
www.allitebooks.com

http://www.allitebooks.org

Chef Essentials

Discover how to deploy software, manage hosts, and
scale your infrastructure with Chef

John Ewart

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

[FM-2]

Chef Essentials

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2014

Production reference: 1190914

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-304-9

www.packtpub.com

Cover image by Prashant Timappa Shetty (sparkling.spectrum.123@gmail.com)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

[FM-3]

Credits

Author
John Ewart

Reviewers
Joshua Black

Lauren Malhoit

Eric Maxey

Commissioning Editor
Edward Gordon

Acquisition Editor
Llewellyn Rozario

Content Development Editor
Govindan K

Technical Editor
Shubhangi Dhamgaye

Copy Editors
Roshni Banerjee

Mradula Hegde

Gladson Monteiro

Project Coordinator
Sageer Parkar

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Linda Morris

Indexer
Rekha Nair

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

[FM-4]

About the Author

John Ewart is a system architect, software developer, and lecturer. He has designed
and taught courses at a variety of institutions, including the University of California,
The California State University, and local community colleges. These courses cover a
wide range of computer science topics, including Java, data structures and algorithms,
operating systems fundamentals, Unix and Linux system administration, and web
application development. In addition to working and teaching, he maintains and
contributes to a number of open source projects. He currently resides in Redmond,
Washington, with his wife, Mary, and their two children.

www.allitebooks.com

http://www.allitebooks.org

[FM-5]

About the Reviewers

Joshua Black has been working with computers professionally for 20 years.
He has a wide range of experience and expertise, which includes systems and
network administration, mobile app development, and production web applications.
He earned a BS degree in Computer Science with a minor in Math from California
State University, Chico, in 2005. He currently resides in Chico, California, with his
wife, Rachel, and their four children.

Lauren Malhoit has been in the field of IT for over 10 years and has acquired
several data center certifications. She's currently a technical virtualization architect,
specializing in virtualization and storage in data center. She has been writing for
a few years for TechRepublic, TechRepublic Pro, and VirtualizationSoftware. As a
Cisco Champion, EMC Elect, VMware vExpert, and PernixPro, she stays involved
in the community. She also hosts a bi-weekly technology podcast called AdaptingIT
(http://www.adaptingit.com/). She has been a delegate for Tech Field Day several
times as well. She recently published her first book, VMware vCenter Operations
Manager Essentials, Packt Publishing.

Eric Maxey has a varied background in writing software, including making
console video games and analyzing the ad revenue data. He ran a small business
that pioneered a new kind of bitcoin mining pool, which has now become something
of a standard. When not jacked into the metaverse, he likes to work on electric
bicycles and ride them offroad.

www.allitebooks.com

http://www.adaptingit.com/
http://www.allitebooks.org

[FM-6]

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Installing Chef	 7

Terminology	 7
Working with Chef	 8

Installing chef-solo	 9
The Ruby gem	 9
Managing gems	 9
Verifying that chef-solo works	 10

Installing a Chef server	 13
Requirements and recent changes	 13
Installation requirements	 13
What you will be installing	 14
Getting the installer	 15
Installation outline	 15
Installing on Ubuntu	 15

Downloading the package	 16
Installing the package	 16

Installing on Red Hat Enterprise Linux	 16
Downloading the package	 16

Configuring a Chef server	 17
Understanding how chef-server-ctl works	 18
What's happening on my server?	 18
Verifying that the services are running	 20

Validating that your service is working	 21
Ensuring that your knife configuration works	 23

Summary	 25

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: Modeling Your Infrastructure	 27
Getting to know Chef	 27
Modeling your infrastructure	 29

Roles	 31
Defining roles	 32

Implementing a role	 34
Determining which recipes you need	 35

Installing a cookbook	 36
Applying recipes to roles	 37
Mapping your roles to nodes	 40
Converging a node	 42
Environments	 43

Organizing your configuration data	 44
Example attribute data	 46
Data bags	 47

Knowing when to use data bags	 47
Large-scale infrastructure	 49
Summary	 49

Chapter 3: Integrating with the Cloud	 51
Leveraging the cloud	 51

Amazon EC2	 52
Installing the EC2 knife plugin	 52
Setting up EC2 authentication	 52
Provisioning an instance	 53
Bootstrapping the instance	 54
Terminating the instance	 55
Removing the Chef node	 56

Rackspace Cloud	 56
Provisioning an instance	 57
Terminating an instance	 59
Removing the Chef node	 61

Summary	 61
Chapter 4: Working with Cookbooks	 63

Attributes	 66
Multiple attribute files	 68

Supporting multiple platforms	 69
Loading external attributes	 69

Using attributes	 70
Metadata	 71
Recipes	 73
Resources	 74

Using resources	 75
Overriding a default behavior	 77

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Templates	 78
Why use templates?	 78

A quick ERB primer	 80
The template resource	 81
The template variables	 82

Passing variables to a template	 82
Accessing computed configurations	 83

Searching for templates	 84
Definitions	 85
Recipes	 87

Developing recipes	 87
Writing recipes	 88

Starting out small	 88
Installing a simple service	 89
Getting more advanced	 90

Summary	 92
Chapter 5: Testing Your Recipes	 93

Testing recipes	 94
RSpec	 94
RSpec and ChefSpec	 95

Testing basics	 96
Comparing RSpec with other testing libraries	 96
Using ChefSpec	 97

Getting started with ChefSpec	 97
Installing ChefSpec	 98
Locking your dependencies in Ruby	 98
Creating a simple recipe and a matching ChefSpec test	 99

Writing a ChefSpec test	 100
Building your recipe	 101
Executing tests	 102
Understanding failures	 102

Expanding your tests	 104
Multiple examples in a spec test	 104
Testing for multiple platforms	 106

Summary	 108
Chapter 6: From Development to Deployment	 109

Describing the setup	 110
Deploying software with Chef	 110
Configuring your local environment	 111
Modeling a simple Python application	 111
Managing the cookbooks	 112

Downloading cookbooks	 112

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Looking at the database recipe	 113
Looking at your application deployment cookbook	 114
Preparing the directories	 116
Constructing your Python virtual environment	 117
Checking the source code	 118
Installing any extra dependencies	 119

Managing dependencies in Chef	 119
Managing dependencies elsewhere	 120

Using Python's requirements file	 120
Configuring your application	 121
Keeping your application running	 122

Defining roles	 123
Creating the base server role	 123
Creating the database server role	 124
Creating the web server role	 125

Adding users	 126
Provisioning EC2 instances	 126

Configuring the database host	 127
Configuring the web server	 127
Deploying your software	 128

Manually deploying updates	 129
Automating deployment	 129

Summary	 130
Chapter 7: Beyond Basic Recipes and Cookbooks	 131

Managing users	 131
Evolution of a shell user recipe	 132
Storing data in data bags	 133

Creating a data bag for users	 133
Searching for data	 135

Searching inside recipes	 136
Enhancing your user cookbook	 137
Distributing SSH keys	 140

Templating the authorized keys	 140
Adding deployment keys	 142

Writing custom extensions	 143
Developing a custom definition	 143

Organizing your code	 143
Writing a definition for using PIP	 143
Defining a full application template	 146

Building a resource	 149
Defining the resource	 149
Implementing the provider	 150
Modifying resources	 152

Table of Contents

[v]

Loading an existing resource	 153
Declaring that a resource was updated	 154

Working with data bags	 154
Securing your data bags	 154

Secret keys	 154
Encrypting your data	 155
Decrypting your data	 156
Storing keys on nodes	 156

Searching your data	 157
Searching your data bags with knife	 157
Searching your data bags from a recipe	 157
Querying your data	 157

Managing multiple machines with search queries	 159
Summary	 159

Chapter 8: Extras You Need to Know	 161
Vagrant and Chef-solo	 161

Installing Vagrant	 162
Provisioning a new host with Vagrant	 162
Booting your Vagrant image	 163
Combining Vagrant with Chef-solo	 165

Understanding the limitations of Chef-solo	 165
Configuring Chef-solo	 166
Telling Chef-solo what to run	 167
Using roles and data bags with Chef-solo	 167

Getting to know the Chef shell	 169
Using the Chef shell	 169

The standalone mode	 169
The solo mode	 169
The client mode	 170

Interacting with the Chef server using the shell	 170
Interacting with data	 171
Searching your data	 172
Editing your data	 172
Transforming data	 172

Executing recipes with Chef shell	 173
Creating a recipe in the shell	 174
Defining node attributes	 175
Using configuration blocks	 177
Interactively executing recipes 	 177

Debugging with the Chef shell	 179
Using the breakpoint resource	 179

Integration testing	 181
Using Test Kitchen	 181

Installing Test Kitchen	 182
Testing with Test Kitchen	 182

Table of Contents

[vi]

Extending Chef	 188
Writing an Ohai plugin	 188

A note about writing Ohai plugins	 190
Chef with Capistrano	 191

Automation and integration	 192
Automated updates and deployments	 192

Summary	 193
Index	 195

Preface
Chef is an indispensable tool to manage your infrastructure. It consists of a set of
tools that are designed to work together to enable you to model and manage your
systems. This is a large space to fill, and Chef provides you with the tools to do
this in a very flexible and powerful way. It achieves this through a combination
of services, end host agents, a web interface, and command-line tools that work in
unison to deliver an incredible suite of tools.

Chef's services are responsible for storing, managing, and distributing data about
your infrastructure through an API. Endhost software agents that run on nodes
(managed systems) are responsible for performing updates to systems, and the
web interface, along with command-line tools, allows an administrator to edit and
consume information that is vended by the API service.

One of the most attractive features of Chef is that you can leverage its API to easily
integrate existing tools, or you can develop new tools to meet specific needs. Any
organization with a moderate number of developer resources can harness the
power of Chef to manage their systems. For example, one can easily build software
to import data from Chef into a reporting tool of some form and dynamically
reconfigure infrastructure based on a third-party tool's output—the sky's the limit.
This is incredibly valuable to anybody who has an existing infrastructure because it
provides a convenient path to integrate Chef into their environment.

There are a number of ways to access Chef. The quickest way for a single user to
manage his/her infrastructure (virtual machines, a handful of hosts, and so on) is
to use Chef-solo, a product geared towards single-user environments. In a small
environment, setting up a hosted server is a good way to manage infrastructure
automation among team members. If you need to, you can configure the hosted
environment as a highly available system using load balancers and other technologies.
Alternatively, if hosting the service yourself is not an option, you can use hosted Chef,
a software-as-a-service (SaaS) model, thus paying for access to a hosted service.

Preface

[2]

Configuration management software was created to fill a need—managing
infrastructure is a challenging task. Regardless of the scale you operate on,
keeping track of software versions, upgrading systems, and generating consistent
configuration data is a lot of work. It is tempting to update a configuration file on
one system, only to forget to commit those changes somewhere, or to apply them to
existing or future hosts. This is very convenient, but it quickly leads to inconsistency
between hosts. When you are working with only one or two hosts, this may be
acceptable. As such, a system grows from a few servers to dozens, hundreds, or
possibly thousands—this type of system management does not scale due to time
requirements and configuration errors that result from size and complexity.

Consider a scenario where you are migrating a database server to a new host. This
would involve: bringing up a new host, installing all of the required software on
your list to ensure it has parity with the old server (you did keep a list, right?),
ensuring that your database server was configured with the same options, putting
the correct firewall rules in place, tuning the filesystem, setting up monitoring tools,
updating DNS records or changing web application configurations to point to the
new host, and so on. Now imagine that, instead of one server in one data center, you
have 10 database servers in 10 data centers, each with their own IP ranges, hardware
configurations, and networking rules. Situations such as this are exactly why system
configuration management software packages were developed: to make the lives of
system administrators and engineers much easier.

This scenario, and many others like it, is where Chef is indispensable. Having the
ability to describe your hosts, configuration data, and roles, and then apply that
across as many hosts as you like means that you can manage large fleets of hosts
just as easily as you can manage one or two.

What this book covers
Chapter 1, Installing Chef, introduces you to the architecture of Chef, various
installation methods, and a guide to setting up Chef (solo and self-hosted). It
includes information on using hosted Chef (and what that means for your team)
and Vagrant with Chef-solo.

Chapter 2, Modeling Your Infrastructure, introduces how to model your infrastructure
with Chef using your newly installed system. This chapter will cover modeling
environments, small and large, as well as how to integrate with cloud technologies
using Chef (AWS, Rackspace Cloud, and so on).

Preface

[3]

Chapter 3, Integrating with the Cloud, covers how Chef helps you scale your
infrastructure using any combination of physical, virtual, and cloud-hosted systems.
This chapter discusses how to use Chef to provision and manage hosts using cloud
providers as easily as your local systems including AWS and Rackspace Cloud.

Chapter 4, Working with Cookbooks, covers how every Chef needs cookbooks—
once your systems are part of your Chef-managed fleet, you can begin collecting,
developing, and applying recipes to your hosts. It includes in-depth explanations
of the structure and development of cookbooks and recipes, as well as how to test,
publish, and share them.

Chapter 5, Testing Your Recipes, focuses on one compelling reason to use Chef to
configure your infrastructure, that is, recipes are written in Ruby code and can be
tested as any program would be tested. Here, you will learn how to test your recipes
through a variety of testing mechanisms.

Chapter 6, From Development to Deployment, covers how to take a custom application
from development to a production deployment with Chef. It contains a complete
example that includes provisioning a web server, database server, and users as well
as deploying code from source control.

Chapter 7, Beyond Basic Recipes and Cookbooks, delves into developing extensions to
Chef through advanced concepts, including custom providers and resource types,
using the Chef search engine, advanced scripting, and more.

Chapter 8, Extras You Need to Know, expands your knowledge of how to leverage Chef
for infrastructure automation, complex systems integration, and securely storing and
distributing sensitive data with Chef.

What you need for this book
This book assumes that you are familiar with at least one programming language (it
does not need to be a compiled language, and knowledge of an interpreted language
will be suitable. Chef uses Ruby for its dynamic, scriptable components and any
experience with Ruby will be valuable. However, having a strong understanding of
program logic will provide you with the background to be productive with Chef.

For those who are not experts with Ruby, there will be a wide array of example
listings that can be copied directly and executed as part of the book's offerings.
This will enable you to use the examples without any previous Ruby experience.
However, a working knowledge of Ruby will be needed in order to expand on the
book's code examples or while writing your own recipes from scratch.

Preface

[4]

You will be walked through the steps required to install Chef on a Linux-based
host. In order to be immediately successful, you will need administrative access to
a host that runs a modern version of Linux; Ubuntu 13.10 is what will be used for
demonstration purposes. If you are a more experienced reader, then a recent release
of almost any distribution will work just as well (but you may be required to do a
little bit of extra work that is not outlined in the book). If you do not have access
to a dedicated Linux host, a virtual host (or hosts), running inside of virtualization
software, such as VirtualBox will work.

Additionally, you will need access to the Internet to download software packages
that you do not already have, as well as an installation of the Ruby programming
language Version 1.9 or higher.

Who this book is for
This book targets developers and system administrators who need to manage
infrastructure and are looking to automate their system management. This includes
infrastructure ranging in size from small-scale installations with a handful of hosts
to multicontinent corporate IT systems with hundreds or even thousands of hosts.
Anybody whose job involves maintaining systems will benefit from the concepts
being covered.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The search method has a similar format to the knife command."

A block of code is set as follows:

all_users = search(:users, 'id:*')
users_s = search(:users, 'id:s*')
all_nodes = search(:node, '*')

Any command-line input or output is written as follows:

$ knife data bag show credentials aws

Preface

[5]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Once
there, a tab labeled Chef Server will be present at the top of the page."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

www.packtpub.com/authors
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Installing Chef
Before you can start using Chef, you will need to install it. Here you will find a guide
to install Chef, and because Chef requires Ruby, some Ruby concepts as well. This
chapter discusses the following:

•	 Key terminology and concepts related to Chef
•	 An overview of Chef's architecture
•	 Working with Ruby gems
•	 Installing chef-solo (a local-only engine to use Chef)
•	 A brief example on using chef-solo
•	 Installing the Chef server on your own host
•	 Verifying your Chef installation

Terminology
As with any other technology, Chef has its own terminology. As you will see,
Chef's nomenclature is a mix of technological terms (nodes, workstations, servers,
roles, and so on) and cooking terms (cookbooks, recipes, and so on). There are three
primary actors that we are concerned with at this point: nodes, the Chef service,
and workstations.

•	 Node: A node is a client that applies roles and recipes, as described by the
administrator in the Chef service (that is, a server in your environment that is
being configured via Chef). These are the consumers of the configuration, the
elements of your infrastructure. They can be physical or virtual machines and
can run on Linux, Windows, or technically any other system that is capable of
running Ruby (some systems may not be supported out of the box by Chef).

Installing Chef

[8]

•	 Chef service: The Chef service is a multicomponent system that combines
several services to provide its functionality. The primary functional
components are an API service, full-text searching via Solr, persistent
storage using PostgreSQL, and RabbitMQ for interservice communication.
Additionally, there is a web interface that provides a graphical tool to
manage system data. Clients (nodes) use the API service to determine which
roles and recipes to apply, and knife (a command-line tool) uses the API to
allow an administrator to edit and manage their Chef configuration.

•	 Workstation: A workstation is a host that is used to issue commands. A
workstation can be a separate host outside of your Chef service installation, a
managed node, or the server that the Chef components are running on. There
are a variety of command-line tools that are provided to interact with the
service, which will be installed onto your workstation(s).

•	 Recipe: A recipe is a script that describes a set of steps to take to achieve a
specific goal. As an example, a recipe might describe how to deploy your
custom software, provision a database, or add a host to a load balancer.

•	 Cookbook: A cookbook is a collection of recipes that are used to collectively
describe how to install, configure, and manage various aspects of your
infrastructure. For example, a cookbook might describe how to provision
MySQL, PostgreSQL or Apache, manage users, install printers, or perform
any other system tasks.

Working with Chef
For single user setups, chef-solo is a version of the chef-client that allows you to use
Chef without requiring access to a server. Chef-solo runs locally and requires that a
cookbook and any of its dependencies be present on the node being managed. As a
result, chef-solo provides a limited subset of the full chef server mode of operation.
Most of the features that chef-solo is missing revolve around search and centralized
data management, which are not critical for managing virtual machines or a small
collection of nodes. The installation and maintenance is simple, but the feature set
is smaller.

Installing the Chef server will give you access to the full set of Chef functionality.
This mode requires access to a Linux-based host that is network-accessible by the
nodes and workstations that will interact with the system. Thanks to the recent effort
from the folks at Chef (formerly Opscode), the process of installing Chef has been
greatly simplified. The benefits of this installation model are that you get centralized
management, search, user authentication, and such, but at the cost of managing your
own service.

Chapter 1

[9]

If you need the features of Chef but do not want to maintain your own server,
hosted Chef is a great option for you. Hosted Chef (https://manage.opscode.com/
signup) gives you all the features of a self-hosted Chef but without having to worry
about upgrades, extra hardware, or system availability. For a small infrastructure
(up to five hosts), hosted Chef is free and a great way to get started. Beyond this,
plans have a monthly fee, and the price will vary according to the number of hosts
you want to manage.

Installing chef-solo
Chef-solo is designed for individuals who do not need a hosted installation
for a large-scale infrastructure management. Typical use cases of chef-solo
include developers managing virtual machines, test installations, or small-scale
infrastructure management. The installation of chef-solo is as simple as installing
a single Ruby gem.

The Ruby gem
For those who are not intimately familiar with Ruby, a Ruby gem is a mechanism
to package, deliver, and manage Ruby code. These packages may be libraries that
provide functionality for developers, or they may be composed only of scripts and
tools. Chef-solo is, like many things in life, somewhere in the middle. The gem
contains a set of libraries that make up the core functionality as well as a suite of
scripts that are used by end users. Before you install Chef, you should consider
installing Ruby Version Manager (RVM), rbenv, chruby, or another Ruby manager
of your choice to keep your gem collections isolated.

Managing gems
A great tool to manage your gems is RVM. The simplest way to install RVM is to
use the installation script provided by the development team on the RVM website
(http://rvm.io). The following command will download the script and pipe it
through bash:

curl -sSL https://get.rvm.io | bash -s stable

Once it is installed, you will initially need to include RVM's functionality in your shell:

source ~/.rvm/scripts/rvm

http://rvm.io

Installing Chef

[10]

Additionally, you might need to add the previous command line to your shell's
startup scripts (such as ~/.bashrc or ~/.zshrc, depending on which shell you use).
Once RVM is installed, you will want to install a recent version of Ruby, for example,
Ruby 1.9.3:

rvm install 1.9.3

Once Ruby 1.9 is installed, you will want to create a gemset. A gemset is RVM's way
of isolating gems inside a container, and it will provide you with a place to install
gems in such a way that they will not conflict with other gems. This has the benefit
of allowing you to install anything you want, without requiring administrative
privileges and keeping gems from conflicting with each other. A gemset can be
created using the following command:

rvm use 1.9.3@chef --create

The previous command will simultaneously create the gemset named chef (if it does
not exist) for your installation of Ruby 1.9.3 and then set it as the active gemset. Once
you start using this new gemset, you will want to install the Chef gem—this contains
chef-solo and all the command-line tools you need to work with Chef—using the gem
command-line tool:

gem install chef

Verifying that chef-solo works
Now that the Chef gem is installed, it is time to verify that everything is working
fine. In order to use chef-solo, you need to give the following information to it:

•	 What recipes to apply by providing a run list in a file named node.json
•	 What the recipes are—these are stored in cookbooks that are found in

the cookbooks directory
•	 How to find the cookbooks and the run list via a file named solo.rb

For simplicity, we will store all of these files inside of the chef directory in your
home directory. You are free to put things where you see fit as you become more
comfortable working with Chef.

In order to exercise our new tool, we will do something simple: we'll write a recipe
that will create an example.txt file in your home directory. The recipe we create
will be called create_file, and we'll put that recipe inside a cookbook, which will
be named demo.

Chapter 1

[11]

First, create the directory that will contain the demo cookbook's recipes (and any
in between):

user@host:~ $ mkdir -p ~/chef/cookbooks/demo/recipes

Next, add the following code to a file, create_file.rb, located in the demo
cookbook directory you created at ~/chef/cookbooks/demo/recipes:

file "#{ENV['HOME']}/example.txt" do
 action :create
 content "Greetings #{ENV['USER']}!"
end

This tells Chef that we want to create a file, $HOME/example.txt. Its contents
should be Greetings $USER, where $USER will be replaced with the value of
$USER, typically the login name of whoever is executing the recipe.

For those unfamiliar, UNIX (and Windows as well) uses
environment variables as a mechanism to exchange data between
processes. Some environment variables are set when the user logs in
to the system such as HOME, USER, and a variety of others. These
variables are available in Ruby using the ENV hash, where the keys
are the variable names. In a UNIX shell, these are accessed using the
$ prefix. So, the user's home is referred to as $HOME in the shell and
ENV['HOME'] inside Ruby.

Now we will need to create a JSON document that describes what chef-solo should
execute. JSON is an acronym for JavaScript Object Notation, and Chef uses JSON
extensively because it is easy to parse, human readable, and easy to generate from all
sorts of tools and languages. Create a file, node.json, located in our work directory
(~/chef/ in this case) and add the following content in order to tell Chef that we
want to execute the newly created create_file recipe in the demo cookbook:

{
 "run_list": [
 "recipe[demo::create_file]"
]
}

Here, we are defining the node as having a run list, which is just an array of things
to do, and that the run list contains one recipe, create_file, which it can find in the
demo cookbook (the general form of a recipe being cookbook::recipe).

Installing Chef

[12]

Finally, we'll tell Chef where to find the files we just created using a solo.rb file that
we will store in our working directory (~/chef in our case):

CHEF_ROOT="#{ENV['HOME']}/chef"
file_cache_path "#{CHEF_ROOT}"
cookbook_path "#{CHEF_ROOT}/cookbooks"
json_attribs "#{CHEF_ROOT}/node.json"

Now that you have populated the required configuration files, you can run
chef-solo and execute the run list specified. In our case, the run list is defined as
only one recipe, create_file, but can be as simple or as complex as needed. The
previous configuration tells Chef to load the node configuration from the file node.
json to look for cookbooks in ~/chef/cookbooks/ and to store any state data in
~/chef/. In order to execute these commands, you will want to run chef-solo:

chef-solo -c ~/chef/solo.rb

The -c option tells chef-solo which script contains the configuration. Once you do
this, you will see the actions that your recipe is performing:

Starting Chef Client, version 11.8.2

Compiling Cookbooks...

Converging 1 resources

Recipe: demo::create_file

 * file[/home/user/example.txt] action create

 - create new file /home/user/example.txt

 - update content in file /home/user/example.txt from none to b4a3cc

 --- /home/user/example.txt	 2014-01-20 23:59:54.692819000
-0500

 +++ /tmp/.example.txt20140122-13411-1vxtg7v	 2014-01-20
23:59:54.692819000 -0500

 @@ -1 +1,2 @@

 +Greetings user!

Chef Client finished, 1 resources updated

Once it is completed, you will see that ~/example.txt contains the greeting that you
defined in the recipe. Now that you have successfully used chef-solo, let's move on to
the Chef service.

Chapter 1

[13]

Installing a Chef server
If your team needs to have centralized infrastructure management and does not
want to use a hosted platform, then a self-installed Chef server is a perfect fit. This
installation guide assumes that you will be running the Chef server on a supported
Linux-based system.

The Chef service components can be installed on a single machine without any issue.
Installing it on a single host will limit your ability to scale or be highly available, but
will provide a very simple path to getting started with the Chef service.

Requirements and recent changes
Since the Chef service is designed to be a multiuser platform and provides
functionalities that chef-solo does not offer, the installation is more complex and
involves more software to achieve this functionality. Services such as Solr for full-text
indexing and PostgreSQL for data storage can be a significant resource for consumers,
so you will want to install Chef on a host with sufficient memory and disk space.
A system with 2 GB of memory and 5-10 GB of disk space available will be plenty
for a small to medium sized installation. You will need more resources as your
requirements for data storage and indexing increase over time, so plan accordingly.

Additionally, for those who have installed the Chef server before, the installation path
has been greatly simplified. In addition to replacing CouchDB with PostgreSQL as the
primary data storage engine, there is now a single omnibus installation package for
Chef that installs all of the requirements for Chef at a single location so that it operates
in isolation and does not require dependencies to be installed separately.

Installation requirements
In order to install the Chef service, you will need to have the following:

•	 A system running a supported Linux variant (64 bit Ubuntu Linux 10.04
through 12.10 or 64 bit Red Hat Enterprise Linux 5 or 6)—this can be physical
or virtual. If you do not have the local resources for this, AWS or RackSpace
cloud servers are good options.

•	 A network connection to the host in order to download the installer.
•	 Administrative privileges (using sudo or direct root access) on the host

where you are installing the services.
•	 Enough free space on the host to perform the download and installation

(minimum 500 MB, including the download, but 1 GB to 2 GB is preferred).

Installing Chef

[14]

What you will be installing
At the end of this section, you will have a fully functional Chef service installed and
ready to work with. Before you get started, let's look at what you will be installing on
your system so that you know what to expect. The components that make up a Chef
service are as follows:

•	 The Chef API service
•	 Message queue (AMQP)
•	 Data storage
•	 Search service
•	 Web-based management console

The Chef API service is responsible for delivering run lists and receiving information
from nodes as well as providing a way for a system administrator to configure
recipes, run lists, data bags, and the like. In order to generate this data, the API
service relies on its persistent data storage engine, in this case PostgreSQL, to store
its data. The option to search for data is provided by the Solr search engine, and
RabbitMQ is responsible for gluing them all together. Together, these components
provide Chef with the ability to distribute, store, index, and manage your
infrastructure's configuration data.

Chapter 1

[15]

Getting the installer
The easiest way to install Chef is through a single downloadable package, which is
provided for Ubuntu 10.04 through 12.10 and Red Hat Enterprise Linux Versions 5
and 6. This package, referred to as the omnibus installer, contains everything you
need to get a server up and running. You can find it on http://www.getchef.com/
chef/install/.

At the time of writing this, 11.0.10 is the latest version and is the one that will be used
for this book. The newer version of the 11.x series of Chef should have a very similar,
if not identical, configuration. Note that these installers are somewhat large, being
that they contain all of the dependencies needed. For example, the Ubuntu 12.10
package for Chef 11.0.10 is approximately 200 MB in size.

Although these are the officially supported distributions and
releases, it is entirely possible that these installers will work on
different but compatible distributions. It may be possible, for
example, to use CentOS instead of Red Hat Enterprise Linux or
Debian instead of Ubuntu. However, these will most likely require
some manual dependency resolutions and may not work without a
lot of effort (and even then, possibly not at all).

Installation outline
Installation on all supported platforms is relatively similar. The only key differences
are the names of the package files that you will download and the commands you
will use to install Chef.

The high-level steps you will take are as follows:

1.	 Downloading the Chef installer for your platform.
2.	 Installing the package as an administrative user.
3.	 Configuring the Chef service.
4.	 Testing the server using command-line tools.

Because steps 3 and 4 will be the same for both Ubuntu and Red Hat installation
procedures, the instructions will be in a section following the Red Hat installation guide.

Installing on Ubuntu
The following are instructions for an Ubuntu-based system; they were performed on
an Ubuntu 12.04 host, but should be identical for all supported Ubuntu distributions.
For Red Hat-based installation instructions, see the next section.

http://www.getchef.com/chef/install/
http://www.getchef.com/chef/install/

Installing Chef

[16]

Downloading the package
You can download the package by returning to the download page referenced
previously (http://www.getchef.com/chef/install/), or you can download
Version 11.0.10 directly from https://opscode-omnibus-packages.
s3.amazonaws.com/ubuntu/12.04/x86_64/chef-server_11.0.10-1.
ubuntu.12.04_amd64.deb.

Installing the package
In order to perform the installation, open a terminal on your Ubuntu host (either
locally or connect via SSH) as a user who has administrative privileges. This can be
done directly either as the root or any user who has permission to execute arbitrary
commands via sudo.

Once you log in to the host, navigate to where you want to store the package
(remember it's quite large, approximately 200 MB) and download the file using curl:

user@ubuntu:~ $ curl -O https://opscode-omnibus-packages.s3.amazonaws.
com/ubuntu/12.04/x86_64/chef-server_11.0.10-1.ubuntu.12.04_amd64.deb

Once the file is downloaded, the dpkg tool will be used to perform the package
installation:

user@ubuntu:~ $ sudo dpkg -i chef-server_11.0.10-1.ubuntu.12.04_amd64.deb

Once this is finished, the Ubuntu-specific portion of the setup is complete, and you
will need to configure Chef using the chef-server-ctl command, which we will
discuss in the Configuring Chef Server section, following the Installing on Red Hat
Enterprise Linux section.

Installing on Red Hat Enterprise Linux
Installation on a Red Hat Enterprise Linux distribution is as straightforward as
installing any other package. You download the package to the local disk and
install it using RPM tools.

Downloading the package
You can download the latest version of the package by returning to the download
page referenced previously (http://www.getchef.com/chef/install/), or you
can download Version 11.0.10 directly from https://opscode-omnibus-packages.
s3.amazonaws.com/el/6/x86_64/chef-server-11.0.10-1.el6.x86_64.rpm.

http://www.getchef.com/chef/install/
https://opscode-omnibus-packages.s3.amazonaws.com/ubuntu/12.04/x86_64/chef-server_11.0.10-1.ubuntu.12.04_amd64.deb
https://opscode-omnibus-packages.s3.amazonaws.com/ubuntu/12.04/x86_64/chef-server_11.0.10-1.ubuntu.12.04_amd64.deb
https://opscode-omnibus-packages.s3.amazonaws.com/ubuntu/12.04/x86_64/chef-server_11.0.10-1.ubuntu.12.04_amd64.deb
http://www.getchef.com/chef/install/
https://opscode-omnibus-packages.s3.amazonaws.com/el/6/x86_64/chef-server-11.0.10-1.el6.x86_64.rpm
https://opscode-omnibus-packages.s3.amazonaws.com/el/6/x86_64/chef-server-11.0.10-1.el6.x86_64.rpm

Chapter 1

[17]

In order to perform the installation, open a terminal on your Red Hat host (either
locally or connect via SSH) as a user who has administrative privileges. This can be
done directly either as the root or any user who has permission to execute arbitrary
commands via sudo.

Once you log in to the host, navigate to where you want to store the package
(remember it's quite large, approximately 200 MB) and download the file using curl:

user@rhel:~ $ curl -O https://opscode-omnibus-packages.s3.amazonaws.com/
el/6/x86_64/chef-server-11.0.10-1.el6.x86_64.rpm

How long this takes will vary according to the available bandwidth but should take
somewhere between 5 and 20 minutes on a reasonably fast connection.

Once the file is downloaded, the rpm tool will be used to perform the package
installation:

user@rhel:~ $ sudo rpm -ivh chef-server-11.0.10-1.el6.x86_64.rpm

Once this is finished, the Red Hat-specific portion of the setup is complete, and you
will need to configure Chef using the chef-server-ctl command, which we will
discuss in the following section.

Configuring a Chef server
Historically, installing Chef requires manual editing of configuration files, choosing
RabbitMQ credentials, installing CouchDB, and a handful of other tasks. Now, with
the omnibus installer, all of this is taken care of for you. If you have been following
along, your system has the Chef server and all of its dependencies installed on the
system in the /opt/chef-server directory.

Included with the installation of the package is a shell script, chef-server-ctl
(located at /opt/chef-server/bin), which is responsible for configuring your
newly installed Chef server. In order to configure your services, you will need to
run it as root because the scripts will need to modify your system in ways that your
regular account may not be able to. Initializing the configuration tool is as simple as
issuing the following command:

sudo chef-server-ctl reconfigure

Running this script may take a few minutes, and it will produce a lot of output while
it is doing its work. While it is running, let's take a few minutes to discuss how it
works and what it is doing.

www.allitebooks.com

http://www.allitebooks.org

Installing Chef

[18]

Understanding how chef-server-ctl works
Earlier in this chapter, you were briefly introduced to the chef-solo tool. You
saw how it can be used to manage your local server using on-disk recipes and
configuration data. The Chef team has leveraged this ability to do just that with
the Chef server using chef-solo to bootstrap the server configuration. If you were
to look at the code for the /opt/chef-server/bin/chef-server-ctl script, you
would see that the last line in the script executes the following command:

/opt/chef-server/embedded/bin/omnibus-ctl chef-server /opt/chef-server/
embedded/service/omnibus-ctl $@

If you follow the trail and dig into the omnibus-ctl script, you will find that it is just
a wrapper around the omnibus-ctl Ruby gem. Digging into the omnibus-ctl gem,
you will see that in the end, the reconfigure command you pass on the command
line is a Ruby method that makes the following call:

run_command("chef-solo -c #{base_path}/embedded/cookbooks/solo.rb -j
#{base_path}/embedded/cookbooks/dna.json")

This tells us that the Chef omnibus package uses chef-solo to configure itself—a
pretty clever trick indeed! You can see just how powerful a tool chef-solo can be,
being able to configure and reconfigure the Chef service.

What's happening on my server?
What you will probably notice right away is that a lot of text is being scrolled past
in your terminal window. If you were to look at the contents, you would see that
it shows you the actions that are being taken by chef-solo to provision your new
services. As there is a lot of information going past (thousands of lines), here is a
high-level overview of what is happening on your host:

1.	 A new user, chef_server, and its corresponding group are being provisioned.
2.	 Chef services are being set up, and startup scripts for upstart are being

placed in the appropriate system directories. The Run scripts for Chef
services are located at /opt/chef-server/sv.

3.	 Chef state directories are being created in /var including /var/opt/chef-
server and /var/log/chef-server.

4.	 RabbitMQ is being configured to store data in /var/opt/chef-server and
log the output to /var/log/chef-server as well as its startup scripts in /
opt/chef-server/sv/rabbitmq/run.

Chapter 1

[19]

5.	 PostgreSQL is being configured with its data in /var/opt/chef-server/
postgresql/data along with a user, opscode-pgsql, to run the service.
Some system-level changes to share memory sizes are being set via sysctl
to make PostgreSQL work as well as persisted in systctl.conf.

6.	 Solr is being set up to work with the configuration and data rooted in
/var/opt/chef-server/chef-solr/, with the run script being placed
in /opt/chef-server/sv/chef-solr/run.

7.	 Chef-expander (the data-indexing service) is being configured for /var/
opt/chef-server/chef-expander as its working directory with Solr and
RabbitMQ endpoints on the localhost. The run script is located at /opt/
chef-server/sv/chef-expander/run.

8.	 The Chef bookshelf metadata service is readied in /var/opt/chef-server/
bookshelf/ with its run script at /opt/chef-server/sv/bookshelf/run.

9.	 Erchef, the Erlang Chef service, is installed and pointed at the local Solr,
RabbitMQ, bookshelf, and PostgreSQL services.

