
[1]

www.allitebooks.com

http://www.allitebooks.org

Django Project Blueprints

Develop stunning web application projects with the
Django framework

Asad Jibran Ahmed

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Django Project Blueprints

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2016

Production reference: 1240516

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-542-5

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Asad Jibran Ahmed

Reviewer
Jaakko Tulkki

Commissioning Editor
Julian Ursell

Acquisition Editor
Larissa Pinto

Content Development Editor
Parshva Sheth

Technical Editor
Danish Shaikh

Copy Editor
Tasneem Fatehi

Project Coordinator
Nikhil Nair

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Author

Asad Jibran Ahmed is an experienced programmer who has worked mostly with
Django-based web applications for the past 5 years. Based in Dubai, UAE, he has
worked with some of the biggest web properties in the region, including Dubizzle,
the number one classifieds platform in UAE; Nabbesh, one of the top freelancing
platforms in the MENA region; and Just Property, a hot and rising name in the
property portal space of the region.

His experience with such big names has given him a keen insight into how to
design performant, stable, and user friendly web applications, all the while using
programming practices that make sure that the code base is maintainable for years.

I'd like to thank my parents for all the love and support they gave
me when I was playing around with computers as a child. If it had
not been for their encouragement in those early years, I might not be
a programmer today, and this book might not exist.

Also, to all my siblings and friends, I'd like to say thank you for
putting up with it all.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Jaakko Tulkki is currently based in Madrid, Spain, where he is working as a
Python developer. He has also worked in start-ups. Jaakko is currently finalizing his
MSc degree in software engineering. Python is one of his favorite tools because he
finds it a very productive language.

Jaakko works for Sainsbury's in Manchester, UK.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

[i]

Table of Contents
Preface v
Chapter 1: Blueblog – a Blogging Platform 1

The contrib packages 2
Setting up our development environment 2

Database settings 3
Static files settings 4
A base template 4

User accounts 5
A user accounts app 6
Account registration 6

Generic views 8
Template and URLs 9

Login and logout 10
The login view 11
The logout view 12
Navigation links 13

The blog 13
Models 14
Creating a blog view 15
The home page 20
The blog settings view 21
Creating and editing blog posts 23
Editing blog posts 25
Viewing blog posts 27

Multiple users 27
Security 28
Sharing blog post 29

Summary 36

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: Discuss – a Hacker News Clone 37
Chapter code packs 37
Requirements 38
Starting out 39
Link submission 40
Comments 46
Voting 61
Ranking submission 66
Spam protection 68
Summary 71

Chapter 3: Djagios – a Nagios Clone in Django 73
Code pack 74
Requirements 74
The model 75
Fake data generation 77

Django management commands 77
A better model representation 81

Status page 82
Alerts 90

The model 90
Management views 91

Showing triggered alerts on the status page 98
Accepting data from remote systems 102

Testing API endpoints 104
Summary 109

Chapter 4: A Car Rental App 111
Code pack 111
Fixtures 112
Image and File fields 114
get_absolute_url 116
The Django admin app 116
Showing the car names 122
Booking management 123

A peek behind the curtain 123
Improving the user experience 125

Filtering objects 125
Searching for objects 126
Quick edit 126

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Admin actions 127
UX improvements 129

Summary 131
Chapter 5: Multilingual Movie Database 133

Requirements 134
Getting the project up and running 134
Translating our static content 136
How did all that work? 140
Letting the user decide which language to use 145
Persisting the user choice 147
Translating our models 149
Summary 155

Chapter 6: Daintree – an E-commerce Site 157
Code pack 158
Exploring Elasticsearch 159

First steps with Elasticsearch 160
Searching from Python 164
Mapping 165

Defining a mapping 167
Inserting documents into Elasticsearch from Python 168

Getting all our data into Elasticsearch 169
Adding search 171

Configuration management 176
More search options 178

Aggregations and filters 181
Category aggregation 182
Full text search and analysis 187

Searching with aggregations 191
Summary 197

Chapter 7: Form Mason – a Monkey of your own 199
Code pack 200
Looking at a Django form 200

Adding an extra field to a SampleForm instance 203
Generating dynamic forms 203

Generating a form out of JSON 205
A model for our JSON 209
Creating a better user interface 213
Saving the responses 217

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Showing the responses 219
An improved responses list 221

Designing a form creation interface 224
Small fixes 231
Summary 236

Appendix: Development Environment Setup
Details and Debugging Techniques 239

Using pdb to debug Django views 240
Developing on Windows 241

Index 243

[v]

Preface
Django is perhaps one of the most popular web development frameworks out there
today. It is the framework that most Python developers reach for when they have
any sizeable web application to develop.

With its proven track record of performance, scalability, and security, and its famous
batteries-included approach, Django is used by some of the biggest names in the
industry, including Instagram, Pinterest, and National Geographic.

This book is intended for people who have had a passing introduction to Django and
a very basic idea of how to create a simple website with it. It will show you how to
take your skills to the next level, developing applications as complex as e-commerce
sites with lightning-fast search.

What this book covers
Chapter 1, Blueblog – A Blogging Platform, gets you started with Django and
introduces the basic concepts of how to use the framework. It also introduces
you to the development techniques used in the rest of the book.

Chapter 2, Discuss – A Hacker News Clone, walks you through creating a web
application in the style of the popular Hacker News discussion forum. We look at
advanced techniques to sort and rank the content of a web application based on user
feedback, and then we look at spam prevention techniques.

Chapter 3, Djagios – a Nagios Clone in Django, covers the creation of a Nagios-like
application using Django that can monitor and report on the status of remote
server systems.

Preface

[vi]

Chapter 4, A Car Rental App, shows you how to create a car rental application and
customize the Django admin application to provide our users with a fully-featured
Content Management System.

Chapter 5, Multilingual Movie DataBase, helps you create an IMDB-style web listing of
movies, allowing user comments and reviews on the movies. The main focus of this
chapter is allowing internationalized and localized versions of your web applications
available in multiple languages.

Chapter 6, Daintree – An E-commerce site, shows you how to create an Amazon-like
e-commerce website with lightning-fast search by utilizing the Elasticsearch search
server software with Django.

Chapter 7, Form Mason – a Monkey of your own, helps you create a complicated and
interesting web application that allows users to dynamically define web forms
and then ask other people to respond to those forms, which is similar in nature to
SurveyMonkey and other such sites.

Appendix, Development Environment Setup Details and Debugging Techniques, here we
will look into the details of the setup, and I will explain each of the steps that we
took. We will also see a technique for debugging Django applications.

What you need for this book
To create and run all the web applications that we will develop throughout the book,
you will need working copies of the following software:

• The Python programming language
• pip: The package manager for installing Python packages
• virtualenv: A tool for creating isolated environments for Python packages

You can download the Python programming language for your operating system
from https://www.python.org/downloads/. You will need Python 3 to follow the
examples in this book.

You can find the instructions to install the pip package management tool at
https://pip.pypa.io/en/stable/installing/.

You can install virtualenv by following the instructions at https://virtualenv.
pypa.io/en/latest/installation.html.

https://www.python.org/downloads/
https://pip.pypa.io/en/stable/installing/
https://virtualenv.pypa.io/en/latest/installation.html
https://virtualenv.pypa.io/en/latest/installation.html

Preface

[vii]

Who this book is for
If you are a Django web developer able to build basic web applications with
the framework, then this book is for you. This book will help you gain a deeper
understanding of the Django web framework by guiding you through the
development of six amazing web applications.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample

 /etc/asterisk/cdr_mysql.conf

Preface

[viii]

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Clicking
the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[ix]

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
book's webpage at the Packt Publishing website. This page can be accessed by
entering the book's name in the Search box. Please note that you need to be logged in
to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Django-Project-Blueprints. We also have other code bundles
from our rich catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

https://github.com/PacktPublishing/Django-Project-Blueprints
https://github.com/PacktPublishing/Django-Project-Blueprints
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata

Preface

[x]

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Blueblog – a Blogging
Platform

We are going to start with a simple blogging platform in Django. In recent years,
Django has emerged as one of the clear leaders in web frameworks. When most
people decide to start using a web framework, their searches lead them to either
Ruby on Rails (RoR) or Django. Both are mature, stable, and extensively used.
It appears that the decision to use one or the other depends mostly on which
programming language you're familiar with. Rubyists go with RoR, Pythonistas
go with Django. In terms of features, both can be used to achieve the same results,
although they have different approaches to how things are done.

One of the most popular blogging platforms these days is Medium, widely used by
a number of high profile bloggers. Its popularity stems from its elegant theme, and
simple-to-use interface. I'll walk you through creating a similar application in Django,
with a few surprise features that most blogging platforms don't have. This will give
you a taste of things to come, and show you just how versatile Django can be.

Before starting any software development project, it's a good idea to have a rough
roadmap of what we would like to achieve. Here's a list of features that our blogging
platform will have:

• User should be able to register an account and create their blogs
• Users should be able to tweak the settings of their blogs
• There should be simple interface for users to create and edit blog posts
• Users should be able to share their blog posts on other blogs on the platform

I know this seems like a lot of work, but Django comes with a couple of contrib
packages that speed up our work considerably.

Blueblog – a Blogging Platform

[2]

The contrib packages
The contrib packages are a part of Django that contain some very useful
applications that the Django developers decided should be shipped with Django.
The included applications provide an impressive set of features, including some that
we'll be using in this application:

• Admin is a full featured CMS that can be used to manage the content of a
Django site. The Admin application is an important reason for the popularity
of Django. We'll use this to provide an interface for site administrators to
moderate and manage the data in our application

• Auth provides user registration and authentication without requiring us to
do any work. We'll be using this module to allow users to sign up, sign in,
and manage their profiles in our application

There are a lot more goodies in the contrib module. I suggest you
take a look at the complete list at https://docs.djangoproject.
com/en/stable/ref/contrib/#contrib-packages.
I usually end up using at least three of the contrib packages in all
my Django projects. They provide often-required features like user
registration and management, and free you to work on the core parts
of your project, providing a solid foundation to build upon.

Setting up our development environment
For this first chapter, I'll go into some details about setting up the development
environment. For later chapters, I'll only be providing minimal instructions. For
further details about how I setup the development environment and why, take a look
at Appendix, Development Environment Setup Details and Debugging Techniques.

Let's start by creating the directory structure for our project, setting up the virtual
environment and configuring some base Django settings that need to be set up in
every project. Let's call our blogging platform BlueBlog.

Detailed explanations of the steps you're about to see are given
in Appendix, Development Environment Setup Details and Debugging
Techniques. Please refer to that if you're unsure about why we're
doing something or what a particular command does.

https://docs.djangoproject.com/en/stable/ref/contrib/#contrib-packages
https://docs.djangoproject.com/en/stable/ref/contrib/#contrib-packages

Chapter 1

[3]

To start a new project, you need to first open up your terminal program. In Mac
OS X, it is the built-in terminal. In Linux, the terminal is named separately for each
distribution, but you should not have trouble finding it; try searching your program
list for the word terminal and something relevant should show up. In Windows,
the terminal program is called the command line. You'll need to start the relevant
program depending on your operating system.

If you are using the Windows operating system, you will need to
slightly modify the commands shown in the book. Please refer to the
Developing on Windows section of Appendix, Development Environment
Setup Details and Debugging Techniques for details.

Open the relevant terminal program for your operating system and start by creating
the directory structure for our project; cd (ing) into the root project directory using
the commands shown below:

> mkdir –p blueblog

> cd blueblog

Next let's create the virtual environment, install Django, and start our project:

> pyvenv blueblogEnv

> source blueblogEnv/bin/activate

> pip install django

> django-admin.py startproject blueblog src

With that out of the way, we're ready to start developing our blogging platform.

Database settings
Open up the settings found at $PROJECT_DIR/src/blueblog/settings.py in your
favorite editor and make sure that the DATABASES settings variable matches this:

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),
 }
}

Blueblog – a Blogging Platform

[4]

In order to initialize the database file, run the following commands:

> cd src

> python manage.py migrate

Static files settings
The last step in setting up our development environment, is configuring the
staticfiles contrib application. The staticfiles application provides a number
of features that make it easy to manage the static files (css, images, JavaScript) of
your projects. While our usage will be minimal, you should look at the Django
documentation for staticfiles in further detail, since it is used quite heavily in most
real world Django projects. You can find the documentation at https://docs.
djangoproject.com/en/stable/howto/static-files/.

In order to set up the staticfiles application we have to configure a few settings in the
settings.py file. First, make sure that django.contrib.staticfiles is added to
the INSTALLED_APPS. Django should have done that by default.

Next, set STATIC_URL to whatever URL you want your static files to be served
from. I usually leave this to the default value, /static/. This is the URL that Django
will put in your templates when you use the static template tag to get the path to a
static file.

A base template
Next let's setup a base template that all the other templates in our application will
inherit from. I prefer to have templates that are used by more than one application of
a project in a directory named templates in the project source folder. To set that up,
add os.path.join(BASE_DIR, 'templates') to the DIRS array of the TEMPLATES
config dictionary in the settings file, and then create a directory named templates in
$PROJECT_ROOT/src. Next, using your favorite text editor, create a file named base.
html in the new folder with the following content:

<html>
<head>
 <title>BlueBlog</title>
</head>
<body>
 {% block content %}
 {% endblock %}
</body>
</html>

https://docs.djangoproject.com/en/stable/howto/static-files/
https://docs.djangoproject.com/en/stable/howto/static-files/

Chapter 1

[5]

Much like Python classes inheriting from other classes, Django templates can
also inherit from other templates. And just like Python classes can have functions
overridden by their subclasses, Django templates can also define blocks that children
templates can override. Our base.html template provides one block for inheriting
templates to override, called content.

The reason for using template inheritance is code reuse. We should put HTML that
we want to be visible on every page of our site, such as headers, footers, copyright
notices, meta tags, and so on, in the base template. Then, any template inheriting
from it will automatically get all that common HTML included automatically, and
we will only need to override the HTML code for the block we want to customize.
You'll see this principal of creating and overriding blocks in base templates used
throughout the projects in this book.

User accounts
With the database setup out of the way, let's start creating our application. If you
remember, the first thing on our list of features is to allow users to register accounts
on our site. As I've mentioned before, we'll be using the auth package from the
Django contrib packages to provide user account features.

In order to use the auth package, we'll need to add it our INSTALLED_APPS list in the
settings file (found at $PROJECT_ROOT/src/blueblog/settings.py). In the settings
file, find the line defining INSTALLED_APPS and make sure that the string django.
contrib.auth is part of the list. It should be by default, but for some reason if it's
not there, add it manually.

You'll see that Django has included the auth package and couple of other contrib
applications to the list by default. A new Django project includes these applications
by default because almost all Django projects end up using these.

If you need to add the auth application to the list, remember to
use quotes to surround the application name.

Blueblog – a Blogging Platform

[6]

We also need to make sure that the MIDDLEWARE_CLASSES list contains django.
contrib.sessions.middleware.SessionMiddleware, django.contrib.
auth.middleware.AuthenticationMiddleware, and django.contrib.auth.
middleware.SessionAuthenticationMiddleware. These middleware classes give
us access to the logged in user in our views, and also make sure that if I change the
password for my account, I'm logged out from all other devices that I previously
logged on to.

As you learn more about the various contrib applications and their purpose, you can
start removing any that you know you won't need in your project. Now, let's add the
URLs, views and templates that allow the users to register with our application.

A user accounts app
In order to create the various views, URLs, and templates related to user accounts,
we'll start a new application. To do so, type the following in your command line:

> python manage.py startapp accounts

This should create a new accounts folder inside the src folder. We'll add code that
deals with user accounts in files found inside this folder. To let Django know that we
want to use this application in our project, add the application name (accounts) to the
INSTALLED_APPS setting variable; making sure to surround it in quotes.

Account registration
The first feature we will work on is user registration. Let's start by writing the code
for the registration view inside accounts/views.py. Make sure that the contents of
views.py match what is shown here:

from django.contrib.auth.forms import UserCreationForm
from django.core.urlresolvers import reverse
from django.views.generic import CreateView

class UserRegistrationView(CreateView):
 form_class = UserCreationForm
 template_name = 'user_registration.html'

 def get_success_url(self):
 return reverse('home')

Chapter 1

[7]

I'll explain what each line of this code is doing in a bit. But first, I'd like you to get to
a state where you can register a new user and see for yourself how the flow works.
Next, we'll create the template for this view. In order to create the template, you
first need to create a new folder called templates inside the accounts folder. The
name of the folder is important, since Django automatically searches for templates in
folders of that name. To create this folder, just type the following command:

> mkdir accounts/templates

Next, create a new file called user_registration.html inside the templates folder
and type in the code shown below:

{% extends "base.html" %}

{% block content %}
<h1>Create New User</h1>
<form action="" method="post">{% csrf_token %}
 {{ form.as_p }}
 <input type="submit" value="Create Account" />
</form>
{% endblock %}

Finally, remove the existing code in blueblog/urls.py and replace it with this:

from django.conf.urls import include
from django.conf.urls import url
from django.contrib import admin
from django.views.generic import TemplateView
from accounts.views import UserRegistrationView

urlpatterns = [
 url(r'^admin/', include(admin.site.urls)),
 url(r'^$', TemplateView.as_view(template_name='base.html'),
name='home'),
 url(r'^new-user/$', UserRegistrationView.as_view(), name='user_
registration'),
]

That's all the code we need to get user registration in our project! Let's do a quick
demonstration. Run the development server by typing the following command:

> python manage.py runserver

Blueblog – a Blogging Platform

[8]

In your browser, visit http://127.0.0.1:8000/new-user/ and you'll see a user
registration form. Fill that in, and click submit. You'll be taken to a blank page on
successful registration. If there are some errors the form will be shown again with the
appropriate error messages. Let's verify that our new account was indeed created in
our database.

For the next step, we will need to have an administrator account. The Django auth
contrib application can assign permissions to user accounts. The user with the
highest level of permission is called the super user. The super user account has free
reign over the application and can perform any administrator actions. To create a
super user account, run this command:

> python manage.py createsuperuser

Since you already have the runserver command running in your
terminal, you will need to quit it first by pressing Ctrl + C in the terminal.
You can then run the createsuperuser command in the same terminal.
After running the createsuperuser command, you'll need to start the
runserver command again to browse the site.
If you want to keep the runserver command running and run the
createsuperuser command in a new terminal window, you will need
to make sure you activate the virtual environment for this application by
running the same source blueblogEnv/bin/activate command that
we ran earlier when we created our new project.

After you have created the account visit http://127.0.0.1:8000/admin/ and log
in with the admin account. You will see a link titled Users. Click that and you should
see a list of users registered in our app. It will include the user you just created.

Congrats! In most other frameworks, getting to this point with a working user
registration feature would take a lot more effort. Django, with it's batteries included
approach, allows us to do the same with a minimum of effort.

Next, I'll explain what each line of code that you wrote does.

Generic views
Here's the code for the user registration view again:

class UserRegistrationView(CreateView):
 form_class = UserCreationForm
 template_name = 'user_registration.html'

 def get_success_url(self):
 return reverse('home')

Chapter 1

[9]

Our view is pretty short for something that does such a lot of work. That's because
instead of writing code from scratch to handle all the work, we use one of the most
useful features of Django, generic views. Generic views are base classes included
with Django that provide functionality commonly required by a lot of web apps. The
power of generic views comes from the ability to customize them to a great degree
with ease.

You can read more about Django generic views in the
documentation available at https://docs.djangoproject.
com/en/stable/topics/class-based-views/.

Here, we're using the CreateView generic view. This generic view can display a
ModelForm using a template and on submission can either redisplay the page with
errors if the form data was invalid or call the save method on the form and redirect the
user to a configurable URL. The CreateView can be configured in a number of ways.

If you want a ModelForm to be created automatically from some Django model,
just set the model attribute to the model class, and the form will be generated
automatically from the fields of the model. If you want the form only show certain
fields from the model, use the fields attribute to list the fields you want, exactly like
you'd do when using a ModelForm.

In our case, instead of having a ModelForm generated automatically, we're providing
one of our own; UserCreationForm. We do this by setting the form_class attribute
on the view. This form, which is part of the auth contrib app, provides the fields and
a save method that can be used to create a new user. As we start developing more
complicated applications in later chapter, you'll see that this theme of composing
solutions from small reusable parts provided by Django is a common practice in
Django web app development, and in my opinion is one of the best features of
the framework.

Finally, we define a get_success_url function that does a simple reverse URL and
returns the generated URL. The CreateView calls this function to get URL to redirect
the user to when a valid form is submitted and saved successfully. To get something
up and running quickly, we left out a real success page and just redirected the user
to a blank page. We'll fix this later.

Template and URLs
The template, which extends the base template we created earlier simply displays the
form passed to it by the CreateView using the form.as_p method, which you might
have seen in the simple Django projects you may have worked on before.

https://docs.djangoproject.com/en/stable/topics/class-based-views/
https://docs.djangoproject.com/en/stable/topics/class-based-views/

Blueblog – a Blogging Platform

[10]

The urls.py file is a bit more interesting. You should be familiar with most of it, the
parts where we include the admin site URLs and the part where we assign our view
a URL. It's the usage of TemplateView that I want to explain here.

Like the CreateView, the TemplateView is another generic view provided to us
by Django. As the name suggests, this view can render and display a template
to the user. It has a number of customization options. The most important one is
template_name, which tells it which template to render and display to the user.

We could have created another view class that subclassed the TemplateView, and
customized it by setting attributes and overriding functions like we did for our
registration view. But I wanted to show you another method of using a generic view
in Django. If you only need to customize some basic parameters of a generic view;
in this case we only wanted to set the template_name parameter of the view, you
can just pass the values as key=value pairs as function keyword arguments to the
as_view method of the class when including it in the urls.py file. Here, we pass
the template name which the view renders when the user access it's URL. Since we
just needed a placeholder URL to redirect the user to, we simply use the blank base.
html template.

This technique of customizing generic views by passing key/value
pairs only makes sense when you're interested in customizing very
basic attributes, like we do here. In case you want more complicated
customizations, I advice you subclass the view, otherwise you will
quickly get messy code that is difficult to maintain.

Login and logout
With registration out of the way, let's write code to provide users with the ability
to log in and log out. To start, the user needs some way to go to the login and
registration pages from any page on the site. To do this, we'll need to add header
links to our template. This is the perfect opportunity to demonstrate how template
inheritance can lead to much cleaner and less code in our templates.

Add the following lines right after the body tag in our base.html file:

{% block header %}

 Login
 Logout
 Register Account</
li>

{% endblock %}

Chapter 1

[11]

If you open the home page for our site now (at http://127.0.0.1:8000/), you
should see that we now have three links on what was previously a blank page. It
should look similar to the following screenshot:

Click on the Register Account link. You'll see the registration form we had before,
and the same three links again. Note how we only added those links to the base.
html template. But since the user registration template extends the base template,
it got those links without any effort on our part. This is where template inheritance
really shines.

You might have noticed that the href for the login/logout links is empty. Let's start
with the login part.

The login view
Let's define the URL first. In blueblog/urls.py import the login view from the
auth app:

from django.contrib.auth.views import login

Next, add this to the urlpatterns list:

url(r'^login/$', login, {'template_name': 'login.html'},
name='login'),

Blueblog – a Blogging Platform

[12]

Then create a new file inside accounts/templates called login.html. Put in the
following content:

{% extends "base.html" %}

{% block content %}
<h1>Login</h1>
<form action="{% url "login" %}" method="post">{% csrf_token %}
 {{ form.as_p }}

 <input type="hidden" name="next" value="{{ next }}" />
 <input type="submit" value="Submit" />
</form>
{% endblock %}

Finally, open up blueblog/settings.py and add the following line to the end of
the file:

LOGIN_REDIRECT_URL = '/'

Let's go over what we've done here. First, notice that instead of creating our own
code to handle the login feature, we used the view provided by the auth app. We
import it using from django.contrib.auth.views import login. Next, we
associate it with the login/URL. If you remember the user registration part, we
passed the template name to the home page view as a keyword parameter in the
as_view() function. That approach is used for class-based views. For old-style view
functions, we can pass a dictionary to the url function that is passed as keyword
arguments to the view. Here, we use the template we created in login.html.

If you look at the documentation for the login view (https://docs.
djangoproject.com/en/stable/topics/auth/default/#django.contrib.
auth.views.login), you'll see that on successfully logging in, it redirects the user to
settings.LOGIN_REDIRECT_URL. By default, this setting has a value of /accounts/
profile/. Since we don't have such a URL defined, we change the setting to point to
our home page URL instead.

Next, let's define the logout view.

The logout view
In blueblog/urls.py import the logout view using from django.contrib.auth.
views import logout and add the following to the urlpatterns list:

url(r'^logout/$', logout, {'next_page': '/login/'}, name='logout'),

https://docs.djangoproject.com/en/stable/topics/auth/default/#django.contrib.auth.views.login
https://docs.djangoproject.com/en/stable/topics/auth/default/#django.contrib.auth.views.login
https://docs.djangoproject.com/en/stable/topics/auth/default/#django.contrib.auth.views.login

Chapter 1

[13]

And that's it. The logout view doesn't need a template; it just needs to be configured
with a URL to redirect the user to after login them out. We just redirect the user back
to the login page.

Navigation links
Having added the login/logout view, we need to make the links we added in our
navigation menu earlier take the user to those views. Change the list of links we had
in templates/base.html to the following:

 {% if request.user.is_authenticated %}
 Logout
 {% else %}
 Login
 Register Account

 {% endif %}

This will show the Login and Register Account links to the user if they aren't
already logged in. If they are logged in, which we check using the request.user.
is_authenticated function, they are only shown the Logout link. You can test all of
these links yourself and see how little code was needed to make such a major feature
of our site work. This is all possible because of the contrib applications that Django
provides.

The blog
With the user registration out of the way, let's get started with the blogging side of
the application. We'll create a new application for the blog, so in the console, type in
the following:

> python manage.py startapp blog

> mkdir blog/templates

Add the blog application to the list of INSTALLED_APPS in our settings.py file.
With the app created and installed, let's start with the models we'll be using.

www.allitebooks.com

http://www.allitebooks.org

Blueblog – a Blogging Platform

[14]

Models
In blog/models.py, type the code shown below:

from django.contrib.auth.models import User
from django.db import models

class Blog(models.Model):
 owner = models.ForeignKey(User, editable=False)
 title = models.CharField(max_length=500)

 slug = models.CharField(max_length=500, editable=False)

class BlogPost(models.Model):
 blog = models.ForeignKey(Blog)
 title = models.CharField(max_length=500)
 body = models.TextField()

 is_published = models.BooleanField(default=False)

 slug = models.SlugField(max_length=500, editable=False)

After typing in this code, run the following commands to create the database tables
for these models:

> python manage.py makemigrations blog

> python manage.py migrate blog

This will create the database tables necessary to support our new models. The
models are pretty basic. One field type that you might not have used before is the
SlugField. A slug is a piece of text that is used to uniquely identify something. In
our case, we use two slug fields to identify both our blog and our blog post. Since
the fields are non-editable, we'll have to write the code to give them some values
ourselves. We'll look into that later.

Chapter 1

[15]

Creating a blog view
Let's create a view where the user can setup his blog. Let's make the form that the
user will use to create a new blog. Create a new file blog/forms.py and enter the
following:

from django import forms

from blog.models import Blog

class BlogForm(forms.ModelForm):
 class Meta:
 model = Blog

 fields = [
 'title'
]

This creates a model form that allows edits to only the title field of our Blog model.
Let's create a template and view to go along with this form.

Create a file called blog/templates/blog_settings.html and type in the following
HTML code:

{% extends "base.html" %}

{% block content %}
<h1>Blog Settings</h1>
<form action="{% url "new-blog" %}" method="post">{% csrf_token %}
 {{ form.as_p }}

 <input type="submit" value="Submit" />
</form>
{% endblock %}

As you may have noticed, I've used the url tag on the blog-settings named URL, but
haven't created that URL pattern yet. We'll do that after we create the view, but just
remember the name for later and make sure our URL gets the same name.

There is no right order in which to create your view, template
and URLs. It's up to you to decide whichever you are more
comfortable with.

Blueblog – a Blogging Platform

[16]

In your blog/views.py file, add the following code to create the view:

from django.core.urlresolvers import reverse
from django.http.response import HttpResponseRedirect
from django.utils.text import slugify
from django.views.generic import CreateView

from blog.forms import BlogForm

class NewBlogView(CreateView):
 form_class = BlogForm
 template_name = 'blog_settings.html'

 def form_valid(self, form):
 blog_obj = form.save(commit=False)
 blog_obj.owner = self.request.user
 blog_obj.slug = slugify(blog_obj.title)

 blog_obj.save()
 return HttpResponseRedirect(reverse('home'))

Modify blueblog/urls.py. Add this to the top of the file from blog.views import
NewBlogView and add this to the urlpatterns list:

url(r'^blog/new/$', NewBlogView.as_view(), name='new-blog'),

As a final step, we need some way for the user to access our new view. Change the
header block in base.html to look like this:

{% block header %}

 {% if request.user.is_authenticated %}
 Create New Blog
 Logout
 {% else %}
 Login
 Register Account</
li>
 {% endif %}

{% endblock %}

Chapter 1

[17]

To test our latest feature, open up the home page at http://127.0.0.1:8000
and click the Create New Blog link. It will present a form where you can enter the
blog title and save your new blog. The page should look similar to the following
screenshot:

Most of the code we have added is pretty basic. The interesting part is the
NewBlogView. Let's look at how it works. First of all, notice that we subclass it
from the CreateView generic view. The create view allows us to easily display and
process a form that will create a new object of the given model. To configure it, we
can either set the model and fields attribute of the view, which the create view will
then use to generate a model form, or we can manually create a model form and
assign it to the view, like we've done here.

We also configure the template that will be used to display the form. We then define
the form_valid function, which the create view calls when the form is submitted
with valid data. In our implementation, we call the model forms save method with
the commit keyword parameter set to False. This tells the form to create a new
object of our model with the data it was passed, but not to save the created object to
the database. Then we set the owner of the new blog object to the logged in user and
set its slug to a slugified version of the title entered by the user. slugify is one of the
many utility functions that Django provides. Once we've modified the blog object per
our requirement, we save it and return an HttpResponseRedirect from the form_
valid function. This response is returned to the browser which then takes the user to
the home page.

Blueblog – a Blogging Platform

[18]

Until now, we've made do with a blank page with just a navigation bar as our
home page. But it has a serious problem. Start by creating a new blog by following
the link in the navigation bar. On successfully creating a new blog, we are redirected
back to the home page, where we are again greeted with a link to create another
blog. But this isn't the behavior we want. Ideally, our users should be limited to one
blog per account.

Let's fix this. First, we'll restrict the blog creation view to only allow users to create a
blog if they don't already have one. Import HttpResponseForbidden and the Blog
model in blog/views.py:

from django.http.response import HttpResponseForbidden
from blog.models import Blog

Add a dispatch method to the NewBlogView class with the following code:

def dispatch(self, request, *args, **kwargs):
 user = request.user
 if Blog.objects.filter(owner=user).exists():
 return HttpResponseForbidden ('You can not create more than
one blogs per account')
 else:
 return super(NewBlogView, self).dispatch(request, *args,
**kwargs)

The dispatch method is one of the most useful methods to override on generic
views. It is the first method that is called when the view URL is hit, and decides
based on the request type whether to call the get or post methods on the view class
to process the request. Thus, if you ever want to have some code that is run on all
request types (GET, POST, HEAD, PUT, and so on), dispatch is the best method
to override.

In this case, we make sure that the user doesn't already have a blog object associated
with their account. If they do, we return the Not Allowed response by using the
HttpResponseForbidden response class. Try it out. You shouldn't even be able to
access the new blog page now if you have already created a blog before and should
see an error instead.

Chapter 1

[19]

One last thing. Try accessing the URL http://127.0.0.1:8000/blog/new/ after
logging out. Notice how you'll get an AnonymousUser object is not iterable error. This
is because even though you're not logged in as a registered user, the code for the
view still assumes that you are. Also, you should not be able to access the new blog
page without logging in first. To fix this, first put these two import lines at the top of
blog/views.py:

from django.utils.decorators import method_decorator
from django.contrib.auth.decorators import login_required

Then change the definition line of the dispatch method to match the following:

@method_decorator(login_required)
def dispatch(self, request, *args, **kwargs):

If you try to access the page now without logging in first, you should see a Page not
found (404) Django error page. If you look at the URL for that page, you'll see that
Django is trying to serve the /accounts/login/ URL. That's the default behavior for
the login_required decorator. To fix this we need to change the value of the LOGIN_
URL variable in our settings file. Put this in blueblog/settings.py:

LOGIN_URL = '/login/'

Try accessing http://localhost:8000/blog/new/ now and you will be redirected
to the login page. If you put in the correct username/password combination, you
will be logged in and taken to the page you were trying to access before, the Create
New Blog page. This functionality is provided to us for free because we use the
built-in login view of Django.

We'll discuss the method_decorator and the login_required decorator in later
chapters. If you want more info on these now, look at their documentation in the
Django docs. It does an excellent job of explaining both.

You will find the documentation for login_required at https://docs.
djangoproject.com/en/stable/topics/auth/default/#the-login-
required-decorator. For the method_decorator, you can look at https://
docs.djangoproject.com/en/stable/topics/class-based-views/
intro/#decorating-the-class.

https://docs.djangoproject.com/en/stable/topics/auth/default/#the-login-required-decorator
https://docs.djangoproject.com/en/stable/topics/auth/default/#the-login-required-decorator
https://docs.djangoproject.com/en/stable/topics/auth/default/#the-login-required-decorator
https://docs.djangoproject.com/en/stable/topics/class-based-views/intro/#decorating-the-class
https://docs.djangoproject.com/en/stable/topics/class-based-views/intro/#decorating-the-class
https://docs.djangoproject.com/en/stable/topics/class-based-views/intro/#decorating-the-class

Blueblog – a Blogging Platform

[20]

The home page
It's high time that we created a proper home page for our users instead of showing a
blank page with some navigation links. Also, it seems very unprofessional to show
users the Create New Blog link when it leads to an error page. Let's fix all these
issues by creating a home page view that contains a bit of intelligence. We'll put the
code for our home page view in the blog application. Technically it can go anywhere,
but I personally like to put such views in either the main application of the project
(the blog in this case) or create a new application for such common views. In your
blog/views.py file, import the TemplateView generic view from django.views.
generic import TemplateView and put the following code for the view:

class HomeView(TemplateView):
 template_name = 'home.html'

 def get_context_data(self, **kwargs):
 ctx = super(HomeView, self).get_context_data(**kwargs)

 if self.request.user.is_authenticated():
 ctx['has_blog'] = Blog.objects.filter(owner=self.request.
user).exists()

 return ctx

Tie this new view to the home page URL by importing it in blueblog/urls.py
using from blog.views import HomeView and changing the existing root URL
config from url(r'^$', TemplateView.as_view(template_name='base.html'),
name='home'), to url(r'^$', HomeView.as_view(), name='home'),.

Since the TemplateView class is no longer required, you can remove it from the
imports. You should already have a good idea of what we're doing here. The
only new thing is the TemplateView and it's get_context_data method. The
TemplateView is another one of Djangos built-in generic views. We configure it by
providing a template file name and the view renders that template by passing it the
dictionary returned by our get_context_data function as the context. Here, we
are setting the has_blog context variable to True if the user has an existing blog
associated with his account.

With our view done, we'll need to make a few changes to our base.html template
and add a new home.html template. For the base.html template, change the code in
the header block to match:

{% block header %}

 {% if request.user.is_authenticated %}

Chapter 1

[21]

 {% block logged_in_nav %}{% endblock %}
 Logout
 {% else %}
 Login
 Register Account</
li>
 {% endif %}

{% endblock %}

We've removed the Create New Blog link and replaced it with another block called
logged_in_nav. The idea is that each page that inherits from the base template can
add navigation links here to be shown to a logged in user. Finally, create a new file
called blog/templates/home.html and add the following code:

{% extends "base.html" %}

{% block logged_in_nav %}
{% if not has_blog %}
Create New Blog
{% else %}
Edit Blog Settings
{% endif %}
{% endblock %}

Just like we discussed, the home page template overrides the logged_in_nav block
to add a link to create a new blog if the user doesn't have an existing blog, or to edit
the settings for the existing blog. You can test that all of our changes work by visiting
the home page with a user that has a blog already created, and a new user without a
blog. You'll see that link to create a new blog only shows up if the user hasn't already
created one.

Next, let's work on the settings view.

The blog settings view
Put the code for the view in blog/views.py:

class UpdateBlogView(UpdateView):
 form_class = BlogForm
 template_name = 'blog_settings.html'
 success_url = '/'
 model = Blog

 @method_decorator(login_required)

Blueblog – a Blogging Platform

[22]

 def dispatch(self, request, *args, **kwargs):
 return super(UpdateBlogView, self).dispatch(request, *args,
**kwargs)

You'll need to import UpdateView from django.views.generic. Also, update the
get_context_data method of the HomeView in the same file to match this one:

def get_context_data(self, **kwargs):
 ctx = super(HomeView, self).get_context_data(**kwargs)

 if self.request.user.is_authenticated():
 if Blog.objects.filter(owner=self.request.user).exists():
 ctx['has_blog'] = True
 ctx['blog'] = Blog.objects.get(owner=self.request.user)
 return ctx

Change the blog/templates/blog_settings.html to look like the following:

{% extends "base.html" %}

{% block content %}
<h1>Blog Settings</h1>
<form action="" method="post">{% csrf_token %}
 {{ form.as_p }}

 <input type="submit" value="Submit" />
</form>
{% endblock %}

The only change we've done is to remove the URL we defined explicitly in the form
action before. This way, the form will always submit to whatever URL it is served
from. This is important as we'll see later.

