
www.ebook3000.com

http://www.ebook3000.org

E S S E N T I A L S O F

COMPUTER ARCHITECTURE
S e c o n d E d i t i o n

www.ebook3000.com

http://www.ebook3000.org

E S S E N T I A L S O F

COMPUTER ARCHITECTURE

DOUGLAS COMER

S e c o n d E d i t i o n

SPARC is a registered trademark of SPARC International, Inc. in the United States and other countries.

ARM is a registered trademark of ARM Limited in the United States and other countries.

MIPS is a registered trademark of MIPS Technologies, Inc. in the United States and other countries.

Itanium and Xeon are trademarks of, and Intel and Pentium are registered trademarks of Intel Corporation.

All other trademarks referred to herein are the property of their respective owners.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2017 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20161102

International Standard Book Number-13: 978-1-138-62659-1 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Names: Comer, Douglas, author.
Title: Essentials of computer architecture / Douglas Comer.
Description: Second edition. | Boca Raton : Taylor & Francis, a CRC title,
part of the Taylor & Francis imprint, a member of the Taylor & Francis
Group, the academic division of T&F Informa, plc, [2017] | Includes index.
Identifiers: LCCN 2016041657 | ISBN 9781138626591 (hardback : alk. paper)
Subjects: LCSH: Computer architecture.
Classification: LCC QA76.9.A73 C625 2017 | DDC 004.2/2--dc23
LC record available at https://lccn.loc.gov/2016041657

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

www.ebook3000.com

http://www.ebook3000.org

To Chris, who makes all the
bits of life meaningful

www.ebook3000.com

http://www.ebook3000.org

Contents

xxiPreface

3Chapter 1 Introduction And Overview

1.1 The Importance Of Architecture 3
1.2 Learning The Essentials 3
1.3 Organization Of The Text 4
1.4 What We Will Omit 4
1.5 Terminology: Architecture And Design 5
1.6 Summary 5

PART I Basics 7

11Chapter 2 Fundamentals Of Digital Logic

2.1 Introduction 11
2.2 Digital Computing Mechanisms 11
2.3 Electrical Terminology: Voltage And Current 12
2.4 The Transistor 13
2.5 Logic Gates 14
2.6 Implementation Of A Nand Logic Gate Using Transistors 16
2.7 Symbols Used For Logic Gates 17
2.8 Example Interconnection Of Gates 17
2.9 A Digital Circuit For Binary Addition 20
2.10 Multiple Gates Per Integrated Circuit 22
2.11 The Need For More Than Combinatorial Circuits 22
2.12 Circuits That Maintain State 23
2.13 Propagation Delay 24
2.14 Using Latches To Create A Memory 24
2.15 Flip-Flops And Transition Diagrams 25
2.16 Binary Counters 27
2.17 Clocks And Sequences 28
2.18 The Important Concept Of Feedback 31
2.19 Starting A Sequence 32

viii Contents

2.20 Iteration In Software Vs. Replication In Hardware 33
2.21 Gate And Chip Minimization 34
2.22 Using Spare Gates 34
2.23 Power Distribution And Heat Dissipation 35
2.24 Timing And Clock Zones 35
2.25 Clockless Logic 37
2.26 Circuit Size And Moore’s Law 38
2.27 Circuit Boards And Layers 39
2.28 Levels Of Abstraction 39
2.29 Summary 40

45Chapter 3 Data And Program Representation

3.1 Introduction 45
3.2 Digital Logic And The Importance Of Abstraction 45
3.3 Definitions Of Bit And Byte 46
3.4 Byte Size And Possible Values 46
3.5 Binary Weighted Positional Representation 47
3.6 Bit Ordering 48
3.7 Hexadecimal Notation 49
3.8 Notation For Hexadecimal And Binary Constants 51
3.9 Character Sets 51
3.10 Unicode 52
3.11 Unsigned Integers, Overflow, And Underflow 53
3.12 Numbering Bits And Bytes 53
3.13 Signed Binary Integers 55
3.14 An Example Of Two’s Complement Numbers 56
3.15 Sign Extension 57
3.16 Floating Point 58
3.17 Range Of IEEE Floating Point Values 59
3.18 Special Values 60
3.19 Binary Coded Decimal Representation 61
3.20 Signed, Fractional, And Packed BCD Representations 62
3.21 Data Aggregates 62
3.22 Program Representation 63
3.23 Summary 63

www.ebook3000.com

http://www.ebook3000.org

Contents ix

PART II Processors 65

69Chapter 4 The Variety Of Processors And Computational Engines

4.1 Introduction 69
4.2 The Two Basic Architectural Approaches 69
4.3 The Harvard And Von Neumann Architectures 70
4.4 Definition Of A Processor 71
4.5 The Range Of Processors 72
4.6 Hierarchical Structure And Computational Engines 73
4.7 Structure Of A Conventional Processor 74
4.8 Processor Categories And Roles 75
4.9 Processor Technologies 77
4.10 Stored Programs 77
4.11 The Fetch-Execute Cycle 78
4.12 Program Translation 79
4.13 Clock Rate And Instruction Rate 79
4.14 Control: Getting Started And Stopping 80
4.15 Starting The Fetch-Execute Cycle 81
4.16 Summary 82

85Chapter 5 Processor Types And Instruction Sets

5.1 Introduction 85
5.2 Mathematical Power, Convenience, And Cost 85
5.3 Instruction Set Architecture 86
5.4 Opcodes, Operands, And Results 87
5.5 Typical Instruction Format 87
5.6 Variable-Length Vs. Fixed-Length Instructions 87
5.7 General-Purpose Registers 88
5.8 Floating Point Registers And Register Identification 89
5.9 Programming With Registers 89
5.10 Register Banks 90
5.11 Complex And Reduced Instruction Sets 91
5.12 RISC Design And The Execution Pipeline 92
5.13 Pipelines And Instruction Stalls 93
5.14 Other Causes Of Pipeline Stalls 95
5.15 Consequences For Programmers 95
5.16 Programming, Stalls, And No-Op Instructions 96
5.17 Forwarding 97
5.18 Types Of Operations 97
5.19 Program Counter, Fetch-Execute, And Branching 98
5.20 Subroutine Calls, Arguments, And Register Windows 99

x Contents

5.21 An Example Instruction Set 101
5.22 Minimalistic Instruction Set 103
5.23 The Principle Of Orthogonality 104
5.24 Condition Codes And Conditional Branching 104
5.25 Summary 105

109Chapter 6 Data Paths And Instruction Execution

6.1 Introduction 109
6.2 Data Paths 109
6.3 The Example Instruction Set 110
6.4 Instructions In Memory 112
6.5 Moving To The Next Instruction 114
6.6 Fetching An Instruction 116
6.7 Decoding An Instruction 116
6.8 Connections To A Register Unit 118
6.9 Control And Coordination 118
6.10 Arithmetic Operations And Multiplexing 119
6.11 Operations Involving Data In Memory 120
6.12 Example Execution Sequences 121
6.13 Summary 122

127Chapter 7 Operand Addressing And Instruction Representation

7.1 Introduction 127
7.2 Zero, One, Two, Or Three Address Designs 127
7.3 Zero Operands Per Instruction 128
7.4 One Operand Per Instruction 129
7.5 Two Operands Per Instruction 129
7.6 Three Operands Per Instruction 130
7.7 Operand Sources And Immediate Values 130
7.8 The Von Neumann Bottleneck 131
7.9 Explicit And Implicit Operand Encoding 132
7.10 Operands That Combine Multiple Values 133
7.11 Tradeoffs In The Choice Of Operands 134
7.12 Values In Memory And Indirect Reference 135
7.13 Illustration Of Operand Addressing Modes 136
7.14 Summary 137

www.ebook3000.com

http://www.ebook3000.org

Contents xi

141Chapter 8 CPUs: Microcode, Protection, And Processor Modes

8.1 Introduction 141
8.2 A Central Processor 141
8.3 CPU Complexity 142
8.4 Modes Of Execution 143
8.5 Backward Compatibility 143
8.6 Changing Modes 144
8.7 Privilege And Protection 145
8.8 Multiple Levels Of Protection 145
8.9 Microcoded Instructions 146
8.10 Microcode Variations 148
8.11 The Advantage Of Microcode 148
8.12 FPGAs And Changes To The Instruction Set 149
8.13 Vertical Microcode 149
8.14 Horizontal Microcode 150
8.15 Example Horizontal Microcode 151
8.16 A Horizontal Microcode Example 153
8.17 Operations That Require Multiple Cycles 154
8.18 Horizontal Microcode And Parallel Execution 155
8.19 Look-Ahead And High Performance Execution 156
8.20 Parallelism And Execution Order 157
8.21 Out-Of-Order Instruction Execution 157
8.22 Conditional Branches And Branch Prediction 158
8.23 Consequences For Programmers 159
8.24 Summary 159

163Chapter 9 Assembly Languages And Programming Paradigm

9.1 Introduction 163
9.2 Characteristics Of A High-level Programming Language 163
9.3 Characteristics Of A Low-level Programming Language 164
9.4 Assembly Language 165
9.5 Assembly Language Syntax And Opcodes 166
9.6 Operand Order 168
9.7 Register Names 169
9.8 Operand Types 170
9.9 Assembly Language Programming Paradigm And Idioms 170
9.10 Coding An IF Statement In Assembly 171
9.11 Coding An IF-THEN-ELSE In Assembly 172
9.12 Coding A FOR-LOOP In Assembly 172
9.13 Coding A WHILE Statement In Assembly 172
9.14 Coding A Subroutine Call In Assembly 173
9.15 Coding A Subroutine Call With Arguments In Assembly 174

xii Contents

9.16 Consequence For Programmers 174
9.17 Assembly Code For Function Invocation 175
9.18 Interaction Between Assembly And High-level Languages 176
9.19 Assembly Code For Variables And Storage 176
9.20 Example Assembly Language Code 177
9.21 Two-Pass Assembler 183
9.22 Assembly Language Macros 185
9.23 Summary 188

PART III Memories 191

195Chapter 10 Memory And Storage

10.1 Introduction 195
10.2 Definition 195
10.3 The Key Aspects Of Memory 196
10.4 Characteristics Of Memory Technologies 196
10.5 The Important Concept Of A Memory Hierarchy 198
10.6 Instruction And Data Store 198
10.7 The Fetch-Store Paradigm 199
10.8 Summary 199

203Chapter 11 Physical Memory And Physical Addressing

11.1 Introduction 203
11.2 Characteristics Of Computer Memory 203
11.3 Static And Dynamic RAM Technologies 204
11.4 The Two Primary Measures Of Memory Technology 205
11.5 Density 206
11.6 Separation Of Read And Write Performance 206
11.7 Latency And Memory Controllers 206
11.8 Synchronous And Multiple Data Rate Technologies 207
11.9 Memory Organization 209
11.10 Memory Access And Memory Bus 209
11.11 Words, Physical Addresses, And Memory Transfers 209
11.12 Physical Memory Operations 210
11.13 Memory Word Size And Data Types 211
11.14 Byte Addressing And Mapping Bytes To Words 211
11.15 Using Powers Of Two 213
11.16 Byte Alignment And Programming 213
11.17 Memory Size And Address Space 214
11.18 Programming With Word Addressing 215

www.ebook3000.com

http://www.ebook3000.org

Contents xiii

11.19 Memory Size And Powers Of Two 215
11.20 Pointers And Data Structures 216
11.21 A Memory Dump 217
11.22 Indirection And Indirect Operands 218
11.23 Multiple Memories With Separate Controllers 218
11.24 Memory Banks 219
11.25 Interleaving 220
11.26 Content Addressable Memory 221
11.27 Ternary CAM 223
11.28 Summary 223

227Chapter 12 Caches And Caching

12.1 Introduction 227
12.2 Information Propagation In A Storage Hierarchy 227
12.3 Definition of Caching 228
12.4 Characteristics Of A Cache 228
12.5 Cache Terminology 229
12.6 Best And Worst Case Cache Performance 229
12.7 Cache Performance On A Typical Sequence 231
12.8 Cache Replacement Policy 231
12.9 LRU Replacement 232
12.10 Multilevel Cache Hierarchy 232
12.11 Preloading Caches 233
12.12 Caches Used With Memory 234
12.13 Physical Memory Cache 234
12.14 Write Through And Write Back 235
12.15 Cache Coherence 236
12.16 L1, L2, and L3 Caches 237
12.17 Sizes Of L1, L2, And L3 Caches 238
12.18 Instruction And Data Caches 238
12.19 Modified Harvard Architecture 239
12.20 Implementation Of Memory Caching 240
12.21 Direct Mapped Memory Cache 240
12.22 Using Powers Of Two For Efficiency 242
12.23 Hardware Implementation Of A Direct Mapped Cache 243
12.24 Set Associative Memory Cache 245
12.25 Consequences For Programmers 246
12.26 Summary 246

xiv Contents

251Chapter 13 Virtual Memory Technologies And Virtual Addressing

13.1 Introduction 251
13.2 Definition Of Virtual Memory 251
13.3 Memory Management Unit And Address Space 252
13.4 An Interface To Multiple Physical Memory Systems 252
13.5 Address Translation Or Address Mapping 253
13.6 Avoiding Arithmetic Calculation 255
13.7 Discontiguous Address Spaces 255
13.8 Motivations For Virtual Memory 257
13.9 Multiple Virtual Spaces And Multiprogramming 258
13.10 Creating Virtual Spaces Dynamically 259
13.11 Base-Bound Registers 259
13.12 Changing The Virtual Space 260
13.13 Virtual Memory And Protection 261
13.14 Segmentation 261
13.15 Demand Paging 262
13.16 Hardware And Software For Demand Paging 262
13.17 Page Replacement 263
13.18 Paging Terminology And Data Structures 264
13.19 Address Translation In A Paging System 264
13.20 Using Powers Of Two 266
13.21 Presence, Use, And Modified Bits 267
13.22 Page Table Storage 268
13.23 Paging Efficiency And A Translation Lookaside Buffer 268
13.24 Consequences For Programmers 269
13.25 The Relationship Between Virtual Memory And Caching 270
13.26 Virtual Memory Caching And Cache Flush 271
13.27 Summary 272

PART IV Input And Output 275

279Chapter 14 Input / Output Concepts And Terminology

14.1 Introduction 279
14.2 Input And Output Devices 279
14.3 Control Of An External Device 280
14.4 Data Transfer 281
14.5 Serial And Parallel Data Transfers 281
14.6 Self-Clocking Data 282
14.7 Full-Duplex And Half-Duplex Interaction 282
14.8 Interface Throughput And Latency 283
14.9 The Fundamental Idea Of Multiplexing 283

www.ebook3000.com

http://www.ebook3000.org

Contents xv

14.10 Multiple Devices Per External Interface 285
14.11 A Processor’s View Of I/O 285
14.12 Summary 285

289Chapter 15 Buses And Bus Architectures

15.1 Introduction 289
15.2 Definition Of A Bus 289
15.3 Processors, I/O Devices, And Buses 290
15.4 Physical Connections 291
15.5 Bus Interface 292
15.6 Control, Address, And Data Lines 293
15.7 The Fetch-Store Paradigm 294
15.8 Fetch-Store And Bus Size 294
15.9 Multiplexing 295
15.10 Bus Width And Size Of Data Items 296
15.11 Bus Address Space 297
15.12 Potential Errors 298
15.13 Address Configuration And Sockets 299
15.14 The Question Of Multiple Buses 300
15.15 Using Fetch-Store With Devices 300
15.16 Operation Of An Interface 301
15.17 Asymmetric Assignments And Bus Errors 302
15.18 Unified Memory And Device Addressing 302
15.19 Holes In A Bus Address Space 304
15.20 Address Map 304
15.21 Program Interface To A Bus 305
15.22 Bridging Between Two Buses 306
15.23 Main And Auxiliary Buses 306
15.24 Consequences For Programmers 308
15.25 Switching Fabrics As An Alternative To Buses 308
15.26 Summary 309

313Chapter 16 Programmed And Interrupt-Driven I/O

16.1 Introduction 313
16.2 I/O Paradigms 313
16.3 Programmed I/O 314
16.4 Synchronization 314
16.5 Polling 315
16.6 Code For Polling 315
16.7 Control And Status Registers 318
16.8 Using A Structure To Define CSRs 318

xvi Contents

16.9 Processor Use And Polling 320
16.10 Interrupt-Driven I/O 320
16.11 An Interrupt Mechanism And Fetch-Execute 321
16.12 Handling An Interrupt 322
16.13 Interrupt Vectors 323
16.14 Interrupt Initialization And Disabled Interrupts 324
16.15 Interrupting An Interrupt Handler 324
16.16 Configuration Of Interrupts 325
16.17 Dynamic Bus Connections And Pluggable Devices 326
16.18 Interrupts, Performance, And Smart Devices 326
16.19 Direct Memory Access (DMA) 328
16.20 Extending DMA With Buffer Chaining 328
16.21 Scatter Read And Gather Write Operations 329
16.22 Operation Chaining 330
16.23 Summary 330

335Chapter 17 A Programmer’s View Of Devices, I/O, And Buffering

17.1 Introduction 335
17.2 Definition Of A Device Driver 336
17.3 Device Independence, Encapsulation, And Hiding 336
17.4 Conceptual Parts Of A Device Driver 337
17.5 Two Categories Of Devices 338
17.6 Example Flow Through A Device Driver 338
17.7 Queued Output Operations 339
17.8 Forcing A Device To Interrupt 341
17.9 Queued Input Operations 342
17.10 Asynchronous Device Drivers And Mutual Exclusion 342
17.11 I/O As Viewed By An Application 343
17.12 The Library/Operating System Dichotomy 344
17.13 I/O Operations That The OS Supports 345
17.14 The Cost Of I/O Operations 346
17.15 Reducing System Call Overhead 347
17.16 The Key Concept Of Buffering 347
17.17 Implementation of Buffered Output 348
17.18 Flushing A Buffer 349
17.19 Buffering On Input 350
17.20 Effectiveness Of Buffering 350
17.21 Relationship To Caching 351
17.22 An Example: The C Standard I/O Library 352
17.23 Summary 352

www.ebook3000.com

http://www.ebook3000.org

Contents xvii

PART V Advanced Topics 355

359Chapter 18 Parallelism

18.1 Introduction 359
18.2 Parallel And Pipelined Architectures 359
18.3 Characterizations Of Parallelism 360
18.4 Microscopic Vs. Macroscopic 360
18.5 Examples Of Microscopic Parallelism 361
18.6 Examples Of Macroscopic Parallelism 361
18.7 Symmetric Vs. Asymmetric 362
18.8 Fine-grain Vs. Coarse-grain Parallelism 362
18.9 Explicit Vs. Implicit Parallelism 363
18.10 Types Of Parallel Architectures (Flynn Classification) 363
18.11 Single Instruction Single Data (SISD) 364
18.12 Single Instruction Multiple Data (SIMD) 364
18.13 Multiple Instructions Multiple Data (MIMD) 366
18.14 Communication, Coordination, And Contention 368
18.15 Performance Of Multiprocessors 369
18.16 Consequences For Programmers 371
18.17 Redundant Parallel Architectures 374
18.18 Distributed And Cluster Computers 375
18.19 A Modern Supercomputer 375
18.20 Summary 376

381Chapter 19 Data Pipelining

19.1 Introduction 381
19.2 The Concept Of Pipelining 381
19.3 Software Pipelining 383
19.4 Software Pipeline Performance And Overhead 384
19.5 Hardware Pipelining 385
19.6 How Hardware Pipelining Increases Performance 385
19.7 When Pipelining Can Be Used 388
19.8 The Conceptual Division Of Processing 389
19.9 Pipeline Architectures 390
19.10 Pipeline Setup, Stall, And Flush Times 390
19.11 Definition Of Superpipeline Architecture 391
19.12 Summary 391

xviii Contents

395Chapter 20 Power And Energy

20.1 Introduction 395
20.2 Definition Of Power 395
20.3 Definition Of Energy 396
20.4 Power Consumption By A Digital Circuit 397
20.5 Switching Power Consumed By A CMOS Digital Circuit 398
20.6 Cooling, Power Density, And The Power Wall 399
20.7 Energy Use 399
20.8 Power Management 400
20.9 Software Control Of Energy Use 403
20.10 Choosing When To Sleep And When To Awaken 404
20.11 Sleep Modes And Network Devices 406
20.12 Summary 406

411Chapter 21 Assessing Performance

21.1 Introduction 411
21.2 Measuring Computational Power And Performance 411
21.3 Measures Of Computational Power 412
21.4 Application Specific Instruction Counts 413
21.5 Instruction Mix 414
21.6 Standardized Benchmarks 415
21.7 I/O And Memory Bottlenecks 416
21.8 Moving The Boundary Between Hardware And Software 416
21.9 Choosing Items To Optimize, Amdahl’s Law 417
21.10 Amdahl’s Law And Parallel Systems 418
21.11 Summary 418

423Chapter 22 Architecture Examples And Hierarchy

22.1 Introduction 423
22.2 Architectural Levels 423
22.3 System-level Architecture: A Personal Computer 424
22.4 Bus Interconnection And Bridging 425
22.5 Controller Chips And Physical Architecture 426
22.6 Virtual Buses 426
22.7 Connection Speeds 428
22.8 Bridging Functionality And Virtual Buses 429
22.9 Board-level Architecture 430
22.10 Chip-level Architecture 431
22.11 Structure Of Functional Units On A Chip 432
22.12 Summary 432

www.ebook3000.com

http://www.ebook3000.org

Contents xix

437Chapter 23 Hardware Modularity

23.1 Introduction 437
23.2 Motivations For Modularity 437
23.3 Software Modularity 438
23.4 Parameterized Invocation Of Subprograms 438
23.5 Hardware Scaling And Parallelism 439
23.6 Basic Block Replication 439
23.7 An Example Design (Rebooter) 439
23.8 High-level Rebooter Design 440
23.9 A Building Block To Accommodate A Range Of Sizes 441
23.10 Parallel Interconnection 441
23.11 An Example Interconnection 442
23.12 Module Selection 442
23.13 Summary 443

Appendix 1 Lab Exercises For A Computer Architecture Course 445

A1.1 Introduction 445
A1.2 Hardware Required for Digital Logic Experiments 446
A1.3 Solderless Breadboard 446
A1.4 Using A Solderless Breadboard 447
A1.5 Power And Ground Connections 448
A1.6 Building And Testing Circuits 448
A1.7 Lab Exercises 449

1 Introduction and account configuration 450
2 Digital Logic: Use of a breadboard 451
3 Digital Logic: Building an adder from gates 453
4 Digital Logic: Clocks and decoding 455
5 Representation: Testing big endian vs. little endian 457
6 Representation: A hex dump function in C 459
7 Processors: Learn a RISC assembly language 461
8 Processors: Function that can be called from C 463
9 Memory: Row-major and column-major array storage 465
10 Input / Output: A buffered I/O library 467
11 A hex dump program in assembly language 469

Appendix 2 Rules For Boolean Algebra Simplification 471

A2.1 Introduction 471
A2.2 Notation Used 471
A2.3 Rules Of Boolean Algebra 472

xx Contents

Appendix 3 A Quick Introduction To x86 Assembly Language 473

A3.1 Introduction 473
A3.2 The x86 General-Purpose Registers 474
A3.3 Allowable Operands 475
A3.4 Intel And AT&T Forms Of x86 Assembly Language 476
A3.5 Arithmetic Instructions 478
A3.6 Logical Operations 479
A3.7 Basic Data Types 480
A3.8 Data Blocks, Arrays, And Strings 482
A3.9 Memory References 483
A3.10 Data Size Inference And Explicit Size Directives 484
A3.11 Computing An Address 485
A3.12 The Stack Operations Push And Pop 486
A3.13 Flow Of Control And Unconditional Branch 487
A3.14 Conditional Branch And Condition Codes 487
A3.15 Subprogram Call And Return 488
A3.16 C Calling Conventions And Argument Passing 489
A3.17 Function Calls And A Return Value 491
A3.18 Extensions To Sixty-four Bits (x64) 491
A3.19 Summary 492

Appendix 4 ARM Register Definitions And Calling Sequence 495

A4.1 Introduction 495
A4.2 Registers On An ARM Processor 495
A4.3 ARM Calling Conventions 496

501Index

www.ebook3000.com

http://www.ebook3000.org

Preface

Hardware engineering has shifted the use of discrete electronic components to the
use of programmable devices. Consequently, programming has become much more im-
portant. Programmers who understand how hardware operates and a few basic
hardware principles can construct software systems that are more efficient and less
prone to errors. Consequently, a basic knowledge of computer architecture allows pro-
grammers to appreciate how software maps onto hardware and to make better software
design choices. A knowledge of the underlying hardware is also a valuable aid in de-
bugging because it helps programmers pinpoint the source of problems quickly.

The text is suitable for a one-semester undergraduate course. In many Computer
Science programs, a course on computer architecture or computer organization is the
only place in the curriculum where students are exposed to fundamental concepts that
explain the structure of the computers they program. Unfortunately, most texts on com-
puter architecture are written by hardware engineers and are aimed at students who are
learning how to design hardware. This text takes a different approach: instead of focus-
ing on hardware design and engineering details, it focuses on programmers by explain-
ing the essential aspects of hardware that a programmer needs to know. Thus, topics
are explained from a programmer’s point of view, and the text emphasizes conse-
quences for programmers.

The text is divided into five parts. Part I covers the basics of digital logic, gates,
data paths, and data representation. Most students enjoy the brief look at the underlying
hardware (especially because the text and labs avoid minute hardware details). Parts II,
III, and IV cover the three primary aspects of architecture: processors, memories, and
I/O systems. In each case, the chapters give students enough background to understand
how the mechanisms operate and the consequences for programmers without going into
many details. Finally, Part V covers the advanced topics of parallelism, pipelining,
power and energy, and performance.

Appendix 1 describes an important aspect of the course: a hands-on lab where stu-
dents can learn by doing. Although most lab problems focus on programming, students
should spend the first few weeks in lab wiring a few gates on a breadboard. The equip-
ment is inexpensive (we spent less than fifteen dollars per student on permanent equip-
ment; students purchase their own set of chips for under twenty dollars).

Appendix 2 provides a quick introduction to x86 assembly language and the x64
extensions. Many professors teach x86 and have requested that it be included. The ma-
terial is in an appendix, which means that professors who choose to focus on a RISC as-
sembly language (e.g., the ARM architecture) can use it for comparison.

xxii Preface

The second edition contains two new chapters as well as changes and updates
throughout. Chapter 3 on data paths shows the components of a computer and
describes how data flows among the components as instructions are executed. The sim-
plified example bridges the gap between digital logic in Chapter 2 and the subsequent
chapters that describe processors. Chapter 20 on power and energy covers the basics
without going into detail. It explains why a dual-core chip in which each core runs at
half speed takes less power than a single core chip that runs at full speed.

We have set up a Web site to accompany the book at:

http://www.eca.cs.purdue.edu

The text and lab exercises are used at Purdue; students have been extremely posi-
tive about both. We receive notes of thanks for the text and course. For many students,
the lab is their first experience with hardware, and they are enthusiastic.

My thanks to the many individuals who contributed to the book. Bernd Wolfinger
provided extensive reviews and made several important suggestions about topics and
direction. Professors and students spotted typos in the first edition. George Adams pro-
vided detailed comments and suggestions for the second edition.

Finally, I thank my wife, Chris, for her patient and careful editing and valuable
suggestions that improve and polish the text.

Douglas E. Comer

www.ebook3000.com

http://www.ebook3000.org

Preface xxiii

About The Author

Dr. Douglas E. Comer, PhD, has an extensive background in computer systems,
and has worked with both hardware and software. Comer’s work on software spans
most aspects of systems, including compilers and operating systems. He created a com-
plete operating system, including a process manager, a memory manager, and device
drivers for both serial and parallel interfaces. Comer has also implemented network
protocol software and network device drivers for conventional computers and network
processors. Both his operating system, Xinu, and TCP/IP protocol stack have been
used in commercial products.

Comer’s experience with hardware includes work with discrete components, build-
ing circuits from logic gates, and experience with basic silicon technology. He has
written popular textbooks on network processor architectures, and at Bell Laboratories,
Comer studied VLSI design and fabricated a VLSI chip.

Comer is a Distinguished Professor of Computer Science at Purdue University,
where he develops and teaches courses and engages in research on computer organiza-
tion, operating systems, networks, and Internets. In addition to writing a series of inter-
nationally acclaimed technical books on computer operating systems, networks,
TCP/IP, and computer technologies, Comer has created innovative laboratories in which
students can build and measure systems such as operating systems and IP routers; all of
Comer’s courses include hands-on lab work.

While on leave from Purdue, Comer served as the inaugural VP of Research at
Cisco Systems. He continues to consult and lecture at universities, industries, and
conferences around the world. For twenty years, Comer served as the editor-in-chief of
the journal Software — Practice and Experience. He is a Fellow of the Association for
Computing Machinery (ACM), a Fellow of the Purdue Teaching Academy, and a reci-
pient of numerous awards, including a USENIX Lifetime Achievement Award.

Additional information can be found at:

www.cs.purdue.edu/people/comer

and information about Comer’s books can be found at:

www.comerbooks.com

www.ebook3000.com

http://www.ebook3000.org

Chapter Contents

1.1 The Importance Of Architecture, 3
1.2 Learning The Essentials, 3
1.3 Organization Of The Text, 4
1.4 What We Will Omit, 4
1.5 Terminology: Architecture And Design, 5
1.6 Summary, 5

www.ebook3000.com

http://www.ebook3000.org

1

Introduction And Overview

1.1 The Importance Of Architecture

Computers are everywhere. Cell phones, video games, household appliances, and
vehicles all contain programmable processors. Each of these systems depends on
software, which brings us to an important question: why should someone interested in
building software study computer architecture? The answer is that understanding the
hardware makes it possible to write smaller, faster code that is less prone to errors. A
basic knowledge of architecture also helps programmers appreciate the relative cost of
operations (e.g., the time required for an I/O operation compared to the time required
for an arithmetic operation) and the effects of programming choices. Finally, under-
standing how hardware works helps programmers debug — someone who is aware of
the hardware has more clues to help spot the source of bugs. In short, the more a pro-
grammer understands about the underlying hardware, the better he or she will be at
creating software.

1.2 Learning The Essentials

As any hardware engineer will tell you, digital hardware used to build computer
systems is incredibly complex. In addition to myriad technologies and intricate sets of
electronic components that constitute each technology, engineers must master design
rules that dictate how the components can be constructed and how they can be intercon-
nected to form systems. Furthermore, the technologies continue to evolve, and newer,
smaller, faster components appear continuously.

3

4 Introduction And Overview Chap. 1

Fortunately, as this text demonstrates, it is possible to understand architectural
components without knowing low-level technical details. The text focuses on essen-
tials, and explains computer architecture in broad, conceptual terms — it describes each
of the major components and examines their role in the overall system. Thus, readers
do not need a background in electronics or electrical engineering to understand the sub-
ject.

1.3 Organization Of The Text

What are the major topics we will cover? The text is organized into five parts.

Basics. The first section covers two topics that are essential to the rest
of the book: digital logic and data representation. We will see that in each
case, the issue is the same: the use of electronic mechanisms to represent
and manipulate digital information.

Processors. One of the three key areas of architecture, processing
concerns both computation (e.g., arithmetic) and control (e.g., executing a
sequence of steps). We will learn about the basic building blocks, and see
how the blocks are used in a modern Central Processing Unit (CPU).

Memory. The second key area of architecture, memory systems,
focuses on the storage and access of digital information. We will examine
both physical and virtual memory systems, and understand one of the most
important concepts in computing: caching.

I/O. The third key area of architecture, input and output, focuses on
the interconnection of computers and devices such as microphones, key-
boards, mice, displays, disks, and networks. We will learn about bus tech-
nology, see how a processor uses a bus to communicate with a device, and
understand the role of device driver software.

Advanced Topics. The final section focuses on two important topics
that arise in many forms: parallelism and pipelining. We will see how ei-
ther parallel or pipelined hardware can be used to improve overall perfor-
mance.

1.4 What We Will Omit

Paring a topic down to essentials means choosing items to omit. In the case of this
text, we have chosen breadth rather than depth — when a choice is required, we have
chosen to focus on concepts instead of details. Thus, the text covers the major topics in
architecture, but omits lesser-known variants and low-level engineering details. For ex-

www.ebook3000.com

http://www.ebook3000.org

Sec. 1.4 What We Will Omit 5

ample, our discussion of how a basic nand gate operates gives a simplistic description
without discussing the exact internal structure or describing precisely how a gate dissi-
pates the electrical current that flows into it. Similarly, our discussion of processors and
memory systems avoids the quantitative analysis of performance that an engineer needs.
Instead, we take a high-level view aimed at helping the reader understand the overall
design and the consequences for programmers rather than preparing the reader to build
hardware.

1.5 Terminology: Architecture And Design

Throughout the text, we will use the term architecture to refer to the overall organ-
ization of a computer system. A computer architecture is analogous to a blueprint —
the architecture specifies the interconnection among major components and the overall
functionality of each component without giving many details. Before a digital system
can be built that implements a given architecture, engineers must translate the overall
architecture into a practical design that accounts for details that the architectural specifi-
cation omits. For example, the design must specify how components are grouped onto
chips, how chips are grouped onto circuit boards, and how power is distributed to each
board. Eventually, a design must be implemented, which entails choosing specific
hardware from which the system will be constructed. A design represents one possible
way to realize a given architecture, and an implementation represents one possible way
to realize a given design. The point is that architectural descriptions are abstractions,
and we must remember that many designs can be used to satisfy a given architecture
and many implementations can be used to realize a given design.

1.6 Summary

This text covers the essentials of computer architecture: digital logic, processors,
memories, I/O, and advanced topics. The text does not require a background in electri-
cal engineering or electronics. Instead, topics are explained by focusing on concepts,
avoiding low-level details, and concentrating on items that are important to program-
mers.

www.ebook3000.com

http://www.ebook3000.org

Part I

Basics Of
Digital Logic

And
Data Representation

The Fundamentals
From Which Computers

Are Built

www.ebook3000.com

http://www.ebook3000.org

Chapter Contents

2.1 Introduction, 11
2.2 Digital Computing Mechanisms, 11
2.3 Electrical Terminology: Voltage And Current, 12
2.4 The Transistor, 13
2.5 Logic Gates, 14
2.6 Implementation Of A Nand Logic Gate Using Transistors, 16
2.7 Symbols Used For Logic Gates, 17
2.8 Example Interconnection Of Gates, 17
2.9 A Digital Circuit For Binary Addition, 20
2.10 Multiple Gates Per Integrated Circuit, 22
2.11 The Need For More Than Combinatorial Circuits, 22
2.12 Circuits That Maintain State, 23
2.13 Propagation Delay, 24
2.14 Using Latches To Create A Memory, 24
2.15 Flip-Flops And Transition Diagrams, 25
2.16 Binary Counters, 27
2.17 Clocks And Sequences, 28
2.18 The Important Concept Of Feedback, 31
2.19 Starting A Sequence, 32
2.20 Iteration In Software Vs. Replication In Hardware, 33
2.21 Gate And Chip Minimization, 34
2.22 Using Spare Gates, 34
2.23 Power Distribution And Heat Dissipation, 35
2.24 Timing And Clock Zones, 35
2.25 Clockless Logic, 37
2.26 Circuit Size And Moore’s Law, 38
2.27 Circuit Boards And Layers, 39
2.28 Levels Of Abstraction, 39
2.29 Summary, 40

www.ebook3000.com

http://www.ebook3000.org

2

Fundamentals Of Digital
Logic

2.1 Introduction

This chapter covers the basics of digital logic. The goal is straightforward — pro-
vide a background that is sufficient for a reader to understand remaining chapters.
Although many low-level details are irrelevant, programmers do need a basic
knowledge of hardware to appreciate the consequences for software. Thus, we will not
need to delve into electrical details, discuss the underlying physics, or learn the design
rules that engineers follow to interconnect devices. Instead, we will learn a few basics
that will allow us to understand how complex digital systems work.

2.2 Digital Computing Mechanisms

We use the term digital computer to refer to a device that performs a sequence of
computational steps on data items that have discrete values. The alternative, called an
analog computer, operates on values that vary continuously over time. Digital compu-
tation has the advantage of being precise. Because digital computers have become both
inexpensive and highly reliable, analog computation has been relegated to a few special
cases.

The need for reliability arises because a computation can entail billions of indivi-
dual steps. If a computer misinterprets a value or a single set fails, correct computation
will not be possible. Therefore, computers are designed for failure rates of much less
than one in a billion.

11

12 Fundamentals Of Digital Logic Chap. 2

How can high reliability and high speed be achieved? One of the earliest computa-
tional devices, known as an abacus, relied on humans to move beads to keep track of
sums. By the early twentieth century, mechanical gears and levers were being used to
produce cash registers and adding machines. By the 1940s, early electronic computers
were being constructed from vacuum tubes. Although they were much faster than
mechanical devices, vacuum tubes (which require a filament to become red hot) were
unreliable — a filament would burn out after a few hundred hours of use.

The invention of the transistor in 1947 changed computing dramatically. Unlike
vacuum tubes, transistors did not require a filament, did not consume much power, did
not produce much heat, and did not burn out. Furthermore, transistors could be pro-
duced at much lower cost than vacuum tubes. Consequently, modern digital computers
are built from electronic circuits that use transistors.

2.3 Electrical Terminology: Voltage And Current

Electronic circuits rely on physical phenomena associated with the presence and
flow of electrical charge. Physicists have discovered ways to detect the presence of
electrical charge and control the flow; engineers have developed mechanisms that can
perform such functions quickly. The mechanisms form the basis for modern digital
computers.

Engineers use the terms voltage and current to refer to quantifiable properties of
electricity: the voltage between two points (measured in volts) represents the potential
energy difference, and the current (measured in amperes or amps) represents the flow of
electrons along a path (e.g., along a wire). A good analogy can be made with water:
voltage corresponds to water pressure, and current corresponds to the amount of water
flowing through a pipe at a given time. If a water tank develops a hole and water be-
gins to flow through the hole, water pressure will drop; if current starts flowing through
a wire, voltage will drop.

The most important thing to know about electrical voltage is that voltage can only
be measured as the difference between two points (i.e., the measurement is relative).
Thus, a voltmeter, which is used to measure voltage, always has two probes; the meter
does not register a voltage until both probes have been connected. To simplify meas-
urement, we assume one of the two points represents zero volts, and express the voltage
of the second point relative to zero. Electrical engineers use the term ground to refer to
the point that is assumed to be at zero volts. In all digital circuits shown in this text,
we will assume that electrical power is supplied by two wires: one wire is a ground
wire, which is assumed to be at zero volts, and a second wire is at five volts.

Fortunately, we can understand the essentials of digital logic without knowing
more about voltage and current. We only need to understand how electrical flow can be
controlled and how electricity can be used to represent digital values.

www.ebook3000.com

http://www.ebook3000.org

Sec. 2.4 The Transistor 13

2.4 The Transistor

The mechanism used to control flow of electrical current is a semiconductor device
known as a transistor. At the lowest level, all digital systems are composed of transis-
tors. In particular, digital circuits use a form of transistor known as a Metal Oxide Sem-
iconductor Field Effect Transistor (MOSFET), abbreviated FET. A MOSFET can be
formed on a crystalline silicon foundation by composing layers of P-type and N-type
silicon, a silicon oxide insulating layer (a type of glass), and metal for wires that con-
nect the transistor to the rest of the circuit.

The transistors used in digital circuits function as an on/off switch that is operated
electronically instead of mechanically. That is, in contrast to a mechanical switch that
opens and closes based on the mechanical force applied, a transistor opens and closes
based on whether voltage is applied. Each transistor has three terminals (i.e., wires)
that provide connections to the rest of the circuit. Two terminals, a source and drain,
have a channel between them on which the electrical resistance can be controlled. If the
resistance is low, electric current flows from the source to the drain; if the resistance is
high, no current flows. The third terminal, known as a gate, controls the resistance. In
the next sections, we will see how switching transistors can be used to build more com-
plex components that are used to build digital systems.

MOSFET transistors come in two types; both are used in digital logic circuits.
Figure 2.1 shows the diagrams engineers use to denote the two types†.

Gate

Source

Drain

Gate

Source

Drain

(a) (b)

current flows
from S to D
when G is
positive

current flows
from S to D
when G is
negative

Figure 2.1 The two types of transistors used in logic circuits. The type la-
beled (a) turns on when the gate voltage is positive; transistor la-
beled (b) turns on when the gate voltage is zero (or negative).

In the diagram, the transistor labeled (a) turns on whenever the voltage on the gate
is positive (i.e., exceeds some minimum threshold). When the appropriate voltage ap-
pears on the gate, a large current can flow through the other two connections. When the
voltage is removed from the gate, the large current stops flowing. The transistor labeled
(b), which has a small circle on the gate, works the other way: a large current flows
from the source to the drain whenever the voltage on the gate is below the threshold
(e.g., close to zero), and stops flowing when the gate voltage is high. The two forms

��������������������������������
†Technically, the diagram depicts the p-channel and n-channel forms of a MOSFET.

14 Fundamentals Of Digital Logic Chap. 2

are known as complementary, and the overall chip technology is known as CMOS
(Complementary Metal Oxide Semiconductor). The chief advantage of CMOS arises
because circuits can be devised that use extremely low power.

2.5 Logic Gates

How are digital circuits built? A transistor has two possible states — current is
flowing or no current is flowing. Therefore, circuits are designed using a two-valued
mathematical system known as Boolean algebra. Most programmers are familiar with
the three basic Boolean functions: and, or, and not. Figure 2.2 lists the possible input
values and the result of each function.

A B A and B

0

0

1

1

0

1

0

1

0

0

0

1

A B A or B

0

0

1

1

0

1

0

1

0

1

1

1

A not A

0

1

1

0

Figure 2.2 Boolean functions and the result for each possible set of inputs.
A logical value of zero represents false, and a logical value of
one represents true.

Boolean functions provide a conceptual basis for digital hardware. More impor-
tant, it is possible to use transistors to construct efficient circuits that implement each of
the Boolean functions. For example, consider the Boolean not. Typical logic circuits
use a positive voltage to represent a Boolean 1 and zero voltage to represent a Boolean
0. Using zero volts to represent 0 and a positive voltage to represent 1 means a circuit
that computes Boolean not can be constructed from two transistors. That is, the circuit
will take an input on one wire and produce an output on another wire, where the output
is always the opposite of the input — when positive voltage is placed on the input, the
output will be zero, and when zero voltage is placed on the input, the output will be po-
sitive†. Figure 2.3 illustrates a circuit that implements Boolean not.

The drawing in the figure is known as a schematic diagram. Each line on a
schematic corresponds to a wire that connects one component to another. A solid dot
indicates an electrical connection, and a small, open circle at the end of a line indicates
an external connection. In addition to the two inputs and an output, the circuit has
external connections to positive and zero voltages.

Electronic circuits that implement Boolean functions differ from a computer pro-
gram in a significant way: a circuit operates automatically and continuously. That is,
once power is supplied (the + voltage in the figure), the transistors perform their func-
tion and continue to perform as long as power remains on — if the input changes, the

��������������������������������
†Some digital circuits use 5 volts and some use 3.3 volts; rather than specify a voltage, hardware en-

gineers write Vdd to denote a voltage appropriate for a given circuit.

www.ebook3000.com

http://www.ebook3000.org

Sec. 2.5 Logic Gates 15

+ voltage (denoted Vdd)

0 volts

input output

Figure 2.3 A pair of complementary transistors used to implement a Boolean
not.

output changes. Thus, unlike a function in a program that only produces a result when
called, the output of a circuit is always available and can be used at any time.

To understand how the circuit works, think of the transistors as capable of forming
an electrical connection between the source and drain terminals. When the input is po-
sitive, the top transistor turns off and the bottom transistor turns on, which means the
output is connected to zero volts. Conversely, when the input voltage is zero, the top
transistor turns on and the bottom transistor turns off, which means the ouput is con-
nected to positive voltage. Thus, the ouput voltage represents the logical opposite of
the input voltage.

A detail adds a minor complication for Boolean functions: because of the way elec-
tronic circuits work, it takes fewer transistors to provide the inverse of each function.
Thus, most digital circuits implement the inverse of logical or and logical and: nor
(which stands for not or) and nand (which stands for not and). In addition, some cir-
cuits use the exclusive or (xor) function. Figure 2.4 lists the possible inputs and the
results for each function†.

A B A nand B

0

0

1

1

0

1

0

1

1

1

1

0

A B A nor B

0

0

1

1

0

1

0

1

1

0

0

0

A B A xor B

0

0

1

1

0

1

0

1

0

1

1

0

Figure 2.4 The nand, nor, and xor functions that logic gates provide.

��������������������������������
†A later section explains that we use the term truth tables to describe the tables used in the figure.

16 Fundamentals Of Digital Logic Chap. 2

2.6 Implementation Of A Nand Logic Gate Using Transistors

For the remainder of the text, the details of transistors and their interconnection are
unimportant. All we need to understand is that transistors can be used to create each of
the Boolean functions described above, and that the functions are used to create digital
circuits that form computers. Before leaving the topic of transistors, we will examine
an example: a circuit that uses four transistors to implement a nand function. Figure
2.5 contains the circuit diagram. As described above, we use the term logic gate to
describe the resulting circuit. In practice, a logic gate contains additional components,
such as diodes and resistors, that are used to protect the transistors from electrostatic
discharge and excessive electrical current; because they do not affect the logical opera-
tion of the gate, the extra components have been omitted from the diagram.

+ voltage (Vdd)

0 volts

A input

B input

output

Figure 2.5 Example of four transistors interconnected in a circuit that imple-
ments a nand logic gate.

To understand how the circuit operates, observe that if both inputs represent logical
one, the bottom two transistors will be turned on, which means the output will be con-
nected to zero volts (logical zero). Otherwise, at least one of the top two transistors
will be turned on, and the output will be connected to positive voltage (logical one). Of
course, a circuit must be designed carefully to ensure that an output is never connected
to positive voltage and zero volts simultaneously (or the transistors will be destroyed).

www.ebook3000.com

http://www.ebook3000.org

Sec. 2.6 Implementation Of A Nand Logic Gate Using Transistors 17

The diagram in Figure 2.5 uses a common convention: two lines that cross do not
indicate an electrical connection unless a solid dot appears. The idea is similar to the
way vertices and edges are drawn in a graph: two edges that cross do not indicate a ver-
tex is present unless a dot (or circle) is drawn. In a circuit diagram, two lines that cross
without a dot correspond to a situation in which there is no physical connection; we can
imagine that the wires are positioned so an air gap exists between them (i.e., the wires
do not touch). To help indicate that there is no connection, the lines are drawn with a
slight space around the crossing point.

Now that we have seen an example of how a gate can be created out of transistors,
we do not need to consider individual transistors again. Throughout the rest of the
chapter, we will discuss gates without referring to their internal mechanisms. Later
chapters discuss larger, more complex mechanisms that are composed of gates.

2.7 Symbols Used For Logic Gates

When they design circuits, engineers think about interconnecting logic gates rather
than interconnecting transistors. Each gate is represented by a symbol, and engineers
draw diagrams that show the interconnections among gates. Figure 2.6 shows the sym-
bols for nand, nor, inverter, and, or, and xor gates. The figure follows standard termi-
nology by using the term inverter for a gate that performs the Boolean not operation.

nand gate nor gate inverter

and gate or gate xor gate

Figure 2.6 The symbols for commonly used gates. Inputs for each gate are
shown on the left, and the output of the gate is shown on the
right.

2.8 Example Interconnection Of Gates

The electronic parts that implement gates are classified as Transistor-Transistor
Logic (TTL) because the output transistors in each gate are designed to connect directly
to input transistors in other gates. In fact, an output can connect to several inputs†. For
example, suppose a circuit is needed in which the output is true if a disk is spinning and
the user presses a power-down button. Logically, the output is a Boolean and of two

��������������������������������
†The technology limits the number of inputs that can be connected to a single output; we use the term

fanout to specify the number of inputs that an output supplies.

18 Fundamentals Of Digital Logic Chap. 2

inputs. We said, however, that some designs are limited to nand, nor, and inverter
gates. In such cases, the and function can be created by directly connecting the output
of a nand gate to the input of an inverter. Figure 2.7 illustrates the connection.

input from
power button

input from
disk

output

Figure 2.7 Illustration of gate interconnection. The output from one logic
gate can connect directly to the input of another gate.

As another example of gate interconnection, consider the circuit in Figure 2.8 that
shows three inputs.

X

Y

Z

A
B

C output

Figure 2.8 An example of a circuit with three inputs labeled X, Y, and Z.
Internal interconnections are also labeled to allow us to discuss
intermediate values.

What function does the circuit in the figure implement? There are two ways to
answer the question: we can determine the Boolean formula to which the circuit
corresponds, or we can enumerate the value that appears on each output for all eight
possible combinations of input values. To help us understand the two methods, we
have labeled each input and each intermediate connection in the circuit as well as the
output.

To derive a Boolean formula, observe that input Y is connected directly to an in-
verter. Thus, the value at A corresponds to the Boolean function not Y. The nor gate
takes inputs not Y (from the inverter) and Z, so the value at B corresponds to the Boole-
an function:

Z nor (not Y)

www.ebook3000.com

http://www.ebook3000.org

Sec. 2.8 Example Interconnection Of Gates 19

Because the combination of a nand gate followed by an inverter produces the Boolean
and of the two inputs, the output value corresponds to:

X and (Z nor (not Y))

The formula can also be expressed as:

X and not (Z or (not Y)) (2.1)

Although we have described the use of Boolean expressions as a way of under-
standing circuits, Boolean expressions are also important in circuit design. An engineer
can start a design by finding a Boolean expression that describes the desired behavior of
a circuit. Writing such an expression can help a designer understand the problem and
special cases. Once a correct expression has been found, the engineer can translate the
expression into equivalent hardware gates.

The use of Boolean expressions to specify circuits has a significant advantage: a
variety of tools are available that operate on Boolean expressions. Tools can be used to
analyze an expression, minimize an expression†, and convert an expression into a di-
agram of interconnected gates. Automated minimization is especially useful because it
can reduce the number of gates required. That is, tools exist that can take a Boolean
expression as input, produce as output an equivalent expression that requires fewer
gates, and then convert the output to a circuit diagram. We can summarize:

Tools exist that take a Boolean expression as input and produce an
optimized circuit for the expression as output.

A second technique used to understand a logic circuit consists of enumerating all
possible inputs, and then finding the corresponding values at each point in the circuit.
For example, because the circuit in Figure 2.8 has three inputs, eight possible combina-
tions of input exist. We use the term truth table to describe the enumeration. Truth
tables are often used when debugging circuits. Figure 2.9 contains the truth table for
the circuit in Figure 2.8. The table lists all possible combination of inputs on wires X,
Y, and Z along with the resulting values on the wires labeled A, B, C, and output.

X Y Z A B C output

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

1

1

0

0

1

1

0

0

0

0

1

0

0

0

1

0

1

1

1

1

1

1

0

1

0

0

0

0

0

0

1

0

Figure 2.9 A truth table for the circuit in Figure 2.8.

��������������������������������
†Appendix 2 lists a set of rules used to minimize Boolean expressions.

20 Fundamentals Of Digital Logic Chap. 2

The table in Figure 2.9 is generated by starting with all possible inputs, and then
filling in the remaining columns one at a time. In the example, there are three inputs
(X, Y, and Z) that can each be set to zero or one. Consequently, there are eight possible
combinations of values in columns X, Y, and Z of the table. Once they have been filled
in, the input columns can be used to derive other columns. For example, point A in the
circuit represents the output from the first inverter, which is the inverse of input Y.
Thus, column A can be filled in by reversing the values in column Y. Similarly, column
B represents the nor of columns A and Z.

A truth table can be used to validate a Boolean expression — the expression can be
computed for all possible inputs and compared to the values in the truth table. For ex-
ample, the truth table in Figure 2.9 can be used to validate the Boolean expression (2.1)
above and the equivalent expression:

X and Y and (not Z))

To perform the validation, one computes the value of the Boolean expression for
all possible combinations of X, Y, and Z. For each combination, the value of the ex-
pression is compared to the value in the output column of the truth table.

2.9 A Digital Circuit For Binary Addition

How can logic circuits implement integer arithmetic? As an example, consider us-
ing gates to add two binary numbers. One can apply the technique learned in elementa-
ry school: align the two numbers in a column. Then, start with the least-significant di-
gits and add each column of digits. If the sum overflows a given column, carry the
high-order digit of the sum to the next column. The only difference is that computers
represent integers in binary rather than decimal. For example, Figure 2.10 illustrates the
addition of 20 and 29 carried out in binary.

1 0 1 0 0
+ 1 1 1 0 1

1 1 0 0 0 1

carrycarrycarry

Figure 2.10 Example of binary addition using carry bits.

A circuit to perform the addition needs one module for each column (i.e., each bit
in the operands). The module for the low-order bits takes two inputs and produces two
outputs: a sum bit and a carry bit. The circuit, which is known as a half adder, con-
tains an and gate and an exclusive or gate. Figure 2.11 shows how the gates are con-
nected.

www.ebook3000.com

http://www.ebook3000.org

Sec. 2.9 A Digital Circuit For Binary Addition 21

bit 1

bit 2 sum

carry

exclusive-or gate

and gate

Figure 2.11 A half adder circuit that computes the sum and carry for two in-
put bits.

Although a half adder circuit computes the low-order bit of the sum, a more com-
plex circuit is needed for each of the other bits. In particular, each successive computa-
tion has three inputs: two input bits plus a carry bit from the column to the right. Fig-
ure 2.12 illustrates the necessary circuit, which is known as a full adder. Note the sym-
metry between the two input bits — either input can be connected to the sum of the cir-
cuit for the previous bit.

bit 1

bit 2

carry in

sum

carry out

Figure 2.12 A full adder circuit that accepts a carry input as well as two in-
put bits.

As the figure shows, a full adder consists of two half adder circuits plus one extra
gate (a logical or). The or connects the carry outputs from the two half adders, and
provides a carry output if either of the two half adders reports a carry.

Although a full adder can have eight possible input combinations, we only need to
consider six when verifying correctness. To see why, observe that the full adder treats
bit 1 and bit 2 symmetrically. Thus, we only need to consider three cases: both input
bits are zeros, both input bits are ones, and one of the input bits is one while the other is
zero. The presence of a carry input doubles the number of possibilities to six. An exer-
cise suggests using a truth table to verify that the full adder circuit does indeed give
correct output for each input combination.

22 Fundamentals Of Digital Logic Chap. 2

2.10 Multiple Gates Per Integrated Circuit

Because the logic gates described above do not require many transistors, multiple
gates that use TTL can be manufactured on a single, inexpensive electronic component.
One popular set of TTL components that implement logic gates is known as the 7400
family†; each component in the family is assigned a part number that begins with 74.
Physically, many of the parts in the 7400 family consist of a rectangular package ap-
proximately one-half inch long with fourteen copper wires (called pins) that are used to
connect the part to a circuit; the result is known as a 14-pin Dual In-line Package (14-
pin DIP). More complex 7400-series chips require additional pins (e.g., some use a
16-pin DIP configuration).

To understand how multiple gates are arranged on a 7400-series chip, consider
three examples. Part number 7400 contains four nand gates, part number 7402 contains
four nor gates, and part number 7404 contains six inverters. Figure 2.13 illustrates how
the inputs and outputs of individual logic gates connect to pins in each case.

1 2 3 4 5 6 7

891011121314

gnd

+

1 2 3 4 5 6 7

891011121314

gnd

+

1 2 3 4 5 6 7

891011121314

gnd

+

7400 7402 7404

Figure 2.13 Illustration of the pin connections on three commercially avail-
able integrated circuits that implement logic gates.

Although the figure does not show gates connected to pins 14 and 7, the two pins
are essential because they supply power needed to run the gates — as the labels indi-
cate, pin 14 connects to plus five volts and pin 7 connects to ground (zero volts).

2.11 The Need For More Than Combinatorial Circuits

An interconnection of Boolean logic gates, such as the circuits described above, is
known as a combinatorial circuit because the output is simply a Boolean combination
of input values. In a combinatorial circuit, the output only changes when an input value
changes. Although combinatorial circuits are essential, they are not sufficient — a com-
puter requires circuits that can take action without waiting for inputs to change. For ex-
ample, when a user presses a button to power on a computer, hardware must perform a
sequence of operations, and the sequence must proceed without further input from the
user. In fact, a user does not need to hold the power button continuously — the startup

��������������������������������
†In addition to the logic gates described in this section, the 7400 family also includes more sophisticated

mechanisms, such as flip-flops, counters, and demultiplexors, that are described later in the chapter.

www.ebook3000.com

http://www.ebook3000.org

Sec. 2.11 The Need For More Than Combinatorial Circuits 23

sequence continues even after the user releases the button. Furthermore, pressing the
same button again causes the hardware to initiate a shutdown sequence.

How can a power button act to power down as well as power up a system? How
can digital logic perform a sequence of operations without requiring the input values to
change? How can a digital circuit continue to operate after an input reverts to its initial
condition? The answers involve additional mechanisms. Sophisticated arrangements of
logic gates can provide some of the needed functionality. The rest requires a hardware
device known as a clock. The next sections present examples of sophisticated circuits,
and later sections explain clocks.

2.12 Circuits That Maintain State

In addition to electronic parts that contain basic Boolean gates, parts are also avail-
able that contain gates interconnected to maintain state. That is, electronic circuits exist
in which the outputs are a function of the sequence of previous inputs as well as the
current input. Such logic circuits are known as sequential circuits.

A latch is one of the most basic of sequential circuits. The idea of a latch is
straightforward: a latch has an input and an output. In addition, a latch has an extra in-
put called an enable line. As long as the enable line is set to logical one, the latch
makes its output an exact copy of the input. That is, while the enable line is one, if the
input changes, the output changes as well. Once the enable line changes to logical zero,
however, the output freezes at its current value and does not change. Thus, the latch
“remembers” the value the input had while the enable line was set, and keeps the output
set to that value.

How can a latch be devised? Interestingly, a combination of Boolean logic gates is
sufficient. Figure 2.14 illustrates a circuit that uses four nand gates to create a latch.
The idea is that when the enable line is logical zero, the two nand gates on the right
remember the current value of the output. Because the outputs of two nand gates feed
back into each other’s input, the output value will remain stable. When the enable line
is logical one, the two gates on the left pass the data input (on the lower wire) and its
inverse (on the higher wire) to the pair of gates on the right.

output

data in

enable

Figure 2.14 Illustration of four nand gates used to implement a one-bit latch.

24 Fundamentals Of Digital Logic Chap. 2

2.13 Propagation Delay

To understand the operation of a latch, one must know that each gate has a propa-
gation delay. That is, a delay occurs between the time an input changes and the output
changes. During the propagation delay, the output remains at the previous value. Of
course, transistors are designed to minimize delay, and the delay can be less than a mi-
crosecond, but a finite delay exists. To see how propagation delay affects circuits, con-
sider the circuit in Figure 2.15.

output

Figure 2.15 An inverter with the output connected back to the input.

As the figure shows, the output of an inverter is connected back to the input. It
does not seem that such a connection makes sense because an inverter’s output is al-
ways the opposite of its input. The Boolean expression for such a circuit is:

output = not(output)

which is a mathematical contradiction.

Propagation delay explains that the circuit works. At any time, if output is 0, the
input to the inverter will be 0. After a propagation delay, the inverter will change the
output to 1. Once the output becomes 1, another propagation delay occurs, and the out-
put will become 0 again. Because the cycle goes on forever, we say that the circuit os-
cillates by generating an output that changes back and forth between 0 and 1 (known as
a square wave). The concept of propagation delay explains the operation of the latch in
Figure 2.14 — outputs remain the same until a propagation delay occurs.

2.14 Using Latches To Create A Memory

We will see that processors include a set of registers that serve as short-term
storage units. Typically, registers hold values that are used in computation (e.g., two
values that will be added together). Each register holds multiple bits; most computers
have 32-bit or 64-bit registers. The circuit for a register illustrates an important princi-
ple of digital hardware design:

A circuit to handle multiple bits is constructed by physically replicat-
ing a circuit that handles one bit.

www.ebook3000.com

http://www.ebook3000.org

Sec. 2.14 Using Latches To Create A Memory 25

Register

1-bit
latch

1-bit
latch

1-bit
latch

1-bit
latch

enable line for the register

input bits for
the register

output bits for
the register

Figure 2.16 A 4-bit register formed from four 1-bit latches.

To understand the principle, consider Figure 2.16 which shows how a 4-bit register
circuit can be constructed from four 1-bit latches†. In the figure, the enable lines of all
four latches are connected together to form an enable input for the register. Although
the hardware consists of four independent circuits, connecting the enable lines means
the four latches act in unison. When the enable line is set to logical one, the register ac-
cepts the four input bits and sets the four outputs accordingly. When the enable line be-
comes zero, the outputs remain fixed. That is, the register has stored whatever value
was present on its inputs, and the output value will not change until the enable line be-
comes one again.

The point is:

A register, one of the key components in a processor, is a hardware
mechanism that uses a set of latches to store a digital value.

2.15 Flip-Flops And Transition Diagrams

A flip-flop is another circuit in which the output depends on previous inputs as
well as the current input. There are various forms. One form acts exactly like the
power switch on a computer: the first time its input becomes 1, the flip-flop turns the
output on, and the second time the input becomes 1, the flip-flop turns the output off.
Like a push-button switch used to control power, a flip-flop does not respond to a con-
tinuous input — the input must return to 0 before a value of 1 will cause the flip-flop to
change state. That is, whenever the input transitions from 0 to 1, the flip-flop changes
its output from the current state to the opposite. Figure 2.17 shows a sequence of inputs
and the resulting output.

��������������������������������
†Although the diagram only shows a 4-bit register, the registers used in typical processors store 32 bits or

64 bits.

26 Fundamentals Of Digital Logic Chap. 2

flip-flop
input output

in:

out:

time increases

0 0 1 0 1 1 0 0 0 0 1 0 1 0 1 0

0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 1

Figure 2.17 Illustration of how one type of flip-flop reacts to a sequence of
inputs. The flip-flop output changes when the input transitions
from 0 to 1 (i.e., from zero volts to five volts).

Because it responds to a sequence of inputs, a flip-flop is not a simple combina-
torial circuit. A flip-flop cannot be constructed from a single gate. However, a flip-
flop can be constructed from a pair of latches.

To understand how a flip-flop works, it is helpful to plot the input and output in
graphical form as a function of time. Engineers use the term transition diagram for
such a plot. In most digital circuits, transitions are coordinated by a clock, which
means that transitions only occur at regular intervals. Figure 2.18 illustrates a transition
diagram for the flip-flop values from Figure 2.17. The line labeled clock in Figure 2.18
shows where clock pulses occur; each input transition is constrained to occur on one of
the clock pulses. For now, it is sufficient to understand the general concept; later sec-
tions explain clocks.

in:

out:

clock:

0

1

0

1

time increases

Figure 2.18 Illustration of a transition diagram that shows how a flip flop
reacts to the series of inputs in Figure 2.17. Marks along the x-
axis indicate times; each corresponds to one clock tick.

We said that a flip-flop changes output each time it encounters a one bit. In fact,
the transition diagram shows the exact details and timing that are important to circuit
designers. In the example, the transition diagram shows that the flip-flop is only trig-

www.ebook3000.com

http://www.ebook3000.org

Sec. 2.15 Flip-Flops And Transition Diagrams 27

gered when the input rises. That is, the output does not change until the input transi-
tions from zero to one. Engineers say that the output transition occurs on the rising
edge of the input change; circuits that transition when the input changes from one to
zero are said to occur on the falling edge.

In practice, additional details complicate flip-flops. For example, most flip-flops
include an additional input named reset that places the output in a 0 state. In addition,
several other variants of flip-flops exist. For example, some flip-flops provide a second
output that is the inverse of the main output (in some circuits, having the inverse avail-
able results in fewer gates).

2.16 Binary Counters

A single flip-flop only offers two possible output values: 0 or 1. However, a set of
flip-flops can be connected in series to form a binary counter that accumulates a numer-
ic total. Like a flip-flop, a counter has a single input. Unlike a flip-flop, however, a
counter has multiple outputs. The outputs count how many input pulses have been
detected by giving a numerical total in binary†. We think of the outputs as starting at
zero and adding one each time the input transitions from 0 to 1. Thus, a counter that
has three output lines can accumulate a total between 0 and 7. Figure 2.19 illustrates a
counter, and shows how the outputs change when the input changes.

counter

input
outputs

(a)

(b)

input outputs decimal

time

increases

0

0

1

0

1

1

0

1

0

1

0

1

0 0 0

0 0 0

0 0 1

0 0 1

0 1 0

0 1 0

0 1 0

0 1 1

0 1 1

1 0 0

1 0 0

1 0 1

0

0

1

1

2

2

2

3

3

4

4

5

.

.

.

Figure 2.19 Illustration of (a) a binary counter, and (b) a sequence of input
values and the corresponding outputs. The column labeled deci-
mal gives the decimal equivalent of the outputs.

��������������������������������
†Chapter 3 considers data representation in more detail. For now, it is sufficient to understand that the

outputs represent a number.

28 Fundamentals Of Digital Logic Chap. 2

In practice, an electronic part that implements a binary counter has several addi-
tional features. For example, a counter has an additional input used to reset the count to
zero, and may also have an input that temporarily stops the counter (i.e., ignores the in-
put and freezes the output). More important, because it has a fixed number of output
pins, each counter has a maximum value it can represent. When the accumulated count
exceeds the maximum value, the counter resets the output to zero and uses an additional
output to indicate that an overflow occurred.

2.17 Clocks And Sequences

Although we have seen the basic building blocks of digital logic, one additional
feature is absolutely essential for a digital computer: automatic operation. That is, a
computer must be able to execute a sequence of instructions without any inputs chang-
ing. The digital logic circuits discussed previously all use the property that they
respond to changes in one or more of their inputs; they do not perform any function un-
til an input changes. How can a digital logic circuit perform a series of steps?

The answer is a mechanism known as a clock that allows hardware to take action
without requiring the input to change. In fact, most digital logic circuits are said to be
clocked, which means that the clock signal, rather than changes in the inputs, controls
and synchronizes the operation of individual components and subassemblies to ensure
that they work together as intended (e.g., to guarantee that later stages of a circuit wait
for the propagation delay of previous stages).

What is a clock? Unlike the common definition of the term, hardware engineers
use the term clock to refer to an electronic circuit that oscillates at a regular rate; the os-
cillations are converted to a sequence of alternating ones and zeros. Although a clock
can be created from an inverter†, most clock circuits use a quartz crystal, which oscil-
lates naturally, to provide a signal at a precise frequency. The clock circuit amplifies
the signal and changes it from a sine wave to a square wave. Thus, we think of a clock
as emitting an alternating sequence of 0 and 1 values at a regular rate. The speed of a
clock is measured in Hertz (Hz), the number of times per second the clock cycles
through a 1 followed by a 0. Most clocks in high-speed digital computers operate at
speeds ranging from one hundred megahertz (100 MHz) to several gigahertz (GHz).
For example, at present, the clock used by a typical processor operates at approximately
3 GHz.

It is difficult for a human to imagine circuits changing at such high rates. To make
the concept clear, let’s consider a clock is available that operates at an extremely slow
rate of 1 Hz. Such a clock might be used to control an interface for a human. For ex-
ample, if a computer contains an LED that flashes on and off to indicate that the com-
puter is active, a slow clock is needed to control the LED. Note that a clock rate of 1
Hz means the clock completes an entire cycle in one second. That is, the clock emits a
logical 1 for one-half cycle followed by a logical zero for one-half cycle. If a circuit ar-
ranges to turn on an LED whenever the clock emits a logical 1, the LED will remain on
for one-half second, and then will be off for one-half second.

��������������������������������
†See Figure 2.15 on page 24.

www.ebook3000.com

http://www.ebook3000.org

Sec. 2.17 Clocks And Sequences 29

How does an alternating sequence of 0 and 1 values make digital circuits more
powerful? To understand, we will consider a simple clocked circuit. Suppose that dur-
ing startup, a computer must perform the following sequence of steps:

d Test the battery

d Power on and test the memory

d Start the disk spinning

d Power up the screen

d Read the boot sector from disk into memory

d Start the CPU

To simplify the explanation, we will assume that each step requires at most one second
to complete before the next step can be started. Thus, we desire a circuit that, once it
has been started, will perform the six steps in sequence, at one-second intervals with no
further changes in input.

For now, we will focus on the essence of the circuit, and consider how it can be
started later. A circuit to handle the task of performing six steps in sequence can be
built from three building blocks: a clock, a binary counter, and a device known as a
decoder/demultiplexor†, which is often abbreviated demux. We have already con-
sidered a counter, and will assume that a clock is available that generates digital output
at a rate of exactly one cycle per second. The last component, a decoder/demultiplexor,
is a single integrated circuit that uses a binary value to map an input to a set of outputs.
We will use the decoding function to select an output. That is, a decoder takes a binary
value as input, and uses the value to choose an output. Only one output of a decoder is
on at any time; all others are off — when the input lines represent the value i in binary,
the decoder selects the ith output. Figure 2.20 illustrates the concept.

decoder

x
y
z

“000”

“001”

“010”

“011”

“100”

“101”

“110”

“111”

inputs outputs

Figure 2.20 Illustration of a decoder with three input lines and eight output
lines. When inputs x, y, and z have the values 0, 1, and 1, the
fourth output from the top is selected.

��������������������������������
†An alternate spelling of demultiplexer is also used.

30 Fundamentals Of Digital Logic Chap. 2

When used as a decoder, the device merely selects one of its outputs; when used as
a demultiplexor, the device takes an extra input which it passes to the selected output.
Both the decoder function and the more complex demultiplexor function can be con-
structed from Boolean gates.

A decoder provides the last piece needed for our simplistic sequencing mechanism
— when we combine a clock, counter, and decoder, the resulting circuit can execute a
series of steps. For example, Figure 2.21 shows the interconnection in which the output
of a clock is used as input to a binary counter, and the output of a binary counter is
used as input to a decoder.

clock
counter

decoder

not used

test battery

test memory

start disk

power on display

read boot block

start CPU

not used

Figure 2.21 An illustration of how a clock can be used to create a circuit that
performs a sequence of six steps. Output lines from the counter
connect directly to input lines of the decoder.

To understand how the circuit operates, assume that the counter has been reset to
zero. Because the counter output is 000, the decoder selects the topmost output, which
is not used (i.e., not connected). Operation starts when the clock changes from logical 0
to logical 1. The counter accumulates the count, which changes its output to 001.
When its input changes, the decoder selects the second output, which is labeled test bat-
tery. Presumably, the second output wire connects to a circuit that performs the neces-
sary test. The second output remains selected for one second. During the second, the
clock output remains at logical 1 for one-half second, and then reverts to logical 0 for
one-half second. When the clock output changes back to logical 1, the counter output
lines change to 010, and the decoder selects the third output, which is connected to cir-
cuitry that tests memory.

Of course, details are important. For example, some decoder chips make a selected
output 0 and other outputs 1. Electrical details also matter. To be compatible with
other devices, the clock must use five volts for logical 1, and zero volts for logical 0.
Furthermore, to be directly connected, the output lines of the binary counter must use
the same binary representation as the input lines of the decoder. Chapter 3 discusses
data representation in more detail; for now, we assume the output and input values are
compatible.

www.ebook3000.com

http://www.ebook3000.org

Sec. 2.18 The Important Concept Of Feedback 31

2.18 The Important Concept Of Feedback

The simplistic circuit in Figure 2.21 lacks an important feature: there is no way to
control operation (i.e., to start or stop the sequence). Because a clock runs forever, the
counter in the figure counts from zero through its maximum value, and then starts again
at zero. As a result, the decoder will repeatedly cycle through its outputs, with each
output being held for one second before moving on to the next.

Few digital circuits perform the same series of steps repeatedly. How can we ar-
range to stop the sequence after the six steps have been executed? The solution lies in a
fundamental concept: feedback. Feedback lies at the heart of complex digital circuits
because it allows the results of processing to affect the way a circuit behaves. In the
computer startup sequence, feedback is needed for each of the steps. If the disk cannot
be started, for example, the boot sector cannot be read from the disk.

We have already seen feedback used to maintain a data value in the latch circuit of
Figure 2.14 because the output from each of the right-most nand gates feeds back as an
input to the other gate. For another example of feedback, consider how we might use
the final output of the decoder, call it F, to stop the sequence. An easy solution consists
of using the value of F to prevent clock pulses from reaching the counter. That is, in-
stead of connecting the clock output directly to the counter input, we insert logic gates
that only allow the counter input to continue when F has the value 0. In terms of
Boolean algebra, the counter input should be:

CLOCK and (not F)

That is, as long as F is false, the counter input should be equal to the clock; when F is
true, however, the counter input changes to (and remains) zero. Figure 2.22 shows how
two inverters and a nand gate can be used to implement the necessary function.

decoder

counterclock

not used

test battery

test memory

start disk

power on display

read boot block

start CPU

stopfeedback

these two gates perform
the Boolean and function

Figure 2.22 A modification of the circuit in Figure 2.21 that includes feed-
back to stop processing after one pass through each output.

32 Fundamentals Of Digital Logic Chap. 2

The feedback in Figure 2.22 is fairly obvious because there is an explicit physical
connection between the last output and the combinatorial circuit on the input side. The
figure also makes it easy to see why feedback mechanisms are sometimes called feed-
back loops†.

2.19 Starting A Sequence

Figure 2.22 shows that it is possible to use feedback to terminate a process. How-
ever, the circuit is still incomplete because it does not contain a mechanism that allows
the sequence to start. Fortunately, adding a starting mechanism is trivial. To under-
stand why, recall that a counter contains a separate input line that resets the count to
zero. All that is needed to make our circuit start is another input (e.g., from a button
that a user pushes) connected to the counter reset.

When a user pushes the button, the counter resets to zero, which causes the
counter’s output to become 000. When it receives an input of all zeros, the decoder
turns on the first output, and turns off the last output. When the last output turns off,
the nand gate allows the clock pulses through, and the counter begins to run.

Although it does indeed start the sequence, allowing a user to reset the counter can
cause problems. For example, consider what happens if a user becomes impatient dur-
ing the startup sequence and presses the button a second time. Once the counter resets,
the sequence starts again from the beginning. In some cases, performing an operation
twice simply wastes time. In other cases, however, repeating an operation causes prob-
lems (e.g., some disk drives require that only one command be issued at a time). Thus,
a production system uses complex combinatorial logic to prevent a sequence from being
interrupted or restarted before it completes.

Although it only contains a few components, the example demonstrates an impor-
tant concept: a set of Boolean logic gates and a clock are sufficient to allow the execu-
tion of a sequence of logical steps. The point is:

The example circuit shows that Boolean logic gates and a clock make
it possible to build a circuit which, when started, performs a logical
sequence of steps and then halts.

Only one additional concept is needed before we can create a general-purpose com-
puter: programmability. Chapter 6 extends our discussion of hardware by showing how
the basic components described here can be used to build a programmable processor
that uses a program in memory to determine the sequence of operations.

��������������������������������
†A feedback loop is also present among the gates used to construct a flip-flop.

www.ebook3000.com

http://www.ebook3000.org

Sec. 2.20 Iteration In Software Vs. Replication In Hardware 33

2.20 Iteration In Software Vs. Replication In Hardware

As we think about hardware, it will be important to remember a significant differ-
ence between the way software and hardware handle operations that must be applied to
a set of items. In software, a fundamental paradigm for handling multiple items con-
sists of iteration — a programmer writes code that repeatedly finds the next item in a
set and applies the operation to the item. Because the underlying system only applies
the operation to one item at a time, a programmer must specify the number of items.
Iteration is so essential to programming that most programming languages provide state-
ments (e.g., a for loop) that allow the programmer to express the iteration clearly.

Although hardware can be built to perform iteration, doing so is difficult and the
resulting hardware is clumsy. Instead, the fundamental hardware paradigm for handling
multiple items consists of replication — a hardware engineer creates multiple copies of
a circuit, and allows each copy to act on one item. All copies perform at the same time.
For example, to compute a Boolean operation on a pair of thirty-two bit values, a
hardware engineer designs a circuit for a pair of bits, and then replicates the circuit
thirty-two times. Thus, to compute the Boolean exclusive or of two thirty-two bit in-
tegers, a hardware designer can use thirty-two xor gates.

Replication is difficult for programmers to appreciate because replication is anti-
thetical to good programming — a programmer is taught to avoid duplicating code. In
the hardware world, however, replication has three distinct advantages: elegance, speed,
and correctness. Elegance arises because replication avoids the extra hardware needed
to select an individual item, move it into place, and move the result back. In addition to
avoiding the delay involved in moving values and results, replication increases perfor-
mance by allowing multiple operations to be performed simultaneously. For example,
thirty-two inverters working at the same time can invert thirty-two bits in exactly the
same amount of time that it takes one inverter to invert a single bit. Such speedup is
especially significant if a computer can operate on sixty-four bits at the same time. The
notion of parallel operation appears throughout the text; a later chapter explains how
parallelism applies on a larger scale.

The third advantage of replication focuses on high reliability. Reliability is in-
creased because replication makes hardware easier to validate. For example, to validate
that a thirty-two bit operation works correctly, a hardware engineer only needs to vali-
date the circuit for a single bit — the remaining bits will work the same because the
same circuit is replicated. As a result, hardware is much more reliable than software.
Even the legal system holds product liability standards higher for hardware than for
software — unlike software that is often sold “as is” without a warranty, hardware (e.g.,
an integrated circuit) is sold within a legal framework that requires fitness for the in-
tended purpose. We can summarize:

Unlike software, which uses iteration, hardware uses replication. The
advantages of replication are increased elegance, higher speed, and
increased reliability.

34 Fundamentals Of Digital Logic Chap. 2

2.21 Gate And Chip Minimization

We have glossed over many of the underlying engineering details. For example,
once they choose a general design and the amount of replication that will be used, en-
gineers seek ways to minimize the amount of hardware needed. There are two issues:
minimizing gates and minimizing integrated circuits. The first issue involves general
rules of Boolean algebra. For example, consider the Boolean expression:

not (not z)

A circuit to implement the expression consists of two inverters connected together. Of
course, we know that two not operations are the identity function, so the expression can
be replaced by z. That is, a pair of directly connected inverters can be removed from a
circuit without affecting the result.

As another example of Boolean expression optimization, consider the expression:

x nor (not x)

Either x will have the value 1, or not x will have the value 1, which means the nor func-
tion will always produce the same value, a logical 0. Therefore, the entire expression
can be replaced by the value 0. In terms of a circuit, it would be foolish to use a nor
gate and an inverter to compute the expression because the circuit resulting from the
two gates will always be logical zero. Thus, once an engineer writes a Boolean expres-
sion formula, the formula can be analyzed to look for instances of subexpressions that
can be reduced or eliminated without changing the result.

Fortunately, sophisticated design tools exist that help engineers minimize gates.
Such tools take a Boolean expression as an input. The design tool analyzes the expres-
sion and produces a circuit that implements the expression with a minimum number of
gates. The tools do not merely use Boolean and, or, and not. Instead, they understand
the gates that are available (e.g., nand), and define the circuit in terms of available elec-
tronic parts.

Although Boolean formulas can be optimized mathematically, further optimization
is needed because the overall goal is minimization of integrated circuits. To understand
the situation, recall that many integrated circuits contain multiple copies of a given type
of gate. Thus, minimizing the number of Boolean operations may not optimize a circuit
if the optimization increases the types of gates required. For example, suppose a Boole-
an expression requires four nand gates, and consider an optimization that reduces the re-
quirements to three gates: two nand gates and a nor gate. Unfortunately, although the
total number of gates is lower, the optimization increases the number of integrated cir-
cuits required because a single 7400 integrated circuit contains four nand gates, but two
integrated circuits are required if an optimization includes both nand and nor gates.

2.22 Using Spare Gates

Consider the circuit in Figure 2.22 carefully†. Assuming the clock, counter, and
decoder each require one integrated circuit, how many additional integrated circuits are
required? The obvious answer is two: one is needed for the nand gate (e.g., a 7400)

��������������������������������
†Figure 2.22 can be found on page 31.

www.ebook3000.com

http://www.ebook3000.org

Sec. 2.22 Using Spare Gates 35

and another for the two inverters (e.g., a 7404). Surprisingly, it is possible to imple-
ment the circuit with only one additional integrated circuit. To see how, observe that
although the 7400 contains four nand gates, only one is needed. How can the spare
gates be used? The trick lies in observing that nand of 1 and 0 is 1, and nand of 1 and
1 is 0. That is,

1 nand x

is equivalent to:

not x

To use a nand gate as an inverter, an engineer simply connects one of the two inputs to
logical one (i.e., five volts). A spare nand gate can be used as an inverter.

2.23 Power Distribution And Heat Dissipation

In addition to planning digital circuits that correctly perform the intended function
and minimizing the number of components used, engineers must contend with the
underlying power and cooling requirements†. For example, although the diagrams in
this chapter only depict the logical inputs and outputs of gates, every gate consumes
power. The amount of power used by a single integrated circuit is insignificant. How-
ever, because hardware designers tend to use replication instead of iteration, complex
digital systems contain many circuits. An engineer must calculate the total power re-
quired, construct the appropriate power supplies, and plan additional wiring to carry
power to each chip.

The laws of physics dictate that any device that consumes power will generate
heat. The amount of heat generated is proportional to the amount of power consumed,
so an integrated circuit generates a minimal amount of heat. Because a digital system
uses hundreds of circuits that operate in a small, enclosed space, the total heat generated
can be significant. Unless engineers plan a mechanism to dissipate heat, high tempera-
tures will cause the circuits to fail. For small systems, engineers add holes to the
chassis that allow hot air to escape and be replaced by cooler air from the surrounding
room. For intermediate systems, such as personal computers, fans are added to move
air from the surrounding room through the system more quickly. For the largest digital
systems, cool air is insufficient — a refrigeration system with liquid coolant must be
used (e.g., circuits in the Cray 2 supercomputer were directly immersed in a liquid
coolant).

2.24 Timing And Clock Zones

Our quick tour of digital logic omits another important aspect that engineers must
consider: timing. A gate does not act instantly. Instead, a gate takes time to settle (i.e.,
to change the output once the input changes). In our examples, timing is irrelevant be-

��������������������������������
†Chapter 20 considers power in more detail.

36 Fundamentals Of Digital Logic Chap. 2

cause the clock runs at the incredibly slow rate of 1 Hz and all gates settle in less than a
microsecond. Thus, the gates settle long before the clock pulses.

In practice, timing is an essential aspect of engineering because digital circuits are
designed to operate at high speed. To ensure that a circuit will operate correctly, an en-
gineer must calculate the time required for all gates to settle.

Engineers must also calculate the time required to propagate signals throughout an
entire system, and must ensure that the system does not fail because of clock skew. To
understand clock skew, consider Figure 2.23 that illustrates a circuit board with a clock
that controls three of the integrated circuits in the system.

IC1

IC2

IC3

clock

Figure 2.23 Illustration of three integrated circuits in a digital system that are
controlled by a single clock. The length of wire between the
clock and an integrated circuit determines when a clock signal
arrives.

In the figure, the three integrated circuits are physically distributed (presumably,
other integrated circuits occupy the remaining space). Unfortunately, a finite time is re-
quired for a signal from the clock to reach each of the circuits, and the time is propor-
tional to the length of wire between the clock and a given circuit. As a result, the clock
signal will arrive at some of the integrated circuits sooner than it arrives at others. As a
rule of thumb, a signal requires one nanosecond to propagate across one foot of wire.
Thus, for a system that measures eighteen inches across, the clock signal can reach loca-
tions near the clock a nanosecond before the signal reaches the farthest location. Obvi-
ously, clock skew can cause a problem if parts of the system must operate before other
parts. An engineer needs to calculate the length of each path and design a layout that
avoids the problem of clock skew.

As a consequence of clock skew, engineers seldom use a single global clock to
control a system. Instead, multiple clocks are used, with each clock controlling one part
of the system. Often, clocks that run at the highest rates are used in the smallest physi-
cal areas. We use the term clock zone to refer to the region that a given clock controls.
The idea is not limited to physically large systems — integrated circuits, such as CPUs,
have become so large and complex that multiple clock zones are used on a chip.

www.ebook3000.com

http://www.ebook3000.org

Sec. 2.24 Timing And Clock Zones 37

Although using multiple clock zones avoids the problems of clock skew, multiple
clocks introduce another problem, clock synchronization: digital logic at the boundary
between two clock zones must be engineered to accommodate both zones. Usually,
such accommodation means the circuit slows down and takes multiple clock cycles to
move data.

2.25 Clockless Logic

As chips increase in size and complexity, the problem of clock skew and the divi-
sion of a system into clock zones has become increasingly important. In many systems,
the boundary between clock zones forms a bottleneck because logic circuits at the boun-
dary must wait multiple clock cycles before the output from one clock zone can be for-
warded to another clock zone. The problem of zone synchronization has become so im-
portant that researchers have devised an alternative approach: clockless logic. In
essence, a clockless system uses two wires instead of one to represent a Boolean value.
The use of two wires means that an output can indicate the end of a bit unambiguously
without depending on a clock. Figure 2.24 lists the four possible combinations of
values on two wires and their meanings.

Wire 1 Wire 2 Meaning��
0 0 Reset before starting a new bit
0 1 Transfer a 0 bit
1 0 Transfer a 1 bit
1 1 Undefined (not used)

Figure 2.24 Meaning of signals on two wires when clockless logic is used to
transfer bits from one chip to another.

The idea is that the sender sets both wires to zero volts between each bit to reset
the receiver. After the reset, the sender transfers a logical 0 or a logical 1. A receiver
knows when a bit arrives because exactly one of the two wires is high (e.g., 5 volts).

Why use clockless logic? In addition to eliminating the problem of clock zone
coordination and allowing higher speed data transfer among chips, the clockless ap-
proach can use less power. Clocked circuits need to propagate the clock signal continu-
ously, even when parts of the circuit are inactive. Clockless logic can avoid the over-
head of propagating clock signals.

Does the clockless approach work in practice? Yes. By designing an entire pro-
cessor that uses clockless logic, ARM, Inc. has demonstrated that the approach scales to
large, complex circuits. Thus, the clockless approach has potential. Currently, most
chip designers still use the clocked approach.

38 Fundamentals Of Digital Logic Chap. 2

2.26 Circuit Size And Moore’s Law

Most digital circuits are built from Integrated Circuits (ICs), a technology that per-
mits many transistors to be placed on a single silicon chip along with wiring that inter-
connects them. The idea is that the components on an IC form a useful circuit.

ICs are often created by using Complementary Metal Oxide Semiconductor
(CMOS) technology. Silicon is doped with impurities to give it negative or positive
ionization. The resulting substances are known as N-type silicon or P-type silicon.
When arranged in layers, N-type and P-type silicon form transistors.

IC manufacturers do not create a single IC at a time. Instead, a manufacturer
creates a round wafer that is between twelve and eighteen inches in diameter and con-
tains many copies of a given IC design. Once the wafer has been created, the vendor
cuts out the individual chips, and packages each chip in a plastic case along with pins
that connect to the chip.

ICs come in a variety of shapes and sizes; some have only eight external connec-
tions (i.e., pins), and others have hundreds of pins†. Some ICs contain dozens of
transistors, others contain millions.

Depending on the number of transistors on the chip, ICs can be divided into four
broad categories that Figure 2.25 lists.

Name Example Use��
Small Scale Integration (SSI) Basic Boolean gates
Medium Scale Integration (MSI) Intermediate logic, such as counters
Large Scale Integration (LSI) Small, embedded processors
Very Large Scale Integration (VLSI) Complex processors

Figure 2.25 A classification scheme used for integrated circuits.

For example, integrated 7400, 7402, and 7404 circuits described in this chapter are clas-
sified as SSI. A binary counter, flip-flop, or demultiplexor is classified as MSI.

The definition of VLSI keeps changing as manufacturers devise new ways to in-
crease the density of transistors per square area. Gordon Moore, a cofounder of Intel
Corporation, is attributed with having observed that the density of silicon circuits, meas-
ured in the number of transistors per square inch, would double every year. The obser-
vation, known as Moore’s Law, was revised in the 1970s, when the rate slowed to dou-
bling every eighteen months.

As the number of transistors on a single chip increased, vendors took advantage of
the capability to add more and more functionality. Some vendors created multicore
CPU chips by placing multiple copies of their CPU (called a core) on a single chip, and
then providing interconnections among the cores. Other vendors took a System on Chip
(SoC) approach in which a single chip contains processors, memories, and interfaces for
I/O devices, all interconnected to form a complete system. Finally, memory manufac-

��������������������������������
†Engineers use the term pinout to describe the purpose of each pin on a chip.

www.ebook3000.com

http://www.ebook3000.org

Sec. 2.26 Circuit Size And Moore’s Law 39

turers have created chips with larger and larger amounts of main memory called
Dynamic Ram (DRAM).

In addition to general-purpose ICs that are designed and sold by vendors, it has be-
come possible to build special-purpose ICs. Known as Application Specific Integrated
Circuits (ASICs), the ICs are designed by a private company, and then the designs are
sent to a vendor to be manufactured. Although designing an ASIC is expensive and
time-consuming — approximately two million dollars and nearly two years — once the
design is completed, copies of the ASIC are inexpensive to produce. Thus, companies
choose ASIC designs for products where standard chips do not meet the requirements
and the company expects a large volume of the product to be produced.

2.27 Circuit Boards And Layers

Most digital systems are built using a Printed Circuit Board (PCB) that consists of
a fiberglass board with thin metal strips attached to the surface and holes for mounting
integrated circuits and other components. In essence, the metal strips on the circuit
board form the wiring that interconnects components.

Can a circuit board be used for complex interconnections that require wires to
cross? Interestingly, engineers have developed multilayer circuit boards that solve the
problem. In essence, a multilayer circuit board allows wiring in three dimensions —
when a wire must cross another, the designer can arrange to pass the wire up to a higher
layer, make the crossing, and then pass the wire back down.