10.	 The system is then bootstrapped using the bootstrap recipe. This recipe
verifies that the system is running (by checking that the http://
localhost:8000/_status returns an HTTP 200 response) and installs the SSL
certificate for the web-based UI in /etc/chef-server/chef-webui.pem.

11.	 The web-based UI configuration files are generated and placed in /var/opt/
chef-server/chef-server-webui/.

12.	 A copy of nginx to host the web UI is placed in /var/opt/chef-server/
nginx, and the initial self-signed SSL certificates as well as the static assets
are installed in /var/opt/chef-server/nginx/html.

13.	 The Chef API testing framework, chef-pedant, is installed.
14.	 Finally, /etc/chef-server/chef-server-running.json is generated with

the current configuration settings for your Chef services.

Clearly, there is a lot happening here; if you have any outstanding concerns about
what is being done, be sure to read through the output. One of the great things
about Chef is that the recipes are just a set of scripts that you can open and view
the contents of, and the output shows you what is happening during the execution.
Everything it does is transparent and manageable by you.

Installing Chef

[20]

Verifying that the services are running
Once the configuration of your services is complete, you will want to validate
that the required services are running. Again, the chef-server-ctl script will
be used, but we will invoke the status subcommand instead of the reconfigure
subcommand, as shown in the following code:

user@host:~ $ sudo chef-server-ctl status

run: bookshelf: (pid 3901) 3123s; run: log: (pid 3900) 3123s

run: chef-expander: (pid 3861) 3129s; run: log: (pid 3860) 3129s

run: chef-server-webui: (pid 4053) 3095s; run: log: (pid 4052) 3095s

run: chef-solr: (pid 3819) 3135s; run: log: (pid 3818) 3135s

run: erchef: (pid 4230) 3062s; run: log: (pid 3937) 3117s

run: nginx: (pid 4214) 3064s; run: log: (pid 4213) 3064s

run: postgresql: (pid 3729) 3146s; run: log: (pid 3728) 3146s

run: rabbitmq: (pid 3423) 3172s; run: log: (pid 3422) 3172s

The status subcommand will show you the process ID of each component, how long
it has been running for, the PID of the logging process associated with that service,
and how long the logging service has been running. For example, we can see that
chef-server-webui has a PID of 4053 and has been running for close to an hour,
and the logger has a PID of 4052, having been running for just as long as the service.

As you can see, the installation of Chef yields a number of components that will
need to be up and running in order to successfully use Chef. You should have the
following components running and listening on the following network ports:

Component What to look for in the process list Port(s) Public?

Chef API server Erchef and nginx 80, 443 Yes

Web management
console

chef-server-webui and nginx 80, 443 Yes

Data indexer chef-expander N/A N/A

Solr java (running start.jar in the Chef
directory)

8,983 No

PostgreSQL postmaster 5,432 No

RabbitMQ beam.smp running rabbit 5,672 No

Chapter 1

[21]

Public components need to be made available to any clients, nodes, or end users that
expect to use the Chef service over the network. Configuring your infrastructure to
ensure that your services are available via the network is outside of the scope of this
book as there are a near-infinite number of possible network configurations.

At a higher level, make sure that any firewall devices or packet-filtering systems are
not preventing traffic from reaching these services if you see that they are running,
but are having difficulties in connecting to them. If any of these services are not
running, you will need to consult the logfiles generated by the service to determine
what might be preventing them from starting up.

Validating that your service is working
In order to work with Chef, you will need a way to interact with it. Fortunately,
Chef provides a suite of command-line utilities, which we will discuss at length as
the book progresses. There is one primary tool, knife, that allows an administrator
to interact with the service in the command line. The knife tool is run from a
workstation and provides many commands to view, search, and modify data
maintained by the Chef service. Once you have installed and verified that all the
services are running, we can move on to setting up knife.

You will see that the standard place to store your Chef configuration
data is in $HOME/.chef (on a UNIX-like system.) This is not
mandatory, and these files can be stored anywhere you like.

The knife tool communicates with the Chef server via HTTP and uses certificates
for authentication between the workstation and the server. In order to get started
with knife, we will need to do two things: gain access to the certificates that were
generated during the installation of Chef and then use those credentials to set up a
new user in the system.

In the following examples, we will be using the host that the Chef services were
installed on as our workstation (where we will use knife). If you want to use a
different host, you will need to get the required certificate (.pem) files to your local
machine using scp or some other mechanism. By using the following commands,
we can get the required authentication materials into our work directory:

mkdir $HOME/.chef

sudo cp /etc/chef-server/admin.pem $HOME/.chef

sudo cp /etc/chef-server/chef-validator.pem $HOME/.chef

sudo cp /etc/chef-server/chef-webui.pem $HOME/.chef

sudo chown –R $UID $HOME/.chef

Installing Chef

[22]

Chef uses a signed header authentication for requests to the API, which
means there must be a shared key that is present on both the client and
the server. Chef-server will generate the chef-validator.pem file
when it is configured. New nodes or clients use the chef-validator.
pem file to sign the requests used to register themselves with the system.

Once you have these files copied into your Chef work directory, it is time to
configure knife itself. Fortunately, knife has an interactive configuration mode that
will walk you through the process of generating a configuration file. First, ensure
that you are using your Chef gemset (if you are using RVM as we discussed earlier)
and then run knife on your workstation (again, in this example, we are using our
Chef service host for both purposes):

user@chef:~$ rvm use 1.9.3@chef

user@chef:~$ knife configure -i

When you run knife with the -i flag, you will be prompted by the following
questions, which you can answer with the defaults for almost everything
(non-default answers are in bold):

WARNING: No knife configuration file found

Where should I put the config file? [/home/user/.chef/knife.rb]

Please enter the chef server URL: [https://localhost:443]

Please enter a name for the new user: [user]

Please enter the existing admin name: [admin]

Please enter the location of the existing admin's private key: [/etc/
chef-server/admin.pem] ~/.chef/admin.pem

Please enter the validation clientname: [chef-validator]

Please enter the location of the validation key: [/etc/chef-server/chef-
validator.pem] ~/.chef/chef-validator.pem

Please enter the path to a chef repository (or leave blank):

Creating initial API user...

Please enter a password for the new user:

Created user[user]

Configuration file written to /home/user/.chef/knife.rb

user@chef:~$

Chapter 1

[23]

As mentioned earlier, this does two things:

•	 First, it uses the validation key and client name specified at the prompts to
contact the API service and register a new client (user) with the service

•	 Secondly, it generates a configuration file for knife that has the settings
needed to connect to the service from now on

Since Chef and its components are written in Ruby, the resulting configuration file is
a Ruby script, which contains some code that configures knife so that it knows what
API server to connect to, which key files to use, what client name to use, and so on.

An inspection of the configuration file that was generated by the previous command
will look like the following:

log_level :info
log_location STDOUT
node_name 'user'
client_key '/home/user/.chef/user.pem'
validation_client_name 'chef-validator'
validation_key '/home/user/.chef/chef-validator.pem'
chef_server_url 'https://localhost:443'
syntax_check_cache_path '/home/user/.chef/syntax_check_cache'

Because we are using the service host as our workstation, the Chef server URL
points to the localhost. If your workstation were to be a different system such as
your laptop, then this URL would be the IP or hostname of the host running the
Chef service.

Ensuring that your knife configuration works
After setting up knife, we can use it to validate that it was configured correctly
by querying the Chef server using some simple commands. The knife commands
follow the format knife <command> <subcommand>, where command is either a
client, configuration, cookbook, cookbook site, data bag, environment, exec, help,
index, node, recipe, role, search, ssh, status, or tag. Subcommands will vary with
the command, but they typically include things such as show, create, list, and delete
(among others).

As there will initially be no nodes, cookbooks, recipes, roles, data bags, and such,
we will query the list of clients that the server knows about. This should be a list of
two clients: chef-webui (as it is a consumer of the API itself) and chef-validator
(without it, it wouldn't be possible to register a new client).

Installing Chef

[24]

The client command, with the list subcommand, prints a list of clients that the
server knows about. At this point, running the command would look like this:

user@chef:~$ knife client list

chef-validator

chef-webui

user@chef:~$

If you do not get the previous output, but get an error instead,
you will need to go back and make sure that all the previous
steps are completed and verified.

Once you know that it works, you can use knife to interact with the API.
Unfortunately, we do not have much data in the system just yet, but we can use the
show subcommand in conjunction with the client command and a client name to
display more detailed information about a client:

user@chef:~$ knife client show chef-webui

admin: true

chef_type: client

json_class: Chef::ApiClient

name: chef-webui

public_key: -----BEGIN PUBLIC KEY-----

MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAos5cQ1NxP7zKf1zRM33g

YeVyHNOO5NcICjSIvqQ5A37wwLfgtPLJQqboW7ZcNL3xYcKOlfYSEK7xha3ss8tT

A+XMifaFp3JsdheyPeIJir2bc9iltUUcbpw9PJ2aQKTBlFNx23A7ag+zBfxcDjbY

7RkdcziwB74ynd6e/K8c0JTRnA5NxoHkFc6v8a/itwujGwugWJXDQunWfCmAvjws

JgDOUu2aHOCVIVkc8it51Sc7Anx0YnCjNmdhz1xIo0MOVNOEmC9ypP0Z7mVv1C69

WWBOEvS9zimjXo4rxBwFmWkPEIG6yPQjhuNmFd69K14vZQtAsH07AZFRSS7HLWnZ

WQIDAQAB

-----END PUBLIC KEY-----

validator: false

user@chef:~$

Chapter 1

[25]

Summary
Congratulations! If you have gotten this far, you now have a fully functional Chef
service and a copy of the command-line utilities, including chef-solo. You now have
covered the following:

•	 Using RVM
•	 Installing chef-solo
•	 Creating a simple recipe
•	 Running recipes with chef-solo
•	 Installing the Chef service
•	 Getting started with the knife utility
•	 Verifying that your Chef service is operating correctly

Now that you are able to use your Chef service, we can begin to investigate how to
model our environment with Chef and see what it can do for us.

Modeling Your Infrastructure
Now that you have set up your server or are using the hosted offering, let's discuss
how to model your infrastructure with Chef. Chef allows you to do this using
building blocks that should be familiar to any system administrator.

This chapter will cover how to model your infrastructure with Chef. This will
involve the following:

•	 Learning some terminologies and concepts relevant to Chef
•	 Analyzing a simple application infrastructure and seeing how it can be

modeled with Chef
•	 Decomposing our architecture into the various components to be modeled
•	 Examining how data is stored and configurations are generated with Chef
•	 Bootstrapping and provisioning hosts with cloud providers such as AWS and

Rackspace Cloud

Getting to know Chef
As with any other tool or system, there are new concepts and terminologies to be
learned. Here are some terms that you may have seen or will see in this chapter:

•	 Node: A node is a system that is managed by Chef. These can be servers,
desktop systems, routers, and anything else that is capable of running the
Chef client and has a supported operating system.

•	 Workstation: A workstation is a special node that is used by a system
administrator to interact with the Chef server and with nodes. This
is where the command-line tools are executed, specifically the knife
command-line tool.

Modeling Your Infrastructure

[28]

•	 Bootstrap: This is a process of setting up a node to be used as a Chef client.
This involves performing any work required to install the dependencies for
Chef as well as Chef itself.

•	 Bootstrap Script: There are a number of possible ways to install Chef,
Ruby, other core requirements, as well as any additional configuration that
is needed for your specific systems. To provide this level of flexibility, the
bootstrap process is scripted; on Windows, this is a batch file.

•	 Recipe: Recipes provide the instructions required to achieve a goal, such
as installing a software package, configuring a firewall, provisioning users,
installing printers, or managing other system resources. These are written
in Ruby and executed on the nodes specified by the system administrator
through the Chef console.

•	 Cookbook: A cookbook is a collection of recipes; typically, a cookbook
provides one specific group of actions such as installing Apache or MySQL,
providing Chef resources for a specific software tool, and so on.

•	 Attributes: Various components of the system have their own attributes
and properties that describe how the software is to be configured. These
properties are defined at various levels, ranging from node-specific settings
to general defaults for a cookbook or a role.

•	 Role: A role is a collection of recipes and configuration data that describe
how a resource should be configured in order to play that role in your
overall system architecture. Examples of roles might include MSSQL
Servers, Exchange Servers, IIS Servers, file servers, and so on. A role
does not contain any knowledge of resources (systems) to apply the
role to, only the configuration data.

•	 Run List: A run list is a list of recipes to be applied to a given node in a
certain order. A run list can be composed of zero or more roles or recipes,
and the order is important as the run list's items are executed in the order
specified. Therefore, if one recipe is dependent upon the execution of
another, you need to ensure that they run in the correct order.

•	 Resource: Resources are a way of describing what a recipe is performing.
Some examples of resources would include files, directories, printers, users,
packages, and so forth. A resource is an abstraction of something that is
concretely implemented in a provider.

Chapter 2

[29]

•	 Provider: A provider is a concrete implementation of a resource. For
example, a user is a generic resource, but LDAP users or Active Directory
users are concrete implementations of a user resource. The type of provider
being selected will depend on some factors, such as the platform.

•	 Data bags: Data bags contain shared data about your infrastructure.
Information that is not specific to a role or a resource, such as firewall rules
and user accounts, will be stored in data bags. This is a good place to store
system-wide configuration data.

•	 Environments: Environments provide a level of encapsulation for resources.
For example, you may have two identical environments, one for testing
and one for production. Each of these may have similar setups but different
configurations, such as different IP addresses and users.

Modeling your infrastructure
Now that you're more familiar with some of the terms you need to know, let's take
a look at a sample model and map it to Chef's components. At a higher level, the
approach we will take is as follows:

1.	 Define an overview of your infrastructure that is decomposed into roles
to be performed within the model (web servers, firewalls, database servers,
and so on).

2.	 Collect or develop recipes that describe the configuration, software, and
actions to be applied for those roles.

3.	 Bootstrap hosts with the Chef client so that they can participate in
being managed.

4.	 Add any required configuration data into data bags to be used by nodes
when running recipes such as IP address ranges, hostnames, users, software
keys, or anything else that is specific to the active configuration.

5.	 Segregate hosts and configurations into different environments to provide a
replicated infrastructure (development, staging, production, and so on). This
step is optional.

Modeling Your Infrastructure

[30]

In this chapter, we will be using Chef to build the infrastructure for a multi-tiered,
photo-sharing application whose components are diagrammed in the following image:

Building an architecture diagram gives us a good overview of our system so that we
can have a map of the system before we start building it. It is important to note that a
model of our infrastructure doesn't need to be mapped directly to resources (physical
or virtual); rather, it provides an abstract, high-level overview of your systems. Once
you have the model, you can apply it to the resources available as you see fit.

Our sample service-oriented web application is composed of the following
software services:

•	 A frontend web application service
•	 An image-processing engine
•	 An image search engine

Each of these components is a role that is being played in the system. These roles
may coexist on shared resources or may be applied to dedicated resources. A
service-oriented architecture is a good example to work with for several reasons:

•	 It is flexible and scalable
•	 It will provide us with a complete system that is composed of multiple

independent components to model, making it more interesting as an example

Chapter 2

[31]

In this example, in addition to these roles, we might want to further configure
our infrastructure to provide two different environments: one for staging and
integration testing and one for production. Again, because this is a model, our
staging environment and production environment will be composed of the same
roles and have the same overall architecture; however, each will have different
resources and configuration data associated with them. You may choose, for
example, to consolidate resources in a test environment in order to keep costs down.

For this initial overview, we will assume that we have an account with a
popular cloud-server-hosting company, that the network and operating systems
are installed and operational, and that we have a functional and configured Chef
service and workstation.

In our hypothetical system, each service can be mapped to a specific role in Chef.
To model the infrastructure described, we will have a number of roles, one per
element in our architecture. In this case, we will build one role for each service
in our stack as they provide very specific features.

Roles
A role describes a part that a system plays in your infrastructure through a
combination of recipes to execute and configure data. These roles can be fine-grained
or broadly described, depending on your needs. There are benefits and drawbacks
to both the approaches: fine-grained roles are smaller and easier to work with but
require a larger number of roles to manage, whereas broadly scoped roles are less
flexible and not as reusable.

For example, consider a typical LAMP (Linux, Apache, MySQL, and PHP) stack.
The stack could be represented by three roles: an Apache web service with PHP, a
MySQL database service, and an OpenSSH service for administration. Alternatively,
you could define one role that describes the installation of the MySQL database
service, the SSH service, and the Apache service.

Roles themselves know nothing about resources; instead, they are a description of
how to configure a system in order to fill that role. The system administrator, via the
chef console, assigns roles to the node(s) that they will be applied to. This may be a
one-to-one, one-to-many, or many-to-one mapping, depending upon your capacity
planning. At any time, an administrator can change the list of roles that are applied
to a node, adding or removing them as needed. For example, you might decide to
apply all your roles to one host today for cost savings, but scale them out in the
future as your budget and needs grow.

Modeling Your Infrastructure

[32]

Defining roles
Let's take a look at some roles we might define to model our SOA application on
as described earlier in the chapter. Here, we will define fine-grained roles as they
are easier to dissect and deploy onto separate nodes later. At a higher level, the
following roles are what our services need to provide.

A web application service role
When defining what a web application server will need to do, we will need
the following:

•	 nginx HTTP service
•	 Ruby 2.0
•	 Memcached service
•	 PostgreSQL client libraries
•	 Open TCP ports on the external networks: 80 for HTTP and 443 for HTTPS

An image-processing role
This role requires some image-processing libraries and custom software to
be installed:

•	 ImageMagick libraries
•	 Git (to check out the source code)
•	 Build tools (to compile our source)
•	 The latest version of our image-processing software

An image search role
A service that provides image searching through perceptual hashing will provide an
image search role functionality. This role will require the following:

•	 A Java runtime environment (JRE or JDK)
•	 Our custom-built service that is developed in Java
•	 TCP port 8999 open to internal hosts

Chapter 2

[33]

A PostgreSQL service role
For the PostgreSQL database service role, the list is as follows:

•	 PostgreSQL 9.x server
•	 TCP port 5432 open to internal network clients
•	 Database backup software to back up data to an external cloud data storage

service such as S3

A Solr service role
A system that provides the Apache Solr service will need the following:

•	 A compatible Java runtime (Oracle JRE or OpenJDK)
•	 TCP port 8993 open to internal servers
•	 Apache Solr itself

An OpenSSH service role
An OpenSSH service role will need the following:

•	 OpenSSH server
•	 TCP port 22 open on all the interfaces

Notice that these roles have no specific host information, such as IP addresses or
servers to install the software on to; instead, they are blueprints for the packages we
need to install and the configuration that those roles will provide, such as open ports.
In order for these role definitions to be made as reusable as possible, we will write
our recipes to use node- and role-specific configuration or data from our data bags to
provide the required configuration data.

In order to define these roles, you will need recipes that describe the sets of steps
and operations that will be applied to hosts in order to fulfill each role. For example,
the PostgreSQL database server will require you to install PostgreSQL, open the
firewall, and so on. These definitions are created by developing recipes that contain
the necessary information to perform the tasks required, such as installing packages,
generating configuration files, executing commands, and so on. Most of the services
mentioned here (our custom imaging software being the likely exception) have
cookbooks that already exist and are available for download.

Modeling Your Infrastructure

[34]

Implementing a role
Now that you have seen what our infrastructure might look like at a higher level,
let's take a look at how we will go about implementing one of our roles in Chef.
Here, we will implement the PostgreSQL server role as it is simple to configure
and has a very robust cookbook available already.

As mentioned before, you will need to either develop your own cookbooks or
download existing ones in order to build your systems. Fortunately, there are
thousands of cookbooks already written (over 1,500 as of this writing in the Chef
Supermarket) and, as we will see in further chapters, developing new cookbooks
is a straightforward process.

In order to define a role, we need to create it; this can be accomplished through
a web interface or by using knife. Here, and elsewhere in this book, we will use
knife as the way to interact with the Chef service because it provides a consistent
experience across self-managed and hosted Chef. So let's get started!

The first thing you will need to do is create a new role with knife, which is as simple
as executing the following:

knife role create -d postgresql_server

This will tell knife to connect to your Chef server's API and create a new role named
postgresql_server. The -d flag tells knife to skip opening an editor and instead
accept the default values. If you want to see what the underlying JSON looks like,
omit the -d flag and make sure you have an appropriate EDITOR environment
variable set. Once you run this, you can verify that your role was created with the
following command:

knife role list

This will show you that you have a single role in the system, postgresql_server.
Currently, however, this role is empty and has no information associated with it, just
a name and an entry in the system. Now that we have a role in the system, let's look
at how we can work with some recipes to make our role do something useful, such
as install the PostgreSQL service.

Chapter 2

[35]

Determining which recipes you need
Recipes are how Chef knows how to make sure that the correct packages are
installed, what commands need to be executed in order to open ports on the
firewall, which ports need to be opened, and so on. Like any good cook, Chef has
a wide array of cookbooks at its disposal, each of which contains recipes relevant
to that particular set of functionality. These cookbooks can either be developed by
the system administrator or downloaded from a variety of places such as GitHub,
BitBucket, or from a collection of cookbooks maintained by the Chef community on
the Chef Supermarket (http://supermarket.getchef.com). We will discuss how to
download and get started with some simple recipes and then further discuss how to
develop and distribute our own recipes in later chapters.

Considering how we have arranged our roles, we would need recipes to install and
configure the following:

•	 nginx
•	 A PostgreSQL server
•	 A PostgreSQL client
•	 Ruby 2.0
•	 Solr
•	 Java
•	 OpenSSH
•	 A Memcached server
•	 Memcached client libraries
•	 ImageMagick
•	 Git
•	 A Custom imaging software (we will call it Image-O-Rama)

Here, we will take an in-depth look at the recipe required for our PostgreSQL server
and how we can leverage that to install the service on a host.

http://supermarket.getchef.com

Modeling Your Infrastructure

[36]

Installing a cookbook
Installing a cookbook for use on our clients is quite simple and involves only
two steps:

1.	 Developing a cookbook, or downloading the cookbook from somewhere.
2.	 Uploading the cookbook to the Chef service using knife.

To get started, we will download an existing PostgreSQL cookbook from the Chef
cookbook collection and upload it to our Chef service. Note that in order to install
the PostgreSQL cookbook, you will also need to install any dependencies that are
required. For simplicity, they are provided here as part of the instructions; however,
you may find that when you experiment with other cookbooks in the future, you will
need to download a few cookbooks before all of the dependencies are met, or use a
tool such as Berkshelf for managing them.

To download a cookbook from Chef's provided collection of cookbooks, we will use
knife with the following command:

knife cookbook site download <cookbook_name>

In this case, we will need to download five different cookbooks:

•	 postgresql
•	 build-essential
•	 apt
•	 chef-sugar
•	 openssl

For each of the items in the list, we will download them using the following command:

knife cookbook site download postgresql

knife cookbook site download build-essential

knife cookbook site download apt

knife cookbook site download chef-sugar

knife cookbook site download openssl

Each download will result in an archive being downloaded to your workstation.
These archives contain the cookbooks, and you will want to decompress them
after downloading them. They can be downloaded anywhere, but it would
probably be a good idea to keep them in a common cookbooks directory,
something like chef/cookbooks inside your home directory would be a
good idea if you need one.

Chapter 2

[37]

Once they are downloaded and decompressed, you will need to upload them to
the Chef service. This can be done with only one command using knife cookbook
upload as follows; they are uploaded from the directory in which you stored your
decompressed cookbooks:

knife cookbook upload -o . apt build-essential postgresql chef-sugar
openssl

This will upload the five cookbooks we downloaded and tell knife to search the
current directory by way of the -o . directive. Once this is done you can verify
that they have been installed using the knife cookbook list command.

Once they are installed, your cookbooks are registered with the Chef service, and we
can take a look at how we can configure and apply the PostgreSQL server to a new
Ubuntu host.

Applying recipes to roles
Now that you have some cookbooks registered with your Chef service, you need
to add them to a role's run list in order for their behavior to take effect on any
end hosts. The relationship between a recipe and any given node is shown in the
following diagram:

Because of the nature of this relationship, recipes deliberately have no knowledge of
individual nodes. Just as a recipe for chocolate chip cookies has no idea about who
manufactured the rolling pin and spatula; a Chef recipe is simply a set of instructions
on what to do and in what order to perform those actions.

Because we have uploaded our cookbooks to the system, we have already added
the recipes contained inside of those cookbooks to our system; therefore, we can
now associate a recipe with our recently created role. If you look at the contents
of the recipes directory inside of the postgresql cookbook, you will see that there
is a server.rb file. This describes a recipe to install the PostgreSQL server and is
what we will be adding to our postgresql_server role in order to perform the
actual installation.

To do this, we need to edit our role and add the recipe to its run list; we will do this
using knife.

www.allitebooks.com

http://www.allitebooks.org

Modeling Your Infrastructure

[38]

Ensure that you have a valid text editor in your EDITOR
environment variable; otherwise, you will have difficulty
editing your entities with knife.

In order to edit our role, we can use the knife role edit command:

knife role edit postgresql_server

This will open the JSON file that represents the postgresql_server role stored in
the Chef server in a text editor where you should see the following content:

{
 "name": "postgresql_server",
 "description": "",
 "json_class": "Chef::Role",
 "default_attributes": {
 },
 "override_attributes": {
 },
 "chef_type": "role",
 "run_list": [

],
 "env_run_lists": {
 }
}

The most important section of this JSON blob at this moment is the run_list
key—this is an array of all the things we want to run. This can be a list of recipes
or roles, and each of those has the following naming structure:

•	 recipe[cookbook::recipe] for recipes
•	 role[role_name] for roles

So our server recipe inside our postgresql cookbook would therefore be named
"recipe[postgresql::server]". This is exactly what we will be adding to our
role's run list JSON. Update the run_list entry from the original value of an
empty array:

"run_list": [

],

Chapter 2

[39]

To include our PostgreSQL server recipe, use the following code:

"run_list": [
 "recipe[postgresql::server]"
],

This is all we need to change now in order to apply the PostgreSQL server role to
our node.

Notice that we have not added any values to the role's attributes;
this means that our recipe will be executed using its default
attributes. Most recipes are written with some set of acceptable
default values, and the PostgreSQL server recipe is no different.

For now, there is no need to modify anything else, so save the JSON file and exit
your editor. Doing this will trigger knife to upload your modified JSON in place of
the previous JSON value (after doing some validation on your JSON contents), and
the role will now have the postgresql::server recipe in its run list. You should see
an output from knife indicating that the role was saved, and you can verify that this
is the case with a simple knife role show command:

knife role show postgresql_server

This will show you an overview of the role in a more human-readable format than
the source JSON. For example, our role should now have one entry in the run list as
shown in the following output:

chef_type: role

default_attributes:

description:

env_run_lists:

json_class: Chef::Role

name: postgresql_server

override_attributes:

run_list: recipe[postgresql::server]

Once this is complete, our role is now ready to be applied to one of our nodes. At this
point, we have uploaded our cookbooks, defined a role, and associated a recipe with
our newly created role. Now let's take a look at the final step: applying our new role
to a node.

Modeling Your Infrastructure

[40]

Mapping your roles to nodes
As has been discussed, roles are a definition of what components need to be brought
together to serve a particular purpose; they are independent of the hardware they
are applied to. This helps to separate concerns and build reusable components
to accelerate the configuration of infrastructure in new arrangements. In order to
manifest a role, it must have a node that the role is applied to; in order to manage a
node, it must have the Chef client and its dependencies installed and be registered
with the Chef service.

Once a node is registered with Chef, you can set node-specific properties, assign
roles and run the chef-client tool on the host in order to execute the generated
run lists. For our sample application stack, we may have the following hosts running
Ubuntu Linux 14.04:

•	 cayenne
•	 watermelon
•	 kiwi

Once they are bootstrapped and registered with the Chef service, we will then decide
which roles are to be applied to which nodes. This could yield a configuration that
looks like the following:

•	 cayenne
°° Web application service role

•	 watermelon
°° A PostgreSQL database role
°° A Solr search engine role

•	 kiwi
°° An image-processing role
°° An image search role

Without any hardware, roles are just an abstract blueprint for what needs to be
configured together to provide a particular type of functionality. Here, we have
combined our resources (cloud instances or dedicated hardware) and our recipes
to build a concrete instance of our services and software.

Chapter 2

[41]

In order to apply our newly created role to our host, watermelon, we will need to
bootstrap that host, which will install the Chef client on the host and then register
it with the Chef service. This is really a simple process, as we will see here, and is
achieved using the knife bootstrap command:

knife bootstrap -x root -d ubuntu14.04 <ip address>

For our example, the node will use an Ubuntu 14.04 host created
on DigitalOcean, an inexpensive cloud-hosting provider; you can
bootstrap just about any modern Linux distribution, but if you are
following along with the commands in the book, you will get the
best results by using an Ubuntu 14.04 machine.

This process will go through the steps required to install the Chef client on the node
and register it with your Chef service. Once it is complete, you will see that the Chef
client has finished with an output similar to the following:

Chef Client finished, 0/0 resources updated in 4.264559367 seconds

If you want to verify that the host has been added, a simple knife node list
command will show you that it has been registered with the Chef service. If you
don't see the client output above, or you don't see the newly bootstrapped node in
your list, make sure that the output of knife bootstrap doesn't indicate that anything
went wrong along the way.

Once our node is registered, we can add our postgresql_server role to our node's
run list using the following knife command:

knife node run_list set watermelon role[postgresql_server]

This command will set the run list on our new host, watermelon, to contain the
postgresql_server role as its only entry. This can be verified using the knife
node show command:

knife node show watermelon

Node Name: watermelon

Environment: _default

FQDN: watermelon

IP: 162.243.132.34

Run List: role[postgresql_server]

Roles:

Recipes:

Platform: ubuntu 14.04

Tags:

Modeling Your Infrastructure

[42]

Now that the node has a run list with entries, it's time to actually converge the
node. Converging a node means that the Chef server will compile the configuration
attributes and then provide the end host with a complete list of recipes to run along
with the required cookbook data and then execute them on the node.

Converging a node
Converging a node is done by executing the chef-client command-line utility
on the host; this can be done in one of two different ways. The simplest way is to
SSH into the host using an SSH client and then execute chef-client as the root;
another way is to use knife to execute a command on a set of hosts in parallel,
which will be discussed in later chapters. For now, simply SSH into your server
and run chef-client as the root:

root@watermelon:~# chef-client

The Chef client will connect to the Chef service and download any information
needed to execute its complete run list. A node's run list is determined by expanding
every entry in the node's run list until it is a list of recipes to execute. For example,
our node contains one element in its run list, the postgresql_server role. This role,
in turn, contains one entry, the postgresql::server recipe, which means that the
fully expanded run list for our node contains only one entry. In this simple case, we
could have just added the recipe directly to our node's run list. However, this has a
number of shortcomings, including not being able to add extra configuration to all
the PostgreSQL servers in our infrastructure, as well as a number of other reasons
that will be discussed in the future.

In addition to computing the run list, the Chef service will also determine what the
final set of configuration data for our node will look like and then deliver it to the
client. This is computed according to a set of rules shown later in this chapter. Once
that is delivered, the client will also download all the cookbooks needed in order
to know how to execute the recipes specified in the final run list. In our case, it will
download all the five cookbooks that we uploaded previously, and then, when the
client run is complete, the result will be presented in a running PostgreSQL server.

Once the client run is complete, it will report on how long the run took and how
many resources were modified. The output should look something like the following:

Chef Client finished, 8/10 resources updated in 61.524995797 seconds

Chapter 2

[43]

Assuming that nothing went wrong, you should now have a fully functional
PostgreSQL server deployed to your new host. This can be verified by looking
at the process list for a PostgreSQL process:

root@watermelon:~# ps ax |grep post

11994 ? S 0:00 /usr/lib/postgresql/9.3/bin/postgres -D

There you have it, with only one command; your node has now been provisioned as
a PostgreSQL database server. Now let's take a look at how we can use some other
features of Chef to model our infrastructure.

Environments
Beyond creating roles and having resources to apply them to, there are often
requirements around grouping certain resources together to create a distinct
environment. An example of this might include building a staging environment that
functions exactly like a production environment for the purposes of preproduction
testing and simulation. In these cases, we would have an identical set of roles but
would very likely be applying them to a different set of nodes and configuration
values. Chef achieves this separation through the environment primitive, which
provides a way to group separate configurations and hosts together so that you
can model similar, yet separate, portions of your infrastructure.

In our hypothetical infrastructure, the three hosts in our production environment
may be condensed down to one server in preproduction in order to save money
on resources (or for other reasons). To do this, we would need to bootstrap a node,
perhaps named passionfruit and then configure it to have all of the roles applied to
it, rather than spreading them out across systems, as shown in the following figure:

Modeling Your Infrastructure

[44]

Here, in the previous image, you can see that each environment has a very similar
setup but a different set of IP addresses and resources. Even though we have a
heterogeneous hardware scale in our environments (production has three nodes,
and preproduction has only one), any changes we make will be applied to all of the
systems in a consistent manner.

In order to achieve this type of functionality, Chef needs a way to organize and
compile the configuration data in order to provide it to the end host when the time
comes to configure the host. Now that we understand how to model our systems
with Chef, let's take a look at how Chef handles the configuration data to make all
of this happen.

Organizing your configuration data
Chef runs on configuration data—this data can be stored in a variety of different
locations, and with a variety of purposes. When computing the final configuration
for a given node, the sources of configuration data are then "squashed" into a single,
authoritative configuration to be deployed. Those sources include the following:

•	 Cookbooks: To provide reasonable defaults for recipes
•	 Nodes: Node-level overrides and defaults
•	 Roles: Per-role configuration data
•	 Data bags: System-wide configuration data storage

Data from these locations is combined to produce a final hash of attributes when
a client requests its run list from the server. Cookbooks provide a baseline set of
attributes that the recipes inside rely on. These attributes act as "sane defaults" for the
recipes that, in the absence of overriding values, are sufficient to execute the recipes
without extra work. Other sources, including the environment, role and node itself,
may in turn override these attributes in order to provide the final configuration.

When developing recipes, these attributes can be accessed through the node hash
and are computed by Chef using a set of rules to determine precedence. The order
of precedence when computing this hash is broken down into the following levels
(lowest to highest priority):

•	 Default
•	 Normal (also set)
•	 Override

Chapter 2

[45]

Within each level, the sources of attribute data in order of increasing precedence are
as follows:

•	 The attributes file inside of a cookbook
•	 Environment
•	 Role
•	 Node

This means that a node-specific override attribute takes precedence over all others,
which in turn is more important than the role, environment and cookbook override
attributes, and so down the chain of precedence. As your scope becomes narrowed from
the most generic description of a role—the recipes—to the most specific component in
the system—the actual node itself—these settings override the more generic values. A
node knows best what the authoritative configuration should be as opposed to a recipe,
which does not know anything about resources on the host. For example, consider the
following scenario in which you have two hosts, potassium and chromium. For some
legacy reason, their disks are configured slightly differently, as follows:

Potassium:

•	 16 GB root partition
•	 250 GB SSD data partition in /opt

Chromium:

•	 32 GB root partition
•	 400 GB EBS disk mounted at /usr

In order to install the PostgreSQL database server, you need to make sure you install
it at a location that provides enough storage space for the data. In this example, there
will be more data than either root disks can contain. As a result, the data directory
will need to reside in /opt on potassium and /usr on chromium. There is no way
that the PostgreSQL recipe can account for this, and the postgresql_server recipe
does not know anything about its resources. Subsequently, the logical place to
configure the data directory is at the node level. If the default location according
to the recipe were /usr/local, then a node-level override may not be needed for
chromium; however, in the case of potassium, it could be directed to store data in
/opt/data instead.

What all this means is that as you develop recipes, any default attribute set by your
cookbook will be the lowest priority. You can safely set some reasonable defaults in
your cookbook knowing that they will only be used as a fallback if nobody overrides
them further down the chain.

Modeling Your Infrastructure

[46]

Example attribute data
A simple default attributes file for PostgreSQL cookbook might look like
the following:

default['postgresql']['port'] = "5432"
default['postgresql']['data_dir'] = "/usr/local/pg/data"
default['postgresql']['bind_address'] = "127.0.0.1"

Notice that the attributes for a cookbook are a Ruby hash. Typically, good practice
dictates that the namespace (first key in the hash) is the same name as the cookbook
(in this case, postgresql), but this does not need to be the case. Due to cookbooks
often containing multiple recipes, a cookbook's attributes file will often have per-recipe
default configurations. Consider a further evolution of the PostgreSQL attributes file if
it were to contain recipes for both the server and the client installation:

default[:postgresql][:client][:use_ssl] = true
default[:postgresql][:server][:port] = "5432"
default[:postgresql][:server][:log_dir] = "/var/log/pglog"

There are times when just a simple attributes file doesn't make sense because the
configuration may be dependent on some property of the node being managed.
The fact that the attributes file is just a Ruby script allows us to implement some
logic inside our configuration (though you should avoid being overly clever).
Consider a recipe where the default group for the root user depends on the
platform you are using: "user d on BSDs, "n BSDs on Ubuntu Linux, and
"n Ubu elsewhere. Chef provides a method, value_for_platform, that allows
the attribute to be changed depending on the platform the recipe is being executed
on, as the following example demonstrates:

default[:users][:root][:primary_group] = value_for_platform(
 :openbsd => { :default => "wheel" },
 :freebsd => { :default => "wheel" },
 :ubuntu => { :default => "admin" },
 :default => "root"

Where it makes sense, attributes can also be shared between cookbooks. There are
limited uses for this, and it should be used with care as it blurs the boundaries between
cookbooks and causes them to become too tightly coupled with one another.