Update blog/templates/home.html as shown in the following code:

{% extends "base.html" %}

{% block logged_in_nav %}
{% if not has_blog %}
Create New Blog
{% else %}
Edit Blog Settings</
a>
{% endif %}
{% endblock %}

Chapter 1

[23]

Finally, import the UpdateBlogView in blueblog/urls.py and add the following to
the urlpatterns.

url(r'^blog/(?P<pk>\d+)/update/$', UpdateBlogView.as_view(),
name='update-blog'),

That's it. Visit the home page with the user you used to create the blog in the last
section and this time you'll see a link to edit your blog instead of creating a new one.
The interesting thing to look at here in the UpdateView subclass; UpdateBlogView.
We only defined the form class, the template name, the success URL and the model
to get a complete working update view. With these things configured, and our URLs
set up so that the primary key of the object we want to edit is passed to our view
as the keyword argument named pk, the UpdateView displays a form tied to the
instance of the model we want to edit. In the home view, we add the users blog to
the context and use it in the home template to generate a URL for the update view.

In the form, we needed to change the action attribute of the form so that on submit,
it posted to the current page. Since we use the same template in both the create and
update views, we need the form to submit to whatever URL it is rendered from.
As you'll see in the upcoming projects as well, it is a common practice in Django to
use the same template with similar views. And the way Django generic views are
structured makes it easier to do.

Creating and editing blog posts
Let's create the views that users can use to create and edit blog posts. Let's start with
creating a new blog post. We already created the model earlier, so let's start with the
form and template we'll use. In blog/forms.py, create this form:

class BlogPostForm(forms.ModelForm):
 class Meta:
 model = BlogPost

 fields = [
 'title',
 'body'
]

You'll need to import the BlogPost model as well. For the template, create a new file
blog/templates/blog_post.html, and add the following content:

{% extends "base.html" %}

{% block content %}
<h1>Create New Blog Post</h1>

Blueblog – a Blogging Platform

[24]

<form action="" method="post">{% csrf_token %}
 {{ form.as_p }}

 <input type="submit" value="Submit" />
</form>
{% endblock %}

In blog/views.py, import the BlogPostForm and BlogPost model and then create
the NewBlogPostView:

class NewBlogPostView(CreateView):
 form_class = BlogPostForm
 template_name = 'blog_post.html'

 @method_decorator(login_required)
 def dispatch(self, request, *args, **kwargs):
 return super(NewBlogPostView, self).dispatch(request, *args,
**kwargs)

 def form_valid(self, form):
 blog_post_obj = form.save(commit=False)
 blog_post_obj.blog = Blog.objects.get(owner=self.request.user)
 blog_post_obj.slug = slugify(blog_post_obj.title)
 blog_post_obj.is_published = True

 blog_post_obj.save()

 return HttpResponseRedirect(reverse('home'))

In blueblog/urls.py, import the preceding view and add the following URL
pattern:

url(r'blog/post/new/$', NewBlogPostView.as_view(), name='new-blog-
post'),

And finally, change the homepage template blog/template/home.html to link to
our new page:

{% extends "base.html" %}

{% block logged_in_nav %}
 {% if not has_blog %}
 Create New Blog
 {% else %}
 Edit Blog
Settings

Chapter 1

[25]

 Create New Blog Post</
li>
 {% endif %}
{% endblock %}

All of this code should be pretty familiar to you by now. We've used model forms
and generic views to get the functionality we need, and all we needed to do was
configure some stuff. We haven't written one line of code to create the relevant form
fields, validate the user input, and to handle the various error and success scenarios.

You can test out our new view by using the Create New Blog Post link in the
navigation on the home page.

Editing blog posts
As we did before with the Blog model, we'll create an edit view for the blog post
using the same template as the create view. But first, we need to add a way for the
user to see his blog posts with links to the edit page. To keep things simple, let's
add this list to our home page view. In the HomeView, edit the get_context_data
method to match the following:

def get_context_data(self, **kwargs):
 ctx = super(HomeView, self).get_context_data(**kwargs)

 if self.request.user.is_authenticated():
 if Blog.objects.filter(owner=self.request.user).exists():
 ctx['has_blog'] = True
 blog = Blog.objects.get(owner=self.request.user)

 ctx['blog'] = blog
 ctx['blog_posts'] = BlogPost.objects.filter(blog=blog)

 return ctx

At the end of blog/templates/home.html; after the logged_in_nav block ends,
add the following code to override the content block and show the blog posts:

{% block content %}
<h1>Blog Posts</h1>

 {% for post in blog_posts %}
 {{ post.title }} | Edit Post
 {% endfor %}

{% endblock %}

Blueblog – a Blogging Platform

[26]

If you visit the home page now, you'll see a list of posts that the user has made. Let's
create the functionality to edit the posts. Create the following view in blog/views.py:

class UpdateBlogPostView(UpdateView):
 form_class = BlogPostForm
 template_name = 'blog_post.html'
 success_url = '/'
 model = BlogPost

 @method_decorator(login_required)
 def dispatch(self, request, *args, **kwargs):
 return super(UpdateBlogPostView, self).dispatch(request,
*args, **kwargs)

Import this view into your blueblog/urls.py file and add the following pattern:

url(r'blog/post/(?P<pk>\d+)/update/$', UpdateBlogPostView.as_view(),
name='update-blog-post'),

Edit the list of blog posts we created earlier in the home page template to add the
URL for editing a post:

{% for post in blog_posts %}
 {{ post.title }} | <a href="{% url "update-blog-post" pk=post.
pk %}">Edit Post
{% endfor %}

If you open the home page now, you'll see that you can click on the Edit Post link
and that it takes you to the editing page for the blog post. One last thing we need
to fix is the title of the edit blog post page. You may have noticed that even when
editing, the title said Create New Blog Post. In order to fix this, replace the h1 tag
inside blog/templates/blog_post.html with the following:

<h1>{% if object %}Edit{% else %}Create{% endif %} Blog Post</h1>

The context passed to the template by the UpdateView includes a variable called
object. This is the instance that the user is currently editing. We check for the
existence of this variable in the template. If we find it, we know that we're editing an
existing blog post. If not, we know it's a new blog post being created. We detect this
and set the title accordingly.

Chapter 1

[27]

Viewing blog posts
To add a view to show blog posts, add the following view class to blog/views.py:

class BlogPostDetailsView(DetailView):
 model = BlogPost
 template_name = 'blog_post_details.html'

Remember to import DetailView generic view from django.views.generic.
Next, create the blog/templates/blog_post_details.html template with the
following code:

{% extends "base.html" %}

{% block content %}
<h1>{{ object.title }}</h1>
<p>{{ object.body }}</p>
{% endblock %}

Import the details view and add the following URL pattern to the urls.py file:

url(r'blog/post/(?P<pk>\d+)/$', BlogPostDetailsView.as_view(),
name='blog-post-details'),

Finally, change the list of blog posts in the home page template to link to the post
details page from the post title:

{% for post in blog_posts %}
 {{ post.
title }} | Edit
Post
{% endfor %}

On the home page, the blog post titles should now link to the details page.

Multiple users
Until now, we've only been playing with a single user account and making our site
work for that one user. Let's get to the exciting part and add sharing posts to other
users blogs. However, once multiple users get added to the mix, there is one thing
we should look at before moving forward.

Blueblog – a Blogging Platform

[28]

Security
To demonstrate the complete lack of security in our application, let's create a new
user account. Log out using the header link and register a new account. Next, log in
with that user. You should end up on the home page and should not see any blog
posts in the list.

Now, type in the URL http://127.0.0.1:8000/blog/post/1/update/. You
should see the blog post we created from our first user in the edit view. Change
either the title or the body of the blog post and click save. You are redirected back
to the home page and it appears that the save has succeeded. Log in back to the
first account and you'll see that the title of the blog post has been updated. This is a
serious security breach and must be fixed, otherwise, any user can edit the blog posts
for any other user without any restrictions.

The simple way in which we are able to solve this problem again demonstrates the
power and simplicity of the Django framework. Add the following method to the
UpdateBlogPostView class:

def get_queryset(self):
 queryset = super(UpdateBlogPostView, self).get_queryset()
 return queryset.filter(blog__owner=self.request.user)

That's it! Try opening http://127.0.0.1:8000/blog/post/1/update/ again. This
time instead of allowing you to edit the blog post of another user, you see a 404 page.

What this small piece of code does can be understood after looking at how the
UpdateView generic view works. The generic view calls a number of small methods,
each of which does a specific job. Here's a list of some of the methods that are defined
by the UpdateView class:

• get_object

• get_queryset

• get_context_object_name

• get_context_data

• get_slug_field

The thing about having small methods like these is that in order to change the
functionality of subclasses, we can override only one of these and fulfill our purpose,
like we've done here. Read the Django documentation to figure out what these and
many of the other methods used by the generic views do.

Chapter 1

[29]

For our case, the get_queryset method, as the name suggests, gets the queryset
within which the object to edit is searched for. We get the default queryset from
the super method (which just returns a self.model.objects.all()) and return a
version further filtered to only include blog posts owned by the currently logged in
user. You should be familiar with relationship filters. If these are new to you, read the
Django tutorial to familiarize yourself with the basics of filtering model querysets.

The reason you now see a 404 if you try to access someone else's blog post is that
when the CreateView tries to get the object to edit, it receives a queryset that only
includes blog posts owned by the currently logged in user. Since we're trying to edit
someone else's blog post, it's not included in that queryset. Not finding the object to
edit, the CreateView returns a 404.

Sharing blog post
The blog post sharing feature allows users to select the blog of another user they
would like to share their blog posts with. This would allow users to gain more
readers by sharing their content on the blogs of more popular writers, and readers
would get to read more relevant content in one place instead of needing to discover
more blogs.

The first step in making sharing possible is to add a field on the BlogPost model to
indicate which blogs the post is shared with. Add this field to the BlogPost model in
blog/models.py:

shared_to = models.ManyToManyField(Blog, related_name='shared_posts')

We are simply adding a basic Django many to many relationship field. If you'd like
to review your knowledge of the features a many to many field provides, I advice
you take a look at the Django tutorial again, specifically, the part that deals with
M2M relationships.

One thing to note about the new field is that we had to specify related_name
explicitly. As you might know, whenever you associate a model with another using
any relationship field (ForeignKey, OneToMany, ManyToMany) Django automatically
adds an attribute to the other model that allows easy access to the linked model.

Before we added the shared_to field, the BlogPost model already had a
ForeignKey pointed at the Blog model. If you looked at the attributes available on
the Blog model (using the shell), you would have found a blogpost_set attribute,
which was a manager object that allowed access to BlogPost models that referenced
that Blog. If we try to add the ManyToMany field without a related_name, Django
would complain because the new relationship would also try to add a reverse
relationship, also called blogpost_set. Because of this we need to give the reverse
relationship another name.

Blueblog – a Blogging Platform

[30]

After defining the M2M relationship, you can now access blog posts shared with a
blog model by using the shared_posts attributes all() method on the Blog model.
We'll see an example of that later.

After defining the new field, run the following commands to migrate your DB to
create the new relationship:

> python manage.py makemigrations blog

> python manage.py migrate blog

Next, let's create the view that allows the user to select a blog to share their post with.
Add this to blog/views.py:

class ShareBlogPostView(TemplateView):
 template_name = 'share_blog_post.html'

 @method_decorator(login_required)
 def dispatch(self, request, *args, **kwargs):
 return super(ShareBlogPostView, self).dispatch(request, *args,
**kwargs)

 def get_context_data(self, pk, **kwargs):
 blog_post = BlogPost.objects.get(pk=pk)
 currently_shared_with = blog_post.shared_to.all()
 currently_shared_with_ids = map(lambda x: x.pk, currently_
shared_with)
 exclude_from_can_share_list = [blog_post.blog.pk] +
list(currently_shared_with_ids)

 can_be_shared_with = Blog.objects.exclude(pk__in=exclude_from_
can_share_list)

 return {
 'post': blog_post,
 'is_shared_with': currently_shared_with,
 'can_be_shared_with': can_be_shared_with
 }

This view is a subclass of the template view. You should have a pretty good
idea of how it works by now. The important bit to look at here is the code inside the
get_context_data method. First, we get the blog post object using the id passed in
the keyword arguments gathered from the parsed URL pattern. Next, we get a list of
all blog objects this post has been shared with. We do this because we don't want to
confuse the user by allowing sharing to a blog that the post is already shared with.

Chapter 1

[31]

The next line of code uses the Python built-in map method on the queryset of the
blogs the post is shared with. map is one of the most useful methods when working
with any kind of lists (or list-like objects) in Python. It takes as it's first argument
a function that takes a single argument and returns one argument, and a list as it's
second argument. map then calls the given function on each element in the input list
and gathers the results in a final list that is returned. Here, we use a lambda to extract
the ID of the blog objects that this post is already shared with.

Finally, we can get the list of blog objects that this post can be shared with. We use
the exclude method to not include the blog objects the post is already shared with.
We pass this to the template in the context. Next, let's take a look at the template that
you need to create in blog/templates/share_blog_post.html:

{% extends "base.html" %}

{% block content %}
{% if can_be_shared_with %}
<h2>Share {{ post.title }}</h2>

 {% for blog in can_be_shared_with %}
 <a href="{% url "share-post-with-blog" post_pk=post.pk blog_
pk=blog.pk %}">{{ blog.title }}
 {% endfor %}

{% endif %}

{% if is_shared_with %}
<h2>Stop sharing with:</h2>

 {% for blog in is_shared_with %}
 <a href="{% url "stop-sharing-post-with-blog" post_pk=post.pk
blog_pk=blog.pk %}">{{ blog.title }}
 {% endfor %}

{% endif %}
{% endblock %}

There's nothing special in this template. Let's move on to the two URLs and views
that this refers to, since without those we can't render this template. First, let's look at
SharepostWithBlog, which you need to create in blog/views.py. You will need to
add this import line to the top of the file as well:

from django.views.generic import View

Blueblog – a Blogging Platform

[32]

The code for the view is this:

class SharePostWithBlog(View):
 @method_decorator(login_required)
 def dispatch(self, request, *args, **kwargs):
 return super(SharePostWithBlog, self).dispatch(request, *args,
**kwargs)

 def get(self, request, post_pk, blog_pk):
 blog_post = BlogPost.objects.get(pk=post_pk)
 if blog_post.blog.owner != request.user:
 return HttpResponseForbidden('You can only share posts
that you created')

 blog = Blog.objects.get(pk=blog_pk)
 blog_post.shared_to.add(blog)

 return HttpResponseRedirect(reverse('home'))

Import this into blueblog/urls.py and add it with the following URL pattern:

url(r'blog/post/(?P<pk>\d+)/share/$', SharePostWithBlog.as_view(),
name='share-blog-post-with-blog'),

Unlike all our previous views, this view doesn't fit nicely into any of the generic
views that Django provides. But Django has a base generic view that makes our life
easier than creating a function that handles the request.

The View generic view is used whenever you need something completely custom
to handle a request. Like all generic views, it has a dispatch method that you can
override to intercept a request before any further processing is done. Here, we make
sure that the user is logged in before allowing them to proceed.

In a View subclass, you create methods with the same name as the request types
you want to handle. Here, we create a get method as we only care about handling
GET requests. The View class takes care of calling our method when the correct
request method is used by the client. In our get method, we're doing a basic check
to see if the user owns the blog post. If they do, we add the blog to the shared_to
ManyToMany relationship of the BlogPost model.

The last view we need to create is one to allow the user to remove a blog post they
have already shared. The code for that is shown here:

class StopSharingPostWithBlog(View):
 @method_decorator(login_required)
 def dispatch(self, request, *args, **kwargs):

Chapter 1

[33]

 return super(StopSharingPostWithBlog, self).dispatch(request,
*args, **kwargs)

 def get(self, request, post_pk, blog_pk):
 blog_post = BlogPost.objects.get(pk=post_pk)
 if blog_post.blog.owner != request.user:
 return HttpResponseForbidden('You can only stop sharing
posts that you created')

 blog = Blog.objects.get(pk=blog_pk)
 blog_post.shared_to.remove(blog)

 return HttpResponseRedirect(reverse('home'))

Like the SharePostWithBlog view, this one subclasses the View generic view. The
code is almost exactly the same as the previous view. The only difference is that in
the previous view we used blog_post.shared_to.add, whereas in this view we use
the blog_post.shared_to.remove method.

Finally, import these two views into blueblog/urls.py and add the following
patterns:

url(r'blog/post/(?P<post_pk>\d+)/share/to/(?P<blog_pk>\d+)/$',
SharePostWithBlog.as_view(), name='share-post-with-blog'),
 url(r'blog/post/(?P<post_pk>\d+)/stop/share/to/(?P<blog_pk>\
d+)/$', StopSharingPostWithBlog.as_view(), name='stop-sharing-post-
with-blog'),

In order to show a link to the share this post page, edit the home.html template to
change the entire code inside the content block to this:

{% if blog_posts %}
<h2>Blog Posts</h2>

 {% for post in blog_posts %}

 {{ post.
title }} |
 Edit Post</
a> |
 Share Post</
a>

 {% endfor %}

{% endif %}

www.allitebooks.com

http://www.allitebooks.org

Blueblog – a Blogging Platform

[34]

And that's it. Now when you visit the home page, each blog post should have a
Share Post link next to it. When you click it, you'll see a second page with links to
share the blog post on other user blogs. Clicking the link should share your post and
also show a corresponding remove link on the same page. Of course, in order to test
this, you should create a second user account and add a blog using that account.

One last thing we should do is modify the get_context_data method of the
HomeView to also include shared posts in the blog post list:

def get_context_data(self, **kwargs):
 ctx = super(HomeView, self).get_context_data(**kwargs)

 if self.request.user.is_authenticated():
 if Blog.objects.filter(owner=self.request.user).exists():
 ctx['has_blog'] = True
 blog = Blog.objects.get(owner=self.request.user)

 ctx['blog'] = blog
 ctx['blog_posts'] = BlogPost.objects.filter(blog=blog)
 ctx['shared_posts'] = blog.shared_posts.all()

 return ctx

Add this to the bottom of the content block inside the blog/templates/home.html
template:

{% if shared_posts %}
<h2>Shared Blog Posts</h2>

 {% for post in shared_posts %}

 {{ post.
title }}

 {% endfor %}

{% endif %}
{% endblock %}

Chapter 1

[35]

And that's it, our first application is complete! If you open the home page now, you
should see a Share Post link next to each blog post. Clicking this should open up
another page where you can select which blog to share this post with. To test it you
should create another blog with the other account we created earlier when we were
looking at the security of our application. Once you have another blog configured,
your share blog post page should look similar to this:

Clicking the title of the other blog should share the post and take you back to the
home page. If you click the Share Post link again on the same post, you should now
see a heading saying Stop sharing with, and the name of the blog you shared this
post with.

If you log in to the other account now, you should see that the post is now shared
there, and is listed under the Shared Blog Posts section.

Blueblog – a Blogging Platform

[36]

Summary
In this chapter, we've seen how to start our application and set it up properly so
that we can develop things rapidly. We've looked at using template inheritance to
achieve code reuse and give our site common elements such as navigation bars.
Here's a list of topics we have covered so far:

• Basic project layout and setup with sqlite3 database
• Simple Django form and model form usage
• Django contrib apps
• Using django.contrib.auth to add user registration and authentication to

an application
• Template inheritance
• Generic views for editing and displaying database objects
• Database migrations

We'll use the lessons we've learned here throughout the rest of the chapters in
this book.

[37]

Discuss – a Hacker
News Clone

In this chapter, we'll be creating a web app similar to Hacker News or Reddit, where
users can share and discuss links to web content. We'll call the application Discuss.
To keep things simple, we'll be emulating the minimalistic look of Hacker News,
which is text only and has a very simple interface. Reddit, on the other hand, is much
more visually rich and has a lot of extra features that we won't be adding to our site.

Here's an outline of what we'll be covering in this chapter:

• Allowing users to submit their own content
• Allowing users to vote on content submitted by other users
• Ranking the user-submitted content based on simple algorithms
• Preventing spammers from abusing our site using captchas

Chapter code packs
If you have developed a few Django applications, you'll probably know that for most
applications, a lot of the code and configurations that you do when starting out is the
same. You set up the database in the same way, maybe changing the Database (DB)
name and user/pass pairs, you set up your media, static URL, and root paths, and
then you add user authentication using the built-in auth contrib application and
the provided views, only creating minimal templates that are good enough to get the
job done in the start.

Discuss – a Hacker News Clone

[38]

Walking you through the basic setup at the start of every chapter would be very
boring—both for you to read and for me to write. Instead, I've provided what I call
Code Packs. These are zip files that contain the Django application already set up so
that we can jump straight to the interesting parts of the code instead of having to go
through the tedious setup process again and again.

Don't worry, I won't skip any new Django features that we haven't looked at yet. Each
code pack contains code that has already been explained to you in previous chapters.
For instance, the code pack for this chapter contains a Django application that has the
user registration, login, and logout views, templates, and URLs already set up. This is
the stuff that we have already looked at in detail in the previous chapter.

To use these code packs, you will need to download them, unzip them in the project
root folder, and create a virtual environment for them. Then, you'll need to run the
following command to have Django installed in your new virtual environment:

> pip install django

> python manage.py migrate

Once you've done all these steps, you'll be ready to start working on the fun parts
of the application. For all the following chapters, I've given you the link to the code
pack and I assume that you have already extracted and set up a virtual environment
for it.

If you are not sure how to use the code packs, there is Readme.txt
in each ZIP file. You should read this to figure out how to get started
using the code pack.

Requirements
For any complex application, it is always a good idea to know what features we
need to work on before we jump into coding. Let's look at what we want to create
in this chapter.

We want to have a Django-based link sharing and discussion site like Hacker News.
The site should have user accounts, allow users to share links, have a page where
these links are listed in some defined order, and allow users to vote and comment on
those links.

Additionally, we'd like to have safeguards against spammers and malicious users
who would degrade the content quality of our site if left unchecked.

Chapter 2

[39]

In a list form, here are the features that we want our application to provide:

• User registration and authentication (already provided in the code pack)
• Link submission by users
• Voting on links submitted by other users
• Commenting on the submissions and replying to comments by other users
• An algorithm to rank the submitted links in some defined order that

depends on a number of factors including the votes for that link, number of
comments, and age of the submission

• A way to disallow spammers from creating scripts that can automatically
flood our site with submissions

Starting out
By now you should have the application ready to test if you've followed the
instructions given at the start of the chapter. Let's see what it looks like at the
moment. Start the application by running the following command in your terminal
from the application folder. You'll need to make sure that your virtual environment
is activated before you can run this command:

> python manage.py runserver

Open http://127.0.0.1:8000 in your browser and you should see the following
basic page:

Discuss – a Hacker News Clone

[40]

As you can see, we have links for Login and Create New Account. You should go
ahead and create a new account. Log in with this account and you'll see the two links
replaced with a Logout link. This is the basic application setup that we'll use moving
forward. You should make sure that you are able to use the application at this point,
as all further development will be built on top of this.

Link submission
Let's look at what features we want to be related with link submissions. This is just a
part of the features list that we saw at the start of the chapter:

• Link submission by users
• Voting on links submitted by other users
• Commenting on the submissions and replying to comments by other users

Let's think about what models we'll need to implement this. First, we need a model
to hold information about a single submission, such as the title, URL, who submitted
the link, and at what time. Next, we need a way to track votes on submissions by
users. This can be implemented by a ManyToMany field from the submission model to
the User model. This way, whenever a user votes for a submission, we just add them
to the set of related objects and remove them if they decide to take back their vote.

Commenting as a feature is separate from link submissions because it can be
implemented as a separate model that links to the submission model with
ForeignKey. We'll look at commenting in the next section. For now, we'll
concentrate on link submissions.

To start out, let's create a new application in our project for link submission-related
features. Run the following command in your CLI:

> python manage.py startapp links

Then, add our newly created app to the INSTALLED_APPS settings variable. Now
we're ready to write code.

Let's start with the models. Here's the code for Link model. This code should be in
links/models.py:

from django.contrib.auth.models import User
from django.db import models

class Link(models.Model):
 title = models.CharField(max_length=100)

Chapter 2

[41]

 url = models.URLField()

 submitted_by = models.ForeignKey(User)
 upvotes = models.ManyToManyField(User, related_name='votes')

 submitted_on = models.DateTimeField(auto_now_add=True,
editable=False)

Note that we had to set related_name for the upvotes field. If we hadn't done this,
we would get an error from Django when we try to run our application. Django
would have complained about having two relationships to the User model from the
Link model, both trying to create a reverse relationship named link. To fix this, we
explicitly named the reverse relationship from the User model to the Link model via
the upvotes field. The User model should now have an attribute called votes, which
can be used to get a list of submissions that the user has voted on.

Once you've saved this code, you'll need to make and run migrations in order for
Django to create database tables for the new model. To do so, type the following
commands:

> python manage.py makemigrations

> python manage.py migrate

Next, let's work on the templates and views. We'll customize the generic CreateView
that we've seen in the previous chapter for the view. Put this code in links/views.py:

from django.contrib.auth.decorators import login_required
from django.core.urlresolvers import reverse
from django.http.response import HttpResponseRedirect
from django.utils.decorators import method_decorator
from django.views.generic import CreateView

from links.models import Link

class NewSubmissionView(CreateView):
 model = Link
 fields = (
 'title', 'url'
)

 template_name = 'new_submission.html'

 @method_decorator(login_required)
 def dispatch(self, *args, **kwargs):

Discuss – a Hacker News Clone

[42]

 return super(NewSubmissionView, self).dispatch(*args,
**kwargs)

 def form_valid(self, form):
 new_link = form.save(commit=False)
 new_link.submitted_by = self.request.user
 new_link.save()

 self.object = new_link
 return HttpResponseRedirect(self.get_success_url())

 def get_success_url(self):
 return reverse('home')

This should look familiar to the CreateView subclasses that we have already created
in the previous chapter. However, look closer! This time, we don't define a custom
form class. Instead, we just point to the model—Link in this case—and CreateView
automagically creates a model form for us. This is the power of built-in Django
generic views. They give you multiple options to get what you want, depending on
how much customization you need to do.

We define the model and fields attributes. The model attribute is self-explanatory.
The fields attribute has the same meaning here as it has in a ModelForm subclass.
It tells Django which fields we want to be made editable. In our link model, the title
and submission URL are the only two fields that we want the user to control, so we
put these in the fields list.

Another important thing to look at here is the form_valid function. Note that it
doesn't have any calls to super. Unlike our previous code, where we always called
the parent class method for methods that we had overridden, we do no such thing
here. That's because form_valid of CreateView calls the save() method of the
form. This will try to save the new link object without giving us the chance to set its
submitted_by field. As the submitted_by field is required and can't be null, the
object won't be saved and we'll have to deal with a database exception.

So instead, we chose to not call the form_valid method on the parent class and
wrote the code for it ourselves. To do so, I needed to know what the base method
did. So I looked up the documentation for it at https://docs.djangoproject.com/
en/1.9/ref/class-based-views/mixins-editing/#django.views.generic.
edit.ModelFormMixin.form_valid:

"Saves the form instance, sets the current object for the view, and redirects to
get_success_url()."

https://docs.djangoproject.com/en/1.9/ref/class-based-views/mixins-editing/#django.views.generic.edit.ModelFormMixin.form_valid
https://docs.djangoproject.com/en/1.9/ref/class-based-views/mixins-editing/#django.views.generic.edit.ModelFormMixin.form_valid
https://docs.djangoproject.com/en/1.9/ref/class-based-views/mixins-editing/#django.views.generic.edit.ModelFormMixin.form_valid

Chapter 2

[43]

If you look at our code for the form_valid function, you will see that we do
exactly the same thing. If you're ever faced with a similar situation, the Django
documentation is the best resource to clear things up. It has some of the best
documentation that I have ever encountered in any of the open source projects
that I have used.

Finally, we need the template and URL configuration for the link submission feature.
Create a new folder called templates in the links directory and save this code in a
file called new_submission.html:

{% extends "base.html" %}

{% block content %}
 <h1>New Submission</h1>
 <form action="" method="post">{% csrf_token %}
 {{ form.as_p }}
 <input type="submit" value="Submit" />
 </form>
{% endblock %}

In discuss/urls.py, import the new view:

from links.views import NewSubmissionView

Create a new URL configuration for this view:

url(r'^new-submission/$', NewSubmissionView.as_view(), name='new-
submission'),

That's it. All the code that we need to get a basic link submission process up is
written. However, to be able to test it out, we'll need to give the user some way of
accessing this new view. The navigation bar in our base.html template seems like a
good place to put the link in for this. Change the code for the nav HTML tag in base.
html in the templates directory in the project root to match the following code:

<nav>

 {% if request.user.is_authenticated %}
 Submit New Link</
li>
 Logout
 {% else %}
 Login
 Create New
Account
 {% endif %}

</nav>

Discuss – a Hacker News Clone

[44]

To test it out, run the development server and open the home page. You'll see a
Submit New Link option in the navigation menu on the top. Click on it and you'll
see a page similar to the following one. Fill in the data and click on submit. If the
data that you've filled in doesn't have any errors, you should be redirected to the
home page.

While this works, this isn't the best user experience. Redirecting the user to the home
page without giving them any feedback on whether their link was submitted is not
good. Let's fix this next. We'll create a details page for the submissions and if the user
was successful in submitting a new link, we'll take them to the details page.

Let's start with the view. We'll use the DetailView generic view provided by Django.
In your links/views.py file, import DetailView:

from django.views.generic import DetailView

Subclass it for our submission detail view:

class SubmissionDetailView(DetailView):
 model = Link
 template_name = 'submission_detail.html'

Create the submission_detail.html template in the links/templates directory
and put in the following Django template code:

{% extends "base.html" %}

{% block content %}

Chapter 2

[45]

 <h1>{{ object.title
}}</h1>
 <p>submitted by: {{ object.submitted_by.username }}</p>
 <p>submitted on: {{ object.submitted_on }}</p>
{% endblock %}

Configure the URL for this view in discuss/urls.py by first importing it:

from links.views import SubmissionDetailView

Then, add a URL pattern for it to the urlpatterns list:

url(r'^submission/(?P<pk>\d+)/$', SubmissionDetailView.as_view(),
name='submission-detail'),

Finally, we'll need to edit the NewSubmissionView get_success_url method to
redirect the user to our new detail view on successfully creating a new submission:

def get_success_url(self):
 return reverse('submission-detail', kwargs={'pk': self.object.pk})

That's it. Now when you create a new submission, you should see the following
detail page for your new submission:

Now that link submission is done, let's look at implementing the comments feature.

Discuss – a Hacker News Clone

[46]

Comments
We want our logged in users to be able to comment on submissions. We'd also like
users to reply to comments by other users. To achieve this, our comment model needs
to be able to track the submission it was made on and also have a link to its parent
comment (if it was made in reply to some other user's comment).

If you have ever used forums on the Internet, the way our comments section works
should seem familiar. One complaint that I've always had with all these forums is
that they allow this hierarchy of comments to go on forever. Then you end up with
10-level deep comments that extend off the screen:

Comment 1
 Comment 2
 Comment 3
 Comment 4
 Comment 5
 Comment 6
 Comment 7
 Comment 8
 Comment 9
 Comment 10

While there are a number of ways to solve this, the simplest probably is to cut off
nested replies beyond a certain level. In our case, no comments can be replies to
Comment 2. Instead, they must all be in reply to Comment 1 or the parent submission.
This will make the implementation easier as we'll see later.

From our discussion so far, we know that our comment model will need foreign keys
to our submission models and also to itself in order to refer to parent comments.
This self reference, or a recursive relationship as Django documentation calls it, is
something that I have used maybe once in the five years (and more) I have been
creating web apps in Django. It's not something that is needed very often but
sometimes it results in elegant solutions, like the one you'll see here.

To keep things simple, we'll first implement commenting on link submissions and
later add code to handle replying to comments. Let's start with the model. Add the
following to links/models.py:

class Comment(models.Model):
 body = models.TextField()

 commented_on = models.ForeignKey(Link)

Chapter 2

[47]

 in_reply_to = models.ForeignKey('self', null=True)

 commented_by = models.ForeignKey(User)
 created_on = models.DateTimeField(auto_now_add=True,
editable=False)

The in_reply_to field here is the recursive foreign key that allows us to create a
hierarchy of comments and replies to them. As you can see, creating a recursive
foreign key is achieved by giving the model name self instead of the model name
like you would usually do with a normal foreign key.

Create and run the migrations to add this model to our database:

> python manage.py makemigrations

> python manage.py migrate

Next, let's think about the view and template. As we're only implementing
commenting on submissions for now, it makes sense that the form to create a new
comment also be visible on the submission details page. Let's create the form first.
Create a new links/forms.py file and add the following code:

from django import forms

from links.models import Comment

class CommentModelForm(forms.ModelForm):
 link_pk = forms.IntegerField(widget=forms.HiddenInput)

 class Meta:
 model = Comment
 fields = ('body',)

We will just create a simple model form for the Comment model and add one extra
field that we'll use to keep track of which link the comment needs to be associated
with. To make the form available to our submission details template, import the form
in links/views.py by adding the following to the top of the file:

from links.forms import CommentModelForm

We'll also add code to show comments for a submission on the details page now. So
we need to import the Comment model in the views file. Right after the line importing
the form, add another line of code importing the model:

from links.models import Comment

Discuss – a Hacker News Clone

[48]

To be able to display the comments associated with a submission and the form
to create a new submission, we'll need to make these two things available in the
template context of the submission details page. To do so, add a get_context_data
method to SubmissionDetailView:

def get_context_data(self, **kwargs):
 ctx = super(SubmissionDetailView, self).get_context_data(**kwargs)

 submission_comments = Comment.objects.filter(commented_on=self.
object)
 ctx['comments'] = submission_comments

 ctx['comment_form'] = CommentModelForm(initial={'link_pk': self.
object.pk})

 return ctx

We'll look at the initial attribute that we are passing to CommentModelForm in a
while. We'll also need to create a view where the new comment form is submitted.
Here's the code that you'll need to add it to links/views.py:

class NewCommentView(CreateView):
 form_class = CommentModelForm
 http_method_names = ('post',)
 template_name = 'comment.html'

 @method_decorator(login_required)
 def dispatch(self, *args, **kwargs):
 return super(NewCommentView, self).dispatch(*args, **kwargs)

 def form_valid(self, form):
 parent_link = Link.objects.get(pk=form.cleaned_data['link_
pk'])

 new_comment = form.save(commit=False)
 new_comment.commented_on = parent_link
 new_comment.commented_by = self.request.user

 new_comment.save()

 return HttpResponseRedirect(reverse('submission-detail',
kwargs={'pk': parent_link.pk}))

 def get_initial(self):

Chapter 2

[49]

 initial_data = super(NewCommentView, self).get_initial()
 initial_data['link_pk'] = self.request.GET['link_pk']

 def get_context_data(self, **kwargs):
 ctx = super(NewCommentView, self).get_context_data(**kwargs)
 ctx['submission'] = Link.objects.get(pk=self.request.
GET['link_pk'])

 return ctx

Even though we show the form on the submission detail page, in case the user inputs
incorrect data when submitting the form, such as pressing the submit button with an
empty body, we need a template that can show the form again along with the errors.
Create the comment.html template in links/templates:

{% extends "base.html" %}

{% block content %}
 <h1>New Comment</h1>
 <p>
 You are commenting on
 <a href{% url 'submission-detail' pk=submission.pk %}">{{
submission.title }}
 </p>

 <form action="" method="post">{% csrf_token %}
 {{ form.as_p }}
 <input type="submit" value="Post Comment" />
 </form>
{% endblock %}

You should already know what most of the code for the CreateView subclass does.
One thing that is new is the get_inital method. We'll look at it in detail later. For
now, let's get the comments feature up and running.

Let's add our new view to discuss/urls.py. First, import the view:

from links.views import NewCommentView

Then, add it to the URL patterns:

url(r'new-comment/$', NewCommentView.as_view(), name='new-comment'),

Discuss – a Hacker News Clone

[50]

Finally, change links/templates/submission_detail.html to the following:

{% extends "base.html" %}

{% block content %}
 <h1>{{ object.title
}}</h1>
 <p>submitted by: {{ object.submitted_by.username }}</p>
 <p>submitted on: {{ object.submitted_on }}</p>

 <p>
 New Comment
 <form action="{% url "new-comment" %}?link_pk={{ object.pk }}"
method="post">{% csrf_token %}
 {{ comment_form.as_p }}
 <input type="submit" value="Comment" />
 </form>
 </p>

 <p>
 Comments

 {% for comment in comments %}
 {{ comment.body }}
 {% endfor %}

 </p>
{% endblock %}

If you noticed the form action URL in our template, you'll see that we have added
the link_pk GET parameter to it. If you refer back to the code that you wrote for
NewCommentView, you'll see that we use this parameter value in the get_context_
data and get_inital functions to get the Link object that the user is commenting on.

I'm saving describing what the get_initial method
does until the next section when we get to adding replies to
comments.

Chapter 2

[51]

Let's look at what we've made till now. Start the application using the runserver
command, open the home page in your browser, and then log in. As we don't yet
have any way to access old submissions, we'll need to create a new submission.
Do that and you'll see the new detail page. It should look similar to the following
screenshot:

Discuss – a Hacker News Clone

[52]

Add a comment and it should appear on the same page. Here's a screenshot with a
few comments added:

Chapter 2

[53]

If you leave the body empty and press the Comment button, you should see the
comment template that you created earlier with an error message:

With basic commenting on submission working, let's look at how we'll implement
replying to comments. As we've already seen, our comment model has a field to
indicate that it was made in reply to another comment. So all we have to do in order
to store a comment as a reply to another comment is correctly set the in_reply_to
field. Let's first modify our model form for the Comment model to accept in addition
to a link_pk, a parent_comment_pk as well to indicate which (if any) comment is
the new comment a reply to. Add this field to CommentModelForm right after the
link_pk field:

parent_comment_pk = forms.IntegerField(widget=forms.HiddenInput,
required=False)

Discuss – a Hacker News Clone

[54]

Now we need a place to show a form to the user to post his reply. We could show
one form per comment on the submission details page, but that would end up
making the page look very cluttered for any submission with more than a few
comments. In a real-world project, we'd probably use JavaScript to generate a form
dynamically when the user clicks on the reply link next to a comment and submits
this. However, right now we are more focused on the Django backend and thus we'll
come up with another way that doesn't involve a lot of frontend work.

