Entertainment Music Weekly Newsletter, which has 100,000
recipients, as an example. After the campaign is created, it is executed and sent to the target
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recipients. Let’s say that when the campaign was executed, there were 100,000 target recipi-
ents. Let’s say 1,000 of these target recipients were filtered out because of the banned list table
(refer to the earlier discussion of negative permissions), and 2,000 were filtered out because
the recipient e-mail addresses have bounced four times. So, 97,000 actually went out: 90,000
by e-mail; 4,000 by post; 2,000 by RSS; and 1,000 by text message. Out of the 90,000 e-mail
messages, say 86,000 reached the intended recipients, and 4,000 were undelivered (because
the e-mail domain did not exist, because of an invalid mailbox name, because the mailbox
was full, and so on). Out of the 86,000 e-mail messages that were delivered, 25,000 were
opened/read, and 5,000 were clicked through; that is, the customers went to the web pages
specified in the e-mail campaign. Out of these 5,000 customers, 500 made an order (pur-
chased some products). Figure 14-3 illustrates the figures in this process.

Figure 14-3. Number of customers involved in each step of campaign delivery process

The number of e-mail messages sent out, the number of messages delivered, the number
of messages not delivered (bounced), and the number of e-mail messages not sent out (either
because of banned list or bounce list) are called campaign delivery data, and the number of
e-mail messages opened/read, the number of messages clicked by the customers, and the
number of customers purchased some products are called campaign response data. Both
campaign delivery data and campaign response data are important because they indicate the
success or failure of the campaign; for example, if the open rate and click-through rate (CTR)
are high, the campaign is successful.

The open and click-through rates vary from industry to industry. Amongst other things,
they depend on whether we implement double opt-in (cleaner list), they depend on who the
target audience is (business to business or business to consumer), and they depend on
whether the segmentation is specific or general. If you still want a rough indicator, for busi-
ness to consumer with double opt-in and specific segmentation, you can expect an open rate
from 5 percent to 15 percent.

It would be useful to understand how campaign delivery and response data can be col-
lected by the CRM system. In other words, how do we know that an e-mail has been opened

CHAPTER 14 ■ USING DATA WAREHOUSE FOR CUSTOMER RELATIONSHIP MANAGEMENT 455

9314ch14final.qxd  11/15/07  9:45 AM  Page 455



or read? How do we know that the customer has clicked certain links in the e-mail? How do we
detect which customer purchased which products and identify which campaign initiated the
purchase? The techniques and methods of obtaining delivery and response data within the
CRM systems vary greatly from application to application. If it is an e-mail campaign, the deliv-
ery status can be obtained from SMTP response codes, which is the number sent back by the
target e-mail server, such as 250 for delivered, 530 for access denied, 552 for exceeding the
mailbox limit, 521 for a domain that does not except e-mail, 421 for a domain that’s not valid/
available, and so on. Sometimes the interpretation of the response codes is not so straightfor-
ward; for example, code 250 can mean several things, because it actually means that the
requested action is done OK, so the meaning depends on what the requested action was. For
a text message, we need to use the appropriate protocol instead of SMTP, such as an SMS
delivery report that indicates whether the text message has reached the target cell phone or
cannot be delivered.

Now that you have an understanding of campaign delivery and response data, I’ll cover
the pros and cons of implementing them in a data warehouse. The benefit of using a data
warehouse (as opposed to an operational system such as an ERP, CDI, or ODS) is that we can
use the delivery and response data for campaign segmentation. This is because the delivery
and response data will be located on the same platform as the other data used for a selection
query (for example, customer data, shopping/purchase/activity data, and permission data)
during the campaign selection and segmentation process. For example, we might select cus-
tomers who have received a campaign e-mail about certain music product types but did not
open the e-mail or opened the e-mail but did not click any offer in the e-mail. We can then tar-
get these groups with specific follow-up campaigns encouraging them to go to our web site to
look at the products.

The second benefit of implementing campaign delivery and response data in the data
warehouse is that we have better performance when loading data and performing analysis.
The amount of campaign delivery and response data can be billions of rows within a few
years. For example, we could have 35 campaigns that send e-mails to 20 million target sub-
scribers every week, which equates to 1 billion a year. The grain of campaign delivery and
response data is the number of target recipients. That means that for every message created
by the campaign, we will have a row, whether the message is sent or not. Because of the vol-
ume, we can take advantage of a data warehouse platform, which handles a large volume of
data better than operational systems. This is especially true when querying the campaign
response data for customer analysis and purchase analysis, such as when analyzing cus-
tomers who have clicked but not purchased or when performing demographic analysis
against customers who have received certain types of campaigns in the last six months.

So, those are two benefits of implementing campaign delivery and response data in a
dimensional data warehouse. But sometimes we are not able to do that if our CRM application
is a packaged application. For example, the CRM application may not work with a dimen-
sional data warehouse; it may work only with a highly normalized operational database. In
this case, we could load the campaign delivery and response data from the normalized CRM
database into a dimensional data warehouse for analysis.

Figure 14-4 shows the design of an implementation of CRM campaign delivery and
response data in a data warehouse. It consists of a campaign delivery and response fact table
with six dimensions.
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Figure 14-4. Schema design for implementing campaign delivery and response data in a data
warehouse

Let’s go through the schema in Figure 14-4. It has one fact table and six dimension tables:
date, communication, campaign, customer, channel, and delivery status. The grain of the fact
table is one row for each intended recipient in the campaign. For example, say we have 10
campaigns that were sent last week, each containing 20,000 customers. In this case, we have
200,000 rows in this fact table.

I discussed this schema in Chapter 5. But to refresh, let’s go through each key column on
the fact table. The campaign key identifies which campaign was sent, for example: Weekly
France Music Newsletter 01/14/2008. The customer key identifies to which customer the cam-
paign was sent. The communication key identifies the communication to which the campaign
belongs. For example, the Weekly France Music Newsletter 01/14/2008 campaign is an
instance of the Weekly France Music Newsletter communication. The channel key indicates
how the campaign was sent, such as via e-mail. The send date indicates when the campaign
was sent. The delivery status indicates whether the campaign was delivered successfully to the
intended recipient.

Listing 14-3 shows the DDL of Figure 14-4.
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Listing 14-3. DDL for Implementing Campaign Delivery and Response Data in a Data Warehouse

create table fact_campaign_result
( campaign_key            int not null
, customer_key            int not null
, communication_key       int not null
, channel_key             int not null
, send_date_key           int not null
, delivery_status_key     int not null
, sent int
, delivered               int
, bounced                 int
, opened                  int
, clicked_through         int
, complaint               int
, spam_verdict            int
, trap_hit                int
, source_system_code      tinyint
, create_timestamp        datetime
, update_timestamp        datetime
, constraint pk_fact_campaign_result
primary key clustered
( campaign_key, send_date_key, customer_key )

)

create table dim_campaign
( campaign_key         int not null
, campaign_title       varchar(50) not null
, description          varchar(100)
, planned_send_date    smalldatetime
, number_of_recipients int
, communication_name   varchar(50)
, source_system_code   tinyint   not null
, create_timestamp     datetime  not null
, update_timestamp     datetime  not null
, constraint pk_dim_campaign
primary key clustered (campaign_key)

)

create table dim_delivery_status
( delivery_status_key   int not null
, delivery_status_code  int not null
, description           varchar(50)
, category              varchar(20)
, source_system_code    tinyint   not null
, create_timestamp      datetime  not null
, update_timestamp      datetime  not null
, constraint pk_dim_delivery_status
primary key clustered (delivery_status_key)

)

CHAPTER 14 ■ USING DATA WAREHOUSE FOR CUSTOMER RELATIONSHIP MANAGEMENT458

9314ch14final.qxd  11/15/07  9:45 AM  Page 458



After we load campaign delivery and response data into the data warehouse, we can use
it for various analyses, including calculating the campaign result statistics such as open rate,
click-through rate, and purchase rate by any demographic attributes, by campaign type, and
by product hierarchy. For example, we can compare the open, click-through, and purchase
rates for different regions across all product categories. Or we can analyze them by occupa-
tion group, age group, and interest group. We can analyze how many customers clicked each
link on the campaign we sent. We can compare the campaign response rates with the statis-
tics from previous campaign sends, with the company-wide average and with the industry
standards. Figure 14-5 shows the open rates across different regions by product category for
a certain period.

Figure 14-5. Open rate across different regions by product category

We can also use the campaign response data to analyze the effectiveness of certain prod-
uct promotion campaigns by comparing the open rate and click-through rate across product
types, as shown in Figure 14-6. The bubble size indicates the campaign size (the number of
target recipients). The bigger the bubble, the bigger the campaign.

Figure 14-6. Open rate, click-through rate, and campaign size across different product categories
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Campaign delivery data enables us to analyze the bounce rate across different e-mail
domains and understand the reasons for the rate. The bounce rate is the number of e-mail
messages not delivered divided by the number of e-mail messages sent. E-mail domains are
the domain name of the customer e-mail address. For example, Figure 14-7 shows Amadeus
Entertainment’s average bounce rate for the top six e-mail domains in a particular week.

Figure 14-7. Bounce rate across different e-mail domains

Customer Analysis
In addition to the campaign response analysis discussed earlier, we can use CRM data in the
data warehouse for analyzing customer activities and behavior. This analysis of customer
activities and behavior is what we call customer analysis. There are two main categories of cus-
tomer analysis: descriptive analysis and predictive analysis. In descriptive analysis, we try to
understand or describe customer behavior and activities. In predictive analysis, we try to pre-
dict or forecast customer behavior and activities. The following are examples of descriptive
analysis:

E-commerce industry: Purchase pattern by demographic, where we try to understand the
purchase and browsing behavior of our customer group by demographic attributes, such
as age, occupation, income, location, family, and interest.

Telecommunication industry: Usage analysis against products, such as analyzing a cus-
tomer’s cell phone usage to see whether the calling plan they are on now is the most
appropriate one. We could then use the CRM campaign to encourage switching to the
correct calling plan to increase customer service satisfaction.

Insurance industry: Risk pattern identification, where we calculate customer risk factors
and insurance premiums according to customer activities. For example, for car insurance,
the risk groups could be determined according to the base location, driving area, type of
cars, vehicle usage, and traveling time.

Utility industry: Customer profitability analysis, where we find out which customers we
are making money on and which ones we are losing money from and by how much.
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As we can see, all these analyses describe, analyze, or explain the current situation about
customer activities and behavior. Predictive analysis is different. It tries to predict or forecast
customer activities and behavior. Examples of predictive analysis are as follows:

Utilities industry: Price sensitivity analysis, where we try to find out which customers
would be likely to close their accounts when we do the annual price increase next month
and what the financial implications are of losing them. This enables us to approach the
customers to prevent the account closure from happening.

E-commerce industry: Sales forecasting, where we predict the quantity sold for each prod-
uct type in the coming months and calculate the sale amount accordingly. We can then
tailor the CRM campaigns accordingly to make the forecast inline with the sales targets.

Travel industry: Predicting which customers are likely to be interested in certain types of
holiday, flight, or lifestyle product offers, based on the demographic data, previous book-
ing data, and campaign response data. Another example is predicting which subscribers
are likely to make a purchase when we send them promotional campaigns on certain
product types.

Waste management: Forecasting which days are “heavy” days and which days are “light”
days based on weight measurement data and customer business types, and arrange the
pickup truck routing accordingly to increase fleet efficiency.

A CRM data warehouse contains customer data, permission data, campaign response
data, customer activity data (purchase, shopping, subscription, gain, and loss), billing data,
payments data, and marketing data (including promotions and campaigns). Because of its
rich content, a CRM data warehouse is naturally helpful for customer analysis, be it descrip-
tive or predictive. The methods to do customer analysis are similar to those of BI, such as
reporting, analytics, and data mining. Descriptive customer analysis can be delivered using
all of these three methods, while predictive customer analysis is usually delivered using data
mining.

As an example of descriptive customer analysis, let’s use SSAS to analyze film purchases
by customer interests. For that, let’s create a product sales cube, shown in Figure 14-8, using
the same process we discussed in Chapter 12. This cube is similar to the one we created in
Chapter 12. The only difference is that we have one more dimension here: customer.

We process this cube as we discussed in Chapter 12 and then browse it. Now let’s set the
cube browser to display the customer interest against the product type. For this, we put the
Interest1 attribute from the customer dimension as the row field and the Product Type attrib-
ute from the product dimension as the column field. Put the Sales Value measure as the detail
field, and filter the cube on product category = ‘Films’. Figure 14-9 shows the result. I dis-
cussed how to do all this in Chapter 12, so you should be familiar with this.
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Figure 14-8. Product sales cube with customer dimension

Figure 14-9. Analyzing film purchases by customer interests
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In Figure 14-9 you can see that, for example, customers with a DIY interest purchased
many more comedy films than those with a cooking interest. Customers with a cartoon inter-
est purchased many more drama films than those with a church interest. We can also analyze
the film purchases by other demographic factors such as age, gender, and income. For this we
just need to swap the interest on the row field with other customer attributes.

This is an example of descriptive customer analysis. We did some predictive customer
analysis in Chapter 13, when we predicted the purchase of music products using gender,
interest, and occupation demographic factors using the Decision Trees mining model.

Customer Support
Most customer support activities are done on the operational systems, both the call center
systems and ERPs. The customer service agents usually use these two types of systems to sup-
port and service the customers. Operational data stores are increasingly used for customer
support too.

But sometimes a data warehouse is useful for customer support, especially utilizing data
warehouse analytical nature and prediction capability. The following are examples of data
warehouse usage for customer support.

Travel industry: Predeparture campaigns, where we send a campaign one week before
the travel starts, to inform the customers about the weather forecast in the destination
city, general information about the flight check-in time and security restriction, map of
the area around the hotel, and destination information such as recommended restau-
rants. We can also use this opportunity to remind them to bring their passports if the
destination is overseas and to ask whether they need a taxi to go to/from the airport,
a car hire, attraction tickets, or a wireless Internet connection.

Telecommunication industry: To help individual customers get the right billing plan by
analyzing all the calls made by the customer in the last three months (time, destination,
duration, cost) and comparing it with all available plans to see whether there are any
plans that have lower prices than the plan the customer currently has. The campaign can
be set up to run once a month to advise all customers who have not been advised in the
last six months (this would require campaign response data).

Utilities industry: To analyze individual customer’s electricity and gas usage and advise
the customers whether there is a better tariff plan in terms of costs, as well as giving them
general energy-saving advice.

Financial industry: To analyze the overdraft and withdrawal activities for each customer
(across all accounts) and advise them accordingly. For example, you could ask whether
they want to increase their overdraft limit. The bank can calculate the limit they are pre-
pared to give, based on the account activity information in the data warehouse.
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E-commerce industry: A price alert, where you automatically advise the registered cus-
tomer if certain products are now discounted below certain levels, for example, because
new product lines will be replacing them soon. The campaign can run once a day match-
ing the product prices and the customer interest and buying history and then advise the
customers via e-mail, RSS, or text message.

Entertainment industry (like Amadeus Entertainment): Customized new title film/music
announcements, where we advise the customers if his favorite artist or author has a new
single, album, film, or book, as well as give information about the artist such as biography,
web site, fans club, and coming shows.

The primary methods used to deliver this functionality are analytics and data mining.
Some functionality would also require notification and subscription.

Personalization
Personalization is the customization of web sites, campaigns, offers, products, and services
to a particular customer. For example, if John Smith browses the Amadeus Entertainment
web site, the content he gets is different from the one Stella Sanchez gets. Customization is
usually used on e-commerce web sites to make the products and offers more specific to par-
ticular customers.

Personalization is important because it increases the chances of the customers pur-
chasing the products, which could increase sales revenue. The source data for personaliza-
tion can be taken from shopping data (the pages that the customer looked at on previous
visits), interest register (the interest text boxes/drop-down lists on the registration pages), 
or past purchases of similar customers (the similarity can be determined from demographic
attributes). The source data can be analyzed using data mining models (decision trees, clus-
tering, and other algorithms) to score a list of offers and products against individual cus-
tomers. The output can then be wrapped as XML and fed to the personalized home pages
on the web site. The output can also be displayed as “my store” or “my travel” or “My Ama-
deus,” in other words, a page customized specifically to a particular customer, based on the
personalization output.

The personalization output can also be fed into a personalized campaign that is then sent
via e-mails to customers. Depending on the degree of personalization and the segmentation
of the campaign (which could be a segment of one), the campaign can take days to execute or
just a few hours (to just produce the raw XML files, not send out the e-mails).

The output of this analysis can also be stored in a dimensional mart, with time, cus-
tomer, and product as the dimensions. The measure in the fact table itself is the likelihood
score that the customer would be interested in those products. The data on this mart can
then be used for recommendations, which are similar to personalized offer e-mails but are
usually applied when the customers are still shopping on the web site. The recommendation
can be as simple as “People who bought this item also bought …” or can be as complex as
analyzing the customer’s demographics and then going to the likelihood mart to find the
most likely product range.

The key to site content personalization and recommendation is identifying the customer,
because we have to be able to tailor the site while the customer is still on it. Two approaches
are commonly used for identification: logins and cookies. The best way to identify a customer
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is by self-authentication, in other words, asking the customer to log in. Although this may be
inconvenient to customers (it’s an additional step), it is a reliable and accurate method.

Cookies, on the other hand, are tiny files on the customer’s computer that store a unique
web site visitor ID to identify the customer the next time they visit the web site. This is more
convenient to customers because they don’t have to log in, but it is not as reliable as self-
authentication. Some people delete their cookies or disable them, making the identification
fail. The customers may even be using a public computer, which means the cookie could iden-
tify a different user.