Chapter 2

[47]

Data bags
There are times when configuration data transcends a recipe, role, environment,
or node. This type of configuration data tends to be system-wide data such as
the following:

•	 Firewall rules for various types of hosts
•	 User accounts
•	 SSH keys
•	 IP address lists (white lists and black lists)
•	 API keys
•	 Site configuration data
•	 Anything that is not unique to a specific entity in your infrastructure

Data bags are very free-form, as the name implies; recipes that rely on data from data
bags will impose their own expectations of the organization within a data bag, but
Chef itself does not. Data bags can be considered, like all other Chef configuration
data, to be one large hash of configuration data that is accessible to all the recipes
across all the nodes in the system.

Knowing when to use data bags
Building firewall rules are a good use case for data bags. A good cookbook is an
island by itself; it makes as few assumptions about the world as possible in order to
be as flexible and useful as it can be. For example, the PostgreSQL cookbook should
not concern itself with firewall rules, that is, the realm of a firewall cookbook.
Instead, an administrator would leverage a generic firewall model and a cookbook
with a specific firewall implementation such as the UFW cookbook to provide those
features. In this case, if you were to look at the UFW cookbook, you would see the
ufw::databag recipe making use of data bags to make the firewall rules as flexible
as possible.

UFW stands for uncomplicated firewall, a popular
iptables-based firewall rule generation package for Linux
that comes with many modern distributions and eases the
management of a firewall configuration.

Modeling Your Infrastructure

[48]

In this case, ufw::databag expects that there is a specific data bag named firewall
and inside of it are items that share names with roles or nodes; this is in line with the
notion that data bags are free-form, but certain cookbooks expect certain structure.
If our infrastructure model had two roles, web_server, and database_server,
then our firewall data bag would have contained two items named accordingly.
The web_server item could look like the following hash:

{
 "id": "web_server",
 "rules": [{
 "HTTP": {
 "dest_port": "80",
 "protocol": "tcp"
 },
 "HTTPS": {
 "dest_port": "443",
 "protocol": "tcp"
 }
 }]
}

Here, id of the item maps to the name of the item, which is also the name of the
role, so that the ufw::databag recipe knows where to fetch the data it needs to
build its internal firewall rules. To compute its list of firewall rules to apply, the
ufw::databag recipe examines the list of roles that the node is configured with
and then loads the corresponding data from the items in the firewall data bag.

As you can see, data bags allow you to store centralized, free-form configuration
data that does not necessarily pertain to a specific node, role, or recipe. By using data
bags, cookbooks for configuring users, databases, firewalls, or just about any piece of
software that needs shared data can benefit from the data stored in a data bag.

One might wonder why we have data bags when we already have attribute data,
and that would be a good question to ask. Attributes represent the state of a node
at a particular point in time, meaning that they are the result of a compaction of
attribute data that is being supplied to a node at the time the client is being executed.
When the Chef client runs, the attribute data for all the components contributing to
the node's run list is evaluated at that time, flattened according to a specific priority
chain, and then handed to the client. In contrast, data bags contain arbitrary data
that has no attachment to a specific node, role, or cookbook; it is free-form data that
can be used from anywhere for any purpose. One would not, for example, be likely
to store user configuration data in a cookbook or on a specific node because that
wouldn't make much sense; users exist across nodes, roles, and even environments.
The same goes for other data such as network topology information, credentials, and
other global data that would be shared across a fleet.

Chapter 2

[49]

Large-scale infrastructure
One of the many benefits of Chef is the power to apply roles to nodes at scale.
This means that once you define a set of roles and some supporting recipes, you
can apply them to one host just as easily as any other. There are many organizations
that manage very large infrastructure using Chef, including companies such as
Facebook, Ancestry, and Riot Games. With Chef, configuring one hundred hosts is as
straightforward as configuring one host. Being able to achieve scalability goals while
remaining cost-effective is a critical part of running a technology business. To this
end, Chef provides tools to automate the creation, provisioning, maintenance and
termination of virtual hosts using the provided tools, which can help achieve both
scalability and conservation of resources. The next chapter discusses how to use Chef
to extend your infrastructure into the cloud.

Summary
Now that you've learned the key terminology that Chef uses and dissected an
example infrastructure a bit, you can see the following:

•	 Infrastructure can be decomposed into the various roles that resources
(nodes) play within that infrastructure

•	 A combination of recipes and configuration data provide us with roles that
describe a part of our overall infrastructure

•	 Chef analyzes the roles applied to hardware resources (nodes) and generates
a run list that is specific to the node that those roles are being applied to

•	 A run list is then combined with the cookbooks, recipes, templates, and
configuration data to build a specific set of scripts that are executed on the
node when the chef-client is run

•	 We can apply these methodologies of automated configuration to cloud
servers and physical systems alike.

Now that you understand how Chef models interact, let's take a look at how we can
get started with cloud services using Chef.

Integrating with the Cloud
Being able to configure new hosts automatically means that if you outgrow your
existing resources, you can easily bring up new servers to increase your capacity
with very little effort. The Chef command-line tool, knife, provides the ability to
provision new hosts with cloud services automatically from the command line if
configured correctly. This chapter introduces you to using Chef with two popular
cloud platform providers: Amazon EC2 and Rackspace Cloud. Here, you will learn
to use knife with both of these providers in order to perform the following:

•	 Provision new hosts according to your hardware needs
•	 Bootstrap the Chef client and register hosts with the Chef service
•	 List your existing capacity
•	 Terminate unneeded capacity

You will see that all of this can be done using the command-line tools provided
without ever having to log in to the provider's web interface, and all of this within
a few minutes of time.

Leveraging the cloud
Cloud computing providers such as Rackspace Cloud and Amazon EC2 provide
on-demand computing power at the push of a button, a feature that has become
immensely popular with developers and systems administrators alike. One of the
most touted benefits of cloud computing is cost savings; however, these on-demand
instances can become very expensive if they are left running. Often the capacity of
time will be configured in order to handle large-scale events and then left online
because of the time required to reconfigure the systems if they are needed again.
As underutilized capacity ends up costing money rather than saving it, being able
to reduce or expand the capacity quickly and easily will help you match your
computing needs while saving both time and money.

Integrating with the Cloud

[52]

This section specifically looks at two of the more popular cloud providers: Amazon
EC2 and Rackspace Cloud; however, there are others, and the techniques described
here will be broadly applicable to any other supported cloud provider.

Amazon EC2
Amazon EC2 is a very popular cloud-computing platform, and knife has support to
manage EC2 instances from the command line through the knife-ec2 plugin. The
following steps demonstrate how you can work with EC2:

1.	 Install the EC2 knife plugin.
2.	 Set up your SSH keys for use with EC2.
3.	 Configure knife with your AWS credentials.
4.	 Find the desired AMI.
5.	 Provision a new host with knife.
6.	 Bootstrap the newly created host.
7.	 Configure the new host with a role.

Installing the EC2 knife plugin
As of Chef 0.10, the ec2 subcommands have been moved from being built in knife
to an external gem, knife-ec2. In order to use EC2 commands, you will need to
install the gem, which can be done via the following command:

gem install knife-ec2

This will install all of the gem dependencies that the EC2 plugin requires.

Some of the cloud provider plugins have conflicting dependencies,
so it may be best to leverage a gem manager in order to isolate them.
For example, using RVM or rbenv, you might create one Rubygem
environment per provider so that you could switch back and forth with
a simple command such as rvm gemset use chef-ec2.

Setting up EC2 authentication
In order to manage your EC2 hosts, you will need your EC2 key-pair properly
registered with SSH and your AWS access keys set in your knife configuration file.

Chapter 3

[53]

To do the first, make sure you have your EC2 SSH keys downloaded and registered
with your SSH agent. One way to do this is to add the following to your SSH
configuration file, typically, $HOME/.ssh/config:

Host *.amazonaws.com
 ForwardAgent yes
 CheckHostIP no
 StrictHostKeyChecking no
 UserKnownHostsFile=/dev/null
 IdentityFile ~/.ssh/ec2_keypair.pem

In order to configure your AWS keys, you will need to add some information to your
knife.rb configuration file ($HOME/.chef/knife.rb):

knife[:aws_access_key_id] = "YOUR ACCESS KEY"
knife[:aws_secret_access_key] = "SECRET KEY"

These keys tell knife which AWS credentials to use when making API calls to
perform actions such as provision new hosts and terminate instances. Without this,
knife will be unable to make API calls to EC2. With these required changes made,
let's look at how to create a new EC2 instance with knife.

Provisioning an instance
Initially, we will look at provisioning an instance using one of the Ubuntu AMIs.
With knife, we can specify the AMI to use, the availability zone to target, and
the size instance to be created. For example, to create an m1.large size in the
us-east-1e availability zone with Ubuntu 12.04.3 LTS, we would need to use
the AMI with ami-23447f4a as its identifier.

In order to determine the AMI ID, you will need to look it up at the following URL:

http://uec-images.ubuntu.com/

Remember that when deciding which AMI to use, some of
the EC2 instances will be 32 bit and some 64 bit; choose the
appropriate AMI based on the instance type, region, and
storage method you want to use.

The progress of provisioning can be seen using the following command:

$ knife ec2 server create -I ami-23447f4a -f m1.large -Z us-east-1e -N
<node name> -x ubuntu --sudo

http://uec-images.ubuntu.com/

Integrating with the Cloud

[54]

The output from the previous command will show you the progress of
the provisioning (this may take a minute or two, depending on the region,
instance size, how long status checks take, and so on):

[user]% knife ec2 server create -I ami-23447f4a -f m1.large -S ec2-
keypair -Z us-east-1e –N <node name> -x ubuntu --sudo

Instance ID: i-0dfec92d

Flavor: m1.large

Image: ami-23447f4a

Region: us-east-1

Availability Zone: us-east-1e

Security Groups: default

Tags: Name: i-0dfec92d

SSH Key: ec2-keypair

Waiting for instance.................

Public DNS Name: ec2-54-80-59-97.compute-1.amazonaws.com

Public IP Address: 54.80.59.97

Private DNS Name: ip-10-157-31-234.ec2.internal

Private IP Address: 10.157.31.234

Bootstrapping the instance
As you can see, knife will tell you the public IP and public DNS name of the
new instance along with the instance ID, tags, and so forth. Once the instance
is provisioned and is online, it will need to be bootstrapped. Remember that
bootstrapping will install the Chef client and register the instance with the
Chef service, which we can do in the same way we bootstrap any other host:

$ knife bootstrap <instance-public-ip-address> -N <node-name> -x ubuntu
--sudo

As EC2 provisions each instance with an ubuntu user that has sudo privileges, we
provide the bootstrap command with –x ubuntu and --sudo to ensure we have the
required privileges to perform the bootstrapping. Additionally, as you more than
likely do not want the AWS-provided DNS name as the node name, the Chef node
name is set through the -N <node-name> command line flag. Once the bootstrap step
is finished, assuming that there are no errors, verify that your newly provisioned
host is listed in your chef service:

$ knife node list

Chapter 3

[55]

The output will contain your newly bootstrapped node ID, as specified by you in the
command line or the DNS name, if you don't specify a node name. You have now
provisioned a new EC2 instance and registered it with your Chef service with only
two commands!

Terminating the instance
Once you are done with testing, you may not want to leave the EC2 instance
running, as it will incur costs if it remains idle. To ensure this doesn't happen,
perform the following four steps:

1.	 List your EC2 instances
2.	 Delete the server from EC2
3.	 Remove the server from Chef
4.	 Verify that the instance no longer exists in Chef or EC2

To list our EC2 instances, use the server list subcommand of the ec2 command,
which will list all of the EC2 instances in the specified region. If you do not specify
a region, us-east-1 is the default region. The full command to list EC2 servers is
as follows:

$ knife ec2 server list

As an example, executing this command after provisioning the first host will show a
table of one instance as follows:

Instance ID Name Public IP Private IP

i-0dfec92d i-0dfec92d 54.80.59.97 10.157.31.234

For most knife commands, you will need the instance ID so the previous table can
be truncated to fit in print.

Listing EC2 nodes will result in a table that contains all the
currently provisioned EC2 instances in the region by means of the
EC2 API, which is separate from the Chef service API. This means
you will get a list of all the instances in EC2 whether or not they
are registered with Chef. The full table will contain most of the
information you can see on the EC2 control panel, including the
public and private IP, flavor, AMI, SSH key, and so on.

Integrating with the Cloud

[56]

Deleting an instance is just as easy as creating or listing them. Here, the server
delete subcommand is invoked with the instance identifier to be terminated. This
will use the EC2 API to issue a terminate command—this is not reversible and so the
command will prompt you to ensure that you really did want to delete the instance:

[user]% knife ec2 server delete i-0dfec92d
Instance ID: i-0dfec92d
Flavor: m1.large
Image: ami-23447f4a
Region: us-east-1
Availability Zone: us-east-1e
Security Groups: default
SSH Key: ec2-keypair
Root Device Type: instance-store
Public DNS Name: ec2-54-80-59-97.compute-1.amazonaws.com
Public IP Address: 54.80.59.97
Private DNS Name: ip-10-157-31-234.ec2.internal
Private IP Address: 10.157.31.234
Do you really want to delete this server? (Y/N)
WARNING: Deleted server i-0dfec92d
WARNING: Corresponding node and client for the i-0dfec92d server
were not deleted and remain registered with the Chef Server

Removing the Chef node
At this point, the EC2 instance is being terminated and removed from your account.
However, it is not removed from the Chef service that needs to be done separately
with the node delete command. Here, the Chef node name is specified, not the
instance identifier:

$ knife node delete my-first-ec2-instance

Verify that the node was removed from Chef using node list:

$ knife node list

The output should show you that your EC2 instance is no longer registered with Chef.

Rackspace Cloud
Rackspace Cloud is another popular cloud-computing provider that is well
supported by Chef. Similar to EC2, there is a knife plugin for Rackspace Cloud:

gem install knife-rackspace

Chapter 3

[57]

In the same way that AWS requires a set of credentials to interact with the API
to create and terminate instances, Rackspace Cloud has its own configuration.
However, the Rackspace Cloud API is a little simpler; you will need to provide
knife with your Rackspace Cloud's username and API key. For those who do not
already have their API key, it can be found in your Rackspace Cloud control panel.
The appropriate configuration to add to your knife.rb file is as follows:

knife[:rackspace_api_username] = "Your Rackspace API username"
knife[:rackspace_api_key] = "Your Rackspace API Key"

This data can be hard coded into your configuration file, or since the knife
configuration file is just Ruby, it can be generated by evaluating environment
variables or looking at a local file. This is useful if you are submitting your
knife.rb file into a source repository so that credentials are not leaked.

Provisioning an instance
Rackspace Cloud server provisioning is just as straightforward as it is with EC2.
There is some variation in the command-line options passed to knife because of
the way Rackspace provides images for systems. Instead of using the instance size
and an AMI, you can specify the flavor of the system to provision (the node's CPU,
memory, and disk allocation) and the operating system to image the instance with.
In order to determine what flavors are available, the knife-rackspace plugin
provides the rackspace flavor list subcommand:

$ knife rackspace flavor list --rackspace-region=IAD

As it is possible that there are different capacities in different regions, it is a good
idea to check what is available in the region where you want to provision a node.
This will result in a list of flavors and their specifications; as of now, some of the
current offerings in IAD are as follows:

ID Name VCPUs RAM Disk

2 512MB Standard Instance 1 512 20 GB

3 1GB Standard Instance 1 1024 40 GB

4 2GB Standard Instance 2 2048 80 GB

performance1-1 1 GB Performance 1 1024 20 GB

performance1-2 2 GB Performance 2 2048 40 GB

performance2-120 120 GB Performance 32 122880 40 GB

performance2-15 15 GB Performance 4 15360 40 GB

Integrating with the Cloud

[58]

In addition to knowing which flavor to provision, you need an image identifier
(similar to an AMI) to apply to the new host. Again, this list may vary with region
and possibly change over time so there is a command, rackspace image list, to
list the various images:

$ knife rackspace image list --rackspace-region=IAD

The output here is quite long, so it has been sampled to show enough to be useful:

ID Name

ba293687-4af0-4ccb-99e5-097d83f72dfe Arch 2013.9

41e59c5f-530b-423c-86ec-13b23de49288 CentOS 6.5 (PVHVM)

857d7d36-34f3-409f-8435-693e8797be8b Debian 7 (Wheezy)

896caae3-82f1-4b03-beaa-75fbdde27969 Fedora 18 (Spherical Cow)

fb624ffd-81c2-4217-8cd5-da32d32e85c4 FreeBSD 9.2

1705c794-5d7e-44d6-87da-596e3cf92144 Red Hat Enterprise Linux 6.5

df27d481-63a5-40ca-8920-3d132ed643d9 Ubuntu 13.10

d88188a5-1b02-4b37-8a91-7732e42348c1 Windows Server 2008 R2 SP1

As you can see, there are a number of Linux, BSD, and Windows distributions
available to provision. In order to provision a new host, you will use the server
create command, similar to the EC2 command. The following knife command
will provision a 512 MB host with Ubuntu 13.10 in the IAD datacenter:

$ knife rackspace server create -I df27d481-63a5-40ca-8920-3d132ed643d9
-f 2 --rackspace-region=IAD

As soon as the API responds to the request to provision a new host, you will see the
Rackspace metadata for the host, such as the instance ID, name, flavor, and image:

Instance ID: 993d369f-b877-4f0f-be4b-cfc45c240654

Name: rs-21230044929009695

Flavor: 512MB Standard Instance

Image: Ubuntu 13.10 (Saucy Salamander)

Shortly after this—once the system has been provisioned, the network interfaces
have been configured, and the root password has been set—the IP and root
password will be displayed:

Public DNS Name: 162.209.104.248.rs-cloud.xip.io

Public IP Address: 162.209.104.248

Private IP Address: 10.176.65.92

Password: yZ3D3Tck8uGm

Chapter 3

[59]

After SSH becomes available, knife will initiate the process of bootstrapping
the host. By default, knife will use the chef-full template, which will install
Chef via the omnibus installer for the platform you are bootstrapping. This can
be altered by providing knife with the –d command-line option. Assuming that
the host is bootstrapped properly, the system data will be displayed once again
for your information:

Instance ID: 993d369f-b877-4f0f-be4b-cfc45c240654

Host ID: c478865ebb70032120024a9a2c8c65b9bb0913087991d4bab5acde00

Name: rs-21230044929009695

Flavor: 512MB Standard Instance

Image: Ubuntu 13.10 (Saucy Salamander)

Public DNS Name: 162.209.104.248.rs-cloud.xip.io

Public IP Address: 162.209.104.248

Private IP Address: 10.176.65.92

Password: yZ3D3Tck8uGm

Environment: _default

Once the bootstrap step is finished, assuming that there are no errors, verify that
your newly provisioned host is listed in your chef service:

$ knife node list

The output will contain your newly bootstrapped node ID as specified by you in
the command line (via -N) or the name generated by Rackspace (in this example,
it will be rs-21230044929009695). Congratulations! You have provisioned a new
Rackspace instance with a single command.

Terminating an instance
Once you are done with testing, you may not want to leave the EC2 instance
running, as it will incur costs if it remains idle. To ensure this doesn't happen,
perform the following four steps:

1.	 List your Rackspace servers.
2.	 Delete the server from Rackspace.
3.	 Remove the server from Chef.
4.	 Verify that the instance no longer exists in Chef or Rackspace.

Integrating with the Cloud

[60]

To list your Rackspace instances, use the server list subcommand of the
rackspace command, which will list all of the Rackspace instances in the specified
region. Similar to the output from the EC2 server list command, the output will look
like the following:

$ knife rackspace server list --rackspace-region=IAD

Instance ID Name

993d369f-b877-4f0f-be4b-cfc45c240654 rs-21230044929009695

Similar to the EC2 output, the resulting table is too wide for print so
only the instance ID and node name is shown. You should expect to
see public and private IP addresses, instance types, and some other
data that you will be able to see on the Rackspace Cloud control
panel as well.

You can delete an instance using a single command; the server delete
subcommand is invoked with the Rackspace instance identifier to be terminated.
Remember that this is not reversible, so the command will prompt you to ensure
that you really do want to delete the instance:

$ knife rackspace server delete 993d369f-b877-4f0f-be4b-cfc45c240654
--rackspace-region=IAD

Instance ID: 993d369f-b877-4f0f-be4b-cfc45c240654

Host ID: c478865ebb70032120024a9a2c8c65b9bb0913087991d4bab5acde00

Name: rs-21230044929009695

Flavor: 512MB Standard Instance

Image: Ubuntu 13.10 (Saucy Salamander)

Public IP Address: 162.209.104.248

Private IP Address: 10.176.65.92

Do you really want to delete this server? (Y/N) y

WARNING: Deleted server 993d369f-b877-4f0f-be4b-cfc45c240654

WARNING: Corresponding node and client for the 993d369f-b877-4f0f-be4b-
cfc45c240654 server were not deleted and remain registered with the Chef
Server

Chapter 3

[61]

Removing the Chef node
At this point, the EC2 instance is being terminated and removed from your account.
However, it is not removed from the Chef service; this needs to be done separately
with the node delete command. Here, the Chef node name is specified, not the
instance identifier:

$ knife node delete rs-21230044929009695

Verify that the node was removed from Chef with node list:

$ knife node list

The output should show you that your recently created Rackspace instance is no
longer registered with Chef.

Summary
The ability to scale your infrastructure through a combination of on- and off-site
hosts is incredibly powerful. If you need more capacity, you can easily bring up
new hosts on EC2, Rackspace Cloud, or any similar platform. Additionally, these
techniques apply to not only public cloud providers but also to private cloud
platforms such as VMWare vSphere and others (provided, a suitable plugin for
knife exists).

As you have seen, with Chef you can spin up and spin down the server capacity
to meet your needs with very little effort. Once your infrastructure management is
automated, you can focus on higher level problems such as building scalable services
and scaling to meet your customers' demands.

Expanding on this capability, you could use these tools to perform the following:

•	 Manually increase or decrease the capacity in order to match the demand
•	 Write a tool to analyze the current resource load and react accordingly
•	 Predict the future capacity and scale appropriately on a given schedule

Now that we have the ability to bring up some hosts to work with, we can take
a look at how to work with cookbooks to learn how they work and how to build
new ones.

Working with Cookbooks
Cookbooks are one of the fundamental components of the Chef system. They
are containers for recipes, providers, resources, templates, and all the logic and
information required to manage your infrastructure. This chapter covers the following:

•	 Organization of cookbooks
•	 Building cookbooks
•	 Developing recipes
•	 Handling multiple platforms for a cookbook organization

Cookbooks are one of the core components of Chef. They are, as their name suggests,
a collection of recipes and other data that when combined provide a specific set of
functionality to a system administrator. In each cookbook, you will find a collection
of directories and files that describe the cookbook and its recipes and functionality.
The core components of a cookbook are as follows:

•	 Cookbook metadata
•	 Attributes
•	 Recipes
•	 Templates
•	 Definitions
•	 Resources
•	 Providers
•	 Ruby libraries
•	 Support files

Working with Cookbooks

[64]

A cookbook is a collection of files and directories with a well-known structure.
Not every cookbook has all of these components. For example, there may be
no need to develop custom resources or providers in a cookbook that only uses
Chef-supplied resources. However, every cookbook does need to have a metadata
file that provides various bits of information such as its name, version, dependencies,
and supported systems.

Let's take a look at the memcached cookbook as it is a reasonably simple cookbook
that is capable of installing and configuring the memcache server, which is a
distributed memory-backed cache service:

Here, you can see that this cookbook contains attributes, definitions, recipes, and
templates, as well as a file named metadata.rb (the metadata file) and a README.md
file. It is a good idea to provide examples of how to use your cookbook and recipes
in some sort of documentation, such as a README.md file. When you look at the
preceding screenshot, you will see that the directory names map to the component
names and each contains some files or subdirectories with files. We will discuss the
organization of the specific Chef components in greater detail further on as we dive
into more details on each type later. For now, it is sufficient to know that the directory
structure is designed to group together files for each type of component. Also notice
that, as mentioned earlier, this cookbook is an example of one that does not have all
the components, as there are no new resources or providers in this cookbook.

Some of these files are purely informational and have no effect on your recipes or
Chef itself, such as the README.md file. This file, and others such as CHANGELOG,
LICENSE, or DEVELOPMENT files, is included to convey information to you about
how to participate, license, or otherwise use the cookbook.

Chapter 4

[65]

There is a lot of information that is stored inside a cookbook—this information
includes the steps to take in order to achieve a desired effect such as the installation
of a service or provisioning of users on a host. A high-level overview of the content
that we will be learning about in this chapter, so that you have an idea of how the
components work together before you learn about them in depth, is shown as follows:

•	 Attributes: These are attributes that the cookbook's recipes rely on.
A well-defined cookbook should contain some sane defaults for the
recipes such as installation directories, usernames, downloadable URLs,
and version numbers. Anything a recipe expects the node to have defined
should be given a default value so that the recipe will behave as expected.

•	 Recipes: Ruby scripts define the recipes in the cookbook. A cookbook can
contain as few as one or as many recipes as its author would like to put into
it. Most package-specific cookbooks only contain a few recipes, while some
cookbooks, such as your organization's private cookbook, may have dozens
of recipes for internal use.

•	 Templates: These are Ruby ERB files that are used to describe any file that
needs to have some dynamic data in it; often, these are used for startup
scripts or configuration files.

•	 Resources: These describe a resource that can be used in a recipe. Resources
are Ruby scripts that use Chef's resource domain-specific language (DSL) to
describe various actions, attributes, and other properties of the resource.

•	 Providers: These describe an implementation of a resource; in the case
of the supervisord cookbook, the service provider file outlines the actual
implementation-specific logic of the actions that a resource can perform.
There are many types of services that you could have: supervisord, runit,
monit, bluepill, and so on.

Additionally, cookbooks may include a variety of support files that are not directly
part of the recipes, such as the following:

•	 Definitions: These are used to build reusable templates for resources.
Perhaps you want to define the structure of a user account, a background
worker, or a runnable process. These are a way to programmatically describe
what these look like and implement any logic they might need.

•	 Ruby libraries: Any reusable code that your recipes need can be included
in the cookbook. Things that go in here are accessible by your recipes and
automatically loaded for you.

Working with Cookbooks

[66]

•	 Support Files: These are arbitrary data files that don't fall into any of the
other categories.

•	 Tests: Recipes, composed of Ruby code, can include unit tests or cucumber
tests to verify that the logic works. Note that these tests are unit tests, not
integration tests; they are not designed to ensure that you have configured
your nodes properly or that there are no conflicts or other issues when
applying these recipes.

Attributes
Attributes are Chef's way of storing configuration data and can be thought of as
a large, but disjointed, hash structure. Chef pulls data from various locations and
combines that data in a specific order to produce the final hash of attributes. This
data is computed when a client requests its run list from the server (such as when
you execute chef-client on a node). This mechanism allows you to describe data
with a higher level of specificity at each step of the process, decreasing in scope
going from the cookbook attributes files down to node-specific configuration data.

For example, imagine you are deploying PostgreSQL onto the hosts in your
infrastructure. With PostgreSQL, there are a very large number of configuration
options that can be tuned, ranging from open ports and number of concurrent
connections down to memory used for key caches and other fine-grained configuration
options. The cookbook's attributes files should provide enough configurations for
PostgreSQL to work without making any modification to a host and without other
things being deployed; also, they would most likely contain a pretty vanilla set of
configuration values, which at a high level might look like the following:

•	 Install Version 9.3 from the source code
•	 Listen on Port 5432 on IP 0.0.0.0/0
•	 Store data in /var/lib/postgresql
•	 Create and use a pgsql user

Attribute data has not only a number of sources that it can be pulled from but
also a set of priorities: default, normal, and override (in increasing order). Within
each level, data is pulled from the cookbook attributes files and then from the
environment, role, and node configuration data stored in the Chef server (in
that order). Combined, this provides a comprehensive mechanism to define and
customize the behavior of your recipes as they are applied to the nodes.

Chapter 4

[67]

Now, as you can imagine, this is fine for a number of installations where the server
has all of the space allocated on the root mount point, or doesn't have security
restrictions about which IP addresses should be listened on, and so on. It would be
nice to be able to say that in production, we want to use Version 9.3, but in a test
environment, we want to install Version 9.4 in order to perform some tests that we
don't want to run in production. We may also want to specify that in production, our
hosts are EC2 instances with a customized EBS RAID for our PostgreSQL data and
so the data should be stored in /vol/ebs00/postgresql. Using this multilayered
approach for configuration data, this is entirely possible.

Attribute files contain Ruby code that stores the configuration data. In this case, to
achieve our described default behavior, we could have a file, attributes/default.rb,
that contains the following text:

default['postgresql']['port'] = "5432"
default['postgresql']['listen_address'] = "*"
default['postgresql']['data_dir'] = "/var/lib/postgresql"
default['postgresql']['install_method'] = "source"
default['postgresql']['version'] = "9.3"

The hash that this describes will look like the following JSON dictionary:

'node' : {
 'postgresql': {
 'port': '5432',
 'listen_address': '*',
 'data_dir': '/var/lib/postgresql',
 'install_method': 'source',
 'version': '9.3'
 }
}

Now, as described, we want to override the version in our staging environment to
install Version 9.4; this means that in our staging environment, the configuration
(exactly how to make this change will be discussed later) will need to have the
following information:

 'node' : {
 'postgresql': {
 'version': '9.4',
 }
}

Working with Cookbooks

[68]

When the Chef client runs on a node in the staging environment, the Chef
server knows that the node is in the staging environment and will take the stage
configuration above and overlay it on top of the defaults specified in the cookbook.
As a result, the final configuration dictionary will look like the following:

'node' : {
 'postgresql': {
 'port': '5432',
 'listen_address': '*',
 'data_dir': '/var/lib/postgresql',
 'install_method': 'source',
 'version': '9.4'
 }
}

Notice that the version has been changed, but everything else remains the same.
In this way, we can build very specific configurations for our hosts that pull
information from a variety of places.

It is important to note that because these are interpreted Ruby scripts, their contents
can range from simple attribute-setting statements to complex logic used to determine
an appropriate set of default attributes. However, it's worth remembering that the
more complicated your configuration is, the harder it may be to understand.

Multiple attribute files
Chef loads attribute files in alphabetical order and cookbooks typically contain only
one attribute file named default.rb. In some cases, it makes sense to separate some
of the attributes into separate files, particularly when there are a lot of them. As
an example, the community-maintained MySQL cookbook has two attribute files:
server.rb for the server attributes and client.rb with client-specific attributes.
Each file contains anywhere between 50 and 150 lines of Ruby code, so it makes
sense to keep them separate and focused.

Chapter 4

[69]

Supporting multiple platforms
There are times when a simple attributes file doesn't make sense, so being able to
dynamically define the defaults is very useful. Consider a multiplatform cookbook
that needs to know which group the root user is in. The name of the group will vary
according to the operating system of the end host. If you are provisioning a FreeBSD
or OpenBSD host, then the group for the root will be wheel, but on an Ubuntu
machine, the group is named admin. The attributes file can use plain old Ruby code
or optional Chef-provided convenience methods such as value_for_platform,
which is a glorified but compact switch statement:

default[:users]['root'][:group] = value_for_platform(
 "openbsd" => { "default" => "wheel" },
 "freebsd" => { "default" => "wheel" },
 "ubuntu" => { "default" => "admin" },
 "default" => "root"
)

Loading external attributes
Sometimes it is useful to load attributes from another cookbook; if your cookbook
is tightly coupled to another cookbook or provides some extended functionality, it
may make sense to use them. This can be achieved in the attributes file by using the
include_attribute method (again, this is a Chef-specific convenience method).

Let's consider that you want to know the port that Apache is configured to use.
You could use the port key from the apache configuration section, but it is not
guaranteed that it exists (it may not have been defined or the recipe that contains it
may not have been loaded yet). To address this, the following code would load the
settings from attributes/default.rb inside of the apache cookbook:

include_attribute "apache"
default['mywebapp']['port'] = node['apache']['port']

If you need to load an attributes file other than default.rb, say client.rb, inside
the postgresql cookbook, you can specify it in the following manner:

include_attribute "postgresql::client"

Working with Cookbooks

[70]

Make sure that any cookbooks you rely on are listed as a dependency in your
cookbook's metadata. Without this, the Chef server will have no way of knowing
that your recipes or configuration data depend on that cookbook, and so your
configuration may fail as a result of this.

Using attributes
Once you have defined your attributes, they are accessible in our recipes using the
node hash. Chef will compute the attributes in the order discussed and produce one
large hash, which you will have access to.

Chef uses a special type of hash, called a Mash. Mashes are hashes
with what is known as indifferent access—string keys and symbol
keys are treated as the same, so node[:key] is the same as
node["key"]).

If we had the PostgreSQL attributes and user attributes as specified previously,
without any overrides, then the resulting configuration will look like the following:

'node' : {
 'postgresql': {
 'port': '5432',
 'listen_address': '*',
 'data_dir': '/var/lib/postgresql',
 'install_method': 'source',
 'version': '9.3'
 },
 'users' : {
 'root' : { 'group' => 'wheel' },
 }

}

This data could then be accessed anywhere in our recipes or templates through
variables such as node[:postgresql][port] or node[:users][:root][:group].
Remember that the final version of the node's configuration data is determined at
the time the client makes the request for its configuration. This means that Chef
generates a snapshot of the current state of the system, collapsed according to its
rules of precedence, for that node and passes it to the host to perform its operations.

Chapter 4

[71]

Metadata
Each cookbook contains a metadata.rb file in the root directory of the cookbook that
contains information about the cookbook itself, such as who maintains it, the license,
version, contained recipes, supported platforms, and the cookbook's dependencies.
The contents of this script are used to generate a JSON file that describes the
cookbook, which is used by the Chef server for dependency resolution, searching
and importing into run lists.

This is a required file for a cookbook, and here is an example metadata.rb file from
the PostgreSQL database server, which is slightly modified to fit the following:

name "postgresql"
maintainer "Opscode, Inc."
maintainer_email "cookbooks@opscode.com"
license "Apache 2.0"
description "Installs and configures PostgreSQL"
long_description IO.read(File.join(
 File.dirname(__FILE__), 'README.md'
))
version "3.3.4"
recipe "postgresql", "Includes postgresql::client"
recipe "postgresql::ruby", "Installs Ruby bindings"
recipe "postgresql::client",
 "Installs client package(s)"
recipe "postgresql::server", "Installs server packages"
recipe "postgresql::server_redhat",
 "Installs RedHat server packages"
recipe "postgresql::server_debian",
 "Installs Debian server packages"

%w{ubuntu debian fedora suse amazon}.each do |os|
 supports os
end

%w{redhat centos scientific oracle}.each do |el|
 supports el, ">= 6.0"
end

depends "apt"
depends "build-essential"
depends "openssl"

Working with Cookbooks

[72]

Because the metadata.rb file is a Ruby script, it allows you to use arbitrary Ruby
code inside of it. Here, for example, the long_description entry is generated
programmatically by reading in the contents of the supplied README.md file:

long_description IO.read(File.join(File.dirname(__FILE__),
'README.md'))

Here, the PostgreSQL cookbook supports multiple platforms, so instead of writing
each platform that is supported on a line of its own, you could use a loop similar to
the one used in the metadata.rb file:

%w{ubuntu debian fedora suse amazon}.each do |os|
 supports os
end

Additionally, if it only supports certain platforms with a minimum version,
you could write something similar to the following, which declares support
for RedHat-based distributions greater than (or equal to) Version 6.0:

%w{redhat centos scientific oracle}.each do |el|
 supports el, ">= 6.0"
end

In this cookbook, the dependencies are listed line by line but could be represented
similarly if you have a large number:

depends "apt"
depends "build-essential"
depends "openssl"

Dependencies could also be rewritten as follows:

%w{apt build-essential openssl}.each do |dep|
 depends dep
end

Obviously, in this case, you aren't saving any room; however, if you had ten or more
dependencies, it could make it more compact.

As long as your Ruby code produces something that is a compatible argument or
configuration, you can be as clever as you want. Take advantage of your ability to
dynamically generate a configuration.