A third way, which we'll be using here, is to have a little link next to each comment
that takes the user to a separate page where they can record their reply. Here's the
view for that page. Put this in links/views.py:

class NewCommentReplyView(CreateView):
 form_class = CommentModelForm
 template_name = 'comment_reply.html'

 @method_decorator(login_required)
 def dispatch(self, *args, **kwargs):
 return super(NewCommentReplyView, self).dispatch(*args,
**kwargs)

 def get_context_data(self, **kwargs):
 ctx = super(NewCommentReplyView, self).get_context_
data(**kwargs)
 ctx['parent_comment'] = Comment.objects.get(pk=self.request.
GET['parent_comment_pk'])

 return ctx

 def get_initial(self):
 initial_data = super(NewCommentReplyView, self).get_initial()

 link_pk = self.request.GET['link_pk']
 initial_data['link_pk'] = link_pk

 parent_comment_pk = self.request.GET['parent_comment_pk']
 initial_data['parent_comment_pk'] = parent_comment_pk

 return initial_data

 def form_valid(self, form):
 parent_link = Link.objects.get(pk=form.cleaned_data['link_
pk'])

Chapter 2

[55]

 parent_comment = Comment.objects.get(pk=form.cleaned_
data['parent_comment_pk'])

 new_comment = form.save(commit=False)
 new_comment.commented_on = parent_link
 new_comment.in_reply_to = parent_comment
 new_comment.commented_by = self.request.user

 new_comment.save()

 return HttpResponseRedirect(reverse('submission-detail',
kwargs={'pk': parent_link.pk}))

By now, having used it multiple times, you should be comfortable with CreateView.
The only new part here is the get_initial method, which we also used in
NewCommentView previously. In Django, each form can have some initial data. This
is data that is shown when the form is Unbound. The boundness of a form is an
important concept. It took me a while to wrap my head around it, but it is quite
simple. In Django, a form has essentially two functions. It can be displayed in the
HTML code for a web page or it can validate some data.

A form is bound if you passed in some data for it to validate when you initialized an
instance of the form class. Let's say you have a form class called SomeForm with two
fields, name and city. Say you initialize an object of the form without any data:

form = SomeForm()

You have created an unbound instance of the form. The form doesn't have any data
associated with it and so can't validate anything. However, it can still be displayed
on a web page by calling {{ form.as_p }} in the template (provided it was passed
to the template via the context). It will render as a form with two empty fields: name
and city.

Now let's say you pass in some data when initializing the form:

form = SomeForm({'name': 'Jibran', 'city': 'Dubai'})

This creates a bound instance of the form. You can call is_valid() on this form
object and it will validate the passed data. You can also render the form in an HTML
template, just like before. However, this time, it will render the form with both the
fields having the values that you passed here. If, for some reason, the values that you
passed didn't validate (for example, if you left the value for the city field empty), the
form will display the appropriate error message next to the field with the invalid data.

Discuss – a Hacker News Clone

[56]

This is the concept of bound and unbound forms. Now let's look at what the initial
data in a form is for. You can pass initial data to a form when initializing an instance
by passing it in the initial keyword parameter:

form = SomeForm(initial={'name': 'Jibran'})

The form is still unbound as you did not pass in the data attribute (which is the first
non-keyword argument to the constructor) but if you render it now, the name field
will have the value 'Jibran' while the city field will still be empty.

The confusion that I faced when I first learned of the initial data was why it was
required. I could just pass the same data dictionary as the data parameter and the
form would still only receive a value for one field. The problem with this is that
when you initialize a form with some data, it will automatically try to validate that
data. Assuming that the city field is a required field, if you then try to render the
form in a web page, it will display an error next to the city field saying that this is a
required field. The initial data parameter allows you to supply values for form fields
without triggering validation on that data.

In our case, CreateView calls the get_initial method to get the dictionary to use
it as the initial data for the form. We use the submission ID and parent comment ID
that we will pass in the URL parameters to create the initial values for the link_pk
and parent_comment_pk form fields. This way, when our form is rendered on the
HTML web page, it will already have values for these two fields. Looking at the
form_valid method, we then extract these two values from the form's cleaned_
data attribute and use it to get the submission and parent comment to associate the
reply with.

The get_context_data method just adds the parent comment object to the context.
We use it in the template to tell the user which comment they are replying to. Let's
look at the template, which you need to create in links/templates/comment_
reply.html:

{% extends "base.html" %}

{% block content %}
 <h1>Reply to comment</h1>
 <p>
 You are replying to:
 <i>{{ parent_comment.body }}</i>
 </p>

 <form action="" method="post">{% csrf_token %}

Chapter 2

[57]

 {{ form.as_p }}
 <input type="submit" value="Submit Reply" />
 </form>
{% endblock %}

Nothing fancy here. Note how we use the parent_comment object that we passed
in the get_context_data method of the view. It's good UI practice to make sure
that the user is always given relevant information about the action that they are
about to take.

Import our new view in discuss/urls.py:

from links.views import NewCommentReplyView

Add this pattern to the URL patterns list:

url(r'new-comment-reply/$', NewCommentReplyView.as_view(), name='new-
comment-reply'),

Lastly, we need to give the user a link to get to this page. As we discussed before,
we'll be putting a link called Reply next to each comment on the submission detail
page. To do so, note the following line in links/templates/submission_detail.
html:

{{ comment.body }}

Change it to the following:

{{ comment.body }} (<a href="{% url "new-comment-reply" %}?link_
pk={{ object.pk }}&parent_comment_pk={{ comment.pk }}">Reply)

Note how we pass in the submission ID and parent comment ID using GET params
when creating the URL. We did this with the comment form on the submission page
as well. This is a common technique you'll use a lot when creating Django apps.
These are the same URL parameters that we used in the comment reply view to
populate the initial data for the form and access the parent comment object.

Discuss – a Hacker News Clone

[58]

Let's try it out. Click on Reply on one of the comments on the submission detail
page. If you've closed the old submission details page, you can create a new
submission and add some comments to it. By clicking on the Reply link, you'll see a
new page with a form for the comment body. Enter some text here and click on the
Submit button. Remember the text that you entered. We'll be looking for this next in
the upcoming few steps. In my testing, I entered Reply to Comment 1. Let's see what
our submission details page looks with our new reply comment:

Chapter 2

[59]

It seems like it worked. However, if you look closely, you'll notice that the reply
we made (in my case, the Reply to Comment 1 text) is shown at the end of the
comments list. It should be shown after Comment 1 and ideally indented a bit to the
right as well to indicate the hierarchy. Let's fix this. First, in the get_context_data
method of SubmissionDetailView in the links/views.py file, note this line:

submission_comments = Comment.objects.filter(commented_on=self.object)

Change it to the following:

submission_comments = Comment.objects.filter(commented_on=self.object,
in_reply_to__isnull=True)

What we've done here is include only the comments that don't have a parent
comment. We do this by getting only comments that have the in_reply_to field set
to NULL. If you save this change and refresh the submission detail page, you'll notice
that your reply comment will be gone. Let's bring it back. Modify link/templates/
submission_detail.html and change the paragraph that shows the comments (the
one with the for loop over the comments list) to match the following:

<p>
 Comments

 {% for comment in comments %}

 {{ comment.body }} (<a href="{% url "new-comment-reply"
%}?link_pk={{ object.pk }}&parent_comment_pk={{ comment.pk }}">Reply</
a>)
 {% if comment.comment_set.exists %}

 {% for reply in comment.comment_set.all %}
 {{ reply.body }}
 {% endfor %}

 {% endif %}

 {% endfor %}

</p>

Discuss – a Hacker News Clone

[60]

The new part here is between the if tag. First, we use the reverse relationship that
is created by the foreign key to itself to see if this comment has any other comments
pointing to it. We know that the only comments pointing to this comment would be
replies to this comment. If there are, we then create a new list and print the body for
each of the replies. As we've already decided that we only allow replies to the first
level of comments, we don't create any links to let users reply to the replies. Once
you've save these changes, let's see what our submission details page looks now:

That's more like it! We now have a complete link submission and commenting
system. Awesome! Let's move on to the other features now.

Chapter 2

[61]

Voting
We need to allow users to vote on submissions. To keep things simple, we'll only
allow upvotes. A user can indicate that they like a submission. There is no way to
indicate disapproval. This keeps the code and UI simple. We also want to ensure that
one user can upvote a submission only once and they can remove their upvotes if
they change their minds or upvoted a submission by mistake.

If you take another look at the Link model, you'll see we already have an upvotes
field, which is a Machine to machine (M2M) with the User model. This is the only
database entry we'll need to allow and keep track of upvotes by users. In order to
upvote a submission, users will click on a link next to the submission. Until now, we
were able to make do without a page to list all submissions. It's a good idea to create
one now so that we can access and upvote the various submissions. We can't keep
creating new submissions every time we want to test something.

First, create this view in links/views.py. Remember to import TemplateView from
django.views.generic first:

class HomeView(TemplateView):
 template_name = 'home.html'

 def get_context_data(self, **kwargs):
 ctx = super(HomeView, self).get_context_data(**kwargs)
 ctx['submissions'] = Link.objects.all()

 return ctx

Next, change the template at template/home.html to the following:

{% extends "base.html" %}

{% block content %}
 <h1>Welcome to Discuss</h1>
 <h2>Submissions</h2>

 {% for submission in submissions %}

 {{
submission.title }}
 <i><a href="{% url "submission-detail" pk=submission.pk
%}">Comments</i>

 {% endfor %}

{% endblock %}

Discuss – a Hacker News Clone

[62]

Import our new HomeView at the top of discuss/urls.py and note the home URL
configuration in discuss/urls.py:

url(r'^$', TemplateView.as_view(template_name='home.html'),
name='home'),

Change the preceding code to this:

url(r'^$', HomeView.as_view(), name='home'),

Finally, let's provide our users with a handy link to the home page in the navigation
bar. In the base.html template (in the templates directory in the project root), add
this as the first list element of the navigation list outside of the user authentication if
condition:

Home

That's it. There's nothing new in this code. It's pretty easy to understand and
you should have a clear idea of what's happening here by now. Let's look at
the end result. If you now open the home page of our app by browsing to
http://127.0.0.1:8000 in your browser, you should see something similar to the
following screenshot. Of course, your page will not be the same as this as you will
have added your own test content:

Chapter 2

[63]

You'll see a list of submissions. If you click on any, you'll have a new tab open
with the link for that submission. You'll also see a Comments link next to each
submission. Clicking on this takes you to the submission detail page.

Let's talk a bit about how we're going to implement the upvoting feature. The M2M
upvotes field that we created in the Link model should give you a hint. Whenever
a user upvotes a submission, we add them to this relationship. As an M2M
relationship ensures that if we add the same object multiple times it doesn't create a
new record, we easily ensure that one user can vote on a submission only once.

Let's create a view that adds the logged in user to the upvoters list of a submission
and then takes them back to the home page. We'll also add a link to each submission
on the home page that lets the user upvote the submission with this new view.

In links/views.py, import the View generic view class from django.views.
generic, and then create this view:

class UpvoteSubmissionView(View):
 def get(self, request, link_pk, **kwargs):
 link = Link.objects.get(pk=link_pk)
 link.upvotes.add(request.user)

 return HttpResponseRedirect(reverse('home'))

Next, import this new view in discuss/urls.py and add it to the URL patterns :

url(r'^upvote/(?P<link_pk>\d+)/$', UpvoteSubmissionView.as_view(),
name='upvote-submission'),

In templates/home.html, add the Upvote link above the submission title link:

Upvote</
a>

Discuss – a Hacker News Clone

[64]

Open up the home page and you'll see an Upvote link next to each submission title.
Clicking on the link should bring you back to the home page. It should look similar
to the following screenshot:

If you upvote a link, it immediately brings you back to the home page without
any indication that your upvote was recorded. The fix for this is simple. Change
the Upvote link HTML line that you just added to the home page template to the
following:

{% if request.user in submission.upvotes.all %}
 Upvoted
{% else %}
 <a href="{% url "upvote-submission" link_pk=submission.pk
%}">Upvote
{% endif %}

Chapter 2

[65]

If you open up the home page again, you'll see a simple Upvoted text next to
submissions that you've already upvoted instead of the link that you saw before. We
should also allow the user to remove his upvote from a submission. First, create a
new view for this in links/views.py:

class RemoveUpvoteFromSubmissionView(View):
 def get(self, request, link_pk, **kwargs):
 link = Link.objects.get(pk=link_pk)
 link.upvotes.remove(request.user)

 return HttpResponseRedirect(reverse('home'))

This is almost the same as the view we created to record a new upvote. The only
difference is that here we use the remove method of the related manager. Next, we'll
need to add this to the URLs file at discuss/urls.py. Import our new view here
and add the following URL configuration:

url(r'^upvote/(?P<link_pk>\d+)/remove/$',
RemoveUpvoteFromSubmissionView.as_view(), name='remove-upvote'),

Finally, let's change the Upvoted label that we added to the home page before to be a
link to remove the upvote. In your templates/home.html file, note these lines:

{% if request.user in submission.upvotes.all %}
 Upvoted
{% else %}

Change them to the following:

{% if request.user in submission.upvotes.all %}
 Remove
Upvote
 {% else %}

That's it! Now when you visit the home page, you'll see the Remove Upvote link for
all the submissions that you have already upvoted. By clicking on the link, you'll be
redirected back to the home page with your upvote removed. You should see the
Upvote link for that submission again as you can upvote it again.

Discuss – a Hacker News Clone

[66]

Ranking submission
The next feature on our list is ranking the submissions using an intelligent algorithm.
Let's take a look at what our feature description requires:

An algorithm to rank the submitted links in some defined order that
depends on a number of factors including the votes for that link, the
number of comments and the age of the submission

We have all this information in our database. We need to create an algorithm that
will use all these pieces of information to give each submission a rank. Then, we'll
just sort the submission using this ranking and show them in the sorted order. To
keep things simple, let's use the following algorithm:

rank = number of votes + number of comments – number of days since
submission

Seems simple enough, except for maybe the number of days since submission
calculations. However, the datetime module in the Python standard library
makes this a breeze for us. In Python, if you subtract two datetime objects, you
get a timedelta object. This object represents the time difference between the two
datetime objects. It has an attribute called days that—as is obvious by the name—
holds the number of days between the two dates. We'll subtract the date that we get
from datetime.datetime.now() from the submitted_on field of the submission
and use the days attribute of the resulting timedelta object.

Let's plug this algorithm into our home view so that our submissions are listed by
their ranks. Change HomeView in links/views.py to match the following code:

class HomeView(TemplateView):
 template_name = 'home.html'

 def get_context_data(self, **kwargs):
 ctx = super(HomeView, self).get_context_data(**kwargs)

 now = timezone.now()
 submissions = Link.objects.all()
 for submission in submissions:
 num_votes = submission.upvotes.count()
 num_comments = submission.comment_set.count()

 date_diff = now - submission.submitted_on

Chapter 2

[67]

 number_of_days_since_submission = date_diff.days

 submission.rank = num_votes + num_comments - number_of_
days_since_submission

 sorted_submissions = sorted(submissions, key=lambda x: x.rank,
reverse=True)
 ctx['submissions'] = sorted_submissions

 return ctx

You will also need to import the timezone module from Django utilities using
the following:

from django.utils import timezone

This is needed because Django uses something called timezone aware datetimes.
For more details on this, read the Django documentation for timezone
awareness at https://docs.djangoproject.com/en/stable/topics/i18n/
timezones/#naive-and-aware-datetime-objects.

This new code might look a bit complicated but trust me, it's pretty simple. Let's look
at it one line at a time. The first thing we do is get the current date time using the
timezone.now() function. Next, we get all the submissions that we want to show on
the home page and start looping over them.

In the loop, we first calculate the number of votes and comments on the submission
using the count() method that you have seen before on Django querysets.
The only different thing here is that we use it on the queryset returned by the
RelatedManager object for the many-to-many upvotes field and the reverse
relationship to the comments model.

As explained before, we then calculate the number of days since the submission was
submitted to our site using the Python date arithmetic. Finally, we calculate and
assign the rank for the submission to the object.

After the loop ends, each of our Link objects has a rank attribute that holds the final
ranking for it. We then use the Python built-in sorted function to sort this list. When
you're working with lists, which is quite often in Python and Django, the sorted
function is something you will end up using many times. You should familiarize
yourself with its syntax and features by reading the documentation at https://
docs.python.org/3/library/functions.html#sorted. Trust me, it's well worth
the time to read this documentation slowly and understand it completely. I have
used the sorted built-in function more times than I can remember. It's indispensable.

https://docs.djangoproject.com/en/stable/topics/i18n/timezones/#naive-and-aware-datetime-objects
https://docs.djangoproject.com/en/stable/topics/i18n/timezones/#naive-and-aware-datetime-objects
https://docs.python.org/3/library/functions.html#sorted
https://docs.python.org/3/library/functions.html#sorted

Discuss – a Hacker News Clone

[68]

Finally, we assign the sorted submissions list to the submissions context variable.
As we are already using this variable in the home page template, we do not need
to change anything else beyond HomeView. If you open the home page now, you'll
see that the sorting order of the submissions has changed and now reflects our
new algorithm.

This is a good place to reflect upon the benefits of the modularity provided by the
Model-View-Template architecture used by Django. As you can see, we added quite
a significant feature, but we never had to change the URLs or templates for the
home page. As these are individual modules, we only changed the view code and
everything else still worked with our new and improved sorting order.

Spam protection
The last feature that we want to have in our application is spam protection. We
want users to be able to post content on our site, but we want to prevent abuse by
spammers. Spamming, as you probably know, refers to malicious Internet users
posting inappropriate or irrelevant content to a site. Often, spammers use scripts
created specifically to target sites that allow user-submitted content, such as our web
app. While we can't stop spammers easily from submitting spam content to our site
manually, we can make sure that they are not able to use scripts to generate a lot of
spam with just a click of the mouse. Usually, if spammers can't use their scripts on
websites, they move on to easier targets.

The important concept that I want you to learn from this feature isn't how to
implement spam protection. That's something you need to decide based on the
requirements of your own project. What I'll be showing here is how to use open
source Django applications created by other developers to add features to your own
Django projects. This is an important concept that you should be familiar with. Most
of the time, if you're looking for ways to solve an issue while developing your web
app, a search of the Internet turns up a number of open source applications that
were developed by other programmers to solve the same issue. You get applications
solving all sizes of issues—from the smallest providing features such as a new type
of form field (for example, a calendar form field that uses a JavaScript calendar) to
large applications providing complete Django-based forums that you can integrate
with your Django website easily and provide users with an easy-to-use and good-
looking forum.

Chapter 2

[69]

We'll be using the ReCaptcha service from Google to provide us with a mechanism
to stop spammers. You can learn more about the service at https://www.google.
com/recaptcha. You will also need to register for an account here and create an API
key. It will ask for a label, which I set to Discuss Django Blueprints, and a domain,
which I set to 127.0.0.1. The owners field should have your e-mail address there.
Once you submit this form, you'll be presented with a screen that shows you your
public and private keys. Keep this page open as we'll use these values in a bit.

Next, we need to find a Django application that allows us to use the ReCaptcha
service. A Google search led me to https://github.com/praekelt/django-
recaptcha. It seems like a well-maintained and simple solution to our problem.
In order to use it, we first have to install it in our virtual environment. On your
command line, make sure that you have the virtual environment active. Then,
install this package using the following pip command:

> pip install django-recaptcha

This will install the package. Next, add captcha to the list of INSTALLED_APPS
in your discuss/settings.py file. Also, add the RECAPTCHA_PUBLIC_KEY and
RECAPTCHA_PRIVATE_KEY variables to the settings file. Set their values to the
appropriate keys that you were given on the Google ReCaptcha API keys page that
I asked you to keep open before. Site Key is the public key and Secret Key is the
private key. Finally, in your settings.py file, set the following variable:

NOCAPTCHA = True

The setup is ready. We're ready to use ReCaptcha in our forms. For demonstration,
I'll only add it to the comment form that you can see on the submission detail page.
Open up links/forms.py and add this import to the top:

from captcha.fields import ReCaptchaField

Then, add this field to CommentModelForm:

captcha = ReCaptchaField()

https://www.google.com/recaptcha
https://www.google.com/recaptcha
https://github.com/praekelt/django-recaptcha
https://github.com/praekelt/django-recaptcha

Discuss – a Hacker News Clone

[70]

That's it! You have successfully added Google ReCaptcha to your website! Let's try
it out. Open up the details page for any submission and now, right below the body
field that we had previously for the comment, you'll see the Google ReCaptcha box
as well:

Now, if you submit the form without selecting the I am not a robot checkbox, you'll
be taken to the comment form page with an error message saying that the captcha
field is required. You won't be able to submit your comment until you select this box.

Chapter 2

[71]

There are two takeaways from adding the ReCaptcha to our site. Firstly, notice how
easy it was for us to add a relatively complicated feature using the open source
code contributed by another programmer. Secondly, notice how—because of the
modularity that Django provides and the separation between the template and
code—all we had to do to include the ReCaptcha widget was add it to the form.
We didn't even need to change the view code or template. It all worked.

Summary
This was a pretty interesting chapter. You learned a lot more about the built-in
generic view provided by Django and looked in detail into ModelForms and how we
could customize them. We figured out some benefits of the modular MVC pattern
that Django follows and third-party open source Django applications and how we
can include them in our projects.

You also learned a great deal about how to pass data to our forms even when they
are placed on separate pages and how to create a form that is displayed on two pages
(the comment form) while making sure that the data is synchronized between both.

All in all, the application that we ended up creating was both fun to program and a
complete product.

[73]

Djagios – a Nagios
Clone in Django

In this chapter, we'll be creating a server status monitoring solution similar to
Nagios. It is understandable if you have never heard of Nagios as it is not something
that comes up in day-to-day conversations between web developers. In a nutshell,
Nagios can tell you the status of your servers (which can be in the thousands) in one
screen. You can configure alerts based on conditions, for example, if some critical
server becomes unresponsive, so that you can be on top of problems before your
users start to notice any service degradation. Nagios is an amazing piece of software
that is used by millions of organizations around the world.

Our goal in this chapter is to create something similar, albeit very simple. Our
Nagios clone, creatively named Djagios, will allow users to set up monitoring for
simple stats from their servers. We will allow the monitoring of the following:

• System load
• Disk usage

We will also be developing a web page where this data will be shown to the user
in a nice tabular format. The user will also see an overview of how their servers are
doing, and if any alerts are active on those systems.

Djagios – a Nagios Clone in Django

[74]

Here are some of the things that we will be looking at in this chapter:

• What Django management commands are and how to create a custom one
• Using the Django shell to test out small pieces of code quickly
• Complicated validation of Django Model fields
• Slightly more complicated uses of the built-in generic views
• Creating an API endpoint to accept data from external sources
• Securing these API endpoints with simple shared secret keys
• Testing API endpoints using simple tools

Code pack
This chapter's code pack has a basic Django application setup with a SQLite database
already configured. However, there isn't much code in the code pack because this
chapter did not require user accounts or any other pre-existing setup. You can unzip
the code pack, create a new virtual environment, activate it, and run the following
commands from within the code folder to get up and running:

> pip install django

> python manage.py migrate

Requirements
Let's talk a bit about what we want from our end product before we start writing
up some code. As mentioned before, we're looking to create a server monitoring
solution. What exactly will it do? How can we implement the required functionality?

As our inspiration for Djagios is Nagios, let's look at how Nagios works. While
Nagios is a huge application with understandably complex programming, it is in the
end a client-server application. The server, which is just another computer, contains
the Nagios installation. The clients, which are the systems that you want to monitor,
run small plugin scripts that gather data and push it to the server. The server takes
these data points and, based on how it's configured, sends out alerts if required. It
also stores these data points and can show them in a simple tabular layout, giving
you an instant overview of all the computer systems in your infrastructure.

We'll be creating something similar. Our server will be a Django application that will
accept data points using an HTTP endpoint. The application will also include a web
page where all these data points will be shown next to the client they came from. Our
clients will be simple shell scripts that upload the data to our server.

Chapter 3

[75]

For the rest of the chapter, I will call the Django application,
the server, and the systems that you want to monitor, the
node. These are common terms used in many other projects
that you will encounter in your programming career and they
often mean similar things in those other projects.

Instead of developing all of these things at once, we'll take an incremental approach.
We'll first create the models to store our data points. Next, instead of moving directly
to creating the HTTP endpoint to accept the data points and client-side plugin
scripts, we'll take a simpler approach and come up with a way to generate some
fake data to test. An finally, we will create the web page to show our users the latest
status of the client nodes and the triggered alerts.

With fake data to test, we can be confident that our status page and alerting system
are working correctly. We can then move forward to the next step, which will be
creating the HTTP endpoint to gather data points from clients and client-side plugin
scripts.

In real-world projects, this incremental approach to building software systems
is often the best way to complete projects. Create simple features and test them
extensively to make sure that they work. Once you are confident of their correctness,
add more functionality and repeat the testing phase. This way is analogous to how
a tall building is constructed. If you are confident that the foundation is strong, you
can build one floor at a time without worrying if the whole thing will fall down on
your head.

The model
What information should we record for the data points? We definitely need the name
of the node that is sending the data. We also need to record the time at which we
got the data point so that we can figure out the latest status of the node. Of course,
we need to know the type and value of the data point. The type of the data point is
simply the name of the quantity that we are measuring, such as CPU usage, memory
usage, uptime, and so on.

For now, I think these are all the things that we need to measure:

• Node name
• Date and time
• Type
• Value

Djagios – a Nagios Clone in Django

[76]

While thinking about which fields we needed in our model, I thought of another
approach. It involved having a different model for each data point type, so we could
have Django models named SystemLoad, MemoryUsage, DiskUsage, Uptime, and so
on. However, once I thought about it further, I figured out that doing so would be
very restrictive as now we'd need to define a new model every time we wanted to
measure something new. Having the type of the data point as another field in our
model gives us a lot of flexibility in terms of recording new types of information.

As you'll see later on, there are pros and cons to both approaches.

Let's start a new Django application in our project. In your command line, type the
following, making sure that your virtual environment is activated and that you are in
the project folder:

> python manage.py startapp data_collector

Add this new app to the list of INSTALLED_APPS in djagios/settings.py, and then
add our data point model to data_collector/models.py:

class DataPoint(models.Model):
 node_name = models.CharField(max_length=250)
 datetime = models.DateTimeField(auto_now_add=True)

 data_type = models.CharField(max_length=100)
 data_value = models.FloatField()

Save the file and then run migrations to add it to our database:

> python manage.py makemigrations data_collector

> python manage.py migrate

While the model is pretty simple, there is one thing you should be aware of. To
keep things simple, I made the decision to store only numeric values; hence, the
data_value field is of the FloatField type. If this were a real-world project, you
would have a set of requirements that would dictate if you could make the same
compromise. You might have to record text values as well, for instance, the status
of some service you might be running. For Djagios, we are OK with numeric values
only as all the stats that we want to measure are just numbers.

Chapter 3

[77]

Fake data generation
Before moving on to the next step, which is creating the status page, we should come
up with a way to generate some fake data. This will help us while creating the status
page and debug any issues that we encounter along the way. Without any data, we
could spend time creating the perfect status page, only to find out later when we add
data that some aspect of it, such as the design or data layout scheme, won't work.

Django management commands
Django has a very useful feature called management commands. It allows us to
create Python scripts that can interact with the rest of the Django app code we write,
including our models.

The reason we can't just write a simple Python script that imports our models is that
Django, like all web frameworks, has many dependencies and requires a complex
setup to make sure that every thing is configured properly before we can use its
features. For example, accessing the database depends on Django knowing where
the settings file is because it contains the configuration for the database. Without
knowing how to read the database, you can't query the models.

Let's conduct a little test. Make sure that your virtual environment is activated
and that you are in the project directory. Next, start up the Python shell by typing
the following:

> python

This will start a new Python interactive shell where you can type Python statements
and have them executed immediately. You'll know that you are in a Python shell
because your prompt will change to >>>. Now, let's try importing our DataPoint
model in this shell:

>>> from data_collector.models import DataPoint

Press Enter and you might be surprised by the huge error message that is printed.
Don't worry, you don't need to read all of it. The most important part is the last
line. It will be similar to this (though not exactly as it might change slightly between
different Django versions):

django.core.exceptions.ImproperlyConfigured: Requested setting
DEFAULT_INDEX_TABLESPACE, but settings are not configured. You must
either define the environment variable DJANGO_SETTINGS_MODULE or call
settings.configure() before accessing settings.

Djagios – a Nagios Clone in Django

[78]

It looks intimidating, but let's look at it in parts. The first part before the colon : is
the exception name. Here, Django raised the ImproperlyConfigured exception.
Then there is a sentence telling you that some setting was requested, but settings are
not yet configured. The last sentence is a helpful message about how to fix this.

While you can take the steps that are listed in the error message and get your scripts
to run outside of Django, using a management command is almost always the best
option. With a management command, you don't need to set up Django manually.
It's done for you automatically before your script is run and you can avoid having
to worry about setting environment variables such as DJANGO_SETTINGS_MODULE or
calling settings.configure().

To create a new management command, we first have to create two new Python
modules to hold our command script. Type the following in your command line
from the project root directory:

> mkdir -p data_collector/management/commands

> touch data_collector/management/__init__.py

> touch data_collector/management/commands/__init__.py

What these commands do is create a module called management under the
data_collector module folder, and then create another module called commands
in the management module. We do this by first creating the folders for the modules
and then creating empty __init__.py files so that Python recognizes these folders
as modules.

Next, let's try creating a simple management command that just prints out a list of
the data points that we have in our database so far. Create a new data_collector/
management/commands/sample_data.py file and give it the following content:

from django.core.management import BaseCommand

from data_collector.models import DataPoint

class Command(BaseCommand):
 def handle(self, *args, **options):
 print('All data points:')
 print(DataPoint.objects.all())

Save this file and go back to your command prompt. Then run the following
command:

> python manage.py sample_data

Chapter 3

[79]

You should see the following output:

All data points:
[]

That's it. That's all there is to creating Django management commands. As you can
see, we were able to use methods on our DataPoint model in a script that was run
on the command line, as opposed to being run as part of an HTTP response view. A
few things to note about Django management commands are as follows:

• Your command has the same name as the name of the file that contains
the command.

• In order to be a valid management command, the source file should always
define a Command class, which will be a base class of BaseCommand.

• Django will call the handle method of your Command class. This method
is the starting point of whatever functionality you want to provide from
your script.

We'll take a look at the *args and **options parameters next when we modify
the sample_data.py command to actually add sample data. If you want further
information about Django management commands, you should look at the
documentation at https://docs.djangoproject.com/en/stable/howto/custom-
management-commands/.

Let's modify our command class to add fake data. Here's the modified Command
class code:

class Command(BaseCommand):
 def add_arguments(self, parser):
 parser.add_argument('node_name', type=str)
 parser.add_argument('data_type', type=str)
 parser.add_argument('data_value', type=float)

 def handle(self, *args, **options):
 node_name = options['node_name']
 data_type = options['data_type']
 data_value = options['data_value']

 new_data_point = DataPoint(node_name=node_name, data_
type=data_type, data_value=data_value)
 new_data_point.save()

 print('All data points:')
 print(DataPoint.objects.all())

https://docs.djangoproject.com/en/stable/howto/custom-management-commands/
https://docs.djangoproject.com/en/stable/howto/custom-management-commands/

Djagios – a Nagios Clone in Django

[80]

There are a couple of new things here. Let's look at the add_arguments method first.
Most management commands need arguments to do something useful. As we're
adding sample data to the database, our command will need the values to add. These
are provided to the command in the form of arguments on the command line. If you
don't have much experience with working with command lines, arguments are all
the things that you type after the command name. For example, let's take a look at
the command we use to create new Django applications in a project:

> python manage.py startapp APP_NAME

Here, we use the startapp Django management command, which is a built-in
command, and the app name is an argument to the app.

We want our custom command to accept three arguments: the node name, data type,
and value of the data point. In the add_arguments method, we tell Django to require
and parse three arguments for this command.

The options parameter to the handle method is a dictionary that holds all the
arguments that were defined and passed to the command by the user. In the handle
method, we simply assign the values for each option to a variable. In case the user
misses or adds extra arguments while calling the command, Django will print an
error message as well as inform them of what the required parameters are. For
example, if I call the command now without any parameter, here's what happens:

> python manage.py sample_data
usage: manage.py sample_data [-h] [--version] [-v {0,1,2,3}]
 [--settings SETTINGS] [--pythonpath
PYTHONPATH]
 [--traceback] [--no-color]
 node_name data_type data_value
manage.py sample_data: error: the following arguments are required:
node_name, data_type, data_value

This is useful information if the user forgets how to use a management command.

Now that we have the argument values in variables, we create a new data point and
save it. Finally, we print out all the data points that we have in the database. Let's try
running our command now and see what output we get:

> python manage.py sample_data web01 load 5
All data points:
[<DataPoint: DataPoint object>]

While the command successfully created a new data point, the output isn't very
helpful. We have no idea what information this data point holds. Let's fix this.

Chapter 3

[81]

A better model representation
Whenever Django prints out a model instance, it first tries to see if there is a __str__
method defined for the model class. If it finds this method, it uses the output from it;
otherwise, it falls back to a default implementation that just prints the class name, as
we can see here. To make Django print out a more useful representation for our data
point model, add this __str__ method to our DataPoint model class:

def __str__(self):
 return 'DataPoint for {}. {} = {}'.format(self.node_name, self.
data_type, self.data_value)

Let's run our sample_data command again now and see how its output has changed:

> python manage.py sample_data web01 load 1.0
All data points:
[<DataPoint: DataPoint for web01. load = 5.0>, <DataPoint: DataPoint
for web01. load = 1.0]

That's better. Now we see that the data point we added has been saved to the
database correctly. Go ahead and create a couple of more data points. Use as many
different node names as you want, but try to keep the data type limited to one of
load or disk_usage as we'll be creating code specific to these data types later. Here's
the sample data that I added to my database for reference:

Node name Data type Data value
web01 load 5.0

web01 load 1.0

web01 load 1.5

web01 disk_usage 0.5

web02 load 7.0

web02 load 9.0

web02 disk_usage 0.85

dbmaster disk_usage 0.8

dbmaster disk_usage 0.95

Now that we have a way to add sample data and added some to our database, let's
create the status page that will show all this data to our users.

Djagios – a Nagios Clone in Django

[82]

Status page
Our status page needs to show the user the status of their complete infrastructure in
one view. To do so, a table feels like the appropriate design component. As the most
important information to the user is going to be the latest status of their servers, our
status page will need to show only one table row per node and list only the latest
values for each different data type that we have in the database for that node.

For the sample data that I added to my database, we would ideally want a table
similar to this on the status page:

As you can see, we only mention each node once, and group the different data types
so that all information about a node is shown in one place and the user doesn't have
to search through the table to find what they are looking for. As a bonus, we also
show the last updated time in a nice way instead of just showing the time of the
latest data point.

If you are thinking that showing our data points in a nice and consolidated manner
like this will not be simple, I'm afraid you are right. We could get all the data points
from the database in one query using DataPoint.objects.all() and then group
them in our Python code, but that would be inefficient once the number of data
points in our database grows. For server monitoring solutions, it isn't uncommon
to have a couple of million data points. We can't go about getting and grouping all
the million data points every time the user wants to see the status page. That would
make loading the page unbearably slow.

Luckily for us, SQL—the language used to query data from databases—provides us
with some very powerful constructs that we can use to get just the information we
want, without having to go through all the rows of data that we could have in our
data points table. Let's think about what we need.

Chapter 3

[83]

For starters, we'd like to know the different node names in our database. For each
node name, we also need to know the types of data that are available for it. In our
example, while both web01 and web02 have the load and disk_usage data type
available, the dbmaster node only has data for the disk_usage data type (or metric).
For cases like this, the SQL language provides us with a DISTINCT query clause.
Adding DISTINCT to our query instructs the database to return unique rows only.
That is, all duplicate rows are only returned once. This way, we can get a list of all the
different nodes and data types in our database without having to go over each record.

We need to experiment a bit to figure out how to translate the SQL query into
something we can use with the Django ORM. We could write our view code and
then keep changing it to figure out the right way to get the data we want, but that is
very cumbersome. Instead, Django provides us with a very convenient shell to do
these kinds of experimentations.

If you remember, at the start of this chapter, I showed you why you couldn't just
start a Python shell and import the model. Django complained about not having been
set up properly before being used. Instead, Django has its own way of launching a
Python shell, one that makes sure that all the dependencies of setting up Django are
met before you start using the shell. To start this shell, type the following:

> python manage.py shell

Like before, this will put you in a Python shell, which you can tell by the changed
prompt. Now, let's try importing our DataPoint model:

>>> from data_collector.models import DataPoint

This time you shouldn't get any errors. Now type the following:

>>> DataPoint.objects.all()

[<DataPoint: DataPoint for web01. load = 5.0>, <DataPoint: DataPoint
for web01. load = 1.0>, <DataPoint: DataPoint for web01. load = 1.5>,
<DataPoint: DataPoint for web02. load = 7.0>, <DataPoint: DataPoint for
web02. load = 9.0>, <DataPoint: DataPoint for dbmaster. disk_usage =
0.8>, <DataPoint: DataPoint for dbmaster. disk_usage = 0.95>, <DataPoint:
DataPoint for web01. disk_usage = 0.5>, <DataPoint: DataPoint for web02.
disk_usage = 0.85>]

As you can see, you can query the model and see the output of the query
immediately. The Django shell is one of the most useful components in Django, and
you will often find yourself experimenting in the shell to figure out the correct way
to do something before you write the final code in your views.

www.allitebooks.com

http://www.allitebooks.org

Djagios – a Nagios Clone in Django

[84]

So, back to our problem of getting distinct node names and data types from our
database. If you search the Django documentation for the distinct keyword, you
should see this link in the results:

https://docs.djangoproject.com/en/stable/ref/models/
querysets/#distinct.