It may seem that a few layers will suffice for any circuit. However, large complex
circuits with thousands of interconnections may need additional layers. It is not uncom-
mon for engineers to design circuit boards that have eighteen layers; the most advanced
boards can have twenty-four layers.

2.28 Levels Of Abstraction

As this chapter illustrates, it is possible to view digital logic at various levels of
abstraction. At the lowest level, a transistor is created from silicon. At the next level,
multiple transistors are used along with components, such as resistors and diodes, to
form gates. At the next level, multiple gates are combined to form intermediate scale
units, such as flip flops. In later chapters, we will discuss more complex mechanisms,
such as processors, memory systems, and I/O devices, that are each constructed from
multiple intermediate scale units. Figure 2.26 summarizes the levels of abstraction.

The important point is that moving up the levels of abstraction allows us to hide
more details and talk about larger and larger building blocks without giving internal de-
tails. When we describe processors, for example, we can consider how a processor
works without examining the internal structure at the level of gates or transistors.

40 Fundamentals Of Digital Logic Chap. 2

Abstraction Implemented With���
Computer Circuit board(s)
Circuit board Processor, memory, and bus adapter chips
Processor VLSI chip
VLSI chip Many gates
Gate Many transistors
Transistor Semiconductor implemented in silicon

Figure 2.26 An example of levels of abstraction in digital logic. An item at
one level is implemented using items at the next lower level.

An important consequence of abstraction arises in the diagrams architects and en-
gineers use to describe digital systems. As we have seen, schematic diagrams can
represent the interconnection of transistors, resistors, and diodes. Diagrams can also be
used to represent an interconnection among gates. In later chapters, we will use high-
level diagrams that represent the interconnection of processors and memory systems. In
such diagrams, a small rectangular box will represent a processor or a memory without
showing the interconnection of gates. When looking at an architectural diagram, it will
be important to understand the level of abstraction and to remember that a single item
in a high-level diagram can correspond to an arbitrarily large number of items at a
lower-level abstraction.

2.29 Summary

Digital logic refers to the pieces of hardware used to construct digital systems such
as computers. As we have seen, Boolean algebra is an important tool in digital circuit
design — there is a direct relationship between Boolean functions and the gates used to
implement combinatorial digital circuits. We have also seen that Boolean logic values
can be described using truth tables.

A clock is a mechanism that emits pulses at regular intervals to form a signal of al-
ternating ones and zeros. A clock allows a digital circuit output to be a function of time
as well as of its logic inputs. A clock can also be used to provide synchronization
among multiple parts of a circuit.

Although we think of digital logic from a mathematical point of view, building
practical circuits involves understanding the underlying hardware details. In particular,
besides basic correctness, engineers must contend with problems of power distribution,
heat dissipation, and clock skew.

www.ebook3000.com

http://www.ebook3000.org

Sec. 2.29 Summary 41

EXERCISES

2.1 Use the Web to find the number of transistors on a VLSI chip and the physical size of the
chip. If the entire die was used, how large would an individual transistor be?

2.2 Digital logic circuits used in smart phones and other battery-powered devices do not run on
five volts. Look at the battery in your smart phone or search the Web to find out what vol-
tage is being used.

2.3 Design a circuit that uses nand, nor and inverter gates to provide the exclusive or function.

2.4 Write a truth table for the full adder circuit in Figure 2.12.

2.5 Use the Web to read about flip-flops. List the major types and their characteristics.

2.6 Create the circuit for a decoder from nand, nor, and inverter gates.

2.7 Look at Web sources, such as Wikipedia, to answer the following question: when a chip
manufacturer boasts that it uses a seven nanometer chip technology, what does the
manufacturer mean?

2.8 What is the maximum number of output bits a counter chip can have if the chip has sixteen
pins? (Hint: the chip needs power and ground connections.)

2.9 If a decoder chip has five input pins (not counting power and ground), how many output
pins will it have?

2.10 Design a circuit that takes three inputs, A, B, and C, and generates three outputs. The cir-
cuit would be trivial, except that you may only use two inverters. You may use arbitrary
other chips (e.g., nand, nor, and exclusive or).

2.11 Assume a circuit has a spare nor gate. Can any useful functions be created by connecting
one of the inputs to logical one? To logical zero? Explain.

2.12 Read about clockless logic. Where is it being used?

www.ebook3000.com

http://www.ebook3000.org

Chapter Contents

3.1 Introduction, 45
3.2 Digital Logic And The Importance Of Abstraction, 45
3.3 Definitions Of Bit And Byte, 46
3.4 Byte Size And Possible Values, 46
3.5 Binary Weighted Positional Representation, 47
3.6 Bit Ordering, 48
3.7 Hexadecimal Notation, 49
3.8 Notation For Hexadecimal And Binary Constants, 51
3.9 Character Sets, 51
3.10 Unicode, 52
3.11 Unsigned Integers, Overflow, And Underflow, 53
3.12 Numbering Bits And Bytes, 53
3.13 Signed Binary Integers, 55
3.14 An Example Of Two’s Complement Numbers, 56
3.15 Sign Extension, 57
3.16 Floating Point, 58
3.17 Range Of IEEE Floating Point Values, 59
3.18 Special Values, 60
3.19 Binary Coded Decimal Representation, 61
3.20 Signed, Fractional, And Packed BCD Representations, 62
3.21 Data Aggregates, 62
3.22 Program Representation, 63
3.23 Summary, 63

www.ebook3000.com

http://www.ebook3000.org

3

Data And Program
Representation

3.1 Introduction

The previous chapter introduces digital logic, and describes basic hardware build-
ing blocks that are used to create digital systems. This chapter continues the discussion
of fundamentals by explaining how digital systems use binary representations to encode
programs and data. We will see that representation is important for programmers as
well as for hardware engineers because software must understand the format that the
underlying hardware uses, and the format affects the speed with which the hardware can
perform operations, such as addition.

3.2 Digital Logic And The Importance Of Abstraction

As we have seen, digital logic circuits contain many low-level details. The circuits
use transistors and electrical voltage to perform basic operations. The main point of di-
gital logic, however, is abstraction — we want to hide the underlying details and use
high-level abstractions whenever possible. For example, we have seen that each input
or output of a 7400-series digital logic chip is restricted to two possible conditions: zero
volts or five volts. When computer architects use logic gates to design computers, how-
ever, they do not think about such details. Instead, they use abstract designations of
logical 0 and logical 1 from Boolean algebra. Abstracting means that complex digital
systems, such as memories and processors, can be described without thinking about in-
dividual transistors or voltages. More important, abstraction means that a design can be

45

46 Data And Program Representation Chap. 3

used with a battery-operated device, such as a smart phone, that uses lower voltages to
reduce power consumption.

To a programmer, the most important abstractions are the items visible to software:
the representations used for data and programs. The next sections consider data
representation, and discuss how it is visible to programs; later sections describe how in-
structions are represented.

3.3 Definitions Of Bit And Byte

All data representation builds on digital logic. We use the abstraction binary digit
(bit) to describe a digital entity that can have two possible values, and assign the
mathematical names 0 and 1 for the two values.

Multiple bits are used to represent more complex data items. For example, each
computer system defines a byte to be the smallest data item larger than a bit that the
hardware can manipulate.

How big is a byte? The size of a byte is not standard across all computer systems.
Instead, the size is chosen by the architect who designs the computer. Early computer
designers experimented with a variety of byte sizes, and some special-purpose comput-
ers still use unusual byte sizes. For example, an early computer manufactured by CDC
corporation used a six-bit byte, and a computer manufactured by BB&N used a ten-bit
byte. However, most modern computer systems define a byte to contain eight bits —
the size has become so widely accepted that engineers usually assume a byte size equal
to eight bits, unless told otherwise. The point is:

Although computers have been designed with other size bytes, current
computer industry practice defines a byte to contain eight bits.

3.4 Byte Size And Possible Values

The number of bits per byte is especially important to programmers because
memory is organized as a sequence of bytes. The size of the byte determines the max-
imum numerical value that can be stored in one byte. A byte that contains k bits can
represent one of 2k values (i.e., exactly 2k unique strings of 1s and 0s exist that have
length k). Thus, a six-bit byte can represent 64 possible values, and an eight-bit byte
can represent 256 possible values. As an example, consider the eight possible combina-
tions that can be achieved with three bits. Figure 3.1 illustrates the combinations.

0 0 0
0 0 1

0 1 0
0 1 1

1 0 0
1 0 1

1 1 0
1 1 1

Figure 3.1 The eight unique combinations that can be assigned to three bits.

www.ebook3000.com

http://www.ebook3000.org

Sec. 3.4 Byte Size And Possible Values 47

What does a given pattern of bits represent? The most important thing to under-
stand is that the bits themselves have no intrinsic meaning — the interpretation of the
value is determined by the way hardware and software use the bits. For example, a
string of bits could represent an alphabetic character, a string of characters, an integer, a
floating point number, an audio recording (e.g., a song), a video, or a computer pro-
gram.

In addition to items a computer programmer understands, computer hardware can
be designed in which a set of bits can represent the status of three peripheral devices.
For example:

d The first bit has the value 1 if a keyboard is connected.

d The second bit has the value 1 if a camera is connected.

d The third bit has the value 1 if a printer is connected.

Alternatively, hardware can be designed in which a set of three bits represent the
current status of three pushbutton switches: the ith bit is 1 if a user is currently pushing
switch i. The point is:

Bits have no intrinsic meaning — all meaning is imposed by the way
bits are interpreted.

3.5 Binary Weighted Positional Representation

One of the most common abstractions used to associate a meaning with each com-
bination of bits interprets them as a numeric value. For example, an integer interpreta-
tion is taken from mathematics: bits are values in a positional number system that uses
base two. To understand the interpretation, remember that in base ten, the possible di-
gits are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, each position represents a power of 10, and the
number 123 represents 1 times 102 plus 2 times 101 plus 3 times 100. In the binary sys-
tem, the possible digits are 0 and 1, and each bit position represents a power of two.
That is, the positions represent successive powers of two: 2 0, 2 1, 2 2, and so on. Figure
3.2 illustrates the positional concept for binary numbers.

20
 = 121

 = 222
 = 423

 = 824
 = 1625

 = 32

Figure 3.2 The value associated with each of the first six bit positions when
using a positional interpretation in base two.

48 Data And Program Representation Chap. 3

As an example, consider the binary number:

0 1 0 1 0 1

According to the figure, the value can be interpreted as:

0 1 0 1 0 1 = 0 × 25
 + 1 × 24

 + 0 × 23
 + 1 × 22

 + 0 × 21
 + 1 × 20 = 21

We will discuss more about specific forms of integer representation (including negative
numbers) later in the chapter. For now, it is sufficient to observe an important conse-
quence of conventional positional notation: the binary numbers that can be represented
in k bits start at zero instead of one. If we use the positional interpretation illustrated in
Figure 3.2, the binary numbers that can be represented with three bits range from zero
through seven. Similarly, the binary numbers that can be represented with eight bits
range from zero through two hundred fifty-five. We can summarize:

A set of k bits can be interpreted to represent a binary integer. When
conventional positional notation is used, the values that can be
represented with k bits range from 0 through 2k– 1.

Because it is an essential skill in the design of both software and hardware, anyone
working in those fields should know the basics. Figure 3.3 lists the decimal equivalents
of binary numbers that hardware and software designers should know. The table in-
cludes entries for 232 and 264 (an incredibly large number). Although smaller values in
the table should be memorized, hardware and software designers only need to know the
order of magnitude of the larger entries. Fortunately, is it easy to remember that 232

contains ten decimal digits and 264 contains twenty.

3.6 Bit Ordering

The positional notation in Figure 3.2 may seem obvious. After all, when writing
decimal numbers, we always write the least significant digit on the right and the most
significant digit on the left. Therefore, when writing binary, it makes sense to write the
Least Significant Bit (LSB) on the right and the Most Significant Bit (MSB) on the left.
When digital logic is used to store an integer, however, the concepts of “right” and
“left” no longer make sense. Therefore, a computer architect must specify exactly how
bits are stored, and which are the least and most significant.

The idea of bit ordering is especially important when bits are transferred from one
location to another. For example, when a numeric value is moved between a register
and memory, the bit ordering must be preserved. Similarly, when sending data across a
network, the sender and receiver must agree on the bit ordering. That is, the two ends
must agree whether the LSB or the MSB will be sent first.

www.ebook3000.com

http://www.ebook3000.org

Sec. 3.6 Bit Ordering 49

Power Of 2 Decimal Value Decimal Digits���
0 1 1
1 2 1
2 4 1
3 8 1
4 16 2
5 32 2
6 64 2
7 128 3
8 256 3
9 512 3

10 1024 4
11 2048 4
12 4096 4
15 16384 5
16 32768 5
20 1048576 7
30 1073741824 10
32 4294967296 10
64 18446744073709551616 20

Figure 3.3 Decimal values for commonly used powers of two.

3.7 Hexadecimal Notation

Although a binary number can be translated to an equivalent decimal number, pro-
grammers and engineers sometimes find the decimal equivalent difficult to understand.
For example, if a programmer needs to test the fifth bit from the right, using the binary
constant 010000 makes the correspondence between the constant and the bit much
clearer than the equivalent decimal constant 16.

Unfortunately, long strings of bits are as unwieldy and difficult to understand as a
decimal equivalent. For example, to determine whether the sixteenth bit is set in the
following binary number, a human needs to count individual bits:

1 1 0 1 1 1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1

To aid humans in expressing binary values, a compromise has been reached: a po-
sitional numbering system with a larger base. If the base is chosen to be a power of
two, translation to binary is trivial. Base eight (known as octal) has been used, but base
sixteen (known as hexadecimal) has become especially popular.

50 Data And Program Representation Chap. 3

Hexadecimal representation offers two advantages. First, because the representa-
tion is substantially more compact than binary, the resulting strings are shorter. Second,
because sixteen is a power of two, conversion between binary and hexadecimal is
straightforward and does not involve a complex arithmetic calculation (i.e., a human can
perform the transformation easily and quickly, without the need for a calculator or other
tools).

In essence, hexadecimal encodes each group of four bits as a single hex† digit
between zero and fifteen. Figure 3.4 lists the sixteen hex digits along with the binary
and decimal equivalent of each. The figure and the examples that follow use uppercase
letters A through F to represent hex digits above nine. Some programmers and some
programming languages use lowercase letters a through f instead; the distinction is
unimportant and programmers should be prepared to use either form.

Hex Digit Binary Equivalent Decimal Equivalent���
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 2
3 0 0 1 1 3
4 0 1 0 0 4
5 0 1 0 1 5
6 0 1 1 0 6
7 0 1 1 1 7
8 1 0 0 0 8
9 1 0 0 1 9
A 1 0 1 0 10
B 1 0 1 1 11
C 1 1 0 0 12
D 1 1 0 1 13
E 1 1 1 0 14
F 1 1 1 1 15

Figure 3.4 The sixteen hexadecimal digits and their equivalent binary and
decimal values. Each hex digit encodes four bits of a binary
value.

As an example of hexadecimal encoding, Figure 3.5 illustrates how a binary string
corresponds to its hexadecimal equivalent.

1 1 0 1 1 1 1 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1

D E C 9 0 9 4 9

Figure 3.5 Illustration of the relationship between binary and hexadecimal.
Each hex digit represents four bits.

��������������������������������
†Programmers use the term hex as an abbreviation for hexadecimal.

www.ebook3000.com

http://www.ebook3000.org

Sec. 3.7 Hexadecimal Notation 51

3.8 Notation For Hexadecimal And Binary Constants

Because the digits used in binary, decimal, and hexadecimal number systems over-
lap, constants can be ambiguous. To solve the ambiguity, an alternate notation is need-
ed. Mathematicians and some textbooks add a subscript to denote a base other than ten
(e.g., 13516 specifies that the constant is hexadecimal). Computer architects and pro-
grammers tend to follow programming language notation: hex constants begin with pre-
fix 0x, and binary constants begin with prefix 0b. Thus, to denote 1351 6, a program-
mer writes 0x135. Similarly, the 32-bit constant from Figure 3.5 is written:

0xDEC90949

3.9 Character Sets

We said that bits have no intrinsic meaning, and that the hardware or software
must determine what each bit represents. More important, more than one interpretation
can be used — a set of bits can be created and used with one interpretation and later
used with another.

As an example, consider character data that has both a numeric and symbolic in-
terpretation. Each computer system defines a character set† to be a set of symbols that
the computer and I/O devices agree to use. A typical character set contains uppercase
and lowercase letters, digits, and punctuation marks. More important, computer archi-
tects often choose a character set such that each character fits into a byte (i.e., each of
the bit patterns in a byte is assigned one character). Thus, a computer that uses an
eight-bit byte has two hundred fifty-six (28) characters in its character set, and a com-
puter that uses a six-bit byte has sixty-four (26) characters. In fact, the relationship
between the byte size and the character set is so strong that many programming
languages refer to a byte as a character.

What bit values are used to encode each character? The computer architect must
decide. In the 1960s, for example, IBM Corporation chose the Extended Binary Coded
Decimal Interchange Code (EBCDIC) representation as the character set used on IBM
computers. CDC Corporation chose a six-bit character set for use on their computers.
The two character sets were completely incompatible.

As a practical matter, computer systems connect to devices such as keyboards,
printers, or modems, and such devices are often built by separate companies. To inter-
operate correctly, peripheral devices and computer systems must agree on which bit pat-
tern corresponds to a given symbolic character. To help vendors build compatible
equipment, the American National Standards Institute (ANSI) defined a character
representation known as the American Standard Code for Information Interchange
(ASCII). The ASCII character set specifies the representation of one hundred twenty-
eight characters, including the usual letters, digits, and punctuation marks; additional
values in an eight-bit byte can be assigned for special symbols. The standard is widely
accepted.

��������������������������������
†Names of character sets are pronounced, not spelled out. For example, EBCDIC is pronounced ebb’se-

dick, and ASCII is pronounced ass’key.

52 Data And Program Representation Chap. 3

Figure 3.6 lists the ASCII representation of characters by giving a hexadecimal
value and the corresponding symbolic character. Of course, the hexadecimal notation is
merely a shorthand notation for a binary string. For example, the lowercase letter a has
hexadecimal value 0x61, which corresponds to the binary value 0b01100001.

00 nul 01 soh 02 stx 03 etx 04 eot 05 enq 06 ack 07 bel

08 bs 09 ht 0A lf 0B vt 0C np 0D cr 0E so 0F si

10 dle 11 dc1 12 dc2 13 dc3 14 dc4 15 nak 16 syn 17 etb

18 can 19 em 1A sub 1B esc 1C fs 1D gs 1e rs 1F us

20 sp 21 ! 22 " 23 # 24 $ 25 % 26 & 27 ’

28 (29) 2A * 2B + 2C , 2D – 2E . 2F /

30 0 31 1 32 2 33 3 34 4 35 5 36 6 37 7

38 8 39 9 3A : 3B ; 3C < 3D = 3E > 3F ?

40 @ 41 A 42 B 43 C 44 D 45 E 46 F 47 G

48 H 49 I 4A J 4B K 4C L 4D M 4E N 4F O

50 P 51 Q 52 R 53 S 54 T 55 U 56 V 57 W

58 X 59 Y 5A Z 5B [5C \ 5D] 5E ^ 5F _

60 ‘ 61 a 62 b 63 c 64 d 65 e 66 f 67 g

68 h 69 i 6A j 6B k 6C l 6D m 6E n 6F o

70 p 71 q 72 r 73 s 74 t 75 u 76 v 77 w

78 x 79 y 7A z 7B { 7C | 7D } 7E ~ 7F del

Figure 3.6 The ASCII character set. Each entry shows a hexadecimal value
and the graphical representation for printable characters and the
meaning for others.

We said that a conventional computer uses eight-bit bytes, and that ASCII defines
one hundred twenty-eight characters (i.e., a seven-bit character set). Thus, when ASCII
is used on a conventional computer, one-half of the byte values are unassigned (decimal
values 128 through 255). How are the additional values used? In some cases, they are
not — peripheral devices that accept or deliver characters merely ignore the eighth bit
in a byte. In other cases, the computer architect or a programmer extends the character
set (e.g., by adding punctuation marks for alternate languages).

3.10 Unicode

Although a seven-bit character set and an eight-bit byte work well for English and
some European languages, they do not suffice for all languages. Chinese, for example,
contains thousands of symbols and glyphs. To accommodate such languages, exten-
sions and alternatives have been proposed.

www.ebook3000.com

http://www.ebook3000.org

Sec. 3.10 Unicode 53

One of the widely accepted extended character sets is named Unicode. Unicode
extends ASCII and is intended to accommodate all languages, including languages from
the Far East. Originally designed as a sixteen-bit character set, later versions of Uni-
code have been extended to accommodate larger representations. Thus, future comput-
ers and I/O devices may base their character set on Unicode.

3.11 Unsigned Integers, Overflow, And Underflow

The positional representation of binary numbers illustrated in Figure 3.2† is said to
produce unsigned integers. That is, each of 2k combinations of bits is associated with a
nonnegative numeric value. Because the unsigned integers used in a computer have fi-
nite size, operations like addition and subtraction can have unexpected results. For ex-
ample, subtracting a positive k-bit unsigned integer from a smaller positive k-bit un-
signed integer can yield a negative (i.e., signed) result. Similarly, adding two k-bit un-
signed integers can produce a value that requires more than k bits to represent.

Hardware to perform unsigned binary arithmetic handles the problem in an in-
teresting way. First, the hardware produces a result by using wraparound (i.e., the
hardware adds two k-bit integers, and takes the k low-order bits of the answer).
Second, the hardware sets overflow or underflow conditions to indicate whether the
result exceeded k bits or was negative‡. For example, an overflow indicator
corresponds to the value that would appear in the k+1st bit (i.e., the value commonly
known as carry). Figure 3.7 illustrates an addition with three-bit arithmetic that results
in a carry.

1 0 0
+ 1 1 0

1 0 1 0

overflow result

Figure 3.7 Illustration of addition with unsigned integers that produces over-
flow. The overflow indicator, which tells whether wraparound
occurred, is equal to the carry bit.

3.12 Numbering Bits And Bytes

How should a set of bits be numbered? If we view the set as a string, it makes
sense to start numbering from the left, but if we view the set as a binary number, it
makes sense to start numbering from the right (i.e., from the numerically least signifi-
cant bit). Numbering is especially important when data is transferred over a network
because the sending and receiving computers must agree on whether the least-significant
or most-significant bit will be transferred first.

��������������������������������
†Figure 3.2 can be found on page 47.
‡The term underflow denotes a value that is less than the representation can hold. A negative result from

unsigned integer arithmetic is classified as an underflow because negative values cannot be represented.

54 Data And Program Representation Chap. 3

The issue of numbering becomes more complicated if we consider data items that
span multiple bytes. For example, consider an integer that consists of thirty-two bits. If
the computer uses eight-bit bytes, the integer will span four bytes, which can be
transferred starting with the least-significant or the most-significant byte.

We use the term little endian to characterize a system that stores and transmits
bytes of an integer from least significant to most significant, and the term big endian to
characterize a system that stores and transmits bytes of an integer from most significant
to least significant. Similarly, we use the terms bit little endian and bit big endian to
characterize systems that transfer bits within a byte starting at the least-significant bit
and most-significant bit, respectively. We can think of the bytes of an integer as being
stored in an array, and the endianness determines the direction in memory. Figure 3.8
uses an example integer to illustrate the two byte orders, showing positional representa-
tion and the arrangement of bytes in memory using both little endian order and big en-
dian order.

00011101 10100010 00111011 01100111

00011101101000100011101101100111

00011101 10100010 00111011 01100111

.

.

(a) Integer 497,171,303 in binary positional representation

(b) The integer stored in little endian order

(c) The integer stored in big endian order

loc. i loc. i+1 loc. i+2 loc. i+3

loc. i loc. i+1 loc. i+2 loc. i+3

Figure 3.8 (a) Integer 497,171,303 expressed as a 32-bit binary value, with
spaces used to mark groups of eight bits, (b) the integer stored in
successive memory locations using little endian order, and (c) the
integer stored in successive memory locations using big endian
order.

The big endian representation may seem appealing because it mimics the order hu-
mans use to write numbers. Surprisingly, little endian order has several advantages for
computing. For example, little endian allows a programmer to use a single memory ad-
dress to refer to all four bytes of an integer, the two low-order bytes, or only the
lowest-order byte.

www.ebook3000.com

http://www.ebook3000.org

Sec. 3.13 Signed Binary Integers 55

3.13 Signed Binary Integers

The positional representation described in Section 3.5 has no provision for negative
numbers. To accommodate negative numbers, we need an alternative. Three interpreta-
tions have been used:

d Sign Magnitude. With sign-magnitude representation, bits of an
integer are divided into a sign bit (1 if the number is negative and
0 otherwise) and a set of bits that gives the absolute value (i.e., the
magnitude) of the integer. The magnitude field follows the posi-
tional representation illustrated in Figure 3.2.

d One’s Complement. The set of bits is interpreted as a single field.
A positive integer uses the positional representation illustrated in
Figure 3.2 with the restriction that for an integer of k bits, the
maximum positive value is 2k-1. To form a negative of any value,
invert each bit (i.e., change from 0 to 1 or vice versa). The most
significant bit tells the sign of the integer (1 for negative integers,
0 otherwise).

d Two’s Complement. The set of bits is interpreted as a single field.
A positive integer uses the positional representation illustrated in
Figure 3.2 with the restriction that for an integer of k bits, the
maximum positive value is 2k-1–1. Thus, positive integers have
the same representation as in one’s complement. To form a nega-
tive number, start with a positive number, subtract one, and then
invert each bit. As with one’s complement, the most significant
bit tells the sign of the integer (1 for negative integers, 0 other-
wise).

Each interpretation has interesting quirks. For example, the sign-magnitude in-
terpretation makes it possible to create a value of negative zero, even though the con-
cept does not correspond to a valid mathematical concept. The one’s complement in-
terpretation provides two values for zero: all zero bits and the complement, all one bits.
Finally, the two’s complement interpretation includes one more negative value than po-
sitive values (to accommodate zero).

Which interpretation is best? Programmers can debate the issue because each in-
terpretation works well in some cases. However, programmers cannot choose because
computer architects make the decision and build hardware accordingly. Each of the
three representations has been used in at least one computer. Many hardware architec-
tures use the two’s complement scheme. There are two reasons. First, two’s comple-
ment makes it possible to build low-cost, high-speed hardware to perform arithmetic
operations. Second, as the next section explains, hardware for two’s complement arith-
metic can also handle unsigned arithmetic.

56 Data And Program Representation Chap. 3

3.14 An Example Of Two’s Complement Numbers

We said that k bits can represent 2k possible combinations. Unlike the unsigned
representation in which the combinations correspond to a continuous set of integers
starting at zero, two’s complement divides the combinations in half. Each combination
in the first half (zero through 2k-1–1) is assigned the same value as in the unsigned
representation. Combinations in the second half, each of which has the high-order bit
equal to one, correspond to negative integers. Thus, at exactly one-half of the way
through the possible combinations, the value changes from the largest possible positive
integer to the negative integer with the largest absolute value.

An example will clarify the two’s complement assignment. To keep the example
small, we will consider a four-bit integer. Figure 3.9 lists the sixteen possible bit com-
binations and the decimal equivalent when using unsigned, sign magnitude, one’s com-
plement, and two’s complement representations.

Unsigned Sign One’s Two’s
Binary (positional) Magnitude Complement Complement
String Interpretation Interpretation Interpretation Interpretation��
0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1
0 0 1 0 2 2 2 2
0 0 1 1 3 3 3 3
0 1 0 0 4 4 4 4
0 1 0 1 5 5 5 5
0 1 1 0 6 6 6 6
0 1 1 1 7 7 7 7
1 0 0 0 8 – 0 – 7 – 8
1 0 0 1 9 – 1 – 6 – 7
1 0 1 0 10 – 2 – 5 – 6
1 0 1 1 11 – 3 – 4 – 5
1 1 0 0 12 – 4 – 3 – 4
1 1 0 1 13 – 5 – 2 – 3
1 1 1 0 14 – 6 – 1 – 2
1 1 1 1 15 – 7 – 0 – 1

Figure 3.9 The decimal value assigned to each combination of four bits
when using unsigned, sign-magnitude, one’s complement, and
two’s complement interpretations.

As noted above, unsigned and two’s complement have the advantage that except
for overflow, the same hardware operations work for both representations. For exam-
ple, adding one to the binary value 1001 produces 1010. In the unsigned interpreta-
tion, adding one to nine produces ten; in the two’s complement interpretation, adding
one to negative seven produces negative six.

www.ebook3000.com

http://www.ebook3000.org

Sec. 3.14 An Example Of Two’s Complement Numbers 57

The important point is:

A computer can use a single hardware circuit to provide unsigned or
two’s complement integer arithmetic; software running on the
computer can choose an interpretation for each integer.

3.15 Sign Extension

Although Figure 3.9 shows four-bit binary strings, the ideas can be extended to an
arbitrary number of bits. Many computers include hardware for multiple integer sizes
(e.g., a single computer can offer sixteen bit, thirty-two bit, and sixty-four bit represen-
tations), and allow a programmer to choose one of the sizes for each integer data item.

If a computer does contain multiple sizes of integers, a situation can arise in which
a value is copied from a smaller-size integer to a larger-size integer. For example, con-
sider copying a value from a sixteen-bit integer to a thirty-two-bit integer. What should
be placed in the extra bits? In two’s complement, the solution consists of copying the
least significant bits and then extending the sign bit — if the original value is positive,
extending the high-order bit fills the most significant bits of the larger number with
zeros; if the original value is negative, extending the high-order bit fills the most signi-
ficant bits of the larger number with ones. In either case, the integer with more bits will
be interpreted to have the same numeric value as the integer with fewer bits†.

We can summarize:

Sign extension: in two’s complement arithmetic, when an integer Q
composed of k bits is copied to an integer of more than k bits, the ad-
ditional high-order bits are made equal to the top bit of Q. Extending
the sign bit ensures that the numeric value of the two will be the same
if each is interpreted as a two’s complement value.

Because two’s complement hardware gives correct results when performing arith-
metic operations on unsigned values, it may seem that software could use the hardware
to support all unsigned operations. However, sign extension provides an exception to
the rule: the hardware will always perform sign extension, which may have unexpected
results. For example, if an unsigned integer is copied to a larger unsigned integer, the
copy will not have the same numeric value if the high-order bit is 1. The point is:

Because two’s complement hardware performs sign extension, copying
an unsigned integer to a larger unsigned integer can change the
value.

��������������������������������
†Because division and multiplication by powers of two can be implemented with shift operations, sign

extension occurs during a right-shift operation, which results in the correct value. Thus, shifting integer -14
right one bit results in -7, and shifting integer 14 right one bit results in 7.

58 Data And Program Representation Chap. 3

3.16 Floating Point

In addition to hardware that performs signed and unsigned integer arithmetic,
general-purpose computers provide hardware that performs arithmetic on floating point
values. Floating point representation used in computers derives from scientific notation
in which each value is represented by a mantissa and an exponent. For example, scien-
tific notation expresses the value –12345 as –1.2345 × 104. Similarly, a chemist might
write a well-known constant, such as Avogadro’s number, as:

6.023 × 1023

Unlike conventional scientific notation, the floating point representation used in
computers is based on binary. Thus, a floating point value consists of a bit string that is
divided into three fields: a bit to store the sign, a group of bits that stores a mantissa,
and a third group of bits that stores an exponent. Unlike conventional scientific nota-
tion, everything in floating point is based on powers of two. For example, the mantissa
uses a binary positional representation to store a value, and the exponent is an integer
that specifies a power of 2 rather than a power of 10. In scientific notation, we think of
an exponent as specifying how many digits to shift the decimal point; in floating point,
the exponent specifies how many bits to shift the binary point.

To further optimize space, many floating point representations include optimiza-
tions:

d The value is normalized.

d The most significant bit of the mantissa is implicit.

d The exponent is biased to simplify magnitude comparison.

The first two optimizations are related. A floating point number is normalized by
adjusting the exponent to eliminate leading zeros from the mantissa. In decimal, for ex-
ample, 0.003×104 can be normalized to 3×101. Interestingly, normalizing a binary
floating point number always produces a leading bit of 1 (except in the special case of
the number zero). Therefore, to increase the number of bits of precision in the mantis-
sa, floating point representations do not need to store the most significant bit of the
mantissa when a value is stored in memory. Instead, when a floating point number
computation is required, the hardware concatenates a 1 bit onto the mantissa.

An example will clarify the concepts. The example we will use is IEEE† standard
754, which is widely used in the computer industry. The standard specifies both single
precision and double precision numbers. According to the standard, a single precision
value occupies thirty-two bits, and a double precision value occupies sixty-four bits.
Figure 3.10 illustrates how the IEEE standard divides a floating point number into three
fields.

��������������������������������
†IEEE stands for Institute of Electrical and Electronics Engineers, an organization that creates standards

used in electronic digital systems.

www.ebook3000.com

http://www.ebook3000.org

Sec. 3.16 Floating Point 59

022233031

0515263 62

(a)

(b)

S exponent mantissa (bits 0 - 22)

S exponent mantissa (bits 0 - 51)

Figure 3.10 The format of (a) a single precision and (b) a double precision
floating point number according to IEEE Standard 754, with the
lowest bit in each field labeled. Fields consist of a sign bit, ex-
ponent, and mantissa.

Bit numbering in the figure follows the IEEE standard, in which the least signifi-
cant bit is assigned bit number zero. In single precision, for example, the twenty-three
rightmost bits, which constitute a mantissa, are numbered zero through twenty-two.
The next eight bits, which constitute an exponent, are numbered twenty-three through
thirty, and the most significant bit, which contains a sign, is bit number thirty-one. For
double precision, the mantissa occupies fifty-two bits and the exponent occupies eleven
bits.

3.17 Range Of IEEE Floating Point Values

The IEEE standard for single precision floating point allows normalized values in
which the exponent ranges from negative one hundred twenty-six through one hundred
twenty-seven. Thus, the approximate range of values that can be represented is:

2-126 to 2127

which, in decimal, is approximately:

10-38 to 1038

The IEEE standard for double precision floating point provides an enormously larger
range than single precision. The range is:

2-1022 to 21023

which, in decimal, is approximately:

10-308 to 10308

60 Data And Program Representation Chap. 3

To make magnitude comparison fast, the IEEE standard specifies that an exponent
field stores the exponent (a power of two) plus a bias constant. The bias constant used
with single precision is one hundred twenty-seven, and the bias constant used with dou-
ble precision is one thousand twenty-three†. For example, to store an exponent of three,
the exponent field in a single precision value is assigned the value one hundred thirty,
and an exponent of negative five is represented by one hundred twenty-two.

As an example of floating point, consider how 6.5 is represented. In binary, 6 is
110, and .5 is a single bit following the binary point, giving us 110.1 (binary). If we
use binary scientific notation and normalize the value, 6.5 can be expressed:

1.101 × 22

To express the value as an IEEE single precision floating point number, the sign bit is
zero, and the exponent must be biased by 127, making it 129. In binary, 129 is:

10000001

To understand the value in the mantissa, recall that the leading 1 bit is not stored, which
means that instead of 1101 followed by zeros, the mantissa is stored as:

10100000000000000000000

Figure 3.11 shows how the fields combine to form a single-precision IEEE floating
point representation of 6.5.

0 1 0 0 0 0 0 0 1 1 0 1 0

S exponent (23 – 30) mantissa (bits 0 – 22)

Figure 3.11 The value 6.5 (decimal) represented as a single-precision IEEE
floating point constant.

3.18 Special Values

Like most floating point representations, the IEEE standard follows the implicit
leading bit assumption — a mantissa is assumed to have a leading one bit that is not
stored. Of course, any representation that strictly enforces the assumption of a leading
one bit is useless because the representation cannot store the value zero. To handle
zero, the IEEE standard makes an exception — when all bits are zero, the implicit as-
sumption is ignored, and the stored value is taken to be zero.

The IEEE standard includes two other special values that are reserved to represent
positive and negative infinity: the exponent contains all ones and the mantissa contains
all zeros. The point of including values for infinity is that some digital systems do not

��������������������������������
†The bias constant is always 2k-1–1, where k is the number of bits in the exponent field.

www.ebook3000.com

http://www.ebook3000.org

Sec. 3.18 Special Values 61

have facilities to handle errors such as arithmetic overflow. On such systems, it is im-
portant that a value be reserved so that the software can determine that a floating point
operation failed.

3.19 Binary Coded Decimal Representation

Most computers employ the binary representations for integers and floating point
numbers described above. Because the underlying hardware uses digital logic, binary
digits of 0 and 1 map directly onto the hardware. As a result, hardware can compute
binary arithmetic efficiently and all combinations of bits are valid. However, two
disadvantages arise from the use of binary representations. First, the range of values is
a power of two rather than a power of ten (e.g., the range of an unsigned 32-bit integer
is zero to 4,294,967,295). Second, floating point values are rounded to binary fractions
rather than decimal fractions.

The use of binary fractions has some unintended consequences, and their use does
not suffice for all computations. For example, consider a bank account that stores U.S.
dollars and cents. We usually represent cents as hundredths of dollars, writing 5.23 to
denote five dollars and 23 cents. Surprisingly, one hundredth (i.e., one cent) cannot be
represented exactly as a binary floating point number because it turns into a repeating
binary fraction. Therefore, if binary floating point arithmetic is used for bank accounts,
individual pennies are rounded, making the totals inaccurate. In a scientific sense, the
inaccuracy is bounded, but humans demand that banks keep accurate records — they
become upset if a bank preserves significant digits of their account but loses pennies.

To accommodate banking and other computations where decimal is required, a
Binary Coded Decimal (BCD) representation is used. Some computers (notably on
IBM mainframes) have hardware to support BCD arithmetic; on other computers,
software performs all arithmetic operations on BCD values.

Although a variety of BCD formats have been used, the essence is always the
same: a value is represented as a string of decimal digits. The simplest case consists of
a character string in which each byte contains the character for a single digit. However,
the use of character strings makes computation inefficient and takes more space than
needed. As an example, if a computer uses the ASCII character set, the integer 123456
is stored as six bytes with values†:

0x31 0x32 0x33 0x34 0x35 0x36

If a character format is used, each ASCII character (e.g., 0x31) must be converted
to an equivalent binary value (e.g., 0x01) before arithmetic can be performed. Further-
more, once an operation has been performed, the digits of the result must be converted
from binary back to the character format. To make computation more efficient, modern
BCD systems represent digits in binary rather than as characters. Thus, 123456 could
be represented as:

0x01 0x02 0x03 0x04 0x05 0x06

��������������������������������
†Although our examples use ASCII, BCD is typically used on IBM computers that employ the EBCDIC

character set.

62 Data And Program Representation Chap. 3

Although the use of a binary representation has the advantage of making arithmetic
faster, it also has a disadvantage: a BCD value must be converted to character format
before it can be displayed or printed. The general idea is that because arithmetic is per-
formed more frequently than I/O, keeping a binary form will improve overall perfor-
mance.

3.20 Signed, Fractional, And Packed BCD Representations

Our description of BCD omits many details found in commercial systems. For ex-
ample, an implementation may limit the size of a BCD value. To handle fractions,
BCD must either include an explicit decimal point or the representation must specify
the location of the decimal point. Furthermore, to handle signed arithmetic, a BCD
representation must include a sign. Interestingly, one of the most widely used BCD
conventions places the sign byte at the right-hand end of the BCD string. Thus -123456
might be represented by the sequence:

0x01 0x02 0x03 0x04 0x05 0x06 0x2D

where 0x2D is a value used to indicate a minus sign. The advantage of placing the sign
on the right arises because no scanning is required when arithmetic is performed — all
bytes except the last byte of the string correspond to decimal digits.

The final detail used with BCD encodings arises from the observation that using a
byte for each digit is inefficient. Each digit only requires four bits, so placing one digit
in each eight-bit byte wastes half of each byte. To reduce the storage space needed for
BCD, a packed representation is used in which each digit occupies a nibble (i.e., four
bits). With a packed version of BCD, the integer -123456 can be represented in four
bytes:

0x01 0x23 0x45 0x6D

where the last nibble contains the value 0xD to indicate that the number is negative†.

3.21 Data Aggregates

So far, we have only considered the representation for individual data items such
as characters, integers, or floating point numbers. Most programming languages allow a
programmer to specify aggregate data structures that contain multiple data items, such
as arrays, records, or structs. How are such values stored? In general, an aggregate
value occupies contiguous bytes. Thus, on a computer that uses an eight-bit byte, a data
aggregate that consists of three sixteen-bit integers occupies six contiguous bytes as Fig-
ure 3.12 illustrates.

��������������������������������
†To aid with BCD arithmetic, the x86 architecture has a condition code bit that indicates whether 4-bit

addition overflows.

www.ebook3000.com

http://www.ebook3000.org

Sec. 3.21 Data Aggregates 63

0 1 2 3 4 5

integer #1 integer #2 integer #3

Figure 3.12 A data aggregate consisting of three sixteen-bit integers arranged
in successive bytes of memory numbered 0 through 5.

We will see later that some memory systems do not permit arbitrary data types to
be contiguous. Thus, we will reconsider data aggregates when we discuss memory ar-
chitecture.

3.22 Program Representation

Modern computers are classified as stored program computers because programs
as well as data are placed in memory. We will discuss program representation and
storage in the next chapters, including the structure of instructions the computer under-
stands and their storage in memory. For now, it is sufficient to understand that each
computer defines a specific set of operations and a format in which each is stored. On
some computers, for example, each instruction is the same size as other instructions; on
other computers, the instruction size varies. We will see that on a typical computer, an
instruction occupies multiple bytes. Thus, the bit and byte numbering schemes that the
computer uses for data values also apply to instructions.

3.23 Summary

The underlying digital hardware has two possible values, logical 0 and logical 1.
We think of the two values as defining a bit (binary digit), and use bits to represent data
and programs. Each computer defines a byte size, and most current systems use eight
bits per byte.

A set of bits can be used to represent a character from the computer’s character set,
an unsigned integer, a single or double precision floating point value, or a computer
program. Representations are chosen carefully to maximize the flexibility and speed of
the hardware while keeping the cost low. The two’s complement representation for
signed integers is particularly popular because a single piece of hardware can be con-
structed that performs operations on either two’s complement integers or unsigned in-
tegers. In cases where decimal arithmetic is required, computers use Binary Coded
Decimal values in which a number is represented by a string that specifies individual
decimal digits.

Organizations, such as ANSI and IEEE, have created standards for representation;
such standards allow hardware manufactured by two separate organizations to interoper-
ate and exchange data.

64 Data And Program Representation Chap. 3

EXERCISES

3.1 Give a mathematical proof that a string of k bits can represent 2k possible values (hint: ar-
gue by induction on the number of bits).

3.2 What is the value of the following binary string in hexadecimal?

1101 1110 1010 1101 1011 1110 1110 1111

3.3 Write a computer program that determines whether the computer on which it is running
uses big endian or little endian representation for integers.

3.4 Write a computer program that prints a string of zeros and ones that represents the bits of
an integer. Place a blank between each bit, and add an extra space after every four bits.

3.5 Write a computer program that determines whether the computer on which it is running
uses one’s complement, two’s complement, or (possibly) some other representation for
signed integers.

3.6 Write a computer program that determines whether the computer on which it is running
uses the ASCII or EBCDIC character set.

3.7 Write a computer program that takes a set of integers as input and for each integer prints
the two’s complement, one’s complement, and sign-magnitude representation of the integer.

3.8 Write a C program that prints a table of all possible eight-bit binary values and the two’s
complement interpretation of each.

3.9 Write a computer program that adds one to the largest possible positive integer and uses the
result to determine whether the computer implements two’s complement arithmetic.

3.10 Write a computer program to display the value of a byte in hexadecimal, and apply the pro-
gram to an array of bytes. Add an extra space after every four bytes to make the output
easier to read.

3.11 Extend the hexadecimal dump program in the previous exercise to also print the character
representation of any printable character. For characters that do not have a printable
representation, arrange for the program to print a period.

3.12 A programmer computes the sum of two unsigned 32-bit integers. Can the resulting sum
be less than either of the two values? Explain.

3.13 Suppose you are given a computer with hardware that can only perform 32-bit arithmetic,
and are asked to create functions that add and subtract 64-bit integers. How can you per-
form 64-bit computations with 32-bit hardware? (To simplify the problem, limit your
answer to unsigned arithmetic.)

3.14 The C Programming language allows a programmer to specify constants in decimal, binary,
hexadecimal, and octal. Write a program that declares 0, 5, 65, 128, and -1 and -256 in
decimal, binary, hexadecimal, and octal, and uses printf to show that the values are correct.
Which is the easiest representation?

3.15 Create a form of Binary Coded Decimal similar to the one described in the text, and write a
computer program that uses the form to add two arbitrary length integers.

3.16 Extend the previous program to include multiplication.

3.17 The financial industry uses a “bankers” rounding algorithm. Read about the algorithm, and
implement a program that uses decimal arithmetic to compute the sum of the two decimal
values with both bankers rounding and conventional rounding.

www.ebook3000.com

http://www.ebook3000.org

Part II

Processors
The Engines That

Drive Computation

www.ebook3000.com

http://www.ebook3000.org

Chapter Contents

4.1 Introduction, 69
4.2 The Two Basic Architectural Approaches, 69
4.3 The Harvard And Von Neumann Architectures, 70
4.4 Definition Of A Processor, 71
4.5 The Range Of Processors, 72
4.6 Hierarchical Structure And Computational Engines, 73
4.7 Structure Of A Conventional Processor, 74
4.8 Processor Categories And Roles, 75
4.9 Processor Technologies, 77
4.10 Stored Programs, 77
4.11 The Fetch-Execute Cycle, 78
4.12 Program Translation, 79
4.13 Clock Rate And Instruction Rate, 79
4.14 Control: Getting Started And Stopping, 80
4.15 Starting The Fetch-Execute Cycle, 81
4.16 Summary, 82

www.ebook3000.com

http://www.ebook3000.org

4

The Variety Of Processors
And Computational Engines

4.1 Introduction

Previous chapters describe the basic building blocks used to construct computer
systems: digital logic and representations used for data types such as characters, in-
tegers, and floating point numbers. This chapter begins an investigation of one of three
key elements of any computer system: a processor. The chapter introduces the general
concept, describes the variety of processors, and discusses the relationship between
clock rate and processing rate. The next chapters extend the basic description by ex-
plaining instruction sets, addressing modes, and the functions of a general-purpose
CPU.

4.2 The Two Basic Architectural Approaches

Early in the history of computers, architects experimenting with new designs con-
sidered how to organize the hardware. Two basic approaches emerged that are named
for the groups who proposed them:

d Harvard Architecture

d Von Neumann Architecture

We will see that the two share ideas, and only differ in how programs and data are
stored and accessed.

69

70 The Variety Of Processors And Computational Engines Chap. 4

4.3 The Harvard And Von Neumann Architectures

The term Harvard Architecture† refers to a computer organization with four
principal components: a processor, an instruction memory, a data memory, and I/O
facilities, organized as Figure 4.1 illustrates.

computer

input/output facilities

processor

instruction

memory

data

memory

Figure 4.1 Illustration of the Harvard Architecture that uses two memories,
one to hold programs and another to store data.

Although it includes the same basic components, a Von Neumann Architecture‡
uses a single memory to hold both programs and data. Figure 4.2 illustrates the ap-
proach.

computer

input/output facilities

processor memory

Figure 4.2 Illustration of the Von Neumann Architecture. Both programs
and data can be stored in the same memory.

��������������������������������
†The name arises because the approach was first used on the Harvard Mark I relay computer.
‡The name is taken from John Von Neumann, a mathematician who first proposed the architecture.

www.ebook3000.com

http://www.ebook3000.org

Sec. 4.3 The Harvard And Von Neumann Architectures 71

The chief advantage of the Harvard Architecture arises from its ability to have one
memory unit optimized to store programs and another memory unit optimized to store
data. The chief disadvantage arises from inflexibility: when purchasing a computer, an
owner must choose the size of the instruction memory and the size of data memory.
Once the computer has been purchased, an owner cannot use part of the instruction
memory to store data nor can he or she use part of the data memory to store programs.
Although it has fallen out of favor for general-purpose computers, the Harvard Architec-
ture is still sometimes used in small embedded systems and other specialized designs.

Unlike the Harvard Architecture, the Von Neumann Architecture offers complete
flexibility: at any time, an owner can change how much of the memory is devoted to
programs and how much to data. The approach has proven to be so valuable that it has
become widely adopted:

Because it offers flexibility, the Von Neumann Architecture, which
uses a single memory to hold both programs and data, has become
pervasive: almost all computers follow the Von Neumann approach.

We say a computer that follows the Von Neumann Architecture employs a stored
program approach because a program is stored in memory. More, important programs
can be loaded into memory just like other data items.

Except when noted, the remainder of the text implicitly assumes a Von Neumann
Architecture. There are two primary exceptions in Chapters 6 and 12. Chapter 6,
which explains data paths, uses a simplified Harvard Architecture in the example.
Chapter 12, which explains caching, discusses the motivation for using separate instruc-
tion and data caches.

4.4 Definition Of A Processor

The remainder of this chapter considers the processor component present in both
the Harvard and Von Neumann Architectures. The next sections define the term and
characterize processor types. Later sections explore the subcomponents of complex pro-
cessors.

Although programmers tend to think of a conventional computer and often use the
term processor as a synonym for the Central Processing Unit (CPU), computer archi-
tects have a much broader meaning that includes the processors used to control the en-
gine in an automobile, processors in hand-held remote control devices, and specialized
video processors used in graphics equipment. To an architect, a processor refers to a
digital device that can perform a computation involving multiple steps. Individual pro-
cessors are not complete computers; they are merely one of the building blocks that an
architect uses to construct a computer system. Thus, although it can compute more than
the combinatorial Boolean logic circuits we examined in Chapter 2, a processor need
not be large or fast. In particular, some processors are significantly less powerful than

72 The Variety Of Processors And Computational Engines Chap. 4

the general-purpose CPU found in a typical PC. The next sections help clarify the defi-
nition by examining characteristics of processors and explaining some of the ways they
can be used.

4.5 The Range Of Processors

Because processors span a broad range of functionality and many variations exist,
no single description adequately captures all the properties of processors. Instead, to
help us appreciate the many designs, we need to divide processors into categories ac-
cording to functionality and intended use. For example, we can use four categories to
explain whether a processor can be adapted to new computations. The categories are
listed in order of flexibility:

d Fixed logic

d Selectable logic

d Parameterized logic

d Programmable logic

A fixed logic processor, which is the least flexible, performs a single task. More
important, all the functionality needed to perform the operation is built in when the pro-
cessor is created, and the functionality cannot be altered without changing the underly-
ing hardware†. For example, a fixed logic processor can be designed to compute a
function, such as sine(x), or to perform a graphics operation needed in a video game.

A selectable logic processor has slightly more flexibility than a fixed logic proces-
sor. In essence, a selectable logic processor contains facilities needed to perform more
than one function; the exact function is specified when the processor is invoked. For
example, a selectable logic processor might be designed to compute either sine(x) or
cosine(x).

A parameterized logic processor adds additional flexibility. Although it only com-
putes a predetermined function, the processor accepts a set of parameters that control
the computation. For example, consider a parameterized processor that computes a hash
function, h(x). The hash function uses two constants, p and q, and computes the hash
of x by computing the remainder of x when multiplied by p and divided by q. For ex-
ample, if p is 167 and q is 163, h(26729) is the remainder of 4463743 divided by 163,
or 151‡. A parameterized processor for such a hash function allows constants p and q
to be changed each time the processor is invoked. That is, in addition to the input, x,
the processor accepts additional parameters, p and q, that control the operation.

A programmable logic processor offers the most flexibility because it allows the
sequence of steps to be changed each time the processor is invoked — the processor can
be given a program to run, typically by placing the program in memory.

��������������������������������
†Engineers use the term hardwired for functionality that cannot be changed without altering the underly-

ing wiring.
‡Hashing is often applied to strings. In the example, number 26729 is the decimal value of the two char-

acters in the string “hi” when treated as an unsigned short integer.

www.ebook3000.com

http://www.ebook3000.org

Sec. 4.6 Hierarchical Structure And Computational Engines 73

4.6 Hierarchical Structure And Computational Engines

A large processor, such as a modern, general-purpose CPU, is so complex that no
human can understand the entire processor as a single unit. To control the complexity,
computer architects use a hierarchical approach in which subparts of the processor are
designed and tested independently before being combined into the final design.

Some of the independent subparts of a large processor are so sophisticated that
they fit our definition of a processor — the subpart can perform a computation that in-
volves multiple steps. For example, a general-purpose CPU that has instructions for
sine and cosine might be constructed by first building and testing a trigonometry pro-
cessor, and then combining the trigonometry processor with other pieces to form the fi-
nal CPU.

How do we describe a subpiece of a large, complex processor that acts indepen-
dently and performs a computation? Some engineers use the term computational en-
gine. The term engine usually implies that the subpiece fills a specific role and is less
powerful than the overall unit. For example, Figure 4.3 illustrates a CPU that contains
several engines.

CPU

trigonometry
engine

graphics
engine

other
components

query
engine arithmetic

engine

Figure 4.3 An example of a CPU that includes multiple components. The
large arrow in the center of the figure indicates a central intercon-
nect mechanism that the components use to coordinate.

The CPU in the figure includes a special-purpose graphics engine. Graphics en-
gines, sometimes called graphics accelerators, are common because video game
software is popular and many computers need a graphics engine to drive the graphics
display at high speed. For example, a graphics engine might include facilities to repaint

74 The Variety Of Processors And Computational Engines Chap. 4

the surface of a graphical figure after it has been moved (e.g., in response to a joystick
movement).

The CPU illustrated in Figure 4.3 also includes a query engine. Query engines and
closely related pattern engines are used in database processors. A query engine exam-
ines a database record at high speed to determine if the record satisfies the query; a pat-
tern engine examines a string of bits to determine if the string matches a specified pat-
tern (e.g., to test whether a document contains a particular word). In either case, a CPU
has enough capability to handle the task, but a special-purpose processor can perform
the task much faster.

4.7 Structure Of A Conventional Processor

Although the imaginary CPU described in the previous section contains many en-
gines, most processors do not. Two questions arise. First, what engine(s) are found in
a conventional processor? Second, how are the engines interconnected? This section
answers the questions broadly, and later sections give more detail.

Although a practical processor contains many subcomponents with complex inter-
connections among them, we can view a processor as having five conceptual units:

d Controller

d Arithmetic Logic Unit (ALU)

d Local data storage (typically, registers)

d Internal interconnection(s)

d External interface(s) (I/O buses)

Figure 4.4 illustrates the concept.

Controller. The controller forms the heart of a processor. Controller hardware has
overall responsibility for program execution. That is, the controller steps through the
program and coordinates the actions of all other hardware units to perform the specified
operations.

Arithmetic Logic Unit (ALU). We think of the ALU as the main computational en-
gine in a processor. The ALU performs all computational tasks, including integer arith-
metic, operations on bits (e.g., left or right shift), and Boolean (logical) operations (e.g.,
Boolean and, or, exclusive or, and not). However, an ALU does not perform multiple
steps or initiate activities. Instead, the ALU only performs one operation at a time, and
relies on the controller to specify exactly what operation to perform on the operand
values.

Local Data Storage. A processor must have at least some local storage to hold
data values such as operands for arithmetic operations and the result. As we will see,
local storage usually takes the form of hardware registers — values must be loaded into
the hardware registers before they can be used in computation.

www.ebook3000.com

http://www.ebook3000.org

Sec. 4.7 Structure Of A Conventional Processor 75

controller

internal interconnection(s)

ALU local
storage

external interface

external connection

Figure 4.4 The five major units found in a conventional processor. The
external interface connects to the rest of the computer system.

Internal Interconnection(s). A processor contains one or more hardware mecha-
nisms that are used to transfer values between the other hardware units. For example,
the interconnection hardware is used to move data values from the local storage to the
ALU or to move results from the ALU to local storage. Architects sometimes use the
term data path to describe an internal interconnection.

External Interface(s). The external interface unit handles all communication
between the processor and the rest of the computer system. In particular, the external
interface manages communication between the processor and external memory and I/O
devices.

4.8 Processor Categories And Roles

Understanding the range of processors is especially difficult for someone who has
not encountered hardware design because processors can be used in a variety of roles.
It may help if we consider the ways that hardware devices use processors and how pro-
cessors function in each role. Here are four examples:

d Coprocessors

d Microcontrollers

d Embedded system processors

d General-purpose processors

76 The Variety Of Processors And Computational Engines Chap. 4

Coprocessors. A coprocessor operates in conjunction with and under the control
of another processor. Usually, a coprocessor consists of a special-purpose processor
that performs a single task at high speed. For example, some CPUs use a coprocessor
known as a floating point accelerator to speed the execution of arithmetic operations —
when a floating point operation occurs, the CPU automatically passes the necessary
values to the coprocessor, obtains the result, and then continues execution. In architec-
tures where a running program does not know which operations are performed directly
by the CPU and which operations are performed by a coprocessor, we say that the
operation of a coprocessor is transparent to the software. Typical coprocessors use
fixed or selectable logic, which means that the functions the coprocessor can perform
are determined when the coprocessor is designed.

Microcontrollers. A microcontroller consists of a programmable device dedicated
to the control of a physical system. For example, microcontrollers run physical systems
such as the engine in a modern automobile, the landing gear on an airplane, and the au-
tomatic door in a grocery store. In many cases, a microcontroller performs a trivial
function that does not require much traditional computation. Instead, a microcontroller
tests sensors and sends signals to control devices. Figure 4.5 lists an example of the
steps a typical microcontroller can be programmed to perform:

do forever {

wait for the sensor to be tripped;

turn on power to the door motor;

wait for a signal that indicates the

door is open;

wait for the sensor to reset;

delay ten seconds;

turn off power to the door motor;

}

Figure 4.5 Example of the steps a microcontroller performs. In most cases,
microcontrollers are dedicated to trivial control tasks.

Embedded System Processors. An embedded system processor runs sophisticated
electronic devices such as a wireless router or smart phone. The processors used for
embedded systems are usually more powerful than the processors that are used as
microcontrollers, and often run a protocol stack used for communication. However, the
processor may not contain all the functionality found on more general-purpose CPUs.

General-purpose Processors. General-purpose processors are the most familiar
and need little explanation. For example, the CPU in a PC is a general-purpose proces-
sor.

www.ebook3000.com

http://www.ebook3000.org

Sec. 4.9 Processor Technologies 77

4.9 Processor Technologies

How are processors created? In the 1960s, processors were created from digital
logic circuits. Individual gates were connected together on a circuit board, which then
plugged into a chassis to form a working computer. By the 1970s, large-scale integrat-
ed circuit technology arrived, which meant that the smallest and least powerful proces-
sors — such as those used for microcontrollers — could each be implemented on a sin-
gle integrated circuit. As integrated circuit technology improved and the number of
transistors on a chip increased, a single chip became capable of holding more powerful
processors. Today, many of the most powerful general-purpose processors consist of a
single integrated circuit.

4.10 Stored Programs

We said that a processor performs a computation that involves multiple steps.
Although some processors have the series of steps built into the hardware, most do not.
Instead, they are programmable (i.e., they rely on a mechanism known as program-
ming). That is, the sequence of steps to be performed comprise a program that is placed
in a location the processor can access; the processor accesses the program and follows
the specified steps.

Computer programmers are familiar with conventional computer systems that use
main memory as the location that holds a program. The program is loaded into memory
each time a user runs the application. The chief advantage of using main memory to
hold programs lies in the ability to change the program. The next time a user runs a
program after it has been changed, the altered version will be used.

Although our conventional notion of programming works well for general-purpose
processors, other types of processors use alternative mechanisms that are not as easy to
change. For example, the program for a microcontroller usually resides in hardware
known as Read Only Memory (ROM†). In fact, a ROM that contains a program may re-
side on an integrated circuit along with a microcontroller that runs the program. For ex-
ample, the microcontroller used in an automobile may reside on a single integrated cir-
cuit that also contains the program the microcontroller runs.

The important point is that programming is a broad notion:

To a computer architect, a processor is classified as programmable if,
at some level of detail, the processor is separate from the program it
runs. To a user, it may appear that the program and processor are
integrated, and it may not be possible to change the program without
replacing the processor.

��������������������������������
†Later chapters describe memory in more detail.

78 The Variety Of Processors And Computational Engines Chap. 4

4.11 The Fetch-Execute Cycle

How does a programmable processor access and perform steps of a program? The
data path description in Chapter 6 explains the basic idea. Although the details vary
among processors, all programmable processors follow the same fundamental paradigm.
The underlying mechanism is known as the fetch-execute cycle.

To implement fetch-execute, a processor has an instruction pointer that automati-
cally moves through the program in memory, performing each step. That is, each pro-
grammable processor executes two basic functions repeatedly. Algorithm 4.1 presents
the two fundamental steps†.

Algorithm 4.1

Repeat forever {

Fetch: access the next step of the program from the
location in which the program has been stored.

Execute: perform the step of the program.

}

�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
���

Algorithm 4.1 The Fundamental Steps Of The Fetch-Execute Cycle

The important point is:

At some level, every programmable processor implements a fetch-
execute cycle.

Several questions arise. Exactly how is the program represented in memory, and
how is such a representation created? How does a processor identify the next step of a
program? What are the possible operations that can be performed during the execution
phase of the fetch-execute cycle? How does the processor perform each operation?
The next chapters will answer each of these questions in more detail. The remainder of
this chapter concentrates on three questions: how fast does a processor operate, how
does a processor begin with the first step of a program, and what happens when the pro-
cessor reaches the end of a program?

��������������������������������
†Note that the algorithm presented here is a simplified form; when we discuss I/O, we will see how the

algorithm is extended to handle device interrupts.

www.ebook3000.com

http://www.ebook3000.org

Sec. 4.12 Program Translation 79

4.12 Program Translation

An important question for programmers concerns how a program is converted to
the form a processor expects. A programmer uses a High Level Language (HLL) to
create a computer program. We say the programmer writes source code. The program-
mer uses a tool to translate the source code into the representation that a processor ex-
pects.

Although a programmer invokes a single tool, such as gcc, multiple steps are re-
quired to perform the translation. First, a preprocessor expands macros, producing a
modified source program. The modified source program becomes input to a compiler,
which translates the program into assembly language. Although it is closer to the form
needed by a processor, assembly language can be read by humans. An assembler
translates the assembly language program into a relocatable object program that con-
tains a combination of binary code and references to external library functions. A linker
processes the relocatable object program by replacing external function references with
the code for the functions. To do so, the linker extracts the name of a function,
searches one or more libraries to find binary code for the function. Figure 4.6 illustrates
the translation steps and the software tool that performs each step.

source
code preprocessor

preprocessed
source
code

compiler
assembly

code

assembler
relocatable

object
code

linker
binary
object
code

object code
(functions)
in libraries

Figure 4.6 The steps used to translate a source program to the binary object
code representation used by a processor.

4.13 Clock Rate And Instruction Rate

One of the primary questions about processors concerns speed: how fast does the
fetch-execute cycle operate? The answer depends on the processor, the technology used
to store a program, and the time required to execute each instruction. On one hand, a

80 The Variety Of Processors And Computational Engines Chap. 4

processor used as a microcontroller to actuate a physical device (e.g., an electric door)
can be relatively slow because a response time under one-tenth of a second seems fast
to a human. On the other hand, a processor used in the highest-speed computers must
be as fast as possible because the goal is maximum performance.

As we saw in Chapter 2, most processors use a clock to control the rate at which
the underlying digital logic operates. Anyone who has purchased a computer knows
that sales personnel push customers to purchase a fast clock with the argument that a
higher clock rate will result in higher performance. Although a higher clock rate usual-
ly means higher processing speed, it is important to realize that the clock rate does not
give the rate at which the fetch-execute cycle proceeds. In particular, in most systems,
the time required for the execute portion of the cycle depends on the instruction being
executed. We will see later that operations involving memory access or I/O can require
significantly more time (i.e., more clock cycles) than those that do not. The time also
varies among basic arithmetic operations: integer multiplication or division requires
more time than integer addition or subtraction. Floating point computation is especially
costly because floating point operations usually require more clock cycles than
equivalent integer operations. Floating point multiplication or division stands out as
especially costly — a single floating point division can require orders of magnitude
more clock cycles than an integer addition.

For now, it is sufficient to remember the general principle:

The fetch-execute cycle may not proceed at a fixed rate because the
time taken to execute an instruction depends on the operation being
performed. An operation such as multiplication requires more time
than an operation such as addition.

4.14 Control: Getting Started And Stopping

So far, we have discussed a processor running a fetch-execute cycle without giving
details. We now need to answer two basic questions. How does the processor start
running the fetch-execute cycle? What happens after the processor executes the last
step in a program?

The issue of program termination is the easiest to understand: processor hardware
is not designed to stop. Instead, the fetch-execute cycle continues indefinitely. Of
course, a processor can be permanently halted, but such a sequence is only used to
power down a computer — in normal operations, the processor continues to execute one
instruction after another.

In some cases, a program uses a loop to delay. For example, a microcontroller
may need to wait for a sensor to indicate an external condition has been met before
proceeding. The processor does not merely stop to wait for the sensor. Instead, the
program contains a loop that repeatedly tests the sensor. Thus, from a hardware point
of view, the fetch-execute cycle continues.

www.ebook3000.com

http://www.ebook3000.org

Sec. 4.14 Control: Getting Started And Stopping 81

The notion of an indefinite fetch-execute cycle has a direct consequence for pro-
gramming: software must be planned so a processor always has a next step to execute.
In the case of a dedicated system such as a microcontroller that controls a physical de-
vice, the program consists of an infinite loop — when it finishes the last step of the pro-
gram, the processor starts again at the first step. In the case of a general-purpose com-
puter, an operating system is always present. The operating system can load an applica-
tion into memory, and then direct the processor to run the application. To keep the
fetch-execute cycle running, the operating system must arrange to regain control when
the application finishes. When no application is running, the operating system enters a
loop to wait for input (e.g., from a touch screen, keyboard, or mouse).

To summarize:

Because a processor runs the fetch-execute cycle indefinitely, a system
must be designed to ensure that there is always a next step to execute.
In a dedicated system, the same program executes repeatedly; in a
general-purpose system, an operating system runs when no applica-
tion is running.

4.15 Starting The Fetch-Execute Cycle

How does a processor start the fetch-execute cycle? The answer is complex be-
cause it depends on the underlying hardware. For example, some processors have a
hardware reset. On such processors, engineers arrange for a combinatorial circuit to ap-
ply voltage to the reset line until all system components are ready to operate. When
voltage is removed from the reset line, the processor begins executing a program from a
fixed location. Some processors start executing a program found at location zero in
memory once the processor is reset. In such systems, the designer must guarantee that a
valid program is placed in location zero before the processor starts.

The steps used to start a processor are known as a bootstrap. In an embedded en-
vironment, the program to be run usually resides in Read Only Memory (ROM). On a
conventional computer, the hardware reads a copy of the operating system from an I/O
device, such as a disk, and places the copy into memory before starting the processor.
In either case, hardware assist is needed for bootstrap because a signal must be passed
to the processor that causes the fetch-execute cycle to begin.

Many devices have a soft power switch, which means that the power switch does
not actually turn power on or off. Instead, the switch acts like a sensor — the processor
can interrogate the switch to determine its current position. Booting a device that has a
softswitch is no different than booting other devices. When power is first applied (e.g.,
when a battery is installed), the processor boots to an initial state. The initial state con-
sists of a loop that interrogates the soft power switch. Once the user presses the soft
power switch, the hardware completes the bootstrap process.

82 The Variety Of Processors And Computational Engines Chap. 4

4.16 Summary

A processor is a digital device that can perform a computation involving multiple
steps. Processors can use fixed, selectable, parameterized or programmable logic. The
term engine identifies a processor that is a subpiece of a more complex processor.

Processors are used in various roles, including coprocessors, microcontrollers, em-
bedded processors, and general-purpose processors. Although early processors were
created from discrete logic, a modern processor is implemented as a single VLSI chip.

A processor is classified as programmable if at some level, the processor hardware
is separate from the sequence of steps that the processor performs; from the point of
view of the end user, however, it might not be possible to change the program without
replacing the processor. All programmable processors follow a fetch-execute cycle; the
time required for one cycle depends on the operation performed. Because fetch-execute
processing continues indefinitely, a designer must construct a program in such a way
that the processor always has an instruction to execute.

A set of software programs are used to translate a source program, written by a
programmer, into the binary representation that a processor requires. The set includes a
preprocessor, compiler, assembler, and linker.

EXERCISES

4.1 Neither Figure 4.1 nor Figure 4.2 has storage as a major component. Where does storage
(e.g., flash or an electro-mechanical disk) fit into the figures?

4.2 Consider the System-on-Chip (SoC) approach described in Chapter 2. Besides a processor,
memory, and I/O facilities, what does an SoC need?

4.3 Consult Wikipedia to learn about early computers. How much memory did the Harvard
Mark I computer have, and what year was it created? How much memory did the IBM
360/20 computer have, and what year was it created?

4.4 Although CPU manufacturers brag about the graphics accelerators on their chips, some
video game designers choose to keep the graphics hardware separate from the processor.
Explain one possible motivation for keeping it separate.

4.5 Imagine a smart phone that employs a Harvard Architecture. If you purchase such a phone,
what would you need to specify that you do not normally specify?

4.6 What aspect of a Von Neumann Architecture makes it more vulnerable to hackers than a
Harvard Architecture?

4.7 If you have access to gcc, read the man page to learn the command line argument that al-
lows you to run only the preprocessor and place the preprocessed program in a file that can
be viewed. What changes are made in the source program?

4.8 Extend the previous exercise by placing the assembly language output from the compiler in
a file that can be viewed.

4.9 Write a computer program that compares the difference in execution times between an in-
teger division and a floating point division. To test the program, execute each operation
100,000 times, and compare the difference in running times.

www.ebook3000.com

http://www.ebook3000.org

Chapter Contents

5.1 Introduction, 85
5.2 Mathematical Power, Convenience, And Cost, 85
5.3 Instruction Set Architecture, 86
5.4 Opcodes, Operands, And Results, 87
5.5 Typical Instruction Format, 87
5.6 Variable-Length Vs. Fixed-Length Instructions, 87
5.7 General-Purpose Registers, 88
5.8 Floating Point Registers And Register Identification, 89
5.9 Programming With Registers, 89
5.10 Register Banks, 90
5.11 Complex And Reduced Instruction Sets, 91
5.12 RISC Design And The Execution Pipeline, 92
5.13 Pipelines And Instruction Stalls, 93
5.14 Other Causes Of Pipeline Stalls, 95
5.15 Consequences For Programmers, 95
5.16 Programming, Stalls, And No-Op Instructions, 96
5.17 Forwarding, 97
5.18 Types Of Operations, 97
5.19 Program Counter, Fetch-Execute, And Branching, 98
5.20 Subroutine Calls, Arguments, And Register Windows, 99
5.21 An Example Instruction Set, 101
5.22 Minimalistic Instruction Set, 103
5.23 The Principle Of Orthogonality, 104
5.24 Condition Codes And Conditional Branching, 104
5.25 Summary, 105

www.ebook3000.com

http://www.ebook3000.org

5

Processor Types And
Instruction Sets

5.1 Introduction

The previous chapter introduces a variety of processors and explains the fetch-
execute cycle that programmable processors use. This chapter continues the discussion
by focusing on the set of operations that a processor can perform. The chapter explains
various approaches computer architects have chosen, and discusses the advantages and
disadvantages of each. The next chapters extend the discussion by describing the vari-
ous ways processors access operands.

5.2 Mathematical Power, Convenience, And Cost

What operations should a processor offer? From a mathematical point of view, a
wide variety of computational models provide equivalent computing power. In theory,
as long as a processor offers a few basic operations, the processor has sufficient power
to compute any computable function†.

Programmers understand that although only a minimum set of operations are
necessary, a minimum is neither convenient nor practical. That is, the set of operations
is designed for convenience rather than for mere functionality. For example, it is possi-
ble to compute a quotient by repeated subtraction. However, a program that uses re-
peated subtraction to compute a quotient runs slowly. Thus, most processors operations
include hardware for each basic arithmetic operation: addition, subtraction, multiplica-
tion, and division.

��������������������������������
†In a mathematical sense, only three operations are needed to compute any computable function: add one,

subtract one, and branch if a value is nonzero.

85

86 Processor Types And Instruction Sets Chap. 5

To a computer architect, choosing a set of operations that the processor will per-
form represents a tradeoff. On the one hand, adding an additional arithmetic operation,
such as multiplication or division, provides convenience for the programmer. On the
other hand, each additional operation adds more hardware and makes the processor
design more difficult. Adding hardware also increases engineering considerations such
as chip size, power consumption, and heat dissipation. Thus, because a smart phone is
designed to conserve battery power, the processors used in smart phones typically have
fewer built-in operations than the processors used in powerful mainframe computers.

The point is that when considering the set of operations a given processor provides,
we need to remember that the choice represents a complex tradeoff:

The set of operations a processor provides represents a tradeoff
among the cost of the hardware, the convenience for a programmer,
and engineering considerations such as power consumption.

5.3 Instruction Set Architecture

When an architect designs a programmable processor, the architect must make two
key decisions:

d Instruction set: the set of operations the processor provides

d Instruction representation: the format for each operation

We use the term instruction set to refer to the set of operations the hardware recog-
nizes, and refer to each operation as an instruction. We assume that on each iteration of
its fetch-execute cycle, a processor executes one instruction.

The definition of an instruction set specifies all details about instructions, including
an exact specification of actions the processor takes when it executes the instruction.
Thus, the instruction set defines values on which each instruction operates and the
results the instruction produces. The definition specifies allowable values (e.g., the
division instruction requires the divisor to be nonzero) and error conditions (e.g., what
happens if an addition results in an overflow).

The term instruction representation (instruction format) refers to the binary
representation that the hardware uses for instructions. The instruction representation is
important because it defines a key interface: the interface between software that gen-
erates instructions and places them in memory and the hardware that executes the in-
structions. The software (e.g., the compiler, linker, and loader) must create an image in
memory that uses exactly the same instruction format that the processor hardware ex-
pects.

We say that the definition of an instruction set and the corresponding representa-
tion define an Instruction Set Architecture (ISA). That is, an ISA defines both syntactic
and semantic aspects of the instruction set. IBM Corporation pioneered the approach in
the 1960s when it developed an ISA for its System/360 line of computers — with minor

www.ebook3000.com

http://www.ebook3000.org

Sec. 5.3 Instruction Set Architecture 87

exceptions, all computers in the line shared the same basic instruction set, but individual
models differed widely (approximately a 1:30 ratio) in the size of memory, processor
speed, and cost.

5.4 Opcodes, Operands, And Results

Conceptually, each instruction contains three parts that specify: the exact operation
to be performed, the value(s) to use, and where to place the result(s). The following
paragraphs define the idea more precisely.

Opcode. The term opcode (short for operation code) refers to the exact operation
to be performed. An opcode is a number; when the instruction set is designed, each
operation must be assigned a unique opcode. For example, integer addition might be
assigned opcode five, and integer subtraction might be assigned opcode twelve.

Operands. The term operand refers to a value that is needed to perform an opera-
tion. The definition of an instruction set specifies the exact number of operands for
each instruction, and the possible values (e.g., the addition operation takes two signed
integers).

Results. In some architectures, one or more of the operands specify where the pro-
cessor should place results of an instruction (e.g., the result of an arithmetic operation);
in others, the location of the result is determined automatically.

5.5 Typical Instruction Format

Each instruction is represented as a binary string. On most processors, an instruc-
tion begins with a field that contains the opcode, followed by fields that contain the
operands. Figure 5.1 illustrates the general format.

opcode operand 1 operand 2 . . .

Figure 5.1 The general instruction format that many processors use. The op-
code at the beginning of an instruction determines exactly which
operands follow.

5.6 Variable-Length Vs. Fixed-Length Instructions

The question arises: should each instruction be the same size (i.e., occupy the same
number of bytes) or should the length depend on the quantity and type of the operands?
For example, consider integer arithmetic operations. Addition or subtraction operates
on two values, but negation operates on a single value. Furthermore, a processor can

88 Processor Types And Instruction Sets Chap. 5

handle multiple sizes of operands (e.g., a processor can have an instruction that adds a
pair of sixteen-bit integers as well as an instruction that adds a pair of thirty-two bit in-
tegers). Should one instruction be shorter than another?

We use the term variable-length to characterize an instruction set that includes
multiple instruction sizes, and the term fixed-length to characterize an instruction set in
which every instruction is the same size. Programmers expect variable-length instruc-
tions because software usually allocates space according to the size of each object (e.g.,
if the strings “Hello” and “bye” appear in a program, a compiler will allocate 5 and 3
bytes, respectively). From a hardware point of view, however, variable-length instruc-
tions require complex hardware to fetch and decode. By comparison, fixed-length in-
structions require less complex hardware. Fixed-length instructions allow processor
hardware to operate at higher speed because the hardware can compute the location of
the next instruction easily. Thus, many processors force all instructions to be the same
size, even if some instructions can be represented in fewer bits than others. The point
is:

Although it may seem inefficient to a programmer, using fixed-length
instructions can make processor hardware less complex and faster.

How does a processor that uses fixed-length instructions handle cases where an in-
struction does not need all operands? For example, how does a fixed-length instruction
set accommodate both addition and negation? Interestingly, the hardware is designed to
ignore fields that are not needed for a given operation. Thus, an instruction set may
specify that in some instructions, specific bits are unused†. To summarize:

When a fixed-length instruction set is employed, some instructions
contain extra fields that the hardware ignores. The unused fields
should be viewed as part of a hardware optimization, not as an indi-
cation of a poor design.

5.7 General-Purpose Registers

As we have seen, a register is a small, high-speed hardware storage device found
in a processor. A register has a fixed size (e.g., 32 or 64 bits) and supports two basic
operations: fetch and store. We will see later that registers can operate in a variety of
roles, including as an instruction pointer (also called a program counter) that gives the
address of the next instruction to execute. For now, we will restrict our attention to a
simple case that is well known to programmers: general-purpose registers that are used
as a temporary storage mechanism. A processor usually has a small number of
general-purpose registers (e.g., thirty-two), and each register is usually the size of an in-
teger. For example, on a processor that provides thirty-two bit arithmetic, each
general-purpose register holds thirty-two bits. As a result, a general-purpose register

��������������������������������
†Some hardware requires unused bits to be zero.

www.ebook3000.com

http://www.ebook3000.org

Sec. 5.7 General-Purpose Registers 89

can hold an operand needed for an arithmetic instruction or the result of such an instruc-
tion.

In many architectures, general-purpose registers are numbered from 0 through
N–1. The processor provides instructions that can store a value into (or fetch a value
from) a specified register. General-purpose registers have the same semantics as
memory: a fetch operation returns the value specified in the previous store operation.
Similarly, a store operation replaces the contents of the register with a new value.

5.8 Floating Point Registers And Register Identification

Processors that support floating point arithmetic often use a separate set of registers
to hold floating point values. Confusion can arise because both general-purpose regis-
ters and floating point registers are usually numbered starting at zero — the instruction
determines which registers are used. For example, if registers 3 and 6 are specified as
operands for an integer instruction, the processor will extract the operands from the
general-purpose registers. However, if registers 3 and 6 are specified as operands for a
floating point instruction, the floating point registers will be used.

5.9 Programming With Registers

Many processors require operands to be placed in general-purpose registers before
an instruction is executed. Some processors also place the results of an instruction in a
general-purpose register. Thus, to add two integers in variables X and Y and place the
result in variable Z, a programmer must create a series of instructions that move values
to the corresponding registers. For example, if general-purpose registers 3, 6, and 7 are
available, the program might contain four instructions that perform the following steps:

d Load a copy of variable X from memory into register 3

d Load a copy of variable Y from memory into register 6

d Add the value in register 3 to the value in register 6, and place
the result in register 7

d Store a copy of the value in register 7 to variable Z in memory

We will see that moving a value between memory and a register is relatively ex-
pensive, so performance is optimized by leaving values in registers if the value will be
used again. Because a processor only contains a small number of registers, a program-
mer (or compiler) must decide which values to keep in the registers at any time; other
values are kept in memory†. The process of choosing which values the registers con-
tain is known as register allocation.

Many details complicate register allocation. One of the most common arises if an
instruction generates a large result, called an extended value. For example, integer mul-
tiplication can produce a result that contains twice as many bits as either operand.

��������������������������������
†The term register spilling refers to moving a value from a register back into memory to make the regis-

ter available for a new value.

90 Processor Types And Instruction Sets Chap. 5

Some processors offer facilities for double precision arithmetic (e.g., if a standard in-
teger is thirty-two bits wide, a double precision integer occupies sixty-four bits).

To handle extended values, the hardware treats registers as consecutive. On such
processors, for example, an instruction that loads a double precision integer into register
4 will place half the integer in register 4 and the other half in register 5 (i.e., the value
of register 5 will change even though the instruction contains no explicit reference).
When choosing registers to use, a programmer must plan for instructions that place ex-
tended data values in consecutive registers.

5.10 Register Banks

An additional hardware detail complicates register allocation: some architectures
divide registers into multiple banks, and require the operands for an instruction to come
from separate banks. For example, on a processor that uses two register banks, an in-
teger add instruction may require the two operands to be from separate banks.

To understand register banks, we must examine the underlying hardware. In
essence, register banks allow the hardware to operate faster because each bank has a
separate physical access mechanism and the mechanisms operate simultaneously. Thus,
when the processor executes an instruction that accesses two operands in registers, both
operands can be obtained at the same time. Figure 5.2 illustrates the concept.

Processor

0
1
2
3

Bank A

4
5
6
7

Bank B

separate hardware
units used to access
the register banks

Figure 5.2 Illustration of eight registers divided into two banks. Hardware
allows the processor to access both banks at the same time.

Register banks have an interesting consequence for programmers: it may not be
possible to keep data values in registers permanently. To understand why, consider the
following assignment statements that are typical of those used in a conventional pro-

www.ebook3000.com

http://www.ebook3000.org

Sec. 5.10 Register Banks 91

gramming language, and assume we want to implement the statements on a processor
that has two register banks as Figure 5.2 illustrates.

R ← X + Y

S ← Z - X

T ← Y + Z

To perform the first addition, X and Y must be in separate register banks. Let’s
assume X is in a register in bank A, and Y is in a register in bank B. For the subtrac-
tion, Z must be in the opposite register bank than X (i.e., Z must be in a register in bank
B). For the third assignment, Y and Z must be in different banks. Unfortunately, the
first two assignments mean that Y and Z are located in the same bank. Thus, there is
no possible assignment of X, Y, and Z to registers that works with all three instructions.
We say that a register conflict occurs.

What happens when a register conflict arises? The programmer must either reas-
sign registers or insert an instruction to copy values. For example, we could insert an
extra instruction that copies the value of Z into a register in bank A before the final ad-
dition is performed.

5.11 Complex And Reduced Instruction Sets

Computer architects divide instruction sets into two broad categories that are used
to classify processors†:

d Complex Instruction Set Computer (CISC)

d Reduced Instruction Set Computer (RISC)

A CISC processor usually includes many instructions (typically hundreds), and
each instruction can perform an arbitrarily complex computation. Intel’s x86 instruction
set is classified as CISC because a processor provides hundreds of instructions, includ-
ing complex instructions that require a long time to execute (e.g., one instruction mani-
pulates graphics in memory and others compute the sine and cosine functions).

In contrast to CISC, a RISC processor is constrained. Instead of arbitrary instruc-
tions, a RISC design strives for a minimum set that is sufficient for all computation
(e.g., thirty-two instructions). Instead of allowing a single instruction to compute an ar-
bitrary function, each instruction performs a basic computation. To achieve the highest
possible speed, RISC designs constrain instructions to be a fixed size. Finally, as the
next section explains, a RISC processor is designed to execute an instruction in one
clock cycle‡. Arm Limited and MIPS Corporation have each created RISC architec-
tures with limited instructions that can be executed in one clock cycle. The ARM
designs are especially popular in smart phones and other low-power devices.

We can summarize:

��������������������������������
†Instead of using the full name, most engineers use the acronyms, which are pronounced sisk and risk.
‡Recall from Chapter 2 that a clock, which pulses at regular intervals, is used to control digital logic.

92 Processor Types And Instruction Sets Chap. 5

A processor is classified as CISC if the instruction set contains in-
structions that perform complex computations that can require long
times; a processor is classified as RISC if it contains a small number
of instructions that can each execute in one clock cycle.

5.12 RISC Design And The Execution Pipeline

We said that a RISC processor executes one instruction per clock cycle. In fact, a
more accurate version of the statement is: a RISC processor is designed so the processor
can complete one instruction on each clock cycle. To understand the subtle difference,
it is important to know how the hardware works. We said that a processor performs a
fetch-execute cycle by first fetching an instruction and then executing the instruction.
In fact, the processor divides the fetch-execute cycle into several steps, typically:

d Fetch the next instruction

d Decode the instruction and fetch operands from registers

d Perform the arithmetic operation specified by the opcode

d Perform memory read or write, if needed

d Store the result back to the registers

To enable high speed, RISC processors contain parallel hardware units that each
perform one step listed above. The hardware is arranged in a multistage pipeline†,
which means the results from one hardware unit are passed to the next hardware unit.
Figure 5.3 illustrates a pipeline.

fetch
next

instruction

stage 1

decode
plus fetch
operands

stage 2

perform
arithmetic
operation

stage 3

read or
write

memory

stage 4

store
the

result

stage 5

Figure 5.3 An example pipeline of the five hardware stages that are used to
perform the fetch-execute cycle.

In the figure, an instruction moves left to right through the pipeline. The first
stage fetches the instruction, the next stage examines the opcode, and so on. Whenever
the clock ticks, all stages simultaneously pass the instruction to the right. Thus, instruc-
tions move through the pipeline like an assembly line: at any time, the pipeline contains
five instructions.

��������������������������������
†The terms instruction pipeline and execution pipeline are used interchangeably to refer to the multistage

pipeline used in the fetch-execute cycle.

www.ebook3000.com

http://www.ebook3000.org

Sec. 5.12 RISC Design And The Execution Pipeline 93

The speed of a pipeline arises because all stages can operate in parallel — while
the fourth stage executes an instruction, the third stage fetches the operands for the next
instruction. Thus, a stage never needs to delay because an instruction is always ready
on each clock cycle. Figure 5.4 illustrates how a set of instructions pass through a
five-stage pipeline.

stage 5stage 4stage 3stage 2stage 1clock

1

2

3

4

5

6

7

8

inst. 1

inst. 2

inst. 3

inst. 4

inst. 5

inst. 6

inst. 7

inst. 8

-

inst. 1

inst. 2

inst. 3

inst. 4

inst. 5

inst. 6

inst. 7

-

-

inst. 1

inst. 2

inst. 3

inst. 4

inst. 5

inst. 6

-

-

-

inst. 1

inst. 2

inst. 3

inst. 4

inst. 5

-

-

-

-

inst. 1

inst. 2

inst. 3

inst. 4

Time

Figure 5.4 Instructions passing through a five-stage pipeline. Once the pipe-
line is filled, each stage is busy on each clock cycle.

The figure clearly illustrates that although a RISC processor cannot perform all the
steps needed to fetch and execute an instruction in one clock cycle, parallel hardware al-
lows the processor to finish one instruction per clock cycle. We can summarize:

Although a RISC processor cannot perform all steps of the fetch-
execute cycle in a single clock cycle, an instruction pipeline with
parallel hardware provides approximately the same performance:
once the pipeline is full, one instruction completes on every clock cy-
cle.

5.13 Pipelines And Instruction Stalls

We say that the instruction pipeline is transparent to programmers because the in-
struction set does not contain any explicit references to the pipeline. That is, the
hardware is constructed so the results of a program are the same whether or not a pipe-
line is present. Although transparency can be an advantage, it can also be a disadvan-
tage: a programmer who does not understand the pipeline can inadvertently introduce
inefficiencies.

To understand the effect of programming choices on a pipeline, consider a program
that contains two successive instructions that perform an addition and subtraction on
operands and results located in registers that we will label A, B, C, D, and E:

94 Processor Types And Instruction Sets Chap. 5

Instruction K: C ← add A B

Instruction K+1: D ← subtract E C

Although instruction K can proceed through the pipeline from beginning to end, in-
struction K+1 encounters a problem because operand C is not available in time. That
is, the hardware must wait for instruction K to finish before fetching the operands for
instruction K+1. We say that a stage of the pipeline stalls to wait for the operand to
become available. Figure 5.5 illustrates what happens during a pipeline stall.

stage 5
write

results

stage 4
access
memory

stage 3
ALU

operation

stage 2
fetch

operands

stage 1
fetch

instructionclock

1

2

3

4

5

6

7

8

9

10

inst. K

inst. K+1

inst. K+2

(inst. K+2)

(inst. K+2)

(inst. K+2)

inst. K+3

inst. K+4

inst. K+5

inst. K+6

inst. K-1

inst. K

(inst. K+1)

(inst. K+1)

(inst. K+1)

inst. K+1

inst. K+2

inst. K+3

inst. K+4

inst. K+5

inst. K-2

inst. K-1

inst. K

–

–

–

inst. K+1

inst. K+2

inst. K+3

inst. K+4

inst. K-3

inst. K-2

inst. K-1

inst. K

–

–

–

inst. K+1

inst. K+2

inst. K+1

inst. K-4

inst. K-3

inst. K-2

inst. K-1

inst. K

–

–

–

inst. K+1

inst. K+2

Time

Figure 5.5 Illustration of a pipeline stall. Instruction K+1 cannot proceed
until an operand from instruction K becomes available.

The figure shows a normal pipeline running until clock cycle 3, when Instruction
K+1 has reached stage 2. Recall that stage 2 fetches operands from registers. In our
example, one of the operands for instruction K+1 is not available, and will not be avail-
able until instruction K writes its results into a register. The pipeline must stall until in-
struction K completes. In the code above, because the value of C has not been comput-
ed, stage 2 cannot fetch the value for C. Thus, stages 1 and 2 remain stalled during
clock cycles 4 and 5. During clock cycle 6, stage 2 can fetch the operand, and pipeline
processing continues.

