
C# and
XML Primer

XML Essentials for C# and .NET
Development
—
Jonathan Hartwell

www.allitebooks.com

http://www.allitebooks.org

C# and XML Primer

Jonathan Hartwell

www.allitebooks.com

http://www.allitebooks.org

C# and XML Primer

Jonathan Hartwell				
Joliet, Illinois, USA				

ISBN-13 (pbk): 978-1-4842-2594-3		 ISBN-13 (electronic): 978-1-4842-2595-0
DOI 10.1007/978-1-4842-2595-0

Library of Congress Control Number: 2017933281

Copyright © 2017 by Jonathan Hartwell

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Chaim Krause
Coordinating Editor: Mark Powers
Copy Editor: Ann Dickson
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover image designed by Freepik

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit
http://www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book's product page, located at
www.apress.com/9781484225943. For more detailed information, please visit
http://www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

orders-ny@springer-sbm.com
www.springeronline.com
rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/9781484225943
http://www.apress.com/source-code
http://www.allitebooks.org

To my loving wife, Ashley, for all of the support that she has given.
And to Andy Weiss for introducing me to the world of XML with C#.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author��� xi

About the Technical Reviewer��� xiii

Introduction�� xv

■■Chapter 1: Introduction to XML��� 1

■■Chapter 2: Reading XML�� 7

■■Chapter 3: Modifying XML��� 23

■■Chapter 4: Serialization��� 45

■■Chapter 5: Real Life Examples��� 67

Index��� 85

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author��� xi

About the Technical Reviewer��� xiii

Introduction�� xv

■■Chapter 1: Introduction to XML��� 1

What Is XML?��� 1

XPath�� 2

XSLT—Extensible Stylesheet Language��� 3

Wrapping Up��� 5

■■Chapter 2: Reading XML�� 7

Using XmlDocument��� 7

Searching with XPath�� 8

Search Using Attributes��� 11

Handling Namespaces��� 13

Using XPathDocument��� 15

Reading with XmlReader��� 15

Using LINQ to XML�� 18

Document vs. Document.Root: Getting to the Root Document�������������������������������� 19

Searching for Attributes��� 19

Transforming Results��� 20

Using XPath with XDocument�� 21

www.allitebooks.com

http://www.allitebooks.org

﻿ ■ Contents

viii

■■Chapter 3: Modifying XML��� 23

Using XmlDocument��� 24

Modifying Attributes�� 24

Modifying Elements��� 25

Adding Attributes��� 26

Adding Elements�� 27

Merging Documents�� 30

Removing Attributes�� 32

Removing Elements��� 33

Saving Our Changes�� 34

LINQ to XML�� 35

Modifying Attributes�� 35

Modifying Elements��� 37

Adding Attributes��� 38

Adding Elements�� 39

Merging Documents�� 40

Removing Attributes�� 42

Removing Elements��� 43

Saving Our Changes�� 44

■■Chapter 4: Serialization��� 45

Creating a Model�� 45

Writing to File��� 45

Composition��� 51

Inheritance��� 55

SOAP��� 58

Deserializing��� 65

www.allitebooks.com

http://www.allitebooks.org

﻿ ■ Contents

ix

■■Chapter 5: Real Life Examples��� 67

RSS Feed Application��� 67

Weather Application��� 73

A Basic XML Serializer��� 77

Index��� 85

www.allitebooks.com

http://www.allitebooks.org

xi

About the Author

Jonathan Hartwell has worked professionally with C# for five years and spent four
of those years handling XML. He received his master's degree in computer science
from DePaul University and has an affinity for programming languages. When not
programming, he is either watching Arsenal play or spending time with his wife and their
two dogs. He is the founder of Voltaire Software LLC, which creates software that helps
developers be more productive.

www.allitebooks.com

http://www.allitebooks.org

xiii

About the Technical
Reviewer

Chaim Krause presently lives in Leavenworth, Kansas, where the U.S. Army employs him
as a simulation specialist. In his spare time, he likes to play PC games and occasionally
develops his own. He has recently taken up the sport of golf to spend more time with his
significant other, Ivana. Although he holds a BA in political science from the University
of Chicago, Chaim is an autodidact when it comes to computers, programming, and
electronics. He wrote his first computer game in BASIC on a Tandy Model I Level I and
stored the program on a cassette tape. Amateur radio introduced him to electronics while
Arduino and Raspberry Pi provided a medium to combine computing, programming, and
electronics into one hobby.

www.allitebooks.com

http://www.allitebooks.org

xv

Introduction

XML was first created in 1996 and is still in use today, both in legacy and new systems.
Having been in circulation for over 20 years, there is no shortage of applications that use
XML. Those applications will need to be maintained so knowledge of handling XML with
C# is vital.

When you have finished this book, you are going to be able to modify, read, and
write XML using C# and the .NET framework. To accommodate for legacy systems, the
book discusses how to handle XML using .NET 2.0 through .NET 4.5. The book presents
concepts in small pieces and then puts them together at the end in order to give a full
view of how to handle XML in the real world.

The only prerequisite for this book is a basic knowledge of C#. There are extension
methods that are used from LINQ but knowledge of LINQ is not required, as the classes
that are needed will be covered. No knowledge of XML is assumed; however, if you do
know XML, you will be able to skip a chapter.

1© Jonathan Hartwell 2017
J. Hartwell, C# and XML Primer, DOI 10.1007/978-1-4842-2595-0_1

CHAPTER 1

Introduction to XML

This chapter will cover the basics of XML and XPath. If you are already familiar with these
topics, feel free to start at Chapter 2. Let’s begin with a simple question that does not have
such a simple answer.

What Is XML?
XML is short for Extensible Markup Language, which describes a document. XML consists
of many parts that have no definable structure other than the structure you give to it. XML
can be whatever you want or whatever somebody else wants. So let’s dive into the basics.
Note that this is not a comprehensive coverage of XML but gives just the basics that are
needed to read, write, and modify XML.

There are two main parts to an XML document: elements and attributes. Elements,
also sometimes referred to as nodes, are the backbone of XML and are what is used to
describe the structure. The interesting part of elements, however, is that they can be
whatever you want them to be. To demonstrate let’s give an example using this book:

<?xml version="1.0" ?>
<book>
 <title>C# And XML: A Primer</title>
 432799_1_EnJon Hartwell</author>
</book>

It is quite clear as to what this data is conveying; there is a book with a title and an
author. There are an opening element and closing element as well, which are necessary
to have well-formed XML. All elements are going to be wrapped with < and >. The closing
element will be the name of the opening element with a / before it. It is also possible to put
the slash at the end of the element if there will be no children or values. That’s all well and
good, but what is the top line doing with the question marks? That is the XML declaration
and is necessary for certain parsers to be able to identify when a document is XML.

http://dx.doi.org/10.1007/978-1-4842-2595-0_2

Chapter 1 ■ Introduction to XML

2

After elements the second most common part of XML is the attribute. The attribute
goes on an element and can help describe that element. An attribute will help describe
an element by giving it extra context. We could turn our book into a single element with
attributes.

<?xml version="1.0" ?>
<book title="C# And XML: A Primer" author="Jon Hartwell" />

So when should you use attributes and when should you use elements? Well,
that is largely up to you, but convention usually says that when you have descriptive
information, it should go as an attribute. Conversely, information that is part of the data
should be an element. In the above examples it makes more sense for us to put the title
and author as attributes than it does as children, or elements. This is because those
two pieces of information are directly tied to the book. If we were to add chapters to the
example, then it would make sense for those chapters to be child elements of the book
element.

XPath
XPath is a query language that was designed for parsing XML. It can be extremely useful
to know XPath while working with C# and XML as many of the classes that are used in
handling XML also allow the use of XPath. There are many path expressions in Xpath, but
there is power in even just a few of those expressions.

The first expression that will be covered is the most basic part of XML, the element
name. If you have an XML document that looks like the one below, all that would be
needed to get the entire library, which is the library element, would be to use the
XPath expression library. That would get not only the library element but also all
descendents, or elements, below the current element. If you are already on a specific
node, typically from other XPath queries, then you can use the period as the current node.

<library>
 <books>
 <book>
 </book>
 </books>
</library>

Another important element is the slash, /. This expression will get the children of
the element that appears before the slash. If you want to get the books element from the
above example, then you could use the slash expression and the element name of library
and construct a query that looks like library/books. This query will get all elements
named books that are children of library. It is important to note that the slash will only
get children, which are on first level below the element, rather than descendents, which
are all elements below an element.

Chapter 1 ■ Introduction to XML

3

Perhaps you just want to get a list of all the books that are in this library; that’s where
the double slash, //, comes in. The double slash will get all descendents of the target
element. For instance, if we create a query //book, it will get the sole book that is in our
XML document without having to include the library or books elements. This can be
a convenience, but it can also have unintended consequences. Since this is a recursive
search, if there are book elements elsewhere in the document you will pick those up too.
In our library example this may not be a problem, but what about the following XML:

<baseballLeague>
 <team name="Tigers">
 <player name="Joe"/>
 </team>
 <team name="Saints">
 <player name="Steve"/>
 </team>
</baseballLeague>

If you use the XPath //player, it will give you players from both teams, which may
be desirable if you are looking for all the players in the league, but it would not be what
you want if you were looking for the players only on the Tigers. In general, it is best to go
as deep as you can before performing a recursive search. If we wanted to get the players
that are only on the Tigers, then we would have to use the attribute name as well as the
elements baseballLeague and team. Remember we want to go as deep as we can before
performing any filtering. From there we can filter based on the attribute name. The
resulting XPath would look like baseballLeague/team[@name=’Tigers’].

XSLT—Extensible Stylesheet Language
The final XML topic that we will cover is XSLT. XSLT is a bit different from XPath and
straight XML as it combines both XML and XPath. An XSLT file is an XML document that
transforms an XML document using XPath. Using XSLT, you can turn XML into anything
you want. You could create a programming language out of XML and have XSLT turn it
into C# or even machine code.

An XSLT stylesheet starts with an XML declaration and then a namespace
declaration. The namespace declaration is a bit different from what we see in a traditional
XML file as it is in an xsl:stylesheet element:

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

XSLT uses templates to match XPath queries to specific XML elements within the
XSLT XML file. Templates can create a pattern to match and when the pattern is seen in
the XML file, it will execute the XML inside the template.

XSLT has many of the same functionalities as many programming languages such
as variables, functions, if statements, and switch statements. To give an idea of what an

Chapter 1 ■ Introduction to XML

4

XSLT stylesheet looks like, we can use a mini library XML example and transform it so
that it will print out the title followed by a dash and then the author:

<?xml version="1.0" encoding="UTF-8"?>
<library>
 <book>
 <title>The Great Gatsby</title>
 432799_1_EnF. Scott Fitzgerald</author>
 </book>
</library>

In order to transform the XML, we need the following stylesheet:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns="http://www.w3.org/1999/xhtml" version="1.0">
 <xsl:template match="library">
 <xsl:apply-templates />
 </xsl:template>
 <xsl:template match="book">
 �<xsl:value-of select="title"/> - <xsl:value-of

select="author"/>
 </xsl:template>
</xsl:stylesheet>

This small example of XSLT can be just as confusing as a larger example, so let’s walk
through this example. First, the XML declaration is always needed when creating an XSLT
stylesheet. The declaration is followed by the the introduction of the XSL namespace.
The xmlns:xsl is required; however, the other xmlns is not. There can be good reason
to include extra namespaces that may not necessarily be used. In this example, we
aren’t using XHTML so we don’t need to have that namespace included. If we were
to add elements of XHTML, then that namespace would be required because it gives
documentation as to what elements should be there and what structure is there. Think of
it as an interface in C#. It doesn’t tell you how to implement what is there, but it does tell
you what has to be implemented.

To start the actual logic of the stylesheet, there needs to be a template. You can think
of a template as a method in C#. The template matches on a specific element and will act
on that element. You can see we have two different templates, one for library and one
for book. There will always need to be a template that matches the root element of your
XML file; otherwise, nothing else would be able to be run.

The final two elements of this example are the xsl:apply-templates and
xsl:value-of. The element xsl:apply-templates will iterate off of the current element,
in this case library, and will then try to match the correct template to that element. In
our example, it will match book to the book template. In that template, you will see where
we do the work that we wanted to do: write the title and author separated by a dash. We
use the select attribute on the xsl:value-of to pick the element we want to output.
Then if the select attribute is set to an element, it will get the child element of the current
node. If it is set to an attribute, then it will get the attribute of the current node.

Chapter 1 ■ Introduction to XML

5

Wrapping Up
In this chapter, we presented an overview of XML, diving briefly into XPath and XSLT.
There are more aspects in the XML family, such as Xquery, which is a programming
language to query XML, as well as more in-depth topics of XPath and XSLT. If you were
able to follow and understand this chapter, then you are ready to move on to the next
chapter on how to read XML with C#.

7© Jonathan Hartwell 2017
J. Hartwell, C# and XML Primer, DOI 10.1007/978-1-4842-2595-0_2

CHAPTER 2

Reading XML

Reading XML is the cornerstone of handling XML in any application. If your application
is unable to read XML, then you won’t be able to do much. There are several ways to read
XML, and this chapter will give you an insight into what methods are available to you.

Using XmlDocument
The XmlDocument class was the first way to handle reading and writing XML using
the .NET Framework with C# and is included in the System.Xml namespace. With
XmlDocument you can not only read XML but also manipulate and write XML, which will
be covered in later chapters.

To start we will need to have an XML document to demostrate with. The following
example is a small database of books and movies in our imaginary library:

Library.xml

<?xml version="1.0"?>
<library>
 <books>
 <book checkedout="no">
 <title>To Kill a Mockingbird</title>
 432799_1_EnHarper Lee</author>
 </book>
 <book checkedout="no">
 <title>Price and Prejudice</title>
 432799_1_EnJane Austen</author>
 </book>
 <book checkedout="yes">
 <title>The Great Gatsby</title>
 432799_1_EnF. Scott Fitzgerald</author>
 </book>
 <book checkedout="no">
 <title>1984</title>
 432799_1_EnGeorge Orwell</author>
 </book>
 </books>

Chapter 2 ■ Reading XML

8

 <movies>
 <movie checkedout="no">
 <title>King Kong</title>
 <year>1933</year>
 </movie>
 <movie checkedout="yes">
 <title>King Kong</title>
 <year>2005</year>
 </movie>
 <movie checkedout="yes">
 <title>To Kill A Mockingbird</title>
 <year>1962</year>
 </movie>
 <movie checkedout="no">
 <title>The Green Mile</title>
 <year>1999</year>
 </movie>
 </movies>
</library>

To be able to do anything with this XML document, we first need to load the XML
into an XmlDocument instance. There are two ways to do this: by file and by string.

Loading XML from a File

XmlDocument document = new XmlDocument();
document.Load("library.xml");

Loading XML from a String

XmlDocument document = new XmlDocument();
string xml = "<input>test</input>";
document.LoadXml(xml);

Once we have a file loaded, we can begin reading from the contents, which can be
done in multiple ways.

Searching with XPath
Think of using XPath as having random read access to the XML document. It can be used
to retrieve a single node or a collection of nodes. When wanting to select multiple nodes,
it requires the use of the SelectNodes method. Going back to the library.xml example,
we can use SelectNodes to return all the books. To get at the books, however, the proper
XPath query is needed.

Starting at the top level, there is the library node, so the XPath must start with
library. From there, the books child node contains all of the books that are in the
library, which means that the books node is going to be appended to the XPath to give us
library/books. That XPath alone will give the books node, including all of the children,

Chapter 2 ■ Reading XML

9

but that is one step above what we want to get at so we append book to the XPath query to
finally give us the query library/books/book.