If you read what the documentation says, you should figure out that this is exactly
what we need in order to use the DISTINCT clause. But how do we use it? Let's try it
out in the shell:

>>> DataPoint.objects.all().distinct()

[<DataPoint: DataPoint for web01. load = 5.0>, <DataPoint: DataPoint
for web01. load = 1.0>, <DataPoint: DataPoint for web01. load = 1.5>,
<DataPoint: DataPoint for web02. load = 7.0>, <DataPoint: DataPoint for
web02. load = 9.0>, <DataPoint: DataPoint for dbmaster. disk_usage =
0.8>, <DataPoint: DataPoint for dbmaster. disk_usage = 0.95>, <DataPoint:
DataPoint for web01. disk_usage = 0.5>, <DataPoint: DataPoint for web02.
disk_usage = 0.85>]

Hmm? That didn't change anything. Why not? Let's think about what is happening
here. We asked Django to query the database for all the data points and then return
only one row for each duplicated data. If you are familiar with SQL, the distinct
clause works by comparing each field in the rows of data you selected. However, as
by default Django selects all the rows from a database table when querying a model,
the data that the SQL query sees also includes the primary key, which is by definition
unique for each row. This is why we see all of our data, even though we have used
the distinct clause.

In order to make use of the distinct clause, we need to limit the fields in the data that
we are asking the database to return to us. For our particular use case, we only need
to know the unique pairs of node name and data type. The Django ORM provides
another method, values, that we can use to limit the fields that Django selects. Let's
try it out first without the distinct clause to see what data it returns:

>>> DataPoint.objects.all().values('node_name', 'data_type')

[{'data_type': u'load', 'node_name': u'web01'}, {'data_type': u'load',
'node_name': u'web01'}, {'data_type': u'load', 'node_name': u'web01'},
{'data_type': u'load', 'node_name': u'web02'}, {'data_type': u'load',
'node_name': u'web02'}, {'data_type': u'disk_usage', 'node_name':
u'dbmaster'}, {'data_type': u'disk_usage', 'node_name': u'dbmaster'},
{'data_type': u'disk_usage', 'node_name': u'web01'}, {'data_type':
u'disk_usage', 'node_name': u'web02'}]

https://docs.djangoproject.com/en/stable/ref/models/querysets/#distinct
https://docs.djangoproject.com/en/stable/ref/models/querysets/#distinct

Chapter 3

[85]

That seems to do the trick. Now our data only includes the two fields that we wanted
to run the distinct query on. Let's add the distinct clause as well and see what we get:

>>> DataPoint.objects.all().values('node_name', 'data_type').distinct()

[{'data_type': u'load', 'node_name': u'web01'}, {'data_type': u'load',
'node_name': u'web02'}, {'data_type': u'disk_usage', 'node_name':
u'dbmaster'}, {'data_type': u'disk_usage', 'node_name': u'web01'},
{'data_type': u'disk_usage', 'node_name': u'web02'}]

Voila! That seems to have done the trick. Now our Django ORM query only returns
unique pairs of node names and data types, which is exactly what we needed.

One important thing to note is that after we added the values method to the ORM
query, the returned data was no longer our DataPoint model class. Instead, it was
dictionaries with just the field values that we asked for. Thus, any functions that you
have defined on the model are not accessible on these dictionaries. If you think about
it, this is obvious because without the complete fields, Django has no way to populate
the model objects. It also won't matter if you listed all of your model fields in the
values method arguments. It will still only return dictionaries, not the model objects.

Now that we have figured out how to get the data in the format we want, without
having to loop over each row of data in our database, let's create the template, view,
and URL configuration for our status page. Starting with the view code, change
data_collector/views.py to have these contents:

from django.views.generic import TemplateView

from data_collector.models import DataPoint

class StatusView(TemplateView):
 template_name = 'status.html'

 def get_context_data(self, **kwargs):
 ctx = super(StatusView, self).get_context_data(**kwargs)

 nodes_and_data_types = DataPoint.objects.all().values('node_
name', 'data_type').distinct()

 status_data_dict = dict()
 for node_and_data_type_pair in nodes_and_data_types:
 node_name = node_and_data_type_pair['node_name']
 data_type = node_and_data_type_pair['data_type']

 data_point_map = status_data_dict.setdefault(node_name,
dict())

Djagios – a Nagios Clone in Django

[86]

 data_point_map[data_type] = DataPoint.objects.filter(
 node_name=node_name, data_type=data_type
).latest('datetime')

 ctx['status_data_dict'] = status_data_dict

 return ctx

It's a little complicated, so let's break it up into parts. First, we get a list of node name
and data type pairs, using the query we came up with before. The result of the query,
which we store in nodes_and_data_types, is similar to the following:

[{'data_type': u'load', 'node_name': u'web01'}, {'data_type': u'load',
'node_name': u'web02'}, {'data_type': u'disk_usage', 'node_name':
u'dbmaster'}, {
'data_type': u'disk_usage', 'node_name': u'web01'}, {'data_type':
u'disk_usage', 'node_name': u'web02'}]

As we've seen before, this is a list of all unique node name and data type pairs in our
database. So, as our dbmaster node doesn't have any data for the load data type, you
won't find that pair in this list. I'll explain in a while why running the distinct query
helps us reduce the amount of load we need to put on our database.

Next, we loop over each of these pairs; that's the for loop you can see in the code. For
each node name and data type pair, we run a query to get us the latest data point.
First, we filter down to only the data points that we are interested in—those that
match the node name and data type we specified. Then, we call the latest method
and get the most recently updated data point.

The latest method takes the name of a field, orders the query using this field, and
then returns the last row of data as per that ordering. It should be noted that latest
can work with any field type that can be ordered, including numbers, not just date
time fields.

I would like to point out the use of setdefault here. Calling setdefault on
a dictionary makes sure that if the key provided doesn't exist in the dictionary
already, the value passed as the second parameter is set for that key. This is a pretty
useful pattern that I and a lot of Python programmers use when we are creating a
dictionary in which all the keys need to have values of the same type—a dictionary
in this case.

This allows us to ignore the scenario in which the key does not previously exist in the
dictionary. Without using setdefault, we would first have to check whether the key
exists. If it did, we would modify that. If it didn't, we would create a new dictionary,
modify that, and then assign it to status_data_dict.

Chapter 3

[87]

The setdefault method returns the value of the given key as well, whether it had
to set it to the default value or not. We save that in the data_point_map variable in
our code.

Finally, we add the status_data_dict dictionary to the context and return it.
We'll see in our template how we go over this data and display it to the user. I said
earlier that I would explain how the distinct query helped us reduce the load on
the database. Let's look at an example scenario. Assume that we have the same
three nodes in our infrastructure that we saw in our sample data: web01, web02,
and dbmaster. Let's say that we have had monitoring running for one whole day,
collecting stats for both load and disk usage on all three nodes every minute. Doing
the math, we should have the following:

Number of nodes x number of data types x number of hours x 60:

3 x 2 x 24 x 60 = 8640

Thus, our data base has 8,640 data point objects. Now, with the code that we have
in our view, we will only need to retrieve six data point objects from the database to
show the user an updated status page plus the one distinct query. If we had to get
all the data points, we would have to transfer the data for all those 8,640 data points
from the database, and then use only six of them.

For the template, create a folder called templates in the data_collector directory.
Then, create a status.html file in the template folder and give it the following
content:

{% extends "base.html" %}

{% load humanize %}

{% block content %}
<h1>Status</h1>

<table>
 <tbody>
 <tr>
 <th>Node Name</th>
 <th>Metric</th>
 <th>Value</th>
 <th>Last Updated</th>
 </tr>

 {% for node_name, data_type_to_data_point_map in status_data_
dict.items %}

Djagios – a Nagios Clone in Django

[88]

 {% for data_type, data_point in data_type_to_data_point_
map.items %}
 <tr>
 <td>{% if forloop.first %}{{ node_name }}{% endif %}</
td>
 <td>{{ data_type }}</td>
 <td>{{ data_point.data_value }}</td>
 <td>{{ data_point.datetime|naturaltime }}</td>
 </tr>
 {% endfor %}
 {% endfor %}
 </tbody>
</table>
{% endblock %}

There shouldn't be many surprises here. Ignoring the load humanize line, our
template simply creates a table using the data dictionary that we generated in our
view earlier. The two nested for loops might look a bit complicated, but looking at
the data that we are looping over should make things clear:

{u'dbmaster': {u'disk_usage': <DataPoint: DataPoint for dbmaster.
disk_usage = 0.95>},
 u'web01': {u'disk_usage': <DataPoint: DataPoint for web01. disk_usage
= 0.5>,
 u'load': <DataPoint: DataPoint for web01. load = 1.5>},
 u'web02': {u'disk_usage': <DataPoint: DataPoint for web02. disk_usage
= 0.85>,
 u'load': <DataPoint: DataPoint for web02. load = 9.0>}}

The first for loop gets the node name and dictionary mapping data type to the latest
data point. The inner for loop then iterates over the data type and the latest data
point for the type and generates the table rows. We use the forloop.first flag
to print the node name only if the inner loop is running for the first time. Django
provides a few other useful flags related to for loops in templates. Take a look
at the documentation at https://docs.djangoproject.com/en/stable/ref/
templates/builtins/#for.

When we print the datetime field for a data point, we use the naturaltime filter.
This filter is part of the humanize template tags provided as part of Django, which
is why we needed to use the load humanize line at the start of the template. The
naturaltime template filter outputs a date time value in a format that is easy for
humans to understand, for example, two seconds ago, one hour ago, 20 minutes ago,
and so on. You need to add django.contrib.humanize to the list of INSTALLED_
APPS in djagios/settings.py before you can load the humanize template tags.

https://docs.djangoproject.com/en/stable/ref/templates/builtins/#for
https://docs.djangoproject.com/en/stable/ref/templates/builtins/#for

Chapter 3

[89]

The final step in completing our status page is to add it to the URL configuration. As
the status page is what the user wants to see most often from a monitoring system,
let's make it the home page. Make the URL configuration file at djagios/urls.py
contain the following content:

from django.conf.urls import url

from data_collector.views import StatusView

urlpatterns = [
 url(r'^$', StatusView.as_view(), name='status'),
]

That's it. Run the development server:

> python manage.py runserver

Access the status page at http://127.0.0.1:8000. If you have followed the steps so
far, you should see a status page similar to the following one. Of course, your page
will show data from your database:

Djagios – a Nagios Clone in Django

[90]

Alerts
Now that we have a basic status page up and running, let's talk about allowing the
user to configure some alert conditions. For now, we will inform the user of any alert
condition by showing that node's information in red color on the status page.

First, we need to figure out what kind of alerts we want our users to set. From there,
we can figure out the technical details. So, let's think about it. Given that the data
types we are recording all have numeric values, it makes sense that the user should
be able to set thresholds. They can, for instance, set an alert if the system load of any
node goes above 1.0 or if the disk usage of a node goes above 80%.

Furthermore, maybe our users don't want to have the same alert conditions for
each node. A database node is expected to handle a lot of system load, so maybe our
users want to have a separate alert condition for the database node. Finally, if they
are doing maintenance on some of the nodes, they may want to stop some alerts
from triggering.

From all this, it seems that our alerts need to have fields to hold the following:

• Data type on which to trigger
• Maximum value to trigger on
• Minimum value to trigger on
• Node name to trigger on
• If the alert is currently active

Of these, the data type and active status are required fields that should never be null.
The node name can be an empty string in which the alert conditions will be checked
for each node. If the node name is not an empty string, it will be checked for nodes
whose names match the provided string exactly.

As for the maximum and minimum values, one of those is required. This is so that
the user may set alerts for just the maximum value without having to care about the
minimum value for the data points. This will require manual validation in the model.

The model
Let's look at the model. To keep things simple, we'll use the data_collector app
instead of creating a new one for alerts. Here is the code for our Alert model. Put
this in data_collector/models.py after the DataPoint model code:

class Alert(models.Model):
 data_type = models.CharField(max_length=100)
 min_value = models.FloatField(null=True, blank=True)

Chapter 3

[91]

 max_value = models.FloatField(null=True, blank=True)
 node_name = models.CharField(max_length=250, blank=True)

 is_active = models.BooleanField(default=True)

 def save(self, *args, **kwargs):
 if self.min_value is None and self.max_value is None:
 raise models.exceptions.ValidationError('Both min and max
value can not be empty for an alert')

 super(Alert, self).save(*args, **kwargs)

Due to our special requirements for the min and max fields, we had to override the
save method. As you can probably tell, our custom save method raises an error if
both the min and max values are not set. As there is no way to express this condition
with normal Django field configuration, we have to override the save method and
add our custom logic here. This is a pretty common thing to do in Django if you have
some custom validation requirements that depend on more than one field.

One more thing to note is the blank=True parameter to the min and max
FloatField. This is required so that any model forms constructed from this model,
which we will use for the create and update views later, allow blank values for
these fields.

Make and run migrations to add this to your database.

> python manage.py makemigrations data_collector

> python manage.py migrate data_collector

Management views
The users will need some views that they can use to manage alerts. They will need
pages to view all the alerts defined in the system, a page to create new alerts and edit
existing ones, and some way to delete alerts they no longer require. All of these are
achievable using the generic view provided by Django and some templates. Let's get
to it!

First, let's look at the list view first. Add this to data_collector/views.py:

class AlertListView(ListView):
 template_name = 'alerts_list.html'
 model = Alert

Djagios – a Nagios Clone in Django

[92]

Remember to import ListView from django.views.generic and Alert from
data_collector.models. Next, create the alerts_list.html template file in
data_collector/templates and give it the following content:

{% extends "base.html" %}

{% block content %}
<h1>Defined Alerts</h1>

{% if object_list %}
<table>
 <tr>
 <th>Data Type</th>
 <th>Min Value</th>
 <th>Max Value</th>
 <th>Node Name</th>
 <th>Is Active</th>
 </tr>

 {% for alert in object_list %}
 <tr>
 <td>{{ alert.data_type }}</td>
 <td>{{ alert.min_value }}</td>
 <td>{{ alert.max_value }}</td>
 <td>{{ alert.node_name }}</td>
 <td>{{ alert.is_active }}</td>
 </tr>
 {% endfor %}
</table>
{% else %}
<i>No alerts defined</i>
{% endif %}
{% endblock %}

Finally, edit djagios/urls.py. Import the new view, and then add this to the
URL patterns:

url(r'^alerts/$', AlertListView.as_view(), name='alerts-list'),

To test it out, open http://127.0.0.1:8000/alerts/. You should see the No
Alerts Defined message. The list view is pretty basic. The ListVew generic view
renders a template with all the objects for the specified model, providing the list of
objects in the object_list template context variable. Next, let's look at the view to
create new alerts.

Chapter 3

[93]

In the data_collector/view.py file, first import the following:

from django.core.urlresolvers import reverse
from django.views.generic import CreateView

Then add this view class:

class NewAlertView(CreateView):
 template_name = 'create_or_update_alert.html'
 model = Alert
 fields = [
 'data_type', 'min_value', 'max_value', 'node_name', 'is_
active'
]

 def get_success_url(self):
 return reverse('alerts-list')

Nothing new in the view code. The template code is quite simple as well. Put this
code in data_collector/templates/create_or_update_alert.html:

{% extends "base.html" %}

{% block content %}
{% if object %}
<h1>Update Alert</h1>
{% else %}
<h1>New Alert</h1>
{% endif %}

<form action="" method="post">{% csrf_token %}
 {{ form.as_p }}
 <input type="submit" value="{% if object %}Update{% else %}
Create{% endif %}" />
 Cancel
</form>
{% endblock %}

As in previous chapters, we use the object context variable to decide if this template
was used from CreateView or UpdateView and change some elements based on this.
Otherwise, it's pretty straightforward. Let's see the code for UpdateView as well:

class EditAlertView(UpdateView):
 template_name = 'create_or_update_alert.html'
 model = Alert
 fields = [

Djagios – a Nagios Clone in Django

[94]

 'data_type', 'min_value', 'max_value', 'node_name', 'is_
active'
]

 def get_success_url(self):
 return reverse('alerts-list')

It's an almost identical copy of the previous create view. Make sure that you have
imported the UpdateView generic view. We still need to add both of these views to
our URL configuration. In the djagios/urls.py file, import both NewAlertView and
EditAlertView and add these patterns:

url(r'^alerts/new/$', NewAlertView.as_view(), name='alerts-new'),
url(r'^alerts/(?P<pk>\d+)/edit/$', EditAlertView.as_view(),
name='alerts-edit'),

Before we can test these views, we should add links to allow users to get to these
views. Modify the alerts_list.html template to match this code:

{% extends "base.html" %}

{% block content %}
<h1>Defined Alerts</h1>

{% if object_list %}
<table>
 <tr>
 <th>Data Type</th>
 <th>Min Value</th>
 <th>Max Value</th>
 <th>Node Name</th>
 <th>Is Active</th>
 </tr>

 {% for alert in object_list %}
 <tr>
 <td>{{ alert.data_type }}</td>
 <td>{{ alert.min_value }}</td>
 <td>{{ alert.max_value }}</td>
 <td>{{ alert.node_name }}</td>
 <td>{{ alert.is_active }}</td>
 <td>Edit</
td>
 </tr>
 {% endfor %}
</table>

Chapter 3

[95]

{% else %}
<i>No alerts defined</i>
{% endif %}
<p>Add New Alert</p>
{% endblock %}

Two new lines, which are highlighted, have been added. Now, let's see what our
alerts list page looks like. As before, open http://127.0.0.1:8000/alerts/ in
your browser. You should see a page as follows:

Djagios – a Nagios Clone in Django

[96]

Click on the Add New Alert link and you should see the form to create an alert. Fill
it in with some sample data and click on the Create button. If your form didn't have
any errors, you should be back to the alerts list view and your screen should now list
the new alert, as shown in the following screenshot:

All that's left now is to allow users the option to delete their alerts. For this, create
a view that subclasses from the generic DeleteView, remembering to import
DeleteView from django.views.generic first. Here's the code you should put in
data_collector/view.py:

class DeleteAlertView(DeleteView):
 template_name = 'delete_alert.html'
 model = Alert

 def get_success_url(self):
 return reverse('alerts-list')

Create a new data_collector/templates/delete_alert.html template:

{% extends "base.html" %}

{% block content %}
<h1>Delete alert?</h1>
<p>Are you sure you want to delete this alert?</p>
<form action="" method="post">{% csrf_token %}
 {{ form.as_p }}

Chapter 3

[97]

 <input type="submit" value="Delete" />
 Cancel
</form>
{% endblock %}

Next, import DeleteAlertView in djagios/urls.py and add this new pattern:

url(r'^alerts/(?P<pk>\d+)/delete/$', DeleteAlertView.as_view(),
name='alerts-delete'),

Finally, let's add a link to the delete view from the alerts list page. Edit the alerts_
list.html template and add this line right after the Edit link:

<td>Delete</td>

Now when you open the alerts list view, you should see a Delete link. Your screen
should look similar to the following screenshot:

If you click on the Delete link, you should see a confirmation page. If you confirm
the deletion, you will see that your alert will be gone from the list page. These are
all the views that we will need to manage alerts. Let's move on to detecting alert
conditions and showing them in the status page.

Djagios – a Nagios Clone in Django

[98]

Showing triggered alerts on the status
page
As I said before, we want our users to see any nodes that have an alert triggered
highlighted on the status page. Say that they defined an alert for when the disk usage
on any node goes beyond 0.85 and the latest data point that we have for dbmaster
disk usage has the value 0.9. When the user visits the status page, we would like the
row showing the disk usage of the dbmaster node to be highlighted in red so that the
user is immediately aware of the alert and is able to take actions to correct this.

Change StatusView in data_collector/view.py to match the following code. The
changed bits are highlighted:

class StatusView(TemplateView):
 template_name = 'status.html'

 def get_context_data(self, **kwargs):
 ctx = super(StatusView, self).get_context_data(**kwargs)

 alerts = Alert.objects.filter(is_active=True)

 nodes_and_data_types = DataPoint.objects.all().values('node_
name', 'data_type').distinct()

 status_data_dict = dict()
 for node_and_data_type_pair in nodes_and_data_types:
 node_name = node_and_data_type_pair['node_name']
 data_type = node_and_data_type_pair['data_type']

 latest_data_point = DataPoint.objects.filter(node_
name=node_name, data_type=data_type).latest('datetime')
 latest_data_point.has_alert = self.does_have_alert(latest_
data_point, alerts)

 data_point_map = status_data_dict.setdefault(node_name,
dict())
 data_point_map[data_type] = latest_data_point

 ctx['status_data_dict'] = status_data_dict

 return ctx

 def does_have_alert(self, data_point, alerts):

Chapter 3

[99]

 for alert in alerts:
 if alert.node_name and data_point.node_name != alert.node_
name:
 continue

 if alert.data_type != data_point.data_type:
 continue

 if alert.min_value is not None and data_point.data_value <
alert.min_value:
 return True
 if alert.max_value is not None and data_point.data_value >
alert.max_value:
 return True

 return False

What we have done here is to check, for each data point that we retrieve, whether it
triggers any alert. We do this by comparing the min and max values in every alert
with the data point value, but only if the data point data type and node name match
those in the alert. If the data point value is outside of the alert range, we mark the
data point as having triggered an alert.

This is another technique often used by me in a number of projects I've done. As
models are just Python objects, you can attach extra information to them on the fly.
No need to define has_alert on the DataPoint class. Just add it to the objects when
needed. Be careful though. It's not a good programming practice to do something
like this, because someone trying to understand the DataPoint class will have no
idea that the has_alert attribute event exists unless they look at the code for the
view class. As we only use this attribute in the view and template, it's fine for us.
However, if we passed the DataPoint objects around and more code started using
this attribute, it would be much better to define it on the class itself so that anyone
looking at the class code would know it existed.

Djagios – a Nagios Clone in Django

[100]

We need to modify the status.html template as well to make use of the has_alert
attribute that we have added to the data points. Change it to match the following
code. As before, the modified portions have been highlighted:

{% extends "base.html" %}

{% load humanize %}

{% block content %}
<h1>Status</h1>

<table>
 <tbody>
 <tr>
 <th>Node Name</th>
 <th>Metric</th>
 <th>Value</th>
 <th>Last Updated</th>
 </tr>

 {% for node_name, data_type_to_data_point_map in status_data_
dict.items %}
 {% for data_type, data_point in data_type_to_data_point_
map.items %}
 <tr {% if data_point.has_alert %}class="has-alert"{% endif
%}>
 <td>{% if forloop.first %}{{ node_name }}{% endif %}</
td>
 <td>{{ data_type }}</td>
 <td>{{ data_point.data_value }}</td>
 <td>{{ data_point.datetime|naturaltime }}</td>
 </tr>
 {% endfor %}
 {% endfor %}
 </tbody>
</table>

<style type="text/css" media="all">
 tr.has-alert td:not(:first-child) {
 color: red;
 }
</style>
{% endblock %}

Chapter 3

[101]

That's it. In order to test it out, you need to create some Alert objects that will be
triggered by DataPoints in your database. For the sample data that I used, I created
one Alert object with the disk_usage data type and a max value of 0.5. After
creating the alert, my status screen highlighted the nodes that triggered the alert.
You screen will show something similar:

To test whether our highlighting code works correctly, I added another data point
for the dbmaster disk usage metric, using the following command:

> python manage.py sample_data dbmaster disk_usage 0.2

After refreshing the status page, the alert condition for the dbmaster node
disappeared. You should do a similar test to see for yourself.

That's it! It's been hard work, but our monitoring tool is now starting to shape up.
We have a status page that shows the latest node statuses, highlighting any that
have alerts. The highlights disappear once the alert condition is resolved. We have
a page to manage our alerts as well. All in all, we can say that the user-facing parts
of the application are almost finished. One thing that would be pretty helpful is a
navigation bar. Add this just after the start of the body tag in templates/base.html:

 Home
 Alerts

Djagios – a Nagios Clone in Django

[102]

Refresh the status page and you should see a simple navigation menu at the top of
the page.

Accepting data from remote systems
Now that users can see the status of their infrastructure and manage alerts, it's time
to move on to the next step: getting data from real sources instead of using Django
management commands to input sample data.

To do so, we will create an API endpoint that accepts data from remote systems. An
API endpoint is just a fancy name for a Django view that doesn't have a template to
render. The response from an API endpoint is typically either just a 200 OK status or
a JSON response. API endpoints are not meant to be used by human users. Instead,
they are meant to be used by different software systems to connect together and
share information.

The API endpoint that we need to create will be a simple view that accepts a POST
request with all the information needed to create a new DataPoint object. To make
sure that malicious users can't spam our database with random data, we will also
add a simple authentication mechanism to our API endpoint so that it will accept
data only from authorized sources.

To create an API endpoint, we'll use the django.view.generic.View class,
implementing only the POST handler. To parse the request data, we'll be creating a
model form on the fly. Edit data_collector/views.py and add the following code:

from django.forms.models import modelform_factory
from django.http.response import HttpResponse
from django.http.response import HttpResponseBadRequest
from django.http.response import HttpResponseForbidden
from django.views.generic import View

class RecordDataApiView(View):
 def post(self, request, *args, **kwargs):
 # Check if the secret key matches
 if request.META.get('HTTP_AUTH_SECRET') != 'supersecretkey':
 return HttpResponseForbidden('Auth key incorrect')

 form_class = modelform_factory(DataPoint, fields=['node_name',
'data_type', 'data_value'])
 form = form_class(request.POST)
 if form.is_valid():

Chapter 3

[103]

form.save()
return HttpResponse()

else:
return HttpResponseBadRequest()

There are a couple of new things here that we need to look at. Firstly, we have used
the META attribute on the request object to access a request. If you have knowledge of
how the HTTP protocol works, you should be familiar with headers. If not, a good
explanation is available at https://www.jmarshall.com/easy/http/. Explaining
headers in detail is beyond the scope of this book, but simply stated, headers are
extra pieces of information added to an HTTP request by the client. We'll see how to
add them in the next section when we test our API view.

Django automatically normalizes all header names and adds them to the META
dictionary. Here, we are using a custom header Auth-Secret to make sure that
only clients that have our secret key can use this view.

More information about what goes into the META dictionary
and how it is consturcted is available in the Django docs at
https://docs.djangoproject.com/en/stable/ref/
request-response/#django.http.HttpRequest.META.

The next thing that we need to look at is the modelform_factory function. It's
a neat little function provided by Django that returns a ModelForm subclass for
the given model. You can customize the model form to a certain degree using the
arguments to this function. Here, we limit the number of fields that can be edited.
Why use a model form in the first place?

What we wanted from the API endpoint was a method to create new DataPoint
models. Model forms provide exactly the functionality that we need to do this plus
they handle data validation for us. We could have created a separate model form
class in a forms.py file and then used that in our view as we have done before, but
there are two reasons we didn't.

Firstly, this was the only place in our code where we use a model form for the
DataPoint method. If we needed to use it in other places as well, defining the model
form in a single place would be the best programming practice. However, as we
don't, we can get away with defining the model form dynamically where we need it.

Secondly, we didn't need any customizations to the model form class. If we wanted
to, say, override the save method as we've done previously, we would have been
forced to define the class instead of using the modelform_factory method.

https://www.jmarshall.com/easy/http/
https://docs.djangoproject.com/en/stable/ref/request-response/#django.http.HttpRequest.META
https://docs.djangoproject.com/en/stable/ref/request-response/#django.http.HttpRequest.META

Djagios – a Nagios Clone in Django

[104]

After getting the model form class, we use it like any model form class to either
create the new data point or return a response indicating that the data validation
failed. To make our new endpoint available via a URL, import the following in
djagios/urls.py:

from django.views.decorators.csrf import csrf_exempt
from data_collector.views import RecordDataApiView

Then, add this URL pattern:

url(r'^record/$', csrf_exempt(RecordDataApiView.as_view()),
name='record-data'),

The csrf_exempt decorator is used because, by default, Django uses CSRF
protection for POST requests. However, this is usually used on web forms, not API
endpoints. So we have to disable it, otherwise Django won't allow our POST request
to succeed. Now, let's look at how to test out our new view.

You can get more information about CSRF protection
provided by Django at https://docs.djangoproject.
com/en/stable/ref/csrf/.

Testing API endpoints
You can't simply test this API endpoint in your browser because it's a POST request
and there's no template that can render a form in your browser. However, a lot
of great tools are available to make manual POST requests. The one that I suggest
you use is Postman. It's a Google Chrome app, so you don't need to install any
dependencies. As long as you have Google Chrome installed on your machine, you
can get Postman from https://www.getpostman.com/. After you have installed
it, start it up and you should see a screen similar to the following one. Don't
worry if your Postman screen isn't exactly the same. It can be that the version you
downloaded is a newer one. The main parts of Postman should be the same.

https://docs.djangoproject.com/en/stable/ref/csrf/
https://docs.djangoproject.com/en/stable/ref/csrf/
https://www.getpostman.com/

Chapter 3

[105]

Using Postman is simple. I will walk you through the entire process step by step,
including an image for each step to make it clear what I mean. At the end of this
process, we should be able to use our API endpoint to generate a new data point.

As a side note, if you are using a Linux- or Unix-based OS, such as Ubuntu or Mac
OS X, and are more comfortable using the command line, you can use the curl
utility to make the POST request. It is usually faster for simpler requests. To make
the same request using curl as the one I demonstrate here in Postman, type this on
your command prompt:

> curl http://127.0.0.1:8000/record/ -H 'Auth-Secret: supersecretkey' -d
node_name=web01 -d data_type=disk_usage -d data_value=0.2

Djagios – a Nagios Clone in Django

[106]

To make this request using Postman, perform the following steps:

1. Select the request type. We want to make a POST request, so select POST
from the drop-down menu:

2. Enter the URL you want to make the request to. In our case, it is
http://127.0.0.1:8000/record/:

Chapter 3

[107]

3. Add our custom authentication header. Open up the Headers tab and add
the Auth-Secret header with a value of supersecretkey:

4. Finally, add our POST parameters to the Body section. The sample data that I
used was as follows:

 ° node_name: web01
 ° data_type: disk_usage
 ° data_value: 0.72

Djagios – a Nagios Clone in Django

[108]

That's it. Our request is now set up. Click on the Send button next to the URL textbox
and you should see an empty response below the body parameters. To confirm that
the request worked properly, look at the status code of the response.
It should be 200 OK:

Open up the status page for our application at http://127.0.0.1:8000/ and you
should see the latest data point value displayed there. That's it, we're done!

As explained at the start of this section, you can also use
command-line tools such as curl to upload data to the
API. Using such tools, you can come up with shell scripts
that automatically update the web app with real data from
your computer systems. This is how Nagios and a lot of data
monitoring tools operate as well. The servers have API endpoints
that listen for data, and then simple scripts gather and upload
data to the servers from the client nodes.

Chapter 3

[109]

Summary
This was a pretty demanding chapter, and you learned a lot of new information.

For starters, we looked at Django management commands. They are an important
feature of Django. All Django commands that you run, such as python manage.py
startapp, are management commands as well, so you should already know how
powerful they can be. In bigger projects, you almost always have a few management
commands to automate your tasks for you.

We also looked at how Django creates a string representation of our models using
the __str__ method on our model class. It's not just used when printing to the
console either. Any time you try to use your model objects as strings, even in your
templates, Django uses this representation, so it's important to have a good format
that can immediately give you all the important information about an object.

This chapter also introduced advance query methods, specifically the distinct and
values methods that allow you to issue more complicated SQL queries to get data in
exactly the format you want from the database. However, this is just the beginning.
In later chapters, we might need to use more complicated query methods. You might
want to look at the Django documentation for queryset methods at https://docs.
djangoproject.com/en/stable/ref/models/querysets/ to learn about more
methods of querying the databases that Django provides.

In addition to getting data from the database in a format that we wanted, we also
looked at preparing a somewhat complicated data structure with the data to pass all
the required information to templates, and then saw how to use that data structure in
our templates.

Often, you have complicated data validation rules that you need to ensure are
passing before you can save data to a database. We looked at how to achieve
this in this chapter by overriding the save method of our model classes.

Finally, you learned how to create simple API endpoints and how to test them
using curl or Postman. Overall, this was a big chapter that introduced a lot of
new concepts that will be used in later chapters.

https://docs.djangoproject.com/en/stable/ref/models/querysets/
https://docs.djangoproject.com/en/stable/ref/models/querysets/

[111]

A Car Rental App
For this chapter, our hypothetical client is a car rental firm. They want us to create
a website that their customers can visit, look at the available inventory of cars, and
finally book one of those cars. The client also wants an admin panel where they can
manage the inventory and booking requests.

We will be creating this web app in (drum rolls) Django! You should be confident
enough in Django by now that the frontend of the web app will not be a challenge for
us. The focus of this chapter will be on customizing the Django built-in admin app to
fit the requirements of our client. Most of the time when you need an administration
panel for the web apps you create, you can do pretty much everything you need
just by customizing the Django admin. Sometimes the requirements are complex
enough that you need to create a custom administration panel, but that is seldom the
case. So the knowledge we gain here will prove extremely useful to you in your web
development career.

The main takeaways from this chapter will be as follows:

• Customizing Django admin model forms
• Adding custom filters to the admin objects list page
• Overriding and customizing Django admin templates

Code pack
As I have mentioned, by now you should have a firm grasp of creating the
components for a basic web app, including the views, templates, models, and
URL configurations, so we will not be discussing these parts of the web app in this
chapter. The code pack for this chapter is thus much bigger that the previous ones.
I have created all the models and some of the views, templates, and URLs. We will
mostly be focusing on how to tame the Django admin app to suit our needs.

A Car Rental App

[112]

I could not think of a fancy name for this project, so I just called the project carrental. As
always, create a new virtual environment, install Django in this environment, and run
the migrate command to initialize the database. For this project, we need to install one
more Python package, Pillow, which is an image manipulation library for Python. To
install it, run the following command with the virtual environment activated:

> pip install Pillow

This might take a minute or so as some compilation may be required. Installing
Pillow is a bit more complicated because it relies on third-party libraries. If the install
command fails for you, take a look at the documentation on installing Pillow at
https://pillow.readthedocs.org/en/3.0.x/installation.html. This page has
step-by-step guides for each operating system, and following the guide there, you
should be able to install Pillow easily. Just remember that you need the library to run
and work on the car rental application.

Once Pillow has been installed, run the development server using the runserver
command and open up the web app at http://127.0.0.1:8000. You should
see the following page:

Fixtures
Our database is empty, but right now we don't have any views to add objects to our
database. We could do what we did in the last chapter and create a management
command, but there's an easier way. I have added three Car objects to the database
and then created a dump of this data that you can load. A data dump like this is
called a fixture. We'll discuss fixtures in a bit; for now, let's see how to use them to
load data in our database.

https://pillow.readthedocs.org/en/3.0.x/installation.html

Chapter 4

[113]

On your command line, run this command in the project root with the virtual
environment activated:

> python manage.py loaddata frontend/fixtures/initial.json

Installed 3 object(s) from 1 fixture(s)

Refresh the web page and now you should see a web page similar to this:

Now we have three cars in our database. You should play around the app for a
while. It has a details page for each car and allows you to submit a booking request
from the details page.

A Car Rental App

[114]

If you try to use the booking form, note that the start and end dates
need to be in the YYYY-MM-DD format. For example, 2016-12-22 is
a valid date format accepted by the form.

To learn more about fixtures, take a look at the Django documentation at
https://docs.djangoproject.com/en/stable/howto/initial-data/. Fixtures
are a feature of Django that let you dump the data in your database in simple text
files using a number of formats. The most commonly used format is JSON. Once you
have a fixture file, you can then use it to populate your database with data, as we did
here, using the loaddata command.

Before we move on to admin customization, I want to talk about a couple of
new things that I have used in the models for this app. You should take a look at
frontend/models.py to see how our models are configured, and then read the
following information, which explains the new concepts.

Image and File fields
I'd like to take a minute to introduce the ImageField model field. This is the first
time we are seeing it, and using it is a bit different than other model fields. Here is
our Car model that uses this field:

class Car(models.Model):
 name = models.CharField(max_length=100)
 image = models.ImageField(upload_to='car_images')
 description = models.TextField()
 daily_rent = models.IntegerField()

 is_available = models.BooleanField()

 def get_absolute_url(self):
 return reverse('car-details', kwargs={'pk': self.pk})

All of the information in this section about ImageField also
relates to FileField.

ImageField is special and different from all the other database model fields that
we have looked at for a few reasons. Firstly, it needs the Pillow image manipulation
library to work, which is why we had to install it at the start of the chapter. If we had
tried to run our application without Pillow installed, Django would have complained
and never started the development server.

https://docs.djangoproject.com/en/stable/howto/initial-data/

Chapter 4

[115]

Secondly, ImageField is one of the few Django database model fields that relies on
having a few settings configured before it can be used. If you look at the carrental/
settings.py file near the end, you should see that I have set the MEDIA_ROOT and
MEDIA_URL variables.

Lastly, you can see that we passed a upload_do parameter to ImageField and set
it to car_images. Both FileField and ImageField database model fields require
this parameter. This parameter is the name of the folder, relative to the configured
MEDIA_ROOT, where any files being uploaded to your application through the Image/
File fields will be saved. This is a concept that took me some time to figure out, so I'll
explain it a bit further.

You should see that I have MEDIA_ROOT set to the media folder in the project root.
If you take a look in the media folder, you should see another folder called car_
images. This is the same name that we passed in the upload_to parameter. This is
what I meant when I said that the upload_to parameter is a folder name relative to
the configured media root.

One thing I had trouble understanding when I started using Django
was the difference between MEDIA_ROOT and STATIC_ROOT. To
put it simply, MEDIA_ROOT is where all the files uploaded by the
site users live. These files are uploaded using the Image/File fields
with forms.
STATIC_ROOT is where you put the static files associated with your
web applications. These include CSS files, JavaScript files, and any
other static files that are served as is. These have nothing to do with
the Django part of your web application; these are delivered to the
user as is, usually via a web server such as nginx.