Cookies on their own cannot identify customers. They simply act as a client-side mecha-
nism for storing information. We still need to get a form of identification from the customer
and then store this information as a cookie. Whether we use cookies or logins or both, we need
to be able to identify the customer to be able to tailor the site content for personalization.

Customer Loyalty Scheme
In many organizations, especially commercial ones, a customer loyalty scheme is an impor-
tant CRM activity. A customer loyalty scheme is a program to reward customers based on their
contribution to the business. The contribution is measured in loyalty scores, usually calcu-
lated based on the revenue or profit generated by the customers. The main purpose of a
loyalty scheme is usually to encourage customers to stay with us and eventually to increase
company revenue or profit. A customer loyalty scheme can be implemented to all customers
or just the top n customers based on the loyalty scores.

An example of a customer loyalty scheme is a frequent-flier program where customers
collect air miles by flying with the airline or by using services from its partners. Customers can
then use their air miles for booking a flight. A frequent-flier program could also have status
tiers, where customers with more air miles get to higher tiers and can enjoy additional bene-
fits such as executive airport lounge and priority check-in.

The calculated loyalty scores can then be stored as an attribute on the customer dimen-
sion. This makes it easier for the scores to be used in campaign segmentation for sending
messages to customers as well as for analysis. In some loyalty scheme implementations, the
scores are converted into bands (or classes). For example, 0.4 to 0.6 is band C, 0.6 to 0.8 is
band B, and 0.8 to 1.0 is band A. The classes will then determine the rewards and benefits
the customer gets, as well as drive the communication plan.

Customer loyalty schemes require some periodic reporting and analysis such as churn
analysis and revenue analysis in order to measure the success of the program. Churn analysis
basically analyzes how many new customers we are getting every period (week, month, and so
on) and how many customers we are losing. Revenue analysis indicates how much additional
revenue is generated by each customer band or class, compared to the control group. A con-
trol group contains customers who do not receive any rewards from the loyalty scheme. For
example, if we have 100,000 customers in the program, we may want to allocate the top 25,000
as band A; the second 25,000 as band B; the third 25,000 as band C; and the bottom 25,000 as
control group. Bands A, B, and C receive the good rewards (rewards for band A are higher than
B, and B rewards are higher than C), but the control group gets nothing. After a few months,
we compare their purchases. In theory, bands A, B, and C should produce more revenue than
the control group.

New customers need to be added to the scheme periodically, and the loyalty scores need
to be updated regularly across all customers. We also need to keep the permission for loyalty
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scheme up-to-date, including opt-ins, opt-outs, and unsubscriptions. Some customers may
prefer not to be contacted including about the loyalty scheme, and we need to exclude them
accordingly from the campaigns and notifications.

Summary
In this chapter, I discussed the implementation of a data warehouse for customer relation-
ship management, including the following topics: permission, segmentation, response data,
customer analysis, customer support, personalization, and loyalty scheme. We always need
to keep the permissions up-to-date; that is arguably the most important thing in CRM,
because otherwise we are spamming. Campaign delivery and response data are probably
the next most important, because when our deliverability rate is low, the campaign does not
reach the intended recipients, and the response data measures the campaign’s success.

Customer analysis enables us to understand the current activities of our customers and
forecast their behavior. There are two major types of customer analysis: descriptive and pre-
dictive. Personalization enables us to tailor our products and services, web sites, and offers
according to a customer profile. The ability to identify the customer is the key to on-site per-
sonalization. In customer loyalty schemes, we calculate the loyalty scores to understand the
customer value and analyze the improvements in terms of customer churn and revenue.

In the next chapter, I’ll discuss the role of a data warehouse in customer data integration,
search, and unstructured data.
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Other Data Warehouse Usage

In the previous two chapters, I discussed the implementation of data warehousing for busi-
ness intelligence (BI) and customer relationship management (CRM). In this chapter, I will
discuss data warehousing within the context of customer data integration (CDI) and unstruc-
tured data. I will also discuss the role of search in data warehousing.

Unlike BI and CRM, it would be incorrect to say “implementing data warehousing for
CDI” because a data warehouse is a consumer of CDI. Data warehouses utilize the output or
results of CDI. In most data warehousing systems these days, the customer dimension in the
data warehouse is where customer data is integrated. But in the past few years, there has been
a growing trend to integrate customer data in a normalized store outside the data warehouse,
with the main argument being that the consumer of customer data is not just the data ware-
house but probably other systems and applications as well.

Since 2005, CDI, unstructured data, and search have increasingly become more and more
popular in data warehousing. Customer data integration (and master data management in
general) offers high value to organizations by providing a single, valid, authoritative customer
view for downstream applications such as data warehouses. The amount of unstructured data
is probably five to ten times more than structured data; therefore, you can potentially gain
more information from unstructured data than structured data. With the help of text analytics
and digital image processing, you can extract useful information from unstructured data.
Search as a user interface is useful in finding information in the data warehouse and present-
ing it to the end user.

These three elements (CDI, unstructured data, and search) could potentially fulfill the
future of data warehousing because of the benefits they bring; hence, I’ll discuss them in
detail in this chapter.

Customer Data Integration
In this section, I will discuss what CDI is, what the benefits are, and how to implement it. In
many organizations, customer data is scattered across different systems or applications. For
example, in retail banking, the credit card division may be using a different system than the
one used for savings accounts or loan management. The systems for life insurance and mort-
gages may also be different. Also, customer service or call centers may be using a different
system. Because of this, the customer data is scattered across several systems. CDI is an
ongoing process of retrieving, cleaning, storing, updating, and distributing customer data.
This includes customer names, customer addresses, dates of birth, telephone numbers, e-mail
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addresses, occupations, communication preferences, interests, and subscriptions. Let’s go
through the five processes mentioned earlier:

• Retrieving means extracting the customer data from the source system.

• Cleaning means correcting incorrect data and removing duplicate records.

• Storing means putting the customer data in a central customer data store.

• Updating means modifying the customer data in the customer data store, according
to the new values from the source system.

• Distributing means publishing the customer data so that other systems can use this
customer data.

CDI enables you to have a cleaner, single, reliable version of customer data that the
applications in the enterprise can use. This in turn can deliver business benefits such as
the following:

• Increased customer satisfaction

• Better business analysis

• Reduced complexity of the processes that use customer data

CDI is implemented using a service-oriented architecture, as shown in Figure 15-1. In this
figure, the customer data is in a central customer data store, with services built around the
data store. No applications touch the customer data store directly. Instead, all applications
must use the services to put the data in and to get the data out.

Figure 15-1. Implementation of CDI
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In Figure 15-1, you can see that some source systems put the customer data into the cus-
tomer data store by directly calling the services, like in source system A. But some source
systems store the customer data only in their own databases, like in source systems B and C.
For these source systems, you can build an ETL that retrieves and cleanses the customer data
from the source system and calls the services to store the data into the customer data store.

The metadata database shown in Figure 15-1 contains the data definition, data structure
metadata, and data integration rules. The data definition contains the meaning of each cus-
tomer attribute in the customer data store. The data structure describes the database struc-
ture of the customer data store. It contains the data types and lengths of every column in
every table in the customer data store, including the collation, constraints (such as null and
unique), and whether the column is a primary key or a foreign key. It also contains the data
hierarchy. The data integration rules contain the data mapping and transformations; for
example, customer group code X in source system A is mapped to customer group code Y
in the customer data store.

The customer data store is in normalized relational model. This model gives better
performance over the dimensional model when used to retrieve, create, or update a single
customer record or part of a customer record. Figure 15-2 shows an example of a customer
data store schema.

Figure 15-2. An example of customer data store schema

In Figure 15-2, the customer data store is designed so that a customer can have several
types of addresses, telephone numbers, and e-mail addresses, such as for the home and office.
This is implemented by using junction tables, marked as J in Figure 15-2.

In some cases in the customer data store, you’ll need to store the historical values of cus-
tomer attributes. This is required when some applications need to get the previous value, such
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as to explain an old transaction. You can do this by using a series of audit tables. Before chang-
ing the customer attributes, you store the original record with the old attribute values in an
audit table, along with a timestamp when the change happened.

Unstructured Data
Generally, you can classify data into two big groups. The first group is essentially numbers,
characters, and dates, such as 32, “John Smith,” and 05/21/2008. You usually store this kind
of data in a database. It can be a relational database, dimensional database or hierarchical
database, or even a multidimensional database. This data is usually stored in tables, as rows
and columns, where you can sort and query. This kind of data is called structured data.

The second group of data is not as discreet as the structured data. Instead, it is different
kinds of multimedia, such as images, videos, web pages, presentations, telephone conversa-
tions, e-mails, documents, and music. This kind of data is called unstructured data. This data
is usually stored in file servers, database servers, FTP servers, e-mail servers, content manage-
ment systems (CMSs), and document management systems (DMSs).

The amount of unstructured data is a lot more than the structured data, but most of it is
untouched by data warehousing. To give an illustration, say the sizes of all databases in three
multinational groups of companies (9,000; 12,000; and 20,000 employees) are about 50TB,
30TB, and 5TB, respectively. The sizes of all documents, text files, presentation, working files,
web pages, web site objects, video, audio, and e-mails in the file server, web server, FTP server,
e-mail server, and database server are estimated to be about 200TB, 300TB, and 100TB,
respectively, roughly from 4 to 20 times the size of the databases. These three groups are in
different lines of business: e-commerce, manufacturing, and utilities. The e-commerce group
has a 20TB group-wide data warehouse and a 5TB local data warehouse, which is the reason
for the large database size. The manufacturing group produces a lot of artwork and multime-
dia designs (5MB to 50MB each set), which is the reason for the large amount of unstructured
data, but almost each company in the group has its own systems (grown by acquisition). The
utility group has centralized several mini/mainframe-based systems across the group and a
1TB data warehouse, which is the reason for the compact database size.

In the last 15 years of data warehousing and probably almost in the whole history of data-
bases, we have been focusing on structured data. But since the amount of unstructured data is
much larger than the structured data, it is understandable that people are now looking at the
unstructured data.

So, how do you store unstructured data in the data warehouse? Traditionally, you store it
as files in the file system and store the attributes and the links in the data warehouse. It is eas-
ier to understand this using an example. Let’s say you have 1 million documents in various
formats. Some are Microsoft Word documents, some are Microsoft PowerPoint presentations,
some are PDFs, some are e-mail messages, some are text documents, and some are scanned
invoices, signed contracts, and purchased orders. Each document has various attributes, such
as the name or title of the document, the subject, an abstract or summary of the document,
the type of the document, the version, the document number or ID, the classification, the date
the document was created, the date the document was last edited/modified, the date the doc-
ument was last printed, the size of the file, the number of characters, the words in the documents,
the sentences and pages in the documents, the name of the author and author’s company, the
security settings (read-only, whether copying or printing is allowed, the password to edit the
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document, and so on), the fonts used in the document, the name and path to the related doc-
uments…and the list goes on.

You can store all these attributes in the data warehouse, that is, in relational tables. You
then store the path to the files (or the URL of the web page) in a column in the same table so
the application can get to the file to access it. You can also store these attributes and the links
to the files/objects in dimensional format for analysis purposes. Or you can store the docu-
ments as binary objects or character large objects inside the database. The same method is
applicable for storing different types of unstructured data such as video, audio, e-mails, and
images. All kinds of unstructured data have their specific attributes by which they could be
categorically and systematically stored. CMSs and DMSs can also often be used to store and
manage unstructured data.

The previous methods have been on the market for many years and are considered
“traditional” methods. There is a newer method for storing unstructured data in a data
warehouse—well, it’s not really a method to store documents in a data warehouse but more
of a method to extract structured data from unstructured data and then store the extracted
structured data in the data warehouse.

For documents, this method is known as text analytics. Text analytics is the process of
transforming unstructured documents into structured, analyzable data by analyzing the lin-
guistic structure of the text within the documents, parsing the text, extracting phrases, and
identifying associations using techniques such as statistical analysis and categorization
(combining phrases using predefined rules).

Let’s go through the details of how text analytics works for documents. The first step is to
convert the documents to text. Whether they are in Microsoft Word format, StarOffice format,
scanned invoices, or PDF, the first step is to convert them all to text files. You may need to use
optical character recognition (OCR) to convert them, such as in the case of scanned invoices
or purchase orders. Once they are in text format, you can feed them all to text analytics soft-
ware, which will parse the text files and extract the words and phrases from them.

The result is a list of words and phrases with their association scores reflecting the rela-
tions to other words or phrases. An association score is a decimal number ranging from 0 to 1
calculated for each phrase in relevance to another phrase. The higher the scores, the closer the
relations. The association scores are important because they reflect how close two phrases are.
You can use association scores to then group related entities and find relationships between
entities. There are various factors affecting the scores, such as the relative “distance” to the
other words, the words located in the same files, the synonyms or meaning of those words,
and the number of occurrences. Within the text analytics application, various less meaningful
prepositions such as (this is language specific) an, on, and the are weighted much less than
more meaningful words such as downtime, revenue, and Boston. The same thing happens for
past tenses, such as sat and opened; they are converted to the present tense. Similarly, for syn-
onyms such as big and large, gigantic, and huge, they are also converted.

The text analytics application may also process the files in the context of a certain indus-
try; for example, they could all be trading invoices, or they could be pharmaceutical patents,
contracts, or candidate résumés/CVs. To understand the context, let’s take the résumé exam-
ple. The parser would recognize that words such as SQL Server 2005, CRM, and Data Ware-
housing are the candidate’s skills, whereas Oracle DBA, Data Architect, and Web Developer are
the candidate’s past roles or titles. Informatica, Teradata, and WebSphere are the software that
the candidate has used in the past. Dallas, Los Angeles, and New York are cities where the can-
didate lived or worked. Citibank, The Home Depot, and T-Mobile are company names where
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the candidate worked. The software can then use this understanding of the parsed text. The
words are then processed using a data mining clustering algorithm to get the relationships.
My point here is that a text analytics application that is developed specifically for the recruit-
ment industry understands the context of the industry and is able to identify that certain
phrases are skills, titles, software, cities, and company names, whereas a pharmaceutical text
analytics application would be able to recognize the symptoms, research, diagnoses, chemical
content, cure, and treatment phrases within hundreds of medicine patent files. The applica-
tion understands the relationship between phrases, such as how skills are related to software
and how symptoms are related to treatments. Because of this, when selecting a text analytics
application, you need to ensure that it has the right “dictionary” for your industry. A text ana-
lytics application, which works well for pharmaceuticals, may not be good for processing
claim documents within the insurance industry.

The scored lists describe which words have strong relations to other words. A pictorial
representative of the result is probably easier to understand. Figure 15-3 shows the result of
the résumé example.

Figure 15-3. Pictorial representation of the result of text analytics

The line thickness reflects the strength of association between the phrases. For example,
in Figure 15-3, city A is more related to role B than to software A, and software B is more closely
associated to skill B than to city D. City C is related only to software A, and company A has no
relation with any skill, software, or company. The other output of the analytics is grouping or
classification according to the taxonomy of the phrases, that is, the list of cities, list of jobs, list
of roles, list of software, and so on. It is often industry specific. In other words, text analytics or
mining software that works well for car insurance claims may not have the vocabulary required
to analyze food and beverage patents.

Once you have the lists and the association scores, you can store them in the data ware-
house for further analysis. For example, you can ask questions such as, “What are the top five
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cities for software X?”, and “Which software do you need to master if you want to be a good
candidate for role C?”, and “Which companies have the most of role A?”

The method you can apply for documents is also applicable for other types of unstruc-
tured data, such as images or audio. Of course, in this case, it is not text analytics but perhaps
digital image processing or audio analysis, depending on the media type. For example, speech
audio files could be parsed and categorized into questions, statements, and short comments
based on the intonations, rhythms, and voice intensity (pattern recognition). Just like OCR,
technology can convert scanned documents into text files, and speech audio files can also be
converted into text files using voice recognition software. And from there, the same text ana-
lytics follow. A stream of outgoing e-mails can also be scanned, classified, and stored using
text analytics. Common implementations of e-mail analysis are a junk mail filter and a cus-
tomer service center’s incoming e-mails (automatic categorization and routing).

One example of a scanned document application is invoices, which could be linked to a
workflow system. Say there are 29 major suppliers in a company. Each supplier has a different
invoice format. You could set up the software so it knows that for invoices from supplier A, the
purchase order number is located in the upper-right corner of the document (in certain coor-
dinates) in AAA99A format, the invoice amount is in the lower right, and the number is pre-
fixed by a $, €, or £ symbol. The document archiving system then processes the documents
from various suppliers; extracts the structured data such as the invoice number, purchase
order number, supplier name, and order amount; and stores them all in a database, which
could then be fed into the ERP system for invoice matching and payment processes and also
be fed into a data warehouse for analysis purposes.

The metadata aspect of unstructured data conversion is also significant. All the attributes
I mentioned can be stored, in addition to the output of the text analytics or mining. These
attributes (subject/title, dates, author, and so on) are stored as metadata in the data warehouse.
The metadata would then be retrieved by the client applications using a search facility (see the
next section). Because of this, it is important to keep the metadata correct and up-to-date. You
can do this by consistently updating the metadata every time you add or change the unstruc-
tured data. The metadata update should be an automated process that is executed every time
you load or change the unstructured data.

Text analytics and unstructured data are particularly useful in the legal industry, the
pharmaceutical industry, police departments, TV stations, political parties, national parlia-
ments, and any other industries that deal with a lot of documents or images. They enable you
to search a lot of information in a shorter period of time. The text analytics extract the terms
and phrases from the unstructured data and categorizes them so the search engine doesn’t
have to read the unstructured data again. The search could be a lot quicker, probably less
than 10 percent of the time required to browse the original unstructured data.

