
Enterprise  
Drupal 8 
Development

For Advanced Projects and Large 
Development Teams
—
Todd Tomlinson



Enterprise Drupal 8 
Development

For Advanced Projects and  
Large Development Teams

Todd Tomlinson



Enterprise Drupal 8 Development: For Advanced Projects and Large Development Teams

Todd Tomlinson				  
Tigard, Oregon, USA			 

ISBN-13 (pbk): 978-1-4842-0254-8		  ISBN-13 (electronic): 978-1-4842-0253-1
DOI 10.1007/978-1-4842-0253-1

Copyright © 2017 by Todd Tomlinson

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the 
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, 
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information 
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now 
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol 
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only 
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the 
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are 
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to 
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, 
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or 
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the 
material contained herein.

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Technical Reviewer: Anshul Jain
Coordinating Editor: Nancy Chen
Copy Editor: Kezia Endsley
Artist: SPi Global
Cover image designed by Freepik

Distributed to the book trade worldwide by Springer Science+Business Media New York,  
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail 
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and 
the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).  
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions. 

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and 
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales 
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to 
readers on GitHub via the book’s product page, located at www.apress.com/9781484202548. For more 
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/9781484202548
http://www.apress.com/source-code


This book is dedicated to my wife Misty, for the sacrifices that she made by spending evening and 
weekends alone as I was locked away in my office researching and writing this book, and my 

daughters, Emma and Anna, for missing out on so many activities due to my focus on this book.



Contents at a Glance

About the Author������������������������������������������������������������������������������������������������������xv

About the Technical Reviewer��������������������������������������������������������������������������������xvii

Introduction�������������������������������������������������������������������������������������������������������������xix

■■Chapter 1: Introduction to Drupal��������������������������������������������������������������������������� 1

■■Chapter 2: Building a Practical Software Development Process and Team����������� 9

■■Chapter 3: Engineering Drupal����������������������������������������������������������������������������� 29

■■Chapter 4: Creating Modules for Drupal 8������������������������������������������������������������ 45

■■Chapter 5: Drupal 8 Theming�������������������������������������������������������������������������������� 89

■■Chapter 6: Leveraging Your Content������������������������������������������������������������������� 137

■■Chapter 7: Optimizing Your Site Architecture����������������������������������������������������� 173

■■Chapter 8: Integrating Drupal 8�������������������������������������������������������������������������� 213

■■Chapter 9: Building a Smart Administration User Interface������������������������������� 233

■■Chapter 10: Scaling Drupal��������������������������������������������������������������������������������� 261

■■Chapter 11: Drupal 8 DevOps������������������������������������������������������������������������������ 271

■■Chapter 12: Migrating to Drupal 8���������������������������������������������������������������������� 281

■■Appendix A: Contributing to the Drupal Community������������������������������������������� 293

■■Appendix B: Additional Resources��������������������������������������������������������������������� 297

■■Appendix C: Creating a Drupal 8 Profile������������������������������������������������������������� 301

Index���������������������������������������������������������������������������������������������������������������������� 305

v



Contents

About the Author������������������������������������������������������������������������������������������������������xv

About the Technical Reviewer��������������������������������������������������������������������������������xvii

Introduction�������������������������������������������������������������������������������������������������������������xix

■■Chapter 1: Introduction to Drupal��������������������������������������������������������������������������� 1

Content Management Systems����������������������������������������������������������������������������������������� 1

Drupal������������������������������������������������������������������������������������������������������������������������������������������������������ 2

Drupal Core���������������������������������������������������������������������������������������������������������������������������������������������� 2

Contributed Modules������������������������������������������������������������������������������������������������������������������������������� 2

Drupal Themes����������������������������������������������������������������������������������������������������������������������������������������� 4

Creating Content��������������������������������������������������������������������������������������������������������������� 4

Taking Drupal 8 to the Enterprise�������������������������������������������������������������������������������������� 7

Summary��������������������������������������������������������������������������������������������������������������������������� 8

■■Chapter 2: Building a Practical Software Development Process and Team����������� 9

A Methodology for Building Your Site on Drupal���������������������������������������������������������������� 9

Building a Drupal Team in Your Organization������������������������������������������������������������������ 15

Project Manager������������������������������������������������������������������������������������������������������������������������������������ 15

Senior Architect������������������������������������������������������������������������������������������������������������������������������������� 17

Business Systems Analyst��������������������������������������������������������������������������������������������������������������������� 19

Development Lead��������������������������������������������������������������������������������������������������������������������������������� 20

Developer���������������������������������������������������������������������������������������������������������������������������������������������� 21

Site Builder�������������������������������������������������������������������������������������������������������������������������������������������� 22

User Experience (UX) Designer�������������������������������������������������������������������������������������������������������������� 23

vii



﻿■ Contents

viii

Visual Designer�������������������������������������������������������������������������������������������������������������������������������������� 24

Themer�������������������������������������������������������������������������������������������������������������������������������������������������� 25

Site Builder�������������������������������������������������������������������������������������������������������������������������������������������� 25

Quality Assurance Specialist����������������������������������������������������������������������������������������������������������������� 26

Site Administrator���������������������������������������������������������������������������������������������������������������������������������� 27

Summary������������������������������������������������������������������������������������������������������������������������� 28

■■Chapter 3: Engineering Drupal����������������������������������������������������������������������������� 29

Engineering the Foundation�������������������������������������������������������������������������������������������� 29

Defining the Components of Enterprise Drupal��������������������������������������������������������������� 30

Network and Web Server����������������������������������������������������������������������������������������������������������������������� 31

Database Servers���������������������������������������������������������������������������������������������������������������������������������� 32

Drupal 8 Core����������������������������������������������������������������������������������������������������������������������������������������� 33

Drupal 8 Contributed Modules��������������������������������������������������������������������������������������������������������������� 35

Custom Modules������������������������������������������������������������������������������������������������������������������������������������ 36

The Pillars of a Drupal 8 Solution���������������������������������������������������������������������������������������������������������� 36

Taxonomy���������������������������������������������������������������������������������������������������������������������������������������������� 38

Summary������������������������������������������������������������������������������������������������������������������������� 44

■■Chapter 4: Creating Modules for Drupal 8������������������������������������������������������������ 45

The Purpose of Drupal Modules�������������������������������������������������������������������������������������� 45

The Foundation of Drupal 8 Is a Suite of Modules �������������������������������������������������������������������������������� 46

Key Skills������������������������������������������������������������������������������������������������������������������������� 47

Developing Your First Drupal 8 Module��������������������������������������������������������������������������� 47

Step 1: Create the Module’s Directory��������������������������������������������������������������������������������������������������� 48

Step 2: Create the Module’s Info File����������������������������������������������������������������������������������������������������� 48

Step 3: Create the Module File�������������������������������������������������������������������������������������������������������������� 49

Step 4: Create the Module’s Routing File����������������������������������������������������������������������������������������������� 50

Step 5: Create the Module’s Controller�������������������������������������������������������������������������������������������������� 51

Step 6: Add a Menu Item ���������������������������������������������������������������������������������������������������������������������� 52

Step 7: Add a New Menu Item��������������������������������������������������������������������������������������������������������������� 54

Step 8: Add a New Function to the Module������������������������������������������������������������������������������������������� 54



﻿■ Contents

ix

Creating Blocks��������������������������������������������������������������������������������������������������������������� 57

Building Custom Forms��������������������������������������������������������������������������������������������������� 62

Interacting with Entities�������������������������������������������������������������������������������������������������� 71

Finding Existing Entities������������������������������������������������������������������������������������������������������������������������ 71

Creating Entities������������������������������������������������������������������������������������������������������������������������������������ 76

Creating, Updating, and Deleting Entities Programmatically����������������������������������������������������������������� 81

Summary������������������������������������������������������������������������������������������������������������������������� 87

■■Chapter 5: Drupal 8 Theming�������������������������������������������������������������������������������� 89

The Role of a Drupal Theme�������������������������������������������������������������������������������������������� 89

The Twig Templating Engine�������������������������������������������������������������������������������������������� 89

The Structure of a Drupal Theme������������������������������������������������������������������������������������ 90

Creating the Theme Files������������������������������������������������������������������������������������������������� 91

Adding Regions to the Theme���������������������������������������������������������������������������������������������������������������� 93

Twig Syntax������������������������������������������������������������������������������������������������������������������������������������������� 96

Twig Variables���������������������������������������������������������������������������������������������������������������������������������������� 96

Conditionals, Looping, Filters, and Math Functions in Twig������������������������������������������������������������������� 98

Twig Template Files����������������������������������������������������������������������������������������������������������������������������� 104

Standard Twig Templates���������������������������������������������������������������������������������������������� 107

Modifying the page.html.twig Template File���������������������������������������������������������������������������������������� 108

Modifying the node.html.twig Template���������������������������������������������������������������������������������������������� 114

Modifying the block.html.twig Template���������������������������������������������������������������������������������������������� 117

Modifying the field.html.twig Template����������������������������������������������������������������������������������������������� 118

Exposing Variables to Twig�������������������������������������������������������������������������������������������� 121

Applying CSS to Your Theme����������������������������������������������������������������������������������������� 127

Creating the Stylesheets��������������������������������������������������������������������������������������������������������������������� 127

Creating the libraries.yml File�������������������������������������������������������������������������������������������������������������� 128

Loading the Libraries Through the .info.yml File��������������������������������������������������������������������������������� 128

Adding JavaScript to Your Theme���������������������������������������������������������������������������������� 129

Adding JavaScript and CSS Libraries to Template Files������������������������������������������������ 131



﻿■ Contents

x

Working with Breakpoints��������������������������������������������������������������������������������������������� 131

Creating Advanced Theme Settings������������������������������������������������������������������������������� 133

Using Subthemes���������������������������������������������������������������������������������������������������������� 134

Summary����������������������������������������������������������������������������������������������������������������������� 136

■■Chapter 6: Leveraging Your Content������������������������������������������������������������������� 137

Content Staging������������������������������������������������������������������������������������������������������������� 137

Content Staging and Site Preview Use Cases�������������������������������������������������������������������������������������� 137

The Drupal 8 Solution for Content Staging and Synchronization��������������������������������������������������������� 138

Installation, Configuration, and Use of the Content Staging Framework��������������������������������������������� 140

Search��������������������������������������������������������������������������������������������������������������������������� 148

What Is Apache Solr?��������������������������������������������������������������������������������������������������������������������������� 149

To Install or Not To Install��������������������������������������������������������������������������������������������������������������������� 150

Required Modules�������������������������������������������������������������������������������������������������������������������������������� 150

Setting Up OpenSolr���������������������������������������������������������������������������������������������������������������������������� 150

Adding the Schema.xml File OpenSolr������������������������������������������������������������������������������������������������ 152

Integrating Views and Solr������������������������������������������������������������������������������������������������������������������� 157

Advanced Features of Solr������������������������������������������������������������������������������������������������������������������� 161

Multilingual Support������������������������������������������������������������������������������������������������������ 163

Getting Started with Multilingual Support������������������������������������������������������������������������������������������� 164

Configuring Multilingual Capabilities��������������������������������������������������������������������������������������������������� 164

Configuring Entities����������������������������������������������������������������������������������������������������������������������������� 168

Translating Content������������������������������������������������������������������������������������������������������������������������������ 170

Summary����������������������������������������������������������������������������������������������������������������������� 171

■■Chapter 7: Optimizing Your Site Architecture����������������������������������������������������� 173

Content Types���������������������������������������������������������������������������������������������������������������� 173

Simplifying the Editorial Interface������������������������������������������������������������������������������������������������������� 175

Removing Options from the Node Edit Form��������������������������������������������������������������������������������������� 178

Content Types versus Entity Types������������������������������������������������������������������������������������������������������� 179



﻿■ Contents

xi

Leveraging Taxonomy���������������������������������������������������������������������������������������������������� 189

Taxonomy as an Entity������������������������������������������������������������������������������������������������������������������������� 189

Building Multipurpose Pages Using Taxonomy������������������������������������������������������������������������������������ 193

The Location of Content in an Enterprise Setting���������������������������������������������������������� 207

Using Apache SOLR����������������������������������������������������������������������������������������������������������������������������� 208

What Does a Solr-Based Solution Require?����������������������������������������������������������������������������������������� 208

Consuming Indexed Information Through Views��������������������������������������������������������������������������������� 209

Off-the-Shelf versus Custom Development������������������������������������������������������������������� 209

Summary����������������������������������������������������������������������������������������������������������������������� 211

■■Chapter 8: Integrating Drupal 8�������������������������������������������������������������������������� 213

Using RESTful Web Services in Drupal 8����������������������������������������������������������������������� 213

RESTful Modules in Drupal 8 Core������������������������������������������������������������������������������������������������������� 214

Retrieving Content Through REST�������������������������������������������������������������������������������������������������������� 215

Creating a Node Through REST������������������������������������������������������������������������������������������������������������ 216

Updating and Deleting a Node Through REST�������������������������������������������������������������������������������������� 220

Using REST for Other Entity Types��������������������������������������������������������������������������������� 222

Generating Lists of Content Using Views and REST������������������������������������������������������ 222

Generating Output in Other Formats���������������������������������������������������������������������������������������������������� 227

Using Views to Expose Content to External Sources����������������������������������������������������� 228

Creating Custom RESTful APIs�������������������������������������������������������������������������������������� 229

Creating the Custom Module��������������������������������������������������������������������������������������������������������������� 229

Other Integration Options���������������������������������������������������������������������������������������������� 232

Summary����������������������������������������������������������������������������������������������������������������������� 232

■■Chapter 9: Building a Smart Administration User Interface������������������������������� 233

Use an Administration Focused Theme������������������������������������������������������������������������� 233

Enabling Different Admin Themes������������������������������������������������������������������������������������������������������� 233

The Seven Theme�������������������������������������������������������������������������������������������������������������������������������� 234

The Adminimal Theme������������������������������������������������������������������������������������������������������������������������� 235

Update the Administration Menu����������������������������������������������������������������������������������� 236



﻿■ Contents

xii

Simplify Content Types�������������������������������������������������������������������������������������������������� 236

Organizing the Fields��������������������������������������������������������������������������������������������������������������������������� 236

Using Hierarchical Select�������������������������������������������������������������������������������������������������������������������� 240

Using Field Collections������������������������������������������������������������������������������������������������������������������������ 241

Use the Workbench Module������������������������������������������������������������������������������������������� 243

The Workbench Module����������������������������������������������������������������������������������������������������������������������� 244

The Workbench Access Module����������������������������������������������������������������������������������������������������������� 246

Setting Up Workbench Access������������������������������������������������������������������������������������������������������������� 246

Setting Up Roles and Permissions������������������������������������������������������������������������������������������������������� 249

Demonstrating Access Restrictions����������������������������������������������������������������������������������������������������� 252

Use Workbench Moderation������������������������������������������������������������������������������������������ 253

Configuring Workbench Moderation���������������������������������������������������������������������������������������������������� 254

Defining Workbench Moderation User Roles and Permissions������������������������������������������������������������ 257

Summary����������������������������������������������������������������������������������������������������������������������� 260

■■Chapter 10: Scaling Drupal��������������������������������������������������������������������������������� 261

Understanding Potential Performance Bottlenecks������������������������������������������������������� 261

Drupal Cache����������������������������������������������������������������������������������������������������������������� 262

Enabling Drupal Cache������������������������������������������������������������������������������������������������������������������������ 262

Caching Views������������������������������������������������������������������������������������������������������������������������������������� 263

Caching Blocks������������������������������������������������������������������������������������������������������������������������������������ 264

External Caching Mechanisms: Varnish Cache������������������������������������������������������������������������������������ 264

Using a Content Delivery Network (CDN)����������������������������������������������������������������������� 265

How CDNs Work����������������������������������������������������������������������������������������������������������������������������������� 266

Considering Nginx Over Apache������������������������������������������������������������������������������������ 266

Using Memcache or Redis��������������������������������������������������������������������������������������������� 267

Optimizing MySQL��������������������������������������������������������������������������������������������������������� 267

Scaling Hardware���������������������������������������������������������������������������������������������������������� 269

Hosting Your Drupal 8 Site��������������������������������������������������������������������������������������������� 270

Summary����������������������������������������������������������������������������������������������������������������������� 270



﻿■ Contents

xiii

■■Chapter 11: Drupal 8 DevOps������������������������������������������������������������������������������ 271

Traditional Versus DevOps��������������������������������������������������������������������������������������������� 271

The Benefits of Embracing DevOps������������������������������������������������������������������������������� 272

Adopting DevOps����������������������������������������������������������������������������������������������������������� 272

DevOps Best Practices�������������������������������������������������������������������������������������������������� 273

Drupal 8 Continuous Integration and Deployment��������������������������������������������������������� 274

The CI/CD Process Flow����������������������������������������������������������������������������������������������������������������������� 274

CI/CD Tools������������������������������������������������������������������������������������������������������������������������������������������� 275

Automated Testing��������������������������������������������������������������������������������������������������������� 275

Writing PHPUnit Tests for Classes������������������������������������������������������������������������������������������������������� 275

Writing Functional Tests���������������������������������������������������������������������������������������������������������������������� 276

Write Functional JavaScript Tests (PHPUnit)���������������������������������������������������������������������������������������� 277

Executing Tests������������������������������������������������������������������������������������������������������������� 277

Other Testing Tools�������������������������������������������������������������������������������������������������������� 277

Summary����������������������������������������������������������������������������������������������������������������������� 279

■■Chapter 12: Migrating to Drupal 8���������������������������������������������������������������������� 281

The Migrate Modules in Drupal 8 Core�������������������������������������������������������������������������� 281

Migrating Themes��������������������������������������������������������������������������������������������������������� 287

Migrating Modules from Drupal 7 to Drupal 8��������������������������������������������������������������� 288

Contributed Modules����������������������������������������������������������������������������������������������������� 290

Summary����������������������������������������������������������������������������������������������������������������������� 291

■■Appendix A: Contributing to the Drupal Community������������������������������������������� 293

User Support����������������������������������������������������������������������������������������������������������������� 293

Documentation�������������������������������������������������������������������������������������������������������������� 293

Translations������������������������������������������������������������������������������������������������������������������� 294

Testing��������������������������������������������������������������������������������������������������������������������������� 294

Design and Usability������������������������������������������������������������������������������������������������������ 294

Donations���������������������������������������������������������������������������������������������������������������������� 294



﻿■ Contents

xiv

Development����������������������������������������������������������������������������������������������������������������� 294

Ways to Contribute Code: Drupal Core, Contributed Projects, and Patches����������������������������������������� 295

Improving Existing Projects and Core with Patches���������������������������������������������������������������������������� 295

Contributing New Projects������������������������������������������������������������������������������������������������������������������� 295

Collaboration Rather than Competition������������������������������������������������������������������������������������������������ 296

■■Appendix B: Additional Resources��������������������������������������������������������������������� 297

Drupal Modules������������������������������������������������������������������������������������������������������������� 297

Drupal Themes�������������������������������������������������������������������������������������������������������������� 297

Drupal Documentation�������������������������������������������������������������������������������������������������� 297

Where to Go When You Have Problems������������������������������������������������������������������������� 299

Where to Host Your Drupal Site������������������������������������������������������������������������������������� 299

Where to Go to Learn HTML and CSS���������������������������������������������������������������������������� 299

Video Tutorials��������������������������������������������������������������������������������������������������������������� 299

Drupal Podcasts������������������������������������������������������������������������������������������������������������ 299

■■Appendix C: Creating a Drupal 8 Profile������������������������������������������������������������� 301

Picking a Machine Name����������������������������������������������������������������������������������������������� 301

Creating the File Structure�������������������������������������������������������������������������������������������� 302

The .info.yml File����������������������������������������������������������������������������������������������������������� 302

The .install File�������������������������������������������������������������������������������������������������������������� 303

The .profile File������������������������������������������������������������������������������������������������������������� 303

Configuration Files�������������������������������������������������������������������������������������������������������� 304

Default Content������������������������������������������������������������������������������������������������������������� 304

Index���������������������������������������������������������������������������������������������������������������������� 305



About the Author

Todd Tomlinson is the Senior Enterprise Drupal Architect at a 
multibillion-dollar high-tech manufacturing company. Todd’s focus 
over the past 22 years has been on designing, developing, deploying, and 
supporting complex web solutions for public- and private-sector clients all 
around the world. He has been using Drupal as the primary platform for 
creating beautiful and feature-rich sites since Drupal 4.

Prior to his current position, Todd was the Vice President of 
ServerLogic’s national Drupal consulting practice, Senior Director of 
eBusiness Strategic Services for Oracle Corporation, where he helped 
Oracle’s largest clients develop their strategic plans for leveraging the Web 
as a core component of their business. He is also the former Vice President 
of Internet Solutions for Claremont Technology Group, Vice President and 
CTO of Emerald Solutions, Managing Director for CNF Ventures, and a 
Senior Manager with Andersen Consulting/Accenture.

Todd has a BS in Computer Science, an MBA, and a PhD (ABD).
Todd is the author of six Drupal-related books, including Enterprise 

Drupal 8 Development, Beginning Drupal 8, Pro Drupal 7 Development, Beginning Drupal 7, Beginning 
Backdrop, and Migrating from Drupal to Backdrop. He is a contributing author to Drupal Watchdog 
magazine, and a frequent guest of various Drupal podcasts.

Todd’s passion for Drupal is evident in his obsession with evangelizing the platform and his 
enthusiasm when speaking with people about the possibilities of what they can accomplish using Drupal. If 
you want to see someone literally “light up,” stop him on the street and ask him, “What is Drupal, and what 
can it do for me?”

xv



About the Technical Reviewer

Anshul Jain has been involved with Drupal since Drupal 5 came into the 
world. He is a full stack developer, proficient in a variety of technologies. 
He is currently working as a Senior Technical Specialist at a multinational 
company.

He has developed numerous web sites in Drupal for small to giant 
clients. He also takes sessions on Drupal to train his team and coworkers. 
He has contributed to Drupal 7 core and is also a maintainer of some 
contributed modules.

Apart from Drupal, he has worked on developing mobile apps using 
hybrid frameworks like PhoneGap, Ionic, Angular 2, jQuery mobile, and 
SAPUI5. He has also published an Android app in his drupal.org profile, 
https://www.drupal.org/u/anshuljain2k8.

Anshul can be contacted at anshuljain.php@gmail.com or 
anshuljain@mumbaicolors.com.

xvii

https://www.drupal.org/u/anshuljain2k8
http://anshuljain.php@gmail.com
http://anshuljain@mumbaicolors.com


Introduction

In its relatively short life, Drupal has made a tremendous impact on the landscape of the Internet. As a web 
content management system (CMS), Drupal has enabled the creation of feature- and content-rich web sites 
for organizations large and small. As a web application framework, Drupal is changing the way that people 
think about web application development. When I experienced the power of the Drupal platform for the 
first time, I knew that it was something more than just another content management solution. When I saw 
how easily and quickly I could build feature-rich web sites, I shifted gears and focused my entire career 
around Drupal. While working with hundreds of organizations, I was often asked, “Where can I go to find 
information for someone who is new to Drupal?” Unfortunately there wasn’t a comprehensive resource that 
I could point them to, and thus began my journey and passion of writing books and magazine articles about 
Drupal.

I’m also often asked, “What is Drupal?” The short answer is, “Drupal is an open source web content 
management system that allows you to quickly and easily create simple to complex sites that span 
everything from a simple blog, a corporate site, a social networking site, or virtually anything you can dream 
up.” What you can build with Drupal is limited only by your imagination and the time you have to spend with 
the platform.

As an open source platform, Drupal’s community is constantly improving the platform and extending 
the functionality of the core platform by creating new and exciting add-on modules. If there’s a new concept 
created on the web, it’s likely that there will be a new Drupal module that enables that concept in a matter of 
days. It’s the community behind the platform that makes Drupal what it is today, and what it will become in 
the future. I’ll show you how to leverage the features contributed by the community, making it easy for you to 
build incredible solutions with minimal effort.

The very act of picking up this book is the first step in your journey down the path of learning how to use 
Drupal. If you will walk with me through the entire book, you’ll have the knowledge and experience to build 
complex and powerful Drupal-based web sites. You’ll also have the foundation necessary to move beyond 
the basics, expanding on the concepts I cover in this book.

Learning Drupal is like learning any new technology. There will be bumps and hurdles that cause you 
to step back and scratch your head. I hope the book helps smooth the bumps and provides you with enough 
information to easily jump over those hurdles. I look forward to seeing your works on the web and hope to 
bump into you at an upcoming DrupalCon.

xix



1© Todd Tomlinson 2017 
T. Tomlinson, Enterprise Drupal 8 Development, DOI 10.1007/978-1-4842-0253-1_1

CHAPTER 1

Introduction to Drupal

This chapter provides a basic overview of what a content management system (CMS) is, how Drupal 8 fills 
the role as an enterprise class CMS, the major building blocks of Drupal 8, and how to create content on your 
new Drupal 8 web site.

Content Management Systems
In its simplest form, a CMS is a software package that provides tools for authoring, publishing, and managing 
content on a web site. “Content” includes anything from a news story, a blog post, a video, or a photograph, 
to a podcast, an article, or a description of a product that you are selling. In more general terms, content is 
any combination of text, graphics, photographs, audio, and video that represents something visitors to your 
site will read, watch, and hear.

A CMS typically provides a number of features that simplify the process of building, deploying, and 
managing web sites, including the following:

•	 An administrative interface

•	 A database repository for content

•	 A rich user interface to associate content that is stored in the database with a web 
page on the site

•	 A toolset for authoring, publishing, and managing content

•	 A component for creating and managing menus and navigational elements

•	 The tools required to define and apply themes

•	 User management

•	 A security framework

•	 Taxonomy and tagging to organize content by category

•	 Online forms

•	 E-commerce capabilities 

There are hundreds of CMSs available (check out www.cmsmatrix.org). They range from simple 
blogging-centric platforms, such as WordPress, to complex enterprise-class content management solutions, 
such as Drupal.

http://www.cmsmatrix.org/


Chapter 1 ■ Introduction to Drupal

2

Drupal
Drupal is a free and open source CMS written in PHP and distributed under the GNU General Public License. 
Drupal stems from a project by a Dutch university student, Dries Buytaert. The goal of the project was to 
provide a mechanism for Buytaert and his friends to share news and events. Buytaert turned Drupal into 
an open source project in 2001, and the community readily embraced the concept and has expanded on its 
humble beginnings, creating what is now one of the most powerful and feature-rich CMS platforms on the 
Web. Individuals, teams, and communities leverage Drupal’s features to easily publish, manage, and organize 
content on a variety of web sites, ranging from personal blogs to large corporate and government sites.

The standard release of Drupal, known as Drupal core, contains basic features that can be used to create 
a classic brochure web site, a single- or multi-user blog, an Internet forum, or a community web site with 
user-generated content. Features found in Drupal core include the ability to author and publish content; 
to create and manage users, menus, and forums; and to manage your site through a web browser–based 
administrative interface.

Drupal was designed to be enhanced with new features and custom behavior by downloading and enabling 
add-on modules. There are thousands of additional modules (known as contributed or “contrib” modules) that 
extend Drupal core’s functionality, covering a broad spectrum of capabilities, including e-commerce, social 
networking, integration with third-party applications, multimedia, and other categories of capabilities.

Drupal can run on any computing platform that supports both a web server capable of running PHP 
version 5.5.9+ (including Apache, IIS, lighttpd, and nginx) and a database (such as MySQL, SQLite, or 
PostgreSQL) to store content and settings.

Drupal Core
When you download and install Drupal, you are installing what is commonly called Drupal core. Core 
represents the “engine” that powers a Drupal-based web site, along with a number of out-of-the-box features 
that enable the creation of a relatively full-featured web site. The primary components of Drupal core 
include capabilities to create and manage the following:

•	 Content

•	 File uploads/downloads

•	 Menus

•	 User accounts

•	 Roles and permissions

•	 Taxonomy

•	 Views to extract and display content in various forms such as lists and tables

•	 WYSIWYG-based content editor

•	 RESTful web services

Drupal core also includes a feature-rich search engine, multilingual capabilities, and logging and error 
reporting.

Contributed Modules
Although Drupal core can be used to build feature-rich web sites, there are likely situations where core 
lacks the functionality needed to address specific requirements. In such cases, the first step is to search 
through the thousands of custom modules, contributed by developers from all around the world to the 



Chapter 1 ■ Introduction to Drupal

3

Drupal project, for a solution that meets your needs. It’s very likely that someone else had the same 
functional requirement and has developed a solution to extend Drupal core to provide the functionality 
that you need.

To find a contributed module, visit the drupal.org web site at drupal.org/project/project_module. 
You will find a general list of categories and the current number of contributed modules (for all versions 
of Drupal) contained within each. Here is a short sampling of the types of categories and the number of 
modules you can find in each (modules are added to the list on a daily basis, and the number of modules in 
each category will have grown considerably since the time of this writing):

•	 Administration (1655)

•	 Commerce/Advertising (808)

•	 Community (733)

•	 Content (2679)

•	 Content Display (2169)

•	 Content Construction Kit (CCK) (710)

•	 Developer (1494)

•	 E-commerce (1245)

•	 Media (1083)

•	 Mobile (212)

•	 Third-party Integration (2616)

•	 Utility (2695)

To find modules that are supported on Drupal 8, select 8.x for the “Core Compatibility” search filter.
A few of the most popular contributed modules, and the ones that you will likely want to install, include 

the following (also check out the “Most Installed” list to the right of the search filters):

•	 Drupal Commerce: A full-featured web storefront module that provides all of the 
mechanisms required to sell products (physical as well as electronic downloads), 
collect credit card payments, and manage shipments. If you want to sell something 
on your web site, this is the module you will want to use.

•	 Display Suite: Allows you to take full control of how your content is displayed using a 
drag-and-drop interface.

•	 Calendar: Provides the ability to create and render a list of events on a calendar.

•	 Backup and Migrate: Handles scheduled backups of content in your Drupal 
database, with the ability to restore the database to a previous state based on one 
of the backup files created by this module. This is a must-have module for any 
production web site. You may also use this module to migrate content from one 
Drupal site to another.

•	 Google Analytics: Provides a simple-to-use form for setting up Google Analytics 
on your site. Google Analytics is a free service that tracks the number of visitors to 
your web site, where those visitors came from, what search terms they used to find 
your site, the pages they visited while on your site, how long they spent on your site, 
and many other useful metrics that will help you view and understand the usage 
of your web site. For more information on Google Analytics, visit www.google.com/
analytics.

http://www.google.com/analytics
http://www.google.com/analytics


Chapter 1 ■ Introduction to Drupal

4

•	 Pathauto: Creates search engine–friendly URLs by automatically generating a 
“pretty” URL that is based on the page’s title (such as www.example.com/examples 
instead of the default Drupal URL of www.example.com/node/1234).

•	 Scheduler: Provides the ability to specify the date that a node will become published 
on the site, and the date when a node will no longer be published. This allows a 
content author to create a node now and have it not appear on the site until some 
date in the future.

Drupal Themes
A theme is the Drupal component that defines how the pages on your web site are structured and the visual 
aspects of those pages. A Drupal theme defines attributes of your web site such as:

•	 How many columns of information will be presented on a page (a three-column 
layout with a left, center, and right column; a two-column layout with a narrow left 
column and a wide right column for content; a one-column layout, and the like)

•	 Whether a page has a banner at the top

•	 Whether a page has a footer

•	 Where navigational menus appear (at the top of the page, under the banner, in the 
right column, and so on)

•	 The colors used on the page

•	 The font and font size used for various elements on a page (such as headings, titles, 
and body text)

•	 Graphical elements, such as logos

Drupal core includes a number of off-the-shelf themes that you can use for your new web site. You 
may also download one or more of the hundreds of free themes that are available at drupal.org/project/
project_theme, or you can create your own theme by following the directions found at drupal.org/
documentation/theme.

Creating Content
A web site without content would be like a book without words, a newspaper without news, and a magazine 
without articles: hardly worth the effort of looking at. Drupal 8 makes it easy to create, publish, and manage 
content on your new web site. Let’s look at how simple it is by creating your first piece of content. If you 
haven’t installed Drupal 8 yet, visit www.drupal.org/docs/8/install and follow the step-by-step process for 
installing and configuring Drupal 8 core.

There are multiple paths for getting to the content-authoring screens in Drupal. I’ll focus on the 
simplest, but there are several paths for creating content in Drupal 8.

On the front page of your new web site, you will see an Add Content link beneath the “No front page 
content has been created yet” message on your homepage. In the left column, you will also see an Add 
Content link in the Tools menu (see Figure 1-1). Click either of the links: they both take you to the content 
editing form, where you will create your first piece of content.

http://www.drupal.org/docs/8/install


Chapter 1 ■ Introduction to Drupal

5

Next you’ll see a list of the content types that you can use (see Figure 1-2). Drupal 8 comes with two 
basic content types: an article and a basic page. Both content types provide you, the author, with a text field 
for entering the title of the content item and a body text area where you can write. Different content types 
provide additional elements. In the case of an article, you have the ability to enter “tags” for categorizing 
your content and an image. I cover tagging and several other content types later in the book, as well as the 
capability for creating your own custom content types.

Figure 1-1.  Click either Add Content link to get started

Figure 1-2.  Selecting your content type



Chapter 1 ■ Introduction to Drupal

6

Start with the simplest content type, a page, as the basis for your first content item on your new web  
site. Click the Basic Page link, which opens the content creation form for creating that content type  
(see Figure 1-3). On this form, enter the title of your first article and some text into the body area. After you 
have entered the title and body of your article, click the Promotion Options link in the right sidebar, and from 
the list of options presented, notice the Promoted to Front Page checkbox. When this option is checked, it 
tells Drupal to display this article on the front page of your site. If it is not checked by default, click on the 
checkbox to select it. Finally, scroll down to the bottom of the page and click the Save and Publish button.

Figure 1-3.  Creating a basic page

By clicking the Save and Publish button, the content you just authored will be immediately displayed on 
the front page of your web site (see Figure 1-4).



Chapter 1 ■ Introduction to Drupal

7

Congratulations! You’ve authored and published content on your new Drupal web site. There are many 
other content authoring, publishing, and management features that I cover throughout the remainder of this 
book. You are well on your way to building incredible web sites on Drupal.

Taking Drupal 8 to the Enterprise
Creating a basic page on your new Drupal 8 web site is only the first step in the journey of creating an 
enterprise class web site on Drupal 8. There are many other features and capabilities that you should 
consider, such as:

•	 Categorizing content to make it easy for your site visitors to find the content they are 
looking for, while also making it easy for the editorial team to author content and 
have it appear exactly where they want it to show with minimal effort. Drupal 8’s 
taxonomy system is a perfect solution to this issue.

•	 Delivering compelling content to a global visitor base by leveraging the multilingual 
capabilities of Drupal 8.

•	 Integrating the selling of your products or services into the content on your web site, 
creating a seamless experience between content and commerce. Drupal Commerce 
is a world-class platform for selling physical and virtual good such as ebooks, 
etickets, and memberships. And it’s Drupal, so you have all of the content-creation, 
content-management, and site-building features of Drupal at your fingertips.

•	 Equipping your organization to successfully build, deliver, scale, and support Drupal.

Figure 1-4.  Voila, you are published!



Chapter 1 ■ Introduction to Drupal

8

•	 Looking at Drupal 8 as more than just a tool to build your web sites. Drupal 8 is a web 
application development framework that can be leveraged to build any web facing 
application, and you have access to the thousands of contributed modules that 
provide a wealth of functional capabilities that you can leverage in your applications.

•	 Scaling Drupal to effectively support the level of activity in your organization.

The remainder of this book focuses on these topics and other areas that are critical to the success of 
building and sustaining enterprise class applications and web sites on Drupal 8.

Summary
This chapter focused on the basics of what a CMS is, the base functionality available in Drupal core, how 
to extend the functional footprint of Drupal core by adding contributed modules, Drupal themes, and 
creating your first content item in Drupal. If you are new to Drupal 8, I suggest reading Beginning Drupal 8 
(published by Apress) to provide a strong foundation in the capabilities of Drupal 8.

Chapter 2 covers the process and organizational best practices associated with creating a  
high-performance Drupal team in your organization.

http://dx.doi.org/10.1007/978-1-4842-0253-1_2


9© Todd Tomlinson 2017 
T. Tomlinson, Enterprise Drupal 8 Development, DOI 10.1007/978-1-4842-0253-1_2

CHAPTER 2

Building a Practical Software 
Development Process and Team

With the powerful capabilities that are available in Drupal 8 there is a tendency to jump in and immediately 
begin building before stepping back and defining the requirements and architecting an effective and 
efficient solution framework. It is an easy trap to step into, one that I have found myself victim to over the 
years, but in the end, taking time to define what you’re trying to build before you begin the development 
process will save you countless hours of rework and frustration as you try to maintain, support, and sustain 
a solution that is held together with duct tape and bubble gum. Another common approach is to simply 
move your web site from one platform to another, replicating the potential inefficiencies from one solution 
framework to another. The “paving the cow path” approach often results in a solution that works, but it 
typically fails to provide breakthrough capabilities that will differentiate your organization in its respective 
markets, and it will likely take more time to try to force fit your old site’s structure and components into 
Drupal, which in many cases is significantly different from an architectural perspective, resulting in a less 
than optimal solution.

There is a better way, and the process doesn’t have to be long and arduous. Done correctly you’ll end up 
with a solid foundation and a set of reusable components that will speed the development of future Drupal 
solutions. You will also step into the development process with a higher level of assurance that what you 
are building is what your customer, whether internal or external, wants. You’ll also have the opportunity to 
enjoy your weekends, as you won’t be fighting fires as your site “tips over” and slowly melts due to a poorly 
planned out solution.

A Methodology for Building Your Site on Drupal
While there isn’t a formal “Drupal Methodology” for building sites on Drupal, there are several industry best 
practices and processes that you may want to follow as you embark on the journey of creating a new Drupal 
web site. The process described in Table 2-1 may seem overwhelming and more complex and involved than 
what you think you need to build your new site, but from 30,000 plus hours of Drupal experience under my 
belt I’ve found that it’s good to at least think about these steps. Not every step is appropriate for every site; 
simple sites will typically require less up-front definition, whereas a complex enterprise-wide, multilingual 
site may take significant analysis and definition before installing Drupal and beginning the build process.



Chapter 2 ■ Building a Practical Software Development Process and Team

10

Table 2-1.  A Methodology for Building Your Drupal Site

Phase Task Activity

I Starting Your Project
The seven tasks in this phase are focused on helping you think about and define what 
your site is going to be. Drupal is a lot like a stack of lumber: you could build virtually 
any type and style of house with an appropriately sized stack of lumber. However, you 
wouldn’t start picking up boards and nailing them together without first knowing the 
details of the house that you are going to build. Think of this phase of the project as 
defining the blueprint of your new site. In this phase, you’re documenting key aspects 
of your site on paper, and not in Drupal. Once you have an understanding of what it is 
you’re going to build, you can embark on the construction activities.

A What is your new web site all about?
Write down, in narrative form, what the purpose of your new site is and, in general, 
describe the audience that you intend to target with your site. Think of this document 
as your “elevator pitch,” meaning if you met someone in an elevator and they asked you 
what your web site was about, you could recite this document verbatim before the two 
of you left the elevator. This activity forces you to define in concise terms what it is you 
are building and who is going to view the site.

B Identify who is going to visit and use your web site
List the various types of visitors who you intend to target with your new web site. 
Examples of visitor types for a library site might be children, teens, young adults, adults, 
jobseekers, and senior citizens. A favorite technique is to use a blank piece of paper and 
on this paper draw a “box” representing a browser window with your web site in that 
browser window. Draw a number of stick figures around the box and label each one with 
the type of visitor that “person” represents.

C Identify the content that you are going to deliver to your visitors
A common mistake in the web site construction process is the “field of dreams” 
mentality: “if I build it they will come.” Well if “they” come to your site, what content are 
you going to present to “them” so they stay on your site, look around, and bookmark 
your site for future visits? You may want to use a blank piece of paper for each visitor 
type, drawing a stick figure on the left and listing the content that this person would be 
interested in seeing on your site. There will likely be duplication between various visitor 
types, and that is okay, but it is important to step into the “shoes” of each visitor type to 
think about what content you are going to provide each visitor that will make them pay 
attention and return to your site in the future. Examples of content types might be, for 
a library web site, book reviews, movie reviews, music reviews, recommended reading 
lists, and a list of upcoming programs at the library.

D Identify the functionality that you are going to deliver to your visitors
Content is typically only one aspect of what constitutes a web site; there may be 
interactive features that you want to deliver, such as blogs, surveys, videos, audio, 
discussion forums, online forms, e-commerce, RSS feeds, or other interactive features. 
In this task, list all of the interactive features that you want to provide to your visitors.

(continued)



Chapter 2 ■ Building a Practical Software Development Process and Team

11

Phase Task Activity

E Define the site’s structure
Examine the types of content and functionality documented in the previous steps; you 
will start to see logical groupings or categories. You may see logical groupings based 
on a topic or subject, or you may see groupings based on specific visitor types. Using 
a library site as an example, you might see that there is a logical grouping of content 
across all visitor types that are focused on book reviews. You might also see a logical 
grouping of content that is focused on senior citizens and their use of community 
resources. Each of these logical groupings may, and probably should, become a major 
page on your web site.

F Define custom content types and taxonomy structureDrupal:methodology,  
building sites
There may be types of content that do not fit the off-the-shelf Drupal 8 content types. 
An example might be that you identified “Events” as a type of content. An Event has 
a title, a start date, a start time, an end date, an end time, and a location. It might be 
advantageous to create for events a custom content type that enforces the entry of those 
additional details, rather than relying on the author to remember to enter those values 
in the body of a generic page. In this step, you should create a list of custom content 
types and the attributes (such as start date and start time) associated with each  
content type.

While defining content types, it’s also time to think about taxonomy and how you are 
going to categorize content on your site.

G Define the navigational structure of your web site
With an understanding of the visitor types, the content that they will want to see on 
your site, and the logical groupings or major pages that will make up your site, you 
can now define the navigation (menus) for your site. If you know that a specific visitor 
type is a primary visitor of your web site, you should make it easy for that visitor to 
find the information that they are seeking. The typical mechanism for doing that is to 
provide some form of menu or menus. In this task you would identify all of the links 
that you want to provide to your site visitors and how those links should be organized 
(as menus). Using the library example, you may decide that you want a primary menu 
at the top of the page that provides links to About the Library, Locations and Hours, and 
How to Contact the Library. You may decide that you want a secondary menu that links 
visitors to pages for Books, Movies, Music, and Events. You may decide that you want 
another menu that helps to direct specific visitor types to pages that are focused on their 
specific interest areas, such as links for youth, teens, adults, senior citizens, and business 
owners. You can take the concept to another level of detail by defining drop-down menu 
items for certain menu links; for example, under the Books menu you may want to 
provide a link to Recommended Books, What’s New, and What’s on Order.

H Create wireframes
For every major page on your site, create a wireframe (wikipedia.org/wiki/Website_
wireframe) that depicts the elements that will appear on each page. Use the wireframes 
to validate that you have identified all of the types of content that will be rendered on 
your page, as well as all of the non-content elements (e.g., call to action, advertisements, 
etc.) that will appear on your page. There are many free and commercially available 
tools in the market. Checkout Pencil at pencil.evolus.vn.

(continued)

Table 2-1.  (continued)



Chapter 2 ■ Building a Practical Software Development Process and Team

12

Phase Task Activity

I Document the inventory of site components
With an understanding of what the site needs to deliver to its end users, and the desired 
site structure, the team should develop a comprehensive inventory of the components 
required to support the requirements of the organization. Depending on the complexity 
of the site, the inventory may consist of annotated wireframes, where every element 
on a page is defined to a level of detail required to construct and test that component 
(e.g., this is a block that is editorially curated with a call to action). For more complex 
sites a spreadsheet may suffice as the means for documenting the inventory of what 
must be built to successfully build and deploy the required functionality. The benefits 
of a spreadsheet are that it is easier to identify common elements that are shared across 
pages on the site and the relative scope and the volume can determine size of the effort 
and complexity of elements required to assemble the site. The inventory should contain 
the pages that must be built, the content types that must be created, the taxonomy that 
is required, the menus, blocks, and views required to assemble each component of the 
site. To the extent possible, the architect should work with the business systems analyst 
and UX designer to identify the correct source of information for a given element  
(e.g., this is a list of articles tagged as news story, sorted by date published in descending 
order, showing the title and the first 300 characters of the body). This step will also 
provide the details required by the quality assurance team to build the test plans, 
scenarios, and conditions required to test the site.

II Setting Up Your Drupal Environment
Now that you have an understanding of what you’re going to build, the next phase is to 
set up your Drupal environment to begin the construction process.

A Decide where you are going to host your new web site
You can easily build your new web site on your desktop or laptop and then deploy that 
site on a hosted environment, or you can choose to build the site in the environment 
where you are going to host the production version of your web site. Either approach 
works well. However, at some point in the near future you are going to want to deploy 
your site with a commercially viable hosting provider or use your organization’s own 
hosting platforms. To find a list of commercial hosting providers that support Drupal, 
visit www.drupal.org/hosting.

B Install and configure Drupal
Following the step-by-step instructions found at www.drupal.org/docs/8/install, install 
Drupal on either your local desktop/laptop or on your hosting provider’s environment.

III Choosing a Visual Design
Picking or designing your Drupal theme is one of those activities that you can choose 
to do early in the process, midway through the development process, or near the end of 
your efforts. For most people, having a sense of what the site is going to look like helps 
visualize the layout as it will look in its final state. There may be circumstances where 
you can’t pick or design the theme up front, such as the case where the organization 
you are building the site for doesn’t have their branding completed (including logo, 
colors, iconography, fonts, and so on). In that case it is still possible to continue with the 
construction activities using a generic theme.

Table 2-1.  (continued)

(continued)

http://www.drupal.org/hosting
http://www.drupal.org/docs/8/install


Chapter 2 ■ Building a Practical Software Development Process and Team

13

Phase Task Activity

A Look for an existing theme that matches what you are trying to accomplish
Hundreds of themes are available on drupal.org, and there is likely one that comes 
close to the layout and design that you would like to use on your site. To see the list of 
themes, visit drupal.org/project/themes. If you can’t find a theme that matches your 
requirements, you can use one of the various “starter” themes listed on the Drupal site 
(such as Bootstrap) as a place to start.

B Implement your site’s specific design elements
If you pick an off-the-shelf theme from drupal.org (versus creating one from scratch), 
you will likely want to change the theme’s logo, colors, and so on. The topic of theme 
development is beyond the scope of this book; however, you can read up on the 
concepts behind Drupal themes and discover which files you want to look in to make 
changes to customize the theme at www.drupal.org/documentation/theme.

IV Downloading and Installing Contributed Modules
In Task D of Phase I, you documented the functionality that you want to deliver to 
your site visitors beyond just content (such as interfaces to legacy systems that provide 
content to your site, commerce capabilities, integration with your marketing automation 
tools, integration with your customer relationship management system, and other 
functionality). In this phase you will search for, install, and enable the modules that you 
need to address the desired functionality.

A Identify the modules required to address the desired functionality
Some of the functionality may be addressed by Drupal 8 core modules (such as Views), 
while other functionality may require searching for an appropriate module. To look for 
modules, visit www.drupal.org/project/project_module. Using the filters available 
at the top of the page, narrow the search to those modules that are based on the 
functionality that you want to fulfill on your site.

If you’re struggling to find the right module, a good resource to use is the drupal.org 
forums. The community is extremely helpful, and posting a quick question asking for 
advice on which module to use for a specific feature or function may cut down on your 
research time as well as save you from picking the wrong module for the job.

B Download and install required modules
Once you’ve identified the right modules to address the required functionality on your 
site, follow the instructions listed in Chapter 11 for installing, enabling, configuring, and 
setting permissions for each of the modules.

V Creating Custom Content Types
If you identified custom content types in Phase I, Task E, now is a good time to create 
those content types. Use the list of content types and the list of attributes for each type.

VI Creating Views
There may be pages on which you want to provide a list or table view of content. Now is 
a good time to construct those views to support creation of pages in the next step.

VII Creating the Physical Pages
Use the techniques described in this book to create the actual pages (for example, use 
the Panels module to create complex page layouts). Create the various pages that you 
defined in Phase I, Task E.

Table 2-1.  (continued)

(continued)

http://www.drupal.org/documentation/theme
http://www.drupal.org/project/project_module
http://dx.doi.org/10.1007/978-1-4842-0253-1_11


Chapter 2 ■ Building a Practical Software Development Process and Team

14

Several have asked if this methodology is a traditional waterfall approach, where the phases and tasks 
are executed sequentially, or whether the approach is adaptable to agile. My answer to that question is it 
depends on how your organization prefers to execute projects. If you are more comfortable in a traditional 
waterfall approach then follow the process sequentially. For those of us who have adopted the agile way of 
life, the approach may be to break the phase I and II tasks into sprints 1 and 2, and for the remaining phases 
and tasks into sprints that allow you to deliver incremental functionality until you have a minimal viable 
product (MVP) that can be launched, with additional sprints adding new functionality to your site. There 
isn’t a right or wrong answer; the only answer is to use what works for your organization and those who 
make up your team.

While this may not be a comprehensive methodology that addresses every aspect of building large 
complex enterprise class web sites, it is the ninety-percent solution that addresses the majority of the needs 
for most organizations. The key is to “know before you go” or you’ll likely end up in the ditch.

Phase Task Activity

VIII Finishing Up the Menus on Your Site
With the pages in place, you’re now ready to finalize the menus on your site. Revisit the 
navigational structure you defined in Phase I, Task F to ensure that you’ve addressed all 
of the navigational requirements for your new site.

IX Finalizing the Configuration
At this point, the site should be configured and ready to go. In this phase, make sure 
that you have created all of the user roles, have assigned the appropriate permissions to 
those roles, and have configured how users accounts will be created.

X Creating Content
Now that you have the site configured, content types created, views defined, panels 
created, and user roles and permissions defined, it’s the time to create content on your 
site.

X Testing Your Site
With your site nearly ready for production, now is the time to test to make sure that 
everything works as you expect it to. Make sure you test the site as an anonymous user 
(not logged into the site). It is also a good idea to create test accounts for each of the user 
roles that you have defined and to visit the site while logged into each account to ensure 
that the roles and permissions are working as you had envisioned.

XI Deploying to Production
It’s now time to deploy your site to your production-hosting environment.

A If you created your site on your desktop or laptop, you’ll need to copy the entire Drupal 
directory to your production web server, and you’ll need to back up your database and 
restore it on your hosting environment.

B If you created your site on a hosting provider’s platform, you are already there and don’t 
need to move your site.

XII Administering Your Site
Monitor and manage your new Drupal web site.

Table 2-1.  (continued)



Chapter 2 ■ Building a Practical Software Development Process and Team

15

Building a Drupal Team in Your Organization
As with methodologies, there isn’t a one-size-fits-all definition for the organizational structure that will 
ensure your team’s success in delivering Drupal solutions to the enterprise. There are however a set of roles, 
responsibilities, and skills that form the foundation of an effective Drupal team and you will need to address 
coverage of these skill sets in your organization. The roles described in this section are recommendations 
based on the types of work that encompass a typical Drupal project, and in most organizations, team 
members assume the responsibilities of one or more of these roles, and in some instances, your Drupal team 
may consist of only one person.

Project Manager
Drupal projects are typical of all IT projects in that there are a number of tasks that need to be accomplished 
and resources that must be managed to ensure that those tasks are completed on-time, within budget, 
and meet the quality standards of the organization. On most Drupal projects the project manager role can 
be a part-time responsibility; however, large-enterprise scale site builds may require one or more project 
managers based on the size and scope of the effort.

Roles and Responsibilities
The role of the project manager encompasses the following key responsibilities.

Planning and Forecasting

	 1.	 Reviews project requests, prepares estimates, creates the project plan, develops 
the cost justification for the project.

	 2.	 Implements and manages project management tools that enable scheduling, 
budget tracking, resource allocation, resource balancing, time tracking, 
reporting, and communication of tasks, budgets, and schedules to those assigned 
to projects.

	 3.	 Responsible for the estimating template for all project-related work.

	 4.	 Creates and manages detailed project plans:

a.	 Ensures that project schedules are accurately defined at the start of a 
project.

b.	 Ensures that project budgets are accurately defined at the start of a project.

c.	 Defines the staffing required to meet the project schedule with the skills 
required to meet the project budgets.

d.	 Ensures that resources are loaded across projects in a manner that meets or 
exceeds utilization targets.

	 5.	 Maintains and publishes (weekly) accurate weekly, monthly, quarterly, and 
annual forecasts:

a.	 Resource loading and requirements

b.	 Utilization

c.	 Project burn rate and earned value



Chapter 2 ■ Building a Practical Software Development Process and Team

16

	 6.	 Maintains a rolling 90-day forecast of utilization by individual team members 
and the availability of each team member during that 90-day period.

	 7.	 Coordinates with project stakeholders and product owners.

	 8.	 Works with accounting to set up jobs in tracking system.

Project Execution

	 1.	 Ensures that project schedules are met during the project (tasks are completed 
on time).

	 2.	 Ensures that project budgets are met during the project (tasks are completed 
within budget).

	 3.	 Manages work to ensure that resources meet utilization targets.

	 4.	 Ensures that all team members are assigned work, know what the scope of work 
is, know what their budgets are, and know what the schedule is.

	 5.	 Creates the tickets or other mechanisms used to communicate work tasks to staff.

	 6.	 Manages the project’s scope and change request process. Secures change orders 
for out-of-scope items.

Reporting

	 1.	 Provides weekly status reports (written) to all stakeholders and product owners 
with active projects (tasks completed, tasks in progress, tasks to be started the 
next period, current budget, open issues, closed issues, and project schedule).

	 2.	 Reconciles time submissions with project schedules and budgets.

	 3.	 Reports weekly status to leadership.

Minimum Qualifications

	 1.	 Bachelor’s degree with a focus on computer science

	 2.	 PMP certification preferred

	 3.	 Five years of project management experience

	 4.	 General understanding of Drupal, content management systems, web design, 
and web development

	 5.	 Expert level understanding of project management tools (MS Project, Project 
Server, or similar)

	 6.	 Expert level understanding of project accounting (managing project financials)

	 7.	 Expert level understanding of resource management/resource leveling

	 8.	 Outstanding communication skills (written and verbal)

	 9.	 Expert level understanding and experience in managing a diverse group of 
people



Chapter 2 ■ Building a Practical Software Development Process and Team

17

Metrics and Measurements

	 1.	 Project estimates and project plans are created and delivered to stakeholders and 
product owners in a timely fashion.

	 2.	 All resources are aware of assigned tasks, scope, budget, and schedule.

	 3.	 All projects delivered on schedule and on or under budget.

	 4.	 All resources meet utilization targets.

	 5.	 Reports are deemed accurate and are generated on a weekly basis:

a.	 Resource utilization—current week and forecast for 90 days

b.	 Project budget analysis and schedule

c.	 Project status reports

	 6.	 Scope is controlled across all projects.

	 7.	 Change requests are identified, written up, and delivered to stakeholders and 
product owners. Secures signatures on change requests.

	 8.	 Provides details to accounting to support tracking project costs.

Senior Architect
The senior architect is responsible for defining the overall solution and ensuring that the right components 
are in place to ensure success of the project. The architect works closely with the business and the 
development staff to ensure that requirements are accurately translated into a viable Drupal-based solution, 
which includes contributed modules, custom modules, content types, and taxonomy. The architect also 
works closely with the development team to develop best practices for code management and deployment 
and works with the business team to ensure that requirements are accurately defined and translated into 
solutions that can be implemented in Drupal.

Roles and Responsibilities
	 1.	 Translates business requirements into viable Drupal solutions (information and 

technical architecture).

	 2.	 Sets and documents the team’s architectural standards:

a.	 Development tools and processes

b.	 Standard Drupal core and contributed modules that are used to create 
Drupal solutions in the organization

c.	 Custom development best practices, tools, and methods

d.	 The server architecture used for development, test, and productions

e.	 The deployment processes including tools, processes, roles, and 
responsibilities

f.	 Estimating metrics used by the project manager to accurately define the 
level of effort and resources required to develop a Drupal solution in the 
organization



Chapter 2 ■ Building a Practical Software Development Process and Team

18

	 3.	 Sets and oversees the architectural standards on all projects.

	 4.	 Coaches and mentors team members on the use of the standards.

	 5.	 Remains current on Drupal core and contributed modules and updates 
standards based on emerging capabilities, tools, and trends.

	 6.	 Participates as the Drupal subject matter expert (SME) in key discussions with 
stakeholders and product owners.

	 7.	 Reviews project estimates for accuracy and completeness.

	 8.	 Is the senior technical resource on all projects.

	 9.	 Works with the project manager to ensure that project templates are up to date.

	 10.	 Participates in the Drupal community as the organization’s senior Drupal 
visionary.

Minimum Qualifications
	 1.	 Five years of Drupal development

	 2.	 10 years in information technology

	 3.	 Demonstrated expertise in Drupal architecture and Drupal application 
development

	 4.	 Demonstrated expertise in PHP development on MySQL

	 5.	 Demonstrated expertise in server architecture (Apache, MySQL, Linux, and PHP)

	 6.	 Demonstrated knowledge of software development best practices

	 7.	 Demonstrated expertise in project estimating

	 8.	 Demonstrated ability to mentor, coach, and lead teams of developers

	 9.	 Outstanding written and verbal communication skills

Metrics and Measurements
	 1.	 Architectural standards defined and communicated to the team

	 2.	 Projects adhere to architectural standards

	 3.	 Team members well versed in architectural standards and are applying them to 
projects

	 4.	 The team’s methodology is defined, documented, and updated with lessons 
learned and best practices

	 5.	 The team’s development tools are identified and deployed, and the team is 
trained on use of the tools



Chapter 2 ■ Building a Practical Software Development Process and Team

19

Business Systems Analyst
The business system analyst (BSA) is the primary liaison between the development team and the business 
stakeholders and product owner. The BSA is responsible for collecting and documenting business 
requirements and then communicating those requirements to the architect, development lead, site builders, 
and quality assurance team members. BSAs have a general understanding of Drupal and the platform’s 
capabilities.

Roles and Responsibilities
	 1.	 Acts as the primary liaison between the business and the Drupal team.

	 2.	 Gathers requirements from the business, documenting them in a form that 
supports the process of defining the detailed architecture required to support the 
business needs of the organization.

	 3.	 Supports the architect, developers, site builders, and quality assurance team 
members, reviewing specifications to ensure that the solution delivered meets 
the business requirements.

	 4.	 Stays current with Drupal’s functional capabilities so they can communicate the 
platform’s ability to support the organization’s business needs.

	 5.	 Performs assigned tasks within budget and on schedule.

Minimum Qualifications
	 1.	 One to five or more years of experience in gathering and documenting detailed 

business requirements

	 2.	 One or more years of experience working with Drupal development teams

	 3.	 Excellent verbal and written communication skills

Metrics and Measurements
	 1.	 Thoroughly and accurately gathers and documents the organization’s business 

requirements.

	 2.	 Requirements are detailed enough for the architect and development team to 
translate into technical specifications that result in a Drupal solution that meets 
the business needs.

	 3.	 Ensures that the quality assurance team successfully translates business 
requirements into test scenarios and conditions.

	 4.	 Remains current on Drupal’s functional capabilities.

	 5.	 Completes assigned tasks within budget and schedule.



Chapter 2 ■ Building a Practical Software Development Process and Team

20

Development Lead
The development lead is the primary developer on a project, taking overall responsibility for the site building 
and custom development activities on the project. The development lead works closely with the architect 
to ensure that the solution meets the defined business requirements and the developers understand the 
requirements. The development lead also works closely with the site administrator to ensure that the 
development, test, and live environments are set up properly to support the project and solution. This 
person coaches and mentors the other developers on the team and leads by example.

Roles and Responsibilities
	 1.	 Works with the architect to identify, implement, and train the team on the use of 

standard development tools, methods, and practices.

	 2.	 Reviews assigned tasks (tasks assigned to self as well as tasks assigned to team 
members). Ensures that scope, schedule, and budget are understood before 
beginning work on a given task.

	 3.	 Performs assigned tasks within budget and on schedule.

	 4.	 Works with the project manager and helps monitor the developers to ensure that 
they are performing tasks within scope, schedule, and budget.

	 5.	 Accurately logs time on each task.

	 6.	 Alerts team lead/project manager immediately upon identification of scope, 
schedule, or budget issues (tasks assigned to self as well as tasks assigned to team 
members).

	 7.	 Understands and adheres to architectural standards as defined by the team’s 
architect.

	 8.	 Monitors team members’ work for adherence to architectural standards defined 
by the team’s architect.

	 9.	 Utilizes team’s source code control process and commits changes daily (at 
minimum).

	 10.	 Works with the project manager to ensure that tickets are created and assigned 
to team members. Reviews ticket assignments to ensure the tickets are assigned 
to the proper team members based on skills. Reviews tickets to ensure that team 
members are fully utilized and will meet utilization targets.

Minimum Qualifications
	 1.	 Five or more years of development experience in a commercial environment

	 2.	 Previous team leadership experience

	 3.	 Five or more years of experience in application development in a Drupal 
environment (Drupal APIs and Drupal templates)

	 4.	 Five or more years of experience in developing applications using PHP, MySQL, 
and JavaScript



Chapter 2 ■ Building a Practical Software Development Process and Team

21

	 5.	 Five or more years of experience in site building on Drupal

	 6.	 Demonstrated people management and leadership skills

	 7.	 Strong communication skills

Metrics and Measurements
	 1.	 Completes assigned tasks within budget and schedule.

	 2.	 Ensures that team members complete tasks within budget and schedule.

	 3.	 Controls scope on assigned tasks—tasks assigned to self as well as team 
members.

	 4.	 Immediately alerts project manager of scope, budget, or schedule issues.

	 5.	 Actively mentors and coaches team members.

	 6.	 Actively identifies and contributes improvements to the team’s tools, processes, 
and architecture.

	 7.	 Immediately alerts architect and development lead of design or architectural 
issues that will affect scope, budget, or schedule.

Developer
A developer is responsible for installing and configuring Drupal core and contributed modules as well as 
developing custom modules as required to support business requirements. The developer works closely 
with the lead developer to ensure that they understand the functionality that they are tasked with creating 
and to develop solutions that adhere to the organization’s standards. While a majority of the tasks performed 
by developers are focused on PHP, they should also be well versed in JavaScript and the development tools 
used by the team.