Chapter 4

[73]

Recipes
Recipes are the core component of getting things done. They are scripts, written
in Ruby, that provide the instructions to be executed on end hosts when the Chef
client is run. Recipes are placed in the recipes directory inside of a cookbook, and
each recipe is designed to achieve a specific purpose, such as provisioning accounts,
installing and configuring a database server, and custom software deployments.

Recipes combine configuration data with the current state of the host to execute
commands that will cause the system to enter a new state. For example, a
PostgreSQL database server recipe would have the goal of installing and starting
a PostgreSQL server on any host that runs the recipe. Let's look at a few possible
starting states and the expected behavior:

•	 A host without PostgreSQL installed would begin at the state of not having
the service; then, it will execute the commands required to install and
configure the service

•	 Hosts with an existing but outdated PostgreSQL service would be upgraded
to the latest version of the database server

•	 Hosts with a current installation of PostgreSQL would have its PostgreSQL
installation untouched

•	 In all cases, the configuration on the disk would be updated to match the
configuration stored in the Chef server

To achieve these goals, recipes use a combination of resources, configuration data,
and Ruby code to determine what to execute on the end host. Each host-level
resource—files, configuration files, packages, users, and so on—is mapped to a Chef
resource in a recipe. For example, consider the recipe that we saw earlier in the book
that was used to demonstrate that the Chef-solo installation was functional:

file "#{ENV['HOME']}/example.txt" do
 action :create
 content "Greetings #{ENV['USER']}!"
end

This is a complete recipe; it has one step to create a file, and that is all it does. The file
being created on the end host needs a name; here, it will be named ENV['HOME']/
example.txt, which is Ruby's way of representing $HOME/example.txt. In addition
to a name, we are instructing Chef to create the file (we could just as easily instruct
Chef to delete the file) and to put the contents Greetings $USER into the file, replacing
what is in there.

Working with Cookbooks

[74]

We could extend our recipe to ensure that a specific user existed on the host and
create a file with the owner set to the newly created user:

user "smith" do
 action :create
 system true
 comment "Agent Smith"
 uid 1000
 gid "agents"
 home "/home/matrix"
 shell "/bin/zsh"
end

file "/tmp/agent.txt" do
 action :create
 content "Hello from smith!"
 owner "smith"
 group "agents"
 mode "0660"
end

Each recipe is a script that is run from beginning to end, assuming that nothing
causes it to abort. Also, each recipe can access the node's attribute data and
leverage resources to compile templates, create directories, install packages, execute
commands, download files, and do just about anything that you can do from a shell
as an administrator. If you can't accomplish what you need to do using the existing
Chef resources, you can either create your own custom resources, or you can execute
an arbitrary user-defined shell script.

Resources
Resources are programmatic building blocks in Chef; they are a declarative
mechanism to manipulate a resource on a host. Resources deliberately hide
the underlying implementation that is left to a provider. It is important to
recognize that a resource describes what is being manipulated, not how it is
being manipulated; this is by design, as it provides a high level of abstraction
for Chef recipes to be as platform-neutral as possible.

For example, Chef has built-in resources that include the following:

•	 Cron jobs
•	 Deployments
•	 File system components (mount points, files and directories, and so on)

Chapter 4

[75]

•	 Source code repositories (Git and svn)
•	 Logs
•	 PowerShell scripts (Windows targets)
•	 Shell scripts
•	 Templates
•	 Packages
•	 Users and groups

Resources combined with providers (discussed shortly) are collectively referred to
as LWRPs or lightweight resource providers; they make up a large portion of the
functionality within a Chef recipe.

Resources are composed of a resource name (package name, file path, service name,
and so on), an action, and some attributes that describe that resource.

Using resources
Resources, as we have seen in some examples, take the following form:

resource_name <name parameter> <ruby_block>

In the preceding code, resource_name is the registered name of the resource, such as
file, package, and user. The name parameter is a special argument to the resource
that gives this resource a unique name. This is often also used by the resource as a
default value for an attribute that naturally maps to the name of the resource such as
filename, username, and package name (you can see a pattern here); however, you
can use an arbitrary name attribute and manually set the attribute. The Ruby block
is just a block of code in Ruby; this is how Chef's DSL works. In Chef, each resource
expects some specific things inside its configuration block. You will find that many
resources have different expectations, but in general, a resource block in a recipe will
be of the following form:

resource_name "name attribute" do
 attribute "value"
 attribute "value"
end

The previous example, which created a new user, was the following:

user "smith" do
 action :create
 system true
 comment "Agent Smith"

Working with Cookbooks

[76]

 uid 1000
 gid "agents"
 home "/home/matrix"
 shell "/bin/zsh"
end

Here, the resource name is user, the name attribute is smith, and the block of
code being passed to the resource has seven attributes: action, system, comment,
uid, gid, home, and shell. Each of these attributes has a value associated with it;
internally, the Ruby code for the resource will store these in some variables to be
used when manipulating the specified resource. In this case, constructing a user on
the end host through the correct provider will be helpful.

One of these attributes, action, is a bit unique; its job is to tell the resource what action
to take on the resource. The list of available actions will be different with each resource,
but typically, a resource will have actions such as create, delete, or update. Have a look
at the documentation for the resource you are working with; the documentation will
describe the available actions and what they do separately from the other attributes.

To demonstrate how the name attribute is used as a default value for the user
resource, the following recipe has the same behavior as the previous one, but
has one minor change:

user "agent_smith" do
 username "smith"
 action :create
 system true
 comment "Agent Smith"
 uid 1000
 gid "agents"
 home "/home/matrix"
 shell "/bin/zsh"
end

Here, you can see that an additional attribute, username, has been added to
the resource block with the value that was previously in the name attribute.
Additionally, the name attribute has been changed to "agent_smith". If you were to
execute this recipe or the previous example, it would have the same effect: to create a
local system user, smith, with the UID, GID, home, and other attributes specified.

Chapter 4

[77]

Overriding a default behavior
In addition to properties, resources also have a default action. More often than not,
the default action is create, but again, you will want to consult the documentation
for the resource you are working with to make sure that you know what the default
behavior is for a resource. You don't want to accidentally destroy something you
thought you were creating!

A concrete example might be installing the tcpdump package on your system.
To install the default version with no customization, you could use a resource
description such as the following:

package "tcpdump"

This works because the default action of the package resource is to perform an
installation. If you look at the source code for the package resource, you will see
the following at the beginning of the constructor:

def initialize(name, run_context=nil)
 super
 @action = :install
 @allowed_actions.push(:install, :upgrade,
 :remove, :purge, :reconfig)
 @candidate_version = nil
 @options = nil
 @package_name = name

This tells us that the default action, if unspecified, is to install the package and to use
the name attribute as the package name. So, the previous simple one-line resource is
the same as writing out the following block:

package "tcpdump" do
 action :install
 package_name "tcpdump"
end

Here, however, package_name will default to the name attribute, so we do not need
to provide it if the resource name is the same as the package you wish to install.
Additionally, if you wanted to be more verbose with your resource description and
install a specific version of the tcpdump package, you could rewrite the package
resource to look something like the following:

package "tcpdump" do
 action :install
 version "X.Y.Z"
end

Working with Cookbooks

[78]

If you read the documentation for the package resource or examine the full constructor
for the package class, you will see that it has a number of other attributes as well as
what they do and where their default values come from. All the resources follow this
form; they are simply Ruby classes that have an expected structure, which they inherit
from the base resource class.

Templates
Chef dynamically configures software and hosts, and a large part of configuring
UNIX-based systems and software involves configuration files. Chef provides a
straightforward mechanism to generate configuration files that make it easy to
combine configuration data with template files to produce the final configuration
files on hosts. These templates are stored in the templates directory inside of a
cookbook and use the ERB template language, which is a popular and easy-to-use
Ruby-based template language.

Why use templates?
Without templates, your mechanism to generate configuration files would probably
look something like this:

File.open(local_filename, 'w') do |f|
 f.write("<VirtualHost *:#{node['app]['port']}")
 ...
 f.write("</VirtualHost>")
end

This should be avoided for a number of reasons. First, writing configuration data
this way would most likely make your recipe very cluttered and lengthy. Secondly,
and more importantly, it violates Chef's declarative nature. By design, Chef provides
you with the tools to describe what the recipe is doing and not how it is doing it,
which makes reading and writing recipes much easier. Simpler recipes make for
simpler configuration, and simpler configuration scales better because it is easier
to comprehend. Handrolling a configuration file is the opposite approach; it very
specifically dictates how to generate the file data. Consider the following code:

config_file = "#{node['postgresql']['dir']}/postgresql.conf"
pgconfig = node[:postgresql]
File.open(config_file 'w') do |f|
 f.write("port = #{pgconfig[:port]}")
 f.write("data_dir = #{pgconfig[:data_dir]}")

Chapter 4

[79]

 f.write("listen_address = #{pgconfig[:listen_address]}")
end
File.chown(100,100,config_file)
File.chmod(0600, config_file)

This code generates a PostgreSQL configuration file from the attribute hash, one
line at a time. This is not only time-consuming and hard to read but potentially
very error-prone. You can imagine, even if you have not previously configured any
PostgreSQL servers, just how many f.write(...) statements could be involved in
generating a full postgresql.conf file by hand. Contrast that with the following
block that leverages the built-in template resource:

template "#{node['postgresql']['dir']}/postgresql.conf" do
 source "postgresql.conf.erb"
 owner "postgres"
 group "postgres"
 mode 0600
end

The preceding block could be combined with a template file that contains the
following content:

<% node['postgresql'] sort.each do |key, value| %>
<% next if value.nil? -%>
<%= key %> = <%=
 case value
 when String
 "'#{value}'"
 when TrueClass
 'on'
 when FalseClass
 'off'
 else
 value
 end
%>
<% end %>

If we take our template and then apply the following attribute data as we had shown
previously, then we would have generated the exact same configuration file:

'node' : {
 'postgresql': {
 'port': '5432',
 'listen_address': '*',

Working with Cookbooks

[80]

 'data_dir': '/var/lib/postgresql',
 'install_method': 'source',
 'version': '9.3'
 },
 'users' : {
 'root' : { 'group' => 'wheel' },
 }

}

Only now we can use a template that is highly flexible. Our template uses the
key-value combinations stored in the configuration hash to dynamically generate
the postgresql.conf file without being changed every time a new configuration
option is added to PostgreSQL.

Chef uses ERB, a template language, that is provided by the core Ruby library. ERB
is widely available and requires no extra dependencies; it supports Ruby inside of
templates as well as some ERB-specific template markup.

A quick ERB primer
As ERB is very well documented and widely used, this portion of the chapter serves
only as a quick reference to some of the most commonly used ERB mechanisms. For
more information, see the official Ruby documentation at http://ruby-doc.org/
stdlib-2.1.1/libdoc/erb/rdoc/ERB.html.

Executing Ruby
To execute some arbitrary Ruby code, you can use the <% %> container. The <% part
indicates the beginning of the Ruby code, and %> indicates the end of the block. The
block can span multiple lines or just one single line. Examples of this are as follows:

ERB code Output
<%
[1,2,3].each do |index|
 puts index
end
%>

1
2
3

<% users.collect{ |u|
 puts u.full_name } %>

Bob Smith
Sally Flamingo

http://ruby-doc.org/stdlib-2.1.1/libdoc/erb/rdoc/ERB.html
http://ruby-doc.org/stdlib-2.1.1/libdoc/erb/rdoc/ERB.html

Chapter 4

[81]

You can mix Ruby and non-Ruby code (useful to repeat blocks of non-Ruby text)
as follows:

<% [1,2,3].each do |value| %>
Non-ruby text...
<% end %>

This would yield the following:

Non-ruby text...
Non-ruby text...
Non-ruby text...

Variable replacement
ERB has a syntax to replace a section of the template with the results of some Ruby
code rather than relying on print statements inside your Ruby. That container is similar
to the last one, with the addition of the equal sign inside the opening tag. It looks like
<%= %>. Any valid Ruby code is acceptable inside this block, and the result of this code
is put into the template in place of the block. Examples of this are as follows:

<%= @somevariable %>
<%= hash[:key] + otherhash[:other_key] %>
<%= array.join(", ") %>

This can be combined with the previous example to produce complex output:

<% [1,2,3].each do |value| %>
The value currently is <%= value %>
<% end %>

This would yield the following:

The value currently is 1
The value currently is 2
The value currently is 3

Using just these basic features of ERB, combined with Chef's configuration data,
you can model just about any configuration file you can imagine.

The template resource
Chef provides a template resource to generate files via templates. There are three key
attributes of the template resource, which are as follows:

•	 path: This specifies where to put the generated file
•	 source: This tells the resource which template file to use
•	 variables: This specifies what data to populate the template with

Working with Cookbooks

[82]

The path attribute uses the name attribute as its default value and populates
the template specified by a source file with the data passed to it through the
variables attribute. Templates are contained inside of the templates directory,
which is placed inside of a cookbook; if a source is not specified, it will be expected
that a file exists inside the directory with the same name as the path, which is only
rooted in the templates directory with a .erb extension. Here is a simple template
resource example:

template "/etc/motd" do
 variables :users => ["Bart", "Homer", "Marge"]
end

This resource will expect that a file exists in the template's search path (more on how
that is determined in a bit) as etc/motd.erb, and it then exposes an array of three
strings as a users variable and writes the results out as /etc/motd on the host. The
corresponding MOTD template could look like the following:

Welcome to crabapple.mydomain.com! Our newest users are:

<% @users.each do |user| %>
 * <%= user %>
<% end %>

The template variables
There are two primary sources of data for a template: data passed explicitly through
the resource block attributes and node configuration data. Explicit variables are
user defined in the recipe and may be used to override some settings or pass in
configuration that is dynamically generated inside the recipe. The node configuration
data is computed by Chef at runtime and represents a snapshot of the current
configuration that will be applied to the node.

Passing variables to a template
Sometimes you will need to pass data to a template from inside your recipe instead
of relying on the global node attributes. Perhaps you have some logic that computes
some variable data, but it doesn't belong in the node hash; Chef supports doing just
this in the template resource. The data passed explicitly is available to the ERB
template as an instance variable, prefixed in Ruby with the @ symbol. For example,
consider the following recipe snippet:

config_hash = {
 :food => "asparagus",

Chapter 4

[83]

 :color => "blue"
}

template "/etc/myapp.conf" do
 source "myapp.conf.erb"
 owner "root"
 mode "0664"
 variables(
 :install_path => "/opt/#{hostname}/myapp",
 :config => config_hash
)
end

The :install_path and :config keys are accessible in the template as instance
variables with the same name. They will be prefixed by the @ character and could
be used in a template similar to the following:

database_path = "<%= @install_path %>/db"
storage_path = "<%= @install_path %>/storage"
<% config.each do |key,value| %>
<%= key %> = "<%= value %>"
<% end %>

Here, the template expects a specific key, install_path, to determine where to store
the database; the key-value hash specified by config is then used to generate some
arbitrary configuration settings in the template.

Accessing computed configurations
In addition to data passed via the variables attribute, a template can access a node's
computed configuration data through the node local variable. This is accessed as a
Ruby hash, which will be structured similarly to a dictionary or a hash in any other
language. In our previous PostgreSQL attribute's data example, the following values
were defined:

default['postgresql']['port'] = "5432"
default['postgresql']['listen_address'] = "*"

Working with Cookbooks

[84]

Even if no other configuration data supersedes these configuration values, there
will be a postgresql key in the node's configuration data that contains the key's
port and listen_address. Using this information, we can write a recipe that uses a
template resource and a matching template like the following:

template "/etc/postgresql/postgresql.conf" do
 source "postgresql.conf.erb"
 owner "psql"
 mode "0600"
end

listen_addresses = '<%= node[:postgresql][:listen_address]'
port = <%= node[:postgresql][:port] %>

When the default attributes data is combined with the example template, the resulting
/etc/postgresql/postgresql.conf file will have the following content:

listen_addresses = '*'
post = 5432

As previously discussed, the computed attributes hash for a given node comes from
a variety of sources. Those sources include attributes files in the cookbook, role,
environment, and node-level configuration values stored in Chef, each with its own
level of precedence.

Searching for templates
As you have likely noticed, Chef attempts to allow you as much, or as little, specificity
as you want when defining your configuration, and templates are no different. Just as
the final node configuration is computed from a variety of locations, the templates
directory has a specific search order. This allows the author of the cookbook to provide
a set of default templates as well as support platform and host-specific overrides.

The default template directory should be used to provide default versions of the
templates. Any platform- or host-specific directories are placed alongside it and will
be used when appropriate. The search order for a template is as follows:

•	 Hostname
•	 Distribution version
•	 Distribution
•	 Default location

Chapter 4

[85]

As an example, let's consider a scenario in which we applied a recipe with the
postgresql.conf.erb template resource to a node, db1.production.mycorp.com,
which is running Debian 6.0. Chef will then look for the following files inside of the
templates directory:

•	 host-db1.production.mycorp.com/postgresql.conf.erb

•	 debian-6.0/postgresql.conf.erb

•	 debian/postgresql.conf.erb

•	 default/postgresql.conf.erb

The search is performed in that order with the first match being the chosen template,
applying the highest level of specificity before the lowest (as is the pattern with other
Chef mechanisms, including configuration data).

This differentiation of configuration files by host, platform, and even version is
very useful. It allows you to provide a sane set of defaults while supporting host- or
system-specific quirks simultaneously.

Definitions
Sometimes, you find that you are creating something repeatedly and, similar to a
configuration template, you need a template to generate objects of a given type.
Some examples of this might be Apache virtual hosts, a specific type of application,
or anything else that is repeated a lot. This is where definitions come in, and they are
stored in the definitions directory inside of a cookbook.

Definitions are loaded and available as named resources just as other resources such
as packages, files, and so on are; the only difference is that there is no provider. You
can think of them as resources and providers all in one. Subsequently, they are much
more rigid and limited in scope than a normal resource would be. Here is an example
definition to install Python libraries using pip and a requirements.txt file:

define :pip_requirements , :action => :run do
 name = params[:name]
 requirements_file = params[:requirements_file]
 pip = params[:pip]
 user = params[:user]
 group = params[:group]

 if params[:action] == :run
 script "pip_install_#{name}" do
 interpreter "bash"
 user "#{user}"

Working with Cookbooks

[86]

 group "#{group}"
 code <<-EOH
 #{pip} install -r #{requirements_file}
 EOH
 only_if { File.exists?("#{requirements_file}") and File.
exists?("#{pip}") }
 end
 end
end

Here, we are declaring a new type of definition, a pip_requirements object. This
looks and behaves similarly to a resource, except that it is much simpler (and less
flexible) than a resource. It has some attributes, which are loaded via the special
params argument, and contains a little bit of logic wrapped around a script
resource. Let's take a look at how it would be used and then see how it works:

pip_requirements "my_requirements" do
 pip "#{virtualenv}/bin/pip"
 user node[:app][:user]
 group node[:app][:group]
 requirements_file "#{node[:app][:src_dir]}/requirements.txt"
end

Here you see what looks like a resource, but is in fact a definition. As mentioned
earlier, these look very similar because they behave alike. However, you must have
likely noticed that the definition of pip_requirements itself did not have any sort
of abstraction; there is no pluggable provider, no validation, it doesn't subclass the
Resource class, among other differences. Definitions provide you with a mechanism
to declare reusable chunks of code that your recipes would otherwise duplicate so
that your recipe can again describe the what, not the how.

The previous example tells us that we have a pip_requirements object and that
we want to pass some parameters to it, namely, the path to pip, the user and group
to run pip as, and the requirements.txt file to load. These are brought into the
definition through the params argument and can be accessed as any other variable
data. In this case, the definition says to run bash as the specified user and group and
that the script should run the equivalent of the following:

 pip install -r /path/to/requirements.txt

This will happen only if pip and the /path/to/requirements.txt file exist (as
indicated by the only_if guard). By creating such a definition, it can be reused any
time you need to install Python modules from a specific requirements.txt file on
your host.

Chapter 4

[87]

Recipes
Recipes are where all the magic happens with Chef; they are the secret sauce, the
man behind the mask. They are the workhorses of configuring hosts with Chef.
Recipes are scripts written in Ruby using Chef's DSL that contain the instructions
to be executed on end hosts when the Chef client is run. Every time the client is
executed on the end host, a few things happen:

1.	 The end host makes a request to the Chef server saying, "I need to do
some work".

2.	 The Chef server looks at the requesting host's identity and determines:
°° Which recipes need to be run and in what order (the run list)
°° The computed configuration data for that host

3.	 This information is passed back to the end host along with the necessary
artifacts it needs (recipes, templates, and so on).

4.	 The client then combines the configuration data with the recipes and begins
to execute its run list.

Developing recipes
As a developer, you will be placing your recipes inside the recipes directory of your
cookbook. Each recipe is designed to perform a specific action or set of actions to
achieve a goal such as provisioning accounts, installing and configuring a database
server, custom software deployments, or just about any other action that you could
perform on a server.

A key concept when developing recipes is that they should be idempotent. For
those unfamiliar with the term, an idempotent operation is an operation that can be
applied multiple times and have the same outcome. Consider the following recipe:

user "smith" do
 action :create
 system true
 comment "Agent Smith"
 uid 1000
 gid "agents"
 home "/home/matrix"
 shell "/bin/zsh"
end

www.allitebooks.com

http://www.allitebooks.org

Working with Cookbooks

[88]

One would expect, from looking at this recipe, that Chef should be able to execute
it once, five times, or one thousand times, and it would have the same effect as the
initial application of the recipe. There would not be five or one thousand users on the
host with the login name smith; there would be only one single user with the login
name smith. Also, in all the runs, it would be constructed with the same UID 1000,
the same group name, and so on.

Similarly, given a particular state of the system and assuming nothing has changed
in between runs, subsequent client executions should produce the same, consistent
ending state. In short, the Chef client should be able to run two times in a row, and
if the configuration has not been updated, the system should look exactly the same
after the second run as after the first run.

Recipes use provided configuration data along with the current state of the host to
determine the flow and actions taken by the script. The execution of a recipe will
take the system from its initial state, Sintial, to its new state, Sfinal. Well-written
recipes should be idempotent such that if they're executed immediately afterwards
any number of times with no configuration or stat changes, then the system should
go from Sfinal to the same Sfinal with no new changes to the system. This allows you
to keep your systems in a consistent state at all times, assuming that nothing goes
wrong during the execution of those operations; if something does go wrong, you
should be able to revert to a previously known good state.

Writing recipes
As you have already seen, cookbooks provide a way to combine relevant pieces of
configuration data such as attributes, templates, resources, providers, and definitions
in one place. The only reason these components exist is to support our recipes. Recipes
combine resources in a certain order to produce the desired outcome; much in the same
way a chef would combine ingredients according to his or her recipe to produce some
delicious food. By putting all of these resources together, we can build our own recipes
that range from very simple single-step recipes to multistep, multiplatform recipes.

Starting out small
A very basic recipe, as we have discussed before, might only leverage one or two
resources. One of the simplest conceivable recipes is the one we used earlier to verify
that our Chef-solo installation was working properly:

file "#{ENV['HOME']}/example.txt" do
 action :create
 content "Greetings #{ENV['USER']}!"
end

Chapter 4

[89]

Here again, we are combining a single resource, the file resource, specifying that we
want to create the file named $HOME/example.txt, and store the string "Greetings
$USER" in that file. $USER and $HOME will be replaced by the environment variables,
most likely the login name of the user that is executing chef-client and their home
directory respectively (unless the environment variables have been tampered with).

Following our goal of idempotence, executing this recipe multiple times in a row will
have the same effect as only running it once.

Installing a simple service
Now that we've covered a simple recipe, let's take a look at one that configures
the Redis engine and uses supervisord to run the daemon. This recipe doesn't
install Redis; instead, it defines how to configure the system to start and manage
the service. It does not have any advanced logic, but merely constructs some
required directories, builds a configuration file from a template, and then uses the
supervisor_service resource to configure the daemon to run and be monitored,
as shown in the following code:

redis_user = node[:redis][:user]
redis_group = node[:redis][:group]
environment_hash = {"home" => "#{node[:redis][:home]}"}

Create the log dir and data dir
[node[:redis][:datadir], node[:redis][:log_dir]].each do |dir|
 directory dir do
 owner redis_user
 group redis_group
 mode "0750"
 recursive true
 end
end

Generate the template from redis.conf.erb
template "#{node[:redis][:config_path]}" do
 source "redis.conf.erb"
 owner redis_user
 group redis_group
 variables({:data_dir => "#{node[:redis][:data_dir]}"})
 mode 0644
end

Convenience variables for readability
stdout_log = "#{node[:redis][:log_dir]}/redis-stdout.log"

Working with Cookbooks

[90]

stderr_log = "#{node[:redis][:log_dir]}/redis-stderr.log"
redis_bin = "#{node[:redis][:install_path]}/bin/redis-server"
redis_conf = "#{node[:redis][:config_path]}"

Tell supervisor to enable this service, autostart it, run it as
the redis user, and to invoke:
/path/to/redis-server /path/to/redis.conf
supervisor_service "redis_service" do
 action :enable
 autostart true
 user "#{redis_user}"
 command "#{redis_bin} #{redis_conf}"
 stdout_logfile "#{stdout_log}"
 stderr_logfile "#{stderr_log}"
 directory "#{node[:redis][:install_path]}"
 environment environment_hash
end

You will notice that in order to keep the configuration consistent, we reuse a lot of
attributes. For example, the beginning of the recipe uses node[:redis][:datadir]
and node[:redis][:log_dir] to ensure that the directories exist by making use
of a directory resource inside of a loop; then, these are used later on to define the
supervisor configuration variables (where to write logs) and the template for the
config file (where to store the data). In all, this recipe is composed of four resources:
two directories in the loop, one template, and one supervisor service. By the end of
this run, it will have ensured the critical directories exist, Redis is configured, and
a supervisor configuration file is generated (as well as poked supervisord to reload
the new configuration and start the service). Again, running this multiple times,
assuming no configuration changes in between runs will put the system in the exact
same state. Redis will be configured according to the host properties, and supervisor
will run the service.

Getting more advanced
Let's move up and take a look at a slightly more complicated, yet fairly simple,
recipe from the git cookbook that installs the git client on the host. The cookbook
is multiplatform, so let's talk about what it will be doing before it shows you the
source. This recipe will be performing the following actions:

1.	 Determine which platform the end host is running on (by inspecting the
node[:platform] attribute).

2.	 If the host is running a Debian-based distribution, it will use the package
resource to install git-core.

Chapter 4

[91]

3.	 If the host is a RHEL distribution, it will perform the following:
1.	 Include the EPEL repository by pulling in the epel recipe from the

yum cookbook if the platform version is 5.
2.	 Use the package resource to install git (as that is the RHEL

package name).

4.	 If the host is Windows, it will install git via the windows_package resource
and instruct it to download the file located at node[:git][:url] (which in
turn pulls from the default attributes or overridden configuration), validate
that the checksum matches the one specified by node[:git][:checksum],
and then install it; however, this is only if the EXE is not already installed.

5.	 If the host is running OS X, it will leverage the dmg_package resource to
install a .pkg file from a .dmg image. Here, the download URL, volume
name, package file, checksum, and app name are all attributes that need
to be provided.

6.	 Finally, if none of the conditions are met, it falls back to the package resource
to install the git package in the hope that it will work.

Here is the code for this recipe:

case node[:platform]
when "debian", "ubuntu"
 package "git-core"
when "centos","redhat","scientific","fedora"
 case node[:platform_version].to_i
 when 5
 include_recipe "yum::epel"
 end
 package "git"
when "windows"
 windows_package "git" do
 source node[:git][:url]
 checksum node[:git][:checksum]
 action :install
 not_if { File.exists? 'C:\Program Files (x86)\Git\bin\git.exe' }
 end
when "mac_os_x"
 dmg_package "GitOSX-Installer" do
 app node[:git][:osx_dmg][:app_name]
 package_id node[:git][:osx_dmg][:package_id]
 volumes_dir node[:git][:osx_dmg][:volumes_dir]
 source node[:git][:osx_dmg][:url]
 checksum node[:git][:osx_dmg][:checksum]

Working with Cookbooks

[92]

 type "pkg"
 action :install
 end
else
 package "git"
end

One thing we haven't seen yet is the use of the not_if qualifier. This is exactly what
it looks like; if the block supplied to not_if returns a true value, the resource will
not be processed. This is very useful to ensure that you don't clobber important files
or repeat expensive operations such as recompiling a software package.

Summary
This chapter introduced you to the critical components of a cookbook that are used
to write recipes. It also showed you some example recipes to get you started; there
are a number of advanced actions that can be accomplished in your recipes, such as
searching the Chef server for data, loading data from data bags, or using encrypted
data. Additionally, you can add more components to your cookbooks such as custom
resources and providers, tests, and arbitrary Ruby libraries. All of these will be
discussed in detail in later chapters, but first let's take a look at writing some complete
cookbooks. We'll then learn how to test them before we move on to looking at some
cookbooks for common system administration tasks, and then we'll progress on to
advanced topics.

Testing Your Recipes
So far, you have seen how to model your infrastructure, provision hosts in the cloud,
and what goes into a cookbook. One important aspect of developing cookbooks is
writing tests so that your recipes do not degrade over time or have bugs introduced
into them in the future. This chapter introduces you to the following concepts:

•	 Understanding test methodologies
•	 How RSpec structures your tests
•	 Using ChefSpec to test recipes
•	 Running your tests
•	 Writing tests that cover multiple platforms

These techniques will prove to be very useful to write robust, maintainable
cookbooks that you can use to confidently manage your infrastructure.
Tests enable you to perform the following:

•	 Identify mistakes in your recipe logic
•	 Test your recipes against multiple platforms locally
•	 Develop recipes faster with local test execution before running them

on a host
•	 Catch the changes in dependencies that will otherwise break your

infrastructure before they get deployed
•	 Write tests for bugs to prevent them from happening again in the

future (regression)

Testing Your Recipes

[94]

Testing recipes
There are a number of ways to test your recipes. One approach is to simply follow
the process of developing your recipes, uploading them to your Chef server, and
deploying them to a host; repeat this until you are satisfied. This has the benefit
of executing your recipes on real instances, but the drawback is that it is slow,
particularly if you are testing on multiple platforms, and requires that you maintain
a fleet of hosts. If your cookbook run times are reasonably short and you have a
small number of platforms to support them, then this might be a viable option. There
is a better option to test your recipes, and it is called ChefSpec. For those who have
used RSpec, a Ruby testing library, these examples will be a natural extension of
RSpec. If you have never used RSpec, the beginning of this chapter will introduce
you to RSpec's testing language and mechanisms.

RSpec
RSpec is a framework to test Ruby code that allows you to use a domain-specific
language to provide tests, much in the same way Chef provides a domain-specific
language to manipulate an infrastructure. Instead of using a DSL to manage systems,
RSpec's DSL provides a number of components to express the expectations of code
and simulate the execution of portions of the system (also known as mocking).

The following examples in RSpec should give you a high-level idea of what RSpec
can do:

simple expectation
it 'should add 2 and 2 together' do
 x = 2 + 2
 expect(x).to eq 4
end

Ensure any instance of Object receives a call to 'foo'
and return a pre-defined value (mocking)
it 'verifies that an instance receives :foo' do
 expect_any_instance_of(Object)
 .to receive(:foo).and_return(:return_value)

 o = Object.new
 expect(o.foo).to eq(:return_value)
end

Deep expectations (i.e client makes an HTTP call somewhere
inside it, make sure it happens as expected)
it 'should make an authorized HTTP GET call' do

Chapter 5

[95]

 expect_any_instance_of(Net::HTTP::Get)
 .to receive(:basic_auth)
 @client.make_http_call
end

RSpec and ChefSpec
As with most testing libraries, RSpec enables you to construct a set of expectations,
build objects and interact with them, and verify that the expectations have been met.
For example, one expects that when a user logs in to the system, a database record
is created, tracking their login history. However, to keep tests running quickly, the
application should not make an actual database call; in place of the actual database
call, a mock method should be used. Here, our mock method will catch the message
in the database in order to verify that it was going to be sent; then, it will return an
expected result so that the code does not know the database is not really there.

Mock methods are methods that are used to replace one call with
another; you can think of them as stunt doubles. For example,
rather than making your code actually connect to the database, you
might want to write a method that acts as though it has successfully
connected to the database and fetched the expected data.

This can be extended to model Chef's ability to handle multiple platforms and
environments very nicely; code should be verified to behave as expected on multiple
platforms without having to execute recipes on those platforms. This means that you
can test the expectations about Red Hat recipes from an OS X development machine
or Windows recipes from an Ubuntu desktop, without needing to have hosts around
to deploy to for testing purposes. Additionally, the development cycle time is greatly
reduced as tests can be executed much faster with expectations than when they are
performing some work on an end host.

You may be asking yourself, "How does this replace testing on an actual host?"
The answer is that it may not, and so you should use integration testing to validate
that the recipes work when deployed to real hosts. What it does allow you to do is
validate your expectations of what resources are being executed, which attributes are
being used, and that the logical flow of your recipes are behaving properly before
you push your code to your hosts. This forms a tighter development cycle for rapid
development of features while providing a longer, more formal loop to ensure that
the code behaves correctly in the wild.

Testing Your Recipes

[96]

If you are new to testing software, and in particular, testing Ruby code, this is a brief
introduction to some of the concepts that we will cover. Testing can happen at many
different levels of the software life cycle:

•	 Single-module level (called unit tests)
•	 Multi-module level (known as functional tests)
•	 System-level testing (also referred to as integration testing)

Testing basics
In the test-driven-development (TDD) philosophy, tests are written and executed
early and often, typically, even before code is written. This guarantees that your code
conforms to your expectations from the beginning and does not regress to a previous
state of non-conformity. This chapter will not dive into the TDD philosophy and
continuous testing, but it will provide you with enough knowledge to begin testing
the recipes that you write and feel confident that they will do the correct thing when
deployed into your production environment.

Comparing RSpec with other testing libraries
RSpec is designed to provide a more expressive testing language. This means that the
syntax of an RSpec test (also referred to as a spec test or spec) is designed to create a
language that feels more like a natural language, such as English. For example, using
RSpec, one could write the following:

expect(factorial(4)).to eq 24

If you read the preceding code, it will come out like expect factorial of 4 to equal 24.
Compare this to a similar JUnit test (for Java):

assertEquals(24, factorial(4));

If you read the preceding code, it would sound more like assert that the following are
equal, 24 and factorial of 4. While this is readable by most programmers, it does not
feel as natural as the one we saw earlier.

RSpec also provides context and describe blocks that allow you to group related
examples and shared expectations between examples in the group to help improve
organization and readability. For example, consider the following spec test:

describe Array do
 it "should be empty when created" do
 Array.new.should == []
 end
end

Chapter 5

[97]

Compare the preceding test to a similar NUnit (.NET testing framework) test:

namespace MyTest {
 using System.Collection
 using NUnit.Framework;
 [TestFixture]
 public class ArrayTest {
 [Test]
 public void NewArray() {
 ArrayList list = new ArrayList();
 Assert.AreEqual(0, list.size());
 }
 }
}

Clearly, the spec test is much more concise and easier to read, which is a goal
of RSpec.

Using ChefSpec
ChefSpec brings the expressiveness of RSpec to Chef cookbooks and recipes by
providing Chef-specific primitives and mechanisms on top of RSpec's simple
testing language. For example, ChefSpec allows you to say things like:

 it 'creates a file' do
 expect(chef_run).to create_file('/tmp/myfile.txt')
 end

Here, chef_run is an instance of a fully planned Chef client execution on a
designated end host, as we will see later. Also, in this case, it is expected that
it will create a file, /tmp/myfile.txt, and the test will fail if the simulated run
does not create such a file.

Getting started with ChefSpec
In order to get started with ChefSpec, create a new cookbook directory (here it is
$HOME/cookbooks/mycookbook) along with a recipes and spec directory:

mkdir -p ~/cookbooks/mycookbook

mkdir -p ~/cookbooks/mycookbook/recipes

mkdir -p ~/cookbooks/mycookbook/spec

Testing Your Recipes

[98]

Now you will need a simple metadata.rb file inside your cookbook (here, this will
be ~/cookbooks/mycookbook/metadata.rb):

maintainer "Your name here"
maintainer_email "you@domain.com"
license "Apache"
description "Simple cookbook"
long_description "Super simple cookbook"
version "1.0"
supports "debian"

Once we have this, we now have the bare bones of a cookbook that we can begin to
add recipes and tests to.

Installing ChefSpec
In order to get started with ChefSpec, you will need to install a gem that contains the
ChefSpec libraries and all the supporting components. Not surprisingly, that gem is
named chefspec and can be installed simply by running the following:

gem install chefspec

However, because Ruby gems often have a number of dependencies, the Ruby
community has built a tool called Bundler to manage gem versions that need to be
installed. Similar to how RVM provides interpreter-level version management and a
way to keep your gems organized, Bundler provides gem-level version management.
We will use Bundler for two reasons. In this case, we want to limit the number of
differences between the versions of software you will be installing and the versions
the author has installed to ensure that things are as similar as possible; secondly, this
extends well to releasing production software—limiting the number of variables is
critical to consistent and reliable behavior.