XmlDocument document = new XmlDocument();
document.Load("library.xml");
XmlNodeList books = document.SelectNodes("library/books/book");
foreach (XmlNode book in books)
{
 richTextBox1.AppendText(book.OuterXml + Environment.NewLine);
}

The above code creates an instance of the XmlDocument and loads the library.xml
file into XmlDocument instance, document. Once the XML is loaded into the document,
SelectNodes is used since we are looking for multiple book nodes instead of a specific
one. If there was only one book node in the document, then it would return the single
element in the XmlNodeList. The property OuterXml is used to get the XML of the current
node. There are other properties that get various XML elements from an XmlNode, which
will be covered later in this chapter. This example is writing to a RichTextBox that is in a
Windows form application, which is included in the downloadable source and gives us
the XML content of each book printed on a new line, as shown in Figure 2-1.

With the code above, you can modify the XPath query to get an XML list of any of the
nodes. For instance, if we want to get a list of the movies that are available, then we modify
the XPath to library/movies/movie. That would give us the following (see Figure 2-2):

XmlDocument document = new XmlDocument();
document.Load("library.xml");
XmlNodeList movies = document.SelectNodes("library/movies/movie");
foreach (XmlNode movie in movies)

Figure 2-1.  Output from XML Viewer application based on the code above

Chapter 2 ■ Reading XML

10

{
 richTextBox1.AppendText(movie.OuterXml + Environment.NewLine);
}

If you know that you are only looking for a single element, then you can use the
SelectSingleNode method. This method takes an XPath expression and returns a single
XmlNode. This method will always return a single node as long as a node is returned, no
matter what the query. If we have the code below execute using our library.xml file, we
will get a single book that looks like Figure 2-3.

XmlDocument document = new XmlDocument();
document.Load("library.xml");
XmlNode book = document.SelectSingleNode("//book");
richTextBox1.AppendText(book.InnerXml);

Figure 2-2.  The XML Viewer results of selecting all movie nodes

Chapter 2 ■ Reading XML

11

You’ll notice that the output above returns the first book that is under the books
element. SelectSingleNode will take whatever element it sees first and return that for the
given XPath expression. There are ways to get a specific node though using a query such
as the following:

XmlNode book = document.SelectSingleNode("/library/books/book[title = ’The
Great Gatsby’]");

The query will return the same book element that we saw above, but in this example
it is using a filter to find the book that has the title To Kill a Mockingbird.

Search Using Attributes
Up until now, there has been a focus solely on searching based on elements. There is more
that can be searched on than just elements. For instance, let’s say somebody asks us to find
all books that are checked out. It is an easy feat if we just use SelectNodes with XPath.

Explicitly Finding Movies and Books That Are Not Checked Out

XmlDocument document = new XmlDocument();
document.Load("library.xml");
XmlNodeList movies = document.SelectNodes("library/books/book[@
checkedout=’yes’] | library/movies/movie[@checkedout=’no’]");

Figure 2-3.  Single book output produced by SelectSingleNode

Chapter 2 ■ Reading XML

12

The above code uses the attribute notation to find both movies and books that are
not checked out. In order to search for both, it is necessary to add a pipe between the two
XPath queries. You can think of it like the double pipe OR statement in C#. This notation
is useful when there are many different children of the root element and you want to filter
it down. If we had CDs in this library, we would be able to use the above code to only find
books and movies and ignore the CDs.

The problem with the above code is that it is very verbose, especially if there are
many children of the node that you are searching under. There is an easier way to find this
information without having to type out every single possibility and that is to use the star
operator and recursive search in XPath.

Using the Recursive Search and Star

XmlDocument document = new XmlDocument();
document.Load("library.xml");
XmlNodeList movies = document.SelectNodes("library//*[@checkedout=’no’]");

The above code contains two different shortcuts. First, there is the double slash.
This is a way to get all children recursively. For this library XML file, this means it would
look not only at the books and movies elements but also the children of those nodes.
This gives us access to all elements under the library node. Be careful when using the
double slash in your XPath queries as it will select all elements regardless of the type of
element. If any other elements were added to the library element, those elements would
be included in the results as well.

The second shortcut that is in the code above is the star. The star is a shortcut that
ignores the element type. What that means is that it treats an element of book the same
as the movie element. It is extremely useful when you have several different children
or grandchildren under a single element and want to search all of them. We don’t have
to use the | operator to combine multiple queries, which drastically cuts down on the
amount of code that is needed.

The previous example used attributes to search, but it is also possible to inspect what
attributes are on an element by using the Attributes property. Attributes will return an
XmlAttributeCollection, which can be iterated on.

XmlDocument doc = new XmlDocument();
doc.Load("library.xml");
XmlNodeList books = doc.SelectNodes("//book");
foreach(XmlNode book in books)
{
 var attributes = book.Attributes;
 foreach(XmlAttribute attr in attributes)
 {
 richTextBox1.AppendText(attr.Value + Environment.NewLine);
 }
}

In the code above, there is the standard iteration that has been seen when dealing
with XmlNodes in the past but, alas, there is one difference: the use of Value. Attributes
do not have InnerText or InnerXml values. When trying to get an attribute’s text, you will

Chapter 2 ■ Reading XML

13

be scratching your head wondering why the attribute you know has a value isn’t showing
any value. When using the Value attribute, the only text that will show is the text that is
surrounded by the quotes for that attribute. When running the code above, you will get
the output in Figure 2-4.

Handling Namespaces
Up until now, there only has been straight XML with no namespaces required. While this
may happen when you have full control of the XML, chances are that you will encounter
namespaces and will need to know how to handle them when it comes to using the
XmlDocument class. Namespaces are useful when it comes to preventing collisions with
names and so the XmlDocument must take that into consideration.

<?xml version="1.0"?>
<library xmlns:network="www.library.com">
 <books>
 <book checkedout="no">
 <title>To Kill a Mockingbird</title>
 <author>Harper Lee</author>
 </book>
 <book checkedout="no">
 <title>Price and Prejudice</title>
 <author>Jane Austen</author>
 </book>

Figure 2-4.  The checkedout attribute for all of the books in the library

Chapter 2 ■ Reading XML

14

 <book checkedout="yes">
 <title>The Great Gatsby</title>
 <author>F. Scott Fitzgerald</author>
 </book>
 <book checkedout="no">
 <title>1984</title>
 <author>George Orwell</author>
 </book>
 </books>
 <movies>
 <movie checkedout="no">
 <title>King Kong</title>
 <year>1933</year>
 </movie>
 <movie checkedout="yes">
 <title>King Kong</title>
 <year>2005</year>
 </movie>
 <movie checkedout="yes">
 <title>To Kill A Mockingbird</title>
 <year>1962</year>
 </movie>
 <movie checkedout="no">
 <title>The Green Mile</title>
 <year>1999</year>
 </movie>
 </movies>
</library>

As we have added a new namespace to our library.xml example, we need to load
the namespace into our XmlDocument:

Adding a Namespace to the XmlDocument before Loading XML

XmlDocument document = new XmlDocument();
XmlNamespaceManager namespaceManager = new XmlNamespaceManager(document.
NameTable);
namespaceManager.AddNamespace("network", "http://www.library.com");
document.Load("library-network.xml");

In order to add a namespace to an XmlDocument, it is necessary to use the name
table, which is of type XmlNameTable, from the XmlDocument. This is the class that handles
keeping track of all of the namespaces. Once we have that, an XmlNamespaceManager
needs to be created as that is what will allow us to add or remove namespaces.
Being able to remove a namespace is just using the RemoveNamespace method of
XmlNamespaceManager, which takes the same arguments as AddNamespace.

Chapter 2 ■ Reading XML

15

Using XPathDocument
The XPathDocument class is similar to the XmlDocument class, but the difference is that,
unlike XmlDocument, XPathDocument is read only. It is excellent for reading XML when you
have no intention of modifying the data. The XPathDocument class relies on two separate
classes to do the actual querying: XPathNavigator and XPathNodeIterator.

The XPathNavigator class is what is used to actually query the XML. It allows the
use of XPath queries or generic methods that allow you to get at elements and attributes
without having to know any XPath.

In order to start using the XPathNavigator, there are two steps involved. An
XPathDocument needs to be instantiated and then use that instance to create the
XPathNavigator. Once the XPathNavigator is instantiated, it will open up the ability to
query the XML.

Create XPathDocument and XPathNavigator Instances

XPathDocument xPathDocument = new XPathDocument("library.xml");
XPathNavigator navigator = xPathDocument.CreateNavigator();

The XPathNavigator is only the first step into being able to read and query XML. To
query the document, one must create an XPathNodeIterator. The XPathNodeIterator
will provide access to all the elements under the root element.

Iterating on the Children of the Root Element

XPathDocument xpathDocument = new XPathDocument("library.xml");
XPathNavigator navigator = xpathDocument.CreateNavigator();
XPathNodeIterator iterator = navigator.SelectChildren(XPathNodeType.
Element);

while (iterator.MoveNext())
{
 richTextBox1.AppendText(iterator.Current.Value);
}

Reading with XmlReader
XmlReader is different from the other XML handling classes that we have used as it is
stream-based. What that means for us is that it will only operate going forward and
prevents querying. XmlReader is a good option if you are handling large XML files
and don’t care about random access to the elements in the XML document. Because
XmlReader uses streams to load the XML document, you can read in files that are too large
for the XmlDocument. XmlReaders require much more setup than the other classes we’ve
looked at prior, but because of their ability to handle large data it is more than worth it.
We can start with a basic example:

Chapter 2 ■ Reading XML

16

Creating an XmlReader and Reading the Library File

StreamReader xmlStream = new StreamReader("library.xml");
using (XmlReader reader = XmlReader.Create(xmlStream))
{
 while(reader.Read())
 {
 richTextBox1.AppendText(reader.Value + Environment.NewLine);
 }
}

The output of this will present a quite different view from what we have seen already
(Figure 2-5).

Notice that there is a lot of blank space as well as only the values. The reason for
that is the way that the XmlReader handles the underlying XML stream. Remember it is
a forward-only stream. Since we used the value property, it is only going to give us the
values of elements that have one. But why the space? Simple. Each one of those spaces
represents an element that did not have a value. This is where XmlReader becomes more
complicated than other methods of reading; it doesn’t differentiate the type of XML that is
being read. The reader does store the type information, but we must manually check it. If
we want to get at the type, we can use the XmlNodeType enumeration. We have only been
focusing on elements and attributes, so let’s create a reader that will handle both.

Figure 2-5.  The values of the XML elements from the library.xml that has gone through the
XmlReader

Chapter 2 ■ Reading XML

17

Handling Both Elements and Values

StreamReader xmlStream = new StreamReader("library.xml");
using (XmlReader reader = XmlReader.Create(xmlStream))
{
 while(reader.Read())
 {
 switch (reader.NodeType)
 {
 case XmlNodeType.Element:
 richTextBox1.AppendText(reader.Name + Environment.NewLine);
 break;
 case XmlNodeType.Text:
 richTextBox1.AppendText(reader.Value + Environment.NewLine);
 break;
 case XmlNodeType.EndElement:
 richTextBox1.AppendText(reader.Name + Environment.NewLine);
 break;
 default:
 break;
 }
 }
}

The element node type is added as well as the EndElement node type. There is a good
reason that you may want to include both. If you just include element, you will get the
element name and then the value of that element followed by the next element. On the
other hand, if you include both EndElement and element, it will give you Figure 2-6.

Figure 2-6.  Output of the XmlReader once we put checks in for specific type being read

Chapter 2 ■ Reading XML

18

Remember when I said there was a reason you would want both? That reason is
when you want to write the XML, you are reading from the XmlReader stream.

Using LINQ to XML
XmlDocument was introduced in .NET 2.0 and remained the only way to handle XML until
.NET 3.5 was released. In the .NET 3.5 release, we saw the introduction of LINQ (Language
Integrated Query) and the advent of LINQ to XML. LINQ to XML is now the preferred method
of handling XML, so let’s dive in using the library XML example from the last section.

XDocument is LINQ to XML’s equivelent to the XmlDocument. The nature of LINQ gives
XDocument a whole different feel, but don’t worry because you can still fall back on XPath.
For instance, the following code will instantiate an XDocument as well as get the values of
every book.

XDocument doc = new XDocument();
doc = XDocument.Load("library.xml");
IEnumerable<XElement> books = doc.Descendants().Where(x => x.Name ==
"book");
foreach(XElement book in books)
{
 richTextBox1.AppendText(book.Value + Environment.NewLine);
}

This approach gives a much cleaner interface, and it is clear on what is happening
to those who aren’t well versed in XPath. That being said, the Value property of the
XElement book is not as clear as one might think. Instead of giving XML, it returns all
children and concatenates the values of those children, as seen in Figure 2-7.

Figure 2-7.  Output from the LINQ to XML query

Chapter 2 ■ Reading XML

19

Document vs. Document.Root: Getting to the Root
Document
There are two ways to get at the root element using XDocument: using the instantiated
XDocument class directly or using the Root property on the instantiated class. There is a
subtle difference and that is the Root property is an XElement instead of an XDocument.
Because of that, you are able to use all of the methods that you would normally get with
XElement but by using the root element directly.

We used the XDocument in the example above because the XDocument allows access
to the descendants of the root element, which is what we needed in order to traverse the
XML structure and find the book elements. If we had used the Root property, it would
have allowed us to not only get descendants but to add elements as well as get to the
attributes of the root element.

Searching for Attributes
We saw how to search using attributes when handling XML with XmlDocument and
how it required XPath to get at the attributes relatively easily; that same task becomes
much easier with XML to LINQ. Let’s say we want to find all the elements that have a
checkedout attribute. We can use our LINQ expressions to find all elements that have the
checkedout attribute.

List<XElement> elementsWithAttributes = document.Descendants().Where(x =>
x.HasAttributes && x.Attribute("checkedout") != null).ToList();

There is a drawback to using LINQ, which is that it is much more verbose than using
straight XPath. With XDocument we could still use XPath to get the same results. Where
LINQ shines is when you have more complex queries that may be difficult to read in XPath
or require more in-depth knowledge of XPath. For instance, we could look for all movie
and book elements, which we did in the previous chapter by using LINQ instead of XPath.

List<XElement> booksOrMovies = document.Descendants().Where(x => x.Name ==
"movie" || x.Name == "book").ToList();

Or we could retrieve movies that were released between certain years. For instance,
let’s look for movies that were released between 1990 and 2016. That would be an
incredibly complex XPath query that would be horrible to maintain in the future. On the
other hand, by using LINQ and XDocument it becomes a simple where clause to filter out
the unwanted titles. We can do all that in the following code:

List<XElement> movies = document.Descendants()
 .Where(x => x.Name == "year" && (int.Parse(x.Value) >= 1990 && int.
Parse(x.Value) <= 2015))
 .Select(x => x.Parent).ToList();

Chapter 2 ■ Reading XML

20

Now there are many things in the above code that may need an explanation because
we have not seen it before or it may not be intuitive. First off, we are searching for the year
element instead of directly for a movie element. This allows us to easily get at the value of
that element, which is the year the movie was made, instead of having to filter down even
more based on the movie element’s children. The only reason why that method is feasible is
because of the Parent property. The Parent property will return the XElement of the parent
of the current XElement. In this case, the element movie is the parent of the title element, so
we can get back up to the movie element after we are done filtering. We are also doing some
parsing of the year into integer type; however, this is not recommended in production code
as this could throw exceptions. I am doing this here for demonstration purposes.