Roles and Responsibilities
	 1.	 Works with the lead developer and architect to review assigned tasks.

	 2.	 Develops Drupal solutions that fulfill the stated requirements, using the 
organization’s standards, tools, and processes.

	 3.	 Collaborates with other developers and site builders.

	 4.	 Completes tasks within the allocated time and budget.

	 5.	 Reports issues in a timely fashion.

	 6.	 Alerts team lead/project manager immediately upon identification of scope, 
schedule, or budget issues.

	 7.	 Remains current on Drupal development best practices.



Chapter 2 ■ Building a Practical Software Development Process and Team

22

Minimum Qualifications
	 1.	 One or more years of experience in application development in a Drupal 

environment (Drupal APIs and Drupal templates)

	 2.	 One or more years of experience in developing applications using PHP, MySQL, 
and JavaScript

	 3.	 One or more years of experience in site building on Drupal

Metrics and Measurements
	 1.	 Completes assigned tasks within budget and schedule.

	 2.	 Solutions developed meet the defined functional and technical requirements.

	 3.	 Solutions developed adhere to the organization’s defined standards and best 
practices.

	 4.	 Defect rates are below the defined standards for the development team.

Site Builder
A site builder focuses on the tasks of creating Drupal sites as enabled through Drupal core and contributed 
modules. This person is an expert at selecting and installing contributed modules, configuring Drupal core 
and contributed modules, and using the administrative tools associated with menu creation, page creation, 
blocks, and views. Site builders may have some coding experience and expertise, but coding in PHP and 
JavaScript is not a significant portion of their tasks.

Roles and Responsibilities
	 1.	 Maintains expertise in Drupal site building best practices and modules  

(e.g., views and panels).

	 2.	 Reviews assigned tasks and ensures that scope, schedule, and budget are 
understood before beginning work on a given task.

	 3.	 Performs assigned tasks within budget and on schedule.

	 4.	 Alerts team lead/project manager immediately upon identification of scope, 
schedule, or budget issues.

	 5.	 Understands and adheres to architectural standards as defined by the team’s 
architect.

	 6.	 Understands and utilizes the team’s standard development and/or design tools.

Minimum Qualifications
	 1.	 One or more years of Drupal site building experience in a commercial 

environment

	 2.	 Demonstrated experience and expertise in site building on Drupal using 
standard site building approach (views, panels, panelizer, and taxonomy)



Chapter 2 ■ Building a Practical Software Development Process and Team

23

Metrics and Measurements
	 1.	 Completes tasks within budget and schedule.

	 2.	 Immediately alerts project manager of scope, budget, or schedule issues.

	 3.	 Actively identifies and contributes improvements to the team’s tools, processes, 
and architecture.

	 4.	 Demonstrates growth in understanding and usage of Drupal site building tools, 
techniques, and best practices.

User Experience (UX) Designer
The UX designer is responsible for translating the business’ requirements into sitemaps and wireframes that 
represent how users will interact with the new Drupal solution. They work closely with the business team, 
BSA, architect, and visual designer.

Roles and Responsibilities
	 1.	 Interviews business stakeholders, product owners, and the BSA to gather the 

information required to support the creation of assets used to convey the user 
experience for the new site.

	 2.	 Develops the sitemap that represents the overall structure of the new site.

	 3.	 Develops detailed wireframes for all the pages on the site and annotates 
the wireframes with enough detail to support the definition of the Drupal 
components required to support the functionality on each page.

	 4.	 Reviews the user experience designs with the business, solicits feedback, updates 
the designs, and gathers approval signatures on the design.

	 5.	 Works with the visual designer to define the elements that require styling.

	 6.	 Works with the architect, development team, and the quality assurance team to 
ensure that the user experience is accurately and completely translated into the 
final Drupal solution.

Minimum Qualifications
	 1.	 One or more years of user experience design in a commercial environment

	 2.	 Outstanding verbal and written communication skills

	 3.	 Keeps current on UX best practices and tools

Metrics and Measurements
	 1.	 UX designs accurately and thoroughly reflect the requirements of the business 

and its end users.

	 2.	 UX designs reflect the organization’s and industry’s best practices.



Chapter 2 ■ Building a Practical Software Development Process and Team

24

	 3.	 UX designs are achievable in a Drupal-based solution.

	 4.	 Wireframes are detailed enough to support the technical design and site building 
activities.

	 5.	 Sitemaps are detailed and complete.

	 6.	 Completes tasks within budget and schedule.

Visual Designer
This role is responsible for creating visual designs for Drupal sites to be developed by the team that 
encompass the organization’s branding and design standards. The designs cover each of the elements on the 
wireframes developed by the UX designer and are detailed enough to support the development of Drupal 
themes.

Roles and Responsibilities
	 1.	 Creates visual designs using the team’s standard design tools (Photoshop and 

Illustrator).

	 2.	 Creates visual designs that adhere to the organization’s branding and visual 
standards and guidelines.

	 3.	 Understands the constraints on visual design that are present in a Drupal 
environment and develops visual designs that work with Drupal.

	 4.	 Works closely with the UX designer and themers to ensure that the visual designs 
are accurately represented in the Drupal theme and all elements of the UX are 
properly represented in the theme.

Minimum Qualifications
	 1.	 One or more years of web visual design commercial environment

	 2.	 Demonstrated expertise in using Photoshop and Illustrator

	 3.	 One or more years of developing visual designs for Drupal

Metrics and Measurements
	 1.	 Creates visual designs that are accepted by stakeholders and product owners 

with limited rework (less than 10% of the total effort to create the design 
attributed to rework).

	 2.	 Creates visual designs that are easy to use by themers.

	 3.	 Completes tasks within budget and schedule.

	 4.	 Immediately alerts project manager of scope, budget, or schedule issues.



Chapter 2 ■ Building a Practical Software Development Process and Team

25

Themer
The themer is responsible for translating the UX and visual designs into a Drupal theme. The themer uses 
the Photoshop (or equivalent) visual design as the foundation for creating the TWIG (Drupal’s theming 
engine) template(s), style sheets, and JavaScript as required to create the theme. The themer works closely 
with the UX designer, the Visual Designer, and the development team.

Roles and Responsibilities
	 1.	 Creates Drupal themes from visual designs (HTML, CSS, Drupal TWIG template 

files, and JavaScript).

	 2.	 Understands and adheres to the organization’s branding and visual standards 
and guidelines.

	 3.	 Understands and adheres to architectural standards as defined by the team’s 
architect.

	 4.	 Understands and utilizes the team’s standard development and/or design tools, 
including source code control.

Minimum Qualifications
	 1.	 One or more years of Drupal theme development experience

	 2.	 Demonstrated expertise in using Photoshop

	 3.	 Demonstrated expertise in HTML/CSS/JavaScript and Drupal TWIG templates

	 4.	 Demonstrated understanding of Drupal base themes

	 5.	 Demonstrated experience in developing responsive themes, including HTML5 
and CSS3

Metrics and Measurements
	 1.	 Creates Drupal themes that adhere to ServerLogic standards and best practices.

	 2.	 Completes tasks within budget and schedule.

	 3.	 Immediately alerts project manager of scope, budget, or schedule issues.

Site Builder
A significant portion of building a Drupal site is focused on configuration and building elements such 
as menus, blocks, views, and if your site uses Panels, page building. All of these activities are performed 
through the Drupal administrative interface and do not require coding. This role may be performed by the 
BSA once the requirements have been gathered, or by junior developers.



Chapter 2 ■ Building a Practical Software Development Process and Team

26

Roles and Responsibilities
	 1.	 Creates menus, blocks, views, and pages using the organization’s standard 

architecture and approach.

	 2.	 Tests components to ensure they meet the functional, technical, and design 
requirements.

	 3.	 Reviews assigned tasks and ensures that scope, schedule, and budget are 
understood before beginning work on a given task.

	 4.	 Performs assigned tasks within budget and on schedule.

	 5.	 Alerts team lead/project manager immediately upon identification of scope, 
schedule, or budget issues.

Minimum Qualifications
	 1.	 One or more years of Drupal site building experience (menus, blocks, views) in a 

commercial environment

Metrics and Measurements
	 1.	 Successfully completes tasks within budget and schedule.

	 2.	 Actively identifies and contributes improvements to the team’s tools, processes, 
and architecture.

	 3.	 Immediately alerts project manager of scope, budget, or schedule issues.

	 4.	 Immediately alerts architect and development lead of design or architectural 
issues that will affect scope, budget, or schedule.

Quality Assurance Specialist
A Drupal site requires the same level of testing diligence as any application developed and deployed in 
the organization. The Quality Assurance (QA) specialist is responsible for developing the test plans, test 
scenarios, test cases, test data, expected results, and in the case where an organization uses automated 
testing, the test scripts required to execute the tests. The QA specialist works closely with the BSA during 
the creation of the test plans and cases. The QA specialist also works closely with the development team to 
support the investigation and remediation of failures in the system to successfully fulfill a test condition.

Roles and Responsibilities
	 1.	 Defines test plans, test scenarios, test conditions, test data, and expected results.

	 2.	 Identifies tools that will improve the team’s ability to effectively test sites as they 
are developed and deployed.

	 3.	 Uses automated testing tools, if any, to facilitate execution of tests.

	 4.	 Executes tests, evaluates results, and reports bugs identified during the process.



Chapter 2 ■ Building a Practical Software Development Process and Team

27

Minimum Qualifications
	 1.	 One to five years of software testing experience in a commercial environment, 

preferably in a Drupal environment

	 2.	 Demonstrated experience and expertise testing strategies and tools

	 3.	 Excellent verbal and written communication skills

	 4.	 High level of attention to detail

Metrics and Measurements
	 1.	 The number of bugs that are found in the production environment continues to 

decrease over time as new features are implemented.

	 2.	 Completes tasks within budget and schedule.

	 3.	 Actively identifies and contributes improvements to the team’s tools, processes, 
and architecture.

	 4.	 Immediately alerts project manager of scope, budget, or schedule issues.

	 5.	 Immediately alerts the team of trends in defects discovered during testing.

	 6.	 Trains the entire team on testing best practices and tools.

Site Administrator
The site administrator is responsible for the day-to-day operations of the organization’s Drupal sites, 
ensuring that the site(s) are operational, performing as required, accessible to the users of the system, 
and are backed up to support disaster recovery. The site administrator is responsible for the full stack of 
technologies required to host the Drupal site(s), and the connections of that stack to external systems 
required to support the functional requirements. The site administrator is responsible for supporting the 
development team, ensuring that system level tools are available and operational for tasks such as source 
code control, continuous integration, testing, and deployment. Site administrators are also responsible for 
ensuring that security patches and updates to Drupal core and contributed modules are successfully applied 
and implemented in a timely fashion.

Roles and Responsibilities
	 1.	 Develops processes and procedures for effectively monitoring and managing the 

organization’s Drupal instances.

	 2.	 Monitors and manages the organization’s hosting environments and Drupal 
instances.

	 3.	 Ensures all Drupal instances are backed up and that the backups are successful.

	 4.	 Identifies performance bottlenecks and remediates the issue.

	 5.	 Identifies failures and communicates the failures to the development team for 
remediation.

	 6.	 Reviews and applies Drupal core and contributed module security patches.



Chapter 2 ■ Building a Practical Software Development Process and Team

28

	 7.	 Reviews and applies version updates to Drupal core and contributed modules.

	 8.	 Assists in the installation and configuration of new contributed modules.

Minimum Qualifications
	 1.	 One to five years of web site administration experience in a commercial 

environment

	 2.	 Demonstrated experience and expertise in managing environments running 
UNIX/Linux/Nginx, Apache, PHP, and MySQL

	 3.	 Demonstrated experience monitoring and managing Drupal sites

	 4.	 Demonstrated experience with installing Drupal security patches and installing 
new contributed modules

	 5.	 Demonstrated experience and expertise using git

Metrics and Measurements
	 1.	 Ensures that site uptime is within the service-level requirements set by the 

organization.

	 2.	 Actively identifies and contributes improvements to the site administration tools 
and processes.

	 3.	 Actively monitors drupal.org for security patches, core updates, and contributed 
module updates and applies patches and updates as appropriate.

Summary
There are many dimensions that will define the success of a Drupal project in your organization. Having 
a well-defined development methodology that is consistently used by the members of your team is key to 
building sustainable and repeatable processes. Realizing that it takes a team with a diverse set of skills and 
expertise is another dimension of the puzzle of assembling a Drupal solution. In this chapter I provided a 
general methodology that has worked well for me over the past 30,000 hours of building Drupal solutions 
for organizations, large and small, and the skills that are typically required to design, build, and support 
enterprise class Drupal solutions. But a methodology and a team is only the beginning of the process. In the 
next chapter, I describe how to engineer the Drupal architecture required to support the requirements of 
your organization.



29© Todd Tomlinson 2017 
T. Tomlinson, Enterprise Drupal 8 Development, DOI 10.1007/978-1-4842-0253-1_3

CHAPTER 3

Engineering Drupal

Drupal is a powerful framework for building enterprise solutions that range from simple web sites to 
complex web-enabled applications. While Drupal 8 off-the-shelf could be used to build any of the broad 
spectra of solutions, there are best practices for engineering enterprise class Drupal. The chapter covers 
the key principles for determining the best approach, and the details involved in successfully engineering a 
solution that is scalable and adaptable.

Engineering the Foundation
Constructing anything requires an understanding of the requirements of what you are about to build, 
whether it is a bridge, an automobile, a house, a pizza, or a Drupal site. Building anything without a 
thorough understanding of the requirements will likely result in having to rebuild some or all of the 
foundation. If you begin building an automobile and later find out that the true requirements include the 
ability to tow a travel trailer and haul eight adults then you may have to radically shift the architecture of the 
two-seater convertible that you just about completed, a task that would likely require starting over. When 
building enterprise class Drupal, the best approach involves a thorough understanding of the needs of 
the various constituents that the solution must support. Having spent the past 12 years and 33,000+ hours 
working as the architect of enterprise class Drupal solutions, it’s key that you understand high-level goals 
and objectives such as:

•	 What type of sites will the organization create? Are they primarily delivering 
marketing information? Is online commerce a key consideration? Is there an online 
community component (user generated content)? Will the sites be multilingual? 
Are the sites functionally similar or are there wide variations in the types of sites 
that will be built? Understanding this aspect will help you determine whether all 
sites can be constructed from a common distribution or whether the variance in 
functionality will require multiple base platforms on which to build and launch 
Drupal sites.

•	 How many different web sites (domains) will the organization construct over 
the next one to three years? Understanding the number of different sites will 
help determine whether to build each site independent of the others, whether 
to use a solution such as Drupal’s multisite architecture, or whether a custom 
enterprise distribution from which each site inherits a majority of its structure and 
functionality is in order.



Chapter 3 ■ Engineering Drupal

30

•	 Is there an existing Drupal distribution that closely matches the functional and 
technical requirements for the organization’s sites? For example, does Drupal 
Commerce, Open Scholar, Open Publish, Open Government, Open Atrium, or other 
distribution closely match your organization’s requirements? Does the organization 
already have Drupal sites in place? If so, is one or more of those sites a candidate for 
building an enterprise class Drupal distribution for the organization?

•	 Will Drupal integrate with other non-Drupal systems in the enterprise? If so, what 
role does Drupal play? Is it a provider of information to external applications and 
web sites? Is it a consumer of content from other applications and sites? Is it both? 
If Drupal is primarily a provider of information to other enterprise application, 
having a robust user interface may be lower priority than having a well architectures 
services layer for providing REST APIs.

•	 What user interface best serves the consumers of information contained in the 
organization’s sites? Does the Drupal interface suffice? Does AngularJS or another 
decoupled user interface provide a better interface? Headless or decoupled Drupal 
is becoming a more popular option for organizations that want to be more creative 
in the presentation of content to their users than what is typically accomplished 
through the traditional Drupal frontend. A prime example is weather.com, which 
uses a decoupled approach with AngularJS as the presentation layer and Drupal as 
the decoupled provider of content.

Answering these questions will not provide the detailed level of specifications required to fully 
define the approach required to build an Enterprise Drupal architecture; however, it will provide the 
overall guidance as to how the individual pillars of the architecture need to be engineered to address the 
organization’s needs.

Defining the Components of Enterprise Drupal
With a general understanding of the fundamental requirements for your enterprise class Drupal 8 site, the 
next step is to begin the process of examining each component that will form the architecture and define 
how your organization’s requirements will impact each of the components (see Figure 3-1).



Chapter 3 ■ Engineering Drupal

31

Network and Web Server
The network and web server architecture required to support Enterprise Drupal 8 plays a significant role in 
the performance of your site, and there are several aspects that you should consider while engineering your 
solution. Most Drupal sites use Apache HTTP servers as their web server and Apache does well in that role. 
However, as your sites’ traffic volumes grow, the load placed on the web servers often tax Apache’s ability to 
serve pages quickly enough to ensure acceptable page load times.

Apache often faces what is called the C10K problem, which means that Apache has a difficult time 
supporting more than 10,000 concurrent connections, and in fact in most cases Apache falls far short of 
delivering adequate performance well before the 10,000 connections limit is reached. Apache’s approach is 
to allocate memory to every additional connection, resulting in swapping to disk as concurrent connections 
increase. As the number of connections climb the performance quickly spirals downward, leading to 
unhappy site visitors and headaches for the operations team of your site. Nginx takes a slightly different 
approach, whereas Apache’s approach is to fork a new process for each new inbound connection, where 
each new fork is allocated resources to process the connection, Nginx queues requests and processes them 
without allocating resources to each request. The result is lower overhead and faster responses to requests.

Drupal itself also consumes memory and CPU for each request that it receives, similar to Apache, but 
performance is often negatively impacted at significantly fewer than 10,000 connections. To resolve Drupal’s 
own resource bottlenecks, the best practice is to employ reverse proxy servers. Reverse proxy servers receive 
request from browsers and then examine each request and determine what to do with it. They either carry 
out the request itself or send it on to the web server and Drupal for fulfillment of the request. Reverse proxy 

User Interface

Drupal 8 Theme Web Services

En
tit

ie
s

Ta
xo

no
m

y

Vi
ew

s

Pa
ge

s

Ru
le

s

Ro
le

s 
& 

Pe
rm

is
si

on
s

Drupal 8 Contributed
Modules

Custom
Modules

Drupal 8 Core

Web Server Database

Network

Figure 3-1.  Components of Enterprise Drupal 8



Chapter 3 ■ Engineering Drupal

32

servers also provide the ability to cache static files (images, CSS files, and JavaScript files) separate from 
dynamic pages. A reverse proxy server may also cache PHP generated web pages, such as those pages 
generated by Drupal. By serving up pages from cache, Drupal never sees that request, as the request is 
fulfilled by the reverse proxy server. Using multiple reverse proxy servers also provides the ability to balance 
the load across several servers, further reducing the amount of time required to respond to requests.

Many of the biggest Drupal hosting providers, such as Pantheon, use Nginx and reverse proxy servers 
to ensure that the sites they host perform as desired. Your organization my choose to implement this same 
architecture in house, or you may rely on hosting providers to provide the infrastructure required to support 
your anticipated traffic volume.

Database Servers
The web and reverse proxy servers are the first line of defense in solving Enterprise Drupal 8 performance and 
scalability issues, while the database is a close second as the next area to focus on when engineering Drupal.

As an enterprise class platform, Drupal 8 requires the same level of capabilities and power as any other 
enterprise application, such as your enterprise resource planning (ERP), customer relationship management 
(CRM), human resources (HR), or other enterprise class applications.

Selecting the Database Platform
The de facto standard for most Drupal implementations has been MySQL. It was the first database 
supported by Drupal and continues to be the most popular option for most organizations. Drupal is 
optimized for MySQL, and while Drupal also supports PostgreSQL and SQLite, not all contributed modules 
support non-MySQL databases. There are also options for using Oracle and Microsoft’s SQL Server 
databases, although using either of those databases is not considered the mainstream approach for Drupal.

While MySQL meets the performance requirements of most Drupal implementations, there are two MySQL 
“clones” that provide even higher performance and scalability options as they have replaced key component of 
the database engine focusing on performance. MariaDB is a fork of MySQL created and maintained by a team 
of MySQL engineers who left the organization when Oracle purchased the rights to MySQL. Percona is similar 
to MariaDB, but instead of a fork of MySQL, it is a branch of the main MySQL master branch. The primary 
difference between the two is that MariaDB diverged from MySQL at a point in time and continues down its own 
path, whereas Percona shadows MySQL and will continue to be tightly in alignment with the MySQL master 
branch. Many of the large-scale hosting providers use MariaDB as the database engine for their service offerings.

While MariaDB and Percona typically outperform MySQL, any of the three options are viable 
candidates to support an Enterprise Drupal implementation.

Clustering MySQL to Improve Performance
Traditionally Drupal sites often ran on a single instance of MySQL, and for many sites, that architecture 
supported them well until they hit a threshold of page views where the database became a bottleneck. After 
exhausting the options to tune MySQL to support the transaction volumes, the only alternative is to deploy 
more than instance of a MySQL server and employ clustering to distribute the workload across servers. This 
approach provides virtually unlimited database server resources and resolves the issue of the database as 
the bottleneck. While you may address some of the performance issues through reverse proxy servers and 
advanced caching mechanisms, it is wise to consider engineering your Enterprise Drupal architecture as a 
MySQL cluster to avoid having to retrofit your architecture at a later point.

For more information about MySQL clustering, visit mysql.com/products/cluster. As a point of 
reference, a standalone MySQL server may be tuned to deliver 250,000 to 500,000 queries per second, 
whereas a MySQL cluster, configured properly with the right number of servers and resources, can deliver 
200 million queries per second.



Chapter 3 ■ Engineering Drupal

33

Drupal 8 Core
There are several aspects of Drupal 8 core that you should carefully examine and consider while engineering 
your Enterprise Drupal 8 platform, and many of those options are discussed throughout this book. However, 
when launching your Enterprise Drupal 8 initiative, there is one aspect that will dictate how you engineer 
and build your Drupal sites. That aspect is how you want to build sites across your organization. There are 
three general alternatives:

•	 Single site

•	 Multisite

•	 Distribution

Single Site
A single-site architectural approach focuses on building each site or application by starting with Drupal 
core and adding the contributed and custom modules required to address the functional and technical 
requirements for that specific site or application. This approach works well and has been the de facto 
standard for many organizations. A single site solution framework works best for organizations in which 
every site and application is significantly different and there is little opportunity to leverage a common 
framework across all sites and applications. In this case, a common framework would likely be limited to 
Drupal core and a small number of contributed modules. While there may still be value in developing a 
common platform, the benefits are not as significant as the other architectural approaches. While it may 
seem as the easiest alternative to building sites in your organization, you will likely come to the realization 
that having to maintain dozens or even hundreds of independent sites is overwhelmingly complex and 
costly. Fortunately there are better ways, as described in the next two sections.

Multisite
Drupal multisite is an approach that has been around for nearly 10 years and is employed as the primary 
structure for hosting sites on Acquia. A multisite architecture consists of a single codebase with each site or 
application having its own database and configuration.

The benefit of this approach is that you only have to maintain a single instance of Drupal and 
contributed modules. An update to Drupal core, contributed, or custom module applies to all sites hosted 
in a multisite-based architecture. The benefits of a single codebase is often the primary benefit of a multisite 
architecture; however, there are potential pitfalls, such as:

•	 A single erroneous update to a module can take all of your sites down, as all sites 
share the same codebase.

•	 Scalability may be an issue, as all sites are running on a single instance.  
A distribution-based approach, on the other hand, provides the ability to spin up 
independent containers as increased demands warrant additional resources.

•	 Administrative access to a multisite architecture is difficult to restrict to single sites 
for tasks like updating a custom module.

Multisite is widely used in large organizations and is a viable approach, but there are tradeoffs that may 
be addressed by using a distribution-based model.



Chapter 3 ■ Engineering Drupal

34

Distribution
Using a common distribution is the third approach and is based on the concept of assembling a “packaged” 
solution that addresses a majority of the functional and technical requirements for all sites and applications 
in an organization. This approach is nearly identical to using one of the community contributed 
distributions as the foundation for your site—for example, using Drupal Commerce Kickstart, Open Atrium, 
or Open Public as the upstream distribution on which you build all of your sites.

A distribution based approach starts with engineering a common Drupal footprint that addresses a 
majority of the functionality across the types of sites in your organization. You then create that site with the 
core building blocks to address that functionality, such as:

•	 Drupal 8 core

•	 Contributed modules

•	 Custom modules

•	 Entity types that address the common content requirements

•	 Taxonomy that addresses a consistent enterprise categorization of content using a 
common terminology

•	 Views that render content in ways that are consistent across the organization

•	 Page templates that address the common layouts used in the organization

•	 Common enterprise-wide navigational elements (menus)

•	 Common blocks

•	 An enterprise-wide search framework

•	 Integration with legacy enterprise applications and content

It is possible to assemble a common distribution that addresses a majority of the needs of the 
organization, fulfilling 80% of the common requirements. Creating a new site using a distribution is relatively 
straightforward—you clone the distribution from a centralized source code control system such as GitHub, 
install the distribution, and expand on the functionality provided by the distribution where necessary to 
address a site’s specific requirements.

By setting the upstream master of the cloned site to the distribution’s repository on, for example 
GitHub, you have the ability to pull updates and enhancements from the distribution into localized versions 
of the distribution, making the process of rolling out updates, patches, security updates, and expansion of 
functionality a relatively simple process. There are hosting providers, such as Pantheon, that provide this 
capability as part of their enterprise hosting packages, or you can build it yourself.

Profiles
If you select Drupal multisite or a distribution as the approach for building your Drupal 8 platform, you may 
consider creating one or more installation profiles. Installation profiles combine core Drupal, contributed 
modules, themes, and pre-defined configuration into one download. Installation profiles provide specific 
site features and functions for a specific purpose or type of site. They make it possible to quickly set up a 
complex, user-specific site in fewer steps than installing and configuring elements individually.

As an enterprise is it likely that there won’t be a “one-size-fits-all” profile to address every type of site 
in your organization. For example, you may have a site that is primarily a marketing web site, while another 
site delivers technical product information to customers who purchase your products, and yet another site 



Chapter 3 ■ Engineering Drupal

35

is primarily a commerce web site where you sell products and services. While it is possible to build three 
different distributions to address those three very divergent sites, it is more effective, efficient, and less 
complex to build a single distribution using installation profiles.

Don’t underestimate the power of installation profiles, as they may save your development team 
countless hours of spinning up new Drupal 8 sites for the various constituents in your organization. See 
Appendix C for details on how to create a Drupal 8 installation profile.

Drupal 8 Contributed Modules
When engineering your Drupal 8 solution, it is likely that you will need to step outside the capabilities of 
Drupal 8 core to address the functional requirements of your organization. While Drupal 8 core is feature 
rich, it can’t address every possible requirement from every conceivable use of Drupal 8 in organizations 
around the world. Combining Drupal 8 core with contributed and custom modules will provide the 
foundation for addressing your organization’s specific needs.

Many organizations fall short when engineering their Drupal footprint by overlooking contributed 
modules that may solve their functional and technical requirements and, instead, developing custom 
modules that must then be maintained by their organization. The task of finding the right contributed 
module or combination of modules is often a tedious one, but the long-term payoff of using contributed 
modules instead of developing custom modules is significant, especially when considering the cost of 
upgrading your custom modules to the next major version of Drupal.

There are no easy shortcuts to finding the proper contributed modules to address your functional 
requirements, other than searching through drupal.org and finding other similar use cases and how people 
solved those issues. When evaluating contributed modules, there are a few things to keep in mind:

•	 How many sites report that they are using the module? If the number is small, for 
example less than 50, closely examine the functionality to determine why more 
people aren’t using the module.

•	 Check the issue queue and read through the bugs that people are reporting. If they 
seem significant and there are a lot of them, you may want to consider a different 
path. The sheer number of issues may not always be a good indicator though, because 
many heavily used modules have issues that number in the hundreds. They key is to 
look for critical issues and determine how actively people are working on them.

•	 Check the date of the last update to the released (non-dev) version of the module. If 
the module hasn’t had a release in several months and there are several outstanding 
bugs that have been reported and worked on, understand that you may have some 
additional work to do to apply the patches that developers have submitted to address 
critical functional and technical bugs.

•	 Look for known conflicts with other contributed modules in the issue queue. If 
you have the modules that are reported as conflicting you may want to look for an 
alternative solution, as implementing that module may break other functionality on 
your site.

•	 Look for hooks that provide you with the ability to augment the module. A hook is a 
function that allows you to directly interact with the module to modify some aspect 
of the module’s functionality, such as adding or modifying content that is being 
processed by that module. A module that provides 80% of the required functionality 
but has hooks is better than a module that provides 90% of the functionality without 
the ability to modify the functionality through a hook.



Chapter 3 ■ Engineering Drupal

36

•	 When presented with multiple options to solve a functional requirement, examine the 
two modules carefully. Not every module solves the problem the same way and there 
are likely differences that will sway you one way or another. Another key indicator 
is the number of contributors to the module. More contributors means more arms 
and legs to work through the issue queue and update the module. There are also well 
known developers in the community who are known for the quality of their modules. 
While everyone can contribute a module, sometimes it pays to stick with the veterans 
who have consistently delivered high-quality modules to the community.

If at the end of your evaluation you’ve come up empty handed, custom modules are the acceptable 
path. Follow Drupal’s best practices, which can be found at drupal.org/coding-standards, and consider 
contributing your custom module to the community. It’s highly likely that someone else in the world is facing 
the same functional requirement and could benefit from your solution. Conversely, you have the opportunity 
to collaborate with others in the community to augment your custom module to make it even better.

Custom Modules
Early in my career shift to Drupal I partnered with a friend who was out building Drupal web sites and 
doing so quite successfully. What impressed me about his web sites was that there was no custom code; 
the sites were robust and complex and relied solely on off-the-shelf Drupal. While possible, it is likely that 
you will need to venture off into the realm of developing custom modules to address the unique functional 
requirements in your organization. When engineering your Drupal footprint and considering custom 
modules, it is important to consider a few key points:

•	 Is there a way that this can be accomplished with off-the-shelf Drupal? For example, 
can you use a combination Drupal capabilities such as web services, views, 
webforms, and rules, which provide the foundation for solving many functional 
requirements that cannot be addressed with existing modules.

•	 Can the requirements be modified to match the capabilities of an off-the-shelf 
solution? In my 30,000+ hours of building enterprise class Drupal solutions, when 
asked, requirements often shift to fit an off-the-shelf capability without having to 
address the functionality through custom code.

•	 Can the functionality be accomplished through extensions to an existing 
contributed module? Instead of starting from a blank slate, consider contacting 
the module maintainer for an off-the-shelf module that addresses a majority of 
your requirements. It is likely that you are not the only organization that requires 
additional functionality.

After exhausting an evaluation of alternative approaches, custom coding may be warranted. In that 
scenario, it is wise to follow Drupal 8 best practices when developing your custom solution. Chapter 4 
discusses developing custom Enterprise Drupal 8 modules.

The Pillars of a Drupal 8 Solution
The items described previously are often considered the foundation of a Drupal 8 solution, and while 
contributed and custom modules provide a significant portion of the functionality associated with a Drupal 
site, the pillars of the solution are:

•	 Entities

•	 Taxonomy

http://dx.doi.org/10.1007/978-1-4842-0253-1_4


Chapter 3 ■ Engineering Drupal

37

•	 Views

•	 Pages

•	 Rules

•	 User roles and permissions

Entities
Entities form the basis for content, taxonomy, and users on your Drupal 8 site and therefore are often 
considered the critical pillar of a Drupal site. When engineering your Drupal solution it is important to 
consider the following:

•	 What types of content will be authored, stored, managed, and displayed across the 
enterprise and what is the structure of each type of content?

•	 What taxonomy vocabularies will be used to categorize content across the enterprise 
and what is the structure of the terms contained in each vocabulary?

•	 What information do you want to collect about your users, the ones who physically 
log on to your Drupal sites?

Content Entities

Understanding the types of content required across an entire enterprise may seem like a daunting task, but 
it is a necessary activity when creating a Drupal 8 solution that will address your organization’s needs and 
speed the delivery of sites across your organization. While the effort may seem overwhelming, the reality is 
that most organizations have a small set of entity types that address nearly every piece of content authored 
by the organization. The process for distilling all of the information published across the organization starts 
with gathering a representative sample of the content that is currently published and looking for patterns 
of how that content is organized and the key attributes of each common pattern. The more you distill the 
better the outcome will be for those who are responsible for building the platform and for those who use the 
capabilities provided to them through the editorial interface.

As a general rule of thumb, having fewer entity types means the effort to manage and maintain your 
site will be easier. When examining the results of the distillation process, you will likely find that a vast 
majority of the patterns fit into a simple structure of a title, a body, a featured image, the date content was 
published, an article type field driven by taxonomy, and the author who created the content. If you look 
at this simple pattern, you’ll likely see that it can be applied to news articles, press releases, blog postings, 
product overviews, new product announcements, and a host of other types of content. In this case you might 
consider creating a simple multi-purpose article entity type that can be used across a wide variety of use 
cases.

Not all entity types may be distillable down to a single article entity type. There are specific cases 
where it makes sense to have individual entity types for content that does not fit the simplistic format of an 
article. For example, an event has other information such as start date, start time, location, duration, file 
attachments, and other fields that are typically not applicable to an article. Instead of adding complexity to 
the article entity type, a separate event entity type is warranted, but constrain the team’s desire to construct 
several content entity types. Instead, look for flexible ways to deliver content through the fewest number of 
content entity types.

For details about creating entity types in Drupal 8, read the Apress Beginning Drupal 8 book, which can 
be found at apress.com/9781430265801.



Chapter 3 ■ Engineering Drupal

38

Taxonomy Entities

Taxonomy is the second pillar in the enterprise-Drupal framework. It is also an entity. I’ll cover the usage of 
taxonomy in the following pages. It also warrants an examination of how taxonomy can play a larger role than 
just providing terms that an author can use to categorize content. Taxonomy, like content entities, supports 
the concept of additional fields. Additional fields enable you to utilize taxonomy for broader purposes, such as 
being the source of certain elements. You could, for example, have a common page banner on all the site pages 
that are associated with a specific taxonomy term. There could be other attributes associated with a term that 
may be useful across the site such as category descriptions, related terms, images, or other information.

This is one area where many people miss the opportunity to fully leverage the entity aspects of 
taxonomy and take a more complex approach to what might be simplistic by utilizing additional fields on 
a taxonomy vocabulary and using taxonomy for more than just a repository of terms to categorize content. 
Expand your thinking about how a taxonomy term may provide additional supportive information that 
would enhance and enrich the content delivered to your end users. Follow the same steps as when adding 
fields to an entity type when creating taxonomy vocabularies. For additional details on creating custom fields 
on taxonomy vocabularies, check out the Apress Beginning Drupal 8 book.

User Entities

Users are another class of entities, and like content and taxonomy, they are also fieldable and expandable 
beyond the base user entity defined by Drupal 8 core. There may be additional fields that would collect 
additional information that would enable enhanced functionality on the site, such as filtering content based 
on some attribute of their profile. Carefully consider the additional elements that may be added to the user 
entity to facilitate delivering functionality on your Drupal 8 site.

Defining entities is a key step in the process of engineering your overall solution, so do not overlook or 
shorten the process and take full advantage of Drupal 8 entities.

Taxonomy
Taxonomy is the second pillar of the solution footprint and it plays a critical role that many overlook. Many 
overlook taxonomy because they do not understand it or they don’t think about the power that it brings to 
Drupal. I have been asked by many organizations over the years to solve common problems that could have 
easily been addressed by fully utilizing taxonomy. Here are some examples:

•	 Why is it so hard to author content and have it show up where it is supposed to on 
my site?

•	 Why is it so hard to assemble lists of content based on common characteristics?

•	 Why can’t I automatically create a list of related products or articles?

•	 Why can’t I have faceted search and make it easier for my visitors to find the 
information they are looking for?

•	 Why do I have to manually create all of these pages on my site? I thought Drupal 
could magically assemble pages of content without me having to physically place 
every piece of content on a page?

The question that I ask those organizations that are crying out for help is “How are you using taxonomy 
on your sites?” Their answer is typically, “What is taxonomy?” Which is exactly why taxonomy is one of 
my favorite capabilities of Drupal as it solves so many problems that exist when you don’t effectively 
use it. Using it requires studying the organization and its content, including how editors want to curate 
content, how end users want to find content, and how the organization thinks and talks about its content. 



Chapter 3 ■ Engineering Drupal

39

Understanding the taxonomy of the organization and engineering it into the very DNA of your site will result 
in a significant reduction in the effort needed to create your new sites and will enhance your end users’ 
ability to find the information they are looking for.

So where do you start? The first step is to understand how your organization talks about content. When 
they talk about content do you hear things like, “When we publish a news article we are trying to target a 
specific market segment, which includes a break down by industry, application, and problem faced by that 
target customer”. In that simple sentence there are four uses of taxonomy:

•	 They publish news articles, where “news” represents a type of article

•	 They target industry segments, which is another categorization of content

•	 They narrow the focus in that industry by application

•	 Within the application they narrow the target to a specific problem that their 
organization addresses through a product or service offering

Using taxonomy and defining specific vocabularies (article type, target industry, application, and 
problem area) and terms in each of those vocabularies, content authors are able to pinpoint their target. Site 
builders can use those terms to construct views that display that content, filtered by taxonomy terms, on 
specific pages on the site.

There are other uses of taxonomy such as providing the capability for content authors to specify which 
sections of the site a specific content item is to appear, and further refining the placement of that content to a 
specific section of that page. You may, for example, have a vocabulary for “site section” and one for “content 
placement,” where terms for site section might include the following:

•	 Homepage

•	 About us

•	 Products

•	 Services

•	 News

The taxonomy terms for content placement might include these:

•	 Featured

•	 Latest

•	 Call to Action

•	 Hero

•	 Recommendations

•	 Related

When you combine site section (for example Homepage) with content placement (Featured), you can 
begin to build patterns of filters that may be used in views to enable content authors to automatically place 
content on the right page, in the right section of that page, by simply tagging the content with the right terms 
and extracting that content for placement on the page through a view.

Taxonomy also plays a key role in enterprise search, providing the ability to filter content based on 
taxonomy terms, or through the use of search facets. This provides the ability to drill down through content 
to get to a content item of interest.

The challenge of taxonomy at the enterprise level is gaining consensus across the organization as to 
what something is called. The classic example that I often use is the word rain. While it seems like a good 
term to use to classify the water that falls from clouds in the sky, there are others that argue that the correct 



Chapter 3 ■ Engineering Drupal

40

word is precipitation. There are others who prefer specific terms as to the volume of velocity of rain, such 
as downpour, drizzle, or mist. And there are others who will add modifiers to the word rain such as driving 
rain, freezing rain, light rain, intermittent rain, and others. While there isn’t a single right answer, the issue 
becomes how do we consistently convey the word rain to all of our internal and external site visitors so that 
they can find everything on our site related to the word rain without having to dig through all the variations 
of the word? The answer? Agree to a common term and stick with it. This concept is often easier said than 
done due to human nature and our stubbornness in holding on to what we believe is the right answer even 
if it isn’t the best answer. As the engineer of this solution you will have to gather the input from across the 
organization, distill the list of taxonomy vocabularies and terms into a single enterprise-wide list, and gain 
buy-in across the organization.

For large organizations, it may warrant the creation of a new job role called taxonomist, who is 
responsible for assembling the enterprise taxonomy, maintaining it, and enforcing it. Your job as the 
architect or engineer is to leverage the taxonomy to its fullest potential to simplify the process of building, 
maintaining, and finding content on your site.

Views
Views are the workhorse of most Drupal sites. Without views it would be difficult to extract content from the 
Drupal database and display it on pages. While not impossible to do, the level of effort exceeds the benefit of 
not using views to generate that output.

Using views to extract content is a relatively simple process. View’s administrator’s user interface 
provides a series of configuration options that identify what content, taxonomy, or users you want to extract 
and display, as well as which elements of those entities are important to display, the order in which they 
should appear, and how many should appear, all without writing a single line of code. For details on creating 
views, check out the Apress Beginning Drupal 8 book.

When engineering your Drupal 8 solution, it is important to consider the following:

•	 Whether to create a view per use case, or whether you will create a view per entity 
type with view displays in that view that address a specific use case. Creating a 
standalone view for each use case typically results in an unmanageable number of 
views, which makes it difficult to locate a specific view that is rendering content on 
a page. Using one view per entity type minimizes the difficulty in locating the right 
view to use for a specific use case, as they are all contained in a single view.

•	 Whether to render individual fields through a view display or to use a module 
like Display Suite (drupal.org/project/ds) to control how content is rendered 
externally from the view. In the latter case, you would use the Display Suite layout 
to render the content. The separation of the physical layout of the output externally 
from a view display has significant benefits, including simplifying the creation of a 
view. All you need to do is output content and render it using the display created 
through Display Suite. You can make changes to the layout through Display Suite and 
apply that updated layout automatically to every view that renders content using that 
display. The alternative is to add every field that must be displayed through the view 
display and, when changes occur, update every display with the revised approach.

•	 Use views as your default approach for extracting content from the Drupal database, 
even in custom modules. While an entity query makes it relatively easy to query 
the Drupal database and return content based on specific criteria, views make it 
even easier when extracting complex use cases. As an example, when rendering a 
list of content that pulls information from other entity types and taxonomy terms, 
views makes it relatively simple to assemble that output. Writing the view and using 
the views_get_view_result($name, $display_id) function provides a relatively 
simple way to leverage views in custom modules.



Chapter 3 ■ Engineering Drupal

41

•	 When a standard view doesn’t quite do what you need it to do, instead of writing 
database queries directly, consider using hooks to modify the view. By using hooks 
(api.drupal.org/api/drupal/core!modules!views!views.api.php/8.2.x), you 
have the ability to modify and alter nearly every aspect of a view.

Using views as the “glue” between the content stored in your database and the user experience that you 
are delivering to your targeted visitors will greatly speed and simplify the development process for your base 
Drupal 8 platform, as well as the sites that you construct.

Pages
Defining common page templates that fulfill a variety of purposes, rather than constructing each page on 
your site as a single template, speeds the creation of your sites as well as simplifies the process of building 
and maintaining pages. As you examine the site maps of the sites targeted for your new Drupal 8 platform, 
consider the following:

•	 How many different page layouts are contained in the overall design of the sites that 
will be constructed? Distilling the number of layouts to a small set of flexible layouts 
provides the ability to leverage a preexisting template for page construction. In 
my 30,000+ hours of Drupal experience, most organizations are willing to limit the 
number of page layouts to 10 or fewer, which includes very large sites for very large 
international corporations.

•	 When defining what appears on the page, look for patterns that may be fulfilled 
using entities, taxonomy, and views. If you did your due diligence and defined a set 
of entity types that leverage taxonomy for attributes such as site section and content 
placement, you may be able to use views with views arguments (taxonomy terms in 
the URL) to automatically generate hundreds or even thousands of pages. All without 
having to do anything other than create a single page template with views in each 
region on that page that smartly extract content based on that criteria. For example, a 
page with a URL of example.com/products/%category/%application could be used 
to render every product related page on your site, assuming that content has been 
tagged with a product category and an application. There is no need to manually 
construct each page individually.

•	 Leverage tools such as Panels and Page Manager (drupal.org/project/panels) to 
simplify the process of creating and maintaining pages on your site. While it is common 
practice to hand-craft Twig templates for pages (e.g., page—node—1.html.twig), you can 
eliminate nearly all the need to code HTML and Twig to render a page on your site.

As you engineer your solution, the key point about pages is to do your best to constrain the number  
of page layouts used on the site to a reasonable number (e.g., fewer than 10) in order to simplify the process 
of creating the base platform. This also makes it easier for those responsible for building sites on your  
Drupal 8 platform.

Rules
While you can do almost anything you want to do on your site by hand-crafting custom modules, one of the 
often overlooked Drupal modules is Rules. The Rules module provides site administrators with a powerful 
tool for creating automated workflows on a Drupal site without having to touch a single line of code. Rules 
are “reactive,” which means an event happens under a certain condition, which then triggers an event. When 
an event happens, a rule may conditionally manipulate data or execute tasks such as sending an e-mail to 



Chapter 3 ■ Engineering Drupal

42

someone. Rules may also be scheduled to execute at a future date, making them even more flexible and 
powerful. As you engineer your Drupal 8 solution, it is important to think about common workflow related 
tasks and to consider using Rules as an alternative to custom code.

Examples of where the Rules module may play a key role include:

•	 Sending an e-mail to a site administrator when someone has requested a new 
account

•	 Sending an e-mail to a content administrator when a site visitor has posted a 
comment that is waiting for review and approval

•	 Changing the value of a field on a node when a date has passed

•	 E-mailing a customer a copy of their order when the order status has changed

•	 Deactivating a user account when certain conditions have been met

Rules are a powerful tool when employed on a Drupal 8 site. Don’t overlook Rules as a solution to 
common workflow related activities.

User Roles and Permissions 
The last pillar is user roles and permissions. They are not the last pillar because they lack power or 
importance to the overall architecture of your Drupal 8 solution; they take the last position because they 
impact users’ abilities to perform nearly every function on your site.

Roles provide the ability to categorize users by common activities that are performed by that group. For 
example content editors have the ability to author, publish, and manage content. The actions of authoring, 
publishing, and managing are examples of the permissions that may be assigned to a user role. When 
engineering your solution it is important to consider and document the requirements of user roles and 
permissions as you build the framework. Often, roles and permissions are hastily implemented at the very 
end of a project and the implications and ramifications are often greater than what were expected.

As you engineer your solution, consider which roles are required in your organization:

•	 Who should have the ability to install and configure elements on the site?

•	 Who should have the ability to create key components of the site, such as entities, 
taxonomy, menus, pages, views, blocks, and user accounts?

•	 Who should have the ability to author and publish content?

•	 Who should have the ability to view content?

•	 Who creates and manages user accounts?

As you implement each component of your solution, update the user roles and permissions to address 
the functionality that you are building.

Drupal 8 Theme
Engineering the visual look and feel of your Drupal site focuses on the structure of pages, the elements that 
appear on those pages, and the visual representation of each element on the page. The theme is ultimately 
responsible for how everything on your site is visually rendered, including how it is rendered on every device 
that an end user may use to view your site.



Chapter 3 ■ Engineering Drupal

43

When engineering your theme, it is important to consider the following:

•	 What devices are end users going to utilize when browsing your site?

•	 What is the screen resolution of those devices?

•	 How much content can reasonably fit on each of those devices?

•	 Is all of the content applicable to all of the devices? Or is there a use case where some 
content is not displayed on smaller screens?

•	 How will end users interact with the content on your site?

•	 What styling will be applied to elements on the page?

•	 What administrative control do you need to provide to site administrators? Should 
they be able to adjust the color attributes such as colors or fonts?

•	 What versions of browsers is the site going to support? Does the theme need to 
support older versions of Internet Explorer?

Chapter 5 covers the details of constructing a Drupal 8 theme. It’s important to understand the 
requirements for visualization before beginning the process of creating a theme.

Web Services
In today’s interconnected world, it is unlikely that your Drupal sites will live on their own deserted island, 
disconnected from other sources of content and providing content only to users who visit the sites through 
a web browser. A more likely scenario is that your Drupal web sites will live in an interconnected world, 
pulling content from external sources such as corporate applications, other Drupal sites, or sources outside 
of your organization. It is also likely that your Drupal sites will provide content to corporate applications, 
other web sites, systems outside of your organization, and will have other interesting interactions such as 
sending content to a digital sign in the lobby of your corporate headquarters.

Through the web services capabilities that are inherent in Drupal 8 core, as well as various contributed 
modules, your site may easily participate in this distributed digital environment by:

•	 Serving content to requests through a standard web services interface such as REST

•	 Consuming content from external sources through web services interfaces provided 
by those systems and applications

•	 Serving as a headless content repository by serving content to applications built in 
frameworks such as AngularJS

When engineering your solution it is important to consider the flexibility and capabilities that are 
presented through web services. I cover web services in more detail in Chapter 8. At this juncture, carefully 
consider and document the interfaces that may augment the capabilities and content on your site.

User Interface
While the Drupal theme is often considered the user interface to a Drupal site, a popular trend is to utilize 
Drupal as a content repository and editorial tool but not necessarily as the provider of the user interface 
to that content. The terms “decoupled CMS” and “headless Drupal” have been bantered about the Drupal 
community for the past few years and are beginning to build momentum. Sites such as weather.com, NBC’s 
Tonight Show with Jimmy Fallon (nbc.com/the-tonight-show), Radio France (rfi.fr), and others are 
early adopters of using technologies such as Node.js, Backbone.js, Angular.js, Symfony, and others as the 
presentation layer for content that resides in Drupal.

http://dx.doi.org/10.1007/978-1-4842-0253-1_5
http://dx.doi.org/10.1007/978-1-4842-0253-1_8


Chapter 3 ■ Engineering Drupal

44

When thinking about and engineering your Drupal architecture, consider the benefits of a decoupled 
CMS model. It provides breakthrough user experiences that would be difficult to accomplish using the 
Drupal theme engine, and it helps site owners future-proof their builds by allowing them to refresh the 
design of their sites without having to rebuild the whole CMS. The CMS, in this case Drupal, does not have to 
radically shift in order to accommodate a whole new user experience.

There are three main components for decoupling Drupal from the user interface:

•	 Decoupled frontend. In this approach the presentation of content may be handled 
through various means such as interactive JavaScript frameworks (Angular.js), static 
page generators, mobile applications, and even another CMS. In this approach 
multiple user interfaces can peacefully coexist with Drupal without disrupting  
each other.

•	 Content delivery via a web service API. In this approach the content housed in Drupal 
is accessible through a web service API, typically a RESTful interface, in a format 
(JSON) that is friendly to most presentation layer tools.

•	 CMS backend and database. Drupal is used as the content authoring and 
management platform.

The benefits of this solution are significant enough to strongly consider this approach:

•	 Future proofs your web site implementation and lets you completely redesign your 
sites without having to rearchitect and implement a CMS.

•	 Allows frontend developers to design and develop user interfaces that are free from 
the constraints presented by the user interface capabilities of the backend.

•	 Speeds up the performance of your site by shifting display logic to the client side and 
simplifying the backend.

•	 Allows frontend developers to build truly interactive experiences through in-browser 
applications.

Summary
There is a lot to consider when engineering your Drupal 8 solution framework that will become the 
foundation of the platform you deliver to the enterprise. There are elements of the analysis that, if left 
unanswered, may cause a significant amount of rework if the requirements differ from the foundation. 
Consider the wisdom of those who have gone before you and plan your site before embarking on the journey 
of building the platform.

The next chapter begins the discussion of the foundation of Drupal modules, including how to create 
custom modules to address unique functional requirements that cannot be accomplished using off-the-shelf 
Drupal.



45© Todd Tomlinson 2017 
T. Tomlinson, Enterprise Drupal 8 Development, DOI 10.1007/978-1-4842-0253-1_4

CHAPTER 4

Creating Modules for Drupal 8

Although it is possible to build relatively complex Drupal 8 sites without ever having to construct a custom 
module, it is likely that you’ll need to create at least one custom module to fulfill functional or technical 
requirements of your organization as the complexity of your solutions increase. Examples of when you may 
need to step into the custom module arena include these scenarios:

•	 An off-the-shelf module meets most of your requirements but you need to augment 
one or more aspects of that module to address the unique requirements of your 
organization.

•	 You need to modify how Drupal core performs a specific function to address a 
specific requirement.

•	 You need a complex custom form that can’t be created with an off-the-shelf module 
like webforms.

•	 You need to create a custom interface with a system that does not support standard 
web services.

•	 You have unique functional requirements that cannot be met with Drupal core or 
contributed modules.

Although it’s likely that you’ll need to create a custom module at some point in the near future, 
remember to first exhaust the options of using a contributed module or modify the requirements to match 
what is provided by off-the-shelf Drupal.

In the remainder of this chapter, I provide a high-level overview of Drupal modules, their architecture, 
how to create a simple module, and details on how to utilize Drupal 8’s APIs to facilitate the development of 
more complex modules.

The Purpose of Drupal Modules
Before examining the details of a Drupal module, it’s a good idea to understand why there are Drupal 
modules and what role they fulfill on a Drupal web site. Modules are the components in a Drupal 
architecture that provide some form of functionality to the overall capabilities of the site. A module may 
provide the following:

•	 A functional solution for pulling information from, or sending information to, an 
external system or site

•	 Capabilities for converting information from one form to another, for example, 
converting currencies based on the current exchange rate that is retrieved from an 
external service



Chapter 4 ■ Creating Modules for Drupal 8

46

•	 A means for posting content from your site to a social media platform

•	 A complex multi-set webform that has extensive validation and logic

There are thousands of contributed modules on drupal.org, and there are thousands of other potential 
solutions that augment the capabilities of Drupal 8 core. The capabilities and functionality provided by 
your modules is only limited by your creativity and ability to construct a viable solution to address specific 
functional or technical requirements.

The Foundation of Drupal 8 Is a Suite of Modules 
Drupal 8 core itself is constructed primarily through modules. If you visit the root directory of your site and 
navigate to core/modules, you will see a list of dozens of modules that provide some level of functionality to 
Drupal core, such as:

•	 aggregator: A module that interfaces with external sources of content and publishes 
that content on your Drupal site, for example, a news feed.

•	 ckeditor: The module that provides the WYSIWYG editorial interface for content 
authors.

•	 dblog: The module that records system events in the Drupal database and displays 
those events through an admin interface.

•	 node: The module that provides all of the functionality around creating node entity 
types, authoring content using those entity types, displaying the content on your 
side, and several administrative functions.

•	 user: The module that provides all of the functionality around the creation of user 
accounts, managing those accounts, creating and managing user roles, and assigning 
permissions to user roles.

•	 views: The module that provides the ability to extract content from the database, 
format it, filter it, sort it, display it, and all of the administrative interfaces for creating 
and managing those extraction processes.

There are dozens of other modules included in core. Take a moment and visit the root directory of your 
site and navigate to core/modules to see the list. A great way to learn how Drupal works and how modules 
are constructed is to examine several of the modules in core/modules.

The modules found in core/modules are just that, core modules. Contributed modules fall outside 
of what is shipped with Drupal 8 core, and they provide additional functionality over and above what 
is available in core. Contributed modules reside in the /modules directory, which is located in the root 
directory of your site. There is a general best practice to place all contributed modules, those that are 
downloaded from drupal.org into a subfolder named contrib in the /modules directory of your site. It is 
also a best practice to place all custom modules that your organization has developed in a subdirectory 
named custom. This approach makes it easier to quickly identify which modules are off-the-shelf and can be 
found on drupal.org, and which modules were custom developed just for your site.

As discussed in Chapter 3, before venturing out to create a custom module to fulfill a functional or 
technical requirement, exhaustively search drupal.org/project/modules for off-the-shelf capabilities to 
deliver the required functionality. If you are unable to find a solution, then this chapter is for you.

http://dx.doi.org/10.1007/978-1-4842-0253-1_3


Chapter 4 ■ Creating Modules for Drupal 8

47

Key Skills
When venturing out to develop custom Drupal modules, it is important to understand that there are key 
skills that are required to succeed. Like most aspects of life, expecting to be an expert at something before 
preparing yourself for the tasks that lay before you often results in fear, frustration, and failure. Drupal 
module development, while complex in nature, uses standard technologies and patterns that come from the 
underlying technologies that support the platform, such as PHP, MySQL, and Symfony.

With Symfony and with Drupal 8 development in general, the basic skills that you need to have some 
level of mastery of include the following:

•	 PHP syntax, functions, and structure

•	 Object-oriented PHP development standards and principles

•	 The use of a Model-View-Controller framework to build applications

•	 A solid grasp of Symfony and its components

•	 HTML, CSS, and JavaScript, as they are the anchor legacy technologies employed by 
Drupal and in fact nearly all CMS platforms

•	 A good understanding of a SQL database and how information is stored, updated, 
and retrieved from the database

Does it sound like a lot to have a grasp of before building a Drupal module? The reality is that there is a 
lot to learn, but the foundation that you build in these topics will serve you well as you venture into Drupal 
8 module development, and this knowledge is applicable to a number of CMS platforms in the market. You 
will likely stumble and fall as you begin the race, but once on the path, you will soon see the patterns and 
your successes will soon outweigh your stumblings.

While we will cover many of the bullet points listed, it is beyond the scope of this book to teach you PHP, 
HTML, CSS, JavaScript, and the inner workings of MVC architectures, specifically Symfony. If you have not 
yet studied those elements, now would be a good time to begin that journey. While this chapter starts out 
with a simplistic approach to building Drupal 8 modules, we quickly move onto more complex topics, which 
requires prerequisite knowledge of the underlying technologies used to construct Drupal 8 modules. Don’t 
be discouraged—it’s a journey, and every journey starts with a first step. Our first few steps are going to be 
simple.

Before jumping into the complexities of module development, lets create something simple that 
demonstrates the general structure of a Drupal 8 module and the individual parts that, when assembled, 
deliver tangible results. If you have not installed Drupal 8, now is an excellent time to do so.

Developing Your First Drupal 8 Module
The first module that we will develop performs a relatively simple task; it displays “Hello Drupal 8 World!” 
on a page. While it sounds simple, this exercise demonstrates the structure of a Drupal 8 module and is the 
foundation for building more complex modules. At the completion of this exercise, you will see the words 
“Hello Drupal 8 World!” displayed on a page, as shown in Figure 4-1.



Chapter 4 ■ Creating Modules for Drupal 8

48

Step 1: Create the Module’s Directory
The first step is to create a directory where the files that constitute your module will reside. All contributed 
modules (non-core) reside in the module directory located at the root directory of your Drupal 8 site. If 
you have installed any modules beyond what comes with Drupal 8 core, you’ll see those modules in this 
directory. If you have not done so, create a new subdirectory in your modules directory named custom. 
You place the module in the custom directory. Although this is not required, a best practice is to also create 
a subdirectory in the modules directory named contrib where all the modules that are downloaded from 
drupal.org will be stored.

Using your operating system’s file manager, or from a terminal window and a command prompt, 
navigate to the modules directory and create a new directory named hello.

Step 2: Create the Module’s Info File
The next step is to create a hello.info.yml file. This file tells Drupal about your module and provides 
the information that appears on the Extend page in the Administration section of your site. The .yml file 
extension will be prevalent in your Drupal 8 installation. yml is short for YAML, which is a human readable 
data serialization language that stores configuration information that is used by Drupal 8. YAML stands for 
YAML ain’t markup language, and it is relatively easy to write and read.

Using your favorite text editor, create the hello.info.yml file in the modules/custom/hello directory 
with the following content:

name: Hello
type: module
description: 'My first Drupal 8 module.'
package: Awesome modules
version: 1.0
core: '8.x'

Figure 4-1.  Hello Drupal 8 World!



Chapter 4 ■ Creating Modules for Drupal 8

49

The purpose of each line in the hello.info.yml file is as follows:

•	 name: Hello defines the name of the module as it appears on the module page.

•	 type: module specifies that we’re creating a module. (Themes, for example, would 
use a value of theme for the type.)

•	 description: This provides administrators with a brief overview of what the module 
does, and it appears on the module listing admin page.

•	 package: This provides a mechanism for grouping modules together on the module 
admin page. For example, if you visit the Extend page of your site, you’ll see a 
number of modules listed in a box with a title of Core. We’ll use something unique 
for our module and place it in a package called Awesome Modules. If you’re writing a 
module that, for example, creates new web services capabilities, you should use the 
package name of the other modules that create web services, to ensure that a site 
administrator can easily find your module.

•	 version: This creates a version number for your module and is used primarily for 
communicating the version to site administrators so they can see whether they have 
the current version installed.

•	 core: This specifies which version of Drupal this module was written for. In this case, 
we wrote this module for Drupal 8.

After saving the hello.info.yml file, visit the admin/modules page on your site. Scroll down until you 
see the Awesome Modules section and you should see your new module listed and ready to be enabled. If you 
do not see the module listed, edit your hello.info.yml file and ensure that everything listed previously is 
included in your file and the spelling of each keyword (e.g., name) is correct. If it still doesn’t appear, check 
to ensure that your module resides in the correct directory (modules/custom/hello/hello.info.yml).

While you could enable your module, it doesn’t do anything yet as we haven’t developed the logic for 
displaying “Hello Drupal 8 World!”.

Step 3: Create the Module File
The .module file is the workhorse of a Drupal 8 module and contains the logic that delivers the functionality 
that addresses your technical and functional requirements. The functionality delivered can be as simple as 
the module that we are working on, or as complex as needed to address the requirements of your site.

The .module file for our Hello module does one thing: it returns the text that will be displayed on the 
page that our module provides. Using your favorite text editor, create a new file named hello.module in your 
modules/custom/hello directory with the following text:

<?php

function hello_hello_world() { 

   return t('Hello Drupal 8 World!');

}

The file begins with the opening PHP tag, <?php, as all modules are written in the PHP programming 
language.



Chapter 4 ■ Creating Modules for Drupal 8

50

■■ Note T he closing tag of a PHP block at the end of a file is optional, and in some cases omitting it is helpful 
when using include or require, so unwanted whitespace will not occur at the end of files, and you will still be 
able to add headers to the response later. It is also handy if you use output buffering and would not like to see 
added unwanted whitespace at the end of the parts generated by the included files.

The first element of this code is function hello_hello_world(). This defines a PHP function that can 
be called from other modules. In this case it is a simple function named hello_hello_world(). The first 
hello in the function name is the name of the module, in this case, hello. As a Drupal coding standard, all 
functions should begin with the name of the module, followed by a descriptive function name.

Our function does one thing: it returns a text string to the code that called this function. I’ve wrapped 
the text that we are returning in a Drupal function called t(). This function translates any text in the 
parentheses, if you have multilingual capabilities enabled. It is another Drupal coding standard to wrap all 
text values using the t() function.

Although our module is simple, it demonstrates the basic functionality of what modules do. The module 
file is the workhorse of any module, and it can be as simple as our example module or as complex as needed 
to meet the functional and technical requirements of your module.

Step 4: Create the Module’s Routing File
The foundation of Drupal 8 is Symfony, a PHP framework that simplifies the creation of complex PHP-based 
applications like Drupal. The Symfony framework provides the mechanisms for creating a Model-View-
Controller (MVC)-based application, where

•	 Model represents the underlying data that the application operates against

•	 View defines the user interface to the application

•	 Controller is the workhorse of the applications, including routing requests from users 
and returning information to the view to display to the user

The next step in the process is to create our module’s routing file, which defines how a visitor will  
access the functionality of our module, as defined by the controller, and what returns the values to be 
displayed.