The rightmost column in Figure 5.5 shows the effect of a stall on performance: the
final stage of the pipeline does not produce any results during clock cycles 6, 7, and 8.
If no stalls had occurred, instruction K+1 would have completed during clock cycle 6,
but the stall means the instruction does not complete until clock cycle 9.

To describe the delay between the cause of a stall and the time at which output
stops, we say that a bubble passes through the pipeline. Of course, the bubble is only
apparent to someone observing the pipeline’s performance because correctness is not af-

www.ebook3000.com

http://www.ebook3000.org

Sec. 5.13 Pipelines And Instruction Stalls 95

fected. That is, an instruction always passes directly to the next stage as soon as one
stage completes, which means all instructions are executed in the order specified.

5.14 Other Causes Of Pipeline Stalls

In addition to waiting for operands, a pipeline can stall when the processor exe-
cutes any instruction that delays processing or disrupts the normal flow. For example, a
stall can occur when a processor:

d Accesses external storage

d Invokes a coprocessor

d Branches to a new location

d Calls a subroutine

The most sophisticated processors contain additional hardware to avoid stalls. For
example, some processors contain two copies of a pipeline, which allows the processor
to start decoding the instruction that will be executed if a branch is taken as well as the
instruction that will be executed if a branch is not taken. The two copies operate until a
branch instruction can be executed. At that time, the hardware knows which copy of
the pipeline to follow; the other copy is ignored. Other processors contain special
shortcut hardware that passes a copy of a result back to a previous pipeline stage.

5.15 Consequences For Programmers

To achieve maximum speed, a program for a RISC architecture must be written to
accommodate an instruction pipeline. For example, a programmer should avoid intro-
ducing unnecessary branch instructions. Similarly, instead of referencing a result regis-
ter immediately in the following instruction, the reference can be delayed. As an exam-
ple, Figure 5.6 shows how code can be rearranged to run faster.

C ← add A B C ← add A B

D ← subtract E C F ← add G H

F ← add G H M ← add K L

J ← subtract I F D ← subtract E C

M ← add K L J ← subtract I F

P ← subtract M N P ← subtract M N

(a) (b)

Figure 5.6 (a) A list of instructions, and (b) the instructions reordered to run
faster in a pipeline. Reducing pipeline stalls increases speed.

96 Processor Types And Instruction Sets Chap. 5

In the figure, the optimized program separates references from computation. For
example, in the original program, the second instruction references value C, which is
produced by the previous instruction. Thus, a stall occurs between the first and second
instructions. Moving the subtraction to a later point in the program allows the proces-
sor to continue to operate without a stall.

Of course, a programmer can choose to view a pipeline as an automatic optimiza-
tion instead of a programming burden. Fortunately, most programmers do not need to
perform pipeline optimizations manually. Instead, compilers for high-level languages
perform the optimizations automatically.

Rearranging code sequences can increase the speed of processing
when the hardware uses an instruction pipeline; programmers view
the reordering as an optimization that can increase speed without af-
fecting correctness.

5.16 Programming, Stalls, And No-Op Instructions

In some cases, the instructions in a program cannot be rearranged to prevent a stall.
In such cases, programmers can document stalls so anyone reading the code will under-
stand that a stall occurs. Such documentation is especially helpful if a program is modi-
fied because the programmer who performs the modification can reconsider the situation
and attempt to reorder instructions to prevent a stall.

How should programmers document a stall? One technique is obvious: insert a
comment that explains the reason for a stall. However, most code is generated by com-
pilers and is only read by humans when problems occur or special optimization is re-
quired. In such cases, another technique can be used: in places where stalls occur, in-
sert extra instructions in the code. The extra instructions show where items can be in-
serted without affecting the pipeline. Of course, the extra instructions must be innocu-
ous — they must not change the values in registers or otherwise affect the program. In
most cases, the hardware provides the solution: a no-op. That is, an instruction that
does absolutely nothing except occupy time. The point is:

Most processors include a no-op instruction that does not reference
data values, compute a result, or otherwise affect the state of the com-
puter. No-op instructions can be inserted to document locations
where an instruction stall occurs.

www.ebook3000.com

http://www.ebook3000.org

Sec. 5.17 Forwarding 97

5.17 Forwarding

As mentioned above, some hardware has special facilities to improve instruction
pipeline performance. For example, an ALU can use a technique known as forwarding
to solve the problem of successive arithmetic instructions passing results.

To understand how forwarding works, consider the example of two instructions
where operands A, B, C, D, and E are in registers:

Instruction K: C ← add A B

Instruction K+1: D ← subtract E C

We said that such a sequence causes a stall on a pipelined processor. However, a
processor that implements forwarding can avoid the stall by arranging for the hardware
to detect the dependency and automatically pass the value for C from instruction K
directly to instruction K + 1. That is, a copy of the output from the ALU in instruction
K is forwarded directly to the input of the ALU in instruction K + 1. As a result, in-
structions continue to fill the pipeline, and no stall occurs.

5.18 Types Of Operations

When computer architects discuss instruction sets, they divide the instructions into
a few basic categories. Figure 5.7 lists one possible division.

d Integer arithmetic instructions

d Floating point arithmetic instructions

d Logical instructions (also called Boolean operations)

d Data access and transfer instructions

d Conditional and unconditional branch instructions

d Processor control instructions

d Graphics instructions

Figure 5.7 An example of categories used to classify instructions. A
general-purpose processor includes instructions in all the
categories.

98 Processor Types And Instruction Sets Chap. 5

5.19 Program Counter, Fetch-Execute, And Branching

Recall from Chapter 4 that every processor implements a basic fetch-execute cycle.
During the cycle, control hardware in the processor automatically moves through in-
structions — once it finishes executing one instruction, the processor automatically
moves past the current instruction in memory before fetching the next instruction. To
implement the fetch-execute cycle and a move to the next instruction, the processor uses
a special-purpose internal register known as an instruction pointer or program counter†.

When a fetch-execute cycle begins, the program counter contains the address of the
instruction to be executed. After an instruction has been fetched, the program counter is
updated to the address of the next instruction. The update of the program counter dur-
ing each fetch-execute cycle means the processor will automatically move through suc-
cessive instructions in memory. Algorithm 5.1 specifies how the fetch-execute cycle
moves through successive instructions.

Algorithm 5.1

Assign the program counter an initial program address. Repeat
forever {

Fetch: access the next step of the program from the loca-
tion given by the program counter.

Set an internal address register, A, to the address beyond
the instruction that was just fetched.

Execute: Perform the step of the program.

Copy the contents of address register A to the program
counter.

}

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
���

Algorithm 5.1 The Fetch-Execute Cycle

The algorithm allows us to understand how branch instructions work. There are
two cases: absolute and relative. An absolute branch computes a memory address, and
the address specifies the location of the next instruction to execute. Typically, an abso-
lute branch instruction is known as a jump. During the execute step, a jump instruction
computes an address and loads the value into the internal register A that Algorithm 5.1
specifies. At the end of the fetch-execute cycle, the hardware copies the value into the
program counter, which means the address will be used to fetch the next instruction.
For example, the absolute branch instruction:

��������������������������������
†The two terms are equivalent.

www.ebook3000.com

http://www.ebook3000.org

Sec. 5.19 Program Counter, Fetch-Execute, And Branching 99

jump 0x05DE

causes the processor to load 0x05DE into the internal address register, which is copied
into the program counter before the next instruction is fetched. In other words, the next
instruction fetch will occur at memory location 0x05DE.

Unlike an absolute branch instruction, a relative branch instruction does not speci-
fy an exact memory address. Instead, a relative branch computes a positive or negative
increment for the program counter. For example, the instruction:

br +8

specifies branching to a location that is eight bytes beyond the current location (i.e.,
beyond the current value of the program counter).

To implement relative branching, a processor adds the operand in the branch in-
struction to the program counter, and places the result in internal address register A.
For example, if the relative branch computes -12, the next instruction to be executed
will be found at an address twelve bytes before the current instruction. A compiler
might use a relative branch at the end of a short while-loop.

Most processors also provide an instruction to invoke a subroutine, typically jsr
(jump subroutine). In terms of the fetch-execute cycle, a jsr instruction operates like a
branch instruction with a key difference: before the branch occurs, the jsr instruction
saves the value of the address register, A. When it finishes executing, a subroutine re-
turns to the caller. To do so, the subroutine executes an absolute branch to the saved
address. Thus, when the subroutine finishes, the fetch-execute cycle resumes at the in-
struction immediately following the jsr.

5.20 Subroutine Calls, Arguments, And Register Windows

High-level languages use a subroutine call instruction, such as jsr, to implement a
procedure or function call. The calling program supplies a set of arguments that the
subroutine uses in its computation. For example, the function call cos(3.14159) has
the floating point constant 3.14159 as an argument.

One of the principal differences among processors arises from the way the underly-
ing hardware passes arguments to a subroutine. Some architectures use memory — the
arguments are stored on the stack in memory before the call, and the subroutine extracts
the values from the stack when they are referenced. In other architectures, the processor
uses either general-purpose or special-purpose registers to pass arguments.

Using either special-purpose or general-purpose registers to pass arguments is
much faster than using a stack in memory because registers are part of the local storage
in the processor itself. Because few processors provide special-purpose registers for ar-
gument passing, general-purpose registers are typically used. Unfortunately, general-
purpose registers cannot be devoted exclusively to arguments because they are also
needed for other computation (e.g., to hold operands for arithmetic operations). Thus, a

100 Processor Types And Instruction Sets Chap. 5

programmer faces a tradeoff: using a general-purpose register to pass an argument can
increase the speed of a subroutine call, but using the register to hold a data value can in-
crease the speed of general computation. Thus, a programmer must choose which argu-
ments to keep in registers and which to store in memory†.

Some processors include an optimization for argument passing known as a register
window. Although a processor has a large set of general-purpose registers, the register
hardware only exposes a subset of the registers at any time. The subset is known as a
window. The window moves automatically each time a subroutine is invoked, and
moves back when the subroutine returns. More important, the windows that are avail-
able to a program and subroutine overlap — some of the registers visible to the caller
are visible to the subroutine. A caller places arguments in the registers that will overlap
before calling a subroutine and the subroutine extracts values from the registers. Figure
5.8 illustrates the concept of a register window

A B C D

A B C D

x1 x2 x3 x4

x1 x2 x3 x4 l1 l2 l3 l4

(a)

(b)

registers 0 - 7 before
subroutine is called

registers 0 - 7
when subroutine runs

other registers
are unavailable

unavailableunavailable

Figure 5.8 Illustration of a register window (a) before a subroutine call, and
(b) during the call. Values A, B, C, and D correspond to argu-
ments that are passed.

In the figure, the hardware has 16 registers, but only 8 registers are visible at any
time; others are unavailable. A program always references visible registers as numbers
0 through the window size minus one (0 through 7 in the example). When a subroutine
is called, the hardware changes the set of registers that are visible by sliding the win-
dow. In the example, registers that were numbered 4 through 7 before the call become
0 through 3 after the call. Thus, the calling program places arguments A through D in
registers 4 through 7, and the subroutine finds the arguments in registers 0 through 3.
Registers with values xi are only available to the calling program. The advantage of a
register window approach is that registers that are not in the current window retain the
values they had. So, when the called subroutine returns, the window will slide back,
and registers with values xi will be exactly the same as before the call.

��������������������������������
†Appendix 3 describes the calling sequence used with an x86 architecture, and Appendix 4 explains how

an ARM architecture passes some arguments in registers and some in memory.

www.ebook3000.com

http://www.ebook3000.org

Sec. 5.20 Subroutine Calls, Arguments, And Register Windows 101

The illustration in Figure 5.8 uses a small window size (eight registers) to simplify
the diagram. In practice, processors that use a register window typically have larger
windows. For example, the Sparc architecture has one hundred twenty-eight or one
hundred forty-four physical registers and a window size of thirty-two registers; howev-
er, only eight of the registers in the window overlap (i.e., only eight registers can be
used to pass arguments).

5.21 An Example Instruction Set

An example instruction set will help clarify the concepts described above. We
have selected the MIPS processor as an example for two reasons. First, the MIPS pro-
cessor is popular for use in embedded systems. Second, the MIPS instruction set is a
classic example of the instruction set offered by a RISC processor. Figure 5.9 lists the
instructions in the MIPS instruction set.

A MIPS processor contains thirty-two general-purpose registers, and most instruc-
tions require the operands and results to be in registers. For example, the add instruc-
tion takes three operands that are registers: the instruction adds the contents of the first
two registers and places the result in the third.

In addition to the integer instructions that are listed in Figure 5.9, the MIPS archi-
tecture defines a set of floating point instructions for both single precision (i.e., thirty-
two bit) and double precision (i.e., sixty-four bit) floating point values. The hardware
provides a set of thirty-two floating point registers. Although they are numbered from
zero to thirty-one, the floating point registers are completely independent of the
general-purpose registers.

To handle double precision values, the floating point registers operate as pairs.
That is, only an even-numbered floating point register can be specified as an operand or
target in a floating point instruction — the hardware uses the specified register plus the
next odd-numbered register as a combined storage unit to hold a double precision value.
Figure 5.10 summarizes the MIPS floating point instruction set.

102 Processor Types And Instruction Sets Chap. 5

Instruction Meaning��
Arithmetic

add integer addition
subtract integer subtraction
add immediate integer addition (register + constant)
add unsigned unsigned integer addition
subtract unsigned unsigned integer subtraction
add immediate unsigned unsigned addition with a constant
move from coprocessor access coprocessor register
multiply integer multiplication
multiply unsigned unsigned integer multiplication
divide integer division
divide unsigned unsigned integer division
move from Hi access high-order register
move from Lo access low-order register

Logical (Boolean)
and logical and (two registers)
or logical or (two registers)
and immediate and of register and constant
or immediate or of register and constant
shift left logical shift register left N bits
shift right logical shift register right N bits

Data Transfer
load word load register from memory
store word store register into memory
load upper immediate place constant in upper sixteen

bits of register
move from coproc. register obtain a value from a coprocessor

Conditional Branch
branch equal branch if two registers equal
branch not equal branch if two registers unequal
set on less than compare two registers
set less than immediate compare register and constant
set less than unsigned compare unsigned registers
set less than immediate compare unsigned register and constant

Unconditional Branch
jump go to target address
jump register go to address in register
jump and link procedure call

Figure 5.9 An example instruction set. The table lists the instructions of-
fered by the MIPS processor.

www.ebook3000.com

http://www.ebook3000.org

Sec. 5.21 An Example Instruction Set 103

Instruction Meaning��

Arithmetic

FP add floating point addition
FP subtract floating point subtraction
FP multiply floating point multiplication
FP divide floating point division
FP add double double-precision addition
FP subtract double double-precision subtraction
FP multiply double double-precision multiplication
FP divide double double-precision division

Data Transfer

load word coprocessor load value into FP register
store word coprocessor store FP register to memory

Conditional Branch

branch FP true branch if FP condition is true
branch FP false branch if FP condition is false
FP compare single compare two FP registers
FP compare double compare two double precision values

Figure 5.10 Floating point (FP) instructions defined by the MIPS architec-
ture. Double precision values occupy two consecutive floating
point registers.

5.22 Minimalistic Instruction Set

It may seem that the instructions listed in Figure 5.9 are insufficient and that addi-
tional instructions are needed. For example, the MIPS architecture does not include an
instruction that copies the contents of a register to another register, nor does the archi-
tecture include instructions that can add a value in memory to the contents of a register.
To understand the choices, it is important to know that the MIPS instruction set sup-
ports two principles: speed and minimalism. First, the basic instruction set has been
designed carefully to ensure high speed (i.e., the architecture has the property that when
a pipeline is used, one instruction can complete on every clock cycle). Second, the in-
struction set is minimalistic — it contains the fewest possible instructions that handle
standard computation. Limiting the number of instructions forms a key piece of the
design. Choosing thirty-two instructions means that an opcode only needs five bits and
no combination of the bits is wasted.

One feature of the MIPS architecture, which is also used in other RISC processors,
helps achieve minimalism: fast access to a zero value. In the case of MIPS, register 0
provides the mechanism — the register is reserved and always contains the value zero.

104 Processor Types And Instruction Sets Chap. 5

Thus, to test whether a register is zero, the value can be compared to register zero.
Similarly, register zero can be used in any instruction. For example, to copy a value
from one register to another, an add instruction can be used in which one of the two
operands is register zero.

5.23 The Principle Of Orthogonality

In addition to the technical aspects of instruction sets discussed above, an architect
must consider the aesthetic aspects of a design. In particular, an architect strives for
elegance. Elegance relates to human perception: how does the instruction set appear to
a programmer? How do instructions combine to handle common programming tasks?
Are the instructions balanced (if the set includes right-shift, does it also include left-
shift)? Elegance calls for subjective judgment. However, experience with a few in-
struction sets often helps engineers and programmers recognize and appreciate elegance.

One particular aspect of elegance, known as orthogonality, concentrates on elim-
inating unnecessary duplication and overlap among instructions. We say that an in-
struction set is orthogonal if each instruction performs a unique task. An orthogonal in-
struction set has important advantages for programmers: orthogonal instructions can be
understood more easily, and a programmer does not need to choose among multiple in-
structions that perform the same task. Orthogonality is so important that it has become
a general principle of processor design. We can summarize:

The principle of orthogonality specifies that each instruction should
perform a unique task without duplicating or overlapping the func-
tionality of other instructions.

5.24 Condition Codes And Conditional Branching

On many processors, executing an instruction results in a status, which the proces-
sor stores in an internal hardware mechanism. A later instruction can use the status to
decide how to proceed. For example, when it executes an arithmetic instruction, the
ALU sets an internal register known as a condition code that contains bits to record
whether the result is positive, negative, zero, or an arithmetic overflow occurred. A
conditional branch instruction that follows the arithmetic operation can test one or more
of the condition code bits, and use the result to determine whether to branch.

An example will clarify how a condition code mechanism is used†. To understand
the paradigm, consider a program that tests for equality between two values. As a sim-
ple example, suppose the goal is to set register 3 to zero if the contents of register 4 are
not equal to the contents of register 5. Figure 5.11 contains example code.

��������������������������������
†Chapter 9 explains programming with condition codes and shows further examples.

www.ebook3000.com

http://www.ebook3000.org

Sec. 5.24 Condition Codes And Conditional Branching 105

ccmmpp rr44,, rr55 ## ccoommppaarree rreeggss.. 44 && 55,, aanndd sseett ccoonnddiittiioonn ccooddee

bbee llaabb11 ## bbrraanncchh ttoo llaabb11 iiff ccoonndd.. ccooddee ssppeecciiffiieess eeqquuaall

mmoovv rr33,, 00 ## ppllaaccee aa zzeerroo iinn rreeggiisstteerr 33

llaabb11:: . . .program continues at this point

Figure 5.11 An example of using a condition code. An ALU operation sets
the condition code, and a later conditional branch instruction
tests the condition code.

5.25 Summary

Each processor defines an instruction set that consists of operations the processor
supports; the set is chosen as a compromise between programmer convenience and
hardware efficiency. In some processors, each instruction is the same size, and in other
processors size varies among instructions.

Most processors include a small set of general-purpose registers that are high-speed
storage mechanisms. To program using registers, one loads values from memory into
registers, performs a computation, and stores the result from a register into memory. To
optimize performance, a programmer leaves values that will be used again in registers.
On some architectures, registers are divided into banks, and a programmer must ensure
that the operands for each instruction come from separate banks.

Processors can be classified into two broad categories of CISC and RISC depend-
ing on whether they include many complex instructions or a minimal set of instructions.
RISC architectures use an instruction pipeline to ensure that one instruction can com-
plete on each clock cycle. Programmers can optimize performance by rearranging code
to avoid pipeline stalls.

To implement conditional execution (e.g., an if-then-else), many processors rely on
a condition code mechanism — an ALU instruction sets the condition code, and a later
instruction (a conditional branch) tests the condition code.

EXERCISES

5.1 When debugging a program, a programmer uses a tool that allows them to show the con-
tents of memory. When the programmer points the tool to a memory location that contains
an instruction, the tool prints three hex values with labels:

OC=0x43 OP1=0xff00 OP2=0x0324

What do the labels abbreviate?

106 Processor Types And Instruction Sets Chap. 5

5.2 If the arithmetic hardware on a computer requires operands to be in separate banks, what
instruction sequence will be needed to compute the following?

AA ←← BB -- CC
QQ ←← AA ** CC
WW ←← QQ ++ AA
ZZ ←← WW -- QQ

5.3 Assume you are designing an instruction set for a computer that will perform the Boolean
operations and, or, not, and exclusive or. Assign opcodes and indicate the number of
operands for each instruction. When your instructions are stored in memory, how many
bits will be needed to hold the opcode?

5.4 If a computer can add, subtract, multiply, and divide 16-bit integers, 32-bit integers, 32-bit
floating point values, and 64-bit floating point values, how many unique opcodes will be
needed? (Hint: assume one op code for each operation and each data size.)

5.5 A computer architect boasted that they were able to design a computer in which every in-
struction occupied exactly thirty-two bits. What is the advantage of such a design?

5.6 Classify the ARM architecture owned by ARM Limited, the SPARC architecture owned by
Oracle Corporation, and the Intel Architecture owned by Intel Corporation as CISC or
RISC.

5.7 Consider a pipeline of N stages in which stage i takes time ti. Assuming no delay between
stages, what is the total time (start to finish) that the pipeline will spend handling a single
instruction?

5.8 Insert nop instructions in the following code to eliminate pipeline stalls (assume the pipe-
line illustrated in Figure 5.5).

loadi r7, 10 # put 10 in register 7
loadi r8, 15 # put 15 in register 8
loadi r9, 20 # put 20 in register 5
addrr r10, r7, r8 # add registers 7 8; put the result in register 10
movr r12, r9 # copy register 9 to register 12
movr r11, r7 # copy register 7 to register 11
addri r14, r11, 27 # add 27 plus register 11; put the result in register 14
addrr r13, r12, r11 # add registers 11 and 12; put the results in register 13

www.ebook3000.com

http://www.ebook3000.org

Chapter Contents

6.1 Introduction, 109
6.2 Data Paths, 109
6.3 The Example Instruction Set, 110
6.4 Instructions In Memory, 112
6.5 Moving To The Next Instruction, 114
6.6 Fetching An Instruction, 116
6.7 Decoding An Instruction, 116
6.8 Connections To A Register Unit, 118
6.9 Control And Coordination, 118
6.10 Arithmetic Operations And Multiplexing, 119
6.11 Operations Involving Data In Memory, 120
6.12 Example Execution Sequences, 121
6.13 Summary, 122

www.ebook3000.com

http://www.ebook3000.org

6

Data Paths And Instruction
Execution

6.1 Introduction

Chapter 2 introduces digital logic and describes the basic hardware building blocks
that are used to create digital systems. The chapter covers basic gates, and shows how
gates are constructed from transistors. The chapter also describes the important concept
of a clock, and demonstrates how a clock allows a digital circuit to perform a series of
operations. Successive chapters describe how data is represented in binary and cover
processors and instruction sets.

This chapter explains how digital logic circuits can be combined to construct a
computer. The chapter reviews functional units, such as arithmetic-logic units and
memory, and shows how the units are interconnected. Finally, the chapter explains how
the units interact to perform computation. Later sections of the text expand the discus-
sion by examining processors and memory systems in more detail.

6.2 Data Paths

The topic of how hardware can be organized to create a programmable computer is
complex. Rather than look at all the details of a large design, architects begin by
describing the major hardware components and their interconnection. At a high level,
we are only interested in how instructions are read from memory and how an instruction
is executed. Therefore, the high-level description ignores many details and only shows
the interconnections across which data items move as instructions are executed. For ex-

109

110 Data Paths And Instruction Execution Chap. 6

ample, when we consider the addition operation, we will see the data paths across
which two operands travel to reach an Arithmetic Logic Unit (ALU) and a data path that
carries the result to another unit. Our diagrams will not show other details, such as
power and ground connections or control connections. Computer architects use the
terms data paths to describe the idea and data path diagram to describe a figure that
depicts the data paths.

To make the discussion of data paths clear, we will examine a simplified computer.
The simplifications include:

d Our instruction set only contains four instructions

d We assume a program has already been loaded into memory

d We ignore startup and assume the processor is running

d We assume each data item and each instruction occupies exactly 32 bits

d We only consider integer arithmetic

d We completely ignore error conditions, such as arithmetic overflow

Although the example computer is extremely simple, the basic hardware units we
examine are exactly the same as a conventional computer. Thus, the example is suffi-
cient to illustrate the main hardware components, and the example interconnection is
sufficient to illustrate how data paths are designed.

6.3 The Example Instruction Set

As the previous chapter describes, a new computer design must begin with the
design of an instruction set. Once the details of instructions have been specified, a
computer architect can design hardware that performs each of the instructions. To illus-
trate how hardware is organized, we will consider an imaginary computer that has the
following properties:

d A set of sixteen general-purpose registers†

d A memory that holds instructions (i.e., a program)

d A separate memory that holds data items

Each register can hold a thirty-two bit integer value. The instruction memory con-
tains a sequence of instructions to be executed. As described above, we ignore startup,
and assume a program has already been placed in the instruction memory. The data
memory holds data values. We will also assume that both memories on the computer
are byte-addressable, which means that each byte of memory is assigned an address.

Figure 6.1 lists the four basic instructions that our imaginary computer implements.

��������������������������������
†Hardware engineers often use the term register file to refer to the hardware unit that implements a set of

registers; we will simply refer to them as registers.

www.ebook3000.com

http://www.ebook3000.org

Sec. 6.3 The Example Instruction Set 111

Instruction Meaning��
add Add the integers in two registers and place the result

in a third register
load Load an integer from the data memory into a register
store Store the integer in a register into the data memory
jump Jump to a new location in the instruction memory

Figure 6.1 Four example instructions, the operands each uses, and the mean-
ing of the instruction.

The add instruction is the easiest to understand — the instruction obtains integer
values from two registers, adds the values together, and places the result in a third regis-
ter. For example, consider an add instruction that specifies adding the contents of regis-
ters 2 and 3 and placing the result in register 4. If register 2 contains 50 and register 3
contains 60, such an add instruction will place 110 in register 4 (i.e., the sum of the in-
tegers in registers 2 and 3).

In assembly language, such an instruction is specified by giving the instruction
name followed by operands. For example, a programmer might code the add instruc-
tion described in the previous paragraph by writing:

aadddd rr44,, rr22,, rr33

where the notation rX is used to specify register X. The first operand specifies the des-
tination register (where the result should be placed), and the other two specify source
registers (where the instruction obtains the values to sum).

The load and store instructions move values between the data memory and the re-
gisters. Like many commercial processors, our imaginary processor requires both
operands of an add instruction to be in registers. Also like commercial computers, our
imaginary processor has a large data memory, but only a few registers. Consequently,
to add two integers that are in memory, the two values must be loaded into registers.
The load instruction makes a copy of an integer in memory and places the copy in a re-
gister. The store instruction moves data in the opposite direction: it makes a copy of
the value currently in a register and places the copy in an integer in memory.

One of the operands for a load or store specifies the register to be loaded or stored.
The other operand is more interesting because it illustrates a feature found on many
commercial processors: a single operand that combines two values. Instead of using a
single constant to specify a memory address, memory operands contain two parts. One
part specifies a register, and the other part specifies a constant that is often called an
offset. When the instruction is executed, the processor reads the current value from the
specified register, adds the offset, and uses the result as a memory address.

112 Data Paths And Instruction Execution Chap. 6

An example will clarify the idea. Consider a load instruction that loads register 1
from a value in memory. Such an instruction might be written as:

llooaadd rr11,, 2200((rr33))

where the first operand specifies that the value should be loaded into register 1. The
second operand specifies that the memory address is computed by adding the offset 20
to the current contents of register 3.

Why are processors designed with operands that specify a register plus an offset?
Using such a form makes it easy and efficient to iterate through an array. The address
of the first element is placed in a register, and bytes of the element can be accessed by
using the constant part of the operand. To move to the next element of the array, the
register is incremented by the element size. For now, we only need to understand that
such operands are used, and consider how to design hardware that implements them.

As an example, suppose register 3 contains the value 10000, and the load instruc-
tion shown above specifies an offset of 20. When the instruction is executed, the
hardware adds 10000 and 20, treats the result as a memory address, and loads the in-
teger from location 10020 into register 1.

The fourth instruction, a jump controls the flow of execution by giving the proces-
sor an address in the instruction memory. Normally, our imaginary processor works
like an ordinary processor by executing an instruction and then moving to the next in-
struction in memory automatically. When it encounters a jump instruction, however,
the processor does not move to the next instruction. Instead, the processor uses the
operand in the jump instruction to compute a memory address, and then starts executing
at that address.

Like the load and store instructions, our jump instruction allows both a register and
offset to be specified in its operand. For example, the instruction

jjuummpp 6600((rr1111))

specifies that the processor should obtain the contents of register 11, add 60, treat the
result as an address in the instruction memory, and make the address the next location
where an instruction is executed. It is not important now to understand why processors
contain a jump instruction — you only need to understand how the hardware handles
the move to a new location in a program.

6.4 Instructions In Memory

We said that the instruction memory on our imaginary computer contains a set of
instructions for the processor to execute, and that each instruction occupies thirty-two
bits. A computer designer specifies the exact format of each instruction by specifying
what each bit means. Figure 6.2 shows the instruction format for our imaginary com-
puter.

www.ebook3000.com

http://www.ebook3000.org

Sec. 6.4 Instructions In Memory 113

add

operation reg A reg B dst reg unused

0 0 0 0 1

load

operation reg A unused dst reg offset

0 0 0 1 0

store

operation reg A reg B unused offset

0 0 0 1 1

jump

operation reg A unused unused offset

0 0 1 0 0

Figure 6.2 The binary representation for each of the four instructions listed
in Figure 6.1. Each instruction is thirty-two bits long.

Look carefully at the fields used in each instruction. Each instruction has exactly
the same format, even though some of the fields are not needed in some instructions. A
uniform format makes it easy to design hardware that extracts the fields from an in-
struction.

The operation field in an instruction (sometimes called an opcode field) contains a
value that specifies the operation. For our example, an add instruction has the operation
field set to 1, a load instruction has the operation field set to 2, and so on. Thus, when
it picks up an instruction, the hardware can use the operation field to decide which
operation to perform.

The three fields with the term reg in their name specify three registers. Only the
add instruction needs all three registers; in other instructions, one or two of the register
fields are not used. The hardware ignores the unused fields when executing an instruc-
tion other than add.

The order of operands in the instructions may seem unexpected and inconsistent
with the code above. For example, the code for an add instruction has the destination
(the register to contain the result) on the left, and the two registers to be added on the
right. In the instruction, fields that specify the two registers to be added precede the
field that specifies the destination. Figure 6.3 shows a statement written by a program-
mer and the instruction when it has been converted to bits in memory. We can sum-
marize the point:

The order of operands in an assembly language program is chosen to
be convenient to a programmer; the order of operands in an instruc-
tion in memory is chosen to make the hardware efficient.

114 Data Paths And Instruction Execution Chap. 6

aadddd rr44,, rr22,, rr33

operation reg A reg B dst reg offset

0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(a)

(b)

Figure 6.3 (a) An example add instruction as it appears to a programmer,
and (b) the instruction stored in memory.

In the figure, the field labeled reg A contains 2 to specify register 2, the field la-
beled reg B contains 3 to specify register 3, and the field labeled dst reg contains 4 to
specify that the result should be placed in register 4.

When we examine the hardware, we will see that the binary representation used for
instructions is not capricious — the format is chosen to simplify the hardware design.
For example, if an instruction has an operand that specifies a memory address, the re-
gister in the operand is always assigned to the field labeled reg A. Thus, if the
hardware must add the offset to a register, the register is always found in field reg A.
Similarly, if a value must be placed in a register, the register is found in field dst reg.

6.5 Moving To The Next Instruction

Chapter 2 illustrates how a clock can be used to control the timing of a fixed se-
quence of steps. Building a computer requires one additional twist: instead of a fixed
sequence of steps, a computer is programmable which means that although the
computer has hardware to perform every possible instruction, the exact sequence of in-
structions to perform is not predetermined. Instead, a programmer stores a program in
memory, and the processor moves through the memory, extracting and executing suc-
cessive instructions one at a time. The next sections illustrate how digital logic circuits
can be arranged to enable programmability.

What pieces of hardware are needed to execute instructions from memory? One
key element is known as an instruction pointer. An instruction pointer consists of a re-
gister (i.e., a set of latches) in the processor that holds the memory address of the next
instruction to execute. For example, if we imagine a computer with thirty-two-bit
memory addresses, an instruction pointer will hold a thirty-two-bit value. To execute
instructions, the hardware repeats the following three steps.

d Use the instruction pointer as a memory address and fetch an instruction

d Use bits in the instruction to control hardware that performs the operation

d Move the instruction pointer to the next instruction

www.ebook3000.com

http://www.ebook3000.org

Sec. 6.5 Moving To The Next Instruction 115

One of the most important aspects of a processor that can execute instructions
arises from the mechanism used to move to the next instruction. After it extracts an in-
struction from the instruction memory, the processor must compute the memory address
of the instruction that immediately follows. Thus, once a given instruction has execut-
ed, the processor is ready to execute the next sequential instruction.

In our example computer, each instruction occupies thirty-two bits in memory.
However, the memory is byte-addressable, which means that after an instruction is exe-
cuted, hardware must increment the instruction pointer by four bytes (thirty two bits) to
move to the next instruction. In essence, the processor must add four to the instruction
pointer and place the result back in the instruction pointer. To perform the computa-
tion, the constant 4 and the current instruction pointer value are passed to a thirty-two-
bit adder. Figure 6.4 illustrates the basic components used to increment an instruction
pointer and shows how the components are interconnected.

32-bit
pgm. ctr. 32-bit

adder

4

program counter value
used by other components

Figure 6.4 Hardware that increments a program counter.

The circuit in the figure appears to be an infinite loop that will simply run wild in-
crementing the program counter continuously. To understand why the circuit works, re-
call that a clock is used to control and synchronize digital circuits. In the case of the
program counter, the clock only lets the increment occur after an instruction has execut-
ed. Although no clock is shown, we will assume that each component of the circuit is
connected to the clock, and the component only acts according to the clock. Thus, the
adder will compute a new value immediately, but the program counter will not be up-
dated until the clock pulses. Throughout our discussion, we will assume that the clock
pulses once per instruction.

Each line in the figure represents a data path that consists of multiple parallel
wires. In the figure, each data path is thirty-two bits wide. That is, the adder takes two
inputs, both of which are thirty-two bits. The value from the instruction pointer is obvi-
ous because the instruction pointer has thirty-two bits. The other input, marked with the
label 4 represents a thirty-two-bit constant with the numeric value 4. That is, we ima-
gine thirty-two wires that are all zero except the third wire. The adder computes the
sum and produces a thirty-two-bit result.

116 Data Paths And Instruction Execution Chap. 6

6.6 Fetching An Instruction

The next step in constructing a computer consists of fetching an instruction from
memory. For our simplistic example, we will assume that a dedicated instruction
memory holds the program to be executed, and that a memory hardware unit takes an
address as input and extracts a thirty-two bit data value from the specified location in
memory. That is, we imagine a memory to be an array of bytes that has a set of input
lines and a set of output lines. Whenever a value is placed on the input lines, the
memory uses the value as input to a decoder, selects the appropriate bytes, and sets the
output lines to the value found in the bytes. Figure 6.5 illustrates how the value in a
program counter is used as an address for the instruction memory.

32-bit
pgm. ctr. 32-bit

adder

4

instruction
memory

addr.
in

data
out

instruction
from memory

Figure 6.5 The data path used during instruction fetch in which the value in
a program counter is used as a memory address.

6.7 Decoding An Instruction

When an instruction is fetched from memory, it consists of thirty-two bits. The
next conceptual step in execution consists of instruction decoding. That is, the
hardware separates fields of the instruction such as the operation, registers specified,
and offset. Recall from Figure 6.2 how the bits of an instruction are organized. Be-
cause we used separate bit fields for each item, instruction decoding is trivial — the
hardware simply separates the wires that carry bits for the operation field, each of the
three register fields, and the offset field. Figure 6.6 illustrates how the output from the
instruction memory is fed to an instruction decoder.

www.ebook3000.com

http://www.ebook3000.org

Sec. 6.7 Decoding An Instruction 117

32-bit
pgm. ctr. 32-bit

adder

4

instruction
memory

addr.
in

data
out

instr. decoder

offset

operation

src reg A

src reg B

dst reg

Figure 6.6 Illustration of an instruction decoder connected to the output of
the instruction memory.

In the figure, individual outputs from the instruction decoder do not all have
thirty-two bits. The operation consists of five bits, the outputs that correspond to regis-
ters consist of four bits each, the output labeled offset consists of fifteen bits. Thus, we
can think of a line in the data path diagram as indicating one or more bits of data.

It is important to understand that the output from the decoder consists of fields
from the instruction. For example, the path labeled offset contains the fifteen offset bits
from the instruction. Similarly, the data path labeled reg A merely contains the four
bits from the reg A field in the instruction. The point is that the data for reg A only
specifies which register to use, and does not carry the value that is currently in the re-
gister. We can summarize:

Our example instruction decoder merely extracts bit fields from an in-
struction without interpreting the fields.

Unlike our imaginary computer, a real processor may have multiple instruction for-
mats (e.g., the fields in an arithmetic instruction may be in different locations than the
fields in a memory access instruction). Furthermore, a real processor may have variable
length instructions. As a result, an instruction decoder may need to examine the opera-
tion to decide the location of fields. Nevertheless, the principle applies: a decoder ex-
tracts fields from an instruction and passes each field along a data path.

118 Data Paths And Instruction Execution Chap. 6

6.8 Connections To A Register Unit

The register fields of an instruction are used to select registers that are used in the
instruction. In our example, a jump instruction uses one register, a load or store in-
struction uses two, and an add instruction uses three. Therefore, each of the three pos-
sible register fields must be connected to a register storage unit as Figure 6.7 illustrates.

32-bit
pgm. ctr. 32-bit

adder

4

instruction
memory

addr.
in

data
out

instr. decoder

reg A

reg B

dst reg

offset

operation

register
unit

data in

contents of
source register A

contents of
source register B

Figure 6.7 Illustration of a register unit attached to an instruction decoder.

6.9 Control And Coordination

Although all three register fields connect to the register unit, the unit does not al-
ways use all three. Instead, a register unit contains logic that determines whether a
given instruction reads existing values from registers or writes data into one of the re-
gisters. In particular, the load and add instructions each write a result to a register, but
the jump and store instructions do not.

It may seem that the operation portion of the instruction should be passed to the re-
gister unit to allow the unit to know how to act. To understand why the figure does not
show a connection between remaining fields of the instruction and the register unit,
remember that we are only examining data paths (i.e., the hardware paths along which
data can flow). In an actual computer, each of the units illustrated in the figure will
have additional connections that carry control signals. For example, each unit must re-
ceive a clock signal to ensure that it coordinates to take action at the correct time (e.g.,
to ensure that the data memory does not store a value until the correct address has been
computed).

www.ebook3000.com

http://www.ebook3000.org

Sec. 6.9 Control And Coordination 119

In practice, most computers use an additional hardware unit, known as a controller,
to coordinate overall data movement and each of the functional units. A controller must
have one or more connections to each of the other units, and must use the operation
field of an instruction to determine how each unit should operate to perform the instruc-
tion. In the diagram, for example, a connection between the controller and register unit
would be used to specify whether the register unit should fetch the values of one or two
registers, and whether the unit should accept data to be placed in a register. For now,
we will assume that a controller exists to coordinate the operation of all units.

6.10 Arithmetic Operations And Multiplexing

Our example set of instructions illustrates an important principle: hardware that is
designed to re-use functional units. Consider arithmetic. Only the add instruction per-
forms arithmetic explicitly. A real processor will have several arithmetic and logical in-
structions (e.g., subtract, shift, logical and, etc), and will use the operation field in the
instruction to decide which the ALU should perform.

Our instruction set also has an implicit arithmetic operation associated with the
load, store, and jump instructions. Each of those instructions requires an addition
operation to be performed when the instruction is executed. Namely, the processor
must add the offset value, which is found in the instruction itself, to the contents of a
register. The resulting sum is then treated as a memory address.

The question arises: should a processor have a separate hardware unit to compute
the sum needed for an address, or should a single ALU be used for both general arith-
metic and address arithmetic? Such questions form the basis for key decisions in pro-
cessor design. Separate functional units have the advantage of speed and ease of
design. Re-using a functional unit for multiple purposes has the advantage of taking
less power.

Our design illustrates re-use. Like many processors, our design contains a single
Arithmetic Logic Unit (ALU) that performs all arithmetic operations†. For our sample
instruction set, inputs to the ALU can come from two sources: either a pair of registers
or a register and the offset field in an instruction. How can a hardware unit choose
among multiple sources of input? The mechanism that accommodates two possible in-
puts is known as a multiplexor. The basic idea is that a multiplexor has K data inputs,
one data output, and a set of control lines used to specify which input is sent to the out-
put. To understand how a multiplexor is used, consider Figure 6.8, which shows a mul-
tiplexor between the register unit and ALU. When viewing the figure, remember that
each line in our diagram represents a data path with thirty-two bits. Thus, each input to
the multiplexor contains thirty-two bits as does the output. The multiplexor selects all
thirty-two bits from one of the two inputs and sends them to the output.

��������������������������������
†Incrementing the program counter is a special case.

120 Data Paths And Instruction Execution Chap. 6

32-bit
pgm. ctr. 32-bit

adder

4

instruction
memory

addr.
in

data
out

instr. decoder

reg A

reg B

dst reg

register
unit

data in

ALU

offset

operation

ALU output

multiplexor

Figure 6.8 Illustration of a multiplexor used to select an input for the ALU.

In the figure, inputs to the multiplexor come from the register unit and the offset
field in the instruction. How does the multiplexor decide which input to pass along?
Recall that our diagram only shows the data path. In addition, the processor contains a
controller, and all units are connected to the controller. When the processor executes an
add instruction, the controller signals the multiplexor to select the input coming from
the register unit. When the processor executes other instructions, the controller speci-
fies that the multiplexor should select the input that comes from the offset field in the
instruction.

Observe that the operation field of the instruction is passed to the ALU. Doing so
permits the ALU to decide which operation to perform. In the case of an arithmetic or
logical instruction (e.g., add, subtract, right shift, logical and), the ALU uses the opera-
tion to select the appropriate action. In the case of other instructions, the ALU performs
addition.

6.11 Operations Involving Data In Memory

When it executes a load or store operation, the computer must reference an item in
the data memory. For such operations, the ALU is used to add the offset in the instruc-
tion to the contents of a register, and the result is used as a memory address. In our
simplified design, the memory used to store data is separate from the memory used to
store instructions. Figure 6.9 illustrates the data paths used to connect a data memory.

www.ebook3000.com

http://www.ebook3000.org

Sec. 6.11 Operations Involving Data In Memory 121

32-bit
pgm. ctr. 32-bit

adder

4

instruction
memory

addr.
in

data
out

instr. decoder

reg A

reg B

dst reg

register
unit

data in

ALU

offset

operation

data
memory

addr.
in

data
out

data
in

M1

M2

M3

Figure 6.9 Illustration of data paths including data memory.

6.12 Example Execution Sequences

To understand how computation proceeds, consider the data paths that are used for
each instruction. The following paragraphs explain the sequence. In each case, the pro-
gram counter gives the address of an instruction, which is passed to the instruction
memory. The instruction memory fetches the value from memory, and passes bits of
the value to the instruction decoder. The decoder separates fields of the instruction and
passes them to other units. The remainder of the operation depends on the instruction.

Add. For an add instruction, the register unit is given three register numbers,
which are passed along paths labeled reg A, reg B, and dst reg. The register unit
fetches the values in the first two registers, which are passed to the ALU. The register
unit also prepares to write to the third register. The ALU uses the operation code to
determine that addition is required. To allow the reg B output from the register unit to
reach the ALU, the controller (not shown) must set multiplexor M2 to pass the value
from the B register unit and to ignore the offset value from the decoder. The controller
must set multiplexor M3 to pass the output from the ALU to the register unit’s data in-
put, and must set multiplexor M1 to ignore the output from the ALU. Once the output
from the ALU reaches the input connection on the register unit, the register unit stores
the value in the register specified by the path labeled dst reg, and the operation is com-
plete.

Store. After a store instruction has been fetched from memory and decoded, the
register unit fetches the values for registers A and B, and places them on its output lines.
Multiplexor M2 is set to pass the offset field to the ALU and ignore the value of regis-

122 Data Paths And Instruction Execution Chap. 6

ter B. The controller instructs the ALU to perform addition, which adds the offset and
contents of register A. The resulting sum is passed to the data memory as an address.
Meanwhile, the register B value (the second output of the register unit) is passed to the
data in connection on the data memory. The controller instructs the data memory to
perform a write operation, which writes the value of register B into the location speci-
fied by the value on the address lines, and the operation is complete.

Load. After a load instruction has been fetched and decoded, the controller sets
multiplexor M2 so the ALU receives the contents of register A and the offset field from
the instruction. As with a store, the controller instructs the ALU to perform the addi-
tion, and the result is passed to the data memory as an address. The controller signals
the data memory to perform a fetch operation, which means the output of the data
memory is the value at the location given by the address input. The controller must set
multiplexor M3 to ignore the output from the ALU and pass the output of the data
memory along the data in path of the register unit. The controller signals the register
unit to store its input value in the register specified by register dst reg. Once the regis-
ter unit stores the value, execution of the instruction is complete.

Jump. After a jump instruction has been fetched and decoded, the controller sets
multiplexor M2 to pass the offset field from the instruction, and instructs the ALU to
perform the addition. The ALU adds the offset to the contents of register A. To use the
result as an address, the controller sets multiplexor M3 to pass the output from the ALU
and ignore the output from the data memory. Finally, the controller sets multiplexor
M1 to pass the value from the ALU to the program counter. Thus, the result from the
ALU becomes the input of the 32-bit program counter. The program counter receives
and stores the value, and the instruction is complete. Recall that the program counter
always specifies the address in memory from which to fetch the next instruction.
Therefore, when the next instruction executes, the instruction will be extracted from the
address that was computed in the previous instruction (i.e., the program will jump to the
new location).

6.13 Summary

A computer system is programmable, which means that instead of having the entire
sequence of operations hardwired into digital logic, the computer executes instructions
from memory. Programmability provides substantial computational power and flexibili-
ty, allowing one to change the functionality of a computer by loading a new program
into memory. Although the overall design of a computer that executes instructions is
complex, the basic components are not difficult to understand.

A computer consists of multiple hardware components, such as a program counter,
memories, register units, and an ALU. Connections among components form the
computer’s data path. We examined a set of components sufficient to execute basic in-
structions, and reviewed hardware for the steps of instruction fetch, decode, and exe-
cute, including register and data access. The encoding used for instructions is selected
to make hardware design easier — fields from the instruction are extracted and passed
to each of the hardware units.

www.ebook3000.com

http://www.ebook3000.org

Sec. 6.13 Summary 123

In addition to the data path, a controller has connections to each of the hardware
units. A multiplexor is an important mechanism that allows the controller to route data
among the hardware units. In essence, each multiplexor acts as a switch that allows
data from one of several sources to be sent to a given output. When an instruction exe-
cutes, a controller uses fields of the instruction to determine how to set the multiplexors
during the execution. Multiplexors permit a single ALU to compute address offsets as
well as to compute arithmetic operations.

We reviewed execution of basic instructions and saw how multiplexors along the
data path in a computer can control which values pass to a given hardware unit. We
saw, for example, that a multiplexor selects whether the program counter is incremented
by four to move to the next instruction or has the value replaced by the output of the
ALU (to perform a jump).

EXERCISES

6.1 Does the example system follow the Von Neumann Architecture? Why or why not?

6.2 Consult Figure 6.3, and show each individual bit when the following instruction is stored in
memory:

aadddd rr11,, rr1144,, rr99

6.3 Consult Figure 6.3, and show each individual bit when the following instruction is stored in
memory:

llooaadd rr77,, 4433((rr1155))

6.4 Why is the following instruction invalid?

jjuummpp 4400000000((rr1155))

Hint: consider storing the instruction in memory.

6.5 The example presented in this chapter uses four instructions. Given the binary representa-
tion in Figure 6.2, how many possible instructions (opcodes) can be created?

6.6 Explain why the circuit in Figure 6.5 is not merely an infinite loop that runs wildly.

6.7 When a jump instruction is executed, what operation does the ALU perform?

6.8 A data path diagram, such as the diagram in Figure 6.9 hides many details. If the example
is changed so that every instruction is sixty-four bits long, what trivial change must be
made to the figure?

6.9 Make a table of all instructions and show how each of the multiplexors is set when the in-
struction is executed.

6.10 Modify the example system to include additional operations right shift and subtract.

6.11 In Figure 6.9, which input does multiplexor M1 forward during an add instruction?

6.12 In Figure 6.9, for what instructions does multiplexor M3 select the input from the ALU?

6.13 Redesign the computer system in Figure 6.9 to include a relative branch instruction. As-
sume the offset field contains a signed value, and add the value to the current program
counter to produce the next value for the program counter.

6.14 Can the system in Figure 6.9 handle multiplication? Why or why not?

www.ebook3000.com

http://www.ebook3000.org

Chapter Contents

7.1 Introduction, 127
7.2 Zero, One, Two, Or Three Address Designs, 127
7.3 Zero Operands Per Instruction, 128
7.4 One Operand Per Instruction, 129
7.5 Two Operands Per Instruction, 129
7.6 Three Operands Per Instruction, 130
7.7 Operand Sources And Immediate Values, 130
7.8 The Von Neumann Bottleneck, 131
7.9 Explicit And Implicit Operand Encoding, 132
7.10 Operands That Combine Multiple Values, 133
7.11 Tradeoffs In The Choice Of Operands, 134
7.12 Values In Memory And Indirect Reference, 135
7.13 Illustration Of Operand Addressing Modes, 136
7.14 Summary, 137

www.ebook3000.com

http://www.ebook3000.org

7

Operand Addressing And
Instruction Representation

7.1 Introduction

The previous chapters discuss types of processors and consider processor instruc-
tion sets. This chapter focuses on two details related to instructions: the ways instruc-
tions are represented in memory and the ways that operands can be specified. We will
see that the form of operands is especially relevant to programmers. We will also
understand how the representation of instructions determines the possible operand
forms.

The next chapter continues the discussion of processors by explaining how a Cen-
tral Processing Unit (CPU) operates. We will see how a CPU combines many features
we have discussed into a large, unified system.

7.2 Zero, One, Two, Or Three Address Designs

We said that an instruction is usually stored as an opcode followed by zero or more
operands. How many operands are needed? The discussion in Chapter 5 assumes that
the number of operands is determined by the operation being performed. Thus, an add
instruction needs at least two operands because addition involves at least two quantities.
Similarly, a Boolean not instruction needs one operand because logical inversion only
involves one quantity. However, the example MIPS instruction set in Chapter 5 em-
ploys an additional operand on each instruction that specifies the location for the result.

127

128 Operand Addressing And Instruction Representation Chap. 7

Thus, in the example instruction set, an add instruction requires three operands: two that
specify values to be added and a third that specifies a location for the result.

Despite the intuitive appeal of a processor in which each instruction can have an
arbitrary number of operands, many processors do not permit such a scheme. To under-
stand why, we must consider the underlying hardware. First, because an arbitrary
number of operands implies variable-length instructions, fetching and decoding instruc-
tions is less efficient than using fixed-length instructions. Second, because fetching an
arbitrary number of operands takes time, the processor will run slower than a processor
with a fixed number of operands.

It may seem that parallel hardware can solve some of the inefficiency. Imagine,
for example, parallel hardware units that each fetch one operand of an instruction. If an
instruction has two operands, two units operate simultaneously; if an instruction has
four operands, four units operate simultaneously. However, parallel hardware uses
more space on a chip and requires additional power. In addition, the number of pins on
a chip limits the amount of data from outside the chip that can be accessed in parallel.
Thus, parallel hardware is not an attractive option in many cases (e.g., a processor in a
portable phone that operates on battery power).

Can an instruction set be designed without allowing arbitrary operands? If so,
what is the smallest number of operands that can be useful for general computation?
Early computers answered the question by using a scheme in which each instruction
only has one operand. Later computers introduced instruction sets that limited each in-
struction to two operands. Surprisingly, computers also exist in which instructions have
no operands in the instruction itself. Finally, as we have seen in the previous chapter,
some processors limit instructions to three operands.

7.3 Zero Operands Per Instruction

An architecture in which instructions have no operands is known as a 0-address ar-
chitecture. How can an architecture allow instructions that do not specify any
operands? The answer is that operands must be implicit. That is, the location of the
operands is already known. A 0-address architecture is also called a stack architecture
because operands are kept on a run-time stack. For example, an add instruction takes
two values from the top of the stack, adds them together, and places the result back on
the stack. Of course, there are a few exceptions, and some of the instructions in a stack
computer allow a programmer to specify an operand. For example, most zero-address
architectures include a push instruction that inserts a new value on the top of the stack,
and a pop instruction removes the top value from the stack and places the value in
memory. Thus, on a stack machine, to add seven to variable X, one might use a se-
quence of instructions similar to the example in Figure 7.1.

The chief disadvantage of a stack architecture arises from the use of memory — it
takes much longer to fetch operands from memory than from registers in the processor.
A later section discusses the concept; for now, it is sufficient to understand why the
computer industry has moved away from stack architectures.

www.ebook3000.com

http://www.ebook3000.org

Sec. 7.3 Zero Operands Per Instruction 129

push X
push 7
add
pop X

Figure 7.1 An example of instructions used on a stack computer to add
seven to a variable X. The architecture is known as a zero-
address architecture because the operands for an instruction such
as add are found on the stack.

7.4 One Operand Per Instruction

An architecture that limits each instruction to a single operand is classified as a 1-
address design. In essence, a 1-address design relies on an implicit operand for each in-
struction: a special register known as an accumulator†. One operand is in the instruc-
tion and the processor uses the value of the accumulator as a second operand. Once the
operation has been performed, the processor places the result back in the accumulator.
We think of an instruction as operating on the value in the accumulator. For example,
consider arithmetic operations. Suppose an addition instruction has operand X:

add X

When it encounters the instruction, the processor performs the following operation:

accumulator ← accumulator + X

Of course, the instruction set for a 1-address processor includes instructions that al-
low a programmer to load a constant or the value from a memory location into the ac-
cumulator or store the current value of the accumulator into a memory location.

7.5 Two Operands Per Instruction

Although it works well for arithmetic or logical operations, a 1-address design does
not allow instructions to specify two values. For example, consider copying a value
from one memory location to another. A 1-address design requires two instructions that
load the value into the accumulator and then store the value in the new location. The
design is especially inefficient for a system that moves graphics objects in display
memory.

To overcome the limitations of 1-address systems, designers invented processors
that allow each instruction to have two addresses. The approach is known as a 2-
address architecture. With a 2-address processor, an operation can be applied to a
specified value instead of merely to the accumulator. Thus, in a 2-address processor,

��������������������������������
†The general-purpose registers discussed in Chapter 5 can be considered an extension of the original ac-

cumulator concept.

130 Operand Addressing And Instruction Representation Chap. 7

add X Y

specifies that the value of X is to be added to the current value of Y:

Y ← Y + X

Because it allows an instruction to specify two operands, a 2-address processor can
offer data movement instructions that treat the operands as a source and destination.
For example, a 2-address instruction can copy data directly from location Q to location
R†:

move Q R

7.6 Three Operands Per Instruction

Although a 2-address design handles data movement, further optimization is possi-
ble, especially for processors that have multiple general-purpose registers: allow each
instruction to specify three operands. Unlike a 2-address design, the key motivation for
a 3-address architecture does not arise from operations that require three input values.
Instead, the point is that the third operand can specify a destination. For example, an
addition operation can specify two values to be added as well as a destination for the
result:

add X Y Z

specifies an assignment of:

Z ← X + Y

7.7 Operand Sources And Immediate Values

The discussion above focuses on the number of operands that each instruction can
have without specifying the exact details of an operand. We know that an instruction
has a bit field for each operand, but questions arise about how the bits are interpreted.
How is each type of operand represented in an instruction? Do all operands use the
same representation? What semantic meaning is given to a representation?

To understand the issue, observe that the data value used as an operand can be ob-
tained in many ways. Figure 7.2 lists some of the possibilities for operands in a 3-
address processor‡.

��������������������������������
†Some architects reserve the term 2-address for instructions in which both operands specify a memory lo-

cation, and use the term 1 1/2- address for situations where one operand is in memory and the other operand is
in a register.

‡To increase performance, modern 3-address architectures often limit operands so that at most one of the
operands in a given instruction refers to a location in memory; the other two operands must specify registers.

www.ebook3000.com

http://www.ebook3000.org

Sec. 7.7 Operand Sources And Immediate Values 131

Operand used as a source (item used in the operation)

d A signed constant in the instruction
d An unsigned constant in the instruction
d The contents of a general-purpose register
d The contents of a memory location

Operand used as a destination (location to hold the result)

d A general-purpose register
d A contiguous pair of general-purpose registers
d A memory location

Figure 7.2 Examples of items an operand can reference in a 3-address pro-
cessor. A source operand specifies a value and a destination
operand specifies a location.

As the figure indicates, most architectures allow an operand to be a constant.
Although the operand field is small, having an explicit constant is important because
programs use small constants frequently (e.g., to increment a loop index by 1); encoding
a constant in the instruction is faster and requires fewer registers.

We use the term immediate value to refer to an operand that is a constant. Some
architectures interpret immediate values as signed, some interpret them as unsigned, and
others allow a programmer to specify whether the value is signed or unsigned.

7.8 The Von Neumann Bottleneck

Recall that conventional computers that store both programs and data in memory
are classified as following a Von Neumann Architecture. Operand addressing exposes
the central weakness of a Von Neumann Architecture: memory access can become a
bottleneck. That is, because instructions are stored in memory, a processor must make
at least one memory reference per instruction. If one or more operands specify items in
memory, the processor must make additional memory references to fetch or store
values. To optimize performance and avoid the bottleneck, operands must be taken
from registers instead of memory.

The point is:

On a computer that follows the Von Neumann Architecture, the time
spent accessing memory can limit the overall performance. Architects
use the term Von Neumann bottleneck to characterize the situation,
and avoid the bottleneck by choosing designs in which operands are
found in registers.

132 Operand Addressing And Instruction Representation Chap. 7

7.9 Explicit And Implicit Operand Encoding

How should an operand be represented in an instruction? The instruction contains
a bit field for each operand, but an architect must specify exactly what the bits mean
(e.g., whether they contain an immediate value, the number of a register, or a memory
address). Computer architects have used two interpretations of operands: implicit and
explicit. The next sections describe each of the approaches.

7.9.1 Implicit Operand Encoding

An implicit operand encoding is easiest to understand: the opcode specifies the
types of operands. That is, a processor that uses implicit encoding contains multiple op-
codes for a given operation — each opcode corresponds to one possible combination of
operands. For example, Figure 7.3 lists three instructions for addition that might be of-
fered by a processor that uses implicit operand encoding.

Opcode Operands Meaning���
Add register R1 R2 R1 ← R1 + R2
Add immediate signed R1 I R1 ← R1 + I
Add immediate unsigned R1 UI R1 ← R1 + UI
Add memory R1 M R1 ← R1 + memory[M]

Figure 7.3 An example of addition instructions for a 2-address processor that
uses implicit operand encoding. A separate opcode is used for
each possible combination of operands.

As the figure illustrates, not all operands need to have the same interpretation. For
example, consider the add immediate signed instruction. The instruction takes two
operands: the first operand is interpreted to be a register number, and the second is in-
terpreted to be a signed integer.

7.9.2 Explicit Operand Encoding

The chief disadvantage of implicit encoding is apparent from Figure 7.3: multiple
opcodes are needed for a given operation. In fact, a separate opcode is needed for each
combination of operands. If the processor uses many types of operands, the set of op-
codes can be extremely large. As an alternative, an explicit operand encoding associ-
ates type information with each operand. Figure 7.4 illustrates the format of two add
instructions for an architecture that uses explicit operand encoding.

As the figure shows, the operand field is divided into two subfields: one specifies
the type of the operand and the other specifies a value. For example, an operand that
references a register begins with a type field that specifies the remaining bits are to be
interpreted as a register number.

www.ebook3000.com

http://www.ebook3000.org

Sec. 7.9 Explicit And Implicit Operand Encoding 133

add

opcode operand 1

register 1

operand 2

register 2

........

........

add

opcode operand 1

register 1

operand 2

signed
integer –93

........

........

Figure 7.4 Examples of operands on an architecture that uses explicit encod-
ing. Each operand specifies a type as well as a value.

7.10 Operands That Combine Multiple Values

The discussion above implies that each operand consists of a single value extracted
from a register, memory, or the instruction itself. Some processors do indeed restrict
each operand to a single value. However, other processors provide hardware that can
compute an operand value by extracting and combining values from multiple sources.
Typically, the hardware computes a sum of several values.

An example will help clarify how hardware handles operands composed of multi-
ple values. One approach is known as a register-offset mechanism. The idea is
straightforward: instead of two subfields that specify a type and value, each operand
consists of three fields that specify a register-offset type, a register, and an offset.
When it fetches an operand, the processor adds the contents of the offset field to the
contents of the specified register to obtain a value that is then used as the operand. Fig-
ure 7.5 shows an example add instruction with register-offset operands.

add

opcode operand 1

register-
offset 2 -17

........

........

operand 2

register-
offset 4 76

........

........

Figure 7.5 An example of an add instruction in which each operand consists
of a register plus an offset. During operand fetch, the hardware
adds the offset to the specified register to obtain the value of the
operand.

In the figure, the first operand specifies the contents of register 2 minus the con-
stant 17, and the second operand specifies the contents of register 4 plus the constant
76. When we discuss memory, we will see that allowing an operand to specify a regis-
ter plus an offset is especially useful when referencing a data aggregate such as a C
language struct because a pointer to the structure can be left in a register and offsets
used to reference individual items.

134 Operand Addressing And Instruction Representation Chap. 7

7.11 Tradeoffs In The Choice Of Operands

The discussion above is unsatisfying — it seems that we have listed many design
possibilities but have not focused on which approach has been adopted. In fact, there is
no best choice, and each operand style we discussed has been used in practice. Why
hasn’t one particular style emerged as optimal? The answer is simple: each style
represents a tradeoff between ease of programming, size of the code, speed of process-
ing, and complexity of the hardware. The next paragraphs discuss several potential
design goals, and explain how each relates to the choice of operands.

Ease Of Programming. Complex forms of operands make programming easier.
For example, we said that allowing an operand to specify a register plus an offset makes
data aggregate references straightforward. Similarly, a 3-address approach that provides
an explicit target means a programmer does not need to code separate instructions to
copy results into their final destination. Of course, to optimize ease of programming, an
architect needs to trade off other aspects.

Fewer Instructions. Increasing the expressive power of operands reduces the
number of instructions in a program. For example, allowing an operand to specify both
a register and an offset means that the program does not need to use an extra instruction
to add an offset to a register. Increasing the number of addresses per instruction also
lowers the count of instructions (e.g., a 3-address processor requires fewer instructions
than a 2-address processor). Unfortunately, fewer instructions produce a tradeoff in
which each instruction is larger.

Smaller Instruction Size. Limiting the number of operands, the set of operands
types, or the maximum size of an operand keeps each instruction small because fewer
bits are needed to identify the operand type or represent an operand value. In particular,
an operand that specifies only a register will be smaller than an operand that specifies a
register and an offset. As a result, some of the smallest, least powerful processors limit
operands to registers — except for load and store operations, each value used in a pro-
gram must come from a register. Unfortunately, making each instruction smaller de-
creases the expressive power, and therefore increases the number of instructions needed.

Larger Range Of Immediate Values. Recall from Chapter 3 that a string of k bits
can hold 2k possible values. Thus, the number of bits allocated to an operand deter-
mines the numeric range of immediate values that can be specified. Increasing the
range of immediate values results in larger instructions.

Faster Operand Fetch And Decode. Limiting the number of operands and the pos-
sible types of each operand allows hardware to operate faster. To maximize speed, for
example, an architect avoids register-offset designs because hardware can fetch an
operand from a register much faster than it can compute the value from a register plus
an offset.

Decreased Hardware Size And Complexity. The amount of space on an integrated
circuit is limited, and an architect must decide how to use the space. Decoding complex
forms of operands requires more hardware than decoding simpler forms. Thus, limiting
the types and complexity of operands reduces the size of the circuitry required. Of
course, the choice represents a tradeoff: programs are larger.

www.ebook3000.com

http://www.ebook3000.org

Sec. 7.11 Tradeoffs In The Choice Of Operands 135

The point is:

Processor architects have created a variety of operand styles. No sin-
gle form is optimal for all processors because the choice represents a
compromise among functionality, program size, complexity of the
hardware required to fetch values, performance, and ease of program-
ming.

7.12 Values In Memory And Indirect Reference

A processor must provide a way to access values in memory. That is, at least one
instruction must have an operand which the hardware interprets as a memory address†.
Accessing a value in memory is significantly more expensive than accessing a value in
a register. Although it may make programming easier, a design in which each instruc-
tion references memory usually results in lower performance. Thus, programmers usu-
ally structure code to keep values that will be used often in registers and only reference
memory when needed.

Some processors extend memory references by permitting various forms of indirec-
tion. For example, an operand that specifies indirection through register 6 causes a
processor to perform two steps:

d Obtain A, the current value from register 6.

d Interpret A as a memory address, and fetch the
operand from memory.

One extreme form of operand involves double indirection, or indirection through a
memory location. That is, the processor interprets the operand as memory address M.
However, instead of loading or storing a value to address M, the processor assumes M
contains the memory address of the value. In such cases, a processor performs the fol-
lowing steps:

d Obtain M, the value in the operand itself.

d Interpret M as a memory address, and fetch the
value A from memory.

d Interpret A as another memory address, and fetch the
operand from memory.

Double indirection that goes through one memory location to another can be useful
when a program has to follow a linked list in memory. However, the overhead is ex-
tremely high (execution of a single instruction entails multiple memory references).

��������������������������������
†The third section of the text describes memory and memory addressing.

136 Operand Addressing And Instruction Representation Chap. 7

7.13 Illustration Of Operand Addressing Modes

A processor usually contains a special internal register, called an instruction regis-
ter, that is used to hold an instruction while the instruction is being decoded. The pos-
sible types of operand addresses and the cost of each can be envisioned by considering
the location of the operand and the references needed to fetch the value. An immediate
value is the least expensive because the value is located in the instruction register (i.e.,
in the instruction itself). A general-purpose register reference is slightly more expensive
than an immediate value. A reference to memory is more expensive than a reference to
a register. Finally, double indirection, which requires two memory references, is the
most expensive. Figure 7.6 lists the possibilities, and illustrates the hardware units in-
volved in resolving each.

cpu memory

1

2

3

4

5

Immediate value (in the instruction)

Direct register reference

Direct memory reference

Indirect through a register

Indirect memory reference

locations in memory

instruction register

general-purpose register

1

2 4

4

3

5

5

Figure 7.6 Illustration of the hardware units accessed when fetching an
operand in various addressing modes. Indirect references take
longer than direct references.

In the figure, modes 3 and 5 each require the instruction to contain a memory ad-
dress. Although they were available on earlier computers, such modes have become un-
popular because they require an instruction to be quite large.

www.ebook3000.com

http://www.ebook3000.org

Sec. 7.14 Summary 137

7.14 Summary

When designing a processor, an architect chooses the number and possible types of
operands for each instruction. To make operand handling efficient, many processors
limit the number of operands for a given instruction to three or fewer.

An immediate operand specifies a constant value; other possibilities include an
operand that specifies using the contents of a register or a value in memory. Indirection
allows a register to contain the memory address of the operand. Double indirection
means the operand specifies a memory address and the value at the address is a pointer
to another memory location that holds the value. The type of the operand can be encod-
ed implicitly (i.e., in the opcode) or explicitly.

Many variations exist because the choice of operand number and type represents a
tradeoff among functionality, ease of programming, and engineering details such as the
speed of processing.

EXERCISES

7.1 Suppose a computer architect is designing a processor for a computer that has an extremely
slow memory. Would the architect choose a zero-address architecture? Why or why not?

7.2 Consider the size of instructions in memory. If an architecture allows immediate operands
to have large numeric values, an instruction takes more space in memory. Why?

7.3 Assume a stack machine keeps the stack in memory. Also assume variable p is stored in
memory. How many memory references will be needed to increment p by seven?

7.4 Assume two integers, x and y are stored in memory, and consider an instruction that sets z
to the sum of x+y. How many memory references will be needed on a two-address archi-
tecture? Hint: remember to include instruction fetch.

7.5 How many memory operations are required to perform an add operation on a 3-address ar-
chitecture if each operand specifies an indirect memory reference?

7.6 If a programmer increments a variable by a value that is greater than the maximum im-
mediate operand, an optimizing compiler may generate two instructions. For example, on a
computer that only allows immediate values of 127 or less, incrementing variable x by 140
results in the sequence:

load r7, x
add_immediate r7, 127
add_immediate t7, 13
store r7, x

Why doesn’t the compiler store 140 in memory and add the value to register 7?

7.7 Assume a memory reference takes twelve times as long as a register reference, and assume
a program executes N instructions on a 2-address architecture. Compare the running time
of the program if all operands are in registers to the running time if all operands are in
memory. Hint: instruction fetch requires a memory operation.

138 Operand Addressing And Instruction Representation Chap. 7

7.8 Consider each type of operand that Figure 7.6 illustrates, and make a table that contains an
expression for the number of bits required to represent the operand. Hint: the number of
bits required to represent values from zero through N is:

�
� log2N ��

7.9 Name one advantage of using a higher number of addresses per instruction.

7.10 Consider a two-address computer that uses implicit operands. Suppose one of the two
operands can be any of the five operand types in Figure 7.6, and the other can be any ex-
cept an immediate value. List all the add instructions the computer needs.

7.11 Most compilers contain optimization modules that choose to keep frequently used variables
in registers rather than writing them back to memory. What term characterizes the problem
that such an optimization module is attempting to overcome?

www.ebook3000.com

http://www.ebook3000.org

Chapter Contents

8.1 Introduction, 141
8.2 A Central Processor, 141
8.3 CPU Complexity, 142
8.4 Modes Of Execution, 143
8.5 Backward Compatibility, 143
8.6 Changing Modes, 144
8.7 Privilege And Protection, 145
8.8 Multiple Levels Of Protection, 145
8.9 Microcoded Instructions, 146
8.10 Microcode Variations, 148
8.11 The Advantage Of Microcode, 148
8.12 FPGAs And Changes To The Instruction Set, 149
8.13 Vertical Microcode, 149
8.14 Horizontal Microcode, 150
8.15 Example Horizontal Microcode, 151
8.16 A Horizontal Microcode Example, 153
8.17 Operations That Require Multiple Cycles, 154
8.18 Horizontal Microcode And Parallel Execution, 155
8.19 Look-Ahead And High Performance Execution, 156
8.20 Parallelism And Execution Order, 157
8.21 Out-Of-Order Instruction Execution, 157
8.22 Conditional Branches And Branch Prediction, 158
8.23 Consequences For Programmers, 159
8.24 Summary, 159

www.ebook3000.com

http://www.ebook3000.org

8

CPUs: Microcode,
Protection, And Processor
Modes

8.1 Introduction

Previous chapters consider two key aspects of processors: instruction sets and
operands. The chapters explain possible approaches, and discuss the advantages and
disadvantages of each approach. This chapter considers a broad class of general-
purpose processors, and shows how many of the concepts from previous chapters are
applied. The next chapter considers low-level programming languages used with pro-
cessors.

8.2 A Central Processor

Early in the history of computers, centralization emerged as an important architec-
tural approach — as much functionality as possible was collected into a single proces-
sor. The processor, which became known as a Central Processing Unit (CPU), con-
trolled the entire computer, including both calculations and I/O.

In contrast to early designs, a modern computer system follows a decentralized ap-
proach. The system contains multiple processors, many of which are dedicated to a
specific function or a hardware subsystem. For example, we will see that an I/O de-
vice, such as a disk, can include a processor that handles disk transfers.

141

142 CPUs: Microcode, Protection, And Processor Modes Chap. 8

Despite the shift in paradigm, the term CPU has survived because one chip con-
tains the hardware used to perform most computations and coordinate and control other
processors. In essence, the CPU manages the entire computer system by telling other
processors when to start, when to stop, and what to do. When we discuss I/O, we will
see how the CPU controls the operation of peripheral devices and processors.

8.3 CPU Complexity

Because it must handle a wide variety of control and processing tasks, a modern
CPU is extremely complex. For example, Intel makes a CPU chip that contains 2.5 bil-
lion transistors. Why is a CPU so complex? Why are so many transistors needed?

Multiple Cores. In fact, modern CPU chips do not contain just one processor. In-
stead, they contain multiple processors called cores. The cores all function in parallel,
permitting multiple computations to proceed at the same time. Multicore designs are re-
quired for high performance because a single core cannot be clocked at arbitrarily high
speeds.

Multiple Roles. One aspect of CPU complexity arises because a CPU must fill
several major roles: running application programs, running an operating system, han-
dling external I/O devices, starting or stopping the computer, and managing memory.
No single instruction set is optimal for all roles, so a CPU often includes many instruc-
tions.

Protection And Privilege. Most computer systems incorporate a system of protec-
tion that gives some subsystems higher privilege than others. For example, the
hardware prevents an application program from directly interacting with I/O devices,
and the operating system code is protected from inadvertent or deliberate change.

Hardware Priorities. A CPU uses a priority scheme in which some actions are as-
signed higher priority than others. For example, we will see that I/O devices operate at
higher priority than application programs — if the CPU is running an application pro-
gram when an I/O device needs service, the CPU must stop running the application and
handle the device.

Generality. A CPU is designed to support a wide variety of applications. Conse-
quently, the CPU instruction set often contains instructions that are used for each type
of application (i.e., a CISC design).

Data Size. To speed processing, a CPU is designed to handle large data values.
Recall from Chapter 2 that digital logic gates each operate on a single bit of data and
that gates must be replicated to handle integers. Thus, to operate on values composed
of sixty-four bits, each digital circuit in the CPU must have sixty-four copies of each
gate.

High Speed. The final, and perhaps most significant, source of CPU complexity
arises from the desire for speed. Recall the important concept discussed earlier:

Parallelism is a fundamental technique used to create high-speed hardware.

www.ebook3000.com

http://www.ebook3000.org

Sec. 8.3 CPU Complexity 143

That is, to achieve highest performance, the functional units in a CPU must be re-
plicated, and the design must permit the replicated units to operate simultaneously. The
large amount of parallel hardware needed to make a modern CPU operate at the highest
rate also means that the CPU requires many transistors. We will see further explana-
tions later in the chapter.

8.4 Modes Of Execution

The features listed above can be combined or implemented separately. For exam-
ple, a given core can be granted access to other parts of memory with or without higher
priority. How can a CPU accommodate all the features in a way that allows program-
mers to understand and use them without becoming confused?

In most CPUs, the hardware uses a set of parameters to handle the complexity and
control operation. We say that the hardware has multiple modes of execution. At any
given time, the current execution mode determines how the CPU operates. Figure 8.1
lists items usually associated with a CPU mode of execution.

d The subset of instructions that are valid

d The size of data items

d The region of memory that can be accessed

d The functional units that are available

d The amount of privilege

Figure 8.1 Items typically controlled by a CPU mode of execution. The
characteristics of a CPU can change dramatically when the mode
changes.

8.5 Backward Compatibility

How much variation can execution modes introduce? In principle, the modes
available on a CPU do not need to share much in common. As one extreme case, some
CPUs have a mode that provides backward compatibility with a previous model. Back-
ward compatibility allows a vendor to sell a CPU with new features, but also permits
customers to use the CPU to run old software.

Intel’s line of processors (i.e., 8086, 186, 286,...) exemplifies how backward com-
patibility can be used. When Intel first introduced a CPU that operated on thirty-two-
bit integers, the CPU included a compatibility mode that implemented the sixteen-bit in-
struction set from Intel’s previous CPU. In addition to using different sizes of integers,
the two architectures have different numbers of registers and different instructions. The
two architectures differ so significantly that it is easiest to think of the design as two
separate pieces of hardware with the execution mode determining which of the two is
used at any time.

144 CPUs: Microcode, Protection, And Processor Modes Chap. 8

We can summarize:

A CPU uses an execution mode to determine the current operational
characteristics. In some CPUs, the characteristics of modes differ so
widely that we think of the CPU as having separate hardware subsys-
tems and the mode as determining which piece of hardware is used at
the current time.

8.6 Changing Modes

How does a CPU change execution modes? There are two ways:

d Automatic (initiated by hardware)

d Manual (under program control)

Automatic Mode Change. External hardware can change the mode of a CPU. For
example, when an I/O device requests service, the hardware informs the CPU.
Hardware in the CPU changes mode (and jumps to the operating system code) automat-
ically before servicing the device. We will learn more when we consider how I/O
works.

Manual Mode Change. In essence, manual changes occur under control of a run-
ning program. Most often, the program is the operating system, which changes mode
before it executes an application. However, some CPUs also provide multiple modes
that applications can use, and allow an application to switch among the modes.

What mechanism is used to change mode? Three approaches have been used. In
the simplest case, the CPU includes an instruction to set the current mode. In other
cases, the CPU contains a special-purpose mode register to control the mode. To
change modes, a program stores a value into the mode register. Note that a mode regis-
ter is not a storage unit in the normal sense. Instead, it consists of a hardware circuit
that responds to the store command by changing the operating mode. Finally, a mode
change can occur as the side effect of another instruction. In most CPUs, for example,
the instruction set includes an instruction that an application uses to make an operating
system call. A mode change occurs automatically whenever the instruction is executed.

To accommodate major changes in mode, additional facilities may be needed to
prepare for the new mode. For example, consider a case in which two modes of execu-
tion do not share general-purpose registers (e.g., in one mode the registers have sixteen
bits and in another mode the registers contain thirty-two bits). It may be necessary to
place values in alternate registers before changing mode and using the registers. In such
cases, a CPU provides special instructions that allow software to create or modify
values before changing the mode.

www.ebook3000.com

http://www.ebook3000.org

Sec. 8.7 Privilege And Protection 145

8.7 Privilege And Protection

The mode of execution is linked to CPU facilities for privilege and protection.
That is, part of the current mode specifies the level of privilege for the CPU. For exam-
ple, when it services an I/O device, a CPU must allow device driver software in the
operating system to interact with the device and perform control functions. However,
an arbitrary application program must be prevented from accidentally or maliciously is-
suing commands to the hardware or performing control functions. Thus, before it exe-
cutes an application program, an operating system changes the mode to reduce
privilege. When running in a less privileged mode, the CPU does not permit direct con-
trol of I/O devices (i.e., the CPU treats a privileged operation like an invalid instruc-
tion).

8.8 Multiple Levels Of Protection

How many levels of privilege are needed, and what operations should be allowed
at each level? The subject has been discussed by hardware architects and operating sys-
tem designers for many years. CPUs have been invented that offer no protection, and
CPUs have been invented that offer eight levels, each with more privilege than the pre-
vious level. The idea of protection is to help prevent problems by using the minimum
amount of privilege necessary at any time. We can summarize:

By using a protection scheme to limit the operations that are allowed,
a CPU can detect attempts to perform unauthorized operations.

Figure 8.2 illustrates the concept of two privilege levels.

Operating System

appl. 2appl. 1 appl. N

. . .
low
privilege

high
privilege

Figure 8.2 Illustration of a CPU that offers two levels of protection. The
operating system executes with highest privilege, and application
programs execute with less privilege.

146 CPUs: Microcode, Protection, And Processor Modes Chap. 8

Although no protection scheme suffices for all CPUs, designers generally agree on
a minimum of two levels for a CPU that runs application programs:

A CPU that runs applications needs at least two levels of protection:
the operating system must run with absolute privilege, but application
programs can run with limited privilege.

When we discuss memory, we will see that the issues of protection and memory
access are intertwined. More important, we will see how memory access mechanisms,
which are part of the CPU mode, provide additional forms of protection.

8.9 Microcoded Instructions

How should a complex CPU be implemented? Interestingly, one of the key
abstractions used to build a complex instruction set comes from software: complex in-
structions are programmed! That is, instead of implementing the instruction set directly
with digital circuits, a CPU is built in two pieces. First, a hardware architect builds a
fast, but small processor known as a microcontroller†. Second, to implement the CPU
instruction set (called a macro instruction set), the architect writes software for the
microcontroller. The software that runs on the microcontroller is known as microcode.
Figure 8.3 illustrates the two-level organization, and shows how each level is imple-
mented.

(implemented with microcode)

macro instruction set

(implemented with digital logic)

micro instruction set

Microcontroller

CPU

visible to
programmer

hidden
(internal)

Figure 8.3 Illustration of a CPU implemented with a microcontroller. The
macro instruction set that the CPU provides is implemented with
microcode.

��������������������������������
†The small processor is also called a microprocessor, but the term is somewhat misleading.

www.ebook3000.com

http://www.ebook3000.org

Sec. 8.9 Microcoded Instructions 147

The easiest way to think about microcode is to imagine a set of functions that each
implement one of the CPU macro instructions. The CPU invokes the microcode during
the instruction execution. That is, once it has obtained and decoded a macro instruc-
tion, the CPU invokes the microcode procedure that corresponds to the instruction.

The macro- and micro architectures can differ. As an example, suppose that the
CPU is designed to operate on data items that are thirty-two bits and that the macro in-
struction set includes an add32 instruction for integer addition. Further suppose that the
microcontroller only offers sixteen-bit arithmetic. To implement a thirty-two-bit addi-
tion, the microcode must add sixteen bits at a time, and must add the carry from the
low-order bits into the high-order bits. Figure 8.4 lists the microcode steps that are re-
quired:

/* The steps below assume that two 32-bit operands are
located in registers labeled R5 and R6, and that the
microcode must use 16-bit registers labeled r0 through
r3 to compute the results.

*/
add32:

move low-order 16 bits from R5 into r2
move low-order 16 bits from R6 into r3
add r2 and r3, placing result in r1
save value of the carry indicator
move high-order 16 bits from R5 into r2
move high-order 16 bits from R6 into r3
add r2 and r3, placing result in r0
copy the value in r0 to r2
add r2 and the carry bit, placing the result in r0
check for overflow and set the condition code
move the thirty-two bit result from r0 and r1 to

the desired destination

Figure 8.4 An example of the steps required to implement a thirty-two-bit
macro addition with a microcontroller that only has sixteen-bit
arithmetic. The macro- and micro architectures can differ.

The exact details are unimportant; the figure illustrates how the architecture of the
microcontroller and the macro instruction set can differ dramatically. Also note that be-
cause each macro instruction is implemented by a microcode program, a macro instruc-
tion can perform arbitrary processing. For example, it is possible for a single macro in-
struction to implement a trigonometric function, such as sine or cosine, or to move large
blocks of data in memory. Of course, to achieve higher performance, an architect can
choose to limit the amount of microcode that corresponds to a given instruction.

148 CPUs: Microcode, Protection, And Processor Modes Chap. 8

8.10 Microcode Variations

Computer designers have invented many variations to the basic form of microcode.
For example, we said that the CPU hardware implements the fetch-execute cycle and in-
vokes a microcode procedure for each instruction. On some CPUs, microcode imple-
ments the entire fetch-execute cycle — the microcode interprets the opcode, fetches
operands, and performs the specified operation. The advantage is greater flexibility: mi-
crocode defines all aspects of the macro system, including the format of macro instruc-
tions and the form and encoding of each operand. The chief disadvantage is lower per-
formance: the CPU cannot have an instruction pipeline implemented in hardware.

As another variation, a CPU can be designed that only uses microcode for exten-
sions. That is, the CPU has a complete macro instruction set implemented directly with
digital circuits. In addition, the CPU has a small set of additional opcodes that are im-
plemented with microcode. Thus, a vendor can manufacture minor variations of the
basic CPU (e.g., a version with a special encryption instruction intended for customers
who implement security software or a version with a special pattern matching instruc-
tion intended for customers who implement text processing software). If some or all of
the extra instructions are not used in a particular version of the CPU, the vendor can in-
sert microcode that makes them undefined (i.e., the microcode raises an error if an un-
defined instruction is executed).

8.11 The Advantage Of Microcode

Why is microcode used? There are three motivations. First, because microcode
offers a higher level of abstraction, building microcode is less prone to errors than
building hardware circuits. Second, building microcode takes less time than building
circuits. Third, because changing microcode is easier than changing hardware circuits,
new versions of a CPU can be created faster.

We can summarize:

A design that uses microcode is less prone to errors and can be up-
dated faster than a design that does not use microcode.

Of course, microcode does have some disadvantages that balance the advantages:

d Microcode has more overhead than a hardware implementation.

d Because it executes multiple micro instructions for each macro in-
struction, the microcontroller must run at much higher speed than
the CPU.

d The cost of a macro instruction depends on the micro instruction
set.

www.ebook3000.com

http://www.ebook3000.org

Sec. 8.12 FPGAs And Changes To The Instruction Set 149

8.12 FPGAs And Changes To The Instruction Set

Because a microcontroller is an internal mechanism intended to help designers, the
micro instruction set is usually hidden in the final design. The microcontroller and
microcode typically reside on the integrated circuit along with the rest of the CPU, and
are only used internally. Only the macro instruction set is available to programmers.
Interestingly, some CPUs have been designed that make the microcode dynamic and ac-
cessible to customers who purchase the CPU. That is, the CPU contains facilities that
allow the underlying hardware to be changed after the chip has been manufactured.

Why would customers want to change a CPU? The motivations are flexibility and
performance: allowing a customer to make some changes to CPU instructions defers the
decision about a macro instruction set, and allows a CPU’s owner to tailor instructions
to a specific use. For example, a company that sells video games might add macro in-
structions to manipulate graphics images, and a company that makes networking equip-
ment might create macro instructions to process packet headers. Using the underlying
hardware directly (e.g., with microcode) can result in higher performance.

One technology that allows modification has become especially popular. Known
as Field Programmable Gate Array (FPGA), the technology permits gates to be altered
after a chip has been manufactured. Reconfiguring an FPGA is a time-consuming pro-
cess. Thus, the general idea is to reconfigure the FPGA once, and then use the resulting
chip. An FPGA can be used to hold an entire CPU, or an FPGA can be used as a sup-
plement that holds a few extra instructions.

We can summarize:

Technologies like dynamic microcode and FPGAs allow a CPU in-
struction set to be modified or extended after the CPU has been pur-
chased. The motivations are flexibility and higher performance.

8.13 Vertical Microcode

The question arises: what architecture should be used for a microcontroller? From
the point of view of someone who writes microcode, the question becomes: what in-
structions should the microcontroller provide? We discussed the notion of microcode as
if a microcontroller consists of a conventional processor (i.e., a processor that follows a
conventional architecture). We will see shortly that other designs are possible.

In fact, a microcontroller cannot be exactly the same as a standard processor. Be-
cause it must interact with hardware units in the CPU, a microcontroller needs a few
special hardware facilities. For example, a microcontroller must be able to access the
ALU and store results in the general-purpose registers that the macro instruction set
uses. Similarly, a microcontroller must be able to decode operand references and fetch
values. Finally, the microcontroller must coordinate with the rest of the hardware, in-
cluding memory.

150 CPUs: Microcode, Protection, And Processor Modes Chap. 8

Despite the requirements for special features, microcontrollers have been created
that follow the same general approach used for conventional processors. That is, the
microcontroller’s instruction set contains conventional instructions such as load, store,
add, subtract, branch, and so on. For example, the microcontroller used in a CISC pro-
cessor can consist of a small, fast RISC processor. We say that such a microcontroller
has a vertical architecture, and use the term vertical microcode to characterize the
software that runs on the microcontroller.

Programmers are comfortable with vertical microcode because the programming
interface is familiar. Most important, the semantics of vertical microcode are exactly
what a programmer expects: one micro instruction is executed at a time. The next sec-
tion discusses an alternative to vertical microcode.

8.14 Horizontal Microcode

From a hardware perspective, vertical microcode is somewhat unattractive. One of
the primary disadvantages arises from the performance requirements. Most macro in-
structions require multiple micro instructions, which means that executing macro in-
structions at a rate of K per second requires a microcontroller to execute micro instruc-
tions at a rate of N × K per second, where N is the average number of micro instructions
per macro instruction. Therefore, hardware associated with the microcontroller must
operate at very high speed (e.g., the memory used to hold microcode must be able to
deliver micro instructions at a high rate).

A second disadvantage of vertical microcode arises because a vertical technology
cannot exploit the parallelism of the underlying hardware. Computer engineers have in-
vented an alternative known as horizontal microcode that overcomes some limitations
of vertical microcode. Horizontal microcode has the advantage of working well with
the hardware, but not providing a familiar interface for programmers. That is:

Horizontal microcode allows the hardware to run faster, but is more
difficult to program.

To understand horizontal microcode, recall the data path description from Chapter
6: a CPU consists of multiple functional units, with data paths connecting them. Opera-
tion of the units must be controlled, and each unit is controlled independently. Further-
more, moving data from one functional unit to another requires explicit control of the
two units: one unit must be instructed to send data across a data path, and the other unit
must be instructed to receive data.

An example will clarify the concept. To make the example easy to understand, we
will make a few simplifying assumptions and restrict the discussion to six functional
units. Figure 8.5 shows how the six functional units are interconnected.

www.ebook3000.com

http://www.ebook3000.org

Sec. 8.14 Horizontal Microcode 151

data transfer mechanism

operand 1 operand 2

Arithmetic
Logic
Unit

(ALU)

result 1 result 2

register access

.
.
.
.
.
.
.
.
.
.
.
.
.
..................

.

.

.

.

.