Transforming Results
LINQ to XML allows us to use all of the extension methods that come with LINQ, which
gives us access to the Select method. This method can allow us to transform our results
into a different class or anonymous class. We have a way to get to the books in our XML
library, but we haven’t done anything with them yet. That is about to change. We are
going to capture the information about the books and put them in a C# class called Book
that is defined below.

class Book
{
 public string Author { get; set; }
 public string Title { get; set; }
}
List<Book> books = document.Descendants()
 .Where(x => x.Name == "book")
 .Select(x => new Book()
 { Title = x.Element("title").Value,
 Author = x.Element("author").Value
 }).ToList();

The above code filters the XML document down to just book elements and then
transforms the title and author into a new Book class that we had defined. Notice that
the Element method is used instead of Descendants because we know that the title and
author elements are children of the book element, rather than grandchildren, so we don’t
need to go any deeper.

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ Reading XML

21

Using XPath with XDocument
As mentioned before, it is possible to use XPath with XDocument, though not
recommended. For instance, we could use XPath to get a list of all movies:

List<XElement> movies = document.XPathSelectElements("//movie").ToList();

One thing to note is that this does not return XmlNode like the XmlDocument does,
but instead returns XElement. There is also the XPathSelectElement method, which is
equivalent to the XmlDocument SelectSingleNode. Just like SelectSingleNode, if you use
an XPath query that will return multiple results, the first element is only returned.

XElement movie = document.XPathSelectElement("//movie");

In the end, LINQ to XML allows for easy access to querying data from an XML
document in a more consistent format as well.

23© Jonathan Hartwell 2017
J. Hartwell, C# and XML Primer, DOI 10.1007/978-1-4842-2595-0_3

CHAPTER 3

Modifying XML

Reading XML is only one part of handling XML in C#. Once you have an XML document
loaded, there are times you need to make modifications, especially if you plan to write
the XML back to file. The following steps take you through the process of modifying XML
with both XmlDocument as well as XDocument. We will continue to use the library XML in
this chapter and will also assume that all the XML has been loaded into an instantiated
XmlDocument or XDocument named document. As a reminder, following is the library XML:

<?xml version="1.0"?>
<library>
 <books>
 <book checkedout="no">
 <title>To Kill a Mockingbird</title>
 <author>Harper Lee</author>
 </book>
 <book checkedout="no">
 <title>Price and Prejudice</title>
 <author>Jane Austen</author>
 </book>
 <book checkedout="yes">
 <title>The Great Gatsby</title>
 <author>F. Scott Fitzgerald</author>
 </book>
 <book checkedout="no">
 <title>1984</title>
 <author>George Orwell</author>
 </book>
 </books>
 <movies>
 <movie checkedout="no">
 <title>King Kong</title>
 <year>1933</year>
 </movie>
 <movie checkedout="yes">
 <title>King Kong</title>
 <year>2005</year>

Chapter 3 ■ Modifying XML

24

 </movie>
 <movie checkedout="yes">
 <title>To Kill A Mockingbird</title>
 <year>1962</year>
 </movie>
 <movie checkedout="no">
 <title>The Green Mile</title>
 <year>1999</year>
 </movie>
 </movies>
</library>

Using XmlDocument
Let’s start with XmlDocument.

Modifying Attributes
Since we are using a library as an example, then the most common modification would
be to check out or check in a book. Since the library XML structure is using checked in or
checked out as an attribute, we must learn how to modify attributes to ensure the library
has a proper listing of books. To start, though, we need to ensure we have the right book.
For this example, a patron of the library is checking out To Kill a Mockingbird. First, we
need to find the book and then we can modify the attribute. Modifying the attribute is no
different that just setting a value in a dictionary. After all, that is all that the Attributes
property on XmlNode truly is.

XmlDocument doc = new XmlDocument();
doc.Load("library.xml");
XmlNode book = doc.SelectSingleNode("//book[title='To Kill a
Mockingbird']");
book.Attributes["checkedout"].Value = "yes";

The above code will change our attribute from "no" to "yes", as you can see in
Figure 3-1.

Chapter 3 ■ Modifying XML

25

Modifying Elements
We have already changed the attribute of a book showing that a book has been checked
out, so let’s take it a step further and change an element. Let’s say we have a new edition
of a movie that is released in a different year than what we already have. We will need to
change that year element so that it will properly reflect what is currently in the library. In
this example, we will say that there was a ten-year anniversary release of the Green Mile
that the library bought. Because of that, we will need to update the year on that specific
movie.

XmlDocument doc = new XmlDocument();
doc.Load("library.xml");
XmlNode movie = doc.SelectSingleNode("//movie[title='The Green Mile']");
XmlNode movieYear = movie.SelectSingleNode("year");
movieYear.InnerText = "2009";

We first select the movie node and then get the year element under that movie node.
Once we have that element, we are free to change the value. Notice that we must use the
InnerText property instead of Value. It is one of the many inconsistencies that arise when
dealing with XmlDocument and its related classes. If you end up writing code that has an
element that should have a value but doesn’t, check to see if you are using Value instead
of InnerText. When you run the above code, it will give you the output in Figure 3-2.

Figure 3-1.  Book XML after modifying the checkedout attribute

Chapter 3 ■ Modifying XML

26

Adding Attributes
In a library people may accidentally damage a movie, especially if it is a DVD and easily
scratchable. Currently our library doesn’t track that kind of damage, so let’s add the
ability to track it as an attribute. After all, this is a descriptive feature of the movie.

XmlDocument doc = new XmlDocument();
doc.Load("library.xml");
XmlNodeList movies = doc.SelectNodes("//movie");
foreach(XmlNode movie in movies)
{
 XmlAttribute attribute = doc.CreateAttribute("damaged");
 attribute.Value = "no";
 movie.Attributes.Append(attribute);
}

Now the code that was used to create an attribute is not as straightforward as one
would expect. After all, we were accessing an attribute just like it was part of a dictionary.
In order to create an attribute, we must use the instance of the XmlDocument class that will
be using the attribute. In other words, if you are going to put the attribute on XML in the
document represented by an instance of XmlDocument, then you need to use that instance
to create the attribute via the CreateAttribute method. Now that we have an instance
of XmlAttribute, we can modify the value and then add to the instance of the XmlNode
movie. Figure 3-3 displays what the movie elements look like after the addition of the
attribute.

Figure 3-2.  The Green Mile tenth-anniversary update to the library

Chapter 3 ■ Modifying XML

27

Adding Elements
We have added a damaged attribute to the movie elements in our library, but that isn’t all
we have to do. A library will always get more items in its collection, so we should discuss
how to do that. Let’s say that our library has bought a new book for its collection. We can
create that book in a similar way to creating the attributes previously.

XmlDocument doc = new XmlDocument();
doc.Load("library.xml");
XmlNode book = doc.CreateElement("book");
XmlAttribute checkedOut = doc.CreateAttribute("checkedout");
XmlAttribute damaged = doc.CreateAttribute("damaged");
checkedOut.Value = "no";
damaged.Value = "no";
book.Attributes.Append(checkedOut);
book.Attributes.Append(damaged);

In the code above we see that the CreateElement method is called from the instance
of XmlDocument. This creates an XmlNode that has the name "book". Once we have our
book element, we will need to add the attributes using the same technique we did earlier.
The output from this code is shown in Figure 3-4.

Figure 3-3.  The output after adding the damaged attribute

Chapter 3 ■ Modifying XML

28

We have a book element, but we don’t have all of the information for this book. We
are missing a title and author, so let’s add that now, but first we need to create the new
elements.

XmlNode title = doc.CreateElement("title");
title.InnerText = "A Clockwork Orange";
XmlNode year = doc.CreateElement("year");
year.InnerText = "1962";
book.AppendChild(title);
book.AppendChild(year);

Using the instance of XmlDocument, "doc", and XmlNode, "book", from above, we can
create the new instances of XmlNodes by using the CreateElement method, just as we
have done before. The new method comes in the form of AppendChild. The AppendChild
method will take an XmlNode and add it as child of the XmlNode instance that is calling the
method. Note that the elements will be placed in the order that they added in the resulting
XML output. The full code example is below with the output shown in Figure 3-5:

XmlDocument doc = new XmlDocument();
doc.Load("library.xml");

XmlNode book = doc.CreateElement("book");
XmlAttribute checkedOut = doc.CreateAttribute("checkedout");
XmlAttribute damaged = doc.CreateAttribute("damaged");
checkedOut.Value = "no";
damaged.Value = "no";
book.Attributes.Append(checkedOut);
book.Attributes.Append(damaged);

Figure 3-4.  The output from creating a new book element

Chapter 3 ■ Modifying XML

29

XmlNode title = doc.CreateElement("title");
title.InnerText = "A Clockwork Orange";
XmlNode year = doc.CreateElement("year");
year.InnerText = "1962";
book.AppendChild(title);
book.AppendChild(year);

We have one final step before we can say we have added a new book to our library
and that is actually adding it back to the underlying XML library. To do this, we need to
get an instance of the books element and then we can just use the AppendChild method
on that instance to add the book. If we use the book instance from prior code example,
you can see we just need to add two more lines:

XmlNode books = doc.SelectSingleNode("//books");
books.AppendChild(book);

The full code example is below as well as the output in Figure 3-6:

XmlDocument doc = new XmlDocument();
doc.Load("library.xml");

XmlNode book = doc.CreateElement("book");
XmlAttribute checkedOut = doc.CreateAttribute("checkedout");
XmlAttribute damaged = doc.CreateAttribute("damaged");
checkedOut.Value = "no";
damaged.Value = "no";

Figure 3-5.  The output from adding the attributes as well as children to the book

Chapter 3 ■ Modifying XML

30

book.Attributes.Append(checkedOut);
book.Attributes.Append(damaged);

XmlNode title = doc.CreateElement("title");
title.InnerText = "A Clockwork Orange";
XmlNode year = doc.CreateElement("year");
year.InnerText = "1962";
book.AppendChild(title);
book.AppendChild(year);

XmlNode books = doc.SelectSingleNode("//books");
books.AppendChild(book);

Merging Documents
Let’s say that you have two XML documents that now need to be merged into one single
XML document. You could do it by hand or you could use C# and XmlDocument in order to
merge them.

Merging two or more XmlDocuments is not as straightforward as selecting a single
element and then adding it to the other XmlDocument. The XmlDocument only allows an
XmlNode to exist in one document, which is why you aren’t able to do a straight copy since
the reference to the source document still exists. Instead, you must import the node into
the new document by using ImportNode method. This can allow adding deep, which
means adding this specific XmlNode and all of its children, or shallow, which would only
add the XmlNode with no children. In the code below, we load the library two times and

Figure 3-6.  The final output of the books element after adding A Clockwork Orange to our
library

Chapter 3 ■ Modifying XML

31

then take the first movie from the source library and add it to the target library. You could
think of this as two different libraries that are in a network together where one movie is
checked out in the first library and returned in the second. (See Figure 3-7.)

XmlDocument source = new XmlDocument();
source.Load("library.xml");
XmlDocument target = new XmlDocument();
target.Load("library.xml");
XmlNodeList movies = source.SelectNodes("//movie");
XmlNode movie = target.ImportNode(movies[0], true);
target.SelectSingleNode("//movies").AppendChild(movie);

Notice that in Figure 3-7 the movie King Kong is present three times. The first two are
expected, but then the last King Kong at the bottom of the movies element is a duplicate
of the first King Kong. That is the element we added from the source.

The previous example copied using a deep copy, but what if we don’t want to bring
in all child elements? We can use the ImportNode method again, but this time pass in a
false for the deep copy argument instead of true. This time let’s select all the movies by
using XPath to query on the movies element and then move the movies element, with no
children, over to the target document. (See Figure 3-8.)

XmlDocument source = new XmlDocument();
source.Load("library.xml");
XmlDocument target = new XmlDocument();
target.Load("library.xml");
XmlNode movie = source.SelectSingleNode("//movies");
XmlNode targetMovie = target.ImportNode(movie, false);
target.SelectSingleNode("library").AppendChild(targetMovie);

Figure 3-7.  InnerXML output from the movies element

Chapter 3 ■ Modifying XML

32

From the output in Figure 3-8, you can see that an empty movies element was
added to the library. There was just a small code change, changing true to false, and it
drastically altered the way that the XML is copied.

Removing Attributes
Let’s say that our library is getting rid of Pride and Prejudice and pulling it out of
circulation. The first thing that would need to be done is to remove the ability for the book
to be checked out. In order for that to happen, though, we need to remove the checkedout
attribute.

When removing an attribute, we need to get the XmlNode instance that contains the
attribute. In this case, we use XPath to get the book element. From there we can get to the
attributes by using the Attributes property on the XmlNode, prideAndPrejudice. After
that, we get the checkedout attribute from the Attributes property. Once we have the
instance of the XmlAttribute checkedout, we can then go ahead and remove it by using
the Remove method from the Attributes property. The output from this can be seen in
Figure 3-9.

XmlDocument doc = new XmlDocument();
doc.Load("library.xml");
XmlNode prideAndPrejudice = doc.SelectSingleNode("//book[title='Price and
Prejudice']");
XmlAttribute checkedOut = prideAndPrejudice.Attributes["checkedout"];
prideAndPrejudice.Attributes.Remove(checkedOut);

Figure 3-8.  Library version after merging two libraries

Chapter 3 ■ Modifying XML

33

Removing Elements
After removing the attributes from Pride and Prejudice, we want to remove the book
entirely. In order to do that, we must remove the XmlNode instance that represents
this book.

XmlDocument doc = new XmlDocument();
doc.Load("library.xml");
XmlNode books = doc.SelectSingleNode("//books");
XmlNode prideAndPrejudice = books.SelectSingleNode("//book[title='Price and
Prejudice']");
books.RemoveChild(prideAndPrejudice);

We first have to get the parent node of the element we want to remove. This is
because the method to remove an XmlNode will only remove children and not any
descendent that is further than a child. Once we have the books instance of XmlNode, we
then need to search for our Pride and Prejudice book XmlNode by using XPath. Finally, we
can call RemoveChild and pass in our instance of prideAndPrejudice. When that finishes,
our books XmlNode will look like Figure 3-10.

Figure 3-9.  The output of Pride and Prejudice book after removing the checkedout
attribute

Chapter 3 ■ Modifying XML

34

Saving Our Changes
Once we have made our modifications, we need to ensure that these changes are written
to disk. Using an instance of XmlDocument, we can just call the Save method and pass in
the file name. Assuming we have made the changes to the library as well as having an
instance of XmlDocument named doc, we just make the one call and we are done.

doc.Save("library-update.xml");

Our updated library looks as follows:

<?xml version="1.0"?>
<library xmlns:network="www.library.com">
 <books>
 <book checkedout="no">
 <title>To Kill a Mockingbird</title>
 <author>Harper Lee</author>
 </book>
 <book checkedout="no">
 <title>Price and Prejudice</title>
 <author>Jane Austen</author>
 </book>
 <book checkedout="yes">
 <title>The Great Gatsby</title>
 <author>F. Scott Fitzgerald</author>
 </book>
 <book checkedout="no">

Figure 3-10.  Removing the book Pride and Prejudice

Chapter 3 ■ Modifying XML

35

 <title>1984</title>
 <author>George Orwell</author>
 </book>
 <book checkedout="no" damaged="no">
 <title>A Clockwork Orange</title>
 <year>1962</year>
 </book>
 </books>
 <movies>
 <movie checkedout="no">
 <title>King Kong</title>
 <year>1933</year>
 </movie>
 <movie checkedout="yes">
 <title>King Kong</title>
 <year>2005</year>
 </movie>
 <movie checkedout="yes">
 <title>To Kill A Mockingbird</title>
 <year>1962</year>
 </movie>
 <movie checkedout="no">
 <title>The Green Mile</title>
 <year>1999</year>
 </movie>
 </movies>
</library>

LINQ to XML
Now let’s try LINQ to XML.