In the same directory, using your favorite text editor, create the module’s routing file. In this case the 
routing file will be named hello.routing.yml. The contents of the file should be as follows:

hello:
  path: 'hello'
  defaults:
    _controller: '\Drupal\hello\Controller\HelloController::sayhello'
  requirements:
    _permission: 'access content'

•	 The first line of code represents the name of our module (hello).

•	 The next line represents the path that an end user would use to access the 
functionality provided by the module, which is /hello.



Chapter 4 ■ Creating Modules for Drupal 8

51

•	 One of the key concepts that Drupal 8 has adopted is a standard called PSR-4, which 
defines how code is loaded into memory. One of the issues with previous versions of 
Drupal is that a lot of code is loaded into memory when it doesn’t need to be there. 
PSR-4 solves that issue, and one of the enablers is something called namespaces. The 
defaults section provides the source of the content, using the PSR-4 standard for 
PHP namespace autoloading. The structure of the namespace is \Drupal\[module 
name]\Controller\[ClassName]::[method]. In our case the module’s name is 
hello, the class name is HelloController as defined in our controller file that we 
will create in a moment, and the method in that class that returns the value that we 
want to display is sayhello.

•	 The requirements section defines what permissions a visitor must have in order to 
access our module; in this case the site visitors who can see the output of our module 
must have the access content permission, which in a default Drupal 8 installation 
is everyone. I cover more about adding new permissions later in this chapter.

Step 5: Create the Module’s Controller
In our routing file, the value associated with _controller starts with \Drupal\hello\Controller. PSR-4 
defines that a namespace must map directly to the file structure of your application. Symfony requires that 
all of our namespace directories reside in a directory named src, which resides in the root directory of our 
module. For our module, that structure is:

hello
  src
    Controller

Following the PSR-4 standards, you can see that our namespace of \Drupal\hello\Controller maps 
directly to the directory structure, where src is not required in the namespace as it is assumed to be the 
location of the Controller file.

So let’s get busy and create the directories where the next component of our module will reside, the 
controller. While in the root directory of the hello module, create a new directory named src, and within the 
src directory, create a new directory named Controller. Within the Controller directory, we’re now ready 
to create the controller for our application, the “traffic cop” of our application. In your favorite text editor, 
create a file named HelloController.php. The contents of the controller should be as follows:

<?php

namespace Drupal\hello\Controller;

use Drupal\Core\Controller\ControllerBase;

class HelloController extends ControllerBase {

  public function sayhello() {
    return array(
      '#markup' => hello_hello_world(),
    );
  }

}



Chapter 4 ■ Creating Modules for Drupal 8

52

•	 The beginning of this controller file starts with the PHP opening tag, as the controller 
is written using PHP.

•	 The second line defines the namespace that we are using for our controller: 
namespace Drupal\hello\Controller;. This maps the directory structure  
described previously in this section.

•	 The third line defines the class that we are creating, HelloController, and that we 
are going to extend base functionality in the ControllerBase class from Drupal core. 
Recalling the routing file that we created previously, you can see that what we are 
creating maps directly to what we are calling to generate the output to display on the 
page: HelloController::sayhello.

•	 The forth line defines the function, named sayhello, that returns the text that  
we want to display on the page. The keyword #markup signifies that the output 
generated by this function is a renderable string, which is generated by calling the 
hello_hello_world function in the module’s main .module file.

Save this file, and you’re ready to enable our new module! Visit the Extend page in the admin section of 
the site and scroll down until you see the Awesome Modules section (see Figure 4-2).

Check the box next to the module’s name and click the Save Configuration button to enable the module. 
With the module enabled, you’re now ready to test your first Drupal 8 module! To execute the module, 
navigate to your homepage and add /hello to the end of the URL (we defined that path in our module’s 
routing file). You should see the output shown earlier in Figure 4-1.

Step 6: Add a Menu Item 
The next step in expanding the functionality of the hello module is to place a link to the module’s output 
on a menu. In its current state a site visitor would have to either know to add /hello to the end of the URL, 
or a content administrator would have to manually add a menu item to one of the existing menus, or add a 
hyperlink to the content.

Based on our requirements, the intention is to add a menu item named Hello to the primary 
navigational menu on our site, that when clicked, takes the visitor to the /hello page.

The first file that we need to add to the module is name hello.links.menu.yml. Contained in this file 
will be the definition of the links used by our module. In your favorite text editor, in the root directory of your 
hello module, create the hello.links.menu.yml file with the following content:

hello.hello:
  title: Hello!
  Menu_name: main
  route_name: hello
  expanded: TRUE
  weight: 100

Figure 4-2.  Our Hello Drupal 8 World! module on the Extend page



Chapter 4 ■ Creating Modules for Drupal 8

53

•	 The first line specifies the menu item that we are defining. The first hello is the 
module name, and the second hello is the name of our menu link.

•	 The second line defines the title that will appear on the menu.

•	 The third line specifies that our new menu item will appear on the main menu.

•	 The fourth line defines the route name that the menu will use to render the output. If 
you examine the hello.routing.yml file, you will see that our route name is hello, 
as defined on the first line.

•	 The fifth line specifies that this menu item should be rendered as expanded when 
the menu is displayed.

•	 The sixth line specifies the relative weight of our menu item. It likely shouldn’t be 
at the front of the list, which right now with a clean Drupal 8 install is just the Home 
menu item. You can adjust the weight to whatever is appropriate. Specifying a weight 
of 0 instructs Drupal to sort your menu item alphabetically.

Save your hello.links.menu.yml file and clear the cache of your site so that the menu is reconstructed. 
After saving you should see the new menu item Hello! displayed to the right of the Home menu item  
(see Figure 4-3).

Figure 4-3.  The new Hello! menu item



Chapter 4 ■ Creating Modules for Drupal 8

54

Clicking on the link will render the new page that our module has created.
While a module may only provide a single function and fulfill a single purpose, most modules perform 

multiple functions. The next step in expanding the functionality of our hello module is to add new 
functionality that adds a new menu item, called Welcome, and displays a welcome message. The welcome 
message displays the user’s name, or in the case of an anonymous user, welcomes them as a visitor.

Step 7: Add a New Menu Item
The first step is to update the hello.links.menu.yml file, adding a new menu item named Welcome. Open 
the file and add the following text to the bottom of the file:

hello.welcome:
  title: Welcome
  menu_name: main
  route_name: welcome
  expanded: TRUE
  weight: 110

•	 The first line defines the reference for the new menu item.

•	 The second line defines the text that will appear on the menu.

•	 The third line defines which menu the menu item will appear in, in this case, it’s the 
main menu.

•	 The fourth line defines the route name that will be used to display the welcome 
message.

•	 The fifth and sixth items define that the menu item will be expanded when displayed 
and that it will appear, based on the weight, to the right of the Hello menu item.

Step 8: Add a New Function to the Module
Our module previously only had a single function, the hello_hello_world function. To accomplish the 
functionality associated with welcoming the site visitor, we must expand the existing hello.module file with 
additional code to perform the required functionality, resulting in the following:

 <?php
  use Drupal\user\Entity\User;
  function hello_hello_world() {
       return t('Hello Drupal 8 World!');
  }

  function hello_welcome() { 
     $user = User::load(\Drupal::currentUser()->id());
     if ($user->get('uid')->value < 1) { 
        return t('Welcome  Visitor!');
     } else { 
        return t('Welcome  ' . $user->getUsername() . '!');
     }
  }



Chapter 4 ■ Creating Modules for Drupal 8

55

•	 The first change to the hello.module is to add the reference to the functionality 
available in the Drupal\user\Entity\User class. To expose that functionality to the 
module I added the use Drupal\user\Entity\User; statement to the top of the 
module. I now have access to all of the methods and functionality included in the 
core Entity\User class.

•	 The next change was to add the new function, called hello_welcome. By adding 
a second function, the module is now multipurpose and fulfills more than one 
requirement.

•	 The next line returns the information associated with the current user, which could 
be a user who is logged in, or the anonymous user for scenarios where the site visitor 
is not logged into the site. The class is User and the method is load. The value passed 
to the function is the user ID of the currently logged-in user (or 0 in the case of an 
anonymous user).

•	 The if statement compares the value of the current user to a value of 1. If it’s less 
than 1, it’s an anonymous visitor and I return the string Welcome Visitor!. If the 
user ID is greater than 0, the function returns the string Welcome with the current 
user’s name in the string.

Updating the Controller
I now have a menu item and the functionality that returns the string that should be displayed on the page  
to welcome the visitor. The next step is to add an entry in the HelloController.php file that can be called 
from the hello.routing.yml file. Editing the HelloController.php file in the /src/Controller directory, 
I’ll add a new method to our controller class named welcome, as shown here:

<?php

  namespace Drupal\hello\Controller;

  use Drupal\Core\Controller\ControllerBase;

  class HelloController extends ControllerBase { 

     public function sayhello() { 
      
        return array(

           '#markup' => hello_hello_world(),

        );

     }



Chapter 4 ■ Creating Modules for Drupal 8

56

     public function welcome() { 
      
        return array(

           '#markup' => hello_welcome(),

        );

     }
 
  }

In the new welcome function, the only task is to return the output generated by the hello_welcome 
function that I just created in the hello.module.

Updating the Routing File
The last step in enabling the new functionality is to update the hello.routing.yml file, adding a new route 
with a path of welcome.

hello:
  path: 'hello'
  defaults:
    _controller: '\Drupal\hello\Controller\HelloController::sayhello'
    _title: 'Hello!'
  requirements:
    _permission: 'access content'

welcome:
  path: 'welcome'
  defaults:
    _controller: '\Drupal\hello\Controller\HelloController::welcome'
    _title: 'Welcome'
  requirements:
    _permission: 'access content'

The difference between the hello and the welcome routes are:

•	 The path is set to welcome, so visiting example.com/welcome (where example.com 
should be replaced with the URL to your site) displays the welcome message.

•	 The _controller is set to the welcome method instead of the sayhello method. 
The welcome method is what I just defined in the previous step when I updated the 
controller.

•	 I also updated the title to Welcome.

After saving all of the updates to the following files:

•	 hello.links.menu.yml

•	 hello.module

•	 HelloController.php

•	 hello.routing.yml



Chapter 4 ■ Creating Modules for Drupal 8

57

The next step is to clear the cache and visit the homepage. On the homepage you should see a new 
menu item to the right of the Hello! menu item. Clicking on the Welcome link should display the welcome 
message as defined in the hello.module (see Figure 4-4).

Creating Blocks
Drupal 8’s plugin architecture provides a framework for creating reusable solution components such as blocks 
and custom fields. Plugins by nature are descriptions or templates that solve a common requirement that can 
be used in many different situations. Plugins may also fill the role of providing generalized utility functionality 
that demonstrates a reusable design pattern. The benefits of plugins is that they release developers from the 
burden of having to rewrite the framework for a common design pattern by providing a starting point, or 
boilerplate, from which to build their solution. Blocks are a perfect example of a plugin boilerplate. All blocks 
have a title and some snippet of HTML markup and optionally PHP and JavaScript. Instead of recasting that 
design pattern from scratch, Drupal’s plugin system provides a template on which to build a block. For details 
on the plugin architecture in Drupal 8, visit drupal.org/developing/api/8/plugins.

Leveraging the plugin architecture and the design pattern for blocks, we expand the functionality of the 
hello module to provide a block that displays information about the current user. When users are logged in, 
the block will display the following information:

•	 Their user name

•	 Their preferred language

•	 The e-mail address on file for their account

•	 Their time zone

•	 The date their account was created

•	 The date their account was updated

Figure 4-4.  The Welcome page



Chapter 4 ■ Creating Modules for Drupal 8

58

•	 The date they last logged in

•	 Their assigned roles

If the user is not logged in, meaning it’s an anonymous user, the block will simply display the current 
date and time.

Leveraging the block plugin architecture, the process for creating blocks is relatively simple. Plugins 
reside in a new directory in the src directory, and blocks reside in a directory in the plugin directory. We 
create a new directory named Plugin in the src directory of the module, and a new directory named Block 
in the Plugin directory. The resulting structure is as follows:

hello
  src
    Plugin
      Block

Within the Block directory, we create a new file, HelloBlock.php, where the code for generating the 
block will reside. In the HelloBlock.php file, we begin building the structure of the block plugin with the 
following code.

<?php

namespace Drupal\hello\Plugin\Block;

use Drupal\Core\Block\BlockBase;

/**
 * Provides a user details block.
 *
 * @Block(
 *   id = "hello_block",
 *   admin_label = @Translation("Hello!")
 * )
 */
class HelloBlock extends BlockBase {

  /**
   * {@inheritdoc}
   */
  public function build() {
    return array(
      '#markup' => $this->t("Hello World!"),
    );
  }
}

•	 The block plugin begins with the opening <?php tag and defines the plugin’s 
namespace as Drupal\hello\Plugin\Block. As a reminder, the namespace maps 
directly to the physical location of the plugin, minus the src directory.

•	 The annotation block specifies that the plugin being created is a block @Block, and 
provides a unique ID, the admin_label that appears on the block layout page as well 
as the title of the block.



Chapter 4 ■ Creating Modules for Drupal 8

59

•	 The next section defines the HelloBlock class and that it extends the base 
capabilities of the BlockBase class.

•	 The build function is where all of the work of generating the block output begins. For 
demonstration purposes, I’ll render markup to see my block in action before adding 
the user functionality.

At this juncture you can save the file, rebuild the cache, and visit the block layout page. To place the 
newly created block, select a region where the block will reside and click the Place Block button. Scroll 
through the list of available blocks until you find the Hello Block and click the Place Block button. Make any 
adjustments you want on the Configure Block page and click the Save Block button. Visit the homepage of 
your site, or if you specified block visibility on a specific page, then visit that page. You should see the output 
of your new custom block (see Figure 4-5).

The next step in the process is to augment the block plugin with the functionality required to display 
user information. Using the list of requirements defined previously in this section, I’ll update the module to 
display a block that appears, as shown in Figure 4-6.

Figure 4-5.  The Hello block



Chapter 4 ■ Creating Modules for Drupal 8

60

The updated block plugin with all the required functionality is shown here:

<?php

namespace Drupal\hello\Plugin\Block;

use Drupal\user\Entity\User;
use Drupal\Core\Block\BlockBase;

/**
 * Provides a user details block.
 *
 * @Block(
 *   id = "hello_block",
 *   admin_label = @Translation("Hello!")
 * )
 */
class HelloBlock extends BlockBase {

  /**
   * {@inheritdoc}
   */
  public function build() {

    return array(
       '#markup' => $this->_populate_markup(),
    );

  }

Figure 4-6.  The Hello! block



Chapter 4 ■ Creating Modules for Drupal 8

61

  private function _populate_markup() { 

    $user = User::load(\Drupal::currentUser()->id());

    if ($user->get('uid')->value < 1) { 
   
        return t('Welcome  Visitor!  The current time is: ' . date('m-d-Y h:i:s', time()));
   
    } else { 

      $user_information  = 'User Name: ' . $user->getUsername() . "<br/>";
      $user_information .= 'Language: ' . $user->getPreferredLangcode() . "<br/>";
      $user_information .= 'Email: ' . $user->getEmail() . "<br/>";
      $user_information .= 'Timezone: ' . $user->getTimeZone() . "<br/>";
      $user_information .= 'Created: ' . date('m-d-Y h:i:s', $user->getCreatedTime()) . "<br/>";
      $user_information .= 'Updated: ' . date('m-d-Y h:i:s', $user->getChangedTime()) . "<br/>";
      �$user_information .= 'Last Login: ' . date('m-d-Y h:i:s', $user->getLastLoginTime()) . "<br/>";

      $roles = NULL;

      foreach($user->getRoles() as $role) { 
         $roles .= $role . ",";       
      }

      $roles = 'Roles: ' . rtrim($roles, ',');
 
      $user_information .= $roles;

      return $user_information;

    }
 
  }

}

The changes to the previous version of the hello block are as follows:

•	 We added use Drupal\user\Entity\user to expose the user class so that I can 
access the details of the user account.

•	 We revised the return value in the build function to return the results generated by a 
new function named _populate_markup

•	 We added a new private function named _populate_markup that retrieves the 
current user’s information through the User::load method, checks to see whether 
the user is logged in or anonymous (a uid less than 1 is an anonymous site visitor), 
and returns the appropriate information back to the build function for display. For 
details on what information is available from the user object, visit api.drupal.org/
api/drupal/core!modules!user!src!Entity!User.php/8.2.x, replacing 8.2.x with 
the current version of Drupal. At the time this book was written, version 8.2 was the 
latest.



Chapter 4 ■ Creating Modules for Drupal 8

62

After making all of the changes, saving the HelloBlock.php file, and rebuilding cache, the results for 
logged in users are shown in Figure 4-6. For anonymous users, the results as shown in Figure 4-7.

The HelloBlock example represents a relatively simple use case. The power of the block plugin 
architecture is that it provides a solid foundation for building significantly more complex blocks should the 
need arise.

The next step in expanding the hello module is to add a custom form built through Drupal’s form  
API (FAPI).

Building Custom Forms
It is likely as the complexity of your Drupal sites grow that there will come a need for custom forms to collect 
information from site visitors. I’ll start with a simple example to demonstrate the mechanics of building 
forms in Drupal 8 and will expand the simple form in subsequent steps.

The first iteration of the form is relatively simple; we ask the site visitor for their job title and, upon 
submission, display that job title back to them in the messages area on the page. The purpose of this form 
is to demonstrate the mechanics of how forms work in Drupal 8. I’ll expand on the complexity later in this 
chapter.

The first step is to create a new subdirectory in the hello module’s src directory, named Form.  
The resulting structure should appear as follows:

hello
  src
    Controller
    Form
    Plugin
      Block

In the Form directory, create a new file named HelloForm.php and, in that file, place the following code:

<?php

namespace Drupal\hello\Form;

use Drupal\Core\Form\FormBase;
use Drupal\Core\Form\FormStateInterface;

Figure 4-7.  The anonymous Hello! block



Chapter 4 ■ Creating Modules for Drupal 8

63

class HelloForm extends FormBase {

  public function buildForm(array $form, FormStateInterface $form_state) {

    $form['job_title'] = [
      '#type' => 'textfield',
      '#title' => $this->t('Job Title'),
      �'#description' => $this->t('Enter your Job Title. It must be at least 5 characters in 

length.'),
      '#required' => TRUE,
    ];

    $form['actions'] = [
      '#type' => 'actions',
    ];

    $form['actions']['submit'] = [
      '#type' => 'submit',
      '#value' => $this->t('Submit'),
    ];

    return $form;
  }

  public function getFormId() {
    return 'hello_form';
  }

  public function validateForm(array &$form, FormStateInterface $form_state) {
    $job_title = $form_state->getValue('job_title');
    if (strlen($job_title) < 5) {
      // Set an error for the form element with a key of "title".
      �$form_state->setErrorByName('job_title', $this->t('Your job title must be at least 5 

characters long.'));
    }
  }

  public function submitForm(array &$form, FormStateInterface $form_state) {
    /*
     * This would normally be replaced by code that actually does something
     * with the title.
     */
    $job_title = $form_state->getValue('job_title');
    �drupal_set_message(t('You specified a job title of %job_title.', ['%job_title' =>  

$job_title]));
  }

}



Chapter 4 ■ Creating Modules for Drupal 8

64

The elements of this file are as follows:

•	 namespace Drupal\hello\Form matches the directory structure of where our 
HelloForm.php file resides, minus the src directory, as that is assumed.

•	 The two use statements include the FormBase and FormStateInterface classes so 
they may be used to construct the form.

•	 The class definition for HelloForm extends the base capabilities of the FormBase 
class, allowing us to focus on building the elements of the form instead of all the 
details of constructing and rendering an online form.

•	 The $form['job_title'] element creates a text field on the form, with a title of Job 
Title, a description, and it is set as a required field.

•	 The $form['actions'] element groups all of the submit handlers into an actions 
element with a key of 'actions' so that it gets styled properly, and so that other 
modules may add actions to the form. While not a required element, it is a Drupal 8 
standard.

•	 The $form['actions']['submit'] element adds a Submit button to the form that 
handles the submission of the form.

•	 The return $form statement returns the form so that it may be rendered on the page.

•	 The getFormID function is used to provide a means for using hook_form_alter(), 
which allows other modules to alter the render arrays built by this form. It must 
provide a unique name across the entire site, and it typically starts with the  
module’s name.

•	 The validateForm function provides the means for validating information submitted 
by the site visitor prior to performing whatever functionality is appropriate. In the 
case of the hello form, the validation examines the job title submitted by the user by 
getting that value from the $form_state object, through a getValue method. The 
functionality then checks the length of the job title submitted and if it is less than five 
characters, it sets an error message and highlights the field that is in error.

•	 The submitForm function is the final step in the processing of the form. This function 
simply gets the value entered for job title and displays it in the message area using 
drupal_set_message.

The next step in the process is to update the hello.routing.yml file to provide a path for the site visitor 
to find our form. Edit the routing file and add the following to the end of the file:

hello.form:
   path: 'hello/form'
   defaults:
     _form: '\Drupal\hello\Form\HelloForm'
     _title: 'Hello Form'
   requirements:
     _permission: 'access content'  

•	 The first line, hello.form, is the name of the new route.

•	 The second line defines the path that the user will use to access the form.



Chapter 4 ■ Creating Modules for Drupal 8

65

•	 The title is the title that will appear at the top of the form.

•	 The requirements section sets the permission required in order for a visitor to access 
the form; in this case, they must be able to access the content.

After saving the routing file, rebuild the cache and enter example.com/hello/form, replacing example.com 
with the URL to your site. If everything was entered properly, you should see the form shown in Figure 4-8.

Testing the validation function, enter a job title of less than five characters and click the Submit button. 
The result should be an error on the page as well as the field in error being highlighted in red. Figure 4-9 
depicts the error message and the field highlighted in error.

Entering a value greater than five characters and clicking the Submit button will display the outcome as 
defined in our submit function, displaying a message in the messages area, as shown in Figure 4-10.

Figure 4-9.  Hello form validation

Figure 4-8.  The Hello form



Chapter 4 ■ Creating Modules for Drupal 8

66

While the form is accessible through the URL, it would be nice to provide a menu item to make it easier 
for new site visitors to find. To add a menu item, edit the hello.links.menu.yml file and add the following to 
the bottom of the file:

hello.form:
  title: Hello Form
  menu_name: main
  route_name: hello.form
  expanded: TRUE
  weight: 120

The first line defines the name of the link, the title defines the text that appears on the menu, the 
menu_name specifies which menu our link will appear on, the route_name is as we defined in the  
hello.routing.yml file for the menu, and the remainder is familiar territory from previous menu examples. 
After saving the file and rebuilding the cache, visit the homepage of your site. You should see the new menu 
item, as shown in Figure 4-11.

Figure 4-10.  Hello form submission

Figure 4-11.  The Hello Form menu item



Chapter 4 ■ Creating Modules for Drupal 8

67

Our form only provided a single entry field and that field was a textbox. There are several other form 
elements, including several HTML5-based elements that provide a user interface rich form experience.

Let’s update HelloForm.php, adding several form elements to demonstrate several of the form elements 
that are available through the Drupal 8 forms API. The updated HelloForm.php file, after adding the 
elements and modifying the submit function to display the values of each element, looks as follows:

<?php

namespace Drupal\hello\Form;

use Drupal\Core\Form\FormBase;
use Drupal\Core\Form\FormStateInterface;

class HelloForm extends FormBase {

  public function buildForm(array $form, FormStateInterface $form_state) {

    $form['job_title'] = [
      '#type' => 'textfield',
      '#title' => $this->t('Job Title'),
      �'#description' => $this->t('Enter your Job Title. It must be at least 5 characters in 

length.'),
      '#required' => TRUE,
    ];
    // CheckBoxes.
    $form['tests_taken'] = [
      '#type' => 'checkboxes',
      '#options' => ['SAT' => t('SAT'), 'ACT' => t('ACT')],
      '#title' => $this->t('What standardized tests did you take?'),
      '#description' => 'If you did not take any of the tests, leave unchecked',
    ];
    // Color.
    $form['color'] = [
      '#type' => 'color',
      '#title' => $this->t('Color'),
      '#default_value' => '#ffffff',
      '#description' => 'Pick a color by clicking on the color above',
    ];

    // Date.
    $form['expiration'] = [
      '#type' => 'date',
      '#title' => $this->t('Content expiration'),
      '#default_value' => ['year' => 2020, 'month' => 2, 'day' => 15],
      '#description' => 'Enter a date in the form of YYYY MM DD',
    ];

    // Email.
    $form['email'] = [
      '#type' => 'email',
      '#title' => $this->t('Email'),
      '#description' => 'Enter your email address',
    ];



Chapter 4 ■ Creating Modules for Drupal 8

68

    // Number.
    $form['quantity'] = [
      '#type' => 'number',
      '#title' => t('Quantity'),
      '#description' => $this->t('Enter a number, any number'),
    ];

    // Password.
    $form['password'] = [
      '#type' => 'password',
      '#title' => $this->t('Password'),
      '#description' => 'Enter a password',
    ];

    // Password Confirm.
    $form['password_confirm'] = [
      '#type' => 'password_confirm',
      '#title' => $this->t('New Password'),
      '#description' => $this->t('Confirm the password by re-entering'),
    ];

    // Range.
    $form['size'] = [
      '#type' => 'range',
      '#title' => t('Size'),
      '#min' => 10,
      '#max' => 100,
      '#description' => $this->t('This is a slider control, pick a value between 10 and 100'),
    ];

    // Radios.
    $form['settings']['active'] = [
      '#type' => 'radios',
      '#title' => t('Poll status'),
      '#options' => [0 => $this->t('Closed'), 1 => $this->t('Active')],
      '#description' => $this->t('Select either closed or active'),
    ];

    // Search.
    $form['search'] = [
      '#type' => 'search',
      '#title' => $this->t('Search'),
      '#description' => $this->t('Enter a search word or phrase'),
    ];

    // Select.
    $form['favorite'] = [
      '#type' => 'select',
      '#title' => $this->t('Favorite color'),



Chapter 4 ■ Creating Modules for Drupal 8

69

      '#options' => [
        'red' => $this->t('Red'),
        'blue' => $this->t('Blue'),
        'green' => $this->t('Green'),
      ],
      '#empty_option' => $this->t('-select-'),
      '#description' => $this->t('Which color is your favorite?'),
    ];

    // Tel.
    $form['phone'] = [
      '#type' => 'tel',
      '#title' => $this->t('Phone'),
      �'#description' => $this->t('Enter your phone number, beginning with country code, 

e.g., 1 503 555 1212'),
    ];

    // TableSelect.
    $options = [
      1 => ['first_name' => 'Indy', 'last_name' => 'Jones'],
      2 => ['first_name' => 'Darth', 'last_name' => 'Vader'],
      3 => ['first_name' => 'Super', 'last_name' => 'Man'],
    ];

    $header = [
      'first_name' => t('First Name'),
      'last_name' => t('Last Name'),
    ];

    $form['table'] = [
      '#type' => 'tableselect',
      '#title' => $this->t('Users'),
      '#title_display' => 'visible',
      '#header' => $header,
      '#options' => $options,
      '#empty' => t('No users found'),
    ];

    // Textarea.
    $form['text'] = [
      '#type' => 'textarea',
      '#title' => $this->t('Text'),
      '#description' => $this->t('Enter a lot of text here'),
    ];

    // Textfield.
    $form['subject'] = [
      '#type' => 'textfield',
      '#title' => t('Subject'),
      '#size' => 60,
      '#maxlength' => 128,
      '#description' => $this->t('Just another text field'),
    ];



Chapter 4 ■ Creating Modules for Drupal 8

70

    // Weight.
    $form['weight'] = [
      '#type' => 'weight',
      '#title' => t('Weight'),
      '#delta' => 10,
      '#description' => $this->t('A Drupal weight filter'),
    ];

    // Group submit handlers in an actions element with a key of "actions" so
    // that it gets styled correctly, and so that other modules may add actions
    // to the form.
    $form['actions'] = [
      '#type' => 'actions',
    ];

    // Add a submit button that handles the submission of the form.
    $form['actions']['submit'] = [
      '#type' => 'submit',
      '#value' => $this->t('Submit'),
      '#description' => $this->t('Submit, #type = submit'),
    ];

    return $form;
  }

  public function getFormId() {
    return 'hello_form';
  }

  public function validateForm(array &$form, FormStateInterface $form_state) {
    $job_title = $form_state->getValue('job_title');
    if (strlen($job_title) < 5) {
      // Set an error for the form element with a key of "title".
      �$form_state->setErrorByName('job_title', $this->t('Your job title must be at least 5 

characters long.'));
    }
  }

  public function submitForm(array &$form, FormStateInterface $form_state) {
    // Find out what was submitted.
    $values = $form_state->getValues();
    foreach ($values as $key => $value) {
      $label = isset($form[$key]['#title']) ? $form[$key]['#title'] : $key;

      // Many arrays return 0 for unselected values so lets filter that out.
      if (is_array($value)) {
        $value = array_filter($value);
      }

      // Only display for controls that have titles and values.
      if ($value && $label) {
        �$display_value = is_array($value) ? preg_replace('/[\n\r\s]+/', ' ', print_r($value, 

1)) : $value;



Chapter 4 ■ Creating Modules for Drupal 8

71

        �$message = $this->t('Value for %title: %value', array('%title' => $label, '%value' 
=> $display_value));

        drupal_set_message($message);
      }
    }
  }
}

The additional elements were added to the buildForm function and cross a wide variety of form widgets, 
from simple text fields to complex widgets like color pickers and tables. Browse through the list of form 
elements and implement a few of them in your own hello module.

We also modified the submitForm function to display all of the entered values, regardless of their input 
format, when the user clicks the Submit button. Try implementing the same submit handler in your hello 
module and examine the values generated by each input element. What you do with the values submitted 
on your form is dependent on the functional and technical requirements. For example, you could send 
the values from the form to your CRM or marketing automation platform or save them as a node. I cover 
interacting with nodes and other entities later in this chapter.

There are other more complex form capabilities inherent in Drupal 8’s forms API. For additional 
information on creating more complex forms, visit api.drupal.org/api/drupal/core!core.api.php/
group/form_api. At the top of the page, click on the version that you want to investigate (e.g., 8.2.x).

Interacting with Entities
Entities represent several items in Drupal 8 including nodes, taxonomy, and users. It is likely that during the 
development of your enterprise Drupal 8 site, you will need to perform some action on entities that just isn’t 
possible with tools such as views and rules. To demonstrate the capabilities of interacting with entities, we 
expand on the functionality of the hello module to include several examples of interacting with entities.

Finding Existing Entities
In the first example we extend the hello module by adding a new form that searches for a node given a title 
entered by the user and displays elements of that node in a modal window. This example demonstrates 
Drupal 8’s entity query capabilities as well as using an AJAX-driven modal window.

The first step is to create a new form that presents a textbox where the user can enter the title of a node. 
We make it as easy as possible for the users to find what they are looking for by allowing the users to enter 
a portion of the title. In the src\Form directory, create a new file named HelloModalForm.php and populate 
that file with the following:

<?php

namespace Drupal\hello\Form;

use Drupal\Core\Form\FormBase;
use Drupal\Core\Form\FormStateInterface;
use Drupal\Core\Ajax\AjaxResponse;
use Drupal\Core\Ajax;
use Drupal\Core\Ajax\OpenModalDialogCommand;



Chapter 4 ■ Creating Modules for Drupal 8

72

class HelloModalForm extends FormBase {

  public function buildForm(array $form, FormStateInterface $form_state) {

      $form['#attached']['library'][] = 'core/drupal.dialog.ajax';
      $form['node_title'] = array(
        '#type' => 'textfield',
        '#title' => $this->t('Node\'s title'),
         '#description' => $this->t('Enter a portion of the title to search for'),
      );

      $form['actions']['#type'] = 'actions';

      $form['actions']['submit'] = array(
        '#type' => 'submit',
        '#value' => $this->t('Search'),
        '#ajax' => array( // here we add Ajax callback where we will process  
          �'callback' => '::open_modal',  // the data that came from the form and that we 

will receive as a result in the modal window
        ),
      );

      $form['#title'] = 'Search for Node by Title';

      return $form;

  }

  public function getFormId() {
    return 'hello_modal_form';
  }

  public function validateForm(array &$form, FormStateInterface $form_state) {
  }

  public function submitForm(array &$form, FormStateInterface $form_state) {
  }

  public function open_modal(&$form, FormStateInterface $form_state) {
    $node_title = $form_state->getValue('node_title');
    $query = \Drupal::entityQuery('node')
        ->condition('title', $node_title, 'CONTAINS');
    $entity = $query->execute();
    $key = array_keys($entity);
    $id = !empty($key[0]) ? $key[0] : NULL;
    $response = new AjaxResponse();
    $title = 'Node ID';
    if ($id !== NULL) {
        $content = '<div class="test-popup-content"> Node ID is: ' . $id . '</div>';
        $options = array(
          'dialogClass' => 'popup-dialog-class',
          'width' => '300',
          'height' => '300',
        );



Chapter 4 ■ Creating Modules for Drupal 8

73

        $response->addCommand(new OpenModalDialogCommand($title, $content, $options));
    } else {
        $content = 'Not found record with this title <strong>' . $node_title .'</strong>';
        $options = array(
          'dialogClass' => 'popup-dialog-class',
          'width' => '300',
          'height' => '300',
        );
        $response->addCommand(new OpenModalDialogCommand($title, $content, $options));    }
      return $response;
  }

}

This form is similar to the previous form we created in the previous form example, with the following 
exceptions:

•	 There are three additional namespaces added to the top of the module—Drupal\
Core\Ajax\AjaxResponse, Drupal\Core\Ajax, and Drupal\Core\Ajax\
OpenModalDialogCommand. The three namespaces provide direct access to the AJAX 
and modal window capabilities that we need to render the modal window.

•	 The class name for this form is HelloModalForm, and it will be used in the hello.
routing.yml file to render the form.

•	 $form['#attached']['library'][] = 'core/drupal.dialog.ajax' attaches the 
AJAX functionality to the form so that we can use it to render the modal window.

•	 $form['actions']['submit'] differs in that it provides an AJAX callback that will be 
used to render the modal window. The callback is the method open_modal, which is 
defined at the bottom of the file.

•	 The open_modal function access the $form and $form_state information from the 
submitted form. The information contained in $form_state are the values entered 
by the visitor.

•	 $node_title = $form_state->getValue('node_title') retrieves the value entered 
by the user in the node_title field and assigns it to the $node_title variable.

•	 $query = \Drupal::entityQuery('node') ->condition('title', $node_title, 
'CONTAINS') defines an entity query on nodes, where the title contains the text 
entered by the user. I cover entity queries in more detail later in this chapter.

•	 $entity = $query->execute() performs the query and returns an array of entities 
that contain the value entered by the user.

•	 The next two statements examine the array keys returned from the query and assign 
the key to a variable that I will use in subsequent statements. If the query did not 
return any nodes, then I’ll assign NULL to the $id variable.

•	 The $reponse = new AjaxResponse() statement creates the standard response 
object that Drupal’s AJAX functionality expects to receive. We will populate this 
object with the information required to render the modal window.

•	 $title = 'Node ID' sets a variable that will be used later as the title of the modal 
window.



Chapter 4 ■ Creating Modules for Drupal 8

74

•	 The if statement examines whether the $id field, which was set in a previous 
statement, is NULL (no nodes were found) or not. If $id is not NULL, it’s used to form 
markup that’s stored in the $content variable for rendering in the modal window.

•	 The $options array specifies what it is that we are rendering—a popup dialog that is 
300px wide and 300px high.

•	 The $reponse->addCommand method uses the $title, $content, and $options 
variables that were just created and adds them to the $response object so that the 
AJAX handler knows what to render.

•	 The else clause does the same basic functions with the exception of the message 
that is created in the $content variable. This is the case when message tells the 
visitors that the title they searched for was not found.

•	 The $response object is returned and the modal window is displayed.

Save the new form and proceed to the next step, updating the hello.routing.yml file with the 
information necessary to render the new form. Edit the routing file and add the following to the bottom:

hello.modal:
   path: 'hello/modal'
   defaults:
     _form: '\Drupal\hello\Form\HelloModalForm'
   requirements:
       _access: 'TRUE'

This section of the routing file is nearly identical to the previous form example, with the exception of a 
new path. The route to the _form is \Drupal\hello\Form\HelloModalForm. After updating the routing file, 
update the hello.links.menu.yml file to create a new menu item for the modal window example. Add the 
following to the end of the file:

hello.modal:
  title: Hello Modal Form
  menu_name: main
  route_name: hello.modal
  expanded: TRUE
  weight: 130

This new menu entry is named hello.modal, with a title of Hello Modal Form, assigned to the main 
menu, and renders the hello.modal route that I just defined in the hello.routing.yml file. I’ll place the new 
menu item to the right of the previous menu item by incrementing the weight. Rebuild the cache and visit 
the homepage. You should see the new menu item. Clicking on the menu item renders the form as shown in 
Figure 4-12.



Chapter 4 ■ Creating Modules for Drupal 8

75

Before searching, create a new node by visiting Content ➤ Add Content ➤ Article. Using That Node. 
Enter either the full title that you created or a partial representation of the title in the Node’s title text box of 
the new form and click the Search button. If you correctly entered text that appears in the title of your node, 
you should see a modal window as shown in Figure 4-13.

Close the modal window by clicking on the X in the upper-right corner. Now try entering text that was 
not part of the node’s title in the Node’s title text box and then click the Search button. The results should be 
as shown in Figure 4-14, with the word Foo replaced by the word or phrase that you entered in the text box.

Figure 4-13.  The modal window displaying the Node ID

Figure 4-12.  The Search form



Chapter 4 ■ Creating Modules for Drupal 8

76

Creating Entities
Drupal 8 provides an easy-to-use administrative interface for creating new content types, but you may not 
always want to use just the administrative interface. This could be the case if you are creating a custom 
module that relies on a specific content type being present and relying on a site administrator to correctly 
create that content type is just too much of a risk. In Drupal 8 the process for creating a new entity type, 
or in this case, a content type, is relatively simple and can be accomplished mostly through yaml files. In 
this example, we create a content type named customer that will provide a title and a body field to enter 
information about that customer.

To begin we create a new module for the purpose of creating the content type, and we name the module 
customer. In the modules/custom directory, create a new directory named customer, and in the customer 
directory, create a config directory. Finally, in the config directory, create an install directory. The 
resulting structure is as follows:

customer
  config
    install

The first file that we create is the customer.info.yml file, which resides in the /modules/custom/
customer directory. The contents of this file are as follows:

name: Customer Content Type
description: The simplest example of implementing a customer node content type in a module.
package: Awesome modules
type: module
dependencies:
  - node
  - path
  - text
core: 8.x

The content of the customer.info.yml file is similar to the hello module’s hello.info.yml file with the 
exception of the name, description, and a few extra dependencies that must be present and enabled in order 
for the module to properly function: the node, path, and text modules. These modules are part of core and 
provide basic functionally required by the customer content type.

Figure 4-14.  The node not found modal window



Chapter 4 ■ Creating Modules for Drupal 8

77

The next file that we will create is the customer.module file. We create the file in the /modules/custom/
customer directory. Since our customer module has a single purpose, create a content type, there isn’t any 
additional functionality required at this juncture beyond enabling the content type, so the content of the 
module file is simply as follows:

<?php

/**
 *  The customer.module file
 */

You may add functionality to the module file to enable additional features and functionality related to 
the customer content type.

In the config directory, there are three yaml files that we need to create:

•	 node.type.customer.yml describes the content type that we are creating.

•	 field.field.node.customer.body.yml describes the body field that we are going to 
add to the customer content type. Note: By default, Drupal provides the title field.

•	 core.entity_form_display.node.customer.default.yml describes the default 
node edit form for the customer content type.

In the install directory, we start by creating the node.type.customer.yml file with the following 
content:

langcode: en
status: true
dependencies: {  }
name: 'Customer'
type: customer
description: 'This is a very basic customer content type.'
help: ''
new_revision: false
preview_mode: 1
display_submitted: true
third_party_settings: {  }

This is a standard yaml file for all node-based content types. The only values that we are changing from 
the defaults are the name, type, and description.

The next file that we will create is the yaml file that describes the body field that will be added to 
the customer content type. We create the file called field.field.node.customer.body.yml in the same 
directory with the following content:

langcode: en
status: true
dependencies:
  config:
    - field.storage.node.body
    - node.type.customer
  module:
    - text



Chapter 4 ■ Creating Modules for Drupal 8

78

id: node.customer.body
field_name: body
entity_type: node
bundle: customer
label: Body
description: ''
required: false
translatable: true
default_value: {  }
default_value_callback: ''
settings:
  display_summary: true
third_party_settings: {  }
field_type: text_with_summary

This file is also a standard template for creating fields. The primary elements that were used to describe 
the field areas follows:

•	 dependencies: There are two configuration-related dependencies that must be 
present in order for this field to exist—the Drupal 8-provided field.storage.node.
body, which describes how the body field will be stored in the database, and node.
type.customer, the content type that we are creating. This field is also dependent on 
the text module, which defines the attributes of a text field.

•	 id: This field provides a unique ID for the field being created, in this case, it’s node.
customer.body.

•	 field_name: To be consistent with other body fields in content types, we use the 
standard term of body.

•	 entity_type: Describes what type of entity will be associated with this field, a node. 
Other alternatives are taxonomy, user, and any other custom entities created by 
modules on your site.

•	 bundle: The bundle associated with this field on this content type is customer.

•	 label: The value that will appear on the edit form for this field.

•	 field_type: Defines what type of text field, with is text_with_summary. Other text 
field types, as well as all available off-the-shelf field formats, can be found at drupal.
org/node/1879542.

The last file to be created in this example is the core.entity_form_display.node.customer.default.yml 
file. This file describes how the node edit form will appear when content creators add a new customer to the 
site. The contents of this file are as follows:

langcode: en
status: true
dependencies:
  config:
    - field.field.node.customer.body
    - node.type.customer
  module:
    - path
    - text



Chapter 4 ■ Creating Modules for Drupal 8

79

id: node.customer.default
targetEntityType: node
bundle: customer
mode: default
content:
  title:
    type: string_textfield
    weight: 0
    settings:
      size: 60
      placeholder: ''
    third_party_settings: {  }
  uid:
    type: entity_reference_autocomplete
    weight: 1
    settings:
      match_operator: CONTAINS
      size: 60
      placeholder: ''
    third_party_settings: {  }
  created:
    type: datetime_timestamp
    weight: 2
    settings: {  }
    third_party_settings: {  }
  promote:
    type: boolean_checkbox
    weight: 3
    settings:
      display_label: true
    third_party_settings: {  }
  sticky:
    type: boolean_checkbox
    weight: 4
    settings:
      display_label: true
    third_party_settings: {  }
  path:
    type: path
    weight: 5
    settings: {  }
    third_party_settings: {  }
  body:
    type: text_textarea_with_summary
    weight: 6
    settings:
      rows: 9
      summary_rows: 3
      placeholder: ''
    third_party_settings: {  }
hidden: {  }
third_party_settings: {  }



Chapter 4 ■ Creating Modules for Drupal 8

80

The elements of this file describe each field that will appear on the edit form and were copied from a 
default template that is found at api.drupal.org/api/drupal/core!profiles!standard!config!install
!core.entity_form_display.node.article.default.yml/8.2.x. Replace 8.2.x with the version of Drupal 
that you are working with to get an up-to-date version of the file. The primary settings that were modified 
from the default template are as follows:

•	 The dependencies were updated to reflect the customer content type, specifically 
the addition of the body field and the node type in the config section, as well as the 
path and text module. All four of those elements must exist in order for the customer 
content type to work properly.

•	 The id field was updated to reflect the customer content type.

•	 The bundle was updated to reflect the customer content type.

•	 The body field was added to the bottom of the list.

After creating all the files and saving them, navigate to the Extend page and search for the customer 
module in the Awesome Modules section. Check the box next to the module and click the Install button at the 
bottom of the page. After enabling the module, visit the Content page and click the Add Content button. You 
should see the new customer content type listed as one of the available options, as shown in Figure 4-15.

Clicking on Customer displays the node edit form for the new Customer content type, as  
shown in Figure 4-16.

Figure 4-15.  The Customer content type



Chapter 4 ■ Creating Modules for Drupal 8

81

There are significantly more capabilities for creating entity types beyond what is possible to cover in this 
chapter. For a more comprehensive example on creating custom entities, visit drupal.org/node/2192175.

Creating, Updating, and Deleting Entities Programmatically
A common activity performed by custom modules is programmatically creating, updating, and deleting 
content from the Drupal database. This section describes the processes for creating nodes, files, nodes with 
images, taxonomy terms, and menu items.

Creating Entities
The process for creating entities, such as nodes, and translating them into other languages, is relatively 
simple. Before attempting to implement this functionality on your site, be sure to:

•	 Enable all of the multilingual modules and set up Spanish (es) as one of the 
languages that your site supports.

•	 Visit Structure ➤ Taxonomy ➤ Manage ➤ Tags ➤ Overview and create a new 
taxonomy term in the tags vocabulary. It will be used in the node that will be created 
in the following process.

Figure 4-16.  The Customer node edit form



Chapter 4 ■ Creating Modules for Drupal 8

82

Creating Nodes
To implement the example code, we return to the hello module and edit the hello.module file. In the 
.module file, first we add use Drupal\node\Entity\Node; at the top of the file directly above or below the 
use Drupal\user\Entity\User statement. Next, we create a new function in the module file, as shown here:

function hello_create_node() { 

     $node = Node::create([
       // The node entity bundle.
       'type' => 'article',
       'langcode' => 'en',
       'created' => REQUEST_TIME,
       'changed' => REQUEST_TIME,
       // The user ID.
       'uid' => 1,
       'title' => 'My test!',
       // An array with taxonomy terms.
       'field_tags' =>[1],
       'body' => [
         'summary' => '',
         'value' => '<p>The body of my node.</p>',
         'format' => 'full_html',
        ],
     ]);
     $node->save();
     �\Drupal::service('path.alias_storage')->save("/node/" . $node->id(),  

"/hello/example-node", "en");

     $node_es = $node->addTranslation('es');
     $node_es->title = 'Mi prueba!';
     $node_es->body->value = '<p>El cuerpo de mi nodo.</p>';
     $node_es->body->format = 'full_html';
     $node_es->save();
     \Drupal::service('path.alias_storage')->save("/node/" . $node->id(), "/mi/ruta", "es"); 

     return t("Created node " . $node->get('title')->value);

  }

This code:

•	 Creates a new $node object using the Node::create method.

•	 Populates all of the fields on the node with values, including a taxonomy term  
(the first term in the tags vocabulary).

•	 Saves the node using $node->save().

•	 Creates a path alias to the node using \Drupal::services('path.alias_storage')-> 
save(("/node/" . $node->id(), "/hello/example-node", "en");.

•	 Creates a new translation of the node into Spanish and creates a new alias in 
Spanish.



Chapter 4 ■ Creating Modules for Drupal 8

83

With the functionality present in the module file, the next step is to update the Controller for the hello 
module. We need to edit the HelloController.php file in the src/Controller directory. Add the following 
function to the file:

  public function create_node() {
        return array(
           '#markup' => hello_create_node(),
        );
     }

The create_node function calls the hello_create_node function that I just created in the hello.module 
file. The last step in the process is to add a route in the hello.routing.yml file. At the bottom of the routing 
file, add the following:

hello.create:
   path: 'hello/create-node'
   defaults:
    _controller: '\Drupal\hello\Controller\HelloController::create_node'
   requirements:
       _access: 'TRUE'

This route provides an URL of hello/create-node that, when visited, executes the functionality associated 
with the HelloController::create_node method. After saving and visiting the URL, go to Admin ➤ Content, 
where you can see both the English and Spanish versions of the node, as shown in Figure 4-17.

Clicking on the My Test! title displays the node as it was created by the module (see Figure 4-18).

While this example is simplistic in nature, it demonstrates the basics of programmatically creating 
nodes.

Figure 4-17.  The new nodes

Figure 4-18.  The English version of the created node



Chapter 4 ■ Creating Modules for Drupal 8

84

By following the same pattern—creating a function in the hello.module file, updating the 
HelloController, and adding a route to the routing.yml file—you can experiment with creating other 
entities, as described in the following sections.

Creating Files
Creating files is easier than creating nodes in that there are fewer steps required in the process. In the 
following example, the filename logo.svg is added to the files table with a URI to access the file set to 
public://page/logo.svg. We add the namespace definition—use Drupal\file\Entity\Fil—to the top of 
the module file and add a new function with the code listed below the namespace definition. After executing 
$file->save, the file may be queried and referenced in other entities. Note that the file must physically 
reside in the sites/default/files directory prior to executing this function. This function does not upload 
a file from your desktop; it assumes it already exists.

// Add the namespace for file entities at the top of the module file.
use Drupal\file\Entity\File;
// create a new function and place this code in the function
$file = File::create([
  'uid' => 1,
  'filename' => 'logo.svg',
  'uri' => 'public://page/logo.svg',
  'status' => 1,
]);
$file->save();
return $t("File was successfully created");

After creating the function in the module file, updating the Controller and routing files, and uploading 
the logo.svg image to the /sites/default/files directory, we are now ready to create a new record in the 
file table for the logo.svg file.

Creating Nodes with Images
Another common requirement is to attach images to nodes. This example assumes that you have already 
uploaded the file to /sites/default/images. In the following code, it is essentially the same as creating 
the node in the previous example, with the exception of adding the file using the $file = FILE::create 
method and adding that file to field_images using the $file->id of the image that was loaded at the top of 
the function.

// Make sure your module file has the following two namespaces.
use Drupal\file\Entity\File;
use Drupal\node\Entity\Node;

// Use the following code in a function
$file = File::create([
  'uid' => 1,
  'uri' => 'public://page/logo.png',
  'status' => 1,
]);



Chapter 4 ■ Creating Modules for Drupal 8

85

$file->save();
$node = Node::create([
  'type' => 'article',
  'langcode' => 'en',
  'created' => REQUEST_TIME,
  'changed' => REQUEST_TIME,
  'uid' => 1,
  'title' => 'My title',
  'field_tags' =>[2],
  'body' => [
    'summary' => '',
    'value' => 'My node!',
    'format' => 'full_html',
  ],
  'field_image' => [
    [
      'target_id' => $file->id(),
      'alt' => "My 'alt'",
      'title' => "My 'title'",
    ],
  ],
]);
$node->save();
\Drupal::service('path.alias_storage')->save('/node/' . $node->id(), '/my-path', 'en');
1

Creating Taxonomy Terms
Nodes are not the only entity type that you can create programmatically; taxonomy terms may also be 
created. Following the same pattern as previous examples, create a new function in the hello.module file, 
adding the namespace for Term as shown here, and implementing the code in a function that is referenced 
through the Controller and routing files.

In the following code, the $term object is created using the Term::create method and populated with 
the values as outlined here. The term is saved using $term->save(), a path alias is created, and the term 
is translated into Spanish. Before creating the taxonomy term, we must create a vocabulary named Sport 
Activity by visiting Structure ➤ Taxonomy and clicking on the Add Vocabulary button.

// Ensure that the namespace for Term is included at the top of your module file
use Drupal\taxonomy\Entity\Term;

// Add the following to your module file
$term = Term::create([
  'vid' => 'sport_activity',
  'langcode' => 'en',
  'name' => 'My tag',
  'description' => [
    'value' => '<p>My description.</p>',
    'format' => 'full_html',
  ],
  'weight' => -1,
  'parent' => array (0),
]);



Chapter 4 ■ Creating Modules for Drupal 8

86

$term->save();
\Drupal::service('path.alias_storage')->save("/taxonomy/term/" . $term->id(),  
"/tags/my-tag", "en");
$term_es = $term->addTranslation('es');
$term_es->name = 'Mi etiqueta';
$term_es->description->value = '<p>Mi descripción.</p>';
$term_es->description->format = 'full_html';
$term_es->save();
\Drupal::service('path.alias_storage')->save("/taxonomy/term/" . $term->id(),  
"/etiquetas/mi-etiqueta", "es");
return t(“The term was successfully created”);

Creating Menu Links
Menu links can be created programmatically using the same pattern as previous examples. Remember to 
add the namespace for MenuLinkContent to the top of your module file. Create the function in the module 
file, update the Controller and routing files, and you are on your way to programmatically creating a new 
menu item.

// the namespace for menu links.
use Drupal\menu_link_content\Entity\MenuLinkContent;

// the code that should be implemented in a function to create a menu item
$menu_item = MenuLinkContent::create([
  'bundle' => 'menu_link_content',
  'langcode' => 'en',
  'title' => 'My menu link',
  'description' => 'My description.',
  'menu_name' => 'main',
  'link' => [['uri' => 'internal:/node/1']],
'weight' => 0,
]);
$menu_item->save();
$menu_item_es = $menu_item->addTranslation('es');
$menu_item_es->title = 'Mi enlace del menú';
$menu_item_es->description = 'Mi descripción.';
$menu_item_es->save();

Updating Entities
The process for updating an existing entity is through a set of relatively simple methods. For example, 
updating a node’s title and body can be accomplished using the following:

$node = \Drupal\node\Entity\Node::load($nid);
$node->setTitle('This is the new title');
$node->set('body', 'This is the new body');
$node->save();



Chapter 4 ■ Creating Modules for Drupal 8

87

This code assumes that you already know the $nid that needs to be updated. If you don’t have  
the node ID, you might consider writing an entity query to find the node to be updated, such as:

$query = \Drupal::entityQuery('node')
    ->condition('title', 'The text to look for' , 'CONTAINS');
$nids = $query->execute();

Then update each $nid in the $nids array using code similar to the following:

foreach($nids as $nid) { 
   $node = \Drupal\node\Entity\Node::load($nid);  
   $node->setTitle('This is the new title');
   $node->set('body', 'This is the new body');
   $node->save();
}

To update other types of entities use the same pattern, such as:

$term = \Drupal\taxonomy\Entity\Term::load($tid);
// update field values here
$term->save();

$user = \Drupal\user\Entity\User::load($uid);
// update field values here
$user->save();

Deleting Entities
The process for deleting entities is to first load them and then delete them using the following code:

$node = \Drupal\node\Entity\Node::load($nid);
$node->delete();

$term = \Drupal\taxonomy\Entity\Term::load($tid);
$term->delete();

$user = \Drupal\user\Entity\User::load($uid);
$user->delete();

There are many more features and capabilities surrounding interacting with entities in Drupal 8. 
I suggest bookmarking drupal.org/developing/api/entity and visiting that page often as you begin 
developing Drupal 8 modules.

Summary
This chapter only scratches the surface of the capabilities of developing modules in Drupal 8. There is so much 
more to the features and capabilities that exist in the Drupal 8 DNA. It would take several hundred pages to 
fully describe the details of all the capabilities in Drupal 8 module development. While the details described in 
this chapter provide a solid baseline for beginning your journey into Drupal 8 module development, there are 
hundreds of pages of additional details and examples on drupal.org/developing/modules/8.

The next chapter describes the process for creating themes in Drupal 8 using the Twig templating engine.



89© Todd Tomlinson 2017 
T. Tomlinson, Enterprise Drupal 8 Development, DOI 10.1007/978-1-4842-0253-1_5

CHAPTER 5

Drupal 8 Theming

Drupal themes represent the components of a Drupal site that render content on any browser equipped 
device in a visually appealing fashion. If Drupal is the cake, then themes are the frosting and decoration—
they make your web site beautiful.

The art of theming requires a mixture of visual design skills, including using tools such as Photoshop, as 
well as experience in developing HTML markup and cascading stylesheets (CSS), using JavaScript, and using 
the Twig templating engine to connect the theme to the output generated by Drupal.

This chapter covers the details of the role of a Drupal theme, how themes are structured, how themes 
are installed and enabled, and the process and components required to create a custom Drupal 8 theme, 
including the yaml files required to describe your theme, the HTML markup, CSS, and Twig components 
required to assemble pages on your site. It is assumed that you have a basic understanding of HTML, CSS, 
and JavaScript before attempting to construct a custom theme.

The Role of a Drupal Theme
Drupal themes have one primary responsibility—to provide the means for displaying content that is 
generated by the various Drupal components such as blocks and views in a visually appealing manner. The 
theme provides physical containers on the page, typically called regions, which are used by site builders to 
place content, blocks, views, and other visual elements. The theme also joins the physical layout and regions 
with the cascading stylesheet elements and JavaScript to deliver to the browser a complete package ready to 
be viewed by the site visitors.

While the theme is responsible for defining regions on a page, CSS, and JavaScript, the theme may also 
override the visual presentation of the output generated by blocks, views, and modules.

While the theme is responsible for defining the structure and visualization of pages, content, and 
elements on the page, it’s important to talk about the underlying templating engine that is the workhorse 
of Drupal themes, responsible for integrating the output generated by Drupal and its components with the 
HTML markup and CSS. That component is the Twig templating engine and it’s new to Drupal as of Drupal 
8. It replaces the previous templating engine, the PHP template.

The Twig Templating Engine
While HTML, CSS, and JavaScript play a key role in Drupal 8 themes, the true star of the show is the Twig 
templating engine (twig.sensiolabs.org). Twig is a component of the Symfony2 framework, which is 
the underlying architecture that Drupal 8 is built on. Think of Twig is the “glue” between the output that is 
generated by a Drupal module and the rendered page that is presented to the site visitors.



Chapter 5 ■ Drupal 8 Theming

90

The Twig templating engine uses relatively simple syntax consisting of variables, expressions, and tags. 
The Twig templating engine converts each of those elements into highly optimized PHP code that binds the 
output of Drupal’s modules to the rendered page. A simple example of using Twig to render a block’s title 
and body is as follows:

<h3>{{ block.title }}</h3>
<div>{{ block.content }}</div>

While there would likely be conditional logic wrapping the output, for example, checking to see if the 
title and content existed before rendering it, the example demonstrates the simplicity of Twig and its syntax. 
The block module exposes block to the theme layer, with title and content as elements within the block 
that are rendered using the previous syntax. Before exploring the details of Twig syntax, let’s first look at the 
elements required to create a Drupal 8 theme.

The Structure of a Drupal Theme
Drupal 8 themes, like modules, require a specific set of files in a standard directory structure in order 
to function properly. All themes that are not part of Drupal 8 core reside in the theme directory at the 
root directory of your Drupal 8 site. Within the theme directory, if you have not yet done so, create two 
subdirectories:

•	 contrib: This is where all themes downloaded from drupal.org are stored

•	 custom: This is where all themes you create for your site will reside

Focusing on a custom theme, the directory structure required to support the creation of a custom theme 
is as follows:

themename
  config
    install
    schema
  css
  js
  images
  templates

Where themename is the name of your theme. In the themename directory you will find several files 
(replace themename with the actual name of the theme):

•	 themename.info.yml: The only mandatory file for a Drupal 8 theme. This file 
describes the metadata about your theme, for example the name of your theme, as 
well as libraries, regions, and the version of Drupal core that is required to use the 
theme.

•	 themename.libraries.yml: Defines the JavaScript and CSS libraries that are loaded 
by the theme.

•	 themename.breakpoints.yml: Defines the screen widths where the design needs to 
change to accommodate different devices.

•	 themename.theme: Contains all of the conditional logic and preprocessing of output 
that occurs before it is rendered on the page. It may also extend the basic theme 
settings by creating advanced theme settings.



Chapter 5 ■ Drupal 8 Theming

91

•	 screenshot.png: Rendered on the Appearance page, giving the site builder a preview 
of the theme.

•	 logo.svg: The standard logo rendered on a page in the header section of your site. 
You may provide a standard logo as part of your theme or upload a logo through the 
Appearance ➤ Settings page.

•	 .css: There may be one to many CSS files in the css directory.

•	 .js: There may be one to many JavaScript files in the js directory.

We cover the config directory and advanced configuration options later in this chapter.

Creating the Theme Files
To demonstrate the process of creating the files associated with a Drupal 8 theme, we start with the creation 
of the directory structure as described previously, for a new theme called davinci. We first create a new 
directory in the themes directory called davinci, and then create the same subdirectories as described 
previously, resulting in the directory structure shown in Listing 5-1.

Listing 5-1.  The Davinci Theme Directory

└── davinci
    ├── config
    │   ├── install
    │   └── schema
    ├── css
    ├── images
    ├── js
    └── templates

The next step in the process is to create the .info.yml file. Using your favorite text editor, create 
the davinci.info.yml file in the root directory of your new theme (themes/custom/davinci) with the 
following code:

name: Davinci
type: theme
description: A Drupal 8 theme
core: 8.x

The values in this file are as follows:

•	 name defines the value that will appear on the Appearance page.

•	 type defines what this .info.yml file defines, in this case a theme.

•	 description is text that appears on the Appearance page and describes your theme 
to the site administrator.

•	 core defines the version of Drupal that your theme supports.

Although there are more elements that may be added to the .info.yml file, those listed previously are 
all that are required to display the theme on the Appearance page and all that are required to enable the 
theme. Save the file, rebuild the cache, and visit the Appearance page. You’ll now see the new theme, as 
shown in Figure 5-1.



Chapter 5 ■ Drupal 8 Theming

92

Clicking on the Install and Set Default link and visiting the homepage reveals a rather stark design, but it 
is the starting point and it will only get better from here (see Figure 5-2).

Figure 5-1.  The Davinci theme

Figure 5-2.  The site rendered with the Davinci theme



Chapter 5 ■ Drupal 8 Theming

93

Adding Regions to the Theme
One of the power features of themes is the ability to define regions on a page where content, blocks, menus, 
or other elements that are rendered by modules can be placed. The regions defined by a theme appear on 
the Structure ➤ Block Layout page, where a site builder can place blocks into each of the defined regions.

For demonstration purposes, we create several regions in the Davinci theme. Figure 5-3 depicts the 
general layout of the regions that will appear on every page.

Messages

Header first Header second Header third

Nav bar

Features first Features second Features third Features fourth

Sidebar first Main content Sidebar second

Tertiary first Tertiary second Tertiary third Tertiary fourth

Footer

Highlighted

Figure 5-3.  The regions of the Davinci theme

Not every theme must have as many regions as shown in Figure 5-3, and there may be cases where you 
need more regions than are provided by the Davinci theme. The choice is up to the designer.