So now that you have everything configured, how do you upload files using
ImageField? Well, Django supports a couple of different ways to do this. In
our code, we will use ModelForm, which handles all the details for us. There are
other ways as well. If you want further details, you should look at the Django
documentation dealing with file uploads. It's quite comprehensive and lists all the
different ways you can handle file uploads. You can refer to it at https://docs.
djangoproject.com/en/stable/topics/http/file-uploads/.

https://docs.djangoproject.com/en/stable/topics/http/file-uploads/
https://docs.djangoproject.com/en/stable/topics/http/file-uploads/

A Car Rental App

[116]

get_absolute_url
One more thing that we are seeing for the first time in the Car model is get_
absolute_url. There is nothing special about the implementation. It's just a class
method that returns a URL, which it builds using the reverse function and the
primary key of the object. This isn't anything new. We have been creating URLs
like this for detail pages since the first chapter. What's interesting to note here is
that Django assigns special meaning to the get_absolute_url method on a model
class. There are a number of places where Django will automatically use the return
value of the get_absolute_url method if the method exists on a model object. For
instance, the CreateView generic method uses it. If you do not provide a success_
url attribute and a custom get_success_url method on the view class, Django will
try to get the URL to redirect from the get_absolute_url method on the newly
created object if the method is defined in the model class.

Django also uses this method in the admin app, as we'll see later on. If you are
interested, you can take a look at the documentation for it:

https://docs.djangoproject.com/en/stable/ref/models/instances/#get-
absolute-url/.

The Django admin app
Now that we have looked at what new features were used in the code pack, let's
move on to the main topic for this chapter—the Django admin app. The admin app
is quite possibly one of the main reasons for the popularity of Django over other
similar web frameworks. It is the embodiment of the batteries included nature of
Django. With minimal configuration, the admin app provides a fully featured and
extremely tailored CMS, enough to rival big names such as WordPress and Drupal.

In this chapter, you will learn how easy it is to configure and customize the admin
to get most of the functionality that you will want in the admin panels of your web
apps. Let's start by fixing the most immediate problem for our fictional client, a car
rental business owner, which is the ability to add and edit car details.

When you start a new application, Django by default creates an admin.py file in
the application folder. Change the frontend/admin.py file in our project to match
this content:

from django.contrib import admin
from frontend.models import Car
admin.site.register(Car)

https://docs.djangoproject.com/en/stable/ref/models/instances/#get-absolute-url/
https://docs.djangoproject.com/en/stable/ref/models/instances/#get-absolute-url/

Chapter 4

[117]

That's it. Really! Three lines in total and you get the ability to edit and add Car
objects to your database. That's the power of Django, right there in those three lines.
Let's test it out. In your browser, visit http://127.0.0.1:8000/admin and you
should see a page similar to the following one:

Don't worry if your admin looks slightly different. Django updates
the theme for the admin every once in a while and, depending
on which version of Django you are using, your admin may look
slightly different. However, all the functionality will be there and
will almost always have the same interface layout.

Oops, there is one thing that we left out. We didn't create a user to log in with.
This is easily fixable. In the command line, run this command with the virtual
environment activated:

> python manage.py createsuperuser

A Car Rental App

[118]

Just follow along with the prompts to create a new user. Once you have created the
user, use it to log in to the admin. After logging in, you should see something similar
to this:

A few things to note in this screen. First, Django will by default add links to manage
Groups and Users. Secondly, any models that we configure to show up in the admin
are grouped by their application name. Thus, the link to manage Cars shows up
under the label for the app that defines the model, Frontend.

If you pay close attention, you might note that the admin lists the
plural name of our Car model. How does it know the plural name?
Well, it simply adds an 's' in front of our model name. In a lot of
cases, this doesn't work, for instance, if we had a model called Bus.
For cases like this, Django allows us to configure the plural name for
a model.

Chapter 4

[119]

Let's try editing one of the car objects that we have in our database. Click on the Cars
link and you should see a screen similar to the following one:

The list doesn't look very useful. We have no idea which car object is which. We'll fix
this in a bit. For now, just click on the top car object in the list, and you should see a
page where you can edit the details for that object:

A Car Rental App

[120]

The Django admin docs refer to this list as changelist. I will just call
it the list view in this chapter.

Let's change the name of the car. I changed Dodge Charger to My New Car Name.
Scroll to the bottom of the page after changing the name and click on save. To make
sure that our changes were actually saved, open the home page for our app at
http://127.0.0.1:8000/ and you'll see that the car you edited will have the new
name displayed.

Let's try something more complicated—adding a new car! Click on the ADD CAR
button on the right-hand side of the screen and fill in the details however you want.
Just be sure to select the is_available checkbox; otherwise, the new car won't show
up on the home page. I filled up the form as shown in this screenshot:

Chapter 4

[121]

I also downloaded an image for the car from Google Images and selected it for the
Image field. Click on the save button and visit the home page again. The new car you
added should show up at the end of the list:

As I mentioned at the start of this section, the power of the Django admin is one of
the main reasons for Django's popularity. By now you should see why. In three lines,
we have a complete and working, albeit not very pretty, content management system
that the client can use to edit and add cars to their site.

However, in its current form, the admin looks like a quick hack job. The client will
probably not be very happy with this. They can't even see which car they are about
to edit before the edit page opens up. Let's fix this first. We will come back to the
code we just wrote for the admin in a bit.

A Car Rental App

[122]

Showing the car names
If you remember in the previous chapter, we looked at the __str__ method on a
model class. I also said that Django uses this method wherever it needs to display a
string representation of the model. Well, that's exactly what the Django admin does
in the list view for the Car model: it displays the string representation for it. Let's
make the list more user friendly by changing the string representation to something
that the user can understand. In the frontend/models.py file, add this __str__
method to the Car model class:

def __str__(self):
 return self.name

Let's see what the list of Car objects looks now:

That's a much better user experience as the user can now see which car they are
about to edit.

Chapter 4

[123]

Booking management
Let's leave the car admin section as it is for now and move on to the admin for
Booking model. Every time a visitor to the site submits the Book Now form
accessible from the car details page, we create a new Booking model record. We
need a way to allow the client to look at these booking enquiries, filter them based on
some criteria, and accept or reject them. Let's look at how to do this. For a start, let's
make sure that our The Booking model shows up as an item in our admin panel. To
do so, add these two lines to your frontend/admin.py file:

from frontend.models import Booking
admin.site.register(Booking)

If you take a look at the admin panel now at the URL http://127.0.0.1:8000/
admin/, you should see that the Booking model has been added as a link. Open up
the link and you should see a list page similar to the one for the Car model that we
saw before. If you had submitted any booking requests, they should show up in the
list. It's not pretty, but at least it works. Let's make it better. For one, we need to give
the administrators more information about each booking enquiry. It will be good
if we can show the customer's name, booking start and end dates, and whether the
booking has already been approved.

While we could use the __str__ method again to create a string with all this
information, so much information in one column isn't a pretty sight. Additionally,
we would be missing out on the sorting capabilities that the Django admin provides
us with for each model list page.

Let's look at how we can display multiple fields from our model in the list view.
Along the way, you will also learn a bit more about how the admin works internally.

A peek behind the curtain
If you take a minute to think about what we have been able to achieve with just a
couple of lines of code, you would probably be amazed at the power of the Django
admin. How is this power achieved? Well, the answer to that is very complicated.
Even I don't yet understand fully how the admin app works. It is a very complex
piece of programming.

Even though the admin app is quite complex, it is still Python code.
If you're feeling adventurous or just generally bored one day, try to
look at the source code for the admin app. It's in the VIRTUAL_ENV/
lib/python3.5/site-packages/django/contrib/admin
folder. Replace VIRTUAL_ENV with the folder that holds the virtual
environments you create for your projects.

A Car Rental App

[124]

One of the main components of the admin system is the ModelAdmin class. Just as
the models.Model class allows us to define complicated database models using a
very simple class definition, the ModelAdmin class allows us to customize the admin
interface for a model in great detail. Let's see how we can use it to add extra fields
to our list of booking enquiries. Change the frontend/admin.py file to match the
following contents:

from django.contrib import admin

from frontend.models import Car
from frontend.models import Booking

class BookingModelAdmin(admin.ModelAdmin):
 list_display = ['customer_name', 'booking_start_date', 'booking_
end_date', 'is_approved']

admin.site.register(Car)
admin.site.register(Booking, BookingModelAdmin)

Now if you open up the admin list page for the Booking model, you should see
something similar to this with all the important fields displayed:

Chapter 4

[125]

This presents the user with a very nice tabular view. The client now sees all of the
relevant details and has the ability to sort the table according to their needs. Django
is also helpful enough to show the date values in a nice format. Let's look at what we
have done here.

We first created a ModelAdmin subclass called BookingModelAdmin. We then
configured the fields that we would like to show in the list page using the list_
display attribute. Finally, we need to associate our ModelAdmin class with the
Booking model class so that the admin can customize itself according to our
requirements. We do that using the following:

admin.site.register(Booking, BookingModelAdmin)

If you look at how we register the Car model, it looks similar to the Booking model:

admin.site.register(Car)

That's because it is the same thing. If you don't provide a custom ModelAdmin
subclass, Django uses the default options, which is what we see with the Car model.

Improving the user experience
While we have improved upon the base admin interface quite a bit just by showing
the relevant fields on the list page, we can do more. Let's look at some actions that an
administrator might want to take for the booking enquiries that the site receives:

• Viewing only the booking enquiries that have been approved or the ones that
have not yet been approved

• Searching for a booking by customer name
• Approving or not approving a booking enquiry quickly
• Selecting multiple booking enquiry objects and sending e-mails to the

customers about their approval/disapproval

Filtering objects
For our first feature, we want to allow the user filtering on the displayed objects.
There should be a filter on the page that allows them to see only bookings that have
been approved or not approved. To do so, the Django admin provides you with
a list_filter attribute on the ModelAdmin subclass. The list_filter attribute
holds a list of fields that you can filter on. In our BookingModelAdmin class, add the
following list_filter attribute:

list_filter = ['is_approved']

A Car Rental App

[126]

That's it. Once you have added this line to BookingModelAdmin, open up the
bookings list page; on the right-hand side, you should see a new sidebar where you
can select which bookings you want to view—only those that are approved or those
that are not approved, or both. It should look similar to the following screenshot:

Searching for objects
Just as the Django admin has built-in support for filters, it also provides an
easy-to-use way to add search. We want our client to be able to search bookings
by the customer name field. To do so, add the search_fields attribute to the
BookingModelAdmin class:

search_fields = ['customer_name']

That's it. Once you have added this attribute, you should see a search box at the top
of the booking objects list. Type in a few sample queries and see how it works. If you
have more than one field that you want to make searchable, you can add that to the
list of search_fields as well.

If you have more than one field name in the list, Django will do an OR search. This
simply means that for a given search, ALL records that have at least ONE matching
field value will show.

Quick edit
The third feature on our list is to allow admins to quickly mark a booking as
approved/not approved. The Django admin provides another built-in feature that
we can configure to get what we need. In your BookingModelAdmin class, add the
list_editable attribute:

list_editable = ['is_approved']

Chapter 4

[127]

If you open the booking list page now, you will notice that instead of the icon that
was shown in the is_approved column before, you now have a checkbox and a Save
button added at the end of the list. You can select the checkboxes for bookings you
want to approve and deselect it for the ones you want to disapprove, and click on
Save. Django will then save your changes to multiple objects in one go.

By now, our Booking list page looks similar to the following screenshot:

Admin actions
The last thing on our list of features is the ability for the user to select multiple
booking enquiry objects and send out an e-mail to customer_email for each
Booking object containing the approval status of the booking. For now, we will just
print out the e-mail on the console to test this feature out. We will look at sending
e-mails from Django in a later chapter.

Until now, most of the editing that we did with the Django admin was on a per
object basis. You select an object, edit it, then save it, and start over. Except for
the last feature (quick edit), we have been editing objects one at a time. However,
sometimes you want the ability to perform a common action on multiple objects, like
we need with our e-mail feature. To implement features like these, the Django admin
provides Admin Actions.

Admin actions are methods on the ModelAdmin class that are passed a list of objects
that the user has selected. These methods can then take some action on each of these
objects and return the user to the changelist page again.

A Car Rental App

[128]

Actually, I am simplifying this a bit. Admin actions don't need to be
methods on ModelAdmin. They can be standalone functions as well.
However, it's usually a good programming practice to declare them
in ModelAdmin that uses them, so that's how we will do it here.
You can find more details in the documentation for admin actions
at https://docs.djangoproject.com/en/stable/ref/
contrib/admin/actions/.

The Django admin by default provides one action: delete. If you open the Action
drop-down at the top of the list of bookings, you should see this menu:

To define an admin action, you first need to create a method on the ModelAdmin
class and then add the name of the method to the actions attribute on the class.
The actions attribute is a list like all the other attributes that we have seen till now.
Modify the BookingModelAdmin to match the following code:

class BookingModelAdmin(admin.ModelAdmin):
 list_display = ['customer_name', 'booking_start_date', 'booking_
end_date', 'is_approved']
 list_filter = ['is_approved']
 list_editable = ['is_approved']
 search_fields = ['customer_name']

 actions = ['email_customers']

 def email_customers(self, request, queryset):
 for booking in queryset:
 if booking.is_approved:
 email_body = """Dear {},
 We are pleased to inform you that your booking has been approved.
Thanks
""".format(booking.customer_name)
 else:
 email_body = """Dear {},
 Unfortunately we do not have the capacity right now to accept your
booking.
Thanks
""".format(booking.customer_name)

 print(email_body)

https://docs.djangoproject.com/en/stable/ref/contrib/admin/actions/
https://docs.djangoproject.com/en/stable/ref/contrib/admin/actions/

Chapter 4

[129]

Let's try it out before looking into what the code does. Refresh the changelist page
for the Booking model and look at the Action drop-down. It should have a new
option, Email customers:

To test it out, select some booking objects from the list, select the Email customer
action from the drop-down menu, and click on the Go button next to the drop-down.
After the page loads, look at your console. You should see something similar to
what's shown here:

Dear Jibran,
 We are pleased to inform you that your booking has been approved.
Thanks

[18/Jan/2016 09:58:05] "POST /admin/frontend/booking/ HTTP/1.1" 302 0

Let's look at what we've done here. As I said before, an admin action is just a method
on the ModelAdmin class that accepts a request object and queryset as parameters,
and then performs the required operation on queryset. Here, we create an e-mail
body text for each booking object and print it to the console.

UX improvements
While the system is now good enough for our client to use, there is definitely room
for improvement. For a start, the user isn't given any feedback whether the Email
customers action was performed. Let's fix this first. Add this line to the end of the
email_customers method:

self.message_user(request, 'Emails were send successfully')

Try using the e-mail action again. Now when the page reloads, you see a nice success
message that assures the user that the action they wanted was completed. Small
improvements in UX go a long way in helping the user navigate and successfully use
your product.

Secondly, let's look at naming the action. For this action, Django comes up with a
pretty good name—Email customers. It's simple and to the point. However, it's not
as clear as it should be. It doesn't convey to the user what e-mail is being sent. In a
larger system, the client could potentially send many types of e-mails, and our action
name should be clear about which e-mail we are talking about.

A Car Rental App

[130]

In order to change the name of the admin action, we need to give the method an
attribute called short_description. As methods are also objects in Python, this is
pretty easy. Change the BookingModelAdmin class to match the following code. The
new line to add is highlighted:

class BookingModelAdmin(admin.ModelAdmin):
 list_display = ['customer_name', 'booking_start_date', 'booking_
end_date', 'is_approved']
 list_filter = ['is_approved']
 list_editable = ['is_approved']
 search_fields = ['customer_name']

 actions = ['email_customers']

 def email_customers(self, request, queryset):
 for booking in queryset:
 if booking.is_approved:
 email_body = """Dear {},
 We are pleased to inform you that your booking has been approved.
Thanks
""".format(booking.customer_name)
 else:
 email_body = """Dear {},
 Unfortunately we do not have the capacity right now to accept your
booking.
Thanks
""".format(booking.customer_name)

 print(email_body)

 self.message_user(request, 'Emails were send successfully')
 email_customers.short_description = 'Send email about booking
status to customers'

Chapter 4

[131]

Note that the new line (the last one) is not part of the function body. It's indented at
the same level as the function definition and is actually part of the class rather than
the function. Refresh the list page and take a look at the action drop-down again:

Summary
This chapter probably had the least amount of code written for any chapter in this
book. However, the functionality that we built here is probably more complicated
than what we built in most chapters. I said at the start of the chapter that one of the
reasons for the popularity of the Django framework is the admin app. I hope that by
now you agree with me.

With less than 20 lines of code, we were able to create a system that rivals most
CMS systems out there and is still more tailored to our client's needs. Unlike
most CMS systems, we don't treat Car and Booking objects as pages or nodes.
In our system, they are first-class objects, each with its own fields and individual
functionality. However, as far as the client is concerned, the admin works like it
would for any CMS, probably easier, because there are no extra fields like there
are in most CMS solutions.

We have barely begun to scratch the surface of customizing the admin. There are
a lot of features provided by the admin, catering to most scenarios required by an
administration panel. All of this power is easily available to use by changing a few
settings on ModelAdmin. In all the Django applications that I have developed, I have
needed to create a custom administration panel only once. The Django admin is so
customizable that you just configure it to match what you need.

I highly recommend that you look at the documentation of the Django admin at
https://docs.djangoproject.com/en/stable/ref/contrib/admin/. If you ever
need to create an administration project for your web application, do check whether
the admin provides the functionality that you want. More often than not, it does and
saves you a ton of effort.

https://docs.djangoproject.com/en/stable/ref/contrib/admin/

[133]

Multilingual Movie Database
The Internet might be the fastest growing phenomenon the world has seen. Cheap
Internet-enabled mobile phones have accelerated this growth even further, and
by some estimates, 40% of the world today has access to the Internet. Any web
applications that we develop can truly be global. However, English users make up
only around 30% of the Internet population. If your website is in English only, you
are missing out on a huge audience.

To fix this, many efforts have been made in recent years to make websites accessible
to non-English users as well. Django itself includes reliable methods to translate the
content of your site into multiple languages.

However, translating the content is just the first part of the process. Language is
not the only thing that is different between different parts of the world. Currency
codes, time zones, and number formats are just a few examples. Adapting these to
the location of your user is called localization. You will often see this abbreviated as
l10n. That's the first l of localization, then a numeric 10, followed by the last n. The
10 refers to the number of characters between the two! You may also come across
the term internationalization (i18n). Internationalization is making sure that your
application works across multiple regions without errors. For instance, making sure
any inputs that you accept from the user can be in a variety of languages, and not
just the one you developed the app in.

In this chapter, we will make an application inspired by the amazingly useful
IMDB (Internet Movie Database) website. If you have never heard of it, it's a web
application that provides a lot of information about movies, both old and new. We
will be creating an application that provides some very basic features similar to
IMDB. As our application is multilingual (which IMDB is as well by the way), I will
refer to it as the Multilingual Movie Database (MMDB).

Multilingual Movie Database

[134]

The code pack for this chapter includes a working non-localized copy of the
application. Our job is to add localization and internationalization to it so that it
works well for our users in France.

Requirements
Let's take a look at what we want to achieve by the end of this chapter:

• Getting an overview of all the features provided by Django to allow
localization

• Translating the contents of the site into French
• Giving users the ability to choose which language they want to use the site in
• Persisting the language preference of the user across multiple visits
• Translating the content of models

Before we start, there is one thing I'd like to mention. As we are learning this stuff
for the first time, we will start with an already existing Django application. However,
our application is very small compared to most real-world projects. For larger
applications, it is usually more difficult to add localization after finishing the project.

It is always a good idea to think about localization requirements when starting the
project and then incorporating those features while developing the application for
the first time, rather than doing so at a later stage when the application has been
developed.

Getting the project up and running
As always, once you have downloaded the code drop, unzip it. Then, create a new
virtual environment for this project and install Django. Finally, activate it and run the
migrate command from in the project root. This should set up the database for the
project and get you to a point where you can start the application. Now you need to
create a new super user so that you can add some test data. From within the project
root (with the virtual environment active), run the following command:

> python manage.py createsuperuser

Chapter 5

[135]

Answer the questions and you'll have a new user. Now, run the application with
the runserver command, then visit http://127.0.0.1:8000/admin/, and add a
few movie detail objects to the database. Once you have added some test data, visit
the home page for the application, and you should see something similar to the
following screenshot:

You should take some time to explore the app. You can view details for a particular
movie on a page, as shown in the following screenshot:

Multilingual Movie Database

[136]

Finally, you can click on the Submit New Review link to get to the following page
and create a new review for the movie, as shown in the following screenshot:

That's our entire application. For the rest of the chapter, we'll be looking into how
to add l10n and i18n to this project. We'll be making very few, if any, changes to the
core product features.

Translating our static content
The first thing that we want to do is translate all the static content on our site. This
includes all the headlines, links, and form labels that you have seen in the preceding
three screens. To translate strings that are used in templates, Django provides us
with a trans template tag. Let's take a look at how to use it first in a simple context,
and then I'll go into the details of how it works. This is a slightly long section as we
will do a lot of things here that make up the foundation of the translation feature
of Django.

Don't be alarmed if you don't understand something. Just keep
following the instructions. I'll go into a lot of depth about each step,
but first I want to show you exactly how translations are done.

Chapter 5

[137]

Open up main/templates/movies_list.html, and replace Movies List in the h2
tag with the following:

{% trans "Movies List" %}

Add the following load tag to the second line of the file, right after the extends tag:

{% load i18n %}

That's all the changes that we need to make to the template for now. I'll be explaining
what these two lines do in just a little bit, but first I want to complete the whole
translation process so that you can look at the whole thing instead of just smaller parts.

Next, let's run this command from the project root:

> python manage.py makemessages -l fr

CommandError: Unable to find a locale path to store translations for file
main/__init__.py

If you run this command, you should also see the same error as I did, something
being unable to find a locale path. We'll explain what the locale path is after we're
done with the demo. For now, create a new folder called locale in the main folder
and run the command again:

>mkdir main/locale

> python manage.py makemessages -l fr

processing locale fr

This time the command succeeds. If you look in the locale folder that you created,
you should see that a whole new hierarchy of folders has been created underneath it.
What the makemessages command did was create a django.po at main/locale/fr/
LC_MESSAGES/django.po file. If you open this file, you should be able to figure out a
bit about its purpose. The last three lines of the file should be as follows:

#: main/templates/movies_list.html:5
msgid "Movies List"
msgstr ""

Together with the path of this file (locale/fr/LC_MESSAGES/django.po) and these
three lines, you should be getting the idea that this file will contain the translated
French text for the string that we marked earlier with the trans tag. Anything you
put in quotes next to msgstr is what will replace the original string in the French
translation of the site.

Multilingual Movie Database

[138]

I used Google Translate to translate the Movies List string, and it gave me the
translation as Liste des films. Put this translation in the quotes next to msgstr. The
last three lines of the django.po file should now match the following:

#: main/templates/movies_list.html:5
msgid "Movies List"
msgstr "Liste des films"

Next, run this command from the project root:

> python manage.py compilemessages -l fr

processing file django.po in /Users/asadjb/Programming/Personal/
DjangoBluePrints/mmdb/mmdb/main/locale/fr/LC_MESSAGES

If you were to look in the LC_MESSAGES folder now, you should see that a new
django.mo file has been created. This is the compiled version of our django.po file,
the one that we put the translated strings into. For performance, Django translations
require the file to be compiled into a binary format before it can pick up translations
for strings.

Next, open up mmdb/settings.py and find the MIDDLEWARE_CLASSES list. Edit it so
that the django.middleware.locale.LocaleMiddleware string appears between
the already installed SessionMiddleware and CommonMiddleware. The position is
important. The list should now look as follows:

MIDDLEWARE_CLASSES = [
 'django.middleware.security.SecurityMiddleware',
 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.middleware.locale.LocaleMiddleware',
 'django.middleware.common.CommonMiddleware',
 'django.middleware.csrf.CsrfViewMiddleware',
 'django.contrib.auth.middleware.AuthenticationMiddleware',
 'django.contrib.auth.middleware.SessionAuthenticationMiddleware',
 'django.contrib.messages.middleware.MessageMiddleware',
 'django.middleware.clickjacking.XFrameOptionsMiddleware',
]

Next, add a LANGUAGES variable to the settings file and give it the following value:

LANGUAGES = (
 ('en', 'English'),
 ('fr', 'French')
)

Chapter 5

[139]

By default, Django supports a much longer list of languages. For our project, we want
to restrict the user to only these two options. That is what the LANGUAGES list does.

The last step is to modify the mmdb/urls.py file. First, import i18n_patterns from
django.conf.urls.i18n. Next, change the urlpatterns variable so that the i18n_
patterns function wraps all our URL definitions, as shown in the following code:

urlpatterns = i18n_patterns(
url(r'^$', MoviesListView.as_view(), name='movies-list'),
url(r'^movie/(?P<pk>\d+)/$', MovieDetailsView.as_view(), name='movie-
details'),
url(r'^movie/(?P<movie_pk>\d+)/review/$', NewReviewView.as_view(),
name='new-review'),

url(r'^admin/', admin.site.urls),
)

With this done, let's test and see what our hard work got us. First, open up
http://127.0.0.1:8000. You should see the same home page as before, but
if you pay attention to the address bar, you will notice that the browser is at
http://127.0.0.1:8000/en/ instead of what we entered. We will look at the
details of why this happens next, but in a nutshell, we opened the home page
without specifying a language and Django redirected us to the default language
for the site, which we specified earlier as English.

Change the URL to http://127.0.0.1:8000/fr/ and you should see the same
home page again, but this time, the Movies List text should be replaced by what we
said was its French translation, as shown in the following screenshot:

Multilingual Movie Database

[140]

While all of this probably seems like a lot of work to translate a single sentence,
remember that you only need to do this once. Let's see how easy it is to translate
something else now that the foundation is there. Let's translate the word Stars to
its French translation, Etoiles. Open up main/templates/movies_list.html and
replace the word Stars with the following:

{% trans "Stars" %}

Next, run the makemessages command:

> python manage.py makemessages -l fr

Open the main/locale/fr/LC_MESSAGES/django.po file. You should see a new
section for the Stars string that we marked for translation. Add the translation
(Étoile) and save the file. Finally, run the compilemessages command:

> python manage.py compilemessages

Open the French language home page again by visiting http://127.0.0.1:8000/
fr/. You will see that the word Stars has been replaced by its French translation.
The effort involved was minimal. The workflow that you just followed: marking
one or more strings for translation, making messages, translating the new strings,
and finally running compilemessages is one followed by most Django developers
when they are translating a project. Most of the effort involved with getting a site
translation ready is all the work that we did beforehand. Let's take a closer look at
what exactly we have done to get our web application translatable.

How did all that work?
As I promised at the start of the previous section, after seeing Django translations in
action, we will now take a deeper look into all the steps we followed to get to this
point and what each of these steps did.

The first thing that we did was load the i18n template tags library, which provides
us with a variety of template tags to translate content in the template. The most
important, and probably the one that you will use the most, is the trans tag. The
trans tag accepts a string argument and, depending on the language that is active,
outputs the correct translation for that string. If the translation cannot be found, the
original string is output instead.

Chapter 5

[141]

Almost any string that you write in your templates will end up being wrapped
by the trans tag and then later translated to the various languages that your web
application is available in. There are certain situations in which the trans tag is
not usable. For instance, if you have to add the value of some context variable to
the translated string, the trans tag can't do this. For these cases, we need to use the
block translation tag, blocktrans. We won't be needing it in our application, but you
can read about it in the Django documentation at https://docs.djangoproject.
com/es/stable/topics/i18n/translation/#blocktrans-template-tag.

Our next step was to run the make messages command. Our first attempt didn't
succeed, so we had to create a locale directory in our application folder. Having
done that, we ran the command and it created a message file with the .po extension.
What the command does is it goes over every file in your project and extracts strings
that you have marked for translation. One way to mark a string is to use the trans
tag to wrap it. There are other ways as well that we will look at later.

After the make messages command has extracted the strings, it needs to create
files and store the extracted strings in these files. There is a set of rules that Django
follows when figuring out which file each extracted string goes to. For strings
extracted from the files of an app, Django first tries to find a locale directory in
the folder for that app. If it finds the folder, it creates the appropriate hierarchy
underneath it (the fr/LC_MESSAGES directories) and places the messages file there.

If the locale folder is not found, Django looks at the value of the LOCALE_PATHS
settings variable. This should be a list of directory locations. Django selects the
first directory from this list of paths and puts the messages file there. In our case,
we didn't have the LOCALE_PATHS setup, which is why Django raised an error, not
finding a locale directory in our main application folder.

Let's talk a bit about the format of the messages file. Here is what our messages file
looks like right now:

SOME DESCRIPTIVE TITLE.
Copyright (C) YEAR THE PACKAGE'S COPYRIGHT HOLDER
This file is distributed under the same license as the PACKAGE
package.
FIRST AUTHOR <EMAIL@ADDRESS>, YEAR.
#
#, fuzzy
msgid ""
msgstr ""
"Project-Id-Version: PACKAGE VERSION\n"
"Report-Msgid-Bugs-To: \n"

https://docs.djangoproject.com/es/stable/topics/i18n/translation/#blocktrans-template-tag
https://docs.djangoproject.com/es/stable/topics/i18n/translation/#blocktrans-template-tag

Multilingual Movie Database

[142]

"POT-Creation-Date: 2016-02-15 21:25+0000\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE <LL@li.org>\n"
"Language: \n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=UTF-8\n"
"Content-Transfer-Encoding: 8bit\n"
"Plural-Forms: nplurals=2; plural=(n > 1);\n"

#: main/templates/movies_list.html:6
msgid "Movies List"
msgstr "Liste des films"

#: main/templates/movies_list.html:10
msgid "Stars"
msgstr "Étoile"

Lines starting with # are comments. Then, there is an empty pair of msgid and msgstr.
This is followed by some metadata about this messages file. After that, we get the main
part of the time. A messages file, ignoring the metadata and first pair (the one preceded
by the fuzzy comment), is just a list of msgid and msgstr pairs. The msgid pairs is
the string that you have marked for translation, and msgstr is the translation for that
string. The usual method of translating an app is by first marking all the strings for
translation, then generating the messages file, and finally providing it to the translator.
The translator then returns the file to you with the translations filled in. The benefit of
using a simple text file is that the translator doesn't need to use any special software. If
he has access to a simple text editor, he can translate the messages file.

Once we have translated the strings in the messages file, we need to run the compile
messages command before Django is able to use the translations. The compile
command, as mentioned earlier, converts the text messages file to a binary file. The
binary file format is much quicker to read from for Django, and in projects with
hundreds or thousands of translatable strings, these performance benefits add up
very quickly. The output of the compile messages file is a .mo file in the same folder
as the .po file.

Chapter 5

[143]

Once we have our translations done and compiled, we need to set up a few
Django configurations. The first thing we do is add LocaleMiddleware to the
list of middlewares that our application uses. The job of LocaleMiddleware
is to allow users to select the language of the site based on a couple of request
parameters. You can read the details of how the language is determined in the
documentation at https://docs.djangoproject.com/es/stable/topics/i18n/
translation/#how-django-discovers-language-preference. We will come back
to it in a bit, discussing how it determines the language with an example.

We then needed to defined two settings variables, LANGUAGES and LANGUAGE.
LANGUAGE was already defined in the code pack, so we only set the LANGUAGES
variable. LANGUAGES is a list of language choices that Django can provide translations
for the site in. By default, this is a huge list that includes all languages that Django
can be translated into. However, for most projects, you want the user limited to a few
languages to use the site in. By providing our own value for the LANGUAGES list, we
ensure that Django doesn't serve pages for any languages other than the ones defined.

The LANGAUGE variable defines the default language to use. If you remember, when
we opened the home page without any language code (http://127.0.0.1:8000/),
the English language was selected by default. The LANGUAGE variable decides what
the default language for the site is.

The next part of making the app translatable was to modify the url.py file. In
place of the simple list of URL configuration elements, we wrapped our URL
configurations inside of an i18n_patterns function. This function allows us to
match URLs that have a language code prepended to them. For every request
that comes in, this function tries to match the patterns that we wrapped in it after
removing the language code from the URL path. It's a bit complicated to explain, so
let's look at an example.

Let's say that we have the following URL pattern:

url(r'^example/$', View.as_view(), name='example')

This would match DOMAIN.COM/example/, but if we tried DOMAIN.com/en/
example/, the pattern would not result in a match as the /en/ part is not part of
the regex. However, once we wrap it in i18n_patterns, it will match the second
example. This is because the i18n_patterns function removes the language code
and then tries to match the patterns that we wrapped in it.

https://docs.djangoproject.com/es/stable/topics/i18n/translation/#how-django-discovers-language-preference
https://docs.djangoproject.com/es/stable/topics/i18n/translation/#how-django-discovers-language-preference

Multilingual Movie Database

[144]

In some applications, you don't want to have all the URLs matching with language
prefixes. Some URLs, such as an API endpoint, don't change based on the language.
In these cases, you can add together i18n_patterns and the normal list of URL
patterns:

urlpatterns = i18n_patterns(url(r'^example/$', ExampleView.as_view(),
name='example')) + [url(r'^api/$', ApiView.as_view(), name='api')]

This way, you can create applications that are a mix of translated and non-translated
views.

Having added i18n_urlpatterns, we are done with all the configuration that
Django needs for basic internationalization, and we can visit the pages that we have
in the French language and see the translated versions.

The last thing that I have left to explain is LocaleMiddleware. The locale
middleware is the part of Django that allows users to use the language code in the
url to decide which language to use. Thus, even though it's i18n_patterns that
matches patterns based on language codes, it's the middleware that activates the
correct language for each request. Other than using the language prefix in the URL
path, LocaleMiddleware provides you with a few other ways to select the language
as well:

• A session variable
• A cookie value
• The Accept-Language header that the user's browser sends
• If all else fails, the default language from the LANGUAGE setting variable

is used

This is an overview of how we adapted our application to be translatable. However,
we're not done yet.

Chapter 5

[145]

Letting the user decide which language
to use
While it's not a part of Django, almost all projects that are internationalized use
this pattern; thus I think it's important that you are aware of it. Most sites that have
multiple language options present the user with a menu to select which language
they want to view the site in. Let's create that. Modify the templates/base.html
template to match the following:

{% load i18n %}

<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8" />

<title>MMDB</title>
</head>
<body>
<h1>MMDB</h1>
<div>
Select Language

 {% get_available_languages as available_languages %}
 {% for lang_code, lang_name in available_languages %}
 {% language lang_code %}<a href="{% url "movies-list"
%}">{{ lang_name }}{% endlanguage %}
 {% endfor %}

</div>
 {% block content %}
 {% endblock %}
</body>
</html>

The new parts are highlighted. We first import the i18n template library. Then,
we create a new div element to hold our list of language choices. Next, to get the
language choices as part of the template, we use the get_available_languages
template tag and assign the choices to the available_languages variable.

Next, we create a list of links based on the language choices. The return value
of get_available_languages is the tuple that we set in the settings file for the
LANGUAGES variable.

Multilingual Movie Database

[146]

In our list of links, we need some way to get URLs for each language. Again, Django
shines here, with deep integration between the internationalization features and the
rest of the framework. If you have internationalization active and reverse a URL, it
automatically gets the correct language prefix.

However, we can't just do a reverse for the URL here because that would create
URLs for the language that is currently active. Thus, our list of links to switch
language would actually just point to the current language. Instead, we have to
temporarily switch to the language we want to create a link for and then generate the
URL. We do this using the language tag. Between the language tag, the language
that we pass as a parameter is activated. Thus, our reversed URLs turn out exactly
like we want them.

One last thing to note is the URL that we reverse. For our application, the movies-
list URL is the home page, thus we reverse that. For most applications, you'll do
the same and reverse the home page URL so that switching the language takes the
user to the home page in the specified language.

There are advanced ways by which you can keep the user on the current
page and still switch the language. One is to generate the link on each
page instead of base.html, as we have done here. This way, as you
know which URL the template will be rendered for, you can reverse the
appropriate URL. However, this has the drawback of requiring you to
repeat yourself a lot. You can search on Google for Django reverse
current URL in another language and get some other
suggestions. I still haven't found a good one to use, but you can decide
if you think one of the suggested options fits your needs.

Once you have made the changes, open the movies list page again by visiting
http://127.0.0.1:8000/en/, and you should now see the language switcher
links at the top. Refer to the following screenshot:

Chapter 5

[147]

You can try switching the languages and see the change reflect immediately in the
strings on the page.

Persisting the user choice
Let's try an experiment. Switch the language to French, and then close the browser
window. Open the browser again and visit http://127.0.0.1:8000/. Note the
absence of a language prefix in the URL. You will be redirected to the English
language of the site. Wouldn't it be nice if, once you selected which language to use,
it would persist across visits?

Django provides such a feature out of the box; you just have to add a few bits of code
to use it. If you remember the list of steps that LocaleMiddleware takes to determine
the language for the current request, the second step—after looking at the URL for
a prefix—was to look at the session. If we can put the language choice in the session
dictionary, Django will automatically choose the correct language for the user on
subsequent visits.

Multilingual Movie Database

[148]

What is the correct place to put the piece of code that updates the session dictionary?
If you think about it, every time the user changes their language selection, we
redirect them to the home page. As they will always visit the home page when their
language preference changes, let's put our code there. Modify MoviesListView to
match the following code:

class MoviesListView(ListView):
 model = MovieDetails
 template_name = 'movies_list.html'

 def get(self, request, *args, **kwargs):
 current_language = get_language()
 request.session[LANGUAGE_SESSION_KEY] = current_language

 return super(MoviesListView, self).get(request, *args,
**kwargs)

You will also need to import get_language and LANGUAGE_SESSION_KEY. Put this at
the top of main/views.py:

from django.utils.translation import LANGUAGE_SESSION_KEY
from django.utils.translation import get_language

Now, visit the site again and change your language to French. Next, close the
browser window and open it up again. Open http://127.0.0.1:8000/ and be
careful not to put the language prefix in the URL, and you should be redirected to
the French language page.