Modifying Attributes
By using LINQ to XML, you are also able to modify attributes in a similar way to the
XmlDocument. First, let’s find all books that are currently checked out. (See Figure 3-11.)

XDocument library = XDocument.Load("library.xml");
IEnumerable<XElement> checkedOutBooks = library.Descendants()
 .Where(x => x.Name == "book"
 && x.Attribute("checkedout").Value == "yes");

Chapter 3 ■ Modifying XML

36

This will give us just one book, The Great Gatsby. Now let’s say that for some reason
all of the books have been returned to the library and there is not a single book out. By
using LINQ to XML, we are able to not only get all of the books that are currently checked
out but we can also modify the checkedout attribute so that it can show that we have no
books checked out. (See Figure 3-12.)

XDocument library = XDocument.Load("library.xml");
IEnumerable<XElement> checkedOutBooks = library.Descendants()
 .Where(x => x.Name == "book" && x.Attribute("checkedout").Value == "yes");
foreach (XElement book in checkedOutBooks)
{
 book.Attribute("checkedout").Value = "no";
}

Figure 3-11.  The only book that has been checked out

Chapter 3 ■ Modifying XML

37

The above example only “checks in” one book since that is the only book that was
checked out. This code allows us to check in as many books that are already checked out
since it is pulling all books that are checked out and then iterating over them.

Modifying Elements
Just like modifying attributes in LINQ to XML, we are able to modify the elements.
Modifying elements is similar to modifying the way we just modified the attributes. We
just cut out the step to filter on the attribute. In this example, let’s say that this library got
rid of the original version of The Green Mile and then bought the "Director’s Cut" version.
We must update the catalog so that we have the latest version. We can use our trusty LINQ
to XML to modify the title element:

XDocument library = XDocument.Load("library.xml");
XElement theGreenMile = library.Descendants()
 .Where(x => x.Name == "title" && x.Parent.Name == "movie" && x.Value ==
"The Green Mile").FirstOrDefault();
theGreenMile.Value = "The Green Mile (Director's Cut)";

Now we have a bit more magic going on in the code above. Notice that the Where
method has three predicates instead of just two. We need to check three things in this
example: the element name, the element parent name, and the element value. The
reason we want to find the parent name is because we want to ensure that we are only
modifying a movie. If we just used the prior criteria, we could modify a book as well. The
code produces the output shown in Figure 3-13.

Figure 3-12.  Showing that the checkedout attribute has changed

Chapter 3 ■ Modifying XML

38

Adding Attributes
Remember how we added a damaged attribute to the movies in the previous section?
Well, let’s add one to the books now using LINQ to XML:

XDocument library = XDocument.Load("library.xml");
IEnumerable<XElement> books = library.Descendants().Where(x => x.Name ==
"book");
foreach(XElement book in books)
{
 book.Add(new XAttribute("damaged", "no"));
}

Notice how easy it is to add an attribute using LINQ to XML. We add a new
XAttribute instance and we can even instantiate it in the method since the constructor
takes all the information needed for that attribute. You can see the output of this in
Figure 3-14.

Figure 3-13.  The output from updating The Green Mile title

Chapter 3 ■ Modifying XML

39

Adding Elements
LINQ to XML keeps a very standard way of handling adding data to instances of
XDocument by using the Add method. We are going to add another book to the library, but
this time we will use LINQ to XML:

XDocument library = XDocument.Load("library.xml");
XElement books = library.Descendants().Where(x => x.Name == "books").
First();
XElement book = new XElement("book");
book.Add(new XElement("title", "The Cat in the Hat"));
book.Add(new XElement("author", "Dr. Seuss"));
books.Add(book);

We will first get the books element since we are adding a new book. Then we need
to create an instance of XElement for our new book and we pass the element name in the
constructor. One thing that is different from the XmlDocument is that in LINQ to XML you
are able to instantiate XElements, as well as other classes, on their own without relying on
the XmlDocument to create them. Once we have our book instantiated, we can go ahead
and use the Add method to add our title and author. Because we only are going to have an
element name and element value, we can just use the XElement constructor to instantiate
an XElement class inside the Add method. It is possible to instantiate the XElement outside
of the Add method, just as we did with the book variable. When all is said and done, we
will end up with the output in Figure 3-15.

Figure 3-14.  Adding the damaged attribute

Chapter 3 ■ Modifying XML

40

Merging Documents
Microsoft not only made adding elements and attributes easy with LINQ to XML, it also
made merging documents easy as well. We will revisit our example of two libraries and
books moving between the two. We have our first library, which is what we have seen
before and which we will call firstLibrary.

<?xml version="1.0"?>
<library xmlns:network="www.library.com">
 <books>
 <book checkedout="no">
 <title>To Kill a Mockingbird</title>
 <author>Harper Lee</author>
 </book>
 <book checkedout="no">
 <title>Price and Prejudice</title>
 <author>Jane Austen</author>
 </book>
 <book checkedout="yes">
 <title>The Great Gatsby</title>
 <author>F. Scott Fitzgerald</author>
 </book>
 <book checkedout="no">
 <title>1984</title>
 <author>George Orwell</author>
 </book>

Figure 3-15.  The books element after we added The Cat in the Hat book element

Chapter 3 ■ Modifying XML

41

 </books>
 <movies>
 <movie checkedout="no">
 <title>King Kong</title>
 <year>1933</year>
 </movie>
 <movie checkedout="yes">
 <title>King Kong</title>
 <year>2005</year>
 </movie>
 <movie checkedout="yes">
 <title>To Kill A Mockingbird</title>
 <year>1962</year>
 </movie>
 <movie checkedout="no">
 <title>The Green Mile</title>
 <year>1999</year>
 </movie>
 </movies>
</library>

But then we have the second library, which we will cleverly call secondLibrary.

<?xml version="1.0"?>
<library>
 <books>
 <book checkedout="no">
 <title>To Kill a Mockingbird</title>
 <author>Harper Lee</author>
 </book>
 <book checkedout="no">
 <title>Price and Prejudice</title>
 <author>Jane Austen</author>
 </book>
 <book checkedout="no">
 <title>1984</title>
 <author>George Orwell</author>
 </book>
 </books>
</library>

We want to move The Great Gatsby from firstLibrary to secondLibrary. We do
this by first selecting the book element for The Great Gatsby from firstLibrary and then
select the books element from secondLibrary. We can then use the Add method to add
The Great Gatsby to the secondLibrary. When all is said and done, we will see the output
in Figure 3-16.

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ Modifying XML

42

XDocument firstLibrary = XDocument.Load("library.xml");
XElement gatsby = firstLibrary.Descendants()
 .Where(x => x.Name == "title" && x.Value == "The Great Gatsby")
 .Select(x => x.Parent).First();

XDocument secondLibrary = XDocument.Load("library2.xml");
XElement secondLibraryBooks = secondLibrary.Descendants()
 .Where(x => x.Name == "books").First();
secondLibraryBooks.Add(gatsby);

Removing Attributes
We have added attributes, but sometimes we want to remove them. For instance, if we
are taking a book out of circulation in our library, we want to ensure that it isn’t marked
as checked out in our system. To do that, we can remove the attribute. The way to remove
an attribute is not as straightforward as when we add one. We need to use the Remove
method, but it isn’t on the XElement instance. Instead, it is on the XAttribute instance.

XDocument library = XDocument.Load("library.xml");
XElement theGreatGatsby = library.Descendants()
 .Where(x => x.Name == "title" && x.Value == "The Great Gatsby")
 .Select(x => x.Parent).First();
XAttribute checkedout = theGreatGatsby.Attributes("checkedout").First();
checkedout.Remove();

Figure 3-16.  The output from the second library after we add The Great Gatsby

Chapter 3 ■ Modifying XML

43

As always, in order to get the attributes, we need to get the book element so we search
for The Great Gatsby. When we find it, we use the Attributes method on the XElement
instance. If we pass in a name, then it will get a IEnumerable of all the XAttributes with
that name. If we don’t pass in a name, it will give us an IEnumerable of all the attributes.
Since we only want one attribute, we will search for checkedout and then get the first
instance. That will return an instance of XAttribute that represents the checkedout
attribute. It is on this instance that we must call Remove. Once we do that, we get the
output in Figure 3-17.

Removing Elements
To continue our example of pulling The Great Gatsby out of circulation in our library, we
need to remove the book element that represents The Great Gatsby from the library.

XDocument library = XDocument.Load("library.xml");
XElement theGreatGatsby = library.Descendants()
 .Where(x => x.Name == "title" && x.Value == "The Great Gatsby")
 .Select(x => x.Parent).First();
theGreatGatsby.Remove();

The way we remove the instance of the XElement that represents The Great Gatsby is
the same method we used to remove an attribute: Remove. Just like the attribute example,
we get an instance of the object we want to remove (in this case, the XElement instance
that represents The Great Gatsby) and then just call the Remove method. While it isn’t as
intuitive as adding attributes or elements, being able to remove attributes and elements is
consistent across all LINQ to XML types.

Figure 3-17.  The Great Gatsby after we remove the checkedout attribute

Chapter 3 ■ Modifying XML

44

Saving Our Changes
Once we have made all of our changes, we need to save the XDocument instance back
to an XML file. In order to do that with LINQ to XML, just like with the XmlDocument, all
we need to do to save is call the Save method. After we save the changes we made by
removing The Great Gatsby, our XML looks like the following.

<?xml version="1.0" encoding="utf-8"?>
<library xmlns:network="www.library.com">
 <books>
 <book checkedout="no">
 <title>To Kill a Mockingbird</title>
 <author>Harper Lee</author>
 </book>
 <book checkedout="no">
 <title>Price and Prejudice</title>
 <author>Jane Austen</author>
 </book>
 <book checkedout="no">
 <title>1984</title>
 <author>George Orwell</author>
 </book>
 </books>
 <movies>
 <movie checkedout="no">
 <title>King Kong</title>
 <year>1933</year>
 </movie>
 <movie checkedout="yes">
 <title>King Kong</title>
 <year>2005</year>
 </movie>
 <movie checkedout="yes">
 <title>To Kill A Mockingbird</title>
 <year>1962</year>
 </movie>
 <movie checkedout="no">
 <title>The Green Mile</title>
 <year>1999</year>
 </movie>
 </movies>
</library>

45© Jonathan Hartwell 2017
J. Hartwell, C# and XML Primer, DOI 10.1007/978-1-4842-2595-0_4

CHAPTER 4

Serialization

There are times when your program is the only program handling the XML, such as a
configuration file or some sort of XML datastore. In times like those, it can be tedious to
use LINQ to XML or the XmlDocument to load, manipulate, and save your XML, especially
since you know exactly what there is. If this is the case, then you can use serialization to
save and read your XML. As I indicated earlier, this technique is only proper if you are the
only one using this XML document.

Creating a Model
Before you are able to serialize your XML, there has to be a model first. Serialization is
completely attribute based, so you do not need to do anything but add the attributes to
your class and what you wish to serialize. We will continue the library theme that was
presented in the previous chapters by creating a book model to serialize.

[Serializable]
public class Book
{
 public string Title { get; set; }
 public string Author { get; set; }
 public DateTime Year { get; set; }
}

Because there is the Serializable attribute on this book class that notifies the
serializer that this class will be serialized when passed in to the XML serializer, you will
need to include the System.Xml.Serialization namespace to use the XmlSerializer.

Writing to File
Setting the serializer to write to file can seem daunting at first. After all, you will have to
use multiple streams. Once you pass that learning bump, it isn't bad at all. It still requires
less code than the methods we have previously gone over. Following is an example of
writing our book class to file:

Chapter 4 ■ Serialization

46

Book book = new Book()
{
 Title = "Gone With the Wind",
 Year = 1937,
 Author = "Margaret Mitchell"
};
XmlSerializer serializer = new XmlSerializer(typeof(Book), "");
using (MemoryStream stream = new MemoryStream())
{
 serializer.Serialize(stream, book);

 using (FileStream fs = new FileStream("book.xml", FileMode.Create))
 {
 stream.WriteTo(fs);
 fs.Flush();
 }
}

We first create a new instance of our book model and populate the fields. Once we
do that, we need to instantiate our XmlSerializer class. The constructor I chose to use
takes a type and a default namespace. Because a type is required as the first argument, we
must use the typeof construct in C# with the class name of the model we are serializing.
We then pass in a default namespace that we want to be used. In this example, I pass in
an empty string as we don't need a namespace. Once we have our serializer, we get to the
fun part—dealing with streams. In this example, we are writing to file, but since this uses
streams, you could write to any stream that performs any sort of peristance or reading. In
order to load our MemoryStream, however, we need to populate a byte array. We can use
the length property in order to instantiate our byte array with the exact size of the stream.
Since we want to write to file, we have to instantiate our FileStream. We want to create the
file and write to “book.xml”. Once we have our instance of FileStream, we are able to write
our instance of MemoryStream directly into the file stream. After the FileStream instance
has the contents of the MemoryStream instance, we need to call the Flush method on our
FileStream instance so we can persist the data to a file. After the data is flushed, we get a
book.xml file that looks like the following XML:

<?xml version="1.0"?>
<Book xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <Title>Gone With the Wind</Title>
 432799_1_EnMargaret Mitchell</Author>
 <Year>1937</Year>
</Book>

The XML looks no different than what we would have created using XmlDocument
or LINQ to XML, yet it took only a few lines of code to do so. You may have noticed the
namespaces on the Book element. Since those are typically the default namespaces, the
XmlSerializer will add those to the root element. Another thing to note is that the root
element is the name of our model type.

Chapter 4 ■ Serialization

47

So how does this work under the hood? The XmlSerializer uses reflection to get
the properties of a given serializable class and then creates elements based on those
properties. Since this is all handled by reflection, there are several attributes that
can be used to iterate on that will perform various actions. For instance, there is the
XmlAttribute class, which is used on a property that should have some sort of attributes.
There is also an XmlIgnore attribute, which can be used to indicate that a specific
property should not be serialized. In Chapter 5, we will create our own XmlSerializer so
that we can get a better understanding of exactly how it works.

I just gave examples of other attributes that can be used in a given model. Let's use
both of them and see what the output is. We will revisit our book model again. This time,
let's not serialize the year that the book was written and let's also add a propety to the
name to indicate that a movie has been made based on this book. Our Book class now
changes to the following model:

[Serializable]
public class Book
{
 [XmlAttribute(AttributeName = "Movie")]
 public bool IsMovie { get; set; }
 public string Title { get; set; }

 public string Author { get; set; }

 [XmlIgnore]
 public int Year;
}

We added a new property, IsMovie, which will indicate whether the movie has been
made. We also used the XmlAttribute attribute to indicate that the IsMovie property
will be an attribute on the Book element. We use the AttributeName property on the
XmlAttribute constructor to pass in our attribute name. Take note that we named our
property IsMovie, but we are calling it something different in our attribute. It may not
make sense to call the attribute the same name as our property. Variable names in C# can
be quite long as they describe what they are for and make it easier for the programmer
to understand what is happening. However, when it comes to XML, being clear but terse
is much preferred as it keeps the document smaller but still conveys the point. You may
have noticed that there is a change in the Year member of the Book class. When we run
the serializer on the above code, we end up with the following output:

<?xml version="1.0"?>
<Book xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" Movie="true">
 <Title>Gone With the Wind</Title>
 432799_1_EnMargaret Mitchell</Author>
</Book>

http://dx.doi.org/10.1007/978-1-4842-2595-0_5

Chapter 4 ■ Serialization

48

Everything looks pretty much the same with the exception of the Movie attribute on
the Book element as well as the Year element is missing. XML does not have a concept of
boolean so when we use a boolean as a propety, the output will be either “true“ or “false,”
both as strings. The serialization process looks exactly the same, too.