Regions are defined in the .info.yml file in a section titled regions. The structure of a region’s definition 
is the internal name of the region, for example header_first, followed by the name of the region that 
will appear on administrative interfaces, such as the Block Layout page. In the case of header_first, the 



Chapter 5 ■ Drupal 8 Theming

94

value displayed will be Header first. Note: Spacing in .yml files is important and has meaning. Each of 
the regions defined in the regions section are indented exactly two spaces, which is the yaml syntax for 
elements within a group. Expand the davinci.info.yml file, adding all of the regions shown in Figure 5-3.

name: davinci
type: theme
description: A Drupal 8 theme
core: 8.x
regions:
  messages: 'Messages'
  header_first: 'Header first'
  header_second: 'Header second'
  header_third: 'Header third'
  navbar: 'Nav bar'
  help: 'help'
  features_first: 'Features first'
  features_second: 'Features second'
  features_third: 'Features third'
  features_fourth: 'Features fourth'
  highlighted: 'Highlighted'
  content: 'Main content'
  sidebar_first: 'Sidebar first'
  sidebar_second: 'Sidebar second'
  tertiary_first: 'Tertiary first'
  tertiary_second: 'Tertiary second'
  tertiary_third: 'Tertiary third'
  tertiary_fourth: 'Tertiary fourth'
  footer: 'Footer'
  page_top: 'Page top'
  page_bottom: 'Page bottom'

Drupal 8 core requires that three regions exist in every theme:

•	 content: The primary container for content on a page

•	 page_top and page_bottom: Regions that are hidden by default(they do not appear 
on the Block Layout page) and are used by modules to place markup and JavaScript 
at the top and bottom of pages

After updating and saving the file, we rebuild the cache and visit Structure ➤ Block Layouts, where the 
new regions appear, as shown in Figure 5-4.



Chapter 5 ■ Drupal 8 Theming

95

At this juncture, we could place blocks and other elements into the regions shown in Figure 5-4; 
however, before we can see the elements we’ve placed in the regions, we have to define the templates that 
will render those regions. But before diving into the details of template files, let’s start with an overview 
of Twig syntax and functionality. Having an understanding of Twig syntax and functionality will make the 
discussion about the content of template files more meaningful.

Figure 5-4.  A partial listing of the new regions



Chapter 5 ■ Drupal 8 Theming

96

Twig Syntax
There are three general categories of “things” that Twig does:

•	 It “says something”

•	 It “does something”

•	 Or it’s a comment

Each of these items has a specific syntax. The “say something” syntax is represented by {{ ... }},  
where the opening and closing braces are identified by the Twig parser as something that Twig needs to do, 
and the ... represents a variable that will printed to the page that is being rendered. For example, {{ name }} 
would print the value associated with a variable called name.

The “do something” syntax is associated with if and for statements, setting the value of variables, 
filters, and other less common functions. The syntax for “do something” is {% ... %}. For example:

{% filter upper %}
   {{ name }}
{% endfilter %}

This prints the value of name in uppercase. We cover additional uses of “do something” in the sections 
that follow. The syntax for comments in Twig templates is {# ... #}.

Combining “say something” with “do something” provides all of the functionality required to connect 
content in Drupal with the rendered page. The next sections expand on the capabilities of each.

Twig Variables
One of the primary functions of Twig is to print the content of a variable on a page. If you have a variable 
called first_name, printing the value of that variable to the page is accomplished through {{ first_name }}. 
Where did first_name come from? Most likely a module that generated a value and assigned it to a themable 
variable named first_name.

The first_name variable is a simple example, but variables generated by Drupal modules are often 
more complex such as an array, an object, or a function. Twig handles that by automatically searching for 
the possible sources of that variable. Using an example of a object named customer, with attributes of that 
customer being name, address, city, state, postal_code, email, and phone, we can print the value of the 
customer’s name using {{ customer.name }}. When Twig evaluates customer.name, it searches for the 
following:

•	 $customer['name']

•	 $customer->name

•	 $customer->__isset('name') && $customer->__get('name')

•	 $customer->name()

•	 $customer->getName()

•	 $customer->isName()

•	 $customer->__call('name')

In nearly every case, one of the references will return the customer’s name. As a frontend developer, you 
need not worry about how the backend developer stored the value of name; Twig handles the details for you.



Chapter 5 ■ Drupal 8 Theming

97

While most variables are created by modules, there may be scenarios where you need to create and use 
a variable in your template. To create a variable and assign a value to it, use the following syntax:

{% set hello = 'Hello World' %}

Twig also supports the creation of key => value arrays, although in Twig they are called hashes. To create 
a hash, use the following syntax:

{% set name = { first: 'John', last: 'Doe' } %}

In this example, you print the values using {{ name.first }} or {{ name.last }}. Hashes may also be 
nested, for example:

{% set sports = {
      football:  { team: "Seahawks", city: "Seattle" },
      basketball: { team: "Trailblazers", city: "Portland" },
      soccer: { team: "Timbers", city: "Portland" },
      baseball: { team: "Mariners", city: "Seattle" }
} %}

You would print values from these example using a statement such as {{ sports.football.team }}.

Discovering Variables
As a frontend developer who creates template files, you will see that it’s easy to find any variable you define 
within the template through a {% set %} statement. But most variables are created outside of templates 
through Drupal modules. While the standard Twig templates included with Drupal core have a well-
documented list of variables that are available within that template, those documentation blocks will not 
include variables created by contributed modules that you have installed on your site.

While you could dig through the custom modules to find instances of where theme variables are 
created, there is an easier way—using the {{ dump() }} function. The dump function is available after you 
have enabled Twig debugging in the sites/default/services.yml file. By default, Twig debugging is set to 
false. Change the value to true and rebuild cache before attempting to use the dump function. Note:  
Using the dump() function may cause out of memory errors, so use it with caution. You may choose to use  
{{ dump(_context|keys) }} instead, which only shows variables that are available to your template.

If you know the name of a variable, you can use {{ dump(variable_name) }} to display the value, 
replacing variable_name with the actual name of the variable. If you don’t know which variables are 
available, you can use the {{ dump() }} function, which returns all variables that are known to the template 
that you are working on. For example, adding the dump function to the Bartik themes node.html.twig 
template, saving the revised template, and rebuilding the cache results in the following output, which shows 
every variable that is available to the node template:

array(28) { [0]=> string(8) "elements" [1]=> string(19) "theme_hook_original"  
 [2]=> string(10) "attributes" [3]=> string(16) "title_attributes"  
 [4]=> string(18) "content_attributes" [5]=> string(12) "title_prefix"  
 [6]=> string(12) "title_suffix" [7]=> string(12) "db_is_active" [8]=> string(8) "is_admin"  
 [9]=> string(9) "logged_in" [10]=> string(4) "user" [11]=> string(9) "directory"  
 [12]=> string(9) "view_mode" [13]=> string(6) "teaser" [14]=> string(4) "node"  
 [15]=> string(4) "date" [16]=> string(11) "author_name" [17]=> string(3) "url"  
 [18]=> string(5) "label" [19]=> string(4) "page" [20]=> string(7) "content" [21]=> string(17)  
 "author_attributes" [22]=> string(17) "display_submitted" [23]=> string(14) "author_picture"  
 [24]=> string(6) "#cache" [25]=> string(8) "metadata" [26]=> string(22) "theme_hook_suggestions"  
 [27]=> string(7) "classes" }



Chapter 5 ■ Drupal 8 Theming

98

Although the output is not very pretty, it does show all of the available variables, such as author_name, 
url, label, page, etc. Inspecting a specific variable, such as url using {{ dump(url) }} displays the 
following:

string(7) "/node/1"

Conditionals, Looping, Filters, and Math Functions in Twig
While the theme layer isn’t the place for business logic, there are cases where you will want to “do 
something” with the information that is available to the template that you are working with. Twig provides 
the ability to do so through conditional logic (if statements), looping (foreach), and filters (e.g., transform 
text to uppercase).

Twig Conditionals
You can test the content of variables using if statements in Twig in the form of {% if <variable> 
<condition> <comparison> %}. The conditions that may be checked in Twig are as follows:

a == b to test that the value of a and b are equal

a != b to test that a is not equal to b

a <> b to test that a is not equal to b

a < b to test if a is less than b

a > b to test that a is greater than b

a <= b to test that a is less than or equal to b

a >= b to test that a is greater than or equal to b

a === b to test that the value and type of variable are the same for a and b

a !=== b to test that a and b are not identical

Examples of each conditional are as follows:

// test if a is equal to b
{% if a == b %}
   {{ A equals b }}
{% endif %}

// test if a is not equal to b
{% if a != b %}
   {{ A is not equal to b }}
{% endif %}

// test if a is not equal to b
{% if a <> b %}
   {{ A is not equal to b }}
{% endif %}



Chapter 5 ■ Drupal 8 Theming

99

// test if a is greater than b
{% if a > b %}
   {{ A is greater than b }}
{% endif %}

// test if a is less than b
{% if a < b %}
   {{ A is less than b }}
{% endif %}

// test if a is less than or equal to b
{% if a <= b %}
   {{ A is less than or equal to b }}
{% endif %}

// test if a is greater than or equal to b
{% if a >= b %}
   {{ A is greater than or equal to b }}
{% endif %}

// test if a and b are equal and the same type
{% if a === b %}
   {{ A and b are equal and the same type }}
{% endif %}

// test if a and b not equal and the same type
{% if a !== b %}
   {{ A and b are not equal and the same type }}
{% endif %}

Twig also supports multiple conditions in a single if statement, for example:

{% if a < b or b < c %}
   {{ a is less than b or b is less than c }}
{% endif %}

{% if a < b and b < c %}
   {{ a is less than b and b is less than c }}
{% endif %}

Twig supports if else statements, for example:

{% if a < b %}
   {{ a is less than b }}
{% elseif a > b %}
   {{ a is greater than b }}
{% elseif a == b %}
   {{ a equals b }}
{% endif %}



Chapter 5 ■ Drupal 8 Theming

100

Twig supports testing for the existence of a value. For example, to test whether the variable user.name is 
set, use:

{% if user.name %}
  {{ user name is user.name }}
{% endif %}

You can also test for when a variable is not set:

{% if not user.name %}
  {{ user name is not set }}
{% endif %}

You can also do string operations such as:

{% if 'Hello' starts with 'F' %}

or

{% if 'Hello' ends with 'N' %}

or run contains comparisons such as:

{% if 'cd' in 'abcde' %}
{{ 'cd' is in 'abcde' }}
{% endif %}

or

{% if 1 in [1,2,3] %}
{{ 1 is in 1,2,3 }}
{% endif %}

Twig also provides a PHP-like switch statement that allows you to write a more legible control 
statement than using a long list of if-elseif statements. The form of the switch statement is as follows:

{% switch user.type %}
  {% case "administrator" %}
     {{ User is an administrator }}
  {% case "editor" %}
     {{ User is an editor }}
  {% case "anonymous" %}
     {{ User is anonymous }}
  {% default %}
     {{ User type is user.type }}
{% endswitch %}

Twig’s control statements provide a powerful solution for handing conditional logic in template files. 
Twig also provides powerful and easy-to-use capabilities for iterating or looping through elements.



Chapter 5 ■ Drupal 8 Theming

101

Looping in Twig
Twig provides two different mechanisms to loop or iterate over elements that are exposed in a template file. 
You may use for loops to perform some functionality one to many times using the following syntax:

{% for i in range(0,3) %}
    {{ i }}
{% endfor %}

In the previous example, the variable i starts with a value of zero and is incremented by 1 until it  
equals 3. The functionality within the for statement, in this case, will print 0 1 2 3.

Iterating over a list of variables is accomplished through another form of the for statement. In the 
following example, the variable items is an array of objects, where content is an attribute of the item object. 
This look assigns each element of the items array to a variable named item, and then the value of the 
content attribute is printed.

{% for item in items %}
    {{ item.content }}
{% endfor %}

Either version of the for statement may be nested to perform more complex looping and iterating 
scenarios.

Twig Filters
Filters are a mechanism for performing transformations and evaluations of a string or the value stored in 
a variable. For example, {{ 'HELLO WORLD' | lower }} would print hello world. Filters also provide the 
ability to evaluate certain aspects of variables, such as counting the number of elements in an array through 
the length filter.

{% if users|length < 1 %}
   {{ There are no users }}
{% endif }

There are several filters available in Twig, some of the most commonly used filters are as follows:

•	 abs: Determines the absolute value of a number {{ count|abs }}

•	 capitalize: Converts the first character of a string to a capital letter; for example,  
{{ 'hello world'|capitalize }} would print Hello world

•	 date: Formats a date to a given format {{ published_date|date("m/d/Y") }}. 
The date filter accepts any date that is supported by the PHP function strtotime, or 
DateTime and DateInterval instances. The date functional also works with the value 
of now, which is the current date and time; for example, {{ "now"|date("m/d/Y") }}.

•	 date_modify: Alters the date value in a variable by, for example, adding one day to 
the value {{ published_date|date_modify("+1 day")|date("m/d/Y") }}. You can 
use any of the date modifiers supported by the PHP function strtotime.

•	 default: Provides the ability to assign a default value to a variable if the variable is 
undefined or empty {{ person|default('anonymous') }}.



Chapter 5 ■ Drupal 8 Theming

102

•	 escape: Provides the ability to escape a value using html, js, css, url, or html_attr 
contexts for safe insertion into the final output. Examples of using HTML and js are 
{{ content|e('html') }} or {{ content|e('js') }}.

•	 first: Returns the first element of an array or a string. For example,  
{{ 'ABCD'|first }} returns A. For arrays, {{ [A,B,C,D]|first }} would also return A.

•	 format: This filter applies string transformations using the printf notation. For 
example, {{ "The user %s is from %s."|format(user.name, user.location) 
}} would output The user John is from New York.

•	 join: Concatenates values from items in a sequence. For example {{[A,B,C,D]|join }} 
would return ABCD. You may also insert values between items being joined, for example 
{{ [A,B,C,D]|join('|') }} would return A|B|C|D.

•	 keys: Returns the keys of an array. For example

{% for key in array|keys %}
   {{ key }}
{% endfor % }

	 would iterate over the keys of an array and print them.

•	 last: Similar to the first filter, last returns the last element in an array or the last 
character in a string {{ '1234'|last}}.

•	 length: Returns the number of items in an array or the length of a string, for example 
{% 'ABCD'|length %} would return 4.

•	 lower: Transforms a string to all lowercase. For example {{ 'HELLO WORLD'|lower }} 
would print hello world.

•	 merge: Merges two arrays into a single array. For example

{% set berries = ['strawberry', 'blackberry', 'raspberry'] %}
{%  set fruit = ['apple', 'orange', 'grapes'] %}
{% set salad = berries|merge(fruit) %}

	 would result in a new array named salad with the combination of berries and 
fruit.

•	 number_format: Transforms a number into a given format using the the same 
functionality as PHP’s number_format function. For example {{ 1234.567| 
number_format(2, '.', ',')}} would return 1,234.56.

•	 replace: Formats a given string by replacing the placeholders with values that 
are specified in the replacement pattern. For example, {{ "All cows are 
%color%."|replace({'%color%': brown}) }} would result in All cows are brown.

•	 round: Rounds a number. For example, {{ 3.145|round }} would output 3. You may 
also specify floor or ceiling to force the rounding to always round down or up. For 
example, {{ 3.145|round(1,'floor') }} would output 3.1.

•	 slice: Extracts a piece of an array or a string given a start position and the number 
and the length of the slice to return. For example, {{ 'ABCD'|slice(2,2) }} would 
output BC.



Chapter 5 ■ Drupal 8 Theming

103

•	 sort: Sorts an array using PHP’s asort function. For example:

{% for user in users | sort %}
   {{ user.name }}
{% endfor %}

	 would sort the user’s array in ascending order.

•	 split: Splits a string by a given delimiter and returns a list of strings. For example:

{% set colors = "red, green, blue"|split(',') %}

	 would result in colors as an array set to ['red', 'green', 'blue']. You can also set 
the limit on how may elements to parse, with the remaining elements set to the last 
element of the array. For example:

{% set addresses = "123, 456, 789, 0"|split(',',2) %}

	 would result in an array of Array[0] = ['123'], Array[1]=['456,789,0'].

•	 striptags: Removes all SGML and XML tags from a string {{ content|striptags }}.

•	 trim: Removes whitespace from the start and end of a string {{ content|trim }}.

•	 upper: Transforms all of the letters in a string to uppercase {{ content|upper }}.

•	 url_encode: Translates a string as a URL segment or a query string. For example,  
{{ "hello world"|url_encode }} would result in "hello%20world".

Twig Tests
Similar to if statements, Twig provides a number of functions that examine various attributes of a variable, 
array, or string:

•	 constant: Checks to see if a variable has the same value as a constant. For example, 
{% if article.status is constant('Article::PUBLISHED') %}.

•	 defined: Tests to see if the variable is defined in the current context. For example,  
{% if user is defined %}.

•	 divisible: Checks to see if a variable is divisible by a number. For example,  
{% if company.members is divisible by (2) %}.

•	 empty: Tests to see if a variable is empty. For example, {% if order.number is 
empty %}.

•	 even: Checks to see if a number is even. For example, {% count is even %}.

•	 iterable: Tests to see if a variable is an array or a transversable object. For example, 
{% if orders is iterable %}.

•	 null: Tests to see if a variable is null. For example, {{ user is null }}.

•	 odd: Tests to see if a number is odd. For example, {{ count is odd }}z.

•	 sameas: Checks to see if two variables are the same value and type.



Chapter 5 ■ Drupal 8 Theming

104

Twig Math Functions
You can perform mathematical calculations on Twig variables using the same operators that are available in 
PHP. Examples include:

•	 Addition {{ 1+1 }}

•	 Subtraction {{ 4-2 }}

•	 Division {{ 8/2 }}

•	 Remainder {{ 11 % 5 }}

•	 Multiplication {{ 5 * 5 }}

•	 Exponentials {{ 2 ** 3 }} (2 to the power of 3)

There are other Twig features and functions that you can find at twig.sensiolabs.org/documentation.

Twig Template Files
Twig template files define the HTML markup, content, and CSS selectors that are used to render a field, 
taxonomy term, block, node, page, or the overall HTML of the site. Twig plays a key role in templates as it 
is the mechanism for rendering content, whether that content is defined as static text in the template or is 
generated by a module in Drupal, when the page is loaded.

Drupal 8 provides the ability to define templates for nearly every element that is rendered on a page, 
including the page itself. The structure of the templates is similar, the primary differences being the scope 
of the elements being rendered by the template. The specific elements that can be controlled through a 
template file are as follows:

•	 Fields, where each individual field rendered on a page may be customized using a 
field specific Twig template. Not all fields require specialized handling, and in this 
case, Drupal 8 provides a generic field template that your theme will use to render 
fields. We cover the naming convention of Twig templates and how the naming 
convention binds the template to a specific field.

•	 Taxonomy terms, where each individual taxonomy term may be customized using 
a taxonomy term specific Twig template. Like the field template, there is a generic 
taxonomy term template that Drupal will use if your theme does not provide one.

•	 Nodes, where a node, such as an article, may be customized to represent the layout 
and structure of your specific use cases through a node-specific Twig template. As 
with all Twig templates, a node template can be as specific as an individual node ID, 
across all nodes of a specific type (e.g., Article), or all nodes in general regardless of 
type or ID. As with other Twig templates, Drupal provides a generic template that 
will be used if your theme does not provide one.

•	 Blocks, where each block may be customized using a Twig template. Block templates, 
like other Twig templates, may be a specific as a single block, or generalized across 
all block on your site. As with other templates, Drupal provides a generic block 
template as part of Drupal 8 core.

•	 Regions. Regions are physical areas on the page where content may be placed. 
Regions, like other elements, may be customized through a Twig template, include 
the ability to develop a template for a specific region, or generally across all regions. 
Like other elements, Drupal 8 provides a generic region template that will be used if 
your theme does not provide one.



Chapter 5 ■ Drupal 8 Theming

105

•	 Pages. The structure of a page may be customized through a page level Twig 
template. As with other elements, a specific page may be controlled through a 
page-specific template, or through a generic page template that applies to all pages 
on your site. Think of page as everything that falls in the <body> tag on a typical 
HTML page. Drupal core provides a generic page template that will be used when 
one that is applicable to the page being rendered is not found in your theme.

•	 HTML. This is the generalized template that provides the markup associated with 
HTML page level elements such as <head> and <title>. 

There are specific naming conventions for template files in order to be identified by Drupal 8. Template 
files that do not follow the naming convention are ignored. The naming conventions for each type of 
template file are as follows:

•	 html.html.twig: The primary overarching template file that contains typical 
elements that would appear in the <html> and <head> section of a HTML page. For 
example, all of the CSS and JavaScript files that are loaded on a page that are global 
in nature.

•	 page.html.twig: The template file associated with the overall page. Think of this as 
the template that controls everything within the <body> tags on a typical HTML page. 
Page template files may be generic, such as page.html.twig, or specific to nodes 
(page--node.html.twig), a specific node (page--node--1.html.twig), or an action 
performed on a node (page--node--edit.html.twig).

•	 region--[region].html.twig: The naming convention for templates that are 
specific to a given region. In the case of the Davinci theme, candidates for region 
templates include region--messages.html.twig, region--header_first.html.
twig, and region--content.html.twig.

•	 block.html.twig: The template file associated with all blocks on your site. You may 
create block specific templates through the naming convention of block--module—
delta.html.twig, where module is the name of the module that is generating the 
block and delta represents the specific block that is being rendered. (For example, 
block--test--news.html.twig would control how the output generated by the block 
delta named news is generated in the module named test.) You may also provide 
Twig template files for blocks generated by views. As an example, a view named 
featured_blogs with a display ID of block_1 would use the following name for the 
template file: block--views--block--featured-blogs-block-1.html.twig. Note the 
replacement of underscores with single dashes in the name of the template file.

•	 node.html.twig: The generic template that is applied to all nodes rendered on the 
site. There are several variants of the node template, including:

•	 node--viewmode.html.twig. Simply replace viewmode with the appropriate 
value, such as node--default.html.twig or node--teaser.html.twig.

•	 node--type.html.twig. Replace type with the content type that is being 
controlled by this template, such as node--article.html.twig.

•	 node--type--viewmode.html.twig. Combining the previous two examples, 
the result would be node--article--teaser.html.twig or node--article--
default.html.twig.



Chapter 5 ■ Drupal 8 Theming

106

•	 node--nodeid.html.twig: Refers to a specific node as defined through its 
nodeid, such as node--1.html.twig.

•	 node--nodeid--viewmode.html.twig: As in previous examples, node--1--
teaser.html.twig would refer to the node with an ID of 1 being rendered as a 
teaser would be controlled through this Twig template file.

•	 taxonomy-term.html.twig: Controls how all taxonomy terms on a site are displayed. 
More specific control is available through:

•	 taxonomy-term--vocabulary-machine-name.html.twig, which controls the 
output of all terms in a specific taxonomy vocabulary.

•	 taxonomy-term--tid.html.twig, which controls the output of a specific 
taxonomy term based on its tid.

•	 field.html.twig: Controls the output of all fields rendered on a site. To add 
specificity, you may use one of the following patterns:

•	 field--field-type.html.twig, replacing field-type with, for example, 
field--text-with-summary.html.twig.

•	 field--field-name.html.twig, replacing field-name with the name of the 
field, for example, field--title.html.twig.

•	 field--content-type.html.twig would control all fields rendered on a 
content type, for example field--article.html.twig.

•	 field--field-name--content-type.html.twig controls a specific field on a 
specific content type, for example field--title--article.html.twig.

There are other less widely used Twig templates, for example comments, comment wrappers, forums, 
and search results. Those naming conventions are as follows:

•	 comment--node-[type].html.twig controls how comments are rendered for a 
specific content type. For example, comment--node-article.html.twig would 
control how comments posted on all articles would be displayed.

•	 comment-wrapper--node[type].html.twig controls the format of the wrapper 
template for comments. For example, comment-wrapper--article.html.twig.

•	 forums--[[container|topic]--forumID].html.twig controls the output of forum 
containers and topics. Specific templates include:

•	 forums.html.twig for the highest level and most generic theming across all 
forums on your site.

•	 forums--containers.html.twig formats the containers defined in your forums 
on your site.

•	 forums--forumID.html.twig formats a specific forum on your site.

•	 forums--containers--forumID.html.twig formats a specific container on a 
specific forum on your site.

•	 forums--topics.html.twig formats all topics across all forums on your site.

•	 forums--topics--forumID.html.twig formats all topics for a specific formum 
on your site.



Chapter 5 ■ Drupal 8 Theming

107

•	 search-result.html.twig: Formats the output of search results on your site. You 
may add more specific templates in the form of search-result--node.html.twig 
for node-based search results or search-result--user.html.twig for user-based 
search results.

With the list of possible template files defined in this list and a knowledge of Twig syntax, it’s time to 
start examining the inner workings of templates.

Standard Twig Templates
Drupal 8 core comes with standard template files for all of the elements that can be rendered on a site using 
Drupal 8 core capabilities. This ensures that even if your theme doesn’t provide a template file, Drupal 
knows how to render standard elements such a fields, blocks, nodes, breadcrumbs, forms, links, tables, 
pages, and other elements. You can find the standard templates in the /core/modules/system/templates 
directory. Take a few moments to navigate to the templates directory to see what is available. The standard 
templates are shown in Listing 5-2 for reference.

Listing 5-2.  Drupal 8 Templates

├── admin-block-content.html.twig
├── admin-block.html.twig
├── admin-page.html.twig
├── authorize-report.html.twig
├── block--local-actions-block.html.twig
├── block--system-branding-block.html.twig
├── block--system-menu-block.html.twig
├── block--system-messages-block.html.twig
├── breadcrumb.html.twig
├── checkboxes.html.twig
├── confirm-form.html.twig
├── container.html.twig
├── datetime-form.html.twig
├── datetime-wrapper.html.twig
├── details.html.twig
├── dropbutton-wrapper.html.twig
├── entity-add-list.html.twig
├── feed-icon.html.twig
├── field-multiple-value-form.html.twig
├── field.html.twig
├── fieldset.html.twig
├── form-element-label.html.twig
├── form-element.html.twig
├── form.html.twig
├── html.html.twig
├── image.html.twig
├── indentation.html.twig
├── input.html.twig
├── install-page.html.twig
├── item-list.html.twig
├── links.html.twig
├── maintenance-page.html.twig



Chapter 5 ■ Drupal 8 Theming

108

├── maintenance-task-list.html.twig
├── mark.html.twig
├── menu-local-action.html.twig
├── menu-local-task.html.twig
├── menu-local-tasks.html.twig
├── menu.html.twig
├── page-title.html.twig
├── page.html.twig
├── pager.html.twig
├── progress-bar.html.twig
├── radios.html.twig
├── region.html.twig
├── select.html.twig
├── status-messages.html.twig
├── status-report.html.twig
├── system-admin-index.html.twig
├── system-config-form.html.twig
├── system-modules-details.html.twig
├── system-modules-uninstall.html.twig
├── system-themes-page.html.twig
├── table.html.twig
├── tablesort-indicator.html.twig
├── textarea.html.twig
├── time.html.twig
└── vertical-tabs.html.twig

If you want to override the output of an element and you are creating a custom theme, you can copy 
the template file from /core/modules/system/templates to your themes template directory and modify the 
structure of the template file to meet your needs.

Modifying the page.html.twig Template File
One of the most common modifications to template files is to override the page.html.twig template file to 
meet a specific set of requirements and to render the regions defined in a theme. If we revisit the Davinci 
theme, we created a number of regions that currently aren’t rendering on a page when we view, for example, 
the homepage of the Drupal 8 site. The reason they aren’t rendering is that the page.html.twig file that 
Drupal 8 core provides in /core/modules/system/templates doesn’t know that these regions exist. Let’s 
fix that situation by copying the page.html.twig file from core and placing that copy in the Davinci theme’s 
templates directory. Once it’s been copied, open the page.html.twig file in your favorite editor to examine 
the contents of the file.

At the top of the file you will notice a large docblock that describes the variables that are available to 
the page.html.twig file, as defined by core. There are general informational variables, such as base_path, 
is_front and front_page, as well as content specific variables such as node. The default docblock also lists 
the regions that are available in Drupal 8 core.

{#
/**
 * @file
 * Default theme implementation to display a single page.
 *



Chapter 5 ■ Drupal 8 Theming

109

 * The doctype, html, head and body tags are not in this template. Instead they
 * can be found in the html.html.twig template in this directory.
 *
 * Available variables:
 *
 * General utility variables:
 * - base_path: The base URL path of the Drupal installation. Will usually be
 *   "/" unless you have installed Drupal in a sub-directory.
 * - is_front: A flag indicating if the current page is the front page.
 * - logged_in: A flag indicating if the user is registered and signed in.
 * - is_admin: A flag indicating if the user has permission to access
 *   administration pages.
 *
 * Site identity:
 * - front_page: The URL of the front page. Use this instead of base_path when
 *   linking to the front page. This includes the language domain or prefix.
 *
 * Page content (in order of occurrence in the default page.html.twig):
 * - messages: Status and error messages. Should be displayed prominently.
 * - node: Fully loaded node, if there is an automatically-loaded node
 *   associated with the page and the node ID is the second argument in the
 *   page's path (e.g. node/12345 and node/12345/revisions, but not
 *   comment/reply/12345).
 *
 * Regions:
 * - page.header: Items for the header region.
 * - page.primary_menu: Items for the primary menu region.
 * - page.secondary_menu: Items for the secondary menu region.
 * - page.highlighted: Items for the highlighted content region.
 * - page.help: Dynamic help text, mostly for admin pages.
 * - page.content: The main content of the current page.
 * - page.sidebar_first: Items for the first sidebar.
 * - page.sidebar_second: Items for the second sidebar.
 * - page.footer: Items for the footer region.
 * - page.breadcrumb: Items for the breadcrumb region.
 *
 * @see template_preprocess_page()
 * @see html.html.twig
 *
 * @ingroup themeable
 */
#}

The first step in updating the page.html.twig file is to revise the list of regions that are available on the 
page to match the list of regions that were defined in the davinci.info.yml file. For reference, those regions 
are as follows:

regions:
  messages: 'Messages'
  header_first: 'Header first'
  header_second: 'Header second'



Chapter 5 ■ Drupal 8 Theming

110

  header_third: 'Header third'
  navbar: 'Nav bar'
  help: 'help'
  features_first: 'Features first'
  features_second: 'Features second'
  features_third: 'Features third'
  features_fourth: 'Features fourth'
  highlighted: 'Highlighted'
  content: 'Main content'
  sidebar_first: 'Sidebar first'
  sidebar_second: 'Sidebar second'
  tertiary_first: 'Tertiary first'
  tertiary_second: 'Tertiary second'
  tertiary_third: 'Tertiary third'
  tertiary_fourth: 'Tertiary fourth'
  footer: 'Footer'
  page_top: 'Page top'
  page_bottom: 'Page bottom'

Using an editor, we update the docblock to reflect the revised list of regions, as shown here:

* Regions:
 * - page.message: The messages area.
 * - page.header_first: First header region.
 * - page.header_second: Second header region.
 * - page.header_third: Third header region.
 * - page.help: Help region
 * - page.features_first: First featured region.
 * - page.features_second: Second featured region.
 * - page.features_third: Third featured region.
 * - page.features_fourth: Fourth featured region.
 * - page.highlighted: Highlighted region.
 * - page.content: The main content of the current page.
 * - page.sidebar_first: Items for the first sidebar.
 * - page.sidebar_second: Items for the second sidebar.
 * - page.tertiary_first: First tertiary region.
 * - page.tertiary_second: Second tertiary region.
 * - page.tertiary_third: Third tertiary region.
 * - page.tertiary_fourth: Fourth tertiary region.
 * - page.footer: Items for the footer region.

Updating the docblock doesn’t change the functionality of the template; it only provides reference to 
developers who may use this template in the future.

The next step is to update the template to render each of the regions that are currently not part of the 
existing page.html.twig template file. If you examine the markup and Twig elements of template file, you’ll see 
HTML markup and Twig elements as described in the previous sections—for example, {{ page.header }}, 
which outputs everything assigned to the header region on the Admin ➤ Structure ➤ Block Layout page.



Chapter 5 ■ Drupal 8 Theming

111

<div class="layout-container">

  <header role="banner">
    {{ page.header }}
  </header>

  {{ page.primary_menu }}
  {{ page.secondary_menu }}

  {{ page.breadcrumb }}

  {{ page.highlighted }}

  {{ page.help }}

  <main role="main">
    <a id="main-content" tabindex="-1"></a>{# link is in html.html.twig #}

    <div class="layout-content">
      {{ page.content }}
    </div>{# /.layout-content #}

    {% if page.sidebar_first %}
      <aside class="layout-sidebar-first" role="complementary">
        {{ page.sidebar_first }}
      </aside>
    {% endif %}

    {% if page.sidebar_second %}
      <aside class="layout-sidebar-second" role="complementary">
        {{ page.sidebar_second }}
      </aside>
    {% endif %}

  </main>

  {% if page.footer %}
    <footer role="contentinfo">
      {{ page.footer }}
    </footer>
  {% endif %}

</div>{# /.layout-container #}

We changed the names of some of the regions and added new regions that did not exist in the original 
template. To enable those regions so that they display, we need to edit the template and rename the regions 
we changed, and add the regions that do not exist in the off-the-shelf version of page.html.twig. This 
section assumes that you know HTML markup and CSS syntax and focuses on the Twig elements that need 
to be added to this page to fully render all of the regions.



Chapter 5 ■ Drupal 8 Theming

112

After revising the template, the contents of the file are now set properly to render all of the regions that 
we defined in the davinci.html.yml file. As shown here, we added all of the regions by adding a {{ page.
region_name }} Twig element, replacing region_name with the name of the regions as defined in the 
davinci.html.twig file. Note that the name used to replace region_name is the value for the region to the 
left of the : and not the description that appears to the right. For example, {{ page.header_third }} is 
the Twig representation of header_third: 'Header third' from the davinci.html.yml file. The updated 
template file, excluding the docblock, is as follows:

<div class="layout-container">

  <header role="banner">
    <div class="header_first">
      {{ page.header_first }}
    </div>
    <div class="header_second">
      {{ page.header_second }}
    </div>
    <div class="header_third">
      {{ page.header_third }}
    </div>
  </header>

  <div class="navbar">
    {{ page.navbar }}
  </div>

  {{ page.breadcrumb }}

  {{ page.help }}

  <div class="features">
    <div class="features_first">
       {{ page.features_first }}
    </div>
    <div class="features_second">
       {{ page.features_second }}
    </div>
    <div class="features_third">
       {{ page.features_third }}
    </div>
  </div>

  {{ page.highlighted }}

  <main role="main">
    <a id="main-content" tabindex="-1"></a>{# link is in html.html.twig #}

    <div class="layout-content">
      {{ page.content }}
    </div>{# /.layout-content #}



Chapter 5 ■ Drupal 8 Theming

113

    {% if page.sidebar_first %}
      <aside class="layout-sidebar-first" role="complementary">
        {{ page.sidebar_first }}
      </aside>
    {% endif %}
    {% if page.sidebar_second %}
      <aside class="layout-sidebar-second" role="complementary">
        {{ page.sidebar_second }}
      </aside>
    {% endif %}

  </main>

  <div class="tertiary">
    {% if page.tertiary_first %}
      <div class="tertiary_first">
        {{ page.tertiary_first }}
      </div>
    {% endif %}
    {% if page.tertiary_second %}
      <div class="tertiary_second">
        {{ page.tertiary_second }}
      </div>
    {% endif %}
    {% if page.tertiary_third %}
      <div class="tertiary_third">
        {{ page.tertiary_third }}
      </div>
    {% endif %}
  </div>

  {% if page.footer %}
    <footer role="contentinfo">
      {{ page.footer }}
    </footer>
  {% endif %}

</div>{# /.layout-container #}

After examining the template file, you’ll see that the primary changes were the addition of a few CSS 
classes, a few additional conditionals check to see if a region has a value before rendering it on the page, and 
the Twig statements to render the additional regions. After saving the template and rebuilding cache, we add 
a sample block to each of the regions on the theme and test to see if all the regions appear on the homepage 
(see Figure 5-5).



Chapter 5 ■ Drupal 8 Theming

114

While they are stacked on top of each other due to the fact that we haven’t applied any CSS formatting 
to the regions, the updates to the page.html.twig template demonstrate that the new regions are rendering 
content on the homepage. The next step is to apply CSS to classes that we added to format the page as 
desired. We’ll cover adding CSS in a moment, but next let’s look at two of the other common templates that 
most developers want to modify on their sites—the node and block templates.

Modifying the node.html.twig Template
Following the same approach as for the page template, copy the default node.html.twig template from 
core/modules/node/templates/node.html.twig to my themes/custom/davinci/templates directory. 
Note that the node template is found in the core/modules/node directory and not the core/modules/system 
directory, as the node module is the one responsible for theming nodes.

Figure 5-5.  A partial listing of the new regions on the homepage



Chapter 5 ■ Drupal 8 Theming

115

After copying the template file, examine the docblock and look at the variables that are available for you 
to use in your node.html.twig template file. Most of the variables are self-explanatory. For example, url 
provides the value of the URL used to access the node being displayed. But there are others that are not quite 
so obvious, such as content and attributes.

Displaying and Hiding Content Fields
Content is the object that contains all of a node’s fields that are to be rendered given a specific display mode 
(e.g., teaser or default). Using {{ content }} renders every field that is associated with the current display 
mode. You may encounter scenarios where you need to render specific fields, not every field associated 
with content. To render specific fields, use {{ content.field_name }} and replace field_name with the 
appropriate field. For example, {{ content.body }}. To find the list of fields that are available, visit the 
Structure ➤ Content Types and click the Manage Display link in the Operations column for the content 
type that you are working with. Select the display mode that you are working with to view the list of fields. 
Alternatively, assuming you have debugging turned on and the Devel module and Devel Kint enabled 
(drupal.org/project/devel), you may use {{ kint(content) }} in your template file to print a list of all 
the fields associated with the content object, as shown in Figure 5-6.

Figure 5-6.  The Content object displayed by kint

You may also exclude fields from being displayed using for example {{ content|without ('comment') }}. 
This would render content without the comment field. You may also exclude multiple fields using  
{{ content|without('comment', 'field_tags') }}. This becomes useful when you need to display certain 
fields from the content object wrapped in specific CSS; for example, you want comments to appear in a column 
to the right of the body and not below the body. You could accomplish this by using the following:

<div class='body-only'>
  {{ content|without('comment') }}
</div>
<div class='comments-only'>
  {{ content.comment}}
</div>



Chapter 5 ■ Drupal 8 Theming

116

Using Attributes
Drupal 8 provides a standard means for generating CSS classes for divs using an attribute array. The base 
attribute array is created in /core/includes/theme.inc in a template preprocess function (more on 
preprocess functions later in this chapter):

$variables = array(
    'attributes' => array(),
    'title_attributes' => array(),
    'content_attributes' => array(),
    'title_prefix' => array(),
    'title_suffix' => array(),
    'db_is_active' => !defined('MAINTENANCE_MODE'),
    'is_admin' => FALSE,
    'logged_in' => FALSE,
  );

The attributes array is a common placeholder for all CSS class definitions that may be applied to a div 
in your template. For example, you may have a common set of classes that you want to apply to several divs. 
Instead of entering this over and over again:

<div class='red white blue'>

The preferred way is to add red white blue to the attributes array and then use this:

<div{{ attributes }}>

Note that in theme.inc there are multiple attributes that may be augmented for your specific needs, 
attributes, title_attributes, and content_attributes. You may also create your own additions by 
creating new variables, and many modules do just that.

Adding classes to the attributes arrays is relatively simple. In the previous example—using red white 
blue as representative CSS classes that we want to add to several divs—we would use the following:

<div{{ attributes.addClass('red white blue') }}>

From that point forward, any time that we use <div{{ attributes }}>, we will automatically get 
red white blue added as classes to the divs. You may also remove classes from the attributes array using 
attributes.removeClass('blue'), replacing blue with the class that you want to remove. Removing a class 
removes it permanently from the attributes array, meaning it will no longer be applied in future uses of  
{{ attributes }}.

You may also add attributes—for example, you can create an attribute named id and assign a value to it 
using attributes.setAttribue(attribute, value).

As mentioned previously, attributes isn’t the only array available for assigning classes. You may use the 
off-the-shelf title_attributes array to add CSS classes to titles and then render titles using, for example, 
<h1{{ title_attributes }}>. You may also use content_attributes, title_prefix, title_suffix, or any 
other attributes that you define using preprocess functions.



Chapter 5 ■ Drupal 8 Theming

117

Modifying the block.html.twig Template
The block module provides a base template that will be used by default if your theme does not provide a 
specific block.html.twig template. To override the block template, copy block.html.twig from /core/
modules/block/templates to your themes templates directory and examine the contents of that template 
file. As with other core templates, the docblock describes the variables that are presented by the block 
module for use in your template file.

/**
 * @file
 * Default theme implementation to display a block.
 *
 * Available variables:
 * - plugin_id: The ID of the block implementation.
 * - label: The configured label of the block if visible.
 * - configuration: A list of the block's configuration values.
 *   - label: The configured label for the block.
 *   - label_display: The display settings for the label.
 *   - provider: The module or other provider that provided this block plugin.
 *   - Block plugin specific settings will also be stored here.
 * - content: The content of this block.
 * - attributes: array of HTML attributes populated by modules, intended to
 *   be added to the main container tag of this template.
 *   - id: A valid HTML ID and guaranteed unique.
 * - title_attributes: Same as attributes, except applied to the main title
 *   tag that appears in the template.
 * - title_prefix: Additional output populated by modules, intended to be
 *   displayed in front of the main title tag that appears in the template.
 * - title_suffix: Additional output populated by modules, intended to be
 *   displayed after the main title tag that appears in the template.
 *
 * @see template_preprocess_block()
 *
 * @ingroup themeable
 */

Significantly simpler than the node template, the block template really only has two variables that are 
rendered—the title (which is called label) and the body of the block, which is called content.

<div{{ attributes }}>
  {{ title_prefix }}
  {% if label %}
    <h2{{ title_attributes }}>{{ label }}</h2>
  {% endif %}
  {{ title_suffix }}
  {% block content %}
    {{ content }}
  {% endblock %}
</div>



Chapter 5 ■ Drupal 8 Theming

118

As you examine this code, you’ll see the patterns that we discussed previously in this chapter. The 
template renders the values in the attributes array, if there are any, as CSS classes in the opening div. It 
renders the value stored in title_prefix and then checks to see if the label has a value. If it does, it renders 
the label as an H2 using the CSS classes defined in the title_attributes array. It then renders the values of 
title_suffix and then renders the content associated with the block.

■■ Note T he statement {% block content %} and its paired {% endblock %} should not be confused with 
the Drupal Block module. The block in this case specifies a code block and has nothing to do with the Block 
module. It is just an unfortunate collision of common terms.

While there isn’t much to the block template, there may be scenarios where you have added custom 
fields to a block and you need to render those fields in a specific div, or there may be other unique scenarios 
where you need to override the default behavior of the core block.html.twig template. Follow the patterns 
and principles described elsewhere in this chapter. You are on your way to customizing block output.

Modifying the field.html.twig Template
The last template file that we examine is the field template. In most cases you won’t override the generic field 
template but rather you will create a template file for a specific field. As mentioned earlier in this chapter, 
template files may be created for specific pages, nodes, blocks, and fields by simply following the naming 
patters associated with that template file to apply a specific template file to a specific element.

In the case of the field templates, the naming conventions are as follows:

•	 field--field-type.html.twig, replacing field-type with, for example, field--
text-with-summary.html.twig.

•	 field--field-name.html.twig, replacing field-name with the name of the field, for 
example, field--title.html.twig.

•	 field--content-type.html.twig controls all fields rendered on a content type, for 
example, field--article.html.twig.

•	 field--field-name--content-type.html.twig controls a specific field on a specific 
content type, for example field--title--article.html.twig.

To demonstrate the capabilities of targeting a specific field, we’ll create a template for the body field that 
will wrap the body with additional classes regardless of where it is rendered on the site. To do so, we copy 
the default template from core/modules/system/templates/field.html.twig to the Davinci templates 
directory and name it field--body.html.twig.

The docblock at the top of the template file lists all of the variables that are available for use in this template:

* Available variables:
 * - attributes: HTML attributes for the containing element.
 * - label_hidden: Whether to show the field label or not.
 * - title_attributes: HTML attributes for the title.
 * - label: The label for the field.
 * - multiple: TRUE if a field can contain multiple items.



Chapter 5 ■ Drupal 8 Theming

119

 * - items: List of all the field items. Each item contains:
 *   - attributes: List of HTML attributes for each item.
 *   - content: The field item's content.
 * - entity_type: The entity type to which the field belongs.
 * - field_name: The name of the field.
 * - field_type: The type of the field.
 * - label_display: The display settings for the label.

The standard template renders those fields using the following structure:

{% if label_hidden %}
  {% if multiple %}
    <div{{ attributes }}>
      {% for item in items %}
        <div{{ item.attributes }}>{{ item.content }}</div>
      {% endfor %}
    </div>
  {% else %}
    {% for item in items %}
      <div{{ attributes }}>{{ item.content }}</div>
    {% endfor %}
  {% endif %}
{% else %}
  <div{{ attributes }}>
    <div{{ title_attributes }}>{{ label }}</div>
    {% if multiple %}
      <div>
    {% endif %}
    {% for item in items %}
      <div{{ item.attributes }}>{{ item.content }}</div>
    {% endfor %}
    {% if multiple %}
      </div>
    {% endif %}
  </div>
{% endif %}

Using the knowledge of Twig gained throughout this chapter, you can see that the template renders one-
to-many instances of a field, displaying the contents of the field and the label associated with that field. Since 
Drupal provides the ability to create one-to-many instances of field content for a given node, the template 
addresses this scenario through the for items in items loops, displaying each instance of the field.

For demonstration purposes, we are going to update the body template to do one thing, display the 
entity_type and field_type. While likely not a high value change to the template, it does demonstrate the 
ability to override a specific field. Since we can never be certain whether a content type may be set up to 
accept more than one instance of the body field, we update the template in multiple places just to ensure 
that we catch every scenario. After the updates, the template appears as shown here. Note that we’ve added 
{{ entity_type }} and {{ field_type }} to the template file in multiple places.



Chapter 5 ■ Drupal 8 Theming

120

{% if label_hidden %}
  {% if multiple %}
    <div{{ attributes }}>
      {% for item in items %}
        <div{{ item.attributes }}>{{ item.content }}</div>
      {% endfor %}
    </div>
  {% else %}
    {% for item in items %}
      <div{{ attributes }}>{{ item.content }}</div>
        <div>
          Entity type: {{ entity_type }}
        </div>
        <div>
          Field type: {{ field_type }}
        </div>
    {% endfor %}
  {% endif %}
{% else %}
  <div{{ attributes }}>
    <div{{ title_attributes }}>{{ label }}</div>
    {% if multiple %}
      <div>
    {% endif %}
    {% for item in items %}
      <div{{ item.attributes }}>{{ item.content }}</div>
    {% endfor %}
    {% if multiple %}
      </div>
    {% endif %}
    <div>
      Entity type: {{ entity_type }}
    </div>
    <div>
      Field type: {{ field_type }}
    </div>
  </div>
{% endif %}

After saving the template and rebuilding the cache, the resulting output is as shown in Figure 5-7.



Chapter 5 ■ Drupal 8 Theming

121

There are virtually limitless things you can do with template files. The limitations are a) can it be 
done with Twig and b) does the module that generates the output provide access to those values through a 
variable that is accessible to Twig? These issues are the topic of the next section.

Exposing Variables to Twig
For most modules, one of the primary objectives is to generate output that can be rendered on a page 
through a Twig template. Facilitating that process requires a few simple steps, including the ability to define 
what template files your module uses to render that content. To demonstrate how the connection between a 
module and a Twig template works, we’ll use Drupal 8’s Forum module as the example.

Navigate to /core/modules/forum and open the forum.module file with your favorite editor. Search for 
hook_theme and you’ll find the following function.

/**
 * Implements hook_theme().
 */
function forum_theme() {
  return array(
    'forums' => array(
       �'variables' => array('forums' => array(), 'topics' => array(), 'topics_pager' => 

array(), 'parents' => NULL, 'term' => NULL, 'sortby' => NULL, 'forum_per_page' => 
NULL, 'header' => array()),

    ),
    'forum_list' => array(
      'variables' => array('forums' => NULL, 'parents' => NULL, 'tid' => NULL),
    ),

Figure 5-7.  The addition of the entity_type and field_type output to the field template



Chapter 5 ■ Drupal 8 Theming

122

    'forum_icon' => array(
      �'variables' => array('new_posts' => NULL, 'num_posts' => 0, 'comment_mode' => 0, 

'sticky' => 0, 'first_new' => FALSE),
    ),
    'forum_submitted' => array(
      'variables' => array('topic' => NULL),
    ),
  );
}

The forum_theme function returns an array of various elements. We focus on the first element of the 
array named forums. You can see that the forums array includes another array named variables, and within 
that array you will find additional arrays named forums, topics, topics_pager, parents, term, sortby, 
forum_per_page, and header. Each of those variables is registered with the Twig theme engine and is 
available to the template files that are used by the Forum module.

Those variable, now registered with the theme engine, are ready to receive values through a preprocess 
function. In the case of the Forum module, that preprocess function is named template_preprocess_
forums. In this function, the output generated by the module is assigned to the variables that were defined in 
the forum_theme function. Once they are populated, they are ready to render through a template file.

Search the forum.module for template_process_forums and you’ll find the function that is listed here. 
The first section is the docblock that specifies which template file is used to render a forum and the variables 
that are populated and exposed to the template file. Again, those variables were originally defined and 
registered in the forum_theme function. While somewhat complex, the function demonstrates one simple 
concept—place values into the various variables that are registered by forum_theme and exposed to the 
template.

/**
 * Prepares variables for forums templates.
 *
 * Default template: forums.html.twig.
 *
 * @param array $variables
 *   An array containing the following elements:
 *   - forums: An array of all forum objects to display for the given taxonomy
 *     term ID. If tid = 0 then all the top-level forums are displayed.
 *   - topics: An array of all the topics in the current forum.
 *   - parents: An array of taxonomy term objects that are ancestors of the
 *     current term ID.
 *   - term: Taxonomy term of the current forum.
 *   - sortby: One of the following integers indicating the sort criteria:
 *     - 1: Date - newest first.
 *     - 2: Date - oldest first.
 *     - 3: Posts with the most comments first.
 *     - 4: Posts with the least comments first.
 *   - forum_per_page: The maximum number of topics to display per page.
 */
function template_preprocess_forums(&$variables) {
  $variables['tid'] = $variables['term']->id();
  �if ($variables['forums_defined'] = count($variables['forums']) || 
count($variables['parents'])) {



Chapter 5 ■ Drupal 8 Theming

123

    if (!empty($variables['forums'])) {
      $variables['forums'] = array(
        '#theme' => 'forum_list',
        '#forums' => $variables['forums'],
        '#parents' => $variables['parents'],
        '#tid' => $variables['tid'],
      );
    }

    �if ($variables['term'] && empty($variables['term']->forum_container->value) && 
!empty($variables['topics'])) {

      $forum_topic_list_header = $variables['header'];

      $table = array(
        '#theme' => 'table__forum_topic_list',
        '#responsive' => FALSE,
        '#attributes' => array('id' => 'forum-topic-' . $variables['tid']),
        '#header' => array(),
        '#rows' => array(),
      );

      if (!empty($forum_topic_list_header)) {
        $table['#header'] = $forum_topic_list_header;
      }

      /** @var \Drupal\node\NodeInterface $topic */
      foreach ($variables['topics'] as $id => $topic) {
        $variables['topics'][$id]->icon = array(
          '#theme' => 'forum_icon',
          '#new_posts' => $topic->new,
          '#num_posts' => $topic->comment_count,
          '#comment_mode' => $topic->comment_mode,
          '#sticky' => $topic->isSticky(),
          '#first_new' => $topic->first_new,
        );

        // We keep the actual tid in forum table, if it's different from the
        // current tid then it means the topic appears in two forums, one of
        // them is a shadow copy.
        if ($variables['tid'] != $topic->forum_tid) {
          $variables['topics'][$id]->moved = TRUE;
          $variables['topics'][$id]->title = $topic->getTitle();
          �$variables['topics'][$id]->message = \Drupal::l(t('This topic has been moved'), 

new Url('forum.page', ['taxonomy_term' => $topic->forum_tid]));
        }
        else {
          $variables['topics'][$id]->moved = FALSE;
          �$variables['topics'][$id]->title_link = \Drupal::l($topic->getTitle(),  

$topic->urlInfo());
          $variables['topics'][$id]->message = '';
        }



Chapter 5 ■ Drupal 8 Theming

124

        $forum_submitted = array('#theme' => 'forum_submitted', '#topic' => (object) array(
          'uid' => $topic->getOwnerId(),
          'name' => $topic->getOwner()->getDisplayName(),
          'created' => $topic->getCreatedTime(),
        ));
        $variables['topics'][$id]->submitted = drupal_render($forum_submitted);
        $forum_submitted = array(
          '#theme' => 'forum_submitted',
          '#topic' => isset($topic->last_reply) ? $topic->last_reply : NULL,
        );
        $variables['topics'][$id]->last_reply = drupal_render($forum_submitted);

        $variables['topics'][$id]->new_text = '';
        $variables['topics'][$id]->new_url = '';

        if ($topic->new_replies) {
          $page_number = \Drupal::entityManager()->getStorage('comment')
            �->getNewCommentPageNumber($topic->comment_count, $topic->new_replies, $topic, 

'comment_forum');
          $query = $page_number ? array('page' => $page_number) : NULL;
          �$variables['topics'][$id]->new_text = \Drupal::translation()->formatPlural 

($topic->new_replies, '1 new post<span class="visually-hidden"> in topic %title 
</span>', '@count new posts<span class="visually-hidden"> in topic %title</span>', 
array('%title' => $variables['topics'][$id]->label()));

          �$variables['topics'][$id]->new_url = \Drupal::url('entity.node.canonical', ['node' 
=> $topic->id()], ['query' => $query, 'fragment' => 'new']);

        }

        // Build table rows from topics.
        $row = array();
        $row[] = array(
          'data' => array(
            $topic->icon,
            array(
              �'#markup' => '<div class="forum__title"><div>' . $topic->title_link .  

'</div><div>' . $topic->submitted . '</div></div>',
            ),
          ),
          'class' => array('forum__topic'),
        );

        if ($topic->moved) {
          $row[] = array(
            'data' => $topic->message,
            'colspan' => '2',
          );
        }
        else {
          $new_replies = '';
          if ($topic->new_replies) {
            �$new_replies = '<br /><a href="' . $topic->new_url . '">' . $topic->new_text . '</a>';
          }



Chapter 5 ■ Drupal 8 Theming

125

          $row[] = array(
            'data' => [
              [
                '#prefix' => $topic->comment_count,
                '#markup' => $new_replies,
              ],
            ],
            'class' => array('forum__replies'),
          );
          $row[] = array(
            'data' => $topic->last_reply,
            'class' => array('forum__last-reply'),
          );
        }
        $table['#rows'][] = $row;
      }

      $variables['topics'] = $table;
      $variables['topics_pager'] = array(
        '#type' => 'pager',
      );
    }
  }
}

With the variables defined and populated with information that is ready to render through a template 
file, the next step is to define what template files should be used to render the variables. This is the job of the 
theme suggestion’s hook. Within the forum.module file, search for forum_theme_suggestions_forums and 
you’ll find the function that defines the various suggestions for the name of the theme file that Twig should 
use to render the output generated by the Forum module.

/**
 * Implements hook_theme_suggestions_HOOK().
 */
function forum_theme_suggestions_forums(array $variables) {
  $suggestions = array();
  $tid = $variables['term']->id();

  // Provide separate template suggestions based on what's being output. Topic
  // ID is also accounted for. Check both variables to be safe then the inverse.
  // Forums with topic IDs take precedence.
  if ($variables['forums'] && !$variables['topics']) {
    $suggestions[] = 'forums__containers';
    $suggestions[] = 'forums__' . $tid;
    $suggestions[] = 'forums__containers__' . $tid;
  }
  elseif (!$variables['forums'] && $variables['topics']) {
    $suggestions[] = 'forums__topics';
    $suggestions[] = 'forums__' . $tid;
    $suggestions[] = 'forums__topics__' . $tid;
  }



Chapter 5 ■ Drupal 8 Theming

126

  else {
    $suggestions[] = 'forums__' . $tid;
  }

  return $suggestions;
}

The order of the suggestions defined in the function is important, as that is the order of precedence 
that Twig uses when searching for an applicable template to render what is being sent to the theme layer to 
render on the page. As shown, the $suggestions array is populated with various options based on whether 
the forum is associated with a taxonomy term ID or not, and moves from general templates applied to all 
forums, forums__containers, to specific containers within a term ID, 'forums__containers__'.$tid.

Examining the template files completes the picture of how values from a module are rendered on a 
page. Let’s pick the simplest template, forums.html.twig. In this template file, you’ll find three simple 
output statements—{{ forums }}, {{ topics }}, and {{ topics_pager }}.

{#
/**
 * @file
 * Default theme implementation to display a forum.
 *
 * May contain forum containers as well as forum topics.
 *
 * Available variables:
 * - forums: The forums to display (as processed by forum-list.html.twig).
 * - topics: The topics to display.
 * - topics_pager: The topics pager.
 * - forums_defined: A flag to indicate that the forums are configured.
 *
 * @see template_preprocess_forums()
 *
 * @ingroup themeable
 */
#}
{% if forums_defined %}
  {{ forums }}
  {{ topics }}
  {{ topics_pager }}
{% endif %}

If you trace all the way back to the forum_theme function, you’ll see that those variables were defined here:

'variables' => array(
    'forums' => array(),
    'topics' => array(),
    'topics_pager' => array(),
    'parents' => NULL,
    'term' => NULL,
    'sortby' => NULL,
    'forum_per_page' => NULL,
    'header' => array())



Chapter 5 ■ Drupal 8 Theming

127

And were populated in the preprocess function:

$variables['forums'] = array(
  '#theme' => 'forum_list',
  '#forums' => $variables['forums'],
  '#parents' => $variables['parents'],
  '#tid' => $variables['tid'],
);
$variables['topics'] = $table;
$variables['topics_pager'] = array(
  '#type' => 'pager',
);

While there are many pieces to the overall solution for how content makes it way to the physical page, 
the process is relatively simple and the patterns are well defined. For additional details on preprocess 
functions and theme hooks, visit drupal.org/docs/8.

Applying CSS to Your Theme
With all of the non-styling related pieces in place, the next step in beautifying your theme is to apply styling 
to the CSS elements defined in your template files. There are three steps in Drupal 8 for creating CSS:

	 1.	 Create the stylesheet(s) that will be loaded and used to render elements as you 
want them to appear.

	 2.	 Instruct the theme layer how to find the CSS files that you created.

	 3.	 Update the .info.yaml file.

Creating the Stylesheets
Stylesheets in Drupal 8 are stored in the theme’s directory following a scalable and modular architecture for 
CSS (SMACSS) style categorization of its CSS rules (visit smacss.com for a complete overview of SMACSS):

•	 Base: CSS reset/normalize plus HTML element styling

•	 Layout: Macro arrangement of a web page, including any grid systems

•	 Component: Discrete, reusable UI elements

•	 State: Styles that deal with client-side changes to components

•	 Theme: Purely visual styling (“look-and-feel”) for a component

Following SMACSS, the directory structure in the theme’s directory where stylesheets are stored is as 
follows:

├── css
│   ├── base
│   ├── component
│   ├── layout
│   ├── state
│   └── theme



Chapter 5 ■ Drupal 8 Theming

128

Since the sample stylesheet deals with general look-and-feel, we’ll create a file named styles.css in 
the css/theme directory using any editor. In that file, we enter the following and then save the file.

h1 {
  text-transform: uppercase;
  text-decoration: underline;
}

We could at this point continue to build out other stylesheets following the SMACSS guidelines to 
address all of the styling requirements for the theme. However, to keep the concept simple, we’ll next focus 
on creating the libraries file.

Creating the libraries.yml File
The next step is to create a .libraries.yml file that’s used by Drupal to identify all of the CSS and JavaScript 
files that are associated with my theme. The library file for the Davinci theme will at this point only define 
the global stylesheets that are to be loaded. The library file will be expanded later in this chapter to address 
additional requirements. You can create the davinci.libraries.yml file in the root directory of the Davinci 
theme using any editor. In that file, enter the following:

global-styling:
  version: 1.x
  css:
    theme:
      css/theme/styles.css: {}

In the file, the global-styling is a unique library that will be loaded when instructed to do so in the 
davinci.info.yml file. Associated with global-styling are various attributes such as the version number 
of this library, and in this case, the CSS that is going to be used and applied to the theme and where it resides 
in relation to the theme, in the css/theme subdirectory. The structure of the .yml file is important, so be 
mindful of the indentation, as spacing means something to the yaml parser. 

Loading the Libraries Through the .info.yml File
After saving the libraries file, the final step is to instruct the theme to load the global-styling library. Open 
the davinci.info.yml file and update the file to appear as shown here. Note the addition of the libraries 
statement and, below that, statement the instruction to load the library associated with the Davinci theme 
named global-styling, which is what we just created in the davinci.libraries.yml file in the previous step.

name: davinci
type: theme
description: A Drupal 8 theme
core: 8.x
libraries:
 - davinci/global-styling
regions:
  messages: 'Messages'



Chapter 5 ■ Drupal 8 Theming

129

  header_first: 'Header first'
  header_second: 'Header second'
  header_third: 'Header third'
  navbar: 'Nav bar'
  features_first: 'Features first'
  features_second: 'Features second'
  features_third: 'Features third'
  features_fourth: 'Features fourth'
  highlighted: 'Highlighted'
  content: 'Main content'
  sidebar_first: 'Sidebar first'
  sidebar_second: 'Sidebar second'
  tertiary_first: 'Tertiary first'
  tertiary_second: 'Tertiary second'
  tertiary_third: 'Tertiary third'
  tertiary_fourth: 'Tertiary fourth'
  footer: 'Footer'
  page_top: 'Page top'
  page_bottom: 'Page bottom'

After saving all the files and rebuilding cache, you’re ready to see if the CSS changes took effect. The 
results are shown in Figure 5-8.