Locking your dependencies in Ruby
Bundler uses a file, specifically named Gemfile, to describe the gems that your
project is dependent upon. This file is placed in the root of your project, and its
contents inform Bundler which gems you are using, what versions to use, and
where to find gems so that it can install them as needed.

Chapter 5

[99]

For example, here is the Gemfile that is being used to describe the gem versions that
are used when writing these examples:

source 'https://rubygems.org'

gem 'chef', '11.10.0'
gem 'chefspec', '3.2.0'
gem 'colorize', '0.6.0'

Using this will ensure that the gems you install locally match the ones that are used
when writing these examples. This should limit the differences between your local
testing environments if you run these examples on your workstation.

In order to use a Gemfile, you will need to have Bundler installed. If you are using
RVM, Bundler should be installed with every gemset you create; if not, you will
need to install it on your own via the following code:

gem install bundler

Once Bundler is installed and a Gemfile that contains the previous lines is placed in
the root directory of your cookbook, you can execute bundle install from inside
your cookbook's directory:

user@host:~/cookbooks/mycookbook $> bundle install

Bundler will parse the Gemfile in order to download and install the versions of
the gems that are defined inside. Here, Bundler will install chefspec, chef, and
colorize along with any dependencies those gems require that you do not already
have installed.

Creating a simple recipe and a matching
ChefSpec test
Once these dependencies are installed, you will want to create a spec test inside
your cookbook and a matching recipe. In keeping with the TDD philosophy, we
will first create a file, default_spec.rb, in the spec directory. The name of the spec
file should match the name of the recipe file, only with the addition of _spec at the
end. If you have a recipe file named default.rb (which most cookbooks will), the
matching spec test would be contained in a file named default_spec.rb. Let's take
a look at a very simple recipe and a matching ChefSpec test.

Testing Your Recipes

[100]

Writing a ChefSpec test
The test, shown as follows, will verify that our recipe will create a new file,
/tmp/myfile.txt:

require 'chefspec'

describe 'mycookbook::default' do
 let(:chef_run) {
 ChefSpec::Runner.new.converge(described_recipe)
 }

 it 'creates a file' do
 expect(chef_run).to create_file('/tmp/myfile.txt')
 end
end

Here, RSpec uses a describe block similar to the way Chef uses a resource block
(again, blocks are identified by the do ... end syntax or code contained inside curly
braces) to describe a resource, in this case, the default recipe inside of mycookbook.
The described resource has a number of examples, and each example is described by
an it block such as the following, which comes from the previous spec test:

it 'creates a file' do
 expect(chef_run).to create_file('/tmp/myfile.txt')
end

The string given to the it block provides the example with a human-readable
description of what the example is testing; in this case, we are expecting that the
recipe creates a file. When our recipes are run through ChefSpec, the resources
described are not actually created or modified. Instead, a model of what would
happen is built as the recipes are executed. This means that ChefSpec can validate
that an expected action would have occurred if the recipe were to be executed on an
end host during a real client run.

It's important to note that each example block resets expectations
before it is executed, so any expectations defined inside of a given
test will not fall through to other tests.

Chapter 5

[101]

Because most of the tests will involve simulating a Chef client run, we want to run
the simulation every time. There are two options: execute the code in every example
or use a shared resource that all the tests can take advantage of. In the first case, the
test will look something like the following:

it 'creates a file' do
 chef_run = ChefSpec::Runner.new.converge(described_recipe)
 expect(chef_run).to create_file('/tmp/myfile.txt')
end

The primary problem with this approach is remembering that every test will have
to have the resource running at the beginning of the test. This translates to a large
amount of duplicated code, and if the client needs to be configured differently, then
the code needs to be changed for all the tests. To solve this problem, RSpec provides
access to a shared resource through a built-in method, let. Using let allows a test
to define a shared resource that is cached for each example and reset as needed for
the following examples. This resource is then accessible inside of each block as a local
variable, and RSpec takes care of knowing when to initialize it as needed.

Our example test uses a let block to define the chef_run resource, which is
described as a new ChefSpec runner for the described recipe, as shown in the
following code:

let(:chef_run) {
 ChefSpec::Runner.new.converge(described_recipe)
}

Here, described_recipe is a ChefSpec shortcut for the name of the recipe provided in
the describe block. Again, this is a DRY (don't repeat yourself) mechanism that allows
us to rename the recipe and then only have to change the name of the description
rather than hunt through the code. These techniques make tests better able to adapt
to changes in names and resources, which reduces code rot as time goes by.

Building your recipe
The recipe, as defined here, is a very simple recipe whose only job is to create a
simple file, /tmp/myfile.txt, on the end host:

file "/tmp/myfile.txt" do
 owner "root"
 group "root"
 mode "0755"
 action :create
end

Testing Your Recipes

[102]

Put this recipe into the recipes/default.rb file of your cookbook so that you have
the following file layout:

mycookbook/
 |- recipes/
 | |- default.rb
 |- spec/
 |- default_spec.rb

Executing tests
In order to run the tests, we use the rspec application. This is a Ruby script
that comes with the RSpec gem, which will run the test scripts as spec tests
using the RSpec language. It will also use the ChefSpec extensions because in our
spec test, we have included them via the line require 'chefspec' at the top of
our default_spec.rb file. Here, rspec is executed through Bundler to ensure that
the desired gem versions, as specified in our Gemfile, are used at runtime without
having to explicitly load them. This is done using the bundle exec command:

bundle exec rspec spec/default_spec.rb

This will run RSpec using Bundler and process the default_spec.rb file. As it runs,
you will see the results of your tests, a . (period) for tests that pass, and an F for any
tests that fail. Initially, the output from rspec will look like this:

Finished in 0.17367 seconds

1 example, 0 failures

RSpec says that it completed the execution in 0.17 seconds and that you had one
example with zero failures. However, the results would be quite different if we
have a failed test; RSpec will tell us which test failed and why.

Understanding failures
RSpec is very good at telling you what went wrong with your tests; it doesn't do you
any good to have failing tests if it's impossible to determine what went wrong. When
an expectation in your test is not met, RSpec will tell you which expectation was
unmet, what the expected value was, and what value was seen.

In order to see what happens when a test fails, modify your recipe to ensure that the
test fails. Look in your recipe for the following file resource:

file "/tmp/myfile.txt" do

Chapter 5

[103]

Replace the file resource with a different filename, such as myfile2.txt, instead of
myfile.txt, like the following example:

file "/tmp/myfile2.txt" do

Next, rerun your spec tests; you will see that the test is now failing because
the simulated Chef client execution did something that was unexpected by
our spec test. An example of this new execution would look like the following:

[user@host]$ bundle exec rspec spec/default_spec.rb

F

Failures:

 1) my_cookbook::default creates a file

 Failure/Error: expect(chef_run).to create_file('/tmp/myfile.txt')

 expected "file[/tmp/myfile.txt]" with action :create to be in Chef
run. Other file resources:

 file[/tmp/myfile2.txt]

 # ./spec/default_spec.rb:9:in `block (2 levels) in <top (required)>'

Finished in 0.18071 seconds

1 example, 1 failure

Notice that instead of a dot, the test results in an F; this is because the test is now
failing. As you can see from the previous output, RSpec is telling us the following:

•	 The creates a file example in the 'my_cookbook::default' test
suite failed

•	 Our example failed in the ninth line of default_spec.rb (as indicated by the
line that contained ./spec/default_spec.rb:9)

•	 The file resource /tmp/myfile.txt was expected to be operated on with the
:create action

•	 The recipe interacted with a file resource /tmp/myfile2.txt instead of
/tmp/myfile.txt

Testing Your Recipes

[104]

RSpec will continue to execute all the tests in the files specified on the command line,
printing out their status as to whether they passed or failed. If your tests are well written
and run in isolation, then they will have no effect on one another; it should be safe to
execute all of them even if some fail so that you can see what is no longer working.

Expanding your tests
ChefSpec provides a comprehensive suite of tools to test your recipes; you can stub
and mock resources (replace real behavior with artificial behavior, such as network
or database connections), simulate different platforms, and more. Let's take a look at
some more complex examples to see what other things we can do with ChefSpec.

Multiple examples in a spec test
Spec tests do not need to contain only one example; they can contain as many as you
need. In order to organize them, you can group them together by what they describe
and some shared context. In RSpec, context blocks contain examples that are relevant
to the recipe or script being tested. Think of them as self-contained test suites within
a larger test suite; they can have their own resources as well as setup and tear-down
logic that are specific to the tests that are run in that context.

As an example, let's look at part of the spec test suite from the render_file example
inside of ChefSpec itself. Consider this portion of the recipe:

file '/tmp/file' do
 content 'This is content!'
end

cookbook_file '/tmp/cookbook_file' do
 source 'cookbook_file'
end

template '/tmp/template' do
 source 'template.erb'
end

The recipe being shown has three resources: a template, a cookbook_file, and
an ordinary file resource. A sample of the matching spec test (tests removed for
formatting and ease of reading) contains an outer describe block, which tells us
that we are executing tests for the render_file::default recipe and three separate
context blocks. Each context describes a different portion of the recipe that is being
tested and the expectations of that particular type of resource. Together, they are
all part of the default recipe, but they behave very differently in what content they
render as well as where and how they store files on the system.

Chapter 5

[105]

In this example, the file context contains tests that pertain to the expected results of
the file resource, the cookbook_file context is concerned with the cookbook_file
resource, and so on:

describe 'render_file::default' do
 let(:chef_run) {
 ChefSpec::Runner.new.converge(described_recipe)
 }

 context 'file' do
 it 'renders the file' do
 expect(chef_run).to render_file('/tmp/file')
 expect(chef_run).to_not render_file('/tmp/not_file')
 end
 end

 context 'cookbook_file' do
 it 'renders the file' do
 expect(chef_run).to render_file('/tmp/cookbook_file')
 expect(chef_run).to_not
 render_file('/tmp/not_cookbook_file')
 end
 end

 context 'template' do
 it 'renders the file' do
 expect(chef_run).to render_file('/tmp/template')
 expect(chef_run).to_not render_file('/tmp/not_template')
 end
 end

end

Contexts can be used to group together a set of examples that are related, not just
ones that are specific to a particular resource. Consider the following example:

describe 'package::install' do
 context 'when installing on Windows 2012' do
 end
 context 'when installing on Debian' do
 end
 context 'when installing on FreeBSD' do
 end
end

Testing Your Recipes

[106]

In the previous example, our spec test contained tests that are grouped together
by the platform being executed on. Inside of each context, the Chef run will be
constructed with a platform argument instead so that the expectations being tested
will be considered against a run of the recipe on the platform in question rather
than the host's operating system. This is incredibly useful, as we will see in the next
section on testing for multiple platforms.

Testing for multiple platforms
One of the more non-trivial uses of ChefSpec is to simulate executing recipes on
multiple platforms. This is useful for developers who are building recipes that need
to support more than one operating system. Software packages such as PostgreSQL,
MySQL, Java, PHP, Apache, and countless other applications can be installed on
many different platforms. Because each platform varies in its installation mechanism,
user creation, and other core features, being able to test recipes against all the
supported platforms is incredibly useful.

Let's look at a hypothetical example to develop a recipe to install MySQL on
Windows 2012 and some things we might want to validate during such a run:

context 'when run on Windows 2012' do
 let(:chef_run) do
 # construct a 'runner' (simulate chef-client) running
 # on a Windows 2012 host
 runner = ChefSpec::ChefRunner.new(
 'platform' => 'windows',
 'version' => '2012'
)
 # set a configuration variable
 runner.node.set['mysql']['install_path'] = 'C:\\temp'
 runner.node.set['mysql']['service_user'] = 'SysAppUser'
 runner.converge('mysql::server')
 end

 it 'should include the correct Windows server recipe' do
 chef_run.should include_recipe 'mysql::server_windows'
 end

 it 'should create an INI file in the right directory' do
 ini_file = "C:\\temp\\mysql\\mysql.ini"
 expect(chef_run).to create_template ini_file
 end
end

Chapter 5

[107]

By constructing the runner with the platform and version options, the test will
exercise running the mysql::server recipe and pretend as though it were running on
a Windows 2012 host. This allows us to set up expectations about the templates that
will be created, recipes that are being executed, and more on that particular platform.

Presuming that the mysql::server recipe was able to delegate to the OS-specific
recipe on a given platform, we could write another test:

context 'when run on Debian' do
 let(:chef_run) do
 runner = ChefSpec::ChefRunner.new(
 'platform' => 'debian'
)
 runner.node.set['mysql']['install_path'] = '/usr/local'
 runner.node.set['mysql']['service_user'] = 'mysql'
 runner.converge('mysql::server')
 end

 it 'should include the correct Linux server recipe' do
 chef_run.should include_recipe 'mysql::server_linux'
 end

 it 'should create an INI file in the right directory' do
 ini_file = "/usr/local/mysql/mysql.ini"
 expect(chef_run).to create_template ini_file
 end

 it 'should install the Debian MySQL package' do
 expect(chef_run).to install_package('mysql-server')
 end
end

In this way, we can write our tests to validate the expected behavior on platforms
that we may not have direct access to in order to ensure that they will be performing
the expected actions for a collection of platforms.

Testing Your Recipes

[108]

Summary
RSpec with ChefSpec extensions provides us with incredibly powerful tools to test
our cookbooks and recipes. You have seen how to develop basic ChefSpec tests for
your recipes, organize your spec tests inside of your cookbook, execute and analyze
the output of your spec tests, and simulate the execution of your recipes across
multiple platforms.

In future chapters, we will learn some more advanced testing mechanisms such
as mocking and stubbing external services such as search and data bags. Adding
testing to your development cycle allows you to feel confident in the correctness
of your recipes, which is a critical step towards automating the management of
your infrastructure.

Now, let's take a look at how we will build a cookbook to complement a web
application so that we can see the full cycle of developing an application and
deploying it using Chef.

From Development to
Deployment

This chapter covers end-to-end software deployment of a Python-based web
application. It will also introduce you to some common cookbooks and how
to put them all together to create a fully automated deployment mechanism.

We will walk through the following topics:

•	 Configuring your local settings to work with AWS
•	 Modeling a simple web.py application with Chef
•	 Installing the cookbooks you need
•	 Provisioning EC2 instances for web and DB servers
•	 Defining your roles
•	 Adding users to hosts
•	 Installing the required software
•	 Configuring an application using Chef
•	 Deploying the application

From Development to Deployment

[110]

Describing the setup
From a high level, here is what needs to happen in order to take an application
that we have developed from a desktop to deployment. In order to deploy your
application, you will provision two hosts, web and db (each with one user account)
and webapp, whose home directory will be in /home/webapp. The source code
will be hosted on GitHub and deployed using Git onto the web server. We will
create a database, provision an account to access that database, and then configure
and deploy a web.py application in a virtual Python environment that will be
started and monitored by supervisord. This is a fairly common pattern for modern
web applications, regardless of the framework and language being used. The
demonstration application used in this chapter consists of only a handful of files
making it easy to deploy and understand, but this will give you the concepts and
tools to expand this example for use with future applications you might develop or
need to deploy.

Deploying software with Chef
There are numerous benefits to deploying your software using Chef; the primary
benefit is automation—the chef-client can be run periodically, and it can execute
fully-automated deployments whenever changes are made to the source code
repository. Additionally, Chef stores all your configuration data, so you can avoid
storing sensitive secrets and hard-coding URLs or other dynamic data in your
configuration. For example, if you have an application with a database pool, and
you add a new database host to your pool, Chef can use a simple search to populate
the list of hosts to include in the connection pool so that it is always up to date with
your infrastructure.

However, deploying software with Chef does require some coordination between
your application and Chef. You will need to maintain recipes required for deploying
your application, and you will also want to use Chef as the authoritative source for
your configuration data, which involves writing configuration templates. By using
Chef to manage your deployments, you can also generate any configuration data
needed to run your software based on your infrastructure configuration; in our case,
a simple config.py file for your web.py application. This method can also be used
to manage the database.yml file (and any other YAML files) for Rails applications,
the server.yml file for a Dropwizard application, or any other configuration files
needed to run your service.

YAML is a simple markup language to store configuration data.
It is popular with modern developers because it is easy to parse
and is very expressive, similar to JSON.

Chapter 6

[111]

Configuring your local environment
By now, you should have access to a Chef server of some sort; here, we will be using
the hosted Chef service, but the work (aside from configuring your knife.rb file)
will remain the same across self-managed and hosted Chef instances. In order to
follow along with the examples, you will need to configure your workstation with an
appropriate knife.rb file and certificates. These files can be downloaded from the
hosted Chef console and modified as needed.

Additionally, you will need to have installed knife through the chef gem and have
the knife-ec2 gem installed in order to interact with EC2. If you prefer to use a
different provider, then you can refer to the previous chapter on how to provision
cloud hosts with this provider when you get to the provisioning step.

In our example, using hosted Chef and EC2, our knife.rb file will contain content
similar to the following code:

current_dir = File.dirname(__FILE__)
log_level :info
log_location STDOUT
node_name "myorg"
client_key "#{current_dir}/myorg.pem"
validation_client_name "myorg-validator"
validation_key "#{current_dir}/myorg-validator.pem"
chef_server_url "https://api.opscode.com/organizations/myorg"
cache_type 'BasicFile'
cache_options(:path => "#{ENV['HOME']}/.chef/checksums")
cookbook_path ["#{current_dir}/../cookbooks"]

knife[:aws_access_key_id] = "YOUR AWS ACCESS KEY"
knife[:aws_secret_access_key] = "YOUR AWS SECRET KEY"
knife[:region] = "AWS REGION"

Again, the base files can be downloaded from the hosted Chef console, or if you are
using a self-managed Chef installation, this can be found on your Chef server.

Modeling a simple Python application
Here we will consider a web.py application that has two primary components: a
web server and a database server. We will provision one host for each role, bootstrap
them, and deploy the software onto our new hosts.

From Development to Deployment

[112]

Our application stack will consist of the following:

•	 web.py as our web framework
•	 PostgreSQL for data storage
•	 EC2 for virtual hosts

We want to define two primary roles that represent our web server and our database
server. In addition, we will construct a baseline role for all our servers that will
supply any common data we need such as user accounts, SSH keys, network
configuration data, shells, common utilities, libraries, and so on.

We will need to find or write cookbooks for the following components we will use:

•	 Python
•	 supervisord
•	 PostgreSQL
•	 User accounts
•	 Our custom web application

Managing the cookbooks
The cookbooks that we will be using are all available at the following URL: https://
github.com/johnewart/simplewebpy_app. Because a number of cookbooks used in
this example are under active development, the ones required for the examples have
been frozen (as of writing of this book) to ensure compatibility with the examples; it
is better to have them slightly out of date than broken in this case.

However, when you write your own cookbooks and deploy your own software
beyond this example, you will find that there are a large number of cookbooks that
can be found through the Chef community site—http://supermarket.getchef.
com/—or by searching the Web for cookbooks; many of these will be hosted on
GitHub, BitBucket, or similar source code-hosting sites.

Downloading cookbooks
Here in the following code, we will simply download the cookbook collection
as a whole:

http://github.com/johnewart/chef_essential_files

https://github.com/johnewart/simplewebpy_app
https://github.com/johnewart/simplewebpy_app
http://supermarket.getchef.com/
http://supermarket.getchef.com/
http://github.com/johnewart/chef_essential_files

Chapter 6

[113]

To install the collection, we can do the following from the chef_essential_files/
cookbooks directory:

knife cookbook install -o . *

This will install all of the cookbooks that are provided. The provided cookbooks
are all that is required for the examples in this chapter to be successful. Let's
take a look at our custom cookbook, the pythonwebapp cookbook, as all of the
others are off-the-shelf cookbooks that are designed to provide some general
support functionalities.

Looking at the database recipe
We will do a few things here, so let's look at our database recipe. In order for
our web application to be useful, it needs a database to connect to. Typically, this
involves installing the database server software, constructing a database, and
granting access to that database by a specified user (or users). Our application is no
different, so we will leverage the database cookbook in order to accomplish this.

First, in our recipe, we need to include the PostgreSQL-specific resources from the
database cookbook, which we will do using the following code:

include_recipe "database::postgresql"

You will need to know what database you will be creating and to which user you
will be granting access to along with the password that will be used to identify them:

dbname = node[:webapp][:dbname]
dbuser = node[:webapp][:dbuser]
dbpass = node[:webapp][:dbpass]

In order to create a database and user as well as grant access, you will need to establish
a connection to the database server with a user that has permission to do so. You will
see that this user has also been granted access in your role's pg_hba settings so that
PostgreSQL knows to allow the postgres user to connect to the database locally, as
shown in the following code:

postgresql_connection_info = {
 :host => 'localhost',
 :port => node['postgresql']['config']['port'],
 :username => 'postgres',
 :password => node['postgresql']['password']['postgres']
}

From Development to Deployment

[114]

Using this connection information, you can construct a database and a user (if they
don't already exist), and then grant that user full access to our new database:

Construct an actual database on the server
postgresql_database 'webapp' do
 connection postgresql_connection_info
 action :create
end

Create a database user resource using our connection
postgresql_database_user dbuser do
 connection postgresql_connection_info
 password dbpass
 action :create
end

Grant all privileges on all tables in 'webapp'
postgresql_database_user dbuser do
 connection postgresql_connection_info
 database_name dbname
 privileges [:all]
 action :grant
end

This high-level language allows us to easily manipulate the database without the
need to know any database-specific SQL or commands. If you want to convert your
application to use MySQL, for example, provisioning a new MySQL database would
largely be as easy as converting the word postgresql to mysql in our recipe, and
the database-specific adapter in the database cookbook will be responsible for the
implementation details.

Looking at your application deployment
cookbook
Once our database has been provisioned, you can look at how you can install our
web application. In the pythonwebapp::webapp recipe, you have all the information
you need to do this. The way that you define a recipe for deploying an application
will vary wildly among applications, as each application is unique. However, this
particular example was designed to be a representative of most web applications
(reasonably) and should present you with a good starting point to understand the
basics of deploying a web application with Chef.

Chapter 6

[115]

Modern web applications typically follow the same pattern: provision a user, install
an interpreter, or other engine (such as Python, Ruby, and Java), create directories
if needed, check out the source code, run any data migrations (if needed) to update
your database, and then make sure that your service is up and running; this is no
different. The more complicated your application, the more infrastructure you may
need to model, such as job queue engines, asynchronous workers, and other libraries.

If you look at the web application cookbook located at cookbooks/pythonwebapp,
you will see that it has the following: two recipes, a template, and a PIP-requirement
definition inside it. The recipes included are for the web application itself and to
manage the creation of the PostgreSQL database and user on the database host.

Most of the interesting work is in the application recipe, cookbooks/pythonwebapp/
recipes/webapp.rb; so, let's start by taking a look at that. All applications are going
to have a slightly different deployment logic, but modern web applications usually
follow a pattern that looks like the following:

•	 Install any system-wide packages required
•	 Construct the directories needed for the software
•	 If this is Python or Ruby, possibly install a new virtualenv tool or

RVM gemset
•	 Install the libraries needed to run the application
•	 Check out the application's source code
•	 Build and configure the application as needed
•	 Create or update the database schema
•	 Stop the web application services
•	 Start the web server or process manager that monitors the application

This example application is no different, so let's look at the steps needed to deploy
this web.py application. First, declare any application configuration data needed
with the following command:

app_root = node[:webapp][:install_path]
python_interpreter = node[:webapp][:python]
virtualenv = "#{app_root}/python"
virtual_python = "#{virtualenv}/bin/python"
src_dir = "#{app_root}/src/"
Grab the first database host

From Development to Deployment

[116]

dbhost = search(:node, "role:postgresql_server")[0]['ipaddress']

environment_hash = {
 "HOME" => "#{app_root}",
 "PYTHONPATH" => "#{app_root}/src"
}

In this snippet, we used the computed attributes to tell our recipe where to install the
application; in this case, the default is /opt/webapp but this can be overridden for
flexibility. Additionally, we set the path to the Python interpreter we want to use for
our Python virtualenv. However, you can just as easily specify a Ruby or Java path
if your application used one of those languages. There is a path to the source code
and a database host address. This path is determined by searching the Chef data for
all nodes with the postgresql_server role, taking the first one, and using its IP.
This allows us to replace the database server and not have to worry about updating
our configuration data, which we'll see in a bit.

Preparing the directories
In order to deploy our application, and for it to run, we need to have a location
to put our data. In this application, we have defined a need for: a configuration
directory, a log directory, and a place to view the source code. In our recipe, we will
create these directories and set proper ownership to our deployment user and group.
Note that you do not need to create the application root directory if it already exists,
and you do not need to set special ownership or permissions on the root directory.
Because we are leveraging the recursive property of the directory resource, the root
application directory will be implicitly created; however, we are constructing it here
for the sake of completeness.

It is critical that our directories have the correct ownership and permissions; without
this, the application will be unable to interact with those directories to store log
data or read-and-write any configuration data. The following code constructs these
directories for us and changes the ownership and permissions:

directory "#{app_root}" do
 owner node[:webapp][:user]
 group node[:webapp][:group]
 mode "0755"
 action :create
 recursive true
end

Create directories
["src", "logs", "conf"].each do |child_dir|

Chapter 6

[117]

 directory "#{app_root}/#{child_dir}" do
 owner node[:webapp][:user]
 group node[:webapp][:group]
 mode "0755"
 action :create
 recursive true
 end
end

One thing to note here is that we are using a loop to construct our directories.
This is a good way to manage multiple resources of the same type that have
the same set of configuration parameters. Here we are saying that we have
three subdirectories, src, log, and conf. Also, we want to construct a directory
resource inside of our application's root directory for each subdirectory with proper
ownership and permissions. The recursive flag is similar to the -p option on mkdir,
which tells it to create any directories that are missing in between the root and the
directory being created.

Constructing your Python virtual environment
This may be new to non-Python developers but should be fairly straightforward.
A virtual environment operates in a similar way to RVM or rbenv for Ruby, or a
self-contained JAR file for Java. In that, it isolates the Python interpreter and installed
libraries to a specific location on the system. In our case, we will use the following
code to achieve this:

python_virtualenv "#{virtualenv}" do
 owner node[:webapp][:user]
 group node[:webapp][:group]
 action :create
 interpreter "#{python_interpreter}"
end

This python_virtualenv resource comes from the python cookbook and will
construct a virtual environment in the location named by the resource (in our
case, the directory stored in virtualenv, which as we saw previously, is defined
as though in a python directory inside our application root) using the specified
interpreter and ownership properties.

A virtual environment will be created, which contains a minimal installation of the
Python interpreter as well as any Python libraries that are installed into the virtual
environment. Think of it as your application's own installation of Python that is
unaffected by, and subsequently does not affect, any other Python installation
on the system.

From Development to Deployment

[118]

This is a very useful technique to install and manage Python applications, and the
same concept can be extended to the Rails application using any similar technology
from the Ruby world such as RVM or rbenv, as mentioned earlier.

Checking the source code
One interesting thing in this recipe, which has been included for future reference, is
the usage of a cookbook, ssh_known_hosts, that grabs a host's SSH key and adds it
to the system's list of known SSH keys. This is extremely useful to deploy software
via GitHub or BitBucket, where you are using SSH to pull down the source code,
especially as their host keys might change:

Need to install SSH key for github.com
ssh_known_hosts_entry 'github.com'

Note that it is also somewhat insecure as you are blindly accepting the host's
fingerprint—if you are concerned about security, you can provide the known
fingerprints manually using the :key attribute. Supplying the fingerprint is
done through the following code:

ssh_known_hosts_entry 'github.com' do
 key 'github.com ssh-rsa AAAAB3NzaC1yc....'
end

If there are a large number of host fingerprints that you need to manage, or if they
change frequently, you can use a data bag to store them. If you are interested, look
at the README for the ssh_known_hosts cookbook for more examples.

Once the SSH keys are registered, you can now clone the source from a git+ssh URL
such as GitHub's authenticated SSH endpoint.

In this example, we are using a publicly available HTTPS source code repository; if
you were to replace this with your own SSH-enabled repository, you would need to
change the repository attribute and also make sure to store your deployment key on
the endhost:

Clone our application source
git "#{src_dir}" do
 repository "https://github.com/johnewart/simplewebpy_app.git"
 action :sync
 branch 'master'
 user node[:webapp][:user]
end

Chapter 6

[119]

By using the git resource, the repository will be cloned into the designated source
directory on the endhost. Here, we will also be pulling data from the master branch
and performing this action as our webapp user.

Installing any extra dependencies
There are two ways to model dependencies for your application: in your cookbook
and recipe, or through an external mechanism such as Bundler, pip, or other
dependency resolution, and the downloading tool depending on the language of
your choice. As with everything, there are both inherent drawbacks and benefits to
each of these methods.

Managing dependencies in Chef
By modeling your dependencies in Chef, you have a consistent model that you
can look to in a centralized location. This means that your application needs a
new Ruby gem, or a Python library that someone must update a cookbook or Chef
configuration with that information in order for the deployment to be successful.
This can limit your ability to continuously deploy based solely on the contents of a
source code repository. In effect, this requires you to model the following in Chef:

•	 Dependent libraries
•	 Library versions
•	 Possibly, the dependencies of any declared dependencies (which can

spiral quickly)

However, modeling it this way does ensure that Chef has an accurate picture of
all the information associated with your application. This solution does offer some
other benefits:

•	 Dependencies are precisely modeled in Chef and can be queried by
other tools

•	 Any system-specific packages that are needed for your interpreted libraries
are going to be modeled by Chef anyway, so it's all in one place (examples
can include native XML or database libraries)

•	 Developers can't arbitrarily change dependencies and accidentally break
deployments because the underlying libraries have not been installed
in production

Let's look at some things to think about when using tools external to Chef for
this task.

From Development to Deployment

[120]

Managing dependencies elsewhere
Using an external tool such as Bundler or pip has some advantages, including
flexibility and ease of use by developers who may not be involved in infrastructure
configuration. It also introduces the possibility of misconfigured dependencies
and underlying libraries. The primary advantage of this mechanism is that it
provides a simpler dependency management model for developers—simply add a
requirement to the Gemfile, requirements.txt, or other metadata file, and Chef
will automatically install them during the next run. You also now have to look in
two different places to determine what is being installed on endhosts. This also
means that you are now configuring dependencies in multiple places, increasing the
possibility of making a wrong configuration change in one place.

It's important to take away that there is not always only one tool for the job, and
depending on how your organization or team operates, you may choose to mix
and match how you model the application-level dependencies. For the sake of
demonstrating them both to you, the application cookbook models the dependencies
in the recipe as well as through a requirements.txt file using pip. Additionally,
you may find that initially your team uses one way and then moves to another as
your requirements stop changing so frequently, or you are able to combine them to
your advantage.

Using Python's requirements file
Our webapp cookbook has a custom pip_requirements definition that provides
an easy way to install any requirements stored inside a requirements.txt file
into a specified virtual environment using the copy of pip provided by that virtual
environment. In the following code, you will see how we can achieve this:

pip_requirements "webapp" do
 action :run
 pip "#{virtualenv}/bin/pip"
 user node[:webapp][:user]
 group node[:webapp][:group]
 requirements_file "#{src_dir}/requirements.txt"
end

In this example, we are telling pip to run as our application's user and group and
to install the dependencies in our requirements.txt into the virtual environment
specified by virtualenv. Again, a similar resource can be created (if one does not
already exist) to execute Bundler for Ruby, CPAN for Perl, or PEAR to manage
PHP dependencies.

Chapter 6

[121]

Configuring your application
Now that you have prepared your system for your application, you need to
configure it. In order for the application to talk to our database, you must provide the
required database connection information that we have stored in Chef. Here, we will
use a template that is stored in templates/default/config.py.erb, and inject it
with our database configuration. The resource for this looks like the following code:

template "#{src_dir}/config.py" do
 source "config.py.erb"
 user node[:webapp][:user]
 group node[:webapp][:group]
 mode "0600"
 variables({
 :dbname => node[:webapp][:dbname],
 :dbuser => node[:webapp][:dbuser],
 :dbpass => node[:webapp][:dbpass],
 :dbhost => dbhost
 })
end

Here, we load our database information onto our template and store it in our
application's install directory (where we checked out the source for simplicity), and
set some sane file permissions. Were this a Rails application, we can use a similar
template to generate database.yml and matching settings.yml, or if it were a
Dropwizard application, a service.yml file, a PHP INI file, or any other type of
configuration data that were needed. In our case, we are simply populating the
following Python code so that we have a database connection object:

import web
db_params = {
 'dbn': 'postgres',
 'db': '<%= @dbname %>',
 'user': '<%= @dbuser %>',
 'pw': '<%= @dbpass %>',
 'host' : '<%= @dbhost %>'
}
DB = web.database(**db_params)
cache = False

The previous example uses the web.py database module to construct a new database
connection using the hash, which can then be imported and used in the other
portions of the application. Again, this is a good starting example for our web.
py application that can be used as a model for whatever framework or application
server you are using in your systems.

From Development to Deployment

[122]

Keeping your application running
All applications need to be started and kept running in some manner. If you are using
Rails with mod_passenger, then the Apache daemon will be the primary entry point
for your application, and this software will need to be installed and configured. In our
example, we will be using the supervisord service from http://supervisord.org,
which is written in Python and serves as a very configurable, lightweight, and reliable
process manager. You can configure an entry in the supervisord system configuration
using a supervisor_service resource that is provided by the supervisor cookbook
installed earlier:

supervisor_service "webapp" do
 action [:enable,:restart]
 autostart true
 user node[:webapp][:user]
 command "#{virtual_python} #{src_dir}/server.py
#{node[:webapp][:port]}"
 stdout_logfile "#{app_root}/logs/webapp-stdout.log"
 stdout_logfile_backups 5
 stdout_logfile_maxbytes "50MB"
 stdout_capture_maxbytes "0"
 stderr_logfile "#{app_root}/logs/webapp-stderr.log"
 stderr_logfile_backups 5
 stderr_logfile_maxbytes "50MB"
 stderr_capture_maxbytes "0"
 directory src_dir
 environment environment_hash
end

The previous example will generate a configuration file for supervisord with
the settings specified in our resource block. Unless you change the location, the
configuration files will be located in /etc/supervisor.d/[service_name].conf.
In our case, the service is named webapp, and its configuration file will be /etc/
supervisor.d/webapp.conf.

Here, we are telling supervisord that we want to enable our service and then restart
it (which will start it if it's not currently running), where we want to log the process's
output, how we want to rotate those log files, where to start our process, what
environment variables to use, and most importantly what command to execute.

Now that we've looked at our recipes, let's go ahead and set up our roles, provision
some systems, and deploy our application!

http://supervisord.org

Chapter 6

[123]

Defining roles
Here we will construct our three roles, one each for our base server configuration,
database server, and web server. Each role will have a set of recipes to run,
with the base server providing the user accounts, SSH keys, and other common
components, and then the others providing configuration data for PostgreSQL
and nginx, respectively.

Creating the base server role
The key bits that are of interest in our base server role are the run list and the
configuration data that specify which group to populate users for. If you look
at the file roles/base_server.json, you will see that we have defined one
group of users to pull from our data bags:

"override_attributes": {
 "shell_users": {
 "group": "webapp"
 }
}

And then, the recipe we want to use that will populate the users on the host is in the
run list:

"run_list": [
 "users::shell_users"
],

In order to load the role into Chef, you can issue a from file command:

knife role from file base_server.json

Updated Role base _server!

You can verify that the role was created with a simple role list command:

[user]% knife role list

base_server

From Development to Deployment

[124]

Creating the database server role
Let's take a look at some portions of our database server role, as defined in
roles/postgresql_server.json. This file contains the description of our
PostgreSQL server as modeled earlier in the chapter. What is of interest in this
file is our override_attributes section; these are settings we want to use in place
of the default values provided by our postgresql cookbook. As mentioned before,
you will want to look at the documentation and the default attributes.rb file to
find out what attributes you can set for a given cookbook and its recipes.

The PostgreSQL recipes use a postgresql configuration section that contains a
config section for server-specific configuration and properties, and pg_hba for the
authentication data. Looking at the postgresql section, we can see that we want to
install Version 9.3, and we want it to listen on all addresses (0.0.0.0) on port 5432:

 "version": "9.3",
 "config": {
 "listen_addresses": "0.0.0.0",
 "port": "5432"
 },

In addition, the pg_hba section contains an array of JSON objects that describes
which users have access to the service, by what mechanism they are able to
authenticate themselves (MD5, trusted, local ident service, and so on), and from
where they can connect. This is coded into our configuration, but the recipes can
be extended to use data bags to determine this information as well. It is too long to
include all of it here, but if you look at the pg_hba data, you will see that there are
three entries: one for the user webuser to connect from anywhere using an MD5
password, and two for local users to access the default template database, and for
the postgres user itself to modify the webapp database.