Another application is the e-mail store, which stores outgoing and incoming e-mails as
unstructured data. The e-mails are then processed, and the resulting metadata, content lists,
and association scores can be stored in a data warehouse. The users would be able to search
the content and metadata later. The e-mail store application is particularly relevant for regu-
latory compliance (such as the Sarbanes-Oxley Act) and for CRM (such as customer queries
and correspondence). Sarbanes-Oxley section 802 requires firms that audit or review an
issuer’s financial statements to retain relevant records including correspondence and com-
munications sent or received in connection with the audit or review. Sometimes a court
order requires the preservation of all e-mails containing information potentially relevant to
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a subject of litigation. If your e-mail system is set to delete e-mails more than n months old,
you can use the e-mail store application to retain the relevant e-mails.

Search in Data Warehousing
When your data warehouse has grown to several terabytes and you have hundreds of stored
reports, cubes, and many BI data models, it can help if you have a search facility that can
assist the users in locating the right reports, cubes, and data models. A search facility is a tool
that indexes data warehouse reports, analytics, or data models (both the metadata and the
content) to enable the users to find information by typing the search criteria in a search text
box. A search facility is capable of prioritizing the search results by relevance. Some vendors,
such as SAS, search the business views and data structure in the metadata server in order to
link the relevant information in the search results. Other vendors, such as Information Builder,
search the structured data within corporate databases. Some vendors, such as Clarabridge,
also search unstructured data along with the structured reports.

A typical search application consists of an indexer, retriever, and scoring routines. The
indexer browses the folders for all of the file types (unstructured data files, and so on), then
opens and crawls each file, and then stores the locations of those words in the repository.
The indexer also collects the information about the reports, cubes, and data models and
stores this information in the repository. It also stores previous searches and queries. The
retriever accepts a value from the search text box, searches its repository and metadata, and
displays the results to the end users. Before it is displayed to the end user, the scoring rou-
tine sorts the results according to a preset logic/algorithm. The scoring routine may also
partition the result into more than one section to be displayed separately on the screen.

Within the search text box, you can type sales and it would list, say, nine sales reports,
two BI models, and three Analysis Services cubes that are related to sales. Similarly, you can
also search for things such as customers and subscriptions. The search would go through
the report metadata (such as titles, columns, and so on), multidimensional metadata, data
warehouse metadata, and BI data model metadata to find the relevant reports, cubes, and
models. It could also search the content of the stored reports and previous searches. For
example, there might be 12 variations of a product sales report for 2007 that are physically
stored as snapshots in the report server database, all with different stores, customers, and
product attributes. The search facility can find the relevant reports and highlight them for
the BI users. Previous searches are what the users typed into the search box, which may
speed things up a little bit.

Rather than trying to build our own data warehouse search facility in this book, I think it
is better if I show how to implement one of the off-the-shelf search products from BI vendors.
At the beginning of 2006, it was difficult to find search products in the market. But currently
(the second half of 2007), almost every single BI vendor is working with Google to deliver a
search product (some of them have already delivered, such as Cognos, SAS, Information
Builder, and Clarabridge). BI or data warehouse search is quite a specialized area. A ranking
algorithm to prioritize search results by their relevance, for example, is not straightforward to
develop. And even if you manage to develop it, would it be better than the Google search algo-
rithm? Indexing a pile of unstructured data, crawling structured databases, searching OLAP
cubes, and correctly interpreting metadata are all challenging tasks within DW/BI search.
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Searching the report’s content, column titles, data values, and practically any text appearing
on the report is better left to a search specialist company working with the BI vendors.

Three areas in data warehousing would benefit from a search facility. The first one is
simplifying the user interface. In this application, search is used for querying structured
data in the dimensional data store. I’m not talking only about long varchar data types but
also about numeric, date, and short character data types. You can supplement the query
interface with a search interface. A typical implementation is a simple text box where the
data warehouse user can type anything. The application then searches the data warehouse
for the relevant content. The following query is a typical data warehouse query to under-
stand the sales amount per store:

select s.store, sum(f.sale_amount)
from fact_purchase f
join dim_date d on f.date_key = d.dim_key
join dim_store s on s.store_key = d.store_key
where d.month = 10
and d.year = 2007
and s.region = 'Midwest'
group by s.store

Rather than typing that query, the users can just type October 2007 sales in Midwest
region. Or they can just type Sales; the search application will display the sales reports
from all regions, and the user can then pick the Midwest region for October 2007. Yes, it
is true that a BI application has made data warehouse querying and browsing very user
friendly by providing an excellent user interface for data warehouse users. But search takes
the user friendliness further. What can be easier than just typing whatever you want into a
text box? You need to understand that the search facility does not replace the query func-
tion and BI tool function; instead, it just supplements them to make them more complete
and easier to use.

The key here is that the search application needs to be aware that certain words are
metadata while other words are data. For example, subscription sales and subscription band
are facts/measures and dimensional attributes, so the search application can find them in
the metadata. On the other hand, Los Angeles and Classical Music are data values, so the
search application cannot find them in the metadata store; instead, they can be found in the
data itself. The search results can be partitioned between the results found in the metadata
area and the results that are found in the actual data. You need to bear in mind that in order
for the search application to have this capability, the metadata behind the application must
be excellent.

The second area to benefit from the search is the reports search, which I talked about ear-
lier. The third area that benefits from the search is unstructured data such as documents, web
pages, text files, images, videos, and audio files. In the previous section, I discussed how
unstructured data can be processed by text analytics applications (or digital image processing
for images) and provided a correlation diagram between related words or phrases. The source
files can also be browsed and indexed by a search application, so it would be a lot easier to
find information.
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Summary
In this chapter and the previous two chapters, I discussed the implementation of a data ware-
house for business intelligence and customer relationship management within the context of
customer data integration, unstructured data, and search. There are other implementations of
data warehouse for other industries such as for research/science/labs, geology, topology, earth
sciences, astronomy, and particle physics.

Now that you have implemented a data warehouse for good uses, in the next two chapters
of this book I will discuss the testing and administration aspects.
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Testing Your Data Warehouse

As with any other IT system, after you build the data warehouse with its ETL and applications,
you need to test it thoroughly. You need to go through six types of testing. I’ll introduce them
here with a brief description, and in the rest of the chapter I will discuss them one by one:

ETL testing: In the ETL testing stage, you make sure that appropriate changes in the
source system are captured properly and propagated correctly into the data warehouse.
You also need to verify that the bulk load solution works as it was intended so it can do
the initial data loading.

Functional testing: In the functional testing stage, you make sure all the business require-
ments are fulfilled.

Performance testing: In the performance testing stage, you verify that the data warehouse
can handle the required load and volume.

Security testing: In the security testing stage, you make sure only the users who should be
able to access the resources can actually access them.

User acceptance testing: In the user acceptance testing stage, the end users use the data
warehouse system to verify the usability.

End-to-end testing: In the end-to-end testing stage, you let the system run for a few days
to simulate production situations.

In this chapter, I will focus on the mechanism and procedure of how each type of test is
conducted specifically within the data warehousing context. I will not discuss the general soft-
ware testing methodology. The software testing methodology is the systematic arrangement
and management of testing tasks to produce high-quality software. These testing tasks include
creating a test plan, creating test cases, producing test data, performing unit testing, doing
system tests and integration tests, doing system fixes, writing test results, conducting user
acceptance tests, and writing test reports. The methodology explains how each task relates to
each other in the project plan. The methodology specifies how to log errors, how to pass errors
to the development team, how to get the fix back into the main release, how to judge how
many passes of the test will be performed, how to log the test results, how to report the num-
ber of errors found and fixed to management, and so on and so forth. These are the items in
the software testing methodology.

Instead, I will focus on the content of those tests specific to data warehousing. For exam-
ple, when doing functionality testing, what part of the data warehouse do you need to verify?
How does it differ from the functionality testing for an ERP system? How do you test the ETL?
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How do you conduct a user acceptance test for a data warehouse? Do you test data quality?
Those kinds of questions are the ones I will discuss in this chapter. So, let’s discuss the six test
areas one by one. In each area, I will discuss what the test is about, the purpose of doing the
test, and how to perform the test.

Data Warehouse ETL Testing
ETL testing is important because ETL brings the data from the source systems into the data
warehouse. If the ETL is incorrect, the data in the data warehouse will be incorrect. If the data
in the warehouse is wrong, no matter how good the data model is and no matter how good
the application is, you can’t use the data warehouse. On the other hand, if the data is right
but the data model is not perfect (it’s missing some attributes here and there, for example) or
the application is not right (it’s not user-friendly enough, for example), then you can still use
the data warehouse system. At least you can still query the data store directly by using a SQL
query tool instead of the applications.

Essentially, a data warehouse system has three primary components: ETL, data stores,
and applications. Of these three, ETL development takes the largest portion of data warehouse
development effort. A general view in the data warehouse community is that ETL takes 60–80
percent of development effort, but in my experience ETL takes about 50 percent of the devel-
opment effort, while data stores take 25 percent and front-end applications take 25 percent.
The percentages vary depending on how complex your application is. The hardware and soft-
ware platform is probably 10 to 25 percent of the combined three. Figure 16-1 shows this pro-
portion. Because ETL is the largest portion, it requires a larger effort in testing than those of
data stores, applications, and platform.

Figure 16-1. Three major components of a data warehouse

Figure 16-1 also shows that the ETL is the process that brings the data into the data stores,
while applications deliver the data to the users. Users can also query the data warehouse
directly without using applications.

The main objectives of ETL testing are the following:

• To make sure you get all the data you need, in other words, that you don’t miss some
data updates in the source systems.

• To make sure the data is correctly loaded into the data warehouse, that is, loaded in
the right tables, on the right columns, in the right formats, at the right time.
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• To make sure the incremental ETL is working according to the design, regardless
of whether it is a batch architecture, a push architecture, or a service-oriented
architecture.

• To make sure the bulk load script (if you have one) correctly loads the data into the
data warehouse.

Now let’s discuss the how. You start from the ETL architecture diagram and the ETL
processes. You need to test that both the overall ETL process and the individual ETL tasks
deliver the data correctly to the data stores. Say you have a daily batch consisting of 30 tasks,
a weekly batch consisting of 3 tasks, and an hourly batch of 2 tasks. To test the ETL processes,
you run the daily ETL workflow, making sure the tasks within the daily batch are executed in
the correct order. Then you do the same thing with the hourly and weekly batches. You then
check the data in the target, comparing it to the source system.

If you have any “push approach” or SOA-based ETL, you switch them on and make some
transactions in the source systems, making sure the changes are captured and propagated
properly into the data warehouse. You need to test whether there is any “data leakage” during
the ETL run. Please refer to Chapter 7 for an explanation of what data leakage is.

One important feature to test is recoverability. Recoverability means that the ETL
processes should be robust enough that in the event of failure the system can recover without
data loss or damage. The ETL process needs to be built so that if the process is stopped at any
point and rerun, there is no data loss. You test recoverability by listing the event types you want
to be covered against, such as loss of electricity and disk failure. You then list the process types
within the ETL system where the failures possibly occur, such as extraction process, DDS pop-
ulation process, and cube-building process. You then simulate the combination between each
event type and each process type, followed by a rerun of the ETL processes. You then check
that the process can continue as normal and there is no data loss.

For an SOA architecture doing trickle feed, you need to simulate message queue (MQ)
failure or network failure where the messages sent by the source system don’t reach the target
system and need to be resent. You can simulate MQ failure by disabling the queue and the net-
work failure by changing the IP address. If you build a notification or alert feature in the ETL,
you need to test that the correct people are notified when certain events happen.

In some projects, you can use the incremental ETL architecture to do the initial bulk load-
ing of the data warehouse. In other projects, you need to use a separate ETL architecture for
bulk loading, because the incremental ETL is not designed to handle a big load, such as load-
ing 200 million rows of historical transactions, for example. This is particularly true when you
use real-time message-based ETL (SOA) for the incremental ETL that was designed to pick up,
say, 10 to 100 rows every time. To determine whether the incremental ETL is capable of doing
bulk initial data load, you need to test it. If the projected execution time is beyond what you
can tolerate, you need to develop a separate ETL architecture for bulk loading. In either case,
you need to verify that the bulk load script works, that is, that it loads the initial data com-
pletely and correctly into the target tables. It is essential to test that you don’t miss any data
around the cutoff date, because there is a potential gap between the bulk load cutoff date and
the start date of the incremental load.
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Functional Testing
Functional testing is about making sure that all business requirements are satisfied. Business
requirements are data and capabilities that the users need from the data warehouse in order
to perform their business tasks, such as the ability to analyze a particular customer activity by
certain criteria, the ability to view certain data for a specific period, and the ability to drill
down the data into a certain level to identify business problems.

Business requirements are identified at the beginning of a data warehousing project,
which will then drive the design and development. Simply speaking, functional testing is
just verifying that the data warehouse that you built satisfies all those requirements. In the
case of the Amadeus Entertainment Group case study, you identified the business require-
ments in Chapter 4. The following are two of those requirements:

• The data warehouse should enable Amadeus Entertainment to analyze subscription
sales (that’s when a customer is subscribing to a package rather than to a product) over
time by geographical area, by customer demographic, by stores and sales territory, and
by product hierarchy. In addition, they also need to analyze by subscription duration
and lead source (where the customers are coming from). They need to know the rev-
enues, the costs, and the margins, which are evaluated every day for a period of one
month in U.S. currency.

• At the store level, the ability to view the daily data in the last few weeks is important.
The stores need to see the ups and downs of sales, costs, and profitability, and the
stores need to be able to drill down to any particular day to understand the causes
of low sales or low profitability problems, such as specific products, titles, media, or
customers.

In functional testing, you test all these business requirements that you defined in the
beginning of the project, as discussed in Chapter 4. For example, you analyze the cost of sub-
scription sales for each month by stores and sales territory. You check that the data warehouse
figures are correct. You do this by comparing it to the source systems. The figures on the data
warehouse must match the figures from the source systems. Of course, it is not possible to
check every single number. One testing technique is to verify the total, then drill down one
level (verify all members), and finally drill down to the bottom level by picking n members.
For example, in the case of the first requirement mentioned earlier, you need to get the total
revenue, cost, and margin for a particular day and verify that these three figures are correct.
Then you drill down one level. For geographical area, the highest level is country, so you check
the total revenue, cost, and margin for each country for that particular day. Then you do the
customer demographic, such as occupation or age group, that is, the total revenue, cost, and
margin for each occupation or age group. Then you do other areas such as sales territory,
product hierarchy, and subscription duration. Finally, after you finish testing the top level, you
test the bottom level by selecting a few members. For example, for the product hierarchy, the
bottom (base) level is the product code. You can pick a few product codes and check their rev-
enue, cost, and margin for that particular day.

The product codes are not selected randomly but are based on the boundary values, such
as the minimum and maximum values, for example product codes that are never purchased
by the customers (minimum values) or product codes that are very active/popular (maximum
values). You can also determine the boundary values based on product age, such as the newest
product code and the oldest product code.
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After checking the totals, you also need to verify the count of the dimension members at
all levels. For example, if you have 12 product categories, 438 product types, and 25,034 prod-
ucts in the source systems, then the data warehouse needs to have the same numbers. In the
case of the first requirement (subscription sales), the fact table type is a snapshot. If the fact
table is incremental, like the Product Sales fact table in the Amadeus Entertainment case
study, it is important to verify the total of the individual additive measures in the fact table
within different time periods, such as a week, month, quarter, or year. For example, in the
Product Sales fact table, you need to verify the total revenue, cost, and margin within various
levels of time periods.

It is imperative that the tester understands how to verify the data warehouse figures.
They do this by comparing the data warehouse figures to the source systems, either by
querying the source system database or by running some reports on the source system
applications. The testers need to know how to use the source systems to get the data ware-
house figure that is being tested. In the earlier example, say that according to the data
warehouse the total revenue for France on October 21, 2007, is $21,351.64. The tester needs
to know how to use the source system to get the revenue for France for that day, including
whether returns and cancellations are included, whether intercompany sales are excluded,
and whether voucher codes are counted as face value or cost value. He needs to know what
currency rate to use to convert from euros to U.S. dollars. To perform this test, you need
somebody whose job involves calculating all this. It is likely that for different business areas
you will need a different tester.

Functionality testing is not just about calculating the totals and comparing counts
between the source system and the data warehouse. You also need to test things such as a
slowly changing dimension, whether it is type 1, 2, or 3. You need to test the surrogate keys,
including whether they link the fact tables and the dimensions properly. You need to test the
referential integrity in the ODS. You need to test the date dimension, making sure that all the
attributes are correct for all dates, such as for the fiscal week, fiscal year, week day indicator,
last day of the month indicator, and week number. You need to check the dimension hierar-
chies, such as whether product code X belongs to product type Y. You need to test all customer
attributes, such as whether all the demographic attributes of customer X are correctly inte-
grated from two different source systems, according to the survivorship criteria. You need to
verify all degenerate dimensions in all fact tables, such as order line number and purchase
order ID. You need to test all control columns such as the loaded timestamp, source system
code, and active flag. You need to test that all data quality filters work properly. And last but
not least, you need to check the metadata, all seven types: data definition and mapping meta-
data, data structure metadata, source system metadata, ETL processes metadata, data quality
metadata, audit metadata, and usage metadata. (I explained these types of metadata in
Chapter 10.) During the testing, you need to verify that they are populated correctly.