Let's look at what's happening here. In the absence of a language code in the URL,
LocaleMiddleware looks at the session to see if the key that holds the language
selection has any value. If it does, the middleware sets that as the language for the
request. We put the language selection of the user in the session by first getting the
language that is currently active using the get_language method and then putting
it in the session. The key name used by the middleware is stored in the LANGUAGE_
SESSION_KEY constant, so we use this to set the language selection.

With the session set properly, the next time your user visits the site without a
language prefix, the middleware finds their choice in the session and uses that.

Chapter 5

[149]

Translating our models
The last thing that we want to look at is how to translate our model data. Open the
site and change to the French language. Your home page should be similar to the
following screenshot:

You will notice that even though the static content—the one that we put in the
template ourselves—is translated, the dynamic names of the movies are not. While
this is acceptable for some sites, your model data should be translated as well in
order to be truly internationalized. Django by default does not have any built-in
method to achieve this, but it's pretty easy.

What I'm about to show you is something that the Django
modeltranslation library already provides. I have used it in a
large scale project and it works pretty well, so if you want to skip this
section, you can just go ahead and use the library. However, it's nice to
have an overview of how you can achieve it without any external help.
You can find the library at https://github.com/deschler/
django-modeltranslation.

https://github.com/deschler/django-modeltranslation
https://github.com/deschler/django-modeltranslation

Multilingual Movie Database

[150]

What we need is some way to store more than one language for each of the text fields
in our models. You could come up with a scheme where you store both the English
and French translation of the string in the same field using some separator, and then
separate the two when displaying the model.

Another way to achieve the same result would be to add an extra field for each
language. For our current example, that would mean adding an extra field for each
field that we want to translate.

Both approaches have their pros and cons. The first one is difficult to maintain;
as you add more than just one language to translate to, the data format becomes
difficult to maintain.

The second approach adds database fields, something that may not always
be possible. Plus, it requires a fundamental change in how to access the data.
However, if you have the option, I always advice going with the option that
results in cleaner and easy-to-understand code, which in this case means adding
extra fields per language.

For our MovieDetails model, this means having an extra field each for the title and
description fields to store the French translation. Edit your main/models.py file so
that the MovieDetails model matches the following code:

class MovieDetails(models.Model):
 title = models.CharField(max_length=500)
 title_fr = models.CharField(max_length=500)

 description = models.TextField()
 description_fr = models.TextField()

 stars = models.PositiveSmallIntegerField()

 def __str__(self):
 return self.title

Next, create and run the migrations to add these new fields to the database:

> python manage.py makemigrations

You are trying to add a non-nullable field 'description_fr' to
moviedetails without a default; we can't do that (the database needs
something to populate existing rows).

Please select a fix:

 1) Provide a one-off default now (will be set on all existing rows)

 2) Quit, and let me add a default in models.py

Select an option: 1

Chapter 5

[151]

Please enter the default value now, as valid Python

The datetime and django.utils.timezone modules are available, so you can
do e.g. timezone.now()

>>> ''

You are trying to add a non-nullable field 'title_fr' to moviedetails
without a default; we can't do that (the database needs something to
populate existing rows).

Please select a fix:

 1) Provide a one-off default now (will be set on all existing rows)

 2) Quit, and let me add a default in models.py

Select an option: 1

Please enter the default value now, as valid Python

The datetime and django.utils.timezone modules are available, so you can
do e.g. timezone.now()

>>> ''

Migrations for 'main':

 0002_auto_20160216_2300.py:

 - Add field description_fr to moviedetails

 - Add field title_fr to moviedetails

 - Alter field movie on moviereview

As you can see in the preceding CLI session, when I created the migrations, I was
asked to provided a default value for the new fields. I just entered the empty string.
We can fix the value later from the admin.

Finally, run the new migration:

> python manage.py migrate

Operations to perform:

 Apply all migrations: admin, contenttypes, main, auth, sessions

Running migrations:

 Rendering model states... DONE

 Applying main.0002_auto_20160216_2300... OK

Multilingual Movie Database

[152]

Once this is done, open up the admin and see the edit page for one of the objects you
have in your database. It should seem similar to the following screenshot:

In the preceding screenshot, you can see that two new fields have been added to the
admin. I translated the English value for these fields using Google Translate and
filled in the French language field values. Click on Save. Now, our models have the
French language data alongside the English values; but how to display them?

You could put a couple of if/else conditions in your template code to decide which
language field to use. However, that gets messy quickly. Right now, our model
only has two fields that are translated, but imagine a model with 10 such fields.
How many conditions would you have? We're only talking about supporting one
language. Finally, we only have two templates that need to be modified, the list view
and detail view. In a real-world, more complicated application, your models could
be used from a hundred different places. The if/else approach gets too difficult to
maintain very quickly.

Instead, what we will do is give our model methods to intelligently return to us the
correct value for a field, depending on the current language. Let's modify our main/
models.py file again. First, import the get_language method at the top:

from django.utils.translation import get_language

Chapter 5

[153]

Next, modify the MovieDetails model again and add these three new methods
(highlighted in the code):

class MovieDetails(models.Model):
 title = models.CharField(max_length=500)
 title_fr = models.CharField(max_length=500)

 description = models.TextField()
 description_fr = models.TextField()

 stars = models.PositiveSmallIntegerField()

 def get_title(self):
 return self._get_translated_field('title')

 def get_description(self):
 return self._get_translated_field('description')

 def _get_translated_field(self, field_name):
 original_field_name = field_name

 lang_code = get_language()

 if lang_code != 'en':
 field_name = '{}_{}'.format(field_name, lang_code)
 field_value = getattr(self, field_name)

 if field_value:
 return field_value
 else:
 return getattr(self, original_field_name)

 def __str__(self):
 return self.title

There's nothing Django-specific in the new methods. The main work-horse is
the _get_translated_field method. Given a field name, it looks at the current
language, and if the language is something other than English, appends the language
code to the field name. It then gets the value for the new field name from the object.
If the value is empty because we didn't translate the field, it follows the Django
convention and just returns the value of the original non-translated field.

Multilingual Movie Database

[154]

Now, modify main/templates/movies_list.html to use these new methods:

{% extends "base.html" %}
{% load i18n %}

{% block content %}
<h2>{% trans "Movies List" %}</h2>

 {% for movie in object_list %}
{{ movie.get_title
}} | {{ movie.stars }} {% trans "Stars" %}
 {% endfor %}

{% endblock %}

The only change here is that instead of using the value of movie.title directly,
we use movie.get_title. This is the one major drawback of this approach. Now
everywhere in your project where you need the title or description values, you'll
have to use the get_title and get_description methods instead of just using the
field values directly.

The same goes for saving the fields. You'll have to figure out which
field name to write to, depending on the active language. While
neither of these are complicated, they do add some discomfort to the
whole process. However, that's the price you pay for this power.
The django-modeltranslation package that I mentioned before
has a good solution to this problem. It uses code in the model to
automatically decides which language to return whenever you access
any field. So, instead of using obj.get_title(), you would write
obj.title and get the correct field for the currently activated
language. For your projects, you might want to look into this. I didn't
use this in this chapter because I wanted to give you a way to work
with basic Django and show you one possible way to do things
yourself instead of relying on third-party libraries.

Chapter 5

[155]

Open up the French version of the site again and you should see that the one object
we translated should have the translated version of the title, whereas the others will
just show the non-translated versions:

Doing the same for the details template should be simple and is left up to you!

Summary
While this was a somewhat small chapter, we looked at information that will come
in handy throughout your web development career. While not all of the sites that
you develop will need to be translated into multiple languages, some of the most
important ones will. When you get a chance to work on such a project, you will have
the information on how to go about creating a truly internationalized web application.

We have only scratched the surface of what is possible with Django internationalization
and localization. When you start a project that requires these, be sure to check out the
documentation as well.

We are now done with simple Django-only applications. Having learnt the basics
of Django, the next chapter will have us working on a more complicated web
application—one that involves search using the amazingly powerful Elasticsearch!

[157]

Daintree – an
E-commerce Site

We have created some solid web applications in the previous chapters. They were
simple, but had enough functionality to be used in real-world projects. With some
frontend work, our applications could very well be deployed on the Internet and
solve real problems. Now it's time to look at something more complicated.

I'm sure you have used, or at least heard of, some of the big names in the e-commerce
space—names such as Amazon and Ali Baba. While these sites are very complicated
beasts, a basic e-commerce site is pretty simple under the hood. E-commerce sites are
also something that a lot of clients want created, so having some knowledge of how
to make a good one will be very useful in your career.

A basic e-commerce site has one main purpose: to help users find and buy products
from the online store. Django alone can be used to build an e-commerce site quickly,
using database queries to allow searches across product range, but this doesn't scale
well. Databases are designed to quickly save and retrieve rows of data, but they are
not optimized to search across the entire dataset (or a subset). Once the traffic of your
site starts to increase, you'll see the search speed go down very quickly. On top of
that, there are some features that are very difficult to build with a database.

Daintree – an E-commerce Site

[158]

Instead, we will use a search server. A search server is very much like a database.
You give it some data to store and then you can retrieve it later. It also has features
specifically built to help you add searching to your applications. You might wonder
that if a search server can store our data like a database, then can we not just get rid
of the database? We can, but usually it's not recommended. Why? Well, because
the search server is designed for a different use case. While it can store your data, a
database provides a lot of guarantees about the storage that a search server usually
doesn't. For example, a good database (such as MySQL or PostgreSQL) gives you
a guarantee that if you try to save something and the database returns a successful
response, your data will not be lost in case of a crash or power outage or some other
problem. This is called durability. A search server does not provide this guarantee
because that's not what they are designed for. It is usually a good idea to keep our
data in a database and use the search server just to search across our data.

For the application that we will develop in this chapter, we will be using
Elasticsearch, one of the most popular and perhaps easy-to-use search servers
available. It's also open source and available for free. So let's get started. This
is going to be an exciting chapter!

Code pack
The code pack for this chapter contains a basic web application that has the models
and views for a simple e-commerce site. Right now there is no search, just a page that
lists all the available products. I have also provided a data dump that contains about
1,000 products so that our database has some data that we can play around with. As
always, download the code pack, create a new virtual environment, install Django,
run the migrate command, and then issue the run server command to start the
development server. You should have the hang of how to do these things without
any guidance by now.

To load the test data, run the following command after the migrate command:

> python manage.py loaddata main/fixtures/initial.json

This should fill your database with a thousand sample products and give us enough
data to play around with.

Chapter 6

[159]

Exploring Elasticsearch
Before we get into integrating Elasticsearch with our Django application, let's take
some time and explore Elasticsearch. We'll look into how to get data into it and use
the search features to get back the results we want. We won't go into a lot of details
about the search as we'll look into it later when we are building the search page for
our applications, but we will get a basic overview of how Elasticsearch works and
how it can be useful for us.

To start, download the latest version of Elasticsearch from https://www.elastic.
co/downloads/elasticsearch. You will need to have Java installed on your
system to run Elasticsearch, so go ahead and install that as well if you don't already
have it. You can get Java from https://java.com/en/download/. Once you have
downloaded Elasticsearch, extract the files from the compressed archive into a folder,
open a new terminal session, and cd to this folder. Next, cd into the bin folder and
run the following command:

> ./elasticsearch
.
.
.
[2016-03-06 17:53:53,091][INFO][http]
[Marvin Flumm] publish_address {127.0.0.1:9200}, bound_addresses
{[fe80::1]:9200}, {[::1]:9200}, {127.0.0.1:9200}
[2016-03-06 17:53:53,092][INFO][node] [Marvin
Flumm] started
[2016-03-06 17:53:53,121][INFO][gateway] [Marvin
Flumm] recovered [0] indices into cluster_state

Running the Elasticsearch binary should produce a lot of output, and it will be
different from what I've pasted here. However, you should still see the two messages
started and recovered [0] indices into cluster_state at the end of the output. This
means that Elasticsearch is now running on your system. That wasn't so hard! Of
course, running Elasticsearch in production is a bit different, and the Elasticsearch
documentation provides a lot of information about how to deploy it for a couple of
different use cases.

We only cover the basics of Elasticsearch in this chapter as our focus is on looking at
the integration between Django and Elasticsearch, but if you ever find yourself stuck
somewhere or need some questions answered, do take a look at the documentation—
it really is quite extensive and thorough. You can find it at https://www.elastic.
co/guide/en/elasticsearch/reference/current/index.html. There is
also a book style guide available at https://www.elastic.co/guide/en/
elasticsearch/guide/current/index.html if you want to really spend time
learning Elasticsearch.

https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/elasticsearch
https://java.com/en/download/
https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/index.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/index.html

Daintree – an E-commerce Site

[160]

First steps with Elasticsearch
Now that we have Elasticsearch running, what can we do with it? Well, for
starters, you need to know that Elasticsearch exposes its functionality over a simple
HTTP API. So you don't need any special libraries to communicate with it. Most
programming languages, including Python, include the means to make HTTP
requests. However, there are a couple of libraries that provide another layer of
abstraction over HTTP and make working with Elasticsearch easier. We'll get into
those later.

For now, let's open up this URL in our browsers:

http://localhost:9200/?pretty

This should give you an output similar to this:

{
 "name" : "Marvin Flumm",
 "cluster_name" : "elasticsearch",
 "version" : {
 "number" : "2.2.0",
 "build_hash" : "8ff36d139e16f8720f2947ef62c8167a888992fe",
 "build_timestamp" : "2016-01-27T13:32:39Z",
 "build_snapshot" : false,
 "lucene_version" : "5.4.1"
 },
 "tagline" : "You Know, for Search"
}

While most of the values will be different, the structure of the response should
roughly be the same. This simple test lets us know that Elasticsearch is working
properly on our system.

Now we'll do a quick walkthrough where we insert, retrieve, and search for a couple
of products. I won't go into a lot of details, but if you are interested, you should look
at the documentation of Elasticsearch that I mentioned before.

You will need to have a working copy of the curl command-line
utility installed on your machine to perform the steps in this section.
It should be available by default on Linux and Unix platforms,
including Mac OS X. If you're on Windows, you can get a copy from
https://curl.haxx.se/download.html.

https://curl.haxx.se/download.html

Chapter 6

[161]

Open a new terminal window as our current one has Elasticsearch running in it.
Next, type in the following:

> curl -XPUT http://localhost:9200/daintree/products/1 -d '{"name":
"Django Blueprints", "category": "Book", "price": 50, "tags":
["django", "python", "web applications"]}'
{"_index":"daintree","_type":"products","_id":"1","_version":1,"_shard
s":{"total":2,"successful":1,"failed":0},"created":true}
 > curl -XPUT http://
localhost:9200/daintree/products/2 -d '{"name": "Elasticsearch Guide",
"category": "Book", "price": 100, "tags": ["elasticsearch", "java",
"search"]}'
{"_index":"daintree","_type":"products","_id":"2","_version":1,"_shard
s":{"total":2,"successful":1,"failed":0},"created":true}

Most of the Elasticsearch APIs accept JSON objects. Here, we are asking Elasticsearch
to PUT two documents, ids 1 and 2, in its storage. It may look complicated, but let
me explain what's happening here.

In a database server, you have databases, tables, and rows. Your database is like a
namespace where all of your tables live. Tables define the overall shape of the data
that you want to store, and each row is one unit of that data. Elasticsearch has a
slightly different way of working with data.

In place of a database, Elasticsearch has an index. Tables are called document types
and live inside of indexes. Finally, the rows, or documents as Elasticsearch calls
them, are stored inside of the document type. In our preceding example, we told
Elasticsearch to PUT a document with Id 1 in the products document type, which
lives in the daintree index. One thing that we didn't do here is define the document
structure. That's because Elasticsearch doesn't require a set structure. It will
dynamically update the structure of its tables (the document types) as you insert new
documents.

Let's try retrieving the first document that we inserted. Run this command:

> curl -XGET 'http://localhost:9200/daintree/products/1?pretty=true'
{
 "_index" : "daintree",
 "_type" : "products",
 "_id" : "1",
 "_version" : 1,
 "found" : true,
 "_source" : {
 "name" : "Django Blueprints",
 "category" : "Book",
 "price" : 50,

Daintree – an E-commerce Site

[162]

 "tags" : ["django", "python", "web applications"]
 }
}

As you can probably guess, the API for Elasticsearch is very simple and intuitive.
We used a PUT HTTP request when we wanted to insert a document. When we want
to retrieve one, we use the GET HTTP request type and we give the same path that
we used when inserting the document. We get back a bit more information than we
inserted. Our document is in the _source field and the rest of the fields are metadata
that Elasticsearch stores with each document.

Now we look at the star of the show—searching! Let's see how to do a simple search
for books with the word Django in their title. Run the following command:

> curl -XGET 'http://localhost:9200/daintree/products/_
search?q=name:Django&pretty'
{
 "took" : 4,
 "timed_out" : false,
 "_shards" : {
 "total" : 5,
 "successful" : 5,
 "failed" : 0
 },
 "hits" : {
 "total" : 1,
 "max_score" : 0.19178301,
 "hits" : [{
 "_index" : "daintree",
 "_type" : "products",
 "_id" : "1",
 "_score" : 0.19178301,
 "_source" : {
 "name" : "Django Blueprints",
 "category" : "Book",
 "price" : 50,
 "tags" : ["django", "python", "web applications"]
 }
 }]
 }
}

Chapter 6

[163]

The result is what you would have expected for this search. Elasticsearch only
returned the one document that had the term Django in its name and skipped the
other one. This is called the lite search or query-string search as our query is sent
as part of the query string parameters. However, this method quickly gets difficult
to use for complicated queries having multiple parameters. For those queries,
Elasticsearch provides a full query DSL, which uses JSON to specify the query. Let's
take a look how we could do this same search using the query DSL:

> curl -XGET 'http://localhost:9200/daintree/products/_search?pretty'
-d '{"query": {"match": {"name": "Django"}}}'
{
 "took" : 3,
 "timed_out" : false,
 "_shards" : {
 "total" : 5,
 "successful" : 5,
 "failed" : 0
 },
 "hits" : {
 "total" : 1,
 "max_score" : 0.19178301,
 "hits" : [{
 "_index" : "daintree",
 "_type" : "products",
 "_id" : "1",
 "_score" : 0.19178301,
 "_source" : {
 "name" : "Django Blueprints",
 "category" : "Book",
 "price" : 50,
 "tags" : ["django", "python", "web applications"]
 }
 }]
 }
}

This time, instead of passing a query parameter, we send a body with the GET
request. The body is the JSON query that we wish to execute. I won't be explaining
the query DSL because it has a lot of features and is quite powerful and it would
take another book to explain it properly. In fact, a couple of books have been written
that explain the DSL fully. However, for simple usages like this, you can guess easily
what's happening. If you want further details, I will again suggest taking a look at
the Elasticsearch documentation.

Daintree – an E-commerce Site

[164]

Searching from Python
Now that we have a basic understanding of how we can use Elasticsearch to insert
and search on our documents, let's see how to do the same from Python. We could
use the HTTP API of Elasticsearch from Python and query for the documents but
there is a better way. There are a number of libraries that provide an abstraction over
the HTTP API for Elasticsearch. Underneath, they are simply using the HTTP API,
but the abstractions that they provide make it easier for us to communicate with
Elasticsearch. The library that we will be using here is elasticsearch_dsl. Make
sure that your virtual environment is activated, and install it using pip:

> pip install elasticsearch_dsl

Next, let's start a Django shell so that we can play around and figure out how to
use it:

> python manage.py shell
> from elasticsearch_dsl import Search
> from elasticsearch_dsl.connections import connections
> connections.create_connection(hosts=['localhost:9200'])
<Elasticsearch([{u'host': u'localhost', u'port': 9200}])>
> Search(index='daintree').query('match', name='django').execute().
to_dict()
{u'_shards': {u'failed': 0, u'successful': 5, u'total': 5},
 u'hits': {u'hits': [{u'_id': u'1',
 u'_index': u'daintree',
 u'_score': 0.19178301,
 u'_source': {u'category': u'Book',
 u'name': u'Django Blueprints',
 u'price': 50,
 u'tags': [u'django', u'python', u'web applications']},
 u'_type': u'products'}],
 u'max_score': 0.19178301,
 u'total': 1},
 u'timed_out': False,
 u'took': 2}

Let's take a look at each line. The first two lines simply import the library. The
third line is important. It uses the create_connection method to define a default
connection. This is the connection that will be used whenever we try to do a search
using this library with the default settings.

Chapter 6

[165]

Next, we perform the search and print out the results. This is the important bit. This
one line of code does a couple of things, so let's break it down. First, we construct
a Search object, passing in the index name for the daintree index that we created
earlier. As we don't pass in a custom Elasticsearch connection, it uses the default
connection that we defined earlier.

Next, we use the query method on the Search object. The syntax for this is simple.
The first argument is the name of the type of query that we want to use. As we did
with curl, we are using the match query type. All other arguments to the query
method need to be keyword arguments, which will be the elements of the query.
Here, this generates the same query as our example earlier with curl:

{
 "query": {
 "match": {
 "name": "django"
 }
 }
}

Having added the query to the Search object, we need to explicitly execute it. This is
done with the execute method. Finally, to see the response, we use the helper
to_dict method on the response, which prints out whatever Elasticsearch
responded with to our search; in this case, it is similar to what we got when using
curl earlier.

Now that we have seen how to search, the next step would be to look at how to
add data to our Elasticsearch index. Before we can do this, we need to learn about
Elasticsearch mappings.

Mapping
I mentioned earlier that Elasticsearch doesn't require a data structure to be defined
for the document types. However, Elasticsearch internally figures out the structure
of the data that we insert. We have the ability to define this structure manually
but don't necessarily need to. When Elasticsearch uses its own guess of the data
structure, it's said to be using a dynamic mapping for the document type. Let's look
at what Elasticsearch guessed for our product document type. Using the command
line, make the following request with curl:

> curl 'http://localhost:9200/daintree/products/_mapping?pretty'
{
 "daintree" : {
 "mappings" : {
 "products" : {

Daintree – an E-commerce Site

[166]

 "properties" : {
 "category" : {
 "type" : "string"
 },
 "name" : {
 "type" : "string"
 },
 "price" : {
 "type" : "long"
 },
 "tags" : {
 "type" : "string"
 }
 }
 }
 }
 }
}

Elasticsearch has done a pretty good job of guessing our document structure. As
you can see, it correctly guessed the type for all our fields. However, if you notice
the type for the tags field, you'll see that it's a string. If you look at the document we
retrieved earlier, the tags field is an array of strings. What's going on here?

Well, in Elasticsearch, an array doesn't have any special mapping. Each field can
have one or more values; thus, each field can be an array without having to map it as
such. One important implication of this is that arrays in Elasticsearch can only have
one type of data. Thus, you can't have an array that contains both date values and
strings. If you try to insert something like that, Elasticsearch will just go ahead and
store the date as a string.

You might be wondering that if Elasticsearch is intelligent enough to figure out our
data structure, then why do we care about the mapping? Well, the library we are
using to work with Elasticsearch, elasticsearch_dsl, needs to define custom
mappings to be able to insert documents into the index.

It is also a good idea to be explicit in what kind of data you will be inserting into
the index. You can set a number of options when you set your own mapping, such
as defining a field to be an integer. This way, even if you insert the value "123",
Elasticsearch will convert it to an integer before inserting the document and raise an
error if it can't. This provides data validation. There are certain types of data, such as
dates in a format different than what Elasticsearch uses by default, that can only be
correctly indexed if you have set a custom mapping.

Chapter 6

[167]

Defining a mapping
To define a mapping with elasticsearch_dsl, we create a DocType subclass. This
is similar to how a Django database model is defined. Create a new main/es_docs.
py file and type in the following code:

from elasticsearch_dsl import DocType
from elasticsearch_dsl import Long
from elasticsearch_dsl import String

class ESProduct(DocType):
 name = String(required=True)
 description = String()
 price = Long(required=True)

 category = String(required=True)
 tags = String(multi=True)

 class Meta:
 doc_type = 'products'

There shouldn't be any surprises here as the syntax is pretty self-explanatory. I prefer
to add ES to the start of my document type classes to differentiate an ES doc type
class from the Django model of the same name. Note that we explicitly specified the
document type name. If we hadn't, elasticsearch_dsl would have automatically
come up with a name based on the class name—ESProduct. However,as we just
wanted to define a mapping for an existing document type, we set the doc_type
attribute in the Meta class.

Notice that our data types are the same as the ones that we saw before when we
asked Elasticsearch about the mapping. There is a reason for this. You can't change
the data type for an existing field. Otherwise, the existing documents would have
the wrong data type and the search would return inconsistent results. While this
mapping already exists in our Elasticsearch, let's see how we would use this class to
define a new document type mapping. Open up the Django shell again and type in
the following:

> python manage.py shell
> from elasticsearch_dsl.connections import connections
> from main.es_docs import ESProduct
> connections.create_connection()
<Elasticsearch([{}])>
> ESProduct.init(index='daintree')

Daintree – an E-commerce Site

[168]

We use the ESProduct.init(index='daintree') method to create the mapping
in Elasticsearch. As our mapping already existed and was exactly the same, this
function didn't change anything. However, if we were creating a new mapping, this
function would have configured Elasticsearch with the new document type.

Note that this time we didn't pass any parameters to the connections.create_
connection() method, which means that it used the default host list that assumes
a locally running instance of Elasticsearch on the default port of 9200. As our
Elasticsearch is running locally on the same port, we can skip the host's argument to
the create_connection() method.

Inserting documents into Elasticsearch
from Python
Now that we have a DocType subclass and have seen how to create the mapping, all
that's left to look at is inserting documents into Elasticsearch. This section assumes
that you have loaded the fixtures data that I provided with the code drop.

Open the Django shell again and type the following commands:

> python manage.py shell
> from elasticsearch_dsl.connections import connections
> from main.es_docs import ESProduct
> from main.models import Product
> connections.create_connection()
<Elasticsearch([{}])>
> p = Product.objects.get(pk=200)
> esp = ESProduct(meta={'id':p.pk}, name=p.name, description=p.
description, price=p.price, category=p.category.name)
> for tag in p.tags.all():
> esp.tags.append(tag.name)
>
> esp.save(index='daintree')
True

Note the empty line after the for loop body. In the shell, this
empty line is required to tell the interactive shell that the loop
body is finished and it can go ahead and execute the loop.

It should be pretty normal, up to where we get the product with ID 200 from the
database. I just chose a random ID as I knew that the product with ID 200 would
exist in your database after you had loaded the fixtures I provided.

Chapter 6

[169]

Next, we create a new ESProduct instance and assign it values from our Django
model. The ID field needs to be assigned a value using the special meta keyword
argument because that is part of the metadata of the document in Elasticsearch and
not part of the document body. If we didn't provide an ID, Elasticsearch would
automatically generate a random one for us. We specify it explicitly so that we can tie
our database models to our Elasticsearch documents.

Next, we loop over all the tags in our Product object and append it to the tags field
in our ESProduct object. We didn't need to set the tags field value to an empty
array. When we defined the tags field, we passed the multi=True argument to the
constructor. For elasticsearch_dsl fields, a multifield has a default empty value,
which is an empty list. Thus, in our loop, we were sure that esp.tags is a list that we
can append to.

After we have set up our ESProduct model instance with the correct values, we call
the save method, passing the index name in which to insert it. Once the save call
returns, Elasticsearch will hold our new data. We can test it using curl to retrieve
this new document:

> curl 'http://localhost:9200/daintree/products/_search?pretty'

In the output for this command, you should now see three products instead of the
two that we originally inserted.

Getting all our data into Elasticsearch
We can't go around inserting data into Elasticsearch from the console all the time.
We need an automated way of doing so. As we've seen before, Django management
commands are a perfect way to create a script to do so. Create the folders that will
hold our command file, main/management/commands, create an empty __init__.
py file in both main/management and main/management/commands, and add the
following code to main/management/commands/index_all_data.py:

import elasticsearch_dsl
import elasticsearch_dsl.connections

from django.core.management import BaseCommand

from main.models import Product
from main.es_docs import ESProduct

class Command(BaseCommand):

Daintree – an E-commerce Site

[170]

 help = "Index all data to Elasticsearch"

 def handle(self, *args, **options):
 elasticsearch_dsl.connections.connections.create_connection()

 for product in Product.objects.all():
 esp = ESProduct(meta={'id': product.pk}, name=product.
name, description=product.description,
 price=product.price, category=product.
category.name)
 for tag in product.tags.all():
 esp.tags.append(tag.name)

 esp.save(index='daintree')

There isn't anything new here. We just loop over all the product objects in our
database and add them to Elasticsearch. Run it as follows:

> python manage.py index_all_data

It will run successfully without any output and you should now have all your
documents in Elasticsearch. To confirm this, we can get the stats for our daintree
index from Elasticsearch. Run the following command from your shell:

> curl 'localhost:9200/daintree/_stats?pretty=1'

This should output lots of data about the daintree index. You'll need to scroll up
and you will find the total document count. It should be similar to this:

.

.

.
"total" : {
 "docs" : {
 "count" : 1000,
 "deleted" : 0
 },
.
.
.

As you can see, all our data is now indexed. Next, we will add search to our home
page using Elasticsearch.

Chapter 6

[171]

Adding search
If you look at our home page right now, it should be a list of 50 random products
from our database. You can open it at http://127.0.0.1:8000 and it should look
similar to this:

What we'd like to do is add a basic search form to this page. The form will just be one
field that accepts a search term and button to perform the search. The search term
will perform a search on the name field of our products list.

Daintree – an E-commerce Site

[172]

Let's create a simple Django form and add it to our page. Create a new main/forms.
py file and add the following code:

from django import forms

class SearchForm(forms.Form):
 name = forms.CharField(required=False)

Next, we need to display our search form on the home page. Add the following to
the home.html template, right after the opening tag of the content block:

<h2>Search</h2>
<form action="" method="get">
 {{ form.as_p }}
 <input type="submit" value="Search" />
</form>

Finally, we need to modify our HomeView so that it uses the user's query to generate
the list of results instead of getting 50 random ones from the database. Change main/
view.py to match the following code:

import random

from django.shortcuts import render
from django.template.response import RequestContext
from django.views.generic import View

from elasticsearch_dsl import Search
from elasticsearch_dsl.connections import connections

from main.forms import SearchForm

class HomeView(View):
 def get(self, request):
 form = SearchForm(request.GET)

 ctx = {
 "form": form
 }

 if form.is_valid():
 connections.create_connection()

 name_query = form.cleaned_data["name"]

Chapter 6

[173]

 s = Search(index="daintree").query("match", name=name_
query)
 result = s.execute()

 ctx["products"] = result.hits

 return render(request, "home.html", ctx)

Let's test it first and then I'll explain what this code does. Enter a search term in the
field and press the Search button. As our sample data has the usual Lorem Ipsum
text in all the fields, search for a term like lorem. You should see something like this:

Daintree – an E-commerce Site

[174]

Try playing around with a few different search terms and see how it responds.
If you enter something that is not found in our products list, you should see an
empty page. We'll change it so that the user sees a message telling them that their
search query has no results. Additionally, the category name has disappeared. This
happened because the attribute name used in the product.category.name template
is different from what our Elasticsearch document contains. While most of our field
names in our Elasticsearch document were the same as those in our Django models,
the category name needs to be accessed differently as it is no longer a foreign key but
a simple string. In main/templates/home.html, note the following line:

<i>Category: {{ product.category.name }}</i>

Change this to the following:

<i>Category: {{ product.category }}</i>

The category name for our products will reappear.

If you experimented a bit, you'll notice that if you leave the field blank and click
on the Search button, you don't get back any results. That's because if you give the
match query an empty string to match with, it returns zero results. We can fix this by
querying if the user specified a search term. Remove this line from the view code:

s = Search(index="daintree").query("match", name=name_query)

Replace it with the following if condition:

if name_query:
 s = Search(index="daintree").query("match", name=name_query)
else:
 s = Search(index="daintree")

This way, if the user didn't enter any query, we ask Elasticsearch to do a search
with no query specified, and Elasticsearch just returns us the first ten documents
that it has. This is similar to doing Product.objects.all()[:10] if we were using
the database.

Now, let's change our template so that if there were no results, the user sees a nice
message explaining that, instead of an empty page which the user might see as a
bug in our application. Change the {% for product in products %} loop in our
main/templates/home.html template and replace it with the following:

{% if products %}
 {% for product in products %}

 Name: {{ product.name }}

 <i>Category: {{ product.category.name }}</i>

Chapter 6

[175]

 {% if product.tags.all %}
 Tags: (
 {% for tag in product.tags.all %}
 {{ tag.name }}
 {% if not forloop.last %}
 ,
 {% endif %}
 {% endfor %}
)
 {% endif %}

 {% endfor %}
{% else %}
 No results found. Please try another search term
{% endif %}

Now if you enter a search term that doesn't have any results, you should see a
message instead of an empty page.

The form and template code should be easy enough for you to understand by now.
It's the view code that looks the most interesting. Let's take a look at the get method
where all the magic happens:

def get(self, request):
 form = SearchForm(request.GET)

 ctx = {
 "form": form
 }

 if form.is_valid():
 connections.create_connection()

 name_query = form.cleaned_data.get("name")
 if name_query:
 s = Search(index="daintree").query("match", name=name_
query)
 else:
 s = Search(index="daintree")
 result = s.execute()

 ctx["products"] = result.hits

 return render(request, "home.html", ctx)

Daintree – an E-commerce Site

[176]

The first few lines simply instantiate the form with the GET params from the request.
We also add it to our context dictionary that we later pass to our template. Then,
we check whether the form is valid. If it is, we first use the create_connection()
method from the elasticsearch_dsl library. We need to do this here because
without this we would not be able to do a search later on.

Some of you might say that this approach of configuring the
connection to Elasticsearch in our view code feels like bad code.
I agree! Later on, we'll fix this, don't worry.

After having set up our Elasticsearch connection, we check whether the user actually
entered some search term. If they did, we then create the Search object and add
our query to it. We specify that we need the match query type and we want to get
documents where the name field has the query term entered by the user. In case the
user didn't enter any search query, we need to set our search object, s, to a default
search. As explained before, we did this because Elasticsearch returns an empty
results list if the query term is empty.

Finally, we execute our search and store the results in the result variable. We then
extract the results from the hits parameter of the result variable and assign it to
the products key in our context dictionary.

At the end, we simply render the template using the context dictionary that we
have prepared. As you can see, there isn't anything very complicated about using
Elasticsearch with Django. The elasticsearch_dsl library especially makes this
very simple.

Configuration management
In the previous code, we used the connections.create_connection() method to
set up our Elasticsearch connection in the view code. This is a bad practice due to a
couple of reasons. First, you have to remember to initialize the connection in every
view where you want to use the Search object. Our example only has one view so we
didn't run into this problem. However, imagine that you have three views that use
Elasticsearch. Now your create_connection() method call has to be in all three
of these as you never know which order the user will visit the website in and which
view will be run first.

Secondly, and most importantly, if you ever need to change the way the connection
is configured—maybe changing the address of the Elasticsearch server or setting
some other connection parameters—you'll need to change it in all the places where
you have initialized the connection.

Chapter 6

[177]

Due to these reasons, it is always a good idea to have the code to initialize external
connections in one place. Django provides us with a good way to do this using
AppConfig objects.

When Django starts up, it will import all the applications listed in the settings.
INSTALLED_APPS list. For each application, it will check whether the application's
__init__.py has a default_app_config variable defined. This variable needs to be
a string that holds the Python path to a subclass of the AppConfig class.

If the default_app_config variable is defined, Django will use the subclass pointed
to as the configuration options for that app. If not, Django will create a generic
AppConfig object and use this instead.

The AppConfig subclass has a couple of interesting uses, such as setting the verbose
name for the application and getting the models defined in the application. For our
case, the AppConfig subclass can define a ready() method that Django will call once
when importing the application for the first time. We can set up our Elasticsearch
connections here and then just use the Search objects throughout our application
without needing to care about whether the connection was configured or not. Let's
do this now.

First, edit the main/apps.py file and change the code to match this:

from __future__ import unicode_literals

from django.apps import AppConfig

from elasticsearch_dsl.connections import connections

class MainConfig(AppConfig):
 name = 'main'

 def ready(self):
 connections.create_connection()

Next, open up main/__init__.py and add the following line:

default_app_config = "main.apps.MainConfig"

Finally, from main/views.py, remove the import:

from elasticsearch_dsl.connections import connections

Remove the connections.create_connection() method call from the get method
of the HomeView.

Daintree – an E-commerce Site

[178]

Open the home page again and do a couple of searches. You'll see that even
without the create_connection() method call in our view, the search works
fine. If you want to learn more about AppConfig, I suggest you look at the
Django documentation at https://docs.djangoproject.com/en/stable/ref/
applications/.

More search options
While our basic search is useful, our users will definitely need some way to
search by price range as well. Let's take a look at how to add this to our search form.
We'll use the range Elasticsearch query type to add this feature. First, let's change
main/forms.py to add the two fields we'll need for this—minimum price and
maximum price:

from django import forms

class SearchForm(forms.Form):
 name = forms.CharField(required=False)
 min_price = forms.IntegerField(required=False, label="Minimum
Price")
 max_price = forms.IntegerField(required=False, label="Maximum
Price")

Next, change the HomeView code to accept and use these new fields in our
search query:

class HomeView(View):
 def get(self, request):
 form = SearchForm(request.GET)

 ctx = {
 "form": form
 }

 if form.is_valid():
 name_query = form.cleaned_data.get("name")
 if name_query:
 s = Search(index="daintree").query("match",
name=name_query)
 else:
 s = Search(index="daintree")

 min_price = form.cleaned_data.get("min_price")

https://docs.djangoproject.com/en/stable/ref/applications/
https://docs.djangoproject.com/en/stable/ref/applications/

Chapter 6

[179]

 max_price = form.cleaned_data.get("max_price")
 if min_price is not None or max_price is not None:
 price_query = dict()

 if min_price is not None:
 price_query["gte"] = min_price

 if max_price is not None:
 price_query["lte"] = max_price

 s = s.query("range", price=price_query)

 result = s.execute()

 ctx["products"] = result.hits

 return render(request, "home.html", ctx)

What we have done in the view is first checked whether the user provided us with
a value for either the minimum price or maximum price. If the user didn't enter any
values for either fields, there's no point in adding an empty query.