Figure 5-8.  Demonstrating the successful application of CSS

Success! The demonstration shows that the CSS file was successfully loaded and applied to a node’s 
H1 title. You can expand on this by adding stylesheets to the global-styling library, or you can create 
additional libraries outside of global-styling, by adding the libraries through the .info.yml file. For 
additional details, visit drupal.org/node/2216195.

Adding JavaScript to Your Theme
Adding JavaScript to your theme is nearly identical to the process of adding stylesheets to the theme. It’s 
done through the .libraries.yml file and updates to the .info.yml file. We’ll create a simple JavaScript file 
named annoying-cow.js that does one thing—it generates an alert box that says “Moo!” Being an annoying 
cow, it will pop up on every page of the site. We will create the JavaScript file in the js subdirectory of the 
Davinci theme. The content of the JavaScript file is simply:

(function ($, Drupal) {
  alert("Moo!")
})(jQuery, Drupal);



Chapter 5 ■ Drupal 8 Theming

130

After you save the file, the directory structure of the Davinci theme appears as shown here:

├── config
│   ├── install
│   └── schema
├── css
│   ├── base
│   ├── component
│   ├── layout
│   ├── state
│   └── theme
│       └── styles.css
├── davinci.info.yml
├── davinci.libraries.yml
├── images
├── js
│   └── annoying-cow.js
└── templates
    ├── block.html.twig
    ├── field--body.html.twig
    ├── node.html.twig
    └── page.html.twig

Next we will define a library in the davinci.libraries.yml file that will be used to load the annoying-
cow.js file. Edit the existing file by adding the annoying-cow library to the bottom of the file, as shown here:

global-styling:
  version: 1.x
  css:
    theme:
      css/theme/styles.css: {}

annoying-cow:
  version: 1.x
  js:
    js/annoying-cow.js: {}

Finally, we update the libraries section of the davinci.info.yml file to load the annoying-cow library.

libraries:
 - davinci/global-styling
 - davinci/annoying-cow

After saving all the files and rebuilding cache, reload the homepage. The annoying cow is shown in 
Figure 5-9.



Chapter 5 ■ Drupal 8 Theming

131

Adding JavaScript and CSS Libraries to Template Files
In the previous examples, we added CSS and JavaScript to the Davinci module on a global basis, meaning 
that every page will load the CSS and the JavaScript that we added through the libraries section of the 
davinci.info.yml file. This approach works but isn’t the optimal solution, as not all CSS or JavaScript is 
required on every page.

To resolve the issue, Twig provides the ability to load libraries on a per-template basis through the 
attach_library function in the form of {{ attach_library('library_name') }}. In the case of the 
Davinci theme, we could add the node.css file, which is loaded only when the node.html.twig template is 
used to render a node. We first need to add a new library to the davinci.libraries.yml file to define the 
library:

node-styling:
  version: 1.x
  css:
    theme:
      css/theme/node.css: {}

After creating the new library, node-styling, we can then add that stylesheet to the node.html.twig 
template by inserting {{ attach_library('davinci/node-styling') }} at the top of the template (after 
the docblock). Save all the files and rebuild the cache. At that point, the CSS defined in node.css is now 
applied to all nodes that are rendered on the site, and not the anything other than a node.

The same concept can be applied to JavaScript. You may load JavaScript on an as-needed basis 
following the same approach outlined for CSS.

Working with Breakpoints
With responsive themes being the default standard for most organizations, any theme that you create should 
take advantage of breakpoints in Drupal 8 themes. The Breakpoint module is part of Drupal 8 core and is 
enabled by default when you install Drupal 8 (other than the minimal installation profile). The Breakpoint 
module keeps track of the height, width, and resolution of the device viewport where the site is being 
rendered. Themes and modules can define breakpoints and then use them to define how the elements on 
the page and the page itself are rendered on different devices.

Figure 5-9.  Demonstrating that the added JavaScript works



Chapter 5 ■ Drupal 8 Theming

132

A breakpoint is a label and a media query where the label is a human readable label for the breakpoint 
that is being defined, and the media query is the element that defines what the breakpoint applies to. For 
example, a breakpoint for mobile devices as defined in the Davinci theme might look like the following:

davinci.mobile:
  label: mobile
  mediaQuery: 'all and (max-width: 559px)'
  weight: 0
  multipliers: 1x

In this case, the breakpoint of mobile will be applied to all device viewports that have maximum display 
widths of 559px. Anything greater than 559px will not be considered a mobile device in the case of the Davinci 
theme. The weight defines the order of precedence and the multipliers will be defined later in this section.

Breakpoints are defined in a .breakpoints.yml file that is stored in the theme’s root directory. Let’s 
create a davinci.breakpoints.yml file with the following content:

davinci.mobile:
  label: mobile
  mediaQuery: 'all and (max-width: 559px)'
  weight: 0
  multipliers:
    - 1x
davinci.narrow:
  label: narrow
  mediaQuery: 'all and (min-width: 560px) and (max-width: 850px)'
  weight: 1
  multipliers:
    - 1x
davinci.wide:
  label: wide
  mediaQuery: 'all and (min-width: 851px)'
  weight: 2
  multipliers:
    - 1x

Multipliers are a measure of the viewport’s device resolution, defined as that ratio between the physical 
pixel size of the active device and the device-independent pixel size. For example, Apple’s retina displays 
have a multiplier of 2.x. By adding a new breakpoint of davinci.mobile_retina you can address the specific 
CSS attributes required to render the site properly on a retina display:

davinci.mobile_retina:
  label: mobile_retina
  mediaQuery: 'all and (max-width: 559px)'
  weight: 0
  multipliers:
  - 2x

While the definition of breakpoints in the .breakpoints.yml file, they currently have no impact on the 
CSS that you write and the media queries will also need to be added to your CSS files as they would without 
the breakpoints module. At some point in the future, a bridge between CSS and the breakpoints.yml file 
may be made, but at the time that I wrote this book, that bridge did not yet exist. In the mean time, create 
your breakpoints here as well as in your CSS files.



Chapter 5 ■ Drupal 8 Theming

133

Creating Advanced Theme Settings
Many Drupal themes provide configurable settings that may be managed through the theme’s administrative 
settings on the appearance page. The Bartik theme, for example, provides the ability to set the colors for 
nearly every major element in the theme through administrative settings that are exposed on the settings 
page without having to modify CSS.

To add custom theme settings, the first step is to modify the theme settings form by adding a PHP 
function to the yourthemename.theme file named yourthemename_form_system_theme_settings_alter 
function, replacing yourthemename with the name of your theme.

We’ll demonstrate the process by adding a site slogan setting to the Davinci theme by first creating 
a davinci.theme file in the Davinci themes root directory. Within the davinci.theme file, we’ll add the 
function to add the Site Slogan field to the theme configuration page and add a preprocess page function to 
expose the value stored in the Site Slogan field as a variable that can be accessed on the page template files.

The format of the form field follows the standard Drupal form API setting for a text field, with the 
addition of a theme_get_setting call to retrieve the value of site_slogan. Note that the setting is stored in 
the same name as the $form element.

<?php

function davinci_form_system_theme_settings_alter(&$form, \Drupal\Core\Form\
FormStateInterface $form_state) {

   $form['site_slogan'] = array(
     '#type'          => 'textfield',
     '#title'         => t('Site Slogan'),
     '#default_value' => theme_get_setting('site_slogan'),
     '#description'   => t("Enter the site's slogan"),
   );

}

function davinci_preprocess_page(&$variables) {

   $variables['site_slogan'] = theme_get_setting('site_slogan');

}

The next step in the process is to create a davinci.settings.yml file in the config/install directory of 
the Davinci theme. In this file, we’ll create a simple statement that sets the default value for the site_slogan 
setting.

site_slogan: Drupal 8 is Great

The final step in the process is to insert the site_slogan into the page.html.twig template file so that 
it will be displayed on every page. To do so, pick the correct spot in the page.html.twig file and insert  
{{ site_slogan }}.

After saving all of the files and rebuilding cache, visit the appearance page and click the Settings link for 
the Davinci theme. On the Appearance settings page, you can see that the new Site Slogan field appears at 
the bottom of the form, with the default value we set in the davinci.settings.yml file (see Figure 5-10).



Chapter 5 ■ Drupal 8 Theming

134

If you visit a page on the site, you can now see the site slogan printed on the page in the spot where we 
added {{ site_slogan }}, as shown in Figure 5-11.

Figure 5-10.  The Site Slogan settings field

Figure 5-11.  The site slogan rendering on a page

You may also encounter situations where you need to expose a theme setting value to a node, block, 
field, or other element. You may do so by adding a themename_preprocess_type(&$variables) function, 
replacing themename with the name of your theme and type with node, block, field, or other element name. 
Within that function setting, the variable that will be exposed to the template file for that element type.

Using Subthemes
One of the enterprise aspects of Drupal 8 themes is the concept of a subtheme. Subthemes allow you to 
create an enterprise theme that every site in your organization can inherit and then extend to meet each 
individual site’s branding and look-and-feel requirements. Subthemes significantly shorten the overall 
development time because you don’t have to recreate a theme from scratch every time a department 
or group in your organization wants a new Drupal 8 site. Subthemes also to some extent enable you to 
enforce corporate branding standards across all sites. There are still ways to override nearly everything in a 
subtheme, and that is where corporate policies come into play.

The process of setting up a subtheme is relatively simple; you only need to add a single statement to 
the .info.yml file of your theme to specify the name of the base theme that you are starting with. The only 
requirement is that the base theme must reside in your Drupal 8 installation. To demonstrate, we’ll modify 
the Davinci theme, using Classy as the base theme. Classy is included as a theme in Drupal 8 core and can 
be found at core/themes/classy. To the davinci.info.yml file, add the following statement:

base theme: classy



Chapter 5 ■ Drupal 8 Theming

135

After saving the file and rebuilding the cache, visit the homepage. You’ll immediately see subtle 
differences in the look and feel of the theme, as Davinci now inherits all of the styling and template files from 
the Classy theme. Figure 5-12 shows the homepage before assigning Classy as the base theme and Figure 5-13 
shows the immediate impact of using Classy. While the changes are subtle due to the minimalist nature of the 
Classy theme, this does demonstrate the power of using subthemes.

Figure 5-12.  The Davinci theme before applying Classy



Chapter 5 ■ Drupal 8 Theming

136

Summary
This chapter covered a lot of ground, starting with the basics of Drupal 8 theming and advancing through the 
steps of expanding on the capabilities of the Davinci theme. There are even more features and functionally 
in Drupal 8 theming that you might want to explore at drupal.org/docs/8/theming.

The next chapter focuses on leveraging the content that you created on your Drupal 8 site, detailing the 
process for sharing content with other Drupal and non-Drupal sites, as well as sharing content with new 
global audiences and empowering your site visitors through enterprise search.

Figure 5-13.  The Davinci theme after applying Classy



137© Todd Tomlinson 2017 
T. Tomlinson, Enterprise Drupal 8 Development, DOI 10.1007/978-1-4842-0253-1_6

CHAPTER 6

Leveraging Your Content

In the book titled Magazine Editing and Production, published in 1974, authors J.W. Click and Russell N. Baird 
wrote that “Content is king. It is the meaning that counts. Form and technical considerations, although important, 
cannot substitute for content.” While Click and Baird’s book was written nearly 20 years before the launch of the 
Internet and 41 years before the launch of Drupal 8, the concept that content is king is on the minds of everyone 
who is responsible for building and maintaining web sites. If content is king, how can Drupal 8 help to ensure that 
the right content is in the right place, at the right time, and in the right format to entice visitors to find your site 
and stay there? That is precisely the question that this chapter addresses by looking at Drupal 8’s content staging, 
publishing, search, and multilingual capabilities, all of which are cornerstones in helping to ensure that content is 
and remains king on your Drupal 8 web sites.

Content Staging
One of the challenges that have plagued web site developers since the first web site was built back in 1991 
is how to stage new content and updates to existing content outside of the production environment so that 
it may be previewed and tested prior to exposing it to the visitors who come to your site. While the very first 
web site ever published on the web (Tim Berners-Lee, 1991) is relatively simple (info.cern.ch/hypertext/
WWW/TheProject.html) and looks pretty much the same as it did 25 years ago when Berners-Lee first saved 
the original HTML file that generates that site, the reality is that today’s web sites are constantly changing 
with new content being added and updates being published in near real time. Due to the restrictions in the 
capabilities of most CMS platforms, the normal operating procedure has been to make content changes on 
the live server, holding your breath as you click the Save button, hoping that your changes did not adversely 
affect the site. While that has been the normal operating procedure in the past, Drupal 8 presents a new 
operating model that enables staging and previewing content prior to publishing it on the live web site, and 
it takes it one step further by enabling the ability to stage content and publish that content across multiple 
web sites.

Content Staging and Site Preview Use Cases
Before describing the details of how content staging and site preview works, let me outline the use cases 
where these capabilities come into play and why they may be important to your organization.

Use Case #1: Staging and deploying content across multiple web sites. In this use case, you want to 
synchronize content from one site to another, where the first web site is a staging site where editors do all 
the work of authoring and updating content. New content and updates to existing content are previewed on 
the staging site and, when approved, are pushed to the production web sites. This use case can be expanded 
by addressing the need to have multiple staging sites pushing to multiple production sites, creating a web of 
staging and production web sites that work in harmony to address the complex organizational structures of 
large enterprises.



Chapter 6 ■ Leveraging Your Content

138

Use Case #2: Content branching. In this use case, you may have a scenario where you are introducing a 
new section to your web site that addresses a new division that was added to your company, a new product 
line that is about to launch, or a new category of content that your web site is now incorporating into the 
existing content on your site. The desire is to build out the new “branch” of your web site and to push the 
updates as a whole out to your production web sites.

Use Case #3: Previewing your site. Editors and authors inherently want to see how their changes will 
affect the production web site before they are visible to the general viewer audience. “No surprises” is a 
common phrase that I’ve heard while walking the halls of major multinational corporations where I have 
helped build massive Drupal web sites. The ability to preview not only a single article, but a whole section or 
the whole site is a must-have on the list of requirements for many large organizations.

Use Case #4: Offline browsing and publishing. Not every country around the world has reliable 
infrastructure and not every location on the planet has access to WiFi or a high-speed Internet connection. 
You may have sales reps who walk into a customer’s building and they need access to your product 
information so that they can share how your products or services address their need. Your sales rep may 
need to take an order while sitting in the customer’s office and have that order saved in an offline mode and 
automatically synced when the sales rep has access to the Internet.

Use Case #5: Content recovery. “Stuff happens” and when it does, having the ability to recovery lost 
content or inadvertently changed content is a key desire of nearly every content editor and author. Giving 
users the ability to undelete or recovery content that was inadvertently deleted from the Drupal database 
would save countless hours of rework and eliminate the frustration of having to recreate content.

Use Case #6: Auditing. Many large organizations are under some form of government regulation 
that requires some level of auditability of the changes made to content on their web sites for compliance 
purposes. The requirement focuses on the ability to report on every change made to content on the web site 
and to be able to attribute that change to a specific user.

These use cases share several common characteristics:

•	 Content needs to be kept in sync from one place to another—within a single site  
(e.g., between staging and live) and between sites.

•	 A full revision history showing all changes must be kept to ensure auditability.

•	 Conflicts between revisions between environments need to be tracked and easily 
remedied.

The Drupal 8 Solution for Content Staging and Synchronization
A suite of Drupal 8 core and contributed modules orchestrate the replication of content between 
environments and solves the issues of keeping revisions, providing an audit trail, and using the tools 
necessary to resolve conflicts when they arise. The modules required to fulfill the typical requirements are 
the Deploy, Multiversion, Replication, Workspace, RELAXed Web Services, and Trash modules.

The Deploy Module
The Deploy module provides an administrative interface on top of the Workspace and Replication modules 
to enable content managers with the ability to manage content deployments between workspaces on a 
single site, or between workspaces across sites. The three basic modes supported by Deploy are as follows:

•	 Cross-site staging. Using RELAXed Web Services to stage content between different 
Drupal sites.

•	 Single-site content staging works with the Workspace module by providing the ability 
to stage content on a single site, where Workspace provides the capability to create a 
separate staging workspace in which content can be previewed before deploying it to 
the live workspace.



Chapter 6 ■ Leveraging Your Content

139

•	 Fully decoupled site. Using the APIs provided by the RELAXed Web Services 
module, the Deploy module provides the ability to distribute content to a site that is 
decoupled from the source site, meaning that synchronization of content between 
the source and the destination site is purely manual and on demand.

The Multiversion Module
The Multiversion module provides four key features that play a significant role in the content staging 
solution footprint:

•	 The ability to create revisions for nodes, taxonomy terms, comments, block content, 
users, and other custom entities

•	 The ability to define parent revisions, providing the ability to create multiple child 
revisions or branches from the parent

•	 Keeps track of conflicts in the revision tree and reports the details of those conflicts

•	 Provides an audit trail of changes made to an individual

When implemented in conjunction with the other modules described in this section, it becomes a 
powerful tool for managing revisions across sites as well as providing the audit trail required to address the 
reporting requirements of most organizations.

The Replication Module
Replication provides the functionality and services that support replicating content between workspaces 
on a single site, or between workspaces across multiple sites using the RELAXed Web Services module. 
Replication is built on top of the Multiversion module and uses information stored by Multiversion to 
determine which revisions are missing from a given location and synchronizes the content across locations.

The Workspace Module
The Workspace module provides the ability to create an isolated collection of content and revisions on your 
site, for example, workspaces for staging and production. This provides the ability to author content in a 
controlled environment that is not visible to site visitors until an editor promotes the content to the product, 
while allowing the editor to preview content as it will appear to general site visitors. The workspace module 
provides the ability to create a workspace; however, it does not provide the tools to move content between 
workspaces, which is where the Deploy and RELAXed Web Services modules come into play.

RELAXed Web Services Module
The RELAXed Web Services module provides a generic RESTful API for all Drupal 8 content entities, 
extending the core REST APIs with better support for translations, revisions, and file attachments. It is based 
on the replication.io protocol and leverages the Multiversion module to handle bidirectional replication 
between two or more Drupal sites.



Chapter 6 ■ Leveraging Your Content

140

Trash Module
The Trash module provides a trash bin for all content entities. Nodes can be moved to the trash instead of 
being deleted permanently, allowing for restoration of those content items at a later time. See Figure 6-1.

Staging Site Live Site

DeployDeploy

Multiversion MultiversionReplication Replication
RELAXed

Web
Services

RELAXed
Web

Services

Trash Trash

Staging
Workspace

A

Staging
Workspace

B

Workspaces Workspaces

Live Workspace

Figure 6-1.  The content deployment solution

Installation, Configuration, and Use of the Content Staging  
Framework
The process for installing the content staging and distribution framework begins with the installation of 
the modules and their dependencies. The modules and their dependencies are Deploy, Entity Storage 
Migrate API, Key-Value Extensions, Multiversion, Replication, Trash, Workspace, RELAXed Web Services, 
Serialization, RESTful Web Services, and HTTP Basic Authentication. Follow the standard approach for 
downloading and installing modules on your site.

Configuring Multiversion
The first module we focus on is Multiversion. When installing Multiversion, the install process does most 
of the work for you. If you have existing content on your site, Multiversion will convert that content to 
revisionable as part of the installation process.

To test whether Multiversion is working, we create and save a new article following the standard process 
for creating nodes. Then we create a new revision by checking the Create a New Revision checkbox on the 
Node Edit form and enter a comment about what we changed on the node we created. After saving, you’ll 
see two new tabs at the top of the Node Edit form—Revisions and Tree (see Figure 6-2).



Chapter 6 ■ Leveraging Your Content

141

Clicking the Revisions tab lists all of the revisions that have been made to a given node, as shown in 
Figure 6-3.

Figure 6-2.  The Revisions and Tree tabs

Figure 6-3.  List of revisions

Clicking on the Tree tab reveals the hierarchy of revisions made to the original node, as shown in 
Figure 6-4.



Chapter 6 ■ Leveraging Your Content

142

Configuring Workspaces
After enabling the Workspaces module, you will see a new indicator in the right half of the admin toolbar at 
the top of the page (see Figure 6-5).

Figure 6-4.  A node’s revision tree

Figure 6-5.  The Workspace environment indicator

The first workspace that is created and enabled automatically when the module is enabled is the Live 
workspace as shown in Figure 6-5. The Workspace module also creates a Stage workspace, but the Stage 
workspace is set to an inactive state by default (see Figure 6-6).



Chapter 6 ■ Leveraging Your Content

143

You may switch between the Live and Stage workspaces by clicking on the workspace indicator in the 
admin toolbar. Clicking reveals a submenu where you select a workspace or add a new workspace, as shown 
in Figure 6-7.

Figure 6-6.  The Stage workspace

Figure 6-7.  The Workspaces selector

In the example shown in Figure 6-7, the Live workspace is enabled. Note the Welcome to Drupal 
8 article. You can switch to the Stage indicator by clicking the link in the toolbar. Note that in the Stage 
environment the Welcome to Drupal 8 article is missing, because it was created in the Live environment and 
is not yet replicated to the Stage environment. Also note that the workspace indicator in the toolbar indicates 
that the current workspace is now the Stage workspace (see Figure 6-8).



Chapter 6 ■ Leveraging Your Content

144

You may create a new workspace by clicking on the Add Workspace link in the admin toolbar, or by 
visiting the Structure ➤ Workspaces page and clicking on the Add Workspace link on the Workspaces page. 
We’ll create a new workspace named Testing and set the default target workspace, where content will be 
replicated by default (see Figure 6-9).

Figure 6-8.  The Stage workspace

Figure 6-9.  Creating a new workspace

The newly created workspace is now visible in admin toolbar and on the Structure ➤ Workspaces page.
With the default deployment set for the Stage workspace, we can author content in the Stage workspace 

and deploy those changes to the Live workspace by clicking the Deploy link in the admin toolbar and 
entering a title and description that will be used on the Deploy administration page to convey what was 
deployed (see Figure 6-10).



Chapter 6 ■ Leveraging Your Content

145

After deploying the content, we can see the history of all deployments by navigating to Structure ➤ 
Deployments. This page lists all deployments that have been made, including the source, target, date, and 
time (see Figure 6-11).

Figure 6-10.  The Deploy form

Figure 6-11.  The Deployments history page

Configuring RELAXed Web Services Modules
The RELAXed Web Services module handles the underlying activities of connecting two Drupal sites and 
transporting the content between those sites and workspaces.

The first step is to create a new user account that will be used to connect to remote sites. While I could 
use the admin account to facilitate that process, it is a best practice to set up a user account with fewer 
permissions. The installation process for the RELAXed Web Services module creates a new user role named 
Replicator, which has by default all of the permissions set for an account whose sole purpose is to replicate 
content between sites and workspaces. You may visit People ➤ Roles to see the Replicator role. You may see 
the permissions assigned to the Replicator role by clicking on the Permissions tab, where you will see that 
the role has three assigned permissions:

•	 Administer workspaces

•	 Perform push replication

•	 Administer users



Chapter 6 ■ Leveraging Your Content

146

Those three roles provide access to all of the required functionality to successfully replicate content 
between workspaces locally or across the wire via the RELAXed Web Services module. We need to create this 
account on the target Drupal 8 sites as we will be using it in a moment to configure the interface between 
sites.

Let’s follow the standard process for creating a new Drupal 8 user by visiting the People page, where we 
click on the Add User button and add the user account that we’ll use for replication purposes. We’ll keep it 
simple and name the replication user replicator, assigning a secure password and the role of Replicator. 
We also need a valid e-mail address for the replicator account.

Next, we navigate to Configuration ➤ Relaxed Settings and enter the details of the user account we just 
created as the default account for performing replications on this Drupal instance, as shown in Figure 6-12.

Figure 6-12.  The default replication account settings form

The next step in the process is to set up the remote sites. Navigate to Configuration ➤ Relaxed remotes 
and click the Add New Remote button. On the form, enter a meaningful name for the remote as well as the 
full URL of the remote site, the user name associated with replication on the remote site, and the password of 
that account. Click the Save button to finish the process (see Figure 6-13).



Chapter 6 ■ Leveraging Your Content

147

With the remote configured, we can now deploy content to remote sites and workspaces. We need to 
first set up the relationship between our local workspace and the remote workspace. For demonstration 
purposes, we will set the live workspace on the first site to deploy by default to the live workspace on the 
target site that we just set up. Navigate to Structure ➤ Workspaces and click on the Edit link for the live 
workspace on my local site. On the Edit page for the Live workspace, select My Other Drupal 8 Site: Live as 
the destination and then click the Save button (see Figure 6-14).

Figure 6-13.  Adding a relaxed remote



Chapter 6 ■ Leveraging Your Content

148

With the assignment complete, we can now deploy the content from our local live workspace to the 
remote workspace by simply clicking the Deploy button in the administrator’s toolbar.

Search
Search is an often under utilized capability on Drupal sites. We sometimes fall back to the default search 
capabilities of Drupal core and “call it good,” often because it just works without any configuration other 
than turning on the module and ensuring that cron is running. While the Drupal core search capabilities are 
good, there are limitations based on the underlying architecture, which is based on indexing the site and 
storing that index in a MySQL table. Search then uses MySQL’s full text search feature to locate items in the 
index that match the search criteria entered by the user. While it does a commendable job, there are serious 
limitations with MySQL’s full text search capabilities that may hinder the desired outcome. For example, 
MySQL’s full text search doesn’t handle words that are four characters in length or fewer, and MySQL’s full 
text search is relatively slow. If you are concerned about performance you may want to look at an alternative 
indexer and that is where Solr comes into play.

There are other limitations of core search such as configuration. In core search, it’s difficult to specify 
which content types to index, and within each content type, which fields to index. It’s just not possible to 
configure to that level of detail in the core search module and many organizations need that level of fine-grain 
control. There is a solution to the performance and configurability issue and that is Apache Solr, which is well 
supported and widely adopted in the Drupal community as the preferred search solution for Drupal sites.

Figure 6-14.  Assigning the target workspace



Chapter 6 ■ Leveraging Your Content

149

What Is Apache Solr?
Apache Solr is a world class search application built by the Apache Foundation and utilized by a wide variety 
of commercial and open source applications, which opens up an interesting proposition that I’ll speak about 
in a bit. Solr is built on top of the Lucene indexer. Lucene is also an open source project, written in Java, and 
also under the Apache Foundation umbrella. Lucene is the underlying architecture that handles the storage 
of indexed content, much in the same way that MySQL stores content in Drupal, but in a fashion that is 
significantly more flexible than Drupal’s core search and considerably faster as serving up the results of a 
search request.

Lucene’s general approach is to store indexed content as a document made up of any number of 
different fields, providing that fine grain control over which fields to index and that Drupal core’s search 
does not provide. And due to its flexibility and document-centric approach, Lucene indexes nearly any 
textual data that you can feed into it, including HTML, PDF, XML, Microsoft Word, and nearly any other 
document format that exists in the market. If I didn’t mention it earlier, the capabilities of Lucene far outstrip 
the basic capabilities of Drupal core search and the boost in performance alone is well worth the effort of 
implementing Solr. It off-loads all of the search activities from the Drupal database, improving the overall 
site performance since full text MySQL search taxes the database significantly.

While Lucene is the indexer, Apache itself is an HTTP API for interacting with Lucene. This API has 
been utilized by several Drupal modules, making the installation and setup of Apache relatively easy on your 
Drupal site.

Solr’s extensive use of XML configuration files makes it relatively easy to modify almost everything 
about how Solr works without having to touch any code. This simplifies the solution as it doesn’t require any 
knowledge or expertise of Java.

The three key benefits of Solr over Drupal core search are as follows:

•	 A best in class stemming and tokenization, which provides the benefit of being able 
to configure what content types you want Solr to index and what fields you want to 
include

•	 A high degree of scalability, both vertically and horizontally

•	 Built-in support for advanced search features such as facets, geospatial searches, and 
advanced query options such as:

•	 Full text or structured queries

•	 Support for Boolean operators such as AND, NOT, OR, +, and –

•	 Boosting terms through configuration

•	 Fuzzy searches

•	 Grouping with parentheses

•	 Numeric range searches

•	 Wildcard searches

•	 And many more

There are other key features such as multi-lingual searching, search results highlighting, auto 
suggestions, spell checking, support for multiple indexes, federated search across multiple sites, and many 
others.

While there is effort to install and configure Solr, the benefits are significant. The next sections describe 
a simplified approach for quickly adopting and installing Solr on your Drupal 8 site.



Chapter 6 ■ Leveraging Your Content

150

To Install or Not To Install
Apache Solr and Lucene are open source projects and may be downloaded from lucene.apache.org and 
lucene.apache.org/solr. There is extensive documentation on how to install and configure both Lucene 
and Solr on the Apache Foundation’s web site. Many organizations are choosing not to host Solr and Lucene 
internally due to the complexities of adding yet another platform to their portfolio, and while they are Java 
applications, there is performance and scalability considerations that may make choosing a hosted Solr and 
Lucene solution a more attractive option. There are several hosted Solr providers in the market, including 
the following:

•	 OpenSolr (opensolr.com)

•	 IndexDepot (indexdepot.com)

•	 WebSolr (websolr.com)

I’ll demonstrate the ease of setting up hosted Solr on a Drupal 8 site using OpenSolr.

Required Modules
There are a few modules that you will want to install on your Drupal 8 site before beginning the setup 
process on opensolr.com. Those modules are as follows:

•	 Search API (composer require drupal/search_api)

•	 Search API Solr (composer require drupal/search_api_solr)

Install both modules using composer require, as there are associated libraries that are required for the 
modules to function properly and installing through Drush or downloading the modules will require that 
you manually install the libraries. If you have not yet used composer on your site, first ensure that composer 
is functional by opening a terminal window and executing the command composer. If you receive a list of 
available composer commands, you are good to go. If you do not receive a list of commands, then follow 
the instructions on getcomposer.org. If you have not yet set up composer on your site, run the following 
command in a terminal window:

composer config repositories.drupal composer https://packages.drupal.org/8

Then run the commands listed in the parentheses for each module.

Setting Up OpenSolr
After installing the Search API and SearchAPI Solr modules, the next step in the process is to set up an 
account on OpenSolr. You may set up a temporary free account by visiting opensolr.com. Click on the Free 
Trial button and register. Once you’re registered, visit your dashboard and click on the Create a New Index 
link. Select the closest server to your location that supports Solr 4.0. Enter a meaningful index name and 
click the Add Index button, as shown in Figure 6-15.



Chapter 6 ■ Leveraging Your Content

151

After adding the index you will be returned to your OpenSolr dashboard, where you will see your new 
index (see Figure 6-16).

Figure 6-16.  The newly added OpenSolr index

Figure 6-17.  OpenSolr index access information

Figure 6-15.  Adding a new Solr index

Click on the name of your Solr index to reveal several values that you will need to configure  
(see Figure 6-17).



Chapter 6 ■ Leveraging Your Content

152

Adding the Schema.xml File OpenSolr
There is one final step in setting up OpenSolr and that is to update the schema file so that it recognizes the 
fields in your Drupal content. Solr’s schema file is a configuration file that describes the types of information 
that will be indexed. The default implementation of Solr is a generic schema that recognizes content in 
Drupal as a general document, but it doesn’t provide the ability, for example, to query a specific field within 
your content type. The process if relatively straightforward and there is excellent documentation on the 
opensolr.com web site.

The Drupal Search API Solr module provides a detailed schema file and other configuration files that, 
when implemented on OpenSolr, provide the information required to index individual fields across all  
of your content types. You can copy those files to OpenSolr by creating a ZIP file of all of the files in  
the /modules/search_api_solr/solr-conf/4.x directory (Note: If you are using a version other than 4.x 
on OpenSolr, select the correct version by replacing 4.x with the version that you are using.) Once you have 
zipped up the files, the next step is to upload that ZIP file to OpenSolr. On your OpenSolr dashboard, click 
on the Config Uploader tab and select the ZIP file that you just created and then click the Upload File button. 
When the upload has finished you should see a status message that shows that each file was saved with a 
status of OK. If your file did not upload properly, ensure that you are using the correct version and that your 
ZIP file was not corrupted.

With OpenSolr setup, the next task is to configure Drupal to use your OpenSolr index. Assuming you 
have installed the Search API and Search API Solr modules, navigate to Extend and enable the Search API 
and Search API Solr modules. After enabling the modules, navigate to Configuration ➤ Search and Metadata 
➤ Search API. On this page (see Figure 6-18), click the Add Server button.

Figure 6-18.  The Search API page

There are several values listed on the Add Server page; however, you only need to worry about providing 
a few of the values (see Figure 6-19). The values that you need to provide to enable Solr on OpenSolr are as 
follows:

•	 Server Name: Enter a value that is descriptive, such as OpenSolr.

•	 Solr Host: This value comes from the OpenSolr dashboard and the index that you 
created. The value entered in this field comes from the hostname value on the 
OpenSolr dashboard for your index (see Figure 6-17).



Chapter 6 ■ Leveraging Your Content

153

•	 Solr Port: This value also comes from the OpenSolr dashboard. If you are using 
HTTP, enter 80, or if you are using HTTPS, enter 443.

•	 Solr Path: This value comes from the OpenSolr dashboard and is the value 
associated with Path. Make sure you place a / at the front of the path value, such as  
/solr/Drupal8.

All other values may be left as their default values. Click the Save button to continue. Note the Core 
Connection value on the status page after saving. It should say “The Solr core could be accessed.” If it does 
not say this, check the values that you entered and ensure that they match what is shown on your OpenSolr 
console.

With the server successfully set up, the next task is to create the index in Drupal. Navigate back to 
Configuration ➤ Search and Metadata ➤ Search API and click on the Add Index button. On the Add Search 
Index form (see Figure 6-19):

•	 Enter an index name. This can be any meaningful name and only appears on 
administrative pages, for example OpenSolr Index.

•	 Data sources. Select one or more sources of information that will be incorporated 
into the Solr index. For demonstration purposes, we select Comment, Content, 
Custom Block, and Taxonomy Term, as those are the elements of the site that we are 
most interested in providing access to site visitors through search. After selecting 
each data source, note that additional configuration options appear on the page. 
Select the appropriate options based on what you would like to have indexed, or 
what you want excluded from the index.

•	 Server. Select OpenSolr, which is the server that was just set up in the previous 
section.

•	 Enabled. Ensure that the Enabled checkbox is checked.

•	 Click the Save button.



Chapter 6 ■ Leveraging Your Content

154

After saving the index, Drupal displays the Index Status page showing how many items have been 
indexed and options to index all remaining content. Depending on which options you select when adding 
the search index and how many of those items exist on your site, the screen shown in Figure 6-20 may differ 
from your results. In the case of the example test site, all seven content items were successfully indexed.

Figure 6-19.  The Add Search Index form



Chapter 6 ■ Leveraging Your Content

155

If there are remaining items that have not yet been indexed, you can click the Index Now button in the 
Index Now section of the form shown in Figure 6-20. You may also queue all items for reindexing as well 
as clear all indexed items. This will reset your search index back to empty and ready it for the content to be 
reindexed, which is an action you may want to take if your search index has become corrupted.

Verifying That Your Content Has Been Indexed
To verify that your content has been indexed, you can perform a search on your site or you can visit your 
OpenSolr dashboard and click on the Browse Data button. If content was indexed you should see a results 
page similar to Figure 6-21. Note the numFound value of 57. This should match the number of items indexed 
on the Index Status page in Drupal (see Figure 6-21).

Figure 6-20.  The Index Status page



Chapter 6 ■ Leveraging Your Content

156

The final test is to return to the homepage and search for a word that is contained in at least one content 
item on the site. After entering a search term and searching, the search results demonstrate that everything 
is connected to OpenSolr and is working properly (see Figure 6-22).

Figure 6-21.  Indexed items on OpenSolr



Chapter 6 ■ Leveraging Your Content

157

Integrating Views and Solr
One of the more powerful features of Solr on Drupal is the ability to use the Solr index as a source of content 
for views. There are multiple benefits to using the Solr index, including:

•	 The Solr index is not stored in the Drupal database and is significantly faster to 
query. With all of your content indexed in Solr, it is possible to write all of your views 
against Solr, speeding up every page on your site that uses views.

•	 The Solr index can span multiple sites. If you have multiple Drupal sites across 
your organization it is relatively simple to aggregate all of your content across all 
sites into a single Solr index. That single Solr index may then be used with views to 
display content from the local site, another Drupal site, or across all of your Drupal 
sites. This opens new possibilities such as having a single Drupal site as the source 
of all product information for all of your sites, making it easier to keep product 
information in sync across the enterprise.

•	 Solr can index content from virtually any source as long as it is accessible via the 
web. You may have enterprise content stored in other CMS platforms, or you may 
have information stored in legacy applications that are difficult to integrate, but by 
using Solr to index that content it is now available through views. This alone is one of 
the most powerful cases for using a solution like OpenSolr to solve one of the age-old 
problems of sharing content.

Figure 6-22.  Search results



Chapter 6 ■ Leveraging Your Content

158

Adding Fields to Your Search Index
By default Solr indexes nodes, blocks, taxonomy, and users as a document, meaning the whole content 
item is indexed and is accessible through full text search but individual fields are not exposed, as individual 
values that may be queried using views. While it is an optional step, I highly suggest adding the fields that 
you may want to query using views to your index.

To add fields, navigate to Configuration ➤ Search and Metadata ➤ Search API and click the Edit link 
for your Solr index. On the Edit page, click the Fields tab to expose the form where fields can be added to the 
index (see Figure 6-23).

Figure 6-23.  Adding fields to the Solr index

Click on the Add Fields button. The Add Fields page (see Figure 6-24) lists the entities that were selected 
when setting up the Solr index (see Figure 6-19). You may add fields to any of the entities by clicking the + 
next to the entity. 



Chapter 6 ■ Leveraging Your Content

159

Let’s add the individual fields that we want to expose to Solr and views for content (nodes). After 
expanding the list of available fields by clicking the + link, we select the fields that we need to be exposed to 
views. To add fields, click on the Add button (see Figure 6-25).

Figure 6-24.  Adding fields to to the Solr index

Figure 6-25.  Adding fields to the index

When you’ve added all the fields you want to include in the index, click the Done button, which returns 
you to the main fields page. Click the Save Changes button to commit the new fields.



Chapter 6 ■ Leveraging Your Content

160

After the fields were added, return to the View page by clicking the View tab. Click the Clear All Indexed 
Data link at the bottom of the page and click the Confirm button to clear the index. Click the Queue All 
Content for Indexing link once the index has been cleared, then click Confirm to continue. Click the Index 
Now button to reindex all of the existing content on your site, including the fields that were just added to 
the index. It may take a few minutes for OpenSolr to reindex all of your content, depending on how many 
content items you have on your site. You are now ready to create a view using Solr.

Creating a Solr-Based View
The Search API and Search API Solr modules provide the integration with the Views module, so no 
additional modules are required. To create a view using Solr, create a new view and, in the View settings 
select list, choose Index <your Solr Index name>. In the example shown in Figure 6-26, the name of the index 
is OpenSolr index, as that is what we called it, as shown at the top of the page in Figure 6-20.

Figure 6-26.  Creating a new Solr-based view

After selecting the OpenSolr index and clicking the Save and Edit button, you can now select the fields 
that you enabled in the previous step. We added the content title as one of the fields to the search index so 
that field now appears in the list of available fields that we can add to our view display (see Figure 6-27).

Figure 6-27.  Adding an indexed field to a view



Chapter 6 ■ Leveraging Your Content

161

Note that there are two available fields, the value from the local entity and the title (indexed field), 
which is the value contained in the Solr index. We’ll choose the indexed field and continue to build the 
view just as we would using local data, choosing the fields we want to include in the output of the view, but 
instead of the local versions of those fields, we’ll select the indexed version. When the view is complete, we 
can render the results just as we would using a normal view, with the primary difference being the speed of 
execution (see Figure 6-28).

Figure 6-29.  The Facets page

Figure 6-28.  Rendering content from Solr through a view

Advanced Features of Solr
Using Solr to index your content, while faster and more powerful than Drupal’s internal search engine, is 
only the tip of the iceberg. There are other key features that will significantly improve the functionality of 
search on your site. One of the common advanced features that many sites employ is search facets. While you 
may not recognize the terminology you have likely used facets on sites such as Amazon.com where Amazon 
provides a list of criteria in the left column of nearly every shopping page.

Enabling Facets
To enable facets, first download and install the Facets module (drupal.org/project/facets). After enabling 
the module, navigate to Configuration ➤ Search and Metadata ➤ Facets. On this page, you’ll see that the 
view that we created in the previous example is available as a source for facets that can be displayed on a 
page (see Figure 6-29).



Chapter 6 ■ Leveraging Your Content

162

To add a facet to a page, click the Add Facet button and select the view that we created as the source of 
the facet. When you select the view, the list of available fields from that view appears as a list of elements that 
we can use as a facet. For demonstration purposes, we’ll select Content Type as the basis of the facet that will 
be displayed to the site visitor and will give the facet a meaningful name (Content Type), as it will appear as 
the name of the block in the block layout interface (see Figure 6-30).

Figure 6-30.  Adding a new facet

Figure 6-31.  Adding the Content Type block to the Sidebar first

After saving the facet, navigate to Structure ➤ Block layout and add the new block named Content Type 
to the sidebar first region (see Figure 6-31). Set visibility to this block to only appear on the page where your 
view appears.

After adding the block to the page, navigate to the page that is generated by the view and you’ll see the 
facets that were created (see Figure 6-32).



Chapter 6 ■ Leveraging Your Content

163

You can create facets for any field that is visible through the view. This is a powerful way for site visitors 
to drill down into the content that they are interested in.

Federated Solr Search
Using OpenSolr you have the ability for multiple sites to contribute content to a single index, providing cross 
site searching capabilities as well as the ability to aggregate content across sites and expose that aggregate 
content through views. This provides an alternative to content deployment across sites as the content in 
every site is populated in the search index. This is a relatively simple approach for aggregating content and 
searching across your entire enterprise.

To enable this capability, simply create a new index on a local Drupal site and use the same Solr server 
and index. You may add as many sites as desired to this single index.

You may also create multiple indexes and selectively add content from specific sites to a specific index, 
for example, you may have a Drupal site where all product related content resides. Instead of deploying 
that content across all web sites you may choose to create a “Product Index”. All sites needing product 
information would then link to that index and utilize the content that resides in that product specific index.

There are many other powerful Solr features. I suggest visiting the Apache web site as well as sites such 
as OpenSolr’s web site to see the full breadth of capabilities.

Multilingual Support
We live in a world where cultural and country boundaries, while still important, are blurred by the Internet’s 
capability to connect two people who are geographically thousands of miles apart and enable them to 
communicate through text, voice, and video. The visitors who come to our web sites may be our next-door 
neighbors or they may live half a world away. Catering to those who live beyond our region and do not share 
our native tongue is now more commonplace than ever. Web site designers who break through the language 
barriers on their sites may attract audiences that they never dreamed of having in the past, and Drupal 8 
makes that possibility a reality through its built-in multilingual capabilities.

Figure 6-32.  The facet appearing on the page



Chapter 6 ■ Leveraging Your Content

164

Getting Started with Multilingual Support
The first step in creating a web site with multilingual support is to determine which languages you want to 
support. Drupal 8 provides the capability to render your site in nearly any language spoken on the planet. 
Drupal does not do the actual translation of the content; rather, it facilitates the translation by providing the 
mechanisms that enable visitors to select which language they want to see (from the list that you offer), and 
then rendering content that has been previously translated by humans into that language.

After you determine the list of languages that you want to support, the next step is to enable the 
multilingual modules that are part of Drupal 8 core. Visit the module administration page by clicking the 
Manage link in the admin menu at the top of the page, followed by the Extend link in the secondary menu. 
Scroll down the page until you see the list of multilingual modules that are part of Drupal 8 (see Figure 6-33).

Figure 6-33.  List of multilingual modules

Configuration Translation provides the ability to translate elements of your site such as the site name, 
vocabularies, menus, blocks, and other configuration related text on your site. The Content Translation 
module handles all of the content-related text, such as articles. The Interface Translation module provides 
an easy-to-use interface for translating elements of your site that are static strings, such as form labels. The 
Language module enables the definition of which languages your site supports.

Check all of the modules in the Multilingual category and then click the Save Configuration button.

Configuring Multilingual Capabilities
The next step in the process is to configure the multilingual capabilities of Drupal 8. Start by navigating to 
the Configuration page. Click the Manage link in the admin menu, followed by the Configuration link in the 
secondary menu. On the Configuration page, scroll down until you see the Regional and Language section 
(see Figure 6-34).



Chapter 6 ■ Leveraging Your Content

165

Specifying the Languages
To set the languages that your site will support, click the Languages link on the Configuration page in 
the Regional and Language section. If you installed your Drupal 8 instance using English as the default 
language, your Languages page should look like Figure 6-35.

Figure 6-34.  Multilingual configuration options

Figure 6-35.  Base language

To enable a new language, click the Add Language button and select a language to add to your site from 
the drop-down list of available languages. Then click the Add Language button (see Figure 6-36).



Chapter 6 ■ Leveraging Your Content

166

Configuring Language Activation
After setting the list of languages that you want to support, the next step is to specify under what conditions 
Drupal should switch to a different language. At the top of the Languages page, click the Detection and 
Selection tab to see a list of options to specify when language switching is to occur (see Figure 6-37).

Figure 6-36.  Adding a language

Figure 6-37.  Language detection and selection

As shown in the Detection Method column, you have several options for specifying how Drupal decides 
which language to use to display page elements:

•	 Specify specific URL patterns that apply to languages, such as http://example.com/
en for the English version and http://example.com/ru for the Russian version.

•	 Session parameters that are set by custom code and stored in a session variable.

•	 A user’s language preference as set on his user profile.

•	 The browser’s default language settings as set in the user’s browser preferences.

http://example.com/en
http://example.com/en
http://example.com/ru


Chapter 6 ■ Leveraging Your Content

167

•	 Account administration pages allow you to set a different language for the 
administrative interface and the content portion of your site.

•	 A user selecting a language from a drop-down list or radio buttons in a block on 
your site. Checking this option enables a block that provides the ability to select the 
visitors preferred language.

For demonstration purposes, check the URL and Selected Languages options and click the Save Settings 
button to continue.

Some of the options, such as URL settings, provide the ability to configure the parameters that define 
how those setting will take effect. Click on the Configure button to see the parameters.

By selecting the Selected Languages option, we now have access to a block that provides the ability for 
users to select which language they prefer. To place that block on a page, navigate to the Block Layout page 
(Manage ➤ Structure ➤ Block layout) and you’ll see in the Place Blocks list, under the System category, a 
block named Language Switcher. Click the Language Switcher link and assign the block to a region provided 
by your theme. If you are using Bartik, a good choice would be one of the two Sidebar regions. After you 
select the region, don’t forget to click the Save Blocks button at the bottom of the Block Layout page. After 
enabling the Language Switcher block, your page should look similar to Figure 6-38.

Figure 6-38.  Language switcher block

Content Translation Example
With the Language Switcher block in place, you are now ready to take the next steps of translating content. 
Return to the Configuration page by clicking the Manage link in the admin menu, followed by clicking the 
Configuration link on the secondary menu. Click the Languages link on the Configuration page to return to 
the Languages page. After enabling the languages you want to support, you’ll see entries for each in a column 
titled Interface Translation (see Figure 6-39). For each language, this column shows the number of elements 
that are already translated (the first number) and total number of elements available to translate, where 
elements are field labels, error messages, or other text strings that are defined in template files and modules. 
As you can see from Figure 6-39, many elements have already been translated by the Drupal community.



Chapter 6 ■ Leveraging Your Content

168

Clicking any of the values in the Interface Translation column displays the list of elements, with a text 
box next to each element where the person doing the translation enters the translated text for that text string 
(see Figure 6-40). To filter the list to only show elements that do not have a translation, click the Search In 
list in the Filter Translatable Strings section of the page and select Only Untranslated Strings. Click the Filter 
button to see the list of items that are missing a translation.

Figure 6-40.  Translation of source strings to alternative language

Figure 6-39.  Interface translation

After entering values for some or all of the source strings, click the Save Translations button. Back on 
the Languages page, the number of strings you have translated will appear in the Interface Translation 
column, along with the total number of strings and the percentage of strings that have been translated for 
that language. The total number of strings to be translated may increase as you install new modules, create 
new forms, or create other features that have interface elements that are translatable. Check this page often 
to ensure that everything has an associated translation.

Configuring Entities
The next step in the setup of multilingual support on your site is to specify which content types, taxonomy 
vocabularies, user profiles, or other supported elements are translatable. Return to the Configuration 
page and click the Content Language and Translation link in the Regional and Language section (refer to 
Figure 6-34). On this page, you will see a list of checkboxes related to the types of elements on your site that 
support translation. Simply check the box next to the elements for which you want to provide translation 



Chapter 6 ■ Leveraging Your Content

169

Figure 6-41.  Content language configuration

capabilities. For demonstration purposes, check the boxes for Content, Custom Menu Link, and Taxonomy 
Term. As you check each box, a list of options appears where you can set the translation capabilities for that 
element (see Figure 6-41).

Checking the box for the Article Content Type, for example, displays additional details as to which 
elements of that item are translatable. For the Article Content Type, this includes the title, body, comment 
settings, image, and tag fields. For demonstration purposes, check all the boxes for all the elements, followed 
by clicking the Save button.



Chapter 6 ■ Leveraging Your Content

170

Translating Content
With the pieces in place, the next step is to author content in the site’s native language and translate it to the 
various languages that your site has been configured to support. For demonstration purposes, assuming you 
checked the box for Article in the previous step, create a test article in the native language set for your site. 
Click the Manage link on the admin menu, the Content link in the secondary menu, and the Add Content 
button on the Content page. Select Article as the type of content to create. Note that a new field appears 
on the Create Article form, called the Language Select list. For demonstration purposes, select the default 
language that represents the base language of your site (e.g., if you installed the English version of Drupal 
8, select English from the select list). On my Drupal 8 example site, I created an Article in English using 
“This is a test article” for the title, and “Hello World this is a test article in English” as the body text. Save and 
publish the Article by clicking the button at the bottom of the form. After saving the article, you’ll notice a 
new Translate tab at the top of the Article form (while logged in as an administrator with content-editing 
permissions set). The new tab allows you instant access to the translate feature (see Figure 6-42).

Figure 6-43.  Language translation status

Figure 6-42.  Translate option

Clicking the Translate tab displays a list of all the languages you specified while configuring multilingual 
support and shows the current translation status for each of those languages for the content item that you 
are working with (see Figure 6-43).

Clicking the Add button for a specific language brings up the node edit form for that piece of content, 
allowing you (or another human translator) to see the original-language version of that content item, with 
the ability to override that version with the translated version. Pick one of your languages from the list and 
give it a try. Here is my test article being translated into French (see Figure 6-44).



Chapter 6 ■ Leveraging Your Content

171

Figure 6-44.  Translating an article into French

After you click the Save and Keep Published button, Drupal will display the article in the language that 
you just used, highlighting the language in the Language Switcher block. Try completing the translation in 
all of the other languages by following the preceding steps, beginning with clicking the Translate tab. After 
you have translated the Article into all of the languages, test the Language Switcher block to view the article 
in each translation. If you selected a left-to-right language (such as Hebrew), note that Drupal renders the 
page a little differently, moving elements such as the Language Switcher block from the left to the right 
(assuming you placed the block in the Sidebar First region of the Bartik theme).

If you edit a content item and change any of the fields (e.g., the title or body in an article), remember 
that the other translations need to be updated to reflect the change.

Summary
This chapter demonstrated Drupal 8’s capability to handle content distribution, search, and multilingual 
content. These capabilities offer feature-rich and powerful tools for leveraging the content in your Drupal 8 
site. The next chapter explores creating a better administrative interface in Drupal 8.



173© Todd Tomlinson 2017 
T. Tomlinson, Enterprise Drupal 8 Development, DOI 10.1007/978-1-4842-0253-1_7

CHAPTER 7

Optimizing Your Site Architecture

A poorly designed architecture will haunt you every day of your existence until you either perform major 
surgery on your site or start over from scratch. Over complicating your Drupal site’s foundation will likely 
result in frustrated content creators, poor performance, and maintenance nightmares. There is an easier way 
and that is to focus on the right architecture from the beginning.

This chapter focuses on choosing the right approach for the foundation of your site, minimizing the 
risk of complexity, security, and performance over the life of your site. The four primary areas of focus are as 
follows:

•	 The content types that will be used to author and store content on your site.

•	 The taxonomy that will be used to categorize the content on your site.

•	 The location of content in an enterprise setting.

•	 Off-the-shelf versus custom development.

Content Types
One of the first rules of thumb that I learned early in my Drupal career was the fewer content types I could 
have on a site the easier it was to do virtually everything on the site from content editing to page building. 
I’ve walked into several situations where a site had dozens if not hundreds of content types and the poor 
content editors were at their wit’s end trying to figure out which content type to use for what purpose as each 
content type was nearly identical with the only elements on dozens of content types being title and body.

The site builder in those cases believed that they needed to have a different content type for every 
purpose, for example a separate content type for news, company news, student news, department X news, 
announcements, staff announcements, product announcements, department X announcements, articles, 
whitepapers, blog postings, staff biographies, customer success stories, and so on. I’ve pored through dozens 
of content types that were exactly the same with the only exception being the name of the content type 
and where that content resides on the organization’s site. The mistaken belief in this case is that in order to 
segregate content into different categories you need to have a separate content type. Another belief is that if 
one use case calls for a field that isn’t applicable to other use cases, for example, an article content type with 
just a body and title and a posting content type with a body, title, and image. The reality is that combining 
the two use cases into a single content type with an image doesn’t complicate the work of the editorial staff 
that maintains the content and, in the scenarios where they don’t need an image, they don’t add an image. 
And with different displays, you can render that content type with or without an image.



Chapter 7 ■ Optimizing Your Site Architecture

174

Simplification is the key when it comes to defining and constructing your content types. A common 
technique that will help you distill the list of required content types is to create an inventory of what you 
believe the content types should be on your site during the information architecture phase of your project. 
The inventory should list:

•	 The fields required to capture all of the information to be represented by that content 
type, e.g., title, body, featured image

•	 What the content type will be used for, e.g., to display news articles

•	 Where that content will be rendered on the site, e.g., about us page

A spreadsheet is a great tool for capturing, sorting, and distilling the information. The examples shown 
in Figure 7-1 point to the likely scenario of only needing one or at the most two content types to address all of 
the requirements for a site.

Figure 7-1.  Content type analysis spreadsheet

Examining the spreadsheet, you’ll see that all of the content types have common fields with the lone 
exception of events, which may warrant the use of a separate content type, as it is the only one that has date 
and location fields. While not all content types may equally use each field, having a flexible general-purpose 
content type outweighs the complexity of having dozens or hundreds of specific content types.

Using the examples in Figure 7-1, my recommendation is to have two content types, a general-purpose 
article content type with the following fields:

•	 Title

•	 Body

•	 Featured Image

•	 Date published

•	 Author

•	 File attachment

I would also create an event content type with the same fields plus an event date and a location field.
On the article content type, I suggest adding two taxonomy-driven fields—Article Type and Where 

Used. The Article Type taxonomy would include the values found in the first column of the spreadsheet, 
e.g., featured news, blog post, announcement, staff biography, etc. Those values would be used to segregate 
content based on the type of content. The Where Used taxonomy would be used to simplify the process 
placing the content in the correct section of the site. Using the Views module, you could create generic 
views that render article content based on site section from the URL and the type of content, simplifying and 
minimizing the effort required to build and expand your site.



Chapter 7 ■ Optimizing Your Site Architecture

175

Simplifying the Editorial Interface
While Chapter 9 focuses on the details of improving the editorial interface in Drupal 8, it warrants a brief 
discussion on the benefits of leveraging two helpful modules that we recommend installing—the Field 
Group module (drupal.org/project/field_group) and the Simplify module (drupal.org/project/
simplify). The Field Group module provides the ability to logically group fields on the Node Edit form and 
to arrange those groups of fields onto vertical tabs, horizontal tabs, or accordions. The Simplify module 
provides the ability to hide certain fields from the Node Edit form based on user role.

After installing the Field Group module, navigate to the content types administration page (Structure ➤ 
Content Types) and select the Manage Form Display option in the Operations column. Note that the Add a 
New Group button has been added to the top of the list of fields (see Figure 7-2).

Figure 7-2.  The list of field group options

For demonstration purposes, we create a new Tabs group by selecting the Tabs option. When you select 
the Tabs option, a Label field appears. We enter Articles in the label and click Save and Continue button. 
The next form that is displayed (see Figure 7-3) provides the ability to select in which direction the tabs 
in this group will be displayed (Vertical or Horizontal) as well as the ability to add a CSS ID and extra CSS 
classes. Let’s leave the options at their default values and click Create Group to continue the process.

Figure 7-3.  Configuring a field group

http://dx.doi.org/10.1007/978-1-4842-0253-1_9


Chapter 7 ■ Optimizing Your Site Architecture

176

After creating the Tabs container, I’ll add three individual tabs following the same process with the 
exception of selecting Tab instead of Tabs and the options from the drop-down list shown in Figure 7-2. 
The three tabs will be labeled Title, Taxonomy, and Content. After creating the three tabs, I will rearrange 
the items on the Article Form display (Structure ➤ Content Types ➤ Article ➤ Manage Form Display), as 
shown in Figure 7-4. The Articles container is the parent of all items that appear on the Article Node Edit 
form. The Title, Taxonomy, and Content tabs are the next level (indented), and the fields have been moved 
under their appropriate tabs. To rearrange the items on the page, simply click the + icon and drag the items 
to their appropriate position and drop them on the page. After rearranging the items, click the Save button to 
preserve your changes.

Figure 7-4.  Rearranging the form fields

Figure 7-5.  The revised Create Article page

After modifying the Article Node form, navigate to the Content page and click the Add Content button. 
Select Article on the next page and note the arrangement of the elements on the Create Article page  
(see Figure 7-5).



Chapter 7 ■ Optimizing Your Site Architecture

177

The Create Article page now has three vertical tabs titled Title, Taxonomy, and Content. Clicking 
through the three tabs, you can see the fields that were placed on each tab. While the Article Content Type is 
relatively simple, your editorial team will love you for arranging fields in logical order using tabs instead of a 
long “river” of fields down the page.

You can also embed horizontal tabs in a vertical tab, making it even more powerful for complex content 
types. In the example shown in Figure 7-6, this content type has hundreds of fields organized into 12 tabs 
and on the Related tab there are several embedded horizontal tabs (shown at the bottom of the figure).

Figure 7-6.  A complicated Node Edit form



Chapter 7 ■ Optimizing Your Site Architecture

178

Removing Options from the Node Edit Form
The Node Edit form has several options that you may want to hide (see Figure 7-7).

Figure 7-7.  The node edit options

Figure 7-8.  The Simplify administration form

The Simplify module provides the ability to hide the fields shown in Figure 7-7 by simply checking the 
options listed in Figure 7-8. To access the Simplify form, navigate to Configuration ➤ Simplify.

After checking the appropriate options and saving, visit the Node Edit form to see the simplified 
interface.



Chapter 7 ■ Optimizing Your Site Architecture

179

Content Types versus Entity Types
Drupal 7 introduced the concept of custom entities, where a custom entity represents any structured content 
that you want to define outside of Drupal’s node, comment, file, user, and taxonomy entities. Examining 
each of these entity types, you can see that there are fundamental differences between each of them; for 
example, a node has an author and date published whereas a user does not have either of those two fields. 
While a node entity type will likely handle 99% of the use cases where you need to create a custom template 
for capturing, storing, and displaying information, there may be instances where you need something 
special and you don’t want to carry the weight associated with using the node entity type (e.g., permissions). 
In those rare cases, a custom entity type is likely the best solution.

Creating a custom entity type in Drupal 8 requires a seemingly daunting amount of code. For example, 
assume that you need to create a new custom entity called a Contact. The Contact entity type has basic 
information about a person, such as their name, address, phone number, and e-mail address. To create the 
custom Contact entity, you would need at minimum a:

•	 contact_entity.info.yml file to describe the entity to Drupal 8.

•	 contact_entity.routing.yml file to define the routes associated with the Contact 
entity type.

•	 contact_entity.links.menu.yml file to define the menu items for the Contact 
entity type.

•	 contact_entity.links.action.yml file to define the action links for the Contact 
entity type.

•	 contact_entity.links.task.yml file to add the view, edit, and delete tabs on the 
entity view page and the settings tab on the entity settings page.

•	 src/ContactInterface.php file to define the public access to the Contact entity.

•	 src/Entity/Contact.php file to define the Contact entity class.

•	 src/Form/ContactForm.php file, which defines the form for adding and editing 
Contact entity content.

•	 src/Form/ContactDeleteForm.php file, which defines the confirmation form that is 
called when deleting Contact.

•	 src/Entity/Controller/ContactListBuilder.php file, which defines the header 
and row content for the Contact listing page.

•	 src/Form/ContactSettingsForm.php file, which creates a settings form for Contact.

•	 src/ContactAccessControlHandler.php file, which defines the access control 
mechanisms for Contact.

When you examine the amount of code required to create a custom entity it is significant, meaning you 
really need to have a valid case for why a standard custom content type that uses the node entity wouldn’t 
work for your use case. But there may be a case and you fortunately have an alternative to hand-coding 
hundreds of lines of code to create an entity and that option is the Drupal Console.

The Drupal Console is a tool that generates boilerplate code for Drupal, as well as provides tools for 
interacting with and debugging Drupal. It will save you countless hours of coding and the high probability of 
frustration, so I suggest installing it and getting to know its capabilities early in your Drupal 8 journey.