In addition to the configuration data, there is a run list—this tells Chef what recipes
this role will include. You can see from this example that we will be installing the
PostgreSQL server and then provisioning our webapp-specific user and database
(found in cookbooks/pythonwebapp/recipes/database.rb):

"run_list": [
 "postgresql::server",
 "pythonwebapp::database"
],

In order to use this, we want to load our JSON file into Chef to define our database
server role:

knife role from file postgresql_server.json

Updated Role postgresql_server!

Chapter 6

[125]

You can check that the role was created with a role list command:

[user]% knife role list

base_server

postgresql_server

Creating the web server role
Our web application role is located in the roles/web_server.json file and contains
the required information for our web server. If you take a look at the JSON file, you
will see that the run list contains four entries:

"run_list": [
 "python",
 "python::virtualenv",
 "supervisor",
 "pythonwebapp::webapp"
],

Because our application relies on Python, we want to install the required version of
Python on our hosts as well as build a Python virtualenv tool for our application.
In addition, we will be using supervisord as the process monitor that is responsible
for ensuring that our web service starts and stays running. We also need to install
our web application once we have met our prerequisites.

Similar to how we loaded the PostgreSQL role from our JSON file, we can repeat the
process for our web server role:

knife role from file web_server.json

Updated Role web_server!

Again, you can check that the role was created with a simple role list command:

[user]% knife role list

base_server

postgresql_server

web_server

From Development to Deployment

[126]

Adding users
We will need a recipe to manage our users; here, we will use the users cookbook. We
will create one user, webuser, which will be the account that is used for deployment
and user connectivity. We will define our user in a JSON file similar to what we did in
the previous chapter; place the following in a users/webuser.json file:

{
 "id" : "webuser",
 "uid" : "1000",
 "gid" : 1000,
 "shell" : "/bin/bash",
 "comment" : "Webapp deployment user",
 "groups" : ["webusers"]
}

Then, you can load this user using the from file command:

knife data bag from file users users

Ensure that your hosts have our new users by editing the base_server role and
adding our webusers group so that any users in that group will be provisioned on
all our servers that incorporate the base_server role:

{
 "shell_users": {
 "group": "webusers",
 }
}

Provisioning EC2 instances
Here, we will be provisioning instances in us-west-1, but depending on where
you have your AWS instances set up, you will need to change your knife.rb
configuration to specify the region of your choice.

In order for them to communicate securely, we will construct a security group so
that all traffic between them is permitted. This is outside the scope of this book,
but it would be something to make sure you configure for production systems, as
you probably do not want the public on the Internet to have direct access to your
database server.

Here, we will assume that you have your AWS credentials and other critical
components configured, as we covered in previous chapters.

Chapter 6

[127]

To provision our database server, we will use the following command:

knife ec2 server create -d ubuntu14.04 -I ami-ee4f77ab -f m1.small -Z us-
west-1a -S jewartec2 -N db00 --ssh-user ubuntu

And to provision the web server, we will use the following command:

knife ec2 server create -d ubuntu14.04 -I ami-ee4f77ab -f m1.small -Z us-
west-1a -S jewartec2 -N web00 --ssh-user ubuntu

Once your instances are up and running, you can now move on to configuring them
with the roles and configuration data required!

Configuring the database host
In order to apply the PostgreSQL role to our database host, we need to make sure it's
in the run list. We can accomplish this with the following command:

knife node run_list add db00 "role[base_server]"

knife node run_list add db00 "role[postgresql_server]"

After ensuring that your node has the base_server and postgresql_server roles
added to the run list, you can run chef-client on the newly created host:

[jewart]% knife ssh 'name:db00' -x ubuntu 'sudo chef-client'

Once this is complete, assuming that everything went well, your new EC2 instance
will have:

•	 PostgreSQL 9.3 server installed and running
•	 A new database (the name of which is defined from your configuration)
•	 A database user that is granted permission to connect
•	 Correct pg_hba.conf and postgresql.conf files for our service

Now that we have our database server configured, which can be verified by logging
onto the server and ensuring that the service is running, let's take a look at setting up
our web application.

Configuring the web server
In order for the web server to deploy the web app, we need to add the required roles
to the web server, as we did with the database server:

knife node run_list add web00 "role[base_server]"

knife node run_list add web00 "role[web_server]"

From Development to Deployment

[128]

Now, we can execute chef-client on the web host (again making sure to use sudo
so that it has permission to do its work):

[jewart]% knife ssh 'name:web00' -x ubuntu 'sudo chef-client'

At this point, our web server will be in the following state:

•	 The following required packages will be installed:
°° Python 2.7 and development libraries
°° The PostgreSQL client development libraries
°° Git

•	 The directories our application needs to run are created
•	 A virtualenv tool, which is based on the system Python 2.7 is created
•	 Our application has been checked out from GitHub
•	 A configuration file in /opt/webapp/src/config.py is created by Chef
•	 Supervisord is configured to run our application and starts the

server.py daemon

Now, you should be able to visit your newly installed web application at the
following URL:

http://your-new-ec2-instance-hostname:8080

If you don't see your application, make sure that each of the preceding steps
was successful.

Deploying your software
Deploying software should be treated just like your infrastructure; repeated
deployments of the same commit and the same configuration should yield a
consistent state of your environment. In this example, we will be able to deploy
new updates to our web application simply by updating any nodes that use the
web_server role. The combination of our recipe and our configuration data with
the source code hosted in our GitHub repository will ensure that the most up-to-date
configuration and source are placed on our host.

Chapter 6

[129]

Manually deploying updates
Future deployments only require pushing changes to the master branch and
then running chef-client on any web servers that are in the fleet. This can be
accomplished on a single host (web00) using the following command:

knife ssh 'name:web00' -x ubuntu 'sudo chef-client'

This will tell knife that we want to SSH to the host whose name is web00 as the
ubuntu user (because that's the default EC2 user with sudo access) and execute
chef-client as root via sudo. This will work well if we only have one host;
however, as your capacity increases and you have multiple hosts, you will likely
want to execute this on a group of hosts in the future. This can be accomplished
using the search capability of Chef that allows you to expand a list of nodes that
match a set of criteria. Here, we will want to build a list of all the hosts that have our
web_server role associated with them. The following command will accomplish this:

knife ssh 'role:web_server' -x ubuntu 'sudo chef-client'

This will use Chef's search to find all nodes with the web_server role and then
SSH to them sequentially, the same as before but only across multiple hosts instead
of just one.

Automating deployment
The web application recipe is designed so that it syncs the source with the upstream
GitHub repository. By doing this, we can execute the recipe multiple times, and any
time there are updates, they will be pulled down onto the local host. If we wanted to,
the process of deployments could be automated in the following fashion:

•	 Active development of the application happens in a separate,
development branch

•	 Code is tested thoroughly and then merged into a master (or whatever branch
is being deployed onto hosts) when it is stable and ready for production

•	 Hosts are configured to run chef-client on a fixed interval using a tool
such as cron and will automatically update themselves

The possible issues with this are that bad code gets automatically deployed to endhosts
and so on. However, with enough integration testing and a high enough confidence
level, our code should be safe to deploy to production if it is in the master branch.
Through a combination of tags and proper source management, rollbacks could be as
simple as reverting the deploy branch to a known-good tag and they would happen as
soon as the next chef-client execution or forced using knife as outlined previously.

From Development to Deployment

[130]

Summary
A major attraction to Chef and infrastructure automation is the ability to deploy
software and provision systems quickly and consistently. Using the cookbooks and
examples outlined in this chapter, you should be able to model your application
and its components, gather cookbooks required to deploy needed software, build
cookbooks to configure and deploy custom software, and extend the examples to
provide more functionalities or enhance your infrastructure.

Now that you have seen how to take an application from development to
deployment, let's take a look at some more advanced examples of cookbook
development, including writing custom providers and resources, working with
secure data, searching Chef, and other ways of enhancing our recipes and cookbooks.

Beyond Basic Recipes
and Cookbooks

So far, we have only really looked at how to use cookbooks as a consumer, not as a
producer. In order to harness the true power of Chef, it is important to learn how to
build our own cookbooks and recipes using the full feature set that Chef provides.
This chapter covers:

•	 Advanced recipe concepts
•	 Managing your data using data bags
•	 Searching Chef from recipes
•	 Advanced scripting in recipes
•	 Authoring custom providers, resources, and definitions
•	 Dealing with encrypted data

Managing users
Basic user management in Chef is achieved through the use of the user resource.
This resource allows you to add, remove, or otherwise manipulate users on your
hosts. However, you can't possibly write recipes that contain one resource per user;
it simply wouldn't scale. In order to make large-scale user management easier, we
can combine some of Chef's capabilities such as data bags, per-role, per-node, and
per-environment configuration to enable scalable user management.

Let's take a look at a user cookbook that can provide these abilities.

Beyond Basic Recipes and Cookbooks

[132]

Evolution of a shell user recipe
First, let's take a look at a very naive user management recipe. This cookbook has a
hardcoded users list; initially, it contains frodo and samwise and simply iterates
through the list, creating users as it goes. Here is what the list may look like:

users = [

 {

 'id' => 'frodo',

 'uid' => '100',

 'gid' => 100,

 'shell' => '/bin/hobbitshell',

 'comment' => 'Frodo of the nine fingers'

 }, {

 'id' => 'samwise',

 'uid' => '101',

 'gid' => 101,

 'shell' => '/bin/gardenshell',

 'comment' => 'Samwise the strong'

 }

]

users.each do |u|

 home_dir = "/home/#{u['id']}"

 user u['id'] do

 uid u['uid']

 gid u['gid']

 shell u['shell']

 comment u['comment']

 supports :manage_home => true

 home home_dir

 end

end

Chapter 7

[133]

This approach will work for a handful of users, but it has the problem of being
very limited in scope and difficult to maintain. It also isolates the list of users to
this recipe, making it difficult to access data from other recipes and very brittle. The
first thing we can improve is make the users accessible to this and any other recipe
through the use of data bags. Let's take a look at how we can use data bags to make
user data management simpler and more flexible.

Storing data in data bags
Data bags are designed to store arbitrary configuration data that pertains to your
entire infrastructure. This may include users, global settings, firewall rules, and
so on; if it can be modeled using basic JSON data structures such as arrays and
dictionaries, it can be included in a data bag. We haven't touched much on these
yet, so now is a good time to take a look at what they can do while modeling users.

Creating a data bag for users
Data bags are collections of data that are related to one another; for example, users,
firewall rules, database servers, and so on. Here we will create a data bag that
contains our user data. This is not intended to be a replacement for a directory
service such as LDAP, though you could potentially use it to store all your user data
and then write recipes to populate an LDAP server with user data (in this way, you
may be able to keep an Active Directory system and a separate LDAP system in sync
by making your Chef data bag the authoritative source for user data). Let's take a
look at how to create and manipulate a data bag with user information:

[jewart]% knife data bag create users

Created data_bag[users]

Now, create a new user, frodo (you will need to have the EDITOR variable set to a
text editor such as vim on Linux systems):

[jewart]% export EDITOR=vim

[jewart]% knife data bag create users frodo

Data bag users already exists

You will be presented with a new entity template that contains only one key, id,
which is set to the name of the entity you created; in our case, frodo:

1 {

2 "id": "frodo",

3 }

Beyond Basic Recipes and Cookbooks

[134]

Save this file and you will now have one, mostly empty, entity in your users data
bag named frodo. You can check this with the show subcommand:

[jewart]% knife data bag show users

frodo

Every item in a data bag has to have a unique identifier, which can be meaningful or
just a random identifier; in our case, it will double up as the login name for the user.
We can take our previous data from the recipe and convert that to data bag elements
by writing them to JSON files and uploading them with knife. To take advantage of
uploads, we can create a directory, users, and create one JSON file per entry:

{

 "id" : "frodo",

 "uid" : "100",

 "gid" : 100,

 "shell" : "/bin/hobbitshell",

 "comment" : "Frodo of the nine fingers"

}

{

 "id" : "samwise",

 "uid" : "101",

 "gid" : 101,

 "shell" : "/bin/gardenshell",

 "comment" : "Samwise the strong"

}

Once you have created these, you should have two files, frodo.json and samwise.
json inside a users directory. In order to bulk upload them, we use a knife data
bag from the <dir> <data bag name> file in the following manner:

[jewart]% knife data bag from file users users

Updated data_bag_item[users::frodo]

Updated data_bag_item[users::samwise]

You can verify whether the entries were created correctly with the knife data bag
show <databag> <entity_id> command:

[jewart]% knife data bag show users frodo

comment: Frodo of the nine fingers

gid: 100

Chapter 7

[135]

id: frodo

shell: /bin/hobbitshell

uid: 100

Searching for data
Now that we have our data in a data bag in Chef, we can search for it using the
search criteria. For example, if we wanted only all users whose names start with
the letter s, we can search with the following command:

[jewart]% knife search users 'id:s*'

1 items found

chef_type: data_bag_item

comment: Samwise the strong

data_bag: users

gid: 101

id: samwise

shell: /bin/gardenshell

uid: 101

Alternatively, if we wanted all the users in a given data bag, we can perform the
following search:

[jewart]% knife search users 'id:*'

2 items found

chef_type: data_bag_item

comment: Frodo of the nine fingers

data_bag: users

gid: 100

id: frodo

shell: /bin/hobbitshell

uid: 100

chef_type: data_bag_item

comment: Samwise the strong

Beyond Basic Recipes and Cookbooks

[136]

data_bag: users

gid: 101

id: samwise

shell: /bin/gardenshell

uid: 101

Searching inside recipes
Now that we have some data bag data created and can perform basic searches, let's
see how we can use that to enhance our recipe using the built-in search method.
This allows us to perform the searches we just ran with knife inside our recipes.
The search method has a similar format to the knife command:

search(search_scope, search_criteria)

The following are some simple examples:

all_users = search(:users, 'id:*')
users_s = search(:users, 'id:s*')
all_nodes = search(:node, '*')

With this, we can enhance our shell user recipe to use the entities in the users data
bag rather than hard code them. Our new recipe would look like the following:

Replace the hard-coded users array with a search:
users = search(:users, 'id:*')	

Same as before, we've just moved our data source
users.each do |u|

 home_dir = "/home/#{u['id']}"

 user u['id'] do
 uid u['uid']
 gid u['gid']
 shell u['shell']
 comment u['comment']
 supports :manage_home => true
 home home_dir
 end

end

Chapter 7

[137]

This is just a simple search; this will work for a small-scale infrastructure with a fixed
set of users, where there's no need to restrict certain groups of users to certain hosts.
You can easily imagine, however, a situation where some users are provisioned only
to certain hosts through groups. Let's look at how we can achieve this with some
better user metadata and a more advanced search.

Enhancing your user cookbook
In our previous example, we used the search method to find all of the users in
our user's data bag. Here we will go one step further to isolate users based on
arbitrary groups and see how we can limit the list of users to be provisioned
using a combination of search, user metadata, and node configuration.

First, we need to add a groups key to our users. Let's add that to our existing user
JSON data files and add a few more users, legolas and gimli:

{
 "id" : "frodo",
 "uid" : 100,
 "gid" : 100,
 "shell" : "/bin/hobbitshell",
 "comment" : "Frodo of the nine fingers",
 "groups" : ["hobbits", "fellowship"]
}

{
 "id" : "gimli",
 "uid" : 201,
 "gid" : 201,
 "shell" : "/bin/csh",
 "comment" : "Grumpy old dwarf",
 "groups" : ["dwarves", "fellowship"]
}

{
 "id" : "legolas",
 "uid" : 200,
 "gid" : 200,
 "shell" : "/bin/zsh",
 "comment" : "Keen eyed Legolas",
 "groups" : ["elves", "fellowship"]
}

{

Beyond Basic Recipes and Cookbooks

[138]

 "id" : "samwise",
 "uid" : "101",
 "gid" : 101,
 "shell" : "/bin/gardenshell",
 "comment" : "Samwise the strong",
 "groups" : ["hobbits", "fellowship"]
}

Once again, we update the existing records and create our new records using knife
data bag from file:

[jewart]% knife data bag from file users users
Updated data_bag_item[users::frodo]
Updated data_bag_item[users::gimli]
Updated data_bag_item[users::legolas]
Updated data_bag_item[users::samwise]

Now that you have a few additional users in your data bag, and each user has some
group metadata attached to it, let's take a look at how we can use this to provision
only certain users on specific hosts. First, we need to be able to limit our search scope
dynamically; otherwise, we will need to modify our recipe on a per-host basis and
that just won't scale. We need to add a dynamic search query to our recipe with
something like the following code:

search_criteria = "groups:#{node[:shell_users][:group]}"

This creates a search criteria string that will match objects that have the value
specified somewhere in their groups key. In order to make this dynamic per host, we
will store this value in a shell_users hash under the group key. For example, if you
wanted to add all users that are in the hobbits group to a specific node, then your
node's configuration would need to contain the following:

{
 "shell_users": {
 "group": "hobbits",
 }
}

This will build a search criteria of "groups" : "hobbits", which if we pass to the
search method will yield all entries in the users data bag that have "hobbits"
inside their groups list. Consider the following recipe code:

users = search(:users, search_criteria)

Chapter 7

[139]

The node configuration data will expand the search criteria during an execution on
this node to be the following:

search_criteria = "groups:hobbits"

Given the data we have stored in our users data bag, this would match samwise
and frodo as they have the hobbits group in their groups list. We can verify this
by trying the same search on the command line with knife:

[jewart]% knife search users "groups:hobbits"

2 items found

chef_type: data_bag_item

comment: Frodo of the nine fingers

data_bag: users

gid: 100

groups:

 hobbits

 fellowship

id: frodo

shell: /bin/hobbitshell

uid: 100

chef_type: data_bag_item

comment: Samwise the strong

data_bag: users

gid: 101

groups:

 hobbits

 fellowship

id: samwise

shell: /bin/gardenshell

uid: 101

As you can see, this allows us to narrowly define the list of users to be managed
through the combination of entity metadata and dynamic search criteria. You can
build more advanced applications using this methodology with more advanced
search criteria and incorporating more of the entities' metadata.

Beyond Basic Recipes and Cookbooks

[140]

Distributing SSH keys
In addition to managing user accounts, we can also use Chef to manage SSH keys.
Because a given user's accepted SSH keys are stored in a per-user configuration file,
it is quite simple to manipulate them. By creating a template for SSH-authorized
keys, we can build a recipe that will take the SSH key data from the data bag and
populate the authorized keys file on the host. By doing this, users' SSH keys can be
stored in Chef and distributed to any number of hosts with just one command. This
solves the problems typically associated with distribution and revocation of SSH
keys inside an organization.

Templating the authorized keys
Here is a sample template we will use for our user's authorized keys file; this would
be defined in an authorized_keys.erb file:

<% if @ssh_keys.is_a?(Array) %>
<%= @ssh_keys.join("\n") %>
<% else %>
<%= @ssh_keys %>
<% end %>

This is a very simple template that has only two cases: if the template variable
ssh_keys is an array, it will print them out with a new line in between them;
otherwise, it will simply print out the contents of the variable.

To use this template, we will simply provide it with a list of SSH-compatible
key strings:

template "#{home_dir}/.ssh/authorized_keys" do
 source "authorized_keys.erb"
 owner u['id']
 group u['gid'] || u['id']
 mode "0600"
 variables :ssh_keys => u['ssh_keys']
end

Now, we can modify one of our previous user JSON entities to add SSH keys:

{
 "id" : "frodo",
 "uid" : 100,
 "gid" : 100,
 "shell" : "/bin/hobbitshell",
 "comment" : "Frodo of the nine fingers",
 "groups" : ["hobbits", "fellowship"],

Chapter 7

[141]

 "ssh_keys": [
 "ssh-dss RG9uJ3Qgd29ycnksIFNhbS4gUm9zaWUga25vd3MgYW4gaWRpb3Q
gd2hlbiBzaGUgc2VlcyBvbmUu frodo@shire",
 "ssh-dss TXkgbWFzdGVyLCBTYXVyb24gdGhlIEdyZWF0LCBiaWRzIHRoZWUgd
2VsY29tZS4gSXMgdGhlcmUgYW55IGluIHRoaXMgcm91dCB3aXRoIGF1dGhvcml0eSB0
byB0cmVhdCB3aXRoIG1lPyA= sauron@mordor"
]
}

% knife data bag from file users ssh_keys/frodo.json

Updated data_bag_item[users::frodo]

Once your user has been updated, check whether your newly added metadata has
been updated, looking for your new ssh_keys key in the entity. In order to do that,
you can show the contents of your data bag using the following command:

% knife data bag show users frodo

The output of this should line up with your newly updated JSON content. With these
added, we can write a new recipe that will allow us to deploy authorized_keys
files for each user on our hosts. Our recipe will use the same search criteria from our
previous recipe as we want to apply our SSH keys to all of our shell users.

This recipe is responsible for making sure that the proper directory for SSH is
created and has the correct permissions, as well as creating the authorized_keys
file with the necessary permissions and storing the SSH keys associated with the
user in /home/user/.ssh/authorized_keys:

search_criteria = "groups:#{node[:shell_users][:group]}"

search(:users, search_criteria) do |u|

 home_dir = "/home/#{u['id']}"

 directory "#{home_dir}/.ssh" do
 owner u['id']
 group u['gid']
 mode "0700"
 recursive true
 end

 template "#{home_dir}/.ssh/authorized_keys" do
 source "authorized_keys.erb"
 owner u['id']
 group u['gid']

Beyond Basic Recipes and Cookbooks

[142]

 mode "0600"
 variables :ssh_keys => u['ssh_keys']
 end

end

Adding deployment keys
If you have ever deployed a Rails application to hosts that need to have access to
your source code in a GitHub or BitBucket repository, then you will know how
handy it is to manage deployment keys across a fleet of hosts. We can easily generate
a recipe that looks at a node's list of deployment users following our previous
examples as a starting point. Here, we look for deploy users instead of shell users,
as these are the ones we want to manage deployment keys for. Note that in this
example, these users would also need to be included in the shell_users group to
ensure that they get created by our previous recipe:

search_criteria = "groups:#{node[:deploy_users][:group]}"

search(:users, search_criteria) do |u|
 home_dir = "/home/#{u['id']}"

 directory "#{home_dir}/.ssh" do
 owner u['id']
 group u['gid'] || u['id']
 mode "0700"
 recursive true
 end

 template "#{home_dir}/.ssh/id_rsa" do
 source "deploy_key.erb"
 owner u['id']
 group u['gid'] || u['id']
 mode "0600"
 variables :key => u['deploy_key']
 end
end

To use this new recipe, the deployment users would need to be modified to include
a group identifier and their private key. The group would be reserved for users
involved in deploying your application and be added to the user's groups key in
Chef. Additionally, an unencrypted SSH private key would need to be present in a
deploy_key field.

Chapter 7

[143]

Including unencrypted SSH keys can pose a security risk.
This can be mitigated using encrypted data bags or an
external security material management service.

Writing custom extensions
With Chef, you are given immediate access to a number of resources: files, users,
packages, templates, and so on. However, there will always be times when this
does not provide you with everything that you need. Fortunately, the built-in Chef
resources or LWRPs (light-weight resource providers) are just Ruby code and were
built with the intention of providing a framework for end users to build their own
components. This means that you can easily build your own custom resources, and
these can be shared with others just like any built-in LWRP.

Developing a custom definition
One of the simplest resources that we can build is a definition—a definition is like
a resource with only one built-in provider. These can be thought of as reusable
modules that you can leverage inside of your recipes. If you find yourself writing
the same thing repeatedly in your recipes, then it is probably a good candidate to
write a custom definition. For example, let's look at how we can build two different
definitions: one for executing Python's PIP, the Python package installation tool, to
install the contents of a requirements.txt file for a Python application, and another
to install applications that follow the same pattern.

Organizing your code
As discussed before, cookbooks can have a definitions directory inside them.
The contents of this directory are included in your cookbook runs and should
have one per definition. For our PIP resource, we will create a file, definitions/
pip_requirements.rb, and for our application template, definitions/python_
web_application.rb. These will each contain the respective definitions.

Writing a definition for using PIP
Definitions look like any Chef component—they are composed of resources,
variables, scripts, and anything else you use in a recipe. However, unlike a recipe,
they are designed to be reused. Where a recipe is designed with a specific effect
in mind such as deploying a specific application, the definition is designed to be
consumed by recipes to reduce duplicate code.

Beyond Basic Recipes and Cookbooks

[144]

Each definition is encapsulated in a define block, a no-op version, or our PIP
example would look like this:

define :pip_requirements do
end

This example does absolutely nothing, but it can be used in a recipe as follows:

pip_requirements "app_requirements" do
end

Just in the same way you would use a file, user, or template block in your recipe,
you can use your custom definitions. Now, let's enhance our definition by using the
name parameter—the string argument passed to the pip_requirements block in
your recipe; here, it is app_requirements:

define :pip_requirements , :action => :skip do
 name = params[:name]
end

Each invocation of a definition passes the parameters in the block to the definition;
these are accessed inside the definition through the params hash. There is one special
parameter, :name, which can come from the first argument before the block, as
shown in the previous code, or from the name parameter inside the block. This is
a convenience parameter designed to make recipes more readable by allowing the
developer to write:

resource "some handy description" do
...
end

This code is easier to read than:

resource do
 name "some handy description"
end

Given this information, let's look at the PIP example from pip_requirements.rb:

define :pip_requirements , :action => :skip do
 name = params[:name]
 requirements_file = params[:requirements_file]
 pip = params[:pip]
 user = params[:user]
 group = params[:group]

 if params[:action] == :run

Chapter 7

[145]

 script "pip_install_#{name}" do
 interpreter "bash"
 user "#{user}"
 group "#{group}"
 code <<-EOH
 #{pip} install -r #{requirements_file}
 EOH
 only_if { File.exists?("#{requirements_file}") and File.
exists?("#{pip}") }
 end
 end
end

Here, the definition expects five arguments: the resource name, the path to the
requirements.txt file, the pip binary to use, as well as the user and group to
execute pip as. The reason that the resource accepts the path to pip is to allow using
pip inside a Python virtual environment. By doing this, the definition becomes a
little more flexible in situations where you need to install your requirements into a
different location on the system.

Also note that we can define default parameters as part of the definition's signature:

define :pip_requirements , :action => :skip do

In this case, the default action is :skip, but it can be set to anything you want it to
be. Here it is set to :skip so that it only gets invoked deliberately rather than by
virtue of being used in a recipe.

As this is a simple definition, it only contains one resource—a script block that will
effectively execute pip install -r /path/to/requirements.txt as the specified
user and group. An example use of this definition can be seen as follows:

pip_requirements "requirements" do
 action :run
 pip "/usr/local/bin/pip"
 user node[:app][:user]
 group node[:app][:group]
 requirements_file "#{app_root}/src/requirements.txt"
end

This can be used in place of the built-in script resource:

script "pip_install_#{name}" do
 interpreter "bash"
 user node[:app][:user]
 group node[:app][:group]
 code <<-EOH

Beyond Basic Recipes and Cookbooks

[146]

 /usr/local/bin/pip install -r #{app_root}/src/requirements.txt
 EOH
 only_if {
 File.exists?("#{app_root}/src/requirements.txt") and
 File.exists?("/usr/local/bin/pip")
 }
end

Following Chef's declarative language, building definitions such as this one
makes it more obvious as to what is happening, rather than how it is happening.
We have abstracted the shell script and guard tests behind a façade, that is the
pip_requirements definition, which is more clear in its effect when you read a
recipe; you don't need to examine the contents of the script block to deduce what
is happening as the resource name tells you exactly what's going to be done.

Defining a full application template
If you have applications that follow the same structure (think applications that
use a common framework such as Rails, Django, Pyramids, Python-tornado, and
so on), then you would likely want to define a common definition for what such an
application looks like. Consider here a definition to install a Python web application
from GitHub using some common idioms:

define :tornado_application do
 app_name = params[:name]
 app_root = params[:app_root]
 app_user = params[:user]
 app_group = params[:group]

 python_interpreter = params[:python_interpreter] ||
 "/usr/bin/python3.3"
 github_repo = params[:github_repo]
 deploy_branch = params[:deploy_branch] || "deploy"

 virtualenv = "#{app_root}/python"
 virtual_python = "#{virtualenv}/bin/python"
 app_dir = "#{app_root}/src/#{app_name}"

 # Need to install SSH key for GitHub
 # this comes from the ssh_known_hosts cookbook
 ssh_known_hosts_entry 'github.com'

 # Base package requirements
 package "git"

Chapter 7

[147]

 package "libpq-dev"
 package "libxml2-dev"
 package "python3.3"
 package "python3.3-dev"

 directory "#{app_root}" do
 owner "#{app_user}"
 group "#{app_group}"
 mode "0755"
 action :create
 recursive true
 end

 # Create directories
 ["bin", "src", "logs", "conf", "tmp"].each do |child_dir|
 directory "#{app_root}/#{child_dir}" do
 owner "#{app_user}"
 group "#{app_group}"
 mode "0755"
 action :create
 recursive true
 end
 end

 # Install Python virtualenv
 python_virtualenv "#{virtualenv}" do
 owner "#{app_user}"
 group "#{app_group}"
 action :create
 interpreter "#{python_interpreter}"
 end

 # Application checkout
 git "#{app_dir}" do
 repository "#{github_repo}"
 action :sync
 user "#{app_user}"
 branch "#{deploy_branch}"
 end

 # Python dependencies for app
 pip_requirements "tornado_app[#{app_name}]" do
 action :run

Beyond Basic Recipes and Cookbooks

[148]

 pip "#{virtualenv}/bin/pip"
 user "#{app_user}"
 group "#{app_group}"
 requirements_file "#{app_dir}/requirements.txt"
 end

end

This definition can be used as shown in the following example:

tornado_application "image_resizer" do
 app_root "/opt/webapps"
 user "webapp"
 group "webapp"
 deploy_branch "master"
 github_repo "git@github.com:myorg/image_resizer.git"
 python_interpreter "/usr/bin/python3.3"
end

According to the previous definition, this would do the following:

•	 Add a system-wide SSH-known key for github.com (required to perform a
Git clone and guarantees that future key changes will work)

•	 Install any required packages if they didn't already exist, including Git,
Python, and the postgresql client

•	 Ensure any application-required directories exist for data such as binaries,
logs, configuration, and more

•	 Create a Python virtual environment based on the supplied Python
interpreter (3.3) in <app_root>/python

•	 Clone or sync (if it was already cloned) the source code from <github_repo>
to <app_root>/src/<app_name>

•	 Install the requirements specified in <app_root>/src/<app_name>/
requirements.txt using the copy of pip from the virtual environment
in <app_root>/python

Assuming you had another similarly structured application, but you wanted to use
a different user, group, Python interpreter, and deployment branch, you can easily
configure it using the following resource:

tornado_application "restful_api" do
 app_root "/opt/webapps"
 user "restapi"
 group "restapi"
 deploy_branch "production"

github.com

Chapter 7

[149]

 github_repo "git@github.com:myorg/restful_api.git"
 python_interpreter "/usr/bin/python3.2"
end

As you can see, definitions allow us to define reusable resources in Chef. There are
three primary benefits to this approach:

•	 Simplified recipes are easier to read, have clearer intentions, and less code to
audit, which makes them less error prone

•	 Any changes to the definition are automatically applied to any usage of the
definition, which means you don't need to maintain multiple variations

•	 It's easier to test because it's designed to be parameterized and modular

Now that you see how easy it is to write custom resources for Chef through
definitions, let's examine writing a full-blown resource that has a separate
provider implementation.

Building a resource
A Chef LWRP is composed of two primary components, a resource and a provider.
The resource is the blueprint for what is being provided; it describes the resource,
including what actions can be taken by a resource, the properties that describe
the resource, and any other high-level information about it. The provider is
responsible for the actual implementation of the resource. In programming terms,
the resource is an abstract class or interface where the provider is a concrete class
or implementation. For example, one of Chef's built-in resources is the package
resource; however, this is a very high-level resource. The package resource describes
what a package is and what a package can do but not how to manage them. That
work is left to the providers, including RPM, APT, FreeBSD packages, and other
backend systems that are capable of managing on-disk installation of packages.

Defining the resource
As an example, let's take a look at an S3 bucket resource:

actions :sync
default_action :sync if defined?(default_action) # Chef > 10.8

Default action for Chef <= 10.8
def initialize(*args)
 super
 @action = :sync

Beyond Basic Recipes and Cookbooks

[150]

end

Target folder on the host to sync with the S3 bucket
attribute :destination, :kind_of => String,
 :name_attribute => true
Anything to skip when syncing
attribute :omit, :kind_of => Array
AWS Access / secret key
attribute :access_key_id, :kind_of => String
attribute :secret_access_key, :kind_of => String

Here, our resource is an S3 bucket that declares the actions it can take along with the
attributes that it relies on. Here, our resource declares that it has one available action,
sync, which is the default action and that it has four attributes: the destination, what
files to skip, the access key, and the secret key.

Implementing the provider
The provider is where the logic for the resource is placed—it is responsible for acting
on the resource being described. For our S3 bucket, it looks like the following:

require 'chef/mixin/language'

Only run as needed
def whyrun_supported?
 true
end

action :sync do
 Chef::Log.debug("Checking #{new_resource} for changes")
 fetch_from_s3(new_resource.source) do |raw_file|
 Chef::Log.debug "copying remote file from origin #{raw_file.path}
to destination #{new_resource.destination}"
 FileUtils.cp raw_file.path, new_resource.destination
 end

 new_resource.updated_by_last_action(true)
end

def load_current_resource
 chef_gem 'aws-sdk' do
 action :install

Chapter 7

[151]

 end

 require 'aws/s3'

 current_resource = new_resource.destination
 current_resource
end

def fetch_from_s3(source)
 begin
 protocol, bucket = URI.split(source).compact
 AWS::S3::Base.establish_connection!(
 :access_key_id => new_resource.access_key_id,
 :secret_access_key => new_resource.secret_access_key
)

 bucket.objects.each do |obj|
 name = obj.key

 if !new_resource.skip.contains(name)
 Chef::Log.debug("Downloading #{name} from S3 bucket
#{bucket}")
 obj = AWS::S3::S3Object.find name, bucket

 file = Tempfile.new("chef-s3-file")
 file.write obj.value
 Chef::Log.debug("File #{name} is #{file.size} bytes on disk")
 begin
 yield file
 ensure
 file.close
 end
 else
 Chef::Log.debug("Skipping #{name} because it's in the skip
list")
 end
 end

 rescue URI::InvalidURIError
 Chef::Log.warn("Expected an S3 URL but found #{source}")
 nil
 end
end

Beyond Basic Recipes and Cookbooks

[152]

Let's take a look at the provider, piece by piece. The first thing the provider does,
beyond including any required libraries, is to inform Chef that it supports why-run.
This is a mechanism that Chef provides so that resources can be more easily tested
by effectively not wiring a resource to a provider. This allows developers to test their
resources, in what is effectively a dry-run mode, before running them live against
a system:

Only run as needed
def whyrun_supported?
 true
end

Next, there is an action block—this registers the provided block as the logic to
be executed for the specified action (in this case, :sync). This has the general form
such as:

action :<action name> do
 # Real work in here
end

In this case, the only supported action is sync, and so there is only one action block:

action :sync do
 Chef::Log.debug("Checking #{new_resource} for changes")
 fetch_from_s3(new_resource.source) do |raw_file|
 Chef::Log.debug "copying remote file from origin #{raw_file.path}
to destination #{new_resource.destination}"
 FileUtils.cp raw_file.path, new_resource.destination
 end
 new_resource.updated
end

Here, the :sync action leverages the fetch_from_s3 method, which yields a local
copy of a file in the remote bucket once it has been downloaded. Then, the file is
copied from the temporary location locally into the specified destination.

Modifying resources
Inside of this action, you will notice that there is an actor, new_resource (which
is actually a built-in method). This describes what the state of the named resource
should be when the provider has completed its execution for the specified resource;
this may or may not differ from the current state of the resource on the node. In
the case of an initial run, new_resource will almost certainly be different from
current_resource, but that may not always be the case on subsequent runs.

Chapter 7

[153]

As an example, if we have a recipe with the following S3 bucket resource declared:

s3_bucket "s3://mychefbucket/.resource" do
 action :sync
 skip ["foo.txt", "bar.txt]
 destination "/opt/app_data"
 access_key_id node[:app][:aws_access_key]
 secret_access_key node[:app][:aws_secret_key]
 owner node[:app][:user]
 group node[:app][:group]
 mode "0755"
 end

Then, the new_resource actor would have its member variables populated with the
parameters passed to the s3_bucket resource. Again, this is the expected state of the
resource, the way it should be when the execution by the provider is complete. In
this case, when the provider code is executed, new_resource.destination will be
"/opt/app_data" and new_resource.skip will be a list of "foo.txt" and "bar.
txt" and so on. This allows you to pass data into the instance of the resource in the
same way that was possible with the PIP and Tornado application definitions.