.

.

.

.

.

.

.

.

macro
general-
purpose
registers

Figure 8.5 An illustration of the internal structure within a CPU. Solid ar-
rows indicate a hardware path along which data can move.

The major item shown in the figure is an Arithmetic Logic Unit (ALU) that per-
forms operations such as addition, subtraction, and bit shifting. The remaining func-
tional units provide mechanisms that interface the ALU to the rest of the system. For
example, the hardware units labeled operand 1 and operand 2 denote operand storage
units (i.e., internal hardware registers). The ALU expects operands to be placed in the
storage units before an operation is performed, and places the result of an operation in
the two hardware units labeled result 1 and result 2†. Finally, the register access unit
provides a hardware interface to the general-purpose registers.

In the figure, arrows indicate paths along which data can pass as it moves from one
functional unit to another; each arrow is a data path that handles multiple bits in parallel
(e.g., 32 bits). Most of the arrows connect to the data transfer mechanism, which
serves as a conduit between functional units (a later chapter explains that the data
transfer mechanism depicted here is called a bus).

8.15 Example Horizontal Microcode

Each functional unit is controlled by a set of wires that carry commands (i.e.,
binary values that the hardware interprets as a command). Although Figure 8.5 does
not show command wires, we can imagine that the number of command wires connect-
ed to a functional unit depends on the type of unit. For example, the unit labeled result
1 only needs a single command wire because the unit can be controlled by a single
binary value: zero causes the unit to stop interacting with other units, and one causes
the unit to send the current contents of the result unit to the data transfer mechanism.
Figure 8.6 summarizes the binary control values that can be passed to each functional
unit in our example, and gives the meaning of each.

��������������������������������
†Recall that an arithmetic operation, such as multiplication, can produce a result that is twice as large as

an operand.

152 CPUs: Microcode, Protection, And Processor Modes Chap. 8

��
Unit Command Meaning��

0 0 0 No operation
0 0 1 Add
0 1 0 Subtract

ALU 0 1 1 Multiply
1 0 0 Divide
1 0 1 Left shift
1 1 0 Right shift
1 1 1 Continue previous operation

��
operand 0 No operation

1 1 Load value from data transfer mechanism
��

operand 0 No operation
2 1 Load value from data transfer mechanism

��
result 0 No operation

1 1 Send value to data transfer mechanism
��

result 0 No operation
2 1 Send value to data transfer mechanism

��
0 0 x x x x No operation

register 0 1 x x x x Move register xxxx to data transfer
interface 1 0 x x x x Move data transfer to register xxxx

1 1 x x x x No operation
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 8.6 Possible command values and the meaning of each for the exam-
ple functional units in Figure 8.5. Commands are carried on
parallel wires.

As Figure 8.6 shows, the register access unit is a special case because each com-
mand has two parts: the first two bits specify an operation, and the last four bits specify
a register to be used in the operation. Thus, the command 0 1 0 0 1 1 means that value in
register three should be moved to the data transfer mechanism.

Now that we understand how the hardware is organized, we can see how horizontal
microcode works. Imagine that each microcode instruction consists of commands to
functional units — when it executes an instruction, the hardware sends bits from the in-
struction to functional units. Figure 8.7 illustrates how bits of a microcode instruction
correspond to commands in our example.

www.ebook3000.com

http://www.ebook3000.org

Sec. 8.15 Example Horizontal Microcode 153

x x x x x x x x x x x x x

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ALU Oper. 1 Oper. 2 Res. 1 Res. 2 Register interface

Figure 8.7 Illustration of thirteen bits in a horizontal microcode instruction
that correspond to commands for the six functional units.

8.16 A Horizontal Microcode Example

How can horizontal microcode be used to perform a sequence of operations? In
essence, a programmer chooses which functional units should be active at any time, and
encodes the information in bits of the microcode. For example, suppose a programmer
needs to write horizontal microcode that adds the value in general-purpose register 4 to
the value in general-purpose register 13 and places the result in general-purpose register
4. Figure 8.8 lists the operations that must be performed.

d Move the value from register 4 to the hardware unit for
operand 1

d Move the value from register 13 to the hardware unit for
operand 2

d Arrange for the ALU to perform addition

d Move the value from the hardware unit for result 2 (the low-
order bits of the result) to register 4

Figure 8.8 An example sequence of steps that the functional units must exe-
cute to add values from general-purpose registers 4 and 13, and
place the result in general-purpose register 4.

Each of the steps can be expressed as a single micro instruction in our example
system. The instruction has bits set to specify which functional unit(s) operate when
the instruction is executed. For example, Figure 8.9 shows a microcode program that
corresponds to the four steps.

In the figure, each row corresponds to one instruction, which is divided into fields
that each correspond to a functional unit. A field contains a command to be sent to the
functional unit when the instruction is executed. Thus, commands determine which
functional units operate at each step.

154 CPUs: Microcode, Protection, And Processor Modes Chap. 8

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Instr. ALU OP1 OP2 RES1 RES2 REG. INTERFACE

1

2

3

4

0 0 0 1 0 0 0 0 1 0 1 0 0

0 0 0 0 1 0 0 0 1 1 1 0 1

0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 1 0 0

Figure 8.9 An example horizontal microcode program that consists of four
instructions with thirteen bits per instruction. Each instruction
corresponds to a step listed in Figure 8.8.

Consider the code in the figure carefully. The first instruction specifies that only
two hardware units will operate: the unit for operand 1 and the register interface unit.
The fields that correspond to the other four units contain zero, which means that those
units will not operate when the first instruction is executed. The first instruction also
uses the data transfer mechanism — data is sent across the transfer mechanism from the
register interface unit to the unit for operand 1†. That is, fields in the instruction cause
the register interface to send a value across the transfer mechanism, and cause the
operand 1 unit to receive the value.

8.17 Operations That Require Multiple Cycles

Timing is among the most important aspects of horizontal microcode. Some
hardware units take longer to operate than others. For example, multiplication can take
longer than addition. That is, when a functional unit is given a command, the results do
not appear immediately. Instead, the program must delay before accessing the output
from the functional unit.

A programmer who writes horizontal microcode must ensure that each hardware
unit is given the correct amount of time to complete its task. The code in Figure 8.9 as-
sumes that each step can be accomplished in one micro instruction cycle. However, a
micro cycle may be too short for some hardware units to complete a task. For example,
an ALU may require two micro instruction cycles to complete an addition. To accom-
modate longer computation, an extra instruction can be inserted following the third in-
struction. The extra instruction merely specifies that the ALU should continue the pre-
vious operation; no other units are affected. Figure 8.10 illustrates an extra microcode
instruction that can be inserted to create the necessary delay.

��������������������������������
†For purposes of this simplified example, we assume the data transfer mechanism always operates and

does not require any control.

www.ebook3000.com

http://www.ebook3000.org

Sec. 8.17 Operations That Require Multiple Cycles 155

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ALU OP1 OP2 RES1 RES2 REG. INTERFACE

1 1 1 0 0 0 0 0 0 0 0 0 0

Figure 8.10 An instruction that can be inserted to add delay processing to
wait for the ALU to complete an operation. Timing and delay
are crucial aspects of horizontal microcode.

8.18 Horizontal Microcode And Parallel Execution

Now that we have a basic understanding of how hardware operates and a general
idea about horizontal microcode, we can appreciate an important property: the use of
parallelism. Parallelism is possible because the underlying hardware units operate in-
dependently. A programmer can specify parallel operations because an instruction con-
tains separate fields that each control one of the hardware units.

As an example, consider an architecture that has an ALU plus separate hardware
units to hold operands. Assume the ALU requires multiple instruction cycles to com-
plete an operation. Because the ALU accesses the operands during the first cycle, the
hardware units used to hold operands remain unused during successive cycles. Thus, a
programmer can insert an instruction that simultaneously moves a new value into an
operand unit while an ALU operation continues. Figure 8.11 illustrates such an instruc-
tion.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ALU OP1 OP2 RES1 RES2 REG. INTERFACE

1 1 1 1 0 0 0 0 1 0 1 1 1

Figure 8.11 An example instruction that simultaneously continues an ALU
operation and loads the value from register seven into operand
hardware unit one. Horizontal microcode makes parallelism
easy to specify.

The point is:

Because horizontal microcode instructions contain separate fields that
each control one hardware unit, horizontal microcode makes it easy
to specify simultaneous, parallel operation of the hardware units.

156 CPUs: Microcode, Protection, And Processor Modes Chap. 8

8.19 Look-Ahead And High Performance Execution

In practice, the microcode used in CPUs is much more complex than the simplistic
examples in this chapter. One of the most important sources of complexity arises from
the desire to achieve high performance. Because silicon technology allows manufactur-
ers to place billions of transistors on a single chip, it is possible for a CPU to include
many functional units that all operate simultaneously.

A later chapter considers architectures that make parallel hardware visible to a pro-
grammer. For now, we will consider an architectural question: can multiple functional
units be used to improve performance without changing the macro instruction set? In
particular, can the internal organization of a CPU be arranged to detect and exploit situ-
ations in which parallel execution will produce higher performance?

We have already seen a trivial example of an optimization: Figure 8.11 shows that
horizontal microcode can allow an ALU operation to continue at the same time a data
value is transferred to a hardware unit that holds an operand. However, our example re-
quires a programmer to explicitly code the parallel behavior when creating the micro-
code.

To understand how a CPU exploits parallelism automatically, imagine a system
that includes an intelligent microcontroller and multiple functional units. Instead of
working on one macro instruction at a time, the intelligent controller is given access to
many macro instructions. The controller looks ahead at the instructions, finds values
that will be needed, and directs functional units to start fetching or computing the
values. For example, suppose the intelligent controller finds the following four instruc-
tions on a 3-address architecture:

add R1, R3, R7
sub R4, R4, R6
add R9, R5, R2
shift R8, 5

We say that an intelligent controller schedules the instructions by assigning the
necessary work to functional units. For example, the controller can assign each operand
to a functional unit that fetches and prepares operand values. Once the operand values
are available for an instruction, the controller assigns the instruction to a functional unit
that performs the operation. The instructions listed above can each be assigned to an
ALU. Finally, when the operation completes, the controller can assign a functional unit
the task of moving the result to the appropriate destination register. The point is: if the
CPU contains enough functional units, an intelligent controller can schedule all four
macro instructions to be executed at the same time.

www.ebook3000.com

http://www.ebook3000.org

Sec. 8.20 Parallelism And Execution Order 157

8.20 Parallelism And Execution Order

Our above description of an intelligent microcontroller overlooks an important de-
tail: the semantics of the macro instruction set. In essence, the controller must ensure
that computing values in parallel does not change the meaning of the program. For ex-
ample, consider the following sequence of instructions:

add R1, R3, R7
sub R4, R4, R6
add R9, R1, R2
shift R8, 5

Unlike the previous example, the operands overlap. In particular, the first instruc-
tion specifies register one as a destination, and the third instruction specifies register
one as an operand. The macro instruction set semantics dictate sequential processing of
instructions, which means that the first instruction will place a value in register one be-
fore the third instruction references the value. To preserve sequential semantics, an in-
telligent controller must understand and accommodate such overlap. In essence, the
controller must balance between two goals: maximize the amount of parallel execution,
while preserving the original (i.e., sequential) semantics.

8.21 Out-Of-Order Instruction Execution

How can a controller that schedules parallel activities handle the case where an
operand in one instruction depends on the results of a previous instruction? The con-
troller uses a mechanism known as a scoreboard that tracks the status of each instruc-
tion being executed. In particular, a scoreboard maintains information about dependen-
cies among instructions and the original macro instruction sequence execution. Thus,
the controller can use the scoreboard to decide when to fetch operands, when execution
can proceed, and when an instruction is finished. In short, the scoreboard approach al-
lows the controller to execute instructions out of order, but then reorders the results to
reflect the order specified by the code.

To achieve highest speed, a modern CPU contains multiple copies of
functional units that permit multiple instructions to be executed simul-
taneously. An intelligent controller uses a scoreboard mechanism to
schedule execution in an order that preserves the appearance of
sequential processing.

158 CPUs: Microcode, Protection, And Processor Modes Chap. 8

8.22 Conditional Branches And Branch Prediction

Conditional branches pose another problem for parallel execution. For example,
consider the following computation:

Y ← f(X)

if (Y > Z) {

Q

} else {

R

}

When translated into machine instructions, the computation contains a conditional
branch that directs execution either to the code for Q or the code for R. The condition
depends on the value of Y, which is computed in the first step. Now consider running
the code on a CPU that uses parallel execution of instructions. In theory, once it
reaches the conditional branch, the CPU must wait for the results of the comparison —
the CPU cannot start to schedule code for R or Q until it knows which one will be
selected.

In practice, there are two approaches used to handle conditional branches. The
first, which is known as branch prediction, is based on measurements which show that
in most code, the branch is taken approximately sixty percent of the time. Thus, build-
ing hardware that schedules instructions along the branch path provides more optimiza-
tion than hardware that schedules instructions along the non-branch path. Of course, as-
suming the branch will occur may be incorrect — if the CPU eventually determines that
the branch should not be taken, the results from the branch path must be discarded and
the CPU must follow the other path. The second approach simply follows both paths in
parallel. That is, the CPU schedules instructions for both outcomes of the conditional
branch. As with branch prediction, the CPU must eventually decide which result is
valid. That is, the CPU continues to execute instructions, but holds the results
internally. Once the value of the condition is known, the CPU discards the results from
the path that is not valid, and proceeds to move the correct results into the appropriate
destinations. Of course, a second conditional branch can occur in either Q or R; the
scoreboard mechanism handles all the details.

The point is:

A CPU that offers parallel instruction execution can handle conditional
branches by proceeding to precompute values on one or both branches,
and choosing which values to use at a later time when the computation
of the branch condition completes.

www.ebook3000.com

http://www.ebook3000.org

Sec. 8.22 Conditional Branches And Branch Prediction 159

It may seem wasteful for a CPU to compute values that will be discarded later.
However, the goal is higher performance, not elegance. We can also observe that if a
CPU is designed to wait until a conditional branch value is known, the hardware will
merely sit idle. Therefore, high-speed CPUs, such as those manufactured by Intel and
AMD, are designed with parallel functional units and sophisticated scoreboard mecha-
nisms.

8.23 Consequences For Programmers

Can understanding how a CPU is structured help programmers write faster code?
In some cases, yes. Suppose a CPU is designed to use branch prediction and that the
CPU assumes the branch is taken. A programmer can optimize performance by arrang-
ing code so that the most common cases take the branch. For example, if a programmer
knows that it will be more common for Y to be less than Z, instead of testing Y > Z, a
programmer can rewrite the code to test whether Y ≤ Z.

8.24 Summary

A modern CPU is a complex processor that uses multiple modes of execution to
handle some of the complexity. An execution mode determines operational parameters
such as the operations that are allowed and the current privilege level. Most CPUs offer
at least two levels of privilege and protection: one for the operating system and one for
application programs.

To reduce the internal complexity, a CPU is often built with two levels of abstrac-
tion: a microcontroller is implemented with digital circuits, and a macro instruction set
is created by adding microcode.

There are two broad classes of microcode. A microcontroller that uses vertical mi-
crocode resembles a conventional RISC processor. Typically, vertical microcode con-
sists of a set of procedures that each correspond to one macro instruction; the CPU runs
the appropriate microcode during the fetch-execute cycle. Horizontal microcode, which
allows a programmer to schedule functional units to operate on each cycle, consists of
instructions in which each bit field corresponds to a functional unit. A third alternative
uses Field Programmable Gate Array (FPGA) technology to create the underlying sys-
tem.

Advanced CPUs extend parallel execution by scheduling a set of instructions
across multiple functional units. The CPU uses a scoreboard mechanism to handle
cases where the results of one instruction are used by a successive instruction. The idea
can be extended to conditional branches by allowing parallel evaluation of each path to
proceed, and then, once the condition is known, discarding the values along the path
that is not taken.

160 CPUs: Microcode, Protection, And Processor Modes Chap. 8

EXERCISES

8.1 If a quad-core CPU chip contains 2 billion transistors, approximately how many transistors
are needed for a single core?

8.2 List seven reasons a modern CPU is complex.

8.3 The text says that some CPU chips include a backward compatibility mode. Does such a
mode offer any advantage to a user?

8.4 Suppose that in addition to other hardware, the CPU used in a smart phone contains addi-
tional hardware for three previous versions of the chip (i.e., three backward compatibility
modes). What is the disadvantage from a user’s point of view?

8.5 Virtualized software systems used in cloud data centers often include a hypervisor that runs
and controls multiple operating systems, and applications that each run on one of the
operating systems. How do the levels protection used with such systems differ from con-
ventional levels of protection?

8.6 Some manufacturers offer a chip that contains a processor with a basic set of instructions
plus an attached FPGA. An owner can configure the FPGA with additional instructions.
What does such a chip provide that conventional software cannot?

8.7 Read about FPGAs, and find out how they are “programmed.” What languages are used to
program an FPGA?

8.8 Create a microcode algorithm that performs 32-bit multiplication on a microcontroller that
only offers 16-bit arithmetic, and implement your algorithm in C using short variables.

8.9 You are offered two jobs for the same salary, one programming vertical microcode and the
other programming horizontal microcode. Which do you choose? Why?

8.10 Find an example of a commercial processor that uses horizontal microcode, and document
the meaning of bits for an instruction similar to the diagram in Figure 8.7.

8.11 What is the motivation for a scoreboard mechanism in a CPU chip, and what functionality
does it provide?

8.12 If Las Vegas casinos computed the odds on program execution, what odds would they give
that a branch is taken? Explain your answer.

www.ebook3000.com

http://www.ebook3000.org

Chapter Contents

9.1 Introduction, 163
9.2 Characteristics Of A High-level Programming Language, 163
9.3 Characteristics Of A Low-level Programming Language, 164
9.4 Assembly Language, 165
9.5 Assembly Language Syntax And Opcodes, 166
9.6 Operand Order, 168
9.7 Register Names, 169
9.8 Operand Types, 170
9.9 Assembly Language Programming Paradigm And Idioms, 170
9.10 Coding An IF Statement In Assembly, 171
9.11 Coding An IF-THEN-ELSE In Assembly, 172
9.12 Coding A FOR-LOOP In Assembly, 172
9.13 Coding A WHILE Statement In Assembly, 172
9.14 Coding A Subroutine Call In Assembly, 173
9.15 Coding A Subroutine Call With Arguments In Assembly, 174
9.16 Consequence For Programmers, 174
9.17 Assembly Code For Function Invocation, 175
9.18 Interaction Between Assembly And High-level Languages, 176
9.19 Assembly Code For Variables And Storage, 176
9.20 Example Assembly Language Code, 177
9.21 Two-Pass Assembler, 183
9.22 Assembly Language Macros, 185
9.23 Summary, 188

www.ebook3000.com

http://www.ebook3000.org

9

Assembly Languages And
Programming Paradigm

9.1 Introduction

Previous chapters describe processor instruction sets and operand addressing. This
chapter discusses programming languages that allow programmers to specify all the de-
tails of instructions and operand addresses. The chapter is not a tutorial about a
language for a particular processor. Instead, it provides a general assessment of features
commonly found in low-level languages. The chapter examines programming para-
digms, and explains how programming in a low-level language differs from program-
ming in a conventional language. Finally, the chapter describes software that translates
a low-level language into binary instructions.

Low-level programming and low-level programming languages are not strictly part
of computer architecture. We consider them here, however, because such languages are
so closely related to the underlying hardware that the two cannot be separated easily.
Subsequent chapters return to the focus on hardware by examining memory and I/O fa-
cilities.

9.2 Characteristics Of A High-level Programming Language

Programming languages can be divided into two broad categories:

d High-level languages

d Low-level languages

163

164 Assembly Languages And Programming Paradigm Chap. 9

A conventional programming language, such as Java or C, is classified as a high-
level-language because the language exhibits the following characteristics:

d One-to-many translation

d Hardware independence

d Application orientation

d General-purpose

d Powerful abstractions

One-To-Many Translation. Each statement in a high-level language corresponds to
multiple machine instructions. That is, when a compiler translates the language into
equivalent machine instructions, a statement usually translates into several instructions.

Hardware Independence. High-level languages allow programmers to create a pro-
gram without knowing details about the underlying hardware. For example, a high-
level language allows a programmer to specify floating point operations, such as addi-
tion and subtraction, without knowing whether the ALU implements floating point
arithmetic directly or uses a separate floating point coprocessor.

Application Orientation. A high-level language, such as C or Java, is designed to
allow a programmer to create application programs. Thus, a high-level language usual-
ly includes I/O facilities as well as facilities that permit a programmer to define arbi-
trarily complex data objects.

General-Purpose. A high-level language, like C or Java, is not restricted to a
specific task or a specific problem domain. Instead, the language contains features that
allow a programmer to create a program for an arbitrary task.

Powerful Abstractions. A high-level language provides abstractions, such as pro-
cedures, that allow a programmer to express complex tasks succinctly.

9.3 Characteristics Of A Low-level Programming Language

The alternative to a high-level language is known as a low-level language and has
the following characteristics:

d One-to-one translation

d Hardware dependence

d Systems programming orientation

d Special-purpose

d Few abstractions

One-To-One Translation. In general, each statement in a low-level programming
language corresponds to a single instruction on the underlying processor. Thus, the
translation to machine code is one-to-one.

www.ebook3000.com

http://www.ebook3000.org

Sec. 9.3 Characteristics Of A Low-level Programming Language 165

Hardware Dependence. Because each statement corresponds to a machine instruc-
tion, a low-level language created for one type of processor cannot be used with another
type of processor.

Systems Programming Orientation. Unlike a high-level language, a low-level
language is optimized for systems programming — the language has facilities that allow
a programmer to create an operating system or other software that directly controls the
hardware.

Special-Purpose. Because they focus on the underlying hardware, low-level
languages are only used in cases where extreme control or efficiency is needed. For ex-
ample, communication with a coprocessor usually requires a low-level language.

Few Abstractions. Unlike high-level languages, low-level languages do not pro-
vide complex data structures (e.g., strings or objects) or control statements (e.g., if-
then-else or while). Instead, the language forces a programmer to construct abstractions
from low-level hardware mechanisms†.

9.4 Assembly Language

The most widely used form of low-level programming language is known as as-
sembly language, and the software that translates an assembly language program into a
binary image that the hardware understands is known as an assembler.

It is important to understand that the phrase assembly language differs from
phrases such as Java language or C language because assembly does not refer to a sin-
gle language. Instead, a given assembly language uses the instruction set and operands
from a single processor. Thus, many assembly languages exist, one for each processor.
Programmers might talk about MIPS assembly language or Intel x86 assembly
language. To summarize:

Because an assembly language is a low-level language that incor-
porates specific characteristics of a processor, such as the instruction
set, operand addressing, and registers, many assembly languages ex-
ist.

The consequence for programmers should be obvious: when moving from one pro-
cessor to another, an assembly language programmer must learn a language. On the
down side, the instruction set, operand types, and register names often differ among as-
sembly languages. On the positive side, most assembly languages tend to follow the
same basic pattern. Therefore, once a programmer learns one assembly language, the
programmer can learn others quickly. More important, if a programmer understands the
basic assembly language paradigm, moving to a new architecture usually involves learn-
ing new details, not learning a new programming style. The point is:

��������������������������������
†Computer scientist Alan Perlis once quipped that a programming language is low-level if programming

requires attention to irrelevant details. His point is that because most applications do not need direct control,
using a low-level language creates overhead for an application programmer without any real benefit.

166 Assembly Languages And Programming Paradigm Chap. 9

Despite differences, many assembly languages share the same funda-
mental structure. Consequently, a programmer who understands the
assembly programming paradigm can learn a new assembly language
quickly.

To help programmers understand the concept of assembly language, the next sec-
tions focus on general features and programming paradigms that apply to most assembly
languages. In addition to specific language details, we will discuss concepts such as
macros.

9.5 Assembly Language Syntax And Opcodes

9.5.1 Statement Format

Because assembly language is low-level, a single assembly language statement
corresponds to a single machine instruction. To make the correspondence between
language statements and machine instructions clear, most assemblers require a program
to contain a single statement per line of input. The general format is:

label: opcode operand1, operand2, ...

where label gives an optional label for the statement (used for branching), opcode speci-
fies one of the possible instructions, each operand specifies an operand for the instruc-
tion, and whitespace separates the opcode from other items.

9.5.2 Opcode Names

The assembly language for a given processor defines a symbolic name for each in-
struction that the processor provides. Although the symbolic names are intended to help
a programmer remember the purpose of the instruction, most assembly languages use
extremely short abbreviations instead of long names. Thus, if a processor has an in-
struction for addition, the assembly language might use the opcode add. However, if
the processor has an instruction that branches to a new location, the opcode for the in-
struction typically consists of a single letter, b, or the two-letter opcode br. Similarly, if
the processor has an instruction that jumps to a subroutine, the opcode is often jsr.

Unfortunately, there is no global agreement on opcode names even for basic opera-
tions. For example, most architectures include an instruction that copies the contents of
one register to another. To denote such an operation, some assembly languages use the
opcode mov (an abbreviation for move), and others use the opcode ld (an abbreviation
for load).

www.ebook3000.com

http://www.ebook3000.org

Sec. 9.5 Assembly Language Syntax And Opcodes 167

9.5.3 Commenting Conventions

Short opcodes tend to make assembly language easy to write but difficult to read.
Furthermore, because it is low-level, assembly language tends to require many instruc-
tions to achieve a straightforward task. Thus, to ensure that assembly language pro-
grams remain readable, programmers add two types of comments: block comments that
explain the purpose of each major section of code, and a detailed comment on each in-
dividual line to explain the purpose of the line.

To make it easy for programmers to add comments, assembly languages often al-
low comments to extend until the end of a line. That is, the language only defines a
character (or sequence of characters) that starts a comment. One commercial assembly
language defines the pound sign character (#) as the start of a comment, a second uses
a semicolon to denote the start of a comment, and a third has adopted the C++ comment
style and uses two adjacent slash characters. A block comment can be created in which
each line begins with the comment character, and a detailed comment can be added to
each line of the program. Programmers often add additional characters to surround a
block comment. For example, if the pound sign signals the start of a comment, the
block comment below explains that a section of code searches a list to find a memory
block of a given size:

##
##
SSeeaarrcchh lliinnkkeedd lliisstt ooff ffrreeee mmeemmoorryy bblloocckkss ttoo ffiinndd aa bblloocckk
ooff ssiizzee NN bbyytteess oorr ggrreeaatteerr.. PPooiinntteerr ttoo lliisstt mmuusstt bbee iinn
rreeggiisstteerr 33,, aanndd NN mmuusstt bbee iinn rreeggiisstteerr 44.. TThhee ccooddee aallssoo
ddeessttrrooyyss tthhee ccoonntteennttss ooff rreeggiisstteerr 55,, wwhhiicchh iiss uusseedd ttoo
wwaallkk tthhee lliisstt..
##
##

Most programmers place a comment on each line of assembly code to explain how
the instruction fits into the algorithm. For example, the code to search for a memory
block might begin:

lldd rr55,,rr33 ## llooaadd tthhee aaddddrreessss ooff lliisstt iinnttoo rr55
lloooopp__11:: ccmmpp rr55,,rr00 ## tteesstt ttoo sseeee iiff aatt eenndd ooff lliisstt

bbzz nnoottffnndd ## iiff rreeaacchheedd eenndd ooff lliisstt ggoo ttoo nnoottffnndd
......

Although details in the example above may seem obscure, the point is relatively
straightforward: a block comment before a section of code explains what the code ac-
complishes, and a comment on each line of code explains how that particular instruction
contributes to the result.

168 Assembly Languages And Programming Paradigm Chap. 9

9.6 Operand Order

One frustrating difference among assembly languages causes subtle problems for
programmers who move from one assembly language to another: the order of operands.
A given assembly language usually chooses a consistent operand order. For example,
consider a load instruction that copies the contents of one register to another register.
In the example code above, the first operand represents the target register (i.e., the re-
gister into which the value will be placed), and the second operand represents the
source register (i.e., the register from which the value will be copied). Under such an
interpretation, the statement:

lldd rr55,,rr33 ## llooaadd tthhee aaddddrreessss ooff lliisstt iinnttoo rr55

copies the contents of register 3 into register 5. As a mnemonic aid to help them
remember the right-to-left interpretation, programmers are told to think of an assign-
ment statement in which the expression is on the right and the target of the assignment
is on the left.

As an alternative to the example code, some assembly languages specify the oppo-
site order — the source register is on the left and the target register is on the right. In
such assembly languages, the code above is written with operands in the opposite order:

lldd rr33,,rr55 ## llooaadd tthhee aaddddrreessss ooff lliisstt iinnttoo rr55

As a mnemonic aid to help them remember the left-to-right interpretation, pro-
grammers are told to think of a computer reading the instruction. Because text is read
left to right, we can imagine the computer reading the opcode, picking up the first
operand, and depositing the value in the second operand. Of course, the underlying
hardware does not process the instruction left-to-right or right-to-left — the operand
order is only assembly language syntax.

Operand ordering is further complicated by several factors. First, unlike our exam-
ples above, many assembly language instructions do not have two operands. For exam-
ple, an instruction that performs bitwise complement only needs one operand. Further-
more, even if an instruction has two operands, the notions of source and destination
may not apply (e.g., a comparison). Therefore, a programmer who is unfamiliar with a
given assembly language may need to consult a manual to find the order of operands for
a given opcode.

Of course, there can be a significant difference between what a programmer writes
and the resulting binary value of the instruction because the assembly language merely
uses notation that is convenient for the programmer. The assembler can reorder
operands during translation. For example, the author once worked on a computer that
had two assembly languages, one produced by the computer’s vendor and another pro-
duced by researchers at Bell Labs. Although both languages were used to produce code
for the same underlying computer, one language used a left-to-right interpretation of the
operands, and the other used a right-to-left interpretation.

www.ebook3000.com

http://www.ebook3000.org

Sec. 9.7 Register Names 169

9.7 Register Names

Because a typical instruction includes a reference to at least one register, most as-
sembly languages include a special way to denote registers. For example, in many as-
sembly languages, names that consist of the letter r followed by one or more digits are
reserved to refer to registers. Thus, a reference to r10 refers to register 10.

However, there is no universal standard for register references. In one assembly
language, all register references begin with a dollar sign followed by digits; thus, $10
refers to register 10. Other assemblers are more flexible: the assembler allows a pro-
grammer to choose register names. That is, a programmer can insert a series of declara-
tions that define a specific name to refer to a register. Thus, one might find declara-
tions such as:

##
DDeeffiinnee rreeggiisstteerr nnaammeess uusseedd iinn tthhee pprrooggrraamm
##
rr11 rreeggiisstteerr 11 ## ddeeffiinnee nnaammee rr11 ttoo bbee rreeggiisstteerr 11
rr22 rreeggiisstteerr 22 ## aanndd ssoo oonn ffoorr rr22,, rr33,, aanndd rr44
rr33 rreeggiisstteerr 33
rr44 rreeggiisstteerr 44

The chief advantage of allowing programmers to define register names arises from
increased readability: a programmer can choose meaningful names. For example, sup-
pose a program manages a linked list. Instead of using numbers or names like r6, a
programmer can give meaningful names to the registers:

##
DDeeffiinnee rreeggiisstteerr nnaammeess ffoorr aa lliinnkkeedd lliisstt pprrooggrraamm
##
lliisstthhdd rreeggiisstteerr 66 ## hhoollddss ssttaarrttiinngg aaddddrreessss ooff lliisstt
lliissttppttrr rreeggiisstteerr 77 ## mmoovveess aalloonngg tthhee lliisstt

Of course, allowing programmers to choose names for registers can also lead to
unexpected results that make the code difficult to understand. For example, consider
reading a program in which a programmer has used the following declaration:

rr33 rreeggiisstteerr 88 ## ddeeffiinnee nnaammee rr33 ttoo bbee rreeggiisstteerr 88!!

The points can be summarized:

Because registers are fundamental to assembly language program-
ming, each assembly language provides a way to identify registers. In
some languages, special names are reserved; in others, a programmer
can assign a name to a register.

170 Assembly Languages And Programming Paradigm Chap. 9

9.8 Operand Types

As Chapter 7 explains, a processor often provides multiple types of operands. The
assembly language for each processor must accommodate all operand types that the
hardware offers. As an example, suppose a processor allows each operand to specify a
register, an immediate value (i.e., a constant), a memory location, or a memory location
specified by adding an offset in the instruction to the contents of a register. The assem-
bly language for the processor needs a syntactic form for each possible operand type.

We said that assembly languages often use special characters or names to distin-
guish registers from other values. In many assembly languages, for example, 10 refers
to the constant ten, and r10 refers to register ten. However, some assembly languages
require a special symbol before a constant (e.g., #10 to refer to the constant ten).

Each assembly language must provide syntactic forms for each possible operand
type. Consider, for example, copying a value from a source to a target. If the processor
allows the instruction to specify either a register (direct) or a memory location (indirect)
as the source, the assembly language must provide a way for a programmer to distin-
guish the two. One assembly language uses parentheses to distinguish the two possibil-
ities:

mmoovv rr22,,rr11 ## ccooppyy ccoonntteennttss ooff rreegg.. 11 iinnttoo rreegg.. 22

mmoovv rr22,,((rr11)) ## ttrreeaatt rr11 aass aa ppooiinntteerr ttoo mmeemmoorryy aanndd
ccooppyy ffrroomm tthhee mmeemm.. llooccaattiioonn ttoo rreegg.. 22

The point is:

An assembly language provides a syntactic form for each possible
operand type that the processor supports, including a reference to a
register, an immediate value, and an indirect reference to memory.

9.9 Assembly Language Programming Paradigm And Idioms

Because a programming language provides facilities that programmers use to struc-
ture data and code, a language can impact the programming process and the resulting
code. Assembly language is especially significant because the language does not pro-
vide high-level constructs nor does the language enforce a particular style. Instead, as-
sembly language gives a programmer complete freedom to code arbitrary sequences of
instructions and store data in arbitrary memory locations.

Experienced programmers understand that consistency and clarity are usually more
important than clever tricks or optimizations. Thus, experienced programmers develop
idioms: patterns that they use consistently. The next sections use basic control struc-
tures to illustrate the concept of assembly language idioms.

www.ebook3000.com

http://www.ebook3000.org

Sec. 9.10 Coding An IF Statement In Assembly 171

9.10 Coding An IF Statement In Assembly

We use the term conditional execution to refer to code that may or may not be exe-
cuted, depending on a certain condition. Because conditional execution is a fundamen-
tal part of programming, high-level languages usually include one or more statements
that allow a programmer to express conditional execution. The most basic form of con-
ditional execution is known as an if statement.

In assembly language, a programmer must code a sequence of statements to per-
form conditional execution. Figure 9.1 illustrates the form used for conditional execu-
tion in a typical high-level language and the equivalent form used in a typical assembly
language.

if (condition) {

body

}

next statement;

code to test the condition and

set the condition code

branch to label if condition false

code to perform body

label: code for next statement

(a) (b)

Figure 9.1 (a) Conditional execution as specified in a high-level language,
and (b) the equivalent assembly language code.

As the figure indicates, some processors use a condition code as the fundamental
mechanism for conditional execution. Whenever it performs an arithmetic operation or
a comparison, the ALU sets the condition code. A conditional branch instruction can be
used to test the condition code and execute the branch if the condition code matches the
instruction. Note that in the case of emulating an if statement, the branch instruction
must test the opposite of the condition (i.e., the branch is taken if the condition is not
met). For example, consider the statement:

if (a == b) { x }

If we assume a and b are stored in registers five and six, the equivalent assembly
language is:

ccmmpp rr55,, rr66 ## ccoommppaarree tthhee vvaalluueess ooff aa aanndd bb aanndd sseett cccc

bbnnee llaabb11 ## bbrraanncchh iiff pprreevviioouuss ccoommppaarriissoonn nnoott eeqquuaall
code for x
......

llaabb11:: code for next statement

172 Assembly Languages And Programming Paradigm Chap. 9

9.11 Coding An IF-THEN-ELSE In Assembly

The if-then-else statement found in high-level languages specifies code to be exe-
cuted for both the case when a condition is true and when the condition is false. Figure
9.2 shows the assembly language equivalent of an if-then-else statement.

if (condition) {

then_part

} else {

else_part

}

next statement;

code to test the condition and

set the condition code

branch to label1 if condition false

code to perform then_part

branch to label2

label1: code for else_part

label2: code for next statement

(a) (b)

Figure 9.2 (a) An if-then-else statement used in a high-level language, and
(b) the equivalent assembly language code.

9.12 Coding A FOR-LOOP In Assembly

The term definite iteration refers to a programming language construct that causes
a piece of code to be executed a fixed number of times. A typical high-level language
uses a for statement to implement definite iteration. Figure 9.3 shows the assembly
language equivalent of a for statement.

Definite iteration illustrates an interesting difference between a high-level language
and assembly language: location of code. In assembly language, the code to implement
a control structure can be divided into separate locations. In particular, although a pro-
grammer thinks of the initialization, continuation test, and increment as being specified
in the header of a for statement, the equivalent assembly code places the increment after
the code for the body.

9.13 Coding A WHILE Statement In Assembly

In programming language terminology, indefinite iteration refers to a loop that ex-
ecutes zero or more times. Typically, a high-level language uses the keyword while to
indicate indefinite iteration. Figure 9.4 shows the assembly language equivalent of a
while statement.

www.ebook3000.com

http://www.ebook3000.org

Sec. 9.13 Coding A WHILE Statement In Assembly 173

for (i=0; i<10; i++) {

body

}

next statement;

set r4 to zero

label1: compare r4 to 10

branch to label2 if >=

code to perform body

increment r4

branch to label1

label2: code for next statement

(a) (b)

Figure 9.3 (a) A for statement used in a high-level language, and (b) the
equivalent assembly language code using register 4 as an index.

while (condition) {

body

}

next statement;

label1: code to compute condition

branch to label2 if false

code to perform body

branch to label1

label2: code for next statement

(a) (b)

Figure 9.4 (a) A while statement used in a high-level language, and (b) the
equivalent assembly language code.

9.14 Coding A Subroutine Call In Assembly

We use the term procedure or subroutine to refer to a piece of code that can be in-
voked, perform a computation, and return control to the invoker. The terms procedure
call or subroutine call to refer to the invocation. The key idea is that when a subroutine
is invoked, the processor records the location from which the call occurred, and resumes
execution at that point once the subroutine completes. Thus, a given subroutine can be
invoked from multiple points in a program because control always passes back to the
location from which the invocation occurred.

Many processors provide two basic assembly instructions for procedure invocation.
A jump to subroutine (jsr) instruction saves the current location and branches to a sub-
routine at a specified location, and a return from subroutine (ret) instruction causes the
processor to return to the previously saved location. Figure 9.5 shows how the two as-
sembly instructions can be used to code a procedure declaration and two invocations.

174 Assembly Languages And Programming Paradigm Chap. 9

x () {

body of function x

}

x();

other statement;

x ();

next statement;

x: code for body of x

ret

jsr x

code for other statement

jsr x

code for next statement

(a) (b)

Figure 9.5 (a) A declaration for procedure x and two invocations in a high-
level language, and (b) the assembly language equivalent.

9.15 Coding A Subroutine Call With Arguments In Assembly

In a high-level language, procedure calls are parameterized. The procedure body
is written with references to parameters, and the caller passes a set of values to the pro-
cedure that are known as arguments. When the procedure refers to a parameter, the
value is obtained from the corresponding argument. The question arises: how are argu-
ments passed to a procedure in assembly code?

Unfortunately, the details of argument passing vary widely among processors. For
example, each of following three schemes has been used in at least one processor†:

d The processor uses a stack in memory for arguments

d The processor uses register windows to pass arguments

d The processor uses special-purpose argument registers

As an example, consider a processor in which registers r1 through r8 are used to
pass arguments during a procedure call. Figure 9.6 shows the assembly language code
for a procedure call on such an architecture.

9.16 Consequence For Programmers

The consequence of a variety of argument passing schemes should be clear: the as-
sembly language code needed to pass and reference arguments varies significantly from
one processor to another. More important, programmers are free to invent new mecha-
nisms for argument passing that optimize performance. For example, memory refer-
ences are slower than register references. Thus, even if the hardware is designed to use
a stack in memory, a programmer might choose to increase performance by passing
some arguments in general-purpose registers rather than memory.

��������������������������������
†The storage used for a return address (i.e., the location to which a ret instruction should branch) is often

related to the storage used for arguments.

www.ebook3000.com

http://www.ebook3000.org

Sec. 9.16 Consequence For Programmers 175

x (a, b) {

body of function x

}

x(-4, 17);

other statement;

x (71, 27);

next statement

x: code for body of x that assumes

register 1 contains parameter a

and register 2 contains b

ret

load -4 into register 1

load 17 into register 2

jsr x

code for other statement

load 71 into register 1

load 27 into register 2

jsr x

code for next statement

(a) (b)

Figure 9.6 (a) A declaration for parameterized procedure x and two invoca-
tions in a high-level language, and (b) the assembly language
equivalent for a processor that passes arguments in registers.

The point is:

No single argument passing paradigm is used in assembly languages
because a variety of hardware mechanisms exist for argument pass-
ing. In addition, programmers sometimes use alternatives to the basic
mechanism to optimize performance (e.g., passing values in registers).

9.17 Assembly Code For Function Invocation

The term function refers to a procedure that returns a single-value result. For ex-
ample, an arithmetic function can be created to compute sine(x) — the argument speci-
fies an angle, and the function returns the sine of the angle. Like a procedure, a func-
tion can have arguments, and a function can be invoked from an arbitrary point in the
program. Thus, for a given processor, function invocation uses the same basic mecha-
nisms as procedure invocation.

Despite the similarities between functions and procedures, function invocation re-
quires one additional detail: an agreement that specifies exactly how the function result
is returned. As with argument passing, many alternative implementations exist. Proces-
sors have been built that provide a separate, special-purpose hardware register for a
function return value. Other processors assume that the program will use one of the

176 Assembly Languages And Programming Paradigm Chap. 9

general-purpose registers. In any case, before executing a ret instruction, a function
must load the return value into the location that the processor uses. After the return oc-
curs, the calling program extracts and uses the return value.

9.18 Interaction Between Assembly And High-level Languages

Interaction is possible in either direction between code written in an assembly
language and code written in a high-level language. That is, a program written in a
high-level language can call a procedure or function that has been written in assembly
language, and a program written in assembly language can call a procedure or function
that has been written in a high-level language. Of course, because a programmer can
only control the assembly language code and not the high-level language code, the as-
sembly program must follow the calling conventions that the high-level language uses.
That is, the assembly code must use exactly the same mechanisms as the high-level
language uses to store a return address, invoke a procedure, pass arguments, and return
a function value.

Why would a programmer mix code written in assembly language with code writ-
ten in a high-level language? In some cases, assembly code is needed because a high-
level language does not allow direct interaction with the underlying hardware. For ex-
ample, a computer that has special graphics hardware may need assembly code to use
the graphics functions. In most cases, however, assembly language is only used to op-
timize performance — once a programmer identifies a particular piece of code as a
bottleneck, the programmer writes an optimized version of the code in assembly
language. Typically, optimized assembly language code is placed into a procedure or
function; the rest of the program remains written in a high-level language. As a result,
the most common case of interaction between code written in a high-level language and
code written in assembly language consists of a program written in a high-level
language calling a procedure or function that is written in an assembly language.

The point is:

Because writing application programs in assembly language is diffi-
cult, assembly language is reserved for situations where a high-level
language has insufficient functionality or results in poor performance.

9.19 Assembly Code For Variables And Storage

In addition to statements that generate instructions, assembly languages permit a
programmer to define data items. Both initialized and uninitialized variables can be de-
clared. For example, some assembly languages use the directive .word to declare
storage for a sixteen-bit item, and the directive .long to declare storage for a thirty-two-
bit item. Figure 9.7 shows declarations in a high-level language and equivalent assem-
bly code.

www.ebook3000.com

http://www.ebook3000.org

Sec. 9.19 Assembly Code For Variables And Storage 177

int x, y, z;

short w, q;

statement(s)

x: .long

y: .long

z: .long

w: .word

q: .word

statement(s)

(a) (b)

Figure 9.7 (a) Declaration of variables in a high-level language, and (b)
equivalent variable declarations in assembly language.

The keywords .word and .long are known as assembly language directives.
Although it appears in the same location that an opcode appears, a directive does not
correspond to an instruction. Instead, a directive controls the translation. The directives
in the figure specify that storage locations should be reserved to hold variables. In most
assembly languages, a directive that reserves storage also allows a programmer to speci-
fy an initial value. Thus, the directive:

xx:: ..wwoorrdd 994499

reserves a sixteen bit memory location, assigns the location the integer value 949, and
defines x to be a label (i.e., a name) that the programmer can use to refer to the loca-
tion.

9.20 Example Assembly Language Code

An example will help clarify the concepts and show how assembly language
idioms apply in practice. To help compare x86 and ARM architectures, we will use the
same example for each architecture. To make the example clear, we begin with a C
program and then show how the same algorithm can be implemented in assembly
language.

Instead of using a long, complex program to show all the idioms, we will use a
trivial example that demonstrates a few basics. In particular, it will show indefinite
iteration and conditional execution. The example consists of a piece of code that prints
an initial list of the Fibonacci sequence. The first two values in the sequence are each
1. Each successive value is computed as the sum of the preceding two values. Thus,
the sequence is 1, 1, 2, 3, 5, 8, 13, 21, and so on.

To ensure our example relates to concepts from computer architecture, we will ar-
range the code to print all values in the Fibonacci sequence that fit into a two’s comple-
ment thirty-two-bit signed integer. As the sequence is generated, the code will count
the number of values greater than 1000, and will print a summary.

178 Assembly Languages And Programming Paradigm Chap. 9

9.20.1 The Fibonacci Example In C

Figure 9.8 shows a C program that computes each value in the Fibonacci sequence
that fits in a thirty-two-bit signed integer. The program uses printf to print each value.
It also counts the number of values greater than 1000, and uses printf to print the total
as well as a summary of the final values of variables that are used in the computation.

##iinncclluuddee <<ssttddlliibb..hh>>

##iinncclluuddee <<ssttddiioo..hh>>

##iinncclluuddee <<ccttyyppee..hh>>

iinntt aa == 11,, bb == 11,, nn,, ttmmpp;;

vvooiidd mmaaiinn((vvooiidd)) {{

nn == 00;;

pprriinnttff(("" %%1100dd\\nn"",, bb));;

pprriinnttff(("" %%1100dd\\nn"",, aa));;

wwhhiillee ((((ttmmpp == aa ++ bb)) >> 00)) {{

bb == aa;;

aa == ttmmpp;;

iiff ((aa >> 11000000)) {{

nn++++;;

}}

pprriinnttff(("" %%1100dd\\nn"",, aa));;

}}

pprriinnttff((""\\nnTThhee nnuummbbeerr ooff vvaalluueess ggrreeaatteerr tthhaann 11000000 iiss %%dd\\nn"",, nn));;

pprriinnttff((""FFiinnaall vvaalluueess aarree:: aa==00xx%%0088XX bb==00xx%%0088XX ttmmpp==00xx%%0088XX\\nn"",,aa,,bb,,ttmmpp));;

eexxiitt((00));;

}}

Figure 9.8 An example C program that computes and prints values in the Fi-
bonacci sequence that fit into a thirty-two-bit signed integer.

Figure 9.9 shows the output that results when the program runs. The last line of
the output gives the value of variables a, b, and tmp after the while loop finishes. Vari-
able a (1,836,311,903 in decimal) is 6D73E55F in hex. Notice that variable tmp has
value B11924E1, which has the high-order bit set. As Chapter 3 explains, when tmp is
interpreted as a signed integer, the value will be negative, which is why the loop ter-
minated. Also note that variable n, which counts the number of Fibonacci values has
the final value 30; the value can be verified by counting lines of output with values
greater than 1000.

www.ebook3000.com

http://www.ebook3000.org

Sec. 9.20 Example Assembly Language Code 179

11
11
22
33
55
88
1133
2211
3344
5555
8899
114444
223333
337777
661100
998877
11559977
22558844
44118811
66776655
1100994466
1177771111
2288665577
4466336688
7755002255
112211339933
119966441188
331177881111
551144222299
883322004400
11334466226699
22117788330099
33552244557788
55770022888877
99222277446655
1144993300335522
2244115577881177
3399008888116699
6633224455998866
110022333344115555
116655558800114411
226677991144229966
443333449944443377
770011440088773333
11113344990033117700
11883366331111990033

TThhee nnuummbbeerr ooff vvaalluueess ggrreeaatteerr tthhaann 11000000dd iiss 3300
FFiinnaall vvaalluueess aarree:: aa==00xx66DD7733EE5555FF bb==00xx4433AA5533FF8822 ttmmpp==00xxBB1111992244EE11

Figure 9.9 The output that results from running the program in Figure 9.8.

180 Assembly Languages And Programming Paradigm Chap. 9

9.20.2 The Fibonacci Example In x86 Assembly Language

Figure 9.10 shows x86 assembly code that generates the same output as the pro-
gram in Figure 9.8. The code uses the gcc calling conventions to call printf.

..ddaattaa

aa:: ..lloonngg 11 ## iinniittiiaalliizzeedd ddaattaa ((aa aanndd bb))
bb:: ..lloonngg 11

..ccoommmm nn,,44,,44 ## uunniinniittiiaalliizzeedd ddaattaa ((nn aanndd ttmmpp))

..ccoommmm ttmmpp,,44,,44

ffmmtt11:: ..ssttrriinngg "" %%1100dd\\nn""
ffmmtt22:: ..ssttrriinngg ""\\nnTThhee nnuummbbeerr ooff vvaalluueess ggrreeaatteerr tthhaann 11000000 iiss %%dd\\nn""
ffmmtt33:: ..ssttrriinngg ""FFiinnaall vvaalluueess aarree:: aa==00xx%%0088XX bb==00xx%%0088XX ttmmpp==00xx%%0088XX\\nn""

..tteexxtt

..gglloobbll mmaaiinn
mmaaiinn::

mmoovvll $$00,, nn ## nn == 00

mmoovvll bb,, %%eessii ## sseett uupp aarrggss ttoo pprriinntt aa
mmoovvll $$ffmmtt11,, %%eeddii
mmoovvll $$00,, %%eeaaxx
ccaallll pprriinnttff

mmoovvll aa,, %%eessii ## sseett uupp aarrggss ttoo pprriinntt bb
mmoovvll $$ffmmtt11,, %%eeddii
mmoovvll $$00,, %%eeaaxx
ccaallll pprriinnttff

wwhhiillee::
mmoovvll aa,,%%eeaaxx ## eeaaxx <<-- aa
aaddddll bb,,%%eeaaxx ## eeaaxx <<-- eeaaxx ++ bb
mmoovvll %%eeaaxx,,ttmmpp ## ttmmpp <<-- eeaaxx
tteessttll %%eeaaxx,, %%eeaaxx ## tteesstt eeaaxx
jjllee eennddwwhhiillee ## iiff <<== 00 jjuummpp ttoo eennddwwhhiillee

mmoovvll aa,, %%eeaaxx ## eeaaxx <<-- aa
mmoovvll %%eeaaxx,, bb ## bb <<-- eeaaxx
mmoovvll ttmmpp,, %%eeaaxx ## eeaaxx <<-- ttmmpp
mmoovvll %%eeaaxx,, aa ## aa <<-- eeaaxx

ccmmppll $$11000000,, %%eeaaxx ## ccoommppaarree 11000000 ttoo eeaaxx
jjllee eennddiiff ## iiff <<== jjuummpp ttoo eennddiiff
mmoovvll nn,, %%eebbxx ## eebbxx <<-- nn
aaddddll $$11,, %%eebbxx ## eebbxx <<-- eebbxx ++ 11
mmoovvll %%eebbxx,, nn ## nn <<-- eebbxx

www.ebook3000.com

http://www.ebook3000.org

Sec. 9.20 Example Assembly Language Code 181

eennddiiff::

mmoovvll aa,, %%eessii ## sseett uupp aarrggss ttoo pprriinntt aa
mmoovvll $$ffmmtt11,, %%eeddii
mmoovvll $$00,, %%eeaaxx
ccaallll pprriinnttff
jjmmpp wwhhiillee

eennddwwhhiillee::
mmoovvll nn,, %%eessii ## sseett uupp aarrggss ttoo pprriinntt nn
mmoovvll $$ffmmtt22,, %%eeddii
mmoovvll $$00,, %%eeaaxx
ccaallll pprriinnttff

mmoovvll ttmmpp,, %%eeccxx ## sseett uupp aarrggss ttoo pprriinntt aa,, bb,, aanndd ttmmpp
mmoovvll bb,, %%eeddxx
mmoovvll aa,, %%eessii
mmoovvll $$ffmmtt33,, %%eeddii
mmoovvll $$00,, %%eeaaxx
ccaallll pprriinnttff

mmoovvll $$00,, %%eeddii ## eexxiitt wwiitthh aarrgguummeenntt 00
ccaallll eexxiitt

Figure 9.10 An x86 assembly language program that follows the C program
shown in Figure 9.8.

9.20.3 The Fibonacci Example In ARM Assembly Language

Figure 9.11 shows ARM assembly code that generates the same output as the pro-
gram in Figure 9.8. Neither the x86 nor the ARM code has been optimized. In each
case, instructions can be eliminated by keeping variables in registers. As an example, a
small amount of optimization has been done for the ARM code: registers r4 through r8
are initialized to contain the addresses of variables a, b, n, tmp, and the format string
fmt1. The registers remain unchanged while the program runs because called subpro-
grams are required to save and restore values. Thus, when calling printf to print vari-
able a, the code can use a single instruction to move the address of the format into the
first argument register (r0):

mov r0, r8

The code can also use a single instruction to load the value of a into the second argu-
ment register (r1):

ldr r1, [r4]

Exercises suggest ways to improve the code.

182 Assembly Languages And Programming Paradigm Chap. 9

..tteexxtt

..aalliiggnn 44

..gglloobbaall mmaaiinn
mmaaiinn::

mmoovvww rr44,, ##::lloowweerr1166::aa @@ rr44 <<-- &&aa
mmoovvtt rr44,, ##::uuppppeerr1166::aa
mmoovvww rr55,, ##::lloowweerr1166::bb @@ rr55 <<-- &&bb
mmoovvtt rr55,, ##::uuppppeerr1166::bb
mmoovvww rr66,, ##::lloowweerr1166::nn @@ rr66 <<-- &&nn
mmoovvtt rr66,, ##::uuppppeerr1166::nn
mmoovvww rr77,, ##::lloowweerr1166::ttmmpp @@ rr77 <<-- &&ttmmpp
mmoovvtt rr77,, ##::uuppppeerr1166::ttmmpp
mmoovvww rr88,, ##::lloowweerr1166::ffmmtt11 @@ rr88 <<-- &&ffmmtt11
mmoovvtt rr88,, ##::uuppppeerr1166::ffmmtt11

mmoovv rr00,, ##00
ssttrr rr00,, [[rr66]] @@ nn == 00

llddrr rr11,, [[rr55]] @@ rr11 <<-- bb
mmoovv rr00,, rr88 @@ rr00 <<-- &&ffmmtt11
bbll pprriinnttff

llddrr rr11,, [[rr44]] @@ rr11 <<-- aa
mmoovv rr00,, rr88 @@ rr00 <<-- &&ffmmtt11
bbll pprriinnttff

wwhhiillee::
llddrr rr33,, [[rr44]] @@ rr33 <<-- aa
llddrr rr22,, [[rr55]] @@ rr22 <<-- bb
aadddd rr11,, rr33,, rr22 @@ rr11 <<-- aa ++ bb
ssttrr rr11,, [[rr77]] @@ ttmmpp <<-- rr11 ((ii..ee..,, ttmmpp <<-- aa ++ bb))
ccmmpp rr11,, ##00 @@ tteesstt ttmmpp
bbllee eennddwwhhiillee @@ iiff ttmmpp <<== 00 ggoo ttoo eennddwwhhiillee

ssttrr rr33,, [[rr55]] @@ bb <<-- aa
ssttrr rr11,, [[rr44]] @@ aa <<-- ttmmpp

ccmmpp rr11,, ##11000000 @@ ccoommppaarree aa aanndd 11000000
llddrrggtt rr33,, [[rr66]] @@ iiff aa>>11000000 rr33 <<-- nn
aaddddggtt rr33,, rr33,, ##11 @@ iiff aa>>11000000 rr33 <<-- rr33 ++ 11
ssttrrggtt rr33,, [[rr66]] @@ iiff aa>>11000000 nn <<-- rr33
mmoovv rr00,, rr88 @@ rr00 <<-- &&ffmmtt11
bbll pprriinnttff @@ rr11 iiss ssttiillll aa

bb wwhhiillee

eennddwwhhiillee::

mmoovvww rr00,, ##::lloowweerr1166::ffmmtt22

www.ebook3000.com

http://www.ebook3000.org

Sec. 9.20 Example Assembly Language Code 183

mmoovvtt rr00,, ##::uuppppeerr1166::ffmmtt22 @@ rr00 <<-- &&ffmmtt22
llddrr rr11,, [[rr66]] @@ rr11 <<-- nn
bbll pprriinnttff

llddrr rr33,, [[rr77]] @@ rr33 <<-- ttmmpp
llddrr rr22,, [[rr55]] @@ rr22 <<-- bb
llddrr rr11,, [[rr44]] @@ rr11 <<-- aa
mmoovvww rr00,, ##::lloowweerr1166::ffmmtt33
mmoovvtt rr00,, ##::uuppppeerr1166::ffmmtt33 @@ rr00 <<-- &&ffmmtt33
bbll pprriinnttff

mmoovv rr00,, ##00
bbll eexxiitt @@ eexxiitt wwiitthh aarrgguummeenntt 00

..aalliiggnn 44

..ccoommmm ttmmpp,,44,,44 @@ uunniinniittiiaalliizzeedd ddaattaa

..ccoommmm nn,,44,,44

..ddaattaa

..aalliiggnn 44

bb:: ..wwoorrdd 11 @@ iinniittiiaalliizzeedd ddaattaa
aa:: ..wwoorrdd 11

ffmmtt11:: ..aasscciiii "" %%1100dd\\001122\\000000""
ffmmtt22:: ..aasscciiii ""\\001122TThhee nnuummbbeerr ooff vvaalluueess ggrreeaatteerr tthhaann 11000000 iiss %%dd\\001122\\000000""
ffmmtt33:: ..aasscciiii ""FFiinnaall vvaalluueess aarree:: aa==00xx%%0088XX bb==00xx%%0088XX ttmmpp==00xx%%0088XX\\001122\\000000""

Figure 9.11 An ARM assembly language program that follows the algorithm
shown in Figure 9.8.

9.21 Two-Pass Assembler

We use the term assembler to refer to a piece of software that translates assembly
language programs into binary code for the processor to execute. Conceptually, an as-
sembler is similar to a compiler because each takes a source program as input and pro-
duces equivalent binary code as output. An assembler differs from a compiler, howev-
er, because a compiler has significantly more responsibility. For example, a compiler
can choose how to allocate variables to memory, which sequence of instructions to use
for each statement, and which values to keep in general-purpose registers. An assem-
bler cannot make such choices because the source program specifies the exact details.
The difference between an assembler and compiler can be summarized:

184 Assembly Languages And Programming Paradigm Chap. 9

Although both a compiler and an assembler translate a source pro-
gram into equivalent binary code, a compiler has more freedom to
choose which values are kept in registers, the instructions used to im-
plement each statement, and the allocation of variables to memory.
An assembler merely provides a one-to-one translation of each state-
ment in the source program to the equivalent binary form.

Conceptually, an assembler follows a two-pass algorithm, which means the assem-
bler scans through the source program two times. To understand why two passes are
needed, observe that many branch instructions contain forward references (i.e., the label
referenced in the branch is defined later in the program). When the assembler first
reaches a branch statement, the assembler cannot know which address will be associated
with the label. Thus, the assembler makes an initial pass, computes the address that
each label will have in the final program, and stores the information in a table known as
a symbol table. The assembler then makes a second pass to generate code. Figure 9.12
illustrates the idea by showing a snippet of assembly language code and the relative lo-
cation of statements.

locations assembly code

0x00
0x04
0x08
0x0C
0x10
0x14
0x18
0x1C
0x20
0x24

–
–
–
–
–
–
–
–
–
–

0x03
0x07
0x0B
0x0F
0x13
0x17
0x1B
0x1F
0x23
0x27

x:
label1:

label2:

label3:

label4:

.long
cmp
bne
jsr
load
br
add
ret
ld
ret

r1, r2
label2
label3
r3, 0
label4
r5, 1

r1, 1

Figure 9.12 A snippet of assembly language code and the locations assigned
to each statement for a hypothetical processor. Locations are
determined in the assembler’s first pass.

During the first pass, the assembler computes the size of instructions without actu-
ally filling in details. Once the assembler has completed its first pass, the assembler
will have recorded the location for each statement. Consequently, the assembler knows
the value for each label in the program. In the figure, for example, the assembler
knows that label4 starts at location 0x20 (32 in decimal). Thus, when the second pass
of the assembler encounters the statement:

br label4

www.ebook3000.com

http://www.ebook3000.org

Sec. 9.21 Two-Pass Assembler 185

the assembler can generate a branch instruction with 32 as an immediate operand.
Similarly, code can be generated for each of the other branch instructions during the
second pass because the location of each label is known.

It is not important to understand the details of an assembler, but merely to know
that:

Conceptually, an assembler makes two passes over an assembly
language program. During the first pass, the assembler assigns a lo-
cation to each statement. During the second pass, the assembler uses
the assigned locations to generate code.

Now that we understand how an assembler works, we can discuss one of the chief
advantages of using an assembler: automatic recalculation of branch addresses. To see
how automatic recalculation helps, consider a programmer working on a program. If
the programmer inserts a statement in the program, the location of each successive
statement changes. As a result, every branch instruction that refers to a label beyond
the insertion point must be changed.

Without an assembler, changing branch labels can be tedious and prone to errors.
Furthermore, programmers often make a series of changes while debugging a program.
An assembler allows a programmer to make a change easily — the programmer merely
reruns the assembler to produce a binary image with all branch addresses updated.

9.22 Assembly Language Macros

Because assembly language is low-level, even trivial operations can require many
instructions. More important, an assembly language programmer often finds that se-
quences of code are repeated with only minor changes between instances. Repeated se-
quences of code make programming tedious, and can lead to errors if a programmer
uses a cut-and-paste approach.

To help programmers avoid repetitious coding, many assembly languages include a
parameterized macro facility. To use a macro facility, a programmer adds two types of
items to the source program: one or more macro definitions and one or more macro ex-
pansions. Note: C programmers will recognize assembly language macros because they
operate like C preprocessor macros.

In essence, a macro facility adds an extra pass to the assembler. The assembler
makes an initial pass in which macros are expanded. The important concept is that the
macro expansion pass does not parse assembly language statements and does not handle
translation of the instructions. Instead, the macro processing pass takes as input an as-
sembly language source program that contains macros, and produces as output an as-
sembly language source program in which macros are expanded. That is, the output of
the macro preprocessing pass becomes the input to the normal two-pass assembler.
Many assemblers have an option that allows a programmer to obtain a copy of the ex-

186 Assembly Languages And Programming Paradigm Chap. 9

panded source code for use in debugging (i.e., to see if macro expansion is proceeding
as the programmer planned).

Although the details of assembly language macros vary across assembly languages,
the concept is straightforward. A macro definition is usually bracketed by keywords
(e.g., macro and endmacro), and contains a sequence of code. For example, Figure 9.13
illustrates a definition for a macro named addmem that adds the contents of two
memory locations and places the result in a third location.

mmaaccrroo aaddddmmeemm((aa,, bb,, cc))
llooaadd rr11,, aa ## llooaadd 11sstt aarrgg iinnttoo rreeggiisstteerr 11
llooaadd rr22,, bb ## llooaadd 22nndd aarrgg iinnttoo rreeggiisstteerr 22
aadddd rr11,, rr22 ## aadddd rreeggiisstteerr 22 ttoo rreeggiisstteerr 11
ssttoorree rr33,, cc ## ssttoorree tthhee rreessuulltt iinn 33rrdd aarrgg
eennddmmaaccrroo

Figure 9.13 An example macro definition using the keywords macro and
endmacro. Items in the macro refer to parameters a, b, and c.

Once a macro has been defined, the macro can be expanded. A programmer in-
vokes the macro and supplies a set of arguments. The assembler replaces the macro call
with a copy of the body of the macro, substituting actual arguments in place of formal
parameters. For example, Figure 9.14 shows the assembly code generated by an expan-
sion of the addmem macro defined in Figure 9.13.

##
nnoottee:: ccooddee bbeellooww rreessuullttss ffrroomm aaddddmmeemm((xxxxxx,, YYYY,, zzqqzz))
##
llooaadd rr11,, xxxxxx ## llooaadd 11sstt aarrgg iinnttoo rreeggiisstteerr 11
llooaadd rr22,, YYYY ## llooaadd 22nndd aarrgg iinnttoo rreeggiisstteerr 22
aadddd rr11,, rr22 ## aadddd rreeggiisstteerr 22 ttoo rreeggiisstteerr 11
ssttoorree rr33,, zzqqzz ## ssttoorree tthhee rreessuulltt iinn 33rrdd aarrgg

Figure 9.14 An example of the assembly code that results from an expansion
of macro addmem.

It is important to understand that although the macro definition in Figure 9.13
resembles a procedure declaration, a macro does not operate like a procedure. First, the
declaration of a macro does not generate any machine instructions. Second, a macro is
expanded, not called. That is, a complete copy of the macro body is copied into the as-
sembly program. Third, macro arguments are treated as strings that replace the
corresponding parameter. The literal substitution of arguments is especially important
to understand because it can yield unexpected results. For example, consider Figure

www.ebook3000.com

http://www.ebook3000.org

Sec. 9.22 Assembly Language Macros 187

9.15 which illustrates how an illegal assembly program can result from a macro expan-
sion.

##
nnoottee:: ccooddee bbeellooww rreessuullttss ffrroomm aaddddmmeemm((11++,, %%**JJ ,, ++))
##
llooaadd rr11,, 11++ ## llooaadd 11sstt aarrgg iinnttoo rreeggiisstteerr 11
llooaadd rr22,, %%**JJ ## llooaadd 22nndd aarrgg iinnttoo rreeggiisstteerr 22
aadddd rr11,, rr22 ## aadddd rreeggiisstteerr 22 ttoo rreeggiisstteerr 11
ssttoorree rr33,, ++ ## ssttoorree tthhee rreessuulltt iinn 33rrdd aarrgg

Figure 9.15 An example of an illegal program that can result from an expan-
sion of macro addmem. The assembler substitutes arguments
without checking their validity.

As the figure shows, an arbitrary string can be used as an argument to the macro,
which means a programmer can inadvertently make a mistake. No warning is issued
until the assembler processes the expanded source program. For example, the first argu-
ment in the example consists of the string 1+, which is a syntax error. When it expands
the macro, the assembler substitutes the specified string which results in:

load r1, 1+

Similarly, substitution of the second argument, %*J, results in:

load r2, %*J

which makes no sense. However, the errors will not be detected until after the macro
expander has run and the assembler attempts to assemble the program. More important,
because macro expansion produces a source program, error messages that refer to line
numbers will reference lines in the expanded program, not in the original source code
that a programmer submits.

The point is:

A macro expansion facility preprocesses an assembly language source
program to produce another source program in which each macro in-
vocation is replaced by the text of the macro. Because a macro pro-
cessor uses textual substitution, incorrect arguments are not detected
by the macro processor; errors are only detected by the assembler
after the macro processor completes.

188 Assembly Languages And Programming Paradigm Chap. 9

9.23 Summary

Assembly languages are low-level languages that incorporate characteristics of a
processor, such as the instruction set, operand addressing modes, and registers. Many
assembly languages exist, one or more for each type of processor. Despite differences,
most assembly languages follow the same basic structure.

Each statement in an assembly language corresponds to a single instruction on the
underlying hardware; the statement consists of an optional label, opcode, and operands.
The assembly language for a processor defines a syntactic form for each type of
operand the processor accepts.

Although assembly languages differ, most follow the same basic paradigm. There-
fore, we can specify typical assembly language sequences for conditional execution,
conditional execution with alternate paths, definite iteration, and indefinite iteration.
Most processors include instructions used to invoke a subroutine or function and return
to the caller. The details of argument passing, return address storage, and return of
values to a caller differ. Some processors place arguments in memory, and others pass
arguments in registers.

An assembler is a piece of software that translates an assembly language source
program into binary code that the processor can execute. Conceptually, an assembler
makes two passes over the source program: one to assign addresses and one to generate
code. Many assemblers include a macro facility to help programmers avoid tedious
coding repetition; the macro expander generates a source program which is then assem-
bled. Because it uses textual substitution, macro expansion can result in illegal code
that is only detected and reported by the two main passes of the assembler.

EXERCISES

9.1 State and explain the characteristics of a low-level language.

9.2 Where might a programmer expect to find comments in an assembly language program?

9.3 If a program contains an if-then-else statement, how many branch instructions will be per-
formed if the condition is true? If the condition is false?

9.4 What is the assembly language used to implement a repeat statement?

9.5 Name three argument passing mechanisms that have been used in commercial processors.

9.6 Write an assembly language function that takes two integer arguments, adds them, and re-
turns the result. Test your function by calling it from C.

9.7 Write an assembly language program that declares three integer variables, assigns them 1,
2, and 3, and then calls printf to format and print the values.

9.8 Programmers sometimes mistakenly say assembler language. What have they confused,
and what term should they use?

9.9 In Figure 9.12, if an instruction is inserted following label4 that jumps to label2, to what
address will it jump? Will the address change if the new instruction is inserted before la-
bel1?

www.ebook3000.com

http://www.ebook3000.org

Exercises 189

9.10 Look at Figure 9.8 to see the example Fibonacci program written in C. Can the program be
redesigned to be faster? How?

9.11 Optimize the Fibonacci programs in Figures 9.10 and 9.11 by choosing to keep values in
registers rather than writing them to memory. Explain your choices.

9.12 Compare the x86 and ARM versions of the Fibonacci program in Figures 9.10 and 9.11.
Which version do you expect to require more code? Why?

9.13 Use the -S option on gcc to generate assembly code for a C program. For example, try the
program in Figure 9.8. Explain all the extra code that is generated.

9.14 What is the chief disadvantage of using an assembly language macro instead of a function?

www.ebook3000.com

http://www.ebook3000.org

Part III

Memories
Program And Data

Storage Technologies

www.ebook3000.com

http://www.ebook3000.org

Chapter Contents

10.1 Introduction, 195
10.2 Definition, 195
10.3 The Key Aspects Of Memory, 196
10.4 Characteristics Of Memory Technologies, 196
10.5 The Important Concept Of A Memory Hierarchy, 198
10.6 Instruction And Data Store, 198
10.7 The Fetch-Store Paradigm, 199
10.8 Summary, 199

www.ebook3000.com

http://www.ebook3000.org

10

Memory And Storage

10.1 Introduction

Previous chapters examine one of the major components used in computer systems:
processors. The chapters review processor architectures, including instruction sets,
operands, and the structure of complex CPUs.

This chapter introduces the second major component used in computer systems:
memories. Successive chapters explore the basic forms of memory: physical memory,
virtual memory, and caches. Later chapters examine I/O, and show how I/O devices
use memory.

10.2 Definition

When programmers think of memory, they usually focus on the main memory
found in a conventional computer. From the programmer’s point of view, the main
memory holds running programs as well as the data the programs use. In a broader
sense, computer systems use a storage hierarchy that includes general-purpose registers,
main memory, and secondary storage (e.g., a disk or flash storage). Throughout this
text, we will use the term memory to refer specifically to main memory, and generally
use the term storage for the broader hierarchy and the abstractions programmers use
with the hierarchy.

An architect views a memory as a solid-state digital device that provides storage
for data values. The next sections clarify the concept by examining the variety of possi-
bilities.

195

196 Memory And Storage Chap. 10

10.3 The Key Aspects Of Memory

When an architect begins to design a memory system, two key choices arise:

d Technology

d Organization

Technology refers to the properties of the underlying hardware mechanisms used to
construct the memory system. We will learn that many technologies are available, and
see examples of their properties. We will also learn how basic technologies operate,
and understand when each technology is appropriate.

Organization refers to the way the underlying technology is used to form a work-
ing system. We will see that there are many choices about how to combine a one-bit
memory cell into multibit memory cells, and we will learn that there are multiple ways
to map a memory address into the underlying units.

In essence, memory technology refers to the lowest-level hardware pieces (i.e., in-
dividual chips), and memory organization refers to how those pieces are combined to
create meaningful storage systems. We will see that both aspects contribute to the cost
and performance of a memory system.

10.4 Characteristics Of Memory Technologies

Memory technology is not easy to define because a wide range of technologies has
been invented. To help clarify the broad purpose and intent of a given type of memory,
engineers use several characteristics:

d Volatile or nonvolatile

d Random or sequential access

d Read-write or read-only

d Primary or secondary

10.4.1 Memory Volatility

A memory is classified as volatile if the contents of the memory disappear when
power is removed. The main memory used in most computers (RAM) is volatile —
when the computer is shut down, the running applications and data stored in the main
memory vanish.

In contrast, memory is known as nonvolatile if the contents survive even after
power is removed†. For example, the flash memory used in digital cameras and Solid
State Disks (SSDs) is nonvolatile — the data stored in the camera or on the disk

��������������������������������
†An emerging technology known as NonVolatile RAM (NVRAM) operates like a traditional main

memory, but retains values when the power is removed.

www.ebook3000.com

http://www.ebook3000.org

Sec. 10.4 Characteristics Of Memory Technologies 197

remains intact when the power is turned off. In fact, data remains even if the storage
device is removed from the camera or computer.

10.4.2 Memory Access Paradigm

The most common forms of memory are classified as random access, which means
that any value in the memory can be accessed in a fixed amount of time independent of
its location or of the sequence of locations accessed. The term Random Access Memory
(RAM) is so common that consumers look for RAM when they purchase a computer.
The alternative to random access is sequential access in which the time to access a
given value depends on the location of that value in the memory and the location of the
previously accessed value (typically, accessing the next sequential location in memory
is much faster than accessing any other location). For example, one type of sequential
access memory consists of a FIFO† queue implemented in hardware.

10.4.3 Permanence Of Values

Memory is characterized by whether values can be extracted, updated, or both.
The primary form of memory used in a conventional computer system permits an arbi-
trary value in memory to be accessed (read) or updated (written) at any time. Other
forms of memory provide more permanence. For example, some memory is character-
ized as Read Only Memory (ROM) because the memory contains data values that can be
accessed, but cannot be changed.

A form of ROM, Programmable Read Only Memory (PROM), is designed to allow
data values to be stored in the memory and then accessed many times. In the extreme
case, a PROM can only be written once — high voltage is used to alter the chip per-
manently.

Intermediate forms of permanence also exist. For example, the flash memory com-
monly used in smart phones and solid state disks represents a compromise between per-
manent ROM and technologies with little permanence — although it retains data when
power is removed, the items in flash memory do not last forever. An exercise asks the
reader to research flash technologies to discover how long data will last if a flash device
sits idle.

10.4.4 Primary And Secondary Memory

The terms primary memory and secondary memory are qualitative. Originally, the
terms were used to distinguish between the fast, volatile, internal main memory of a
computer and the slower, nonvolatile storage provided by an external electromechanical
device such as a hard disk. However, many computer systems now use solid-state
memory technologies for both primary and secondary storage. In particular, Solid State
Disks (SSDs) are used for secondary storage.

��������������������������������
†FIFO abbreviates First-In-First-Out.

198 Memory And Storage Chap. 10

10.5 The Important Concept Of A Memory Hierarchy

The notions of primary and secondary memory arise as part of the memory hierar-
chy in a computer system. To understand the hierarchy, we must consider both perfor-
mance and cost: memory that has the highest performance characteristics is also the
most expensive. Thus, an architect must choose memory that satisfies cost constraints.

Research on memory use has led to an interesting principle: for a given cost, op-
timal performance is not achieved by using one type of memory throughout a computer.
Instead, a set of technologies should be arranged in a conceptual memory hierarchy.
The hierarchy has a small amount of the highest performance memory, a slightly larger
amount of slightly slower memory, and so on. For example, an architect selects a small
number of general-purpose registers, a larger amount of primary memory, and an even
larger amount of secondary memory. We can summarize the principle:

To optimize memory performance for a given cost, a set of technolo-
gies are arranged in a hierarchy that contains a relatively small
amount of fast memory and larger amounts of less expensive, but
slower memory.

Chapter 12 further examines the concept of a memory hierarchy. The chapter
presents the scientific principle behind a hierarchical structure, and explains how a
memory mechanism known as a cache uses the principle to achieve higher performance
without high cost.

10.6 Instruction And Data Store

Recall that some of the earliest computer systems used a Harvard Architecture
with separate memories for programs and data. Later, most architects adopted a Von
Neumann Architecture in which a single memory holds both programs and data.

Interestingly, the advent of specialized solid state memory technologies has reintro-
duced the separation of program and data memory — special-purpose systems some-
times use separate memories. Memory used to hold a program is known as instruction
store, and memory used to hold data is known as data store.

One of the motivations for a separate instruction store comes from the notion of
memory hierarchy: on many systems, overall performance can be increased by increas-
ing the speed of the instruction store. To understand why, observe that high-speed in-
structions are designed to operate on values in general-purpose registers rather than
values in memory. Thus, to optimize speed, data is kept in registers whenever possible.
However, an instruction must be accessed on each iteration of the fetch-execute cycle.
Thus, the instruction store experiences more activity than the data store. More impor-
tant, although data accesses tend to follow a random pattern of accessing a variable and
then another variable, a processor typically accesses an instruction store sequentially.

www.ebook3000.com

http://www.ebook3000.org

Sec. 10.6 Instruction And Data Store 199

That is, instructions are placed one after another in memory, and the processor moves
from one to the next unless a branch occurs. Separating the two memories allows a
designer to optimize the instruction store for sequential access.

We can summarize:

Although most modern computer systems place programs and data in
a single memory, it is possible to separate the instruction store from
the data store. Doing so allows an architect to select memory perfor-
mance appropriate for each activity.

10.7 The Fetch-Store Paradigm

As we will see, all memory technologies use a single paradigm that is known as
fetch-store. For now, it is only important to understand that there are two basic opera-
tions associated with the paradigm: fetching a value from the memory or storing a value
into the memory. The fetch operation is sometimes called read or load. If we think of
memory as an array of locations, we can view reading a value from memory as an array
index operation in which a memory address is used:

value ← memory[address]

The analogy also holds for store operations, which are sometimes called write
operations. That is, we can view storing a value into memory as storing a value into an
array:

memory[address] ← value

The next chapter explains the idea in more detail. Later chapters on I/O explain
how the fetch-store paradigm is used for input and output devices, and how the underly-
ing memory access relates to I/O.

10.8 Summary

The two key aspects of memory are the underlying technology and the organiza-
tion. A variety of technologies exist; they can be characterized as volatile or nonvola-
tile, random or sequential access, permanent or nonpermanent (read-only or read-write),
and primary or secondary.

To achieve maximal performance at a given cost, an architect organizes memory
into a conceptual hierarchy. The hierarchy contains a small amount of high perfor-
mance memory and a large amount of lower performance memory.

200 Memory And Storage Chap. 10

Memory systems use a fetch-store paradigm. The memory hardware only supports
two operations: one that retrieves a value from memory and another that stores a value
into memory.

EXERCISES

10.1 Define storage hierarchy and give an example.

10.2 What are the two key choices an architect makes when designing a memory system?

10.3 Read about RAM and SSD technologies for a typical computer. What is the approxi-
mate financial cost per byte of each type of memory?

10.4 Extend the previous exercise by finding the speed (access times) of the memories and
comparing the financial cost of the performance.

10.5 Which type of memory is more secure (i.e., less susceptible to someone trying to change
the contents), flash memory or ROM?

10.6 If data is stored in a volatile memory, what happens to the data when power is removed?

10.7 Suppose NVRAM were to replace DRAM. What characteristic of memory technologies
becomes less important (or even disappears)?

10.8 Compare the performance of an NVRAM to traditional RAM. How much slower is
NVRAM?

10.9 Research the flash technology used in typical USB flash drives which are also called
jump drives or thumb drives. If a flash drive is left unused, how long will the data per-
sist? Are you surprised by the answer?

10.10 Registers are much faster than main memory, which means a program could run much
faster if all the data were kept in registers instead of main memory. Why do designers
create processors with so few registers?

10.11 If a computer follows a Harvard Architecture, do you expect to find two identical
memories, one for instructions and one for data? Why or why not?

10.12 Do the terms fetch-execute and fetch-store refer to the same concept? Explain.

www.ebook3000.com

http://www.ebook3000.org

Chapter Contents

11.1 Introduction, 203
11.2 Characteristics Of Computer Memory, 203
11.3 Static And Dynamic RAM Technologies, 204
11.4 The Two Primary Measures Of Memory Technology, 205
11.5 Density, 206
11.6 Separation Of Read And Write Performance, 206
11.7 Latency And Memory Controllers, 206
11.8 Synchronous And Multiple Data Rate Technologies, 207
11.9 Memory Organization, 209
11.10 Memory Access And Memory Bus, 209
11.11 Words, Physical Addresses, And Memory Transfers, 209
11.12 Physical Memory Operations, 210
11.13 Memory Word Size And Data Types, 211
11.14 Byte Addressing And Mapping Bytes To Words, 211
11.15 Using Powers Of Two, 213
11.16 Byte Alignment And Programming, 213
11.17 Memory Size And Address Space, 214
11.18 Programming With Word Addressing, 215
11.19 Memory Size And Powers Of Two, 215
11.20 Pointers And Data Structures, 216
11.21 A Memory Dump, 217
11.22 Indirection And Indirect Operands, 218
11.23 Multiple Memories With Separate Controllers, 218
11.24 Memory Banks, 219
11.25 Interleaving, 220
11.26 Content Addressable Memory, 221
11.27 Ternary CAM, 223
11.28 Summary, 223

www.ebook3000.com

http://www.ebook3000.org

11

Physical Memory And
Physical Addressing

11.1 Introduction

The previous chapter introduces the topic of memory, lists characteristics of
memory systems, and explains the concept of a memory hierarchy. This chapter ex-
plains how a basic memory system operates. The chapter considers both the underlying
technologies used to construct a typical computer memory and the organization of the
memory into bytes and words. The next chapter expands the discussion to consider vir-
tual memory.

11.2 Characteristics Of Computer Memory

Engineers use the term Random Access Memory (RAM) to denote the type of
memory used as the primary memory system in most computers. As the name implies,
RAM is optimized for random (as opposed to sequential) access. In addition, RAM
offers read-write capability that makes access and update equally inexpensive. Finally,
we will see that most RAM is volatile — values do not persist after the computer is
powered down.

203

204 Physical Memory And Physical Addressing Chap. 11

11.3 Static And Dynamic RAM Technologies

The technologies used to implement Random Access Memory can be divided into
two broad categories. Static RAM (SRAM†) is the easiest type for programmers to
understand because it is a straightforward extension of digital logic. Conceptually,
SRAM stores each data bit in a latch, a miniature digital circuit composed of multiple
transistors similar to the latch discussed in Chapter 2. Although the internal implemen-
tation is beyond the scope of this text, Figure 11.1 illustrates the three external connec-
tions used for a single-bit of RAM.

circuit
for

one bit

input output

write enable

Figure 11.1 Illustration of a miniature static RAM circuit that stores one data
bit. The circuit contains multiple transistors.

In the figure, the circuit has two inputs and one output. When the write enable in-
put is on (i.e., logical 1), the circuit sets the output value equal to the input (0 or 1);
when the write enable input is off (i.e., logical 0), the circuit ignores the input and
keeps the output at the last setting. Thus, to store a value, the hardware places the
value on the input, turns on the write enable line, and then turns the enable line off
again.

Although it performs at high speed, SRAM has a significant disadvantage: high
power consumption (which generates heat). The miniature SRAM circuit contains mul-
tiple transistors that operate continuously. Each transistor consumes a small amount of
power, and therefore, generates a small amount of heat.

The alternative to static RAM, which is known as Dynamic RAM (DRAM‡), con-
sumes less power. The internal working of dynamic RAM is surprising and can be
confusing. At the lowest level, to store information, DRAM uses a circuit that acts like
a capacitor, a device that stores electrical charge. When a value is written to DRAM,
the hardware charges or discharges the capacitor to store a 1 or 0. Later, when a value
is read from DRAM, the hardware examines the charge on the capacitor and generates
the appropriate digital value.

The conceptual difficulty surrounding DRAM arises from the way a capacitor
works: because physical systems are imperfect, a capacitor gradually loses its charge.
In essence, a DRAM chip is an imperfect memory device — as time passes, the charge
dissipates and a one becomes zero. More important, DRAM loses its charge in a short
time (e.g., in some cases, under a second).

��������������������������������
†SRAM is pronounced “ess-ram.”
‡DRAM is pronounced “dee-ram.”

www.ebook3000.com

http://www.ebook3000.org

Sec. 11.3 Static And Dynamic RAM Technologies 205

How can DRAM be used as a computer memory if values can quickly become
zero? The answer lies in a simple technique: devise a way to read a bit from memory
before the charge has time to dissipate, and then write the same value back again. Writ-
ing a value causes the capacitor to start again with the appropriate charge. So, reading
and then writing a bit will reset the capacitor without changing the value of the bit.

In practice, computers that use DRAM contain an extra hardware circuit, known as
a refresh circuit, that performs the task of reading and then writing a bit. Figure 11.2
illustrates the concept.

circuit
for

one bit

refresh

input output

write enable

Figure 11.2 Illustration of a bit in dynamic RAM. An external refresh cir-
cuit must periodically read the data value and write it back
again, or the charge will dissipate and the value will be lost.

The refresh circuit is more complex than the figure implies. To keep the refresh
circuit small, architects do not build one refresh circuit for each bit. Instead, a single,
small refresh mechanism is designed that can cycle through the entire memory. As it
reaches a bit, the refresh circuit reads the bit, writes the value back, and then moves on.
Complexity also arises because a refresh circuit must coordinate with normal memory
operations. First, the refresh circuit must not interfere or delay normal memory opera-
tions. Second, the refresh circuit must ensure that a normal write operation does not
change the bit between the time the refresh circuit reads the bit and the time the refresh
circuit writes the same value back. Despite the need for a refresh circuit, the cost and
power consumption advantages of DRAM are so beneficial that most computer memory
is composed of DRAM rather than SRAM.

11.4 The Two Primary Measures Of Memory Technology

Architects use several quantitative measures to assess memory technology; two
stand out:

d Density

d Latency and cycle times

206 Physical Memory And Physical Addressing Chap. 11

11.5 Density

In a strict sense, the term density refers to the number of memory cells per square
area of silicon. In practice, however, density often refers to the number of bits that can
be represented on a standard size chip or plug-in module. For example, a Dual In-line
Memory Module (DIMM) might contain a set of chips that offer 128 million locations of
64 bits per location, which equals 8.192 billion bits or one Gigabyte. Informally, it is
known as a 1 gig module. Higher density is usually desirable because it means more
memory can be held in the same physical space. However, higher density has the
disadvantages of increased power utilization and increased heat generation.

The density of memory chips is related to the size of transistors in the underlying
silicon technology, which has followed Moore’s Law. Thus, memory density tends to
double approximately every eighteen months.

11.6 Separation Of Read And Write Performance

A second measure of a memory technology focuses on speed: how fast can the
memory respond to requests? It may seem that speed should be easy to measure, but it
is not. For example, as the previous chapter discusses, some memory technologies take
much longer to write values than to read them. To choose an appropriate memory tech-
nology, an architect needs to understand both the cost of access and the cost of update.
Thus, a principle arises:

In many memory technologies, the time required to fetch information
from memory differs from the time required to store information in
memory, and the difference can be dramatic. Therefore, any measure
of memory performance must give two values: the performance of read
operations and the performance of write operations.

11.7 Latency And Memory Controllers

In addition to separating read and write operations, we must decide exactly what to
measure. It may seem that the most important measure is latency (i.e., the time that
elapses between the start of an operation and the completion of the operation).
However, latency is a simplistic measure that does not provide complete information.

To see why latency does not suffice as a measure of memory performance, we
need to understand how the hardware works. In addition to the memory chips them-
selves, additional hardware known as a memory controller† provides an interface
between the processor and memory. Figure 11.3 illustrates the organization.

��������������������������������
†We will learn more about the memory controller later in the chapter.

www.ebook3000.com

http://www.ebook3000.org

Sec. 11.7 Latency And Memory Controllers 207

processor controller
physical
memory

Figure 11.3 Illustration of the hardware used for memory access. A control-
ler sits between the processor and physical memory.

To access memory, a device (typically a processor) presents a read or write request
to the controller. The controller translates the request into signals appropriate for the
underlying memory, and passes the signals to the memory chips. To minimize latency,
the controller returns an answer as quickly as possible (i.e., as soon as the memory
responds). However, after it responds to a device, a controller may need additional
clock cycle(s) to reset hardware circuits and prepare for the next operation.

A second principle of memory performance arises:

Because a memory system may need extra time between operations,
latency is an insufficient measure of performance; a performance
measure needs to measure the time required for successive operations.

That is, to assess the performance of a memory system, we need to measure how
fast the system can perform a sequence of operations. Engineers use the term memory
cycle time to capture the idea. Specifically, two separate measures are used: the read
cycle time (abbreviated tRC) and the write cycle time (abbreviated tWC).

We can summarize:

The read cycle time and write cycle time are used as measures of
memory system performance because they assess how quickly the
memory system can handle successive requests.

11.8 Synchronous And Multiple Data Rate Technologies

Like most other digital circuits in a computer, a memory system uses a clock that
controls exactly when a read or write operation begins. As Figure 11.3 indicates, a
memory system must also coordinate with a processor. The controller may also coordi-
nate with I/O devices. What happens if the processor’s clock differs from the clock
used for memory? The system still works because the controller can hold a request
from the processor or a response from the memory until the other side is ready.