Chapter 7 ■ Optimizing Your Site Architecture

180

You can download and install Drupal Console from the web site, drupalconsole.com. There are three 
methods for downloading and installing:

•	 Downloading as a new dependency:

# Change directory to Drupal site
cd path-to-your-drupal8-root-directory

# Download DrupalConsole
composer require drupal/console:~1.0 \
--prefer-dist \
--optimize-autoloader \
--sort-packages

•	 Downloading using DrupalComposer:

composer create-project \
drupal-composer/drupal-project:8.x-dev \
path-to-your-drupal8-root-directory \
--prefer-dist \
--no-progress \
--no-interaction

•	 Install Drupal Console Launcher:

curl https://drupalconsole.com/installer -L -o drupal.phar mv drupal.phar  
/usr/local/bin/drupal chmod +x /usr/local/bin/drupal

For additional details on installing Drupal Console, visit the drupalconsole.com web site.
After installing Drupal Console, the next step is to create your new Contact entity using the Drupal 

Console command for constructing all of the code required to define the skeleton of the new entity. The first 
step is to create a new module that will be used as the foundation for the new Contact entity. To create the 
module, enter the following command from the root directory of your Drupal 8 site:

vendor/drupal/console/bin/drupal generate:module

Drupal Console will then walk you through a series of questions about your new Drupal 8 module:

// Welcome to the Drupal module generator
  Enter the new module name:
  > mymodule
  Enter the module machine name [mymodule]:
  Enter the module Path [/modules/custom]:
  Enter module description [My Awesome Module]:
  > Creates a Customer entity
  Enter package name [Custom]:
  > Other
  Enter Drupal Core version [8.x]:
Do you want to generate a .module file (yes/no) [yes]:
Define module as feature (yes/no) [no]:
Do you want to add a composer.json file to your module (yes/no) [yes]:
Would you like to add module dependencies (yes/no) [no]:



Chapter 7 ■ Optimizing Your Site Architecture

181

Do you want to generate a unit test class (yes/no) [yes]:
Do you confirm generation? (yes/no) [yes]:

Generated or updated files

  1 - /Applications/MAMP/htdocs/d8/modules/custom/mymodule/mymodule.info.yml
  2 - /Applications/MAMP/htdocs/d8/modules/custom/mymodule/mymodule.module
  3 - /Applications/MAMP/htdocs/d8/modules/custom/mymodule/composer.json
  4 - /Applications/MAMP/htdocs/d8/modules/custom/mymodule/src/Tests/LoadTest.php

After creating the module, the next step is to create the code required to create the entity. At the 
command prompt, enter the following:

vendor/drupal/console/bin/drupal generate:entity:content

Drupal console will then prompt you with the following questions:

  Enter the module name [mymodule]:
  >

  Enter the class of your new content entity [DefaultEntity]:
  > Customer

  Enter the machine name of your new content entity [customer]:
  >

  Enter the label of your new content entity [Customer]:
  >

  Enter the base-path for the content entity routes [/admin/structure]:
  >

  Do you want this (content) entity to have bundles (yes/no) [no]:
  >

  Is your entity translatable (yes/no) [yes]:
  >

  Is your entity revisionable (yes/no) [yes]:
  >

Generated or updated files
  1 - modules/custom/mymodule/mymodule.permissions.yml
  2 - modules/custom/mymodule/mymodule.links.menu.yml
  3 - modules/custom/mymodule/mymodule.links.task.yml
  4 - modules/custom/mymodule/mymodule.links.action.yml
  5 - modules/custom/mymodule/src/CustomerAccessControlHandler.php
  6 - modules/custom/mymodule/src/CustomerTranslationHandler.php
  7 - modules/custom/mymodule/src/Entity/CustomerInterface.php
  8 - modules/custom/mymodule/src/Entity/Customer.php
  9 - modules/custom/mymodule/src/CustomerHtmlRouteProvider.php



Chapter 7 ■ Optimizing Your Site Architecture

182

  10 - modules/custom/mymodule/src/Entity/CustomerViewsData.php
  11 - modules/custom/mymodule/src/CustomerListBuilder.php
  12 - modules/custom/mymodule/src/Form/CustomerSettingsForm.php
  13 - modules/custom/mymodule/src/Form/CustomerForm.php
  14 - modules/custom/mymodule/src/Form/CustomerDeleteForm.php
  15 - modules/custom/mymodule/customer.page.inc
  16 - modules/custom/mymodule/templates/customer.html.twig
  17 - modules/custom/mymodule/src/Form/CustomerRevisionDeleteForm.php
  18 - modules/custom/mymodule/src/Form/CustomerRevisionRevertTranslationForm.php
  19 - modules/custom/mymodule/src/Form/CustomerRevisionRevertForm.php
  20 - modules/custom/mymodule/src/CustomerStorage.php
  21 - modules/custom/mymodule/src/CustomerStorageInterface.php
  22 - modules/custom/mymodule/src/Controller/CustomerController.php

After constructing the module and the entity, visit your site’s modules/custom directory and you will 
find all of the files generated by Drupal Console:

├── composer.json
├── customer.page.inc
├── mymodule.info.yml
├── mymodule.links.action.yml
├── mymodule.links.menu.yml
├── mymodule.links.task.yml
├── mymodule.module
├── mymodule.permissions.yml
├── src
│   ├── Controller
│   │   └── CustomerController.php
│   ├── CustomerAccessControlHandler.php
│   ├── CustomerHtmlRouteProvider.php
│   ├── CustomerListBuilder.php
│   ├── CustomerStorage.php
│   ├── CustomerStorageInterface.php
│   ├── CustomerTranslationHandler.php
│   ├── Entity
│   │   ├── Customer.php
│   │   ├── CustomerInterface.php
│   │   └── CustomerViewsData.php
│   ├── Form
│   │   ├── CustomerDeleteForm.php
│   │   ├── CustomerForm.php
│   │   ├── CustomerRevisionDeleteForm.php
│   │   ├── CustomerRevisionRevertForm.php
│   │   ├── CustomerRevisionRevertTranslationForm.php
│   │   └── CustomerSettingsForm.php
│   └── Tests
│       └── LoadTest.php
└── templates
    └── customer.html.twig

6 directories, 26 files



Chapter 7 ■ Optimizing Your Site Architecture

183

You could at this juncture enable your new module and examine the new custom Customer entity type; 
however, I want to add a few fields to the entity first so that it represents the requirements that I have for a 
Customer, namely the name, address, city, state, ZIP code, phone number, and e-mail address fields. For 
simplicity’s sake, I’m going to add each of the fields to the entity type as simple text fields.

Let’s edit the Customer.php file in the src/Entity directory of my module’s directory and add the 
following fields after the name field in the baseFieldDefinitions function. (Note: The simple way to add 
all of these fields is to copy the name field and change the appropriate values to represent the new field, for 
example the index in the $fields array, the setLabel and setDescription values):

    $fields['address'] = BaseFieldDefinition::create('string')
      ->setLabel(t('Address'))
      ->setDescription(t('The address of the the Contact entity.'))
      ->setRevisionable(TRUE)
      ->setSettings(array(
        'max_length' => 50,
        'text_processing' => 0,
      ))
      ->setDefaultValue('')
      ->setDisplayOptions('view', array(
        'label' => 'above',
        'type' => 'string',
        'weight' => -4,
      ))
      ->setDisplayOptions('form', array(
        'type' => 'string_textfield',
        'weight' => -4,
      ))
      ->setDisplayConfigurable('form', TRUE)
      ->setDisplayConfigurable('view', TRUE);

    $fields['city'] = BaseFieldDefinition::create('string')
      ->setLabel(t('City'))
      ->setDescription(t('The city of the Contact entity.'))
      ->setRevisionable(TRUE)
      ->setSettings(array(
        'max_length' => 50,
        'text_processing' => 0,
      ))
      ->setDefaultValue('')
      ->setDisplayOptions('view', array(
        'label' => 'above',
        'type' => 'string',
        'weight' => -4,
      ))
      ->setDisplayOptions('form', array(
        'type' => 'string_textfield',
        'weight' => -4,
      ))
      ->setDisplayConfigurable('form', TRUE)
      ->setDisplayConfigurable('view', TRUE);



Chapter 7 ■ Optimizing Your Site Architecture

184

    $fields['state'] = BaseFieldDefinition::create('string')
      ->setLabel(t('State'))
      ->setDescription(t('The state of the Contact entity.'))
      ->setRevisionable(TRUE)
      ->setSettings(array(
        'max_length' => 50,
        'text_processing' => 0,
      ))
      ->setDefaultValue('')
      ->setDisplayOptions('view', array(
        'label' => 'above',
        'type' => 'string',
        'weight' => -4,
      ))
      ->setDisplayOptions('form', array(
        'type' => 'string_textfield',
        'weight' => -4,
      ))
      ->setDisplayConfigurable('form', TRUE)
      ->setDisplayConfigurable('view', TRUE);

    $fields['zipcode'] = BaseFieldDefinition::create('string')
      ->setLabel(t('Zipcode'))
      ->setDescription(t('The zipcode of the Contact entity.'))
      ->setRevisionable(TRUE)
      ->setSettings(array(
        'max_length' => 50,
        'text_processing' => 0,
      ))
      ->setDefaultValue('')
      ->setDisplayOptions('view', array(
        'label' => 'above',
        'type' => 'string',
        'weight' => -4,
      ))
      ->setDisplayOptions('form', array(
        'type' => 'string_textfield',
        'weight' => -4,
      ))
      ->setDisplayConfigurable('form', TRUE)
      ->setDisplayConfigurable('view', TRUE);

    $fields['phone'] = BaseFieldDefinition::create('string')
      ->setLabel(t('Phone'))
      ->setDescription(t('The phone number of the Contact entity.'))
      ->setRevisionable(TRUE)
      ->setSettings(array(
        'max_length' => 50,
        'text_processing' => 0,
      ))



Chapter 7 ■ Optimizing Your Site Architecture

185

      ->setDefaultValue('')
      ->setDisplayOptions('view', array(
        'label' => 'above',
        'type' => 'string',
        'weight' => -4,
      ))
      ->setDisplayOptions('form', array(
        'type' => 'string_textfield',
        'weight' => -4,
      ))
      ->setDisplayConfigurable('form', TRUE)
      ->setDisplayConfigurable('view', TRUE);

    $fields['email'] = BaseFieldDefinition::create('string')
      ->setLabel(t('Email'))
      ->setDescription(t('The email of the Contact entity.'))
      ->setRevisionable(TRUE)
      ->setSettings(array(
        'max_length' => 50,
        'text_processing' => 0,
      ))
      ->setDefaultValue('')
      ->setDisplayOptions('view', array(
        'label' => 'above',
        'type' => 'string',
        'weight' => -4,
      ))
      ->setDisplayOptions('form', array(
        'type' => 'string_textfield',
        'weight' => -4,
      ))
      ->setDisplayConfigurable('form', TRUE)
      ->setDisplayConfigurable('view', TRUE);

After adding the fields, save the Contact.php file and edit the CustomerListBuilder.php file to add the 
new fields to the buildHeader and buildRow functions, as shown here. Add each of the fields.

class CustomerListBuilder extends EntityListBuilder {

  use LinkGeneratorTrait;

  /**
   * {@inheritdoc}
   */
  public function buildHeader() {
    $header['id'] = $this->t('Customer ID');
    $header['name'] = $this->t('Name');
    $header['address'] = $this->t('Address');
    $header['city'] = $this->t('City');
    $header['state'] = $this->t('State');
    $header['zipcode'] = $this->t('Zip');



Chapter 7 ■ Optimizing Your Site Architecture

186

    $header['phone'] = $this->t('Phone');
    $header['email'] = $this->t('Email');
    return $header + parent::buildHeader();
  }

  /**
   * {@inheritdoc}
   */
  public function buildRow(EntityInterface $entity) {
    /* @var $entity \Drupal\mymodule\Entity\Customer */
    $row['id'] = $entity->id();
    $row['name'] = $this->l(
      $entity->label(),
      new Url(
        'entity.customer.edit_form', array(
          'customer' => $entity->id(),
        )
      )
    );
    $row['address'] = $entity->address->value;
    $row['city'] = $entity->city->value;
    $row['state'] = $entity->state->value;
    $row['zipcode'] = $entity->zip->value;
    $row['phone'] = $entity->phone->value;
    $row['email'] = $entity->email->value;
    return $row + parent::buildRow($entity);
  }

}

After updating the CustomerListBuilder.php file and saving it, enable your new module on the Extend 
page (see Figure 7-9).

Figure 7-9.  The new customer entity module

After the module is enabled, you can create, view, and update the customer content by navigating 
to the Structure page (see Figure 7-10). You will see two new links on the page—Customer Settings and 
Customer List.



Chapter 7 ■ Optimizing Your Site Architecture

187

Click on the Customer List link to see a list of existing customer records. You’ll see each of the fields that 
were added to the CustomerListBuilder.php file at the top of the list (see Figure 7-11).

Figure 7-10.  The Structure page

Figure 7-11.  The Customer list page



Chapter 7 ■ Optimizing Your Site Architecture

188

To add a new Customer, click on the Add Customer button and fill in the fields that were added to the 
Customer entity. Click the Save button after entering the values (see Figure 7-12).

Figure 7-12.  Adding a new customer

Figure 7-13.  The new customer appears in the list

After adding a new customer, return to the Structure page and click on the Customer List link. You’ll see 
the new customer in the list (see Figure 7-13).



Chapter 7 ■ Optimizing Your Site Architecture

189

For each item in the custom list, you can perform edits or deletes through the options presented in the 
Operations column.

You can also perform operations on the Customer entity itself by navigating to Structure ➤ Customer 
Settings. On this page you’ll find tabs to Manage Fields, Manage Form Display, and Manage Display. Each 
of the operations is identical to a standard entity such as a node. You can add custom fields to your custom 
entity through the Manage Fields tab (Note: Fields defined in code do not appear on this page; only custom 
fields that are added through this page appear here.). Rearrange the fields on the Customer Edit form and 
change the rendering of a customer through the Manage Display tab.

It’s also key to understand that customers will not appear on the Content page, similar to how users, 
comments, and taxonomy terms don’t appear on that list. To view the customers, you’ll need to visit the 
Structure page.

Leveraging Taxonomy
When asked what taxonomy is used for, many people shrug their shoulders and relay the common “freeform 
tagging” use case as the only area where taxonomy is used on their site, making taxonomy one of the most 
underutilized capabilities of Drupal’s core capabilities. While freeform tagging is a valid use case, there are 
many more powerful and useful approaches for leveraging taxonomy that will help optimize and streamline 
your site’s architecture.

If you are unfamiliar with taxonomy in Drupal 8, I suggest picking up a copy of Beginning Drupal 8 from 
Apress and reviewing the chapter on taxonomy. This section focuses on more advanced use cases of taxonomy.

Taxonomy as an Entity
Before diving into the details of other use cases for taxonomy, it’s important to understand that taxonomy is 
another entity type, like nodes, comments, and users. Because taxonomy is an entity type, Drupal provides 
the ability to add fields to a taxonomy vocabulary and the terms that are contained with that vocabulary. 
Having the ability to add custom fields has several benefits, for example, displaying a page banner at the 
top of a list of content filtered by a taxonomy term. Typically we would have solved this use case by creating 
a custom block and using block visibility to control when that block would be rendered. The problem with 
this approach is when you have hundreds of taxonomy terms. In this case, you would have to have hundreds 
of custom blocks. Managing hundreds of blocks and ensuring that taxonomy terms are synchronized with 
custom blocks is an administrator’s nightmare. Putting the banner image on the term itself solves the 
problem, and through the use of a generic view that displays the banner image based on an argument in the 
URL (for example), provides a simple solution to a complex problem.

You can extend the scenarios well beyond just storing a banner image on a taxonomy term; you can 
add virtually any field type to a taxonomy term. To demonstrate this capability, visit Structure ➤ Taxonomy 
and click on the Add Vocabulary button. We’ll create a new vocabulary called Site Section which we’ll use to 
categorize content by where it is supposed to reside on the site. After creating the vocabulary, we click on the 
Manage Fields tab (see Figure 7-14). The process for creating and managing fields is identical to creating and 
managing fields on a content type.

Figure 7-14.  Creating taxonomy fields



Chapter 7 ■ Optimizing Your Site Architecture

190

For demonstration purposes, we add the banner image field. After clicking on the Add Field button, 
we’re presented with a list of types of fields that can be added (see Figure 7-15).

Figure 7-15.  Types of fields

Figure 7-16.  Field details

We select the Image Field type and click the Save and Continue button (which is hidden under the 
drop-down list in Figure 7-15) to enter the details of the new image field (see Figure 7-16).



Chapter 7 ■ Optimizing Your Site Architecture

191

After creating the Banner Image field, we can manage where it appears on the Add Term form and 
manage how it is displayed when a taxonomy term is rendered. The position of the field on the Add Term 
form can be updated by clicking on the Manage Form display tab (see Figure 7-14) and dragging the new 
field to the appropriate position in the list of fields. The position of the field when a term is rendered can be 
updated by clicking on the Manage Display tab. You may reposition the field by dragging and dropping it in 
the list of fields, you may hide the field label, and you can change the format of the field on this page.  
All of these actions are identical to how fields are managed on a content type.

After updating the form and display, we add a few new Site Section taxonomy terms. Click on the List 
tab and then the Add Term button. The Add Term form now has the ability to add a banner image to the 
term being created (see Figure 7-17).

Figure 7-17.  Add term with the Banner image field

After creating several Site Section taxonomy terms and attaching banner images to each term,  
we then update the Article Content Type to include the Site Section taxonomy term as a reference field  
(see Figure 7-18). To do so, follow these steps:

	 1.	 Navigate to Structure ➤ Content Types.

	 2.	 Click the Manage Fields button in the Operations column.

	 3.	 Click the Add Field button and selected Taxonomy term from the list of possible 
field types.

	 4.	 On the Configuration page for the new field, select Site Section as the source of 
terms that will be presented to the content author.

	 5.	 Save the field.

	 6.	 Reposition the field to the position where you want it to appear.

	 7.	 Save the Article Content Type.

	 8.	 Then create several articles and select one of the Site Section taxonomy terms 
(homepage) as the location where you want those articles to appear. See Figure 7-18.



Chapter 7 ■ Optimizing Your Site Architecture

192

After creating several articles tagged with the Homepage taxonomy term, navigate to Structure ➤ Views 
and click on the Add View button to create a new view called Page Banner. On the Add View page, set the 
values as follows:

•	 View name: Page Banner

•	 View Settings:

•	 Show: Taxonomy terms

•	 Of type: Site Section

•	 Sorted by: Unsorted

•	 Block Settings

•	 Create a Block: checked

•	 Block Display Settings

•	 Display format: Unformatted list of Fields

•	 Items per block: 1

After clicking the Save and Edit button, update the view’s configuration as follows:

•	 Display name: Page Banner Block

•	 Fields: Taxonomy term: Banner Image (this is the name of the field we added to the 
taxonomy term)

•	 In the Advanced section, Contextual Filters: Taxonomy term: Term ID (from URL)

•	 Machine Name: page_banner_block

Then save the view.
With the block ready to place on pages, navigate to Structure ➤ Block Layout. On the Block Layout page, 

click the Place Block button in the Header region and located the Page Banner: Page Banner Block. Click the 
Place Block button and leave all of the default options as is on the Configure Block page. Click Save Block to 
place the block in the Header region. On the Block Layout page, click the Save Blocks button at the bottom 
of the page. With the taxonomy terms, content, view, and block in place, you’re ready to test the ability to use 
the page banner field on the Site Section taxonomy term as the banner at the top of a page associated with 
that term.

Figure 7-18.  Adding a Site Section taxonomy term to an article



Chapter 7 ■ Optimizing Your Site Architecture

193

To view the capabilities of this solution, navigate to the taxonomy term listing page for my homepage 
taxonomy term, which is /taxonomy/term/1. Note: Your term ID may be different depending on which 
term you have used. To find the term ID of the term you have used navigate to Structure ➤ Taxonomy and 
click the List Terms link in the Operations column of the vocabulary that holds the terms you used for Site 
Section. Find the term in the list and hover over the Edit link in the Operations column. In the status bar of 
your browser, you should see the full URL to the edit page for that term. The term ID will appear directly after 
the term/ in the URL.

After entering the correct URL in the browsers address bar and visiting the page, you’ll see the page banner 
you assigned to the Homepage taxonomy term displayed at the top of the content area (see Figure 7-19).

Figure 7-19.  The page banner appears

We can make the URL more user and SEO friendly by editing the taxonomy term for Homepage 
and creating a URL alias of /homepage. After updating the term, visit the page at example.com/homepage 
(replacing example.com with the domain name of your site) and you’ll see the same results as you did with  
/taxonomy/term/1.

Building Multipurpose Pages Using Taxonomy
Another area for leveraging taxonomy is building multipurpose pages that render content through views 
based on values contained in the URL. It may be easiest to understand the concept through an example use 
case. I’ll use the example of a manufacturing company that has several product lines, which each line having 
multiple products. While I could create a standalone page for each product line, I could just as easily create 
a single page that uses taxonomy terms in the URL to render content that is specific to that product line, for 
example /products/brushes. With one page I could render an unlimited number of product line landing 
pages. The only requirements are that each product line is defined by a taxonomy term, and that every 
product in that product line is tagged with terms from the product line taxonomy.



Chapter 7 ■ Optimizing Your Site Architecture

194

Laying the Foundation for Multipurpose Pages
While it is possible to provide the functionality required to address this use case through custom code, I’ll 
demonstrate fulfilling the requirements with off-the-shelf modules (ctools, panels, page manager, taxonomy, 
and views) that require no custom development. While some of the modules used to demonstrate this 
capability are in alpha or beta at the time this chapter was written, they all function as desired and will only 
get better as they move to release candidates.

The list of modules that must be downloaded from drupal.org and installed are as follows:

•	 Ctools (drupal.org/project/ctools)

•	 Panels (drupal.org/project/panels)

•	 Page Manager (drupal.org/project/page_manager)

•	 Layout Plugin (drupal.org/project/layout_plugin)

•	 Panelizer (drupal.org/project/panelizer)

We assume you have Drush enabled on your site and will download the modules using the following 
commands:

•	 drush dl ctools

•	 drush dl panels

•	 drush dl page_manager

•	 drush dl layout_plugin

•	 drush dl panelizer

You may then enable the modules through Drush or by visiting the Extent page and checking the box next 
to each of the modules, followed by clicking on the Install button at the bottom of the page (see Figure 7-20).

Figure 7-20.  Enabling the panels-related modules



Chapter 7 ■ Optimizing Your Site Architecture

195

After enabling the modules, the steps required to achieve the desired outcome are as follows:

	 1.	 Create a new taxonomy vocabulary to house product-line taxonomy terms.

	 2.	 Create one to several product line taxonomy terms in the product line vocabulary.

	 3.	 Create a product content type with the following fields:

•	 Title

•	 Description (body)

•	 Featured Image

•	 Term reference field to the product-line vocabulary

•	 A featured product Boolean field

	 4.	 Review and update the teaser and full view modes for the product content type.

	 5.	 Create several products across multiple taxonomy terms, selecting at least one 
per taxonomy term as the featured product for that product line.

	 6.	 Create a view (block) that renders a list of products, using the teaser view, filtered 
by product line from the URL.

	 7.	 Create a view (block) that renders the featured products (products that are 
checked as featured), using the teaser view, filtered by product line from the URL.

	 8.	 Create a panel page (two columns) that takes the product line as an argument in 
the URL.

	 9.	 Place the featured product block in the right column and the product listing 
block in the main content area of the page.

Creating the Product Line Vocabulary and Terms
The first step in the process is to create the product line vocabulary. Navigate to Structure ➤ Taxonomy and 
click on the Add Vocabulary button. Enter Product Line in the Name field and click the Save button. Next 
click on the Add Term button and add the following terms:

•	 Tools

•	 Cabinets

•	 Measurement

•	 Accessories



Chapter 7 ■ Optimizing Your Site Architecture

196

After creating the vocabulary and adding the terms, the list of terms should look similar to Figure 7-21.

Creating the Product Content Type and Product Content

With the Product Line taxonomy in place, the next step is to create the Product Content Type with the 
following fields:

•	 Title

•	 Description (body)

•	 Featured image

•	 Featured product (Boolean)

•	 Product line term reference

Navigate to Structure ➤ Content Types and click the Add Content Type button to begin the process of 
creating the Product Content Type. Configure the content type by:

•	 Entering Product in the Name field

•	 In the Publishing options section, unchecking the Promoted To front page option

•	 In the Display settings, unchecking the display author and date information option

•	 In the Menu settings section, unchecking the Main navigation checkbox, resulting in 
no menus being checked, as we don’t want editors to add products to menu

Then click the Save and Manage Fields button to continue the process. By default Drupal creates a title 
field and a Body field. The title field appeared on the previous page and was fine as is without modifications. 
Let’s change the Label on the body field to read Description by clicking on the Edit button in the Operations 

Figure 7-21.  The list of product line terms



Chapter 7 ■ Optimizing Your Site Architecture

197

column. Delete the value of Body in the Label field and enter Description in its place, followed by clicking 
the Save Settings button at the bottom of the form. Then add the fields by clicking on the Add Field button 
and selecting the appropriate types of fields.

Rearrange the fields on the form by clicking on the Manage Form Display tab and setting the order as 
shown in Figure 7-23.

Figure 7-23.  The product content type form display field order

Figure 7-22.  The Product content type and fields



Chapter 7 ■ Optimizing Your Site Architecture

198

Then click on the Manage Display tab and update the default and teaser displays to only show the 
Featured Image and Description fields. Set the default image size to 220X220 for the default view mode and 
100X100 for the teaser view mode by clicking on the gear icon at the far right of the row for Featured Image 
(see Figure 7-24).

After saving the display settings, we create several products across each of the Product Line taxonomy 
terms. Navigate to the Content page and click the Add Content button to create several products across each 
of the product lines in preparation for the next step.

Creating the Product Views

The requirements call for two views—one that displays the full list of products within a product line and one 
that randomly displays one of the products that is checked as a featured product (randomly as more than 
one may be checked as featured within a given product line). Both views use the teaser display mode and 
both will be created as blocks.

Navigate to Structure ➤ Views and click on the Add View button to create the new view. We use 
a single view for both blocks. On the Add View page, enter Products as the name and update the view 
settings to show content of type Product sorted by Unsorted. Click the Save and Edit button to continue 
(see Figure 7-25).

Figure 7-24.  The default display for the product content type



Chapter 7 ■ Optimizing Your Site Architecture

199

Within this single view, we’ll create two block displays—one to list all products by product line and one 
to list a featured product from that product line. For each display we click the Add button and select Block as 
the type of display.

For the product-by-product line block display, set:

•	 The Display name to Products by Product Line

•	 Show Content using the teaser display mode

•	 Sort criteria by title

•	 Under the advanced section (third column), add a contextual filter for Content: 
Product Line, setting a default value to Raw value from URL, selecting 2 from the list 
of Path components (second element in the URL will contain the taxonomy term for 
product line)

For the featured product block display:

•	 Set the Display name to Featured product

•	 Add a Filter criteria for Content: Featured Product set to True

•	 Add a Sort criteria of Random and remove the Content: Title (asc)

•	 Use Pager: Display a specified number of items | 1 item

•	 Under the advanced section (third column), add a contextual filter for Content: 
Product Line, setting a default value to Raw value from URL, selecting 2 from the list 
of Path components (second element in the URL will contain the taxonomy term for 
Product Line).

Figure 7-25.  Creating the product views



Chapter 7 ■ Optimizing Your Site Architecture

200

Figure 7-26.  Details of the product display

The resulting view should look similar to Figure 7-26.

Creating the Product Page

The final step in the process is to create the page where products will be displayed. Previously, we installed 
and enabled the following modules and their sub-modules: Ctools, Panels, Page Manager, Panelizer, and 
Layout Plugin. We’ll use a majority of these modules to assemble the generic product page.

We start by creating the page through the Page Manager module. Navigate to Structure ➤ Pages and 
click on the Add Page button. On the Page Information form, set the following values:

•	 Administrative title: Products by Product Line

•	 Administrative description: A page that displays products based on product line

•	 Path: /products/{line}

•	 Variant type: Panels

The value in the Path field is set to /products/{line} where {line} is a dynamic argument that will 
hold the various values for the taxonomy terms in the Product Line vocabulary. The value in the braces is 
only for reference purposes and does not perform any function other than showing up in the administrative 
interface. For maintenance purposes, you should use a name that is meaningful to others who may have 
to make changes to this page in the future. After entering the values, you’re ready to proceed with the page 
creation process. Click the Next button (see Figure 7-27).



Chapter 7 ■ Optimizing Your Site Architecture

201

The next step assigns context to the argument, {line}, in the URL (see Figure 7-28). The value that will 
be passed in the URL is the taxonomy term associated with a given product line taxonomy term, so we assign 
the context of Taxonomy term to the line argument by clicking on the Edit button in the operations column. 
In the list of options presented, we select Taxonomy Term as the type of value that will be passed through the 
URL, clicking the Update Parameter button to complete the process. The result is shown in Figure 7-28. Click 
the Next button to continue the page-creation process.

Figure 7-27.  Creating the products by product line page

Figure 7-28.  Assigning context to the URL argument



Chapter 7 ■ Optimizing Your Site Architecture

202

The next page, Configure Variant, presents the opportunity to change the builder that is used to manage 
the page once it has been created. The default, Standard, requires that the site administrator visit Structure 
➤ Pages in order to make changes to the layout or elements placed on the page. The In-Place Editor option 
provides the ability to edit the page directly while visiting that page by clicking on buttons at the bottom of 
the page (e.g., Change Layout). Let’s leave the Builder set to Standard and continue with the build process by 
clicking the Next button.

The next step in the process is to select the layout for the page. There are several off-the-shelf options, 
including one-, two-, and three-column layouts (see Figure 7-29).

For demonstration purposes, we select the two-column layout and then click the Next button to 
continue the build process.

While the off-the-shelf layouts provide a number of options, you may find situations where one of 
the existing layouts does not meet your design requirements. In those cases you can create your own 
custom layouts. Navigate to /modules/panels/layouts and you’ll see the existing layouts and how they are 
constructed. Each layout consists of a Twig template file and CSS to style the output of the layout.

.
├── onecol
│   ├── onecol.css
│   ├── onecol.png
│   └── panels-onecol.html.twig
├── threecol_25_50_25
│   ├── panels-threecol-25-50-25.html.twig
│   ├── threecol_25_50_25.css
│   └── threecol_25_50_25.png
├── threecol_25_50_25_stacked
│   ├── panels-threecol-25-50-25-stacked.html.twig
│   ├── threecol_25_50_25_stacked.css
│   └── threecol_25_50_25_stacked.png
├── threecol_33_34_33
│   ├── panels-threecol-33-34-33.html.twig
│   ├── threecol_33_34_33.css
│   └── threecol_33_34_33.png

Figure 7-29.  The layout options



Chapter 7 ■ Optimizing Your Site Architecture

203

├── threecol_33_34_33_stacked
│   ├── panels-threecol-33-34-33-stacked.html.twig
│   ├── threecol_33_34_33_stacked.css
│   └── threecol_33_34_33_stacked.png
├── twocol
│   ├── panels-twocol.html.twig
│   ├── twocol.css
│   └── twocol.png
├── twocol_bricks
│   ├── panels-twocol-bricks.html.twig
│   ├── twocol_bricks.css
│   └── twocol_bricks.png
└── twocol_stacked
    ├── panels-twocol-stacked.html.twig
    ├── twocol_stacked.css
    └── twocol_stacked.png

Examining the two-column layout’s Twig file, you’ll note that the structure is relatively simple:

<div class="panel-2col" {% if css_id %}{{ css_id }}{% endif %}>
  <div class="panel-panel">
    {{ content.left }}
  </div>

  <div class="panel-panel">
    {{ content.right }}
  </div>
</div>

The associated CSS is just as simple:

.panel-2col {
  display: flex;
  flex-wrap: wrap;
  justify-content: space-between;
}

.panel-2col > .panel-panel {
  flex: 0 1 50%;
}

You can use this as the foundation to build your own layouts.
The next step in the process is to assign blocks to the regions that are provided by the layout. The final 

step in the process is to assign the blocks that were created by the Products view in the left and right columns 
of the new page. On the Content page (see Figure 7-30), enter Products into the Page title field and click the 
Add New Block button to select the blocks to place on the page.



Chapter 7 ■ Optimizing Your Site Architecture

204

Figure 7-31.  The list of views

Figure 7-32.  The Add Block form

Figure 7-30.  The Content page where blocks are placed on the page

After clicking the Add New Block button, you’re presented with a list of blocks that are available for 
placement on the page. Scrolling through the list, you’ll find a section called Lists (views). The two blocks 
that were created by the Products view are in that list (see Figure 7-31).

Click on the Products: Product by Product Line block and on the Add block form (see Figure 7-32). Then 
select the left side region and click the Add Block button.



Chapter 7 ■ Optimizing Your Site Architecture

205

Figure 7-33.  The blocks placed on the page

The final step is the click the Save button on the Page Information page. After creating the page, check 
the term IDs for the various product lines. Navigate to Structure ➤ Taxonomy and list the terms for the 
Product Lines vocabulary. Hovering over the Edit button for each term, you can see that term ID in the 
URL in the browser’s status bar. With that information in hand, you can update the URL in the browser bar, 
entering /products/8 to test the page and ensure that it is working properly. In this case, 8 happens to be the 
term ID for the Accessories product line. The result is shown in Figure 7-34.

Click the Add New Block button again and select the Products: Featured Product block. Assign it to the 
right side region and then click the Add Block button. With the blocks placed, it’s time to click the Finish 
button (see Figure 7-33).



Chapter 7 ■ Optimizing Your Site Architecture

206

It works as expected, but there are opportunities to improve the solution beyond this basic 
implementation. The following changes could make the page more visitor friendly:

•	 Create URL aliases for the products/term-id paths. For example, it would be more user 
friendly to see products/accessories in the URL instead of products/8. To create that 
URL alias, navigate to Configuration ➤ URL Aliases and click on the Add Alias button. 
In the Existing system path, enter /products/8. In the Path alias field, enter /products/
accessories. Then save the alias and continue creating the other aliases for the other 
product lines. After the aliases are in place, you can use products/accessories in the URL 
and you’ll see the products that have been tagged with the accessories taxonomy term.

•	 Create a new view that lists the terms from the Product Line vocabulary. This block 
view would show the term name and would have a contextual filter that is identical 
to the Products block views. You could then place this block at the top of the page to 
indicate which product line the page is referencing.

After making the two suggested changes, you can now see a visitor and SEO friendly URL in the 
browser’s address bar, as well as an indication of what product line the page is referring to with the new title 
above the list of products (see Figure 7-35).

Figure 7-34.  The Product page filtered by product line



Chapter 7 ■ Optimizing Your Site Architecture

207

The concepts presented in this section can be expanded to address a wide variety of use cases. 
The solution presents a write-once-use-many-times approach, which will significantly decrease your 
development and testing effort, and it provides an interesting opportunity that allows content editors to 
create entirely new site sections without having to touch a single line of code or template file. All you need to 
do is add new taxonomy terms to vocabularies like Site Section and you’re off and running.

The Location of Content in an Enterprise Setting
A common problem that medium-to-large organizations face is the duplication of content across various 
platforms, including multiple Drupal sites, and in other applications such as enterprise resource planning 
(ERP), customer relationship management (CRM), and the various marketing platforms the organization 
uses. The issue often quickly becomes a problem of synchronization of content across all of these platforms, 
for example, the description of an item in the product catalog in the ERP system may be updated and not 
reflected on the various web sites that present that information to customers. Or a customer’s address may 
be updated in CRM but never updated across the various web sites where customer’s shop online. While 
the content distribution mechanisms outlined earlier in this book present an opportunity to synchronize 
content across Drupal instances in the organization, it only addresses a portion of the larger problem.

Figure 7-35.  The revised product page



Chapter 7 ■ Optimizing Your Site Architecture

208

There is a solution that addresses the broader problem and that is considering a platform such as Solr 
as a mechanism for integrating content across Drupal sites as well as across enterprise applications outside 
the realm of Drupal.

Using Apache SOLR
A revolutionary approach for integrating content from multiple sources is one that many of us use on our 
existing Drupal sites but we fall short of the true power of this solution, and that is Apache Solr. We use 
Solr to index content on a single Drupal site as a more powerful replacement for Drupal’s standard search 
capabilities that are inherent in core. We can use Solr’s integration with views to speed up the delivery 
of content on pages, as Solr’s indexes are optimized for speed. But here’s the good new—Solr can index 
multiple sources of content and present that content as a unified index, meaning we can index all of our 
Drupal-based content as well as content from other sources and deliver that content through a single index. 
When content is added or updated on those source systems, Solr updates the index. Solr also indexes the 
content on your local site by providing a single source of enterprise-wide content.

Think of the power and flexibility of being able to access information from your:

•	 Enterprise resource planning (ERP) system for product information, including 
updated product availability, and pricing

•	 Customer Relationship Management (CRM) system

•	 Product catalog solution for product images and marketing materials

•	 Digital asset management solution for product brochures and spec sheets

•	 Other Drupal sites within your organization, providing the ability to share blog 
postings, articles, events, and other content that may be applicable to your site

The possibilities are virtually limitless. Just as with Solr, if you can get to the information, you can index 
it and share it through the index.

What Does a Solr-Based Solution Require?
The foundation of the solution is a Solr server. You may install your own instance of Solr on your own server 
or you may purchase a hosted Solr solution such as the one provided by OpenSolr (opensolr.com). If you 
don’t have the skills or resources to implement Solr internally, the hosted solutions are a very cost effective 
solution and provide high availability and scalability packages that would be difficult for most organizations 
to build and support.

Once your Solr instance is available, implement the Search Solr API module (drupal.org/project/
search_api_solr) and the Search API module (drupal.org/project/search_api). Follow the instructions 
for each module to install/enable them as some require composer to pull in various dependencies. To 
configure the connection to your Solr server, visit /admin/config/search/search-api and click on Add 
Server. Provide a name for the server and the connection details for your Solr server.

Next, create a new index by visiting /admin/config/search/search-api. Click on Add Index and give 
the index a name and select at least one data source.

■■ Note   If you are indexing multiple sites, use the same index name for all of your sites. Otherwise each site 
will have their own index without the ability to search across sites. Select the server you just created and leave 
all the other default values. Then save.



Chapter 7 ■ Optimizing Your Site Architecture

209

Test the connection to your Solr index by creating some content and checking to see if that content 
appears in the Index page of your Solr server. If the connection is correct and the content you just created 
appears in the index, you are good to go.

Consuming Indexed Information Through Views
With all of your sites indexed through Solr you now have the ability to create views using your Solr index as 
the source of content. When creating a new view, select the name of the Solr index that you created as the 
source of content to display and continue building the view just as you would any other view. It’s just  
that easy.

Off-the-Shelf versus Custom Development
The final section of this chapter touches on a touchy subject, do I make it or do I use something that is 
already built? When I started working with Drupal back in the Drupal 3.x days, there were only a handful 
of contributed modules and to do anything beyond the basics required custom development. Today, 
with Drupal 8, core itself has a significant footprint of functional capabilities that meet many of the basic 
requirements for developing simple to moderately complex web sites. When you throw in the 2,500 or so 
contributed modules that are currently available for Drupal 8 and the requirement to “go custom” quickly 
fades. It’s unlikely that someone else hasn’t already accomplished what you are trying to do in the world. So 
the question is why would anyone go custom? The common answers that I’ve heard over the past 13 years of 
working on nothing but Drupal include:

•	 We believe we’re unique and our requirements are so complex that nobody else on 
the planet has even thought about what we’re going to do. There are a couple of red 
flags in this statement. Our requirements are so complex and we’re unique. Is the 
complexity a business requirement? If it is then the question becomes does the cost 
of custom development have a positive return for the organization?

•	 We believe we can write better code. That statement often comes from 
organizations whose IT organizations have held them hostage for decades. That’s 
like saying that you can build a better car so instead of buying one off a dealer’s 
showroom you’re going to build your own. Building your own is costly, and the 
one responsible for maintaining it is the one who built it. There are thousands of 
amazing developers in the Drupal community who have built incredible modules. 
Why start from scratch?

•	 Off-the-shelf doesn’t exactly fit our requirements. While every organization 
may be unique, I have yet to find a use case where when I truly understood the 
requirements I couldn’t solve a majority of the requirement with one or more 
contributed modules. I have had to write some custom code to address very unique 
requirements, but the amount of custom code on any of the hundreds of projects 
that I’ve worked on over the past dozen years has been minimal.

While there may be some cases where it appears to require custom development, my suggestion is to:

•	 Clarify the requirement. Often requirements are vague and general. When you get to 
the bottom of what the organization is trying to achieve you can more often than not 
solve the problem with off-the-shelf solutions.



Chapter 7 ■ Optimizing Your Site Architecture

210

•	 Review the requirements with the stakeholders. More often than not, when I’ve 
discussed the requirements with stakeholders and explained that there is a way to 
accomplish a slightly revised version of the requirements with off-the-shelf Drupal 
modules, 99.99% of the time the stakeholders agree that the capabilities presented by 
an off-the-shelf solution are actually better than what they were envisioning, but they 
weren’t clear themselves on what they wanted.

•	 Clearly communicate the cost and risk. All custom solutions come at a cost. When 
you identify a case for a purely custom solution, carefully calculate the true cost of 
developing that solution. In nearly every case over the past dozen years, the cost 
of custom development far outweighed the benefits of creating a custom solution 
versus bending the requirements so they fit an off-the-shelf solution. Remember that 
there are on-going costs beyond the initial development, and the burden of tracking 
security issues on your own versus leaning on the Drupal community.

•	 Enter the discussion early with stakeholders when planning your new Drupal 
site. When they understand the capabilities of the platform, they can then define 
requirements that fit Drupal’s DNA, eliminating some if not all of the “square peg in 
a round hole” syndrome.

•	 If you find a case where it appears that custom is the only option, remember 
that Drupal plays well in an ecosystem of other applications, meaning that if the 
capabilities can be more easily met with a solution built on AngularJS, for example, 
then by all means build that capability in Angular and tie it into Drupal.

•	 If you have a use case that can almost be solved by one or more off-the-shelf 
modules, look at the issue queues to see if anyone else is suggesting the capabilities 
your organization is looking for. You may find others who would be willing to partner 
with you to enhance an off-the-shelf module to address all of your needs. Or you 
may be able to talk a module maintainer into helping you extend the capabilities of a 
contributed module. The key here is to communicate and ask.

•	 Don’t “pave the cow path.” I have encountered this mindset over and over again 
over the years. When looking at requirements, use cases, and designs I often find 
organizations trying to take what they have and re-platform it on Drupal. While 
it may seem like a valid approach, the reality is that in most “pave the cow path” 
scenarios, they fall far short of leveraging Drupal’s capabilities to meet the business 
objectives, and you end up with a Frankenstein-like solution that performs poorly, 
is difficult to use, and ends up giving Drupal a bad reputation for not doing things as 
well as the old platform did. Get to the root of the business requirements and paint 
the solution using Drupal, instead of trying to “reskin” the old site using Drupal.

Every organization has to make the decision on their own as to how closely they want to fit within the 
off-the-shelf DNA of Drupal. Over the past decade I’ve watched organizations spend horrendous amounts of 
money developing highly custom solutions that performed poorly and ended up on the scrap heap. I’ve also 
watched organizations that have pivoted their belief systems and took an “off-the-shelf” only approach with 
the results being greater than they expected, simpler to maintain, and significantly less costly to build and 
maintain.

If I return back to the old days of “before-the-web” there were interesting statistics about the cost 
of building and maintaining systems. Typically we spend 80% of the total budget on less than 20% of the 
functionality we are trying to deliver. If you look at that 20% of the overall functionality that is so costly to 
build, it often has a less than 5% impact on revenue growth, profitability, competitiveness, brand loyalty, and 
customer satisfaction. Interestingly enough I’ve witnessed the same statistics over the past decade when it 
comes to Drupal sites.



Chapter 7 ■ Optimizing Your Site Architecture

211

Summary
There are many things to consider when optimizing your Drupal sites, but it often comes down to the basics 
of what are the true business requirements that you are trying to accomplish and how you can best leverage 
Drupal to address those needs. Do Drupal “the Drupal way” and you’ll find yourself spending weekends and 
evenings doing the things you want to do, not battling to keep your sites alive.

The next chapter focuses on how to integrate Drupal with other systems, including creating a solution 
based on “headless” Drupal.



213© Todd Tomlinson 2017 
T. Tomlinson, Enterprise Drupal 8 Development, DOI 10.1007/978-1-4842-0253-1_8

CHAPTER 8

Integrating Drupal 8

In many organizations Drupal web sites often provide and consume content and services to and from 
external systems. Those systems may be other web sites, enterprise applications, or third-party services. 
Drupal has historically provided the ability to integrate with external systems through a combination of 
contributed modules, which have often been fraught with complexities that made it difficult at best to 
integrate with Drupal. Drupal 8 changes all of that with the inclusion of RESTful web services in core and 
they work beautifully.

This chapter focuses on

•	 Enabling and configuring RESTful web services in Drupal 8

•	 Using views to expose content to external sources

Using RESTful Web Services in Drupal 8
Before venturing into the RESTful web services in Drupal 8, I first describe what RESTful web services are 
and why you may be interested in using them on your Drupal site. Representational state transfer (REST), or 
RESTful web services, is one way of providing interoperability between computer systems on the Internet, 
such as a Drupal web site, and other systems that may interact with Drupal. REST-compliant web services 
allow requesting systems to access and manipulate resources stored in a system using a uniform and 
predefined set of stateless operations. Other forms of web services exist, and they expose their own arbitrary 
sets of operations such as WSDL and SOAP, but Drupal has standardized on REST as the preferred means of 
supporting web services.

Web resources were first defined on the World Wide Web as documents or files identified by their 
URLs, but today they have a much more generic and abstract definition encompassing everything or entity 
that can be identified, named, addressed, or handled, in any way whatsoever, on the Web. Images, videos, 
documents, and content are just a few examples of resources that may be accessed, updated, created, or 
deleted through a web service. In a RESTful web service, requests made to a resource’s URI elicit a response 
that may be in formatted as XML, HTML, JSON, or other defined formats. The response may confirm that 
some alteration has been made to the stored resource, and it may provide links to other related resources 
or collections of resources. The operations provided by a RESTful web service align with the standard HTTP 
verbs of GET, POST, PUT, and DELETE. By making use of HTTP, which is a stateless protocol, and HTTP’s 
standard operations, REST systems aim for fast performance, reliability, and the ability to grow. They employ 
reused components that can be managed and updated without affecting the system as a whole, even while it 
is running.

https://en.wikipedia.org/wiki/Web_service#Web service
https://en.wikipedia.org/wiki/Internet#Internet
https://en.wikipedia.org/wiki/Stateless_protocol#Stateless protocol
https://en.wikipedia.org/wiki/WSDL#WSDL
https://en.wikipedia.org/wiki/URL#URL


Chapter 8 ■ Integrating Drupal 8

214

RESTful web services in a Drupal environment provide the ability to:

•	 Query Drupal for content (nodes, taxonomy, users, and comments) stored on a site

•	 Create new content

•	 Update existing content

•	 Delete content

Due to the nature of the actions, as a site administrator you can choose whether to restrict access to 
RESTful services through standard HTTP authentication methods, such as requiring a user ID and password 
of a user who has an account on the Drupal site in order to perform any or all operations.

The benefits of RESTful web services on Drupal is that it opens the door to a virtually unlimited number 
of opportunities to provide information to external systems as well as the ability to create and maintain 
content that is sourced from systems outside of Drupal. For example, a manufacturing company that uses 
an ERP system as the definitive source of truth for information related to products might use a RESTful web 
service to update product descriptions, inventory levels, and pricing on its Drupal site where they sell their 
products. Conversely, an organization that sells products through a network of distributors could provide a 
RESTful web service that provides real-time access to current product information. The opportunities are 
limitless; it only requires that the external system support REST.

RESTful Modules in Drupal 8 Core
Drupal 8 ships with the basic modules required to support RESTful web services. All you need to do is enable 
the modules and configure them to support the types of transactions you want to support on your site. The 
modules provided in core are as follows:

•	 HAL: Serializes entities using Hypertext Application Language

•	 HTTP Basic Authentication: Provides the HTTP Basic authentication provider

•	 RESTful Web Services: Exposes entities and other resources as the RESTful web API

•	 Serialization: Provides a service for (de)serializing to and from formats such as JSON 
and XML

To enable the modules, navigate to Extend and scroll down until you see the web services section. For 
demonstration purposes, we enable all four modules (see Figure 8-1).

Figure 8-1.  The RESTful modules in core

Drupal core provides the basic architectural components required to support RESTful web services; 
however, as of when this chapter was written, there is not a user interface for configuring and managing the 
services created by the core modules. There is a contributed module that provides these capabilities, called 
the REST UI module (drupal.org/project/restui). To facilitate the creation and management of RESTFul 
web services, download and enable the module.



Chapter 8 ■ Integrating Drupal 8

215

After enabling the module, navigate to the Configuration page and you’ll see a new entry in the web 
services section called Rest. Click on the link and you will see a page that describes the enabled services as 
well as the other available services that may be enabled (see Figure 8-2).

Figure 8-2.  The list of available off-the-shelf services

Retrieving Content Through REST
With the basics in place, this section demonstrates retrieving a node through a web service before 
configuring additional capabilities. To demonstrate accessing the services via REST, we need a tool that 
allows us to make HTTP GET requests. The Chrome Postman extension (getpostman.com) is an easy-to-use 
tool for performing REST operations. There are dozens of other tools for Chrome, Safari, and Firefox. Use the 
tool that you’re most comfortable with. I’ll use Postman throughout this chapter.

To execute a GET request, we use a node on the Drupal 8 instance, e.g., node/1, and in Postman, we use 
the URL of node/1?_format=hal_json to retrieve the JSON-formatted output from the RESTful web service. 
The result after executing the GET request is shown in Figure 8-3.



Chapter 8 ■ Integrating Drupal 8

216

Creating a Node Through REST
With the ability to connect to REST on Drupal 8 and retrieve content through the RESTful services, let’s take 
the next step and configure REST to accept POST requests so that we can create and update content on the 
site.

The first step is to enable POST on the Content resource. By default, POST is disabled to protect the 
resources on your site from potentially unauthorized access. To enable POST, navigate to Configuration ➤ 
Services ➤ REST and, on the REST resources page, click on the Edit button for the Content Resource (see 
Figure 8-2). On the Settings for Resource Content page, check the box for POST and the boxes for hal_json, 
json, and xml in the Accepted Request Formats section, as well the basic_auth box in the Authentication 
Providers section (see Figure 8-4). Then click the Save Configuration button at the bottom of the page to 
complete the process.

Figure 8-3.  The JSON results of a GET request



Chapter 8 ■ Integrating Drupal 8

217

With POST enabled, it’s time to create a new article node. Using Postman, we can set the following 
values:

•	 Authorization: Basic Auth and we use the user ID and password of a test user that we 
set up on the Drupal 8 site that has the administrator role.

•	 Headers:

•	 Authorization is automatically set up for you when you enabled basic 
authorization in the previous step.

•	 X-CSRF-TOKEN with a value that can be found by visiting example.com/rest/
session/token (replace example.com with the domain name of your site). This 
is a secure token that provides another level of security on your site to external 
resources performing updates via REST.

•	 Content-Type should be set to a value of application/hal+json (valid options 
are hal+json, json, or xml, depending on what you enabled when you set up 
POST on admin/confg/services/rest.

Figure 8-4.  Enabling POST



Chapter 8 ■ Integrating Drupal 8

218

•	 The Body value will be a valid JSON-formatted object that maps to the fields required 
to create an article. For demonstration purposes, we create an article with a title 
and body:

{
  "_links": {
       "type": {
           "href":"http://127.0.0.1/drupal8/rest/type/node/article"
        }
    },
    
   "title":[{
       "value":"My new article created through REST"
    }],

   "body":[{
      �"value": "This is an article body that was created through the REST POST 

method"
    }],
    
   "type":[{
      "target_id":"article"
    }]
  }

We paste the JSON object into the body field on Postman.
The next step is to perform the post. Select POST from the list of available methods and enter the URL on 

the site that is used by REST to create a new node. In this case:

http://127.0.0.1/drupal8/entity/node?_format=hal_json

Note the addition of ?_format=hal_json to the end of the URL. This instructs REST on Drupal to 
process the incoming POST as a hal+json request.

After you click the Send button, Postman responds with the status (in this case 201 Created) and the 
results that were returned from the POST (see Figure 8-5).

http://127.0.0.1/drupal8/entity/node?_format=hal_json


Chapter 8 ■ Integrating Drupal 8

219

To verify that the article was successfully created, navigate to Content to see if the new node is listed. As 
shown in Figure 8-6, it appears in the list with the title that we created through the POST.

Figure 8-5.  Creating a node through Postman

Figure 8-6.  The new article appears in the list



Chapter 8 ■ Integrating Drupal 8

220

If you view the new article, you’ll see that the body content was also successfully created (see Figure 8-7).

Figure 8-7.  The new article was created through REST with a title and body

Figure 8-8.  Enabling PATCH

Updating and Deleting a Node Through REST
You can also update existing nodes and delete nodes using REST. To perform updates, you need to enable the 
PATCH method on the REST configuration page for content. Navigate to Configuration ➤ REST and, on the 
REST Resources page, click on the Edit button for the Content resource. On the Setting for Resource Content, 
check the boxes for PATCH and the Request Formats and Authentication Providers, as shown in Figure 8-8.

With PATCH enabled, the next step is to return to Postman to specify the changes that you want to make 
to your article. We can update both the title and body fields by changing the word “added” to the word 
“updated,” as shown in the following JSON object.

{
  "_links": {
       "type": {
           "href":"http://127.0.0.1/drupal8/rest/type/node/article"
        }
    },

   "title":[{
       "value":"My new article updated through REST"
    }],
    



Chapter 8 ■ Integrating Drupal 8

221

   "body":[{
      "value": "This is an article body that was updated through the REST POST method"
    }],
    
   "type":[{
      "target_id":"article"
    }]
  }

Now update the URL in the Postman interface to reflect that we want to update the node with a node ID 
of 6 and change the method to PATCH, as shown in Figure 8-9.

Figure 8-9.  Using PATCH in Postman to update an existing node

Figure 8-10.  The updated article

After clicking the Send button, visit your Drupal 8 site and view the existing node. You can see that the 
changes were successfully made (see Figure 8-10).

To delete an existing content item, first navigate to Configuration ➤ REST and update the Content 
Resource to accept the Delete method. Follow the same steps as we did for PATCH, checking the same set of 
options.

After enabling Delete, return to Postman and simply change the method from PATCH to Delete, leaving 
the URL as it was for PATCH. You should clear out the body field in Postman, as no values are required. Click 
the Send button and then visit your Drupal 8 site, where you’ll see that the node you previously created is 
now deleted.



Chapter 8 ■ Integrating Drupal 8

222

Using REST for Other Entity Types
The examples in the previous section focused on using the REST interface to perform actions on content. 
You may also use REST to perform similar actions on other entities and objects on a Drupal 8 site. Visit 
the admin/config/services/rest page to see a list of all the other available resources, such as taxonomy 
terms, comments, blocks, menus, etc., that may be accessed through REST. To use REST to query, update, 
and delete taxonomy terms, for example, enable the Resource taxonomy term and configure the various 
methods.

Generating Lists of Content Using Views and REST
The previous sections demonstrated using GET to retrieve a single content item from Drupal through REST. 
Retrieving a single content item is a valid use case; however, a more common use case is to retrieve a list of 
content items, for example, a list of all articles on a Drupal site. The process for creating a list-based RESTful 
web service is to employ views as the mechanism for generating the list and for responding to the web 
services request.

For demonstration purposes, we use the Devel module to generate 50 articles on our Drupal 8 site. 
If you haven’t used the Devel module and its content-creation tools, I suggest that now would be a good 
time to try it out. Download and install Devel and all of its submodules from drupal.org/project/
devel. After downloading and enabling the Devel and Devel Generate modules, navigate to Configuration 
➤ Development ➤ Generate content. Check the box to Generate Articles and leave the defaults for the 
remainder of the options. Finish the process by clicking the Generate button at the bottom of the page. You 
can verify that the articles were created by visiting the Content page, where you’ll see a long list of articles.

With the content in place, it’s time to create the view. Navigate to Structure ➤ Views and click on the 
Add View button. We name the view RESTful Article List and update the settings to Show Content of type 
Article and sorted by Unsorted. Leave the options Create a Page and Create a Block unchecked. Check the 
Provide a REST export option at the bottom of the page and enter rest/articles/list in the REST export 
path. You can continue the process by clicking the Save and Edit button (see Figure 8-11).



Chapter 8 ■ Integrating Drupal 8

223

On the RESTful article list (content) page, you can already see that the view is generating JSON objects 
for the articles on the Drupal 8 site, but there are a few changes that we need to make before saving the view 
and testing it through Postman. The first change is to enable basic authentication so that access is restricted 
to those who have permissions to view articles through REST. To enable authentication, click the No 
Authentication Is Set option in the second column of the view in the Path Settings section. After clicking the 
list, Drupal displays the available authentication methods—basic_auth and user. For this example, we click 
the basic_auth option and then save the changes by clicking the Apply button.

The second change that we need to make is to remove the limit of only 10 articles returned by the view. 
Click the Display a Specified Number of Items option in the Pager section, selecting Display All Items in the 
List of Options. Then click the Apply button to update the view. The practice site has a limited number of 
articles, so returning all articles won’t create a performance issue. If you have a site with a large number of 
articles, you may want to consider limiting the number returned by the view.

After making the changes, click the Save button. The view at this point is ready to use and is configured, 
as shown in Figure 8-12.

Figure 8-11.  The articles list REST View



Chapter 8 ■ Integrating Drupal 8

224

Return to the Postman tool and leave the authorization and header values as they were in previous 
examples. (Note: If you left the Postman tool and are returning, you’ll need to re-enter the values for 
authorization and headers before continuing the process. See the previous example for creating a POST 
request for an article for the appropriate values.) We need to update the URL to reflect the URL set in the 
view, which is in this case is http://127.0.0.1/drupal8/rest/articles/list?_format=hal_json (replace 
http://127.0.0.1/drupal8 with the appropriate value for your site). Then we update the method to GET 
and click the Send button to retrieve the values from the view (see Figure 8-13).

Figure 8-12.  The article listing RESTful web services view

http://127.0.0.1/drupal8/rest/articles/list?_format=hal_json
http://127.0.0.1/drupal8


Chapter 8 ■ Integrating Drupal 8

225

You can expand on the capabilities of this view by adding contextual filters to restrict the list of nodes to 
specific criteria. For example, I could update the view to accept a contextual filter of the content ID and limit 
the response only to that node with that ID. To do so, you add a contextual filter of ID, as shown in Figure 8-14.

Figure 8-13.  The results of executing the article listing RESTful view



Chapter 8 ■ Integrating Drupal 8

226

After updating the view, return to the Postman interface and update the URL to include a node ID of an 
article on the Drupal 8 site. We execute the request by clicking the Send button and we will see in the results 
that only the node with an ID of 8 was returned in the results (see Figure 8-15).

Figure 8-14.  Adding a contextual filter to the RESTful view



Chapter 8 ■ Integrating Drupal 8

227

You could expand on this example to restrict the list to articles tagged with a specific taxonomy term 
or any other criteria that your use case requires. You may also create views to generate lists of other content 
types, as well as any other lists you can create using views.

Generating Output in Other Formats
In the previous examples, we used hal_json as the format that was returned by the RESTful web service. 
Views also provide the ability to export results in JSON and XML. To change the format, visit the view and 
click on the Settings link in the Format section. Check the boxes shown on the Rest Export: Style Options 
page (see Figure 8-16).

Figure 8-15.  Executing a limited search through the RESTful view

Figure 8-16.  Other supported output formats

After changing the supported formats, return to Postman and update the URL to reflect the different 
formats. We can test the XML output first by changing the end of the URL from _format=hal_json to 
_format=xml. The resulting output is shown in Figure 8-17.



Chapter 8 ■ Integrating Drupal 8

228

Using Views to Expose Content to External Sources
The previous section demonstrated using views and REST to expose lists of content to a REST client through 
a RESTful web service. While REST is a prevailing standard and is supported by nearly every platform in the 
market, there may be instances where REST isn’t possible and a simplified approach for consuming content 
from your Drupal 8 site is required. The solution in this case has been around for years and that is generating 
RSS or OPML feeds with views. with RSS (Rich Site Summary or Really Simple Syndication) and OPML 
(Outline Processor Markup Language). The client imply needs to be able to consume the output generated 
by visiting a URL.

Creating an RSS or OPML-based view is relatively simple. Go to Structure ➤ Views and click on the Add 
View button. On the Add View page, we enter feeds as the name of the view and leave the rest of the page set 
to the default values. Click the Save and Edit button to continue.

On the feeds (content) page, we have to make only a few changes in order to generate an RSS feed:

•	 In the Displays section, click the Add button and select Feed from the list of options.

•	 In the Feed Settings section, update the path by clicking on the No Path Is Set option. 
For demonstration purposes, we enter feeds/content.

•	 We change the page from Display a Specified Number of Items |10 items to Display 
All Items then save the changes.

After saving the view, we visit the URL we entered in the path settings and will see the output of the view 
(see Figure 8-18).

Figure 8-17.  Output from the view as XML



Chapter 8 ■ Integrating Drupal 8

229

To generate an OPML-based feed, simply change the Format value from RSS Feed to OPML.
You may also want to explore the views data export module (drupal.org/project/views_data_export) 

as an alternative to REST, RSS, and OPML. Views data export provides the ability to generate CSV, XLS, DOC, 
TXT, and XML files from views.

Creating Custom RESTful APIs
The previous examples demonstrated using off-the-shelf Drupal modules for providing RESTful APIs. 
There may be instances where the Drupal 8 Core REST modules and views do not provide you with the 
functionality you need and custom development is the only option. This simple example demonstrates 
how to create a custom RESTful web service that responds to a GET request. While a simple example, it 
demonstrates the skeleton of a custom module that you could then expand upon to meet your specific 
needs.

Creating the Custom Module
We create the new custom module, demo_rest_api, in the /modules/custom directory on our Drupal 8 site. 
Set up the directory structure as follows:

└── demo_rest_api
    └── src
        └── Plugin
            └── rest
                └── resource
    

Figure 8-18.  The output of an RSS feed-based view



Chapter 8 ■ Integrating Drupal 8

230

The first file that we create is the .info.yml file for the module. In the module’s root directory, create a 
file named demo_rest_api.info.yml and, in that file, place the following code:

name: demo_rest_api
type: module
description: A demo module that creates a REST endpoint
core: 8.x
package: Custom

The next file that we create is a plugin to handle the REST API that the module will provide. A plugin is a 
small piece of functionality that may be swapped in and out of your Drupal site. Plugins that perform similar 
functionality are called plugin types. For more information on plugins, visit drupal.org/docs/8/api/plug-api.

Plugins are stored in the src/Plugin directory and are grouped by plugin type. In this case, the plugin 
that we’re creating is for REST so we’ll create a subdirectory in the Plugin directory named rest. In the src/
Plugin/rest directory, we’ll create a resource directory, which is where the actual plugin code will reside. 
We call this plugin DemoResource and define it in a file named DemoResource.php.