Loading an existing resource
One thing that is less obvious about the provider script is the load_current_resource
method that is not called from within the provider. This method is used by Chef to find
a resource on the node based on the attributes that are provided by the recipe. This is
useful to determine if anything needs to be done to bring an existing resource on the
host such as a file, a user account, or a directory of files, up to date with the data that is
provided during execution of the recipe.

It might make sense to extend this provider to precompute the hashes of the files
that already exist in the directory on-disk as specified by destination. This way, the
provider can be updated to only download any remote files in S3 that have a different
fingerprint than a similarly named resource on disk. This prevents unnecessary work
from being performed, which saves time, bandwidth, and other resources.

Here, however, it is also used to ensure that any dependencies to download files
are installed; in this case, the AWS gem is required to use the S3 client. This works
because the load_current_resource method gets called on early to determine the
current state of the resource. If the resources are the same, then the provider has
nothing to do. The current implementation just clobbers whatever files are local with
the contents of the S3 bucket (more of a one-way download than a sync, really).

Beyond Basic Recipes and Cookbooks

[154]

Declaring that a resource was updated
Resources have a built-in method, updated_by_last_action, which is called inside
the :sync action all the time in this example. This method notifies the resource that
the node was updated successfully. This should only be set to true if everything was
successfully updated; failures should not make this call unless they set it to false. It
is useful to know what resources have been updated for reporting or other purposes.
For example, you can use this flag to identify what resources have been updated:

module SimpleReport
 class UpdatedResources < Chef::Handler
 def report
 Chef::Log.info "Resources updated this run:"
 run_status.updated_resources.each do |r|
 Chef::Log.info " #{r.to_s}"
 end
 end
 end
end

Working with data bags
There are a number of things you can do with data bags.

Securing your data bags
Data bags are just JSON data, but they are stored in the system as plain text, without
any security. They are also downloaded onto various hosts throughout the life cycle,
which can lead to leaking of potentially sensitive information. Fortunately, Chef has
a method that lets you secure this data by using knife, along with secret keys to
keep data in data bags encrypted.

Secret keys
Encrypting a data bag item requires a secret key; one way of generating a secret key
is to generate a random number and use the Base64 encoding of that number as the
secret key. This should have any line endings removed to ensure it works properly
on all platforms, regardless of platform-specific line endings. Here is a quick way to
generate one using the openssl command line tool combined with tr to remove any
line endings:

$ openssl rand -base64 512 | tr -d '\r\n' > ~/.chef/data_bag_secret

Chapter 7

[155]

Encrypting your data
In order to encrypt your data bag item, you must use knife and pass the --secret
or --secret-file flags to knife when creating the item. For example, to create a
data bag called credentials and store a new entry, aws, inside it, you would use the
following command (make sure you set your EDITOR environment variable first):

$ knife data bag create credentials aws --secret-file ~/.chef/data_bag_
secret

As mentioned before, you will be presented with the contents of your new data bag
item in your editor, unencrypted:

 1 {

 2 "id": "aws",·

 3 }

Here, we can add some properties, such as a secret key:

 1 {

 2 "id": "aws",·

 3 "secret_key": "A21AbFdeccFB213f"

 4 }

Once you save this, knife will tell you that the new data bag was created, along
with the new data bag item in Chef, just as it did with the user data earlier. The only
difference will be that this time the data stored in the Chef server has been encrypted
using the symmetric key you provided:

$ knife data bag create credentials aws --secret-file ~/.chef/data_bag_
secret

Created data_bag[credentials]

Created data_bag_item[aws]

To check whether your newly created data bag entry was encrypted, use knife, as
we have before, to show the contents of an item:

$ knife data bag show credentials aws

id: aws

secret_key:

 cipher: aes-256-cbc

 encrypted_data:

Beyond Basic Recipes and Cookbooks

[156]

 SG4z4jd4VAnJ4gG0wPcJWOX7H+ZNSxG5PH+n7EgHFV9e1SciVznjaAbzK61c

 EW0/

 iv: rKB0riCr84QhBkw+Wgc/5Q==

 version: 1

Decrypting your data
In order to decrypt the data in the data bag item, you need to provide the same
symmetric key as you provided when you encrypted it, using the --secret or
--secret-file argument, as can be seen here:

$ knife data bag show credentials aws --secret-file ~/.chef/data_bag_
secret

id: aws

secret_key: A21AbFdeccFB213f

If it wasn't already obvious to you, make certain you do not lose this file. Without
your secret key or secret file, you will not be able to decrypt the data in your data
bag. It may be worth encrypting the secret file with a passphrase if you are going
to be transmitting it to nontrusted locations as well.

Storing keys on nodes
An encryption key can also be stored in an alternate file on the nodes that need
it, and you can specify the path location to the file inside an attribute; however,
EncryptedDataBagItem.load expects to see the actual secret as the third argument
rather than a path to the secret file. In this case, you can use EncryptedDataBagItem.
load_secret to slurp the secret file contents and then pass them:

inside your attribute file:
default[:app][:aws_creds_secret] = "/opt/secret/aws.secret"

Inside your recipe
aws_secret = Chef::EncryptedDataBagItem.load_secret
 "#{node[:app][: aws_creds_secret]}"

aws_creds = Chef::EncryptedDataBagItem.load
 "credentials", "aws", aws_secret

aws_creds["secret_key"]

Chapter 7

[157]

Searching your data
As we discussed earlier, you can search through your data bags using Boolean search
logic. This permits you to find only the entries in your data bags that you need. The
same search query language is used on the command line with knife as it is in your
recipes, so that you can test your queries on the command line to ensure that they
produce the right results before you put them in your recipes. You can also search
through other resources as well, not just data bags.

Searching your data bags with knife
The knife tool uses the search command to search through your data bags.
The general syntax is:

knife search <source> "<search criteria>"

Searching your data bags from a recipe
Inside a recipe, the search method is used to search through a data bag. The syntax
for this is:

search(:source, "search criteria")

Querying your data
The search query format is reasonably straightforward and looks like most other
search engines that support the Boolean logic.

Searches on attributes come in the form of key:value; so for example, if you wanted
to find all of the users who were dwarves from our earlier data sets, you can use the
search query:

knife search users "groups:dwarves"

Negating a search term can be accomplished by placing NOT in front of the search
term. For example, all users who are not hobbits will be:

knife search users "NOT groups:hobbits"

You can also use an OR modifier:

knife search users "groups:elves OR groups:hobbits"

This last search criteria would yield the users legolas, samwise, and frodo as Frodo
and Samwise are in the group called hobbits and Legolas is in the elves group.

Beyond Basic Recipes and Cookbooks

[158]

While combining search terms, you can logically AND them together as well.
For example, all users with a GID starting with 20, who contain the group
elves can be found using the following query:

knife search users "groups:elves AND gid:20*"

You can search your nodes with the same query language—in order to find all nodes
that are running some form of windows, you can search for the platform being
anything that starts with win:

knife search node "platform:win*"

This will yield all Windows hosts (results have been shortened a bit):

4 items found

Node Name: i-13d0bd4f

Roles:

Platform: windows 6.2.9200

Node Name: WIN-CJDQ9DEOJFK

Roles: umbraco_cms

Platform: windows 6.2.9200

Node Name: 00c0ff3300

Roles:

Platform: windows 6.2.9200

Node Name: rs-5889646228538071

Roles:

Platform: windows 6.2.9200

Or, you can search for all nodes that are running windows and contain the
role umbraco_cms:

knife search node "platform:win* AND role:umbraco_cms"

Or, if you wanted to eliminate those nodes that run the Umbraco CMS, you can
easily invert the role condition:

knife search node "platform:win* AND NOT role:umbraco_cms"

Chapter 7

[159]

Because Chef uses Apache Solr to search its data, you can refer to the Apache Solr
documentation on building more advanced query logic at http://wiki.apache.
org/solr/SolrQuerySyntax.

Managing multiple machines with search
queries
The search criteria can be used for all sorts of places: in recipes, on the command line,
through API calls, and more. One very interesting application is being able to use the
search query to SSH to multiple machines to perform commands in parallel:

knife ssh "fqdn:*.east.mycorp.com AND platform:ubuntu" "chef-client" -x
app_user

This will contact the Chef server and ask for the nodes that match the given query
string (machines whose FQDN matches the wildcard expression "*.east.mycorp.
com" and that are running Ubuntu) and then connect to them via SSH as the user
app_user and run the chef-client command on each of them. Again, you can
restrict (or expand) the server list by using a more (or less) specific query.

Once you have mastered this aspect of using knife, you can learn more about its
support for executing multiple connections concurrently and even interact with
terminal multiplexers such as screen and tmux.

Summary
Chef has lots of mechanisms to build advanced automation, including building your
own definitions, resources, and providers, as well as storing and accessing complex
configuration data and even securely encrypting it. This chapter has shown you how
to manage data in data bags (including encrypted data), use Chef's advanced search
engine to find and manipulate data in your system from the command line and in
recipes, as well as develop definitions for reusable recipe development, and even
build custom resources and providers for use in your cookbooks.

In the next chapter, we will cover some more advanced ways to use Chef, including
interacting with the Chef shell, automation and integration with Chef using scripts and
APIs, external tools and resources, advanced testing including integration testing, and
using Chef-solo and Vagrant to manage your development environments.

http://wiki.apache.org/solr/SolrQuerySyntax
http://wiki.apache.org/solr/SolrQuerySyntax

Extras You Need to Know
This chapter will cover how to use Chef to build custom bootstrap scripts for
systems, enhanced command-line tool concepts, leverage Chef for automation,
integration, and securely store sensitive data in the system. Some topics that
will be covered in this chapter include:

•	 Using Chef-solo with Vagrant
•	 Interacting with the Chef shell
•	 Debugging recipes
•	 Advanced command-line usage
•	 Automating and integrating with Chef
•	 More testing methodologies

Vagrant and Chef-solo
Vagrant is a very useful tool to build development environments, where it provides
tools to build virtual machines that contain everything you need to get started with
building software. Consider, for a moment, working on a team that builds software
and relies on a service-oriented architecture (SOA), and this software is composed of a
number of different services. In order for it to work, you may be required to install and
configure all of the dependent services to even begin working on a part of the system;
this could be a time-consuming and error-prone exercise for even seasoned developers.
Now imagine that all you had to do was download a configuration file and execute
vagrant to do it for you—this is the world of Vagrant.

Extras You Need to Know

[162]

One of the interesting facets of Vagrant is that it has support to provision new
instances using a number of different mechanisms. Currently, this list includes
10 or so different tools, but the most interesting two are Chef-solo and Chef client.
By now, you should be comfortable with how you might provision a virtual machine
using the Chef client; it's not much different than provisioning an EC2 instance or a
dedicated server. However, we haven't discussed using Chef-solo much yet, so this is
a good time to learn more about it.

Installing Vagrant
Historically, Vagrant was installed via RubyGems; this is no longer the case, and if
you have an older version installed as a gem, it is recommended that you remove it
before installing Vagrant. Installers for all supported platforms (OS X, Windows, and
Linux) are available at the following URL:

http://www.vagrantup.com/downloads

If you are new to Vagrant, then in addition to installing Vagrant, you will want to
install VirtualBox for simplicity, as Vagrant has built-in support for VirtualBox.
Vagrant does support other providers such as VMWare and AWS, but it requires
plugins that are not distributed with the core Vagrant installation in order for them
to work.

Once you have installed Vagrant and VirtualBox, then you can continue on with the
following examples.

Provisioning a new host with Vagrant
Provisioning a new virtual instance requires that you build a Vagrant configuration
file called Vagrantfile. This file serves two purposes: to denote that the directory
is a Vagrant project (similar to how a Makefile indicates a project that is built with
Make), and to describe the virtual machine that is being run, including how to
provision it, what operating system to use, where to find the virtual image, and so
on. Because this is just a plain text file, you can include it along with any auxiliary
files required to build the image such as cookbooks, recipes, JSON files, installers,
and so on, and commit it to the source control for others to use.

In order to begin, you will want to create a directory that will house your new
Vagrant project. On Unix-like systems, we would bootstrap our project similarly
to the following command:

mkdir -p ~/vagrant/chef_solo

cd ~/vagrant/chef_solo

http://www.vagrantup.com/downloads

Chapter 8

[163]

Windows hosts will be the same except for different paths and changes in methods
of directory creation. Once this step is complete, you will need to create a skeleton
configuration located in ~/vagrant/chef_solo/Vagrantfile. This file can be
generated using vagrant init, but we would not want to use the contents of the
generated file; so, we will skip that step and manually construct our Vagrantfile
instead (with a simple one-line configuration that uses a base image of Ubuntu
13.10). Your Vagrantfile should look like the following code:

Vagrant.configure("2") do |config|
 config.vm.box = "ubuntu/trusty64"
end

Here, "2" is the API version, which is currently Version 2.0 as of this writing, and the
configured base image (or box) is the Ubuntu Trusty (14.04) 64-bit image. Before you
use this base image, it needs to be downloaded to your local machine; you can add it
to Vagrant using the box add command:

vagrant box add ubuntu/trusty64

This step will take a few minutes on a fast connection, so be
prepared to wait while this completes if you are following along
interactively. Also note that if you skip this step, the base image
will automatically be downloaded while running vagrant up
to start your virtual machine.

For future references, if you want to find alternative OS images to use for your
Vagrant machines, you should look at Vagrant Cloud (https://vagrantcloud.
com/), where you can find a number of other freely available base images to
download for use with Vagrant.

Booting your Vagrant image
Once your base image has completed downloading, you will use the vagrant up
command to boot up a new virtual machine. By doing this, you will instruct Vagrant
to read the Vagrantfile and boot a new instance of the base image:

Bringing machine 'default' up with 'virtualbox' provider...
==> default: Importing base box 'ubuntu/trusty64'...
==> default: Matching MAC address for NAT networking...
==> default: Checking if box 'ubuntu/trusty64' is up to date...
==> default: Setting the name of the VM: chef_solo_
default_1402875519251_51266
==> default: Clearing any previously set forwarded ports...
==> default: Clearing any previously set network interfaces...

https://vagrantcloud.com/
https://vagrantcloud.com/

Extras You Need to Know

[164]

==> default: Preparing network interfaces based on configuration...
 default: Adapter 1: nat
==> default: Forwarding ports...
 default: 22 => 2222 (adapter 1)
==> default: Booting VM...
==> default: Waiting for machine to boot. This may take a few
minutes...
 default: SSH address: 127.0.0.1:2222
 default: SSH username: vagrant
 default: SSH auth method: private key
 default: Warning: Connection timeout. Retrying...
==> default: Machine booted and ready!
==> default: Checking for guest additions in VM...
==> default: Mounting shared folders...
 default: /vagrant => /Users/jewart/Temp/vagrant/chef_solo

As you can see from the output, Vagrant performed the following things:

•	 Used the base image ubuntu/trusty64
•	 Configured VirtualBox to use a NAT adapter, mapping port 22 to 2222
•	 Started the VM in headless mode (such that you don't see the VirtualBox GUI)
•	 Created a user, vagrant, with a private key for authentication
•	 Mounted a shared folder mapping /vagrant on the guest to the Vagrant

workspace on the host

Now that you have a running guest, you can control it by running vagrant
commands from inside of the vagrant workspace (~/vagrant/chef_solo);
for example, you can SSH into it using the following command:

vagrant ssh

And you can destroy the running instance with the following command:

vagrant destroy

Go ahead and SSH into your new guest and poke around a little bit—you will notice
that it looks just like any other Ubuntu 14.04 host. Once you are done, use destroy to
destroy it so that you can look at how to provision your Vagrant image using Chef-
solo. It's important to know that if you use destroy on your guest, changes to your
Vagrant image are not persisted; so, any changes you have made inside it will not be
saved and will not exist the next time you use vagrant up to start the VM.

Chapter 8

[165]

Combining Vagrant with Chef-solo
In our previous example, our Vagrantfile simply declared that our guest relied
on the ubuntu/trusty64 image as the base image via the config.vm.box property.
Next, we will look at how to extend our configuration file to use the Chef-solo
provisioner to install some software on our guest host. Here, we will use Chef-solo
to install PostgreSQL, Python, and a web application inside of the guest.

You will probably notice that the configuration sections in the Vagrantfile look sort
of like resources in Chef—this is because they both leverage Ruby blocks to configure
their resources. So with Vagrant, in order to specify the provisioning mechanism
being used, the config.vm.provision option is set to the desired tool. Here, we will
use Chef-solo, which is named "chef_solo"; so, we will extend our Vagrantfile to
indicate this:

Vagrant.configure("2") do |config|
 config.vm.box = "ubuntu/trusty64"
 config.vm.provision "chef_solo" do |chef|
 # ... Chef specific settings block
 end
end

Understanding the limitations of Chef-solo
For the most part, Chef-solo operates a lot like the traditional client-server mode
of chef-client. The primary differences result from the fact that Chef-solo does not
interact with a central Chef server and therefore lacks support for the following:

•	 Node data storage
•	 Search indexes
•	 Centralized distribution of cookbooks
•	 A centralized API that interacts with and integrates infrastructure components
•	 Authentication or authorization
•	 Persistent attributes

As a result, if you are writing recipes to be used with Chef-solo, you will be unable
to rely on search for nodes, roles, or other data and may need to modify the way you
find data for your recipes. You can still load data from data bags for complex data,
but they will not be centrally located; rather, they will be located in a number of
JSON files that contain the required data.

Extras You Need to Know

[166]

Configuring Chef-solo
There are a number of options available for the Chef-solo provisioner in Vagrant. For
the most up-to-date documentation of Vagrant, be sure to visit the official Vagrant
documentation site at http://docs.vagrantup.com/v2/.

Most of the configuration options are ways to provide paths to various Chef
resources such as cookbooks, data bags, environments, recipes, and roles. Any paths
specified are relative to the Vagrant workspace root (where the Vagrantfile is
located); this is because these are mounted in the guest under /vagrant and are the
only way to get data into the host during the bootstrap phase. The ones we will be
using are:

•	 cookbooks_path: This consists of a single string or an array of paths to the
location where cookbooks are stored. The default location is cookbooks.

•	 data_bags_path: This consists of a path to data bags' JSON files. The default
path is empty.

•	 roles_path: This consists of an array or a single string of paths where roles
are defined in JSON. The default value is empty.

In our case, we will be reusing our example cookbooks from the earlier chapter. You
can fetch them from GitHub at http://github.com/johnewart/chef_cookbook_
files; either download the ZIP file or clone them using Git locally. Once you have
done that, copy cookbooks, roles, and data_bags from the archive to your Vagrant
workspace. These will be the resources that you will use for your Vagrant image as
well. In order to tell Vagrant's Chef-solo provider how to find these, we will update
our Vagrantfile again to include the following configuration:

Vagrant.configure("2") do |config|
 config.vm.box = "ubuntu/trusty64"
 config.vm.provision "chef_solo" do |chef|
 chef.cookbooks_path = "cookbooks"
 chef.roles_path = "roles"
 chef.data_bags_path = "data_bags"
 end
end

http://docs.vagrantup.com/v2/
http://github.com/johnewart/chef_cookbook_files
http://github.com/johnewart/chef_cookbook_files

Chapter 8

[167]

Telling Chef-solo what to run
Inside of the provision block, we have a Chef object that effectively represents a
Chef client run. This object has a number of methods (such as the path settings we
already saw), one of which is the add_recipe method. This allows us to manually
build our run list without requiring roles or data bags and can be used, as shown in
the following example, to install the PostgreSQL server with no special configuration:

Vagrant.configure("2") do |config|
 config.vm.box = "ubuntu/trusty64"
 config.vm.provision "chef_solo" do |chef|
 chef.cookbooks_path = "cookbooks"
 chef.roles_path = "roles"
 chef.data_bags_path = "data_bags"
 # Build run list
 chef.add_recipe "postgresql::server"
 end
end

This will tell Vagrant that we want to use our defined directories to load our
resources, and we want to add the postgresql::server recipe to our run list.
Because cookbooks are by default expected to be in [vagrant root]/cookbooks,
we can shorten this example as shown in the following code, as we are not yet using
roles or data bags:

Vagrant.configure("2") do |config|
 config.vm.box = "ubuntu/trusty64"
 config.vm.provision "chef_solo" do |chef|
 chef.add_recipe "postgresql::server"
 end
end

Using roles and data bags with Chef-solo
As you are already aware by now, we may want to perform more complex
configuration of our hosts. Let's take a look at how to use both roles and data bags as
well as our cookbooks to deploy our Python web application into our Vagrant guest
similar to how we deployed it to EC2:

Vagrant.configure("2") do |config|
 config.vm.box = "ubuntu/trusty64"
 config.vm.provision "chef_solo" do |chef|
 chef.cookbooks_path = "cookbooks"
 chef.roles_path = "roles"
 chef.data_bags_path = "data_bags"
 # Build run list

Extras You Need to Know

[168]

 chef.add_role("base_server")
 chef.add_role("postgresql_server")
 chef.add_role("web_server")
 end
end

Just like the cookbooks path, the roles path is relative to the project root if a relative
path is given.

Injecting custom JSON data
Additional configuration data for Chef attributes can be passed into Chef-solo. This
is done by setting the json property with a Ruby hash (dictionary-like object), which
is converted to JSON and passed into Chef:

Vagrant.configure("2") do |config|
 config.vm.provision "chef_solo" do |chef|
 # ...
 chef.json = {
 "apache" => {
 "listen_address" => "0.0.0.0"
 }
 }
 end
end

Hashes, arrays, and so on can be used with the JSON configuration object. Basically,
anything that can be turned cleanly into JSON works.

Providing a custom node name
You can specify a custom node name by setting the node_name property. This is useful
for cookbooks that may depend on this being set to some sort of value. For example:

Vagrant.configure("2") do |config|
 config.vm.provision "chef_solo" do |chef|
 chef.node_name = "db00"
 end
end

Chapter 8

[169]

Getting to know the Chef shell
The Chef shell, previously called shef, provides an interactive tool or
read-eval-print-loop (REPL) to work with Chef resources. Much in the same way
IRB or any other language's REPL shell works, chef-shell is a way to interact with
knife. This is handy for experimenting with resources while writing recipes so that
you can see what happens interactively rather than having to upload your cookbook
to a server and then executing the chef-client on a target node. Additionally, the Chef
shell provides a resource to add breakpoints to recipe execution so that it can be used
to debug recipe execution, which is a very handy feature.

Using the Chef shell
As of 11.x, shef has been replaced with chef-shell and can be used in three
different modes: standalone, solo, and client mode. Each of these has a slightly
different set of functionalities and expected use cases.

The standalone mode
The standalone mode is used to run Chef in an interactive mode with nothing
loaded; this is almost like running an REPL such as irb or python on the command
line. This is also the default behavior of chef-shell if nothing is specified.

The solo mode
The solo mode is invoked using the -s or --solo command-line flag and is a way
to use chef-shell as a chef-solo client. It will load any cookbooks using the same
mechanism that chef-solo users would, and it will use any chef-solo JSON file
provided to it using the -j command-line option.

The following are examples of using the solo mode:

chef-shell -s

chef-shell -s -j /home/myuser/chef/chef-solo.json

Extras You Need to Know

[170]

The client mode
The client mode is enabled with the -z or --client command-line flag; this mode
causes chef-shell to act as though you invoked chef-client on the host. The shell
will read the local client configuration and perform the normal duties of chef-client:
connecting to your Chef server and downloading any required run lists, attributes,
and cookbooks. However, it will allow for interactive execution so that it is possible
to debug or diagnose issues with recipes on the endhost. When using the client
mode, you can use an alternate configuration file with the -c command-line option,
or specify a different Chef server URL via the -s command-line option.

The example uses the following:

chef-shell --client -c /etc/chef/alternate.conf

chef-shell --client -s http://test.server.url:8080/

Interacting with the Chef server using the
shell
The Chef shell provides you with the ability to interact with the server quickly
in the same way you would use knife, but without the overhead of typing knife
search node... or knife node list, and so on. It is a very convenient way to query
the data stored in the Chef server interactively. In order to interact with the server
from your workstation, you need to make sure that your shell's configuration file,
located in ~/.chef/chef_shell.rb, is configured properly. If you are connecting
with chef-shell from a node, then the configuration in /etc/chef/client.rb
(or similar on Windows) will be used instead.

This file, similar to the knife.rb or client.rb file, contains the required
certificate data and configuration data to connect to the Chef server. An example
configuration file will resemble the following, with paths, organization, and client
names updated accordingly:

node_name 'myorg'
client_key File.expand_path('~/.chef/client.pem')
validation_key File.expand_path('~/.chef/validator.pem')
validation_client_name "myorg-validator"
chef_server_url 'https://api.opscode.com/organizations/myorg'

Chapter 8

[171]

All of these files are present if your knife installation is operational, and the
configuration file closely resembles that of knife.rb—if you need values for these
on your workstation, take a look at the ~/.chef/knife.rb file. Once you have
configured your shell, you can pass the -z command-line flag to connect as the
chef-client would:

[jewart]% chef-shell -z

loading configuration: /Users/jewart/.chef/chef_shell.rb

Session type: client

Loading......resolving cookbooks for run list: []

Synchronizing Cookbooks:

done.

This is the chef-shell.

 Chef Version: 11.12.8

 http://www.opscode.com/chef

 http://docs.opscode.com/

run 'help' for help, 'exit' or ^D to quit.

Ohai2u jewart@!

chef >

Interacting with data
From here, you can interact with the Chef server in a variety of ways, including
searching, modifying, and displaying any data elements (roles, nodes, data bags,
environments, cookbooks, and clients), performing a client run (including stepping
through it, one step at a time), assuming the identity of another node, and printing
the attributes of the local node. For example, listing the roles on the Chef server can
be performed with the roles.all method, shown as follows:

chef > roles.all

 => [role[umbraco_cms], role[umbraco], role[base_server], role[web_
server], role[postgresql_server]]

Extras You Need to Know

[172]

Searching your data
Searching the data elements is also supported, as each data type has a find method
attached to it. The find method takes a map of the attribute and pattern to look for
and returns the results. For example, you can find all roles on the Chef server that
begin with "um" with the following command:

chef > umbraco_roles = roles.find(:name => "um*")

 => [role[umbraco_cms], role[umbraco]]

Editing your data
Any object in your Chef server can be edited directly from the Chef shell using the
edit command from inside the shell. This will invoke your favorite editor to edit
the raw JSON of the object in question, which provides a more direct mechanism
over using knife (node|role|data bag) edit on the command line, as you can
quickly manipulate a number of records a lot more easily. For example, to edit all
of the roles that contain the name "apache" and save the results, you can use the
following Ruby code:

chef > apache_roles = roles.find(:name => "*apache*")

> [... some list...]

chef> apache_roles.each do |r|

chef> updated = edit r

chef> updated.save

chef> end

This will find all roles whose name contains "apache". Then for each record, edit the
JSON, storing the results in variable named updated, and then save that record back
to the Chef server.

Transforming data
In this way, you can interact with any of the resources that are available to you,
allowing you to quickly find and manipulate any data stored in Chef directly using
the Ruby code. For example, to find all clients with a given string in their name and
disable their administrative access, you can use the following code:

clients.transform("*:*") do |client|
 if client.name =~ /bad_user/i
 client.admin(false)
 true

Chapter 8

[173]

 else
 nil
 end
end

Use caution when transforming your data from the Chef shell; it
is an incredibly powerful tool, but its effects are destructive. These
changes are not reversible (at least not without forethought or
backups) and could damage your data if you are not careful. For
example, if the previous code was transcribed incorrectly, it could
potentially render all users unable to administer the system.

Executing recipes with Chef shell
Two great features of chef-shell are the ability to rewind a run (to step backwards)
and to be able to step forward in the run one resource at a time. As an example, let's
look at how to define a simple recipe in chef-shell interactively and then run it,
start it over, and step through it.

First, let's fire up chef-shell with the following command:

[jewart]% chef-shell

loading configuration: none (standalone session)

Session type: standalone

Loading......done.

This is the chef-shell.

 Chef Version: 11.12.8

 http://www.opscode.com/chef

 http://docs.opscode.com/

run 'help' for help, 'exit' or ^D to quit.

Ohai2u jewart@!

chef >

The chef-shell prompt will change based on the state you are in. If you are
working with a recipe, the prompt will change to be chef:recipe >.

Extras You Need to Know

[174]

Creating a recipe in the shell
The Chef shell has a number of modes—recipe mode and attribute mode. Recipe
mode is activated when working with recipes and will be what we use here. In order
to activate it, type recipe_mode at the prompt:

chef > recipe_mode

chef:recipe >

Here, we will create resources to create a file in the current directory interactively
using a file resource with no associated configuration block, only the name:

chef:recipe > file "foo.txt"

 => <file[foo.txt] @name: "foo.txt" @noop: nil @before: nil @params: {}
@provider: Chef::Provider::File @allowed_actions: [:nothing, :create,
:delete, :touch, :create_if_missing] @action: "create" @updated: false
@updated_by_last_action: false @supports: {} @ignore_failure: false @
retries: 0 @retry_delay: 2 @source_line: "(irb#1):1:in 'irb_binding'" @
guard_interpreter: :default @elapsed_time: 0 @resource_name: :file @path:
"foo.txt" @backup: 5 @atomic_update: true @force_unlink: false @manage_
symlink_source: nil @diff: nil @sensitive: false @cookbook_name: nil @
recipe_name: nil>

One thing to note here is that the shell will print out the results of the
last operation executed in the shell. This is part of an REPL shell's
implicit behavior; it is the print part of REPL: input is read and
evaluated, then the results are printed out, and the shell loops to wait
for more input from the user. This can be controlled by enabling or
disabling the echo state; echo off will prevent the printed output
and echo on will turn it back on.

It is critical to note that, at this point, nothing has been executed; we have only
described a file resource that will be acted upon if the recipe is run. You can
verify this by making sure that there is no file named foo.txt in the directory
you executed chef-shell from. The recipe can be run by issuing the run_chef
command, which will execute all of the steps in the recipe from start to finish.
Here is an example of this:

chef:recipe > run_chef

INFO: Processing file[foo.txt] action create ((irb#1) line 1)

DEBUG: touching foo.txt to create it

INFO: file[foo.txt] created file foo.txt

DEBUG: found current_mode == nil, so we are creating a new file, updating
mode

Chapter 8

[175]

DEBUG: found current_mode == nil, so we are creating a new file, updating
mode

DEBUG: found current_uid == nil, so we are creating a new file, updating
owner

DEBUG: found current_gid == nil, so we are creating a new file, updating
group

DEBUG: found current_uid == nil, so we are creating a new file, updating
owner

INFO: file[foo.txt] owner changed to 501

DEBUG: found current_gid == nil, so we are creating a new file, updating
group

INFO: file[foo.txt] group changed to 20

DEBUG: found current_mode == nil, so we are creating a new file, updating
mode

INFO: file[foo.txt] mode changed to 644

DEBUG: selinux utilities can not be found. Skipping selinux permission
fixup.

Defining node attributes
Just as in any recipe, attributes can be used in the recipes defined in the shell.
However, in the standalone mode, there will be no attributes defined initially; solo
and client modes will likely have attributes defined by their JSON file or the Chef
server, respectively. In order to interact with the currently defined attributes, we
must switch between the recipe mode and attribute mode. This is achieved using
the attributes_mode command as shown in the following code:

chef:recipe > attributes_mode

chef:attributes >

Here we can perform two primary operations: getting and setting node attributes.
These are ways of modifying the values that are accessed from inside the node Mash
in a recipe.

Remember that the node's attributes are accessed as a Mash, a
key-insensitive hash that allows you to interchange string keys
with symbol keys. The Mash class is not a built-in structure in
Ruby—it is provided by Chef for convenience so that hash keys
can be either symbols or strings and have the same effect.

Extras You Need to Know

[176]

Setting attributes
Setting attributes is achieved using the set command, which has the following form:

set[:key] = value

Here, :key can be a single-level key or a multilevel key similar to any entry in the
attributes/default.rb file. As an example, we can construct an application
configuration using the following:

set[:webapp][:path] = "/opt/webapp"
set[:webapp][:db][:username] = "dbuser"
set[:webapp][:db][:password] = "topsecret"
set[:webapp][:user] = "webuser"
set[:postgresql][:config][:listen] = "0.0.0.0"

Any parent keys that are non-existent are implicitly created on the fly, so you do not
need to do something like the following:

set[:webapp] = {}
set[:webapp][:path] = "/opt/webapp"

Accessing attributes
In order to display an attribute when in the attributes mode, simply type in the
name of the key you are interested in. For example, if you had executed the set
commands listed previously, then asking for the webapp hash is as simple as
typing webapp, as follows:

chef:attributes > webapp

 => {"path"=>"/opt/webapp", "db"=>{"username"=>"dbuser",
"password"=>"topsecret"}, "user"=>"webuser"}

However, if you wish to access these when in the recipe mode, they are accessed
through the node hash, as shown here:

chef:attributes > recipe_mode

 => :attributes

chef:recipe > node[:webapp]

 => {"path"=>"/opt/webapp", "db"=>{"username"=>"dbuser",
"password"=>"topsecret"}, "user"=>"webuser"}

Chapter 8

[177]

They can be used via the node hash in just the same way you would use them in
a recipe. If you want to construct a file block that created a foo.txt file located
in the install path of our webapp hash, you can easily use the following example
inside your shell:

file "#{node[:webapp][:path]}/foo.txt"

This makes writing recipes using the interactive shell feel exactly the same as writing
recipe files.

Using configuration blocks
A resource in a recipe file can have a Ruby block with attributes, and you can do
this in chef-shell in exactly the same fashion. Simply insert do after the resource
name and the shell will behave as a multiline editor, allowing you to complete the
block. The following example demonstrates providing a content attribute to a file
resource in this manner:

chef:recipe > file "not_empty.txt" do

chef:recipe > content "Not empty!"

chef:recipe ?> end

 => <file[not_empty.txt] @name: "not_empty.txt" @noop: nil @before: nil @
params: {} @provider: Chef::Provider::File @allowed_actions: [:nothing,
:create, :delete, :touch, :create_if_missing] @action: "create" @updated:
false @updated_by_last_action: false @supports: {} @ignore_failure: false
@retries: 0 @retry_delay: 2 @source_line: "(irb#1):2:in 'irb_binding'" @
guard_interpreter: :default @elapsed_time: 0 @resource_name: :file @path:
"not_empty.txt" @backup: 5 @atomic_update: true @force_unlink: false @
manage_symlink_source: nil @diff: nil @sensitive: false @cookbook_name:
nil @recipe_name: nil @content: "Not empty!">

Note that when the shell printed out the previous file resource, @content was not
present. Here, everything but the name remains the same, and there is an additional
property inside the object, @content, as specified in our attributes block.

Interactively executing recipes
Running a recipe step by step is a good way of slowing down the execution of a
recipe so that the state of the system can be inspected before proceeding with the
next resource. This can be incredibly useful both for debugging (as will be discussed
later) and for developing and exploring resources. It gives you a chance to see what
has happened and what side effects your recipe has as the recipe is executed. To
achieve this, the Chef shell allows you to rewind your recipe to the start and run from
the beginning, execute your recipe one step at a time, and resume execution from the
current point to the end.

Extras You Need to Know

[178]

Restarting our Chef shell, let's take a look at how we can use this:

recipe_mode

echo off

file "foo.txt"

file "foo.txt" do

 action :delete

end

file "foo.txt" do

 content "Foo content"

end

Here our recipe is quite simple—create an empty file, foo.txt, remove it, and then
recreate it with "Foo content". If we execute our recipe using run_chef, the shell
will perform all the operations in one pass without stopping and will not allow us
to check whether the delete action occurred. Instead, we can run our recipe and then
rewind and use the chef_run.step method to interactively walk through our recipe:

chef:recipe > run_chef

... execution output ...

chef:recipe > echo on

 => true

chef:recipe > chef_run.rewind

 => 0

chef:recipe > chef_run.step

INFO: Processing file[foo.txt] action create ((irb#1) line 3)

 => 1

chef:recipe > chef_run.step

INFO: Processing file[foo.txt] action delete ((irb#1) line 4)

INFO: file[foo.txt] backed up to /var/chef/backup/foo.txt.chef-
20140615175124.279917

file[foo.txt] deleted file at foo.txt

 => 2

chef:recipe > chef_run.step

INFO: Processing file[foo.txt] action create ((irb#1) line 7)

INFO: file[foo.txt] created file foo.txt

INFO: file[foo.txt] updated file contents foo.txt

Chapter 8

[179]

INFO: file[foo.txt] owner changed to 501

INFO: file[foo.txt] group changed to 20

INFO: file[foo.txt] mode changed to 644

 => 3

As you can see, here we were able to rewind our recipe back to the first instruction
(position 0, as the result of chef_run.rewind indicates), and then walk through each
resource step by step using chef_run.step and see what happened. During this
run, you can easily open a terminal after you rewind the recipe, delete the foo.txt
file from the previous run, and check that initially there is no foo.txt file, then step
through the next command in the recipe, validate that there is an empty foo.txt file,
and so on. This is a very good way to learn how resources work and to see what they
do without having to formalize your recipe in a cookbook, provision and bootstrap a
host, and so on.