Book book = new Book()
{
 Title = "Gone With the Wind",
 Year = 1937,
 Author = "Margaret Mitchell",
 IsMovie = true
};
XmlSerializer serializer = new XmlSerializer(typeof(Book), "");
using (MemoryStream stream = new MemoryStream())
{
 serializer.Serialize(stream, book);
 byte[] buffer = new byte[stream.Length];

 using (FileStream fs = new FileStream("book.xml", FileMode.Create))
 {
 stream.WriteTo(fs);
 fs.Flush();
 }
}

There are many more attributes that we can use to modify the output of our XML.
We have already seen Ignore and XmlAttribute, but what if we want our class to have
text instead of nested elements? We could change our model to include the XmlText
attribute, which will make the value of a property the text of the given class instead of its
own element.

[Serializable]
public class Book
{
 [XmlAttribute(AttributeName = "Movie")]
 public bool IsMovie { get; set; }
 public string Title { get; set; }
 [XmlText]
 public string Author { get; set; }

 [XmlIgnore]
 public int Year { get; set; }

}

We have put the XML text attribute on our Author property. Instead of creating an
author element, we will get text that we can see in the following output:

Chapter 4 ■ Serialization

49

<?xml version="1.0"?>
<Book xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" Movie="false">
 <Title>Gone With the Wind</Title>Margaret Mitchell</Book>

We have now see the typical properties such as string and int, but there can be
other types that we would want to serialize, such as an enumeration.

If we add an enum to our project as well as add the enum as a property on our Book
class, we serialize that class again and we get pretty much what would be expected.

[Serializable]
public class Book
{
 [XmlAttribute(AttributeName = "Movie")]
 public bool IsMovie { get; set; }
 public string Title { get; set; }
 [XmlText]
 public string Author { get; set; }

 [XmlIgnore]
 public int Year { get; set; }

 public Color Color { get; set; }

}

public enum Color
{
 Black,
 Red
}

<?xml version="1.0"?>
<Book xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" Movie="false">
 <Title>Gone With the Wind</Title>Margaret Mitchell<Color>Black</Color></
Book>

So you may be asking yourself why we would need attributes for enumerations
if we are already getting exactly what would be expected. But what if we change the
enumeration to a number instead of the text of the color?

public enum Color
{
 One,
 Two
}

Chapter 4 ■ Serialization

50

Now, this is not a great design as it makes it confusing, but we can pretend that this
is legacy code that we have to take over. We can take a look at the output that this will now
produce:

<?xml version="1.0"?>
<Book xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" Movie="false">
 <Title>Gone With the Wind</Title>Margaret Mitchell<Color>One</Color></
Book>

We see the value of the Color element is now One. But what does that mean? If we
were to change all of the enumeration values that could break a lot of code, how do we
get a readable XML output without causing possible issues? Simple. We use the XmlEnum
attribute.

public enum Color
{
 [XmlEnum(Name ="Black")]
 One,
 [XmlEnum(Name ="Red")]
 Two
}

We have used the XmlEnum attribute and given the Name property our color value. This
will now give us the proper output that we were originally expecting:

<?xml version="1.0"?>
<Book xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" Movie="false">
 <Title>Gone With the Wind</Title>Margaret Mitchell<Color>Black</Color></
Book>

For our Color enum, we gave both values an XmlEnum attribute, but there is no rule
saying that both of our values must have an attribute. We could also do something like the
following:

public enum Color
{
 [XmlEnum(Name ="Black")]
 One,
 Two
}

We now have our Color values of One and Two but only have an attribute on our One
value. It should not be a surprise on what our output is, but our Color element is now Two
when we set the Color attribute to two:

Chapter 4 ■ Serialization

51

<?xml version="1.0"?>
<Book xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" Movie="false">
 <Title>Gone With the Wind</Title>Margaret Mitchell<Color>Two</Color></
Book>

Composition
Up until now, we have only dealt with one class, Book. In the real world, you will have to
serialize more than just one class, and some classes will have other classes as members
and may even have collections of types as a member. Remember the previous chapters
where we had a library? Well, let's revisit this example with serialization.

First, let's do a simple example of a library that has only one book:

[Serializable]
public class Library
{
 public Book Classic;
}

We have our library class that will also need to have the serializable attribute. We
then add our Book class as a member. We do need to tweak our code to serialize in order
to compensate for the change to our model structure.

Book book = new Book()
{
 Title = "Gone With the Wind",
 Year = 1937,
 Author = "Margaret Mitchell",
 Color = Color.Two
};
Library library = new Library() { Classic = book };
XmlSerializer serializer = new XmlSerializer(typeof(Library), "");
using (MemoryStream stream = new MemoryStream())
{
 serializer.Serialize(stream, library);
 byte[] buffer = new byte[stream.Length];

 using (FileStream fs = new FileStream("library.xml", FileMode.Create))
 {
 stream.WriteTo(fs);
 fs.Flush();
 }
}

Chapter 4 ■ Serialization

52

Our change in this case was to just create an instance of Library and then change all
of the serialize code that references the Book class as well as instance of our Book class to
the Library class.

Now that we have created an instance of our Library class and added a book to it, we
can use the code above to serialize our library.

<?xml version="1.0"?>
<Library xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <Classic Movie="false">
 <Title>Gone With the Wind</Title>
 432799_1_EnMargaret Mitchell</Author>
 <Color>Two</Color>
 </Classic>
</Library>

If you take a look at the XML that was outputted by our new code, you may notice
something is a bit off. Instead of the library having a Book element, it has a Classic
element. Remember our output of our Book class serialization? All the elements were the
name of the property name and not the type of the property. This is no different as it will
output the property name. Have no fear. We can change that. After all, it doesn’t make
much sense to have an element named Classic in our library since not all books are
classics. We are able to use another attribute, XmlElement.

XmlElement is an attribute that allows you to change the name of a property that is a
member of a given class that has the Serializable attribute. Our library model now has
an extra attribute.

[Serializable]
public class Library
{
 [XmlElement(ElementName ="Book")]
 public Book Classic;
}

When we serialize this new version of the Library class, we can get XML output that
is what we expect.

<?xml version="1.0"?>
<Library xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <Book Movie="false">
 <Title>Gone With the Wind</Title>
 432799_1_EnMargaret Mitchell</Author>
 <Color>Two</Color>
 </Book>
</Library>

Chapter 4 ■ Serialization

53

We are also able to make element name modifications to the Library class. Since we
are declaring Library as a class and not a property, we are not able to use the XmlElement
attribute. However, we are provided with another attribute that allows us to modify
our Library element name: XmlRoot. Since the Library class is the root of our XML
document, using the XmlRoot attribute makes sense. It is used similarly to the XmlElement
attribute where we can pass the ElementName property through the constructor. Let's say
that we want our Library XML to describe a university library. Our model and output will
now look like the following:

[Serializable]
[XmlRoot(ElementName ="UniversityLibrary")]
public class Library
{
 [XmlElement(ElementName ="Book")]
 public Book Classic;
}
<?xml version="1.0"?>
<UniversityLibrary xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <Book Movie="false">
 <Title>Gone With the Wind</Title>
 432799_1_EnMargaret Mitchell</Author>
 <Color>Two</Color>
 </Book>
</UniversityLibrary>

While some classes have a single property that may need to be serialized, it doesn’t
make sense for a library to have just one book. To fix that, we can make a list of books. Our
library model now looks like the following:

[Serializable]
[XmlRoot(ElementName ="UniversityLibrary")]
public class Library
{
 public List<Book> Books { get; set; }

 public Library()
 {
 Books = new List<Book>();
 }
}

Now that we have the list, we are ready to serialize the entire library. We don't need
to make a single change to how we serialize. We can use the code that we originally used
to serialize our library. The output XML ends up being similar to what we had seen when
we were writing our XML in the previous chapter.

Chapter 4 ■ Serialization

54

<?xml version="1.0"?>
<UniversityLibrary xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <Books>
 <Book Movie="false">
 <Title>Gone With the Wind</Title>
 432799_1_EnMargaret Mitchell</Author>
 <Color>Two</Color>
 </Book>
 <Book Movie="false">
 <Title>Pride and Prejudice</Title>
 432799_1_EnJane Austen</Author>
 <Color>Black</Color>
 </Book>
 </Books>
</UniversityLibrary>

Let's say that we don't want to use the name books. If we had a model class that had
a list that was named BookList, we wouldn't want the top level element named BookList.
We also cannot use the XmlElement attribute on a list because that will apply the
XmlElement attribute to all items in the list. We would still have “BookList” as the top level
element, but all of the children would have the name given in the XmlElement attribute. In
order to change the container element name, we have to use the XmlArray attribute. We
can change the Library class so that it takes advantage of the XmlArray attribute, which
would give us the following XML output:

[Serializable]
[XmlRoot(ElementName ="UniversityLibrary")]
public class Library
{

 [XmlArray(ElementName = "Classics")]
 public List<Book> Books { get; set; }

 public Library()
 {
 Books = new List<Book>();
 }
}

<?xml version="1.0"?>
<UniversityLibrary xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <Classics>
 <Book Movie="false">
 <Title>Gone With the Wind</Title>
 432799_1_EnMargaret Mitchell</Author>
 <Color>Two</Color>
 </Book>

Chapter 4 ■ Serialization

55

 <Book Movie="false">
 <Title>Pride and Prejudice</Title>
 432799_1_EnJane Austen</Author>
 <Color>Black</Color>
 </Book>
 </Classics>
</UniversityLibrary>

Inheritance
Sometimes there are instances where it is appropriate to create a class that inherits
from another class. That is no problem normally, but it can cause issues when trying to
serialize XML. We can add a class named Classic that will inherit from the Book class.
Our model classes will now look as follows:

[Serializable]
public class Book
{
 [XmlAttribute(AttributeName = "Movie")]
 public bool IsMovie { get; set; }
 public string Title { get; set; }
 public string Author { get; set; }

 [XmlIgnore]
 public int Year { get; set; }

 public Color Color { get; set; }

}

[Serializable]
[XmlRoot(ElementName = "UniversityLibrary")]
public class Library
{

 [XmlArray(ElementName = "Classics")]
 public List<Book> Books { get; set; }

 public Library()
 {
 Books = new List<Book>();
 }
}

public class Classic : Book
{

}

Chapter 4 ■ Serialization

56

If we do a straight replace with changing one of the Book classes that are
added the Library instance of the List<Book>, we will get an error, System.
InvalidOperationException, as shown in Figure 4-1.

The reason that we get this error is because our Library class does not know
anything about the Classic class. After all, we are only declaring a List of Book type
and while Classic inherits from Book, it isn't a Book. In order for this to work, we need to
go ahead and add the XmlInclude attribute on the Library class. That attribute requires a
type to be passed into the constructor, so we will pass in the type of Classic.

[Serializable]
[XmlRoot(ElementName = "UniversityLibrary")]
[XmlInclude(typeof(Classic))]
public class Library
{

 [XmlArray(ElementName = "Classics")]

 public List<Book> Books { get; set; }

 public Library()
 {
 Books = new List<Book>();
 }
}

Figure 4-1.  The error ouput of when initially using the Classic class and serializing

Chapter 4 ■ Serialization

57

Once we add the XmlInclude attribute, the program can run and correctly serialize
the instance of Library to XML. The output is a bit different from what we have seen
before.

<?xml version="1.0"?>
<UniversityLibrary xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <Classics>
 <Book Movie="false">
 <Title>Gone With the Wind</Title>
 432799_1_EnMargaret Mitchell</Author>
 <Color>Two</Color>
 </Book>
 <Book xsi:type="Classic" Movie="false">
 <Title>Pride and Prejudice</Title>
 432799_1_EnJane Austen</Author>
 <Color>Black</Color>
 </Book>
 </Classics>
</UniversityLibrary>

All the content looks the same, but there is an attribute on the Book that has the title
Pride and Prejudice. There is the xsi:type attribute that contains the value Classic. This
lets the serializer know that this type is not just a Book class but actually a Classic class.
Notice that the Year property is missing from the Book and the Classic elements. We put
the XmlIgnore attribute on the Year property in the Book class and, since we inherited the
Classic class from Book, all of the attributes are kept intact for the instances of Classic.

Let's say that we now want to track if a Classic book is paperback or not. After all,
this could potentially affect the cost of that book. We will add a Paperback property of
type bool on the Classic class.

public class Classic : Book
{
 public bool Paperback { get; set; }
}

We can then run the program to generate the XML and we can see that there is an
added element to the Book with Classic attribute that is not on the regular Book element.

<?xml version="1.0"?>
<UniversityLibrary xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <Classics>
 <Book Movie="false">
 <Title>Gone With the Wind</Title>
 432799_1_EnMargaret Mitchell</Author>
 <Color>Two</Color>
 </Book>

Chapter 4 ■ Serialization

58

 <Book xsi:type="Classic" Movie="false">
 <Title>Pride and Prejudice</Title>
 432799_1_EnJane Austen</Author>
 <Color>Black</Color>
 <Paperback>false</Paperback>
 </Book>
 </Classics>
</UniversityLibrary>

SOAP
Once you have the hang of serializing XML with XmlSerializer and XmlDeserializer, you
can use them to handle SOAP. SOAP stands for Simple Object Access Protocol and is used
in Web services that use XML as a stream. In order to be able to serialize a class in the
SOAP format, we have to use a few specialized attributes. Let's first look at the new class
we are going to use for our SOAP serialization:

[SoapType("SoapBook", "http://www.apress.com")]
public class SoapBook
{
 public string Title { get; set; }
}

This is a simple class that contains just one property, Title, but we have a new
attribute on the class. The SoapType attribute takes a name and namespace. The name
parameter is what the root element on the XML document will be called. Using this new
class, we can generate the SOAP XML using a modified version of the code we have used.

SoapBook book = new SoapBook()
{
 Title = "Test"
};
XmlTypeMapping mapping = (new SoapReflectionImporter().ImportTypeMapping(ty
peof(SoapBook)));
XmlSerializer serializer = new XmlSerializer(mapping);
using (MemoryStream stream = new MemoryStream())
{
 serializer.Serialize(stream, book);
 byte[] buffer = new byte[stream.Length];

 using (FileStream fs = new FileStream("soap.xml", FileMode.Create))
 {
 stream.WriteTo(fs);
 fs.Flush();
 }
}

Chapter 4 ■ Serialization

59

There are two things that we need to change in order for us to be able to serialize
this class in a SOAP format. First, we need to create an instance of XmlTypeMapping class.
To instantiate this class, there is a complex-looking constructor. We need to declare a
new SoapReflectionImporter class and then call the ImportTypeMapping method. That
method takes a type as a parameter so we need to give the method of our new class. We
then pass that XmlTypeMapping instance, mapping, into the XmlSerializer constructor.
From then on, we do everything the exact same way. This will provide the following XML:

<?xml version="1.0"?>
<q1:SoapBook xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" id="id1" xmlns:q1="http://www.
apress.com">
 <Title xsi:type="xsd:string">Test</Title>
</q1:SoapBook>

This is what a typical SOAP request will look like. There are the default namespaces
xsi and xsd, but then there is our namespace, q1, which is what we passed into the
SoapType attribute constructor. Our classes will have the namespace prefix q1 while
the xsi prefix will be used for the type attribute and the xsd namespace will be used to
declare types. Our Title element has a type of string according to this XML, which is
exactly what we passed in.