Place the following code in the src/Plugin/rest/resource/DemoResource.php file:

<?php

namespace Drupal\demo_rest_api\Plugin\rest\resource;

use Drupal\rest\Plugin\ResourceBase;
use Drupal\rest\Plugin\ResourceInterface;
use Drupal\rest\ResourceResponse;

/**
  * Provides a Demo Resource
  *
  * @RestResource(
  *   id = "demo_rest",
  *   label = @Translation("Demo Rest endpoint"),
  *   uri_paths = {
  *     "canonical" = "/demo/rest"
  *   }
  * )
  */

class DemoResource extends ResourceBase {

  /**
   * Responds to entity GET requests.
   * @return \Drupal\rest\ResourceResponse
   */
  public function get() {
    $response = ['myresponse' => 'Hello, this is a rest service response from Drupal 8'];
    return  new ResourceResponse($response);
  }
}



Chapter 8 ■ Integrating Drupal 8

231

The code is relatively straightforward:

•	 We specify the namespace so Drupal knows where the DemoResource class resides.

•	 We include the components that we need to construct the class from Drupal\rest\.

•	 Next, in the docblock, we specify the ID of my RestResource, which is the label that 
appears in the RestUI interface, and the path that the RESTful API can be accessed 
from.

•	 The class DemoResource extends the base class of ResourceBase, which is part of the 
REST architecture included with Drupal core.

•	 The single function that we provide is get(). This function does one thing, it formats 
a response message that is sent back to the client that called the function. We could 
also provide other functions such as delete and patch.

After saving the files, navigate to the Extend page and enable the module. After enabling the module, 
assuming you have installed the RestUI module, go to Configuration ➤ REST. Scan through the list of 
resources until you find your Demo REST endpoint (as defined in the docblock in the DemoResource.php 
file). Enable it and then configure the endpoint, as shown in Figure 8-19.

Figure 8-19.  Configuring the Demo REST endpoint

With the RESTful API enabled and configured, you’re ready to test it. We use Postman as the means for 
testing the endpoint. Set up the headers by specifying the Content-Type as application/json and set up 
basic authorization where you specify the user name and password from your Drupal 8 site. Then enter the 
appropriate URL—in this case example.com/demo/rest?_format_json (replace example.com with your site’s 
domain name). Choose GET from the list of methods to execute and send the request. The results of this test 
are shown in Figure 8-20. The response is "myresponse" with the value as set in the GET function.



Chapter 8 ■ Integrating Drupal 8

232

While it is a simple example, it demonstrates the minimum viable code required to create a custom 
RESTful API in Drupal 8. You may use this as a template to create custom services that meet your specific 
requirements.

Other Integration Options
There are other integration options that provide you with the capabilities required to support unique needs, 
such as importing content into your new site through a module such as the Feeds module (drupal.org/
project/feeds). While commonly used to import content during the process of migrating a site to Drupal, 
the Feeds module also provides the ability to run periodic imports of content from external third-party 
services (via URL and a structured feed such as XML, or via a comma-separated value—CSV—file).

If Feeds does not meet your needs, you may also consider writing a custom module that consumes as 
RESTful web service from another source and performs the required transformations on that information 
before storing it in the Drupal database.

Summary
Drupal 8’s off-the-shelf RESTful web services capabilities provide an easy-to-use approach for integrating 
your Drupal site with other web sites, enterprise applications, mobile applications, and third-party services. 
You may choose to use the off-the-shelf capabilities of Drupal core or you may want to write your own 
custom web services using the capabilities in Drupal core as the foundation for your custom module. The 
options and opportunities are virtually limitless.

The next chapter explores improving the user experience for your site administrators and content 
authors, often referred to as the forgotten users. They are typically left to the end of the project when there is 
little budget, time, and resources. Creating a usable backend offers a payback of potentially huge dividends 
over the life of your web site.

Figure 8-20.  The response from the Get request



233© Todd Tomlinson 2017 
T. Tomlinson, Enterprise Drupal 8 Development, DOI 10.1007/978-1-4842-0253-1_9

CHAPTER 9

Building a Smart Administration 
User Interface

One of the often-overlooked areas of building and deploying Drupal sites is the site and content 
administrators user interface. We often focus on the “pretty” public facing side of the site and hastily throw 
together a basic off-the-shelf interface at those who are responsible for authoring and maintaining content, 
and those who manage the site. The result of our lack of focus on the backends of our sites is frustration by 
those who are key to the overall success of the sites that we build and deploy. Making it easier for content 
creators and site administrators to do their jobs is relatively easy and it’s the focus of this chapter.

Use an Administration Focused Theme
The administrative interface of a Drupal site is structured differently than the visually rich frontends that we 
present to site visitors and is often the forgotten frontier of building and deploying Drupal sites. Our focus 
is typically on our targeted site visitor and we pay little attention to the interface that those use who create 
and manage content and support the site on a daily basis. We often use the frontend theme as the basis for 
our administrative backend, but the reality is that the structure of the administrative interface is inherently 
different than the frontend and, without specifically addressing the structural differences between the 
front- and backends of our sites, the result is less than optimal for our administrators. Fortunately, there is a 
solution and that is to use a separate theme that is built specifically with the administrative interface as the 
focus of its design.

There are several administrative themes that may be freely downloaded from drupal.org and in this 
section we take a look at a few of the most popular admin themes for Drupal 8.

Enabling Different Admin Themes
Admin themes are enabled on the Appearance page. In order for a theme to appear in the list of available 
options, you must first download and install that theme just as you do with a frontend theme, with the 
exception of not setting that theme as the default theme. After downloading and installing it, you may specify 
the theme as the admin interface by selecting the theme from the list of enabled themes that are shown in 
the administration theme section at the bottom of the Appearance page (see Figure 9-1). Select the theme to 
use from the drop-down list and click the Save Configuration button.



Chapter 9 ■ Building a Smart Administration User Interface

234

There are several off-the-shelf admin themes. The following sections demonstrate a few of the most 
popular Drupal 8 admin themes.

The Seven Theme
Drupal 8 ships with a theme that was built to address the uniqueness of the administrative interface, called 
the Seven theme.

To demonstrate the benefits of using a theme that is specifically constructed for the administrative 
interface, this example starts by enabling Bartik as the administrative theme. If you visit the Extend page, 
you’ll immediately see issues (see Figure 9-2) that must be addressed, such as the frontend blocks that are 
appearing on the admin pages, the overflow issue that appears in the Core section, and the tabs that seem to 
be disconnected from the main section of the page that the tabs are referring to.

Figure 9-1.  Specifying the administration theme

Figure 9-2.  The Extend page using the Bartik theme



Chapter 9 ■ Building a Smart Administration User Interface

235

Instead, what if we enable Seven as the administration theme and then revisit the Extend page? We’ll 
see a significantly cleaner interface (see Figure 9-3) than what the Bartik theme presented. The tabs are 
connected to the sections of the page that they are related to, the interface is less confusing, and the overflow 
issues have been addressed.

If we navigate around the administrative interface, switching between Bartik and Seven, we’ll find 
several more instances where Bartik’s CSS just doesn’t work very well with the administration pages, 
whereas Seven works perfectly with those pages. Another great example is the node/add/article page. 
Enable Bartik as the administration theme and notice the organization of the elements on the node edit form 
as compared to a much cleaner and well-organized interface as presented by the Seven theme.

While Seven is not as “pretty” as Bartik, we’re not trying to impress our content editors and site builders 
with the beauty of the administration theme. We are only trying to present those pages in a form that makes 
it quick and easy for them to do their jobs.

The Adminimal Theme
There are other administration themes that are not shipped with Drupal core. Visit drupal.org/project/
themes and select 8.x from the Core compatibility select list. Then enter administration in the Search 
Themes text box and leave the Sort By option set to Most Installed. The first theme that appears is the 
Adminimal theme and it boasts over a million downloads. Like Seven, Adminimal is focused on Drupal’s 
administrative interface and it provides advanced features such as a fully responsive design, color-coded 
buttons for common admin tasks, and table highlighting. To demonstrate Adminimal, we download and 
enable the theme and set it to the default administration theme.

At first glance, the Adminimal theme looks very similar to the Seven theme, with subtle differences 
around button styles and a slight improvement in the visual appearance of the admin toolbar.

There are other themes that you may consider using as your administration theme. Visit drupal.org/
project/themes and look for other candidates.

Figure 9-3.  The Extend page using the Seven theme



Chapter 9 ■ Building a Smart Administration User Interface

236

Update the Administration Menu
The default administration menu works well; however, there are opportunities for improving the user 
interface provided by the off-the-shelf capabilities of the menu.

One of the shortcomings of the off-the-shelf administration menu is the lack of support for drop-down 
menus. The default menu only displays the top two levels of the menu, requiring an administrator to click 
through to the subordinate options by visiting a page. The Admin toolbar module (drupal.org/project/
admin_toolbar) resolves this issue with mobile-friendly drop-down menus that give administrators direct 
access to detail-leveled tasks (see Figure 9-4).

Simplify Content Types
The most frequent administrative activity on a Drupal site is creating and editing content and it’s often the 
most frustrating user experience for administrators on a Drupal site. There are a few simple techniques for 
significantly improving the interface and the experience.

Organizing the Fields
By default, Drupal lists all of the fields on your content type into a long lists that may require the content creator 
to scroll down through several fields to get to the one they want. In the example shown in Figure 9-5, the 
Sample Content Type has a title, body, and 12 additional fields, requiring the content editor to scroll down in 
order to see all of the fields associated with this sample content type. While 12 may seem like a large number 
of fields for a content type, the reality is that I’ve had clients with content types that have several dozen fields, 
making it very difficult for content editors to find the fields they are looking for.

Figure 9-4.  The admin toolbar module enables drop-down admin menus



Chapter 9 ■ Building a Smart Administration User Interface

237

An effective way of organizing and presenting fields is to install the Field Group module (drupal.org/
project/field_group) and logically group the fields into vertical tabs.

After downloading and enabling the module, you’re presented with an additional option on the Manage 
Form Display page for adding a group (see Figure 9-6).

Figure 9-5.  A content type with several fields

Figure 9-6.  The Add Group option



Chapter 9 ■ Building a Smart Administration User Interface

238

Clicking on the Add Group button presents a list of types of groups that you can create on the form  
(see Figure 9-7). This example focuses on using the Tabs option, as it works well for grouping and hiding 
options behind vertical and horizontal tabs.

We select Tabs from the list and are presented with a Label text box, where we specify the label that 
will appear on the tab. In this case, we use General as the tab as put all of the individual tabs that we’ll be 
creating into that one container. Click the Save and Continue button, which then displays a form where 
you can specify whether the tabs will be presented vertically along the left side of the content type fields, or 
horizontally across the top of the page. We select vertical here and leave the ID (the CSS ID) and the Extra 
CSS classes fields blank. Click the Create button to continue.

The next step is to create the individual tabs that the fields will be grouped under. For demonstration 
purposes, we create four separate tabs, one for the title and body fields and three additional tabs for the 
other fields. Follow the same process as before, clicking the Add Group button followed by selecting the Tab 
option (not the Tabs option).

After creating all of the tabs, drag and drop the Tabs field that you created at the beginning of this 
process to the very top of the list of fields, followed by each the individual Tab fields that you subsequently 
created. Then drag and drop each of the fields beneath the appropriate tab, as shown in Figure 9-8.  
Then click the Save button at the bottom of the page to commit these changes.

Figure 9-7.  The group options

Figure 9-8.  Arranging the vertical tabs and fields



Chapter 9 ■ Building a Smart Administration User Interface

239

Note the nesting of the tabs and the fields. This is important, as that dictates which fields appear in each 
of the tabs, and that the individual tab fields appear in the vertical tabs container.

After organizing the fields into tabs, the user interface for this content type is much cleaner and simpler, 
without the need to scroll down to find fields.

There are also other improvements that you can make to the overall look of the content form, such as 
removing the fields from the settings section that are typically left as the default values by content creators. The 
additional settings can be found in the right column of Figure 9-9, beginning with the option to create a new 
revision. The Simplify (drupal.org/project/simplify) module provides an administrative interface that makes 
it easy to disable those fields without having to override fields through custom code or hide them with CSS.

Let’s download and enable the Simplify module to demonstrate its capabilities. After enabling the 
module, navigate to Configuration ➤ User Interface ➤ Simplify, where we’re presented with a list of options 
to disable fields from the user interface (see Figure 9-10).

For demonstration purposes, we’ve checked the box to hide the fields from site administrators, as well 
as hidden all of the fields other than the ability to create a revision. After clicking the Save Configuration 
button, we return to the node creation form for the sample content type, where we no longer see the list of 
fields in the right column other than the ability to create a new revision (see Figure 9-11).

Figure 9-9.  An improved content creation form

Figure 9-10.  Administering the Simplify settings



Chapter 9 ■ Building a Smart Administration User Interface

240

Figure 9-11.  The simplified content creation form

Figure 9-12.  Selecting a taxonomy term from a long list of hierarchically organized terms

Using Hierarchical Select
When presenting content editors with a list of taxonomy terms, it is often desirable to improve the user 
experience over the standard off-the-shelf interface. For demonstration purposes, we’ve created a taxonomy 
vocabulary named Sample Terms and used the Devel module’s tool for generating 100 taxonomy terms. We 
added a new field to the Sample Content type that is a Taxonomy Term Reference field that uses the Sample 
terms vocabulary and presents the list of terms as a select list. The resulting field, when presented to a 
content editor, appears as shown in Figure 9-12.

While this approach works, there is a better user experience using an off-the-shelf module such as the 
Client-Side Hierarchical Select (drupal.org/project/cshs) or Simple Hierarchical Select (drupal.org/
project/shs) modules. For demonstration purposes, we download and enable the Client-Side module, 
although both modules work well.



Chapter 9 ■ Building a Smart Administration User Interface

241

After enabling the module, navigate to Structure ➤ Content Types and click on the Manage Form 
Display tab. Change the widget for the Sample Terms field to Client-Side Hierarchical Select, as shown in 
Figure 9-13.

After changing the widget type, we create a new content item from the Sample Content type that we 
created. When we come to the Sample Terms field, we are now presented with a list of the top-level terms 
and, after selecting a top-level term, we are then presented with the second level terms in a separate select 
list. For terms that have multiple levels, the process continues until we select the lowest level term, as shown 
in Figure 9-14.

The hierarchical select tools provide a simplified and better user experience than the off-the-shelf select 
list for hierarchically ordered taxonomy terms.

Using Field Collections
Another area for improving the administrative interface for content types is to use the Field Collection 
module (drupal.org/project/field_collection). The common use case where field collections provide 
a better administrative user experience is the case where you have a set of fields that repeat two or more 
times in a content type. An example of that use case would be a content type focused on books. On the book 
content type there are fields that provide the editor with the ability to create one to many authors, where 
each author has a name field, a birth year, and a death year. While it would be possible and plausible to 
assume that a book has no more than 10 authors and you could create 10 separate fields for each possible 
author, field collections provide a more elegant approach to solving that use case.

To demonstrate the use of field collections, we download and enable the module. We navigate to 
Structure ➤ Content types, where we click on the Manage Fields link in the Operations column. On the 
Manage Fields page, we click Add Field and select Field Collection from the list of available options for Add a 
New Field. We enter Author in the label field and click the Save and Continue button.

On the next page, we change the Allowed Number of Values from 1 to Unlimited. You could specify a 
maximum number if you want, but for demonstration purposes, we’ll set the value to Unlimited followed 
by clicking the Save Field Settings button. On the Author Settings page, we’ll leave the default values and 
click the Save Settings button. Next, we click on the Manage Form Display tab and reposition the author field 
directly beneath the title field. Then we click on the Manage Display button, where we position the author 
field above the body field and change the Format to Field Collection Items so that all of the fields appear 
when viewing the content. We then click the Save button to commit all of the changes.

Figure 9-13.  Changing the widget type to Client-Side Hierarchical Select

Figure 9-14.  The hierarchical select field



Chapter 9 ■ Building a Smart Administration User Interface

242

At this juncture, we now have an author field collection assigned to the sample content type, but we 
have not yet defined the fields that make up the collection. To define the fields, navigate to Structure ➤ Field 
Collections and click on the Manage Field Collections page (see Figure 9-15).

To add fields to the author collection, click on the Manage Fields button. On the Manage Fields page, 
add the name, birth year, and death year using by clicking the Add Field button and adding the fields just 
as you would on a normal content type. After adding the fields to the collection (see Figure 9-16), we’re not 
ready to see the field collection in action.

We create a new content item using the sample content type and we now see the author field and the 
ability to enter the author’s name, birth year, and death year. We also see the ability to create additional 
author field collections by clicking on the Add Another Item button (see Figure 9-17). We can also reposition 
author field collections by clicking on the + icon and dragging and dropping individual author field 
collections in the order that we want them to appear.

Figure 9-15.  The Manage Field Collections page and the author field collection

Figure 9-16.  The fields associated with an author field collection



Chapter 9 ■ Building a Smart Administration User Interface

243

After clicking the Save and Publish button, we can now see author fields on the published node  
(see Figure 9-18).

Use the Workbench Module
The site visitors who spend the most amount of time on any given Drupal site are typically those who are 
responsible for creating and managing content. This group is also the one who often receives the least 
amount of attention when it comes to user experience enhancements to make it easier for them to do their 
jobs. While I’ve addressed several improvements to the node creation and editing interface elsewhere in this 
chapter, there are other off-the-shelf modules that enhance the general editorial experience. This section 
focuses on three of those modules:

•	 Workbench (drupal.org/project/workbench). This module provides a unified and 
simplified user interface for users who only have to work with the content.

•	 Workbench access (drupal.org/project/workbench_access). This module provides 
the ability to control who as access to edit any content based on an organization’s 
structure, not the web site structure.

Figure 9-17.  Adding authors to a content item

Figure 9-18.  The author fields appearing on a published content item



Chapter 9 ■ Building a Smart Administration User Interface

244

•	 Workbench moderation (drupal.org/project/workbench_moderation). This 
module provides a customizable editorial workflow that integrates with access 
control.

To follow along, install all three modules using the standard process for downloading and enabling the 
modules from drupal.org.

The Workbench Module
The standard off-the-shelf Drupal 8 interface for content authors is the Content page (see Figure 9-19).

While the Content page succeeds at providing a basic interface for all content editors, the Workbench 
module provides an enhanced interface that simplifies the user interface presented to content editors.

After enabling the Workbench module, a new Workbench menu items appear in the administrator’s 
toolbar. Clicking on the Workbench link reveals the My Workbench page, as shown in Figure 9-20. The 
primary difference between the off-the-shelf Content page and My Workbench is the addition of the Your 
Most Recent Edits section, which highlights content that the logged in editor created or updated. This 
functionality addresses a common use case of an editor wanting to return to an article they were working on 
without having to search or filter through a long list of content items. For smaller sites with a single content 
editor, the feature may not be as useful as it is for large organizations with several content editors.

Figure 9-19.  The Drupal 8 standard content page



Chapter 9 ■ Building a Smart Administration User Interface

245

The next enhancement presented on the My Workbench page is the My Edits page, which is accessible 
by clicking on the My Edits tab. The My Edits page is similar to the Your Most Recent Edits section of the My 
Workbench page, with the notable exceptions that the list on the My Workbench page is limited to the last 
five content items that the logged-in editor has created or updated, and the My Edits page also provides the 
ability to filter on title, content type, whether the content is published, and setting the number of content 
items that will appear per page (see Figure 9-21).

For those situations where the content editor wants to see all content additions and updates, clicking 
on the All Recent Content tab on the My Workbench page displays a list of content nearly identical to the 
off-the-shelf Content page, with the exception of not having access to the bulk update capabilities that 
are available on the Content page. In most cases, restricting access to the bulk updates capabilities is a 
wise choice, as the bulk updates feature, while powerful, can also quickly wreak havoc when someone 
erroneously applies a mass change.

Figure 9-20.  The My Workbench page

Figure 9-21.  The My Edits page



Chapter 9 ■ Building a Smart Administration User Interface

246

The Workbench Access Module
The Workbench Access module solves a common problem of how to restrict the ability for content authors 
so that they only have access to content in their specific area of responsibility. Take for example a company 
that is structured into the following departments:

•	 ACME Company

•	 Marketing

•	 Sales

•	 Manufacturing

•	 Engineering

•	 Customer Service and Support

•	 Human Resources

•	 Training

•	 On Ground Training

•	 Online Training

•	 Technical Publications and Manuals

Content editors in the ACME company who are part of the Marketing department should not have the 
ability to create or edit content that pertains to the Human Resources department, and vice versa. Within 
the ACME company there may also be content editors who have the ability to author content across the 
three divisions of the training department, as well as content editors who only have access to content in the 
Technical Publications and Manuals section of the site. The ability to restrict access is the core feature that is 
provided by the Workbench Access module.

Setting Up Workbench Access
The process of setting up Workbench Access centers on creating the means for defining the editorial sections 
of the site, the access permissions that you want to grant to editors, and the roles of the users who will be 
creating and editing content.

The Workbench Access module supports two venues for creating sections, a taxonomy vocabulary 
or a menu. While both work equally as well, there are advantages to using Taxonomy that span beyond 
Workbench Access, specifically the ability to use that same vocabulary to enable views to filter and display 
content based on the section of the site. To demonstrate the capabilities of Workbench Access, I’ll use the 
ACME Company structure defined in the previous section as the basis for a new taxonomy vocabulary 
named Site Structure (see Figure 9-22).



Chapter 9 ■ Building a Smart Administration User Interface

247

With the site structure defined the next step in the process is to set the permissions for the Workbench 
Access module. The permissions that may be set are as follows:

•	 Administer Workbench Access settings: Allows users to configure Workbench Access 
access schemes and sections.

•	 Assign users to Workbench Access sections: Allows users to assign editors to sections. 
(Note that these editors must have the Allow All Members of This Role to be Assigned 
to Workbench Sections permission.)

•	 Allow all members of this role to be assigned to Workbench Access sections: Allows 
a user to be assigned as an editor of a section. This permission is used to check 
whether a user can access Workbench Access forms and features.

•	 Batch update section assignments for content: Allows a user to access the batch 
update form at admin/content.

•	 View Workbench Access information: Allows users to see information and messages 
related to Workbench Access, particularly section assignments of content pages. 
Useful for debugging and support.

•	 View taxonomy term pages for Workbench Access vocabulary: Workbench Access can 
create its own vocabulary for data storage. Typically, this vocabulary should not be 
shown to site visitors. This permission restricts access to taxonomy pages (taxonomy/
term/%) defined by Workbench Access. Normal access to custom vocabularies is 
not affected. Give this permission only to roles that need to view these term pages, 
effectively treating them as standard taxonomy terms.

Figure 9-22.  The Site Structure taxonomy vocabulary



Chapter 9 ■ Building a Smart Administration User Interface

248

With the taxonomy in place to facilitate assignment of editorial users to specific sections, the next step 
in the process is to add a field to those content types that you want to be under access control, linking the 
Site Section vocabulary to the content being authored. We’ll add a new taxonomy term reference field to all 
of the content types on the site, using the site section vocabulary as the source of terms.

With the link between the content types and the vocabulary used by Workbench Access in place, the 
next step is to configure Workbench Access. Navigate to Configuration ➤ Workbench Access. Set the Active 
Access Scheme to Taxonomy, check the box for Reset Assigned Fields, check the Site Structure checkbox in 
the Taxonomy Editorial Access Options section, and click the Set Active Scheme button (see Figure 9-23).

After clicking the Set Active Scheme button, a new set of options is displayed in the Scheme Settings 
section. The options are whether to enable access control for each of the content types that are enabled on 
the site and the field that is used as the mechanism for controlling access. In this case, it’s the Site Section 
vocabulary field that we added to each of the content types. We check the box for each content type, select 
the Site Section field, and then click the Save Configuration button (see Figure 9-24).

Figure 9-23.  Configuring Workbench Access



Chapter 9 ■ Building a Smart Administration User Interface

249

Setting Up Roles and Permissions
The Workbench Access module provides the ability to assign individual users to site sections as well as 
all users in a specific role. For smaller organizations, assigning individual users may be a viable solution, 
whereas for larger organizations with several content editors, a role-based solution may be easier to manage 
and maintain.

For the ACME company example, there are specific roles based on department (e.g., Sales, Marketing, Human 
Resources) as well as enterprise roles such as enterprise editor. We create a role for each department as well as the 
enterprise editor by navigating to People ➤ Roles and clicking on the Add Role button (see Figure 9-25).

Figure 9-24.  Setting access control on each content type

Figure 9-25.  All departmental level roles defined



Chapter 9 ■ Building a Smart Administration User Interface

250

With the roles defined, the next step is to set the permissions for each role so that users assigned to that 
role will have access to the Workbench tools and the assignment of those roles to specific sections. Click 
on the Permissions tab at the top of the Roles page and enable the permissions for each role as defined in 
Table 9-1.

With the permissions in place, the last step in the process is to assign user roles to Workbench Access 
sections. Navigate to Configuration ➤ Workbench Access and click on the Sections tab on the Workbench 
Access page. The Sections page (see Figure 9-26) shows a listing of all the sections defined in the Site 
Sections taxonomy vocabulary along with the number of editors (user accounts) and roles that are enabled 
on that section.

Table 9-1.  User Permissions to Set for Workbench Access

Section Permission

Node Access the Content Overview page

Node View own unpublished content

Node Article: Create new content

Node Article: Delete own content

Node Article: Delete revisions

Node Article: Edit own content

Node Article: Revert revisions

Node Article: View revisions

Node Basic page: Create new content

Node Basic page: Delete own content

Node Basic page: Edit own content

Node Basic page: Revert revisions

Node Basic page: View revisions

Node Sample Content Type: Create new content

Node Sample Content Type: Delete own content

Node Sample Content Type: Delete revisions

Node Sample Content Type: Edit own content

Node Sample Content Type: Revert revisions

Node Sample Content Type: View revisions

System Use the administration pages and help

System View the administration theme

Toolbar Use the administration toolbar

Workbench Access My Workbench

Workbench Access Allow all members of this role to be assigned to Workbench Access sections

Workbench Access Assign users to Workbench Access sections



Chapter 9 ■ Building a Smart Administration User Interface

251

Figure 9-26.  The assignment of editors and roles to Workbench Access sections

We can start the process by assigning the administrator, enterprise editor, and marketing roles to the 
Marketing section. Click on the 0 roles link for the Marketing section, which displays the list of all the roles 
enabled on this site. Check the two roles and then click the Submit button (see Figure 9-27).

Figure 9-27.  Assigning roles to Workbench Access sections



Chapter 9 ■ Building a Smart Administration User Interface

252

We can continue the process by assigning the various roles that should have access to each of the site 
sections. When we have completed the process, the Sections page now shows the total number of roles 
assigned to each section (see Figure 9-28).

You may also assign individual users to site sections following a similar process. Click on the 0 editors 
link for the site section you want to assign a user to and select the user(s) to assign from the list of users 
shown on the page. After adding a user or users to a section, return to the Sections page and refresh to see 
the total number of users assigned to that section.

Demonstrating Access Restrictions
With all of the pieces in place, we are ready to demonstrate the functionality of the Workbench Access 
module. To facilitate the process, we’ll create two new users, one with a role of Marketing and one with a role 
of Human Resources (see Figure 9-29).

Figure 9-28.  All roles assigned to sections

Figure 9-29.  The new users with section specific roles



Chapter 9 ■ Building a Smart Administration User Interface

253

After assigning roles, sections, and permissions, visit the Configuration ➤ Performance page and click 
the Clear All Caches button to rebuild any content access permissions that may be currently cached. After 
clearing the cache, log out and log back in using the hr-user account. Navigate to the My Workbench page 
by clicking on the Workbench menu item in the Administrator’s toolbar. Click on the Create Content tab on 
the My Workbench page. Then select Article as the content type. Note that the only value for Site Section that 
you can select while logged in as the hr-user is Human Resources (see Figure 9-30).

Workbench Access is correctly restricting access to the Site Sections that the HR Editor account has 
access to. If you log in using the marketing user, you will see the same restrictions, only with access to the 
marketing section.

To demonstrate the hierarchical nature of Workbench Access, we’ll create two additional user accounts, 
one with a role of training editor and one with enterprise editor. Logging in as the training editor and 
attempting to create a new article, we can see that we have the ability to specify any of the training sections 
for the article that we’re creating (see Figure 9-31).

If we log in as the enterprise user and attempt to create an article, we’ll find that we can assign content 
to any site section as per the settings in Workbench Access.

While Workbench Access restricts which site section an editor can select, it is up to the site builder to 
utilize that field to restrict the display of content tagged with that term to the appropriate pages (e.g., using 
views and contextual filters).

Use Workbench Moderation
The last Workbench feature set that this chapter covers is the ability to moderate content. The Workbench 
Moderation module provides the ability to specify arbitrary moderation states beyond Drupal 8 core’s 
published and unpublished states and provides the ability to restrict which users have the ability to move 
content through the various states. For example, you may have an additional step after a content item is 
edited where a site editor reviews it before it can be published on the site. A content creator can author the 
content and set the state as ready to review; however, the content creator cannot set the state to published. 
Only the site editor can do that after the content has been vetted.

The Workbench Moderation process focuses on node revisions instead of the node itself. This allows a 
node to remain published while updates are being made and pushed through the review process.

Figure 9-30.  The list of Site Section options restricted by the current role

Figure 9-31.  Site section restrictions for a training editor



Chapter 9 ■ Building a Smart Administration User Interface

254

Configuring Workbench Moderation
After downloading and enabling the Workbench Moderation module (drupal.org/project/ 
workbench_moderation), the next step is to define the moderation states that a node can travel through. 
Navigate to Configuration ➤ Workflow ➤ Workbench Moderation ➤ Moderation States to view the list of 
enabled states (see Figure 9-32).

For demonstration purposes, we add a new state of Rejected, which the site editor can use to send a 
content item back to the content creator for updates. To add a state, you click on the Add Moderation state 
button (see Figure 9-33).

Figure 9-32.  The off-the-shelf Workbench moderation states

Figure 9-33.  Adding a new workflow state



Chapter 9 ■ Building a Smart Administration User Interface

255

After clicking save, you can now see the new Rejected state in the list of Moderation states.
The next step is to review and revise the moderation state transitions, meaning the flow of steps that a 

content item can transition through on its way to being published. The default off-the-shelf states are fine for 
my example site, with the one exception of needing to inject the Rejected state into the flow (see Figure 9-34).

Figure 9-34.  The off-the-shelf moderation state transitions



Chapter 9 ■ Building a Smart Administration User Interface

256

To create the new transition, we click the Add Moderation State Transition button and enter Rejected 
in the Label field. We set the Transition from State to Needs Review, as that will be the current state when 
the site editor reviews the content, and the Transition To value will be set to Draft, as that will indicate to the 
content creator that there is work to do on the content item (see Figure 9-35).

The next step is to enable moderation on each of the content types on your site. Navigate to Structure 
➤ Content types and edit the Article Content type. A new tab appears on the Edit Article Content Type page 
named Manage Moderation. Click on that tab to see an option to enable moderation states for this content 
type (see Figure 9-36).

Figure 9-35.  Defining the moderation state transitions.

Figure 9-36.  Enabling moderation states on the Article Content type



Chapter 9 ■ Building a Smart Administration User Interface

257

After checking the box, you’ll be presented with the list of available moderation states, the state that 
is associated with the content being published, and the default state that is set when the node is initially 
created (see Figure 9-37). We’ll leave all the values checked and the default state set to Draft. Click the Save 
button to enable moderation on the Article Content type.

Next we’ll enable moderation on the other content types on the site before defining which user role has 
the ability to move content from one state to another.

Defining Workbench Moderation User Roles and Permissions
The final step in setting up workbench moderation is to define which user roles have the ability to move 
content through the various states. Navigate to People ➤ Permissions and, on the Permissions page, scroll to 
the Workbench moderation section. In that section, there are permissions for the following:

•	 Administering the configuration of the Workbench moderation module

•	 Viewing published and unpublished content

•	 Setting each moderation state that content can flow through

We’ll use the existing user roles that we created earlier in this chapter, with the enterprise editor role 
being the only role that can reject and publish content. The details of the permissions and who can set them 
is listed in Table 9-2.

Figure 9-37.  Specifying the allowed moderation states



Chapter 9 ■ Building a Smart Administration User Interface

258

To test the workflow, log out as the site administrator. Then log in as the marketing editor, who only 
has limited workflow permissions, specifically the ability to create a new draft of a content item and 
request review of that item once finished creating the content. We’ll create a new article from the My 
Workbench page.

After entering the content, we’re ready to save the article that we created and now only see two options 
available—we can save the article as a new draft or can save the article and request a review (see Figure 9-38). 
Let’s save and request a review.

Table 9-2.  Setting the Workbench Moderation Permissions

Permission Enterprise Editor All Other Editors

View any unpublished content X X

View moderation states X X

View latest version X X

Use the Archive transition (move content from 
published to archived)

X

Use the Create New Draft transition (move 
content from Draft to Draft)

X X

Use the Create New Draft transition (Move 
content from Draft to Published)

X

Use the Keep in Review transition (Move content 
from Needs Review to Needs Review)

X

Use the Publish transition (Move content from 
Needs Review to Published)

X

Use the Publish transition (Move content from 
Published to Published)

X

Use the Rejected transition (Move content from 
Needs review state to Draft)

X

Use the Request Review transition (Move content 
from Draft to Needs review)

X X

Use the Send Back to Draft transition (move 
content from Needs Review to Draft state)

X X

Use the Send Back to Draft transition (Move 
content from Needs Review state to Draft state)

X

Use the Un-archive transition (Move content from 
Archived state to Published state)

X



Chapter 9 ■ Building a Smart Administration User Interface

259

After saving the article, the first thing that you’ll notice is that the article has a pink background, which 
specifies that the article has not yet been published. (Note that the example is using the Bartik theme and 
other themes may use other colors or no color at all.)

Before reviewing the list of unpublished content that may need review, update the default workbench 
content view to include the moderation state field so that we can quickly see whether a node is in a state 
that needs editorial review. The view is Workbench: Recent Content and the field that we’ll add is Content 
Revision: Moderation State, since it is revisions that are moderated and not the node itself.

Log out as the content editor and back into the site as a site administrator so you can update the view. 
After updating the view, navigate to the My Workbench page and click on the All Recent Content tab. Update 
the Published filter to “no” and click the Apply button, where you’ll see the article that the marketing user 
created is in the Needs Review state (see Figure 9-39).

Figure 9-38.  Creating a new article with restricted publishing options

Figure 9-39.  The article that needs review is listed on the Recent Content page



Chapter 9 ■ Building a Smart Administration User Interface

260

At this juncture, you can save the content item and set the state to any of the following:

•	 Draft, meaning it was rejected and needs work

•	 Keep in review so we can do more work on the article at a later time

•	 Published and viewable on the web site by site visitors

The content looks great, so we click the Save and Publish option (see Figure 9-40).

While this example demonstrated the end-to-end use of the Workbench module and its various 
supporting modules, there is more that you can do with the capabilities presented by this suite of tools. Visit 
drupal.org and the various module homepages for details on other features and capabilities.

Summary
While the off-the-shelf Drupal administrative interface works well, there are opportunities for improving the 
experience for those who are responsible for the content that appears on your web site. Treat content editors 
well and enable them to do their jobs more effectively and your site will be better off in the end. As Drupal 8 
matures there will likely be other modules that emerge to further improve the editorial and administrative 
backend of the CMS. Check drupal.org frequently for updates and new modules.

Providing a friendly user experience on the backend is great, but if your site doesn’t perform 
well, nobody will be happy. The next chapter discusses the various areas to focus on when it comes to 
performance and scalability of your Drupal 8 web site.

Figure 9-40.  Publishing the article after reviewing it



261© Todd Tomlinson 2017 
T. Tomlinson, Enterprise Drupal 8 Development, DOI 10.1007/978-1-4842-0253-1_10

CHAPTER 10

Scaling Drupal

You spend weeks and maybe months building a beautiful Drupal 8 web site and the day comes when you 
anxiously push the button to take your site live. You’ve done everything you can think of, including:

•	 Polishing the theme so that it is pixel-perfect across all devices

•	 Reviewing every piece of content on the site

•	 Setting user roles and permissions

•	 Running every piece of custom code through the coder module looking for issues

•	 Testing every page, every block, and every view

•	 Testing that the backups are running

You got kudos from the executive suite and your team is exhausted from the long days leading up to 
launch. You push code to the production server, point the DNS servers to your Drupal site, and launch. 
Thanks to the marketing department, there’s an immediate groundswell of site traffic and you head home to 
finally get some sleep. By the time you pull in to your driveway, your phone begins to ring off the hook. Users 
are seeing blank pages and the site is unresponsive. The CEO calls you to remind you that every hour the site 
is down, the company loses tens of thousands of dollars. You go from being the organization’s hero to being 
the one who everyone is blaming for the failed launch. You hate your job and wonder why you didn’t go into 
construction instead of being the manager of the organization’s web team. Suddenly your alarm clock goes 
off and you jump three feet off the bed as you realize that you were having the worst nightmare of your life. 
Fortunately it was a literal wake-up call. It’s time to ensure that your site is set up to handle the anticipated 
traffic loads before the launch date. This true-to-life story is my own and fortunately I had the time to 
remedy the potential performance bottlenecks before the site launched. The goal of this chapter is to ensure 
that you don’t experience the reality of my nightmare.

Understanding Potential Performance Bottlenecks
Before venturing out and implementing performance enhancements, let’s go you through a typical scenario 
of an anonymous site visitor visiting your site’s homepage. This section highlights the areas where you may 
want to apply resources to resolve potential performance issues.

For an off-the-shelf Drupal site that does not employ performance enhancement techniques, a site 
visitor navigating to your site’s homepage travels through the following steps:

	 1.	 DNS servers route the visitor’s request across the network to your hosting provider.

	 2.	 Drupal receives the request for your homepage and boots up.

	 3.	 Drupal connects to its database to pull together all of the elements on that page, 
including the blocks and content that is assembled via views.



Chapter 10 ■ Scaling Drupal

262

	 4.	 Drupal checks to ensure that all of the elements on the page can be viewed by an 
anonymous user (permissions).

	 5.	 PHP code turns the query results for all of the elements into an object, which is 
then passed to the theme engine.

	 6.	 The theme engine applies CSS and forms the HTML page.

	 7.	 The HTML page is returned to the user’s browser.

While these steps represent a highly simplified version of what actually happens, they demonstrate that 
rendering a simple page actually takes several steps. If every step takes a few seconds, the overall time to 
deliver a page to a site visitor could add up to an unacceptably slow page load time.

If you look beyond the high-level steps, each user interaction with Drupal consumes PHP processes to 
execute the requests, such as making calls to the database to extract content. A PHP process may have to wait 
for milliseconds to seconds for a database query to complete, which ties up precious resources. There is a 
limit to the number of concurrent PHP processes that a server can run at any given point in time. When PHP 
processes are tied up, it means that Apache or Nginx must hold a request and wait for a process to become 
free. Eventually, when the queues for all of these services are too busy, requests will time out, resulting in 
blank pages being returned to users, as the requests are not fulfilled.

While you may be able to solve some of the performance bottlenecks by running your site on larger and 
larger servers, which results in rising costs, there is a better way. That is to employ performance optimization 
techniques that range from simple to complex. I start with the simplest solutions first, in hopes that you can 
solve your potential problem before you have to take more drastic measures.

Drupal Cache
One of the simplest approaches for significantly improving your site’s performance is to utilize Drupal core’s 
caching mechanisms. Caching is a means for storing the rendered version of a page, block, or view so that 
Drupal does not have to assemble those components every time a visitor requests a page. Take for example 
your homepage. Once the fully rendered page (HTML markup) has been stored in Drupal’s cache tables, 
any subsequent visit to that page is served up from the cached version of that page instead of having to 
reassemble all of the content and apply the theme. This is a significantly faster process than going through 
the steps to recreate that page from scratch. A page that may take two or three seconds to fully assemble, 
theme, and return to the user may be rendered in milliseconds from the Drupal cache.

Enabling Drupal Cache
Drupal 8 core comes with two modules that empower caching on your site:

•	 Internal Dynamic Page Cache: This module caches pages for any user, anonymous or 
authenticated, handling dynamically generated pages correctly.

•	 Internal Page Cache: This module caches pages for anonymous users.

You will find both of these modules on the Extend page; both modules are enabled by default when 
installing Drupal 8. To utilize the power of these modules, you must set the page cache maximum age, which 
can be found by navigating to Configuration ➤ Performance and selecting a value from the drop-down. 
Select the value based on the volatility of your content. If the content on your site is constantly changing 
throughout the day then set the number low—for example, 15 minutes. A setting of 15 minutes instructs 
Drupal to set the cached version of a given page to expire in 15 minutes, after which it will be rebuilt the  
next time a visitor accesses that page. For sites that are relatively static, a value of 6 hours, 9 hours, 12 hours, 
or even 1 day may be more appropriate. For demonstration purposes, I select 6 hours and save the value by 
clicking the Save Configuration button.



Chapter 10 ■ Scaling Drupal

263

A quick test of my very simple development site on my Mac Book Pro running MAMP shows that the 
homepage load time without caching is 88ms. With caching, the load time is 71ms (see Figure 10-1). Some of 
the time needed to load is based on the network itself and not on Drupal. When you look at the slice of time 
to load that is Drupal-specific (processing), the load time is actually 25% less than without caching. This site 
is so simple that it really doesn’t represent the potential that may be achieved with simple caching for sites 
that have large pages and a significant amount of content is assembled before loading the page.

Figure 10-1.  Page load times before (left) and after (right) caching

Caching Views
Another performance boost is to cache the output of views. This additional layer of caching speeds up rendering 
the output of views by caching the output and rendering the cached version of the output on subsequent page 
views where that view is displayed. For example, the Content page is built using views and is often a slow-loading 
page for sites that have a significant number of content items. On my demo Drupal 8 site with 1508 content 
items and without views caching, the page load time averaged 1947ms. After enabling caching on the Content 
view, the page load time decreased to 1035ms. Removing the network component of the page load time, 
the decrease in load time was nearly 53% (see Figure 10-2), a significant improvement over the non-cached 
version of the view. The cost of that boost in speed was a few moments to enable caching on the view.

Figure 10-2.  View load times before (left) and after (right) views caching



Chapter 10 ■ Scaling Drupal

264

To enable views caching, navigate to Structure ➤ Views and edit the view that you would like to cache. 
In the Advanced column, look for Caching in the Other section. There are two options for setting the period 
in which a view is cached:

•	 Tag based: Tag-based has a significant benefit over time-based. Consider if you had 
a view that listed 10 items per page and was sorted descending by last update date 
and time. The view was cached and someone edits the eleventh item. In time-based 
cached views, the view will not be invalidated until the time period expires and 
that eleventh item will appear on the second page of the cached view until the time 
period expires. In a tag-based cache, editing and saving the eleventh item invalidates 
the cache and the view is rebuilt, with the eleventh item now listed as the first item.

•	 Time based: Selecting time-based works well for views of content that are relatively 
static, because updates to content will not invalidate the view until the time period 
has expired.

Select the solution that works best for your view. I suggest caching all views to take advantage of the 
boost in performance.

Caching Blocks
For those who are familiar with previous versions of Drupal, caching blocks was dependent on setting a 
configuration value that specified whether a block is cached or not. In Drupal 8 the approach changed. 
Blocks are automatically cached through the render_array() process.

If you are building custom blocks through code in Drupal 8, you can enable caching when building the 
renderable array for the block, as shown in the following code:

class MyCustomBlock extends BlockBase {
  public function build() {
    return array(
      '#markup' => $markup,  
      '#cache' => array(    
          'contexts' => array(
             'url.path',
           ),
       ),
     );
   }
 }

In this case, caching is based on the URL in which the block is being rendered. For detailed information 
about caching and the Drupal 8 cache API, visit http://drupal.org/docs/8/api/cache-api/cache-api.

External Caching Mechanisms: Varnish Cache
Drupal 8’s internal caching mechanisms, as demonstrated in the previous sections, provide a significant 
boost to the performance of your Drupal 8 site, but often Drupal 8’s internal caching isn’t enough to support 
the anticipated traffic to your site and you need to look for other alternatives, such as Varnish Cache.

Varnish Cache is a web application accelerator, which is also known as a caching HTTP reverse proxy 
server. It is installed on any server that supports HTTP and is configured to cache the content that passes 
through it. It is often installed on a server other than the application server where your Drupal site resides, 
and by its very nature, it sits between the Internet and your Drupal 8 application server (see Figure 10-3).

http://drupal.org/docs/8/api/cache-api/cache-api


Chapter 10 ■ Scaling Drupal

265

Varnish works by caching in memory the results of every request sent to Drupal. For example, suppose 
an anonymous site visitor wants to see your site’s homepage and visits the URL of your site’s homepage. 
When the homepage is sent back to the requesting site visitor, it is cached in Varnish’s in-memory cache 
tables. When a subsequent request for the homepage is made by that visitor or another visitor, Varnish 
recognizes that the page exists in its cache table and that version of the homepage is returned to the site 
visitor. In that scenario, Drupal never sees the request, as shown in Figure 10-3 by the solid lines between 
the Internet and Varnish. The solid lines represent inbound requests for Drupal pages that are immediately 
served out of Varnish’s cache table.

The dotted line in Figure 10-3 represents one of two scenarios, either the visitor has requested a 
page that does not exist in the Varnish cache table and must be generated by Drupal, or the visitor is an 
authenticated user. Varnish by default sends all authenticated traffic on to Drupal. How does Varnish 
know it’s an authenticated user? There is information in the HTTP header that specifies that the user is 
authenticated.

Performance improvements by using a Varnish Cache server in front of your Drupal server are on 
the order of 300 to 1000 times faster than serving up that same page from Drupal, even with Drupal cache 
enabled. For more information about Varnish, visit varnish-cache.org.

Using a Content Delivery Network (CDN)
While Drupal’s internal caching mechanisms and Varnish will significantly improve page load times, there’s 
yet another tool for further boosting page load times, using a CDN.

A CDN is a globally distributed network of proxy servers that are deployed in multiple data centers. The 
goal of the CDN is to serve content to end users with high availability and high performance from servers 
that are closest to a user. Without a CDN in place, site visitors from around the world must wait for pages 
and assets (e.g., images, JavaScript, CSS, and files) to be transported from the server where your web site 
resides to their browser. With a CDN in place, the content and assets are delivered from a proxy server that is 
geographically nearest to them.

Take for example a web site that is hosted in Dallas Texas. A site visitor from Amsterdam must wait for 
the content and assets to be delivered from Texas because the site doesn’t employ a CDN. In the case of that 
same site using a CDN, the content and assets will be delivered from a proxy server that likely resides in 
Amsterdam, thereby significantly decreasing network latency (see Figure 10-4).

I
n
t
e
r
n
e
t

Varnish Drupal MySQL

Figure 10-3.  Using Varnish Cache



Chapter 10 ■ Scaling Drupal

266

How CDNs Work
A content delivery network is a third-party provider service that enables your site to leverage the distribution 
of content and assets around the world. CDNs services are provided by a number of organizations, including:

•	 Cloudflare (cloudflare.com)

•	 Fastly (fastly.com)

•	 Amazon’s CloudFront (aws.amazon.com/cloudfront)

•	 Akamai Edge (akamai.com)

•	 MaxCDN (maxcdn.com)

Each company provides similar services—the ability to serve your content and assets from their 
distributed network of proxy servers. A CDN’s proxy servers route requests from site visitors through their 
network, caching pages and assets as site visitors browse your web site. If a page is cached in their network, 
the content and assets will be served up to that site visitor from the closest proxy server, which is likely 
located significantly closer to their physical location than where your web site is hosted.

Although there is a cost for using a CDN, the ability to off-load traffic from your server to the CDN 
providers network of proxy servers often means lower hosting costs. That’s because the demands on your 
local server are lower.

Integrating a CDN into your Drupal 8 site differs by provider. Visit the provider’s web sites for details 
about how to integrate their services into your site.

Considering Nginx Over Apache
For decades Apache has been the standard web server used by organizations around the world to serve up 
content to the web. While Apache is still the top web server for Drupal, many organizations are employing 
Nginx as an alternative to Apache, or in conjunction with Apache, to address the shortcomings of Apache 
when it comes to effectively serving thousands of concurrent requests.

The issue that many have with Apache is that it often reaches a limit as to the number of concurrent 
connections it can effectively manage due to process startup, memory consumption, and CPU constraints. 
As requests come into Apache, it must start up a new process, allocate memory, and access the CPU to 

Figure 10-4.  With and without a CDN



Chapter 10 ■ Scaling Drupal

267

address each request. As more requests come in, more processes are created, and each process is allocated 
memory. Processes are kept alive to minimize the startup and shutdown costs, assuming that subsequent 
requests may come in from that same browser. As the number of requests grow, processes and memory 
usage grow.

When you consider that each browser typically creates six or more TCP connections to a web server, 
1,000 concurrent visitors equates to 6,000 active connections and each of those connections results in a new 
process and memory consumption. As traffic increases, Apache begins to thrash as memory is swapped to 
and from disk to handle the volume of connections. This issue is well documented and is often called the 
C10K problem (en.wikipedia.org/wiki/C10k_problem). Nginx, on the other hand, was architected more 
recently and under the assumption that it must effectively handle large numbers of connections without 
being affected by the C10K problem. Nginx, unlike Apache, does not create new processes to handle 
incoming requests. It runs with a set number of processes, typically one per CPU core, and each of its few 
processes uses a single thread to handle thousands of requests at a time.

Although you could replace Apache with Nginx, there are benefits to having Apache in the architecture, 
specifically serving up dynamic content. Nginx, on the other hand, does an excellent job of serving up static 
content, delivering pages at lightning speed. When you combine the two—using Nginx as the proxy server 
that delivers cached content and Apache as the delivery mechanism for dynamic content, the end result is 
faster all around page load speeds.

For more information about Nginx, visit nginx.com. For more information about Apache, visit  
httpd.apache.org.

Using Memcache or Redis
All of Drupal’s internal caching mechanisms rely on database tables as the storage mechanism for cached 
elements. A relatively simple way of significantly speeding up the loading of cached elements is to employ 
a memory-based caching mechanism such as Memcache or Redis. Instead of having to retrieve cached 
elements from the database, Memcache and Redis serve up those elements from memory, significantly 
faster than loading them from the database. Due to the wide range of operating systems and hosted 
environments, visit memcached.org or redis.io for details on how to download and install Memcache or 
Redis on your server. If you are running on a hosted platform such as Pantheon, Redis is already installed 
and available for you to use. If you are running your site on Acquia, Memcache is available to all paid 
subscriptions.

Optimizing MySQL
The last area that I address in this chapter is optimizing MySQL. As a consultant one of the most frequent 
requests that I receive is helping an organization resolve their slow page loads. The first thing I look at is 
whether they have correctly enabled caching. Often just fixing a caching problem solves the page load 
time issue, but when it doesn’t, the next step I take is to look at page complexity. If a page is overly complex 
with dozens of database queries, there is little you can do to radically improve page load times, short of 
simplifying the page and reducing the number of queries. When I run across situations where complex 
pages are loading slowly and the organization says that they need that level of complexity, my next question 
is whether they are willing to sacrifice site visitors for page complexity, as slow load times often equate to 
visitors leaving and never coming back.

If pages are not complex, have few assets such as images, and CSS and JavaScript are compressed, yet 
still load slowly, I often then turn to tools such as New Relic to further narrow down the source of slow load 
times. If I find that the majority of the page load time is MySQL related, the next activity is to look at how 
much data is being loaded on the page. For example, if a view is unrestricted in the number of records that 
it will return and often returns hundreds of rows, my first focus is to look for ways to limit the number of 



Chapter 10 ■ Scaling Drupal

268

records returned. I do this by providing some form of exposed filtering on the view and limiting the number 
of records returned. If I’m still faced with slow page load times, I’ll then look at tools such the slow query 
log to see which database queries are taking excessive time to complete. If I find queries in the log I’ll then 
use the MySQL EXPLAIN statement to identify opportunities for adding indexes to speed the performance of 
those queries. On a recent project where queries were running extremely slow, using the information from 
the slow query log and running EXPLAIN on those queries identified potential additional indexes that, when 
added, completely eliminated the performance problems. An hour examining the log, running EXPLAIN, and 
adding indexes reduced page load times by over 80%—time well spent.

If caching, simplification, and adding indexes fail to address your performance issues, the next step is 
to examine the MySQL configuration files to check for a misconfigured value. The following are common 
settings that will significantly impact MySQL performance:

•	 innodb_buffer_pool_size: This is the first setting to check. This is the buffer pool 
where data and indexes are cached. Having it as large as possible will ensure that 
memory is used for queries instead of disk. Typical values are 5-6GB (8GB of RAM), 
20-25GB (32GB of RAM), and 100-120GB (128GB of RAM).

•	 inndb_log_file_size: This is the size of the redo logs. The redo logs are used to 
ensure that writes are fast and durable and also support crash recovery. Start with 
innodb_log_file_size set to 4G for MySQL 5.6 and above. For older versions, use 
512M.

•	 max_connections: If you see the “too many connections” error in your log,  
max_connections is typically set too low. The default value is 151 connections, but 
use caution when increasing this number as values above 1000 will typically cause 
your server to become unresponsive. Start with small incremental changes and test.

•	 innodb_flush_log_at_trx_commit: This is one setting that you may want to 
consider changing only as a last result. By default, the value is set to 1, meaning that 
InnoDB is fully ACID compliant. It’s the best value when you are concerned with 
data safety; however, it can have a significant overhead on systems with slow disks 
due to the additional actions required to flush each change to the redo logs. Setting 
it to 2 is less reliable because committed transactions will be flushed to the redo 
logs only once per second, which means that in the case of a crash, you may lose a 
transaction that was committed to the redo log in the last second.

•	 innodb_log_buffer_size: This setting controls the size of the buffer for transactions 
that have not yet been committed. The default value is 1MB, which is typically 
sufficient for transactions without large blob/text fields. Larger fields will fill the 
buffer quickly and trigger extra I/O. Examine the innodb_log_waits status and, if it’s 
not zero, then increase innodb_log_buffer_size.

•	 query_cache_size: This setting is a well-known bottleneck. The best solution is to 
disable it by setting the value to 0.

A great free tool that will help you identify the best configuration options for your MySQL database can 
be found at tools.percona.com.

If, after trying all these fixes, you are still running into performance problems with MySQL, it may 
warrant the creation of a MySQL cluster. This is where a master MySQL server replicates your Drupal 
database to multiple slave servers, thereby distributing the workload.



Chapter 10 ■ Scaling Drupal

269

Scaling Hardware
When you have exhausted all of the methods described previously, it is likely that you’ll need to replace 
or replicate your hardware. Attempting to run a large Drupal 8 web site on antiquated hardware or servers 
that lack adequate resources is likely to result in a poorly performing Drupal 8 web site. When replacing 
hardware, look for details on current specifications on drupal.org. When scaling Drupal 8, there are 
multiple options that vary based on the types of performance bottlenecks you are experiencing. Figure 10-5 
depicts the various layers in the hardware architecture and the options for scaling servers.

LB LB LB

WS WS WS WS

MS MS MS

CDN

Figure 10-5.  Scaling hardware

The first layer between the end user and your Drupal site is the CDN. As described earlier in this 
chapter, a CDN may give your site an immediate boost without having to add or upgrade hardware. While 
there is a cost associated with most CDNs, it’s usually significantly less than adding hardware to your 
infrastructure.

The next layer in the hardware architecture to consider scaling is the load balancers (LB). Using Nginx 
as the reverse proxy and Varnish as the caching mechanism on your load balancer often minimizes the 
traffic that has to flow deeper into your architecture. This is because the load balancers are serving up 
cached versions of pages and the CDN is serving up cached versions of assets such as images, CSS, and 
JavaScript.

The workhorse layer of the architecture is the web server, which is typically Apache in the case of Drupal 
8. You may spread the load across multiple web servers when you find that the CDN and load balancers 
aren’t shielding the web server. This is typically a case when your site visitors are authenticated (versus 
anonymous) or the page content is highly dynamic, as opposed to static content that can be cached.

The final layer in the architecture is MySQL and the servers that support your Drupal 8 MySQL 
database. If you are running MySQL you may consider running one of the higher performance MySQL 
options, such as Percona or MariaDB, before taking the step of clustering your MySQL databases. If you have 
exhausted your options and the database is a bottleneck then consider implementing a MySQL cluster with 
a master/slave architecture that provides the ability to distribute the query loads across multiple servers.

The options are nearly limitless as to how to arrange and scale hardware. Carefully examine and 
evaluate the bottlenecks before applying additional hardware. Often a CDN and an effective caching strategy 
can mitigate the need for additional hardware.



Chapter 10 ■ Scaling Drupal

270

Hosting Your Drupal 8 Site
Historically, many enterprise class web sites were hosted internally on corporate hardware in corporate 
data centers. While that still exists, the trend is to leverage the capabilities and expertise of organizations 
such as Pantheon or Acquia to host large enterprise sites. The capabilities of providers such as Pantheon 
and Acquia remove the costs associated with acquiring, installing, configuring, and maintaining a complex 
server environment to support a large-scale Drupal 8 implementation. Their cost is often less than owning 
your own hardware, paying the licensing and maintenance costs on that hardware and software, and the 
salaries associated with maintaining an in-house staff that handles all of the tasks associated with effectively 
managing a large infrastructure. Hosting in the cloud also makes sense for sites that experience periodic 
spikes in traffic. Instead of having to buy hardware to support your peak traffic volumes, you can lean on the 
services of Pantheon or Acquia to provide on-demand capacity when those peaks occur without paying for it 
24 hours a day, 365 days a year.

Summary
Performance and scalability should be at the forefront of your Drupal team’s every thought and action. 
Teams often miss simple configuration changes that would significantly boost the performance of their 
Drupal 8 sites or severely impact the speed of their sites. Statistics show that 40% of site visitors fail to return 
to sites with page load times of greater than three seconds, so performance should be at the center of all that 
your Drupal team does. Fortunately, following the few relatively simple actions outlined in this chapter, you 
can mitigate the risk of a slow site.

The next chapter dives into the world of DevOps, focusing on the tools and processes that will make it 
simpler and quicker to manage and maintain your Drupal 8 web site.



271© Todd Tomlinson 2017 
T. Tomlinson, Enterprise Drupal 8 Development, DOI 10.1007/978-1-4842-0253-1_11

CHAPTER 11

Drupal 8 DevOps

DevOps is a term for common practices that have catalyzed into a movement that is rapidly spreading 
throughout the development community, and it not relegated just to Drupal development. DevOps 
represents the marriage of development and operations into a set of cultural philosophies, common 
practices, and tools that enable an organization to deliver applications and services at a velocity that most 
organizations have traditionally failed to achieve. Historically the time from concept to it being realized in 
software that is running in production was weeks, months, and sometimes years. While it may have been 
suitable in the past to deliver new solutions on a quarterly basis, in today’s world, you must deliver new 
capabilities in near real time or sit by and watch your competitors race by you. Today you may receive 
a new requirement on Monday morning with the expectation that the functionality will be deployed by 
end-of-day on Tuesday, and yes, Tuesday of that same week. The old culture, processes, tools, and siloed 
organizations will surely fail to deliver the solutions in timeframes that were unheard of in the past, but that 
are commonplace in today’s market.

Traditional Versus DevOps
In a traditional development and operations approach, the development team is responsible for building 
and testing the solutions that the organization then hands to the operations team to deploy to the 
production environment. In most organizations the development team “washes their hands” of the solution 
at the handoff between the development and operations teams. Operations is then responsible for deploying 
the code to the production environment and monitoring that solution for performance and reliability. 
The handoff of the “golden” ZIP file is the only semi-automated piece of the process, as it’s copied into a 
directory where operations can then pick it up and copy and extract the archive on the production system. 
In Figure 11-1, the development team handles the build and test processes, and the operations team handles 
the deployment and monitoring processes, with very little if any collaboration happening during the 
planning process.

Concept
Build Test Deploy

Plan Monitor

Feedback Loop

Production

Delivery Process

Figure 11-1.  The typical delivery and operations process flow



Chapter 11 ■ Drupal 8 DevOps

272

In a DevOps model, development and operations are no longer siloed in their own organizations; 
they are often merged into a single team where engineers work across the entire process from concept to 
production, building skills across the various disciplines of development, testing, and operations. Often, 
quality assurance and security team members are rolled into the single organization and become an integral 
part of the team, applying their domain expertise to every step of the process, from concept to deployment.

In conjunction with the new organizational structure, DevOps brings with it a suite of tools that 
automates the processes that have traditionally required human intervention and were therefore slow, 
enabling the process to move from weekly, monthly, quarterly, or yearly to deployments that occur several 
times a day. This concept wasn’t possible in the past, without this revised way of organizing development 
and operations teams and employing tools to automate the process.

The Benefits of Embracing DevOps
One of the most often quoted benefits of DevOps is speed. With the tools, processes, and team in place, 
organizations are now able to move from concept to production at a velocity that was unimaginable in 
the past. Organizations can now innovate on a daily basis, adapt to changing markets faster, and are far 
more effective and efficient at driving business results. The DevOps model enables your development and 
operations teams to achieve results that were impossible in the past.

With speed comes rapid delivery. Employing DevOps provides the ability to increase the frequency 
and pace of releases to production. The faster you can release new features and bug fixes, the faster you 
can respond to your customers’ needs and competitive challenges. Continuous integration and continuous 
delivery, which I cover in detail later in this chapter, are DevOps practices that remove the human 
intervention in the software release process, automating every step from build to deploy.

DevOps also improves reliability. By employing rigorous automated testing, your organization can 
quickly deploy changes to your applications and infrastructure with a high degree of confidence that the 
changes will maintain a positive experience for your end users.

A cornerstone of DevOps is improved collaboration between the various roles that are responsible for 
the tasks associated with development through deployment and operations. The DevOps cultural model 
focuses on ownership and accountability throughout the process, requiring a higher level of collaboration 
and sharing of responsibility across the development and deployment workflow. This increased level of 
integration and collaboration saves time and reduces and often eliminates handoffs, speeding the delivery of 
new solutions to your production environments.

DevOps may improve security by automating the process and putting the checks and balances in the 
automated testing processes to ensure that the systems you deploy to your end users comply with your 
organization’s compliance policies and controls.

Adopting DevOps
While the previous sections make DevOps sound like the best thing since sliced bread, there is work involved 
in implementing it into your organization.