208 Physical Memory And Physical Addressing Chap. 11

Unfortunately, the difference in clock rates can impact performance — although
the delay is small, if delay occurs on every memory reference, the accumulated effect
can be large. To eliminate the delay, some memory systems use a synchronous clock
system. That is, the clock pulses used with the memory system are aligned with the
clock pulses used to run the processor. As a result, a processor does not need to wait
for memory references to complete. Synchronization can be used with DRAM or
SRAM; the two technologies are named:

SDRAM– Synchronous Dynamic Random Access Memory

SSRAM– Synchronous Static Random Access Memory

In practice, synchronization has been effective; most computers now use synchronous
DRAM as the primary memory technology.

In many computer systems, memory is the bottleneck — increasing memory per-
formance improves overall performance. As a result, engineers have concentrated on
finding memory technologies with lower cycle times. One approach uses a technique
that runs the memory system at a multiple of the normal clock rate (e.g., double or qua-
druple). Because the clock runs faster, the memory can deliver data faster. The techno-
logies are sometimes called fast data rate memories, typically double data rate or qua-
druple data rate. Fast data rate memories have been successful, and are now standard
on most computer systems, including consumer systems such as laptops.

Although we have covered the highlights, our discussion of RAM memory technol-
ogy does not begin to illustrate the range of choices available to an architect or the de-
tailed differences among them. For example, Figure 11.4 lists a few commercially
available RAM technologies:

Technology Description��
DDR-DRAM Double Data Rate Dynamic RAM
DDR-SDRAM Double Data Rate Synchronous Dynamic RAM
FCRAM Fast Cycle RAM
FPM-DRAM Fast Page Mode Dynamic RAM
QDR-DRAM Quad Data Rate Dynamic RAM
QDR-SRAM Quad Data Rate Static RAM
SDRAM Synchronous Dynamic RAM
SSRAM Synchronous Static RAM
ZBT-SRAM Zero Bus Turnaround Static RAM
RDRAM Rambus Dynamic RAM
RLDRAM Reduced Latency Dynamic RAM

Figure 11.4 Examples of commercially available RAM technologies. Many
other technologies exist.

www.ebook3000.com

http://www.ebook3000.org

Sec. 11.9 Memory Organization 209

11.9 Memory Organization

Recall that there are two key aspects of memory: the underlying technology and
the memory organization. As we have seen, an architect can choose from a variety of
memory technologies; we will now consider the second aspect. Memory organization
refers to both the internal structure of the hardware and the external addressing structure
that the memory presents to a processor. We will see that the two are related.

11.10 Memory Access And Memory Bus

To understand how memory is organized, we need to examine the access paradigm.
Recall from Figure 11.3 that a memory controller provides the interface between a phy-
sical memory and a processor that uses the memory†. Several questions arise. What is
the structure of the connection between a processor and memory? What values pass
across the connection? How does the processor view the memory system?

To achieve high performance, memory systems use parallelism: the connection
between the processor and controller consists of many wires that are used simultaneous-
ly. Each wire can transfer one data bit at any time. Figure 11.5 illustrates the concept.

processor
control-

ler

physical

memory...

parallel interface

Figure 11.5 The parallel connection between a processor and memory. A
connection that contains N wires allows N bits of data to be
transferred simultaneously.

The technical name for the hardware connection between a processor and memory
is bus (more specifically, memory bus). We will learn about buses in the chapters on
I/O; for now, it is sufficient to understand that a bus provides parallel connections.

11.11 Words, Physical Addresses, And Memory Transfers

The parallel connections of a memory bus are pertinent to programmers as well as
computer architects. From an architectural standpoint, using parallel connections can
improve performance. From a programming point of view, the parallel connections de-
fine a memory transfer size (i.e., the amount of data that can be read or written to

��������������������������������
†In later chapters, we will learn that I/O devices also access memory through the memory controller; for

now, we will use a processor in the examples.

210 Physical Memory And Physical Addressing Chap. 11

memory in a single operation). We will see that transfer size is a crucial aspect of
memory organization.

To permit parallel access, the bits that comprise a physical memory are divided
into blocks of N bits per block, where N is the memory transfer size. A block of N bits
is sometimes called a word, and the transfer size is called the word size or the width of
a word. We can think of memory being organized into an array. Each entry in the ar-
ray is assigned a unique index known as a physical memory address; the approach is
known as word addressing. Figure 11.6 illustrates the idea and shows that the physical
memory address is exactly like an array index.

word 0

word 1

word 2

word 3

word 4

word 5

.

.

.physical
address

0

1

2

3

4

5

32 bits

Figure 11.6 Physical memory addressing on a computer where a word is
thirty-two bits. We think of the memory as an array of words.

11.12 Physical Memory Operations

The controller for physical memory supports two operations: read and write. In
the case of a read operation, the processor specifies an address; in the case of a write
operation, the processor specifies an address as well as data to be written. The funda-
mental idea is that the controller always accepts or delivers an entire word; physical
memory hardware does not provide a way to read or write less than a complete word
(i.e., the hardware does not allow the processor to access or alter part of a word).

The point is:

Physical memory is organized into words, where a word is equal to
the memory transfer size. Each read or write operation applies to an
entire word.

www.ebook3000.com

http://www.ebook3000.org

Sec. 11.13 Memory Word Size And Data Types 211

11.13 Memory Word Size And Data Types

Recall that the parallel connection between a processor and a memory is designed
for high performance. In theory, performance can be increased by adding more parallel
wires. For example, an interface that has 128 wires can transfer data at twice the rate of
an interface that has 64 wires. The question arises: how many wires should an architect
choose? That is, what word size is optimal? The question is complicated by several
factors. First, because memory is used to store data, the word size should accommodate
common data values (e.g., the word should be large enough to hold an integer).
Second, because memory is used to store programs, the word size should accommodate
frequently used instructions. Third, because the connection of a processor to a memory
requires pins on the processor, adding wires to the interface increases the pin require-
ments (the number of pins can be a limiting factor in the design of a CPU chip). Thus,
the word size is chosen as a compromise between performance and various other con-
siderations. A word size of thirty-two bits is popular, especially for low-power systems;
many high-performance systems use a sixty-four-bit word size.

In most cases, an architect designs all parts of a computer system to work together.
Thus, if an architect chooses a memory word size equal to thirty-two bits, the architect
will make a standard integer and a single-precision floating point value each occupy
thirty-two bits. As a result, a computer system is often characterized by stating the
word size (e.g., a thirty-two-bit processor).

11.14 Byte Addressing And Mapping Bytes To Words

Programmers who use a conventional computer may be surprised to learn that phy-
sical memory is organized into words because most programmers are familiar with an
alternate form of addressing known as byte addressing. Byte addressing is especially
convenient for programming because it gives a programmer an easy way to access small
data items such as characters.

Conceptually, when byte addressing is used, memory must be organized as an ar-
ray of bytes rather than an array of words. The choice of byte addressing has two im-
portant consequences. First, because each byte of memory is assigned an address, byte
addressing requires more addresses than word addressing. Second, because byte ad-
dressing allows a program to read or write a single byte, the memory controller must
support byte transfer.

A larger word size results in higher performance because many bits can be
transferred at the same time. Unfortunately, if the word size is equal to an eight-bit
byte, only eight bits can be transferred at one time. That is, a memory system built for
byte addressing will have lower performance than a memory system built for a larger
word size. Interestingly, even when byte addressing is used, many transfers between a
processor and memory involve multiple bytes. For example, an instruction occupies
multiple bytes, as does an integer, a floating point value, and a pointer.

212 Physical Memory And Physical Addressing Chap. 11

Can we devise a memory system that combines the higher speed of word address-
ing with the programming convenience of byte addressing? The answer is yes. To do
so, we need an intelligent memory controller that can translate between the two address-
ing schemes. The controller accepts requests from the processor that specify a byte ad-
dress and size. The controller uses word addressing to access the appropriate word(s) in
the underlying memory and extract the specified bytes. Figure 11.7 shows an example
of the mapping used between byte addressing and word addressing for a word size of
thirty-two bits.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

..

.physical
address

0

1

2

3

4

5

32 bits

a byte address
assigned to each
byte of each word

Figure 11.7 Example of a byte address assigned to each byte of memory
even though the underlying hardware uses word addressing and
a thirty-two-bit word size.

To implement the mapping shown in the figure, a controller must convert byte ad-
dresses issued by the processor to word addresses used by the memory system. For ex-
ample, if the processor requests a read operation for byte address 17, the controller
must issue a read request for word 4, and then extract the second byte from the word.

Because the memory can only transfer an entire word at a time, a byte write opera-
tion is expensive. For example, if a processor writes byte 11, the controller must read
word 2 from memory, replace the rightmost byte, and then write the entire word back to
memory.

Mathematically, the translation of addresses is straightforward. To translate a byte
address, B, to the corresponding word address, W, the controller divides B by N, the
number of bytes per word, and ignores the remainder. Similarly, to compute a byte
offset, O, within a word, the controller computes the remainder of B divided by N.
That is, the word address is given by:

W =
�
�
�

N
B�� �

�
�

and the offset is given by:

www.ebook3000.com

http://www.ebook3000.org

Sec. 11.14 Byte Addressing And Mapping Bytes To Words 213

O = B mod N

As an example, consider the values in Figure 11.7, where N = 4. A byte address of
11 translates to a word address of 2 and an offset of 3, which means that byte 11 is
found in word 2 at byte offset 3†.

11.15 Using Powers Of Two

Performing a division or computing a remainder is time consuming and requires
extra hardware (e.g., an Arithmetic Logic Unit). To avoid computation, architects or-
ganize memory using powers of two. Doing so means that hardware can perform the
two computations above simply by extracting bits. In Figure 11.7, for example, N = 22,
which means that the offset can be computed by extracting the two low-order bits, and
the word address can be computed by extracting everything except the two low-order
bits. Figure 11.8 illustrates the idea:

1000100 . ..

Byte Address, B (17)

Word Address, W (4) Offset, O (1)

Figure 11.8 An example of a mapping from byte address 17 to word address
4 and offset 1. Using a power of two for the number of bytes
per word avoids arithmetic calculations.

We can summarize:

To avoid arithmetic calculations, such as division or remainder, phy-
sical memory is organized such that the number of bytes per word is a
power of two, which means the translation from a byte address to a
word address and offset can be performed by extracting bits.

11.16 Byte Alignment And Programming

Knowing how the underlying hardware works helps explain a concept that pro-
grammers encounter: byte alignment. We say that an integer value is aligned if the
bytes of the integer correspond to a word in the underlying physical memory. In Figure
11.7, for example, an integer composed of bytes 12, 13, 14, and 15 is aligned, but an in-
teger composed of bytes 6, 7, 8, and 9 is not.

��������������������������������
†The offset is measured from zero.

214 Physical Memory And Physical Addressing Chap. 11

On some architectures, byte alignment is required — the processor raises an error
if a program attempts an integer access using an unaligned address. On other proces-
sors, arbitrary alignment is allowed, but unaligned accesses result in lower performance
than aligned accesses. We can now understand why an unaligned address requires more
accesses of physical memory: the memory controller must convert each processor re-
quest into operations on the underlying memory. If an integer spans two words, the
controller must perform two read operations to obtain the requested bytes. Thus, even
if the processor permits unaligned access, programmers are strongly encouraged to align
data values.

We can summarize:

The organization of physical memory affects programming: even if a
processor allows unaligned memory access, aligning data on boun-
daries that correspond to the physical word size can improve program
performance.

11.17 Memory Size And Address Space

How large can a memory be? It may seem that memory size is only an economic
issue — more memory simply costs more money. However, size turns out be an essen-
tial aspect of memory architecture because overall memory size is inherently linked to
other design choices. In particular, the addressing scheme determines a maximum
memory size.

Recall that data paths in a processor consist of parallel hardware. When the pro-
cessor is designed, the designer must choose a size for each data path, register, and oth-
er hardware units. The choice places a fixed bound on the size of an address that can
be generated or passed from one unit to another. Typically, the address size is the same
as the integer size. For example, a processor that uses thirty-two-bit integers uses
thirty-two-bit addresses and a processor that uses sixty-four-bit integers uses sixty-four-
bit addresses. As Chapter 3 points out, a string of k bits can represent 2k values. Thus,
a thirty-two-bit value can represent:

232 = 4,294,967,296

unique addresses (i.e., addresses 0 through 4,294,967,295). We use the term address
space to denote the set of possible addresses.

The tradeoff between byte addressing and word addressing is now clear: given a
fixed address size, the amount of memory that can be addressed depends on whether the
processor uses byte addressing or word addressing. Furthermore, if word addressing is
used, the amount of memory that can be addressed depends on the word size. For ex-
ample, on a computer that uses word addressing with four bytes per word, a thirty-two-
bit value can hold enough addresses for 17,179,869,184 bytes (i.e., four times as much
as when byte addressing is used).

www.ebook3000.com

http://www.ebook3000.org

Sec. 11.18 Programming With Word Addressing 215

11.18 Programming With Word Addressing

Many processors use byte addressing because byte addressing provides the most
convenient interface for programmers. However, byte addressing does not maximize
memory size. Therefore, specialized systems, such as processors designed for numeric
processing, use word addressing to provide access to the maximum amount of memory
for a given address size.

On a processor that uses word addressing, software must handle the details of byte
manipulation. In essence, software performs the same function as a memory controller
in a byte-addressed architecture. For example, to extract a single byte, software must
read the appropriate word from memory, and then extract the byte. Similarly, to write a
byte, software must read the word containing the byte, update the correct byte, and
write the modified word back to memory. To optimize software performance, logical
shifts and bit masking are used to manipulate an address rather than division or
remainder computation. Similarly, shifts and logical operations are used to extract bytes
from a word. For example, to extract the leftmost byte from a thirty-two-bit word, w, a
programmer can code a C statement:

(w > > 24) & 0xff

The code performs a logical and with constant 0xff to ensure that only the low-order
eight bits are kept after the shift is performed. To understand why the logical and is
needed, recall from Chapter 3 that a right shift propagates the sign bit. Thus, if w con-
tains 0xa1b2c3d2, the expression w >> 24 will produce 0xffffffa1. After the logical
and, the result is 0xa1.

11.19 Memory Size And Powers Of Two

We said that a physical memory architecture can be characterized as follows:

Physical memory is organized into a set of M words that each contain
N bytes; to make controller hardware efficient, M and N are each
chosen to be powers of two.

The use of powers of two for word and address space size has an interesting conse-
quence: the maximum amount of memory is always a power of two rather than a power
of ten. As a result, memory size is measured in powers of two. For example, a Kilo-
byte (Kbyte) is defined to consist of 210 bytes, a Megabyte (MB) is defined to consist of
220 bytes, and a Gigabyte (GB) is defined to consist of 230 bytes. The terminology is
confusing because it is an exception. In computer networking, for example, a measure
of Megabits per second refers to base ten. Thus, one must be careful when mixing
memory size with other measures (e.g., although there are eight bits per byte, one Kilo-
byte of data in memory is not eight times larger than one Kilobit of data sent across a
network). We can summarize:

216 Physical Memory And Physical Addressing Chap. 11

When used to refer to memory, the prefixes kilo, mega, and giga are
defined as powers of 2; when used with other aspects of computing,
such as computer networking, the prefixes are defined as powers of
10.

11.20 Pointers And Data Structures

Memory addresses are important because they form the basis for commonly used
data abstractions, such as linked lists, queues, and trees. Consequently, programming
languages often provide facilities that allow a programmer to declare a pointer variable
that holds a memory address, assign a value to a pointer, or dereference a pointer to ob-
tain an item. In the C programming language, for example, the declaration:

char *cptr;

declares variable cptr to be a pointer to a character (i.e., to a byte in memory). The
compiler allocates storage for variable cptr equal to the size of a memory address, and
allows the variable to be assigned the address of an arbitrary byte in memory.

The autoincrement statement:

cptr + + ;

increases the value of cptr by one (i.e., moves to the next byte in memory).

Interestingly, the C programming language has a heritage of both byte and word
addressing. When performing arithmetic on pointers, C accommodates the size of the
underlying item. As an example, the declaration:

int *iptr;

declares variable iptr to be a pointer to an integer (i.e., a pointer to a word). The com-
piler allocates storage for variable iptr equal to the size of a memory address (i.e., the
same size as allocated for cptr above). However, if the program is compiled and run on
a processor that defines an integer to be four bytes, the autoincrement statement:

iptr + + ;

increases the value of iptr by four. That is, if iptr is declared to be the byte address of
the beginning of a word in memory, autoincrement moves to the byte address of the
next word in memory.

In fact, all the examples above assume a byte-addressable computer. The compiler
generates code to increment a character pointer by one and an integer pointer by four.
Although C has facilities that allow a pointer to move from one word to the next, the
language is intended for use with a byte-addressable memory.

www.ebook3000.com

http://www.ebook3000.org

Sec. 11.21 A Memory Dump 217

11.21 A Memory Dump

A trivial example will help us understand the relationship between pointers and
memory addresses. Consider a linked list as Figure 11.9 illustrates.

node 3

100

node 2

200

node 1

192

head

Figure 11.9 Example of a linked list. Each pointer in the list corresponds to
a memory address.

To create such a list, a programmer must write a declaration that specifies the con-
tents of a node, and then must allocate memory to hold the list. In our trivial example,
each node in the list will contain two items: an integer count and a pointer to the next
node on the list. In C, a struct declaration is used to define the contents of a node:

struct node {
int count;
struct node *next;

}

Similarly, a variable named head that serves as the head of the list is defined as:

struct node *head;

To understand how the list appears in memory, consider a memory dump as Figure
11.10 illustrates†.

Address Contents Of Memory���
0001bde0 00000000 0001bdf8 deadbeef 4420436f
0001bdf0 6d657200 0001be18 000000c0 0001be14
0001be00 00000064 00000000 00000000 00000002
0001be10 00000000 000000c8 0001be00 00000006�

�
�
�
�

Figure 11.10 Illustration of a small portion of a memory dump that shows
the contents of memory. The address column gives the
memory address of the leftmost byte on the line, and all values
are shown in hexadecimal.

��������������������������������
†As the figure shows, a programmer can initialize memory to a hexadecimal value that makes it easy to

identify items in a memory dump. In the example, a programmer has used the value deadbeef.

218 Physical Memory And Physical Addressing Chap. 11

The example in the figure is taken from a processor that uses byte addressing.
Each line of the figure corresponds to sixteen contiguous bytes of memory that are di-
vided into four groups of four bytes. Each group contains eight hexadecimal digits to
represent the values of four bytes. The address at the beginning of a line specifies the
memory address of the first byte on that line. Therefore, the address on each line is six-
teen greater than the address on the previous line.

Assume the head of a linked list is found at address 0x0001bde4, which is located
on the first line of the dump. The first node of the list starts at address 0x0001bdf8,
which is located on the second line of the dump, and contains the integer 192 (hexadec-
imal constant 000000c0).

The processor uses byte addressing, and bytes of memory are contiguous. In the
figure, spacing has been inserted to divide the output into groups of bytes to improve
readability. Specifically, the example shows groups of four-byte units, which implies
that the underlying word size is four bytes (i.e., thirty-two bits).

11.22 Indirection And Indirect Operands

When we discussed operands and addressing modes in Chapter 7, the topic of in-
direction arose. Now that we understand memory organization, we can understand how
a processor evaluates an indirect operand. As an example, suppose a processor executes
an instruction in which an operand specifies an immediate value of 0x1be1f, and speci-
fies indirection. Further suppose that the processor has been designed to use thirty-
two-bit values. Because the operand specifies an immediate value, the processor first
loads the immediate value (hexadecimal 1be1f). Because the operand specifies indirec-
tion, the processor treats the resulting value as an address in memory, and fetches the
word from the address. If the values in memory correspond to the values shown in Fig-
ure 11.10, the processor will load the value from the rightmost word in the last line of
the figure, and the final operand value will be 6.

11.23 Multiple Memories With Separate Controllers

Our discussion of physical memory has assumed a single memory and a single
memory controller. In practice, however, some architectures contain multiple physical
memories. When multiple memories are used, hardware parallelism can be employed to
provide higher memory performance. Instead of a single memory and a single control-
ler, the memory system can have multiple controllers that operate in parallel, as Figure
11.11 illustrates.

In the figure, interface hardware receives requests from the processor. The inter-
face uses the address in the request to decide which memory should be used, and passes
the request to the appropriate memory controller†.

Why does it help to have multiple memories, each with their own controller?
Remember that after memory is accessed, the hardware must be reset before the next

��������������������������������
†Chapter 13 explains that the interface acts as a Memory Management Unit (MMU), and explains the

functionality in more detail.

www.ebook3000.com

http://www.ebook3000.org

Sec. 11.23 Multiple Memories With Separate Controllers 219

access can occur. If two memories are available, a programmer can arrange to access
one while the other resets, increasing the overall performance. That is, because memory
controllers can operate in parallel, using two memory controllers allows more memory
accesses to occur per unit time. In a Harvard Architecture, for example, higher perfor-
mance results because instruction fetch does not interfere with data access and vice ver-
sa.

interface

controller 1 controller 2

Memory 1 Memory 2

Figure 11.11 Illustration of connections for two memory modules with
separate controllers.

11.24 Memory Banks

Multiple physical memories can also be used with a Von Neumann Architecture as
a convenient way to form large memory by replicating small memory modules. The
idea, known as memory banks, uses the interface hardware to map addresses onto two
physical memories. For example, suppose two identical memory modules are each
designed to have physical addresses 0 through M – 1. The interface can arrange to treat
them as two banks that form a contiguous large memory with twice the addresses as
Figure 11.12 illustrates.

Memory 1

Memory 2

0

M – 1
M

2M – 1

Figure 11.12 The logical arrangement of two identical memory banks to
form a single memory that is twice the size.

220 Physical Memory And Physical Addressing Chap. 11

In Figure 11.12, addresses 0 through M–1 are assigned to one bank and addresses
from M to 2M – 1 are assigned to the second bank. In Chapter 13, we will see that map-
ping an address can be extremely efficient.

Although the banks are arranged to give the illusion of one large memory, the
underlying hardware is configured as Figure 11.11 shows. As a result, controllers for
the two memory banks can operate in parallel. Thus, if instructions are placed in one
bank and data in another, higher performance can result because instruction fetch will
not interfere with data access and vice versa.

How do memory banks appear to a programmer? In most architectures, memory
banks are transparent — memory hardware automatically finds and exploits parallelism.
In embedded systems and other special-purpose architectures, a programmer may be
responsible for placing items into separate memory banks to increase performance. For
example, a programmer may need to place code at low memory addresses and data
items at high memory addresses.

11.25 Interleaving

A related optimization used with physical memory systems is known as interleav-
ing. To understand the optimization, observe that many programs access data from
sequential memory locations. For example, if a long text string is copied from one
place in memory to another or a program searches a list of items, sequential memory lo-
cations will be referenced. In a banked memory, sequential locations lie in the same
memory bank, which means that successive accesses must wait for the controller to
reset.

Interleaving uses the idea of separate controllers, but instead of organizing
memories into banks, interleaving places consecutive words of memory in separate phy-
sical memory modules. Interleaving achieves high performance during sequential
memory accesses because a word can be fetched while the memory for the previous
word resets. Interleaving is usually hidden from programmers — a programmer can
write code without knowing that the underlying memory system has mapped successive
words into separate memory modules. The memory hardware handles all the details au-
tomatically.

We use the terminology N-way interleaving to describe the number of underlying
memory modules (to make the scheme efficient, N is chosen to be a power of two). For
example, Figure 11.13 illustrates how words of memory are assigned to memory
modules in a four-way interleaving scheme.

How can interleaving be achieved efficiently? The answer lies in thinking about
the binary representation. In Figure 11.13, for example, words 0, 4, 8, and so on all lie
in memory module 0. What do the addresses have in common? When represented in
binary, the values all have two low-order bits equal to 00. Similarly, the words as-
signed to module 1 have low-order bits equal to 01, the words assigned to module 2
have low-order bits equal to 10, and the words assigned to module 3 have low-order
bits equal to 11. Thus, when given a memory address, the interface hardware extracts
the low-order two bits, and uses them to select a module.

www.ebook3000.com

http://www.ebook3000.org

Sec. 11.25 Interleaving 221

interface

module 0 module 1 module 2 module 3

word 0 word 1 word 2 word 3

word 4 word 5 word 6 word 7

word 8 word 9 word 10 word 11

.

requests

Figure 11.13 Illustration of 4-way interleaving that illustrates how successive
words of memory are placed into memory modules to optimize
performance.

Interestingly, accessing the correct word within a module is equally efficient. The
modules themselves are standard memory modules that provide an array of words ad-
dressed 0 through K– 1, for some value of K. The interface ignores the two low-order
bits of an address and uses the rest of the bits as an index into the memory module. To
see why it works, write 0, 4, 8, ... in binary, and remove the two low-order bits. The
result is the sequence 0, 1, 2,... Similarly, removing the two low-order bits from 1, 5,
9... also results in the sequence 0, 1, 2,...

We can summarize:

If the number of modules is a power of two, the hardware for N-way
interleaving is extremely efficient because low-order bits of an ad-
dress are used to select a module and the remaining bits are used as
an address within the module.

11.26 Content Addressable Memory

An unusual form of memory exists that blends the two key aspects we discussed:
technology and memory organization. The form is known as a Content Addressable
Memory (CAM). As we will see, a CAM does much more than merely store data items
— it includes hardware for high-speed searching.

The easiest way to think about a CAM is to view it as memory that has been or-
ganized as a two-dimensional array. Each row, which is used to store an item, is called
a slot. In addition to allowing a processor to place a value in each slot, a CAM allows
a processor to specify a search key that is exactly as long as one slot. Once a search

222 Physical Memory And Physical Addressing Chap. 11

key has been specified, the hardware can perform a search of the table to determine
whether any slot matches the search key. Figure 11.14 illustrates the organization of a
CAM.

CAM Storage

Key

...

one slot

Figure 11.14 Illustration of a Content Addressable Memory (CAM). CAM
provides both a memory technology and a memory organiza-
tion.

For the most basic form of a CAM, the search mechanism performs an exact
match. That is, the CAM hardware compares the key against each slot, and reports
whether a match was found. Unlike an iterative search performed by a conventional
processor, a CAM reports results instantly. In essence, each slot in a CAM contains
hardware that performs the comparison. We can imagine wires leading from the bits of
the key down through all the slots. Each slot contains gates that compare bits of the
key to bits of the value in the slot. Because the hardware for all slots operates in paral-
lel, the time required to perform the search does not depend on the number of slots.

Of course, parallel search hardware makes CAM extremely expensive because the
search mechanism must be replicated for each slot. It also means CAM consumes much
more power (and produces much more heat) than a conventional memory. Thus, an ar-
chitect only uses a CAM when lookup speed is more important than cost and power
consumption. For example, in a high-speed Internet router, the system must check each
incoming packet to determine whether other packets have arrived previously from the
same source. To handle high-speed connections, some designs use a CAM to store a
list of source identifiers. The CAM allows a search to be performed fast enough to ac-
commodate packets arriving at a high rate (i.e., over a high-speed network).

www.ebook3000.com

http://www.ebook3000.org

Sec. 11.27 Ternary CAM 223

11.27 Ternary CAM

An alternative form of CAM, known as Ternary CAM (TCAM), extends the idea of
CAM to provide partial match searches. In essence, each bit in a slot can have three
values: zero, one, or “don’t care.” Like a standard CAM, a TCAM performs the search
operation in parallel by examining all slots simultaneously. Unlike a standard CAM, a
TCAM only performs the match on bits that have the value zero or one. Partial match-
ing allows a TCAM to be used in cases where two or more entries in the CAM overlap
— a TCAM can find the best match (e.g., the longest prefix match).

11.28 Summary

We examined two aspects of physical memory: the underlying technology and the
memory organization. Many memory technologies exist. Differences among them in-
clude permanence (RAM or ROM), clock synchronization, and the read and write cycle
times.

Physical memory is organized into words and accessed through a controller.
Although programmers find byte addressing convenient, most underlying memory sys-
tems use word addressing. An intelligent memory controller can translate from byte ad-
dressing to word addressing. To avoid arithmetic computation in a controller, memory
is organized so the address space and bytes per word are powers of two.

Programming languages, such as C, provide pointer variables and pointer arithme-
tic that allow a programmer to obtain and manipulate memory addresses. A memory
dump, which shows the contents of memory along with the memory address of each lo-
cation, can be used to relate data structures in a program to values in memory at run-
time.

Memory banks and interleaving both employ multiple memory modules. Banks
are used to organize a large memory out of smaller modules. Interleaving places suc-
cessive words of memory in separate modules to speed sequential access.

Content Addressable Memory (CAM) combines memory technology and memory
organization. A CAM organizes memory as an array of slots, and provides a high-
speed search mechanism.

EXERCISES

11.1 Smart phones and other portable devices typically use DRAM rather than SRAM. Ex-
plain why.

11.2 Explain the purpose of a DRAM refresh mechanism.

11.3 Assume a computer has a physical memory organized into 64-bit words. Give the word
address and offset within the word for each of the following byte addresses: 0, 9, 27, 31,
120, and 256.

224 Physical Memory And Physical Addressing Chap. 11

11.4 Extend the above exercise by writing a computer program that computes the answer.
The program should take a series of inputs that each consist of two values: a word size
specified in bits and a byte address. For each input, the program should generate a word
address and offset within the word. Note: although it is specified in bits, the word size
must be a power of two bytes.

11.5 On an ARM processor, attempting to load an integer from memory will result in an error
if the address is not a multiple of 4 bytes. What term do we use to refer to such an er-
ror?

11.6 If a computer has 64-bit addresses, and each address corresponds to one byte, how many
gigabytes of memory can the computer address?

11.7 Compute the number of memory operations required for a two-address instruction if the
instruction and both operands are unaligned.

11.8 Write a C function that declares a static integer array, M, and implements fetch and store
operations that use shift and Boolean operations to access individual bytes.

11.9 Find the memory in a PC, identify the type of chips used, and look up the vendor’s
specification of the chips to determine the memory type and speed.

11.10 Redraw Figure 11.13 for an 8-way interleaved memory.

11.11 Emulate a physical memory. Write a C program that declares an array, M, to be an ar-
ray of 10,000 integers (i.e., an array of words). Implement two functions, fetch and
store, that use array M to emulate a byte-addressable memory. fetch(i) returns the ith

byte of the memory, and store(i,ch) stores the 8-bit character ch into the ith byte of the
memory. Do not use byte pointers. Instead, use the ideas in this chapter to write code
that computes the correct word that contains the specified byte and the offset within the
word.

11.12 Simulate a TCAM. Write a program that matches an input string with a set of patterns.
For the simulation, use characters instead of bits. Allow each pattern to contain a string
of characters, and interpret an asterisk as a “wild card” that matches any character. Can
you find a way to make the match proceed faster than iterating through all patterns?

www.ebook3000.com

http://www.ebook3000.org

Chapter Contents

12.1 Introduction, 227
12.2 Information Propagation In A Storage Hierarchy, 227
12.3 Definition of Caching, 228
12.4 Characteristics Of A Cache, 228
12.5 Cache Terminology, 229
12.6 Best And Worst Case Cache Performance, 229
12.7 Cache Performance On A Typical Sequence, 231
12.8 Cache Replacement Policy, 231
12.9 LRU Replacement, 232
12.10 Multilevel Cache Hierarchy, 232
12.11 Preloading Caches, 233
12.12 Caches Used With Memory, 234
12.13 Physical Memory Cache, 234
12.14 Write Through And Write Back, 235
12.15 Cache Coherence, 236
12.16 L1, L2, and L3 Caches, 237
12.17 Sizes Of L1, L2, And L3 Caches, 238
12.18 Instruction And Data Caches, 238
12.19 Modified Harvard Architecture, 239
12.20 Implementation Of Memory Caching, 240
12.21 Direct Mapped Memory Cache, 240
12.22 Using Powers Of Two For Efficiency, 242
12.23 Hardware Implementation Of A Direct Mapped Cache, 243
12.24 Set Associative Memory Cache, 245
12.25 Consequences For Programmers, 246
12.26 Summary, 246

www.ebook3000.com

http://www.ebook3000.org

12

Caches And Caching

12.1 Introduction

The previous chapter discusses physical memory systems, focusing on the underly-
ing technologies used to build memory systems and the organization of address spaces.
The chapter also discusses the organization of a physical memory into words.

This chapter takes a different view of the problem: instead of concentrating on
technologies used to construct memory systems, the chapter focuses on a technology
used to improve memory system performance. The chapter presents the fundamental
concept of caching, shows how caching is used in memory systems, explains why cach-
ing is essential, and describes why caching achieves high performance with low cost.

12.2 Information Propagation In A Storage Hierarchy

Recall from Chapter 10 that storage mechanisms are organized into a hierarchy that
includes general-purpose registers, main memory, and secondary storage. Data items
migrate up and down the hierarchy, usually under control of software. In general, items
move up the hierarchy when they are read, and down the hierarchy when they are writ-
ten. For example, when generating code for an arithmetic computation, a compiler ar-
ranges to move items from memory into registers. After the computation finishes, the
result may be moved back to memory. If an item must be kept after the program fin-
ishes, the programmer will arrange to copy the item from memory to secondary storage.
We will see how caching fits into the storage hierarchy, and will learn that a memory
cache uses hardware rather than software to move items up and down in its part of the
hierarchy.

227

228 Caches And Caching Chap. 12

12.3 Definition of Caching

The term caching refers to an important optimization technique used to improve
the performance of any hardware or software system that retrieves information. In
memory systems, caching can reduce the Von Neumann bottleneck†. A cache acts as
an intermediary. That is, a cache is placed on the path between a mechanism that
makes requests and a mechanism that answers requests, and the cache is configured to
intercept and handle all requests.

The central idea in caching is high-speed, temporary storage: the cache keeps a lo-
cal copy of selected data, and answers requests from the local copy whenever possible.
Performance improvement arises because the cache is designed to return answers faster
than the mechanism that normally fulfills requests. Figure 12.1 illustrates how a cache
is positioned between a mechanism that makes requests and a mechanism that answers
requests.

large data storage

requester
cache

Figure 12.1 Conceptual organization of a cache, which is positioned on the
path between a mechanism that makes requests and a storage
mechanism that answers requests.

12.4 Characteristics Of A Cache

The above description is purposefully vague because caching is a broad concept
that appears in many forms in computer and communication systems. This section clar-
ifies the definition by explaining the concept in more detail; later sections give exam-
ples of how caching can be used.

Although a variety of caching mechanisms exist, they share the following general
characteristics:

d Small

d Active

d Transparent

d Automatic

Small. To keep economic cost low, the amount of storage associated with a cache
is much smaller than the amount of storage needed to hold the entire set of data items.
Most cache sizes are less than ten percent of the main storage size; in many cases, a

��������������������������������
†The Von Neumann bottleneck is defined on page 131.

www.ebook3000.com

http://www.ebook3000.org

Sec. 12.4 Characteristics Of A Cache 229

cache holds less than one percent as much as the data store. Thus, one of the central
design issues revolves around the selection of data items to keep in the cache.

Active. A cache contains an active mechanism that examines each request and de-
cides how to respond. Activities include: checking to see if a requested item is avail-
able in the cache, retrieving a copy of an item from the data store if the item is not
available locally, and deciding which items to keep in the cache.

Transparent. We say that a cache is transparent, which means that a cache can be
inserted without making changes to the requester or data store. That is, the interface the
cache presents to the requester is exactly the same as the interface a data store presents,
and the interface the cache presents to the data store is exactly the same as the interface
a requester presents.

Automatic. In most cases, a cache mechanism does not receive instructions on
how to act or which data items to store in the cache storage. Instead, a cache imple-
ments an algorithm that examines the sequence of requests, and uses the requests to
determine how to manage the cache.

12.5 Cache Terminology

Although caching is used in a variety of contexts, some of the terminology related
to caching has universal acceptance across all types of caching systems. A cache hit
(abbreviated hit) is defined as a request that can be satisfied by the cache without access
to the underlying data store. Conversely, a cache miss (abbreviated miss) is defined as
a request that cannot be satisfied by the cache.

Another term characterizes a sequence of references presented to a cache. We say
that a sequence of references exhibits high locality of reference if the sequence contains
repetitions of the same requests; otherwise, we say that the sequence has low locality of
reference. We will see that high locality of reference leads to higher performance. Lo-
cality refers to items in the cache. Therefore, if a cache stores large data items (e.g.,
pages of memory), repeated requests do not need to be identical as long as they refer-
ence the same item in the cache (e.g., memory references to items on the same page).

12.6 Best And Worst Case Cache Performance

We said that if a data item is stored in the cache, the cache mechanism can return
the item faster than the data store. As Figure 12.2 shows, we represent the costs of re-
trieval from the requester’s view.

230 Caches And Caching Chap. 12

large data storagerequester cache

Ch

Cm

Figure 12.2 Illustration of access costs when using a cache. Costs are meas-
ured with respect to the requester.

In the figure, Ch is the cost if an item is found in the cache (i.e., a hit), and Cm is
the cost if an item is not found in the cache (i.e., a miss). Interestingly, individual costs
are not informative. Observe that because a cache uses the contents of requests to
determine which items to keep, the performance depends on the sequence of requests.
Thus, to understand caching, we must examine the performance on a sequence of re-
quests. For example, we can easily analyze the best and worst possible behavior for a
sequence of N requests. At one extreme, if each request references a new item, caching
does not improve performance at all — the cache must forward each request to the data
store. Thus, in the worst case, the cost is:

Cworst = N Cm (12.1)

It should be noted that our analysis ignores the administrative overhead required to
maintain the cache. If we divide by N to compute the average cost per request, the
result is Cm.

At the other extreme, if all requests in the sequence specify the same data item
(i.e., the highest locality of reference), the cache can indeed improve performance.
When it receives the first request, the cache fetches the item from the data store and
saves a copy; subsequent requests can be satisfied by using the copy in the cache.
Thus, in the best case. the cost is:

Cbest = Cm + (N − 1) Ch (12.2)

Dividing by N produces the cost per request:

Cper_request =
N

Cm + (N − 1) Ch��������������� =
N

Cm���� −
N

Ch��� + Ch
(12.3)

As N → ∞, the first two terms approach zero, which means that the cost per request
in the best case becomes Ch . We can understand why caching is such a powerful tool:

www.ebook3000.com

http://www.ebook3000.org

Sec. 12.6 Best And Worst Case Cache Performance 231

If one ignores overhead, the worst case performance of caching is no
worse than if the cache were not present. In the best case, the cost
per request is approximately equal to the cost of accessing the cache,
which is lower than the cost of accessing the data store.

12.7 Cache Performance On A Typical Sequence

To estimate performance of a cache on a typical sequence of requests, we need to
examine how the cache handles a sequence that contains both hits and misses. Cache
designers use the term hit ratio to refer to the percentage of requests in the sequence
that are satisfied from the cache. Specifically, the hit ratio is defined to be:

hit ratio =
total number of requests

number of requests that are hits���������������������������� (12.4)

The hit ratio is a value between zero and one. We define a miss ratio to be one minus
the hit ratio.

Of course, the actual hit ratio depends on the specific sequence of requests. Ex-
perience has shown that for many caches, the hit ratio tends to be nearly the same
across the requests encountered in practice. In such cases, we can derive an equation
for the cost of access in terms of the cost of a miss and the cost of a hit:

Cost = r Ch + (1−r) Cm (12.5)

where r is the hit ratio defined in Equation 12.4 above.

The cost of accessing the data store, given by Cm in the equation, is fixed. Thus,
there are two ways a cache designer can improve the performance of a cache: increase
the hit ratio or decrease the cost of a hit.

12.8 Cache Replacement Policy

How can a cache designer increase the hit ratio? There are two ways:

d Increase the cache size

d Improve the replacement policy

Increase the cache size. Recall that a cache is usually much smaller than a large
data store. When it begins, a cache keeps a copy of each response. Once the cache
storage is full, an item must be removed from the cache before a new item can be ad-
ded. A larger cache can store more items.

Improve the replacement policy. A cache uses a replacement policy to decide
which item to remove when a new item is encountered and the cache is full. The re-
placement policy specifies whether to ignore the new item or how to choose an item to

232 Caches And Caching Chap. 12

evict to make space for the new item. A replacement policy that chooses to keep those
items that will be referenced again can increase the hit ratio.

12.9 LRU Replacement

What replacement policy should be used? There are two issues. First, to increase
the hit ratio, the replacement policy should retain those items that will be referenced
most frequently. Second, the replacement policy should be inexpensive to implement,
especially for a memory cache. One replacement policy that satisfies both criteria has
become extremely popular. Known as Least Recently Used (LRU), the policy specifies
replacing the item that was referenced the longest time in the past†.

LRU is easy to implement. The cache mechanism keeps a list of data items that
are currently in the cache. When an item is referenced, the item moves to the front of
the list; when replacement is needed, the item at the back of the list is removed.

LRU works well in many situations. In cases where the set of requests has a high
locality of reference (i.e., where a cache can improve performance), a few items will be
referenced again and again. LRU tends to keep those items in the cache, which means
the cost of access is kept low.

We can summarize:

When its storage is full and a new item arrives, a cache must choose
whether to retain the current set of items or replace one of the current
items with the new item. The Least Recently Used (LRU) policy is a
popular choice for replacement because it is trivial to implement and
tends to keep items that will be requested again.

12.10 Multilevel Cache Hierarchy

One of the most unexpected and astonishing aspects of caching arises from the use
of caching to improve the performance of a cache! To understand how such an optimi-
zation is possible, recall that the insertion of a cache lowers the cost of retrieving items
by placing some of the items closer to the requester. Now imagine an additional cache
placed between the requester and the existing cache as Figure 12.3 illustrates.

large data storagerequester new cache original cache

Figure 12.3 The organization of a system with an additional cache inserted.

��������������������������������
†Note that “least recently” always refers to how long ago the item was last referenced, not to the number

of accesses.

www.ebook3000.com

http://www.ebook3000.org

Sec. 12.10 Multilevel Cache Hierarchy 233

Can a second cache improve performance? Yes, provided the cost to access the
new cache is lower than the cost to access the original cache (e.g., the new cache is
closer to the requester). In essence, the cost equation becomes:

Cost = r 1 Ch 1 + r 2 Ch 2 + (1 − r 1 − r 2) Cm (12.6)

where r 1 denotes the fraction of hits for the new cache, r 2 denotes the fraction of hits
for the original cache, Ch 1 denotes the cost of accessing the new cache, and Ch 2

denotes the cost of accessing the original cache.

When more than one cache is used along the path from requester to data store, we
say that the system implements a multilevel cache hierarchy. A set of Web caches pro-
vides an example of a multilevel hierarchy. The path between a browser running on a
user’s computer can pass through a cache at the user’s ISP as well as the local cache
mechanism used by the browser.

The point is:

Adding an additional cache can be used to improve the performance
of a system that uses caching. Conceptually, the caches are arranged
in a multilevel hierarchy.

12.11 Preloading Caches

How can cache performance be improved further? Cache designers observe that
although many cache systems perform well in the steady state (i.e., after the system has
run for awhile), the system exhibits higher cost during startup. That is, the initial hit ra-
tio is extremely low because the cache must fetch items from the data store. In some
cases, the startup costs can be lowered by preloading the cache. That is, values are
loaded into the cache before execution begins.

Of course, preloading only works in cases where the cache can anticipate requests.
For example, an ISP’s Web cache can be preloaded with hot pages (i.e., pages that have
been accessed frequently in the past day or pages for which the owner expects frequent
access). As an alternative, some caches use an automated method of preloading. In one
form, the cache periodically places a copy of its contents on nonvolatile storage, allow-
ing recent values to be preloaded at startup. In another form, the cache uses a reference
to prefetch related data. For example, if a processor accesses a byte of memory, the
cache can fetch 128 bytes. Thus, if the processor accesses the next byte, which is
likely, the value will come from the cache.

Prefetching is especially important for Web pages. A typical Web page contains
references to multiple images, and before the page can be displayed, a browser must
download a copy of each image and cache the copy on the user’s computer. As a page
is being downloaded, a browser can scan for references to images, and can begin to pre-
fetch each of the images without waiting for the entire page to download.

234 Caches And Caching Chap. 12

12.12 Caches Used With Memory

Now that we understand the basic idea of caching, we can consider some of the
ways caches are used in memory systems. In fact, the concept of caching originated
with computer memory systems†. The original motivation was higher speed at low
cost. Because memory was both expensive and slow, architects looked for ways to im-
prove performance without incurring the cost of higher-speed memory. The architects
discovered that a small amount of high-speed cache improved performance dramatically.
The result was so impressive that by the 1980s, most computer systems had a single
cache located between the processor and memory. Physically, memory was on one cir-
cuit board and the cache occupied a separate circuit board, which allowed computer
owners to upgrade the memory or the cache independently. As described above, a cach-
ing hierarchy can increase performance more than a single cache. Therefore, we will
see that modern computers employ a hierarchy of memory caches and use caching in a
variety of ways. The next sections present a few examples.

12.13 Physical Memory Cache

Caching has become popular as a way to achieve higher memory performance
without significantly higher cost. Early computers used a physical memory system.
That is, when it generated a request, the processor specified a physical address, and the
memory system responded to the physical address. Thus, to be inserted on the path
between a processor and the memory, a cache had to understand and use physical ad-
dresses.

It may seem that a physical memory cache is trivial. We can imagine the memory
cache receiving a fetch request, checking to see if the request can be answered from the
cache, and then, if the item is not present, passing the request to the underlying
memory. Furthermore, we can imagine that once an item has been retrieved from the
underlying memory, the cache saves a copy locally, and then returns the value to the
processor.

In fact, our imagined scenario is misleading — a physical memory cache is much
more complex than the above description. To understand why, we must remember that
hardware achieves high speed through parallelism. For example, when it encounters a
fetch request, a memory cache does not check the cache and then access the physical
memory. Instead, the cache hardware performs two tasks in parallel: the cache simul-
taneously passes the request to the physical memory and searches for an answer locally.
If it finds an answer locally, the cache must cancel the memory operation. If it does not
find an answer locally, the cache must wait for the underlying memory operation to
complete. Furthermore, when an answer does arrive from memory, the cache uses
parallelism again by simultaneously saving a local copy of the answer and transferring
the answer back to the processor. Parallel activities make the hardware complex. The
point is:

��������������������������������
†In addition to introducing the use of microcode, Maurice Wilkes is credited with inventing the concept

of a memory cache in 1965.

www.ebook3000.com

http://www.ebook3000.org

Sec. 12.13 Physical Memory Cache 235

To achieve high performance, a physical memory cache is designed to
search the local cache and access the underlying memory simultane-
ously. Parallelism complicates the hardware.

12.14 Write Through And Write Back

In addition to parallelism, memory caches are also complicated by write (i.e.,
store) operations. There are two issues: performance and coherence. Performance is
easiest to understand: caching improves the performance for retrieval requests, but not
for storage requests. That is, a write operation takes longer because a write operation
must change the value in the underlying memory. More important, in addition to for-
warding the request to the memory, a cache must also check to see whether the item is
in the cache. If so, the cache must update its copy as well. In fact, experience has
shown that a memory cache should always keep a local copy of each value that is writ-
ten because programs tend to access a value a short time after it has been stored.

Initial implementations of memory caches handled write operations as described
above: the cache kept a copy and forwarded the write operation to the underlying
memory. We use the term write-through cache to describe the approach.

The alternative, known as write-back cache, keeps a copy of a data item that is
written, and waits until later to update the underlying physical memory. To know
whether the underlying physical memory must be updated, a write-back cache keeps an
extra bit with each item that is known as the dirty bit. In a physical memory cache, a
dirty bit is associated with each block in the cache. When an item is fetched and a copy
is placed in the cache, the dirty bit is initialized to zero. When the processor modifies
the item (i.e., performs a write), the dirty bit is set to one. When it needs to eject a
block from the cache, the hardware first examines the dirty bit associated with the
block. If the dirty bit is one, a copy of the block is written to memory. If the dirty is
zero, however, the block can simply be overwritten because data in the block is exactly
the same as the copy in memory. The point is:

A write-back cache associates a dirty bit with each block to record
whether the block has been modified since it was fetched. When eject-
ing a block from the cache, the hardware writes a copy of a dirty
block to memory, but simply overwrites the contents if the block is not
dirty.

To understand why write-back improves performance, imagine a for loop in a pro-
gram that increments a variable in memory on each iteration of the loop. A write-back
cache places the variable in the cache the first time the variable is referenced. On each
successive iteration, changes to the variable only affect the cached copy. Assume that
once the loop ends, the program stops referencing the variable. Eventually, the program
generates enough other references so that the variable is the least recently used item in

236 Caches And Caching Chap. 12

the cache, and will be selected for replacement. When a new item is referenced and a
cache slot is needed, the cache writes the value of the variable to the underlying physi-
cal memory. Thus, although the variable can be referenced or changed many times, the
memory system only has one access to the underlying physical memory†.

12.15 Cache Coherence

Memory caches are especially complex in a system with multiple processors (e.g.,
a multicore CPU). We said that a write-back cache achieves higher performance than a
write-through cache. In a multiprocessor environment, performance is also optimized
by giving each core its own cache. Unfortunately, the two optimizations conflict. To
understand why, look at the architecture in Figure 12.4, which shows two processors
that each have a private cache.

processor

1

processor

2

cache 1 cache 2

physical memory

Figure 12.4 Illustration of two processors sharing an underlying memory.
Because each processor has a separate cache, conflicts can occur
if both processors reference the same memory address.

Now consider what happens if the two caches use a write-back approach. When
processor 1 writes to a memory location X, cache 1 holds the value for X. Eventually,
when it needs space, cache 1 writes the value to the underlying physical memory. Simi-
larly, whenever processor 2 writes to a memory location, the value will be placed in
cache 2 until space is needed. The problem should be obvious: without an additional
mechanism, incorrect results will occur if both processors simultaneously issue read and
write operations for a given address.

To avoid conflicts, all caches that access a given memory must follow a cache
coherence protocol that coordinates the values. For example, when processor 2 reads
from an address, A, the coherence protocol requires cache 2 to inform cache 1. If it
currently holds address A, cache 1 writes A to the physical memory so cache 2 can ob-
tain the most recent value. That is, a read operation on any processor triggers a write-

��������������������������������
†An optimizing compiler can further improve performance by using a general-purpose register to hold the

variable until the loop finishes (another form of caching).

www.ebook3000.com

http://www.ebook3000.org

Sec. 12.15 Cache Coherence 237

back in any cache that currently holds a cached copy of the address. Similarly, if any
processor issues a write operation for an address, A, all other caches must be informed
to discard cached values of A. Thus, in addition to requiring additional hardware and a
mechanism that allows the caches to communicate, cache coherency introduces addi-
tional delay.

12.16 L1, L2, and L3 Caches

We said that arranging multiple caches into a hierarchy can improve overall perfor-
mance. Indeed, most computer memory systems have at least two levels of cache
hierarchy. To understand why computer architects added a second level of cache to the
memory hierarchy, we must consider four facts:

d A traditional memory cache was separate from both the memory
and the processor.

d To access a traditional memory cache, a processor used pins that
connect the processor chip to the rest of the computer.

d Using pins to access external hardware takes much longer than ac-
cessing functional units that are internal to the processor chip.

d Advances in technology have made it possible to increase the
number of transistors per chip, which means a processor chip can
contain more hardware.

The conclusion should be clear. We know that adding a second cache can improve
memory system performance, we further know that placing the second cache on the pro-
cessor chip will make the cache access times much lower, and we know that technology
now allows chip vendors to add more hardware to their chips. So, it makes sense to
embed a second memory cache in the processor chip itself. If the hit ratio is high, most
data references will never leave the processor chip — the effective cost of accessing
memory will be approximately the same as the cost of accessing a register.

To describe the idea of multiple caches, computer manufacturers originally adopted
the terms Level 1 cache (L1 cache) to refer to the cache onboard the processor chip,
Level 2 cache (L2 cache) to refer to an external cache, and Level 3 cache (L3 cache) to
refer to a cache built into the physical memory. That is, an L1 cache was originally
on-chip and an L2 or L3 cache was off-chip.

In fact, chip sizes have become so large that a single chip can contain multiple
cores and multiple caches. In such cases, manufacturers use the term L1 cache to
describe a cache that is associated with one particular core, the term L2 cache to
describe an on-chip cache that may be shared, and the term L3 cache to describe an on-
chip cache that is shared by multiple cores. Typically, all cores share an L3 cache.
Thus, the distinction between on-chip and off-chip has faded.

238 Caches And Caching Chap. 12

We can summarize the terminology:

When using traditional terminology for a multilevel cache hierarchy, an
L1 cache is embedded on the processor chip, an L2 cache is external to
the processor, and an L3 cache is built into the physical memory. More
recent terminology defines an L1 cache to be associated with a single
core, whereas L2 and L3 refer to on-chip caches that all cores share.

12.17 Sizes Of L1, L2, And L3 Caches

Most computers employ a cache hierarchy. Of course, the cache at the top of the
hierarchy is the fastest, but also the smallest. Figure 12.5 lists example cache memory
sizes. The L1 cache may be divided into separate instruction and data caches, as
described in the next section.

Cache Size Notes��
L1 64 KB to 96 KB Per core
L2 256 KB to 2 MB May be per core
L3 8 MB to 24 MB Shared among all cores

Figure 12.5 Example cache sizes in 2016. Although absolute sizes continue
to change; readers should focus on the amount of cache relative
to RAM that is 4 GB to 32 GB.

12.18 Instruction And Data Caches

Should all memory references pass through a single cache? To understand the
question, imagine instructions being executed and data being accessed. Instruction fetch
tends to behave with high locality — in many cases, the next instruction to be executed
is found at an adjacent memory address. Furthermore, the most time-consuming loops
in a program are usually small, which means the entire loop can fit into a cache.
Although the data access in some programs exhibits high locality, the data access in
others does not. For example, when a program accesses a hash table, the locations
referenced appear to be random (i.e., the location referenced in one instant is not neces-
sarily close to the location referenced in the next).

Differences between instruction and data behavior raise the question of how inter-
mixing the two types of references affects a cache. In essence, the more random the se-
quence of requests becomes, the worse a cache performs (because the cache will save
each value, even though the value will not be needed again). We can state a general
principle:

www.ebook3000.com

http://www.ebook3000.org

Sec. 12.18 Instruction And Data Caches 239

Inserting random references in the series of requests tends to worsen
cache performance; reducing the number of random references that
occurs tends to improve cache performance.

12.19 Modified Harvard Architecture

Is performance optimized by having a separate cache for instructions and data?
The simplistic answer is obvious. When both data and instructions are placed in the
same cache, data references tend to push instructions out of the cache, lowering perfor-
mance. Adding a separate instruction cache will improve performance.

The simplistic answer above is insufficient, however, because the question is not
whether additional hardware will help, but how to choose among tradeoffs. Because ad-
ditional hardware will generate more heat, consume more power, and in portable de-
vices, deplete the battery faster, an architect must weigh all the costs of an additional
cache. If an architect does decide to add more cache hardware, the question is how best
to use the hardware. We know, for example, that increasing the size of a single cache
will increase performance by avoiding collisions. If a cache becomes sufficiently large,
intermixing instructions and data references will work fine. Would it be better to add a
separate instruction cache or to retain a single cache and increase the size?

Many architects have decided that the optimal way to use a modest amount of ad-
ditional hardware lies in introducing a new I-cache (instruction cache) and using the ex-
isting cache as a D-cache (data cache). Separating instruction and data caches is trivial
in a Harvard Architecture because an I-cache is associated with the instruction memory
and a D-cache is associated with the data memory. Should architects abandon the Von
Neumann Architecture?

Many architects have adopted a compromise in which a computer has separate in-
struction and data caches, but the caches lead to a single memory. We use the term
Modified Harvard Architecture to characterize the compromise. Figure 12.6 illustrates
the modified architecture.

Memory

I-cache D-cache

Processor

Figure 12.6 A Modified Harvard Architecture with separate instruction and
data caches leading to the same underlying memory.

240 Caches And Caching Chap. 12

12.20 Implementation Of Memory Caching

Conceptually, each entry in a memory cache contains two values: a memory ad-
dress and the value of the byte found at that address. In practice, storing a complete ad-
dress with each entry is inefficient. Therefore, memory caches use clever techniques to
reduce the amount of space needed. The two most important cache optimization tech-
niques are known as:

d Direct mapped memory cache

d Set associative memory cache

We will see that, like virtual memory schemes, both cache implementations use powers
of two to avoid arithmetic computation.

12.21 Direct Mapped Memory Cache

A direct mapped memory cache uses a mapping technique to avoid overhead.
Although memory caches are used with byte-addressable memories, a cache does not
record individual bytes. Instead, a cache divides both the memory and the cache into a
set of fixed-size blocks, where the block size, B (measured in bytes), is chosen to be a
power of two. The hardware places an entire block in the cache whenever a byte in the
block is referenced. Using cache terminology, we refer to a block in the cache as a
cache line; the size of a direct mapped memory cache is often specified by giving the
number of cache lines times the size of a cache line. For example, the size might be
specified as 4K lines with 8 bytes per line. To envision such a cache, think of bytes in
memory being divided into 8-byte segments and assigned to lines of the cache. Figure
12.7 illustrates how bytes of memory would be assigned for a block size of eight in a
cache that has four lines. (Note: a memory cache usually holds many more than four
lines; a small cache size has been chosen merely as a simplified example for the figure.)

Observe that the blocks in memory are numbered modulo C, where C is the
number of slots in the cache. That is, blocks are numbered from zero through C – 1 (C
is 4 in the figure). Interestingly, using powers of two means that no arithmetic is re-
quired to map a byte address to a block number. Instead, the block number can be
found by extracting a set of bits. In the figure, the block number can be computed by
extracting the fourth and fifth bits of an address. For example, consider the byte with
address 57 (1��11001 in binary, shown with the forth and fifth bits underlined). The bits
11 are 3 in decimal, which agrees with the block number in the figure. In address 44
(1��01100 in binary), the fourth and fifth bits are 01 and the block number is 1. We can
express the mapping in programming language terms as:

b = (byte_address >> 3) & 0x03;

In terms of a memory cache, no computation is needed — the hardware places the value
in an internal register and extracts the appropriate bits to form a block number.

www.ebook3000.com

http://www.ebook3000.org

Sec. 12.21 Direct Mapped Memory Cache 241

addresses of bytes in memoryblock

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

0

1

2

3

0

1

2

3

...

Figure 12.7 An example assignment of block numbers to memory locations
for a cache of four blocks with eight bytes per block.

The key to understanding a direct mapped memory cache arises from the following
rule: only a memory block numbered i can be placed in cache slot i. For example, the
block with addresses 16 through 23 can be placed in slot 2, as can the block with ad-
dresses 48 through 55.

If multiple memory blocks can be placed in a given slot, how does the cache know
which block is currently in a slot? The cache attaches a unique tag to each group of C
blocks. For example, Figure 12.8 illustrates how tag values are assigned to memory
blocks in our example cache that has four slots.

memory

cache
tag value

3

2

1

0

block

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

tag 0

tag 1

tag 2

tag 3

8 bytes

Figure 12.8 An example memory cache with space for four blocks and a
memory divided into conceptual blocks of 8 bytes. Each group
of four blocks in memory is assigned a unique tag.

242 Caches And Caching Chap. 12

To identify the block currently in a slot of the cache, each cache entry contains a
tag value. Thus, if slot zero in the cache contains tag K, the value in slot zero
corresponds to block zero from the area of memory that has tag K.

Why use tags? A cache must uniquely identify the entry in a slot. Because a tag
identifies a large group of blocks rather than a single byte of memory, using a tag re-
quires fewer bits to identify a section of memory than using a full memory address.
Furthermore, as the next section explains, choosing the block size and the size of
memory identified by a tag to be powers of two makes cache lookup extremely effi-
cient.

12.22 Using Powers Of Two For Efficiency

Although the direct mapping described above may seem complex, using powers of
two simplifies the hardware implementation. In fact, the hardware is elegant and ex-
tremely efficient. Instead of modulo arithmetic, both the tag and block number can be
computed by extracting groups of bits from a memory address. The high-order bits of
the address are used as the tag, the next set of bits forms a block number, and the final
set of bits gives a byte offset within the block. Figure 12.9 illustrates the division.

tag block offset

Figure 12.9 Illustration of how using powers of two allows a cache to divide
a memory address into three separate fields that correspond to a
tag, a block number, and a byte offset within the block.

Once we know that all values can be obtained via bit extraction, the algorithm for
lookup in a direct-mapped memory cache is straightforward. Think of the cache as an
array. The idea is to extract the block number from the address, and then use the block
number as an index into the array. Each entry in the array contains a tag and a value.
If the tag in the address matches the tag in the cache slot, the cache returns the value. If
the tag does not match, the cache hardware must fetch the block from memory, place a
copy in the cache, and then return the value. Algorithm 12.1 summarizes the steps.

The algorithm omits an important detail. Each slot in the cache has a valid bit that
specifies whether the slot has been used. Initially (i.e., when the computer boots), all
valid bits are set to 0 (to indicate that none of the slots contain blocks from memory).
When it stores a block in a slot, the cache hardware sets the valid bit to 1. When it ex-
amines the tag for a slot, the hardware reports a mismatch if the valid bit is set, which
forces a copy of the block to be loaded from memory.

www.ebook3000.com

http://www.ebook3000.org

Sec. 12.22 Using Powers Of Two For Efficiency 243

Algorithm 12.1

Given:
A memory address

Find:
The data byte at that address

Method:

Extract the tag number, t, block number, b, and offset, o,
from the address by selecting the appropriate bit fields

Examine the tag in slot b of the cache

If the tag in slot b of the cache matches t {

Use o to select the appropriate byte from the
block in slot b, and return the byte

} else { /* Update the cache */

Fetch block b from the underlying memory

Place a copy in slot b

Set the tag on slot b to t

Use o to select the appropriate byte from the
block in slot b, and return the byte

}

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
���

Algorithm 12.1 Cache Lookup In A Direct Mapped Memory Cache

12.23 Hardware Implementation Of A Direct Mapped Cache

Algorithm 12.1 describes cache lookup as if the cache is an array and separate
steps are taken to extract items and index the array. In fact, slots of a cache are not
stored in an array in memory. Instead, they are implemented with hardware circuits,
and the circuits work in parallel. For example, the first step that extracts items from the
address can be implemented by placing the address in an internal register (a hardware
circuit that consists of a set of latches), and arranging each bit of the address to be
represented by the output of one latch. That is, once the address has been placed in the
register, each bit of the address will be represented by a separate wire. The items t, b,
and o in the address can be obtained merely by dividing the output wires into groups.

The second step in Algorithm 12.1 requires the cache hardware to examine one of
the slots. The hardware uses a decoder to select exactly one of the slots. All slots are

244 Caches And Caching Chap. 12

connected to common output wires; the hardware is arranged so that only a selected slot
puts its output on the wires. A comparator circuit is used to compare the tag in the ad-
dress with the tag in the selected slot. Figure 12.10 gives a simplified block diagram of
the hardware to perform cache lookup.

V Tag Valueincoming address

= ?

value output“valid” output

index bits

decoder selects
only one slot

tag bits
from address

comparator

logical
and

only the selected slot
passes values down

Figure 12.10 Block diagram of the hardware used to implement lookup in a
memory cache.

The circuit takes a memory address as an input, and produces two outputs. The
valid output is 1 if and only if the specified address is found in the cache (i.e., the cache
returns a value). The value output is the contents of memory at the specified address.

In the figure, each slot has been divided into a valid bit, a tag, and a value to indi-
cate that separate hardware circuits can be used for each field. Horizontal lines from
the decoder to each slot indicate a connection that can be used to activate the circuits
for the slot. At any time, however, the decoder only selects one slot (in the figure, the
selected slot is shown shaded).

Vertical lines through the slots indicate parallel connections. Hardware in each
slot connects to the wires, but only a selected slot places a value on the vertical wires.
Thus, in the example, the input to the and gate only comes from the V circuit of the
selected slot, the input to the comparator only comes from the Tag circuit of the

www.ebook3000.com

http://www.ebook3000.org

Sec. 12.23 Hardware Implementation Of A Direct Mapped Cache 245

selected slot, and the value output only comes from the Value circuit of the selected
slot. The key point is that cache lookup can be performed quickly by combinatorial cir-
cuits.

12.24 Set Associative Memory Cache

The chief alternative to a direct mapped memory cache is known as a set associa-
tive memory cache. In essence, a set associative memory cache uses hardware parallel-
ism to provide more flexibility. Instead of maintaining a single cache, the set associa-
tive approach maintains multiple underlying caches, and provides hardware that can
search all of them simultaneously. More important, because it provides multiple under-
lying caches, a set associative memory cache can store more than one block that has the
same number.

As a trivial example, consider a set associative cache in which there are two copies
of the underlying hardware. Figure 12.11 illustrates the architecture.

tag tagvalue value
3
2
1
0

3
2
1
0

Hardware For Parallel Test

Figure 12.11 Illustration of a set associative memory cache with two copies
of the underlying hardware. The cache includes hardware to
search both copies in parallel.

To understand the advantages of the set associative approach, consider a reference
string in which a program alternately references two addresses, A1 and A2, that have dif-
ferent tags, but both have block number zero. In a direct mapped memory cache, the
two addresses contend for a single slot in the cache. A reference to A1 loads the value
of A1 into slot 0 of the cache, and a reference to A2 overwrites the contents of slot 0
with the value of A2. Thus, in an alternating sequence of references, every reference
results in a cache miss. In a set associative memory cache, however, A1 can be placed
in one of the two underlying caches, and A2 can be placed in the other. Thus, every
reference results in a cache hit.

As the amount of parallelism increases, performance of a set associative memory
cache increases. In the extreme case, a cache is classified as fully associative, if each of
the underlying caches contains only one slot, but the slot can hold an arbitrary value.

246 Caches And Caching Chap. 12

Note that the amount of parallelism determines a point on a continuum: with no paral-
lelism, we have a direct mapped memory cache, and with full parallelism, we have the
equivalent of a Content Addressable Memory (CAM).

12.25 Consequences For Programmers

Experience has shown that caching works well for most computer programs. The
code that programmers produce tends to contain loops, which means a processor will
repeatedly execute a small set of instructions before moving on to another set.
Similarly, programs tend to reference data items multiple times before moving on to a
new data item. Furthermore, some compilers are aware of caching, and help optimize
the generated code to take advantage of the cache.

Despite the overwhelming success of caching, programmers who understand how a
cache works can write code that exploits a cache. For example, consider a program that
must perform many operations on each element of a large array. It is possible to per-
form one operation at a time (in which case the program iterates through the array many
times) or to perform all the operations on a single element of the array before moving to
the next element (in which case the program iterates through the array once). From the
point of view of caching, the latter is preferable because the element will remain in the
cache.

12.26 Summary

Caching is a fundamental optimization technique that can be used in many con-
texts. A cache intercepts requests, automatically stores values, and answers requests
quickly, whenever possible. Variations include a multilevel cache hierarchy and
preloaded caches.

Caches provide an essential performance optimization for memories. Most com-
puter systems employ a multilevel memory cache. Originally, an L1 cache resided on
an integrated circuit along with the processor, and an L2 cache was located external to
the processor, and an L3 cache was associated with the memory. As integrated circuits
became larger, manufacturers moved L2 and L3 caches onto the processor chip, using
the distinction that an L1 cache is associated with a single core and L2/L3 caches are
shared among multiple cores.

A technology known as a direct mapped memory cache handles lookup without
keeping a list of cached items. Although we think of the lookup algorithm as perform-
ing multiple steps, a hardware implementation of a direct mapped memory cache can
use combinatorial logic circuits to perform the lookup without needing a processor. A
set associative memory cache extends the concept of direct mapping to permit parallel
access.

www.ebook3000.com

http://www.ebook3000.org

Sec. 12.26 Summary 247

EXERCISES

12.1 What does the term transparent mean when applied to a memory cache?

12.2 If the hit ratio for a given piece of code is 0.2, the time required to access the cache is
20 nanoseconds, and the time to access the underlying physical memory is 1 mi-
crosecond, what is the effective memory access time for the piece of code?

12.3 A physicist writes C code to iterate through a large 2-dimensional array:

ffllooaatt aa[[3322776688,, 3322776688]],, ssuumm;;
......
ffoorr ((ii==00;; ii<<3322776688;; ii++++)) {{

ffoorr ((jj==00;; jj<<3322776688;; jj++++)) {{
ssuumm ++== aa[[jj,,ii]];;
}}

}}

The physicist complains that the code is running very slowly. What simple change can
you make that will increase execution speed?

12.4 Consider a computer where each memory address is thirty-two-bits long and the memory
system has a cache that holds up to 4K entries. If a naive cache is used in which each
entry of the cache stores an address and a byte of data, how much total storage is needed
for the cache? If a direct mapped memory cache is used in which each entry stores a tag
and a block of data that consists of four bytes, how much total storage is needed?

12.5 Extend the previous exercise. Assume the size of the cache is fixed, and find an alterna-
tive to the naive solution that allows the storage of more data items. Hint: what values
are placed in the cache if the processor always accesses four-byte integers in memory?

12.6 Consult vendors’ specifications and find the cost of memory access and the cost of a
cache hit for a modern memory system (Ch and Cm in Section 12.6).

12.7 Use the values obtained in the previous exercise to plot the effective memory access cost
as the hit ratio varies from zero to one.

12.8 Using the values of Ch and Cm obtained in Exercise 12.6, what value of the hit ratio, r, is
needed to achieve an improvement of 30% in the mean access time of a memory system
(as compared to the same memory system without a cache)?

12.9 State two ways to improve the hit ratio of a cache.

12.10 What is cache coherence, and what type of system needs it?

12.11 Write a computer program to simulate a direct mapped memory cache using a cache of
64 blocks and a block size of 128 bytes. To test the program, create a 1000 x 1000 ar-
ray of integers. Simulate the address references if a program walks the array in row-
major order and column-major order. What is the hit ratio of your cache in each case?

12.12 The hardware diagram in Figure 12.10 only shows the circuits needed for lookup. Ex-
tend the diagram to include circuits that load a value into the cache from memory.

www.ebook3000.com

http://www.ebook3000.org

Chapter Contents

13.1 Introduction, 251
13.2 Definition Of Virtual Memory, 251
13.3 Memory Management Unit And Address Space, 252
13.4 An Interface To Multiple Physical Memory Systems, 252
13.5 Address Translation Or Address Mapping, 253
13.6 Avoiding Arithmetic Calculation, 255
13.7 Discontiguous Address Spaces, 255
13.8 Motivations For Virtual Memory, 257
13.9 Multiple Virtual Spaces And Multiprogramming, 258
13.10 Creating Virtual Spaces Dynamically, 259
13.11 Base-Bound Registers, 259
13.12 Changing The Virtual Space, 260
13.13 Virtual Memory And Protection, 261
13.14 Segmentation, 261
13.15 Demand Paging, 262
13.16 Hardware And Software For Demand Paging, 262
13.17 Page Replacement, 263
13.18 Paging Terminology And Data Structures, 264
13.19 Address Translation In A Paging System, 264
13.20 Using Powers Of Two, 266
13.21 Presence, Use, And Modified Bits, 267
13.22 Page Table Storage, 268
13.23 Paging Efficiency And A Translation Lookaside Buffer, 268
13.24 Consequences For Programmers, 269
13.25 The Relationship Between Virtual Memory And Caching, 270
13.26 Virtual Memory Caching And Cache Flush, 271
13.27 Summary, 272

www.ebook3000.com

http://www.ebook3000.org

13

Virtual Memory
Technologies And Virtual
Addressing

13.1 Introduction

The previous chapters discuss physical memory and caching. The chapter on phy-
sical memory considers the hardware technologies used to create memory systems, the
organization of physical memory into words, and the physical addressing scheme used
to access memory. The chapter on caching describes how a memory cache is organized,
and explains why a memory cache improves performance dramatically.

This chapter considers the important concept of virtual memory. It examines the
motivation, the technologies used to create virtual address spaces, and the mapping
between virtual and physical memory. Although our focus is primarily on the hardware
systems, we will learn how an operating system uses virtual memory facilities.

13.2 Definition Of Virtual Memory

We use the term Virtual Memory (VM) to refer to a mechanism that hides the de-
tails of the underlying physical memory to provide a more convenient memory environ-
ment. In essence, a virtual memory system creates an illusion — an address space and
a memory access scheme that overcome limitations of the physical memory and physi-
cal addressing scheme. The definition may seem vague, but we need to encompass a

251

252 Virtual Memory Technologies And Virtual Addressing Chap. 13

wide variety of technologies and uses. The next sections will define the concept more
precisely by giving examples of virtual memory systems that have been created and the
technologies used to implement each. We will learn that the variety in virtual memory
schemes arises because no single scheme is optimal in all cases.

We have already seen an example of a memory system that fits our definition of
virtual memory in Chapter 11: an intelligent memory controller that provides byte ad-
dressing with an underlying physical memory that uses word addressing. The imple-
mentation consists of a controller that allows a processor to specify requests using byte
addressing. We further saw that choosing sizes to be powers of two avoids arithmetic
computation and makes the translation of byte addresses to word addresses trivial.

13.3 Memory Management Unit And Address Space

Architects use the term Memory Management Unit (MMU) to describe an intelli-
gent memory controller. An MMU creates a virtual address space for the processor.
The addresses a processor uses are virtual addresses because the MMU translates each
address into an underlying physical memory. We classify the entire mechanism as a
virtual memory system because it is not part of the underlying physical memory.

Informally, to help distinguish virtual memory from physical memory, engineers
use the adjective real to refer to a physical memory. For example, they might use the
term real address to refer to a physical address, or the term real address space to refer
to the set of addresses recognized by the physical memory.

13.4 An Interface To Multiple Physical Memory Systems

An MMU that can map from byte addresses to underlying word addresses can be
extended to create more complex memory organizations. For example, Intel designed a
network processor that used two types of physical memory: SRAM and DRAM. Recall
that SRAM is faster than DRAM, but costs more, so the system had a smaller amount
of SRAM (intended for items that were accessed frequently) and a large amount of
DRAM (intended for items that were not accessed frequently). Furthermore, the SRAM
physical memory was organized with four bytes per word and the DRAM physical
memory was organized with eight bytes per word. Intel’s network processor used an
embedded RISC processor that could access both memories. More important, the RISC
processor used byte addressing. However, rather than using separate instructions or
operand types to access the two memories, the Intel design followed a standard
approach: it integrated both physical memories into a single virtual address space.

To implement a uniform virtual address space out of two dissimilar physical
memory systems, the memory controller must perform the necessary translations. In
essence, the MMU must supply an abstraction that hides details of the underlying
memory systems. Figure 13.1 illustrates the overall architecture.

www.ebook3000.com

http://www.ebook3000.org

Sec. 13.4 An Interface To Multiple Physical Memory Systems 253

physical
memory

#1

physical
memory

#2

physical
controller

physical
controller

MMU

processor

Figure 13.1 Illustration of an architecture in which two dissimilar memories
connect to a processor. The processor can use either memory.

In the figure, the processor connects to a Memory Management Unit. The MMU
receives memory requests from the processor, translates each request, and forwards the
request to the controller for physical memory 1 or to the controller for physical memory
2. The controllers for the two physical memories operate as described in Chapter 11 —
a controller accepts a request that specifies byte addressing, and translates the request
into operations that use word addressing.

How can the hardware in Figure 13.1 provide a virtual address space? The answer
is related to the memory banks described in Chapter 11. Conceptually, the MMU
divides the address space into two parts, which the MMU associates with physical
memory 1 and physical memory 2. For example, if each physical memory contains a
gigabyte (0x40000000 bytes) of RAM, the MMU can create a virtual address space that
maps addresses 0 through 0x3fffffff to the first memory and addresses 0x40000000
through 0x7fffffff to the second memory. Figure 13.2 illustrates the resulting virtual
memory system.

13.5 Address Translation Or Address Mapping

Each of the underlying memory systems in Figure 13.2 operates like an indepen-
dent physical memory — the hardware expects requests to reference addresses begin-
ning at zero. Thus, each of the two memories recognizes the same set of addresses.
For memory 1, the virtual addresses associated with the memory cover the same range
as the hardware expects. For memory 2, however, the processor generates virtual ad-
dresses starting at 0x40000000, so the MMU must map an address to the lower range
(i.e., real addresses 0 through 0x3fffffff) before passing a request to memory 2. We say
that the MMU translates the address.

254 Virtual Memory Technologies And Virtual Addressing Chap. 13

memory 1

memory 2

Virtual Address

0

0x3 f f f f f f f
0x40000000

0x7 f f f f f f f

Processor sees a

single contiguous

memory

Figure 13.2 Illustration of a virtual memory system that divides an address
space among two physical memories†. The MMU uses an ad-
dress to decide which memory to access.

Mathematically, the address mapping for memory 2 is straightforward: the MMU
merely subtracts 0x40000000 from an address. Figure 13.3 explains the concept.

Receive a virtual memory request from processor;
Let V be the address in the request;
if (V < 0x40000000) {

Pass the unmodified request (address V) to memory 1;
} else { /* map the address for memory 2 */

V2 = V – 0x40000000;
Pass the modified request (address V2) to memory 2;

}

Figure 13.3 The sequence of steps used by a Memory Management Unit to
create the virtual memory depicted in Figure 13.2. The MMU
maps the virtual address space onto two physical memories.

The point is:

An MMU can combine multiple underlying physical memory systems
to create a virtual address space that provides a processor with the il-
lusion of a single, uniform memory system. Because each underlying
memory uses addresses that start at zero, the MMU must translate
between the addresses generated by the processor and the addresses
used by each memory.

��������������������������������
†We have chosen to label an address space with address zero at the bottom; some documentation uses the

convention of placing zero at the top of the address space.

www.ebook3000.com

http://www.ebook3000.org

Sec. 13.5 Address Translation Or Address Mapping 255

13.6 Avoiding Arithmetic Calculation

In practice, an MMU does not use subtraction to implement address translation be-
cause subtraction requires substantial hardware (e.g., an ALU) and takes too much time
to perform for each memory reference. The solution consists of using powers of two to
simplify the hardware. For example, consider the mapping in Figure 13.2. Addresses 0
through 0x3fffffff map to memory 1, and addresses 0x40000000 through 0x7fffffff onto
memory 2. Figure 13.4 shows that when expressed in binary, the addresses occupy
thirty-one bits, and the ranges differ only in the high-order bit.

Addresses Values In Binary (31 bits)��
0 0
to to

0x3f f f f f f f 0 1

0x40000000 1 0
to to

0x7f f f f f f f 1

Figure 13.4 The binary values for addresses in the range 0 through 2 giga-
bytes. Except for the high-order bit, values above 1 gigabyte are
the same as those below.

As the example shows, choosing a power of two can eliminate the need for sub-
traction because low-order bits can be used as a physical address. In the example, when
mapping an address to one of the two underlying physical memories, an MMU can use
the high-order bit of an address to determine which physical memory should receive the
request. To form a physical address, the MMU merely extracts the remaining bits of
the virtual address.

To summarize:

Dividing a virtual address space on a boundary that corresponds to a
power of two allows the MMU to choose a physical memory and per-
form the necessary address translation without requiring arithmetic
operations.

13.7 Discontiguous Address Spaces

Figure 13.2 shows an example of a contiguous virtual address space, an address
space in which all addresses are mapped onto an underlying physical memory. That is,
the processor can reference any address from zero to the highest address because each
address corresponds to a location in one of the physical memories. Interestingly, most
computers are designed to be flexible — the physical memory is designed to allow the

256 Virtual Memory Technologies And Virtual Addressing Chap. 13

computer’s owner to determine how much memory to install. The computer contains
physical slots for memory, and the owner can choose to populate all the slots with
memory chips or leave some of the slots empty.

Consider the consequence of allowing an owner to install an arbitrary amount of
memory. Because it is defined when the computer is created, the virtual address space
includes an address for each possible physical memory location (i.e., addresses for the
maximum amount of memory that can be installed in the computer). If an owner de-
cides to omit some of the memory, part of the virtual address space becomes unusable
— if the processor references an address that does not correspond to physical memory,
an error results. The virtual address space is not contiguous because regions of valid
addresses are separated by invalid addresses. For example, Figure 13.5 shows how a
virtual address space might appear if the virtual address space is mapped onto two phy-
sical memories, and part of each physical memory is omitted.

memory 1

memory 2

Address

0

N/2– 1
N/2

N

Hole
(not present)

Hole
(not present)

Figure 13.5 Example of a noncontiguous virtual address space of N bytes
that is mapped onto two physical memories. Some addresses do
not correspond to physical memory.

When part of a virtual address space does not map onto physical memory, we say
that the address space contains a hole. In Figure 13.5, for example, the virtual address
space contains two holes†.

We can summarize:

A virtual address space can be contiguous, in which case every ad-
dress maps to a location of an underlying physical memory, or non-
contiguous, in which case the address space contains one or more
holes. If a processor attempts to read or write any address that does
not correspond to physical memory, an error results.

��������������������������������
†We will see further examples of address spaces that contain holes when we discuss I/O.

www.ebook3000.com

http://www.ebook3000.org

Sec. 13.7 Discontiguous Address Spaces 257

Many other possibilities exist for mapping a virtual address space onto physical
memories. For example, recall from Chapter 11 that the two low-order bits of an ad-
dress can be used to interleave memory among four separate physical memory modules
(i.e., banks), and the remaining bits of the address can be used to select a byte within a
module. One of the chief advantages of interleaving bytes among a set of modules
arises from the ability of underlying hardware to access separate physical memories
simultaneously. Using low-order bits to select a module means that successive bytes of
memory come from different modules. In particular, if a processor accesses a data item
composed of thirty-two bits, the underlying memory system can fetch all four bytes
simultaneously.

13.8 Motivations For Virtual Memory

The trivial examples above show that a memory system can present a processor
with a virtual address space that differs from the underlying physical memory. The rest
of the chapter explores more complex virtual memory schemes. In most cases, the
schemes incorporate and extend the concepts discussed above. We will learn that there
are four main motivations for the use of complex virtual memory:

d Homogeneous integration of hardware
d Programming convenience
d Support for multiprogramming
d Protection of programs and data

Homogeneous Integration Of Hardware. Our examples explain how a virtual
memory system can provide a homogeneous interface to a set of physical memories.
More important, the scheme allows heterogeneity in the underlying memories. For ex-
ample, some of the underlying physical memories can use a word size of thirty-two bits,
while others use a word size of sixty-four bits. Some of the memories can have a much
faster cycle time than others, or some of the memories can consist of RAM while others
consist of ROM. The MMU hides the differences by allowing the processor to access
all memories from a single address space.

Programming Convenience. One of the chief advantages of a virtual memory sys-
tem arises from the ease of programming. If separate physical memories are not in-
tegrated into a uniform address space, a processor needs special instructions (or special
operand formats) for each memory. Programming memory accesses becomes painful.
More important, if a programmer decides to move an item from one memory to another,
the program must be rewritten, which means that the decision cannot be made at run
time.

Support For Multiprogramming. Modern computer systems allow multiple appli-
cations to run at the same time. For example, a user who is editing a document can
leave a word processor open, temporarily launch a Web browser to check a reference,
and listen to music at the same time. The terms multiprogramming and multiprocessing
each characterize a computer system that allows multiple programs to run at the same

258 Virtual Memory Technologies And Virtual Addressing Chap. 13

time. We will see that a virtual memory system is needed to support multiprogram-
ming.

Protection Of Programs And Data. We said that a CPU uses modes of execution
to determine which instructions are allowed at any time. We will see that virtual
memory is inherently linked to a computer’s protection scheme.

13.9 Multiple Virtual Spaces And Multiprogramming

Early computer designers thought that multiprogramming was impractical. To
understand why, consider how an instruction set works. The operands that specify in-
direction each reference a memory address. If two programs are loaded into a single
memory and run at the same time, a conflict can occur if the programs attempt to use
the same memory location for two different purposes. Thus, programs can only run to-
gether if they are written to avoid using the same memory addresses.

The most common technology for multiprogramming uses virtual memory to estab-
lish a separate virtual address space for each program. To understand how a virtual
memory system can be used, consider an example. Figure 13.6 illustrates a straightfor-
ward mapping.

physical
memory

.

.

.

0

N / 4

N / 2

3 N / 4

N
virtual
space

4

M

0

virtual
space

3

M

0

virtual
space

2

M

0

virtual
space

1

M

0

Figure 13.6 Illustration of four partitions mapped onto a single physical
memory. Each virtual address space starts at address zero.

The mechanism in the figure divides the physical memory into equal-size areas that
are known as partitions. Partitioned memory systems were used on early mainframe

www.ebook3000.com

http://www.ebook3000.org

Sec. 13.9 Multiple Virtual Spaces And Multiprogramming 259

computers in the 1960s and 1970s, but have since been replaced. One of the main
drawbacks of partitioned memory is that the memory available to a given program is a
fraction of total physical memory on the computer. As Figure 13.6 illustrates, systems
that used partitioned memory typically divided memory into four partitions, which
meant that one-fourth of the total memory was dedicated to each program.

The diagram in Figure 13.6 implies that an MMU translates multiple virtual ad-
dress spaces onto a single physical memory. In practice, however, MMU hardware can
perform additional mappings. For example, an MMU can translate from virtual address
space 1 to an intermediate virtual address space, and then translate the intermediate vir-
tual address space onto one or more underlying physical memories (which may imple-
ment further translation from byte addresses to word addresses).

13.10 Creating Virtual Spaces Dynamically

How should a virtual memory system be created? In the simplistic examples
above, we implied that the mapping from virtual address space(s) to physical memories
is chosen when the hardware is built. Although some small, special-purpose systems
have the mappings designed into hardware, general-purpose computer systems usually
do not. Instead, the MMU in a general-purpose system can be changed dynamically at
run time. That is, when the system boots, the processor tells the MMU exactly how to
map the virtual address space onto the physical memory.

How can a program running on a processor change the address space and continue
to run? In general, the address space to be used is part of the processor mode. The
processor begins running in real mode, which means that the processor passes all
memory references directly to the physical memory without using the MMU. While
operating in real mode, the processor can interact with the MMU to establish a map-
ping. Once a mapping has been specified, the processor can execute an instruction that
changes the mode, enables the MMU, and branches to a specified location. The MMU
translates each memory reference according to the mapping that was configured.

The next sections examine technologies that have been used to create dynamic vir-
tual memory systems. We will consider three examples:

d Base-Bound Registers

d Segmentation

d Demand Paging

13.11 Base-Bound Registers

A mechanism known by the name base-bound is among the oldest and easiest
dynamic virtual memory schemes to understand. In essence, the base-bound scheme
creates a single virtual address space and maps the space onto a region of physical

260 Virtual Memory Technologies And Virtual Addressing Chap. 13

memory. The name refers to a pair of registers that are part of the MMU; both must be
loaded before the MMU is enabled. The base register holds an address in physical
memory that specifies where to map the virtual address space, and the bound register
holds an integer that specifies the size of the address space. Figure 13.7 illustrates the
mapping.

physical
memory

.

.

N

0

virtual
space

M

0

base
M

bound

Figure 13.7 Illustration of a virtual memory that uses a base-bound mecha-
nism. The base register specifies the location of the virtual ad-
dress space, and the bound register specifies the size.

13.12 Changing The Virtual Space

It may seem that a base-bound mechanism is uninteresting because it only provides
a single virtual address space. We must remember, however, that a base-bound mecha-
nism is dynamic (i.e., easy to change). The idea is that an operating system can use the
base-bound mechanism to move among multiple virtual address spaces. For example,
suppose the operating system has loaded two application programs at different locations
in memory. The operating system, which runs in real mode, controls the MMU. When
an application, A, is ready to run, the operating system configures the MMU to point to
A’s section of the memory, enables the MMU mapping, and branches to the application.
Later, when control returns to the operating system, the operating system selects another
application to run, B, configures the MMU to point to B’s memory, enables the MMU,
and branches to the code for B. Each application’s virtual address space starts at zero;
the application remains unaware of its location in physical memory.

The point is that an operating system can use a base-bound mechanism to provide
as much functionality as the static virtual memory mechanisms considered earlier. We
can summarize:

www.ebook3000.com

http://www.ebook3000.org

Sec. 13.12 Changing The Virtual Space 261

A base-bound mechanism uses two values in the MMU to specify how
a virtual address space maps onto the physical address space. The
base-bound mechanism is powerful because an operating system can
change the mapping dynamically.

13.13 Virtual Memory And Protection

Why is a bound register used in the base-bound approach? The answer is protec-
tion: although a base register is sufficient to establish the mapping from virtual address
to physical address, the mapping does not prevent a program from accidentally or mali-
ciously referencing arbitrarily large memory locations. In Figure 13.7, for example, ad-
dresses higher than M lie beyond the region allocated to the program (i.e., the addresses
may be allocated to another application).

The base-bound scheme uses the bound register to guarantee that a program will
not exceed its allocated space. Of course, to implement protection, the MMU must
check each memory reference and raise an error if the program attempts to reference an
address greater than M. The protection offered by a base-bound mechanism provides an
example of an important concept:

A virtual memory system that supports multiprogramming must also
provide protection that prevents one application from reading or
altering memory that has been allocated to another application.

13.14 Segmentation

The memory mappings described above are intended to map a complete address
space (i.e., all memory that is needed for an application to run, including the compiled
program and the data the program uses). We say that a virtual memory technology that
maps an entire address space is a coarse granularity mapping. The alternative, which
consists of mapping parts of an address space, is known as a fine granularity mapping.

To understand the motivation for a fine granularity mapping, consider a typical ap-
plication program. The program consists of a set of functions, and flow passes from
one function to another through a procedure call. Early computer architects observed
that although memory was a scarce resource, coarse granularity virtual systems required
an entire application to occupy memory. Most of the memory was unused because only
one function was actively executing at any time.