Numerous business scenarios and business conditions need to be tested in functionality
testing. First you identify a business event that you want to test (examples will follow). Then
you prepare a test data in the test environment of the source system to simulate this event.
You then run the ETL processes to bring the simulated data into the data warehouse and verify
the data has been loaded into each data store correctly. This verification is done by comparing
the data in the data warehouse to the source systems. Examples of the business events are
when a branch closes and all its customers are reallocated to another branch, when you have
a price increase, when you have a month-end or year-end process, and when a new fiscal cal-
endar begins. There are also business events that are more day-to-day routine, such as interest
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rate changes, currency rate updates, supplier changes, stock audits, a new newsletter, returns
and refunds, new calling plans, and customer re-sign-ups. These are real business events that
would affect the data warehouse. Of course, different industries have different events; for
example, a new calling plan is specific to the telecommunications industry, a customer re-
sign-up is specific to finance and utilities, and a stock audit is specific to the retail or supply
chain industry. You need to verify that the data in the data warehouse is still correct on all
these occasions.

Test data is important in performing functionality testing. It takes a lot of effort to cre-
ate the test data for a particular test condition. Unlike other application testing, in data
warehouse functional testing you need to create the test data in the source systems, not in
the data warehouse. You need to work with the source system DBA to create the test data.
Sometimes it is rather difficult to simulate certain conditions in the source systems, and it
is easier to use real events from production, such as a price increase. If the price increase
percentages are different for each customer and they have been accumulated over a few
years, it is difficult to create test data to simulate the increase. It may be easier to use the last
annual price increase data from production and copy the data to the QA environment so
you can search it to find the data you need for testing. Sometimes it is the reverse; that is, it
is quite difficult to find a specific event in the production source system, and it is easier to
create the event yourself, such as for a new product. You may find it difficult to find a certain
product or customer with certain criteria that you need. In this case, it is easier to create the
product or customer in the test environment.

Performance Testing
Performance testing verifies that all technical requirements related to the platform, capacity,
latency, and response times are satisfied. In particular, you need to prove that the data ware-
house system is capable of completing the data loading process in a particular amount of
time. Performance testing is important because when developing the ETL processes, you use a
small amount of data. You often focus on making sure the functionality of the ETL processes is
correct. Now that it is developed, you need to run it in operational conditions in terms of work
load, timing, amount of data loaded, and amount of data already existing in the target tables,
hardware, indexes, partitions, number of users, type and amount of queries, cube-processing
times, number of variables in data mining and predictive analysis, and so on. The data stores,
the ETL, and the applications need to be tested in operational production conditions to
ensure that they satisfy the performance requirements. For example, when developing the
workflow to populate a fact table, you load hundreds of rows into a fact table that is nearly
empty, and you run each workflow in isolation. In contrast, you know that when it is opera-
tional, the fact table would have hundreds of millions of rows and each load could be roughly
millions rows, so many different workflows will run simultaneously. It is hardly surprising that
a few months after the data warehouse is operational, this ETL workflow would run slowly in
production, even though it ran smoothly on the development server. This is because the oper-
ational production conditions are different from the development conditions. The purpose of
performance testing is to eliminate these types of risk.

There are two main areas to test the performance in a data warehouse. The first area is
about the ETL, and the second one concerns the applications. In the ETL area, you need to
verify that both the bulk load performance and the incremental load performance satisfy
the required performance criteria. The bulk load is used to populate the data warehouse for
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the first time. The incremental load is used to populate the warehouse when it is operational.
On the application side, the performance criteria are generally about the response times.

The purpose of doing performance testing is to satisfy the performance requirements.
Some requirements are applicable to the whole data warehouse system (let’s call these gen-
eral performance requirements), while other requirements are applicable only to specific
elements of the system (let’s call these specific performance requirements). General per-
formance requirements require the whole system to perform based on certain conditions,
such as the availability of the data warehouse. Specific performance requirements require
only those elements (such as certain ETL processes or certain tables in the data stores) to
perform at certain levels. For example, the ETL process that extracts data from a particular
source system needs to be completed within a certain time window. You need to ensure that
both the ETL and the applications satisfy both the general and specific performance
requirements.

So, what are the tasks you need to do to perform data warehouse performance testing?
There are essentially three steps to carry out performance testing on the ETL processes: con-
figure the test environment, run the bulk load processes, and run the incremental processes.
Let’s go through these three steps one by one:

1. First you need to configure the data warehouse test servers as per the production con-
figuration. You create the data stores and set up the ETL processes; that is, you migrate
the SSIS packages from development to test server. Then you need to connect the test
server to the test version of the source system (sometimes known as QA) and set up all
necessary connectivity and access. You load the test data into the QA environment. You
run the whole ETL processes end to end using a small load to verify that the test envi-
ronment has been configured properly.

2. You run the initial load ETL processes (be it T-SQL scripts or SSIS packages) to pop-
ulate the warehouse and measure their performance, that is, when each task in the
initial/bulk load ETL processes started and when each one completed. One way to
measure the performance is by utilizing the ETL log and the timestamp column of the
loaded table. Let me explain what I mean by the ETL log and the timestamp column.
The ETL log is a table or file where the ETL system writes to. It is sometimes known as
the audit table or file. In each ETL task or process, after each major step the ETL rou-
tine writes a row (if it is a table) or a line (if it is a file) in this ETL log, containing the
essential statistics of the task, such as the data volume (number of records affected by
the operation), the task name, and the current time. The timestamp column contains
the time the row was loaded or modified.

Both the ETL log and the timestamp columns are useful to measure the performance
of the incremental ETL and bulk load because you can determine the duration of each
ETL task. They are also useful for troubleshooting the root cause or finding the bottle-
neck of the performance problem as well as for doing fine-tuning in the data ware-
house performance. You can do this by finding out the long-running/long-performing
tasks, and then you try to make these tasks more efficient. Both take a little bit of time
to implement (probably 30 minutes to an hour for each task) because you need to pro-
gram each ETL task to write into the log, but they are extremely useful because they
help identify slow-running tasks (I have seen a 50 percent increase in performance),
so they are worth the effort.
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Another way to measure the performance is using SQL Server Profiler. You set up SQL
Server Profiler to log the time each SQL statement is executed. You can also utilize SSIS
logging. SSIS logs runtime events as they are executed in SSIS. For this you need to
enable logging on each task in all SSIS packages in the bulk load processes.

3. Then you run the ETL batches—whether it is daily, hourly, or weekly—in a particular
sequence according to the prepared test scenario and measure their performance
(speed). In incremental ETL, you can also use the same methods/instruments as the
bulk load to measure the performance: ETL log, timestamp, SQL Server Profiler, and
SSIS logging. For real-time ETL, you need to measure the time lag as well; that is, how
many minutes after the transaction was made in the source system did the data arrive
in the data warehouse?

The previous steps are about performance testing for ETL. For applications, to measure
performance you can script the actions, or you can measure them manually. Scripting the
actions means you use software to record the actions that a user does when using the appli-
cations. You then play the recording back to simulate many people using the system simul-
taneously while recording the system performance. Measuring them manually means you
use the system interactively.

In application performance testing, you use the applications, whether they’re reports,
mining models cubes, or BI applications, using both normal scenarios and exception scenar-
ios. Normal scenarios are steps that the users perform in regular daily activities. Exception
scenarios are steps the users perform that result in errors.

As discussed in Chapter 6 when I talked about physical database design, you can do sev-
eral things to improve application performance, such as indexing, partitioning tables, and
creating summary tables. The one with the biggest results is creating summary tables (also
known as aggregates), whether they are in the relational database (DDS) or in the cubes. This
is because results have been calculated in advance, so all the application needs to do is to dis-
play them on the screen. But too many summary tables (or cube aggregates) could decrease
the performance of the ETL, because populating them takes time. So, you need to be careful
and strike a delicate balance between them. As I discussed in Chapter 6, summary tables
needs to be at least 10 times smaller in terms of the number of rows, ideally 100 times smaller
or more. Otherwise, there is no point in creating a summary table. Remember that a summary
table needs to be updated every time the underlying fact table is updated. The ideal time to
refresh the summary tables is immediately after the population of the underlying fact table. To
be sure about the benefit, you need to measure both the time required to update the summary
table and the improvement in application queries.

As discussed in Chapters 5–8, you need to think about the performance when you design
the data warehouse, not tweak it when you finish building the data warehouse. You should
start taking the performance into account when you design the architecture and again when
you physically build the architecture (that is, server, network, SAN, and so on). Then you
incorporate performance requirements when you design the data stores, both when you do
the logical design (data modeling) as well as physical design (database creation). After that
you design the ETL, also with performance considerations in mind. Then when you design the
reports, cubes, mining models, and other types of applications, you need to design by keeping
an eye on the performance factor. The whole thing should be designed for performance at
every single step from the start of the project, not after the data warehouse system is built.
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Security Testing
Security testing is about making sure that only the people and applications that are allowed
to access the data warehouse can actually access it. In addition, you also need to test how
people are accessing the data in the data warehouse, such as the tools used to access the
data warehouse and the way the user supplies the security credentials.

As discussed in Chapter 4, these are the security requirements for the Amadeus Entertain-
ment case study:

• All data warehouse users must be able to access the data warehouse front-end appli-
cations (report and OLAP) without logging in again. They just need to log in once to
Windows on their PC or laptop.

• The data warehouse front-end applications must not be accessible from outside the
company network.

• All front-end applications need to be web based, accessible from anywhere in the
company network.

• All users should access the front-end applications from a central portal.

• Some users are allowed to access data from their own country only, but some users
are allowed to access data from any country.

• Some “power users” are given access to the dimensional store to perform direct SQL
queries.

• Certain sensitive data is viewable only by certain people. In other words, users must
be authorized to access the data.

• “Who accessed what and when” must be auditable, meaning the user access activity
needs to be recorded or logged.

A data warehouse consists of several data stores, and within each data store you have
several data objects, such as tables, views, and stored procedures. The security requirements
state which users should be able to access which objects. You verify these requirements by
connecting to the data warehouse as those users and accessing those objects and by con-
necting as other users and trying to access the same objects.

You test the data warehouse security by accessing the data warehouse from the applica-
tions (such as reports and BI tools) and by issuing direct SQL queries to the data stores. If
there is encrypted data such as credit card numbers, you should test accessing them as well.
You also verify that the security audit table is populated properly and correctly, containing the
username and the time they access the warehouse. You do this by comparing the actions you
did on the applications and the security logs.

You need to test the security access from different network points according to the secu-
rity requirements. Sometimes the requirement is that the data warehouse needs to be accessi-
ble from anywhere within the company network. Sometimes the requirement is to restrict the
access to certain network segments only. And sometimes you need to enable external access
(from outside the company), such as from the Internet. For this purpose, you need to work
with the network engineer to identify all possible segments that need to have access to ensure
your coverage. Once you’ve identified the network segments from which you need to test the
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connectivity, you need the network team to put your test clients into those segments. You can
do this either by assigning a fixed IP to the client or by rerouting the client to the target seg-
ment. If the corporation consists of several legally separated entities (a situation such as this
is common in large enterprises with a lot of acquisitions), you may need some firewall holes
to be opened between the company’s firewalls to allow the traffic between the entities. One
way to test the connectivity is by asking the representative of the user population (for exam-
ple, one from each region or office) to access the warehouse portal (from their computer)
and access the applications from there.

User Acceptance Testing
The three tests mentioned earlier (functionality, performance, and security) are conducted by
the data warehouse development project team. Once these three tests are completed, it is the
end users’ turn to test the data warehouse. This test is called the user acceptance test (UAT).
This is where some key users use the data warehouse and its applications to find out whether
it fulfills their needs. The users also test the user friendliness.

Before they start, you explain all the functionality of the data warehouse and its applica-
tions to the users. You walk them through the systems, explaining the components and the data
flow architecture, to make sure they understand their way in, out, and around the system. You
give the users with proper security access by creating user accounts in the applications for
them. You populate the data warehouse with test data that satisfies the UAT scenarios, which
can be from production or QA source systems. The test data may need to be tailored according
to specific scenarios. You then ask the users to perform certain scenarios using the applications
and ask them to record the results. You then let the users use the system to test the functional-
ity, the user friendliness, and the appearance and have them write down their comments.

I want to point out here that UAT is done after you have conducted the ETL test, the func-
tional test, the performance test, and the security test. This means that when users test the
data warehouse and its applications, all the functionality written in the use cases is there, as
per the functional specification.

The purpose of conducting a UAT is twofold. The primary purpose is to confirm that the
system is capable of performing the tasks for which it was designed. The secondary purpose
is to get user feedback, especially about user friendliness.

In the UAT, you confirm the system capability to perform the daily business tasks and
fulfill the user needs. The test cases in the functionality testing are designed to cover all possi-
bilities, based on the functional and nonfunctional specification that was derived from the
business requirements. In a user acceptance test, ideally the test cases are designed to reflect
day-to-day activities of different roles within the user base. It is not about how easy it is to
administer the data warehouse,1 but it’s about how easy it is for the business users from each
role to use the data warehouse and its applications to perform their tasks.

User friendliness of the same application is different from user to user because each has
different responsibilities. For example, a particular user could be a regional manager who is
not responsible for a particular store. Unlike a store manager, she does not need daily sales
and cost reports. She doesn’t need a breakdown by product type. She needs a regional
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overview to see which branches are performing poorly and which ones are right on target. The
same application could be more user friendly to a store manager than to a regional manager.

End-to-End Testing
At this stage, the data warehouse is almost ready to go to production. The ETL tasks have been
verified in the ETL test. All the functionalities has been tested in the functionality test. The
performance issues have been sorted out in the performance test. The security has been
checked in the security test. The users have reviewed the data warehouse, and all their
requests have been processed. Before deploying the data warehouse into production, there is
just one more test to do: end-to-end testing where you verify the whole system from end to
end.

To do end-to-end testing, you let the data warehouse ETL processes run for a few days to
simulate operational conditions. The ETL batches are running automatically. A tester is query-
ing the data warehouse every now and then and using some front-end applications. You check
that there are no missing transactions, customers, or other data. You check that the data qual-
ity works fine. You check that the audit tables are populated. You check that the ODS tables are
populated properly. You check that all the fact tables and dimension tables in the DDS are
populated properly. You check that staging is correctly used and purged. You check the appli-
cations, reports, cubes, and mining models. It’s like doing a final check of everything, but this
time the ETL runs automatically, feeding the data into the data warehouse every now and then
according to its schedule (daily, hourly, weekly, and so on).

Some people call this end-to-end testing integration testing. You can perform the end-to-
end testing before the UAT. You can perform it after ETL and functionality testing.

When you do this test, you document everything: all the details regarding the configura-
tion; all the details about the initial data; information about which code base you deployed,
how to deploy them, and which cutoff date you loaded the data from; details of the security/
functional account that you use to set up; and so on. You make note of anything and every-
thing, because you need to repeat this deployment in production. The note is ideally in the
form of a deployment procedure, which is a step-by-step list for deploying the data warehouse
system to any environment.

After completing the end-to-end testing satisfactorily, you are now ready to migrate to
production. So with that note, you approach the production system with care.

Migrating to Production
You are now ready to deploy the data warehouse to production. You will do the same thing as
for end-to-end testing, except this time you are doing it in the production environment. You
will execute the same scripts, copy the same executables/files, set the same configurations,
load the same initial data, and activate the same ETL processes. You will do every single step
in the deployment procedure that you created earlier.

But wait, before you do that, let’s go through this “go live” checklist. This list is not specific
to data warehouses. In fact, any system can use this “go live” checklist. This checklist covers
the technical aspects of production deployment, such as environment, help desk, handover,
user training, and documentation. It does not cover management aspects such as corporate
communication, benefit realization, and project management.
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1. Prepare the production environment: You make sure that the production environment
is ready. This is necessary so the deployment of data stores and ETL process into pro-
duction goes well.

You may tend to just assume that the production environment is ready. You should not
assume that. Instead, you need to check that the production SQL servers are built and
configured properly and that all the application servers (report and analysis services)
are configured correctly. All the things you went through in Chapter 6 need to happen
to the production hardware, including disk carving/LUN masking, database configura-
tion, storage allocation, and so on. The firewall between the network segment where
the users are and the data warehouse SQL server needs to be opened. This may be a
lengthy procedure, so allow plenty of time. If external access to the data warehouse
applications is required, it may even take longer to open the firewall. Also, you need
to check the licenses for all software used in production including SQL Server, Win-
dows, BI applications, ETL software, and any e-mail clients.

2. Coordinate with the help desk for first-line support: Make sure that the help desk per-
sonnel can support the data warehouse and its applications. This is necessary to
ensure that the data warehouse users will get proper support from the help desk.

Just like what you did at UAT to the users, you need to go through the data warehouse
with the help desk personnel. You explain all the functionality to them so that they
know what the users are talking about when receiving call from the users. You set up
user accounts with proper security for them to use. You agree with them who to con-
tact for data problems, who to contact for access and security, who to contact for
technical issues, and who to contact for business issues.

3. Hand over the data warehouse system to the operation team: You transfer the knowl-
edge and responsibility from the development team (project team) to the operation
team. This is necessary to ensure that when the project team is dissolved (after the
project is closed), the users will get proper support for solving operational issues and
enhancement requests.

Just like what you did with help desk team, you go through the data warehouse with the
operation team. You explain all the functionality to them, but in a more detailed level
than the help desk. Ideally there should be a dedicated data warehouse administrator
(DWA) within the support team who will support the data warehouse and all its applica-
tions. You explain everything to this DWA, including how the system works and the
details of ETL tasks, DDS and ODS schemas, and practically anything he needs to know
in order to be able to solve any problems that may arise. You give him all data ware-
house design documents including architecture design, ETL design, schema design
(ERD), cube design, report design, business requirements, functional requirements,
and all testing documents. Ideally, the DWA joined the team at least three months in
advance and is involved in the later phase of the development. The earlier the DWA is
involved in the data warehouse development, the better. The DWA definitely needs to
be involved in the end-to-end testing and in the production deployment. For a few
weeks (say, two to three weeks), both the development/project team and the operation
team support the data warehouse operation, and then after that, both parties sign the
handover document to formally mark that the project has ended, the project team is
dismissed, and the operation team is in charge to support the data warehouse.
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4. Train users and create documentation: You train the end users and create a user man-
ual. This is necessary to ensure that the users have proper knowledge to use the appli-
cations and query the data warehouse.