There are attributes that are used in the typical XML serialization that has a
specialized version for SOAP. If we wanted to ignore a property for serialization, we
would use XmlIgnore, but if we use it with SOAP, then it wouldn't have any effect, as
demonstrated below. We will add a new property to our SoapBook class and then put an
XmlIgnore on that property.

[SoapType("SoapBook", "http://www.apress.com")]
public class SoapBook
{

 public string Title { get; set; }
 [XmlIgnore]
 public int Year { get; set; }
}

When we run that through the modified code to handle the SOAP serialization, we
have the following output:

<?xml version="1.0"?>
<q1:SoapBook xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" id="id1" xmlns:q1="http://www.
apress.com">
 <Title xsi:type="xsd:string">Test</Title>
 <Year xsi:type="xsd:int">2016</Year>
</q1:SoapBook>

Chapter 4 ■ Serialization

60

Notice that the Year property is still in the output despite having the XmlIgnore
attribute. That is because we must use the SOAP version of the ignore, SoapIgnore. Once
we use that attribute, the Year element will drop off the XML output.

We are able to make complex SOAP objects, meaning classes that have other classes
that we created as members, but it completely changes the way that we have to write the
code to serialize. There are many gotchas when trying to use the code we have already
written and just adding the complex classes we are serializing into the mix. But first, let's
take a look at the changes we made to our SoapBook class and what we have added to the
new SoapLibrary class.

[SoapType("Book", "http://www.apress.com/Book")]
public class SoapBook
{
 [SoapElement("Title")]
 public string Title { get; set; }
 [SoapIgnore]
 public int Year { get; set; }
}

[SoapType("Library","http://www.apress.com/Library")]
public class SoapLibrary
{
 public List<SoapBook> Books { get; set; }
}

There are a few changes that we made. First, we added the SoapLibrary class
that has a List of SoapBook as a member. But we also changed the namespace for
the SoapBook class as well to the SoapLibrary class. For each class that we create, we
must create a new namespace for that class. No two classe are able to have the same
namespace. Before we get to the code, let's take a look at the output, which is not valid
XML but contains all of the information that will be outputted by the XML serializer in
our new version of code.

<q1:Library xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" id="id1" xmlns:q1="http://www.
apress.com/Library">
 <Books href="#id2" />
 </q1:Library>
 <q2:Array id="id2" xmlns:q3="http://www.apress.com/Book"
q2:arrayType="q3:Book[1]" xmlns:q2="http://schemas.xmlsoap.org/soap/
encoding/">
 <Item href="#id3" />
 </q2:Array>
 <q4:Book id="id3" p2:type="q4:Book" xmlns:p2="http://www.
w3.org/2001/XMLSchema-instance" xmlns:q4="http://www.apress.com/Book">
 <Title xmlns:q5="http://www.w3.org/2001/XMLSchema"
p2:type="q5:string">Pride and Prejudice</Title>
 </q4:Book>

Chapter 4 ■ Serialization

61

You can see why this is not valid XML as there is no root element; all of the classes
are in their own element that sits at the same level as each of the other classes. If you
look at the id attribute and the href attributes, you can see how these items fit together.
The first element that we see is the Library element, which represents the SoapLibrary
class. The SoapLibrary class has a member property that is a List of SoapBooks that is
represented by the property Books. We can see that the child of the Library element is the
Books element. It has an href attribute attached to it that is #id2. That href refers to an
element that has the id attribute id2. In this case, that happens to be the Array element
that is below the Library element. This Array element has information regarding the
Books list. First, it has the arrayType attribute, which shows the namespace of the Book
element as well as the number of Book elements that appear in this array. There is also
the id attribute of id2. We now know that the Book element that is a child of Library is
referenced by this specific Array element.

If you take a look at the child of the Array element, you will see that there is an
Item element. This element has an href attribute of #id3, which means it is referencing
the element with the id attribute that is equal to id3. Taking a look at the rest of the
XML document, we find that the Book element has the id of id3. That means that the
Item element is referring to that book. That book also has a child Title element, which
contains the actual title of this book. There is a lot of work when we try to work our way
through this XML document. But that isn't the only work that needs to be done.

As I mentioned before, there needs to be a different approach in order to generate
this XML.

SoapBook book = new SoapBook()
{
 Title = "Pride and Prejudice",
 Year = 1813
};

SoapLibrary lib = new SoapLibrary()
{
 Books = new List<SoapBook>() { book }
};
XmlTypeMapping mapping = (new SoapReflectionImporter().ImportTypeMapping(typ
eof(SoapLibrary)));

XmlSerializer serializer = new XmlSerializer(mapping);

using (FileStream fs = new FileStream("soap.xml", FileMode.Create))
{
 using (XmlWriter writer = XmlWriter.Create(fs))
 {
 writer.WriteStartElement("Root");
 serializer.Serialize(writer, lib);
 writer.WriteEndElement();
 }
}

Chapter 4 ■ Serialization

62

We start by declaring our SoapBook instance like we have done in the past. After
that, we instantiate our SoapLibrary class and add the SoapBook instance to the List of
SoapBooks. We then create the XmlTypeMapping using the type of SoapLibrary and from
there create our instance of the XmlSerializer class. So far, this has been the exact same
way that we have handled XmlSerialization in the past, but now we get to the part of the
code that is different.

Instead of using an instance of MemoryStream, we are going to create an instance
of FileStream where we pass in the name of our XML document that will be saved to
file. We then instantiate an XmlWriter class and pass in the FileStream instance that we
have already created. We are going to write all of the information to the FileStream via
the XmlWriter. Remember how I mentioned that the output from before was not proper
XML and that is because it lacked a root? Well, we need to use the XmlWriter method
WriteStartElement() to create an element that we will call Root. Once the element is
created, we can finally serialize our SOAP objects by calling the Serialize method on the
XmlSerializer. After we are done serializing, we need to close our Root element by calling
WriteEndElement and we are done serializing. Because we are handling the streams by
using statements, we do not need to call save or flush on the FileStream instance as that is
handled for us. Our XML output is as follows:

<?xml version="1.0" encoding="utf-8"?>
<Root>
 <q1:Library xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" id="id1" xmlns:q1="http://www.
apress.com/Library">
 <Books href="#id2" />
 </q1:Library>
 <q2:Array id="id2" xmlns:q3="http://www.apress.com/Book"
q2:arrayType="q3:Book[1]" xmlns:q2="http://schemas.xmlsoap.org/soap/
encoding/">
 <Item href="#id3" />
 </q2:Array>
 <q4:Book id="id3" p2:type="q4:Book" xmlns:p2="http://www.
w3.org/2001/XMLSchema-instance" xmlns:q4="http://www.apress.com/Book">
 <Title xmlns:q5="http://www.w3.org/2001/XMLSchema"
p2:type="q5:string">Pride and Prejudice</Title>
 </q4:Book>
</Root>

We have the same XML that was shown before, but now there is a root element that
allows us to have proper formatted XML. A few paragraphs ago, I said that we had to change
the way we handled the XML. Well, there is a good reason why. We can get 99% of the way
to the proper results by using our old method, but we just can't get that 1% to finish.

SoapBook book = new SoapBook()
{
 Title = "Pride and Prejudice",
 Year = 1813
};

Chapter 4 ■ Serialization

63

SoapLibrary lib = new SoapLibrary()
{
 Books = new List<SoapBook>() { book }
};
XmlTypeMapping mapping = (new SoapReflectionImporter().ImportTypeMapping(typ
eof(SoapLibrary)));

XmlSerializer serializer = new XmlSerializer(mapping);

using (MemoryStream stream = new MemoryStream())
{
 using (XmlWriter writer = XmlWriter.Create(stream))
 {
 writer.WriteStartElement("Root");
 serializer.Serialize(writer, lib);
 writer.WriteEndElement();
 using (FileStream fs = new FileStream("soap.xml", FileMode.Create))
 {
 stream.WriteTo(fs);
 fs.Flush();
 }

 }
}

We need a root element, so I just included the XmlWriter instance in order to create
that element. If we do not do that, then we won't even be able to serialize to file as the
Serialize method will throw an exception. When we run this code, we do get an XML
document, but it is not valid.

<?xml version="1.0" encoding="utf-8"?>
<Root>
 <q1:Library xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" id="id1" xmlns:q1="http://www.
apress.com/Library">
 <Books href="#id2" />
 </q1:Library>
 <q2:Array id="id2" xmlns:q3="http://www.apress.com/Book"
q2:arrayType="q3:Book[1]" xmlns:q2="http://schemas.xmlsoap.org/soap/
encoding/">
 <Item href="#id3" />
 </q2:Array>
 <q4:Book id="id3" p2:type="q4:Book" xmlns:p2="http://www.
w3.org/2001/XMLSchema-instance" xmlns:q4="http://www.apress.com/Book">
 <Title xmlns:q5="http://www.w3.org/2001/XMLSchema"
p2:type="q5:string">Pride and Prejudice</Title>
 </q4:Book>

Chapter 4 ■ Serialization

64

Can you tell what is missing? I'll give you a hint—check for closing tags. That's
right. There is an open tag for Root, but it never closes. Once we serialize to the instance
of XmlWriter, we are unable to make any changes to that stream, meaning that we are
unable to add a closing tag for our Root element.

We have only given a relatively simple example of outputing SOAP up until now. We
have a List of SoapBook types, but we only put one instance in that list. Typically, when
we have an instance of a list, we have more than one item in that list. So let's go over the
code again, but this time we will put multiple instances of SoapBook in our list.

SoapBook book = new SoapBook()
{
 Title = "Pride and Prejudice",
 Year = 1813
};

SoapBook book2 = new SoapBook()
{
 Title = "To Kill a Mockingbird",
 Year = 1960
};

SoapLibrary lib = new SoapLibrary()
{
 Books = new List<SoapBook>() { book,book2 }
};
XmlTypeMapping mapping = (new SoapReflectionImporter().ImportTypeMapping
(typeof(SoapLibrary))

XmlSerializer serializer = new XmlSerializer(mapping);

using (FileStream fs = new FileStream("soap.xml", FileMode.Create))
{
 using (XmlWriter writer = XmlWriter.Create(fs))
 {
 writer.WriteStartElement("Root");
 serializer.Serialize(writer, lib);
 writer.WriteEndElement();
 }
}

Now, when we run this program, we will get a more complex XML document.

<?xml version="1.0" encoding="utf-8"?>
<Root>
 <q1:Library xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" id="id1" xmlns:q1="http://www.
apress.com/Library">
 <Books href="#id2" />

Chapter 4 ■ Serialization

65

 </q1:Library>
 <q2:Array id="id2" xmlns:q3="http://www.apress.com/Book"
q2:arrayType="q3:Book[2]" xmlns:q2="http://schemas.xmlsoap.org/soap/
encoding/">
 <Item href="#id3" />
 <Item href="#id4" />
 </q2:Array>
 <q4:Book id="id3" p2:type="q4:Book" xmlns:p2="http://www.
w3.org/2001/XMLSchema-instance" xmlns:q4="http://www.apress.com/Book">
 <Title xmlns:q5="http://www.w3.org/2001/XMLSchema"
p2:type="q5:string">Pride and Prejudice</Title>
 </q4:Book>
 <q6:Book id="id4" p2:type="q6:Book" xmlns:p2="http://www.
w3.org/2001/XMLSchema-instance" xmlns:q6="http://www.apress.com/Book">
 <Title xmlns:q7="http://www.w3.org/2001/XMLSchema"
p2:type="q7:string">To Kill a Mockingbird</Title>
 </q6:Book>
</Root>

We have everything that we had in our output before, but we also added, not just
one, but three new elements. First, take a look at the Array element. Notice how there are
now two Item elements as children of the Array. The second Item points to id4, which is
our second book. The number of Item elements is directly proportional to the number of
instances of SoapBook that are put in the List member of our SoapLibrary.

Deserializing
We have spent all our time so far with the serialization of XML, but we have not gotten
to the deserialization. The deserialization of XML is quite easy and is just a single
line. For the XML example below, we can just call the Deserialize method from the
XmlSerializer instance.

<?xml version="1.0"?>
<Book xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" Movie="false">
 <Title>Gone With the Wind</Title>Margaret Mitchell<Color>Two</Color>
</Book>

Using the following code, we are able to display the title of this book to our XML
Viewer window, as shown in Figure 4-2.

Book book;
XmlSerializer serializer = new XmlSerializer(typeof(Book));
using (FileStream fs = new FileStream("book.xml",FileMode.Open))
{
 book = (Book)serializer.Deserialize(fs);
}
richTextBox1.AppendText(book.Title);

Chapter 4 ■ Serialization

66

Just like serializing was difficult with the SOAP, we are going to have an even harder
time deserializing our SOAP message. Luckily, we do not have to worry about that here
as that would be handled by the Service Reference connection that would be handling
the SOAP web calls. Because of that, we will avoid deserializing the SOAP XML manually
since there will be more to it than just calling Deserialize. In fact, because we had to add
the root element to the SOAP request, we would have to actually use either XmlDocument
or XDocument to actually load the XML into memory and handle the deserialization
manually.

Figure 4-2.  The output of the title from the book that was serialized

67© Jonathan Hartwell 2017
J. Hartwell, C# and XML Primer, DOI 10.1007/978-1-4842-2595-0_5

CHAPTER 5

Real Life Examples

This chapter is all about putting the previous chapters into good use. There will be two
smaller applications that will be written. First is going to be an application that will read a
RSS feed and then turn that feed into a simple HTML table. The other example is going to
build on what we have learned with the library XML examples by creating an XML-based
library application.

RSS Feed Application
RSS, or Real Simple Syndication, is an XML-based format that allows people to know
when something has been published or changed. This example will demonstrate how
to use XmlDocument. The content creators will post to their RSS feed, which will allow
the consumer to see when new content has been released. In our example, we will be
connecting to the USAGov.edu's RSS feed.

We will start by creating a class called RssFeed. We add the following methods:
GetItems, GetItemsByPartialTitle, GetItemsByTitle, GetUrl, GetItemByTitle,
GetTitle, and then Save.

The GetItems and GetTitle are two simple methods that are just an XPath query to
get all the items:

public XmlNodeList GetItems()
{
 return document.SelectNodes("rss/channel/item");
}
public string GetTitle(XmlNode item)
 {
 XmlNode titleNode = item.SelectSingleNode("./title");
 if (titleNode == null) return string.Empty;
 return titleNode.InnerText;
 }

Things get complicated when we want to get a partial item. For the methods that rely
on a partial match, we dive into more complicated XPath. By using the contains() XPath
expression, we are able to check to see if a specific node value contains the given value.
This works in the same fashion that the Contains() method in C# does.

Chapter 5 ■ Real Life Examples

68

public XmlNode GetItemByPartialTitle(string partialTitle)
{
 �XmlNode titleNode = document.SelectSingleNode($"//item/title[contains(.

,\"{partialTitle}\")]/..");
 return titleNode;
}
public XmlNodeList GetItemsByPartialTitle(string partialTitle)
 {
 �XmlNodeList titleElements = document.SelectNodes($"//item/title[contain

s(.,\"{partialTitle}\")]/..");
 return titleElements;
 }

This method takes a string to match and then searches for a title that contains the
value that is given. We then go up a level in order to get the item.