The first step is changing the culture and mindset of those in the organization who are responsible 
for development and delivery. It typically requires merging what have been two separate teams that were 
effectively siloed into a single organization, requiring a higher level of collaboration between team members 
who traditionally may not have worked very well together. With the merging of the team comes a new set 
of roles and responsibilities. Developers who may not have had anything to do with quality assurance or 
deployments will find themselves required to build automated test scripts for their code and to ensure 
that their code successfully passes those tests and is deployed in production. Operations team members 
who have not been responsible for development or quality assurance may find themselves responsible for 
developing DevOps tools and scripts and testing and deploying those tools and capabilities using the same 



Chapter 11 ■ Drupal 8 DevOps

273

processes that the developers do for business applications. It may be an uncomfortable situation for many 
on the team, now having the accountability and responsibility for the end-to-end processes of building and 
deploying their solutions. Overcoming those challenges is by no means easy, nor is it impossible. There are 
excellent resources through organizations such as the Agile community who have focused on this aspect for 
years.

The next step is to reduce the scope and velocity of changes that are deployed into the production 
environment by deploying frequent, often daily or even hourly, small updates. Releasing small incremental 
changes lowers the risk of deployments by making it easier to identify and remediate bugs. Drupal’s modular 
architectural makes it easy to deploy incremental changes by releasing changes to individual elements such 
as .yml configuration files and modules.

DevOps Best Practices
Reorganizing the team, adopting microservices architecture, and performing smaller more frequent 
incremental deployments are supported by well-known best practices. While the optimal approach is to 
adopt all of these in your organization, doing so all at once is often overwhelming. Beyond merging the 
development and operations groups into a single entity, you may consider implementing the following best 
practices in the order outlined here:

•	 Continuous integration. This best practice focuses on the tools that developers use 
to manage their code. A central repository, such as GitHub, becomes the single 
source of truth for all code in the organization. Developers regularly merge their 
code updates into this central repository where automated processes build and test 
the updates. The objectives of continuous integration are to find and address bugs 
quicker, improve software quality, and reduce the time it takes to validate and release 
new software updates.

•	 Continuous delivery is the next best practice to implement. This DevOps solution 
takes the output of continuous integration and prepares and deploys the fully tested 
updates to the production environment.

•	 Microservices is the best practice that focuses on dividing a larger application into 
smaller services that are focused on a small subset of the overall functionality of the 
solution being managed and deployed. Drupal 8 already falls into the microservices 
architecture model by its very nature of being built through modules, both core and 
contributed, as well as elements such as content types, themes, and configuration 
files.

•	 Infrastructure as code is a practice in which infrastructure is provisioned and 
managed using code and software development techniques such as version control 
and continuous integration. For organizations that host their Drupal 8 sites in the 
cloud on services provided by companies such as Pantheon and Acquia, this process 
is handled by the cloud services provider. For organizations that host Drupal 8 on 
their own infrastructure, this approach may be difficult to adopt broadly across all of 
the infrastructure in the organization.

Since most IT organizations support more than just Drupal, the footprint of Drupal in their portfolio 
is often too small to justify an overhaul of the entire IT organization’s structure, processes, and tools. While 
organizations will gain significant benefits from adopting a DevOps culture and approach, it may be too big 
to bite off all at once.

While DevOps may be too big of an undertaking at the enterprise level, you may want to consider 
adopting a portion of it as a starting point by implementing continuous integration and continuous 
deployments for your Drupal 8 web sites.



Chapter 11 ■ Drupal 8 DevOps

274

Drupal 8 Continuous Integration and Deployment
The concept of continuous integration (CI) and continuous deployment (CD) is nothing new; it’s been 
around since the 90’s when Grady Booch, the father of object orientation, described the need for developers 
to integrate their code into a single repository on a frequent basis. This was to avoid the issues of integrating 
everyone’s code, only to find out that two or three or more people worked on the same code. How do you 
effectively interweave the changes from each developer without destroying the code that was so diligently 
worked on? While Booch didn’t envision nor advocate merging code several times a day, the extreme 
programming (XP) community came along and said that integrations need to happen frequently to avert the 
issues with several developers working together on a common solution.

Drupal is not unlike other software solutions; developers create custom modules and often on larger 
teams more than one person works on a common set of functionality. Add to that Drupal 8’s configuration 
management in code and you can quickly run into scenarios where collisions happen when long periods of 
time between merges occur. While the advent of source code control systems such as Git resolve many of the 
issues, there are further steps that you can take as an organization that make the merging and testing of code 
more robust, including the ability to automate testing and immediately identify code issues.

More recently the concepts of CI and CD have evolved to include the creation of virtual environments 
that are spun up when a developer checks in code, where production quality content is sourced from the 
production server to enable realistic testing of software changes against production data. If the tests run 
successfully, the environments are “torn down” and the code is staged for pushing to production where 
the CD elements of the DevOps solution push the code and configuration changes to the live production 
environment. If there are errors, that environment may be configured to live beyond the execution of the test 
so that your developers and quality assurance team can dive into the root cause of the test failure.

The CI/CD Process Flow
The typical process flow for CI/CD is as follows:

•	 A developer commits code to a repository, typically using Git

•	 The developer pushes the committed code up to the central repository (e.g., GitHub)

•	 The update to the repository triggers a job on your CI server (e.g., Jenkins)

•	 The job kicks off code deployment automatically, copying the code from the 
repository to your server

•	 It runs Drush commands to update the database

•	 It runs some tests on the site build

•	 It reports the status to you, e.g., pass/fail

•	 If the tests pass, the code and configuration are pushed to the live production 
environment

While you may have variations (e.g., spinning up a new virtual environment and copying the production 
database to the new virtual environment), the basic flow is the same.



Chapter 11 ■ Drupal 8 DevOps

275

CI/CD Tools
The starting point for CI/CD is to have a centralized repository where your developers check in and check 
out their code. Without that central repository, it will be difficult to enable an effective CI process flow. 
GitHub and BitBucket are two popular services. If you host your site on Pantheon or Acquia, you may use 
their repositories as well.

The next component of CI/CD is to find and install a CI server. There are several open source 
and commercially available products in the market. Examples of commonly used CI servers in Drupal 
environments include the following:

•	 Jenkins (jenkins.com)

•	 CircleCI (circleci.com)

•	 TravisCI (travisci.org for the community version or travisci.com for the 
commercial version)

While there are other solutions in the market, these are the ones that are most frequently referenced. 
Each of these solutions provides similar functionality and relatively simple setup and configuration 
processes. For example, the process for setting up CircleCI consists of logging in to CircleCI with your 
GitHub or BitBucket credentials, posting your SSH keys that are known to your code repository, and filling 
out a few configuration values.

Once you have your CI/CD server set up, the next step is to configure the workflow. Each tool differs in 
their approach for configuring the workflow. I suggest visiting the site for each of these CI/CD vendors and 
reading through the installation and configuration documentation.

Automated Testing
Continuous integration and deployment really doesn’t work well without automated testing. While you 
could automatically merge and deploy your untested code to production, it’s surely not a best practice 
and will likely result in the destruction of any confidence in your team’s ability to manage and maintain a 
production Drupal 8 site. Fortunately there are tools that make testing, and specifically automated testing, 
relatively straightforward and easy.

The Drupal community has adopted automated testing as a means to verify and validate all of the 
elements of Drupal core. The approach consists of both unit tests, which test and validate the functionality 
of classes at the lowest level of code, and functional tests that validate that Drupal core does what it’s 
supposed to do from a functional perspective. Every time new code is committed to the code repository, it is 
automatically tested to ensure that it doesn’t break any existing functionality.

As developers we need to adopt the same approach as we build Drupal sites using Drupal core and 
extend the functionality of our sites through the addition of contributed and custom modules. As new code 
is added, the code should be tested through unit tests, and before merging that new code into the master 
branch of the code repository, a complete regression test of the functionality should be performed. Every 
build should be thoroughly tested before deploying that code to the production environment. In a Drupal 
8 environment, there are tools and techniques for writing unit and functional tests, such as PHPUnit and 
Simpletest.

Writing PHPUnit Tests for Classes
The fundamental building block of Drupal 8 modules are PHP classes. The PHPUnit test framework is the 
tool that the Drupal community uses for testing classes in Drupal 8 core. Writing tests in the PHPUnit testing 
framework allows a developer or quality assurance tester to evaluate whether the class itself performs the 
required functionality, and it does so in a manner that generates the correct results.



Chapter 11 ■ Drupal 8 DevOps

276

Writing a PHPUnit test is relatively straightforward:

•	 Begin by defining a class that extends \Drupal\Tests\UnitTestCase.

•	 The name of the class should end with the word Test.

•	 Specify the namespace as a subspace/subdirectory of \Drupal\<modulename>\
Tests, where <modulename> is your test module's machine name.

•	 Store the test class file in the <modulename>/tests/src/Unit directory, using a PSR-4 
naming standard.

•	 Incorporate a phpDoc comment block at the top of the class that describes the test.

•	 Create test cases in your class by creating methods that start with the word test. 
Each method should be limited in scope to a test that examines a specific functional 
or technical requirement.

You can find several examples of PHPUnit tests in your site’s /core/tests/Drupal/Tests/Component 
directory. A great place to learn the pattern of creating unit tests is to examine existing tests.

For additional details, see:

•	 drupal.org/phpunit for details on how to use PHPUnit tests with Drupal

•	 phpunit.de for information how to use the PHPUnit testing framework

Writing Functional Tests
Functional tests examine the results of doing something on your Drupal site, such as clicking on a link, 
adding a content item, updating a user account, or filling out a form. The framework that has been used by 
the Drupal community for years is Simpletest. Using Simpletest consists of creating actions and defining 
assertions, where actions are what the test is supposed to do and the assertions evaluate the results of the 
action by comparing the output of the action against a predefined expected result. Examples of Simpletests 
in Drupal core can be found in the /core/tests/Drupal/FunctionalTests/ directory.

To write a Simpletest:

•	 For tests that assume interaction through a web browser, create a class that extends  
\Drupal\simpletest\WebTestBase. This base class includes an internal web 
browser that includes test assertion methods that you can use to simulate interaction 
with your site through a browser.

•	 For test that do not test interaction through a web browser, create a class that extends 
\Drupal\KernelTests\KernelTestBase.

•	 Use a namespace that is a subspace/subdirectory of \Drupal\<modulename>\Tests, 
where <modulename> is your test module's machine name.

•	 Create the test class file and save it to the <modulename>/src/Tests directory, 
following the PSR-4 naming standards.

•	 Create a phpDoc comment block at the top of your class that contains a description of 
the tests that are covered in this class.

•	 In most cases, you will create a separate test module to define your functional tests, 
as opposed to writing tests in your modules. Store standalone modules under the 
<modulename>/tests/modules directory.

•	 Create test cases in your class by creating methods that start with the word test. 
Each method should be limited in scope to a test that examines a specific functional 
or technical requirement.



Chapter 11 ■ Drupal 8 DevOps

277

For additional details, visit drupal.org/simpletest.

Write Functional JavaScript Tests (PHPUnit)
A Drupal 8 solution often extends beyond just PHP code and includes JavaScript as a portion of the overall 
solution. JavaScript code, just like PHP code, needs to be thoroughly tested to ensure it generates the 
expected results. To write a test for JavaScript:

•	 Begin with Extend \Drupal\FunctionalJavaScriptTests\JavascriptTestBase to 
build upon the baseline testing framework.

•	 Save the test file into the <modulename>/tests/src/FunctionalJavascript/ 
directory and use the \Drupal\Tests\<modulename>\FunctionalJavaScript 
namespace according to the PSR-4 naming standards.

•	 At the top of the file, incorporate an @group annotation using <modulename> as the 
group name.

•	 Install and configure PhantomJS on your computer; see phantomjs.org/download.html.

•	 To execute JavaScript tests, see the core/tests/README.md file.

For more details on testing JavaScript through PHPUnit, see:

•	 drupal.org/docs/8/phpunit/phpunit-javascript-testing-tutorial for details 
on how to write PHPUnit JavaScript tests

•	 drupal.org/phpunit for details on how to effectively write PHPUnit tests for your 
Drupal site

Executing Tests
To run a test, begin by enabling the Drupal 8 core testing module. After enabling the module tests can be executed 
from the Testing modules administrative interface or via Drush by using the core/scripts/run-tests.sh script.

You may also execute PHPUnit tests from the command line. Visit drupal.org/node/2116263 for 
details.

You may also run tests from within the CI/CD solution that you choose. Each has its own means for 
executing automated tests. Visit the documentation for the solution you selected to find the details on how 
to run tests and utilize the output of those tests to stop the deployment process when tests fail.

Other Testing Tools
While Simpletest and PHPUnit tests are the tools utilized by the Drupal community to test Drupal itself, 
there are alternatives that you may want to consider such as Behat (behat.org). While PHPUnit and 
Simpletest scripts are very “coder-centric,” Behat takes a slightly different approach by providing a nearly 
English scripting language for authoring tests. Take, for example, a scenario where you need to test a Drupal 
Commerce web site in which customers put items into their shopping cart. A description of the test in Behat 
would look something like this:

Feature:  Shopping Cart
  In order to purchase items
  As a customer
  I need to be able to add items to my shopping cart



Chapter 11 ■ Drupal 8 DevOps

278

This description of the feature that the script is testing provides a relatively easy-to-follow explanation 
of what is to be tested. As a customer we want to put products into a basket. But there is more to the test. 
While speaking with a business stakeholder, we come to find out that we need to collect a 9% sales tax and 
that there are rules on the cost of delivering the goods to the customers. Expanding the description of the 
test, we now have:

Feature:  Shopping Cart
  In order to purchase items
  As a customer
  I need to be able to add items to my shopping cart

Rules:
 -   Sales Tax is 5%
 -   Delivery for shopping cart under $20 is $5
 -   Deliver for shopping cart over $20 is $3

The description is great; it talks about the general capabilities of adding products to a basket as a 
customer, and the expected outcomes of sales tax and delivery costs. What it doesn’t speak to is the various 
scenarios that might occur and the specific expected outcomes for each of those scenarios. Expanding the 
Behat script to address those scenarios is relatively straightforward, as shown here:

Feature:  Shopping Cart
  In order to purchase items
  As a customer
  I need to be able to add items to my shopping cart

Rules:   
 -   Sales Tax is 5%
 -   Delivery for shopping cart under $20 is $5
 -   Deliver for shopping cart over $20 is $3

Scenario:
   Buying a single item under $10
   Given there is a "Drupal Book", which costs $5     
   When I add the "Drupal Book" to the shopping cart     
   Then I should have 1 item in the shopping cart     
   And the overall shopping cart price should be $10.25   

Scenario: Buying a single item over $20     
   Given there is a "JavaScript Book", which costs $25     
   When I add the "JavaScript Book" to the shopping cart     
   Then I should have 1 item in the shopping cart     
   And the overall shopping cart price should be $29.25   

Scenario: Buying two products over $20     
   Given there is a "Drupal Book", which costs $5     
   And there is a "JavaScript Book", which costs $25     
   When I add the "Drupal Book" to the shopping cart     
   And I add the "JavaScript Book" to the shopping cart     
   Then I should have 2 items in the shopping cart     
   And the overall shopping cart price should be $34.50



Chapter 11 ■ Drupal 8 DevOps

279

The scenarios in the test describe context, event, and outcome for each of the scenarios to be tested, in 
the following general framework:

Scenario:  Some description of a specific scenario to be tested
  Given a contextual condition
  When some event occurs
  Then the expected results are

You can expand on the scenarios to include additional keywords such as And and But:

Scenario:  A description of what is  to be tested
  Given a contextual condition   And more contextual conditions
  When some event occurs
  And a second event occurs
  Then the expected results
  And another expected result
  But another expected result

Unlike PHPUnit and Simpletest scripts, which require some level of coding expertise, Behat makes it 
relatively easy for those who write functional specifications to also write Behat test scripts.

PHPUnit, Simpletest, and Behat provide a majority of the testing capabilities required to successfully 
test your site; however, there are other tools that integrate well into the CI/CD workflow that you may want to 
consider, such as Selenium, which is a tool that provides browser testing, allowing a test script to simulate a 
site visitor clicking around your site and entering values into fields. 

Summary
DevOps is often one of the last elements to implement in a Drupal team and is often overlooked due to the 
demands of constantly delivering new functionality to the web for the organizations that we work for. The 
interesting point is that if we stopped long enough to implement DevOps in our organizations, we could 
deliver more functionality faster and easier than doing it the traditional ways that Drupal development 
teams have done for over a decade.

DevOps takes the pressure off of the development team and provides the ability to once again enjoy our 
weekends as we’re not getting up at the crack of dawn on a Sunday morning to deploy code when the site 
traffic is at its lowest point of the week. It also eliminates those “oops I forgot to do…” scenarios that we often 
face when we walk in the doors of our office on Monday morning. It’s well worth the time and effort to adopt 
the DevOps mindset of small incremental changes and to use the tools to test and deploy code that works 
the way it’s supposed to work the first time.



281© Todd Tomlinson 2017 
T. Tomlinson, Enterprise Drupal 8 Development, DOI 10.1007/978-1-4842-0253-1_12

CHAPTER 12

Migrating to Drupal 8

Migrating from one version of a software package to another is often a Herculean task fraught with problems, 
missed deadlines, and blown budgets. Drupal can fit into that category depending on the custom modules 
that you developed and the complexity of your site. Fortunately there are tools to help ease the burden of 
migrating a Drupal 6 or 7 site to Drupal 8, which is the focus of this chapter.

The Migrate Modules in Drupal 8 Core
Drupal 8 core ships with three modules that support the process of migrating a Drupal 6 or 7 site to Drupal 
8. The Migrate, Migrate Drupal, and Migrate Drupal UI modules perform the functions of moving content, 
taxonomy, users, and configuration from a Drupal 6 or 7 site into Drupal 8, and they do so with relative ease. 
To demonstrate the process in this chapter, we migrate a standard off-the-shelf Drupal 7 site to Drupal 8.

To begin, we create a Drupal 7 site and populate the site with users, taxonomy, and content using the 
Devel module’s generate features (drupal.org/project/devel). The resulting site with content appears in 
Figure 12-1.



Chapter 12 ■ Migrating to Drupal 8

282

Next, we install Drupal 8 as the target site for where the Drupal 7 site will be migrated. Visit the Extend 
page and enable the three Drupal 8 migrate modules (see Figure 12-2).

Figure 12-1.  The Drupal 7 site to be migrated

Figure 12-2.  The Migrate modules



Chapter 12 ■ Migrating to Drupal 8

283

After enabling the modules, we back up the Drupal 7 and Drupal 8 sites, including the database, files, 
and codebase, to ensure that we can restore both sites in the event of a failure. After backups are completed, 
we navigate to upgrade on the Drupal 8 site to begin the process. On the Upgrade page, you will find a list of 
instructions and recommendations (see Figure 12-3).

Figure 12-3.  The Upgrade instructions

Following the instructions, do the following:

•	 Back up the database. Make sure that the host of the Drupal 7 site is accessible and 
that you have the database credentials and the ability to access that database from 
the Drupal 8 instance.

•	 Manually move any private files to the Drupal 8 site. You must ensure that all 
enabled modules on the Drupal 7 site are also present on the Drupal 8 site as the 
Drupal 8 equivalent of those modules. In the case of these example sites, the only 
contributed module is the Devel module. If you have modules that do not have a 
Drupal 8 equivalent, you can replace those modules with other modules that are 
available for Drupal 8, or following the steps outlined later in this chapter, migrate 
the module manually.

•	 Put the Drupal 8 site into maintenance mode.

Click the Continue button to move to the next step in the process. On the Drupal Upgrade page, we 
specify the type of database, the database host, database name, database user name, database password, 
and files directory on the Drupal 7 site (see Figure 12-4).



Chapter 12 ■ Migrating to Drupal 8

284

Figure 12-4.  Specifying the source database credentials and files directory



Chapter 12 ■ Migrating to Drupal 8

285

After reviewing the list of missing upgrade paths, we decide to continue with the upgrade. If there were 
modules that were missing upgrade paths that are critical to the functionality or appearance of your site, 
you could:

•	 Abandon the upgrade and look for the Drupal 8 equivalent modules before 
proceeding. After downloading and installing those modules, you could then visit 
the upgrade page and attempt the upgrade again.

•	 Continue with the upgrade with the understanding that some site functionality 
and the appearance of the site may differ on Drupal 8. You then have to look for 
alternative solutions to address the missing functionality and make the appropriate 
adjustments.

After entering the values, we click the Review Upgrade button to examine the list of modules on the 
Drupal 7 site that are missing their counterpart on the Drupal 8 site, as well as the list of modules that match 
between the two sites (see Figure 12-5).

Figure 12-5.  The available and missing upgrade paths



Chapter 12 ■ Migrating to Drupal 8

286

When the upgrade is complete, a summary of the migration activities is displayed on your homepage, as 
shown in Figure 12-7.

Figure 12-7.  The upgrade summary

Figure 12-6.  The migration from Drupal 7 is in process

For demonstration purposes, we continue with the upgrade, understanding that the items listed in the 
missing upgrade paths will not be migrated to this Drupal 8 site. WE click the Perform Upgrade button at 
the bottom of the page to continue the upgrade process. As the upgrade progresses, the module reports the 
status of the process, as shown in Figure 12-6.



Chapter 12 ■ Migrating to Drupal 8

287

After upgrading, you need to comb through the site to find all of the areas that were not successfully 
migrated and manually migrate the remaining elements. In the case of this sample site, all of the nodes, 
taxonomy terms, menu items, and users were successfully migrated.

Migrating Themes
Migrating a Drupal 6 or 7 theme to Drupal 8 is relatively straightforward, with the primary changes being  
the following:

•	 The Drupal 6 or 7 theme’s .info file will need to be converted to a Drupal 8  
.info.yml file.

•	 Certain core CSS classes have changed, including:

•	 element-hidden has become hidden

•	 element-invisible has become visually-hidden

•	 element-focusable has become visually-hidden focusable

•	 The addition of invisible, which was not available in Drupal 6 or 7

•	 All .tpl.php template files are now .html.twig files. All PHP code that was 
contained in Drupal 6 and 7 .tpl.php files are replaced with Twig. For details,  
see Chapter 5.

•	 The template.php file is now contained in the .theme file.

Figure 12-8.  The upgrade log

Clicking on the Review the Detailed Upgrade Log link displays a list of messages that detail the actions 
taken during the upgrade process (see Figure 12-8).

http://dx.doi.org/10.1007/978-1-4842-0253-1_5


Chapter 12 ■ Migrating to Drupal 8

288

There are limited and somewhat cryptic instructions on drupal.org for migrating themes from Drupal 
7 to Drupal 8. Visit drupal.org/docs/8/theming/upgrading-7x-themes-to-8x for up-to-date details on 
migrating your theme.

Migrating Modules from Drupal 7 to Drupal 8
Migrating content, users, and taxonomy from Drupal 6 or 7 to Drupal 8 was relatively easy as compared to 
migrating themes and modules. For the most part, migrating themes is next in the list of “easy-to-do” tasks, 
but that easy list ends quickly when we get to modules. Migrating modules from Drupal 7 to Drupal 8 often 
requires significant surgery, as the underlying core functionality has changed from straight PHP and PDO to 
Symfony, with all of its structure and syntax. Fortunately there’s a tool that takes some of the pain out of the 
process, called the Drupal Module Upgrader.

To install the Drupal Module Upgrader, navigate to your Drupal 8 site’s root directory and run the 
following commands in order:

drush dl drupalmoduleupgrader
cd modules/drupalmoduleupgrader
composer install
drush en drupalmoduleupgrader –y

You are now ready to attempt to upgrade a Drupal 7 module to Drupal 8. The drupalmodulegrader 
(DMU) is a command-line script that scans the source of a Drupal 7 module, flags any code that requires 
updating to Drupal 8, points to any relevant API change notices, and, when possible, attempts to convert the 
Drupal 7 code automatically to the Drupal 8 version. The goal of the module is to address the most widely 
used Drupal hooks and ensure there’s coverage for them.

To demonstrate the DMU tool, we use a simple Drupal 7 module, the Pirate module. This simple 
module filters text on your site on the International Talk Like a Pirate Day (September 19th) and converts 
appropriate English phrases and words into pirate speak. You can download the Drupal 7 version of Pirate 
(drupal.org/project/pirate) to the modules directory on your Drupal 8 site.

After downloading the module, we generate a report by navigating to the Drupal 8 site’s root directory 
and executing the following command:

drush dmu-analyze pirate

The output generated by dmu-analyze is stored in the module’s root directory with a name of  
upgrade-info.html. You can use your browser to view the file by visiting mysite.com/modules/pirate/
upgrade-info.html, where you’ll see a list of required changes, as shown in Figure 12-9.



Chapter 12 ■ Migrating to Drupal 8

289

We can now try to automatically upgrade the module by executing the following command from the 
root directory of the Drupal 8 site:

drush dmu-upgrade pirate

If the DMU upgrader runs into problems during the upgrade, it will report those problems during the 
upgrade process. In the case of the Pirate module, no errors were generated. If you navigate to /modules/
pirate, you will now see that the module has been converted to Drupal 8.

Figure 12-9.  The list of required changes for the Pirate module



Chapter 12 ■ Migrating to Drupal 8

290

├── INSTALL.txt
├── LICENSE.txt
├── README.txt
├── config
│   ├── install
│   │   └── pirate.settings.yml
│   └── schema
│       └── pirate.schema.yml
├── pirate.api.php
├── pirate.drush.inc
├── pirate.info
├── pirate.info.yml
├── pirate.module
└── upgrade-info.html

3 directories, 11 files

Navigating to the Extend page, you can now see the Drupal 8 version of the Pirate module, ready to 
install and use on September 19th (see Figure 12-10).

Not all modules will convert as cleanly as the Pirate module. For detailed steps on how to manually 
convert a Drupal 7 module to Drupal 8, visit drupal.org/docs/8/converting-drupal-7-modules-to-
drupal-8. 

Contributed Modules
Although the Pirate module is relatively easy to migrate to Drupal 8, not all Drupal 7 modules have been 
migrated to Drupal 8 and you may be in a position in which there’s no clear path for a Drupal 7 contributed 
module to be ported to Drupal 8. In that case, your options are as follows:

•	 Undertake the migration of the module from Drupal 7 to Drupal 8. Reach out to 
the module’s maintainer on drupal.org and ask if they would be willing to let you 
migrate the module for them. In most cases, the module maintainer will jump at the 
opportunity to have someone take on the migration effort. There may be cases where 
the migration is already underway and you can participate in that process, again by 
asking the module maintainer if you can assist.

•	 Look for alternative modules. There may be other similar contributed modules that 
provide similar functionality and have been ported to Drupal 8 or were created for 
the first time on Drupal 8.

Figure 12-10.  The Drupal 8 version of the Pirate module ready to enable



Chapter 12 ■ Migrating to Drupal 8

291

•	 Look for alternative solutions. Often a combination of a custom content type and a 
view or two can solve a common problem that a contributed module solved in the past.

•	 Develop your own custom Drupal 8 module using the scaffolding approach 
described in Chapter 7 to jumpstart the development of your module.

•	 Reach out to the community on the various forums and IRC channels. It’s likely 
that you’re not the first one on the planet to run into the situation where a popular 
contributed module has not been ported to Drupal 8. It’s likely you’ll find others 
in the same situation who are willing to help or who have alternative solutions that 
have worked for them.

Summary
Migrating to Drupal 8 has become significantly easier than migrating between major Drupal releases in 
the past. The community has focused on making the upgrade path as painless as possible to ensure the 
adoption of Drupal 8 as the platform for the future. Not everything will be easy and, in those situations, the 
best approach is to reach out to the Drupal community for help. The adoption of Drupal 8 is critical to the 
long-term success of the Drupal community and there are thousands of developers around the world whose 
careers depend on the success of the platform. You will likely find a group of people who are ready and 
willing to lend a hand.

http://dx.doi.org/10.1007/978-1-4842-0253-1_7


293© Todd Tomlinson 2017 
T. Tomlinson, Enterprise Drupal 8 Development, DOI 10.1007/978-1-4842-0253-1

APPENDIX A

Contributing to the Drupal 
Community

There are several ways to contribute to the Drupal community; you don’t have to be a developer to have a 
significant role. The following are areas that you might consider helping the Drupal community.

User Support
Even the most gifted Drupal developers begin at ground zero, and if you are a Drupal developer today there 
is a good chance that someone helped you along the way. No matter what your skill level is you can give back 
by sharing what you know with other users. To help others, you might consider participating:

•	 In the support forums (drupal.org/forum/18). This is the place where people from 
around the world post their questions and search for answers

•	 On the Drupal Answers part of Stack Exchange (drupal.stackexchange.com). While 
not officially part of the Drupal community, it is a channel that people use to look for 
answers to common and not-so-common Drupal issues.

•	 In local Drupal user groups. Visit groups.drupal.org for a list of groups near you.

•	 On the support mailing list. Register at lists.drupal.org/listinfo/support to 
begin receiving e-mails with requests for support.

•	 In the active support requests in the bug tracker (drupal.org/project/issues? 
text=&projects=&status=Open&priorities=All&categories=4).

•	 Via real-time chat in IRC, specifically the #drupal-support channel on  
ir.freenode.net.

Documentation
Whether you’re interested in providing fine-grained API documentation, writing step-by-step tutorials 
for the handbook, or producing multimedia screencasts to show people how Drupal works, you can help 
improve Drupal’s documentation and provide a valuable resource to the community. You might consider 
participating on one of the following:

•	 The community documentation pages on drupal.org (drupal.org/documentation)

•	 The Programming API reference documentation on api.drupal.org



Appendix A ■ Contributing to the Drupal Community

294

•	 Community initiative pages on drupal.org (drupal.org/community-initiatives)

•	 The help pages within the core Drupal software

•	 Documentation that is embedded in and distributed with contributed modules and 
themes

•	 Externally hosted documentation through blog postings or other third-party sites

Translations
Drupal supports many languages from around the world. If you know another language you can contribute 
by helping to maintain Drupal core or contribute to module translations. You can contribute by:

•	 Contributing to the translations that are managed on localize.drupal.org.

•	 Adding a new language that is not currently supported by Drupal. Follow the 
procedures at the bottom of the localize.drupal.org page for details on how to 
contribute new languages.

Testing
If you have a keen eye for detail or even just a knack for breaking things, you can help Drupal with testing. 
Good testing directly contributes to the stability of the platform and is an excellent way for people of all 
backgrounds to make a valuable contribution to the project. You can get involved in testing by:

•	 Reviewing and testing patches (drupal.org/patch/review)

•	 Providing usability feedback (drupal.org/node/1237450)

•	 Writing unit tests (drupal.org/docs/8/testing)

Design and Usability
Are you helping someone who has never used Drupal before? Or are you new to Drupal yourself? Do you 
have specialized knowledge in web accessibility and other standards? Contribute feedback to Drupal’s 
usability group (groups.drupal.org/usability) or to the Drupal 8 User Experience team (drupal.org/
community-initiatives/drupal-core/usability).

Donations
Want to contribute but don’t have the time? Want to say “thank you” to the folks who put work into making 
Drupal what it is? Want to ensure that Drupal’s infrastructure stays healthy and strong? Why not consider a 
monetary donation? You may contribute financially by visiting association.drupal.org/donate.

Development
Drupal thrives on developer contributions in the form of both contributed modules and patches to core. 
Helping out in development helps the project move forward and stay competitive, and it is the best way to 
ensure that Drupal can do what you need it to do on your next project.



Appendix A ■ Contributing to the Drupal Community

295

Ways to Contribute Code: Drupal Core, Contributed Projects, and 
Patches
The Drupal code ecosystem encompasses the core of Drupal (the files that you get when you download 
Drupal from the Drupal project page (drupal.org/project), and “contrib” projects, which encompass all 
contributed code (modules, themes, installation profiles, etc.). You can read more about this distinction 
between the core and the contributed projects at this page (drupal.org/node/22286). You can also improve 
Drupal core and the contributed projects by submitting patches.

You can find more information about helping Drupal core by visiting (drupal.org/node/717162).

Improving Existing Projects and Core with Patches
If you want to make improvements (bug fixes, new features, and so on) to existing projects, such as Drupal 
core (drupal.org/project/drupal) or to one of our contributed modules (drupal.org/project/project_
modules) or themes (drupal.org/project/project_themes), this section is for you.

Contributions to existing projects come in the form of patches (drupal.org/patch), which allow you to 
share modifications you made to a project with the maintainer and other users in the project’s issue queue 
(drupal.org/node/317). To learn more, read:

•	 What is a patch? (drupal.org/node/367392)

•	 Creating patches (drupal.org/node/707484)

•	 The advanced patch contributors guide (drupal.org/node/1054616)

•	 Applying patches (drupal.org/patch/apply)

•	 Applying patches using Git (drupal.org/node/1054616#applying-patches)

Contributing New Projects
If you developed a new module or theme, you can also create your own project to contribute your code to 
drupal.org.

There are two types of projects that you can create:

•	 Full projects, the standard downloadable modules and themes like Views and 
Zen. To read more about contributing a new module or theme, visit drupal.org/
node/1015224.

•	 Sandbox projects, which are for experimental code, or code from new contributors 
who’ve not been through a vetting process yet. To read about sandbox projects, visit 
drupal.org/node/1011196.

In order to contribute new code, you must obtain Git access on drupal.org (drupal.org/
node/1047190) and, in order to promote sandbox projects to full projects, they must go through a one-time 
approval process (drupal.org/node/1011698).

All project pages on drupal.org have a Version Control tab, which contains information on how to 
create and maintain your project with Git.



Appendix A ■ Contributing to the Drupal Community

296

Collaboration Rather than Competition
The Drupal community holds a strong collaboration rather than competition ethos, which values joining 
forces on improving one awesome project rather than building several substandard ones that overwhelm 
end users with choices. While not outright forbidden, duplicate projects are generally discouraged without 
good reason (such as a fundamentally different architectural approach). Remember to search existing 
modules and themes first before embarking on your quest or taking over an abandoned project (drupal.
org/node/251466). You could save yourself some time and earn community Karma by helping others.



297© Todd Tomlinson 2017 
T. Tomlinson, Enterprise Drupal 8 Development, DOI 10.1007/978-1-4842-0253-1

APPENDIX B

Additional Resources

As you begin (and continue) your journey of learning Drupal, there will likely be times when you’ll need 
to find a Drupal module, a Drupal theme, additional details about specific Drupal technologies (such as 
theming), and operating system–level commands (for tasks such as backing up the site from the command 
line). This appendix points you to recommended web sites where you can find additional resources to help 
you along your journey.

Drupal Modules
The primary site for finding modules is the drupal.org web site (www.drupal.org/project/project_module).  
Every Drupal-contributed module has its own “homepage” that describes the module, provides links for 
downloading the various versions of the module, and, in most cases, links to additional documentation and 
examples.

Drupal Themes
The primary source of Drupal themes is the drupal.org web site (www.drupal.org/project/project_theme). 
You can browse through dozens of themes, see screenshots of each, and download the themes you like from 
drupal.org.

Drupal Documentation
The Drupal community has assembled a number of online guides (www.drupal.org/docs/8) that are  
chock-full of information about Drupal 8. You will find the following guides under the designated categories:

•	 Understanding Drupal—This guide gives you the big picture overview of Drupal 
concepts, helping you understand the foundation of Drupal.

•	 System requirements—This guide covers detailed system requirements for a Drupal 8 
installation.

•	 Extending Drupal 8—Learn how to extend your Drupal 8 site’s functionality with 
contributed modules or alter its appearance with contributed themes.

•	 Configuration Management—This guide explains how to import and export your 
site’s configuration and manage it with version control.



Appendix B ■ Additional Resources

298

•	 Migrating to Drupal—This guide explains the processes and tools for migrating to 
Drupal 8.

•	 Contributed Modules—This is the documentation for contributed modules in 
Drupal 8.

•	 Clean URLs in Drupal 8—Enabled by default, this document describes how clean 
URLs improve search engine indexing and how they provide a cleaner, user-friendly 
URL structure.

•	 Drupal 8 APIs—This guide describes Drupal 8’s APIs, which make it easier to 
alter and extend Drupal. It helps developers with common tasks associated with 
developing on Drupal.

•	 Mobile Guide—This guide shares the details of developing mobile-friendly Drupal 8 
sites.

•	 PHPUnit in Drupal 8—This guide explains in detail how to write and execute tests in 
Drupal’s implementation of PHPUnit.

•	 Theming in Drupal 8—This is the guide for creating themes for Drupal 8.

•	 Upgrade to Drupal 8—This explains the process for upgrading your Drupal 6 or 7 site 
to Drupal 8.

•	 Core Modules and Themes—This guide describes the modules and themes included 
in Drupal 8’s core.

•	 Testing—This guide provides an overview of the testing framework in Drupal 8.

•	 Understanding Drupal Version Numbers—This guide provides a detailed description 
of Drupal’s versioning numbering scheme for Drupal core, and for contributed 
modules and themes.

•	 Installing Drupal 8—This guide covers preparing, running, and installing Drupal 8 
and the steps that should be performed after the installation script has completed.

•	 Cron Automated Tasks—This guide describes how to configure Cron and the 
automated tasks it performs on your Drupal 8 site.

•	 Administering Drupal 8—This guide provides the details of how to monitor and 
administer a Drupal 8 site.

•	 Multisite Drupal—This guide provides an overview of using multisite to create and 
configure multiple Drupal 8 sites from a single codebase.

•	 Accessibility—This guide outlines the accessibility capabilities and features in 
Drupal 8.

•	 Creating Custom Modules—This guide details the steps required to create a custom 
module in Drupal 8.

•	 Managing Site Performance and Scalability—This guide describes the processes and 
tools for monitoring your Drupal 8 site’s performance.

•	 Multilingual Guide—This document details the steps for enabling multilingual 
capabilities in a Drupal 8 site, and for creating and managing multilingual content.

•	 Security in Drupal 8—This document details how to secure your Drupal 8 site.



Appendix B ■ Additional Resources

299

•	 Updating a Drupal 8 Site—This document outlines how to upgrade your Drupal 8 site 
from one version to the next (e.g., 8.0.1 to 8.0.2).

•	 Converting Drupal 7 Modules to Drupal 8—This guide walks you through the steps of 
migrating a Drupal 7 module to Drupal 8 and the tools that are available to assist you 
in that process.

•	 Creating Distributions—This guide outlines the steps for creating a Drupal 8 profile 
and distribution.

Where to Go When You Have Problems
One of the best sources for Drupal help is the Community Forum on the drupal.org web site (www.drupal.
org/forum). There are hundreds of thousands of postings on just about every conceivable topic. If you run 
into an issue, you’re likely to find that the solution to your problem is already documented in the forum. If 
you can’t find a solution, you can post a question to the forum and you’ll often receive a solution to your 
problem within hours of posting the issue. Another great resource is Drupal Answers at Stack Exchange 
(http://drupal.stackexchange.com). When I’m looking for an example, Stack Exchange is my second stop 
along the journey of finding a solution.

Where to Host Your Drupal Site
If you are looking for a place to host your web site, an excellent resource is the drupal.org site (www.drupal.
org/hosting). The Hosting page lists a number of companies that are known to support Drupal.

Where to Go to Learn HTML and CSS
A great resource to help you learn HTML and CSS is the W3Schools web site (www.w3schools.com). You’ll 
find easy-to-understand tutorials and excellent examples. Other alternatives exist, such as the Code School 
(www.codeschool.com), which has several free tutorials on HTML and CSS.

Video Tutorials
There are thousands of YouTube (www.youtube.com) videos that cover a wide variety of Drupal topics. It is 
a great source for learning various aspects of Drupal. Enter “Drupal” in YouTube’s search box and you’ll see 
a very long list of Drupal-related videos. There are also excellent paid training sites, such as Drupalize.Me 
(https://drupalize.me) and BuildAModule (http://buildamodule.com).

Drupal Podcasts
Another great source for learning Drupal is podcasts. There are a number podcasts that cover Drupal on 
iTunes.



301© Todd Tomlinson 2017 
T. Tomlinson, Enterprise Drupal 8 Development, DOI 10.1007/978-1-4842-0253-1

APPENDIX C

Creating a Drupal 8 Profile

When developing Drupal 8 sites in your organization you may find that there are several common 
characteristics of sites that you’re having to configure over and over again every time you spin up a new 
Drupal 8 site. You can eliminate the need to repeat those processes by creating a Drupal 8 installation profile, 
and in some cases you may find yourself creating several installation profiles for specific use cases—such as 
a simple marketing site, an online community site, a promotional site, and a commerce site. The number of 
profiles is limited only by the number of site types that your organization will create and maintain.

Installation profiles in Drupal 8 have all the functionality of modules, including access to hooks and 
plugins and, critically, the ability to provide configuration for your site in the form of .yml files.

Picking a Machine Name
First, you need a machine name for your profile. This is a name consisting only of lowercase letters and 
underscores. From here on, all references to profilename imply the profile machine name.

For example, if your profile is for Acme starter kit, valid profile machine names would include:

•	 acme_starter_kit

•	 acme_starter

•	 acme_starter_profile

•	 acme_kit

The following names would be invalid:

•	 acme-starter-kit

•	 acme-kit

This is because profiles are just like modules, and they hence can implement hooks. But acme-kit_
form_alter would not constitute a valid PHP function name.



Appendix C ■ Creating a Drupal 8 Profile

302

Creating the File Structure
Your installation profile will reside in its own profilename directory in the /profiles directory of a Drupal 8 
site.

All installation profiles must have a profilename.info.yml file, which I describe in the next section. 
They may also have the following:

•	 profilename.profile

•	 profilename.install file

•	 config folder

•	 translations folder

Each of which I describe in the following sections. When packaged, your installation profile will also 
have modules, src, and themes directories as needed.

The .info.yml File
The profilename.info.yml file should look similar to this:

name: Profile Name
type: profile
description: 'Description of your profile.'
core: 8.x

# Optional: Declare your installation profile as a distribution.
# This will make the installer auto-select this installation profile.
# The distribution_name property is used in the installer and other
# places as a label for the software being installed.

distribution:
  name: Distribution Name

# Required modules dependencies:
  - node
  - history
  - block
  - block_content
  - breakpoint
  - color
  - config
  - comment
  - contextual
  - contact
  - quickedit
  - help
  - image
  - options
  - path
  - taxonomy   
  - dblog



Appendix C ■ Creating a Drupal 8 Profile

303

  - search
  - shortcut
  - toolbar
  - field_ui
  - file
  - rdf
  - views
  - views_ui
  - editor
  - ckeditor

The .install File
The .install file should look similar to this:

<?php
/**
 * @file
 * Install, update and uninstall functions for the profilename install profile.
 */

/**
 * Implements hook_install().
 *
 * Perform actions to set up the site for this profile.
 *
 * @see system_install()
 */

function profilename_install() {
  // First, do everything in standard profile.
  include_once DRUPAL_ROOT . '/core/profiles/standard/standard.install';
  standard_install();

  // Can add code in here to make nodes, terms, etc.
} 

The .profile File
The profilename.profile file has access to almost everything a normal Drupal modulename.module file 
does because Drupal is fully bootstrapped before almost anything in the profile runs.

<?php
/**
 * @file
 * Enables modules and site configuration for a standard site installation.
 */

// Add any custom code here like hook implementations.



Appendix C ■ Creating a Drupal 8 Profile

304

Configuration Files
Drupal 8 installation profiles can contain configuration files. You can start by taking the configuration 
directory (the config folder) of an installed, configured site and copying it into the config/install folder in 
your profile.

Once that’s in place, there are some other required tasks:

•	 Copy all of the modules and themes listed in core.extension.yml into your profile’s 
.info file (using the new info file’s format).

•	 Delete core.extension.yml.

•	 Remove all of the UUIDs from your config files so that they don’t conflict with those 
of new sites. This can be done quite easily on the command line like so, all on one 
line:

find /path/to/PROFILE_NAME/config/install/ -type f -exec sed -i  
'' -e '/^uuid: /d' {} \;

If you just want to grab an existing site’s configuration and you don’t need to end up with a formal 
installation profile (for sharing on drupal.org, for example), you can use the Configuration installer 
(drupal.org/project/config_installer) installation profile to install a new site from the configuration of 
another site.

Default Content
You can also include default content by making default content (drupal.org/project/default_content)  
a dependency of your installation profile and using it to import JSON-formatted content.

The configuration that needs content to work is possible by putting content (and configuration  
as needed) in modules you make (which your profile can depend on), which themselves depend on 
default_content.



305© Todd Tomlinson 2017 
T. Tomlinson, Enterprise Drupal 8 Development, DOI 10.1007/978-1-4842-0253-1

�       � A
Administrative interface

admin themes, 233
content type (see Content types)
drop-down menus, 236
Seven theme, 234–235
Workbench (see Workbench module)

Apache Solr, 149, 208
API documentation, 293
Automated testing

functional tests, 276
JavaScript, 277
PHPUnit, 275–276

�       � B
Blocks creation, 57–62
Breakpoint module, 131–132
Business system analyst (BSA), 19

�       � C
C10K problem, 31
Caching

blocks, 264
Internal Dynamic, 262
Internal Page, 262
Varnish, 264
views, 263–264

Cascading stylesheets (CSS), 299
libraries.yml file, 128–129
stylesheets, 127

Content delivery network (CDN), 265–266
Content management system (CMS)

contributed module, 3
creating content

Add content link, 5
basic page, 6
content-authoring screens, 4
content type, 5
front page, 6–7

definition, 1
Drupal, 2

core, 2
themes, 4

features, 1
Content staging

configuration
multiversion, 140–142
RELAXed web services modules, 145–148
workspaces module, 142–145

deploy module, 138
multiversion module, 139
RELAXed Web Services module, 139
replication module, 139
trash module, 140
use cases, 137–138
workspace module, 139

Content translation
article page, 171
languages status, 170
option, 170

Content types, 10
administration form, 178
analysis spreadsheet, 174
Article Type taxonomy, 174
baseFieldDefinitions function, 183
buildHeader and buildRow functions, 185, 186
Create Article page, 176
custom entity, 179
Customer addition, 188
customer entity module, 186
Customer list page, 187
Drupal Console, 180–183
field collections, 241–243
field group

configuration, 175
options, 175
rearrangement, 176

fields, 236–237
form creation, 239–240
group options, 237–238

Index



■ INDEX

306

hierarchical selection, 240–241
Node Edit form, 177–178
Simplify module, 239
Structure page, 187
Where Used taxonomy, 174

Continuous deployment (CD). See Continuous 
integration (CI)

Continuous integration (CI)
process, 274
tools, 275

Contributed modules, 13
Custom content types, 11, 13
Custom forms

elements addition, 67–70
file creation, 62, 64
form submission, 66
menu item, 66
routing file, 64
subdirectory creation, 62
submitForm function, 71
validation, 65

Custom RESTful APIs, 229–232

�       � D
Database servers

MariaDB and Percona, 32
MySQL clustering, 32

Davinci theme, 135–136
Davinci Theme Directory, 91
Design and usability, 294
Design elements, 13
DevOps

automated test (see Automated testing)
benefits, 272
CI (see Continuous integration (CI))
executing tests, 277
microservices architecture, 273
vs. traditional development, 271

Distribution architectural approach, 34
Documentation, 297–298
Donations, 294
Drop-down menu items, 11
Drupal

Console, 179–183
core, 2, 295
methodology, building sites, 9–10, 12–14
themes, 4

Drupal 8, creation
configuration, 304
default content, 304
file structure, 302
info.yml file, 302
installation, 303
machine name, 301

Drupalmodulegrader (DMU), 288
Drupal team building

business system analyst
metrics and measurements, 19
qualifications, 19
roles and responsibilities, 19

developer, roles and  
responsibilities, 21–22

development lead
metrics and measurements, 21
minimum qualifications, 20–21
roles and responsibilities, 20

project manager
metrics and measurements, 17
planning and forecasting, 15
project execution, 16
qualifications, 16
reporting, 16

quality assurance specialist, 26
senior architect

metrics and measurements, 18
qualifications, 18
roles and responsibilities, 17–18

site administrator, 27–28
site builder, 22, 25
themer, 25
user experience (UX) designer, 23
visual designer, 24

�       � E, F, G
Elevator pitch, 10
Enterprise Drupal architecture

component defining, 30
contributed modules, 35
custom modules, 36
database servers, 32
distribution, 34
entities

content, 37
taxonomy, 38
users, 38

installation profiles, 34
multisite, 33
network and web server, 31
pages, 41
requirements, 29–30
rules, 41–42
single-site, 33
taxonomy, 38–40
themes, 42
user interface, 43–44
user roles and  

permissions, 42
views, 40
web services, 43

Content types (cont.)



■ INDEX

307

Entities
content, 37
customer content type, 76–77, 79–80
customer node edit form, 81
deletion, 87
field area elements, 78
files creation, 84
finding existing entities, 72, 74

form creation, 71–73
Node ID, 75
node not found modal, 76
routing file, 74
search form, 75

menu links, 86
nodes creation, 82–84
nodes with images, 84–85
taxonomy, 38
taxonomy terms, 85–86
update, 86–87
users, 38

�       � H
Hosting platforms, 12
Hosting provider, 12
HTML, 299

�       � I
Integration options, 232
Interface translation, 168

�       � J, K
JavaScript, 129–131

�       � L
Leveraging taxonomy

Add View page, 192
articles creation, 191–192
Banner image field, 191
Block Layout page, 192
block visibility, 189
fields

creation, 189
details, 190
types, 190

multipurpose pages, 194–195
product content type

default page, 198
field order, 197
and fields, 197

product line terms, 196
product page

Add Block form, 204
creation, 201
layout options, 202–203
product line, 206
updated, 206–207
URL argument, 201
views list, 204

product views, 198–200
Location of content, enterprise setting, 207–208
Lucene, 149–150

�       � M
MariaDB, 32
Memcache/Redis, 267
Migrate modules

contributed module, 290–291
database credentials and files directory, 284
Drupal 7, 281–282
Drupal 7 to Drupal 8, 288–290
missing upgrade paths, 285–286
themes, 287–288
upgrade instructions, 283
upgrade log, 287
upgrade process, 287

Minimal viable product (MVP), 14
Model-View-Controller (MVC), 50
Modules, 297
Modules creation

adding function, 55
controller, 51–52, 55
directory, 48
extend page, 52
info file, 48–49
menu item, 52–54
module file, 49
predefined modules, 46
routing file, 50, 56–57
Symfony, 47
text display, 47

Multilingual capabilities
base languages, 165
configuration options, 165
content translation, 167
entities, 168
interface translation, 168
language activation configuration, 166
list of, 164
modules list, 164
switcher block of language, 167
translating content, 170

Multisite architectural approach, 33
MySQL, 267–268

clustering, 32
full text search, 148



■ INDEX

308

�       � N
Navigational structure, 11
Network and web server architecture, 31
Nginx, 266–267

�       � O
Off-the-shelf vs. custom development, 209–210
OpenSolr, 150–151

�       � P, Q
Page content type, 11
Page templates, 41
PHPUnit, 277–279
Podcasts, 299

�       � R
Really Simple Syndication (RSS), 10
RESTful web services

advantages, 214
content retrieval, 215–216
deletion, 221
in Drupal 8 core, 214–215
nodes creation, 216–220
output formats, 227–228
update, 220–221
updates, 221
view

articles list, 223–225
contextual filter, 226
limited search, 227

RSS feed-based view, 228–229

�       � S
Scaling Drupal

caching mechanisms (see Caching)
CDN, 265–266
hardware, 269
Memcache/Redis, 267
MySQL, 267–268
Nginx, 266–267
potential performance, 261

Scaling hardware, 269
Search

adding fields, 158–159
Add Search Index form, 154
Apache Solr, 149
indexed items, OpenSolr, 155–156
Index Status page, 155
Lucene, 149–150
OpenSolr, 150–152
Search API, 150, 152

Search API Solr, 150
Solr index, 157

Simpletest, 277–279
Single-site architectural approach, 33
Solr

adding fields, 158, 160
content rendering, 161
Content Type block, 162
Facets page, 161–163
federated search, 163
indexed field, 160
indexed information, 209
Search API module, 208
Search Solr API module, 208
Solr index, 157

�       � T
Taxonomy, 38–40
Taxonomy structure, 11
Testing, 294
Themes, 297

CSS
libraries, .info.yml file, 128–129
libraries.yml file, 128
libraries.yml file, creation, 128
stylesheets creation, 127, 128

files creation
Davinci theme directory, 91–92
looping, 101
regions, 93–95
Twig (see Twig)

JavaScript, 129–131
role, 89
settings, 133–134
structure, 90
subthemes, 134–136

Translating content. See Content translation
Twig

attribute array, 116
conditional, 98–100
displaying and hiding content fields, 115
Drupal 8 templates, 107–108
filters, 101–103
looping, 101
math functions, 104
syntax, 96
template files, 104–107
template modifications

field.html.twig, 118–120
node.html.twig, 114–117
page.html.twig, 108–111, 113–114

templating engine, 89
tests, 103
variables, 96–97



■ INDEX

309

forums.html.twig, 126
forum_theme function, 122–126
hook_theme, 121

�       � U
User interface, 43–44
User roles and permissions, 42
User support, 293

�       � V
Varnish cache, 264
Views, 40
Visitor types, 10–11
Visual design, 12

�       � W, X, Y, Z
Web services, 43
Workbench moderation process

configuration, 254–257
user roles and permissions, 257–259

Workbench module
Access module, 246
access restrictions, 252–253
content, 244
Moderation process (see Workbench 

moderation process)
My Edits, 245
My Workbench, 245
permissions, 249–252
setti ng up, 246–249


	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Introduction to Drupal
	Content Management Systems
	Drupal
	Drupal Core
	Contributed Modules
	Drupal Themes

	Creating Content
	Taking Drupal 8 to the Enterprise
	Summary

	Chapter 2: Building a Practical Software Development Process and Team
	A Methodology for Building Your Site on Drupal
	Building a Drupal Team in Your Organization
	Project Manager
	Roles and Responsibilities
	Planning and Forecasting
	Project Execution
	Reporting
	Minimum Qualifications
	Metrics and Measurements


	Senior Architect
	Roles and Responsibilities
	Minimum Qualifications
	Metrics and Measurements

	Business Systems Analyst
	Roles and Responsibilities
	Minimum Qualifications
	Metrics and Measurements

	Development Lead
	Roles and Responsibilities
	Minimum Qualifications
	Metrics and Measurements

	Developer
	Roles and Responsibilities
	Minimum Qualifications
	Metrics and Measurements

	Site Builder
	Roles and Responsibilities
	Minimum Qualifications
	Metrics and Measurements

	User Experience (UX) Designer
	Roles and Responsibilities
	Minimum Qualifications
	Metrics and Measurements

	Visual Designer
	Roles and Responsibilities
	Minimum Qualifications
	Metrics and Measurements

	Themer
	Roles and Responsibilities
	Minimum Qualifications
	Metrics and Measurements

	Site Builder
	Roles and Responsibilities
	Minimum Qualifications
	Metrics and Measurements

	Quality Assurance Specialist
	Roles and Responsibilities
	Minimum Qualifications
	Metrics and Measurements

	Site Administrator
	Roles and Responsibilities
	Minimum Qualifications
	Metrics and Measurements


	Summary

	Chapter 3: Engineering Drupal
	Engineering the Foundation
	Defining the Components of Enterprise Drupal
	Network and Web Server
	Database Servers
	Selecting the Database Platform
	Clustering MySQL to Improve Performance

	Drupal 8 Core
	Single Site
	Multisite
	Distribution
	Profiles

	Drupal 8 Contributed Modules
	Custom Modules
	The Pillars of a Drupal 8 Solution
	Entities
	Content Entities
	Taxonomy Entities
	User Entities


	Taxonomy
	Views
	Pages
	Rules
	User Roles and Permissions
	Drupal 8 Theme
	Web Services
	User Interface


	Summary

	Chapter 4: Creating Modules for Drupal 8
	The Purpose of Drupal Modules
	The Foundation of Drupal 8 Is a Suite of Modules

	Key Skills
	Developing Your First Drupal 8 Module
	Step 1: Create the Module’s Directory
	Step 2: Create the Module’s Info File
	Step 3: Create the Module File
	Step 4: Create the Module’s Routing File
	Step 5: Create the Module’s Controller
	Step 6: Add a Menu Item
	Step 7: Add a New Menu Item
	Step 8: Add a New Function to the Module
	Updating the Controller
	Updating the Routing File


	Creating Blocks
	Building Custom Forms
	Interacting with Entities
	Finding Existing Entities
	Creating Entities
	Creating, Updating, and Deleting Entities Programmatically
	Creating Entities
	Creating Nodes
	Creating Files
	Creating Nodes with Images
	Creating Taxonomy Terms
	Creating Menu Links
	Updating Entities
	Deleting Entities


	Summary

	Chapter 5: Drupal 8 Theming
	The Role of a Drupal Theme
	The Twig Templating Engine
	The Structure of a Drupal Theme
	Creating the Theme Files
	Adding Regions to the Theme
	Twig Syntax
	Twig Variables
	Discovering Variables

	Conditionals, Looping, Filters, and Math Functions in Twig
	Twig Conditionals
	Looping in Twig
	Twig Filters
	Twig Tests
	Twig Math Functions

	Twig Template Files

	Standard Twig Templates
	Modifying the page.html.twig Template File
	Modifying the node.html.twig Template
	Displaying and Hiding Content Fields
	Using Attributes

	Modifying the block.html.twig Template
	Modifying the field.html.twig Template

	Exposing Variables to Twig
	Applying CSS to Your Theme
	Creating the Stylesheets
	Creating the libraries.yml File
	Loading the Libraries Through the .info.yml File

	Adding JavaScript to Your Theme
	Adding JavaScript and CSS Libraries to Template Files
	Working with Breakpoints
	Creating Advanced Theme Settings
	Using Subthemes
	Summary

	Chapter 6: Leveraging Your Content
	Content Staging
	Content Staging and Site Preview Use Cases
	The Drupal 8 Solution for Content Staging and Synchronization
	The Deploy Module
	The Multiversion Module
	The Replication Module
	The Workspace Module
	RELAXed Web Services Module
	Trash Module

	Installation, Configuration, and Use of the Content Staging Framework
	Configuring Multiversion
	Configuring Workspaces
	Configuring RELAXed Web Services Modules


	Search
	What Is Apache Solr?
	To Install or Not To Install
	Required Modules
	Setting Up OpenSolr
	Adding the Schema.xml File OpenSolr
	Verifying That Your Content Has Been Indexed

	Integrating Views and Solr
	Adding Fields to Your Search Index
	Creating a Solr-Based View

	Advanced Features of Solr
	Enabling Facets
	Federated Solr Search


	Multilingual Support
	Getting Started with Multilingual Support
	Configuring Multilingual Capabilities
	Specifying the Languages
	Configuring Language Activation
	Content Translation Example

	Configuring Entities
	Translating Content

	Summary

	Chapter 7: Optimizing Your Site Architecture
	Content Types
	Simplifying the Editorial Interface
	Removing Options from the Node Edit Form
	Content Types versus Entity Types

	Leveraging Taxonomy
	Taxonomy as an Entity
	Building Multipurpose Pages Using Taxonomy
	Laying the Foundation for Multipurpose Pages
	Creating the Product Line Vocabulary and Terms
	Creating the Product Content Type and Product Content
	Creating the Product Views
	Creating the Product Page



	The Location of Content in an Enterprise Setting
	Using Apache SOLR
	What Does a Solr-Based Solution Require?
	Consuming Indexed Information Through Views

	Off-the-Shelf versus Custom Development
	Summary

	Chapter 8: Integrating Drupal 8
	Using RESTful Web Services in Drupal 8
	RESTful Modules in Drupal 8 Core
	Retrieving Content Through REST
	Creating a Node Through REST
	Updating and Deleting a Node Through REST

	Using REST for Other Entity Types
	Generating Lists of Content Using Views and REST
	Generating Output in Other Formats

	Using Views to Expose Content to External Sources
	Creating Custom RESTful APIs
	Creating the Custom Module

	Other Integration Options
	Summary

	Chapter 9: Building a Smart Administration User Interface
	Use an Administration Focused Theme
	Enabling Different Admin Themes
	The Seven Theme
	The Adminimal Theme

	Update the Administration Menu
	Simplify Content Types
	Organizing the Fields
	Using Hierarchical Select
	Using Field Collections

	Use the Workbench Module
	The Workbench Module
	The Workbench Access Module
	Setting Up Workbench Access
	Setting Up Roles and Permissions
	Demonstrating Access Restrictions

	Use Workbench Moderation
	Configuring Workbench Moderation
	Defining Workbench Moderation User Roles and Permissions

	Summary

	Chapter 10: Scaling Drupal
	Understanding Potential Performance Bottlenecks
	Drupal Cache
	Enabling Drupal Cache
	Caching Views
	Caching Blocks
	External Caching Mechanisms: Varnish Cache

	Using a Content Delivery Network (CDN)
	How CDNs Work

	Considering Nginx Over Apache
	Using Memcache or Redis
	Optimizing MySQL
	Scaling Hardware
	Hosting Your Drupal 8 Site
	Summary

	Chapter 11: Drupal 8 DevOps
	Traditional Versus DevOps
	The Benefits of Embracing DevOps
	Adopting DevOps
	DevOps Best Practices
	Drupal 8 Continuous Integration and Deployment
	The CI/CD Process Flow
	CI/CD Tools

	Automated Testing
	Writing PHPUnit Tests for Classes
	Writing Functional Tests
	Write Functional JavaScript Tests (PHPUnit)

	Executing Tests
	Other Testing Tools
	Summary

	Chapter 12: Migrating to Drupal 8
	The Migrate Modules in Drupal 8 Core
	Migrating Themes
	Migrating Modules from Drupal 7 to Drupal 8
	Contributed Modules
	Summary

	Appendix A: Contributing to the Drupal Community
	User Support
	Documentation
	Translations
	Testing
	Design and Usability
	Donations
	Development
	Ways to Contribute Code: Drupal Core, Contributed Projects, and Patches
	Improving Existing Projects and Core with Patches
	Contributing New Projects
	Collaboration Rather than Competition


	Appendix B: Additional Resources
	Drupal Modules
	Drupal Themes
	Drupal Documentation
	Where to Go When You Have Problems
	Where to Host Your Drupal Site
	Where to Go to Learn HTML and CSS
	Video Tutorials
	Drupal Podcasts

	Appendix C:
Creating a Drupal 8 Profile
	Picking a Machine Name
	Creating the File Structure
	The .info.yml File
	The .install File
	The .profile File
	Configuration Files
	Default Content

	Index