For the users to be able to use the data warehouse system properly, you need to explain
all the functionality. You need to walk the users through the system. You explain what
data is stored in the data warehouse and how the data is organized. You go through all
the applications one by one—every single report, every single cube, every single min-
ing model, and every single BI application. You put all this information in a nice and
compact user guide and put it in the data warehouse portal so that all the users can
read it.

5. Liaise with the DBA: You discuss the database administrative requirements with the
DBA. This is necessary to ensure that the data warehouse databases will be supported
properly by the DBA.

In some companies, the DWA is also the database administrator (DBA). But in some
companies, they are two (or more) different people. You need to discuss the capacity
planning and projected growth with the DBA, especially with regard to the disk space
in the SAN. You also need to discuss the backup and test restore requirements with the
DBA. In the case where the backup to tape is administered by a central person from a
network department or data center, you arrange the backup to tape with them. The
test restore needs to be performed regularly at least every six months. Also, discuss
the disaster recovery (DR) plan with the data center people.

6. Create the data warehouse portal: This is necessary to ensure that the users have
single access points to the data warehouse reports and applications, as well as the
user guide and help desk numbers. Configure and set up the data warehouse portal
correctly according to the structure that the users need. Don’t forget to set the secu-
rity arrangements as well.

Now that you have prepared everything, you are ready to deploy the data warehouse into
production environment. When you migrate into production, there is no more testing.

Summary
In this chapter, I discussed testing the data warehouse: ETL testing, functional testing, per-
formance testing, security testing, user acceptance testing, and finally end-to-end testing.
I also discussed a short “go live” checklist that you need to follow when deploying the data
warehouse to production.

You should not underestimate testing. It usually requires quite a significant amount of
time. If you count, there are six types of data warehouse testing. Essentially, in testing you do
anything necessary to verify that the data warehouse is working properly. A good data ware-
house consists of hundreds if not thousands of data elements and application parts, and each
of them needs to be verified. And you should always remember that testing involves fixing.
You need to include the time required to fix the errors or accommodate the change requests.

In the next chapter, which is the last chapter of the book, I will discuss the operational
aspects of a data warehouse—that is, how to administer a data warehouse as well as how to
maintain it.
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Data Warehouse 
Administration

The tasks of migrating a data warehouse to production fall into three categories according
to the personnel involved, as displayed in Figure 17-1. First, the BI manager creates the user
guide, and the development team writes the system documentation and the support manual.
Second, the business intelligence manager (BIM) trains the business users, and the develop-
ment team trains the data warehouse administrator (DWA) and support desk personnel.
Finally, the DWA sets up the users, and the data warehouse goes into operation.

Figure 17-1. Migration to production and operations
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This chapter is about the second half of the diagram in Figure 17-1: operation. In particu-
lar, I will discuss the DW administrator tasks, including monitoring ETL, monitoring data
quality, managing security, and managing databases. I will also discuss system enhancements
such as bringing a new piece of data into the warehouse and updating the applications.

Monitoring Data Warehouse ETL
One of the most important things in data warehouse administration is monitoring the ETL
processes. The ETL processes feed the data warehouse with data. If the ETL is not running at
all for that day, it’s not that bad, because it means the data in the warehouse is old, that’s all.
But if the ETL is running halfway on that day, that’s bad, because the data could be in an
incomplete state. It’s not necessarily wrong, but it’s incomplete.

For example, say the ETL batch starts with extracting data from the source systems into
the stage and then loading the data into the ODS. The ETL then loads the data from the ODS
into the DDS, starting with the dimension tables first and then moving on to the fact tables.
When loading the second fact table, the process stops halfway because of an error. Let’s say
out of 46 branches, data from 20 branches was loaded completely, the 21st branch was half-
way done, and the remaining branches were not touched. The regional totals would be incor-
rect because the data was not complete. The data warehouse was not ready to be consumed
by the users because it was halfway through the loading process. To avoid this situation
(because you are risking serving incomplete or incorrect data to the end user), in some imple-
mentations you can block end users from accessing the data warehouse (so only the DWA can
access it) until the data warehouse is 100 percent ready for consumption.

This is why it is important to monitor the ETL, checking whether the ETL process exe-
cutes successfully. I cannot emphasize enough that this should be an automated process, and
if any task fails, you should be notified automatically. Again, this should not be a manual pro-
cess. This is so important that I’m going to repeat it one more time: you must automate ETL
monitoring. Why? There are four reasons:

• First, if it is a manual process (meaning that somebody must check it before you know
that the ETL ran OK), you may not know that the ETL has not been working correctly
for a week!

• Second, you need to automate the ETL monitoring to make it simpler and quicker to do
the monitoring. The ETL processes may have hundreds of tasks, and it could take hours
to check them. To make it simpler and quicker, you could have exception-based report-
ing, meaning you get a report only if there is something wrong. This way, you need to
check only a few tasks that did not work correctly.
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• Third, you need to automate the ETL monitoring process because it could fail in the
middle of the night (say at 1 a.m.), and nobody would notice anything until 9 a.m.
when everybody comes to the office. Then it’s too late to do anything to get the data
warehouse ready for that day. If you notice earlier (say it got reported automatically to
the on-duty operations team, which may be outsourced offshore because of the hours
of operation), then they could check and fix it so the warehouse is available in the
morning. This is especially important if the data warehouse is used for CRM rather
than for BI, because the campaign must go out on a certain day of the week (maybe
every day). If CRM campaigns don’t run for that day, the revenue would be directly
affected.

• Finally, you need to automate the ETL monitoring process because of consistency. In
an automated process, the same queries and the same steps are executed every single
time, so you can guarantee the consistency. Manual checks are more prone to error,
and they are also tedious.

Ideally, the ETL batch should not fail because of bad data, but in practice this happens.
Bad data should go to the data quality quarantine area and not be loaded into the data ware-
house. Alternatively, it could be automatically corrected according to the business rules and
loaded into the warehouse. Either way, the ETL should not fail because of bad data. Please
refer to Chapter 9 for more information. If your ETL uses service-oriented architecture and
the data validation is using XSD, when bad data fails the XSD validation, the ETL should not
fail. If your ETL is batch-oriented, when your data firewall encounters bad data, the ETL
batch should not stop with an error. It should continue working until the end of the batch.

You can do two things to monitor ETL processes:

• Notification

• Reconciliation

Notification means the system needs to let you know whether the ETL is working OK or
failed. Reconciliation means you compare the source and target data to find out whether the
data in the data warehouse is correct.

More specifically, notification is a process of monitoring the data warehouse ETL tasks
and informing the operations personnel of the status of those tasks. There are two approaches
generally used for notification: either the ETL tasks themselves internally log their statuses or
an external monitoring system checks the ETL tasks periodically. The internal approach is
usually cheaper to set up, and it gets more information about the status of ETL tasks (because
it’s done from the inside), but when a certain task hangs in memory, it would not be able to
send the notification. The external approach is potentially more expensive (you need to get
monitoring software such as GFI, Nagios, MOM 2005, or Microsoft SCOM 2007), and the infor-
mation about the ETL task is more limited (because it’s done from the outside); however, it is
more reliable. In other words, you still get notification even if an ETL task crashes.

For the internal approach, you can set up e-mail and text message notification at the end
of the ETL batch. In SSIS, you do this by adding a Send Mail task to the SSIS package, as shown
in Figure 17-2.
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Figure 17-2. Send Mail task in SSIS

You could arrange the SSIS tasks in every package to write the execution results
(whether it failed or succeeded) into an audit table, along with the timestamp when it hap-
pened. (Please refer to Chapter 10 where I discussed the ETL process metadata.) The Send
Mail task at the end of the batch can then export this table as a text file or spreadsheet and
attach it to the e-mail. You can also filter it to report only the processes that failed. Or you
can also set it so that it sends you an e-mail (or a text message) only when a task fails. In
other words, if everything works fine, you won’t get any notification.

For the external approach, you install the monitoring system and specify the individual
ETL tasks you want to monitor. You then configure the notification such as who to notify and
how. This is usually part of a bigger monitoring system, not just covering data warehouse ETL
tasks but also data warehouse databases and SQL Server health checks.

Reconciliation, as opposed to notification, means comparing the data in the source sys-
tems to the data in the data warehouse. Comparing means checking whether the summary
values (such as the number of records or total values) and detail data (such as a particular fact
table row) in the data warehouse are the same as in the source system. For the summary val-
ues, you can compare the counts for a particular period (such as for the previous week) or the
total for all periods. Using a particular period means fewer records; hence, it’s quicker, but the
all-periods approach is obviously more thorough. You can combine both approaches; for
example, every day you could check a certain period, and every week you could check all peri-
ods. An example for a particular period is this: if in the source system you have 723,094
product sales transactions for last week, in the data warehouse you should also have 723,094
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transactions for last week. An example of the all-periods approach is comparing the total
number of active customers.

The reconciliation process is a systematic comparison between the data in the data ware-
house and the data in the source system. Systematic comparison means checking a series of
predefined summary values and detail data periodically. You can do this using a program that
launches SQL queries to both the source system and the data warehouse database to get the
totals. The reconciliation process can send a report to the DWA that contains the total counts
from both the source system and the data warehouse. The report can be filtered to report only
the discrepancies; that is, if there are 100 summary values to check and three of them don’t
match, then the report contains only three items. If all of them match, it is better to still send
a report saying that everything is OK. Otherwise, the DWA could wonder whether there is a
problem with the report generation.

When comparing the detail data, the reconciliation process can select some samples to
test some values, comparing between the source systems and the data warehouse. The sample
can be selected carefully based on the business value. The other consideration of selecting the
sample is the coverage; that is, you need to ensure that all dimensions and facts are covered.
For example, you can check the measures on the last fact table row loaded into the warehouse
to ensure that they match the values in the source systems. Similarly, you can pick up the last
row updated in each dimension to compare them with the source systems.

You need to be careful when the ETL combines data from several different source sys-
tems using a certain formula. When reconciling this measure with the source system, you
need to apply the same formula that was used to calculate the measure. If the formula is
changed in the ETL, you also need to update the formula in the reconciliation process.

The reconciliation process needs to be executed regularly as an ongoing process to ensure
that the quality of the data that you load into the data warehouse is good all the time.

Monitoring Data Quality
Now I’ll quickly recap the data quality (DQ) processes discussed in Chapter 9. Bad data from
the source system is picked up by one of the ETL tasks and will be loaded into the data ware-
house. The data quality rule within the ETL workflow picks up the bad data and decides which
action to take: reject the data (if it’s outside the tolerance limits), allow the data into the ware-
house (within the tolerance limits), or fix the data automatically (according to predefined
rules and values). The failed data is stored in the DQ audit tables, along with additional audit
information such as the time it happened, which rule was violated, and the correction status.

A series of DQ reports queries the DQ audit tables for the purpose of finding out when a
DQ rule was violated, which/how many data rows are impacted, which/how many source/tar-
get tables were impacted, what action was taken, what the status is, and what the values of the
source data were. These reports are sent out (usually by e-mail) to various users according to
their functional groups. Different people are responsible for different data quality rules/areas.
The reports can be web-based so that in the DQ e-mail you can just put the links (URLs) to the
reports, rather than the whole reports.

The users review the data quality reports and take actions to correct the data in the source
system. Every day (or every week, depending on the report frequency), these users read the
DQ report associated with their area of responsibility, such as CRM, subscriber sales, product
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sales, supplier/purchasing, inventory, and so on. They check the data in the warehouse and
ask the source system users to correct the bad data so that the next time the ETL runs, the data
is correct.

Bear in mind that the solution is not always correcting the data. The solution can also
be adjusting the data quality rule. This is because sometimes the DQ rule can be out-of-
date, perhaps because the current condition is different from the condition when the rule
was created. What was considered bad data years ago could be OK for today. For example,
you could have a DQ rule that says if the number of customers who unsubscribed was not
within 35 percent of the last three months’ moving average, then raise this as a warning. It
may be that the customer subscription behavior was so dynamically up and down that the
business user responsible for the CRM DQ area decided to change the DQ rule to “within
65 percent of the last one month’s average.”

Although the business users are responsible for checking the violation of DQ rules within
their own business areas, the BIM needs to monitor the overall trends, such as the following:

The number of DQ rules violation over time: This is to find out whether the number of data
quality rules violations generally tends to decrease over time, as shown in Figure 17-3. The
number of data quality rules violations generally reflects the quality of the data in the data
warehouse because the rules are designed to capture bad data. It is also useful to find out
whether there are any rules with an increasing number of occurrences, such as rule 7 in
Figure 17-3. From week 11 to week 20, while the violations of other rules went down, the
violation of rule 7 went up. You need to find out whether the bad data for rule 7 is cor-
rected in the source system.

Figure 17-3. Number of data quality rules violations over time

The geographic dispersion of rule violations: This is to find out the number of rules viola-
tions per geographical unit, such as branches or stores, regions, and divisions, as shown
in Figure 17-4. This chart is per rule; that is, each rule has its own chart.
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Figure 17-4. Geographical dispersion of rule violations

The other overall data quality analysis: To find other data quality analysis that you can do
for your own particular situation, you can have a look at your DQ rules. If the DQ rule is
about a dimension, then you can analyze the data by the attribute of that dimension. If the
DQ rule is about a measure of a fact table, then you can analyze the data by any dimension
of that fact table. For example, if the DQ rule is about the product dimension, then the DQ
violation can be analyzed by product type and product category.

From data quality analysis, sometimes you’ll find problems, such as the increasing
number of rule violations shown in Figure 17-3. Common DQ problems are a high quantity
of violations (either persistently high, steadily increasing, or spikes) and uneven distribu-
tion of violations (high only for a specific product type, store, or other item). The causes of
the problems are different in each organization. A systematic approach to understanding
the causes of these problems in your situation is to analyze the corresponding rows on the
audit table to study each rule violation, look at the rule formula in the metadata database,
and examine the source values in the source systems. This enables you to find the root of
the problem. These are several common causes:

• There is no proper validation in the front-end application. In this case, you need to add
or fix the validation in the front-end application.

• A one-off event was happening in the source system, such as a large data load. In this
case, you need to do a manual one-off data correction in the source system by asking
the source system DBA to execute a data change script.

• The DQ rule is out-of-date. In this case, you need to update, fix, or deactivate the rule.

• There’s no specific rule covering a particular DQ area or issue. In this case, you need to
create a new rule to cover that area.

The data quality trends need to be monitored continuously. It is possible that the number
of violations for a particular rule could decrease and reach a steady plateau and then suddenly
increase again. Sometimes the increase could happen across many rules. The possible causes
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of this kind of event are activities with a wide impact affecting the whole company or organi-
zation and therefore affecting many areas of the data warehouse. These events are usually
known in advance, so you can plan and prepare for them, such as a company-wide annual
price increase, a merger with another company, or a new source system feeding data into the
data warehouse.

Managing Security
In this section, I will discuss what data warehouse security is, why it is important, and how to
manage it. Data warehouse security is the process of enabling people who need to access the
data warehouse and preventing those who should not access it. Data warehouse security cov-
ers authentication and authorization.

Authentication is identifying that the data warehouse users are really who they said they
are. This includes verifying that the user who asks for access to the data warehouse should
genuinely have access. You can do this by checking with the user’s superior or the BIM. After
verifying the user, you can create the user. You also need to remove leavers or movers from the
list of data warehouse users. Movers are people who moved departments and are no longer
doing their data warehouse roles. Leavers are people who left the company and don’t need
access to the data warehouse anymore.

Authorization is verifying that the user has access to a data warehouse object before
allowing the user to access it. This includes giving or blocking access to the data stores, data-
bases, reports, cubes, mining models, portals, and dashboards. This is done using security
groups and security roles.

A security group is a collection of users with the same access rights. The purpose of cre-
ating security groups is to make the security administration simpler and to make the access
rights consistent across the group. A security role is a functional position with the ability to
do certain tasks. A user or a group can then be assigned to that role, making the user or group
capable of doing the tasks that the role is capable of doing.

Other security tasks are checking security logs and applying security patches. The DWA
needs to check Windows and the SQL Server security log, as well as the front-end application
such as SSRS and BI applications. Applying SQL Server and Windows security patches to SQL
Server installations and Windows servers used by the data warehouse is required to minimize
the possibility of people exploiting known SQL Server and Windows vulnerabilities.

Managing data warehouse security is important because a data warehouse usually
contains a lot of data from different source systems. It is used as a foundation to make
important business decisions and to run applications such as CRM. If you don’t protect
this data, unauthorized people will be able to read the data. Or worse, they may be able
to modify the data, resulting in inaccurate decisions being made or some problems in the
CRM operations.

Now let’s talk about the how—how to manage data warehouse security. Ideally, you need
to put a process in place that covers capturing the security request, verifying the user, granting
the necessary access, and removing inactive users. For example, new users need to fill in a
form stating who they are, which department they’re in, which part of the data warehouse
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they need to access, the purpose (short-term project, daily operation, regulatory audit, and
so on), which environment (dev, QA, or production), and how they would like to access it
(via SSRS, SSAS, BI application, or ODBC).