Debugging with the Chef shell
Debugging is achieved in two different ways using chef-shell: stepping
interactively through a recipe or using a special breakpoint resource that is only used
by chef-shell. Running recipes interactively step by step is good to build recipes
locally; experiment with resources to determine the effect of certain attributes,
actions and notifications; or to inspect the state of the system after each resource has
been acted upon. The breakpoints allow you to inject very specific stopping points
into the client run so that the world can be inspected before continuing. Typically,
once a breakpoint is encountered, you will want to step through the execution of
your script (at least for a while) so that these are not mutually exclusive techniques.

Using the breakpoint resource
The breakpoint resource is structured just like any other Chef resource. The
resource's name attribute is the location where you want to insert the breakpoint,
and it has only one action, :break, which signals chef-shell to interrupt execution
of the current recipe and provide an interactive shell. Any breakpoint resources in
recipes are ignored by the chef-client. That way, if they are forgotten about and left
in a recipe, they will not cause havoc in production. That being said, they should
only be used when actively debugging an issue and removed before releasing your
recipes into your production environment.

The name attribute has the following structure:

when resource resource_name

Extras You Need to Know

[180]

Here, when has the value of "before" or "after", to indicate whether the breakpoint
should stop before or after execution, respectively and resource is the type of
resource that when combined with resource_name is the unique identifier that
will trigger the breakpoint. For example:

before file '/tmp/foo.txt'

This would cause the shell to interrupt execution of the recipes immediately
before any file resource that was manipulating /tmp/foo.txt. Another example,
where we want to stop execution after installing the git package, would look like
the following:

after package 'git'

Using this, we will tell chef-shell that execution was to be paused once the git
package was modified. Let's look at how we can form a simple recipe complete with
breakpoint resources that would use these examples:

breakpoint "before file '/tmp/foo.txt'" do
 action :break
end

breakpoint "after package 'git'" do
 action :break
end

file '/tmp/foo.txt' do
 action :create
end

package 'git' do
 action :remove
end

For those who have used gdb or any other debugger, this will be easy to understand;
if you have not used an interactive debugger, then try a few of the interactive
examples, and you will get the hang of it in no time at all.

Chef shell provides a comprehensive way to interact with your recipes. Now that
you see how to test out and debug your work, let's take a look at how we can go
one step further in our testing to perform full end-to-end integration testing of
our infrastructure.

Chapter 8

[181]

Integration testing
With integration testing, your tests move into testing beyond your code. With
ChefSpec, we looked at how to verify that a recipe was executing statements as
expected. However, unit testing has its limits; integration testing completes the
picture by testing cookbooks in conjunction with real hosts that run the desired
operating system(s):

This means testing cookbooks from the outside rather than from the inside, where
a unit test provides very narrow testing of code inside of cookbooks, integration
tests perform deployment of your cookbooks in a test-specific environment and then
execute probes to validate that the system is in the desired state. One of the most
popular tools for this is Test Kitchen, which we will take a brief tour of.

Using Test Kitchen
Test Kitchen is an open source tool that helps to automate integration testing of
Chef cookbooks. Where a ChefSpec test would validate that a file resource was
called during an execution, a similarly tasked Test Kitchen test would spin up a new
instance, execute your recipe(s), and then validate that the file was actually created
on all platforms that you expect the recipe to work on. One of the great things about
Test Kitchen is that it supports a number of different driver plugins to manage
your target hosts, including Vagrant (the default), EC2, OpenStack, Docker, and
Rackspace Cloud among others. This enables you to test your cookbooks not only
on local virtual machines using Vagrant, but to verify that they work correctly on
a cloud service as well. The ability to perform integration tests on different types
of hosts brings your tests that much closer to matching a production environment,
thereby increasing your confidence in the changes you are making.

Extras You Need to Know

[182]

Installing Test Kitchen
Currently, Test Kitchen is distributed as a Ruby gem, so installation is quite
straightforward:

gem install test-kitchen

By installing this gem, you are also installing a command-line tool, kitchen, which is
used to interact with Test Kitchen. Similar to Vagrant, Bundler, and other tools, Test
Kitchen uses a configuration file to store information about what to test, where to test
it (on what virtual machines), and how to test it.

Testing with Test Kitchen
As mentioned before, Test Kitchen focuses on integration testing of your Chef
components. This means that it needs to be able to execute your recipes on a host
(or a set of hosts) and then invoke a set of tests to validate that the expected behavior
occurred on the endhost(s). Test Kitchen is responsible for the following:

•	 Provisioning a clean host for testing
•	 Installing Chef onto the new host
•	 Executing our recipes on the host
•	 Validating the behavior of the recipes on the host

So, let's get started with some actual testing!

Building a simple cookbook
In order to demonstrate how to use Test Kitchen, we will need to write a cookbook
that we can run on our test hosts and write tests to validate the behavior. In order to
focus on how to use Test Kitchen, we will take a look at a very simple cookbook that
just creates a file on the host filesystem so that it is guaranteed that it will work on
both Ubuntu and CentOS platforms.

First, create a place to do your work:

mkdir -p testfile-cookbook/recipes

Then, add a very simple metadata.rb in your testfile-cookbook directory with
the following contents inside:

name "testfile"
version "1.0"

Chapter 8

[183]

Once that is complete, add a default recipe, recipes/default.rb, with the sample
recipe code as follows:

file "/tmp/myfile.txt" do
 content "My awesome file!"
end

Now that we have a complete (albeit simple) cookbook, let's take a look at how to
test it using Test Kitchen.

Preparing your cookbook for the kitchen
In order to start using Test Kitchen, you will need to prepare your test environment.
Test Kitchen relies on a configuration file, .kitchen.yml, to tell it what to do. You can
generate it by hand, or you could use the init command as part of the kitchen tool:

kitchen init

This will do a few things for you: first, it will create a .kitchen.yml file with some
sane defaults in the current directory. Then, it will create a test/integration/
default directory for your integration tests, and then it will install the Vagrant
driver for Test Kitchen so that it can interact with Vagrant virtual machines (if it has
not already been installed).

If you look at the .kitchen.yml file, you will see that the initial file contains the
following YAML code:

driver:
 name: vagrant

provisioner:
 name: chef_solo

platforms:
 - name: ubuntu-12.04
 - name: centos-6.4

suites:
 - name: default
 run_list:
 - recipe[testfile::default]
 attributes:

Extras You Need to Know

[184]

This configuration file instructs Test Kitchen to use Vagrant to manage the target
instances and to use Chef-solo for provisioning, and it should execute the default
suite of tests on both Ubuntu 12.04 and CentOS 6.4. Of course, you can always
modify or extend this list if you have other systems that you want to run tests on,
but this is a reasonable default list for now.

Notice that we don't have any attributes specified as our default recipe and it does
not use attributes. If you need to provide attributes to test recipes, this would be the
place to do it, which is laid out as a dictionary in YAML. Each test suite has its own
run list and defined attributes that allow you to check the behavior of a variety of
configuration data and recipe combinations.

Testing your new cookbook
Testing a cookbook with Test Kitchen is outlined in the following three steps:

1.	 Provisioning a host if needed.
2.	 Converging the host so that it is up to date.
3.	 Executing tests.

Let's take a look at how we will perform these with our simple cookbook to check
that it works properly.

Provisioning the instance
Before you can test, you will need to prepare the instances for testing—this is done
using the kitchen create <instance name> command. Only you don't know
what instance to bring up just yet. To get the list of instances that can be run,
we will use the list subcommand:

[jewart]$ kitchen list

Instance Driver Provisioner Last Action

default-ubuntu-1204 Vagrant ChefSolo <Not Created>

default-centos-64 Vagrant ChefSolo <Not Created>

You will see that this list is generated by a combination of the platforms and the
suites listed in the .kitchen.yml file. If you were to define a new suite, named
server, then your list would include two additional instances, server-ubuntu-1204
and server-centos-64.

Once you have seen this list, you can create an Ubuntu 12.04 instance with the
following command:

kitchen create default-ubuntu-1204

Chapter 8

[185]

This will use Vagrant and VirtualBox to provision a new headless Ubuntu 12.04 host
and boot it up for you to start testing with. If you don't already have an Ubuntu 12.04
Vagrant image downloaded, then it will be downloaded for you automatically (this
is a large image so it may take a while to complete this operation, depending on your
connection speed, if you are following along).

This will look familiar to those that used Vagrant at the beginning of the chapter:

[jewart]% kitchen create default-ubuntu-1204

-----> Starting Kitchen (v1.2.1)

-----> Creating <default-ubuntu-1204>...

 Provisioning happens...

 Finished creating <default-ubuntu-1204> (4m2.59s).

-----> Kitchen is finished. (4m2.83s)

However, this only builds the virtual machine for our tests; it does not run our
recipes or our tests in the newly constructed host. Before we move on to writing
a test, let's take a look at how to run our recipe inside our instance.

Converging the newly created instance
The next step is to execute our run list ("converge" in Chef parlance) on the new
instance. This is done with Test Kitchen's converge command and can be used
for all or one specific instance. In order to converge our Ubuntu 12.04 instance,
the following command is used:

kitchen converge default-ubuntu-1204

What this will do is transfer any required data files, install Chef as needed, and then
execute the run list for the specified suite (default in this case) on the instance. Here
is a sample run of converge (with some parts removed):

[jewart]% kitchen converge default-ubuntu-1204

-----> Starting Kitchen (v1.2.1)

-----> Converging <default-ubuntu-1204>...

 Preparing files for transfer

 Preparing current project directory as a cookbook

 Removing non-cookbook files before transfer

Extras You Need to Know

[186]

-----> Installing Chef Omnibus (true)

Installation of Chef happens...

Compiling Cookbooks...

Converging 1 resources

Recipe: testfile::default

And then you will see the output of a normal Chef run after that—at this point, the
run list is complete and the instance has been converged to the latest state. Now that
it's been converged, we will continue to write a very simple test to verify that our
recipe did the right thing.

Writing a simple test
Tests are stored in a directory whose structure is similar to other Chef components—
the directory we created previously with kitchen init, tests/integration/
default, allows us to keep our integration tests separate from spec tests or other
types of tests. The integration directory will contain one directory per suite so
that test files are grouped together based on the particular component or aspect of
your cookbook that is being tested. Additionally, depending on the type of the test
framework being used, your tests will be contained in another child directory for the
given suite. In this case, we will take a look at the BASH Automated Testing System
(BATS), so our test will be placed in the tests/integration/default/bats/file_
created.bats file and will look like the following code:

#!/usr/bin/env bats

@test "myfile.txt exists in /tmp" {
 [-f "/tmp/myfile.txt"]
}

This allows us to use the simple -f BASH test (which returns true if the specified
value exists) to guarantee that the file was created on the instance.

Next, we can run this test with kitchen verify default-ubuntu-1204 and see
that the BATS plugin was installed and that our test was executed and passed:

[jewart]% kitchen verify default-ubuntu-1204

-----> Starting Kitchen (v1.2.1)

-----> Setting up <default-ubuntu-1204>...

Fetching: thor-0.19.0.gem (100%)

Fetching: busser-0.6.2.gem (100%)

Chapter 8

[187]

Successfully installed thor-0.19.0

Successfully installed busser-0.6.2

2 gems installed

-----> Setting up Busser

 Creating BUSSER_ROOT in /tmp/busser

 Creating busser binstub

 Plugin bats installed (version 0.2.0)

-----> Running postinstall for bats plugin

Installed Bats to /tmp/busser/vendor/bats/bin/bats

 Finished setting up <default-ubuntu-1204> (0m8.94s).

-----> Verifying <default-ubuntu-1204>...

 Suite path directory /tmp/busser/suites does not exist, skipping.

Uploading /tmp/busser/suites/bats/file_created.bats (mode=0644)

-----> Running bats test suite

 √ myfile.txt exists in /tmp

1 test, 0 failures

 Finished verifying <default-ubuntu-1204> (0m0.67s).

-----> Kitchen is finished. (0m9.86s)

To demonstrate what happens if the file does not exist, we can clone our test to create
a second simple test that validates the existence of /tmp/myotherfile.txt, and run
our verify command again without making a corresponding change to our recipe.
The output from Test Kitchen will tell us that our test failed and why:

-----> Running bats test suite

 √ myfile.txt exists in /tmp

  myotherfile.txt exists in /tmp

 (in test file /tmp/busser/suites/bats/other_file.bats, line 4)

2 tests, 1 failure

Command [/tmp/busser/vendor/bats/bin/bats /tmp/busser/suites/bats] exit
code was 1

>>>>>> Verify failed on instance <default-ubuntu-1204>.

Extras You Need to Know

[188]

Combining all the steps
Fortunately, the fine folks that created Test Kitchen realized that it would be tedious
to run all three steps every time you wanted to run some tests. As a result, there is
the kitchen test command that will provision an instance, execute the run list,
verify the results, and then tear down the instance with only one command. In this
case, you can replace them with the following single command:

kitchen test default-ubuntu-1204

This covers the basics of testing your cookbooks with Test Kitchen. There are other
things that can be done with Test Kitchen, including using other testing mechanisms,
testing cookbook dependencies, validating whether services are running, fully
automating Test Kitchen as part of your release process, and plenty more. For more
information, visit the project at http://kitchen.ci/.

Extending Chef
Chef is developed in the open with flexibility and extensibility in mind. Most of the
tools are architected to support loading custom plugins to support development
of add-ons for new functionality. As you saw earlier, Knife's cloud service support
is provided by plugins, one for each cloud service, including EC2, Azure, and
Rackspace cloud. We will look at how that happens so that you can explore writing
your own plugins for Knife, Ohai, and other Chef components should the need arise.

In addition to extending Chef's core components directly, it is possible to extend the
functionality of your Chef ecosystem by building enhancements to existing tools that
can leverage Chef's data APIs to provide data about your infrastructure.

Writing an Ohai plugin
Ohai (a play on the phrase oh, hi!) is a tool that is used to detect attributes on a node,
and provide these attributes to the chef-client at the start of every chef-client run.
Without Ohai, the chef-client will not function, and therefore, it must be present on
a node in order for Chef to work. The data that is collected is authoritative—it has the
highest level of precedence when computing attribute data for client runs on a node.

The types of attributes that Ohai might be used for include:

•	 Platform details
•	 Network usage
•	 Memory usage
•	 Processor usage

http://kitchen.ci/

Chapter 8

[189]

•	 Kernel data
•	 Host names
•	 Information about the network topology
•	 Cloud-specific information

Ohai implements an extensible architecture through plugins that allows end users
to write custom extensions to report information that is collected about a node. For
example, there are plugins for EC2 cloud hosts that use EC2-specific mechanisms to
determine information about the host, including its internal IP address and other bits
of information.

This is incredibly useful for integrating Chef with an existing infrastructure, as you
can automatically probe for local configuration data and generate attributes from
that data. Once this data is stored in Chef, it can be used in search queries, recipes,
and everywhere else that you could otherwise use node attributes.

Every Ohai plugin follows a pattern: it registers itself as providing a certain class
of attribute data and contains a combination of general purpose and data collection
methods to gather information about the local state of the system and report it back
to the Chef server. Ohai already has built-in collectors for a number of platforms,
including Linux, Windows, and BSD.

A sample Ohai plugin would look like the following:

Ohai.plugin(:Region) do
 provides "region"

 def init
 region Mash.new
 end

 collect_data(:default) do
 # Runs on all hosts whose platform is not specifically handled
 init
 region[:name] = "unknown"
 end

 collect_data(:linux, :freebsd) do
 # Run only on Linux and FreeBSD hosts
 init
 region[:name] = discover_region_unix
 end

 collect_data(:windows) do

Extras You Need to Know

[190]

 # Run on Windows hosts
 init
 region[:public_ip] = discover_region_windows
 end

end

Here we register our plugin as providing a region data, there is an init method that
creates a Mash for our region data, and a few data collection callbacks. Each data
collection callback is registered as a block that is called for the specified platform(s).
In our case, there are three callbacks registered, one for Windows systems, one for
Linux and FreeBSD systems, and then a fallback that will be called for any platform
not explicitly handled.

A note about writing Ohai plugins
The way we declare the region Mash in our init method is a little bit different than
normal variable assignment in Ruby. In our plugin, we define the plugin's region
property with the following code:

region Mash.new

On the surface, this might look like someone forgot an equals sign, as in the
following Ruby code:

region = Mash.new

However, if there were an equals sign, the plugin would not work as intended. In this
case, there is no equals sign missing and the code is correct. This is because Ohai's
Plugin class leverages a special Ruby mechanism for intercepting calls to nonexistent
methods and dynamically handling them. This mechanism is recognizable by the
presence of a special method named method_missing in the code. In this case, the
method_missing handler will call a special Ohai plugin method, get_attribute,
if no arguments are passed, or it will call the set_attribute method if arguments
are passed.

To demonstrate why this is used, if you wanted to have the same effect without the
method_missing mechanism, then the plugin's init method could be written as:

def init
 set_attribute "region", Mash.new
end

Chapter 8

[191]

Were you to do this, then our subsequent collect data methods would need to be
rewritten as well. Here is an example of what they might look like:

collect_data(:platform) do
 init
 region = get_attribute "region"
 region[:name] = get_data_mechanism
 set_attribute "region", region
end

You can see that the method_missing mechanism makes writing plugins more
natural, though it takes a little bit of extra work to understand how to write
them at first.

Chef with Capistrano
One example of extending Chef through external tools is the capistrano-chef gem
that extends the popular deployment tool, Capistrano. Written in Ruby, Capistrano
was designed to deploy applications and perform light systems administration.
If you have existing applications that are being deployed using Capistrano, this
is an example of how to leverage your configuration data stored in Chef to make
integration as seamless as possible.

If you have an existing application that uses Capistrano, you will have a deploy.rb
file that defines the various application roles. Each tool has an array of IP addresses
to hosts that provide that role and might look something like this:

role :web, '10.0.0.2', '10.0.0.3'
role :db, '10.0.0.2', :primary => true

By using capistrano-chef, you can do this:

require 'capistrano/chef'
chef_role :web,'roles:web'
chef_role :db, 'roles:database_master',
 :primary => true,
 :attribute => :private_ip,
 :limit => 1

Notice that here we have used a simple search query to determine the hosts
that should be included in each Capistrano role. In this case, the :web role has
been replaced with a Chef search query for all nodes that have the web Chef role
associated with them. This allows you to model your data in Chef, but still use
Capistrano to deploy your application stack, increasing the ease of integration.

Extras You Need to Know

[192]

This works because all of Chef's data is available via an HTTP API making
integration as simple as making HTTP calls and parsing some JSON results
(which, compared to some other integration mechanisms, is incredibly easy).

Automation and integration
One of the best parts about Chef is that your infrastructure and software
model is consistent with what is deployed. What this means for you is that when
chef-client runs on an endhost, that host's state is updated to match your modeled
environment. For example, consider a scenario where you have 10 EC2 database
hosts, and all of them have a special role, database_server, applied to them. This
role's attributes indicate that PostgreSQL 9.1 is to be installed and its data should be
stored in /opt/postgresql/data. By executing chef-client on all ten nodes, they
will have PostgreSQL 9.1 installed and storing data in /opt/postgresql/data. Now
consider that all of our nodes need to have a new EBS storage device attached to
each of them, and PostgreSQL needs to be pointed to our new EBS device. Updating
our model to include a recipe that mounts the EBS device gracefully shuts down
PostgreSQL, moves the database data, reconfigures PostgreSQL, and starts it up
again. We can automate and roll out this configuration to our fleet of ten database
hosts. You can easily imagine ten hosts growing to hundreds or even thousands. This
is what the power of automation is all about.

Automated updates and deployments
If you have confidence in your model and your cookbooks, then you can take this
automation one step further. By automating the execution of chef-client on a
periodic schedule, you can fully automate updates without needing to SSH into
the hosts to run chef-client. However, this level of automation requires a high
level of confidence in the correctness of your cookbooks. Achieving this requires
continuous and in-depth testing of not only the code in the cookbooks developed but
also of the dependencies that are needed to make your cookbooks work. To that end,
comprehensive integration tests can help to build the confidence needed to move
into a fully automated world.

Chapter 8

[193]

Summary
By now you have been exposed to a lot of what Chef has to offer the DevOps
community. You have seen what Chef does, how to install it, and how it works.
Throughout this book, you have been introduced to some new ways of thinking
about how to model infrastructure and use automated tools to manage it.

At this point, you hopefully understand how to model your infrastructure with
Chef as well as install the various components related to Chef, ranging from the
server to the client. From here, you can take what you've learned about the various
components of Chef and use that information to build more advanced cookbooks to
deploy your software and manage your infrastructure, ranging from cloud hosts to
physical on-site hardware and even virtual machines using Vagrant. Once you have
gotten things working, you can automate your configuration tools and ensure the
reliability of your cookbooks through unit and integration tests as well.

Now, it is your turn to take this information and your new skills to automate your
systems infrastructure in order to build exciting new things!

Index
Symbol
:name parameter 144

A
Amazon EC2

about 52
authentication, setting up 52, 53
Chef node, removing 56
instance, bootstrapping 54, 55
instance, provisioning 53, 54
instance, terminating 55
knife plugin, installing 52
working with 52

Apache Solr documentation
URL 159

application
configuring 121

application deployment cookbook
viewing 114-116

application run
maintaining 122

application template
defining 146-148

attributes
about 28, 66-68
configuration values 66
multiple files 68
using 70

authorized keys, SSH keys
templating 140, 141

automation, Chef 192

B
Base64 encoding 154

baseline role 112
base server role

creating 123
BASH Automated Testing

System (BATS) 186
bootstrap 28
bootstrap script 28
breakpoint resource, Chef shell

using 179, 180
Bundler tool, ChefSpec 98

C
Capistran

Chef, using with 191
Chef

about 27
attributes 28
automation 192
benefits 8, 49
bootstrap 28
bootstrap script 28
Chef-solo, installing 9
Chef-solo, verifying 10-12
cookbook 28
data bags 29
dependencies, managing 119
environment 29
extending 188
gems, managing 9, 10
integration 192
node 27
Ohai plugin, writing 188
provider 29
recipe 28
resource 28

[196]

role 28
Ruby gem mechanism 9
run list 28
terminology 7
updates, automating 192
used, for software deployment 110
using, with Capistran 191
working with 8, 9
workstation 27

Chef community
URL 112

Chef LWRP, components
provider 149
resource 149

Chef node, Amazon EC2
removing 56

Chef node, Rackspace Cloud
removing 61

Chef server
configuring 17
installing 13
interacting, Chef shell used 170, 171
URL 15

Chef server configuration
about 17
chef-server-ctl, working 18
host server actions, monitoring 18, 19
services, verifying 20

chef-server-ctl, Chef server
working 18

Chef server, installing on Red Hat
Enterprise Linux

package, downloading 16
package, downloading, URL 16

Chef server, installing on Ubuntu
about 15
package, downloading 16
package, installing 16

Chef server interaction, using Chef shell
data, editing 172
data, interacting with 171
data, searching 172
data, transforming 172, 173

Chef service
about 8
knife configuration 23
validating 21-23

Chef shell
about 169
breakpoint resource, using 179
client mode 170
recipe, creating in 174
solo mode 169
standalone mode 169
used, for debugging 179
used, for executing recipes 173
used, for interacting with

Chef server 170, 171
using 169

Chef-solo
about 161
configuring 166
cookbooks_path 166
data_bags_path 166
data bags, using with 167, 168
installing 9
limitations 165
roles_path 166
roles, using with 167, 168
run directions, providing 167
Vagrant, combining with 165-167
verifying 10-12

ChefSpec
about 94
dependencies, locking in Ruby 98, 99
installing 98
overview 97, 98
simple recipe, creating 99
testing basics 96
using 97
using, with RSpec 95

ChefSpec test
expanding 104
multiple examples 104-106
testing, for multiple platforms 106, 107
writing 100, 101

Chef Supermarket
URL 35

client mode, Chef shell 170
cloud

leveraging 51
cloud platform providers

Amazon EC2 52
Rackspace Cloud 57

[197]

components, cookbook
attributes 65
definitions 65
providers 65
recipes 65
resources 65
Ruby libraries 65
support files 66
templates 65
tests 66

configuration blocks
using 177

configuration data
attribute data example 46
data bags 47
organizing 44, 45
sources 44

cookbook
about 28, 36, 63, 64
application, configuring 121
application deployment cookbook,

viewing 114-116
application run, maintaining 122
components 63
database recipe, viewing 113, 114
dependencies, installing 119
directories, preparing 116, 117
downloading 112, 113
installing 36
managing 112
Python's requirements file, using 120
Python virtual environment,

constructing 117
source code, checking out 118
URL 112

cookbook, Test Kitchen
created instance, converging 185
instance, provisioning 184
summarizing 188
test, writing 186, 187

custom definition, developing
about 143
application template, defining 146-148
code, organizing 143
definition, writing for PIP usage 143-146

custom extensions
resource, building 149
writing 143

D
data

decrypting 156
encrypting 155
querying 157, 158
searching 135, 157
storing, in data bags 133

data bags
about 29, 47
creating, for users 133, 134
data, searching 157
data, storing in 133
multiple machines, managing with search

queries 159
searching, from recipes 157
searching, with knife tool 157
securing 154
using 47, 48
working with 154

data bags, securing
about 154
data, decrypting 156
data, encrypting 155
keys, storing on nodes 156
secret keys 154

data bags, using with Chef-solo
about 167, 168
custom JSON data, injecting 168
custom node name, providing 168

database host
configuring 127

database recipe
viewing 113, 114

database server role
creating 124

data, Chef server
editing 172
interacting 171
searching 172
transforming 172, 173

[198]

default action 77
default behavior, resource

overriding 77
definitions, cookbook support

files 65, 85, 86
dependencies

installing 119
managing 120
managing, in Chef 119

deployment keys, SSH keys
adding 142, 143

deploy users 142
directories

preparing 116, 117
domain-specific language (DSL) 65
driver plugins 181
dry-run mode 152

E
EC2 instances

database host, configuring 127
provisioning 126

echo off state 174
echo on state 174
encryption key

storing, on nodes 156
environment

about 29
example 43

equal sign 81
ERB primer

about 80
Ruby code, executing 80
URL 80

F
fetch_from_s3 method 152

G
gems

managing, with Ruby Version
Manager (RVM) 9

gemset 10

H
host

provisioning, with Vagrant 162, 163

I
Image-O-Rama 35
image-processing role

defining 32
image search role

defining 32
infrastructure modeling

about 29-31
Chef, using 30
environment 43, 44
nodes, converging 42
recipes, applying to role 37
recipes, determining 35
role 31
role, implementing 34
role, mapping to node 40-42
service-oriented architecture,

advantages 30
service-oriented web application,

services 30
steps 29

installation, Chef server
about 13
components 14
omnibus installer, obtaining 15
on Red Hat Enterprise Linux 16
on Ubuntu 15
requisites 13

instance, Amazon EC2
bootstrapping 54, 55
provisioning 53, 54
terminating 55, 56

instance, Rackspace Cloud
provisioning 57-59
terminating 59, 60

integration, Chef 192
integration testing

about 181
Test Kitchen, using 181

[199]

K
knife node list 170
knife plugin, Amazon EC2

installing 52
knife-rackspace plugin 57
knife tool

about 21, 51
used, for searching data bags 157

L
load_current_resource method 153
local environment

configuring 111

M
Mash, Chef 70
matching ChefSpec test

creating 99
metadata 71, 72
mock methods 95
multiple attribute files

about 68
external attributes, loading 69
multiple platforms, supporting 69

multiple machines
managing, with search queries 159

mysql 114

N
node

about 7, 27
converging 42
role, mapping to 40, 41

node attributes
accessing 176, 177
defining 175
setting 176

node delete command 61
node hash 70

O
Ohai plugin

attributes 188

writing 188-190
omnibus installation package, Chef 13
omnibus installer, Chef server

obtaining 15
outline 15
steps 15

OpenSSH service role
defining 33

P
PIP

used, for writing definition 143-146
PostgreSQL service role

defining 33
provider

about 29, 65, 149
implementing 150, 152

Python application
modeling 111, 112

Python's requirements file
using 120

Python virtual environment
constructing 117, 118

R
Rackspace Cloud

about 56, 57
Chef node, removing 61
instance, provisioning 57-59
instance, terminating 59, 60

read-eval-print-loop (REPL) 169
recipe

about 8, 28, 65, 74,
applying, to role 37-39
building 101
cookbook, installing 36
complicated recipe, actions 90-92
creating, in Chef shell 174
data bags, searching from 157
determining 35
developing 87, 88
enhancing, with search method 136
executing 88, 89
failures 102, 103
need for 35

[200]

simple service, installing 89, 90
starting states 73
testing, with ChefSpec 94
tests, executing 102
writing 88

recipe, executing with Chef shell
about 173-179
attribute mode 174
attributes, accessing 176, 177
attributes, setting 176
configuration blocks, using 177
node attributes, defining 175
recipe mode 174

Red Hat Enterprise Linux
Chef server, installing on 16

resource
about 28, 65, 74, 75
building 149
built-in resources 74
defining 149
default behavior, overriding 77
existing resource, loading 153
modifying 152
package resource 149
provider, implementing 150-152
updated status, declaring 154
using 75, 76

reusable resources, defining in Chef
benefits 149

role
about 28, 31
applying, to recipes 37-39
base server role, creating 123
database server role, creating 124, 125
defining 32, 123
implementing 34
mapping, to node 40
web server role, creating 125

role, defining
about 32
image-processing role 32
image search role 32
OpenSSH service role 33
PostgreSQL service role 33
Solr service role 33
web application service role 32

roles, using with Chef-solo
about 167, 168
custom JSON data, injecting 168
custom node name, providing 168

RSpec
about 94
comparing, with testing libraries 96, 97
failures 102, 103
testing levels 96
using, with ChefSpec 95

Ruby
dependencies, locking 98, 99

Ruby gem mechanism 9
Ruby libraries 65
Ruby Version Manager (RVM)

about 9
URL 9

run list 28

S
search method

used, for enhancing recipes 136
search queries

used, for managing multiple machines 159
secret keys, data bags

managing, with search queries 154
server list subcommand 60
service-oriented architecture (SOA) 161
setup

describing 110
shell user recipe

evolution 132, 133
software

deploying 128
deploying, with Chef 110

software deployment
automating 129
updates, deploying manually 129

solo mode, Chef shell 169
Solr service role

defining 33
source code

checking 118, 119
SSH keys

authorized keys, templating 140, 141

[201]

deployment keys, adding 142
distributing 140

standalone mode, Chef shell 169
supervisord service

URL 122
support files 66

T
templates

about 65, 78
computed configuration, accessing 83, 84
ERB primer 80
need for 78-80
searching for 84, 85
search order 84
template resource 81, 82
variables 82
variables, passing to 82, 83

terminology, Chef
Chef service 8
cookbook 8
node 7
recipe 8
workstation 8

test-driven-development (TDD) 96
Test Kitchen

cookbook, building 182
cookbook, preparing for 183, 184
cookbook, testing 184
installing 182
tasks 182
used, for testing 182
using 181

tests 66

U
Ubuntu

Chef server, installing on 15
updated_by_last_action method 154

user cookbook
enhancing 137-139

user management
Chef 131
data, storing in data bags 133
recipe, enhancing with search method 136
shell user recipe, evolution 132, 133
SSH keys, distributing 140
user cookbook, enhancing 137-139

users
adding 126
managing 131

V
Vagrant

about 161
combining, with Chef-solo 165-167
image, booting 163
installing 162
URL 162
used, for provisioning new host 162, 163

Vagrant Cloud
URL 163

Vagrant image
booting 163, 164

W
web application service role

defining 32
web server

configuring 127, 128
web server role

creating 125
why-run mechanism 152
workstation 8, 27

Y
YAML 110

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Installing Chef
	Terminology
	Working with Chef
	Installing chef-solo
	The Ruby gem
	Managing gems
	Verifying that chef-solo works

	Installing a Chef server
	Requirements and recent changes
	Installation requirements
	What you will be installing
	Getting the installer
	Installation outline
	Installing on Ubuntu
	Downloading the package
	Installing the package

	Installing on Red Hat Enterprise Linux
	Downloading the package

	Configuring a Chef server
	Understanding how chef-server-ctl works
	What's happening on my server?
	Verifying that the services are running

	Validating that your service is working
	Ensuring that your knife configuration works

	Summary

	Chapter 2: Modeling Your Infrastructure
	Getting to know Chef
	Modeling your infrastructure
	Roles
	Defining roles

	Implementing a role
	Determining which recipes you need
	Installing a cookbook

	Applying recipes to roles
	Mapping your roles to nodes
	Converging a node
	Environments

	Organizing your configuration data
	Example attribute data
	Data bags
	Knowing when to use data bags

	Large-scale infrastructure
	Summary

	Chapter 3: Integrating with the Cloud
	Leveraging the cloud
	Amazon EC2
	Installing the EC2 knife plugin
	Setting up EC2 authentication
	Provisioning an instance
	Bootstrapping the instance
	Terminating the instance
	Removing the Chef node

	Rackspace Cloud
	Provisioning an instance
	Terminating an instance
	Removing the Chef node

	Summary

	Chapter 4: Working with Cookbooks
	Attributes
	Multiple attribute files
	Supporting multiple platforms
	Loading external attributes

	Using attributes

	Metadata
	Recipes
	Resources
	Using resources
	Overriding a default behavior

	Templates
	Why use templates?
	A quick ERB primer

	The template resource
	The template variables
	Passing variables to a template
	Accessing computed configurations

	Searching for templates

	Definitions
	Recipes
	Developing recipes

	Writing recipes
	Starting out small
	Installing a simple service
	Getting more advanced

	Summary

	Chapter 5: Testing Your Recipes
	Testing recipes
	RSpec
	RSpec and ChefSpec
	Testing basics
	Comparing RSpec with other testing libraries
	Using ChefSpec

	Getting started with ChefSpec
	Installing ChefSpec
	Locking your dependencies in Ruby
	Creating a simple recipe and a matching ChefSpec test
	Writing a ChefSpec test
	Building your recipe
	Executing tests
	Understanding failures

	Expanding your tests
	Multiple examples in a spec test
	Testing for multiple platforms

	Summary

	Chapter 6: From Development to Deployment
	Describing the setup
	Deploying software with Chef
	Configuring your local environment
	Modeling a simple Python application
	Managing the cookbooks
	Downloading cookbooks
	Looking at the database recipe
	Looking at your application deployment cookbook
	Preparing the directories
	Constructing your Python virtual environment
	Checking the source code
	Installing any extra dependencies
	Managing dependencies in Chef
	Managing dependencies elsewhere

	Using Python's requirements file
	Configuring your application
	Keeping your application running

	Defining roles
	Creating the base server role
	Creating the database server role
	Creating the web server role

	Adding users
	Provisioning EC2 instances
	Configuring the database host

	Configuring the web server
	Deploying your software
	Manually deploying updates
	Automating deployment

	Summary

	Chapter 7: Beyond Basic Recipes
and Cookbooks
	Managing users
	Evolution of a shell user recipe
	Storing data in data bags
	Creating a data bag for users
	Searching for data

	Searching inside recipes
	Enhancing your user cookbook
	Distributing SSH keys
	Templating the authorized keys
	Adding deployment keys

	Writing custom extensions
	Developing a custom definition
	Organizing your code
	Writing a definition for using PIP
	Defining a full application template

	Building a resource
	Defining the resource
	Implementing the provider
	Modifying resources
	Loading an existing resource
	Declaring that a resource was updated

	Working with data bags
	Securing your data bags
	Secret keys
	Encrypting your data
	Decrypting your data
	Storing keys on nodes

	Searching your data
	Searching your data bags with knife
	Searching your data bags from a recipe
	Querying your data

	Managing multiple machines with search queries

	Summary

	Chapter 8: Extras You Need to Know
	Vagrant and Chef-solo
	Installing Vagrant
	Provisioning a new host with Vagrant
	Booting your Vagrant image
	Combining Vagrant with Chef-solo
	Understanding the limitations of Chef-solo
	Configuring Chef-solo
	Telling Chef-solo what to run
	Using roles and data bags with Chef-solo

	Getting to know the Chef shell
	Using the Chef shell
	The standalone mode
	The solo mode
	The client mode

	Interacting with the Chef server using the shell
	Interacting with data
	Searching your data
	Editing your data
	Transforming data

	Executing recipes with Chef shell
	Creating a recipe in the shell
	Defining node attributes
	Using configuration blocks
	Interactively executing recipes

	Debugging with the Chef shell
	Using the breakpoint resource

	Integration testing
	Using Test Kitchen
	Installing Test Kitchen
	Testing with Test Kitchen

	Extending Chef
	Writing an Ohai plugin
	A note about writing Ohai plugins

	Chef with Capistrano

	Automation and integration
	Automated updates and deployments

	Summary

	Index