If the user entered values for either of the two price range fields, we first instantiate
an empty dictionary (we'll look at why a dictionary is needed in a bit). Then,
depending on which of the two price range fields the user entered data in, we add
greater-than-or-equal-to and less-than-or-equal-to clauses to the dictionary. Finally,
we add a range query, passing in the dictionary that we created as the value of the
field name keyword argument, price in our case. Here is the relevant line of code:

s = s.query("range", price=price_query)

The reason we needed a dictionary here and not in the last example is because some
Elasticsearch queries have more than just one option. In the case of a range query,
Elasticsearch supports both gte and lte options. However, the library that we are
using, elasticsearch_dsl, can accept only one parameter for any query type and
this parameter needs to be passed as the keyword argument with the field name,
price in our case. So we create a dictionary and then pass this to our range query.

You should now see the two fields on our home page and be able to query using
them. You will notice that we give no feedback to the user about the price of the
products. It's not displayed anywhere. So we have no way to confirm if the search is
actually working. Let's add it now. Change main/templates/home.html to add this
line right below where we display the product category:

<i>Price: {{ product.price }}</i>

Daintree – an E-commerce Site

[180]

Now if you look at the home page, it will show you the prices for each product, and
you'll feel that it provides a much better user experience as well. Plus, you can now
test the minimum and maximum price search code as well. By now, our home page
looks something like this:

Up to now, we haven't done anything with Elasticsearch that wouldn't have been just
as easy with a database. We could have built all these queries using the Django ORM
and it would work the same. Maybe we have gained some performance benefits, but
at the small scale that our application operates at, these gains are almost negligible.
Next, we will add a feature that would have been very difficult to create using just a
database, and we'll see how Elasticsearch makes it so much easier.

Chapter 6

[181]

Aggregations and filters
If you have ever used Amazon (or any other large e-commerce site), you might
remember that on the left-hand side of the search results, these sites provide a list
of filters that users can easily select and navigate the search results. These filters
are generated dynamically based on what results are shown and selecting one
further narrows down the search results. It's just easier to show what I mean with a
screenshot. On Amazon, if you perform a search, you'll see something similar to this
on the left-hand side of the screen:

If you select any of the options listed here, you will further refine your search and see
results relevant to only that option. They also provide the user with instant feedback,
letting them know at a glance how many results they can expect to see if they select
one of the available options.

Daintree – an E-commerce Site

[182]

We want to implement something similar in our application. Elasticsearch provides
a feature called aggregations to help us do just this. Let's see what aggregations
are first.

Aggregations provide a way to get statistics about our search results. There are two
types of aggregations that can be used to get two different kinds of data about the
search results: bucket aggregations and metric aggregations.

Bucket aggregations are like GROUP BY SQL queries. They gather documents into
groups, or buckets, based on certain dimensions and calculate some metrics for each
of these groups. The simplest aggregation is a terms aggregation. You give it a field
name, and for each unique value of that field, Elasticsearch returns the count of
documents where the field contains that value.

For example, let's say that you have five documents in your index:

{"name": "Book 1", "category": "web"}
{"name": "Book 2", "category": "django"}
{"name": "Book 3", "category": "java"}
{"name": "Book 4", "category": "web"}
{"name": "Book 5", "category": "django"}

If we run a terms aggregation on this data based on the category field, we will get
back results that give us the count of books in each category: two in web, two in
Django, and one in Java.

First, we will add aggregations for the categories in our products list and allow the
user to filter their search based on these categories.

Category aggregation
The first step is to add an aggregation to our search object and pass the results from
this aggregation to our template. Change HomeView in main/views.py to match the
following code:

class HomeView(View):
 def get(self, request):
 form = SearchForm(request.GET)

 ctx = {
 "form": form
 }

 if form.is_valid():
 name_query = form.cleaned_data.get("name")

Chapter 6

[183]

 if name_query:
 s = Search(index="daintree").query("match", name=name_
query)
 else:
 s = Search(index="daintree")

 min_price = form.cleaned_data.get("min_price")
 max_price = form.cleaned_data.get("max_price")
 if min_price is not None or max_price is not None:
 price_query = dict()

 if min_price is not None:
 price_query["gte"] = min_price

 if max_price is not None:
 price_query["lte"] = max_price

 s = s.query("range", price=price_query)

 # Add aggregations
 s.aggs.bucket("categories", "terms", field="category")

 result = s.execute()

 ctx["products"] = result.hits
 ctx["aggregations"] = result.aggregations

 return render(request, "home.html", ctx)

I have highlighted the new code, which is just two lines. The first line is as follows:

s.aggs.bucket("categories", "terms", field="category")

This line adds a bucket type aggregation to our search object. In Elasticsearch, each
aggregation needs a name and the aggregation results are associated with this name
in the response. We give our aggregation the name, categories. The next parameter
to the method is the type of aggregation that we want. As we want to count the
number of documents for each distinct category term, we use the terms aggregation.
As we'll see later on, Elasticsearch has a lot of different aggregation types that
provide for almost all kinds of use cases that you can think of. After the second
parameter, all keyword arguments are part of the aggregation definition. Each type
of aggregation requires different parameters. The terms aggregation only needs the
name of the field to aggregate on, which is category in our documents.

Daintree – an E-commerce Site

[184]

The next line is as follows:

ctx["aggregations"] = result.aggregations

This line adds the results from our aggregations to our template context, where we
will use it to render in the template. The format of the aggregation results is similar
to this:

{
 "categories": {
 "buckets": [
 {
 "key": "CATEGORY 1",
 "doc_count": 10
 },

 {
 "key": "CATEGORY 2",
 "doc_count": 50
 },

 .
 .
 .
]
 }
}

The top-level dictionary contains a key for each aggregation that we added, with the
same name as the one we added it with. In our case, the name is categories. The
value for each key is the result of that aggregation. For a bucket aggregation, like
the terms one that we have used, the result is a list of buckets. Each bucket has
a key, which is a distinct category name, and the number of documents that have
this category.

Let's display this data in our template first. Change main/templates/home.html to
match the following code:

{% extends "base.html" %}

{% block content %}
<h2>Search</h2>
<form action="" method="get">
 {{ form.as_p }}

Chapter 6

[185]

 <input type="submit" value="Search" />
</form>

{% if aggregations.categories.buckets %}
<h2>Categories</h2>

{% for bucket in aggregations.categories.buckets %}
 {{ bucket.key }} ({{ bucket.doc_count }})
{% endfor %}

{% endif %}

 {% if products %}
 {% for product in products %}

 Name: {{ product.name }}

 <i>Category: {{ product.category }}</i>

 <i>Price: {{ product.price }}</i>

 {% if product.tags.all %}
 Tags: (
 {% for tag in product.tags.all %}
 {{ tag.name }}
 {% if not forloop.last %}
 ,
 {% endif %}
 {% endfor %}
)
 {% endif %}

 {% endfor %}
 {% else %}
 No results found. Please try another search term
 {% endif %}

{% endblock %}

Again, I have highlighted the new code. Having seen the format of the preceding
output, this new code should be simple for you to understand. We just loop over
each bucket item and display the name of the category and number of documents
having that category here.

Daintree – an E-commerce Site

[186]

Let's take a look at the results. Open up the home page in your browser and perform
a search; you should see something similar to this:

We now have a list of categories displayed. But wait, what's this? If you look closer,
you'll see that none of the category names make sense (outside of the fact that they
are in Latin). None of the categories that we see match what the categories our
products have. How come?

Chapter 6

[187]

What's happened here is that Elasticsearch took our list of categories, broke them
up into individual words, and then ran the aggregation. For example, if three
products had categories web development, django development, and web applications,
this aggregation would have given us the following results:

• web (2)
• development (2)
• django (1)
• applications (1)

However, this is not useful for our use case. Our category names should be treated as
a unit and not broken up into individual words. Also, we never asked Elasticsearch
to do any such thing when we were indexing our data. So what happened? To
understand this, we need to understand how Elasticsearch works with textual data.

Full text search and analysis
Elasticsearch is based on Lucene, which is a very powerful library to create full
text search applications. Full text search is a bit like using Google on your own
documents. You must have used the Find functionality in word processors such as
Microsoft Word or on web pages a couple of times in your life. This approach to
search is called exact matching. For example, you have a piece of text like this one
taken from the preface to Stories from The Arabian Nights:

Scheherazadè, the heroine of the Thousand and one Nights, ranks among the
great story-tellers of the world much as does Penelope among the weavers.
Procrastination was the basis of her art; for though the task she accomplished
was splendid and memorable, it is rather in the quantity than the quality of her
invention—in the long spun-out performance of what could have been done far
more shortly—that she becomes a figure of dramatic interest.

If you search for the term memorable quantity using exact matching, it will not
show any results. That's because the exact term "memorable quantity" is not found
in this text.

A full text search, however, would return you this text because even though the
exact term memorable quantity is not seen anywhere in the text, the two words
memorable and quantity do appear in the text. Even if you search for something like
memorable Django, this text would still be returned because the word memorable
is still present in the text, even though Django is not. This is how most users expect
search to work on the web, especially on e-commerce sites.

Daintree – an E-commerce Site

[188]

If you are searching for Django web development books on our site and we do
not have something with the exact title, but we do have a book called Django
Blueprints, the user will expect to see that in the search results.

This is what Elasticsearch does when you use a full text search. It breaks up your
search term into words, and then uses these to find search results that have these
terms in them. However, to do this, Elasticsearch also needs to break up your
document when you index them so that it can do the search faster later on. This
process is called analyzing the document and happens at index time for all string
fields by default.

This is the reason why when we get the aggregations for our category field, we get
individual words instead of the complete category names in the result. While full text
search is very useful in most cases of search, for example, the name query search that
we have, in cases like category names it actually gives us unexpected results.

As I've mentioned before, the analysis process that leads to Elasticsearch breaking up
(tokenization is the technical term for this) is done at indexing time. In order to make
sure that our category names are not analyzed, we need to change our ESProduct
DocType subclass and reindex all our data.

First, let's change our ESProduct class in main/es_docs.py. Note the following line:

category = String(required=True)

Change this to be as follows:

category = String(required=True, index="not_analyzed")

However, if we now try to update the mapping, we will run into a problem.
Elasticsearch can only create a mapping for fields, not update them. This is because
if we were allowed to change the mapping of a field after we have some data in our
index, the old data might not make sense anymore with the new mapping.

To delete our existing Elasticsearch index, run the following command in the
command line:

> curl -XDELETE 'localhost:9200/daintree'
{"acknowledged":true}

Next, we want to create our new index and add the ESProduct mapping. We could
do what we did before and create the index from the Python shell. Instead, let's
modify our index_all_data command to automatically create the index when it is
run. Change the code in main/management/commands/index_all_data.py to match
the following:

import elasticsearch_dsl

Chapter 6

[189]

import elasticsearch_dsl.connections

from django.core.management import BaseCommand

from main.models import Product
from main.es_docs import ESProduct

class Command(BaseCommand):
 help = "Index all data to Elasticsearch"

 def handle(self, *args, **options):
 elasticsearch_dsl.connections.connections.create_connection()
 ESProduct.init(index='daintree')

 for product in Product.objects.all():
 esp = ESProduct(meta={'id': product.pk}, name=product.
name, description=product.description,
 price=product.price, category=product.
category.name)
 for tag in product.tags.all():
 esp.tags.append(tag.name)

 esp.save(index='daintree')

I have highlighted the change, which is just the addition of a new line calling the
ESProduct.init method. Finally, let's run our command:

> python manage.py index_all_data

After running the command, let's make sure that our new mapping was inserted
correctly. Let's see what mapping Elasticsearch has now by running the following in
the command line:

> curl "localhost:9200/_mapping?pretty=1"
{
 "daintree" : {
 "mappings" : {
 "products" : {
 "properties" : {
 "category" : {
 "type" : "string",
 "index" : "not_analyzed"
 },
 "description" : {
 "type" : "string"

Daintree – an E-commerce Site

[190]

 },
 "name" : {
 "type" : "string"
 },
 "price" : {
 "type" : "long"
 },
 "tags" : {
 "type" : "string"
 }
 }
 }
 }
 }
}

If you look at the mapping for the category field, it is now not analyzed. Let's
try that last search again and see if this fixes our category aggregations issue.
You should now see something similar to this:

Chapter 6

[191]

As you can see, we no longer have our category names split up into individual
words. Instead, we get a list of unique category names, which is what we wanted
from the start. Now let's give our users the ability to select one of these categories to
limit their search to just the selected category.

Searching with aggregations
The user interaction that we would like to have is this: the user opens the search
page or does a search and sees the list of category links. The user then clicks on one
of those links and sees only products from those categories, with the user's previous
search applied. So if the user searched for products with price between 100 and 200
and then clicked on one of the category links, the new search should show only
products from that category while still applying the price filtering.

In order to achieve this, we need a way to create the category links so that the
current search is preserved. We can pass the category to HomeView as another GET
parameter. So we need to take the current GET parameters (which make up the
current search) and add our category name to the end of it as another parameter.

Unfortunately, Django does not have a built-in way to achieve this. There are a
number of solutions. You could build a custom template tag that adds parameters
to the end of the current URL or you could use some if conditions in your template
to add the category name to the end of the URL. There is another method, which I
prefer because it is cleaner. Instead of generating the URLs in the template, we will
generate them in the Python code where we have a lot of utilities to handle URL GET
parameters and just pass the list of categories along with the URLs to the template
to display.

Let's change the code for main/views.py to match the following:

import random

from django.core.urlresolvers import reverse
from django.shortcuts import render
from django.template.response import RequestContext
from django.views.generic import View
from elasticsearch_dsl import Search
from elasticsearch_dsl.connections import connections

from main.forms import SearchForm

class HomeView(View):
 def get(self, request):

Daintree – an E-commerce Site

[192]

 form = SearchForm(request.GET)

 ctx = {
 "form": form
 }

 if form.is_valid():
 name_query = form.cleaned_data.get("name")
 if name_query:
 s = Search(index="daintree").query("match", name=name_
query)
 else:
 s = Search(index="daintree")

 min_price = form.cleaned_data.get("min_price")
 max_price = form.cleaned_data.get("max_price")
 if min_price is not None or max_price is not None:
 price_query = dict()

 if min_price is not None:
 price_query["gte"] = min_price

 if max_price is not None:
 price_query["lte"] = max_price

 s = s.query("range", price=price_query)

 # Add aggregations
 s.aggs.bucket("categories", "terms", field="category")

 if request.GET.get("category"):
 s = s.query("match", category=request.GET["category"])

 result = s.execute()

 ctx["products"] = result.hits

 category_aggregations = list()
 for bucket in result.aggregations.categories.buckets:
 category_name = bucket.key
 doc_count = bucket.doc_count

 category_url_params = request.GET.copy()

Chapter 6

[193]

 category_url_params["category"] = category_name
 category_url = "{}?{}".format(reverse("home"),
category_url_params.urlencode())

 category_aggregations.append({
 "name": category_name,
 "doc_count": doc_count,
 "url": category_url
 })

 ctx["category_aggs"] = category_aggregations

 return render(request, "home.html", ctx)

I have highlighted the new code that we have added. To start, we imported the
reverse method from Django. Next, while making our search query, we check
whether the user has selected a category (by looking at the category query param).
If the user did select something, we add it to our search as a match query on the
category field.

The more important part comes next, where we build the URLs for the category
links. We loop over each of the buckets that we got in the aggregation results. For
each bucket, we extract the category name and document count. Then, we make
a copy of the request GET params. We make a copy because we want to modify
the parameters by adding our category name in there, but request.GET dict is
immutable and cannot be changed. If you try to change something in request.GET,
you will get an exception. So we make a copy and add the category name for the
current bucket in there.

Next, we create a URL for the request that will search using this category. This
URL is made by first reversing the home page URL and then adding the query
parameters—the one that we made by copying the current request params and
adding our category name.

Finally, we add all this information to a list that we pass to the template. Our template
needs to change as well to work with this new data format. Here is the new code for
main/templates/home.html:

{% extends "base.html" %}

{% block content %}
<h2>Search</h2>
<form action="" method="get">
 {{ form.as_p }}
 <input type="submit" value="Search" />

Daintree – an E-commerce Site

[194]

</form>

{% if category_aggs %}
<h2>Categories</h2>

{% for agg in category_aggs %}

 {{ agg.name }} ({{ agg.doc_count
}})

{% endfor %}

{% endif %}

<h2>Results</h2>

 {% if products %}
 {% for product in products %}

 Name: {{ product.name }}

 <i>Category: {{ product.category }}</i>

 <i>Price: {{ product.price }}</i>

 {% if product.tags.all %}
 Tags: (
 {% for tag in product.tags.all %}
 {{ tag.name }}
 {% if not forloop.last %}
 ,
 {% endif %}
 {% endfor %}
)
 {% endif %}

 {% endfor %}
 {% else %}
 No results found. Please try another search term
 {% endif %}

{% endblock %}

Chapter 6

[195]

I have highlighted the code changes. It should be clear what we did here given how
we have now formatted our category filters. One small change that is not relevant
is the addition of the <h2> Results </h2>. That's because I forgot to add it earlier
and only later realized that there was no divider between the aggregation filters and
results. So I added that here.

You should go ahead and try playing around with the category filters. Select one of
the shown categories and you should only see products from that category. Your
screen should look similar to this:

One last feature that I want to add is a way to cancel the category filter. If you think
about it, we just need to remove the category query param to cancel a category filter,
which would leave us with the original query that only included the search form
params. Doing this is pretty simple; let's take a look.

Daintree – an E-commerce Site

[196]

In main/views.py, right before the render() call in the get() HomeView method,
add this code:

if "category" in request.GET:
 remove_category_search_params = request.GET.copy()
 del remove_category_search_params["category"]
 remove_category_url = "{}?{}".format(reverse("home"), remove_
category_search_params.urlencode())
 ctx["remove_category_url"] = remove_category_url

In main/templates/home.html, add this right after the categories ul tag ends:

{% if remove_category_url %}
Remove Category Filter
{% endif %}

That's it. Try using the search now, and select a category. You should see a Remove
Category Filter link that you can use to remove any category search terms. It should
look similar to this:

Chapter 6

[197]

One thing that you might have noticed is that when any category is selected, we
no longer see the other categories. That's because Elasticsearch aggregations are,
by default, scoped to the main query. Thus, any terms aggregation will only count
documents that are already present in the results of the main query. When the search
includes a category query, the categories aggregation we have will only be able
to find documents in the selected category. To change this behavior and show all
categories, regardless of what is selected by the user, is beyond the scope of the book.
However, I will point you in the right direction, and with some work, you should be
able to achieve this yourself. Have a look at https://www.elastic.co/guide/en/
elasticsearch/guide/current/_scoping_aggregations.html.

Summary
Wow! This was a pretty heavy chapter. We looked at a lot of things and gained a lot
of knowledge. Especially where Elasticsearch was concerned, we went from 0-60
pretty quickly, having it set up and running searches within the first 10 pages.

However, I am confident that by now you should be able to pick up complicated
concepts with ease. We first looked at how to get Elasticsearch up and running on
our local systems. Then we looked at how we could easily interact with Elaticsearch
using its HTTP API. We looked at the basic concepts for Elasticsearch and then
inserted a few documents into our first index.

Then we used the HTTP API to search for those documents and get back results.
Once we had an overview of what Elasticsearch was and how it worked, we moved
toward integrating it with our Django applications.

We again saw the power of using the Django shell to test out libraries quickly and
find out how to approach various tasks, as we did while indexing and searching for
documents using the elasticsearch_dsl library. We then created a Django command
that essentially was just a copy of whatever we did in the Django shell before.

Then we really started working on our search view. We changed the home page to
use Elasticsearch instead of the database to show our products and added a basic
search for the name field. Next, we looked at how to manage configuration options
for our applications from a central location, AppConfig. We also looked at how to
use elasticsearch_dsl to do a bit more complicated query, the range query.

Finally, we looked at what Elasticsearch aggregations were and how we could
integrate them into our application to provide our users with a great search experience.
All in all, this was a complicated chapter and having finished it, you should now have
the confidence to approach much larger and feature-rich applications.

https://www.elastic.co/guide/en/elasticsearch/guide/current/_scoping_aggregations.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/_scoping_aggregations.html

[199]

Form Mason – a Monkey
of your own

In our journey to learn Django, we have traveled far. We started from baby steps,
learning to set up databases, basic views, and templates. We then moved on to more
difficult stuff such as management commands and the Django shell. This is the last
chapter in that journey, where we use all the knowledge that we have gained, and
use it to create one of the most complicated applications yet. It's always fun to end
things with a bang, and that's what we'll do here!

You might have heard of SurveyMonkey (www.surveymonkey.com) or Wufoo
(www.wufoo.com). If not, these are web applications that allow you to create custom
forms to gather data from audiences. You use the control panel available on these
sites to set up a form, defining all the fields and how they should be validated, and
configuring some basic stuff such as what the form should look like, what theme it
should use, and so on. After configuring the form, you get a link to a web page that
displays that form.

You then send this link out to the intended audience and they fill it in, with their
responses being saved. As part of your control panel, you also get a web page where
you can view and filter these responses.

Services like these make it dead simple for even the least computer-savvy people to
create online surveys and gather data for any purpose from a wide audience. This
seems like a cool service that we will replicate in this chapter. It will also be the most
complex application that we will have created, as it requires us to dive deep into
Django and understand how Django forms work behind the scenes. In a sense, you
will learn about the magic that makes Django tick. Exciting, isn't it!

www.surveymonkey.com
www.wufoo.com

Form Mason – a Monkey of your own

[200]

Code pack
This chapter does not have a code pack because almost all of the stuff that we are
about to do here is new. Plus, we will do a lot of exploring in this chapter as well.
This is both fun and shows you one of the many ways of approaching a tough project.

As there is no code pack to work from, you'll need to start the project by yourself.
First, as always, create a new virtual environment for the new project. Next, with
the environment activated, install Django and run the following:

> django-admin.py startproject formmason

This should create a formmason folder with our new Django project, ready for us
to start working on. Use the cd command to get into this folder and create a new
application that we'll be using to hold our views, models, and so on:

> python manage.py startapp main

Finally, add the main application to our list of INSTALLED_APPS in formmason/
settings.py. Once that's done, we're ready to start!

Looking at a Django form
As our aim is to allow users to create dynamic forms based on parameters stored in a
database, a good place to start is to look at how a Django form works under the hood
and what options we have to customize it. First, let's create a basic form. Create a
new main/forms.py file and add the following code to it:

from django import forms

class SampleForm(forms.Form):
 name = forms.CharField()
 age = forms.IntegerField()
 address = forms.CharField(required=False)
 gender = forms.ChoiceField(choices=(('M', 'Male'), ('F',
'Female')))

This is a pretty basic form. However, it has a variety of form fields that we can look
at. Let's play around a bit in the shell, which you can start as follows:

> python manage.py shell

Chapter 7

[201]

I usually like to install another package called ipython. When you
start the Django shell with ipython installed, you get an enhanced
version of the basic shell with a lot of cool features such as
autocomplete and a much better looking interface. I always install
it in any Django project because I almost always use the shell at the
start of the project to play around. I highly advise you to install it as
well when you start a new Django project.

Import our form in the shell as follows:

> from main.forms import SampleForm

In the same shell, type the following:

> form = SampleForm()
> form.fields
OrderedDict([('name', <django.forms.fields.CharField at 0x10fc79510>),
 ('age', <django.forms.fields.IntegerField at
0x10fc79490>),
 ('address', <django.forms.fields.CharField at
0x10fc79090>),
 ('gender', <django.forms.fields.ChoiceField at
0x10fc792d0>)])

The first line of code simply created an instance of our form class. It's the second line
where the fun begins. However, I'll first explain the OrderedDict data structure
a bit.

As the name suggests, OrderedDict is a dictionary that maintains the order in which
its elements were inserted. A normal dictionary in Python has no fixed order. If you
insert three elements into a dictionary with keys A, B, and C, and then you ask for the
keys back using the keys() method on the dictionary instance, the order in which
you will get them back is not guaranteed, which is why normal built-in dictionaries
are said to be unordered.

In contrast, the keys in OrderedDict, which is from the collections library (part
of the Python standard library), are guaranteed to be in the same order that you
inserted them in. So if you were to iterate over the keys using either the keys()
or items() method, you would always get them back in the same order that you
inserted them.

Getting back to the output, you will see that the dictionary printed has the same keys
as the names of the fields that we used when we created our SampleForm class. The
values of these keys are the Field subclasses (CharField, IntegerField, and so on)
that we used in our form.

Form Mason – a Monkey of your own

[202]

Let's try something. In the shell, type the following and look at the output:

> form.name

AttributeError Traceback (most recent call
last)
<ipython-input-16-1174e5d9164a> in <module>()
----> 1 form.name

AttributeError: 'SampleForm' object has no attribute 'name'

It seems that the name attribute that we defined on our SampleForm class is no longer
there. Weird, huh?

So far you have learned two facts about a Django form. The first, that the fields
attribute on a form instance contains a mapping of field names to the Field classes.
Second, that the field attributes we defined when creating our SampleForm class are
not accessible on the instance.

Putting these two facts together gives us some indication of what Django does with
the SampleForm class when creating an instance of it. It removes the field attributes
and adds them to the fields dictionary. After a form instance is created, the only
way to find out the fields that are defined on it is the fields dictionary attribute.

So, if we wanted to add another field to a form after the class has been defined
and we could not change the code of the class itself, we could add an instance of a
Field subclass to the fields attribute on the form instance. Let's try it out and see
if this works.

I lied a little when I said that Django removes the field attributes
from a SampleForm class when creating an instance of it. In reality,
the SampleForm class also has its field attributes removed. If you
typed SampleForm.name in the shell, you would get a similar
AttributeError. However, this information is not relevant to our
current task, and the reason why this happens is complicated so I
won't go into it in this book. If you want all the details, check out the
source for the django.forms.Form class.

Chapter 7

[203]

Adding an extra field to a SampleForm
instance
We will now try an experiment. We will create an instance of our SampleForm with
some valid test data, and then we will add another field to the fields attribute on
our instance. We will then call the is_valid() method to see if our form instance
considers the dynamically added field when validating the data provided earlier.
Let's see what happens. In the Django shell, enter the following commands:

> from main.forms import SampleForm
> test_data = {'name': 'Jibran', 'age': 27, 'gender': 'M'}
> form = SampleForm(test_data)
> from django import forms
> form.fields['country'] = forms.CharField()
> form.is_valid()
False
> form.errors
{'country': [u'This field is required.']}

Nice! It seems like our idea worked. Even though we added the country field after
our SampleForm had been instantiated and provided the data, the form validation
did consider our new field. As the country field was not part of the test_data
dictionary and the field is required, the form validation failed and the errors list
included the appropriate error.

Now that we have a technique to achieve our objective, let's create some views and
templates to render a dynamic form.

Generating dynamic forms
Before we get to the code, we have to decide on a data format to specify the structure
of our dynamic forms. JSON is one of the most popular, if not the most popular, data
storage and exchange formats on the web right now. You will probably be aware of
what JSON, is and how it works and what it looks like. However, if you're not, here's
a quick introduction.

Form Mason – a Monkey of your own

[204]

JSON stands for JavaScript Object Notation. It uses the same format that JavaScript
uses to declare objects. The biggest benefit for us Python guys is that it is almost
exactly the same as the dictionary declaration syntax in Python. Let's say that we
want to store some details about a user. In JSON, here is what that information
would look like:

{
 "name": "Jibran",
 "age": 27,
 "country": "Pakistan"
}

As you can see, we can even copy and paste this into our Python code and it would
be a valid dictionary definition, which makes it very easy for us to work with.

JSON has a number of benefits over other data storage/exchange formats:

• It's text only, so no need to have special tools built around it for the viewing
and parsing.

• Parsing JSON is very easy, and most languages have a library for this. Python
comes with a standard library to parse JSON.

• It's simple to write by hand.
• It can be stored in a number of ways without needing to do anything special.

We will use this fact later on to store JSON in our database as a simple text
field.

Now that you know a bit about JSON, let's see how to use it. We will store
information about how to construct a dynamic form in JSON. We will then use the
Python standard library json to convert the JSON string to a Python dictionary,
which we will then iterate over and create our form.

For this section, we will hardcode the JSON that we use in order to
generate the form. Later on, we will allow our users to create and
store the JSON themselves in a database from a control panel that
we will make for them.

We will look at how to define the form fields in JSON and generate a dynamic form
from this schema. We will also create an HTML form to render our form so we can
test that everything works as expected.

Chapter 7

[205]

Let's look at the format for a simple form that can be used to collect basic
demographic information about people:

{
 "name": "string",
 "age": "number",
 "city": "string",
 "country": "string",
 "time_lived_in_current_city": "string"
}

This is the sample JSON that we will use in this section to generate and display
our dynamic form. This structure is a simple dictionary with strings for the values.
We have to write code to parse this dictionary and create a Django form out of this
information.

Generating a form out of JSON
The first thing that we will need to do is convert the JSON data that our view will
get to a Python dictionary so that we can iterate over it. Python comes with the json
module as part of the standard library that will handle the parsing for us. You can
read the documentation for it at https://docs.python.org/3/library/json.
html. It is dead simple to use, however, so let's just dive in.

Open up main/views.py and add this code:

import json

from django import forms
from django.views.generic import FormView

class CustomFormView(FormView):
 template_name = "custom_form.html"

 def get_form(self):
 form_structure_json = """{
"name": "string",
"age": "number",
"city": "string",
"country": "string",
"time_lived_in_current_city": "string"
}"""
 form_structure = json.loads(form_structure_json)

 custom_form = forms.Form(**self.get_form_kwargs())

https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/json.html

Form Mason – a Monkey of your own

[206]

 for key, value in form_structure.items():
 field_class = self.get_field_class_from_type(value)
 if field_class is not None:
 custom_form.fields[key] = field_class()
 else:
 raise TypeError("Invalid field type {}".format(value))

 return custom_form

 def get_field_class_from_type(self, value_type):
 if value_type == "string":
 return forms.CharField
 elif value_type == "number":
 return forms.IntegerField
 else:
 return None

There are a couple of things to explain here. However, let's first get the view working
and see if it does what we want. Then I'll explain what this code does. Next, let's
create the main/templates/custom_form.html template. You will need to create
the templates folder under the main/ folder first. Put this code in there:

<html>
<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8"
/>

 <title>Custom Form Demo</title>
</head>

<body>
 <h1>Custom Form</h1>
 <form action="" method="post">{% csrf_token %}
 {{ form.as_p }}
 <input type="submit" value="Submit" />
 </form>
</body>
</html>

Chapter 7

[207]

Finally, put the following code in formmason/urls.py to include our new view:

from django.conf.urls import url

from main.views import CustomFormView

urlpatterns = [
 url(r'^$', CustomFormView.as_view(), name='custom-form'),
]

That's it for now. To test it out, run the development server using the runserver
command and then open up http://127.0.0.1:8000 in any browser. You should
see a screen similar to this:

Form Mason – a Monkey of your own

[208]

Try submitting an incomplete form and the page should be rendered with the correct
error messages. Try to complete the form and submit it. Now you should see an
error page, with the ImproperlyConfigured: No URL to redirect to. Provide
a success_url error. This error comes from our use of the FormView generic view.
When the form is valid, it expects success_url to be defined so that the user can be
redirected to it. We don't have anywhere to redirect the user to, so we will ignore this
for now. Let's take a look at the code and see what we have done here.

This example also highlighted the power of generic views. By just
redefining one function, get_form, we were able to use all the
features of FormView with a form that is generated dynamically.
As the Django generic views are made with modularity in mind,
the rest of the view does not care how the form is created, just that
the get_form method returns a valid form.

Most of the action happens in the get_form method of our CustomFormView, so let's
start there. The first line of code defines the JSON data structure that we will use to
generate our form. As I've mentioned before, this data will eventually be coming
from a database backend; however, for testing purposes, we are hardcoding it for
now. Next, we use the json.loads method to convert the JSON string to a Python
object. This conversion process is pretty intuitive. The JSON string that we have is a
dictionary with keys for name, age, city, country, and time_lived_in_current_
city. The Python object that we get from json.loads is a dictionary as well, with
the same key/value pairs. You can also have arrays in your JSON string and loading
it would give you a Python list. JSON has support for nested objects, so you could
have an array of dictionaries or a dictionary with an array for a value.

Next, we create an instance of the base django.forms.Form class. As we saw in our
experimentation before, we can take an instance of a Django form and add fields to
it. Instead of creating an empty form class and using that, we just use the base Form
class from Django directly. To the constructor of the form class, we pass whatever we
receive from self.get_form_kwargs(). This method is part of the Django FormView
class and depending on the request type creates the correct keyword arguments to
be passed to a Form class. For instance, if the request was a POST/PUT request, get_
form_kwargs() would return a dictionary that contains the data keyword argument
so that we can use the form to validate and take further action on the data.

The interesting bit happens next, when we loop over the items list of our custom
fields data. The items() method on the data that we loaded from JSON returns a list
as follows:

[('name', 'string'), ('age', 'number'), ('city', 'string'),
('country', 'string'), ('time_lived_in_city', 'string')]

Chapter 7

[209]

We loop over this list, assigning each of these item pairs to variables key and value
in the for loop. We then pass the values to the get_field_class_from_type
method, which decides which of the available form field classes to use for the type
of data passed. The method's code is a simple if/else, which returns a field class or
None if it was passed an invalid type.

We use the return value of this method, which is a class, and assign an instance of
it to the form's fields attribute dictionary. Note that we assign an instance of the field
class and not the class itself. The name of the field is the key from our JSON dictionary.
We also do some basic error handling, raising TypeError if we cannot find a
matching field class for the type we got in our JSON data dictionary.

Finally, we return our customized form class. From there on, the Django FormView
takes over and either renders the form, with errors if necessary, or redirects the user
to the success URL if the form data submitted by the user was valid. As we didn't
define any success URL, we get an error when we submit a valid form.

That's it. That is all the code that we need to create a dynamically generated form.
We can add a couple of more features such as custom validation or advanced
features such as supporting choice fields with a limited set of choices, but I'll
leave that as an interesting project for you to try on your own.

Next, let's take a look at how we can store the JSON data that defines our custom
form in a database. We'll create a model for it and allow the user to create multiple
forms with different fields from an admin panel.

A model for our JSON
As I have mentioned earlier, one of the biggest benefits of using JSON as the
definition format for our forms is that it uses just simple text data to encode the
definition of complex objects. While some databases such as PostgreSQL have a
column type for JSON, others do not. However, because we are dealing with simple
text data, we don't need one! We can store our JSON data in a simple TextField
and then encode and decode the data to and from a Python dictionary whenever
required. In fact, there are many people in the Django community who have already
dealt with this problem and open sourced their solutions for us to use.

One such package that I have used in the past is django-jsonfield. You can find it
at https://github.com/bradjasper/django-jsonfield, and we will be using it
in our project. First, install the required package by typing the following command in
your command line. Make sure to have the virtual environment activated first so that
it is installed in the correct location.

> pip install jsonfield

https://github.com/bradjasper/django-jsonfield

Form Mason – a Monkey of your own

[210]

With the package installed, we can create a model for our form. Open up main/
models.py and change it to have the following code:

from __future__ import unicode_literals

from django.db import models

from jsonfield import JSONField

class FormSchema(models.Model):
 title = models.CharField(max_length=100)
 schema = JSONField()

Save the file and then create and run migrations so that Django creates the tables for
our new model. In the command line, run the following commands:

> python manage.py makemigrations main
Migrations for 'main':
 0001_initial.py:
 - Create model FormSchema
> python manage.py migrate
Operations to perform:
 Apply all migrations: sessions, contenttypes, admin, main, auth
Running migrations:
 Rendering model states... DONE
 Applying contenttypes.0001_initial... OK
 Applying auth.0001_initial... OK
 Applying admin.0001_initial... OK
 Applying admin.0002_logentry_remove_auto_add... OK
 Applying contenttypes.0002_remove_content_type_name... OK
 Applying auth.0002_alter_permission_name_max_length... OK
 Applying auth.0003_alter_user_email_max_length... OK
 Applying auth.0004_alter_user_username_opts... OK
 Applying auth.0005_alter_user_last_login_null... OK
 Applying auth.0006_require_contenttypes_0002... OK
 Applying auth.0007_alter_validators_add_error_messages... OK
 Applying sessions.0001_initial... OK

Chapter 7

[211]

With the migrations done, let's see how we can use this model. Instead of writing the
code for the view, I like to start by doing a bit of experimentation in the Django shell.
Open it up by typing as follows:

> python manage.py shell

Then type in the following to test out our new model:

> from main.models import FormSchema
> fs = FormSchema()
> fs.title = 'My First Form'
> fs.schema = {'name': 'string', 'age': 'number', 'city': 'string',
'country': 'string', 'time_lived_in_current_city': 'string'}
> fs.save()
> FormSchema.objects.get(pk=1).schema
{u'age': u'number',
 u'city': u'string',
 u'country': u'string',
 u'name': u'string',
 u'time_lived_in_current_city': u'string'}

What we have done here should be pretty simple for you to understand by now.
The important thing to note here is the value that we assigned to the schema field.
Instead of using a string representation of the JSON data, we simply assigned a
Python dictionary to it. The JSONField class we used as the field class in our model
does the heavy lifting of converting from a Python dictionary to a JSON string when
saving to the database.

The reverse is also the same. Notice how, in the last line of our shell session, we
simply accessed the schema field directly and got a Python dictionary back instead of
the string JSON data that is actually saved in the database. This makes working with
JSON transparent to us.