It is important to state for how long the user needs the access. For example, a member of
a customer loyalty project may need access to the DDS via ODBC for three months to analyze
the customer data. The request is then approved or authorized by either the manager of the
requesting user or the BIM.

The DWA can then grant the access to the new user. If a security group for similar users
already exists, the DWA adds the new user to the existing security group. If such a group
doesn’t exist, the DWA creates a new security group. Even if there is only one member to the
security group, the DWA would still need to grant the access to a security group, not directly
to the user account. This is necessary so that when people change positions, they don’t carry
the security access with them.

You need to be careful with leavers and movers. As I explained earlier, leavers are people
who have left the company, and movers are people who have moved to other departments
and have new roles. The problem here is that usually HR is aware of the leaver, but they don’t
inform the DWA. You need to set up a process where HR notifies the BIM or DWA when people
leave their jobs.

The other thing you need to be careful about is a request for a short-term project. More
often than not, after the project is finished, the access is still active. This provides a security
threat and needs to be fixed urgently. To minimize the chances of this situation recurring, you
need to establish a process where all accounts are made to expire after a certain period. On
top of that, you need to set up a routine security audit to remove all inactive accounts.

Managing Databases
Data warehouse database management is the process of maintaining the databases used by
the data warehouse. Maintaining a database means ensuring that enough disk space is always
available, backups are performed regularly, indexes are maintained and optimized, and data-
base statistics are up-to-date. In this section, I’ll explain what databases are involved. In a SQL
Server–based data warehouse system, you have the stage database, ODS or NDS database,
DDS database(s), and Analysis Services databases (cubes). You may also have a metadata
database, a data quality database, and archived databases.

Why is it important to maintain the databases in a data warehouse? Well, almost all data
in the data warehouse is stored within the databases, and the data in the databases is used to
support making business decisions.

The scope of data warehouse database management includes the following. I created this
list based on my experience. There may be other activities that are specific to your situation.
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Maintaining capacity: One of the most important aspects of managing a SQL Server data-
base is to make sure there is always enough disk space. You don’t want tomorrow’s ETL
load failing because there is not enough space. If you use SAN, you need to make sure the
data warehouse has enough space allocation. As the data warehouse size grows, you also
need to evaluate whether you need to increase the memory of the server, whether it is the
SSIS server, the SSAS server, the SSRS server, or the database server.

Backing up databases: As with any databases, backups need to be scheduled, executed,
and monitored. As I explained in Chapter 6, full recovery model is not required for the
stage, NDS, and DDS databases. Simple recovery is more suitable for them. Full recovery
model is suitable for an ODS database. A good time to back up the databases is after the
daily ETL batch is run successfully. In many organizations, backing up to hard media is
centralized across servers. If this is the case, you need to back up the databases to disk,
ready for the centralized tape backup process to pull it to tapes. You also need to arrange
off-site backups.

Testing database restore: It is important to restore the database backup regularly. A data-
base backup is useful only when it is in good condition, and the best way to test that it is
in good condition is to restore it. At the very least, you need to test restoring the stage,
DDS, NDS, ODS, and Analysis Services databases every three to six months. These fre-
quencies are from my own experience as well as from other DWAs’ experience. For your
own environment, you may want to use different frequencies. I have found that most
people back up, but a disciplined, periodic test restore is something that is still rare.

Maintaining indexes: Depending on the fragmentation levels and the performance of
the ETL loading the table, you need to defrag the index or re-create the index. From my
experience, you need to consider maintaining the index when the fragmentation is
greater than 15–25 percent. I recommend creating a SQL query for each fact table to
benchmark the index performance. Once the response time of this query is less than
the benchmark, then you need to reindex. In SQL Server 2005 and newer, re-creating
indexes is an online operation; that is, users can still access the table being indexed.
The exception for this is the clustered index. You can find out the fragmentation using
the sys.dm_db_index_physical_stats dynamic management function. This function
returns the size and fragmentation information for the data and indexes of the speci-
fied table or view. You also need to find out whether certain queries require additional
indexes to be created. You can do this by comparing the response times of those
queries against the benchmark.

Maintaining table partitions: This includes adding new partitions and removing the
old ones (and archiving them) to maintain data warehouse performance, as discussed
in Chapter 6. Also, as the fact tables become larger and larger, you may want to convert
a fact table from a nonpartitioned table to a partitioned table to improve query per-
formance. It is important to place the partition on the correct filegroup so that you
need to back up only the latest partitions (provided that you arrange the partition
scheme by date). Please refer to Chapter 6 about implementing table partitioning for
data warehousing.
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Changing the schema: Occasionally after the data warehouse is in production, you need to
update the database schema. What I mean by schema is the database structure, table def-
inition, triggers, views, and stored procedures. This is usually because of development/
enhancement requests (see the next section).

Changing the data: In contrast to the schema changes, sometimes you have a request to
load data directly into the data warehouse. One possible cause is integration with another
data warehouse or because you have a new source system.

Creating a DDS database: Part of the database maintenance is to create a new database.
Sometimes you receive a request from a project team to create a DDS database for the
purpose of thorough data analysis specifically for that project. This DDS is a subset of
the main DDS containing a certain data mart and for a certain time period. For example,
Amadeus Entertainment, for the purpose of issuing a new product range, requires the
last six months of data of the product sales data mart.

Making Schema Changes
After the data warehouse goes live and operational, sometimes there are changes in the
business processes that generate new data or change or reduce data. For example, installing
a new human resources system adds a new data source for the employee dimension in the
data warehouse. A new call center system generates a new data source for the customer
dimension in the data warehouse. The new piece of data can also come from existing sys-
tems. It can be a new attribute, a new measure, a new dimension, or even a new data mart.
This requires schema changes in the data warehouse.

Because the data warehouse is now operational, such requests should be regarded and
treated as change requests. As with any IT systems, you need to establish a formal procedure
to deal with data warehouse change requests. The business user needs to fill in a form describ-
ing the request and the reasons or justifications to support it. In the request, the business user
needs to mention what data changes are required, where the data is coming from, what the
format is, and what information it contains, as well as a sample of the real data. This is neces-
sary so you can understand what schema changes are required to support this change. The
requests are then analyzed and prioritized by the BIM and forwarded to the DWA for esti-
mates, and so on, before they are approved for implementation.

As an illustration, please look at the example shown in Figure 17-5. The data warehouse is
operational in production, and you have a change request from the business to bring in two
new attributes from the source systems. One attribute is from the subscription sales area, and
the other one is from the fulfillment operation.

The solid stripes indicate new columns or impacted columns in the databases. As you can
see in Figure 17-5, the two attributes flow from the source system to the stage, then to the
ODS, and then to the DDS. In my experience, this kind of quick diagram really helps the
design, planning, and implementation. It also helps the testing. The diagram gives an overall
view of the changes so you know which areas in the data warehouse are impacted. You may
want to consider using the diagram in Figure 17-5 when you need to change the data ware-
house schema. The diagram is also useful for understanding the overall data flow in your data
warehouse, even when you don’t have any schema changes.
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Figure 17-5. Updating the data warehouse schema

To create the diagram in Figure 17-5 for your own situation, you can start by drawing the
six column headings. Then in the Area column, list your fact tables that are affected by this
change. In each cell under Source Systems, Stage, ODS, and DDS, list the tables affected by the
change, and mark the columns that will need to be updated or created. Connect those tables
with arrows to show how the data flows between tables.

You should not underestimate the size or complexity of the work. It may sound simple
when you first hear it: “Two new attributes…ah, that’s easy; it’s probably going to take me a
week.” If you count all the arrows in Figure 17-5, you’ll see that 21 ETL tasks are involved. If
you count all the solid stripes in the stage, ODS, and DDS databases, you’ll see that 18 col-
umns are impacted in 10 different tables. That’s excluding the impact to modify the appli-
cations, such as report and OLAP cubes, which I will discuss in the next section.

Bringing a new piece of data into the data warehouse requires data modeling, schema
changes, ETL modifications, new data quality rules, ETL testing, integration testing, and a lot
of regression testing. It is not as simple as it looks. You need to define the business require-
ments and then translate this into a functional specification, as discussed in Chapter 4. Then
you update the data model and create the schema change diagram as shown in Figure 17-5.
Based on this diagram, you specify the changes required in ETL processes, along with the data
quality rules updates. You then code the enhancements and test the changes. You run the sys-
tem from end to end to ensure that the new data flows through the warehouse correctly. You
then rerun the same system test that you did before the data warehouse went into production
to make sure this change does not affect any existing functionality.
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Updating Applications
After the data warehouse is in production, there will be requests from the users to enhance the
applications, such as to add columns in a report, to add a new attribute in the cube, or to
update a calculation in the BI application. If you look at Figure 17-5 earlier in the chapter, after
the data has been modified, the applications need to be updated too.

Just like when you bring a new piece of data into the warehouse, you also need to have a
process for updating the application. The procedure is similar to the one mentioned earlier.
In other words, the business user needs to fill in a form describing the request and the rea-
sons or justifications supporting it. In the request, the user needs to specify which area of the
data warehouse application needs changing, what changes are required, a summary of the
new functionality, and the screen/page mock-up if it requires user interface changes. If it is
report changes, the request needs to mention what data changes are required, as well as any
changes to the report layout. This is necessary so that you understand the impact of the
change to the data warehouse applications. The requests are then analyzed and prioritized
by the BIM by determining the change’s impact to the business and the financial value gener-
ated by the request. The BIM then forwards the request to the DWA for estimates, and so on,
before they are approved for implementation.

Once the change is approved for implementation, you then translate the business
requirements to functional specifications, and at the same time you write a high-level test
plan to verify the use cases in the functional specifications. You then determine the impact
of the request to the data warehouse application. It helps to draw the impacts in a diagram
like Figure 17-5 so you know exactly which page and applications are affected and how the
data will be flowing across applications. You then specify the changes required in each page,
cube, or report in the form of technical specification documents. You then code the changes
required in each application and test the changes by running the application using test data
specifically prepared for testing each change. You then run the data warehouse from end to
end, including the ETL processes to make sure that the changes have no negative impact on
all the other areas of the data warehouse. Once the technical test is completed, the updated
application needs to be tested and verified by the business users before it is implemented
in production.

A request to change the application does not necessarily require a schema change. The
data may already be in the data warehouse but not be delivered to the application, such as
adding a column in a report to display an existing dimension attribute.

Summary
In this chapter, I discussed data warehouse administration, including monitoring the ETL,
administering databases, managing security, bringing new data, and updating applications.
This is the end of the book. I hope this book has served its purpose—to provide you with a
practical explanation of the essential topics in data warehousing that you need to understand
in order to build your first data warehouse.
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Throughout this book, I used Amadeus Entertainment as the case study. I discussed the
architecture and methodology, gathered the requirements, designed the data model, created
the physical databases, built the ETL, and developed the reports, cubes, and mining models
for that project. I hope it has been a useful experience for you as your first project. Now it’s
time to go out there and implement all these concepts in real projects. I wish you great success
in your data warehousing journey.
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Normalization Rules

Normalization is the process of removing data redundancy by implementing normalization
rules. There are five degrees of normal forms, from the first normal form through the fifth
normal form, as described in this appendix.

First Normal Form
The following are the characteristics of first normal form (1NF):

• There must not be any repeating columns or groups of columns. An example of a
repeating column is a customer table with Phone Number 1 and Phone Number 2
columns. Using “table (column, column)” notation, an example of a repeating group of
columns is Order Table (Order ID, Order Date, Product ID, Price, Quantity, Product ID,
Price, Quantity). Product ID, Price, and Quantity are the repeating group of columns.

• Each table must have a primary key (PK) that uniquely identifies each row. The PK
can be a composite, that is, can consist of several columns, for example, Order Table
(Order ID, Order Date, Customer ID, Product ID, Product Name, Price, Quantity). In
this notation, the underlined columns are the PKs; in this case, Order ID and Product
ID are a composite PK.

Second Normal Form
The following are the characteristics of second normal form (2NF):

• It must be in 1NF.

• When each value in column 1 is associated with a value in column 2, we say that
column 2 is dependant on column 1, for example, Customer (Customer ID, Customer
Name). Customer Name is dependant on Customer ID, noted as Customer ID ➤
Customer Name.

505

A P P E N D I X

9314appfinal.qxd  11/15/07  10:26 AM  Page 505



• In 2NF, all non-PK columns must be dependent on the entire PK, not just on part of
it, for example, Order Table (Order ID, Order Date, Product ID, Price, Quantity). The
underlined columns are a composite PK. Order Date is dependent on Order ID but
not on Product ID. This violates 2NF.

• To make it 2NF, we need to break it into two tables: Order Header (Order ID, Order
Date) and Order Item (Order ID, Product ID, Price, Quantity). Now all non-PK columns
are dependent on the entire PK. In the Order Header table, Order Date is dependent on
Order ID. In the Order Item table, Price and Quantity are dependent on Order ID and
Product ID. Order ID in the Order Item table is a foreign key.

Third Normal Form
The following are the characteristics of third normal form (3NF):

• It must be in 2NF.

• If column 1 is dependent on column 2 and column 2 is dependent on column 3, we
say that column 3 is transitively dependent on column 1. In 3NF, no column is tran-
sitively dependent on the PK, for example, Product (Product ID, Product Name,
Category ID, Category Name). Category Name is dependant on Category ID, and
Category ID is dependant on Product ID. Category Name is transitively dependent
on the PK (Product ID). This violates 3NF.

• To make it 3NF, we need to break it into two tables: Product (Product ID, Product Name,
Category ID) and Category (Category ID, Category Name). Now no column is transi-
tively dependent on the PK. Category ID in the Product table is a foreign key.

Boyce-Codd Normal Form
Boyce-Codd Normal Form (BCNF) is between 3NF and 4NF. The following are the characteris-
tics of BCNF:

• It must be in 3NF.

• In Customer ID ➤ Customer Name, we say that Customer ID is a determinant. In
BCNF, every determinant must be a candidate PK. A candidate PK means capable of
being a PK; that is, it uniquely identifies each row.

• BCNF is applicable to situations where you have two or more candidate composite
PKs, such as with a cable TV service engineer visiting customers: Visit (Date, Route ID,
Shift ID, Customer ID, Engineer ID, Vehicle ID). A visit to a customer can be identified
using Date, Route ID, and Customer ID as the composite PK. Alternatively, the PK can
be Shift ID and Customer ID. Shift ID is the determinant of Date and Route ID.
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Higher Normal Forms
The following are the characteristics of other normal forms:

• A table is in fourth normal form (4NF) when it is in BCNF and there are no multivalued
dependencies.

• A table is in fifth normal form (5NF) when it is in 4NF and there are no cyclic
dependencies.

It is a good practice to apply 4NF or 5NF when it is applicable.

■Note A sixth normal form (6NF) has been suggested, but it’s not widely accepted or implemented yet.
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■Numbers and Symbols
@ for naming report parameters, 343
1NF (first normal form), 506
2NF (second normal form), 505
3NF (third normal form), 506
4NF (fourth normal form), 507
5NF (fifth normal form), 507

■A
accounts, security audits of, 499
action column, 322
actions, data quality, 293–296
administration functions

data quality monitoring, 495–498
database management, 499–501
ETL monitoring, 492–495
schema changes, 501–502
security management, 498–499
updating applications, 503

ADOMD.NET, 412
aggregates. See also summary tables

defined, 415
alerts (BI), 437–438
aligning partition indexes, 166
allow action (DQ rules), 295
Amadeus Entertainment case study. See case

study (Amadeus Entertainment)
AMO (Analysis Management Objects), 417
Analysis Services (OLAP)

authentication and, 397
cubes in, 397
failover clusters and, 115
partitioned cubes, 119
tools vs. reports, 333

analytics applications (BI), 413–416
applications, updating by DWA, 503
architectures

data flow. See data flow architecture
determining, 52
system. See system architecture design

association scores, 471
attributes, customer, 444
audio processing, text analytics and, 473
audit metadata

components of, 323
event tables, 323
maintaining, 327

overview, 302
purposes of, 323

audits
DQ auditing, 296–298
ETL, defined, 31
reports, 332

authentication of users, 498
authorization of user access, 498
Auto Build, 385
Auto Layout, 249
autofix action (DQ rules), 296
automating ETL monitoring, 492–493

■B
backing up

databases, 500
MDBs, 405–408

band attribute (Amadeus), 64
batch files

creating, 138, 157
ETL, 269
updating, 15–16

BCNF (Boyce-Codd Normal Form), 506
BI (Business Intelligence)

alerts, 437–438
analytics applications, 413–416
application categories, 411
Business Intelligence Development Studio

Report Wizard, 339
dashboard applications, 432–437
data mining applications. See data mining

applications (BI)
examples of, 12–13
portal applications, 438–439
reports, 34, 412–413
search product vendors, 474
systems, applications for, 17–18

binary files, importing, 190
bitmapping, index, 169
block lists (black lists), 451
boolean data type (data mining), 419, 420
bounce rate (e-mail), defined, 447
bridge tables, defined, 109
bulk copy utility (bcp) SQL command,

188–189
bulk insert SQL command, 187, 189
business areas, identifying (Amadeus), 61–62
business case document, 51–52
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business Intelligence (BI). See BI (Business
Intelligence)

Business Objects Crystal Report XI, 356
Business Objects XI Release 2 Voyager, 380
business operations, evaluating (Amadeus),

62–63
business performance management, 13
business requirements

CRM data marts (Amadeus), 96
subscription sales data mart (Amadeus),

90
verifying with functional testing, 480

■C
calendar date attributes column (date

dimension), 77–78
campaigns

creating CRM, 447–448
defined, 447
delivery/response data (CRM), 454–460
response selection queries, 449
results fact table, 99, 450
segmentation (CRM), 18, 98, 447–450

candidate PK, 506
case sensitivity in database configuration,

124
case study (Amadeus Entertainment)

data feasibility study, 67–70
data warehouse risks, 67
defining functional requirements, 63–65
defining nonfunctional requirements,