Finally, we have the Save method. This method contains more logic than one may
think as the XmlDocument itself already has a Save method. The issue is, as we have seen
previously, you are not able to directly copy a node from one XmlDocument to another. In
order to copy the node, we need to create a separate XmlDocument and start by giving it a
base root element structure with a string.

public void Save(string fileName)
{
 XmlDocument saveData = new XmlDocument();
 saveData.LoadXml("<rss></rss>");
 XmlNodeList nodes = document.SelectNodes("//item");

 foreach(XmlNode node in nodes)
 {
 XmlNode importedNode = saveData.ImportNode(node, true);
 saveData.DocumentElement.AppendChild(importedNode);
 }
 saveData.Save(fileName);
}

This code will get us all we need from the RSS feed, but from there we need to
transform the XML to HTML, which we will do with XSLT.

RssFeed feed = new RssFeed("https://www.usa.gov/rss/updates.xml");
XslCompiledTransform xslt = new XslCompiledTransform();
feed.Save("test.xml");
xslt.Load("RssFeedLink.xslt");
xslt.Transform("test.xml", "output.html");

The code for the XSLT transformation goes hand-in-hand with our ongoing example.
We create a new XslCompileTransform, which will perform the transform in memory
and then save it to a file, and then load the XSLT file, which will be shown later. We save

Chapter 5 ■ Real Life Examples

69

our items from the RSS feed using our Save method on the feed instance of RssFeed and
then call the Transform method. We pass the in and out paths and at the end we will get
something that looks like the following:

The XSLT to create the transform not only uses a few basic XPath queries in order to
get the information we want, but it also gives a basic idea of how to structure and write an
XSLT file.

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/
Transform"
 xmlns:msxsl="urn:schemas-microsoft-com:xslt" exclude-result-
prefixes="msxsl"
>
 <xsl:output method="html" indent="yes"/>

 <xsl:template match="/">
 <html>
 <xsl:apply-templates />
 </html>
 </xsl:template>

 <xsl:template match="item">
 <table>
 <td>
 <xsl:apply-templates select="./title"/>
 </td>
 <td>
 <xsl:apply-templates select="./link"/>
 </td>
 </table>
 </xsl:template>
 <xsl:template match="title">
 <xsl:value-of select="."/>
 </xsl:template>
 <xsl:template match="link">
 <xsl:variable name="url"><xsl:value-of select="." /></xsl:variable>
 <xsl:value-of select="."/>
 </xsl:template>
</xsl:stylesheet>

Figure 5-1. 

Chapter 5 ■ Real Life Examples

70

There are four different templates. The first template, going from top to bottom, will
match on the root element, which is “root” in our case. We call the apply-templates
function on the root. What apply-templates does is iterate over the children of the parent
node and then applies whichever template matches a specific element. In our case, it will
match the item template because the only children of root are items. We create our table in
the item template and then call two more templates: title and link. The title template
will just extract the title from the title node using value-of. The link template is a bit
more complicated as it uses variables in order to create valid HTML links. The reason why
a variable must be used in this case is because the parser is not able to handle the way that
the a anchor works in HTML combined with the XML. In order to get the value of the link,
you must use the value-of function. This becomes a problem since that would put fully
formed XML inside the text of the anchor tag, which causes malformed XML.

Following is the full code example:

The RssFeed Class

using System;
using System.Xml;

namespace RssFeedConverter
{
 public class RssFeed
 {
 public string Path { get; set; }
 private XmlDocument document;
 public RssFeed(string path)
 {
 Path = path;
 document = new XmlDocument();
 document.Load(Path);
 }

 /// <summary>
 /// Save the document
 /// </summary>
 public void Save(string fileName)
 {
 XmlDocument saveData = new XmlDocument();
 saveData.LoadXml("<rss></rss>");
 XmlNodeList nodes = document.SelectNodes("//item");

 foreach(XmlNode node in nodes)
 {
 XmlNode importedNode = saveData.ImportNode(node, true);
 saveData.DocumentElement.AppendChild(importedNode);
 }
 saveData.Save(fileName);
 }

Chapter 5 ■ Real Life Examples

71

 /// <summary>
 /// Get All Items from the feed
 /// </summary>
 /// <returns></returns>
 public XmlNodeList GetItems()
 {
 return document.SelectNodes("rss/channel/item");
 }

 public XmlNodeList GetItemsByPartialTitle(string partialTitle)
 {
 �XmlNodeList titleElements = document.SelectNodes($"//item/title[

contains(.,\"{partialTitle}\")]/..");
 return titleElements;
 }

 public XmlNode GetItemByPartialTitle(string partialTitle)
 {
 �XmlNode titleNode = document.SelectSingleNode($"//item/title[con

tains(.,\"{partialTitle}\")]/..");
 return titleNode;
 }

 public Uri GetUrl(XmlNode item)
 {
 XmlNode urlNode = item.SelectSingleNode("./link");
 return new Uri(urlNode.InnerText);
 }
 /// <summary>
 /// Get an item by a title
 /// </summary>
 /// <param name="title"></param>
 /// <returns></returns>
 public XmlNode GetItemByTitle(string title)
 {
 �XmlNode titleElement = document.SelectSingleNode($"//

item[title=\"{title}\"]");
 if(titleElement.HasChildNodes)
 {
 XmlNode titleChild = titleElement.FirstChild;
 return titleChild;
 }
 return titleElement;
 }

 /// <summary>
 /// Get the title from a
 /// </summary>

Chapter 5 ■ Real Life Examples

72

 public string GetTitle(XmlNode item)
 {
 XmlNode titleNode = item.SelectSingleNode("./title");
 if (titleNode == null) return string.Empty;
 return titleNode.InnerText;
 }
 }
}

Program.cs: Where the Code Is Run

using System.Xml.Xsl;
namespace RssFeedConverter
{
 class Program
 {
 static void Main(string[] args)
 {
 RssFeed feed = new RssFeed("https://www.usa.gov/rss/updates.
xml");
 XslCompiledTransform xslt = new XslCompiledTransform();
 feed.Save("test.xml");
 xslt.Load("RssFeedLink.xslt");
 xslt.Transform("test.xml", "output.html");
 }
 }
}

The RssFeedLink XSLT Stylesheet

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/
Transform"
 xmlns:msxsl="urn:schemas-microsoft-com:xslt" exclude-result-
prefixes="msxsl"
>
 <xsl:output method="html" indent="yes"/>

 <xsl:template match="/">
 <html>
 <xsl:apply-templates />
 </html>
 </xsl:template>

 <xsl:template match="item">
 <table>
 <td>
 <xsl:apply-templates select="./title"/>

Chapter 5 ■ Real Life Examples

73

 </td>
 <td>
 <xsl:apply-templates select="./link"/>
 </td>
 </table>
 </xsl:template>
 <xsl:template match="title">
 <xsl:value-of select="."/>
 </xsl:template>
 <xsl:template match="link">
 <xsl:variable name="url"><xsl:value-of select="." /></xsl:variable>
 <xsl:value-of select="."/>
 </xsl:template>
</xsl:stylesheet>

Weather Application
Now let's take a look at a complex weather example for the forecast of a specific location.
We will use LINQ to XML in order to get at the information we need. For this example,
we want to get the seven-day forecast for high and lows. The XML file that is used in this
example is large so it will be a separate file that will be on the web site. However, the code
we need is rather short for the task that we want to execute.

using System.Collections.Generic;
using System.Linq;
using System.Xml.Linq;

namespace Weather
{
 class Program
 {
 static void Main(string[] args)
 {
 // Load the weather file
 XDocument document = XDocument.Load("weather.xml");

 // create the points that will be used later
 IEnumerable<Point> locations = document.Descendants("location")
 .Select(x => new Point()
 {
 Key = x.Element("location-key").Value,
 �Lat = float.Parse(x.Element("point").

Attribute("latitude").Value),
 �Long = float.Parse(x.Element("point").

Attribute("longitude").Value)
 });

Chapter 5 ■ Real Life Examples

74

 List<Point> processedPoints = new List<Point>();
 // process each point
 foreach(Point p in locations)
 {
 // filter down to the necessary nodes
 XElement parameters = document.Descendants("parameters")
 �.Where(x => x.Attribute("applicable-

location").Value == p.Key).First();
 XElement maximimums = parameters.Descendants("temperature")
 .Where(x => x.Attribute("type").
Value == "maximum" && x.Name == "temperature").First();
 XElement minimums = parameters.Descendants("temperature")
 .Where(x => x.Attribute("type").Value ==
"minimum" && x.Name == "temperature").First();

 �// iterate over all the elements in the maximum temperature
element

 foreach(XElement max in maximimums.Descendants("value"))
 {
 p.Highs.Add(int.Parse(max.Value));
 }

 �// iterate over all the elements in the minimum temperature
element

 �// there can be an empty value element so have to take that
into account

 foreach (XElement low in minimums.Descendants("value"))
 {
 if (string.IsNullOrEmpty(low.Value)) continue;
 p.Lows.Add(int.Parse(low.Value));
 }
 processedPoints.Add(p);
 }

 // Create a root element called temps
 XElement root = new XElement("temps");

 foreach(Point p in processedPoints)
 {
 �// create a base element for each key and make the lat/long

children
 // of the key element
 XElement element = new XElement(
 p.Key,
 new XElement("lat", p.Lat),
 new XElement("long", p.Long)
);
 // create a new temperature element

Chapter 5 ■ Real Life Examples

75

 XElement temperature = new XElement("temperature");
 XElement highs = new XElement("high");
 foreach(int high in p.Highs)
 {
 XElement highElement = new XElement("value", high);
 highs.Add(highElement);
 }
 XElement lows = new XElement("lows");
 foreach(int low in p.Lows)
 {
 XElement lowElement = new XElement("value", low);
 lows.Add(lowElement);
 }
 temperature.Add(highs);
 temperature.Add(lows);
 element.Add(highs);
 element.Add(lows);
 root.Add(element);
 root.Add(temperature);
 }
 XDocument nw = new XDocument(root);
 nw.Save("temp.xml");
 }
 }
 public class Point
 {
 public float Lat { get; set; }
 public float Long { get; set; }
 public string Key { get; set; }

 public Point()
 {
 Highs = new List<int>();
 Lows = new List<int>();
 }
 public List<int> Highs { get; set; }
 public List<int> Lows { get; set; }
 }
}

The above code does all the work and it clocks in at 102 lines. We use LINQ to
shorten the amount of code necessary in order to get at the elements that we want. Let's
walk through what this application is doing.

A class named Point is created that stores the key global position in the form of
latitude and longitude as well as all the highs and lows for the next seven days. We use the
Descendents method in order to get all of the location elements in the XML document.
We are able to create a Point instance for each location by using the Select LINQ
extension and creating a Point. Once we have the Points, we can start processing on the
XML document in order to find more information regarding these locations.

Chapter 5 ■ Real Life Examples

76

There is a filter to get the parameter elements from the document, which is where the
temperature information is stored, and to find the specific element where the application-
location attribute location is equal to the key that we stored in the previous section of
code. We then use the parameters element to filter down even further to minimums and
maximums. It is a good idea that we stored the parameter element because it means that
we don't have to query the document again, which can cause performance issues with
significanlty large XML files. We then iterate over the low and the high values for each and
store them in a new processed point.

The most complex part comes in the form of creating a new document. It is relatively
easy to create XML documents in LINQ to XML, but it can get unruly if you aren't careful
in organizing the way that the code is written. We create several root elements, the base
root which is called temps and then root elements for each other aspect of the XML we
are saving. We then will add each root to the parent root until we get all the way up to the
temps element. Once we get to that element, we know that the document is all ready and
completed, so we can instantiate a new XDocment class with the instance of XElement
we have called "root". After a call to Save on the XDocument instance, we have finished
processing the XML document and receive the following output:

<?xml version="1.0" encoding="utf-8"?>
<temps>
 <point1>
 <lat>38.99</lat>
 <long>-77.02</long>
 <high>
 <value>72</value>
 <value>79</value>
 <value>82</value>
 <value>82</value>
 <value>76</value>
 <value>65</value>
 <value>65</value>
 </high>
 <lows>
 <value>58</value>
 <value>61</value>
 <value>63</value>
 <value>62</value>
 <value>59</value>
 <value>55</value>
 </lows>
 </point1>
 <point2>
 <lat>39.7</lat>
 <long>-104.8</long>
 <high>
 <value>85</value>
 <value>78</value>
 <value>65</value>

Chapter 5 ■ Real Life Examples

77

 <value>54</value>
 <value>54</value>
 <value>63</value>
 <value>68</value>
 </high>
 <lows>
 <value>50</value>
 <value>53</value>
 <value>44</value>
 <value>40</value>
 <value>34</value>
 <value>35</value>
 <value>40</value>
 </lows>
 </point2>
 <point3>
 <lat>47.6</lat>
 <long>-122.3</long>
 <high>
 <value>59</value>
 <value>58</value>
 <value>57</value>
 <value>58</value>
 <value>60</value>
 <value>58</value>
 <value>57</value>
 </high>
 <lows>
 <value>50</value>
 <value>49</value>
 <value>47</value>
 <value>48</value>
 <value>52</value>
 <value>49</value>
 </lows>
 </point3>
</temps>

A Basic XML Serializer
In Chapter 4 we went over the serialization of XML, but now we are going to use LINQ
to XML to create our own basic serializer. This is going to be a naïve implementation
that will be limited in what it will actually handle. For this application, we will be able to
handle a single class that can allow for attributes as well as ignore properties. We will also
be able to serialize and deserialize using streams.

The first thing that we need to do is create the attibutes that we will use to indicate
what needs to be serialized. For this we will create three attributes: Serializable, Ignore,

http://dx.doi.org/10.1007/978-1-4842-2595-0_4

Chapter 5 ■ Real Life Examples

78

and XmlAttribute. The Serializable attribute will be used solely on classes to determine
if they are eligible for serialization. The Ignore attribute is an attribute that can only be
used on properties. This attribute will suppress any property that is decorated with that
property and will not serialize that property. Finally, the XmlAttribute attribute is going to
be used to add an attribute to the property. Let's get started by declaring the attributes:

[AttributeUsage(AttributeTargets.Class)]
public class SerializableAttribute : Attribute
{
}

This attribute declaration is short, but it does a lot just because it is an attribute. First,
we use an attribute that is built into .NET called AttributeUsage. This attribute helps
limit the usage of the attribute. We only want the Serializable attribute on classes as it
is not possible to just serialize a single property. This attribute is now ready to be used on
any class.

Moving on to the XmlAttribute attribute, we need to add a bit more code in order
to accomplish what we want:

[AttributeUsage(AttributeTargets.Property)]
public class XmlAttribute : Attribute
{
 public string Name { get; set; }
 public string Value { get; set; }
 public XmlAttribute(string name, object value)
 {
 if (value != null)
 {
 Value = value.ToString();
 }
 else
 {
 Value = string.Empty;
 }
 Name = name;
 }
}

Again we need to declare the AttributeUsage, but this time we only want to target
properties. If we wanted to, we could allow this attribute to be usable on classes, but
for this example we are just going to keep it on properties. One difference between this
attribute and the SerializableAttribute is that XmlAttribute is using a constructor that
takes two arguments. We do this so we can save the name of the attribute as well as the
value of the attribute.

Our last attribute that we need to define is the ignore attribute that is aptly named
IgnoreAttibute. This attribute is similar to the SerializableAttribute in that there is
no real substance to the class.

Chapter 5 ■ Real Life Examples

79

[AttributeUsage(AttributeTargets.Property)]
public class IgnoreAttribute : Attribute
{
}

The only difference between the IgnoreAttribute and the SerializableAttribute
is the AttributeUsage. It only makes sense that we want to decorate properties since, if
we wanted to ignore a class, we just wouldn't use the SerializableAttribute.