Form Mason – a Monkey of your own

[212]

You might be wondering why I am asking you to experiment in this
chapter and play around in the shell, whereas in the previous chapters, I
just showed you the relevant view/model/template code directly.
Like I mentioned at the start of this chapter, this chapter is about showing
you how to arrive at a solution by yourself instead of me holding your
hand and showing you the end result immediately.
All good Django developers that I know have a similar method of
developing solutions for the projects that they work on. They experiment
a bit, and in doing so figure out a solution to the problem they are
working on. Everyone has a different way of experimenting though. Some
people, like me, use the Django shell a lot. Others write test code in views
and models. Others might create simple Django management commands
to do the same. However, everyone goes through the same process.
We find a problem that needs to be solved, we research it a bit, and then
experiment with the various methods of solving it, finally choosing one
which we like the best. You will eventually develop a method that you
are comfortable with. In the meanwhile, I'll be walking you through my
method and you can use this if you like.

We now have a FormSchema object in our database, so let's create a view that can use
this object to generate a form. In main/views.py, first import our new model near
the top:

from main.models import FormSchema

Then change the get_form method in our CustomFormView to match this:

def get_form(self):
 form_structure = FormSchema.objects.get(pk=1).schema

 custom_form = forms.Form(**self.get_form_kwargs())
 for key, value in form_structure.items():
 field_class = self.get_field_class_from_type(value)
 if field_class is not None:
 custom_form.fields[key] = field_class()
 else:
 raise TypeError("Invalid field type {}".format(value))

 return custom_form

Chapter 7

[213]

I have highlighted the new line. We have removed the hardcoded JSON string that
we used and instead assigned the schema field's value from our database object to
the form_structure variable. The rest of the code stays the same. Try opening the
home page for the application again. You'll find that the frontend has stayed the
same. The interactions will be the same as well. You can try to submit invalid or
incomplete data and it will show you the errors as before. Trying to submit a valid
form will still result in the error about success URL not being defined.

Next, let's create a better frontend for our users. We'll create a list view where the
user can see a list of all forms available on the site and a form view that displays the
actual form and handles the interactions.

Creating a better user interface
There isn't anything complicated about what we'll do here. It should be very easy for
you to follow along, so I'll just give you the code to write and leave the explanation,
as we have done all of this many times before in the previous chapters.

Start by creating a templates directory in the project root. Next, add it to the list of
DIRS in the TEMPLATES configuration variable in our formmason/settings.py file.
The settings.py file already has a TEMPLATES variable configured, so go ahead and
replace the DIRS list in this dictionary with the value that you see here:

TEMPLATES = [
 {
 'BACKEND': 'django.template.backends.django.DjangoTemplates',
 'DIRS': [
 os.path.join(BASE_DIR, 'templates'),
],
 'APP_DIRS': True,
 'OPTIONS': {
 'context_processors': [
 'django.template.context_processors.debug',
 'django.template.context_processors.request',
 'django.contrib.auth.context_processors.auth',
 'django.contrib.messages.context_processors.messages',
],
 },
 },
]

Form Mason – a Monkey of your own

[214]

Next, create a base.html template in the new templates directory that you just
created and put this code in there:

<html>
<head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8"
/>

 <title>Form Mason</title>
</head>

<body>
 Home
 {% block content %}
 {% endblock %}
</body>
</html>

Modify main/templates/custom_form.html to match this:

{% extends "base.html" %}

{% block content %}
 <h1>Custom Form</h1>
 <form action="" method="post">{% csrf_token %}
 {{ form.as_p }}
 <input type="submit" value="Submit" />
 </form>
{% endblock %}

Change main/views.py to this:

from django import forms
from django.views.generic import FormView
from django.views.generic import ListView

from main.models import FormSchema

class HomePageView(ListView):
 model = FormSchema
 template_name = "home.html"

class CustomFormView(FormView):

Chapter 7

[215]

 template_name = "custom_form.html"

 def get_form(self):
 form_structure = FormSchema.objects.get(pk=self.kwargs["form_
pk"]).schema

 custom_form = forms.Form(**self.get_form_kwargs())
 for key, value in form_structure.items():
 field_class = self.get_field_class_from_type(value)
 if field_class is not None:
 custom_form.fields[key] = field_class()
 else:
 raise TypeError("Invalid field type {}".format(value))

 return custom_form

 def get_field_class_from_type(self, value_type):
 if value_type == "string":
 return forms.CharField
 elif value_type == "number":
 return forms.IntegerField
 else:
 return None

Create a new home template at main/templates/home.html and give it the
following code:

{% extends "base.html" %}

{% block content %}
 <h1>Available Forms</h1>
 {% if object_list %}

 {% for form in object_list %}
 {{ form.
title }}
 {% endfor %}

 {% endif %}
{% endblock %}

Form Mason – a Monkey of your own

[216]

Finally, change formmason/urls.py to match this:

from django.conf.urls import url

from main.views import CustomFormView
from main.views import HomePageView

urlpatterns = [
 url(r'^$', HomePageView.as_view(), name='home'),
 url(r'^form/(?P<form_pk>\d+)/$', CustomFormView.as_view(),
name='custom-form'),
]

Once you have done all this, open up the home page for the application again at
http://127.0.0.1:8000, and you should see a page similar to this:

Clicking on the link for the form should take you to the same form page
that we had before; the only difference is that now it is served at the URL,
http://127.0.0.1:8000/form/1/.

Chapter 7

[217]

Like I said, all this is pretty basic stuff that we have done repeatedly in the past few
chapters. One thing that might be new is our use of self.kwargs['form_pk'] in the
CustomFormView.get_form method. Here's the relevant line:

form_structure = FormSchema.objects.get(pk=self.kwargs["form_pk"]).
schema

For any generic view that Django provides (except for the base View class), self.
kwargs is a dictionary of all named parameters that matched the URL pattern. If you
look at our formmason/urls.py file, we defined the URL for our custom form page
like this:

url(r'^form/(?P<form_pk>\d+)/$', CustomFormView.as_view(),
name='custom-form')

In our view, the form_pk parameter defined in the regex pattern for the URL is
available in self.kwargs. Likewise, any non-keyword parameters in the URL
pattern are available for use in self.args.

Now that we have a useable user interface, we will move on to storing the form
responses in our database and giving our customers a page to view these responses.

Saving the responses
We want to save the response of the user filling in one of our dynamic forms. As
the data from a dynamic form will also be dynamic, we need to store an unknown
number of fields and their values in our database. As we have already seen, JSON is
a reasonable way to store such data. Let's create a new model in main/models.py to
store the responses:

class FormResponse(models.Model):
 form = models.ForeignKey(FormSchema)
 response = JSONField()

Next, create and run the migrations to add this new model to our database:

> python manage.py makemigrations main
Migrations for 'main':
 0002_formresponse.py:
 - Create model FormResponse
> python manage.py migrate main
Operations to perform:
 Apply all migrations: main
Running migrations:
 Rendering model states... DONE
 Applying main.0002_formresponse... OK

Form Mason – a Monkey of your own

[218]

Now that we have our model, we need to save valid responses for our forms in this
model. The form_valid method of CustomFormView is the correct place to add this
logic. First, we need to import a few things from Django and our new model at the
top of our main/views.py file:

from django.core.urlresolvers import reverse
from django.http.response import HttpResponseRedirect

from main.models import FormResponse

Then, add a form_valid method with this code to the CustomFormView class:

def form_valid(self, form):
 custom_form = FormSchema.objects.get(pk=self.kwargs["form_pk"])
 user_response = form.cleaned_data

 form_response = FormResponse(form=custom_form, response=user_
response)
 form_response.save()

 return HttpResponseRedirect(reverse('home'))

That's it. Now try submitting the custom form that we created earlier and if the data
was valid, you should be redirected to the home page after your response was saved.
Right now, we have no way to see these responses in the frontend; however, we can
use the Django shell to make sure that our data has been saved. Start the shell with
the following command:

> python manage.py shell

Then use the following lines of code to see the response that was saved:

> from main.models import FormResponse

> FormResponse.objects.all()[0].response

{u'age': 27,

 u'city': u'Dubai',

 u'country': u'UAE',

 u'name': u'Jibran',

 u'time_lived_in_current_city': u'3 years'}

You should see the data that you entered when saving the form. Now let's create a
screen where our customers can see the responses for their custom forms.

Chapter 7

[219]

Showing the responses
The code in this section is pretty simple and should not have any surprises for you.
First, let's create the view in main/views.py:

class FormResponsesListView(ListView):
 template_name = "form_responses.html"

 def get_context_data(self, **kwargs):
 ctx = super(FormResponsesListView, self).get_context_
data(**kwargs)
 ctx["form"] = self.get_form()

 return ctx

 def get_queryset(self):
 form = self.get_form()
 return FormResponse.objects.filter(form=form)

 def get_form(self):
 return FormSchema.objects.get(pk=self.kwargs["form_pk"])

Next, create the main/templates/form_responses.html template:

{% extends "base.html" %}

{% block content %}
<h1>Responses for {{ form.title }}</h1>
{% if object_list %}

 {% for response in object_list %}
 {{ response.response }}
 {% endfor %}

{% endif %}
{% endblock %}

In formmason/urls.py, import our new view:

from main.views import FormResponsesListView

Add this URL pattern to the urlpatterns list:

url(r'^form/(?P<form_pk>\d+)/responses/$', FormResponsesListView.as_
view(), name='form-responses'),

Form Mason – a Monkey of your own

[220]

Finally, edit main/templates/home.html to add a link to this new view:

{% extends "base.html" %}

{% block content %}
 <h1>Available Forms</h1>
 {% if object_list %}

 {% for form in object_list %}

 {{ form.
title }}

 See
Responses

 {% endfor %}

 {% endif %}
{% endblock %}

The new line of code is highlighted. After making all these changes, open the home
page and you should see the See Responses links for the new view next to each of
the existing form links:

Chapter 7

[221]

Clicking on the link should take you to a page as follows:

While it does get the job done, it is very crude. We can do better. Let's improve this.

An improved responses list
What we'd like is to show the responses in a tabular fashion with the field names as
the header and response values for these fields underneath them. Let's start out by
modifying our view code. In main/views.py, first import TemplateView as we will
no longer be using ListView as the base class for our FormResponsesListView:

from django.views.generic import TemplateView

Next, modify FormResponsesListView to match the following code:

class FormResponsesListView(TemplateView):
 template_name = "form_responses.html"

 def get_context_data(self, **kwargs):
 ctx = super(FormResponsesListView, self).get_context_
data(**kwargs)

 form = self.get_form()
 schema = form.schema
 form_fields = schema.keys()
 ctx["headers"] = form_fields
 ctx["form"] = form

 responses = self.get_queryset()
 responses_list = list()
 for response in responses:

Form Mason – a Monkey of your own

[222]

 response_values = list()
 response_data = response.response

 for field_name in form_fields:
 if field_name in response_data:
 response_values.append(response_data[field_name])
 else:
 response_values.append('')
 responses_list.append(response_values)

 ctx["object_list"] = responses_list

 return ctx

 def get_queryset(self):
 form = self.get_form()
 return FormResponse.objects.filter(form=form)

 def get_form(self):
 return FormSchema.objects.get(pk=self.kwargs["form_pk"])

The major changes here are in the get_context_data method. We also changed the
base class to TemplateView from ListView. Let's look at what we are doing in the
get_context_data method.

First, we use the keys method on the JSON form schema, which is saved in the
FormSchema model, to create a list of field headers. We pass this to the template in
the headers context variable.

The slightly complicated part comes next. We loop over each of the FormResponse
objects in our database. For each response object, we then loop over the form field
names and get that attribute from the response data. We do this because, in the
Django template, there is no way to get a value from a dictionary with a variable key
name. We could create a custom template tag; however, that would add unnecessary
complexity. Instead, we do the same thing in our view, where it is easier. For each
response object, we create a list of values that is in the same order as the field headers.
We then add this list of field values to our list of responses. The reason that our data is
structured in this way becomes clear when we look at our template.

Chapter 7

[223]

Finally, we assign the list of responses to the object_list template context variable
and return the context. Next, let's change the main/templates/form_responses.
html template to match the following:

{% extends "base.html" %}

{% block content %}
<h1>Responses for {{ form.title }}</h1>
{% if object_list %}
<table border="1px">
 <tr>
 {% for field_name in headers %}
 <th>{{ field_name }}</th>
 {% endfor %}
 </tr>
 {% for response in object_list %}
 <tr>
 {% for field_value in response %}
 <td>{{ field_value }}</td>
 {% endfor %}
 </tr>
 {% endfor %}
</table>
{% endif %}
{% endblock %}

If you understood how our data was structured in the view, the template should be
simple enough to follow. These are all the changes that we need to make for now.

Form Mason – a Monkey of your own

[224]

If you open the responses page again, you should now see a neatly aligned table, as
shown in the following screenshot:

We have so far created a page to list the available forms, a page to submit data with
a dynamic form, and a page to show those responses. Our application is nearly done.
However, we are still missing a page that allows customers to create a custom form.
Let's tackle this next.

Designing a form creation interface
We want to provide our users with a friendly interface to edit the structure of their
dynamic forms. The ideal interface would be something that allows users to drag
and drop their fields and set the properties for these fields using simple click and
type operations on a web page. However, creating an interface like this is a major
undertaking and a project on its own. It requires a team of frontend developers and
designers to create something that user friendly.

Unfortunately, we can't create something like that as an interface like that is more
of a frontend project than something related to Django. However, if you want, it is a
good exercise if you are looking to improve your frontend skills.

Chapter 7

[225]

For this project, we will create a simple Django form where the user can manually
enter the JSON to define the structure of their forms. We will provide basic
validation and editing capabilities. So let's start by creating our form. Change the
main/forms.py file to match the following code:

import json

from django import forms

class NewDynamicFormForm(forms.Form):
 form_pk = forms.CharField(widget=forms.HiddenInput(),
required=False)
 title = forms.CharField()
 schema = forms.CharField(widget=forms.Textarea())

 def clean_schema(self):
 schema = self.cleaned_data["schema"]
 try:
 schema = json.loads(schema)
 except:
 raise forms.ValidationError("Invalid JSON. Please submit
valid JSON for the schema")

 return schema

The form itself is pretty simple. However, we need to take a closer look at the
clean_schema method. When the is_valid() method is called on a Django form, it
goes through a couple of steps. The exact details can be found in the documentation
at https://docs.djangoproject.com/en/stable/ref/forms/validation/.
However, a good approximation is that Django calls two different types of clean
methods on the form class. First, it looks for methods named clean_<fieldname>
for each field defined on the form. This method should return the cleaned value of
the field that will then be stored in the cleaned_data dictionary of the form. Next,
Django calls the clean method on the form class. This method is meant to clean
data for fields that depend on each other as dependent cleaning should not be done
in individual clean_<fieldname> methods. The clean method should return a
dictionary that will replace the form's cleaned_data dictionary completely.

Either type of clean methods can raise a forms.ValidationError exception
if the data is not in the expected format. If ValidationError is raised in a
clean_<fieldname> method, the error is tied to that field and displayed next to it
when the form is rendered. If the error is raised in the general clean method, the
error is displayed in the form error list that is displayed right before the form fields
start in the HTML of the form.

https://docs.djangoproject.com/en/stable/ref/forms/validation/

Form Mason – a Monkey of your own

[226]

As we wish to make sure that the data entered by the user in the schema field is
valid JSON, we use json.loads on the user-entered data and raise an exception if
the call fails. One important thing to note is that we return a modified version of the
schema if our clean_schema call succeeds. This is because, in our model, we need
to save a Python dictionary instead of a JSON string. Our JSONField model field
handles the necessary conversion from a Python object to a JSON string when saving
to the database.

Another side note is that the clean_schema method is not given any arguments. It
must get the value for the schema field from the form's cleaned_data dictionary.
With our form created, let's add a view to main/views.py to display this form. First,
import our new form and the json library at the top:

import json
from main.forms import NewDynamicFormForm

Then add the following code to the view:

class CreateEditFormView(FormView):
 form_class = NewDynamicFormForm
 template_name = "create_edit_form.html"

 def get_initial(self):
 if "form_pk" in self.kwargs:
 form = FormSchema.objects.get(pk=self.kwargs["form_pk"])
 initial = {
 "form_pk": form.pk,
 "title": form.title,
 "schema": json.dumps(form.schema)
 }
 else:
 initial = {}

 return initial

 def get_context_data(self, **kwargs):
 ctx = super(CreateEditFormView, self).get_context_
data(**kwargs)
 if "form_pk" in self.kwargs:
 ctx["form_pk"] = self.kwargs["form_pk"]

 return ctx

 def form_valid(self, form):

Chapter 7

[227]

 cleaned_data = form.cleaned_data

 if cleaned_data.get("form_pk"):
 old_form = FormSchema.objects.get(pk=cleaned_data["form_
pk"])
 old_form.title = cleaned_data["title"]
 old_form.schema = cleaned_data["schema"]
 old_form.save()
 else:
 new_form = FormSchema(title=cleaned_data["title"],
schema=cleaned_data["schema"])
 new_form.save()

 return HttpResponseRedirect(reverse("home"))

Next, create the main/templates/create_edit_form.html file and put this code in
there:

{% extends "base.html" %}

{% block content %}
<h1>Create/Edit Form</h1>

{% if form_pk %}
<form action="{% url 'edit-form' form_pk=form_pk%}" method="post">{%
csrf_token %}
{% else %}
<form action="{% url 'create-form' %}" method="post">{% csrf_token %}
{% endif %}

{{ form.as_p }}
<input type="submit" value="Create Form" />
</form>
{% endblock %}

Finally, import this new view in our formmason/urls.py and add two patterns for it
to the urlpatterns file. Here is the final formmason/urls.py file:

from django.conf.urls import url

from main.views import CreateEditFormView
from main.views import CustomFormView
from main.views import FormResponsesListView
from main.views import HomePageView

urlpatterns = [

Form Mason – a Monkey of your own

[228]

 url(r'^$', HomePageView.as_view(), name='home'),
 url(r'^form/(?P<form_pk>\d+)/$', CustomFormView.as_view(),
name='custom-form'),
 url(r'^form/(?P<form_pk>\d+)/responses/$', FormResponsesListView.
as_view(), name='form-responses'),

 url(r'form/new/$', CreateEditFormView.as_view(), name='create-
form'),
 url(r'form/(?P<form_pk>\d+)/edit/$', CreateEditFormView.as_view(),
name='edit-form'),
]

We are using the same view twice—once as a create view and once as an edit view.
If you look at the code for the view, we provide the form with initial data from a
FormSchema object if the form_pk keyword argument was matched from the URL.
If it wasn't, we know that we are creating a new form and our initial data dictionary
is empty. One thing to note is that in the initial data, we use json.dumps(form.
schema) to provide the initial value for the schema field. This is the reverse of what
we do in the clean_schema method of our form. That's because form.schema is a
Python object; however, our frontend needs to show the JSON for the structure. So
we convert from a Python object to a JSON string using the json.dumps method.

We handle both the cases—new form creation and form editing—in the form_valid
method of our view. On successfully saving or creating our form, we redirect the
user to the home page again.

The last thing we need to do is add links to our base template and home page to
create and edit forms. First, add this link right after the link for Home in templates/
base.html:

Create New Form

In main/templates/home.html, add this after the link for See Responses:

Edit Form

Chapter 7

[229]

That's it. Let's test it out. Open the home page at http://127.0.0.1:8000/ first and
you should see something similar to the following screenshot:

Click on the Edit Form button and you should see the following page:

Form Mason – a Monkey of your own

[230]

Let's change the title to something new and then type this in the Schema field:

{"years_of_experience": "number", "occupation": "string"}

Click on the Create New Form link. This should save the form and take you back
to the home page. The title of your form on the home page should be changed to
whatever you edited it to. Click on the link to see the form, and you should see a
screen similar to this:

Chapter 7

[231]

Nice! Our form has changed to match the schema that we entered while editing
the form. Let's take a look at what our responses page looks like. Submit some test
data with the new form schema and open up the responses page. You should see
something like this:

This page works as expected, without having to change any of the code. You'll see
that the previous responses are no longer visible; however, there seems to be some
empty cells above the latest response. We'll look into fixing this and other small
issues next. However, our application is complete except for a few small fixes that we
need to do.

You should use the Create New Form link at the top of the pages as well to create a
new form and test it out. It should work as expected.

Small fixes
I noticed three small errors while working on this last section that I'd like to fix. First
of all, if you take a closer look at the form submission page (where the user can enter
data in a custom form), you'll notice that the heading on the top says Custom Form.
This is from our first test, when our form schema was defined in a hardcoded JSON
string and didn't have a title. As our form model now has a title field, edit main/
templates/custom_form.html and change the h1 tag to match the following:

<h1>{{ form_schema.title }}</h1>

Form Mason – a Monkey of your own

[232]

Next, edit CustomFormView in main/views.py and add the this get_context_
data method to the class:

def get_context_data(self, **kwargs):
 ctx = super(CustomFormView, self).get_context_data(**kwargs)

 form_schema = FormSchema.objects.get(pk=self.kwargs["form_pk"])
 ctx["form_schema"] = form_schema

 return ctx

Look at the form detail page again. This time, the heading should reflect the form
title, as shown in the following screenshot:

Chapter 7

[233]

The next error that I noticed was on the form editing page. Right now, whether you
are creating a new form or editing an existing one, the heading always says Create/
Edit Form and the Submit button always says Create New Form. Let's modify our
main/templates/create_edit_form.html template to tell the user explicitly what
action they are taking. Here is the final code for the template:

{% extends "base.html" %}

{% block content %}
{% if form_pk %}
 <h1>Edit Form</h1>
{% else %}
 <h1>Create Form</h1>
{% endif %}

{% if form_pk %}
<form action="{% url 'edit-form' form_pk=form_pk%}" method="post">{%
csrf_token %}
{% else %}
<form action="{% url 'create-form' %}" method="post">{% csrf_token %}
{% endif %}
 {{ form.as_p }}
 {% if form_pk %}
 <input type="submit" value="Save Form" />
 {% else %}
 <input type="submit" value="Create Form" />
 {% endif %}
</form>
{% endblock %}

Form Mason – a Monkey of your own

[234]

Now if you edit an existing form or create a new one, the heading and button should
match that action:

The last issue I saw was on the responses page. If you edit a form that already has
responses and the new form has none of the fields that the old form had, you will
see some empty table rows at the start. That's because even though our view code
doesn't include any data for those rows, it still includes an empty row. Let's fix this
by modifying the get_context_data method of FormResponsesListView in main/
views.py. Look for this piece of code:

for field_name in form_fields:
 if field_name in response_data:

Chapter 7

[235]

 response_values.append(response_data[field_name])
 else:
 response_values.append('')
responses_list.append(response_values)

Change it to the following:

for field_name in form_fields:
 if field_name in response_data:
 response_values.append(response_data[field_name])
 else:
 response_values.append('')
if any(response_values):
 responses_list.append(response_values)

The last two lines, the highlighted ones, are the changes. The any function is a built-
in Python method that returns True if any of the values in the given list evaluates
to True. If our responses_list contains all empty strings, which is the case if our
new form structure has no fields that overlap with the old form structure, the if
condition will fail and we will not include a completely empty row in our responses
list. Try looking at the responses list page again and you should see that the empty
rows have now disappeared:

Form Mason – a Monkey of your own

[236]

That's it. Our last, and most ambitious, application is complete. Congratulations! You
have come a long way from the simple blog that we created at the start of this book.
You should now be ready to tackle any web application project that comes your way.

Summary
This chapter was more about exploration than new concepts. The only major new
concept that you learned was about the inner workings of Django forms, and this
section took up fewer than five pages. The rest of the chapter was about finding
solutions to problems that we encountered along the way.

As I said at the start of this chapter, this was the most complicated application that
we have created in the book. It is also likely to be one of the more complicated
applications you will create at the start of your career. It is by no means a polished
product; that's more because we didn't do any frontend work, rather than some lack
of features in the Django backend.

While the knowledge we gained about Django forms in this chapter will prove
invaluable to you, I would like the main takeaway from it to be the approach to
solving problems. We found a problem we needed to solve, we experimented in the
Django shell, and we found a solution. Sometimes it's a bit more complicated than
that. You probably need to search the Internet for existing solutions or ask your
colleagues. However, after finding answers that seem to be relevant to your problem,
you will always have to go back to the experimentation and make sure that the
solution really does solve your problem.

The way I showed you how to play around in the Django shell is just one of the
many ways that you can choose to experiment with different solutions. As I've
mentioned before, everyone has their own technique. Some use management
commands, some use simple Python scripts, and some write test code in the views.
In the end, you will come up with a way that you like the best.

Another thing that I hope you take away from this chapter is the use of external
libraries to help solve our problems. When we needed a way to store JSON in our
database, we used the jsonfield library that was available as open source instead
of rolling our own custom solution. This has benefits and drawbacks. The benefits
are that if you find a package, such as jsonfield that is widely used, you will get
a solution that has been tested by many before you. Due to that testing, the library
will be much more stable than what you, or any person, can come up with on your
own. The drawback of using something external is that you have no control over
the direction the project takes and in some projects, you'll have to painstakingly go
over the code for the external library to make sure that it meets any regulations your
project might have about external code usage.

Chapter 7

[237]

However, personally, I prefer to use a tried and tested third-party library every time
over creating something by myself. For me, the pros usually outweigh the cons.

That's it! This was the final chapter in this epic journey that we started with a simple
blog! We have come a long way from where we started; however, I'm sure that your
journey as a Django web developer is just starting. You have many more exciting
things to look forward to, and I wish you the best of luck in this journey. I hope you
enjoyed reading this book as much as I enjoyed writing it. Bon voyage!

[239]

Development Environment
Setup Details and

Debugging Techniques
This appendix will go into further detail about the Django development environment
setup that we have been using throughout the book. We will look into the details of
the setup, and I will explain each of the steps that we took. I will also show you a
technique for debugging Django applications. For this appendix, we will assume that
the project we are setting up is the Blueblog project from the first chapter.

We will start our project by first creating a root directory for it and then cd into the
directory so that all our commands are run inside it:

> mkdir blueblog

> cd blueblog

There is no technical reason for this. I just prefer to keep all the files related to a
project in one directory as it makes things easier to organize when you have to add
further files related to a project, such as designs and other documentation.

Next, we will create a virtual environment to use for the project. Virtual
environments are a feature that allow you to create lightweight installations of
Python so that each of your projects can have its own installation of all the libraries
that it uses. This is useful when you are working on multiple projects at the same
time and each project requires a separate version of some library. For example, at
work, I once had to work on two projects at the same time. One required Django 1.4;
the other required Django 1.9. If I hadn't used virtual environments, it would have
been very difficult to keep both versions of Django at the same time.

Development Environment Setup Details and Debugging Techniques

[240]

Virtual environments also allow you to keep your Python environment clean,
which is very important when you are finally ready to deploy your application to a
production server. When deploying your application to a server, you need to be able
to accurately reproduce the same Python environment you had in your development
machine. If you don't use a separate virtual environment for each project, you will
need to figure out exactly which Python libraries your project uses and then only
install those on the production server. With a virtual environment, you no longer
need to spend time figuring out which of the installed Python libraries are related
to your project. You can just create a list of all the libraries installed in the virtual
environment and install them on the production server, confident that you won't
miss out on anything or install anything extra that you don't use.

If you want to read more about virtual environments, you can read the official
documentation at https://docs.python.org/3/library/venv.html.

To create the virtual environment, we use the pyvenv command:

> pyvenv blueblogEnv

This creates a new environment inside the blueblogEnv folder. Once we have
created the environment, we activate it:

> source blueblogEnv/bin/activate

Activating the environment makes sure that any Python commands we run or any
libraries we install will use the activated environment. Next, we install Django in our
new environment and start our project:

> pip install django

> django-admin.py startproject blueblog src

This creates a directory called src that holds our Django project. You can name the
directory anything you want; this is just the convention I prefer.

And that's all there is to the setup of our development environment.

Using pdb to debug Django views
You will often come across problems in your Django applications that are not
immediately clear. When I get stuck with a tough bug, especially when it's inside a
Django view, I use the Python debugger, which is built into Python, to step through
my view code and debug the problem. To do so, you'll need to put this line of code
into your view right before the point where you think the problem exists:

import pdb; pdb.set_trace()

Appendix

[241]

Then, the next time you load the page associated with that view, you'll see that your
browser appears to not load anything. This is because your Django application is
now paused. If you look in the console where you ran the runserver command, you
should see a prompt for pdb. In the prompt, you can type the name of any variable
available in the current Python scope (usually the scope of the view that you are
debugging) and it will print the current value of that variable. You can also run a
bunch of other debugging commands. For a complete list of available features, take
a look at the documentation for the Python debugger at https://docs.python.
org/3/library/pdb.html.

A good Stack Overflow question with useful answers that lists some other debugging
techniques is http://stackoverflow.com/questions/1118183/how-to-debug-
in-django-the-good-way.

Developing on Windows
If you are going to be using the Windows operating system while reading this book,
please note that a couple of things will need to be done differently. Firstly, all the
instructions provided in this book assume a Linux/Mac OS X environment, and
some commands may not work as is. The most important change is how Windows
handles file paths. On a Linux/OS X environment, paths are written with a forward
slash. All the paths mentioned in the book are formatted similarly, for example,
PROJECT_DIR/main/settings.py. When referring to these paths on Windows,
you will need to change the forward slashes to backslashes. This path will become
PROJECT_DIR\main\settings.py.

Secondly, while Python is normally included with or easily installed on Linux/OS X,
you will need to follow the instructions at https://www.python.org/downloads/
windows/ to install it on Windows. After you have Python installed, you can install
Django using the instructions at https://docs.djangoproject.com/en/stable/
howto/windows/.

There are a few other things that will need to be modified for Windows. I have
mentioned these in the book as they have come up, but I might have missed
something. If so, a search on Google will usually lead you to an answer. If not, you
can always look me up on Twitter at @theonejb and I'll do my best to help you.

[243]

Index
A
account registration, BlueBlog

coding 8, 9
implementing 6-8
template 9
URLs 10

admin actions
about 127
URL 128

admin app 111
aggregations

about 182
bucket aggregations 182
reference link 197
terms aggregation 182

aggregations, Daintree
category aggregation, adding 182-187
full text search, implementing 187-191
implementing 181, 182
searching with 191-197

alerts, Djagios
creating 90
management views, implementing 91-97
model 90, 91
triggered alerts, displaying on

status page 98-101
API endpoints, Djagios

creating 102, 103
testing 104-108

AppConfig class
reference link 178

application development
on Windows 241

B
blog application, BlueBlog

adding 13
blog posts, creating 23-25
blog posts, editing 23-26
blog posts, viewing 27
blog settings view 21-23
blog view, creating 15-19
home page, creating 20, 21
models 14

BlueBlog
blog application, adding 13
development environment, setting up 2, 3
multiple users, adding 27
user accounts, creating 5, 6

booking management, car rental app
admin interface, customizing 123-125
handling 123

bucket aggregations 182

C
car rental app

booking management 123
car names, displaying 122
code pack 111, 112
creating 111
FileField model field, using 114, 115
fixtures, used for loading data 112-114
get_absolute_url method, using 116
ImageField model field, using 114, 115
user experience, improving 125

[244]

code packs
about 38
using 38

content 5
contrib packages

about 2
Admin 2
Auth 2
sites framework 2
URL 2

CSRF protection
URL 104

curl command-line utility
about 108
URL 160

D
Daintree

aggregations, implementing 181, 182
code pack 158
creating 157
Elasticsearch connections,

configuring 176-178
filters, implementing 181, 182
search form, adding 171-176
search options, adding 178-180

Database (DB) 37
development environment

setting up 239, 240
development environment, BlueBlog

base template, setting up 4, 5
database, initializing 3, 4
setting up 2, 3
staticfiles, configuring 4

Discuss
creating 37
features 39
link submission, implementing 40-45
requisites 38, 39
spam protection, implementing 68-70
starting 39, 40
submissions, ranking 66-68
users, commenting 46-60
users, voting 61-65

distinct keyword
about 84
URL 84

Djagios
alerts, creating 90
API endpoints, creating 102, 103
API endpoints, testing 104-108
code pack 74
creating 73
data, accepting from remote

systems 102, 103
fake data, generating 77
model, using 75, 76
requisites 74, 75
status page, creating 82-88

Django
URL, for installation 241

Django admin app
configuring 116-121

Django form
creating 200-202

django-jsonfield package
about 209
URL 209

django-recaptcha
URL 69

Django views
debugging, with pdb 240, 241

dynamic forms, Form Mason
generating 203, 204
generating, JSON used 205-209

E
Elasticsearch

about 158
data, obtaining 169, 170
documents, inserting from Python 168, 169
downloading 159
exploring 159
references 159
URL 159
working with 160-163

exact matching 187

[245]

F
fake data, Djagios

generating 77
management commands, using 77-80
model representation 81

FileField model field 114, 115
file uploads

reference link 115
fixtures

about 112
URL 114
used, for loading data 113, 114

for loops
reference link 88

Form Mason
code pack 200
Django form, creating 200-202
dynamic forms, generating 203, 204
errors, handling 231-236
field, adding to SampleForm instance 203
form creation interface, designing 224-231
model, creating 209-212
responses, displaying 219-221
responses, improving 221-224
responses, saving 217, 218
user interface, creating 213-217

form validation
reference link 225

form_valid method
URL 42

G
generic views

URL 9
get_absolute_url method

URL 116
using 116

I
ImageField model field 114, 115
internationalization (i18n) 133
Internet Movie Database (IMDB) 133
ipython 201

J
JavaScript Object Notation (JSON)

about 203
benefits 204
used, for generating dynamic

forms 205-209
json module

URL 205

L
l10n 133
language preferences, Django

reference link 143
lite search 163
localization 133
login/logout, BlueBlog

handling 10, 11
login view, defining 11, 12
logout view, defining 12, 13
navigation links, adding 13

login_required decorator
URL 19

login view
URL 12

M
Machine to machine (M2M) 61
management commands

about 77
URL 79
using 77-80

mapping
about 165, 166
defining 167, 168

META dictionary
URL 103

method_decorator
URL 19

modeltranslation library
reference link 149

Multilingual Movie Database (MMDB)
about 133
code pack 134

[246]

executing 134-136
i18n template tags library, loading 140
language selection, implementing 145-147
locale middleware, using 144
make messages command,

implementing 141
models, translating 149-155
project, setting up 134-136
requisites 134
static content, translating 136-140
strings, translating in messages file 142
url.py file, modifying 143
user choice, persisting 147, 148

multiple users, BlueBlog
adding 27
blog post, sharing 29-35
security, implementing 28, 29

N
Nagios 73
node 75

P
pdb

used, for debugging Django views 240, 241
Pillow

URL 112
Postman

URL 104
Python

documents, inserting into
Elasticsearch 168, 169

using 164, 165
Python debugger

URL 241

R
Readme.txt file 38
ReCaptcha service

URL 69
runserver command 8

S
SampleForm class 202

search server 158
server 75
sorted function

reference link 67
staticfiles

configuring 4
URL 4

super user 8
SurveyMonkey

URL 199

T
terms aggregation 182
timezone module

reference link 67
trans tag

about 140
reference link 141

U
user accounts, BlueBlog

account registration 6-8
creating 5, 6
login/logout, handling 10, 11
user accounts app, creating 6

user experience, car rental app
admin actions, defining 127-129
bookings, approving 126
improving 125, 129, 131
objects, filtering 125, 126
objects, searching 126

V
virtual environment

creating 239, 240
URL 240

W
Windows

application development 241
Wufoo

URL 199

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Blueblog – a Blogging Platform
	The contrib packages
	Setting up our development environment
	Database settings
	Static files settings
	A base template

	User accounts
	A user accounts app
	Account registration
	Generic views
	Template and URLs

	Login and logout
	The login view
	The logout view
	Navigation links

	The blog
	Models
	Creating a blog view
	The home page
	The blog settings view
	Creating and editing blog posts
	Editing blog posts
	Viewing blog posts

	Multiple users
	Security
	Sharing blog post

	Summary

	Chapter 2: Discuss – a Hacker
News Clone
	Chapter code packs
	Requirements
	Starting out
	Link submission
	Comments
	Voting
	Ranking submission
	Spam protection
	Summary

	Chapter 3: Djagios – a Nagios
Clone in Django
	Code pack
	Requirements
	The model
	Fake data generation
	Django management commands
	A better model representation

	Status page
	Alerts
	The model
	Management views

	Showing triggered alerts on the status page
	Accepting data from remote systems
	Testing API endpoints

	Summary

	Chapter 4: A Car Rental App
	Code pack
	Fixtures
	Image and File fields
	get_absolute_url
	The Django admin app
	Showing the car names
	Booking management
	A peek behind the curtain

	Improving the user experience
	Filtering objects
	Searching for objects
	Quick edit
	Admin actions
	UX improvements

	Summary

	Chapter 5: Multilingual Movie Database
	Requirements
	Getting the project up and running
	Translating our static content
	How did all that work?
	Letting the user decide which language to use
	Persisting the user choice
	Translating our models
	Summary

	Chapter 6: Daintree – an
E-commerce Site
	Code pack
	Exploring Elasticsearch
	First steps with Elasticsearch

	Searching from Python
	Mapping
	Defining a mapping

	Inserting documents into Elasticsearch from Python
	Getting all our data into Elasticsearch

	Adding search
	Configuration management
	More search options

	Aggregations and filters
	Category aggregation
	Full text search and analysis

	Searching with aggregations
	Summary

	Chapter 7: Form Mason – a Monkey
of your own
	Code pack
	Looking at a Django form
	Adding an extra field to a SampleForm instance

	Generating dynamic forms
	Generating a form out of JSON

	A model for our JSON
	Creating a better user interface
	Saving the responses
	Showing the responses
	An improved responses list

	Designing a form creation interface
	Small fixes
	Summary

	Appendix: Development Environment Setup Details and
Debugging Techniques
	Using pdb to debug Django views
	Developing on Windows

	Index