65–67
evaluating business operations, 62–63
extracting Jade data with SSIS, 191–200
functional testing of data warehouse, 480
identifying business areas, 61–62
iterative methodology example, 56–58
overview of, 44–46
product sales. See product sales data mart

(Amadeus)
product sales reports, 349, 353, 355, 359,

369
query for product sales report, 331
security testing, 485
server licenses and, 119

case table, defined (data mining), 418
CDI (Customer Data Integration)

customer data store schema, 469
fundamentals, 23–24, 467–468
implementation of, 469

CET (current extraction time), 182
change requests, procedures for, 501
character-based data types, 277
charting. See also analytics applications (BI),

440
churn analysis, 465

class attribute (Amadeus), 64
classification algorithm, 422
cleaning (CDI), defined, 468
cleansing, data, 277–290
click-through rate (email), 98, 447
clustered configuration, defined, 43
clustering algorithm, 422
Clustering model, 431
Cognos

BI 8 Analysis, 380
PowerCube, 377, 379
Powerplay, 356

collation, database, 124
columns

continuous (data mining), 419
cyclical (data mining), 420
description (data definition table), 305
discrete (data mining), 419
discretized (data mining), 419
ordered (data mining), 420
repeating, 505
risk_level column, 322
status, 320, 322
storing historical data as, 81
types in DW tables, 306

communication
Communication Subscriptions Fact Table

(example), 452
communication_subscription transaction

table (NDS database), 140–143
master table (NDS physical database), 143
permission, defined, 96
preferences, defined, 96
subscription, defined, 96

comparing data (ETL monitoring), 494–495
complaint rate (email), 98
conformed dimensions

creating (views), 158
defined, 7

consolidation of data, 5–6
construction iteration, 56
content types (data mining), 419–420
continuous columns (data mining), 419
control system, ETL, 31
converting data for consolidation, 6
cookies vs. self-authentication, 464
covering index, 170
CRM (customer relationship management)

basics, 14
campaign analysis (Amadeus), 64
campaign delivery/response data,

454–460
campaign segmentation, 447–450
customer analysis, 460–463
customer loyalty schemes, 465–466
customer support, 463–464
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data marts (Amadeus), 96–101
fundamentals, 441
permission management, 450–454
personalization, 464–465
single customer view, 442–447
systems, applications for, 18–19

cross-referencing
data validation and, 291–292
data with external sources, 290–291

cross tab reports, 13
cubes (multidimensional data stores)

in Analysis Services, 397
building/deploying, 388–394
Cube Wizard, 385
defined, 3
engines, 379
reports from, 362–366
scheduling processing with SSIS, 399–404

current extraction time (CET), 318
customer relationship management (CRM).

See CRM (customer relationship
management)

customers
analysis (CRM), 18, 460–463
attributes, 444
behavior selection queries, 449
customer table (NDS physical database),

147–151
Customer Data Integration (CDI). See CDI

(Customer Data Integration)
data store schema (CDI), 469
dimension, creating, 133
dimension, designing, 84–86
defined, 18
loyalty schemes (CRM), 18, 465–466
permissions (CRM). See permissions,

management (CRM)
profitability analysis, 13
services/support (CRM), 18, 463-464

cyclical columns (data mining), 420

■D
daily batches, 269
dashboards

applications (BI), 432–437
data quality, 275

data
architecture vs. data flow architecture, 29
availability, 5
cleansing, 69, 277–290
comparing (ETL monitoring), 494
consolidation of, 5–6
conversion of, 6
defining, 6
dictionary, defined, 308
hierarchy in dimension tables, 101–102

history, storing, 10–11
integration, defined, 36
leakage, ETL testing and, 187, 479
lineage metadata. See data mapping

metadata
matching, 6, 277–290
vs. metadata (example), 475
querying basics, 11
reconciliation of (ETL monitoring),

493–495
retrieval of, 4–5
risks, examples of (Amadeus), 67–69
scrubbing, 277
storage, estimating, 69
transformation, defined, 36
update frequency, 6

data definition metadata
overview, 301
report columns, 306
table, 303
table DDL, 305

data extraction
connecting to source data, 179–180
ETL. See ETL (Extract, Transform, and

Load)
extracting e-mails, 191
extracting file systems, 187–190
extracting message queues, 191
extracting relational databases. See

extracting relational databases
extracting web services, 190
from flat files, 208–213
memorizing last extraction timestamp,

200–207
potential problems in, 178
with SSIS, 191–200
from structured files, 177
from unstructured files, 178

data feasibility studies
Amadeus example of, 67–70
populating source system metadata, 317
purpose of, 67

data firewall
creating, 215, 218–219
defined, 32

data flow
formatting, 249
table (ETL process metadata), 318–320

data flow architecture
vs. data architecture, 29
data stores. See data stores
defined, 29
federated data warehouse (FDW), 39–42
fundamentals, 29–33
NDS+DDS example, 35–37
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ODS+DDS example, 38–39
single DDS example, 33–35

data mapping metadata
data flow table, 307
overview, 302
source column and, 306

data mart
fact tables and, 74
view, 158–159

data mining
applications for, 19–20
fundamentals, 14, 19

data mining applications (BI)
column data types, 419–420
creating/processing models, 417–422
demographic analysis example, 424–431
implementation steps, 417
processing mining structure, 423–424
uses for, 416

data modeling
CRM data marts (Amadeus), 96–101
data hierarchy (dimension tables),

101–102
date dimension, 77–80
defined, 29
designing DDS (Amadeus), 71–76
designing NDS (Amadeus), 106–111
dimension tables, 76–77
product sales data mart. See product sales

data mart (Amadeus)
SCD, 80–82
source system mapping, 102–106
subscription sales data mart (Amadeus),

89–94
supplier performance data mart

(Amadeus), 94–95
data quality (DQ)

actions, 293–296
auditing, 296-298
components in DW architecture, 274
cross-referencing with external sources,

290–291
data cleansing and matching, 277–290
Data Quality Business Rules document,

292
database, defined, 32
importance of, 273
logging, 296–298
monitoring by DWA, 495–498
process, 274–277
processes, defined, 32
reports, 32, 332
reports and notifications, 298–300

data quality metadata
components of, 320
DQ notification table, 321–322

DQ rules table, 321–322
DW user table, 321–322
overview, 302

data quality rules
data quality metadata and, 320
defined, 32
fundamentals, 291-293
violations, 496-497

data stores
data lineage between, 307
defined, 30
delivering data with ETL testing, 478
overview, 31–32
types of, 30

data structure metadata
maintaining, 326
overview, 302
populating from SQL Server, 311–313
purposes of, 308–309
tables, 309–311
tables with source system metadata,

314–317
data types

conversion output for (SSIS), 250
in data mining, 419

data warehouses (DW)
advantages for SCV, 445–447
alerts, 437
building in multiple iterations, 54
The Data Warehouse Toolkit (Wiley), 82
defined, 1, 16–17
deploying, 53
designing, 52
development methodology. See system

development methodology
development of, 52
DW keys, 109
vs. front-office transactional system, 5
internal validation, 291
major components of, 478
MDM relationship to, 23
migrating to production, 491
non-business analytical uses for, 14
operation of, 53
populating. See populating data

warehouses
real-time, 27
system components, 4
updating data in, 15–16
uses for, 17

databases
collation of, 124
configuring, 123–128
design, data stores and, 7
extracting relational. See extracting

relational databases
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management by DWA, 499–501
MPP systems, 175
multidimensional. See MDB

(multidimensional database)
naming, 124
restoring backup of, 500
servers, sizing, 116–118
SQL Server. See physical database design
transaction log files, 189

DataMirror software, 190
date dimension

fundamentals, 77–80
source system mapping, 104

dates
data type (data mining), 419–420
date/time data types, 278
dimension table, creating, 128–132
excluding in MDM systems, 21
format columns (date dimension), 77

DBA (Database Administrator), liaising with,
489

DDL (Data Definition Language)
of data definition table, 303
of data mapping table, 307
for subscription implementation

(example), 453
DDS (dimensional data store)

database, creating new, 501
defined, 2, 30
designing (Amadeus), 71–76
dimension tables, populating, 215,

250–266
drill-across dimensional reports, 333
fact tables, populating, 215, 266–269
fundamentals, 7
vs. NDS, 9
NDS+DDS example, 35–37
ODS+DDS example, 38–39
single DDS example, 33–35
single dimension reports, 333
sizing, 124, 126–128

DDS database structure
batch file, creating, 138
customer dimension, creating, 133
date dimension table, creating, 128–132
product dimension, creating, 132
Product Sales fact table, 135
store dimension, creating, 135

decision trees
algorithm, 422
model, 431

decode table (example), 180
defragmenting database indexes, 500
degenerate dimensions, defined, 73
deletion trigger, 184

delivery
campaign delivery/response data,

454–460
channel, defined (CRM), 447
rate (e-mail), defined, 447

demographic data selection queries
(campaigns), 449

denormalization (DDS dimension tables),
251

denormalized databases, defined, 30
dependency network diagrams, 425
deploying

data warehouses, 53
reports, 366–369

description column (data definition table),
305

descriptive analysis
in data mining, 417
defined, 14
examples of, 460–463

determinants, 506
diagram pane (Query Builder), 337
dicing, defined (analytics), 413
dimension tables (DDS)

fundamentals, 76–77
loading data into, 250–266

dimensional attributes, defined, 76
dimensional data marts, defined, 33
dimensional data store (DDS). See DDS

(dimensional data store)
dimensional databases, defined, 30
dimensional hierarchy, defined, 101
dimensional reports, 332
dimensions, defined, 3, 377
discrete columns (data mining), 419
discretized columns (data mining), 419
disk, defined, 121
distributing (CDI), defined, 468
Division parameter example, 349–351
DMX (Data Mining Extensions), 432
DMX SQL Server data mining language, 417
documentation, creating, 489
documents

transforming with text analytics, 471–473
unstructured into structured, 471

double data type (data mining), 419, 420
DQ (data quality). See data quality (DQ)
drilling

across, 394
up, 414–415

DW (data warehouse). See data warehouses
(DW)

DWA (data warehouse administrator)
functions of, 56, 488–489. See also

administration functions
metadata scripts and, 326

dynamic file names, 188
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■E
e-commerce industry

customer analysis and, 460–461
customer support in, 464

e-mails
email_address_junction table (NDS

physical database), 155–156
email_address_table (NDS physical

database), 153
email_address_type table (NDS physical

database), 156–157
extracting, 191
store application, 473

EII (enterprise information integration), 40
elaboration iteration, defined, 56
ELT (Extract, Load, and Transform)

defined, 5
ETL and, 117
fundamentals, 175

end-to-end testing
defined, 477
fundamentals, 487

enterprise data warehouse, illustrated, 10
Enterprise Edition, SQL Server, 118–119
enterprise information integration (EII). See

EII (enterprise information
integration)

entertainment industry, customer support
in, 464

ETL (Extract, Transform, and Load)
batches, 269
CPU power of server, 116
defined, 2, 4
ELT and, 175
extraction from source system, 176–177
fundamentals, 32, 173–174
log, 483
monitoring by DWA, 492–495
near real-time ETL, 270
performance testing and, 482
pulling data from source system, 270
testing, defined, 477–479

ETL process metadata
components of, 318
overview, 302
purposes of, 320
tables, 318–320
updating, 327

events
defined, 62
Event Collection (Notification Services),

438
event tables (audit metadata), 323

exact matching, 278
Excel, Microsoft, creating reports with,

359–362

exception-based reporting, 492
exception scenarios (performance testing),

484
execution, report, 374–375
external data, NDS populating and, 219,

222–223
external notification (ETL monitoring),

493–494
external sources, cross-referencing data with,

290–291
Extract, Transform, and Load (ETL). See ETL

(Extract, Transform, and Load)
extracting relational databases

fixed range method, 186
incremental extract method, 181–184
related tables, 186
testing data leaks, 187
whole table every time method, 180–181

■F
fact constellation schema, 7
fact tables

campaign results, 99
loading data into (DDS), 250, 266–269
populating DDS, 215, 266–269
product sales (Amadeus), 71, 75, 102
subscription sales (Amadeus), 90
supplier performance (Amadeus), 90

failover clusters
defined, 114
number of nodes for, 119

FDW (federated data warehouse), 39–42
feasibility studies, 51–52
federated data warehouse (FDW). See FDW

(federated data warehouse)
fibre networks, 115
fifth normal form (5NF), 507
file names, dynamic, 188
file systems, extracting, 187–190
filegroups, 131–132
filtering reports, 351
financial industry, customer support in, 463
firewalls

creating data, 215, 218–219
ODS, 276

first normal form (1NF), 505
first subscription date, 274
fiscal attribute columns (date dimension),

77, 78
fix action (DQ rules), 295
fixed position files, 177
fixed range extraction method, 185–186
flat files, extracting, 187, 208–213
forecasting (data mining), 416
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foreign keys
naming, 146, 157
necessity of, 137

fourth normal form (4NF), 507
fragmentation of database indexes, 500
frequent-flier programs, 465
full-text indexing, 126
functional requirements

defined, 61
establishing (Amadeus), 63–65

functional testing
defined, 477
fundamentals, 480

fuzzy logic matching, 278
Fuzzy Lookup transformation (example),

279–290

■G
galaxy schemas, 7
general performance requirements, 483
general permissions (CRM), 450
Generic Query Designer, 352
geographic dispersion of rule violations, 496
global enterprise currency, 75
Google search products, 474
grain, table, 72
granularity, FDW data and, 39
grid pane (Query Builder), 337
grouping reports, 351–355
groups, security, 498–499

■H
hard RI, defined, 76
hardware platform (physical database

design), 113–119
help desk support, 488
hierarchy

data, 101–102
dimensional, 101
MDM, 23

historical data, storing, 10–11
HOLAP (Hybrid Online Analytical

Processing), 381
horizontal/vertical partitioning, 162
hot spare disks, 123
hubs, MDM, 23
Hungarian naming conventions, 343
hybrid data store, defined, 30
hypercubes, 378
Hyperion Essbase, 377, 379

■I
IIS logs, 325
image processing, text analytics and, 473
impact analysis, defined, 302
inactive accounts, security audits of, 499

inception iteration, 56
incoming data validation, 291
incremental extraction method, 181–184
incremental loading (DDS dimension tables),

251
incremental methodology. See iterative

methodology
indexes

covering index, 170
creating in partitioned tables, 170
index intersection, 169
Index Wizard, 168
indexer in search applications, 474
maintaining database, 500

indexing
full-text, 126
implementing, 166–170
online index operation, 119
parallel index operations, 119
stage tables, 217

indicator columns (date dimension), 77, 79
inferred dimension members, 260
infrastructure setup overview, 53
Inmon, Bill, 16
insert SQL statements, 323
insurance industry, customer analysis and,

460
integration testing. See end-to-end testing
internal data store, defined, 30
internal notification (ETL monitoring), 493
internal validation, data warehouse, 291–292
intersection, index, 169
invoices, text analytics and, 473
iterative methodology, 54–59

■J
Jade system, 45
junction tables

defined, 109
NDS populating and, 219, 225–228

Jupiter ERP system, 44

■K
key columns (data mining), 419
key management

DDS dimension tables and, 251
in NDS, 151
NDS populating and, 219, 223–225

key sequence columns (data mining), 420
key time columns (data mining), 420
keys, DW, 109
Kimball dimensional modeling, 41
Kimball, Ralph, 16, 82
knowledge discovery, 416. See also data

mining
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■L
language attribute table (NDS physical

database), 145–146
last cancellation date, 274
last month view, 159
last successful extraction time (LSET), 318
late-arriving dimension rows, 260
late-arriving facts, 269
latest summary table, 161
layouts, report, 340–342
leakage, defined, 174
leavers

defined, 498
updating, 499

levels of objects, defined, 63
licensing models, SQL Server, 119
lift charts, defined (data mining), 430
list selection process (campaigns), 448
loading/query of partitioned tables, 163
log files

database transaction, 189
size of, 125

logging
data quality, 296–298
ETL log, 483
log reader, database, 176–177
SSIS logging, 484
web logs, 189

logical unit number design, 123
logins for customer ID, 464
long data type (data mining), 419, 420
Lookup transformations, upsert using,

236–242
loyalty schemes, customer (CRM), 465–466
LSET (last successful extraction time), 182

■M
massively parallel processing (MPP)

database system. See MPP (massively
parallel processing) database system

master data
fundamentals, 21
management (MDM). See MDM (master

data management)
store, defined, 30
storing history of, 11

master tables, defined, 36, 106
matching, data, 6, 277–290
matching rules (metadata storage), 22
matrix form (reports), 13, 338, 342
MDB (multidimensional database)

backing up and restoring, 405–408
building/deploying cube, 388–394
creating (Amadeus), 381–387
defined, 3, 31
fundamentals, 377–379

online analytical processing (OLAP),
380–381

querying, 394–396
vs. relational databases, 378
scheduling cube processing with SSIS,

399–404
security of, 397–399

MDBMS (multidimensional database
management systems), 379, 415

MDDS (multidimensional data store), 377
MDM (master data management)

examples of, 20–21
fundamentals, 21–23
OLTP systems and, 22
relationship to data warehouses, 23