Now that we have the attributes that we are going to use, we need to start
implementing our serializer. There are two major functions we need this class to do:
serialize and deserialize. Under the hood, we are going to use LINQ to XML in order to
handle the backend XML. We can declare the shell of this class below:

public class XmlSerializer<T>
{
 private Type type;
 private string defaultNamespace;
 public XmlSerializer(string defaultNamespace)
 {
 type = typeof(T);
 this.defaultNamespace = defaultNamespace;
 }

 public T Deserialize(string filePath)
 {
 }

 public void Serialize(Stream stream, T serializableObject)
 {
 }

}

We have two private members, type and defaultNamespace. We want to save the
type of the model that we are going to serialize as well as save a default namespace. We
also make this a generic class, which saves a lot of typing for those who use this class
as there is no need to pass in types in every method. However, the downside is that an
XmlSerializer is tied to a single model type. Our Serialize method takes in a stream as
well as the object of type T, which is the model that is going to be serialized.

Let's start implementing the methods on the XmlSerializer class. We will start by
implementing the Serialize method:

public void Serialize(Stream stream, T serializableObject)
{
 // get the type of the passed in class
 Type type = typeof(T);
 // Check to see if the class has the Serializable attribute

 �if(type.CustomAttributes.Any(x => x.AttributeType == typeof(Serializabl
eAttribute)))

Chapter 5 ■ Real Life Examples

80

 {
 XElement element = new XElement(type.Name);
 �// This class has the ability to be serialized since the

serializable attribute was on the class
 PropertyInfo[] properties = type.GetProperties();
 // filter out properties that have the ignore on them
 �List<PropertyInfo> serializableProperties = properties.Where(x => x.

GetCustomAttribute(typeof(IgnoreAttribute)) == null).ToList();
 foreach (PropertyInfo pi in serializableProperties)
 {

 element.Add(CreateElement(pi, serializableObject));
 }
 byte[] bytes = Encoding.UTF8.GetBytes(element.ToString());
 stream.Write(bytes, 0, bytes.Length);
 }
}

private XElement CreateElement(PropertyInfo propertyInfo, T
serializableObject)
{
 XElement element = new XElement(propertyInfo.Name);
 �XmlAttribute xmlAttribute = propertyInfo.GetCustomAttribute(typeof(XmlAt

tribute)) as XmlAttribute;
 if (xmlAttribute != null)
 {
 element.Add(new XAttribute(xmlAttribute.Name, xmlAttribute.Value));
 }

 �// create a child element using the property name and get the
property value off of the passed in object

 �element.Add(new XElement(propertyInfo.Name, type.
GetProperty(propertyInfo.Name).GetValue(serializableObject, null).
ToString()));

 return element;
}

We start by instantiating a Type class that is based on the type of the generic
parameter. That type is going to be the type of the class that may need to be serialized.
Since the SerializeAttribute is not mandatory, we do need to verify the class has that
attribute before continuing. We do that by using the Any method that is a LINQ extension.

type.CustomAttributes.Any(x => x.AttributeType ==
typeof(SerializableAttribute))

We need to look through all of the custom attributes in order to check to see if this
class is indeed decorated by SerializableAttribute. We do that by using the Any LINQ

Chapter 5 ■ Real Life Examples

81

extension method that will iterated on the CustomAttributes collection and check to see
if any of the attribute types are of type SerializableAttribute. Once it finds a single
match, it will stop and return true.

Once we verify that this class is decorated by SerializeAttribute, we can start
creating our XML. We start by creating an element that is given the same name as the
serialized class. Next, we need to get all of the properties of this class. We can do that by
using the GetProperties method on the Type instance. We then need to perform another
check, which is to see if any of the properties are decorated with the IgnoreAttribute.
After all, we want to ensure that our attributes behave in the expected manner. We filter
the attributes using the Where LINQ extension method.

List<PropertyInfo> serializableProperties = properties.Where(x => x.GetCusto
mAttribute(typeof(IgnoreAttribute)) == null).ToList();

We are able to pull all of the properties that do not have the IgnoreAttribute
decoration.

Now that we have the properties, we need to turn those into XML. We have the
PropertyInfo instances that contain all of the information for each property on the class
type of our model. In order to make the code more readable, we should break out the
generation of the XML from a PropertyInfo instance into a separate private method. Our
private method is named CreateElement because all it does is create new elements.

private XElement CreateElement(PropertyInfo propertyInfo, T
serializableObject)
{
 XElement element = new XElement(propertyInfo.Name);
 �XmlAttribute xmlAttribute = propertyInfo.GetCustomAttribute(typeof

(XmlAttribute)) as XmlAttribute;
 if (xmlAttribute != null)
 {
 element.Add(new XAttribute(xmlAttribute.Name, xmlAttribute.Value));
 }

 element.Add(new XElement(propertyInfo.Name, type.
GetProperty(propertyInfo.Name).GetValue(serializableObject, null).
ToString()));

 return element;
}

We start by instantiating a new instance of XElement and we give the name of
that element the name of the property that is stored in the PropertyInfo instance. We
then need to check to see if we need an attribute to this element by checking to see if
the instance of PropertyInfo has the custom attribute XmlAttribute. We don't need
to iterate over anything because we already have a single instance of PropertyInfo so,
instead of iteration, we can just call the GetCustomAttribute method, which takes in a
type and returns an instance of System.Attribute. Since we know what we should be
getting in return, we can see if we can cast to an XmlAttribute instance. This attribute

Chapter 5 ■ Real Life Examples

82

may not exist on a property, so we need to do a null check to make sure that we are only
adding attributes to properties that have them declared. If we do find an XmlAttribute
decoration on this property, we then go ahead and add an XAttribute instance to our
current XElement instance, which contains the property we are currently inspecting. We
then go ahead and create a child XElement that contains the property name as well as the
value of the property, converted to string. Remember XML does not have datatypes so we
need to ensure that everything we add to the XML is in a string form.

Finally, we can convert our XML into a byte array so that we can serialize to the
stream that was passed in:

byte[] bytes = Encoding.UTF8.GetBytes(element.ToString());
stream.Write(bytes, 0, bytes.Length);

We need to convert our XML element into a byte array so we use the Encoding class
that is the System.Text namespace. There are many different encodings that we can use,
but seeing as C# has UTF-8 strings, it would make sense to encode our XML as UTF-8
instead of ANSI. Now we have a byte array that we can write to our stream. Once the
XML is written to the stream, the Serialize method is done with its processing and gives
control back to the calling method.

Our Deserialize method is much shorter than our Serialize method, but it is a
more complicated method that dives into reflection quite a bit:

public T Deserialize(string filePath)
{
 T loaded = Activator.CreateInstance<T>();
 XDocument doc = XDocument.Load(filePath);
 XElement root = doc.Root;
 if (root.Name == typeof(T).Name)
 {
 foreach(XElement child in root.Elements())
 {
 /// Check to see if this is a class or just a property

 �loaded.GetType().GetProperty(child.Name.ToString()).
SetValue(loaded, child.Value);

 }
 }
 else
 {
 �throw new ArgumentException("The type passed in does not match the

XML");
 }
 return loaded;
}

Chapter 5 ■ Real Life Examples

83

In order to add data to any class, we need an instance of that class. The Activator
class has a method called CreateInstance, which does what the name says and creates
an instance of the type passed in. We need this instance; otherwise, there would be no
state persisted.

Now that we have an instance that we can save data to, we need to load our XML from
the file that is passed in. We declare a new XDocument and load the XML as we have done
before in Chapter 2. We need to get the root element so we have something to start with.
Because we are deserializing this XML into a C# class, we need to ensure that the class that
is passed in through the generic parameter is the same name as the root element name. If
it is not the same, then we throw an exception and stop processing; otherwise, we need to
continue deserialization. We then iterate over the elements of the root element and make
the same checks as we did with the class to ensure that the names match, but this time
we look at properties instead of class name. Notice that we are using Elements() method
instead of Descendants(). We do this because we only want to go one level deeper, getting
only the children of the current element while not touching the grandchildren. Since we
are using properties, it does not matter if there are properties missing from the XML as it
will not affect properties that aren't instantiated properties from the load. If you are using
reference types as properties on your class, you must make sure to instantiate them in the
constructor. Otherwise, you risk getting a NullReferenceException.

Now comes the magic of reflection. We have the default instance of our model class,
but we need to add data to those properties. However, we aren't able to directly call those
properties to modify them, so we need to pull some reflection tricks out of our sleeves. We
need to first get the type of our default instance of our model class using the GetType()
method. We then need to get the property that we are looking to modify by using the
GetProperty method. This method takes a string as its argument and looks up the
property based on that string. Luckily, we already know the property name since it is the
name of the element we are currently looking at. We now have the PropertyInfo for the
property we want to modify, so we then need to call the SetValue method. This method
takes two arguments: the source object and the value to set. The source object in this
case is the default instance of our model class. We then set that value to the string of the
element value. As I noted before, this is a naïve and simple example, which means we are
not accounting for cases such as non-string properties or nested XML. Once we populate
the data, the only thing left to do is to return the instance of the model class.

We have the serialization and deserialization coded and ready to go, so now we just
need a model class. Lets create a book class and give it a few properties:

[Serializable]
public class Book
{
 [XmlAttribute("Notes","The first book of seven")]
 public string Title { get; set; }
 public string Author { get; set; }
 public string Year { get; set; }
}

We are using two of the three custom attributes in this model:
SerializableAttribute and XmlAttribute. We have three properties: title, author,
and year. We want to have an attribute on the Title element, which we are calling

http://dx.doi.org/10.1007/978-1-4842-2595-0_2

Chapter 5 ■ Real Life Examples

84

notes. When we run the serializer method from the XmlSerializer instance, we get the
following output:

<Book>
 <Title Notes="The first book of seven">
 <Title>Harry Potter and the Sorcerer's Stone</Title>
 </Title>
 432799_1_En
 432799_1_EnJK Rowling</Author>
 </Author>
 <Year>
 <Year>1997</Year>
 </Year>
</Book>

It shouldn't be a surpise what the output is as it should be expect based on the Book
class model. However, what if we want to hide the year property on this book? We can do
that by just using the IgnoreAttrbute. Our new Book class becomes the following:

[Serializable]
public class Book
{
 [XmlAttribute("Notes","The first book of seven")]
 public string Title { get; set; }
 public string Author { get; set; }
 [Ignore]
 public string Year { get; set; }
}

This yields the following XML:

<Book>
 <Title Notes="The first book of seven">
 <Title>Harry Potter and the Sorcerer's Stone</Title>
 </Title>
 432799_1_En
 432799_1_EnJK Rowling</Author>
 </Author>
</Book>

With some reflection tricks as well as using LINQ to XML, we have demostrated a
simple way that the serialization of XML in .NET works. Now there are always ways to
improve this code such as handling nested elements (for instance, creating a Library
class that has multiple Book classes as properties). We could also add better exception
handling as well, but I believe that this example can give a better understanding of what is
happening under the hood and how the methods we learned before can be used as a base
level to build upon.

85© Jonathan Hartwell 2017
J. Hartwell, C# and XML Primer, DOI 10.1007/978-1-4842-2595-0

�       � A, B
AppendChild method, 28–29
Attribute method, 26

�       � C
CreateAttribute method, 26
CreateElement method, 27–28
CreateInstance, 83

�       � D
Descendants(), 83

�       � E
Element method, 20
Elements() method, 83
Extensible Markup Language (XML)

attributes, 11–13, 19
adding, 26–27
modifying, 24–25
removing, 32–33

Document vs. Document.Root, 19
elements, 1–2

adding, 27–30
modifying, 25–26
removing, 33–34

handling namespaces, 13–14
library.xml, 7–8
LINQ, 18

adding attributes, 38–39
adding elements, 39–40
merging documents, 40–42
modifying attributes, 35–37

modifying elements, 37–38
removing attributes, 42–43
removing elements, 43
saving, 44

loading, 8
merging documents, 30–32
saving, 34–35
transforming results, 20
using XPath with

XDocument, 21
XmlDocument/

XDocument, 23–24
XmlReader, 15–17
XPath, 2–3, 8–11
XPathDocument, 15
XSLT, 3–4

Extensible Stylesheet Language
(XSLT), 3–4

�       � F
FileStream, 46
Flush method, 46

�       � G, H
GetCustomAttribute method, 81
GetProperties method, 81, 83

�       � I, J, K, L, M
IgnoreAttrbute, 84
ImportNode method, 31
Inheritance, 55–57
InnerText property, 25

Index

■ INDEX

86

�       � N, O
NullReferenceException, 83

�       � P, Q
PropertyInfo, 81

�       � R
Real Simple Syndication (RSS)

apply-templates, 70
Contains() method, 67
GetItems and GetTitle, 67
Point, 75
RssFeed, 67
Save method, 68
temps, 76
weather application, 73–75
XML, 70–72
XML document, 67, 76–77
XML serializer, 81

AttributeUsage, 78
CreateInstance, 83
Deserialize method, 82
Elements() method, 83
GetCustomAttribute

method, 81
GetProperties method, 81, 83
IgnoreAttibute, 78, 79, 84
serializable

attribute, 78–79, 81, 83
Serialize method, 79, 80
SetValue method, 83
XmlAttribute, 78, 83

XslCompileTransform, 68
XSLT, 69–70

RemoveNamespace method, 14
RichTextBox, 9

�       � S, T, U, V
Select method, 20
SelectNodes method, 8
Serializableattribute and XmlAttribute, 83
Serialization

composition, 51–53, 55
creating, model, 45
Deserialize method, 65–66
inheritance, 55–57
SOAP, 58–65
write to file, 45, 47–50

Serialize method, 79, 80
SetValue method, 83
Simple Object Access Protocol

(SOAP), 58–65
System.InvalidOperationException, 56

�       � W
WriteStartElement(), 62

�       � X, Y, Z
XML. See Extensible Markup Language

(XML)
XmlArray, 54
XmlAttribute, 48
XmlAttribute class, 47
XmlElement, 52
XmlEnum, 50
XmlRoot, 53
XmlSerializer class, 46
XmlText attribute, 48
XPath, 2–3, 8–11
XPathSelectElement method, 21
XslCompileTransform, 68
XSLT. See Extensible
Stylesheet Language (XSLT)

www.allitebooks.com

http://www.allitebooks.org

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Introduction to XML
	What Is XML?
	XPath
	XSLT—Extensible Stylesheet Language
	Wrapping Up

	Chapter 2: Reading XML
	Using XmlDocument
	Searching with XPath
	Search Using Attributes
	Handling Namespaces
	Using XPathDocument
	Reading with XmlReader

	Using LINQ to XML
	Document vs. Document.Root: Getting to the Root Document
	Searching for Attributes
	Transforming Results
	Using XPath with XDocument

	Chapter 3: Modifying XML
	Using XmlDocument
	Modifying Attributes
	Modifying Elements
	Adding Attributes
	Adding Elements
	Merging Documents
	Removing Attributes
	Removing Elements
	Saving Our Changes

	LINQ to XML
	Modifying Attributes
	Modifying Elements
	Adding Attributes
	Adding Elements
	Merging Documents
	Removing Attributes
	Removing Elements
	Saving Our Changes

	Chapter 4: Serialization
	Creating a Model
	Writing to File
	Composition
	Inheritance
	SOAP
	Deserializing

	Chapter 5: Real Life Examples
	RSS Feed Application
	Weather Application
	A Basic XML Serializer

	Index