To reduce the amount of memory needed, the architects proposed that each pro-
gram be divided into variable-size blocks, and only the blocks of the program that are
needed at any time be loaded in memory. That is, pieces of the program are kept on an
external storage device, typically a disk, until one of them is needed. At that time, the
operating system finds an unused region of memory that is large enough, and loads the
piece into memory. The operating system then configures the MMU to establish the

262 Virtual Memory Technologies And Virtual Addressing Chap. 13

mapping between the virtual addresses that the piece uses and the physical addresses
used to hold the piece. When a program piece is no longer used, the operating system
copies the piece back to disk, thereby making the memory available for another piece.

The variable-size piece scheme is known as segmentation, and the pieces of pro-
grams are known as segments. Once proposed, segmentation generated many questions.
What hardware support would be needed to make segmentation efficient? Should the
hardware dictate an upper bound on the size of a segment?

After much research and a few hardware experiments, segmentation faded. The
central problem with segmentation arises after an operating system begins to move
blocks in and out of memory. Because segments are variable size, the memory tends
toward a situation in which the unused memory is divided into many small blocks.
Computer scientists use the term fragmentation to describe the situation, and say that
the memory becomes fragmented†. We can summarize:

Segmentation refers to a virtual memory scheme in which programs
are divided into variable-size blocks, and only the blocks currently
needed are kept in memory. Because it leads to a problem known as
memory fragmentation, segmentation is seldom used.

13.15 Demand Paging

An alternative to segmentation was invented that has become extremely successful.
Known as demand paging, the technique follows the same general scheme as segmenta-
tion: divide a program into pieces, keep the pieces on external storage until they are
needed, and load an individual piece when the piece is referenced.

The most significant difference between demand paging and segmentation lies in
how the program is divided. Instead of variable-size segments that are large enough to
hold a complete function, demand paging uses fixed-size blocks called pages. Initially,
when memories and application programs were much smaller, architects chose a page
size of 512 bytes or 1 Kbyte; current architectures use larger page sizes (e.g., Intel pro-
cessors use 4 Kbyte pages).

13.16 Hardware And Software For Demand Paging

A combination of two technologies is needed for an effective virtual memory sys-
tem that supports demand paging:

d Hardware to handle address mapping efficiently, record when
each page is used, and detect missing pages

d Software to configure the hardware, monitor page use, and
move pages between external store and physical memory

��������������������������������
†To avoid memory fragmentation, some architects experimented with larger, fixed-size segments (e.g., 64

Kbytes per segment).

www.ebook3000.com

http://www.ebook3000.org

Sec. 13.16 Hardware And Software For Demand Paging 263

Demand Paging Hardware. Technically, the hardware architecture provides an ad-
dress mapping mechanism and allows software to handle the demand aspect. That is,
software (usually an operating system) configures the MMU to specify which pages
from a virtual address space are present in memory and where each page is located.
Then, the operating system runs an application that uses the virtual address space that
has been configured. The MMU translates each memory address until the application
references an address that is not available (i.e., an address on one of the pages that is
not present in memory).

A reference to a missing page is called a page fault, and is treated as an error con-
dition (e.g., like a division by zero). That is, instead of fetching the missing page from
external storage, the hardware merely informs the operating system that a fault has oc-
curred and allows the operating system to handle the problem. Typically the hardware
is arranged to raise an exception. The hardware saves the current state of the computa-
tion (including the address of the instruction that caused the fault), and then uses the ex-
ception vector. Thus, from the operating system’s point of view, a page fault acts like
an interrupt. Once the fault has been handled, the operating system can instruct the pro-
cessor to restart execution at the instruction that caused the fault.

Demand Paging Software. Software in the operating system is responsible for
management of the memory: software must decide which pages to keep in memory and
which to keep on external storage. More important, the software fetches pages on
demand. That is, once the hardware reports a page fault, paging software takes over.
The software identifies the page that is needed, locates the page on secondary storage,
locates a slot in memory, reads the page into memory, and reconfigures the MMU.
Once the page has been loaded, the software resumes executing the application, and the
fetch-execute cycle continues until another page fault occurs.

Of course, the paging hardware and software must work together. For example,
when a page fault occurs, the hardware must save the state of the computation in such a
way that the values can be reloaded later when execution resumes. Similarly, the
software must understand exactly how to configure the MMU.

13.17 Page Replacement

To understand paging, we must consider what happens after a set of applications
has been running a long time. As applications reference pages, the virtual memory sys-
tem moves the pages into memory. Eventually, the memory becomes full. The operat-
ing system knows when a page is needed because the application references the page.
A difficult decision involves selecting one of the existing pages to evict to make space
for an incoming page. Moving a page between external storage and memory takes time,
so performance is optimized by choosing to move a page that will not be needed in the
near future. The process is known as page replacement.

Because page replacement is handled by software, the discussion of algorithms and
heuristics is beyond the scope of this text. We will see, however, that the hardware pro-
vides mechanisms that assist the operating system in making a decision.

264 Virtual Memory Technologies And Virtual Addressing Chap. 13

13.18 Paging Terminology And Data Structures

The term page refers to a block of a program’s address space, and the term frame
refers to a slot in physical memory that can hold a page. Thus, we say that software
loads a page into a frame of memory. When a page is in memory, we say that the page
is resident, and the set of all pages from an address space that are currently in memory
is called the resident set.

The primary data structure used for demand paging is known as a page table. The
easiest way to envision a page table is to imagine a one-dimensional array that is in-
dexed by a page number. That is, entries in the table have index zero, one, and so on.
Each entry in the page table either contains a null value (if the page is not resident) or
the address of the frame in physical memory that currently holds the page. Figure 13.8
illustrates a page table.

physical memory
divided into frames

N

0

page
table

P

0

Figure 13.8 Illustration of an active page table with some entries pointing to
frames in memory. A null pointer in a page table entry (denoted
by Λ) means the page is not currently resident in memory.

13.19 Address Translation In A Paging System

Items in Figure 13.8 correspond to frames, not individual words. To understand
paging hardware, imagine an address space divided into fixed-size pages as Figure 13.9
illustrates.

www.ebook3000.com

http://www.ebook3000.org

Sec. 13.19 Address Translation In A Paging System 265

address
space

.

.

.

.

.

.

0

K–1
K

2K–1
2K

3K–1

Page 0

Page 1

Page 2

Figure 13.9 Illustration of a virtual address space divided into pages of K
bytes per page.

We will see that the addresses associated with each page are important. As the fig-
ure shows, if each page contains K bytes, bytes on page zero have addresses zero
through K–1, bytes on page 1 have addresses K through 2K–1, and so on.

Conceptually, translation of a virtual address, V, to a corresponding physical ad-
dress, P, requires three steps:

1. Determine the number of the page on which address V lies.

2. Use the page number as an index into the page table to find
the location of the frame in memory that holds the page.

3. Determine how far into the page V lies, and move that far into
the frame in memory.

Figure 13.9 illustrates how addresses are associated with pages. Mathematically,
the page number on which an address lies, N, can be computed by dividing the address
by the number of bytes per page, K:

page_number = N =
�
�
�

K
V�� �

�
�

(13.1)

Similarly, the offset of the address within the page, O, can be computed as the
remainder of the division†.

offset = O = V modulo K (13.2)

Thus, a virtual address, V, is translated to a corresponding physical address, P, by
using the page number and offset, N and O, as follows:

physical_address = P = pagetable [N] + O (13.3)

��������������������������������
†Note that the computation of a byte address within a page is similar to the computation of a byte address

within a word discussed on page 212.

266 Virtual Memory Technologies And Virtual Addressing Chap. 13

13.20 Using Powers Of Two

As Chapter 11 discusses, an arithmetic operation, such as division, is too expensive
to perform on each memory reference. Therefore, like other parts of a memory system,
a paging system is designed to avoid arithmetic computation. The number of bytes per
page is chosen to be a power of two, 2q, which means that the address of the first byte
in each frame has q low-order bits equal to zero. Interestingly, because the low-order
bits of a frame address are always zero, a page table does not need to store a full ad-
dress. The consequence of using a power of two is that the division and modulo opera-
tions specified in the mathematical equations can be replaced by extracting bits. Furth-
ermore, the addition operation can be replaced by a logical or. As a result, instead of
using Equations 13.1 through 13.3, the MMU performs the following computation to
translate a virtual address, V, into a physical address, P:

P = pagetable[high_order_bits(V)] or low_order_bits (V) (13.4)

Figure 13.10 illustrates how MMU hardware performs a virtual address mapping.
When considering the figure, remember that hardware can move bits in parallel. Thus,
the arrow that points from the low-order bits in the virtual address to the low-order bits
in the physical address represents a parallel data path — the hardware sends all the bits
at the same time. Also, the arrow from the page table entry to the high-order bits in the
physical address means that all bits from the page table entry can be transferred in
parallel.

page table

ON

virtual address

F O

physical address

F

Figure 13.10 Illustration of how an MMU performs address translation on a
paging system. Making the page size a power of two elim-
inates the need for division and remainder computation.

www.ebook3000.com

http://www.ebook3000.org

Sec. 13.20 Using Powers Of Two 267

13.21 Presence, Use, And Modified Bits

Our description of paging hardware omits several details. For example, in addition
to a value that specifies the frame in which a page is located, each page table entry con-
tains control bits that the hardware and software use to coordinate. Figure 13.11 lists
three control bits found in most paging hardware.

Control Bit Meaning���
Presence bit Tested by hardware to determine whether

page is currently resident in memory
Use bit Set by hardware whenever page is referenced
Modified bit Set by hardware whenever page is changed

Figure 13.11 Examples of control bits found in each page table entry and the
actions hardware takes with each. The bits are intended to as-
sist the page replacement software in the operating system.

Presence Bit. The most straightforward control bit is called a presence bit, which
specifies whether the page is currently in memory. The bit is set by software and tested
by the hardware. Once it has loaded a page and filled in other values in the page table
entry, the operating system sets the presence bit to one; when it removes a page from
memory, the operating system sets the presence bit to zero. When it translates an ad-
dress, the MMU examines the presence bit in the page table entry — if the presence bit
is one, translation proceeds, and if the presence bit is zero, the hardware declares a page
fault has occurred.

Use Bit. The use bit, which provides information needed for page replacement, is
initialized to zero and later tested by software. The bit is set by hardware. The mecha-
nism is straightforward: whenever it accesses a page table entry, the MMU sets the use
bit to one. The operating system periodically sweeps through the page table, testing the
use bit to determine whether the page has been referenced since the last sweep. A page
that has not been referenced becomes a candidate for eviction; otherwise, the operating
system clears the use bit and leaves the page for the next sweep.

Modified Bit. The modified bit is initialized and later tested by software. The bit
is set by hardware. The paging software sets the bit to zero when a page is loaded.
The MMU sets the bit to one whenever a write operation occurs to the page. Thus, the
modified bit is one if any byte on the page has been written since the page was loaded.
The value is used during page replacement — if a page is selected for eviction, the
value of the modified bit tells the operating system whether the page must be written
back to external storage or can be discarded (i.e., whether the page is identical to the
copy on external storage).

268 Virtual Memory Technologies And Virtual Addressing Chap. 13

13.22 Page Table Storage

Where do page tables reside? Some systems store page tables in a special MMU
chip that is external from the processor. Of course, because memory references play an
essential role in processing, the MMU must be designed to work efficiently. In particu-
lar, to ensure that memory references do not become a bottleneck, some processors use
a special-purpose, high-speed hardware interface to access an MMU. The interface con-
tains parallel wires that allow the processor and MMU to send many bits at the same
time.

Surprisingly, many processors are designed to store page tables in memory! That
is, the processor (or the MMU) contains a special purpose register that the operating
system uses to specify the location of the current page table. The location of a page
table must be specified by giving a physical address. Typically, such systems are
designed to divide memory into three regions as Figure 13.12 illustrates.

operating
system

page
tables frame storage

memory

Figure 13.12 Illustration of how physical memory might be divided in an ar-
chitecture that stores page tables in memory. A large area of
physical memory is reserved for frames.

The design in the figure illustrates one of the motivations for a memory system
composed of heterogeneous technologies: because page tables are used frequently, the
memory used to store page tables needs high performance (e.g., SRAM). However, be-
cause high performance memory is expensive, overall cost can be reduced by using a
lower-cost memory (e.g., DRAM) to store frames. Thus, an architect can design a sys-
tem that uses SRAM to hold page tables and DRAM for frame storage.

13.23 Paging Efficiency And A Translation Lookaside Buffer

A central question underlies all virtual memory architectures: how efficient is the
resulting system? To understand the question, it is important to realize that address
translation must be performed on every memory reference: each instruction fetch, each
operand that references memory, and each store of a result. Because memory is so
heavily used, the mechanisms that implement address translation must be extremely ef-
ficient or translation will become a bottleneck. Architects are primarily concerned with
the amount of time the MMU uses to translate a virtual address to a physical address;
they are less concerned with the amount of time it takes for the operating system to
configure page tables.

www.ebook3000.com

http://www.ebook3000.org

Sec. 13.23 Paging Efficiency And A Translation Lookaside Buffer 269

One technique used to optimize the performance of a demand paging system stands
out as especially important. The technique uses special, high-speed hardware known as
a Translation Lookaside Buffer (TLB) to achieve faster page table lookups. A TLB is a
form of Content Addressable Memory that stores recently used values from a page
table. When it first translates an address, the MMU places a copy of the page table en-
try in the TLB. On successive lookups, the hardware performs two operations in paral-
lel: the standard address translation steps depicted in Figure 13.10 and a high-speed
search of the TLB. If the requested information is found in the TLB, the MMU aborts
the standard translation and uses the information from the TLB. If the entry is not in
TLB, the standard translation proceeds.

To understand why a TLB improves performance, consider the fetch-execute cycle.
A processor tends to fetch instructions from successive locations in memory. Further-
more, if the program contains a branch, probability is extremely high that the destina-
tion will be nearby, probably on the same page. Thus, rather than randomly accessing
pages, a processor tends to fetch successive instructions from the same page. A TLB
improves performance because it optimizes successive lookups by avoiding indexing
into a page table. The difference in performance is especially dramatic for architectures
that store page tables in memory; without a TLB, such systems are too slow to be use-
ful. We can summarize:

A special high-speed hardware device, called a Translation Lookaside
Buffer (TLB), is used to optimize performance of a paging system. A
virtual memory that does not have a TLB can be unacceptably slow.

13.24 Consequences For Programmers

Experience has shown that demand paging works well for most computer pro-
grams. The code that programmers produce tends to be organized into functions that
each fit onto a page. Similarly, data objects, such as character strings, are designed so
the data occupies consecutive memory locations, which means that once a page has
been loaded, the page tends to remain resident for multiple references. Finally, some
compilers understand paging, and optimize performance by placing data items onto
pages.

One way that programmers can affect virtual memory performance arises from ar-
ray access. Consider a two-dimensional array in memory. Most programming systems
allocate an array in row-major order, which means that rows of an array are placed in
contiguous memory as Figure 13.13 illustrates.

row 0 row 1 row 2 row 3 row 4 row 5 row N

. . .

Figure 13.13 An illustration of a two-dimensional array stored in row-major
order. A row is contiguous in memory.

270 Virtual Memory Technologies And Virtual Addressing Chap. 13

As the figure shows, rows of the matrix occupy successive locations in memory.
Thus, if A is a two-dimensional array of bytes, the location of A [i , j] is given by:

location(A) + i×Q + j

where Q is the number of bytes per row.

The chief alternative to row-major order is known as column-major order. When
an array is stored in column-major order, the elements of a column occupy contiguous
memory locations. The choice between row-major or column-major order is usually
determined by the programming language and compiler, not by a programmer.

A programmer can control how a program iterates through an array, and a good
choice can optimize virtual memory performance. For example, if a large array of char-
acters, A[N,M], is stored in row-major order, the nested loops shown here:

for i = 1 to N {
for j = 1 to M {

A [i, j] = 0;
}

}

will require less time to execute than a loop that varies the indices in the opposite order:

for j = 1 to M {
for i = 1 to N {

A [i, j] = 0;
}

}

The difference in time arises because varying the row index will force the virtual
memory system to move from one page of memory to another for each reference, but
varying the column index means M successive references stay on the same page.

13.25 The Relationship Between Virtual Memory And Caching

Two of the key technologies in virtual memory systems are related to caching: a
TLB and the demand page relacement. Recall that a TLB consists of a small, high-
speed hardware mechanism that improves the performance of a demand paging system
dramatically. In fact, a TLB is nothing more than a cache of address mappings: when-
ever it looks up a page table entry, the MMU stores the entry in the TLB. A successive
lookup for the same page will receive an answer from the TLB.

Like many cache systems, a TLB usually uses the Least Recently Used replace-
ment strategy. Conceptually, when an entry is referenced, the TLB moves the entry to
the front of the list; when a new reference occurs and the cache is full, the TLB discards

www.ebook3000.com

http://www.ebook3000.org

Sec. 13.25 The Relationship Between Virtual Memory And Caching 271

the page table entry on the back of the list to make space for the new entry. Of course,
the TLB cannot afford to keep a linked list in memory. Instead, the TLB contains digi-
tal circuits that move values into a special-purpose Content Addressable Memory (CAM)
at high speed.

Demand paging can be viewed as a form of caching. The cache corresponds to
main memory, and the data store corresponds to the external storage where pages are
kept until needed. Furthermore, the page replacement policy serves as a cache replace-
ment policy. In face, paging borrows the phrase replacement policy from caching.

Interestingly, thinking of demand paging as a cache can help us understand an im-
portant concept: how a virtual address space can be much larger than physical memory.
Like a cache, physical memory only holds a fraction of the total pages. From our
analysis of caching, we know that the performance of a demand-paged virtual memory
can approach the performance of physical memory. In other words:

The analysis of caching in the previous chapter shows that using
demand paging on a computer system with a small physical memory
can perform almost as well as if the computer had a physical memory
large enough for the entire virtual address space.

13.26 Virtual Memory Caching And Cache Flush

If caching is used with virtual memory, should the cache be placed between the
processor and the MMU or between the MMU and physical memory? That is, should
the memory cache store pairs of virtual address and contents or physical address and
contents? The answer is complex. On the one hand, using virtual addresses increases
memory access speed because the cache can respond before the MMU translates the vir-
tual address into a physical address. On the other hand, a cache that uses virtual ad-
dresses needs extra hardware that allows the cache to interact with the virtual memory
system. To understand why, observe that a virtual memory system usually supplies the
same address range to each running application (i.e., each process has addresses that
start at zero). Now consider what happens when the operating system performs a con-
text switch that stops running one process and runs another process. Suppose the
memory cache contains an entry for address 2000 before the switch occurs. If the cache
is unchanged during the context switch and the new process accesses location 2000, the
cache will return the value from location 2000 in the old process. Therefore, when it
changes from one process to another, the operating system must also change items in
the cache.

How can a cache be engineered to avoid the problem of ambiguity that occurs
when multiple processes use the same range of addresses? Architects use two solutions:

d A cache flush operation

d A disambiguating identifier

272 Virtual Memory Technologies And Virtual Addressing Chap. 13

Cache Flush. One way to ensure that a cache does not report incorrect values con-
sists of removing all existing entries from the cache. We say that the cache is flushed.
In architectures that use flushing, the operating system must flush the cache whenever it
performs a context switch to move from one application to another.

Disambiguation. The alternative to cache flushing involves the use of extra bits
that identify the running process (or more precisely, the address space). The processor
contains an extra hardware register that contains an address space ID. Many operating
systems create an address space for each associated process, and use the process ID (an
integer) to identify an address space. Whenever it switches to an application, the
operating system loads the application’s process ID into the address space ID register.
As Figure 13.14 shows, the cache prepends the contents of the ID register onto the vir-
tual address when it stores an item in the cache, which means that even if process 1 and
process 2 both reference address 0, the two entries in the cache will differ.

address used by cache

ID virtual address

Figure 13.14 Illustration of an ID register used to disambiguate among a set
of virtual address spaces. Each address space is assigned a
unique number, which the operating system loads into the ID
register.

As the figure illustrates, the cache is designed to use a longer address than the
memory system. Before passing a request to the cache, the processor creates an artifi-
cially long address by concatenating a virtual address onto the process ID. The proces-
sor then passes the longer address to the cache. From the cache’s point of view, there is
no ambiguity: even if two applications reference the same virtual address, the ID bits
distinguish between the two addresses.

13.27 Summary

Virtual memory systems present an abstract address space to a processor and to
each application program running on the processor. A virtual memory system hides de-
tails of the underlying physical memory.

Several virtual memory architectures are possible. The virtual memory system can
hide details of word addressing or can present a uniform address space that incorporates
multiple, possibly heterogeneous, memory technologies.

www.ebook3000.com

http://www.ebook3000.org

Sec. 13.27 Summary 273

Virtual memory offers convenience for programmers, support for multiprogram-
ming, and protection. When multiple programs run concurrently, virtual memory can
be used to provide each program with an address space that begins at zero.

Virtual memory technologies include base-bound, segmentation, and demand pag-
ing; demand paging is the most popular. A demand paging system uses page tables to
map from a virtual address to a physical address; a high-speed search mechanism
known as a TLB makes page table lookup efficient.

To avoid arithmetic computation, virtual memory systems make physical memory
and page sizes a power of two. Doing so allows the hardware to translate addresses
without using arithmetic or logical operations.

Either physical or virtual addresses can be cached. If a cache uses virtual ad-
dresses, an ambiguity problem can arise when multiple applications (processes) use the
same range of virtual addresses. Two techniques can be used to solve the ambiguity
problem: the operating system can flush the cache whenever it switches from one appli-
cation to another, or the cache hardware can be designed to use artificially long ad-
dresses where the high-order bits consist of an address space ID (typically, a process
ID).

EXERCISES

13.1 Consider a computer using the virtual address space illustrated in Figure 13.2. If a C
programmer writes:

cchhaarr cc;;
cchhaarr **pp;;

pp == ((cchhaarr **))11007733774411882266;;
cc == **pp;;

Which memory module will be referenced, and where in the module will the referenced
byte be located within the memory?

13.2 A traditional Intel PC has a hole in its memory address space between 640 kilobytes and
1 megabyte. Use Figure 13.5 as an example, and draw a figure to scale showing the
hole in a PC address space if the PC has 2 megabytes of memory.

13.3 Which of the four motivations for virtual memory help programmers? Explain.

13.4 Does demand paging require special hardware or special software? Explain.

13.5 Conceptually, a page table is an array. What is found in each element of the page table
array, and how is it interpreted?

13.6 Consider the presence, use, and modified bits. For each bit, tell when the bit changes
and whether the hardware or software makes the change.

13.7 Assuming a page size of 4K bytes, compute the page number and the offset for ad-
dresses 100, 1500, 8800, and 10000.

274 Virtual Memory Technologies And Virtual Addressing Chap. 13

13.8 Write a computer program that takes two input values, a page size and an address, and
computes the page number and offset for the address.

13.9 Extend the program in the previous exercise. If the page size is a power of two, do not
use division or modulus operations when computing the answer.

13.10 Calculate the amount of memory needed to hold an example page table. Assume that
each page table entry occupies thirty-two bits, the page size is 4 Kbytes, and a memory
address occupies thirty-two bits.

13.11 Write a computer program that takes as input a page size and an address space size, and
performs the calculation in the previous exercise. (You may restrict sizes to powers of
two.)

13.12 What is page replacement, and is it performed by hardware or software?

13.13 Consider a two-level paging scheme. Assume the high-order ten bits of an address are
used as an index into a directory table to select a page table. Assume each page table
contains 1024 entries and the next ten bits of the address are used to select a page table
entry. Also assume the final twelve bits of the address are used to select a byte on the
page. How much memory is required for the directory table and page tables?

13.14 What is a TLB, and why is it necessary?

13.15 Write a program that references all locations in a large two-dimensional array stored in
row-major order. Compare the execution times when the program iterates through rows
and touches each column within a row to the time required when the program iterates
through all columns and touches each row within a column. Explain the results.

13.16 If a memory system caches virtual addresses and each process has a virtual address
space that starts at zero, what must an operating system do when changing from one pro-
cess to another? Why?

www.ebook3000.com

http://www.ebook3000.org

Part IV

Input And Output
External Connections
And Data Movement

www.ebook3000.com

http://www.ebook3000.org

Chapter Contents

14.1 Introduction, 279
14.2 Input And Output Devices, 279
14.3 Control Of An External Device, 280
14.4 Data Transfer, 281
14.5 Serial And Parallel Data Transfers, 281
14.6 Self-Clocking Data, 282
14.7 Full-Duplex And Half-Duplex Interaction, 282
14.8 Interface Throughput And Latency, 283
14.9 The Fundamental Idea Of Multiplexing, 283
14.10 Multiple Devices Per External Interface, 285
14.11 A Processor’s View Of I/O, 285
14.12 Summary, 285

www.ebook3000.com

http://www.ebook3000.org

14

Input / Output Concepts And
Terminology

14.1 Introduction

Previous chapters of the text describe two of the major components found in a
computer system: processors and memories. In addition to describing technologies used
for each component, the chapters illustrate how processors and memory interact.

This chapter introduces the third major aspect of architecture, connections between
a computer and the external world. We will learn that on most computers, the connec-
tion between a processor and an I/O device uses the same basic paradigm as the con-
nection between a processor and memory. Furthermore, we will see that although they
operate under control of a processor, I/O devices can interact directly with memory.

14.2 Input And Output Devices

The earliest electronic computers, which consisted of a numerical processor plus a
memory, resembled a calculator more than a modern computer. The human interface
was crude — values were entered through a set of manual switches, and results of cal-
culations were viewed through a series of lights. By the late 1940s, it had become ob-
vious that better interfaces were needed before digital computers could be useful for
more than basic calculations. Engineers began devising ways to connect computers to
external devices, which became known as Input and Output (I/O) devices. Modern I/O
devices include cameras, earphones, and microphones, as well as keyboards, mice, mon-
itors, sensors, hard disks, DVD drives and printers.

279

280 Input / Output Concepts And Terminology Chap. 14

14.3 Control Of An External Device

The earliest external devices attached to computers consisted of independent units
that operated under control of the CPU. That is, an external device usually occupied a
separate physical cabinet, had an independent source of electrical power, and contained
internal circuitry that was separate from the computer. The small set of wires that con-
nected the computer to the external device, only carried control signals (i.e., signals
from the digital logic in the computer to the digital logic in the device). Circuitry in the
device monitored the control signals, and changed the device accordingly.

Many early computers provided a set of lights that displayed values. Typically, the
display contained one light for each bit in the computer’s accumulator — the light was
on when the bit was set to one, and off when the bit was zero. However, it is not possi-
ble to connect a light bulb directly to the accumulator circuit because even a small light
bulb requires more power than a digital circuit can deliver. Therefore, a display unit
contains circuitry that receives a set of digital logic signals and controls a set of light
bulbs accordingly. Figure 14.1 illustrates how the hardware is organized.

external device

processor

circuit

... ...

to power source

digital signals

electrical signals lights

Figure 14.1 Example of an external circuit that controls a set of lights. The
device contains circuitry that converts incoming digital logic sig-
nals into the signals needed to operate a set of light bulbs.

As the figure illustrates, we think of an external device as independent from the
processor except for digital signals that pass between them. In practice, of course, some
devices reside in the same enclosure with the processor, and both receive power from a
common source. We will ignore such details and concentrate on the control signals.

A computer interacts with a device in two ways: the computer controls a device
and the computer exchanges data with a device. For example, a processor can start a
disk spinning, control the volume on an external speaker, tell a camera to snap a pic-
ture, or turn off a printer. In the next chapter, we will learn how a computer passes
control information to external devices.

www.ebook3000.com

http://www.ebook3000.org

Sec. 14.4 Data Transfer 281

14.4 Data Transfer

Although control of external devices is essential, for most devices, control func-
tions are secondary. The primary function of external devices is data transfer. Indeed,
most of the architectural choices surrounding external devices focus on mechanisms that
permit the device and processor to exchange data.

We will consider several questions regarding data transfer. First, exactly how is
data communicated? Second, which side initiates transfer (i.e., does the processor re-
quest a transfer or does the device)? Third, what techniques and mechanisms are
needed to enable high-speed transfers?

Other questions that are less pertinent to programmers concern low-level details.
What voltages are used to communicate with an external device, and how is data
represented? The answers depend on the type of device, the speed with which data
must be transferred, the type of cabling used, and the distance between the processor
and the device. However, as Figure 14.1 illustrates, the digital signals used internally
by a processor are insufficient to drive circuits in an external device.

Because the voltages and encodings used for external connections differ from those
used internally, special hardware is needed to translate between the two representations.
We use the term interface controller to refer to the hardware that provides the interface
to an external device. Figure 14.2 illustrates that interface controllers are needed at
both ends of a physical connection.

processor device

controller controller

external
connection

Figure 14.2 Illustration of controller hardware on each end of an external
connection. The voltages and signals used on the external con-
nection can differ from the voltages used internally.

14.5 Serial And Parallel Data Transfers

All the I/O interfaces on a computer can be classified in two broad categories:

d Parallel interface
d Serial interface

Parallel Interface. An interface between a computer and an external device is clas-
sified as parallel if the interface allows the transfer of multiple bits of data simultane-

282 Input / Output Concepts And Terminology Chap. 14

ously. In essence, a parallel interface contains many wires — at any instant, each wire
carries one bit of data.

We use the term interface width to refer to the number of parallel wires an inter-
face uses. Thus, one might hear an engineer talk about an eight-bit interface or a
sixteen-bit interface. We will learn more about how interfaces use parallel wires in the
next chapter.

Serial Interface. The alternative to a parallel interface is one in which only one bit
of data can be transferred at any time; an interface that transfers one bit at a time is
classified as serial.

The chief advantages of a serial interface are fewer wires and less interference
from signals traveling at the same time. In principle, only two wires are needed for
serial data transmission — one to carry the signal and a second to serve as an electrical
ground against which voltage can be measured. The chief disadvantage of a serial inter-
face arises from increased latency: when sending multiple bits, serial hardware must
wait until one bit has been sent before sending another.

14.6 Self-Clocking Data

Recall that digital circuits operate according to a clock, a signal that pulses con-
tinuously. Clocks are especially significant for I/O because each I/O device and pro-
cessor can have a separate clock rate (i.e., each controller can have its own clock).
Thus, one of the most significant aspects of an external interface concerns how the in-
terface accommodates differences in clock rates.

The term self-clocking describes a mechanism in which signals sent across an inter-
face contain information that allows the receiver to determine exactly how the sender
encoded the data. For example, some external devices use a method similar to the
clockless logic mechanism that Chapter 2 describes†. Others employ an extra set of
wires that pass clocking information: when transmitting data, the sender uses the extra
wires to inform the receiver about the location of bit boundaries in the data.

14.7 Full-Duplex And Half-Duplex Interaction

Many external I/O devices provide bidirectional transfer which means the proces-
sor can send data to the device or the device can send data to the processor. For exam-
ple, a disk drive supports both read and write operations. Interface hardware uses two
methods to accommodate bidirectional transfer:

d Full-duplex interaction
d Half-duplex interaction

Full-Duplex Interaction. An interface that allows transfer to proceed in both direc-
tions simultaneously is known as a full-duplex interface. In essence, full-duplex

��������������������������������
†The description of clockless logic can be found on page 37.

www.ebook3000.com

http://www.ebook3000.org

Sec. 14.7 Full-Duplex And Half-Duplex Interaction 283

hardware consists of two parallel devices with two independent sets of wires connecting
them. One set is used to transfer data in each direction.

Half-Duplex Interaction. The alternative to a full-duplex interface, known as a
half-duplex interface, only allows transfer to proceed in one direction at a time. That is,
a single set of wires that connects the processor and the external device must be shared.
In the next chapter, we will see that sharing requires negotiation — before it can per-
form a transfer, a processor or device must wait for the current transfer to finish, and
must obtain exclusive use of the underlying wires.

14.8 Interface Throughput And Latency

The throughput of an interface is measured in the number of bits that can be
transferred per unit time, and is usually measured in Megabits per second (Mbps) or
Megabytes per second (MBps). It may seem that a serial interface would always have a
lower throughput because serial transmission only transfers one bit at a time, whereas a
parallel interface can transfer multiple bits at the same time. However, when parallel
wires are close together, the data rate must be limited or electromagnetic interference
can result. Therefore, in some cases, engineers have been able to send bits over a serial
interface with higher throughput than a parallel interface.

The second major measure of an interface is latency. Latency refers to the delay
between the time a bit is sent and the time the bit is received (i.e., how long it takes to
transfer a single bit), which is usually measured in nanoseconds (ns). As we have seen
with memories, we must be careful to distinguish between latency and throughput be-
cause some devices need low latency and others need high throughput.

We can summarize:

The latency of an interface is a measure of the time required to per-
form a transfer, the throughput of an interface is a measure of the
data that can be transferred per unit time.

14.9 The Fundamental Idea Of Multiplexing

It may seem that choosing an interface is trivial: we want full-duplex, low latency,
and high throughput. Despite the desire for high performance, many other factors make
the choice of interfaces complex. Recall, for example, each integrated circuit has a
fixed number of pins that provide external connections. A wider interface uses more
pins, which means fewer pins for other functions. An interface that provides full-duplex
capability uses approximately twice as many pins as an interface that provides half-
duplex capability.

Most architects choose a compromise for external connections. The connection has
limited parallelism, and the hardware uses a technique known as multiplexing to send

284 Input / Output Concepts And Terminology Chap. 14

data. Although details are complex, the concept of multiplexing is easy to understand.
The idea is that the hardware breaks a large data transfer into pieces and sends one
piece at a time. We use the terms multiplexor and demultiplexor to describe the
hardware that handles data multiplexing. For example, Figure 14.3 illustrates how mul-
tiplexing hardware can divide sixty-four bits of data into sixteen-bit chunks and transmit
chunks over an interface that has a width of sixteen bits. Only one chunk can be sent at
a given time.

chunk 1 chunk 2 chunk 3 chunk 4

64 bits of data to be transferred

multiplexing hardware

demultiplexing hardware

chunk 1 chunk 2 chunk 3 chunk 4

data reassembled after transfer

parallel interface

16 bits wide

Figure 14.3 Illustration of the transfer of sixty-four bits of data over a
sixteen-bit interface. Multiplexing hardware divides the data
into sixteen-bit units and sends one unit at a time.

In practice, most physical connections between a processor and external devices
use multiplexing. Doing so allows the processor to transfer arbitrary amounts of data
without devoting many physical pins to the connection. In the next chapter, we will
learn how multiplexing also improves CPU performance.

To summarize:

Multiplexing is used to construct an I/O interface that can transfer
arbitrary amounts of data over a fixed number of parallel wires. Mul-
tiplexing hardware divides the data into blocks, and transfers each
block independently.

Note that our definition applies equally to serial transmission — we simply inter-
pret a serial interface as multiplexing transfers over a single wire. Thus, the chunk size
for a serial interface is a single bit.

www.ebook3000.com

http://www.ebook3000.org

Sec. 14.10 Multiple Devices Per External Interface 285

14.10 Multiple Devices Per External Interface

The examples in this chapter imply that each external connection from a processor
attaches to one device. To help conserve pins and external connections, most proces-
sors do not have a single device per external connection. Instead, a set of pins attaches
to multiple devices, and the hardware is configured to permit the processor to communi-
cate with one of the devices at a given time. The next chapter explains the concept in
detail and gives examples.

14.11 A Processor’s View Of I/O

Recall that interface controller hardware is associated with an external connection.
Thus, when a processor interacts with an external device, the processor must do so
through the controller. The processor makes requests to the controller, and receives re-
plies; the controller translates each request into the appropriate external signals that per-
form the requested function on the external device. The point is that the processor can
only interact with the interface controller and not with the external device.

To capture the architectural concept, we say that the controller presents a program-
ming interface to the processor. Interestingly, the programming interface does not need
to model the operations of the underlying device exactly. In the next chapter, we will
see an example of a widely used programming interface that casts all external interac-
tions into a simplified paradigm. To summarize:

A processor uses interface controller hardware to interact with a dev-
ice; the controller translates requests into the appropriate external
signals.

14.12 Summary

Computer systems interact with external devices either to control the device (e.g.,
to change the status) or to transfer data. An external interface can use a serial or paral-
lel approach; the number of bits that can be sent simultaneously is known as the width
of a parallel interface. A bidirectional interface can use full-duplex or half-duplex in-
teraction.

There are two measures of interface performance. Latency refers to the time re-
quired to send a bit from a given source to a given destination (e.g., from memory to a
printer), and throughput refers to the number of bits that can be sent per unit time.

Because the number of pins is limited, a processor does not have arbitrarily wide
external connections. Instead, interface hardware is designed to multiplex large data
transfers over fewer pins. In addition, multiple external devices can attach to a single
external connection; the interface controller hardware communicates with each device
separately.

286 Input / Output Concepts And Terminology Chap. 14

EXERCISES

14.1 The speaker in a smart phone or laptop is, in fact, an analog device in which the volume
is proportional to the voltage supplied. Does that mean a processor must have an analog
output for audio? Explain.

14.2 What are the primary and secondary functions associated with external devices?

14.3 Can a device that operates on 3.3-volt digital signals be connected to a processor that
operates on 5-volt digital signals? Explain.

14.4 If the interface width is 16, is the interface parallel or serial? Explain.

14.5 USB is classified as a serial interface. What does the classification mean?

14.6 Suppose you are purchasing a network I/O device, and the vendor gives you the choice
of a half-duplex or full-duplex interface. Which do you choose and why?

14.7 If the interface between a processor and storage device has a width of thirty-two bits,
how can the processor transfer a data item that consists of sixty-four bits?

14.8 Create a parallel interface that is self-clocking and can send data from one side to the
other. Hint: have two wires that the two ends use to coordinate and additional wires that
are used to transfer data.

14.9 Suppose a serial interface has a latency of 200 microseconds. How long does it take to
transfer one bit over the interface? How long does it take to transfer sixty-four bits over
the interface?

14.10 Suppose a parallel interface has a width of thirty-two bits and a latency of 200 mi-
croseconds. How long does it take to transfer thirty-two bits over the interface? How
long does it take to transfer sixty-four bits over the interface? Explain.

www.ebook3000.com

http://www.ebook3000.org

Chapter Contents

15.1 Introduction, 289
15.2 Definition Of A Bus, 289
15.3 Processors, I/O Devices, And Buses, 290
15.4 Physical Connections, 291
15.5 Bus Interface, 292
15.6 Control, Address, And Data Lines, 293
15.7 The Fetch-Store Paradigm, 294
15.8 Fetch-Store And Bus Size, 294
15.9 Multiplexing, 295
15.10 Bus Width And Size Of Data Items, 296
15.11 Bus Address Space, 297
15.12 Potential Errors, 298
15.13 Address Configuration And Sockets, 299
15.14 The Question Of Multiple Buses, 300
15.15 Using Fetch-Store With Devices, 300
15.16 Operation Of An Interface, 301
15.17 Asymmetric Assignments And Bus Errors, 302
15.18 Unified Memory And Device Addressing, 302
15.19 Holes In A Bus Address Space, 304
15.20 Address Map, 304
15.21 Program Interface To A Bus, 305
15.22 Bridging Between Two Buses, 306
15.23 Main And Auxiliary Buses, 306
15.24 Consequences For Programmers, 308
15.25 Switching Fabrics As An Alternative To Buses, 308
15.26 Summary, 309

www.ebook3000.com

http://www.ebook3000.org

15

Buses And Bus
Architectures

15.1 Introduction

The chapters on memory discuss the external connection between a processor and
the memory system. The previous chapter discusses connections with external I/O de-
vices, and shows how a processor uses the connections to control the device or transfer
data. The chapter reviews concepts such as serial and parallel transfer, defines termi-
nology, and introduces the idea of multiplexing data transfer over a set of wires.

This chapter extends the ideas by explaining a fundamental architectural feature
present in all computer systems, a bus. It describes the motivation for using a bus, ex-
plains the basic operation, and shows how both memory and I/O devices can share a
common bus. We will learn that a bus defines an address space and understand the re-
lationship between a bus address space and a memory address space.

15.2 Definition Of A Bus

A bus is a digital communication mechanism that allows two or more functional
units to transfer control signals or data. Most buses are designed for use inside a single
computer system; some are used within a single integrated circuit. Many bus designs
exist because a bus can be optimized for a specific purpose. For example, a memory
bus is intended to interconnect a processor with a memory system, and an I/O bus is in-
tended to interconnect a processor with a set of I/O devices. We will see that general-
purpose designs are possible.

289

290 Buses And Bus Architectures Chap. 15

15.3 Processors, I/O Devices, And Buses

The notion of a bus is broad enough to encompass most external connections (i.e.,
a connection between a processor and a coprocessor). Thus, instead of viewing the con-
nection between a processor and a device as a set of wires (as in Chapter 14), we can be
more precise: the two units are interconnected by a bus. Figure 15.1 uses a graphic that
is common in engineering diagrams to illustrate the concept.

bus

processor
device

Figure 15.1 Illustration of a bus used to connect a processor and an external
device. Buses are used for most external connections.

We can summarize:

A bus is the digital communication mechanism that interconnects
functional units of a computer system. A computer contains one or
more buses that interconnect the processors, memories, and external
I/O devices.

15.3.1 Proprietary And Standardized Buses

A bus design is said to be proprietary if the design is owned by a private company
and not available for use by other companies (i.e., covered by a patent). The alternative
to a proprietary bus is known as a standardized bus, which means the specifications are
available. Because they permit equipment from two or more vendors to communicate
and interoperate, standardized buses allow a computer system to contain devices from
multiple vendors. Of course, a bus standard must specify all the details needed to con-
struct hardware, including the exact electrical specifications (e.g., voltages), timing of
signals, and the encoding used for data. Furthermore, to ensure correctness, each device
that attaches to the bus must implement the bus standard precisely.

www.ebook3000.com

http://www.ebook3000.org

Sec. 15.3 Processors, I/O Devices, And Buses 291

15.3.2 Shared Buses And An Access Protocol

We said that a bus can be used to connect a processor to an I/O device. In fact,
most buses are shared, which means that a single bus is used to connect the processor
to a set of I/O devices. Similarly, if a computer contains multiple processors, all the
processors can connect to a shared bus.

To permit sharing, an architect must define an access protocol to be used on the
bus. The access protocol specifies how an attached device can determine whether the
bus is available or is in use, and how attached devices take turns using the bus.

15.3.3 Multiple Buses

A typical computer system contains multiple buses. For example, in addition to a
central bus that connects the processor, I/O devices, and memory, some computers have
a special-purpose bus used to access coprocessors. Other computers have multiple
buses for convenience and flexibility — a computer with several standard buses can ac-
commodate a wider variety of devices.

Interestingly, most computers also contain buses that are internal (i.e., not visible
to the computer’s owner). For example, many processors have one or more internal
buses on the processor chip. A circuit on the chip uses an onboard bus to communicate
with another circuit (e.g., with an onboard cache).

15.3.4 A Parallel, Passive Mechanism

As Chapter 14 describes, an interface is either classified as using serial data
transfer or parallel data transfer. Most of the buses used in computer systems are paral-
lel. That is, a bus is capable of transferring multiple bits of data at the same time.

The most straightforward buses are classified as passive because the bus itself does
not contain electronic components. Instead, each device that attaches to a bus contains
the electronic circuits needed to communicate over the bus. Thus, we can imagine a
bus to consist of parallel wires to which devices attach†.

15.4 Physical Connections

Physically, a bus can consist of tiny wires etched in silicon on a single chip, a ca-
ble that contains multiple wires, or a set of parallel metal wires on a circuit board.
Most computers use the third form for an I/O bus: the bus is implemented as a set of
parallel wires on the computer’s main circuit board, which is known as a mother board.
In addition to a bus, the mother board contains the processor, memory, and other func-
tional units.

A set of sockets on the mother board connects to the bus to allow devices to be
plugged in or removed easily (i.e., a device can be connected to the bus merely by plug-
ging the device into a socket). Typically, the bus and the sockets are positioned near

��������������������������������
†In practice, some buses do contain a digital circuit known as a bus arbiter that coordinates devices at-

tached to the bus. However, such details are beyond the scope of this text.

292 Buses And Bus Architectures Chap. 15

mother board

sockets placed
near the edge

of the board

bus formed from
parallel wires

area on mother board
for the processor,

memory, and other units

Figure 15.2 Illustration of a bus that consists of parallel wires that connect to
sockets on a mother board. The mother board contains other
components that are not shown.

the edge of the mother board to make them easily accessible from outside. Figure 15.2
illustrates a bus and sockets on a mother board.

15.5 Bus Interface

Attaching a device to a bus is nontrivial. To operate correctly, a device must
adhere to the bus standard. Recall, for example, that a bus is shared and that the bus
specifies an access protocol that is used to determine when a given device can access
the bus to transfer data. To implement the access protocol, each device must have a di-
gital circuit that connects to the bus and follows the bus standard. Known as a bus in-
terface or a bus controller, the circuit implements the bus access protocol and controls
exactly when and how the device uses the bus. If the bus protocol is complicated, the
interface circuit can be large; many bus interfaces require multiple chips.

What is the physical connection between a bus interface circuit and the bus itself?
Interestingly, the sockets of many buses are chosen to make it possible to plug a printed
circuit board directly into the socket. The circuit board must have a region cut to the
exact size of a socket, and must have metal fingers that align exactly with metal con-
tacts in the socket. Figure 15.3 illustrates the concept.

The figure helps us envision how a physical computer system is constructed. If the
mother board lies in the bottom of a cabinet, the circuit boards for individual devices
that plug into the mother board will be perpendicular, meaning that the device circuit
boards will be vertical. A key piece of the physical arrangement concerns the place-
ment of sockets — by locating sockets near the edge of a mother board, a designer can
guarantee that device boards are located adjacent to the side of the cabinet. Choosing a
location near the side means a short connection between the circuit board and the out-
side of the cabinet. The arrangement is used in a typical PC.

www.ebook3000.com

http://www.ebook3000.org

Sec. 15.5 Bus Interface 293

circuit board
(device interface)

mother board
(side view)

socket

external
connection
to device

Figure 15.3 Side view of a mother board illustrating how a printed circuit
board plugs into the socket of a bus. Metal fingers on the circuit
board press against metal contacts in the socket.

15.6 Control, Address, And Data Lines

Although the physical structure of a bus provides interesting engineering chal-
lenges, we are more concerned with the logical structure. We will examine how the
wires are used, the operations the bus supports, and the consequences for programmers.

Informally, the wires that comprise a bus are called lines. There are three concep-
tual functions for the lines:

d Control of the bus

d Specification of address information

d Transfer of data

To help us understand how a bus operates, we will assume that the bus contains
three separate sets of lines that correspond to the three functions†. Figure 15.4 illus-
trates the concept.

control
lines

address
lines

data
lines

Figure 15.4 Conceptual division of wires that comprise a bus into lines for
control, addresses, and data.

��������������������������������
†The description here simplifies details; a later section explains how the functionality can be achieved

without physically separate groups of wires.

294 Buses And Bus Architectures Chap. 15

As the figure implies, bus lines need not be divided equally among the three uses. In
particular, control functions usually require fewer lines than other functions.

15.7 The Fetch-Store Paradigm

Recall from Chapter 10 that memory systems use the fetch-store paradigm in
which a processor can either fetch (i.e., read) a value from memory or store (i.e., write)
a value to memory. A bus uses the same basic paradigm. That is, a bus only supports
fetch and store operations. As unlikely as it seems, we will learn that when a processor
communicates with a device or transfers data across a bus, the communication always
uses fetch or store operations. Interestingly, the fetch-store paradigm is used with all
devices, including microphones, video cameras, sensors, and displays, as well as with
storage devices, such as disks.

We will see later how it is possible to control all devices with the fetch-store para-
digm. For now, it is sufficient to understand the following:

Like a memory system, a bus employs the fetch-store paradigm; all
control or data transfer operations are performed as either a fetch or
a store.

15.8 Fetch-Store And Bus Size

Knowing that a bus uses the fetch-store paradigm helps us understand the purpose
of the three conceptual categories of lines that Figure 15.4 illustrates. All three
categories are used for either a fetch or store operation. Control lines are used to ensure
that only one pair of entities attempts to communicate over the bus at any time, and to
allow two communicating entities to interact meaningfully. The address lines are used
to pass an address, and the data lines are used to transfer a data value.

Figure 15.5 explains how the three categories of lines are used during a fetch or
store operation. The figure lists the steps that are taken for each operation, and speci-
fies which group of lines is used for each step.

We said that most buses use parallel transfer — the bus contains multiple data
lines, and can simultaneously transfer one bit over each data line. Thus, if a bus con-
tains K data lines, the bus can transfer K bits at a time. Using the terminology from
Chapter 14, we say that the bus has a width of K bits. Thus, a bus that has thirty-two
data lines (i.e., can transfer thirty-two bits at the same time) is called a thirty-two-bit
bus.

Of course, some buses are serial rather than parallel. A serial bus can only transfer
one bit at a time. Technically, a serial bus has a width of one bit. However, engineers
do not usually talk about a bus having a width of one bit; they simply call it a serial
bus.

www.ebook3000.com

http://www.ebook3000.org

Sec. 15.8 Fetch-Store And Bus Size 295

Fetch

1. Use the control lines to obtain access to the bus

2. Place an address on the address lines

3. Use the control lines to request a fetch operation

4. Test the control lines to wait for the operation to complete

5. Read the value from the data lines

6. Set the control lines to allow another device to use the bus

Store

1. Use control lines to obtain access to the bus

2. Place an address on the address lines

3. Place a value on the data lines

4. Use the control lines to specify a store operation

5. Test the control lines to wait for the operation to complete

6. Set the control lines to allow another device to use the bus

Figure 15.5 The steps taken to perform a fetch or store operation over a bus,
and the group of lines used in each step.

15.9 Multiplexing

How wide should a bus be? Recall from Chapter 14 that parallel interfaces
represent a compromise: although increasing the width increases the throughput, greater
width also takes more space and requires more electronic components in the attached
devices. Furthermore, at high data rates, signals on parallel wires can interfere with one
another. Thus, an architect chooses a bus width as a compromise between space, cost,
and performance.

One technique stands out as especially helpful in reducing the number of lines in a
bus: multiplexing. A bus can use multiplexing in two ways: data multiplexing alone or
a combination of address and data multiplexing.

Data Multiplexing. In Chapter 14, we learned how data multiplexing works. In
essence, when a device attached to a bus has a large amount of data to transfer, the de-
vice divides the data into blocks that are exactly as large as the bus is wide. The device
then uses the bus repeatedly, by sending one block at a time.

Address And Data Multiplexing. The motivation for multiplexing addresses is to
reduce the number of lines. To understand how address multiplexing works, consider
the steps in Figure 15.5 carefully. In the case of a fetch operation, the address lines and
data lines are never used at the same time (i.e., in the same step). Thus, an architect
can use the same lines to send an address and receive data. For a store operation, mul-
tiplexing can be used: bus hardware sends the address first and then sends the data†.

��������������������������������
†Of course, a device that receives a request over a multiplexed bus must store the address while the data

is transferred.

296 Buses And Bus Architectures Chap. 15

Most buses make heavy use of multiplexing. Thus, instead of three conceptual sets
of lines, a typical bus has two: a few lines used for control, and a set of lines used to
send either an address or data. Figure 15.6 illustrates the idea.

control
lines

address or data
lines

Figure 15.6 Illustration of a bus in which a single set of lines is used for
both addresses and data. Using one set of lines helps reduce
cost.

Multiplexing offers two advantages. On the one hand, multiplexing allows an ar-
chitect to design a bus that has fewer lines. On the other hand, if the number of lines in
a bus is fixed, multiplexing produces higher overall performance. To see why, consider
a data transfer. If K of the lines in the bus are reserved for addresses, those K lines
cannot be used during a data transfer. If all the lines are shared, however, an additional
K bits can be transferred on each bus cycle, which means higher overall throughput.

Despite its advantages, multiplexing does have two disadvantages. First, multi-
plexing takes more time because a store operation requires two bus cycles (i.e., one to
transfer the address and another to transfer the data item). Second, multiplexing re-
quires a more sophisticated bus protocol, and therefore, more complex bus interface
hardware. Despite the disadvantages, many bus designs use multiplexing. In the ex-
treme case, a bus can be designed that multiplexes control information over the same set
of lines used for data and addresses.

15.10 Bus Width And Size Of Data Items

The use of multiplexing helps explain another aspect of computer architecture: uni-
form size of all data objects, including addresses. We will see that all data transfers
among a processor, memories, and devices occur over a bus. Furthermore, because the
bus multiplexes the transfers over a fixed number of lines, a data item that exactly
matches the bus width can be transferred in one cycle, but any item that is larger than
the bus width requires multiple cycles. Thus, it makes sense for an architect to choose
a single size for the bus width, the size of a general-purpose register, and the size of a
data value that the ALU or functional units use (e.g., the size of an integer or a floating
point value). More important, because addresses are also multiplexed over the bus
lines, it makes sense for the architect to choose the same size for an address as for other
data items. The point is:

www.ebook3000.com

http://www.ebook3000.org

Sec. 15.10 Bus Width And Size Of Data Items 297

In many computers, both addresses and data values are multiplexed
over the same bus. To optimize performance of the hardware, an ar-
chitect chooses a single size for both data items and addresses.

15.11 Bus Address Space

A memory bus (i.e., a bus that the processor uses to access memory) is the easiest
form of a bus to understand. Previous chapters discuss the concepts of memory access
and a memory address space; we will see how a bus is used to implement the concepts.
As Figure 15.7 illustrates, a memory bus provides a physical interconnection among a
processor and one or more memories.

bus

processor
memory

1
memory

N. . .

bus interfaces

Figure 15.7 Physical interconnections of a processor and memory using a
memory bus. A controller circuit in each device handles the de-
tails of bus access.

As the figure shows, the processor and memory modules connected to a memory
bus each contain an interface circuit. The interface implements the bus protocol, and
handles all bus communication. The interface uses the control lines to gain access to
the bus, and then sends addresses or data values to carry out the operation. Thus, only
the interface understands the bus details, such as the voltage to use and the timing of
control signals.

From a processor’s point of view, the bus interface provides the fetch-store para-
digm. That is, the processor can only perform two operations: fetch from a bus address
and store to a bus address. When the processor encounters an instruction that refer-
ences memory, the processor hardware invokes the bus interface. For example, on
many architectures, a load instruction fetches a value from memory and places the value
in a general-purpose register. When the processor executes a load, the hardware issues
a fetch instruction to the bus interface. Similarly, if the processor executes an instruc-
tion that deposits a value in memory, the hardware uses a store operation on the bus in-
terface.

298 Buses And Bus Architectures Chap. 15

From a programmer’s point of view, the bus interface is invisible. The program-
mer thinks of the bus as defining an address space. The key to creating a single ad-
dress space lies in memory configuration — each memory is configured to respond to a
specific set of bus addresses. That is, the interface for memory 1 is assigned a different
set of addresses than the interface for memories 2, 3, 4, and so on. When a processor
places a fetch or store request on the bus, all memory controllers receive the request.
Each memory controller compares the address in the request to the set of addresses the
memory module has been assigned. If the address in the request lies within the
controller’s set, the controller responds. Otherwise, it ignores the request. The point is:

When a request passes across a bus, all attached memory modules re-
ceive the request. A memory module only responds if the address in
the request lies in the range that has been assigned to the module.

15.12 Potential Errors

Figure 15.8. lists the conceptual steps that each memory module interface imple-
ments.

Let R be the range of addresses assigned to this module

Repeat forever {

Monitor the bus until a request appears;

if (the request specifies an address in R) {

respond to the request

} else {

ignore the request

}

}

Figure 15.8 The steps the bus interface in a memory module follows.

An error that the bus hardware reports is referred to as a bus error; a typical bus
protocol includes mechanisms that detect and report each type of bus error. Allowing
each memory module to act independently means two types of bus errors can occur:

d Address conflict
d Unassigned address

Address Conflict. We use the term address conflict to describe a bus error that
results when two or more interfaces are misconfigured so they each respond to a given
address. Some bus hardware is designed to detect and report address conflicts when the

www.ebook3000.com

http://www.ebook3000.org

Sec. 15.12 Potential Errors 299

system boots. Other hardware is designed to prevent conflicts. In any case, most bus
protocols include a test for address conflicts that occur at run-time — if two or more in-
terfaces attempt to respond to a given request, the bus hardware detects the problem and
sets a control line to indicate that an error occurred. When it uses a bus, a processor
checks the bus control lines and takes action if an error occurs.

Unassigned Address. An unassigned address bus error occurs if a processor at-
tempts to access an address that has not been assigned to any interface. To detect an
unassigned address, most bus protocols use a timeout mechanism — after sending a re-
quest over the bus, the processor starts a timer. If no interface responds, the timer ex-
pires, which causes the processor hardware to report the bus error. The same timeout
mechanism used to detect unassigned addresses also detects malfunctioning hardware
(e.g., a memory module that is not responding to requests).

15.13 Address Configuration And Sockets

Some bus hardware prevents bus errors. Unassigned addresses pose a thorny prob-
lem for prevention. On the one hand, to prevent bus errors, each possible address must
be assigned to a memory module. On the other hand, most memory systems are
designed to accommodate expansion. That is, a bus typically contains enough wires to
address more memory than is installed in the computer (i.e., some addresses will be
unassigned).

Fortunately, architects have devised a scheme that helps avoid the problem of two
modules that both answer to a given request: special sockets. The idea is straightfor-
ward. Memory is manufactured on small printed circuits that each plug into a socket on
the mother board. To avoid problems caused by misconfiguration, all memory boards
are identical, and no configuration is required before a board is plugged in. Instead, cir-
cuitry and wiring is added to the mother board so that the first socket only receives re-
quests for address 0 through K – 1, the second socket only receives requests for address
K through 2K – 1, and so on. When a socket does recognize an address, the socket
passes the low-order bits of the address on to the memory. The point is:

To avoid memory configuration problems, architects can place
memory on small circuit boards that each plug into a socket on the
mother board. An owner can install memory without configuring the
hardware because each socket is configured with the range of ad-
dresses to which the memory should respond.

As an alternative, some computers contain sophisticated circuitry that allows the
MMU to configure socket addresses when the computer boots. The MMU determines
which sockets are populated, and assigns each a range of addresses. Although it adds
cost, the extra circuitry to prevent conflicts makes installing memory much easier — an
owner can purchase memory modules and plug them into sockets without configuring
the modules and with no danger of conflicts.

300 Buses And Bus Architectures Chap. 15

15.14 The Question Of Multiple Buses

Should a computer system have multiple buses? If so, how many? Computers
designed for high performance (e.g., mainframe computers) often contain several buses.
Each bus is optimized for a specific purpose. For example, a mainframe computer
might have one bus for memory, another for high-speed I/O devices, and another for
slow-speed I/O devices. As an alternative, less powerful computers (e.g., personal
computers) often use a single bus for all connections. The chief advantages of a single
bus are lower cost and more generality. A processor does not need multiple bus inter-
faces, and a single bus interface can be used for both memory and devices.

Of course, designing a single bus for all connections means choosing a compro-
mise. That is, the bus may not be optimal for any given purpose. In particular, if the
processor uses a single bus to access instructions and data in memory as well as per-
form I/O, the bus can easily become a bottleneck. Thus, a system that uses a single bus
often needs a large memory cache that can answer most of the memory requests without
using the bus.

15.15 Using Fetch-Store With Devices

Recall that a bus is used as the primary connection between a processor and an I/O
device, and that all operations on a bus must use the fetch-store paradigm. The two
statements may seem contradictory — although it works well for data transfer, fetch-
store does not appear to handle device control. For example, consider an operation like
testing whether a wireless radio is currently in range of an access point or moving paper
through a printer. It seems that fetch and store operations are insufficient, and that de-
vices require a large set of control commands.

To understand how a bus works, we must remember that a bus provides a way to
communicate a set of bits from one unit to another without specifying what each bit
means. The names fetch and store mislead us into thinking about values in memory.
On a bus, however, the interface hardware of each device provides a unique interpreta-
tion of the bits. Thus, a device can interpret certain bits as a control operation rather
than as a request to transfer data.

An example will clarify the relationship between the fetch-store paradigm and de-
vice control. Imagine a simplistic hardware device that contains sixteen status lights,
and suppose we want to attach the device to a bus. Because the bus only offers fetch
and store operations, we need to build interface hardware that uses the fetch-store para-
digm for control. An engineer who designs a device interface begins by listing the
operations to be performed. Figure 15.9 lists the five functions for our imaginary de-
vice.

www.ebook3000.com

http://www.ebook3000.org

Sec. 15.15 Using Fetch-Store With Devices 301

d Turn the display on

d Turn the display off

d Set the display brightness

d Turn the ith status light on

d Turn the ith status light off

Figure 15.9 An example of functionality needed for an imaginary status light
display. Each function must be implemented using the fetch-
store paradigm.

To cast control operations in the fetch-store paradigm, a designer chooses a set of
bus addresses that are not used by other devices, and assigns meanings to each address.
For example, if our imaginary status light device is attached to a bus that has a width of
thirty-two bits, a designer might choose bus addresses 10000 through 10011, and might
assign meanings according to Figure 15.10.

Address Operation Meaning��
10000 – 10003 store Nonzero data value turns the display on,

and a zero data value turns the display off

10000 – 10003 fetch Returns zero if display is currently off,
and nonzero if display is currently on

10004 – 10007 store Change brightness. Low-order four bits of
the data value specify brightness value
from zero (dim) through fifteen (bright)

10008 – 10011 store The low order sixteen bits each control a
status light; a zero bit sets the corresponding
light off and a one bit sets the light on

Figure 15.10 Example assignment of addresses, operations, and meanings for
the device control functions listed in Figure 15.9.

15.16 Operation Of An Interface

Although bus operations are named fetch and store, a device interface does not act
like a memory — data is not stored for later recall. Instead, a device treats the address,
operation, and data in a bus request merely as a set of bits. The interface contains logic
circuits that compare the address bits in each request to the addresses assigned to the
device. If a match occurs, the interface enables a circuit that responds to the fetch or
store operation. For example, the first item in Figure 15.10 can be implemented by a
circuit that tests bits on the bus for a store request with address 10000 and uses the data
to take action. In essence, the circuit performs the following test:

302 Buses And Bus Architectures Chap. 15

if (address == 10000 && op == store && data != 0)

turn_on_display;

} else if (address == 10000 && op == store && data == 0) {

turn_off_display;

}

Although we have used programming language notation to express the operations,
interface hardware does not perform the test sequentially. Instead, an interface is con-
structed from Boolean circuits that can test the address, operation, and data values in
parallel and take the appropriate action.

15.17 Asymmetric Assignments And Bus Errors

The example in Figure 15.10 does not define the effect of fetch or store operations
on some of the addresses. For example, the specification does not define a fetch opera-
tion for address 10004. To capture the idea that fetch and store operations do not need
to be defined for each address, we say that the assignment is asymmetric. The specifi-
cation in Figure 15.10 is asymmetric because the processor can store a value to the four
bytes starting at address 10004, but a bus error results if the processor attempts to read
from address 10004.

15.18 Unified Memory And Device Addressing

In some computers, a single bus provides access to both memory and I/O devices.
In such an architecture, the assignment of addresses on the bus defines the processor’s
view of the address space. For example, imagine a computer system with a single bus
as Figure 15.11 illustrates.

bus

processor memory

1

memory

2

device

1

device

2

Figure 15.11 Illustration of a computer architecture that uses a single bus.
The bus connects memories as well as devices.

www.ebook3000.com

http://www.ebook3000.org

Sec. 15.18 Unified Memory And Device Addressing 303

In the figure, the bus defines a single address space that the processor can use.
Each memory module and each device must be assigned a unique address range of bus
addresses. For example, if we assume the memories are each 1 Mbyte and each device
requires twelve memory locations, four address ranges must be assigned for use on the
bus as Figure 15.12 illustrates.

Device Address Range��
memory 1 0x000000 through 0x0 f f f f f
memory 2 0x100000 through 0x1 f f f f f
device 1 0x200000 through 0x20000b
device 2 0x20000c through 0x200017

Figure 15.12 One possible assignment of bus addresses for the set of devices
shown in Figure 15.11.

We can also imagine the address space drawn graphically like the illustrations of a
memory address space in Chapter 11. Of course the space occupied by each device is
extremely small compared to the space occupied by a memory, which means the di-
agram will not show much detail. For example, Figure 15.13 shows the diagram that
results from the assignments in Figure 15.12.

memory

1

0

memory

2

device 1 device 2

Figure 15.13 Illustration of the address space that results from the address
assignments in Figure 15.12. The amount of space taken by
each device (twelve bytes) is insignificant compared to the
amount of space taken by each memory (1 Mbyte).

304 Buses And Bus Architectures Chap. 15

15.19 Holes In A Bus Address Space

The address assignment in Figure 15.12 is said to be contiguous, which means that
the address ranges do not contain gaps — the first byte assigned to one range is the im-
mediate successor of the last byte assigned to the previous range. Contiguous address
assignment is not required — if the software accidentally accesses an address that has
not been assigned, the bus hardware detects the problem and reports a bus error.

Using the terminology from Chapter 13, we say that if an assignment of addresses
is not contiguous, the assignment leaves one or more holes in the address space. For
example, a bus may reserve lower addresses for memory and assign devices to high ad-
dresses, leaving a hole between the two areas.

15.20 Address Map

As part of the specification, a bus standard specifies exactly which type of
hardware can be used at each address. We call the specification an address map. Note
that an address map is not the same as an address assignment because a map only speci-
fies what assignments are possible. For example, Figure 15.14 gives an example of an
address map for a sixteen-bit bus.

available
for

memory

available
for

memory

available
for devices

0xffff

0xdfff

0xbfff

0x7fff

0x3fff

0x0000

Hole
(not available)

Hole
(not available)

Figure 15.14 One possible address map for a sixteen-bit bus. Two areas are
available for memory, and one area is available for devices.

www.ebook3000.com

http://www.ebook3000.org

Sec. 15.20 Address Map 305

In the figure, the two areas of the address space available for memory are not con-
tiguous. Instead, a hole is located between them. Furthermore, a hole is located
between the second memory area and the device area.

When a computer system is constructed, the owner must follow the address map.
For example, the sixteen-bit bus in Figure 15.14 only allows two blocks of memory that
total 32,768 bytes. The owner can choose to install less than a full complement of
memory, but not more.

The device space in a bus address map is especially interesting because the space
reserved for devices is often much larger than necessary. In particular, most address
maps reserve a large piece of the address space for devices, making it possible for the
bus to accommodate extreme cases with thousands of devices. However, a typical com-
puter has fewer than a dozen devices, and a typical device uses a few addresses. The
consequence is:

In a typical computer, the part of the address space available to de-
vices is sparsely populated — only a small percentage of the available
addresses are used.

15.21 Program Interface To A Bus

From a programmer’s point of view, there are two ways to use a bus. Either a pro-
cessor provides special instructions used to access each bus or the processor interprets
all memory operations as references to the bus. The latter is known as a memory
mapped architecture. As an example of using a memory-mapped approach, consider
address assignment of the imaginary light display described in Figure 15.10†. To turn
the device on, the program must store a nonzero value in bytes 10000 through 100003.
If we assume an integer consists of four bytes (i.e., thirty-two bits) and the processor
uses little-endian byte order, the program only needs to store a nonzero value into the
integer at location 10000. A programmer can use the following C code to perform the
operation:

int *ptr; /* declare ptr to be a pointer to an integer */

ptr = (*int)10000; /* set pointer to address 10000 */

ptr = 1; / store nonzero value in addresses 10000 - 10003 */

We can summarize:

A processor can use special instructions to access a bus or can use a
memory-mapped approach in which normal memory operations are
used to communicate with devices as well as memory.

��������������������������������
†Figure 15.10 appears on page 301.

306 Buses And Bus Architectures Chap. 15

15.22 Bridging Between Two Buses

Although a single bus offers the advantage of simplicity and lower cost, a given
device may only work with a specific bus. For example, some earphones require a
Universal Serial Bus (USB) and some Ethernet devices require a Peripheral Component
Interconnect (PCI) bus. Clearly, a computer that has multiple buses can accommodate a
greater variety of devices. Of course, a system with multiple buses can be expensive
and complex. Therefore, designers have created inexpensive and straightforward ways
to attach multiple buses to a computer. One approach uses a hardware device, known
as a bridge, that interconnects two buses as Figure 15.15 illustrates.

bus 2

bus 1

bridge

Figure 15.15 Illustration of a bridge connecting two buses. The bridge must
follow the standard for each bus.

The bridge uses a set of K addresses. Each bus chooses an address range of size K
and assigns it to the bridge. The two assignments are not usually the same; the bridge
is designed to perform translation. Whenever an operation on one bus involves the ad-
dresses assigned to the bridge, circuits in the bridge translate the address and perform
the operation on the other bus. Thus, if a processor on bus 1 performs a store operation
to one of the bridged addresses, the bridge hardware performs an equivalent store opera-
tion on bus 2. In fact, bridging is transparent in the sense that processors and devices
are unaware that multiple bridges are involved.

15.23 Main And Auxiliary Buses

Logically, a bridge performs a one-to-one mapping from the address space of one
bus to the address space of another. That is, the bridge maps a set of addresses on one
bus into the address space of the other. Figure 15.16 illustrates the concept of address
mapping. In the figure, both bus address spaces start at zero, and the address space of
the auxiliary bus is smaller than the address space of the main bus. More important, the
architect has chosen to map only a small part of the auxiliary bus address space, and has
specified that it maps onto a region of the main bus that is reserved for devices. As a

www.ebook3000.com

http://www.ebook3000.org

Sec. 15.23 Main And Auxiliary Buses 307

available
for

memory

0

available
for

memory

available
for devices.

address space
of main bus

0

address space
of auxiliary bus

not
mappedmapping the

bridge supplies

Figure 15.16 Illustration of a mapping that a bridge can provide between the
address space of an auxiliary bus and the address space of a
main bus. Only some bus addresses need to be mapped.

result, any device on the auxiliary bus that responds to addresses in the mapped region
appears to be connected to the computer’s main bus.

To understand why bridging is popular, consider a common case where a new de-
vice must be added to a computer that already has a bus. If the interface on the new de-
vice does not match the computer’s main bus, new adapter hardware can be created or a
bridge can be used to add an auxiliary bus to the system. Using a bridge has two ad-
vantages: bridging is simpler than adding a bus interface to each new device, and once a
bridge has been installed, a computer owner can add additional devices to the auxiliary
bus without changing the hardware further.

To summarize:

A bridge is a hardware device that interconnects two buses and maps
addresses between them. Bridging allows a computer to have one or
more auxiliary buses that are accessed through the computer’s main
bus.

308 Buses And Bus Architectures Chap. 15

15.24 Consequences For Programmers

As Figure 15.16 shows, the sets of mapped addresses do not need to be identical in
both address spaces. The goal is to make a bridge so transparent that software does not
know about the auxiliary bus. Unfortunately, a programmer who writes device driver
software or someone who configures computers may need to understand the mapping.
For example, when a device is installed in an auxiliary bus, the device obtains a bus ad-
dress, A. As part of the initialization sequence, the device may report its bus address to
the driver software†. Because a bridge only translates addresses, communication
between the device and the driver that uses data lines will not be changed. Thus, to
generate an address on the main bus, the driver software may need to understand how
the bridge maps addresses.

15.25 Switching Fabrics As An Alternative To Buses

Although a bus is fundamental to most computer systems, a bus has a disadvan-
tage: bus hardware can only perform one transfer at a time. That is, although multiple
hardware units can attach to a given bus, at most one pair of attached units can com-
municate at any time. The basic paradigm always consists of three steps: wait for ex-
clusive use of the bus, perform a transfer, and release the bus so another transfer can oc-
cur.

Some buses extend the paradigm by permitting multiple attached units to transfer
N bytes of data each time they obtain the bus. For situations where bus architectures
are insufficient, architects have invented alternative technologies that permit multiple
transfers to occur simultaneously. Known as switching fabrics, the technologies use a
variety of forms. Some fabrics are designed to handle a few attached units, and other
fabrics are designed to handle hundreds or thousands. Similarly, some fabrics restrict
transfers so only a few attached units can initiate transfers at the same time, and other
fabrics permit many simultaneous transfers. One of the reasons for the variety of archi-
tectures arises from economics: higher performance (i.e., more simultaneous exchanges)
can cost much more, and the higher cost may not be justified.

Perhaps the easiest switching fabric to understand consists of a crossbar switch.
We can imagine a crossbar to be a matrix with N inputs and M outputs. The crossbar
contains N × M electronic switches that each connect an input to an output. At any time,
the crossbar can turn on switches to connect pairs of inputs and outputs as Figure 15.17
illustrates.

��������������������������������
†Chapter 17 explains why a device driver needs address information.

www.ebook3000.com

http://www.ebook3000.org

Sec. 15.25 Switching Fabrics As An Alternative To Buses 309

input 1

input 2

input 3

input N

output 1 output 2 output 3 output M. . .

..

.

Figure 15.17 A conceptual view of a crossbar switch with N inputs and M
outputs with a dot showing an active connection. The crossbar
mechanism ensures that only one connection is active for a
given row or a given column at any time.

The figure helps us understand why switching fabrics are expensive. First, each
line in the diagram represents a parallel data path composed of multiple wires. Second,
each potential intersection between an input and output requires an electronic switch
that can connect the input to the output at that point. Thus, a crossbar requires N × M
switching components, each of which must be able to switch a parallel connection. By
comparison, a bus only requires N + M electronic components (one to connect each in-
put and each output to the bus). Despite the cost, switching fabrics are popular for
high-performance systems.

15.26 Summary

A bus is the fundamental mechanism used to interconnect memory, I/O devices,
and processors within a computer system. Most buses operate in parallel, meaning that
the bus consists of parallel wires that permit multiple bits to be transferred simultane-
ously.

Each bus defines a protocol that attached devices use to access the bus. Most bus
protocols follow the fetch-store paradigm; an I/O device connected to a bus is designed
to receive fetch or store operations and interpret them as control operations on the de-
vice.

310 Buses And Bus Architectures Chap. 15

Conceptually, a bus protocol specifies three separate forms of information: control
information, address information, and data. In practice, a bus does not need indepen-
dent wires for each form because a bus protocol can multiplex communication over a
small set of wires.

A bus defines an address space that may contain holes (i.e., unassigned addresses).
A computer system can have a single bus to which memory and I/O devices attach, or
can have multiple buses that each attach to specific types of devices. As an alternative,
a hardware device called a bridge can be used to add multiple auxiliary buses to a com-
puter by mapping all or part of the auxiliary bus address space onto the address space of
the computer’s main bus.

The chief alternative to a bus is known as a switching fabric. Although they
achieve higher throughput by using parallelism, switching fabrics are restricted to high-
end systems because a switching fabric is significantly more expensive than a bus.

EXERCISES

15.1 A hardware architect asks you to choose between a single, thirty-two bit bus design that
multiplexes both data and address information across the bus or two sixteen-bit buses,
one used to send address information and one used to send data. Which design do you
choose? Why?

15.2 In a computer, what is a bus, and what does it connect?

15.3 Your friend claims that their computer has a special bus that is patented by Apple. What
term do we use to characterize a bus design that is owned by one company?

15.4 What are the three conceptual categories of wires in the bus?

15.5 What is the fetch-store paradigm?

15.6 If the lines on a bus are divided into control lines and other lines, what are the main two
uses of the other lines?

15.7 What is the advantage of having a separate socket for each memory chip?

15.8 Suppose a device has been assigned addresses 0x4000000 through 0x4000003. Write C
code that stores the value 0xff0001A4 into the addresses.

15.9 If a bus can transfer 64 bits in each cycle and runs at a rate of 66 MHz, what is the bus
throughput measured in megabytes per second?

15.10 What is a switching fabric, and what is its chief advantage over a bus?

15.11 How many simultaneous transfers can occur over a crossbar switching fabric of N inputs
and M outputs?

15.12 Search the Internet, and make a list of switching fabric designs.

15.13 Look on the Internet for an explanation of a CLOS network, which is used in switching
fabrics, and write a short description.

15.14 What does a bridge connect?

www.ebook3000.com

http://www.ebook3000.org

Chapter Contents

16.1 Introduction, 313
16.2 I/O Paradigms, 313
16.3 Programmed I/O, 314
16.4 Synchronization, 314
16.5 Polling, 315
16.6 Code For Polling, 315
16.7 Control And Status Registers, 318
16.8 Using A Structure To Define CSRs, 318
16.9 Processor Use And Polling, 320
16.10 Interrupt-Driven I/O, 320
16.11 An Interrupt Mechanism And Fetch-Execute, 321
16.12 Handling An Interrupt, 322
16.13 Interrupt Vectors, 323
16.14 Interrupt Initialization And Disabled Interrupts, 324
16.15 Interrupting An Interrupt Handler, 324
16.16 Configuration Of Interrupts, 325
16.17 Dynamic Bus Connections And Pluggable Devices, 326
16.18 Interrupts, Performance, And Smart Devices, 326
16.19 Direct Memory Access (DMA), 328
16.20 Extending DMA With Buffer Chaining, 328
16.21 Scatter Read And Gather Write Operations, 329
16.22 Operation Chaining, 330
16.23 Summary, 330

www.ebook3000.com

http://www.ebook3000.org

16

Programmed And Interrupt-
Driven I/O

16.1 Introduction

Earlier chapters introduce I/O. The previous chapter explains how a bus provides
the connection between a processor and a set of I/O devices. The chapter discusses the
bus address space, and shows how an address space can hold a combination of both
memory and I/O devices. Finally, the chapter explains that a bus uses the fetch-store
paradigm, and shows how fetch and store operations can be used to interrogate or con-
trol an external device.

This chapter continues the discussion. The chapter describes and compares the two
basic styles of interaction between a processor and an I/O device. It focuses on
interrupt-driven I/O, and explains how device driver software in the operating system
interacts with an external device.

The next chapter takes a different approach to the subject by examining I/O from a
programmer’s perspective. The chapter looks at individual devices, and describes how
they interact with the processor.

16.2 I /O Paradigms

We know from the previous chapter that I/O devices connect to a bus, and that a
processor can interact with the device by issuing fetch and store operations to bus ad-
dresses that have been assigned to the device. Although the basic mechanics of I/O are

313

314 Programmed And Interrupt-Driven I/O Chap. 16

easy to specify, several questions remain unanswered. What control operations should
each device support? How does application software running on the processor access a
given device without understanding the hardware details? Can the interaction between a
processor and I/O devices affect overall system performance?

16.3 Programmed I/O

The earliest computers took a straightforward approach to I/O: an external device
consisted of basic digital circuits that controlled the hardware in response to fetch and
store operations; the CPU handled all the details. For example, to write data on a disk,
the CPU activated a set of circuits in the device, one at a time. The circuits positioned
the disk arm and caused the head to write a block of data. To capture the idea that an
early peripheral device consisted only of basic circuits that respond to commands from
the CPU we say that the device contained no intelligence, and characterize the form of
interaction by saying that the I/O is programmed.

16.4 Synchronization

It may seem that writing software to perform programmed I/O is trivial: a program
merely assigns a value to an address on the bus. To understand I/O programming,
however, we need to remember two things. First, a nonintelligent device cannot
remember a list of commands. Instead, circuits in the device perform each command
precisely when the processor sends the command. Second, a processor operates much
faster than an I/O device — even a slow processor can execute thousands of instruc-
tions in the time it takes for a motor or mechanical actuator to move a physical mecha-
nism.

As an example of a mechanical device, consider a printer. The print mechanism
can spray ink across the page, but can only print a small vertical band at any time.
Printing starts at the top of the page. After printing one horizontal band, the paper must
be advanced before the next horizontal band can be printed. If a processor merely is-
sues instructions to print an item, advance the paper, and print another item, the second
item may be printed while the paper is still moving, resulting in a smear. In the worst
case, if the print mechanism is not designed to operate while the paper advance mecha-
nism operates, the hardware may be damaged.

To prevent problems, programmed I/O relies on synchronization. That is, once it
issues a command, the processor must interact with the device to wait until the device is
ready for another command. We can summarize:

Because a processor operates orders of magnitude faster than an I/O
device, programmed I/O requires the processor to synchronize with
the device that is being controlled.

www.ebook3000.com

http://www.ebook3000.org

Sec. 16.4 Synchronization 315

16.5 Polling

The basic form of synchronization that a processor uses with an I/O device is
known as polling. In essence, polling requires the processor to ask repeatedly whether
an operation has completed before the processor starts the next operation. Thus, to per-
form a print operation, a processor can use polling at each step. Figure 16.1 shows an
example.

d Test to see if the printer is powered on
d Cause the printer to load a blank sheet of paper
d Poll to determine when the paper has been loaded
d Specify data in memory that tells what to print
d Poll to wait for the printer to load the data
d Cause the printer to start spraying a band of ink
d Poll to determine when the ink mechanism finishes
d Cause the printer to advance the paper to the next band
d Poll to determine when the paper has advanced
d Repeat the above six steps for each band to be printed
d Cause the printer to eject the page
d Poll to determine when the page has been ejected

Figure 16.1 Illustration of synchronization between a processor and an I/O
device. The processor must wait for each step to complete.

16.6 Code For Polling

How does software perform polling? Because a bus follows the fetch-store para-
digm, polling must use a fetch operation. That is, one or more of the addresses as-
signed to the device correspond to status information — when the processor fetches a
value from the address, the device responds by giving its current status.

To understand how polling appears to a programmer, we need to know the exact
details of a hardware device. Unfortunately, most devices are incredibly complex. For
example, many vendors sell three-in-one printers that can function as scanners or fax
machines as well as printers. To keep an example simple, we will imagine a simple
printing device, and create a programming interface for the device. Although our exam-
ple device is indeed much simpler than commercial devices, the general approach is ex-
actly the same.

Recall that a device is assigned addresses in the address space, and the device is
engineered to respond to fetch and store instructions to those addresses. When a device
is created, the designer does not specify the addresses that will be used, but instead
writes a relative specification by giving addresses 0 though N–1. Later, when the de-
vice is installed in a computer, actual addresses are assigned. The use of relative ad-
dresses in the specification means a programmer can write software to control the de-
vice without knowing the actual address. Once the device is installed, the actual ad-
dress can be passed to the software as an argument.

316 Programmed And Interrupt-Driven I/O Chap. 16

An example will clarify the concept. Our imaginary printer defines thirty-two con-
tiguous bytes of addresses. Furthermore, the design has grouped the addresses into
eight words that are each thirty-two bits long. The use of words is typical. The specifi-
cation in Figure 16.2 shows how the device interprets fetch and store operations for
each of the addresses.

Addresses Operation Meaning

0 – 3 fetch Nonzero if the printer is powered on
4 – 7 store Nonzero starts loading a sheet of paper
8 – 11 store Memory address of data to print

12 – 15 store Nonzero causes printer to pick up address
16 – 19 store Start the inkjet spraying current band
20 – 23 store Nonzero advances paper to the next band
24 – 27 fetch Busy: nonzero when device is busy
28 – 31 fetch CMYK ink levels in four octets

Figure 16.2 A specification for the bus interface on an imaginary printing
device. A processor uses fetch and store to control the device
and determine its status.

The figure gives the meaning of fetch and store operations on addresses assigned
to our imaginary I/O device. As described above, addresses in the specification start at
zero because they are relative. When the device is connected to a bus, the device will
be assigned thirty-two bytes somewhere in the bus address space, and software will use
the actual addresses when communicating with the device.

Once a programmer is given a hardware specification similar to the one in Figure
16.2, writing code that controls a device is straightforward. For example, assume our
printing device has been assigned the starting bus address 0x110000. Addresses 0
through 3 in the figure will correspond to actual addresses 0x110000 through 0x110003.
To determine whether the printer is powered on, the processor merely needs to access
the value in addresses 0x110000 through 0x110003. If the value is zero, the printer is
off. The code to access the device status appears to be a memory fetch. In C, the status
test code can be written:

int *p = (int *)0x110000;

if (*p != 0) { /* Test whether printer is on */
/* printer is on */

} else {
/* printer is off */

}

The example assumes an integer size of four bytes. The code declares p to be a pointer
to an integer, initializes p to 0x110000, and then uses *p to obtain the value at address
0x110000.

www.ebook3000.com

http://www.ebook3000.org

Sec. 16.6 Code For Polling 317

Now that we understand how software communicates with a device, we can con-
sider a sequence of steps and synchronization. Figure 16.3 shows C code that performs
some of the steps found in Figure 16.1.

int *p; /* Pointer to the device address area */

p = (int *)0x110000; /* Initialize pointer to device address */
if (*p == 0) /* Test if printer is powered on */

error("printer not on");
(p+1) = 1; / Start loading paper */
while (*(p+6) != 0) /* Poll to wait for the load to complete */

;
(p+2) = &mydata; / Specify the location of data in memory */
(p+3) = 1; / Cause printer to pick up data */
while (*(p+6) != 0) /* Poll to wait for printer to complete loading data */

;
(p+4) = 1; / Start inkjet spraying */
while (*(p+6) != 0) /* Poll to wait for the inkjet to finish */

;
(p+5) = 1; / Advance the paper to the next band */
while (*(p+6) != 0) /* Poll to wait for the paper advance to complete*/

;

Figure 16.3 Example C code that uses polling to carry out some of the steps
from Figure 16.1 on the imaginary printing device specified in
Figure 16.2.

Code in the figure assumes the device has been assigned address 0x110000, and
that data structure mydata contains the data to be printed in exactly the form the printer
expects. To understand the use of pointers, remember that the C programming language
defines pointer arithmetic: adding K to an integer pointer advances the pointer by KN
bytes, where N is the number of bytes in an integer. Thus, if variable p has the value
0x110000, p+1 equals 0x110004.

The example code illustrates another feature of many devices that may seem
strange to a programmer: multiple steps for a single operation. In our example, the data
to be printed is located in memory and two steps are used to specify data. In the first
step, the address of the data is passed to the printer. In the second step, the printer is
instructed to load a copy of the data. Having two steps may seem unnecessary — why
doesn’t the printer start loading data automatically once an address has been specified?
To understand, remember that each fetch and store instruction controls circuits in the
device. A device designer might choose such a design because he or she finds it easier
to build hardware that has two separate circuits, one to accept a memory address and
one to load data from memory.

318 Programmed And Interrupt-Driven I/O Chap. 16

Programmers who have not written a program to control a device may find the
code shocking because it contains four occurrences of a while statement that each ap-
pear to be an infinite loop. If such a statement appeared in a conventional application
program, the statement would be in error because the loop continually tests the value at
a memory location without making any changes. In the example, however, pointer p
references a device instead of a memory location. Thus, when the processor fetches a
value from location p+6, the request passes to a device, which interprets it as a request
for status information. So, unlike a value in memory, the value returned by the device
will change over time — if the processor polls enough times, the device will complete
its current operation and return zero as the status value. The point is:

Although polling code appears to contain infinite loops, the code can
be correct because values returned by a device can change over time.

16.7 Control And Status Registers

We use the term Control and Status Registers (CSRs) to refer to the set of ad-
dresses that a device uses. More specifically, a control register corresponds to a con-
tiguous set of addresses (usually the size of an integer) that respond to a store operation,
and a status register corresponds to a contiguous set of addresses that respond to a fetch
operation.

In practice, CSRs are usually more complicated than the simplified version listed
in Figure 16.2. For example, a typical status register assigns meanings to individual
bits (e.g., the low-order bit of the status word specifies whether the device is in motion,
the next bit specifies whether an error has occurred, and so on). More important, to
conserve addresses, many devices combine control and status functions into a single set
of addresses. That is, a single address can serve both functions — a store operation to
the address controls the device, and a fetch operation to the same address reports the de-
vice status.

As a final detail, some devices interpret a fetch operation as both a request for
status information and a control operation. For example, a trackpad delivers bytes to
indicate motion of a user’s fingers. The processor uses a fetch operation to obtain data
from the trackpad. Furthermore, each fetch automatically resets the hardware to meas-
ure the next motion.

16.8 Using A Structure To Define CSRs

The example code in Figure 16.3 uses a pointer and pointer arithmetic to reference
individual items. In practice, programmers usually create a C struct that defines the
CSRs, and then use named members of the struct to reference items in the CSRs. For
example, Figure 16.4 shows how the code from Figure 16.3 appears when a struct is
used to define the CSRs.

www.ebook3000.com

http://www.ebook3000.org

Sec. 16.8 Using A Structure To Define CSRs 319

struct csr { /* Template for printer CSRs */
int csr_power; /* Is printer powered on? */
int csr_load; /* Load a sheet of paper */
int csr_addr; /* Specify address of data to print */
int csr_getdata; /* Upload data from memory */
int csr_spray; /* Start inkjet spraying */
int csr_advance; /* Advance paper to next band */
int csr_dev_busy; /* Nonzero => device busy */
int csr_levels; /* CMYK Ink levels in 4 bytes */

}
struct csr *p; /* Pointer to the device address area */

p = (struct csr *)0x110000; /* Set p to device address */
if (p->csr_power == 0); /* Test if printer is on */

error("printer not on");
p->csr_load = 1; /* Start loading paper */
while (p->csr_dev_busy) /* Poll to wait for the load to complete */

;
p->csr_addr = &mydata /* Specify the location of data in memory */
p->csr_getdata = 1; /* Cause printer to pick up data */
while (p->csr_dev_busy) /* Poll to wait for printer to complete loading data */

;
p->csr_spray = 1; /* Start the inkjet spraying */
while (p->csr_dev_busy) /* Poll to wait for the inkjet to finish */

;
p->csr_ = 1; /* Advance the paper to the next band */
while (p->csr_dev_busy) /* Poll to wait for the paper advance to complete*/

;

Figure 16.4 The code from Figure 16.3 rewritten to use a C struct.

As the example shows, code that uses a struct is much easier to read and debug.
Because members of the struct can be given meaningful names, a programmer reading
the code can guess at the purpose, even if they are not intimately familiar with a device.
In addition, using a struct improves program organization because all the offsets of indi-
vidual CSRs are specified in one place instead of being embedded throughout the code.
To summarize:

Instead of distributing CSR references throughout the code, a pro-
grammer can improve readability by declaring a structure that defines
all the CSRs for a device and then referencing fields in the structure.