MDX (Multidimensional Expressions)
fundamentals, 435
MDX Query Designer, 365

membership subscriptions, 452
memory maintenance (database

management), 500
message queue (MQ). See MQ (message

queue)
messaging, defined, 16
metadata

change request (example), 326
vs. data (example), 475
database, configuring, 126, 128
defined, 31
maintaining, 325–327
overview, 301–303
reasons for using, 303
storage, 22
types of, 301–302
unstructured data and, 473

methodology, system development. See
system development methodology

Microsoft
Analysis Services, 377, 379
clustering algorithm, 428
Office SharePoint Server, 438–439

MicroStrategy OLAP Services, 381
migrating data warehouse to production,

487–489, 491
mini-batches, defined, 15, 269
Mining Structure designer, 421–422
MOLAP (multidimensional online analytical

processing)
applications, 415
defined, 14, 381

monitoring
data quality, 495–498
ETL processes, 492–495

Morris, Henry, 413
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movers
defined, 498
updating, 499

MPP (massively parallel processing)
database system

defined, 43
fundamentals, 175

MQ (message queue)
basics, 16
extracting, 191
failure, simulating, 479

multidimensional data stores (cubes). See
cubes (multidimensional data stores)

multidimensional database (MDB). See MDB
(multidimensional database)

multidimensional online analytical
processing (MOLAP). See MOLAP
(multidimensional online analytical
processing)

multiple iterations, building in, 54

■N
naming

database, 124
dynamic file names, 188
foreign keys, 146
primary keys, 146
report parameters, 343
tables, 137

natural keys
defined, 37, 223
example, 84

NDS (normalized data store)
customer table (Amadeus), 110
defined, 30
designing (Amadeus), 106–111
fundamentals, 8–10
NDS+DDS example, 35–37
populating, 215, 219–228
populating with SSIS, 228–235
population, normalization and, 242–248
sizing, 124
store table example (populating), 242

NDS physical database, creating
batch file, 157
communication master table, 143
communication_subscription transaction

table, 140–143
customer table, 147–151
email_address_junction table, 155–156
email_address_table, 153
email_address_type table, 156–157
language attribute table, 145–146
order_header table, 151–153
overview, 139

near real-time ETL, 270

networks, testing security access, 485
NK (natural key). See natural keys
NLB (network load balanced) servers, 114
nodes

columns, defined, 425
defined, 43

nonfunctional requirements
defined, 61
establishing, 65–67

normal scenarios (performance testing), 484
normalization

defined, 8
NDS population and, 219, 242–248
normalized databases, defined, 30
normalized data store (NDS). See NDS

(normalized data store)
rules, 109, 505–507

notification
column, 320
data quality, 275, 298–300
to monitor ETL processes, 493
Notification Delivery (Notification

Services), 438
Notification Services, SQL Server, 438

numerical data types, 278

■O
OCR (Optical Character Recognition), 471
ODBC (Open Database Connectivity), 412
ODS (operational data store )

CRM systems and, 18
defined, 30
firewall, 276
ODS+DDS architecture, configuring, 126
ODS+DDS architecture (example), 38–39
reports, 332

OLAP (Online Analytical Processing)
applications. See analytics applications

(BI)
basics, 14
fundamentals, 380–381
server cluster hardware, 116
servers, 379
tools, 333, 356, 380

OLTP (Online Transaction Processing)
vs. data warehouse reports, 333
defined, 2

Online Analytical Processing (OLAP). See
OLAP (Online Analytical Processing)

online index operation, 119
Online Transaction Processing (OLTP). See

OLTP (Online Transaction
Processing)

open rate (e-mail), defined, 98, 447
operation, data warehouse (overview), 53
operation team, user support and, 488
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operational data store (ODS). See ODS
(operational data store )

operational system alerts, 437
opting out (permissions), 454
order column, defined, 318
order header table

example, 182
NDS physical database, 151–153

ordered columns (data mining), 420

■P
package, ETL, defined, 31
package table (ETL process metadata),

318–320
parallel database system. See MPP (massively

parallel processing) database system
parallel index operations, 119
parallel query, defined, 10
parameters, report

Division parameter example, 349–351
naming, 343
overview, 342
Quarter parameter example, 346–348
Year parameter example, 345–346

partition indexes, aligning, 166
partitioned cubes, 119
partitioned tables (databases)

administering, 166
creating indexes in, 170
loading/query of partitioned tables, 163
maintenance of, 500
Subscription Sales fact table example, 162,

163–166
vertical/horizontal partitioning, 162

partitioning, table and index, 118
patches, security, 498
per-processor licenses (SQL Server), 119
performance

requirements, 483
testing, defined, 477
testing, fundamentals, 482–484

periodic snapshots
defined, 11
fact table, 90, 269

periodic updating of data, 6
permissions

management (CRM), 18, 450–454
selection queries, 449

personalization (CRM), 18, 464–465
physical database design

configuring databases, 123–128
DDS database structure, creating. See DDS

database structure
hardware platform, 113–119
indexing, 166–170

NDS, creating physically. See NDS physical
database, creating

partitioning tables. See partitioned tables
(databases)

sizing database server, 116–118
SQL Server, editions of, 118–119
SQL Server, licensing of, 119
storage requirements, calculating,

120–123
summary tables, 161
views. See views (database object)

PIM (product information management), 22
PM (project manager), function of (example),

56
populating data warehouses

data firewall, creating, 215, 218–219
DDS dimension tables, 215, 250–266
DDS fact tables, 266–269
ETL batches, 269
NDS, 215, 219–228
NDS with SSIS, 228–235
near real-time ETL, 270
normalization, 242–248
overview, 215
pushing data approach, 270–271
SSIS practical tips, 249–250
stage loading, 215, 216–217
upsert using Lookup transformation, 236
upsert using SQL statements, 235–236

portals
applications (BI), 438–439
creating data warehouse, 489

post office organizations, 290
Prediction Query Builder, 417
predictive analysis

basics, 13
customer analysis (example), 461
in data mining, 416
defined, 14

PredictProbability function, 432
primary keys, naming, 146
processes

data quality, 274–277
ETL, 31
mining structure (data mining), 423–424

ProClarity Analytics 6, 380
product data, MDM systems and, 21–22
product dimension

creating, 83–84, 132
source system mapping, 105

product information management (PIM). See
PIM (product information
management)

product sales data mart (Amadeus)
analysis of product sales, 63
customer dimension, 84–86
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date dimension, 77–80
fact tables, 71, 75
product dimension, 83–84
sales taxes, 73
source system logic, 73
source system mapping, 103
store dimension, 86–87

production environment, migrating DW to,
487–489

profitability band attribute (Amadeus), 64
project management, 53
pull approach (updating), 16, 22
purchase orders, 62
purchase pattern table (data mining), 418
pushing data approach

for populating DW, 270–271
updating with, 16, 22

■Q
QA (Quality Assurance) in DW, 46
Quarter parameter example, 346–348
querying

data, 11
MDBs, 394–396
Query Builder, 244, 337
Query Execution Plan, 168
recursive queries, defined, 308

■R
RAID (Redundant Array of Inexpensive

Disks)
definition and configurations, 121
RAID 5 volumes, 122

ranking algorithms, 474
RCD (rapidly changing dimension), 82
real-time data integration, 271
real-time data warehouse

fundamentals, 27
updates from key tables, 15

recipient_type table, 322
reconciliation, to monitor ETL processes,

493–495
recoverability

defined, 174
ETL testing and, 479

recovery model, 125
recursive queries, 308
referential integrity, 75
refresh frequency, 313
reject action (DQ rules), 294–295
relational databases

analytics and, 415
defined, 30
extracting. See extracting relational

databases

relational online analytical processing
(ROLAP). See ROLAP (relational
online analytical processing )

reliability DQ key, 277
repeating columns, 505
reports

BI, 412–413
creating with Excel, 359–362
creating with report wizard, 334–340
data quality, 275, 298–300
deploying, 366–369
dimensional, 332
execution, managing, 374–375
filtering, 351
formatting cells, 341
fundamentals, 13
grouping, 351–355
layout of, 340–342
from multidimensional data stores,

362–366
OLAP tools vs. data warehouse, 333
OLTP vs. data warehouse, 333
overview, 329–332
parameters. See parameters, report
report columns (data definition table), 306
Report Manager, 366–367
report server scale-out deployment, 118
Reporting Services SharePoint web parts,

439
search, 475
security, managing, 370–372
simplicity vs. complexity of, 356–357
sorting, 351, 354
spreadsheets, 357–362
subscriptions, managing, 372–374
types of, 332–333

requests, change, 501
requirements, determining user, 52
response data. See campaigns,

delivery/response data (CRM)
restoring MDBs, 405–408
retrieval of data, 4–5
retriever (search applications), 474
retrieving (CDI), defined, 468
revenue analysis, 465
revoking permissions, 454
risk_level column, 322
ROLAP (relational online analytical

processing )
applications, 415
defined, 14, 380

roles
defined, 63
security, 498

Ross, Margy, 82
rows, storing historical data as, 80
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rules
data quality, 291–293
DQ, adjusting, 496–497
normalization, 109, 505–507
rule-based logic, 278
rule category table, 322
rule risk level table, 322
rule (SQL Server keyword), 322
rule type table, 322

RUP (Rational Unified Process) methodology,
56

■S
sales taxes, 73
SAN (storage area network), 115
scale-out deployment, 115
scanned documents, text analytics and, 473
SCD (slowly changing dimension)

DDS dimension tables and, 251–265
defined, 11
fundamentals, 80–82
Slowly Changing Dimension Wizard

(SSIS), 228–230
schemas, database

design for campaign delivery/response
data, 457–459

managing changes to, 501–502
snowflake, 7, 89
updating, 501

scoring routines (search applications), 474
scripts, metadata, 326
scrubbing, data, 277
SCV (single customer view), 442–447
SDLC (system development life cycle). See

system development methodology
searching

fundamentals, 25–26
search facilities, 474
search interface, 475

second normal form (2NF), 505
security

groups, defined, 498
management by DWA, 498–499
of MDBs, 397–399
report, managing, 370–372
testing, defined, 477
testing, fundamentals, 485-486

segmentation
algorithm, 422
campaign (CRM), 447–450

selection queries (campaigns), 448
self-authentication vs. cookies, 464
semiadditive aggregate functions, 119
semistructured files, defined, 178
Send Mail tasks (SSIS), 493

sequential methodology. See waterfall
methodology

server+CAL licenses (SQL Server), 119
servers, sizing database, 116–118
service-oriented architecture (SOA). See SOA

(service-oriented architecture)
share nothing architecture, 175
SharePoint Server, Microsoft Office, 438–439
Simon, Alan, 17
single customer view, 18, 442–447
single DDS architecture example, 33–35
single login requirement, 70
sizing database servers, 116–118
SK (surrogate key), defined, 223
slicing, defined (analytics), 413
slowly changing dimension (SCD). See SCD

(slowly changing dimension)
smalldatetime, 131
SMP (symmetric multiprocessing) database

system, 43
snapshots

defined, 11
report output, 374

snowflake schemas
basics, 7
benefits of, 89

SOA (service-oriented architecture), 26–27
soft deletes (records), 184
sorting reports, 351, 354
source data

connecting to, 179–180
profiles, 317–318

source system metadata
overview, 302
populating, 317
purposes of, 313
source data profiles, 317–318
table components of, 314–317

source systems
analysis. See data feasibility studies
functional testing and, 481–482
logic, replicating, 72
mapping, 102–106
moving data out of, 176
pushing data from, 270–271
querying, 12

spam verdict (e-mail), defined, 98
specific performance requirements, 483
specific permissions (CRM), 450
specific store view, 160
spiral methodology. See iterative

methodology
spreadsheets (reports), 357–362
SQL (Structured Query Language)

Native Client driver, 412
queries, exploring data with, 357
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query formatting, 352
statements, upsert using, 235–236

SQL Server
Analysis Services 2005, 356
Configuration Manager, 367
databases, design of. See physical

database design
Enterprise Edition, 118–119
licensing, 119
Management Studio, 232, 363
Notification Services, 438
object catalog views, 311–313, 326
Profiler, performance testing and, 484
Reporting Services. See SSRS (SQL Server

Reporting Services)
system views, naming, 322

SSAS (SQL Server Analysis Services)
data mining in, 20
KPIs and, 434–437
as OLAP tool, 380

SSIS (SQL Server Integration Services)
data extraction with, 191–200
failover clusters and, 115
logging, 484
packages, simulating incremental load

with, 70
populating dimension table with, 251–265
populating NDS with, 228–235
practical tips, 249–250
scheduling cube processing with, 399–404
Send Mail tasks in, 493

SSRS (SQL Server Reporting Services)
building reports with, 329–330
charts and tables with, 412
DQ reports and, 299
NLB servers and, 114
report security and, 370–371
scheduling package (example), 403–404

stage data store
defined, 30
fundamentals, 33

stage loading (populating DW), 215–217
star schemas, 7, 89
statistical analysis, 13
status columns, 320, 322
status of objects, defined, 62
status table (ETL process metadata), 

318–320
steps, ETL, defined, 31
storage of data

calculating database requirements, 120,
123

customer data, 468
estimating, 69
unstructured data, 470

store dimension
creating, 135
designing (Amadeus), 86–87

structured data, defined, 470
structured files, extracting, 177
subscribers

subscriber class attribute (Amadeus), 64
subscriber profitability, analyzing

(Amadeus), 64
subscriptions

Communication Subscriptions Fact Table
(example), 452

managing report, 372–374
membership, 452
permissions (CRM), 451
sales, analyzing (Amadeus), 63
sales data mart (Amadeus), 89–94
sales fact table (partitioning), 163–166
Subscription Management (Notification

Services), 438
Subscription Processing (Notification

Services), 438
Subscription Sales fact table

(partitioning), 162
summary tables

application performance and, 484
fundamentals, 161

supplier performance
analyzing (Amadeus), 64
data mart (Amadeus), 94–95

SupplyNet system, 44
support, types of user, 53
surrogate keys, defined, 37
survivorship rules (metadata storage), 22
symmetric multiprocessing (SMP) database

system. See SMP (symmetric
multiprocessing) database system

sys.dm_db_index_physical_stats dynamic
management function, 500

system architecture design, 42–44
system development methodology

defined, 49
iterative methodology, 54–59
waterfall methodology, 49–53

systematic comparisons (ETL monitoring),
495

system_user SQL variable, 325

■T
table grain, defined, 72
table partitioning

defined, 10
maintenance of, 500

tables
column types in DW, 306
data definition metadata, 303
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data mapping, 307
data quality audit. See audits, DQ auditing
data quality metadata, 321–322
data structure metadata, 309–311, 314–317
DDL of data definition, 305
DDL of data mapping, 306
ETL process metadata, 318–320
loading DDS fact, 215, 250, 266–269
log, data quality. See logging
naming, 137
normalization rules and, 505–507
populating DDS dimension, 215, 

250–266
source system metadata, 314–317
structure of stage, 216
updating related, 186
usage log (usage metadata), 325
whole table every time extraction method,

180–181
tabular data, defined, 178
tabular report (example), 330
telecommunications industry

customer analysis and, 460
customer support in, 463

testing
data leaks, 187
database restore, 500
end-to-end testing, 487
ETL testing, 478–479
functional testing, 480
performance testing, 482–484
security testing, 485–486
types of, 477–478
user acceptance testing (UAT), 477,

486–487
waterfall methodology and, 52

text analytics
for recruitment industry, 471
transforming documents with, 471–473

text data type (data mining), 419, 420
third normal form (3NF), 506
time

consolidating data with different ranges,
5

excluding in MDM systems, 21
timestamps

memorizing last extraction, 200–207
reliable, 182

transactions
database transaction log files, 189
Transact SQL script, 326
transactional systems, 5, 12
transaction fact table, defined, 90
transaction tables, defined, 36, 106

transition iteration, 56
trap hit rate (email), 98

travel industry
customer analysis and, 461
customer support in, 463

treatment, defined (campaigns), 448
Trend expression (MDX), 435
triggers

database, 176
detecting updates and inserts with, 184
update, 184

■U
Unicode, 131
unknown records, defined, 233
unsegmented campaigns, 448
unstructured data

defined, 470
fundamentals, 24–25
metadata and, 473
search facilities and, 475
storing, 470
text analytics and, 471–473

unstructured files, extracting, 178
update triggers, 184
updating

applications, 503
batch data, 15–16
customer data store, 468
data warehouse schemas, 501–502
ETL process metadata, 327
periodic data, 6

upsert
using Lookup transformation, 236–242
using SQL statements, 235–236

usage metadata
maintaining, 327
overview, 302
purposes of, 324–325
usage log table, 325

usage reports, 332
user acceptance testing (UAT)

defined, 477
fundamentals, 486–487

user-facing data store, defined, 30
users

authentication of, 498
authorizing access of, 498
interface, search facility and, 475
training, 489

utilities industry
customer analysis and, 460
customer support in, 463

■V
validations, types of, 291
VAT (value-added tax), 73
vertical/horizontal partitioning, 162
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views (database object)
conform dimensions, creating, 158
data mart view, 158–159
defined, 157
increasing availability with, 160–161
last month view, 159
purposes of, 157
specific store view, 160
virtual layers, creating, 158

virtual layers, creating (views), 158
volume, disk, 121

■W
waste management, customer analysis and,

461
waterfall methodology, 49–53
web analytics, 15
web logs, 189
web parts (SharePoint), defined, 438

web services, extracting, 190
WebTower9 system, 44
whole table every time extraction method,

180–181
Windows 2003 R2 Datacenter Edition, 118
Windows 2003 R2 Enterprise Edition (EE),

118

■X
XML files as source data, 190
XMLA (XML for Analysis )

accessing MDBs with, 412
connecting to MDBMS with, 379
processing mining models with, 417
scripts, backing up MDBs with, 406–408

■Y
Year parameter example, 345–346
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