320 Programmed And Interrupt-Driven I/O Chap. 16

16.9 Processor Use And Polling

The chief advantage of a programmed I/O architecture arises from the economic
benefit: because they do not contain sophisticated digital circuits, devices that rely on
programmed I/O are inexpensive. The chief disadvantage of programmed I/O arises
from the computational overhead: each step requires the processor to interact with the
I/O device.

To understand why polling is especially undesirable, we must recall the fundamen-
tal mismatch between I/O devices and computation: because they are electromechanical,
I/O devices operate several orders of magnitude slower than a processor. Furthermore,
if a processor uses polling to control an I/O device, the amount of time the processor
waits is fixed, and is independent of the processor speed.

The important point can be summarized:

Because a typical processor is much faster than an I/O device, the
speed of a system that uses polling depends only on the speed of the
I/O device; using a fast processor will not increase the rate at which
I/O is performed.

Turning the statement around produces a corollary: if a processor uses polling to
wait for an I/O device, using a faster processor merely means that the processor will ex-
ecute more instructions waiting for the device (i.e., loops, such as those in Figure 16.3,
will run faster). Thus, a faster processor merely wastes more cycles waiting for an I/O
device — if the processor did not need to poll, the processor could be performing com-
putation instead.

16.10 Interrupt-Driven I/O

In the 1950s and 1960s, computer architects became aware of the mismatch
between the speed of processors and I/O devices. The difference was particularly im-
portant when the first generation of computers, which used vacuum tubes, was replaced
by a second generation that used solid-state devices. Although the use of solid-state de-
vices (i.e., transistors) increased the speed of processors, the speed of I/O devices
remained approximately the same. Thus, architects explored ways to overcome the
mismatch between I/O and processor speeds.

One approach emerged as superior, and led to a revolution in computer architecture
that produced the third generation of computers. Known as an interrupt mechanism, the
facility is now standard in processor designs.

The central premise of interrupt-driven I/O is straightforward: instead of wasting
time polling, allow a processor to continue to perform computation while an I/O device
operates. When the device finishes, arrange for the device to inform the processor so

www.ebook3000.com

http://www.ebook3000.org

Sec. 16.10 Interrupt-Driven I /O 321

that the processor can handle the device. As the name implies, the hardware temporari-
ly interrupts the computation in progress to handle I/O. Once the device has been ser-
viced, the processor resumes the computation exactly where it was interrupted.

In practice, interrupt-driven I/O requires that all aspects of a computer system be
designed to support interrupts, including:

d I/O device hardware
d Bus architecture and functionality
d Processor architecture
d Programming paradigm

I/O Device Hardware. Instead of merely operating under control of a processor,
an interrupt-driven I/O device must operate independently once it has started. Later,
when it finishes, a device must be able to interrupt the processor.

Bus Architecture And Functionality. A bus must support two-way communication
that allows a processor to start an operation on a device and allows the device to inter-
rupt the processor when the operation completes.

Processor Architecture. A processor needs a mechanism that can cause the proces-
sor to suspend normal computation temporarily, handle a device, and then resume the
computation.

Programming Paradigm. Perhaps the most significant change involves a shift in
the programming paradigm. Polling uses a sequential, synchronous style of program-
ming in which the programmer specifies each step of the operation an I/O device per-
forms. As we will see in the next chapter, interrupt-driven programming uses an asyn-
chronous style of programming in which the programmer writes code to handle events.

16.11 An Interrupt Mechanism And Fetch-Execute

As the term interrupt implies, device events are temporary. When a device needs
service (e.g., when an operation completes), hardware in the device sends an interrupt
signal over the bus to the processor. The processor temporarily stops executing instruc-
tions, saves the state information needed to resume execution later, and handles the de-
vice. When it finishes handling an interrupt, the processor reloads the saved state and
resumes executing exactly at the point the interrupt occurred. That is:

An interrupt mechanism temporarily borrows the processor to handle
an I/O device. Hardware saves the state of the computation when an
interrupt occurs and resumes the computation once interrupt process-
ing finishes.

322 Programmed And Interrupt-Driven I/O Chap. 16

From an application programmer’s point of view, an interrupt is transparent, which
means a programmer writes application code as if interrupts do not exist. The hardware
is designed so that the result of computation is the same if no interrupts occur, one in-
terrupt occurs, or many interrupts occur during the execution of the instructions.

How does I/O hardware interrupt a processor? In fact, devices only request ser-
vice. Interrupts are implemented by a modified fetch-execute cycle that allows a pro-
cessor to respond to a request. As Algorithm 16.1 explains, an interrupt occurs between
the execution of two instructions.

Algorithm 16.1

Repeat forever {

Test: if any device has requested interrupt, handle the in-
terrupt, and then continue with the next iteration of the
loop.

Fetch: access the next step of the program from the loca-
tion in which the program has been stored.

Execute: Perform the step of the program.

}

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
���

Algorithm 16.1 A Fetch-Execute Cycle That Handles Interrupts.

16.12 Handling An Interrupt

To handle an interrupt, processor hardware takes the five steps that Figure 16.5
lists.

d Save the current execution state
d Determine which device interrupted
d Call the function that handles the device
d Clear the interrupt signal on the bus
d Restore the current execution state

Figure 16.5 Five steps that processor hardware performs to handle an inter-
rupt. The steps are hidden from a programmer.

www.ebook3000.com

http://www.ebook3000.org

Sec. 16.12 Handling An Interrupt 323

Saving and restoring state is easiest to understand: the hardware saves information
when an interrupt occurs (usually in memory), and a special return from interrupt in-
struction reloads the saved state. In some architectures, the hardware saves complete
state information, including the contents of all general-purpose registers. In other archi-
tectures, the hardware saves basic information, such as the instruction counter, and re-
quires software to explicitly save and restore values, such as the general-purpose regis-
ters. In any case, saving and restoring state are symmetric operations — hardware is
designed so the instruction that returns from an interrupt reloads exactly the same state
information that the hardware saves when an interrupt occurs. We say that the proces-
sor temporarily switches the execution context when it handles an interrupt.

16.13 Interrupt Vectors

How does the processor know which device is interrupting? Several mechanisms
have been used. For example, some architectures use a special-purpose coprocessor to
handle all I/ O. To start a device, the processor sends requests to the coprocessor.
When a device needs service, the coprocessor detects the situation and interrupts the
processor.

Most architectures use control signals on a bus to inform the processor when an in-
terrupt is needed. The processor checks the bus on each iteration of the fetch-execute
cycle. When it detects an interrupt request, interrupt hardware in the processor sends a
special command over the bus to determine which device needs service. The bus is ar-
ranged so that exactly one device can respond at a time. Typically, each device is as-
signed a unique number, and the device responds by giving its number.

Numbers assigned to devices are not random. Instead, numbers are configured in a
way that allows the processor hardware to interpret the number as an index into an array
of pointers at a reserved location in memory. An item in the array, which is known as
an interrupt vector, is a pointer to software that handles the device; we say that the in-
terrupts are vectored. The software is known as an interrupt handler. Figure 16.6 illus-
trates the data structure.

The figure shows the simplest interrupt vector arrangement in which each physical
device is assigned a unique interrupt vector. In practice, computer systems designed to
accommodate many devices often use a variation in which multiple devices share a
common interrupt vector. After the interrupt occurs, code in the interrupt handler uses
the bus a second time to determine which physical device interrupted. Once it deter-
mines the physical device, the handler chooses an interaction that is appropriate for the
device. The chief advantage of sharing an interrupt vector among multiple devices
arises from scale — a processor with a fixed set of interrupt vectors can accommodate
an arbitrary number of devices.

324 Programmed And Interrupt-Driven I/O Chap. 16

interrupt vectors
in memory

0

1

2

3

...

handler for
device 2

handler for
device 3

handler for
device 1

handler for
device 0

Figure 16.6 Illustration of interrupt vectors in memory. Each vector points
to an interrupt handler for the device.

16.14 Interrupt Initialization And Disabled Interrupts

How are values installed in an interrupt vector table? Software must initialize in-
terrupt vectors because neither the processor nor the device hardware enters or modifies
the table. Instead, the hardware blindly assumes that the interrupt vector table has been
initialized — when an interrupt occurs, the processor saves state, uses the bus to request
a vector number, uses the value as an index into the table of vectors, and then branches
to the code at that address. No matter what address is found in a vector, the processor
will jump to the address and attempt to execute the instruction.

To ensure that no interrupts occur before the table has been initialized, most pro-
cessors start in a mode that has interrupts disabled. That is, the processor continues to
run the fetch-execute cycle without checking for interrupts. Later, once the software
(usually the operating system) has initialized the interrupt vectors, the software must ex-
ecute a special instruction that explicitly enables interrupts. In many processors, the in-
terrupt status is controlled by the mode of the processor; interrupts are automatically en-
abled when the processor changes from the initial startup mode to a mode suitable for
executing programs.

16.15 Interrupting An Interrupt Handler

Once an interrupt occurs and an interrupt handler is running, what happens if
another device becomes ready and requests an interrupt? The simplest hardware fol-
lows a straightforward policy: once an interrupt occurs, further interrupts are automati-

www.ebook3000.com

http://www.ebook3000.org

Sec. 16.15 Interrupting An Interrupt Handler 325

cally disabled until the current interrupt completes and returns. Thus, there is never any
confusion.

The most sophisticated processors offer a multiple level interrupt mechanism which
is also known as multiple interrupt priorities. Each device is assigned an interrupt
priority level, typically in the range 1 through 7. At any given time, the processor is
said to be operating at one of the priority levels. Priority zero means the processor is
not currently handling an interrupt (i.e., is running an application); a priority N greater
than zero means the processor is currently handling an interrupt from a device that has
been assigned to level N.

The rule is:

When operating at priority level K, a processor can only be interrupted
by a device that has been assigned to level K+1 or higher.

Note that when an interrupt happens at priority K, no more interrupts can occur at prior-
ity K or lower. The consequence is that at most one interrupt can be in progress at each
priority level.

16.16 Configuration Of Interrupts

We said that each device must be assigned an interrupt vector and (possibly) an in-
terrupt priority. Both the hardware in the device and the software running on the pro-
cessor must agree on the assignments — when a device returns an interrupt vector
number, the corresponding interrupt vector must point to the handler for the device.

How are interrupt assignments made? Two approaches have been used:

d Manual assignment only used for small, embedded systems

d Automated assignment used on most computer systems

Manual Assignment. Some small embedded systems still use the method that was
used on early computers: a manual approach in which computer owners configure both
the hardware and software. For example, some devices are manufactured with physical
switches on the circuit board, and the switches are used to enter an interrupt vector ad-
dress. Of course, the operating system must be configured to match the values chosen
for devices.

Automated Assignment. Automated interrupt vector assignment is the most widely
used approach because it eliminates manual configuration and allows devices to be in-
stalled without requiring the hardware to be modified. When the computer boots, the
processor uses the bus to determine which devices are attached. The processor assigns
an interrupt vector number to each device, places a copy of the appropriate device
handler software in memory, and builds the interrupt vector in memory. Of course,
automated assignment means higher delay when booting the computer.

326 Programmed And Interrupt-Driven I/O Chap. 16

16.17 Dynamic Bus Connections And Pluggable Devices

Our description of buses and interrupt configuration has assumed that devices are
attached to a bus while a computer is powered down, that interrupt vectors are assigned
at startup, and that all devices remain in place as the computer operates. Early buses
were indeed designed as we have described. However, more recent buses have been in-
vented that permit devices to be connected and disconnected while the computer is run-
ning. We say that such buses support pluggable devices. For example, a Universal
Serial Bus (USB) permits a user to plug in a device at any time.

How does a USB operate? In essence, a USB appears as a single device on the
computer’s main bus. When the computer boots, the USB is assigned an interrupt vec-
tor as usual, and a handler is placed in memory. Later, when a user plugs in a new de-
vice, the USB hardware generates an interrupt, and the processor executes the handler.
The handler, in turn, sends a request over the USB bus to interrogate devices and deter-
mine which device has been attached. Once it identifies the device, the USB handler
loads a secondary device-specific handler. When a device needs service, the device re-
quests an interrupt. The USB handler receives the interrupt, determines which device
interrupted, and passes control to the device-specific handler.

16.18 Interrupts, Performance, And Smart Devices

Why did the interrupt mechanism cause a revolution in computer architecture?
The answer is easy. First, I/O is an important aspect of computing that must be optim-
ized. Second, interrupt-driven I/O automatically overlaps computation and I/O without
requiring a programmer to take any special action. That is, interrupts adapt to any
speed processor and I/O devices automatically. Because a programmer does not need
to estimate how many instructions can be performed during an I/O operation, interrupts
never underestimate or overestimate. We can summarize:

A computer that uses interrupts is both easier to program and offers
better overall performance than a computer that uses polling. In ad-
dition, interrupts allow any speed processor to adapt to any speed I/O
devices automatically.

Interestingly, once the basic interrupt mechanism had been invented, architects
realized that further improvements are possible. To understand the improvements, con-
sider a disk device. The underlying hardware requires several steps to read data from
the disk and place it in memory. Figure 16.7 summarizes the steps.

www.ebook3000.com

http://www.ebook3000.org

Sec. 16.18 Interrupts, Performance, And Smart Devices 327

d If disk is not spinning, bring it to full speed

d Compute the cylinder that contains the requested
block and move the disk arm to the cylinder

d Wait for the disk to rotate to the correct sector

d Read bytes of data from a block on the disk and
place them in a hardware FIFO

d Transfer bytes of data from the FIFO into memory

Figure 16.7 Example of the steps required to read a block from a disk de-
vice.

Early hardware required the processor to handle each step by starting the operation
and waiting for an interrupt. For example, the processor had to verify that the disk was
spinning. If the disk was idle, the processor had to issue a command that started the
motor and wait for an interrupt.

The key insight is that the more digital logic an I/O device contains, the less the
device needs to rely on the processor. Informally, architects use the term dumb device
to refer to a device that requires a processor to handle each step and the term smart de-
vice to characterize a device that can perform a series of steps on its own. A smart ver-
sion of a disk device contains sufficient logic (perhaps even an embedded processor) to
handle all the steps involved in reading a block. Thus, a smart device does not interrupt
as often, and does not require the processor to handle each step. Figure 16.8 lists an ex-
ample interaction between a processor and a smart disk device.

d The processor uses the bus to send the disk a location in
memory and request a read operation

d Disk device performs all steps required, including moving
bytes into memory, and interrupts only after the operation
completes

Figure 16.8 The interaction between a processor and a smart disk device
when reading a disk block.

Our discussion of device interaction has omitted many details. For example, most
I/O devices detect and report errors (e.g., a disk does not spin or a flaw on a surface
prevents the hardware from reading a disk block). Thus, interrupt processing is more
complex than described: when an interrupt occurs, the processor must interrogate the
CSRs associated with the disk to determine whether the operation was successful or an
error occurred. Furthermore, for devices that report soft errors (i.e., temporary errors),
the processor must retry the operation to determine whether an error was temporary or
permanent.

328 Programmed And Interrupt-Driven I/O Chap. 16

16.19 Direct Memory Access (DMA)

The discussion above implies that a smart I/O device can transfer data into
memory without using the CPU. Indeed, such transfers are not only possible but key to
high-speed I/O. The technology that allows an I/O device to interact with memory is
known as Direct Memory Access (DMA).

To understand DMA, recall that in most architectures, both memory and I/O de-
vices attach to a central bus. Thus, there is a direct path between an I/O device and
memory. If we imagine that a smart I/O device contains an embedded processor, the
idea behind DMA should be clear: the embedded processor in the I/O device issues
fetch or store requests to which the memory responds. Of course, the bus design must
make it possible for multiple processors (the main processor and an embedded processor
in each smart device) to take turns sharing the bus and prevent them from sending mul-
tiple requests simultaneously. If the bus supports such a mechanism, an I/O device can
transfer data between the memory and the device without using the processor.

To summarize:

A technology known as Direct Memory Access (DMA) allows a smart
I/O device to access memory directly. DMA improves performance by
allowing a device to transfer data between the device and memory
without using the processor.

16.20 Extending DMA With Buffer Chaining

It may seem that a smart device using DMA is sufficient to guarantee high perfor-
mance: data can be transferred between the device and memory without using the pro-
cessor, and the device does not interrupt for each step of the operation. However, an
optimization has been discovered that further improves performance.

To understand how DMA can be improved, consider a high-speed network. Pack-
ets tend to arrive from the network in bursts, which means a set of packets arrives
back-to-back with minimum time between successive packets. If the network interface
device uses DMA, the device will interrupt the processor after accepting an incoming
packet and placing the packet in memory. The processor must then specify the location
of a buffer for the next packet and restart the device. The sequence of events must oc-
cur quickly (i.e., before the next packet arrives). Unfortunately, other devices on the
system may also be generating interrupts, which means the processor may be delayed
slightly. For the highest-speed networks, a processor may not be able to service an in-
terrupt in time to capture the next packet.

To solve the problem of back-to-back arrivals, some smart I/O devices use a tech-
nique known as buffer chaining. The processor allocates multiple buffers, and creates a
linked list in memory. The processor then passes the list to the I/O device, and allows
the device to fill each buffer. Because a smart device can use the bus to read values

www.ebook3000.com

http://www.ebook3000.org

Sec. 16.20 Extending DMA With Buffer Chaining 329

from memory, the device can follow the linked list and place incoming packets in suc-
cessive buffers. Figure 16.9 illustrates the concept†.

data buffer 1 data buffer 2 data buffer 3

address passed
to device

Figure 16.9 Illustration of buffer chaining. A processor passes a list of
buffers to a smart I/O device, and the device fills each buffer on
the list without waiting for the processor.

The network example given above describes the use of buffer chaining for high-
speed input. A buffer chain can also be used with output: a processor places data in a
set of buffers, links the buffers on a list, passes the address of the linked list to a smart
I/O device, and starts the device. The device moves through the list, taking the data
from each buffer in memory and sending the data to the device.

16.21 Scatter Read And Gather Write Operations

Buffer chaining is especially helpful for computer systems in which the buffer size
used by software is smaller than the size of a data block used by an I/O device. On in-
put, chained buffers allow a device to divide a large data transfer into a set of smaller
buffers. On output, chained buffers allow a device to extract data from a set of small
buffers and combine the data into a single block. For example, some operating systems
create a network packet by placing the packet header in one buffer and the packet pay-
load in another buffer. Buffer chaining allows the operating system to send the packet
without the overhead of copying all the bytes into a single, large buffer.

We use the term scatter read to capture the idea of dividing a large block of in-
coming data into multiple small buffers, and the term gather write to capture the idea of
combining data from multiple small buffers into a single output block. Of course, to
make buffer chaining useful, a linked list of output buffers must specify the size of each
buffer (i.e., the number of bytes to write). Similarly, a linked list of input buffers must
include a length field that the device can set to specify how many bytes were deposited
in the buffer.

��������������������������������
†Although the figure shows three buffers, network devices typically use a chain of 32 or 64 buffers.

330 Programmed And Interrupt-Driven I/O Chap. 16

16.22 Operation Chaining

Although buffer chaining handles situations in which a given operation is repeated
over many buffers, further optimization is possible in cases where a device can perform
multiple operations. To understand, consider a disk device that offers read and write
operations on individual blocks. To optimize performance, we need to start another
operation as soon as the current operation completes. Unfortunately, the operations are
a mixture of reads and writes.

The technology used to start a new operation without delay is known as operation
chaining. Like buffer chaining, a processor that uses operation chaining must create a
linked list in memory, and must pass the list to a smart device. Unlike buffer chaining,
however, nodes on the linked list specify a complete operation: in addition to a buffer
pointer, the node contains an operation and necessary parameters. For example, a node
on the list used with a disk might specify a read operation and a disk block. Figure
16.10 illustrates operation chaining.

data buffer 1 data buffer 2 data buffer 3

R W R17 29 61
address passed

to device

Figure 16.10 Illustration of operation chaining for a smart disk device. Each
node specifies an operation (R or W), a disk block number, and
a buffer in memory.

16.23 Summary

Two paradigms can be used to handle I/O devices: programmed I/O and
interrupt-driven I/O. Programmed I/O requires a processor to handle each step of an
operation by polling the device. Because a processor is much faster than an I/O device,
the processor spends many cycles waiting for the device.

Third-generation computers introduced interrupt-driven I/O that allows a device to
perform a complete operation before informing the processor. A processor that uses in-
terrupts includes extra hardware that tests once during each execution of a fetch-execute
cycle to see whether any device has requested an interrupt.

Interrupts are vectored, which means the interrupting device supplies a unique in-
teger that the processor uses as an index into an array of pointers to handlers. To
guarantee that interrupts do not affect a running program, the hardware saves and re-
stores state information during an interrupt. Multilevel interrupts are used to give some
devices priority over others.

www.ebook3000.com

http://www.ebook3000.org

Sec. 16.23 Summary 331

Smart I/O devices contain additional logic that allows them to perform a series of
steps without assistance from the processor. Smart devices use the techniques of buffer
chaining and operation chaining to further optimize performance.

EXERCISES

16.1 Assume a RISC processor takes two microseconds to execute each instruction and an
I/O device can wait at most 1 millisecond before its interrupt is serviced. What is the
maximum number of instructions that can be executed with interrupts disabled?

16.2 List and explain the two I/O paradigms.

16.3 Expand the acronym CSR and explain what it means.

16.4 A software engineer is trying to debug a device driver, and discovers what appears to be
an infinite loop:

wwhhiillee ((**ccssrrppttrr-->>ttssttbbuussyy !!== 00))
;; //** ddoo nnootthhiinngg**//

When the software engineer shows you the code, how do you respond?

16.5 Read about devices on a bus and the interrupt priorities assigned to each. Does a disk or
mouse have higher priority? Why?

16.6 In most systems, part or all of the device driver code must be written in assembly
language. Why?

16.7 Conceptually, what data structure is an interrupt vector, and what does one find in each
entry of an interrupt vector?

16.8 What is the most significant advantage of a device that uses chained operations?

16.9 What is the chief advantage of interrupts over polling?

16.10 Suppose a user installs ten devices that all perform DMA into a single computer and at-
tempts to operate the devices simultaneously. What components in the computer might
become a bottleneck?

16.11 If a smart disk device uses DMA and blocks on the disk each contain 512 bytes, how
many times will the disk interrupt when the processor transfers 2048 bytes (four separate
blocks)?

16.12 When a device uses chaining, what is the type of the data structure that a device driver
places in memory to give a set of commands to the device?

www.ebook3000.com

http://www.ebook3000.org

Chapter Contents

17.1 Introduction, 335
17.2 Definition Of A Device Driver, 336
17.3 Device Independence, Encapsulation, And Hiding, 336
17.4 Conceptual Parts Of A Device Driver, 337
17.5 Two Categories Of Devices, 338
17.6 Example Flow Through A Device Driver, 338
17.7 Queued Output Operations, 339
17.8 Forcing A Device To Interrupt, 341
17.9 Queued Input Operations, 342
17.10 Asynchronous Device Drivers And Mutual Exclusion, 342
17.11 I/O As Viewed By An Application, 343
17.12 The Library/Operating System Dichotomy, 344
17.13 I/O Operations That The OS Supports, 345
17.14 The Cost Of I/O Operations, 346
17.15 Reducing System Call Overhead, 347
17.16 The Key Concept Of Buffering, 347
17.17 Implementation of Buffered Output, 348
17.18 Flushing A Buffer, 349
17.19 Buffering On Input, 350
17.20 Effectiveness Of Buffering, 350
17.21 Relationship To Caching, 351
17.22 An Example: The C Standard I/O Library, 352
17.23 Summary, 352

www.ebook3000.com

http://www.ebook3000.org

17

A Programmer’s View Of
Devices, I/O, And Buffering

17.1 Introduction

Previous chapters cover the hardware aspects of I/O. They explain the bus archi-
tecture that is used to interconnect devices, processors, and memory, as well as the in-
terrupt mechanism that an external device uses to inform a processor when an operation
completes.

This chapter changes the focus to software, and considers I/O from a
programmer’s perspective. The chapter examines both the software needed to control a
device and the application software that uses I/O facilities. We will understand the im-
portant concept of a device driver, and see how a driver implements operations like
read and write. We will learn that devices can be divided into two broad types: byte-
oriented and block-oriented, and we will understand the interaction used with each.

Although few programmers write device drivers, understanding how a device
driver operates and how low-level I/O occurs can help programmers write more effi-
cient applications. Once we have looked at the mechanics of device drivers, we will
focus on the concept of buffering, and see why it is essential for programmers to use
buffering.

335

336 A Programmer’s View Of Devices, I /O, And Buffering Chap. 17

17.2 Definition Of A Device Driver

The previous chapter explains the basic hardware interrupt mechanism. We are
now ready to consider how low-level software uses the interrupt mechanism to perform
I/O operations. We use the term device driver to refer to software that provides an in-
terface between an application program and an external hardware device. In most cases,
a computer system has a device driver for each external device, and all applications that
access a given device use the same driver. Typically, device drivers are part of the
computer’s operating system, which means any application running on the computer
uses a device driver when communicating with a device.

Because a device driver understands the details of a particular hardware device, we
say that a driver contains low-level code. The driver interacts with the device over a
bus, understands the device’s Control And Status Registers (CSRs), and handles inter-
rupts from the device.

17.3 Device Independence, Encapsulation, And Hiding

The primary purpose of a device driver is device independence. That is, the device
driver approach removes all hardware details from application programs and relegates
them to a driver.

To understand why device independence is important, we need to know how early
software was built. Each application program was designed for a specific brand of
computer, a specific memory size, and a specific set of I/O devices. An application
contained all the code needed to use the bus to communicate with particular devices.
Unfortunately, a program written to use a specific set of devices could not be used with
any other devices. For example, upgrading a printer to a newer model required all ap-
plication programs to be rewritten.

A device driver solves the problem by providing a device-independent interface to
applications. For example, because all applications that use a printer rely on the
printer’s device driver, an application does not have detailed knowledge of the hardware
built in. Consequently, changing a printer only requires changing the device driver; all
applications remain unchanged. We say that the device driver hides hardware details
from applications or that the device driver encapsulates the hardware details.

To summarize:

A device driver consists of software that understands and handles all
the low-level details of communication with a particular device. Be-
cause the device driver provides a high-level interface to applications,
an application program does not need to change if a device changes.

www.ebook3000.com

http://www.ebook3000.org

Sec. 17.4 Conceptual Parts Of A Device Driver 337

17.4 Conceptual Parts Of A Device Driver

A device driver contains multiple functions that all must work together, including
code to communicate over a bus, code to handle device details, and code to interact
with an application. Furthermore, a device driver must interact with the computer’s
operating system. To help manage complexity, programmers think of a device driver as
partitioned into three parts:

d A lower half comprised of a handler that is invoked when
an interrupt occurs

d An upper half comprised of functions that are invoked by
applications to request I/O operations

d A set of shared variables that hold state information used
to coordinate the two halves

The names upper half and lower half reflect the view of a programmer who writes
device drivers: hardware is low level and application programs are high level. Thus, a
programmer thinks of applications at the top of a hierarchy and hardware at the bottom.
Figure 17.1 illustrates a programmer’s view.

shared
variables

upper half
invoked by

applications

applications programs

lower half
invoked by
interrupts

device hardware

Figure 17.1 The conceptual division of a device driver into three parts. A
device driver provides the interface between applications that
operate at a high level and the device hardware that operates at a
low level.

338 A Programmer’s View Of Devices, I /O, And Buffering Chap. 17

17.5 Two Categories Of Devices

Before we can understand more about device drivers, we need to know more about
the interface the hardware presents to the driver. Devices can be divided into two broad
categories, depending on the style of interface the device uses:

d Character-oriented devices

d Block-oriented devices

A character-oriented device transfers a single byte of data at a time. For example,
the serial interface used to connect a keyboard to a computer transfers one character
(i.e., byte) for each keystroke. From a device driver’s point of view, a character-
oriented device generates an interrupt each time a character is sent or received — send-
ing or receiving a block of N characters generates N interrupts.

A block-oriented device transfers an entire block of data at a time. In some cases,
the underlying hardware specifies a block size, B, and all blocks must contain exactly B
bytes. For example, a disk device defines a block size equal to the disk’s sector size.
In other cases, however, blocks are of variable size. For example, a network interface
defines a block to be as large as a packet (although it places an upper-bound on packet
size, packet switching hardware allows packet sizes to vary from one packet to the
next). From a device driver’s point of view, a block-oriented device only generates one
interrupt each time a block is sent or received.

17.6 Example Flow Through A Device Driver

The details of programming device drivers are beyond the scope of this text. How-
ever, to help us understand the concept, we will consider how a device driver might
handle basic output. For our example, we will assume that an application sends data
over the Internet. The application specifies data to be sent, and the protocol software
creates a packet and transfers the packet to the device driver for the network device.
Figure 17.2 illustrates the modules involved in a packet transfer, and lists the steps that
are taken for output.

As the figure shows, even a straightforward operation requires a complex sequence
of steps. When an application sends data, the application process enters the operating
system and control passes to protocol software that creates a packet. The protocol
software, in turn, passes the outgoing packet to the upper half of the appropriate device
driver. The device driver places the packet in the shared variables section, starts the de-
vice performing packet transmission, and returns to the protocol software which returns
to the application process.

Although control has returned from the operating system, the outgoing packet
remains in the shared variables data area where the device can use DMA to access it.
Once the device completes sending the packet, the device interrupts and control passes
to the lower half. The lower half then removes the packet from the shared area.

www.ebook3000.com

http://www.ebook3000.org

Sec. 17.6 Example Flow Through A Device Driver 339

computer

application

protocols

upper half

variables

lower half

device

operating
system

external
hardware

Steps Taken

1. The application sends data over the
Internet

2. Protocol software passes a packet to
the driver

3. The driver stores the outgoing packet
in the shared variables

4. The upper half specifies the packet
location and starts the device

5. The upper half returns to the protocol
module

6. The protocol software returns to the
application

7. The device interrupts and the lower
half of the driver executes

8. The lower half removes the copy of
the packet from the shared variables

1

2

3

4

5

6

7

8

Figure 17.2 A simplified example of the steps that occur when an application
requests an output operation. A device driver located in the
operating system handles all communication with the device.

17.7 Queued Output Operations

Although the design used in our example driver is feasible, the approach is too
inefficient to use in a production system. In particular, if our application sends another
packet before the device has finished sending the first one, the device driver must poll
until the device finishes using the packet. To avoid waiting, device drivers used in pro-
duction systems implement a queue of requests. On output, the upper half does not
wait for the device to be ready. Instead, the upper half deposits the data to be written in
a queue, ensures that the device will generate an interrupt, and returns to the applica-

340 A Programmer’s View Of Devices, I /O, And Buffering Chap. 17

tion. Later, when the device finishes its current operation and generates an interrupt,
the lower half extracts the next request from the queue, starts the device, and returns
from the interrupt. Figure 17.3 illustrates the conceptual organization.

upper half

lower half

request queue in
shared variables
data area

Figure 17.3 The conceptual organization of a device driver that uses a queue
of requests. On output, the upper half deposits items in the re-
quest queue without waiting for the device, and the lower half
controls the device.

A device driver that uses an output queue is elegant — the queue of requests pro-
vides coordination between the upper and lower halves of the driver. Figure 17.4 lists
the steps that each half of a device driver takes for output.

Initialization (computer system starts)

1. Initialize input queue to empty

Upper half (application performs write)

1. Deposit data item in queue

2. Use the CSR to request an interrupt

3. Return to application

Lower half (interrupt occurs)

1. If the queue is empty, stop the device from interrupting

2. If the queue is nonempty, extract an item and start output

3. Return from interrupt

Figure 17.4 The steps that the upper and lower halves of a device driver take
for an output operation when queueing is used. The upper half
forces an interrupt, but does not start output on the device.

www.ebook3000.com

http://www.ebook3000.org

Sec. 17.7 Queued Output Operations 341

As the figure indicates, the steps for each half of the device driver are straightfor-
ward. Notice that the lower half performs most of the work: in addition to handling in-
terrupts from the device, the lower half checks the queue and, if the queue is not empty,
extracts the next item and starts the device. Because the device interrupts each time it
completes an operation, the lower half will be invoked once per output operation, which
allows it to start the next operation. Thus, the lower half will continue to be invoked
until the queue is empty.

What happens after the last item has been removed from the queue? The lower
half will be invoked after the last output operation completes, but will find the queue
empty. At that point, the device will be idle. To prevent useless interrupts, the lower
half controls the device to stop all interrupts. Later, when an application calls the upper
half to place a new item in the queue, the upper half will start the device interrupting
again, and output will proceed.

17.8 Forcing A Device To Interrupt

Because a request queue is used in so many device drivers, engineers have
designed hardware that works well with the programming paradigm outlined in Figure
17.4. In particular, a device often includes a CSR bit that a processor can set to force
the device to interrupt. Recall from Chapter 16 that the code required to set a CSR bit
is trivial — it consists of a single assignment statement. Software does not need to
check the current device status. Instead, the mechanism is designed so that setting the
bit has no effect if the device is already active:

d A device has a CSR bit, B, that is used to force the device
to interrupt

d If the device is idle, setting bit B causes the device to gen-
erate an interrupt

d If the device is currently performing an operation, setting
bit B has no effect

In other words, if an interrupt is already destined to occur when the current opera-
tion completes, the device waits for the operation to complete and generates an interrupt
as usual; if no operation is in progress, the device generates an interrupt immediately.
The concept — arranging the hardware so that setting a CSR bit will not affect a busy
device until the operation completes — greatly simplifies programming. To see why,
look at the steps Figure 17.4 lists. The upper half does not need to test whether the de-
vice is busy (i.e., whether an operation is in progress). Instead, the upper half always
sets the CSR bit. If an operation is already in progress, the device hardware ignores the
bit being set, and waits until the operation completes. If the device is idle, setting the
bit causes the device to interrupt immediately, which forces the lower half to select the
next request in the queue and start the device.

342 A Programmer’s View Of Devices, I /O, And Buffering Chap. 17

17.9 Queued Input Operations

A device driver can also use queueing for input. However, additional coordination
is required for two reasons. First, a device driver is configured to accept input before
an application is ready to read the input (e.g., in case a user types ahead). Therefore, an
input queue must be created when the device is initialized. Second, if input does not ar-
rive before an application reads, the device driver must temporarily block the applica-
tion until input does arrive. Figure 17.5 lists the steps a device driver uses to handle in-
put when a queue is present.

Initialization (computer system starts)

1. Initialize input queue to empty
2. Force the device to interrupt

Upper half (application performs read)

1. If input queue is empty, temporarily stop the application
2. Extract the next item from the input queue
3. Return the item to the application

Lower half (interrupt occurs)

1. If the queue is not full, start another input operation
2. If an application is stopped, allow the application to run
3. Return from interrupt

Figure 17.5 The steps that the upper and lower halves of a device driver take
for an input operation when queueing is used. The upper half
temporarily stops an application until data becomes available.

Although our description of device drivers omits many details, it gives an accurate
picture of the general approach that device drivers use. We can summarize:

A production device driver uses input and output queues to store
items. The upper half places a request in the queue, and the lower
half handles the details of communication with a device.

17.10 Asynchronous Device Drivers And Mutual Exclusion

In Chapter 16, we said that an interrupt mechanism implies an asynchronous pro-
gramming model. We can now understand why. Like a conventional program, polling
is synchronous because control passes through the code from beginning to end. A de-
vice driver that handles interrupts is asynchronous because the programmer writes
separate pieces of code that respond to events. One of the upper-half routines is in-
voked when an application requests I/O. A lower-half routine is invoked when an I/O

www.ebook3000.com

http://www.ebook3000.org

Sec. 17.10 Asynchronous Device Drivers And Mutual Exclusion 343

operation occurs or when an interrupt occurs, and an initialization routine is invoked
when a device is started.

Asynchronous programming is more challenging than synchronous programming.
Because events can occur in any order, a programmer must use shared variables to en-
code the current state of the computation (i.e., the events that have occurred in the past
and their effect). It can be difficult to test asynchronous programs because a program-
mer cannot easily control the sequence of events. More important, applications running
on the processor and device hardware can generate events simultaneously. Simultane-
ous events make programming asynchronous device drivers especially difficult. For ex-
ample, consider a smart device that uses command chaining. The processor creates a
linked list of operations in memory, and the device follows the list and performs the
operations automatically.

A programmer must coordinate the interaction between a processor and a smart de-
vice. To understand why, imagine a smart device extracting items from a list at the
same time the upper half of a driver is adding items. A problem can occur if the smart
device reaches the end of the list and stops processing just before the device driver adds
a new item. Similarly, if two independent pieces of hardware attempt to manipulate
pointers in the list simultaneously, links can become invalid.

To avoid errors caused by simultaneous access, a device driver that interacts with a
smart device must implement mutual exclusion. That is, a device driver must ensure
that the smart device will not access the list until changes have been completed, and the
smart device must ensure that the device driver will not access the list until changes
have been completed. A variety of schemes are used to ensure exclusive access. For
example, some devices have special CSR values that the processor can set to temporari-
ly stop the device from accessing the command list. Other systems have a facility that
allows the processor to temporarily restrict use of the bus (if it cannot use the bus, a
smart device cannot make changes to a list in memory). Finally, some processors offer
test-and-set instructions that can be used to provide mutual exclusion.

17.11 I /O As Viewed By An Application

The sections above describe how a device driver is programmed. We said earlier
that few programmers write device drivers. Thus, the details of CSR addresses, inter-
rupt vectors, and request queues remain hidden from a typical programmer. The
motivation for considering device drivers and low-level I/O is background: it helps us
understand how to create applications that use low-level services efficiently.

Because they tend to use high-level languages, few programmers invoke low-level
I/O facilities directly — to express I/O operations, the programmer uses abstractions
that the programming language offers. For example, application programs seldom use a
disk device. Instead, the programming language or the underlying system presents a
programmer with a high-level file abstraction. Similarly, instead of exposing a pro-
grammer to display hardware, most systems present the programmer with a window
abstraction.

344 A Programmer’s View Of Devices, I /O, And Buffering Chap. 17

The point is:

In many programming systems, I/O is hidden from the programmer.
Instead of manipulating hardware devices, such as disks and display
screens, a programmer only uses abstractions such as files and win-
dows.

Even in embedded systems that do allow application programmers to control I/O
devices, the software is usually designed to hide as many details as possible from the
programmer. In particular, an application can only specify generic, high-level I/O
operations. When a compiler translates the program into a binary form for use on a
specific computer, the compiler maps each high-level I/O operation into a sequence of
low-level steps.

Interestingly, a typical compiler does not translate each I/O operation directly into
a sequence of basic machine instructions. Instead, the compiler generates code that in-
vokes library functions to perform I/O operations. Therefore, before it can be executed,
the program must be combined with the appropriate library functions.

We use the term run-time library to refer to the set of library functions that accom-
pany a compiled program. Of course, the compiler and run-time library must be
designed to work together — the compiler must know which functions are available, the
exact arguments used by each function, and the meaning of the function.

Application programmers seldom interact with device drivers directly.
Instead, they rely on a run-time library to act as an intermediary.

The chief advantage of using a run-time library as an intermediary arises from the
flexibility and ease of change. Only the run-time library functions understand how to
use the underlying I/O mechanisms (i.e., the device drivers). If the I/O hardware
and/or the device drivers change, only the run-time library needs to be updated — the
compiler can remain unchanged. In fact, separating a run-time library from a compiler
allows code to be compiled once and then combined with various run-time libraries to
produce images for more than one version of an operating system.

17.12 The Library/Operating System Dichotomy

We know that a device driver resides in the operating system and the run-time li-
brary functions that an application uses to perform I/O reside outside the operating sys-
tem (because they are linked with the application). Conceptually, we imagine three
layers of software on top of the device hardware as Figure 17.6 illustrates.

www.ebook3000.com

http://www.ebook3000.org

Sec. 17.12 The Library/Operating System Dichotomy 345

application

run-time library

device driver

device hardware

interface to run-time library functions

interface to I/ O functions in the OS

Figure 17.6 The conceptual arrangement of application code, run-time li-
brary code, and a device driver with interfaces labeled.

Several questions arise. What services does each layer of software provide? What
is the interface between an application and the run-time library, or the interface between
the run-time library and the operating system? What are the relative costs of using the
two interfaces?

17.13 I /O Operations That The OS Supports

We begin by examining the interface between the run-time library and the operat-
ing system. In a low-level programming language such as C, the operating system in-
terface is directly available to applications. Thus, a programmer can choose to use an
I/O library or make operating system calls directly†.

Although the exact details of I/O operations depend on the operating system, a
general approach has become popular. Known as the open/read/write/close paradigm,
the approach offers six basic functions. Figure 17.7 lists the functions with the names
used by the Unix operating system.

Operation Meaning���
open Prepare a device for use (e.g., power up)
read Transfer data from the device to the application
write Transfer data from the application to the device
close Terminate use of the device
seek Move to a new location of data on the device
ioctl Miscellaneous control functions (e.g., change volume)

Figure 17.7 Six basic I/O functions that comprise the open/read/write/close
paradigm. The names are taken from the Unix operating system.

��������������������������������
†A later section discusses the standard I/O library used with C.

346 A Programmer’s View Of Devices, I /O, And Buffering Chap. 17

As an example, consider a device that can read or write a Digital Video Disk
(DVD). The open function can be used to start the drive motor and ensure that a disc
has been inserted. Once the drive has been started, the read function can be used to
read data from the disc, and the write function can be used to write data onto the disc.
The seek function can be used to move to a new position (e.g., a specific video seg-
ment), and the close function can be used to power down the disc. Finally, the ioctl
function (an abbreviation of I/O control) can be used for all other functions (e.g., the
eject function).

Of course, each of the operations takes arguments that specify details. For exam-
ple, a write operation needs arguments that specify the device to use, the location of
data, and the amount of data to write. More important, the device driver must under-
stand how to map each operation and arguments to operations on the underlying device.
For example, when the driver receives a control operation, such as an eject, the driver
must know how to implement the operation with the device hardware (e.g., how to as-
sign values to the device’s CSR registers).

17.14 The Cost Of I/O Operations

When an application program invokes a function in the run-time library, the cost is
exactly the same as calling a function because a copy of the code for the library func-
tion is incorporated into the application when the program is built. Thus, the cost of in-
voking library functions is relatively low.

When an application program or a run-time library function invokes an I/O opera-
tion such as read or write, however, control must pass through a system call† to the ap-
propriate device driver in the operating system. Unfortunately, invoking an operating
system function through a system call incurs extremely high overhead. There are three
reasons. First, the processor must change privilege mode because the operating system
runs with greater privilege than an application. Second, the processor must change the
address space from the application’s virtual address space to the operating system’s ad-
dress space. Third, the processor must copy data between the application’s address
space and the operating system’s address space.

We can summarize:

The overhead involved in using a system call to communicate with a
device driver is high; a system call is much more expensive than a
conventional function call, such as the call used to invoke a library
function.

More important, much of the system call overhead is associated with making the
call rather than the work performed by the driver. Therefore, to optimize performance,
programmers seek ways to minimize the number of system calls.

��������������������������������
†Some computer architectures use the term trap in place of system call.

www.ebook3000.com

http://www.ebook3000.org

Sec. 17.15 Reducing System Call Overhead 347

17.15 Reducing System Call Overhead

To understand how we can reduce the overhead of system calls, consider a worst-
case example. Suppose an application needs to print a document, and suppose printing
requires the application to send a total of N bytes of data to the printer. The highest
cost occurs if the application makes a separate system call to transfer each byte of data
because the application will make a total of N system calls. As an alternative, if the ap-
plication generates a complete line of text and then makes a system call to transfer the
entire line, the overhead is reduced from N system calls to L system calls, where L is
the number of lines in the document (i.e., L < N).

Can we further reduce the overhead of printing a document? Yes, we can. The
application can be redesigned to allocate enough memory to hold an entire page of the
document, generate the page, and then make one system call to transfer the entire page
to the device driver. The result is an application that only makes P system calls, where
P is the number of pages in the document (presumably P << N).

A general principle can be stated:

To reduce overhead and optimize I/O performance, a programmer
must reduce the number of system calls that an application invokes.
The key to reducing system calls involves transferring more data per
system call.

Of course, it is not always possible to reduce the number of system calls used for
I/O. For example, an application like a text editor or email composer displays charac-
ters as the user enters them. The application cannot wait until the user enters an entire
line of text or an entire page because each character must appear on the screen immedi-
ately. Similarly, input from a keyboard often requires a program to accept one character
at a time without waiting for a user to enter an entire line or page. Fortunately, such
applications often involve user interaction in which I/O is relatively slow, so optimiza-
tion is unimportant.

17.16 The Key Concept Of Buffering

The above discussion shows that an application programmer can optimize I/O per-
formance by rewriting code in such a way that the number of systems calls is lower.
The optimization is so important for high-speed I/O that it has been incorporated into
most computer software. Instead of requiring a programmer to rewrite code, I/O run-
time libraries have been designed to handle the optimization automatically.

We use the term buffering to describe the concept of accumulating data before an
I/O transfer, and the term buffer to refer to the area of memory in which the data is
placed.

348 A Programmer’s View Of Devices, I /O, And Buffering Chap. 17

The buffering principle: to reduce the number of system calls, accu-
mulate data in a buffer, and transfer a large amount of data each time
a system call is made.

To automate buffering, library routines need a scheme that works for any applica-
tion. Thus, instead of lines or pages, library functions use a fixed-size buffer. To take
advantage of buffering, an application must call library functions instead of the operat-
ing system. In the case of a programming language that contains built-in I/O facilities,
the run-time library implements buffering, and the compiler generates code that invokes
the appropriate library routines; in the case of a programming language that does not
have built-in I/O facilities, the programmer must call buffering library routines instead
of system calls.

Library routines that implement buffering usually provide the five conceptual
operations that Figure 17.8 lists.

Operation Meaning��
setup Initialize the buffer
input Perform an input operation

output Perform an output operation
terminate Discontinue use of the buffer

flush Force contents of buffer to be written

Figure 17.8 The conceptual operations provided by a typical library that
offers buffered I/O.

The operations listed in the figure are analogous to those that an operating system
offers as an interface to a device. In fact, we will see that at least one implementation
of a buffered I/O library uses function names that are variants of open, read, write, and
close. Figure 17.8 uses alternate terminology to help clarify the distinction.

17.17 Implementation of Buffered Output

To understand how buffering works, consider how an application uses the buffered
output functions in Figure 17.8. When it begins, the application calls a setup function
to initialize buffering. Some implementations provide an argument that allows the ap-
plication to specify a buffer size; in other implementations, the buffer size is a con-
stant†. In any case, we will assume setup allocates a buffer, and initializes the buffer to
empty. Once the buffer has been initialized, the application can call the output function
to transfer data. On each call, the application supplies one or more bytes of data. Fi-
nally, when it finishes transferring data, the application calls the terminate function.
(Note: a later section describes the use of function flush).

��������������������������������
†Typical buffer sizes range from 8 Kbytes to 128 Kbytes, depending on the computer system.

www.ebook3000.com

http://www.ebook3000.org

Sec. 17.17 Implementation of Buffered Output 349

The amount of code required to implement buffered output is trivial. Figure 17.9
describes the steps used to implement each output function. In a language such as C,
each step can be implemented with one or two lines of code.

The motivation for a terminate function should now be clear: because output is
buffered, the buffer may be partially full when the application finishes. Therefore, the
application must force the remaining contents of the buffer to be written.

Setup(N)

1. Allocate a buffer of N bytes.
2. Create a global pointer, p, and initialize p to the ad-

dress of the first byte of the buffer.

Output(D)

1. Place data byte D in the buffer at the position given
by pointer p, and move p to the next byte.

2. If the buffer is full, make a system call to write the
contents of the entire buffer, and reset pointer p to
the start of the buffer.

Terminate

1. If the buffer is not empty, make a system call to write
the contents of the buffer prior to pointer p.

2. If the buffer was allocated dynamically, deallocate it.

Figure 17.9 The steps taken to achieve buffered output.

17.18 Flushing A Buffer

It may seem that output buffering cannot be used with some applications. For ex-
ample, consider an application that allows two users to communicate over a computer
network. When it emits a message, an application assumes the message will be
transmitted and delivered to the other end. Unfortunately, if buffering is used, the mes-
sage may wait in the buffer unsent.

Of course, a programmer can rewrite an application to buffer data internally and
make system calls directly. However, designers of general-purpose buffering libraries
have devised a way to permit applications that use buffered I/O to specify when a sys-
tem call is needed. The mechanism consists of the flush function that an application
can call to force data to be sent even if the buffer is not full. Programmers use the
phrase flushing a buffer to describe the process of forcing output of a partially full
buffer. If a buffer is empty when an application calls flush, the call has no effect. If
the buffer contains data, however, the flush function makes a system call to write the
data, and then resets the global pointer to indicate that the buffer is empty. Figure
17.10 lists the steps of a flush operation.

350 A Programmer’s View Of Devices, I /O, And Buffering Chap. 17

Flush

1. If the buffer is currently empty, return to the caller without
taking any action.

2. If the buffer is not currently empty, make a system call to
write the contents of the buffer and set the global pointer
p to the address of the first byte of the buffer.

Figure 17.10 The steps required to implement a flush function in a buffered
I/O library. Flush allows an application to force data to be
written before the buffer is full.

Look back at the implementation of the terminate function given in Figure 17.9. If
the library offers a flush function, the first step of terminate can be replaced by a call to
the flush function.

To summarize:

A programmer uses a flush function to specify that outgoing data in a
buffer should be sent even if the buffer is not full. A flush operation
has no effect if a buffer is currently empty.

17.19 Buffering On Input

The descriptions above explain how buffering can be used with output. In many
cases, buffering can also be used to reduce the overhead on input. To understand how,
consider reading data sequentially. If an application reads N bytes of data, one byte at a
time, the application will make N system calls.

Assuming the underlying device allows transfer of more than one byte of data,
buffering can be used to reduce the number of system calls. The application (or the
run-time library) allocates a large buffer, makes one system call to fill the buffer, and
then satisfies subsequent requests from the buffer. Figure 17.11 lists the steps required.
As with output buffering, the implementation is straightforward. In a language such as
C, each step can be implemented with a trivial amount of code.

17.20 Effectiveness Of Buffering

Why is buffering so important? Because even a small buffer can have a large ef-
fect on I/O performance. To see why, observe that when buffered I/O is used, a system
call is only needed once per buffer†. As a result, a buffer of N bytes reduces the
number of system calls by a factor of N. Thus, if an application makes S system calls,
a buffer of only 8 K bytes reduces the number of system calls to S / 8192.

��������������������������������
†Our analysis ignores situations in which an application calls flush frequently.

www.ebook3000.com

http://www.ebook3000.org

Sec. 17.20 Effectiveness Of Buffering 351

Setup(N)

1. Allocate a buffer of N bytes.
2. Create a global pointer, p, and initialize p to indicate

that the buffer is empty.

Input(N)

1. If the buffer is empty, make a system call to fill the
entire buffer, and set pointer p to the start of the
buffer.

2. Extract a byte, D, from the position in the buffer given
by pointer p, move p to the next byte, and return D to
the caller.

Terminate

1. If the buffer was dynamically allocated, deallocate it.

Figure 17.11 The steps required to achieve buffered input.

Buffering is not limited to run-time libraries. The technique is so important that
device drivers often implement buffering. For example, in some disk drivers, the driver
maintains a copy of the disk block in memory, and allows an application to read or
write data from the block. Of course, buffering in an operating system does not elim-
inate system calls. However, such buffering does improve performance because exter-
nal data transfers are slower than system calls. The important point is that buffering
can be used to reduce I/O overhead whenever a less expensive operation can be substi-
tuted for an expensive operation.

We can summarize the importance of buffering:

Using a buffer of N bytes can reduce the number of calls to the under-
lying system by a factor of N. A large buffer can mean the difference
between an I/O mechanism that is fast and one that is intolerably
slow.

17.21 Relationship To Caching

Buffering is closely related to the concept of caching that is described in Chapter
12. The chief difference arises from the way items are accessed: a cache system is op-
timized to accommodate random access, and a buffering system is optimized for
sequential access.

In essence, a cache stores items that have been referenced, and a buffer stores
items that will be referenced (assuming sequential references). Thus, in a virtual
memory system, a cache stores entire pages of memory — when any byte on the page is
referenced, the entire page is placed in the cache. In contrast, a buffer stores sequential

352 A Programmer’s View Of Devices, I /O, And Buffering Chap. 17

bytes. Thus, when a byte is referenced, a buffering system preloads the next bytes — if
the referenced byte lies at the end of a page, the buffering system preloads bytes from
the next page.

17.22 An Example: The C Standard I/O Library

One of the best-known examples of a buffering I/O library was created for the C
programming language and the Unix operating system. Known as the standard I/O li-
brary (stdio), the library supports both input and output buffering. Figure 17.12 lists a
few of the functions found in the Unix standard I/O library along with their purpose.

Function Meaning���
fopen Set up a buffer
fgetc Buffered input of one byte
fread Buffered input of multiple bytes
fwrite Buffered output of multiple bytes
fprintf Buffered output of formatted data
fflush Flush operation for buffered output
fclose Terminate use of a buffer

Figure 17.12 Examples of functions included in the standard I/O library
used with the Unix operating system. The library includes ad-
ditional functions not listed here.

17.23 Summary

Two aspects of I/O are pertinent to programmers. A systems programmer who
writes device driver code must understand the low-level details of the device, and an ap-
plication programmer who uses I/O facilities must understand the relative costs.

A device driver is divided into three parts: an upper half that interacts with applica-
tion programs, a lower half that interacts with the device itself, and a set of shared vari-
ables. A function in the upper half receives control when an application reads or writes
data; the lower half receives control when the device generates an input or output inter-
rupt.

The fundamental technique programmers use to optimize sequential I/O perfor-
mance is known as buffering. Buffering can be used for both input and output, and is
often implemented in a run-time library. Because it gives an application control over
when data is transferred, a flush operation allows buffering to be used with arbitrary ap-
plications.

www.ebook3000.com

http://www.ebook3000.org

Sec. 17.23 Summary 353

Buffering reduces system call overhead by transferring more data per system call.
Buffering provides significant performance improvement because a buffer of N bytes
reduces the number of system calls that an application makes by a factor of N.

EXERCISES

17.1 What does a device driver provide, and how do device drivers make it easier to write ap-
plications?

17.2 Name the three conceptual parts of a device driver and state how each is used.

17.3 Explain the use of an output queue in a device driver by describing how and when items
are inserted in the queue, as well as how and when they are removed.

17.4 A user invokes an app that writes a file. The app displays a progress bar that shows how
much of the file has been written. Just as the progress bar reaches 50%, the battery fails
and the device crashes. When the user reboots the device, he or she discovers that less
than 20% of the file has actually been written. Explain why the app reported writing
50%.

17.5 When a program calls fputc, what does the program invoke?

17.6 What is a flush operation, and why is it needed?

17.7 To increase the performance of an app, a programmer rewrites the app so that instead of
reading one byte at a time, the app reads eight thousand bytes and then processes them.
What technique is the programmer using?

17.8 Compare the time needed to copy a large file using write and fwrite.

17.9 The standard I/O function fseek allows random access. Measure the difference in the
time required to use fseek within a small region of a file and within a large region.

17.10 Build an output buffering routine, bufputc, that accepts as an argument a character to be
printed. On each call to bufputc, store the character in a buffer, and call write once for
the entire buffer. Compare the performance of your buffered routine to a program that
uses write for each character.

www.ebook3000.com

http://www.ebook3000.org

Part V

Advanced Topics
The Fundamental Concepts

Of
Parallelism And Pipelining

www.ebook3000.com

http://www.ebook3000.org

Chapter Contents

18.1 Introduction, 359
18.2 Parallel And Pipelined Architectures, 359
18.3 Characterizations Of Parallelism, 360
18.4 Microscopic Vs. Macroscopic, 360
18.5 Examples Of Microscopic Parallelism, 361
18.6 Examples Of Macroscopic Parallelism, 361
18.7 Symmetric Vs. Asymmetric, 362
18.8 Fine-grain Vs. Coarse-grain Parallelism, 362
18.9 Explicit Vs. Implicit Parallelism, 363
18.10 Types Of Parallel Architectures (Flynn Classification), 363
18.11 Single Instruction Single Data (SISD), 364
18.12 Single Instruction Multiple Data (SIMD), 364
18.13 Multiple Instructions Multiple Data (MIMD), 366
18.14 Communication, Coordination, And Contention, 368
18.15 Performance Of Multiprocessors, 369
18.16 Consequences For Programmers, 371
18.17 Redundant Parallel Architectures, 374
18.18 Distributed And Cluster Computers, 375
18.19 A Modern Supercomputer, 375
18.20 Summary, 376

www.ebook3000.com

http://www.ebook3000.org

18

Parallelism

18.1 Introduction

Previous chapters cover the three key components of computer architecture: pro-
cessors, memory systems, and I/O. This chapter begins a discussion of fundamental
concepts that cross the boundaries among architectural components.

The chapter focuses on the use of parallel hardware, and shows that parallelism can
be used throughout computer systems to increase speed. The chapter introduces termi-
nology and concepts, presents a taxonomy of parallel architectures, and examines com-
puter systems in which parallelism is the fundamental paradigm around which the entire
system is designed. Finally, the chapter discusses limitations and problems with paral-
lel architectures.

The next chapter extends the discussion by examining a second fundamental tech-
nique: pipelining. We will see that both parallelism and pipelining are important in
high-speed designs.

18.2 Parallel And Pipelined Architectures

Some computer architects assert that there are only two fundamental techniques
used to increase hardware speed: parallelism and pipelining. We have already encoun-
tered examples of each technique, and have seen how they can be used.

Other architects take a broader view of parallelism and pipelining, using the tech-
niques as the fundamental basis around which a system is designed. In many cases, the
architecture is so completely dominated by one of the two techniques that the resulting
system is informally called a parallel computer or a pipelined computer.

359

360 Parallelism Chap. 18

18.3 Characterizations Of Parallelism

Rather than classify an architecture as parallel or nonparallel, computer architects
use a variety of terms to characterize the type and amount of parallelism that is present
in a given design. In many cases, the terminology describes the possible extremes for a
type of parallelism. We can classify an architecture by stating where the architecture
lies between the two extremes. Figure 18.1 lists the key characterizations using nomen-
clature proposed by Michael J. Flynn in a classic paper†. Later sections explain each of
the terms and give examples.

d Microscopic vs. macroscopic

d Symmetric vs. asymmetric

d Fine-grain vs. coarse-grain

d Explicit vs. implicit

Figure 18.1 Terminology used to characterize the amount and type of paral-
lelism present in a computer architecture.

18.4 Microscopic Vs. Macroscopic

Parallelism is fundamental; an architect cannot design a computer without thinking
about parallel hardware. Interestingly, the pervasiveness of parallelism means that un-
less a computer uses an unusual amount of parallel hardware, we typically do not dis-
cuss the parallel aspects. To capture the idea that much of the parallelism in a computer
remains hidden inside subcomponents, we use the term microscopic parallelism. Like
microbes in the world around us, microscopic parallelism is present, but does not stand
out without closer inspection.

The point is:

Parallelism is so fundamental that virtually all computer systems con-
tain some form of parallel hardware. We use the term microscopic
parallelism to characterize parallel facilities that are present, but not
especially visible.

To be more precise, we say that microscopic parallelism refers to the use of paral-
lel hardware within a specific component (e.g., inside a processor or inside an ALU),
whereas macroscopic parallelism refers to the use of parallelism as a basic premise
around which a system is designed.

��������������������������������
†M. J. Flynn, “Some Computer Organizations and Their Effectiveness,” IEEE Transactions on Comput-

ers, C-21(9):948--960, September 1972.

www.ebook3000.com

http://www.ebook3000.org

Sec. 18.5 Examples Of Microscopic Parallelism 361

18.5 Examples Of Microscopic Parallelism

In earlier chapters, we have seen examples of using microscopic parallelism within
processors, memory systems, and I/ O subsystems. The following paragraphs highlight
a few examples.

ALU. An Arithmetic Logic Unit handles logical and arithmetic operations. Most
ALUs perform integer arithmetic by processing multiple bits in parallel. Thus, an ALU
that is designed to operate on integers contains parallel hardware that allows the ALU to
compute a Boolean function on a pair of thirty-two bit values in a single operation. The
alternative consists of an ALU that processes one bit at a time, an approach that is
known as bit serial processing. It should be easy to see that bit serial processing takes
much longer than computing bits in parallel. Therefore, bit serial arithmetic is reserved
for special cases.

Registers. The general-purpose registers in a CPU make heavy use of microscopic
parallelism. Each bit in a register is implemented by a separate digital circuit (specifi-
cally, a latch). Furthermore, to guarantee the highest-speed computation, parallel data
paths are used to move data between general-purpose registers and the ALU.

Physical Memory. As another example of microscopic parallelism, recall that a
physical memory system uses parallel hardware to implement fetch and store operations
— the hardware is designed to transfer an entire word on each operation. As in an
ALU, microscopic parallelism increases memory speed dramatically. For example, a
memory system that implements sixty-four bit words can access or store approximately
sixty-four times as much data in the same time as a memory system that accesses a sin-
gle bit at a time.

Parallel Bus Architecture. As we have seen, the central bus in a computer usually
uses parallel hardware to achieve high-speed transfers among the processor, memory,
and I/O devices. A typical modern computer has a bus that is either thirty-two- or
sixty-four-bits wide, which means that either thirty-two or sixty-four bits of data can be
transferred across the bus in a single step.

18.6 Examples Of Macroscopic Parallelism

As the examples in the previous section demonstrate, microscopic parallelism is
essential for high-speed performance — without parallel hardware, various components
of a computer system cannot operate at high speed. Computer architects are aware that
the global architecture often has a greater impact on overall system performance than
the performance of any single subsystem. That is, adding more parallelism to a single
subsystem may not improve the overall system performance†.

To achieve the greatest impact, parallelism must span multiple components of a
system — instead of merely using parallelism to improve the performance of a single
component, the system must allow multiple components to work together. We use the

��������������������������������
†Chapter 21 discusses performance in more detail.

362 Parallelism Chap. 18

term macroscopic parallelism to characterize the use of parallelism across multiple,
large-scale components of a computer system. A few examples will clarify the concept.

Multiple, Identical Processors. Systems that employ macroscopic parallelism usu-
ally employ multiple processors in one form or another. For example, some PCs are
advertised as dual core or quad core computers, meaning that the PC contains two or
four copies of the processor on a single chip. The chip is arranged to allow both pro-
cessors to operate at the same time. The hardware does not control exactly how the
cores are used. Instead, the operating system assigns code to each core. For example,
the operating system can assign one core the task of handling I/O (i.e., running device
drivers), and assign other cores application programs to run.

Multiple, Dissimilar Processors. Another example of macroscopic parallelism
arises in systems that make extensive use of special-purpose coprocessors. For exam-
ple, a computer optimized for high-speed graphics might have four displays attached,
with a special graphics processor running each display. A graphics processor, typically
found on an interface card, does not use the same architecture as a CPU because the
graphics processor needs instructions optimized for graphics operations.

18.7 Symmetric Vs. Asymmetric

We use the term symmetric parallelism to characterize a design that uses replica-
tions of identical elements, usually processors or cores, that can operate simultaneously.
For example, the multicore processors mentioned above are said to be symmetric be-
cause all cores are identical.

The alternative to a symmetric parallel design is a parallel design that is asym-
metric. As the name implies, an asymmetric design contains multiple elements that
function at the same time, but differ from one another. For example, a PC with a CPU,
a graphics coprocessor, a math coprocessor, and an I/ O coprocessor is classified as us-
ing asymmetric parallelism because the four processors can operate simultaneously, but
differ from one another internally†.

18.8 Fine-grain Vs. Coarse-grain Parallelism

We use the term fine-grain parallelism to refer to computers that provide parallel-
ism on the level of individual instructions or individual data elements, and the term
coarse-grain parallelism to refer to computers that provide parallelism on the level of
programs or large blocks of data. For example, a graphics processor that uses sixteen
parallel hardware units to update sixteen bytes of an image at the same time is said to
use fine-grain parallelism. In contrast, a dual core PC that uses one core to print a doc-
ument while another core composes an email message is described as using coarse-grain
parallelism.

��������������������������������
†Some architects also apply the term asymmetric to a multicore design if the cores do not have the same

access to memory and I/O devices.

www.ebook3000.com

http://www.ebook3000.org

Sec. 18.9 Explicit Vs. Implicit Parallelism 363

18.9 Explicit Vs. Implicit Parallelism

An architecture in which the hardware handles parallelism automatically without
requiring a programmer to initiate or control parallel execution is said to offer implicit
parallelism, and an architecture in which a programmer must control each parallel unit
is said to offer explicit parallelism. We will consider the advantages and disadvantages
of explicit and implicit parallelism later.

18.10 Types Of Parallel Architectures (Flynn Classification)

Although many systems contain multiple processors of one type or another, the
term parallel architecture is usually reserved for designs that permit arbitrary scaling.
That is, when they refer to a parallel architecture, architects usually mean a design in
which the number of processors can be arbitrarily large (or at least reasonably large).
As an example, consider a computer that can have either one or two processors.
Although adding a second processor increases parallelism, such an architecture is
usually classified as a dual-processor computer rather than a parallel architecture. Simi-
larly, a PC with four cores is classified as a quad-core PC. However, a cluster of
thirty-two interconnected PCs that can scale to one thousand twenty-four PCs is classi-
fied as a parallel architecture.

The easiest way to understand parallel architectures is to divide the architectures
into broad groups, where each group represents a type of parallelism. Of course, no
division is absolute — most practical computer systems are hybrids that contain facili-
ties from more than one group. Nevertheless, we use the classification to define basic
concepts and nomenclature that allow us to discuss and characterize the systems.

A popular way to describe parallelism that is attributed to Flynn considers whether
processing or data is replicated. Known as the Flynn classification, the system focuses
on whether the computer has multiple, independent processors each running a separate
program or a single program being applied to multiple data items. Figure 18.2 lists
terms used by the Flynn classification to define types of parallelism; the next sections
explain the terminology and give examples.

Name Meaning��
SISD Single Instruction stream Single Data stream
SIMD Single Instruction stream Multiple Data streams
MISD Multiple Instruction streams Single Data stream
MIMD Multiple Instruction streams Multiple Data streams

Figure 18.2 Terminology used by the Flynn classification to characterize
parallel computers†.

��������������������������������
†MISD is a specialized category that is reserved for unusual hardware, such as the pipeline architecture

shown in Figure 19.5 on page 387 that executes multiple instructions on a single piece of data or a redundant
processor used to increase reliability.

364 Parallelism Chap. 18

18.11 Single Instruction Single Data (SISD)

The phrase Single Instruction Single Data stream (SISD) is used to describe an ar-
chitecture that does not support macroscopic parallelism. The term sequential architec-
ture or uniprocessor architecture is often used in place of SISD to emphasize that the
architecture is not parallel. In essence, SISD refers to a conventional (i.e., Von Neu-
mann) architecture — the processor runs a standard fetch-execute cycle and performs
one operation at a time. The term refers to the idea that a single, conventional proces-
sor is executing instructions that each operate on a single data item. That is, unlike a
parallel architecture, a conventional processor can only execute one instruction at any
time, and each instruction refers to a single computation.

Of course, we have seen that an SISD computer can use parallelism internally. For
example, the ALU may be able to perform operations on multiple bits in parallel, the
CPU may invoke a coprocessor, or the CPU may have mechanisms that allow it to fetch
operands from two banks of memory at the same time. However, the overall effect of
an SISD architecture is sequential execution of instructions that each operate on one
data item.

18.12 Single Instruction Multiple Data (SIMD)

The phrase Single Instruction Multiple Data streams (SIMD) is used to describe a
parallel architecture in which each instruction specifies a single operation (e.g., integer
addition), but the instruction is applied to many data items at the same time. Typically,
an SIMD computer has sufficient hardware to handle sixty-four simultaneous operations
(e.g., sixty-four simultaneous additions).

Vector Processors. An SIMD architecture is not useful for applications such as
word processing or email. Instead, SIMD is used with applications that apply the same
operation to a set of values. For example, graphics applications and some scientific ap-
plications work well on an SIMD architecture that can apply an operation to a large set
of values. The architecture is sometimes called a vector processor or an array proces-
sor after the mathematical concept of vectors and the computing concept of arrays.

As an example of how an SIMD machine works, consider normalizing the values
in a vector, V, that contains N elements. Normalization requires that each item in the
vector be multiplied by a floating point number, Q. On a sequential architecture (i.e.,
an SISD architecture), the algorithm required to normalize the vector consists of a loop
as Figure 18.3 shows.

for i from 1 to N {

V [i] ← V [i] × Q ;

}

Figure 18.3 A sequential algorithm for vector normalization.

www.ebook3000.com

http://www.ebook3000.org

Sec. 18.12 Single Instruction Multiple Data (SIMD) 365

On an SIMD architecture, the underlying hardware can apply an arithmetic opera-
tion to all the values in an array simultaneously (assuming the size of the array does not
exceed the parallelism in the hardware). For example, in a single step, hardware that
has sixty-four parallel units can multiply each value in an array of sixty-four elements
by a constant. Thus, the algorithm to perform normalization of an array on an SIMD
computer takes one step:

V ← V × Q ;

Of course, if vector V is larger than the hardware capacity, multiple steps will be
required. The important point is that a vector instruction on an SIMD architecture is
not merely a shorthand for a loop. Instead, the underlying system contains multiple
hardware units that operate in parallel to provide substantial speedup; the performance
improvement can be significant, especially for computations that use large matrices.

Of course, not all instructions in an SIMD architecture can be applied to an array
of values. Instead, an architect identifies a subset of operations to be used with vectors,
and defines a special vector instruction for each. For example, normalization of an en-
tire array is only possible if the architect chooses to include a vector multiplication in-
struction that multiplies each value in the vector by a constant.

In addition to operations that use a constant and a vector, SIMD computers usually
provide instructions that use two vectors. That is, a vector instruction takes one or
more operands that each specify a vector. For example, SIMD architectures are used
for problems involving matrix multiplication. On most SIMD machines, an operand
that specifies a vector gives two pieces of information: the location of the vector in
memory and an integer that specifies the size of the vector (i.e., number of items in the
vector). On some machines, vector instructions are controlled by special-purpose regis-
ters — the address and size of each vector are loaded into registers before a vector in-
struction is invoked. In any case, software determines the number of items in a vector
up to the maximum size supported by the hardware†.

Graphics Processors. SIMD architectures are also popular for use with graphics.
To understand why, it is important to know that typical graphics hardware uses sequen-
tial bytes in memory to store values for pixels on a screen. For example, consider a
video game in which foreground figures move while a background scene stays in place.
Game software must copy the bytes that correspond to the foreground figure from one
location in memory to another. A sequential architecture requires a programmer to
specify a loop that copies one byte at a time. On an SIMD architecture, however, a pro-
grammer can specify a vector size, and then issue a single copy command. The under-
lying SIMD hardware then copies multiple bytes simultaneously.

��������������������������������
†An exercise considers speedup in cases where vectors exceed the capacity of the hardware; a definition

of speedup can be found in Section 18.15.

366 Parallelism Chap. 18

18.13 Multiple Instructions Multiple Data (MIMD)

The phrase Multiple Instructions Multiple Data streams (MIMD) is used to
describe a parallel architecture in which each of the processors performs independent
computations at the same time. Although many computers contain multiple internal
processing units, the MIMD designation is reserved for computers in which the proces-
sors are visible to a programmer. That is, an MIMD computer can run multiple, in-
dependent programs at the same time.

Symmetric Multiprocessor (SMP). The most well-known example of an MIMD ar-
chitecture consists of a computer known as a Symmetric Multiprocessor (SMP). An
SMP contains a set of N processors (or N cores) that can each be used to run programs.
In a typical SMP design, the processors are identical: they each have the same instruc-
tion set, operate at the same clock rate, have access to the same memory modules, and
have access to the same external devices. Thus, any processor can perform exactly the
same computation as any other processor. Figure 18.4 illustrates the concept.

Main
Memory
(various
modules)

Devices

P1

Pi

P2

Pi+1

PN

Pi+2

... ...

Figure 18.4 The conceptual organization of a symmetric multiprocessor with
N identical processors that each have access to memory and I/O
devices.

While some researchers explored ways to increase the speed and power of silicon
chips, other researchers investigated the symmetric multiprocessor form of MIMD as an
alternate way to provide more powerful computers. One of the most well-known pro-
jects, which was conducted at Carnegie Mellon University, produced a prototype known
as the Carnegie multiminiprocessor (C.mmp). During the 1980s, vendors first created
commercial products, informally called multiprocessors, that used the SMP approach.
Sequent Corporation (currently owned by IBM) created a symmetric multiprocessor that
runs the Unix operating system, and Encore Corporation created a symmetric multipro-
cessor named Multimax.

Asymmetric Multiprocessor (AMP). Although SMPs are popular, other forms of
MIMD architectures are possible. The chief alternative to an SMP design is an Asym-
metric Multiprocessor (AMP). An AMP contains a set of N programmable processors

www.ebook3000.com

http://www.ebook3000.org

Sec. 18.13 Multiple Instructions Multiple Data (MIMD) 367

that can operate at the same time, but does not require all processors to have identical
capabilities. For example, an AMP design can choose a processor that is appropriate to
a given task (i.e., one processor can be optimized for management of high-speed disk
storage devices and another processor can be optimized for graphics display).

In most cases, AMP architectures follow a master-slave approach in which one
processor (or in some cases a set of processors) controls the overall execution and in-
vokes other processors as needed. The processor that controls execution is known as
the master, and other processors are known as slaves.

In theory, an AMP architecture that has N processors can have many distinct types
of processors. In practice, however, most AMP designs have between two and four
types of processors. Typically, a general-purpose AMP architecture includes at least
one processor optimized for overall control (the master), and others optimized for subsi-
diary functions such as arithmetic computation or I/O.

Math And Graphics Coprocessors. Commercial computer systems have been
created that use an asymmetric architecture. One of the most widely known AMP
designs became popular in the late 1980s and early 1990s when PC manufacturers be-
gan selling math coprocessors. The idea of a math coprocessor is straightforward: the
coprocessor is a special-purpose chip that the CPU can invoke to perform floating point
computation. Because it is optimized for one task, a coprocessor can perform the task
faster than the CPU.

CDC Peripheral Processors. Control Data Corporation helped pioneer the idea of
using an AMP architecture in mainframes when they created the 6000 series of main-
frame computers. The CDC architecture used ten peripheral processors to handle I/O.
Figure 18.5 illustrates the conceptual organization with peripheral processors between
the CPU and I/ O devices. Interestingly, CDC’s peripheral processors were not limited
to I/O — a peripheral processor resembled a minicomputer with a general-purpose in-
struction set that could be used however a programmer chose. The peripheral proces-
sors had access to memory, which meant a peripheral processor could read or store
values in any location. Although they were much slower than the CPU, all ten peri-
pheral processors on the CDC could execute simultaneously. Thus, it was possible to
optimize program performance by dividing tasks among the peripheral processors as
well as the CPU.

Although CDC computers are no longer manufactured, the basic idea of pro-
grammable I/O processors continues to be used. Surprisingly, multicore chips have
made the general approach feasible again because many cores make it possible to dedi-
cate one or more cores to I/O.

I/O Processors. Most mainframe computers use an AMP architecture to handle
I/O at high speed without slowing down the CPU. Each external I/O connection is
equipped with a dedicated, programmable processor. Instead of manipulating a bus or
handling interrupts, the CPU merely downloads a program into the programmable pro-
cessor. The processor then handles all the details of I/O. For example, the mainframe
computers sold by IBM Corporation use programmable I/O processors called channels.

368 Parallelism Chap. 18

CPU

I/O devices

PP1

PP2

PP3

PP4

PP5

PP6

PP7

PP8

PP9

PP10

Figure 18.5 Illustration of the asymmetric architecture used in the CDC 6000
mainframe computers.

18.14 Communication, Coordination, And Contention

It may seem obvious that a multiprocessor architecture will always have better per-
formance than a uniprocessor architecture. Consider, for example, a symmetric mul-
tiprocessor, M. Intuitively, computer M can outperform a uniprocessor because M can
perform N times as many operations at any time. Moreover, if a chip vendor finds a
way to make a single processor run faster than M, the vendor who sells M merely re-
places each of the processors in M with the new chip to have a faster multiprocessor.
Indeed, many companies that created multiprocessors made these statements to attract
customers.

Unfortunately, our intuition about computer performance can be misleading. Ar-
chitects have found three main challenges in designing a high-performance parallel ar-
chitecture:

d Communication

d Coordination

d Contention

www.ebook3000.com

http://www.ebook3000.org

Sec. 18.14 Communication, Coordination, And Contention 369

Communication. Although it may seem trivial to envision a computer that has
dozens of independent processors, the computer must also provide a mechanism that al-
lows the processors to communicate with each other, with memory, and with I/O de-
vices. More important, the communication mechanism must be able to scale to handle a
large number of processors. An architect must spend a significant amount of effort to
create a parallel computer system that does not have severe communication bottlenecks.

Coordination. In a parallel architecture, processors must work together to perform
computation. Therefore, a coordination mechanism is needed that allows processing to
be controlled. We said that asymmetric designs usually designate one of the processors
to act as a master that controls and coordinates all processing; some symmetric designs
also use the master-slave approach. Other architectures use a distributed coordination
mechanism in which the processors must be programmed to coordinate among them-
selves without a master.

Contention. When two or more processors attempt to access a resource at the same
time, we say that the processors contend for the resource. Resource contention creates
one of the greatest challenges in designing a parallel architecture because contention in-
creases as the number of processors increases.

To understand why contention is a problem, consider memory. If a set of N pro-
cessors all have access to a given memory, a mechanism is needed that only permits
one processor to access the memory at any time. When multiple processors attempt to
use the memory simultaneously, the hardware contention mechanism blocks all except
one of them. That is, N – 1 of the processors are idle during the memory access. In the
next round, N – 2 processors remain idle. It should be obvious that:

In a parallel architecture, contention for shared resources lowers per-
formance dramatically because only one processor can use a given
resource at any time; the hardware contention mechanism forces other
processors to remain idle while they wait for access.

18.15 Performance Of Multiprocessors

Multiprocessor architectures have not fulfilled the promise of scalable, high-
performance computing. There are several reasons: operating system bottlenecks, con-
tention for memory, and I/O. In a modern computer system, the operating system con-
trols all processing, including allocating tasks to processors and handling I/O. Only
one copy of an operating system can run because a device cannot take orders from mul-
tiple processors simultaneously. Thus, in a multiprocessor, at most one processor can
run operating system software at any time, which means the operating system is a
shared resource for which processors must contend. As a consequence, the operating
system quickly becomes a bottleneck that processors access serially — if K processors
need access, K – 1 of them must wait.

370 Parallelism Chap. 18

Contention for memory has proven to be an especially difficult problem. First,
hardware for a multiported memory is extremely expensive. Second, one of the more
important optimizations used in memory systems, caching, causes problems when used
with a multiprocessor. If the cache is shared, processors contend for access. If each
processor has a private cache, all caches must be coordinated so that any update is pro-
pagated to all caches. Unfortunately, such coordination introduces overhead.

Many multiprocessor architectures suffer from another weakness: the architecture
only outperforms a uniprocessor when performing intensive computation. Surprisingly,
most applications are not limited by the amount of computation they perform. Instead,
most applications are I/O bound, which means the application spends more time wait-
ing for I/O than performing computation. For example, most of the delay in common
applications, such as word spreadsheets, video games, and Web browsing, arises when
the application waits for I/O from a file or the network. Therefore, adding additional
computational power to the underlying computer does not lower the time required to
perform the computation — the extra processors sit idle waiting for I/O.

To assess the performance of an N-processor system, we define the notion of
speedup to be the ratio of the performance of a single processor to the performance of a
multiprocessor. Specifically, we define speedup as:

Speedup =
τN

τ1���

where τ1 denotes the execution time taken on a single processor, and τN denotes the ex-
ecution time taken on a multiprocessor†. In each case, we assume performance is meas-
ured using the best algorithm available (i.e., we allow the program to be rewritten to
take advantage of parallel hardware).

When multiprocessors are measured performing general-purpose computing tasks,
an interesting result emerges. In an ideal situation, we would expect performance to in-
crease linearly as more processors are added to a multiprocessor system. Experience
has shown, however, that problems like memory contention, inter-processor communi-
cation, and operating system bottlenecks mean that multiprocessors do not achieve
linear speedup. Instead, performance often reaches a limit as Figure 18.6 illustrates.

Surprisingly, the performance illustrated in the figure may not be achievable in
practice. In some multiprocessor designs, communication overhead and memory con-
tention dominate the running time: as more and more processors are added, the perfor-
mance starts to decrease. For example, a particular symmetric multiprocessor design
exhibited a small speedup with a few processors. However, when sixty-four processors
were used, communication overhead made the performance worse than a single proces-
sor system. We can summarize:

When used for general-purpose computing, a multiprocessor may not
perform well. In some cases, added overhead means performance de-
creases as more processors are added.

��������������������������������
†Because we expect the processing time on a single processor to be greater than the processing time on a

multiprocessor, we expect the speedup to be greater than one.

www.ebook3000.com

http://www.ebook3000.org

Sec. 18.15 Performance Of Multiprocessors 371

Speedup

Number of processors (N)

1

4

8

12

16

1 4 8 12 16

ideal

actual

Figure 18.6 Illustration of the ideal and typical performance of a multipro-
cessor as the number of processors is increased. Values on the
y-axis list the relative speedup compared to a single processor.

18.16 Consequences For Programmers

Parallelism usually makes programming more complex. A programmer must be
aware of parallel execution, and must prevent one parallel activity from interfering with
another. The following sections describe some of the mechanisms and facilities that
programmers use.

18.16.1 Locks And Mutual Exclusion

Writing code that uses multiple processors is inherently more complex than writing
code for a single processor. To understand the complexity, consider using a shared
variable. For example, suppose two processors use a variable x to store a count. A pro-
grammer writes a statement such as:

x = x + 1 ;

A compiler translates the statement into a sequence of machine instructions, such
as the sequence in Figure 18.7.

372 Parallelism Chap. 18

load x, R5 # Load variable x into R5
incr R5 # Increment the value in R5
store R5, x # Store R5 back into x

Figure 18.7 An example sequence of machine instructions used to increment
a variable in memory. In most architectures, increment entails a
load and a store operation.

Unfortunately, if two processors attempt to increment x at nearly the same time,
the value of x might be incremented once instead of twice. The error arises because
each of the two processors operates independently and competes for access to memory.
Thus, the operations might be performed in the order given in Figure 18.8.

d Processor 1 loads x into its register 5

d Processor 1 increments its register 5

d Processor 2 loads x into its register 5

d Processor 1 stores its register 5 into x

d Processor 2 increments its register 5

d Processor 2 stores its register 5 into x

Figure 18.8 A sequence of steps that can occur when two independent pro-
cessors or cores access variable x in shared memory.

To prevent problems like the one illustrated in Figure 18.8, multiprocessor
hardware provides hardware locks. A programmer must associate a lock with each
shared item, and use the lock to ensure that no other processors can change the item
while an update is in progress. For example, if lock 17 is associated with variable x, a
programmer must obtain lock 17 before updating x. The idea is called mutual exclu-
sion, and we say that a processor must gain exclusive use of a variable before updating
the value. Figure 18.9 illustrates the sequence of instructions.

lock 17 # wait for lock 17
load x, R5 # Load variable x into R5
incr R5 # Increment the value in R5
store R5, x # Store R5 back into x
release 17 # release lock 17

Figure 18.9 Illustration of the instructions used to guarantee exclusive access
to a variable. A separate lock is assigned to each shared item.

www.ebook3000.com

http://www.ebook3000.org

Sec. 18.16 Consequences For Programmers 373

The underlying hardware guarantees that only one processor will be granted a lock
at any time. Thus, if two or more processors both attempt to obtain a given lock at the
same time, one obtains access (i.e., continues to execute) and the other is blocked. In
fact, an arbitrary number of processors can be blocked while one processor holds the
lock. Once the processor that holds the lock releases it, the hardware selects a blocked
processor, grants the processor the lock, and allows the processor to proceed. Thus, the
hardware ensures that at most one processor can hold a given lock at any time.

Locking adds a nontrivial amount of complexity to programs for several reasons.
First, because locking is unusual, a programmer not accustomed to programming mul-
tiprocessors can easily forget to lock a shared variable, and because unprotected access
may not always result in an error, the problem can be difficult to detect. Second, lock-
ing can severely reduce performance — if K processors attempt to access a shared vari-
able at the same time, the hardware will keep K – 1 of them idle while they wait for ac-
cess. Third, because separate instructions are used to obtain and release a lock, locking
adds overhead. Thus, a programmer must decide whether to obtain a lock for each indi-
vidual operation or whether to obtain a lock, hold the lock while performing a series of
operations on the variable, and then release the lock.

18.16.2 Programming Explicit And Implicit Parallel Computers

The most important aspect of parallelism for a programmer concerns whether
software or hardware is responsible for managing parallelism: a system that uses impli-
cit parallelism is significantly easier to program than a system that uses explicit parallel-
ism. For example, consider a processor designed to handle packets arriving from a
computer network. In an implicit design, a programmer writes code to handle a single
packet, and the hardware automatically applies the same program to N packets in paral-
lel. In an explicit design, the programmer must plan to read N packets, send each to a
different core, wait for the cores to complete processing, and extract the resulting pack-
ets. In many cases, the code required to control parallel cores and determine when they
each finish is more complex than the code to perform the desired computation. More
important, code to control parallel hardware units must allow hardware to operate in ar-
bitrary order. For example, because the time required to process a packet depends on
the packet’s contents, a controller must be ready for the hardware units to complete pro-
cessing in arbitrary order. The point is:

From a programmer’s point of view, a system that uses explicit paral-
lelism is significantly more complex to program than a system that
uses implicit parallelism.

374 Parallelism Chap. 18

18.16.3 Programming Symmetric And Asymmetric Multiprocessors

One of the most important advantages of symmetry arises from the positive conse-
quences it has for programmers: a symmetric multiprocessor can be substantially easier
to program than an asymmetric multiprocessor. First, if all processors are identical, a
programmer only needs one compiler and one language. Second, symmetry means a
programmer does not need to consider which tasks are best suited for which type of
processor. Third, because identical processors usually operate at the same speed, a pro-
grammer does not need to worry about the time required to perform a task on a given
processor. Fourth, because all processors use the same encoding for instructions and
data, a binary program or a data value can be moved from one processor to another.

Of course, any form of multiprocessor introduces a complication: in addition to
everything else, a programmer must consider how coding decisions will influence per-
formance. For example, consider a computation that processes packets arriving over a
network. A conventional program keeps a global counter in memory, and updates the
counter when a packet arrives. On a shared memory architecture, however, updating a
value in memory is more expensive because a processor must obtain a lock before up-
dating a shared value in memory. Thus, a programmer needs to consider the effect of
minor details, such as updating a shared counter in memory.

18.17 Redundant Parallel Architectures

Our discussion has focused on the use of parallel hardware to improve performance
or increase functionality. However, it is also possible to use parallel hardware to im-
prove reliability and prevent failure. That is, multiple copies of hardware can be used
to verify each computation.

The term redundant hardware usually refers to multiple copies of a hardware unit
that operate in parallel to perform an operation. The basic difference between redundant
hardware and the parallel architectures described above arises from the data items being
used: a parallel architecture arranges for each copy of the hardware to operate on a
separate data item; a redundant architecture arranges for all copies to perform exactly
the same operation.

The point of using redundant hardware is verification that a computation is correct.
What happens when redundant copies of the hardware disagree? The answer depends
on the details and purpose of the underlying system. One possibility uses votes: K
copies of a hardware unit each perform the computation and produce a value. A special
hardware unit then compares the output, and selects the value that appears most often.
Another possibility uses redundant hardware to detect hardware failures: if two copies
of the hardware disagree, the system displays an error message, and then halts until the
defective unit can be repaired or replaced.

www.ebook3000.com

http://www.ebook3000.org

Sec. 18.18 Distributed And Cluster Computers 375

18.18 Distributed And Cluster Computers

The parallel architectures discussed in this chapter are called tightly coupled be-
cause the parallel hardware units are located inside the same computer system. The al-
ternative, which is known as a loosely coupled architecture uses multiple computer sys-
tems that are interconnected by a communication mechanism that spans longer dis-
tances. For example, we use the term distributed architecture to refer to a set of com-
puters that are connected by a computer network or an internet. In a distributed archi-
tecture, each computer operates independently, but the computers can communicate by
sending messages across a network.

A special form of distributed computing system is known as a network cluster or a
cluster computer. In essence, a cluster computer consists of a set of independent com-
puters, such as commodity PCs, connected by a high-speed computer network. Scien-
tists use cluster computers to run computations on extremely large sets of data, Internet
search companies use clusters to respond to users’ search terms, and cloud providers use
the cluster approach to build cloud data centers. The general idea is that for a cluster of
N computers, computation can be divided many ways. The computers in a cluster are
flexible — they can be dedicated to solving a single problem or separate problems.
Computers in the cluster run independently. If they are working on a single problem,
the results may be collected to produce the final output.

A special case of cluster computing is used to construct a high-capacity Web site
that handles many small requests. Each computer in the cluster runs a copy of the same
Web server. A special-purpose system known as a Web load balancer disperses incom-
ing requests among computers in the cluster. Each time a request arrives, the load
balancer chooses the least-loaded computer in the cluster and forwards the request.
Thus, a Web site with N computers in a cluster can respond to approximately N times
as many requests per second as a single computer.

Another form of loosely coupled distributed computing is known as grid comput-
ing. Grid computing uses the global Internet as a communication mechanism among a
large set of computers. The computers (typically personal computers owned by indivi-
duals) agree to provide spare CPU cycles for the grid. Each computer runs software
that repeatedly accepts a request, performs the requested computation, and returns the
result. To use the grid, a problem must be divided into many small pieces. Each piece
of the problem is sent to a computer, and all computers can execute simultaneously.

18.19 A Modern Supercomputer

Informally, the term supercomputer is used to denote an advanced computing sys-
tem that has significantly more processing power than mainframe computers. Because
they are often used for scientific calculations, supercomputers are typically assessed by
the number of floating point operations per second the computer can perform.

376 Parallelism Chap. 18

Parallelism has always played an important role in supercomputers. Early super-
computers had 16 or 64 processors. A modern supercomputer consists of a cluster of
many PCs that are interconnected by a high-speed Local Area Network. Furthermore,
the processor in each PC has multiple cores. Modern supercomputers carry parallelism
to a surprising extreme. For example, the Tianhe-2 supercomputer in China consists of
a cluster of 16,000 Intel nodes. Each node has its own memory and a set of processors,
each of which has multiple cores. The resulting system has a total of 3,120,000 cores.
The computational power of a computer with over 3 million cores is difficult to ima-
gine.

18.20 Summary

Parallelism is a fundamental optimization technique used to increase hardware per-
formance. Most components of a computer system contain parallel hardware; an archi-
tecture is only classified as parallel if the architecture includes parallel processors. Ex-
plicit parallelism gives a programmer control over the use of parallel facilities; implicit
parallelism handles parallelism automatically.

A uniprocessor computer is classified as a Single Instruction Single Data (SISD)
architecture because a single instruction operates on a single data item at any given
time. A Single Instruction Multiple Data (SIMD) architecture allows an instruction to
operate on an array of values. Typical SIMD machines include vector processors and
graphics processors. A Multiple Instructions Multiple Data (MIMD) architecture em-
ploys multiple, independent processors that operate simultaneously and can each exe-
cute a separate program. Typical MIMD machines include symmetric and asymmetric
multiprocessors. Alternatives to SIMD and MIMD architectures include redundant, dis-
tributed, cluster, and grid architectures.

In theory, a general-purpose multiprocessor with N processors should perform N
times faster than a single processor. In practice, however, memory contention, com-
munication overhead, and coordination mean that the performance of a multiprocessor
does not increase linearly as the number of processors increases. In the extreme case,
overhead means that performance can decrease as additional processors are added.

Programming a computer with multiple processors can be a challenge. In addition
to other considerations, a programmer must use locks to guarantee exclusive access to
shared items.

A modern supercomputer consists of a large cluster of processors. If a problem
can be partitioned into subparts, the processors in a supercomputer cluster can work on
subparts in parallel.

www.ebook3000.com

http://www.ebook3000.org

Exercises 377

EXERCISES

18.1 Define macroscopic parallelism and give an example.

18.2 If a computer has four cores plus two GPU cores, does the system have symmetric paral-
lelism, asymmetric parallelism, or some of both? Explain?

18.3 Use the Flynn classification scheme to classify a dual-core smart phone.

18.4 What is contention, and how does it affect performance?

18.5 A C programmer is writing code that will run on multiple cores, and must increment a
shared variable x. Instead of writing:

x = x + 1;

the C programmer writes:
x++;

Does the second form guarantee that two cores can execute the increment without in-
terfering with one another? Explain.

18.6 You receive two job offers for the same salary, one writing code for a system that uses
explicit parallelism and another writing code for a system that uses implicit parallelism.
Which do you choose, and why?

18.7 Consider multiplying two 10 x 20 matrices on a computer that has vector capability but
limits each vector to sixteen items. How is matrix multiplication handled on such a
computer, and how many vector multiplications are required?

18.8 In the previous exercise, how many scalar multiplications are needed on a uniprocessor
(i.e., an SISD architecture)? If we ignore addition and only measure multiplication, what
is the speedup? Does the speedup change when multiplying 100 x 100 matrices?

18.9 If you have access to single-processor and dual-processor computers that use the same
clock rate, write a program that consumes large amounts of CPU time, run multiple
copies on both computers, and record the running times. What is the effective speedup?

18.10 In the previous question, change the program to reference large amounts of memory
(e.g., repeatedly set a large array to a value x, then set the array to value y, and so on).
How do memory references affect the speedup?

18.11 Can a multiprocessor ever achieve speedup that is better than linear? To find out, con-
sider an encryption breaking algorithm that must try twenty-four (four factorial) possible
encryption keys and must perform up to 1024 operations to test each key (stopping early
only if an answer is found). If we assume a multiprocessor requires K milliseconds to
perform 1024 operations, on average how much time will the processor spend solving
the entire problem? How much time will a 32-processor MIMD machine spend solving
the problem? What is the resulting speedup?

18.12 Search the Web to find a list of the top 10 supercomputers. How many cores does each
have?

www.ebook3000.com

http://www.ebook3000.org

Chapter Contents

19.1 Introduction, 381
19.2 The Concept Of Pipelining, 381
19.3 Software Pipelining, 383
19.4 Software Pipeline Performance And Overhead, 384
19.5 Hardware Pipelining, 385
19.6 How Hardware Pipelining Increases Performance, 385
19.7 When Pipelining Can Be Used, 388
19.8 The Conceptual Division Of Processing, 389
19.9 Pipeline Architectures, 390
19.10 Pipeline Setup, Stall, And Flush Times, 390
19.11 Definition Of Superpipeline Architecture, 391
19.12 Summary, 391

www.ebook3000.com

http://www.ebook3000.org

19

Data Pipelining

19.1 Introduction

Earlier chapters present processors, memory systems, and I/O as the fundamental
aspects of computer architecture. The previous chapter shows how parallelism can be
used to increase performance, and explains a variety of parallel architectures.

This chapter focuses on the second major technique used to increase performance:
data pipelining. The chapter discusses the motivation for pipelining, explains the
variety of ways pipelining is used, and shows why pipelining can increase hardware
performance.

19.2 The Concept Of Pipelining

The term pipelining refers broadly to any architecture in which digital information
flows through a series of stations (e.g., processing components) that each inspect, inter-
pret, or modify the information as Figure 19.1 illustrates.

stage 1 stage 2 stage 3 stage 4

information
arrives

information
leaves

Figure 19.1 Illustration of the pipeline concept. The example pipeline has
four stages, and information flows through each stage.

381

382 Data Pipelining Chap. 19

Although we are primarily interested in hardware architectures and the use of pipe-
lining within a single computer system, the concept itself is not limited to hardware.
Pipelining is not restricted to a single computer, a particular type or size of digital infor-
mation, or a specific length of pipeline (i.e., a particular number of stages). Instead,
pipelining is a fundamental concept in computing that is used in a variety of situations.

To help us understand the concept, we will consider a set of characteristics. Figure
19.2 lists ways to characterize pipelines, and succeeding paragraphs explain each of the
characteristics.

d Hardware or software implementation

d Large or small scale

d Synchronous or asynchronous flow

d Buffered or unbuffered flow

d Finite chunks or continuous bit streams

d Automatic data feed or manual data feed

d Serial or parallel path

d Homogeneous or heterogeneous stages

Figure 19.2 The variety of ways a pipeline can be used in digital systems.

Hardware Or Software Implementation. Pipelining can be implemented in either
software or hardware. For example, the Unix operating system provides a pipe mecha-
nism that can be used to form a software pipeline — a set of processes creates pipes
that connect the output of one process to the input of the next process. We will exam-
ine hardware pipelines in later sections. However, it should be noted that software and
hardware pipelines are independent: a software pipeline can be created on a computer
that does not use a pipeline hardware architecture, and pipeline hardware is not neces-
sarily visible to programmers.

Large Or Small Scale. Stages in a pipeline can range from simplistic to powerful,
and a pipeline can range in length from short to long. At one extreme, a hardware pipe-
line can be contained entirely within a small functional unit on a chip. At the other ex-
treme, a software pipeline can be created by passing data through a series of programs
that each run on a separate computer and use the Internet to communicate. Similarly, a
short pipeline can be formed of two stages, one that generates information and one that
absorbs it, and a long pipeline can contain hundreds of stages.

Synchronous Or Asynchronous Flow. A synchronous pipeline operates like an as-
sembly line: at a given time, each stage is processing some amount of information (e.g.,
a byte). A global clock controls movement, which means that all stages simultaneously
forward their data (i.e., the results of processing) to the next stage. The alternative, an
asynchronous pipeline, allows a station to forward information at any time. Asynchro-

www.ebook3000.com

http://www.ebook3000.org

Sec. 19.2 The Concept Of Pipelining 383

nous communication is especially attractive for situations where the amount of time a
given stage spends on processing depends on the data the stage receives. However,
asynchronous communication can mean that if one stage delays for a long time, later
stages must wait.

Buffered Or Unbuffered Flow. Our conceptual diagram in Figure 19.1 implies that
one stage of a pipeline sends data directly to another stage. It is also possible to con-
struct a pipeline in which a buffer is placed between each pair of stages. Buffering is
useful with asynchronous pipelines in which information is processed in bursts (i.e., a
pipeline in which a stage repeatedly emits steady output, then ceases emitting output,
and then begins emitting steady output again).

Finite Chunks Or Continuous Bit Streams. The digital information that passes
through a pipeline can consist of a sequence of small data items (e.g., packets from a
computer network) or an arbitrarily long bit stream (e.g., a continuous video feed).
Furthermore, a pipeline that operates on individual data items can be designed such that
all data items are the same size (e.g., disk blocks that are each four Kbytes) or the size
of data items is not fixed (e.g., a series of Ethernet packets that vary in length).

Automatic Data Feed Or Manual Data Feed. Some implementations of pipelines
use a separate mechanism to move information, and other implementations require each
stage to participate in moving information. For example, a synchronous hardware pipe-
line typically relies on an auxiliary mechanism to move information from one stage to
another. However, a software pipeline usually requires each stage to write outgoing
data and read incoming data explicitly.

Serial Or Parallel Path. The large arrows in Figure 19.1 imply that a parallel path
is used to move information from one stage to another. Although some hardware pipe-
lines do use a parallel path, many use serial communication. Furthermore, communica-
tion between stages need not consist of conventional communication (e.g., stages can
use a computer network or shared memory to communicate).

Homogeneous Or Heterogeneous Stages. Although Figure 19.1 uses the same size
and shape for each stage of a pipeline, homogeneity is not required. Some implementa-
tions of pipelines choose a type of hardware that is appropriate for each stage.

19.3 Software Pipelining

From a programmer’s point of view, a software pipeline is attractive for two rea-
sons. First, a software pipeline provides a way to handle complexity. Second, a
software pipeline allows programs to be re-used. In essence, both goals are achieved
because a software pipeline allows a programmer to divide a large, complex task into
smaller, more generic pieces.

As an example of software pipelining, consider the pipeline facilities provided by
the Unix shell (i.e., the command interpreter). To create a software pipeline, a user
enters a list of command names separated by the vertical bar character to specify that
the programs should be run as a pipeline. The shell arranges the programs so the output
from one program becomes the input of the next. Each program can have zero or more

384 Data Pipelining Chap. 19

arguments that control processing. For example, the following input to the shell speci-
fies that three programs, cat, sed, and more are to be connected in a pipeline:

cat x | sed ’s/friend/partner/g’ | more

In the example, the cat program writes a copy of file x (presumably a text file) to
its output, which becomes the input of the sed program. The sed program, in the mid-
dle of the pipeline, receives input from cat and sends output to more. Sed has an argu-
ment that specifies translating every occurrence of the word friend to partner. The final
program in the pipeline, more, receives input from sed and displays the input on the
user’s screen.

Although the example above is trivial, it illustrates how a software pipeline helps
programmers. Decomposing a program into a series of smaller, less complex programs
makes it easier to create and debug software. Furthermore, if the division is chosen
carefully, some pieces can be re-used among programs. In particular, programmers
often find that using a pipeline to separate input and output processing from computa-
tion allows the code that performs computation to be re-used with various forms of in-
put and output.

19.4 Software Pipeline Performance And Overhead

It may seem that software pipelining results in lower performance than a single
program. The operating system must run multiple application programs concurrently,
and must pass data between pairs of programs. Inefficiency can be especially high if
early stages of a pipeline pass large volumes of data that are later discarded. For exam-
ple, consider the following software pipeline that contains one more stage than the ex-
ample above: an additional invocation of sed that deletes any line containing the charac-
ter W.

cat x | sed ’s/friend/partner/g’ | sed ’/W/d’ | more

If we expect ninety-nine percent of all lines to contain the character W, the first
two stages of the pipeline will perform unnecessary work (i.e., processing lines of text
that will be discarded in a later stage of the pipeline). In the example, the pipeline can
be optimized by moving the deletion to an earlier stage. However, the overhead of us-
ing a software pipeline appears to remain: copying data from one program to another is
less efficient than performing all computation in a single program.

Surprisingly, a software pipeline can perform better than a large, monolithic pro-
gram, even if the underlying hardware does not use multiple cores. To understand why,
consider the underlying architecture: processing, memory, and I/O are constructed from
independent hardware. An operating system takes advantage of the independence by
automatically switching the processor among application programs (i.e., processes):
when one application is waiting for I/O, another application runs. Thus, if a pipeline is
composed of many small applications, the operating system may be able to improve

www.ebook3000.com

http://www.ebook3000.org

Sec. 19.4 Software Pipeline Performance And Overhead 385

overall performance by running one of the applications in a pipeline, while another ap-
plication waits for I/O.

19.5 Hardware Pipelining

Like software pipelining, hardware pipelining can help a designer manage com-
plexity — a complex task can be divided into smaller, more manageable pieces. How-
ever, the most important reason architects choose a hardware pipeline is increased per-
formance. There are two distinct uses of hardware pipelines that each provide high per-
formance:

d Instruction pipeline

d Data pipeline

Instruction Pipeline. Chapter 5 explains how the fetch-execute cycle in a processor
can use a pipeline to decode and execute instructions. To be precise, we use the term
instruction pipeline to describe a pipeline in which the information consists of machine
instructions and the stages of the pipeline decode and execute the instructions. Because
the instruction set and operand types vary among processors, there is no overall agree-
ment on the number of stages in an instruction pipeline or the exact operations per-
formed at a given stage†.

Data Pipeline. The alternative to an instruction pipeline is known as a data pipe-
line. That is, instead of passing instructions, a data pipeline is designed to pass data
from stage to stage. For example, if a data pipeline is used to handle packets that arrive
from a computer network, each packet passes sequentially through the stages of the
pipeline. Data pipelining provides some of the most unusual and most interesting uses
of pipelining. As we will see, data pipelining also has the potential for the greatest
overall improvement in performance.

19.6 How Hardware Pipelining Increases Performance

To understand why pipelining is fundamental in hardware design, we need to ex-
amine a key point: pipelining can dramatically increase performance. To see how, com-
pare a data pipeline to a monolithic design. For example, consider the design of an In-
ternet router that is used by an Internet Service Provider (ISP) to forward packets
between customers and Web sites. A router connects to multiple networks, some of
which lead to customers and at least one leads to the Internet. Network packets can ar-
rive over any network, and the router’s job is to send each packet on toward its destina-
tion. For purposes of this example, we will assume the router performs six basic opera-
tions on each packet as listed in Figure 19.3. It is not important to understand each of
the operations, only to appreciate that the example is realistic.

��������������������������������
†The definition of superpipeline, given later in this chapter, also relates to an instruction pipeline.

386 Data Pipelining Chap. 19

1. Receive a packet (i.e., read the packet from the network device
and transfer the bytes into a buffer in memory)

2. Verify packet integrity (e.g., use a checksum to verify that no
changes occurred between transmission and reception)

3. Check for forwarding loops (i.e., decrement a value in the
header, and reform the header with the new value)

4. Select a path (i.e., use the destination address field in the packet
to select one of the possible output networks and a destination
on that network)

5. Prepare for transmission (i.e., compute information that will be
sent with the packet and used by the receiver to verify integrity)

6. Transmit the packet (i.e., transfer the packet to the output device)

Figure 19.3 An example series of steps that hardware in an Internet router
performs to forward a packet.

Consider the design of hardware that implements the steps in the figure. Because
the steps involve complex computation, it may seem that a processor should be used to
perform packet forwarding. However, a single processor is not fast enough for high-
speed networks. Thus, most designs employ two optimizations described in earlier
chapters: smart I/O devices and parallelism. A smart I/O device can transfer a packet
to or from memory without using a processor, and a parallel design uses a separate pro-
cessor to handle each input.

A parallel router design with a smart I/O interface means that each processor im-
plements a loop that repeatedly executes the six basic steps. Figure 19.4 illustrates how
a processor connects to an input, and shows the algorithm the processor runs.

processor
input

from one
network

outputs

...

do forever {
Receive the next packet
Verify packet integrity
Check for forwarding loops
Select an output path
Prepare for transmission
Enqueue packet for output

}
(a) (b)

Figure 19.4 (a) Illustration of the connections on a processor used in a paral-
lel implementation of an Internet router, and (b) the algorithm
the processor executes. Each processor handles input from one
network.

www.ebook3000.com

http://www.ebook3000.org

Sec. 19.6 How Hardware Pipelining Increases Performance 387

Suppose a parallel architecture, like the one in the figure, is still too slow. That is,
suppose the processor cannot execute all the steps of the algorithm before the next
packet arrives over the interface and no faster processor is available. How can we
achieve higher performance? One possibility for higher speed lies in a data pipeline:
use a pipeline of several processors in place of a single processor as Figure 19.5 illus-
trates†.

verify
integrity

check
for loops

select
path

prepare for
transmission

packets
arrive

packets
leave

Figure 19.5 Illustration of a pipeline used in place of a single processor in an
Internet router.

It may seem that the pipeline in the figure is no faster than the single processor in
Figure 19.4. After all, the pipeline architecture performs exactly the same operations on
each packet as the single processor. Furthermore, if the processors in Figure 19.5 are
each the same speed as the processor in Figure 19.4, the time to perform a given opera-
tion will be the same. For example, the step labeled verify integrity will take the same
amount of time on both architectures, the step labeled check for loops will take the
same amount of time on both architectures, and so on. Thus, if we ignore the delay in-
troduced by passing packets among stages of the pipeline, the total time taken to pro-
cess a packet is exactly the same as in a single processor architecture. That is:

A data pipeline passes data through a series of stages that each exam-
ine or modify the data. If it uses the same speed processors as a non-
pipeline architecture, a data pipeline will not improve the overall time
needed to process a given data item.

If the total processing time required for an item is the same in the pipelined and
non-pipelined architectures, what is the advantage of a data pipeline? Surprisingly,
even if the individual processors in Figure 19.5 are each exactly the same speed as the
processor in Figure 19.4, the pipeline architecture can process more packets per second.
To see why, observe that an individual processor executes fewer instructions per packet.
Furthermore, after operating on one data item, a processor moves on to the next data
item. Thus, a data pipeline architecture allows a given processor to move on to the next
data item more quickly than a nonpipeline architecture. As a result, data can enter (and
leave) a pipeline at a higher rate.

��������������������������������
†A pipeline provides an example of the Flynn MISD type of parallel architecture mentioned in the previ-

ous chapter.

388 Data Pipelining Chap. 19

We can summarize:

Even if a data pipeline uses the same speed processors as a nonpipe-
line architecture, a data pipeline has higher overall throughput (i.e.,
number of data items processed per second).

19.7 When Pipelining Can Be Used

A pipeline will not yield higher performance in all cases. Figure 19.6 lists condi-
tions that must be met for a pipeline to perform faster than a single processor.

d Partionable problem

d Equivalent processor speed

d Low overhead data movement

Figure 19.6 The three key conditions that must be met for a data pipeline to
perform better than the same computation on a single processor.

Partionable Problem. It must be possible to partition processing into stages that
can be computed independent of one another. Computations that employ a sequence of
steps work well in a pipeline, but computations that involve iteration often do not.

Equivalent processor speed. It should be obvious that if the processors used in a
data pipeline are slow enough, the overall time required to perform a computation will
be much higher than on a single processor. Processors in the pipeline do not need to be
faster than the single processor. We merely require that each processor in the pipeline
is approximately as fast as the single processor. That is, the time required to perform a
given computation on a pipeline processor must not exceed the time required to perform
the same computation on the single processor.

Low overhead data movement. In addition to the time required to perform compu-
tation, a data pipeline has an additional overhead: the time required to move a data item
from one stage of the pipeline to the next. If moving the data incurs extremely high la-
tency, pipelining will not increase performance.

The requirements arise because of an important principle:

The throughput of a pipeline is limited by the stage that takes the most
time.

As an example, consider the data pipeline in Figure 19.5. Suppose that all proces-
sors in the pipeline are identical, and assume that a pipeline processor takes exactly the
same time to execute an instruction as the single processor. To make the example con-
crete, assume that a processor can execute ten instructions each microsecond. Further

www.ebook3000.com

http://www.ebook3000.org

Sec. 19.7 When Pipelining Can Be Used 389

suppose the four stages in the figure take fifty, one hundred, two hundred, and one hun-
dred fifty instructions, respectively, to process a packet. The slowest stage requires two
hundred instructions, which means the total time the slowest stage takes to process a
packet is:

total time =
10 inst / μsec

200 inst������������ = 20 μsec (19.1)

Looking at this another way, we can see that the maximum number of packets that
can be processed per second is the inverse of the time per packet of the slowest stage.
Thus, the overall throughput of the example pipeline, Tp , is given by:

Tp =
20 μsec
1 packet�������� =

20 sec
1 packet × 106������������� = 50,000 packets per second (19.2)

In contrast, a non-pipelined architecture must execute all 500 instructions for each
packet, which means that the total time required for a packet is 50 μsec. Thus, the
throughput of the non-pipelined architecture is limited to:

Tnp =
50 μsec
1 packet�������� =

50 sec
1 packet × 106������������� = 20,000 packets per second (19.3)

19.8 The Conceptual Division Of Processing

The reason data pipelining improves performance arises because pipelining pro-
vides a special form of parallelism. By dividing a series of sequential operations into
groups that are each handled by a separate stage of the pipeline, pipelining allows stages
to operate in parallel. Of course, a pipeline architecture differs from a conventional
parallel architecture in a significant way: although the stages operate in parallel, a given
data item must pass through all stages. Figure 19.7 illustrates the concept.

h()g()f()

f()

g()

h()

(a) (b)

Figure 19.7 (a) Processing on a conventional processor, and (b) equivalent
processing in a data pipeline. The functions performed in se-
quence are divided among stages of the pipeline.

390 Data Pipelining Chap. 19

The point of the figure is that the three stages operate in parallel. Stage three per-
forms function h on one data item at the same time stage two performs function g on a
second data item and stage one performs function f on a third data item. As long as the
pipeline is full (i.e., there are no delays between items), the overall system benefits from
N stages all running in parallel.

19.9 Pipeline Architectures

Recall from the previous chapter that we distinguish between hardware architec-
tures that merely use parallelism and architectures in which parallelism forms the cen-
tral paradigm around which the entire architecture is designed. We make an analogous
distinction between hardware architectures that use pipelining and architectures in which
pipelining forms the central paradigm around which the entire system is designed. We
reserve the name pipeline architectures for the latter. Thus, one might hear an architect
say that the processor in a given system uses instruction pipelining, but the architect
will not characterize the system as a pipeline architecture unless the overall design
centers around a pipeline.

Most hardware systems that follow a pipeline architecture are dedicated to special-
purpose functions. For instance, the example above describes how pipelining can be
used to improve performance of a packet processing system. Pipelining is especially
important in network systems because the high data rates used when sending data over
optical fibers exceeds the capacity of conventional processors.

Pipeline architectures are less relevant to general-purpose computers for two rea-
sons. First, few applications can be decomposed into a set of independent operations
that can be applied sequentially. Instead, a typical application accesses items randomly
and keeps large volumes of additional state information. Second, even in situations
where the functions to be performed on data can be decomposed into a pipeline, the
number of stages in the pipeline and the hardware needed to implement each stage is
not usually known in advance. As a result, general-purpose computers usually restrict
pipeline hardware to an instruction pipeline in the processor or a special-purpose pipe-
line in an I/O device.

19.10 Pipeline Setup, Stall, And Flush Times

Our description of pipelines overlooks many of the practical details. For example,
many pipeline implementations have overhead associated with starting and stopping the
pipeline. We use the term setup time to describe the amount of time required to start a
pipeline after an idle period. Setup may involve synchronizing processing among stages
or passing a special control token through the pipeline to restart each stage. For a
software pipeline, setup can be especially expensive because connections among various
stages are created dynamically.

www.ebook3000.com

http://www.ebook3000.org

Sec. 19.10 Pipeline Setup, Stall, And Flush Times 391

Unlike other architectures, a pipeline can require significant time to terminate pro-
cessing. We use the term flush time to refer to the amount of time that elapses between
the input being unavailable and the pipeline finishing its current processing. We say
that items currently in the pipeline must be flushed before the pipeline can be shut
down.

The need to flush items through a pipeline can arise for two reasons. First, a pipe-
line becomes idle when no input is available for the first stage. Second, as we have
seen, later stages of a pipeline become idle when one stage stalls (i.e., the stage delays
because it cannot complete processing). In a high-speed hardware pipeline, mundane
operations such as a memory reference or an I/O operation can cause a stage to stall.
Thus, high flush (or setup) times can reduce pipeline performance significantly.

19.11 Definition Of Superpipeline Architecture

A final concept completes our description of pipelines. Architects use the term su-
perpipeline to describe an extension of the pipeline approach in which a given stage of
the pipeline is subdivided into a set of partial stages. Superpipelining is most often
used with an instruction pipeline, but the concept applies to data pipelines as well. The
general idea is: if dividing processing into N stages can increase overall throughput, ad-
ding more stages can increase throughput further.

A traditional instruction pipeline might have five stages that correspond to: instruc-
tion fetch, instruction decode, operand fetch, ALU operation, and memory write. A su-
perpipeline architecture subdivides one or more stages into multiple pieces. For exam-
ple, a superpipeline might subdivide the operand fetch stage into four steps: decode an
operand, fetch immediate values or values from registers, fetch values from memory,
and fetch indirect operand values. As with standard pipelining, the point of the subdivi-
sion is higher throughput — because each substage takes less time, throughput of a su-
perpipeline is higher than the throughput of a standard pipeline.

19.12 Summary

Pipelining is a broad, fundamental concept that is used with both hardware and
software. A software pipeline, which arranges a set of programs in a series with data
passing through them, can be used on hardware that does not provide pipelining.

A hardware pipeline is either classified as an instruction pipeline, which is used in-
side a processor to handle machine instructions, or a data pipeline, in which arbitrary
data is transferred through the pipeline. The superpipeline technique, in which a stage
of a pipeline is further subdivided into partial stages, is often used with an instruction
pipeline.

A data pipeline does not decrease the overall time required to process a single data
item. However, using a pipeline does increase the overall throughput (items processed
per second). The stage of a pipeline that requires the most time to process an item lim-
its the throughput of the pipeline.

392 Data Pipelining Chap. 19

EXERCISES

19.1 A scientist uses a cluster of PCs and arranges to have software on each processor per-
form one step of a computation. The processor reads up to 1 MB of data (whatever is
available), processes the data, and then passes its output to the next processor over a 32-
bit bus. What characteristics from Figure 19.2 does the arrangement have?

19.2 Your team has been given the task of moving a video processing program from an old
single-core processor to a new quad-core processor that has a high-speed interconnect
among cores. Conventional parallel approaches will not work because the frames of
video must be processed in order. What technique can you suggest that offers a possible
way to use the new hardware to improve performance?

19.3 An engineer builds a data pipeline with eight processors. To measure performance, the
engineer runs the software on one processor and measures the time taken to process a
single data item. The engineer then divides the software into eight stages, and measures
the time taken to process a single data item. What do the measurements show?

19.4 Most data pipeline hardware is devoted to specialized tasks (e.g., graphics processing).
Would installing a data pipeline in all computers increase the performance of all pro-
grams? Why or why not?

19.5 A manager notices that the company has a few idle computers in each of ten data
centers. The data centers are spread across the country, with low-speed Internet connec-
tions used to communicate among the data centers. The manager proposes that rather
than using a computer in the local data center, a “giant data pipeline” be set up across all
ten data centers to increase performance. What do you tell the manager about the idea?

19.6 You are given a program that runs on one core, and are asked to divide the program into
pieces that will use up to eight cores in a data pipeline. You can divide the program two
ways. In one, the cores each perform 680, 2000, 1300, 1400, 800, 1900, 1200, and 200
instructions. In the other, the cores perform 680, 1400, 1300, 1400, 1400, 1000, 1200,
and 1100 instructions. Which division do you choose, and why?

19.7 What is the maximum throughput of a homogeneous pipeline in which four processors
each handle one million instructions per second and processing a data item requires 50,
60, 40, and 30 instructions, respectively? Assume a constant execution time for all types
of instructions.

19.8 In the previous exercise, what is the relative gain in throughput compared to an architec-
ture without pipelining? What is the maximum speedup?

19.9 Extend the previous exercise by considering heterogeneous processors that have speeds
of 1.0, 1.2, 0.9, and 1.0 million instructions per second, respectively.

19.10 If you are asked to apply superpipelining to subdivide one of the stages of an existing
pipeline, which stage should you choose? Why?

www.ebook3000.com

http://www.ebook3000.org

Chapter Contents

20.1 Introduction, 395
20.2 Definition Of Power, 395
20.3 Definition Of Energy, 396
20.4 Power Consumption By A Digital Circuit, 397
20.5 Switching Power Consumed By A CMOS Digital Circuit, 398
20.6 Cooling, Power Density, And The Power Wall, 399
20.7 Energy Use, 399
20.8 Power Management, 400
20.9 Software Control Of Energy Use, 403
20.10 Choosing When To Sleep And When To Awaken, 404
20.11 Sleep Modes And Network Devices, 406
20.12 Summary, 406

www.ebook3000.com

http://www.ebook3000.org

20

Power And Energy

20.1 Introduction

The related topics of power consumption and total energy consumption have be-
come increasingly important in the design of computing systems. For portable devices,
designs strive for a balance between maximizing battery life and maximizing features
that users desire. For large data centers, the power consumed and the consequent cool-
ing required are now critical factors in the design and scale.

This brief chapter introduces the topic without going into much detail. It defines
terminology, explains the types of power that digital circuits consume, and describes the
relationship between power and energy. Most important, the chapter describes how
software systems can be used to shut down parts of a system to reduce power consump-
tion.

20.2 Definition Of Power

We define power to be the rate at which energy is consumed (e.g., transferred or
transformed). For an electronic circuit, power is the product of voltage and current.
Taking the definitions from physics, power is measured in units of watts, where a watt
is defined as one joule per second (J/s). The higher the wattage of an electronic device,
the more power it consumes; some devices use kilowatts (103 watts) of power. For a
large data center cluster, the aggregate power consumed by all the computers in the
cluster is so large that it is measured in megawatts (106 watts). For small hand-held de-
vices, such as cell phones, the power requirements are so minimal that they are meas-
ured in milliwatts (10-3 watts).

395

396 Power And Energy Chap. 20

It is important to note that the amount of power a system uses can vary over time.
For example a smart phone uses less power when the display is turned off than when
the screen is on. Therefore, to be precise, we define the instantaneous power at time t,
P(t), to be the product of the voltage at time t, V(t), and the current at time t, I(t):

P (t) = V (t) × I (t) (20.1)

We will see that the ability of a system to vary its power usage over time can be impor-
tant for both extremely large and extremely small computing systems (e.g., powerful
computers in a data center and small battery powered devices).

The maximum power that a system uses is especially important for large systems,
such as a cluster of computers in a data center. We use the term peak instantaneous
power to specify the maximum power a system will need. Peak power is especially im-
portant when constructing a large computing system because the designer must arrange
to meet the peak power requirements. For example, when planning a data center, a
designer must guarantee that an electric utility can supply sufficient power to meet the
peak instantaneous power demand.

20.3 Definition Of Energy

From the above, the total energy that a system uses is computed as the power con-
sumed over a given time, measured in joules. Electrical energy is usually reported in
multiples of watts multiplied by a unit of time. Typically, the time unit is an hour, and
the multiples of watts are kilowatts, megawatts, or milliwatts. Thus, the energy con-
sumed by a data center during a week might be reported in kilowatt hours (kWh) or
megawatt hours (MWh), and the energy consumed by a battery during a week might be
reported in milliwatt hours (mWh).

If power utilization is constant, the energy consumed can be computed easily by
multiplying power utilization, P, by the time the power is used. For example, during
the time period from t0 to t1, the energy used is given by:

E = P × (t 1 − t 0) (20.2)

A system that uses exactly 6 kilowatts during an hour has an energy consumption of 6
kWh as does a system that has an energy consumption of 3 kilowatts for a period of
two hours.

As we described above, most systems do not consume power at a constant rate.
Instead, the power consumption varies over time. To capture the idea that power varies
continuously, we define energy to be the integral of instantaneous power over time:

E = ∫
t =t 0

 t 1

 P (t) dt
(20.3)

www.ebook3000.com

http://www.ebook3000.org

Sec. 20.3 Definition Of Energy 397

Although power is defined to be an instantaneous measure that can change over
time, some electronic systems specify a value known as the average power. Recall that
power is the rate at which energy is used, which means the average power over a time
interval can be computed by taking the amount of energy used during the interval and
dividing by the time:

Pavg =
(t 1 − t 0)

E���������� (20.4)

20.4 Power Consumption By A Digital Circuit

Recall that a digital circuit is created from logic gates. At the lowest level, all
logic gates are composed of transistors, and transistors consume power in two ways†:

d Switching or dynamic power (denoted Ps or Pd)

d Leakage power (denoted Pleak)

Switching Power. The term switching refers to a change in the output in response
to an input. When one or more inputs of a gate change, the output may change. A
change in output can only occur because electrons flow through transistors. Individual
transistors consume more power during switching, which means that the total power for
the system increases.

Leakage Power. Although we think of a digital circuit as having a binary value
(on or off), solid state physicists realize that transistors are imperfect switches. That is,
even when a transistor is off, a few electrons can penetrate the semiconductor boundary.
Therefore, whenever power is supplied to a digital circuit, some amount of current will
always flow, even if the outputs are not switching. We use the term leakage to refer to
current that flows when a circuit is not operating.

For a given transistor, the amount of leakage current is insignificant. However, a
single processor can have a billion transistors, meaning that the aggregate leakage
current can be quite high. In fact, for some digital systems, the leakage current ac-
counts for more than half of the power utilization. The point can be summarized:

In a typical computing system, 40 to 60 percent of the power the sys-
tem uses is leakage power.

A further point is important in the discussion of power management. The basic
principle is that leakage always occurs when power is present:

Leakage current can only be eliminated by removing power from a
circuit.

��������������������������������
†In addition to the two major sources, a minor amount of short-circuit power is consumed because

CMOS transistors form a brief connection between the power source and ground when switching.

398 Power And Energy Chap. 20

20.5 Switching Power Consumed By A CMOS Digital Circuit

Our focus is using software to manage the power use of a digital circuit. To
understand power management techniques, we need a few basic concepts. First, we will
consider the total energy consumed by switching. The energy, required for a single
change of a gate is denoted Ed, and is given by:

Ed =
2
1�� C V dd

2 (20.5)

where C is a value of capacitance that depends on the underlying CMOS technology,
and Vdd is the voltage at which the circuit operates†.

To understand the power consequences of Equation 20.5, consider a clock. The
clock generates a square wave at a fixed frequency. Suppose the clock signal is con-
nected to an inverter. The inverter output will change twice during a clock cycle, once
when the clock goes from zero to one and once when the clock goes from one back to
zero. Therefore, if the clock has period Tclock, the average power used is:

Pavg =
Tclock

C V dd
2

������� (20.6)

The frequency of the clock is the inverse of the period:

Fclock =
Tclock

1����� (20.7)

which means we can rewrite Equation 20.6 in terms of clock frequency:

Pavg = C V dd
2

 Fclock (20.8)

One additional term is used to compute the average power: a fraction of the circuit
whose outputs are switching. We use α to denote the fraction, 0 ≤ α ≤ 1, which makes
the final form of Equation 20.8 for average power:

Pavg = α C V dd
2

 Fclock (20.9)

Equation 20.9 captures the three main components of power that are pertinent to
the following discussion. Constant C is a property of the underlying technology and
cannot be changed easily. Thus, the three components that can be controlled are:

d The fraction of the circuit that is active, α

d The clock frequency, Fclock

d The voltage in the circuit, Vdd

��������������������������������
†The notation Vdd is used to specify the voltage used to operate a CMOS circuit; the notation V (voltage)

can be used if the context is understood.

www.ebook3000.com

http://www.ebook3000.org

Sec. 20.6 Cooling, Power Density, And The Power Wall 399

20.6 Cooling, Power Density, And The Power Wall

Recall that instantaneous power use is often associated with data centers or other
large installations where a key aspect is peak power utilization. In addition to the ques-
tion of whether an electric utility is able to deliver the megawatts needed during peak
use, designers focus on two other aspects of power use: cooling and power density.

Cooling. When a digital device operates, it generates heat. A huge power load
means many devices are operating, and each device is generating heat. Consequently,
the heat being produced is related to the power being consumed. All electronic circuits
must be cooled or circuits will overheat and burn out. For the smallest devices, enough
heat escapes to the surrounding air that no further cooling is needed. For medium-size
devices, cooling requires a fan that blows cold air across the circuits constantly; the air
must be brought in through a Heating, Ventilation, and Air Conditioning (HVAC) sys-
tem. In the most extreme cases, air cooling is insufficient, and a form of liquid cooling
is required.

Power Density. Although the total amount of heat a circuit produces dictates the
total cooling capacity required, another aspect of heat is important: the concentration of
heat in a small area. In a data center, for example, if many computers are placed adja-
cent to one another, they can overheat. Thus, spacing is added between computers and
between racks of computers to permit cool air to flow through the racks and remove
heat.

Power density is also important on an individual integrated circuit, where power
density refers to the amount of power that is dissipated per a given area of silicon. For
many years, the semiconductor industry followed Moore’s Law. The size of an indivi-
dual transistor continued to shrink, and every eighteen months, the number of transistors
that fit on a single chip doubled. However, following Moore’s Law had a negative as-
pect: power density also increased. As power density increases, the amount of heat
generated per unit area increases, which means that a modern processor produces much
more heat per square centimeter than earlier processors.

Consequently, packing transistors closer together has led to a major problem: we
are reaching the limits of the rate at which heat can be removed from a chip. Engineers
refer to the limit as the power wall because it means power cannot be increased. With
current cooling technologies, the limit can be approximated:

PowerWall ∼∼ 100
cm2

watts����� (20.10)

20.7 Energy Use

Unlike power, which measures instantaneous flow of current, energy measures the
total power consumed over a given time interval. A focus on energy is especially per-
tinent to portable devices that use batteries. We can think of a battery as a bucket of

400 Power And Energy Chap. 20

energy, and imagine the device extracting energy as needed. The total time a battery
can power a device (measured in milliwatt hours) is derived from the amount of energy
in the battery.

Modeling a battery as a bucket of energy (analogous to a bucket of water) is overly
simplistic. However, three aspects of water buckets apply to batteries. First, like water
in a bucket, the energy stored in a battery can evaporate. In the case of a battery, chem-
ical and physical processes are imperfect — internal resistance allows a trivial amount
of current to flow inside the battery. Although the flow is almost imperceptible, allow-
ing a battery to sit for a long time (e.g., a year) will result in loss of charge. Second,
just as some of the water poured from a bucket is likely to spill when extracting energy
from a battery, some of the energy is lost. Third, energy can be removed from a battery
at various rates, just as water can be extracted from a bucket at various rates. The im-
portant idea behind the third property is a battery becomes more efficient at lower
current levels (i.e., lower power levels). Thus, designers look for ways to minimize
power that a battery operated device consumes.

20.8 Power Management

The above discussion shows that reducing power consumption is desirable in all
cases. In a large data center, reducing power consumption reduces the heat generated.
For a small portable device, reducing power consumption extends the battery life. Two
questions arise: what methods can be used to reduce power consumption, and which of
the power reduction techniques can be controlled by software?

Recall from Equation 20.9†, three primary factors contribute to power consump-
tion: α, the fraction of a circuit that is active, Fclock, the clock frequency, and Vdd, the
voltage used to operate a circuit. The next sections describe how voltage and frequency
can be used to reduce power consumption; a later section considers the fraction of a cir-
cuit that is active.

20.8.1 Voltage And Delay

Because power utilization depends on the square of the voltage, lowering voltage
will produce the largest reduction in power. However, voltage is not an independent
variable. First, decreasing voltage increases gate delay, the time a gate takes to change
its outputs after inputs change. A processor is designed carefully so that all hardware
units operate according to the clock. If the delay for a single gate becomes sufficiently
large, the delay across an entire hardware unit (many gates) will exceed the design
specification.

For current technology, the delay can be estimated by:

Delay = β
(Vdd − VTH)

K Vdd������������ (20.11)

��������������������������������
†Equation 20.9 can be found on page 398.

www.ebook3000.com

http://www.ebook3000.org

Sec. 20.8 Power Management 401

where Vdd is the voltage used, VTH is a threshold voltage determined by the underlying
CMOS technology, K is a constant that depends on the technology, and β is a constant
(approximately 1.3 for current technology).

A second aspect of power is related to voltage: leakage current. The leakage
current depends on the temperature of a circuit and the threshold voltage of the CMOS
technology. Lowering voltage decreases leakage current, but has an interesting conse-
quence: lower voltage means increased delay, which results in more total energy being
consumed. To understand why increasing leakage can be significant, recall that leakage
can account for 40% to 60% of the power a circuit uses. The point is:

Although power depends on the square of voltage, reducing voltage
increases delay which increases total energy usage.

Despite the problems, voltage is the most significant factor in power reduction.
Therefore, researchers who work on solid state physics and silicon technologies have
devised transistors that operate correctly at much lower voltages. For example,
although early digital circuits operated at 5 volts, current technologies used in cell
phones operate at lower voltages. A fully charged cell phone battery provides about 4
volts, and the circuits continue to operate as the battery discharges. In fact, some cell
phones that use NiMH battery technology can still receive calls with a battery that pro-
vides only 1.2 volts, and the phone only declares a battery dead when the voltage falls
below 0.8 volts. (Lithium-based batteries tend to die at approximately 3.65 volts.)

20.8.2 Decreasing Clock Frequency

Clock frequency forms a second factor in power utilization. In theory, power is
proportional to clock frequency, so slowing the clock will save power. In practice,
reducing the clock frequency lowers performance, which may be critical in systems that
have real-time requirements (e.g., a system that displays video or plays music).

Interestingly, adjusting the clock frequency can be used in conjunction with a
reduction in voltage. That is, a slower clock can accommodate the increased delays that
a lower voltage causes. Thus, if a designer decreases the clock frequency as voltage is
decreased, performance will suffer but the circuit will operate correctly.

When both clock frequency and voltage are reduced, the resulting reduction in
power can be dramatic. In one specific case, reducing the frequency to one-half the ori-
ginal rate allowed the voltage to be divided by 1.7. Because voltage is squared in the
power equation (Equation 20.9), reducing the voltage allows the resulting power to be
reduced dramatically. For the example, the resulting power was approximately 15% of
the original power. Although the savings depend on the technology being used, the
general idea can be summarized:

402 Power And Energy Chap. 20

If a circuit can deliver adequate performance with a reduced clock
frequency, power can be cut dramatically because reducing the clock
frequency also allows voltage to be reduced.

Intel has invented an interesting twist on reduced clock frequency by permitting
dynamic changes. The idea is straightforward. When the processor is busy, the operat-
ing system sets the clock frequency high. If the processor exceeds a preset thermal
limit (i.e., overheats) or a power limit (e.g., would drain a battery quickly), the operat-
ing system reduces the clock frequency until the processor operates within the
prescribed limits. For example, clock frequency might be increased or decreased
dynamically by multiples of 100 MHz. If the processor is idle, the clock frequency can
also be reduced to save energy. Instead of advertising the capability as dynamic speed
reduction, Intel marketing turns the situation around and advertises the feature as Turbo
Boost.

20.8.3 Slower Clock Frequency And Multicore Processors

In the early 2000s, at the same time power utilization was becoming a problem,
chip vendors introduced multicore processors. On the surface, a shift to multicore ar-
chitectures seems counterproductive because two cores will require twice as much
power as a single core. Of course, the cores may share some of the circuitry (e.g., a
memory or bus interface), which means the power consumption of a dual-core chip will
not be exactly double the power consumption of a single core chip. However, a second
core adds substantial additional power requirements.

Why would vendors introduce more cores if reducing power consumption is impor-
tant? To understand, look carefully at clock frequency. Before multicore chips ap-
peared, clock frequency increased every few years as new processors appeared. We
know from the above discussion that slowing down a clock to one-half of its original
speed allows voltage to be lowered and cuts power consumption significantly. Now
consider a dual-core chip. Suppose that each core runs at one-half the clock frequency
of a single-core chip. The computational power of the dual-core version is still approxi-
mately the same as a single core that runs twice as fast. In terms of power utilization,
however, the voltage can be reduced, which means that each of the two cores takes a
fraction, F, of the power required by the single-core version. As a result, the multicore
chip takes approximately 2 F as much power as the single core version. Provided F is
less than 50%, the slower dual-core chip consumes less power. In the example above,
F is 15%, which means a dual-core chip will provide equivalent computational power at
only 30% of the original power requirements. We can summarize:

A multicore chip in which each core runs at a slower clock frequency
and lower voltage can deliver approximately the same computational
capability as a single core chip while incurring significantly lower
power utilization.

www.ebook3000.com

http://www.ebook3000.org

Sec. 20.8 Power Management 403

Of course, the discussion above makes an important assumption about multicore
processing. Namely, it assumes that computation can be divided among multiple cores.
Unfortunately, Chapter 18 points out that experience with parallelism has not been
promising. For computations where a parallel approach is not feasible, a slow clock can
make the system unusable. Even in cases where some parallelism is feasible, memory
contention and other inefficiencies can result in disappointing performance. When
parallel processing is used to handle multiple input items at the same time, overall
throughput from two cores can be the same as that of a single, faster core. However,
latency (i.e., the time required to process a given item) is higher. Finally, one should
remember that the discussion has focused on switching power — leakage can still be a
significant problem.

20.9 Software Control Of Energy Use

Software on a system usually has little or no ability to make minor increases or de-
creases in the voltage used. Instead, software is often restricted to two basic operations:

d Clock gating

d Power gating

Clock Gating. The term refers to reducing the clock frequency to zero which ef-
fectively stops a processor. Before a processor can be stopped, a programmer must ar-
range for a way to restart it. Typically, the code image is kept in memory, and the
memory retains power. Thus, the image remains ready whenever the processor restarts.

Power Gating. The term refers to cutting off power from the processor. A special
solid state device that has extremely low leakage current is used to cut off power. As
with clock gating, a programmer must arrange for a restart, either by saving and then
restoring a copy of the memory image or by ensuring that the memory remains powered
on so the image is retained.

Systems that offer power gating capabilities do not apply gating across the entire
system. Instead, the system is divided into islands, and gating is applied to some is-
lands while others continue to operate normally. Memory cache forms a particularly
important power island — if power is removed from a memory cache, all cached data
will be lost. We know from Chapter 12 that caching is important for performance.
Therefore, a memory cache can be placed in a power island that is not shut down when
power is removed from other parts of the processor.

Some processors extend the idea to provide a set of low power modes that software
can use to reduce power consumption. Vendors use a variety of names to describe the
modes, such as sleep, deep sleep, and hibernation. We will use the generic names
LPM0, LPM1, LPM2, LPM3, and LPM4. In general, low power modes are arranged in
a hierarchy. LPM0 turns off the least amount of circuitry and has the fastest recovery.
LPM4, the deepest sleep mode, turns off almost the entire processor. As a conse-
quence, restarting from LPM4 takes much longer than other low power modes.

404 Power And Energy Chap. 20

20.10 Choosing When To Sleep And When To Awaken

Two questions must be answered: when should a system enter a sleep mode, and
when should it awaken? Choosing when to awaken from sleep mode is usually straight-
forward: wake up on demand. That is, the hardware waits until an event occurs that re-
quires the processor, and the hardware then moves the processor out of sleep mode. For
example, a screen saver restarts the display whenever a user moves a mouse, touches a
touch-sensitive screen, or presses a key on a keyboard.

The question of when to enter a low power mode is more complex. The motiva-
tion is to reduce power utilization. Therefore, we want to gate power to a subsystem
(i.e., turn it off) if the subsystem will not be needed for a reasonably long time. Be-
cause we usually cannot know future requirements, most systems employ a heuristic to
estimate when a subsystem will be needed: if a sufficiently long period of inactivity oc-
curs, assume the subsystem will remain inactive for a while longer. Typically, if a pro-
cessor or a device remains inactive for N seconds, the processor or device enters a sleep
mode. The heuristic can also be applied to cause deeper sleep — if a processor remains
in a light sleep state for K seconds, the hardware moves the processor to a deeper sleep
state (i.e., additional parts of the processor are turned off).

What value of N should be used as a timeout for sleep mode? Subsystems that
provide interaction with a human user typically allow the user to choose a timeout. For
example, a screen saver allows a user to specify how long the input devices should
remain idle before the screen saver runs. Allowing users to specify a timeout means
that each user can tailor the system to their needs.

Choosing a timeout for a system that does not involve human preference requires a
more careful analysis. A simplified model will help illustrate the calculation. For the
model, we will assume two states: a RUN state in which the processor runs with full
power and an OFF state in which all power is removed. When the processor makes a
transition, some time elapses, which we denote Tshutdown and Twakeup . Figure 20.1 illus-
trates the simplified model.

RUN

OFF

Tshutdown Twakeup

Figure 20.1 A simplified model of transitions among low power modes.

Power is used for each transition (i.e., to save state information or prepare I/O de-
vices for the transition). To make calculations easier, we will assume the power used

www.ebook3000.com

http://www.ebook3000.org

Sec. 20.10 Choosing When To Sleep And When To Awaken 405

during a transition is constant. Therefore, the energy required for a transition can be
calculated by multipling the power used by the time that elapses:

Eshutdown = Es = Pshutdown × Tshutdown (20.12)

and
Ewakeup = Ew = Pwakeup × Twakeup (20.13)

Understanding the energy required for transitions and the energy used when the
system runs and when it is shut down allows us to assess potential energy savings. In
essence, shutting down is beneficial if shutdown, sleep, and later wakeup consume less
energy than continuing to run over the same time interval.

Let t be the time interval being considered. If we assume the power used by the
running system is constant, the energy consumed when the system remains running for
time t is:

Erun = Prun × t (20.14)

The energy consumed if the system is put into sleep mode for time t consists of the en-
ergy required for each of the transitions plus Poff , the energy used (if any) while the
processor is shut down:

Esleep = Es + Ew + Poff (t − Tshutdown − Twakeup) (20.15)

Shutting down the system will be beneficial if:

Esleep < E run (20.16)

By using Equations 20.12 through 20.15, the inequality can be expressed in terms of a
single free variable, the time interval t. Therefore, it is possible to compute a break-
even point that specifies the minimum value of t for which shutting down saves energy.

Of course, the analysis above is based on a simplified model. Power usage may
not remain constant; the time and power required for transitions may depend on the
state of the system. More important, the analysis focuses on energy consumed by
switching and ignores leakage. However, the analysis does illustrate a basic point:

Even for a simplified model with only one low power state, details
such as the energy used during state transitions complicate the deci-
sion about when to move to low power mode.

406 Power And Energy Chap. 20

20.11 Sleep Modes And Network Devices

Many devices have a low power mode that is used to save energy. For example, a
printer usually sleeps after N minutes of inactivity. Similarly, wireless network adapters
can enter a sleep mode to reduce power consumption. For a network adapter, handling
output (transmission) is trivial because the adapter can be awakened whenever an appli-
cation generates an outgoing packet. However, input (reception) poses a difficult chal-
lenge for low power mode because a computer cannot know when another computer
will send a packet.

As an example, the Wi-Fi (802.11) standard includes a Power Saving Polling
(PSP) mode. To save power, laptops and other devices using Wi-Fi shut down and
only wake up periodically. We use the term duty-cycle to characterize the repeated cy-
cle of a device running and then being shut down. A radio must be up when an access
point transmits. A Wi-Fi base station periodically sends a beacon that includes a list of
recipients for which the base station has undelivered packets. The beacon is frequent
enough so a device is guaranteed to receive the beacon during the part of the duty cycle
when they are awake. If a device finds itself on the recipient list, the device remains
awake to receive the packet.

Two basic approaches have been used to allow a network adapter to sleep without
missing packets indefinitely. In one approach, each device synchronizes its sleep cycles
with the base station. In the other approach, a base station transmits each packet many
times until the receiver wakes up and receives it.

20.12 Summary

Power is an instantaneous measure of the rate at which energy is used; energy is
the total amount of power used over a given time. A digital circuit uses dynamic or
switching power (i.e., an output changes in response to the change of an input) and
leakage power. Leakage can account for 40 to 60 percent of the power a circuit con-
sumes.

Power consumption can be reduced by making parts of a circuit inactive, reducing
the clock frequency, and reducing the voltage. Reducing the voltage has the largest ef-
fect, but also increases delay. Power density refers to the concentration of power in a
given space; power density is related to heat. The power wall refers to the limit of ap-
proximately 100 watts per cm2 that gives the maximum power density for which heat
can be removed from a silicon chip using current cooling technologies.

Clock gating and power gating can be used to turn off a circuit (or part of a cir-
cuit). For devices that use battery power, the overall goal of power management sys-
tems is a reduction in total energy use. Because moving into and out of a low power
(sleep) mode consumes energy, sleeping is only justified if the energy required for sleep
mode is less than the energy required to remain running. A simplified model shows
that the computation involves the cost to shut down and the cost to wake up.

www.ebook3000.com

http://www.ebook3000.org

Sec. 20.12 Summary 407

Devices can also use low-power modes. Network interfaces pose a challenge be-
cause the interface must be awake to receive packets and a computer does not always
know when packets will arrive. The Wi-Fi standard includes a Power Saving Polling
mode.

EXERCISES

20.1 Estimate the amount of power required for the Tianhe-2 supercomputer described on
page 376. Hint: start by finding an estimate of the number of watts used by a single pro-
cessor.

20.2 Suppose the frequency of a clock is reduced by 10% and all other parameters remain the
same. How much is the power reduced?

20.3 Suppose the voltage, Vdd , is reduced by 10% and all other parameters remain the same.
How much is the power reduced?

20.4 Use Equation 20.16 to find a break-even value for t.

20.5 Extend the model in Figure 20.1 to a three-state system in which the processor has both
a sleep mode and a deep sleep mode.

www.ebook3000.com

http://www.ebook3000.org

Chapter Contents

21.1 Introduction, 411
21.2 Measuring Computational Power And Performance, 411
21.3 Measures Of Computational Power, 412
21.4 Application Specific Instruction Counts, 413
21.5 Instruction Mix, 414
21.6 Standardized Benchmarks, 415
21.7 I/O And Memory Bottlenecks, 416
21.8 Moving The Boundary Between Hardware And Software, 416
21.9 Choosing Items To Optimize, Amdahl’s Law, 417
21.10 Amdahl’s Law And Parallel Systems, 418
21.11 Summary, 418

www.ebook3000.com

http://www.ebook3000.org

21

Assessing Performance

21.1 Introduction

Earlier parts of the text cover the three fundamental mechanisms that computer ar-
chitects use to construct computer systems: processors, memories, and I/O devices.
They characterize each mechanism, and explain the salient features. Previous chapters
consider two techniques used to increase computational performance: parallelism and
pipelining.

This chapter takes a broader view of performance. It examines how performance
can be measured, and discusses how an architect evaluates an instruction set. More im-
portant, the chapter presents Amdahl’s law, and explains consequences for computer ar-
chitecture.

21.2 Measuring Computational Power And Performance

How can we measure computational power? What makes one computer system
perform better than another? These questions have engendered research in the scientific
community, caused heated debate among representatives from the sales and marketing
departments of commercial computer vendors, and resulted in a variety of answers.

The chief problem that underlies performance assessment arises from the flexibility
of a general-purpose computer system: a computer is designed to perform a variety of
tasks. More important, because optimization involves choosing among alternatives, op-
timizing the architecture for a given task means that the architecture will be less than
optimal for other tasks. Consequently, the performance of a computer system depends
on how the system is used.

411

412 Assessing Performance Chap. 21

We can summarize:

Because a computer is designed to perform a wide variety of tasks
and no architecture is optimal for all tasks, the performance of a sys-
tem depends on the task being performed.

The dependency between performance and the task being performed has two im-
portant consequences. First, it means that many computer vendors can each claim that
they have the most powerful computer. For example, a vendor whose computer per-
forms matrix multiplication at high speed uses matrix multiplication examples when
measuring performance, while a vendor whose computer performs integer operations at
high speed uses integer examples when measuring performance. Both vendors can
claim that their computer performs best. Second, from a scientific point of view, we
can see that no single measure of computer system performance suffices for all cases.
The point is fundamental to understanding performance assessment:

A variety of performance measures exist because no single measure
suffices for all situations.

21.3 Measures Of Computational Power

Recall that early computer systems consisted of a central processor with little or no
I/O capability. As a consequence, early measures of computer performance focused on
the execution speed of the CPU. Even when performance measures are restricted to a
CPU, however, multiple measures apply. The most important distinction arises between
computer systems optimized for:

d Integer computation

d Floating point computation

Because scientific and engineering calculations rely heavily on floating point, ap-
plications that employ floating point are often called scientific applications, and the
resulting computation is known as scientific computation. When assessing how a com-
puter performs on scientific applications, engineers focus entirely on the performance of
floating point operations. They ignore the speed of integer operations, and measure the
speed of floating point operations (specifically, floating point addition, subtraction, mul-
tiplication and division). Of course, addition and subtraction are generally faster than
multiplication and division, and a program contains other instructions (e.g., instructions
to call functions and control iteration). On many computers, however, a floating point
operation takes so much longer than a typical integer instruction that floating point
computation dominates the overall performance of a program.

www.ebook3000.com

http://www.ebook3000.org

Sec. 21.3 Measures Of Computational Power 413

Rather than reporting the time required to perform a floating point operation, en-
gineers report the number of floating point operations that can be performed per unit
time. In particular, the primary measure is given as the average number of floating
point operations the hardware can execute per second (FLOPS).

Of course, floating point speed is only pertinent for scientific computation; the
speed of floating point hardware is irrelevant to programs that use integers. More im-
portant, a measure of FLOPS does not make sense for a RISC processor that does not
offer floating point instructions. Thus, as an alternative to measuring floating point per-
formance, a vendor may choose to exclude floating point and report the average number
of other instructions that a processor can execute per unit time. Typically, such vendors
measure millions of instructions per second (MIPS).

Simplistic measures of performance such as MIPS or FLOPS only provide a rough
estimate of performance. To see why, consider the time required to execute an instruc-
tion. For example, consider a processor on which floating point multiplication or divi-
sion takes twice as long as floating point addition or subtraction. If we assume that an
addition or subtraction instruction takes Q nanoseconds and weight each of the four in-
struction types equally, the average time the computer takes to perform a floating point
instruction, Tavg is:

Tavg =
4

Q + Q + 2 × Q + 2 × Q������������������������ = 1.5 Q ns per instr. (21.1)

However, when the computer performs addition and subtraction, the time required
is only Q nanoseconds per instruction (i.e., 33% less than the average). Similarly, when
performing multiplication or division, the computer requires 2 × Q nanoseconds per in-
struction (i.e., 33% more than the average). In practice, the times required for addition
and division can differ by more than a factor of two, which means that actual perfor-
mance can vary by more than 33%. An exercise considers one possible ratio.

The point is:

Because some instructions take substantially longer to execute than
others, the average time required to execute an instruction only pro-
vides a crude approximation of performance. The actual time re-
quired depends on which instructions are executed.

21.4 Application Specific Instruction Counts

How can we produce a more accurate assessment of performance? One answer lies
in assessing performance for a specific application. For example, suppose we need to
know how a floating point hardware unit will perform when multiplying two N × N ma-
trices. By examining the program, it is possible to derive a set of expressions that give
the number of floating point additions, subtractions, multiplications, and divisions that
will be performed as a function of N. For example, assume that multiplying a pair of

414 Assessing Performance Chap. 21

N × N matrices requires N 3 floating point multiplications and N 3
 − N 2 floating point

additions. If each addition requires Q nanoseconds and each multiplication requires
2 × Q nanoseconds, multiplying two matrices will require a total of:

Ttotal = 2 × Q × N 3
 + Q × (N 3

 − N 2) (21.2)

As an alternative to precise analysis, engineers use a weighted average. That is, in-
stead of calculating the exact number of times each instruction is executed, an approxi-
mate percentage is used. For example, suppose a graphics program is run on many in-
put data sets, the number of floating point operations is counted to obtain the list in Fig-
ure 21.1.

Instruction Type Count Percentage���
Add 8513508 72

Subtract 1537162 13
Multiply 1064188 9
Divide 709458 6

Figure 21.1 Example of instruction counts for a graphics application run on
many input values. The third column shows the relative percen-
tage of each instruction type.

Once a set of instruction counts has been obtained, the performance of hardware
can be assessed by using a weighted average. When the graphics application is run on
the hardware described above, we expect the average time for each floating point in-
struction to be:

Tavg′ = .72 Q + .13 Q + .09 × 2 Q + .06 × 2 Q = 1.16 Q ns per instr. (21.3)

As the example shows, a weighted average can differ significantly from a uniform
average. In this case, the weighted average is 23% less than the average in Equation
21.1 that was obtained using uniform instruction weights†.

21.5 Instruction Mix

Although it provides a more accurate measurement of performance, the weighted
average example above only applies to one specific application and only assesses float-
ing point performance. Can we give a more general assessment? One approach has be-
come popular: use a large set of programs to obtain relative weights for each type of in-
struction, and then use the relative weights to assess the performance of a given archi-
tecture. That is, instead of focusing on floating point, keep a counter for each instruc-
tion type (e.g., integer arithmetic instructions, bit shift instructions, subroutine calls,

��������������������������������
†Equation 21.1 can be found on page 413.

www.ebook3000.com

http://www.ebook3000.org

Sec. 21.5 Instruction Mix 415

conditional branches), and use the counts and relative weights to compute a weighted
average performance.

Of course, the weights depend on the specific programs chosen. Therefore, to be
as accurate as possible, we must choose programs that represent a typical workload.
Architects choose an instruction mix that represents typical programs.

In addition to helping assess performance of a computer, an instruction mix helps
an architect design an efficient instruction set. The architect drafts a tentative instruc-
tion set, assigns an expected cost to each instruction, and uses weights from the instruc-
tion mix to see how the proposed instruction set will perform. In essence, the architect
uses the instruction mix to evaluate how the proposed architecture will perform on typi-
cal programs. If the performance is unsatisfactory, the architect can change the design.

We can summarize:

An instruction mix consists of a set of instructions along with relative
weights that have been obtained by counting instruction execution in a
set of example programs. An architect can use an instruction mix to
assess how a proposed architecture will perform.

21.6 Standardized Benchmarks

What instruction mix should be used to compare the performance of two architec-
tures? To answer the question, we need to know how the computers will be used: the
programs the computers are intended to run, and the type of input the programs will re-
ceive. In essence, we need to find a set of applications that are typical. Engineers and
architects use the term benchmark to refer to such programs — a benchmark provides a
standard workload against which a computer can be measured.

Of course, devising a benchmark is difficult, and the community does not benefit if
each vendor creates a separate benchmark. To solve the problem, an independent not-
for-profit corporation was formed in the 1980s. Named Standard Performance Evalua-
tion Corporation (SPEC), the corporation was created to “establish, maintain and en-
dorse a standardized set of relevant benchmarks that can be applied to the newest gen-
eration of high-performance computers”†. SPEC has devised a series of standard
benchmarks that are used to compare performance. For example, the SPEC cint2006
benchmark is used to evaluate integer performance, and the SPEC cfp2006 benchmark
is used to evaluate floating point performance.

The benchmarks produced by SPEC are primarily used for measurement, not
design. That is, each benchmark consists of a set of programs that are run and meas-
ured. The score that results from running a SPEC benchmark, known as a SPECmark,
is often quoted in the industry as a vendor-independent measure of computer perfor-
mance.

Interestingly, SPEC has produced many benchmarks that each test one aspect of
performance. For example, SPEC offers six separate benchmarks that focus on integer

��������������������������������
†The description is taken from the SPEC bylaws (see http:// www.spec.org).

416 Assessing Performance Chap. 21

arithmetic and another fourteen benchmarks that focus on various aspects of floating
point performance. In addition, SPEC provides benchmarks to assess the power com-
puters consume, performance of a Java environment, and performance of Unix systems
running the Network File System (NFS) for remote file access during software develop-
ment tasks.

21.7 I /O And Memory Bottlenecks

CPU performance only accounts for part of the overall performance of a computer
system. As users of personal computers have realized, a faster CPU or more cores does
not guarantee faster response for all computing tasks. A colleague of the author com-
plains that although CPU power increases by an order of magnitude every ten years, the
time required to launch an application seems to increase.

What prevents a faster CPU from increasing the overall speed? We have already
seen one answer: the Von Neumann bottleneck (i.e., memory access). Recall that the
speed of memory can affect the rate at which instructions can be fetched as well as the
rate at which data can be accessed. Thus, rather than merely measuring CPU perfor-
mance, some benchmarks are designed to measure memory performance. The memory
benchmark consists of a program that repeatedly accesses memory. Some memory
benchmarks are designed to test sequential access (i.e., access to contiguous bytes),
while others are designed to test random access. More important, memory benchmarks
also make repeated references to a memory location to test memory caching.

As the chapters on I/O point out, peripheral devices and the buses over which peri-
pheral devices communicate can also form a bottleneck. Thus, some benchmarks are
designed to test the performance of I/O devices. For example, a benchmark to test a
disk will repeatedly execute write and read operations that each transfer a block of data
to the disk and then read the data back. As with memory, some disk benchmarks focus
on measuring performance when accessing sequential data blocks, and other bench-
marks focus on measuring performance when accessing random blocks.

21.8 Moving The Boundary Between Hardware And Software

One of the fundamental principles that underlies computer performance arises from
the relative speed of hardware and software: hardware (especially hardware designed for
a special purpose) is faster than software. As a consequence, moving a given function
to hardware will result in higher performance than executing the function in software.
In other words, an architect can increase overall performance by adding special-purpose
hardware units.

A corollary arises from an equally important principle: software provides much
more flexibility than hardware. The consequence is that functionality implemented with
hardware cannot be changed. Therefore, an architect can increase overall flexibility and
generality by allowing software to handle more functions. The recent use of FPGAs is

www.ebook3000.com

http://www.ebook3000.org

Sec. 21.8 Moving The Boundary Between Hardware And Software 417

an example of hardware functions moving to software — instead of building a chip with
fixed gates, an FPGA allows functions in the design to be programmed.

The point is that hardware and software represent a tradeoff:

Performance can be increased by moving functionality from software
to hardware; flexibility can be increased by moving functionality from
hardware to software.

21.9 Choosing Items To Optimize, Amdahl’s Law

When an architect needs to increase performance, the architect must choose which
items to optimize. Adding hardware to a design increases cost; special-purpose, high-
speed hardware is especially expensive. Therefore, an architect cannot merely specify
that arbitrary amounts of high-speed hardware be used. Instead, a careful choice must
be made to select functions that will be optimized with high-speed hardware and func-
tions that will be handled with conventional hardware.

How should the choice be made? A computer architect, Gene Amdahl, observed
that it is a waste of resources to optimize functions that are seldom used. For example,
consider the hardware used to handle division by zero or the circuitry used to power
down a computer system. There is little point in optimizing such hardware because it is
seldom used.

Amdahl suggested that the greatest gains in performance are made by optimizing
functions that account for the most time. His principle, which is known as Amdahl’s
law, focuses on operations that each require extensive computation or operations that
are performed most frequently. Usually, the principle is stated in a form that refers to
the potential for speedup:

Amdahl’s Law: the performance improvement that can be realized
from faster hardware technology is limited to the fraction of time the
faster technology can be used.

Amdahl’s law can be expressed quantitatively by giving the overall speedup in
terms of the fraction of time-enhanced hardware is used and the speedup that the
enhancement delivers. Equation 21.4 gives the overall speedup:

Speedupoverall =
1 − Fractionenhanced +

Speedupenhanced

Fractionenhanced��������������
1��������������������������������� (21.4)

The equation works for two extremes. If the enhanced hardware is never used (i.e.,
the fraction is 0), there is no speedup, and Equation 21.4 results in a ratio of 1. If the
enhanced hardware is used 100% of the time (i.e., the fraction is 1), the overall speedup

418 Assessing Performance Chap. 21

equals the speedup of the enhanced hardware. At fractional values between 0 and 1, the
overall speedup is weighted according to how much the enhanced hardware is used.

21.10 Amdahl’s Law And Parallel Systems

Chapter 18 discusses parallel architectures, and explains that performance has been
disappointing. In particular, overhead from communication among processors and con-
tention for shared resources such as memory and I/O buses limit the effective speed of
the system. As a result, parallel systems that contain N processors do not achieve N
times the performance of a single processor.

Interestingly, Amdahl’s Law applies directly to parallel systems and explains why
adding more processors does not help. The speedup that can be achieved by optimizing
the processing power (i.e., adding additional processors) is limited to the amount of
time the processors are being used. Because a parallel system spends most of the time
waiting for communication or bus access rather than using the processors, adding addi-
tional processors does not produce a significant increase in performance.

21.11 Summary

A variety of performance measures exist. Simplistic measures of processor perfor-
mance include the average number of floating point operations a computer can perform
per second (FLOPS) or the average number of instructions the computer can execute per
second (MIPS). More sophisticated measures use a weighted average in which an in-
struction that is used more often is weighted more heavily. Weights can be derived by
counting the instructions in a program or a set of programs; such weights are specific to
the application(s) used. We say that weights, which are useful in assessing an instruc-
tion set, correspond to an instruction mix.

A benchmark refers to a standardized program or set of programs used to assess
performance; each benchmark is chosen to represent a typical computation. Some of
the best-known benchmarks have been produced by the SPEC Corporation, and are
known as SPECmarks. In addition to measuring performance of various aspects of in-
teger and floating point performance, SPEC benchmarks are available to measure such
mechanisms as remote file access.

Amdahl’s Law helps architects select functions to be optimized (e.g., moved from
software to hardware or moved from conventional hardware to high-speed hardware).
The law states that functions to be optimized should account for the most time.
Amdahl’s Law explains why parallel computer systems do not always benefit from a
large number of processors.

www.ebook3000.com

http://www.ebook3000.org

Exercises 419

EXERCISES

21.1 Write a C program that measures the performance of integer addition and subtraction
operators. Perform at least 10,000 operations and calculate the average time per opera-
tion.

21.2 Write a computer program that measures the difference in execution times between in-
teger addition and integer division. Execute each operation 100,000 times, and compare
the difference in running times. Repeat the experiment, and verify that no other activi-
ties on the computer interfere with the measurement.

21.3 Extend the measurement in the previous exercise to compare the performance of
sixteen-bit, thirty-two-bit, and (if your computer supports it) sixty-four-bit integer addi-
tion. That is, use short, int, long, or long long variables as needed. Explain the results.

21.4 Computer professionals commonly use addition, subtraction, multiplication, and division
as ways to measure performance of a processor. However, many programs also use logi-
cal operations, such as logical and, logical or, bit complement, right shift, left shift, and
so on. Measure such operations, and compare the performance to integer addition.

21.5 If floating point addition and subtraction each take Q microseconds and floating point
multiplication and division each take 3Q microseconds, what is the average time re-
quired for all four operations?

21.6 Extend the previous exercise and compute the percentage difference between the time for
addition and the average time, and the percentage difference between the time for multi-
plication and the average time.

21.7 In the previous problem, repeat the measurement with compiler optimization enabled and
determine the relative speedup.

21.8 Write a program that compares the average time required to perform integer arithmetic
operations and the average time required to reference memory. Calculate the ratio of
memory cost to integer arithmetic cost.

21.9 Write a program that compares the average times required to perform floating point
operations and integer operations. For example, compare the average time required to
perform 10,000 floating point additions and the average time required to perform 10,000
integer additions.

21.10 A programmer decides to measure the performance of a memory system. The program-
mer finds that according to the DRAM chip manufacturer, the time needed to access an
integer in the physical memory is 80 nanoseconds. The programmer writes an assembly
language program that stores a value into a memory location four billion times, measures
the time taken, and computes the average performance. Surprisingly, it only takes an
average of 52 nanoseconds per store operation. How is such a result possible?

21.11 Turn the previous exercise around, and state why accurate measurement of a physical
memory is difficult.

21.12 A hashing function places values in random loctions in an array called a hash table. A
programmer finds that even when memory caching is turned off, storing and then look-
ing up 50,000 values in an extremely large hash table (16 megabytes) has worse perfor-
mance than using the same data in a smaller hash table (16 kilobytes). Explain why.

www.ebook3000.com

http://www.ebook3000.org

Chapter Contents

22.1 Introduction, 423
22.2 Architectural Levels, 423
22.3 System-level Architecture: A Personal Computer, 424
22.4 Bus Interconnection And Bridging, 425
22.5 Controller Chips And Physical Architecture, 426
22.6 Virtual Buses, 426
22.7 Connection Speeds, 428
22.8 Bridging Functionality And Virtual Buses, 429
22.9 Board-level Architecture, 430
22.10 Chip-level Architecture, 431
22.11 Structure Of Functional Units On A Chip, 432
22.12 Summary, 432

www.ebook3000.com

http://www.ebook3000.org

22

Architecture Examples And
Hierarchy

22.1 Introduction

Earlier chapters explain the concepts and terminology that are essential to an
understanding of computer architecture. The chapters discuss the fundamental aspects
of processors, memory, and I/O, and explain the role of each. Previous chapters dis-
cuss how parallelism and pipelining are used to improve performance.

This chapter considers a few architecture examples. Instead of introducing new
ideas, the chapter shows how the ideas in previous chapters can be used to describe and
explain various aspects of digital systems. The examples have been chosen to show a
range of possibilities.

22.2 Architectural Levels

Recall from earlier chapters that architecture can be presented at multiple levels of
abstraction. To help us appreciate how broadly architectural concepts apply to digital
systems, we will explore a hierarchy of architectural specifications. The hierarchy
ranges in size from a complete computer system to a small functional unit on a single
integrated circuit. We use the terms system-level architecture (sometimes called ma-
croscopic architecture), board-level architecture, and chip-level architecture (some-
times called microscopic architecture) to characterize the range. For each level, we will
see that the concepts from earlier chapters allow us to understand both the basic com-
ponents and their interconnection. Furthermore, we will see that at a given level, it is

423

424 Architecture Examples And Hierarchy Chap. 22

Level Description��
System A complete computer with processor(s), memory, and

I/O devices. A typical system architecture describes
the interconnection of components with buses.

Board An individual circuit board that forms part of a computer
system. A typical board architecture describes the
interconnection of chips and the interface to a bus.

Chip An individual integrated circuit that is used on a
circuit board. A typical chip architecture describes
the interconnection of functional units and gates.

Figure 22.1 Conceptual levels of architecture and the purpose of each.

possible to specify a logical (i.e., conceptual) architecture or to specify a more detailed
implementation. Figure 22.1 summarizes the levels we will consider.

22.3 System-level Architecture: A Personal Computer

Conceptually, a personal computer consists of a processor, memory, and a set of
I/O devices that all attach to a single bus. In practice, however, even a personal com-
puter contains a complex assortment of buses and interconnection mechanisms that are
each designed to fill a specific role.

Some of the variety and complexity in underlying hardware arises from special
performance requirements and cost. For example, a video card needs much higher data
throughput than a floppy disk, and a high-resolution screen requires more throughput
than a low-resolution screen. Unfortunately, the hardware that interconnects a device to
a high-speed bus costs significantly more than the hardware that interconnects a device
to a low-speed bus, which means that using multiple buses can lower the overall cost of
the system.

A second motivation for multiple I/O buses arises from a vendor’s desire to pro-
vide a low-cost migration path to newer, more powerful systems. That is, a vendor
strives to create a processor that offers the advantages of higher performance and more
capabilities, while simultaneously retaining the ability to use existing peripheral devices.
We use the term backward compatibility to characterize the ability to use existing
pieces of hardware.

Backward compatibility is especially important for bus architectures because a bus
forms the interconnection between an I/O device and a processor. How can a computer
vendor devise a new, higher-speed bus while still retaining the ability to attach older
peripheral devices? One possibility consists of creating a processor with multiple bus
interfaces. A much less expensive answer lies in the use of bridging.

www.ebook3000.com

http://www.ebook3000.org

Sec. 22.4 Bus Interconnection And Bridging 425

22.4 Bus Interconnection And Bridging

The use of bridging for backward compatibility is easy to understand through a
historical example. At one point in history, all personal computers used an Industry
Standard Architecture (ISA) bus that was developed by IBM Corporation. Peripheral
devices for PCs were designed with an interface for the ISA bus. Later, a higher-speed
bus architecture was developed: a Peripheral Component Interconnect (PCI) bus. The
two standards for PC buses are incompatible — an interface that plugs into an ISA bus
cannot be connected to a PCI bus. Thus, if a user owns ISA devices, the user is less
likely to purchase a computer that only accepts PCI devices.

To entice computer owners to upgrade their computers to a computer with a PCI
bus, vendors created a bridge to interconnect the new PCI bus and the older ISA bus.
Logically, the bridge provides the interconnection that Figure 22.2 illustrates.

PCI bus

CPU
. . .

bridge

ISA bus

. . .

memory

devices with PCI interfaces

devices with ISA interfaces

Figure 22.2 Conceptual view of a PC architecture that uses a bridge to inter-
connect an ISA bus and a PCI bus. The bridge makes it possi-
ble to use older ISA devices with a newer processor.

In the figure, the CPU and any I/O devices that have a PCI interface connect
directly to a PCI bus. The bridge provides a connection to an ISA bus that is used by
I/O devices that have an ISA interface. In the best case, the interconnection provided
by a bridge is transparent. That is, each side uses a local bus protocol to communicate
without knowing about the interconnection — the CPU addresses ISA devices as if they
are connected to the PCI bus, and an ISA device responds as if the CPU is connected to
the ISA bus.

426 Architecture Examples And Hierarchy Chap. 22

22.5 Controller Chips And Physical Architecture

Although the architecture illustrated in Figure 22.2 provides a conceptual explana-
tion of a PC architecture, an implementation is much more complex than the figure in-
dicates. First, although a PC provides slots that external devices use to connect to each
bus, the PC does not use the same technology internally. Instead, a PC usually contains
two special-purpose controller chips that provide all the bus and memory interconnec-
tions. Second, controller chips are configured to give the illusion of multiple buses.

To understand the need for controller chips, consider the functionality required in a
PC. An architect needs to connect the processor, memory, and I/O bus (or buses). In
addition to providing electrically compatible interconnections, the architect must design
a mechanism that allows one component to communicate with another. For example,
both the CPU and I/O devices need to access memory.

Unfortunately, replicating hardware interfaces is expensive. In particular, an archi-
tect cannot afford to build a system in which each component has multiple interface
units that each handle communication with one other component. For example,
although the processor and most I/O devices need to access memory, the cost prohibits
an architect from providing a memory interface for each device.

To save effort and expense, architects often adopt the approach of using a central-
ized controller chip. A controller chip contains a set of K hardware interfaces, one for
each type of hardware, and forwards requests among them. When a hardware unit
needs to access another hardware unit, the request always goes to the controller. The
controller translates each incoming request into the appropriate form, and then forwards
the request to the destination hardware unit. Similarly, the controller translates each re-
ply.

The key idea is:

Architects use a controller chip to provide interconnection among
components in a computer because doing so is less expensive than
equipping each unit with a set of interfaces or building a set of
discrete bridges to interconnect buses.

22.6 Virtual Buses

A controller chip introduces an interesting possibility. Because a bus is used to
communicate, we expect two or more devices to be attached to each bus (e.g., a proces-
sor and a disk). In a computer that uses a controller chip, however, it is reasonable to
create a bus that contains exactly one connected device. For example, if only one de-
vice needs an ISA bus and all others use a PCI bus, a controller chip can be created that
uses the ISA protocol to communicate with the ISA device and uses the PCI protocol to
communicate with other devices. Even if the controller chip uses the ISA protocol to

www.ebook3000.com

http://www.ebook3000.org

Sec. 22.6 Virtual Buses 427

communicate with the ISA device, the computer will not need slots for ISA devices and
will not have a physical ISA bus in the usual sense. That is:

A controller chip can provide the illusion of a bus over a direct con-
nection; there is no need for the physical sockets and wiring that is
normally used with a bus.

The concept of a controller chip that can provide the illusion of a bus over a direct
connection allows architects to generalize the notion of a bus. Instead of separate phy-
sical entities with parallel wires, a silicon chip can be used to create the appearance of a
bus. We use the term virtual bus to describe the technology. For example, a controller
can be created that presents the illusion of one virtual bus per attached device. As an
alternative, a controller can be created that combines one or more virtual buses with
connections to one or more physical buses. Later sections show examples.

Typically, PC architectures use two controller chips instead of one. The controllers
are known informally as the Northbridge and Southbridge chips; the Northbridge is
sometimes called a system controller. The Northbridge connects high-speed com-
ponents, such as the CPU, memories, streaming communications controllers, and an Ad-
vanced Graphics Port (AGP) interface that is used to operate a high-speed graphics
display. The Southbridge, which attaches to the Northbridge, provides connectivity for
lower-speed components, such as a PCI bus, a Wi-Fi network interface†, an audio de-
vice, keyboard, mouse, and similar devices. Figure 22.3 illustrates the physical inter-
connections in a PC architecture that uses two controller chips.

As the figure shows, a controller chip must accommodate heterogeneity because a
controller can connect to multiple bus technologies. In the figure, for example, the
Southbridge provides connections for a PCI bus, a USB bus, and an ISA bus. Of
course, the controller must follow the rules for each bus. That is, the controller must
adhere to the electrical specifications, ensure that all addresses lie within the bus ad-
dress space, and obey the protocol that defines how devices access and use the bus.

Vendors who manufacture CPUs usually offer a set of controller chips that are
designed to interconnect a CPU with standard buses. For example, Intel Corporation
offers an 82865PE chip that provides the functionality of a Northbridge and an ICH5
chip that provides the functionality of a Southbridge. More important, the Intel proces-
sor chip and Intel controller chips are designed to work together: each chip contains an
interface that allows the chips to be directly interconnected, and each chip performs the
translation necessary to connect heterogeneous devices.

��������������������������������
†Networks that operate at gigabit speeds connect to the Northbridge.

428 Architecture Examples And Hierarchy Chap. 22

Northbridge

Southbridge

QDR
SDRAM

QDR
SDRAM

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

dual-ported
memory

AGP
port

stream
port

CISC
CPU
(x86)

P
C
I

U
S
B

6-chan.
audio

Wi-Fi
interface

ISA bus

proprietary hub connectioncontroller

controller

Figure 22.3 Example of a system-level architecture that shows the physical
interconnections in a PC that uses two controller chips. Com-
ponents that require the highest speeds attach to the Northbridge
controller.

22.7 Connection Speeds

The connections illustrated in Figure 22.3 typically use a parallel hardware inter-
face that has a fixed width and is engineered to operate at a fixed clock rate to deliver a
specified throughput. Figure 22.4 lists typical values for the clock rate, width, and
throughput of major connections.

www.ebook3000.com

http://www.ebook3000.org

Sec. 22.7 Connection Speeds 429

Connection Clock Rate Width Throughput†��
USB 1.0 33 MHz 32 bits 1.5 MB/s

FCC broadband – – 3.1 MB/s
AGP 100–200 MHz 64–128 bits 2.0 GB/s

USB 3.0 up to 500 MHz 32 bits 5.0 GB/s
Memory 200–800 MHz 64–128 bits 6.4 GB/s
PCI 3.0 33 MHz 32 bits 126.0 GB/s

Registers 1000–2000 MHz 64–128 bits 672.0 GB/s

Figure 22.4 Example clock rates, data widths, and throughput for connec-
tions in the architecture that Figure 22.3 illustrates.

For comparison purposes, the figure includes the FCC’s definition of an Internet
connection (25 megabits per second downstream, which is 3.1 megabytes per second)
and a register file in a modern processor. Note that transfers in a computer can occur
much faster than a broadband Internet connection, and the sustained throughput to regis-
ters dwarfs all other throughputs listed in the figure.

22.8 Bridging Functionality And Virtual Buses

As the names Northbridge and Southbridge imply, the two controllers provide
bridging functionality. For example, the Northbridge chip bridges memory, high-speed
devices, and the Southbridge chip. The Northbridge presents the CPU with a single,
unified address space that includes all of the above. Similarly, the Southbridge com-
bines the PCI bus, ISA bus, and USB bus into a single, unified address space, which be-
comes part of the address space that the Northbridge presents to the processor.

Interestingly, a set of controllers does not need to bridge all devices into a single
address space. Instead, the controller can present the CPU with the illusion of multiple
virtual buses. For example, a controller might allow the CPU to access two separate
PCI buses: bus number zero contains the CPU and memory, while bus number one con-
tains I/O devices. As an alternative, a controller might present the illusion of three vir-
tual buses: one that contains the CPU and memory, another that contains a high-speed
graphics device, and a third that corresponds to the external PCI slots for arbitrary de-
vices. Although it is not particularly interesting to a programmer, the separation is cru-
cial to a hardware designer interested in performance because the controller chip can
contain parallel circuitry that allows all virtual buses to operate at the same time.

��������������������������������
†Throughput is reported in Megabytes per second (MB/s) and Gigabytes per second (GB/s), where the

uppercase B emphasizes bytes instead of bits.

430 Architecture Examples And Hierarchy Chap. 22

22.9 Board-level Architecture

The architecture in Figure 22.3 includes a Wi-Fi interface as one of the units in a
personal computer. The role of the interface is straightforward: provide the physical
connection between the PC and the Wi-Fi radio, and transfer data that the PC sends
over the network as well as data that arrives over the network. Physically, a Wi-Fi in-
terface can be integrated onto the motherboard in a laptop or reside on a circuit board in
a desktop system. In either case, the logical interconnection remains the same.

A network interface card contains a surprising amount of computational power. In
particular, an interface usually contains an embedded processor, instructions in ROM, a
buffer memory, an external host interface (e.g., a PCI bus interface), and a connection
to the radio transmitter and receiver. Some interface cards use a conventional RISC
processor; others use a specialized network processor that is optimized for handling net-
work packets. Figure 22.5 illustrates a possible architecture for a LAN interface that
uses a network processor.

network
processor

SRAM

SDRAM

SDRAM
bus

SRAM
bus

host interface

network interface

Figure 22.5 Example architecture of a network interface card used for a Wi-
Fi device.

www.ebook3000.com

http://www.ebook3000.org

Sec. 22.9 Board-level Architecture 431

Why might a Wi-Fi interface need two types of memory? The primary motivation
is cost: although it is faster, SRAM costs more than SDRAM. Thus, a large SDRAM
can be used to hold packets, and a small SRAM can be used for values that must be ac-
cessed or updated frequently (e.g., instructions for the network processor to execute). In
this particular example, the two memory connections are chosen because the network
processor described in the next section uses both SRAM and SDRAM.

22.10 Chip-level Architecture

We said that a chip-level architecture describes the internal structure of a single in-
tegrated circuit. As an example, consider the network processor in the board-level ar-
chitecture illustrated in Figure 22.5; the figure uses a rectangle to depict a network pro-
cessor. If we move to a chip-level architecture, we can examine the internal structure of
the chip. Figure 22.6 shows the chip-level architecture of a Netronome network proces-
sor†.

SDRAM
access

SRAM
access

onboard
scratch
memory

Embedded
RISC

processor
(XScale)

Microengine 1

Microengine 2

Microengine 3

Microengine 4

Microengine 5

Microengine N

...

PCI bus
access unit

media
access unit

serial
line

multiple,
independent

internal
buses

Figure 22.6 Example of a chip-level architecture that shows the major inter-
nal components of a Netronome network processor. Access
units provide connections outside the chip.

��������������������������������
†Intel Corporation designed the network processor, and later sold the design to Netronome.

432 Architecture Examples And Hierarchy Chap. 22

It is important to remember that the entire figure refers to a single integrated cir-
cuit. As the figure shows, the network processor chip contains many items, including
various external interfaces, an onboard scratch memory that provides high-speed
storage, and multiple, independent processors. In particular, the chip contains a set of
programmable RISC processors, known as microengines†, that operate in parallel as
well as an XScale RISC processor. The XScale provides a general-purpose processor
that manages other processors and provides a management interface. When the network
processor operates, the XScale runs a conventional operating system, such as Linux. To
indicate that processors are part of an integrated circuit, we say they are embedded.

Details of the network processor and each of its processors are irrelevant. The im-
portant point is to understand that more detail is revealed at each architectural level. In
this case, we have seen that although a single integrated circuit can contain many func-
tional units, the structure of the circuit is only revealed in a chip-level diagram; the chip
structure remains hidden in a board-level diagram. We can summarize:

Each level of an architecture reveals details that are hidden by higher
levels. A chip-level architecture specifies the internal structure of an
integrated circuit that is hidden in a board-level architecture.

22.11 Structure Of Functional Units On A Chip

As a final example of architectural levels, we will examine how it is possible to
describe the architecture of one component on a chip. Figure 22.7 shows the SRAM ac-
cess unit from Figure 22.6. The internal structure of the memory access unit is quite
complex.

22.12 Summary

The architecture of a digital system can be viewed at several levels of abstraction.
A system-level architecture shows the structure of an entire computer system, a board-
level architecture shows the structure of each board, and a chip-level architecture shows
the internal structure of an integrated circuit. At each successive level, details are re-
vealed that remain hidden in previous levels.

As an example, the chapter presents a hierarchy of architectures that shows the
structure of a personal computer, a Wi-Fi network interface board in the computer, and
a network processor on the interface board. Finally, we saw that a chip-level architec-
ture can be further refined by looking at the architecture of each embedded unit.

��������������������������������
†A more advanced version of the chip provides sixteen microengines.

www.ebook3000.com

http://www.ebook3000.org

Sec. 22.12 Summary 433

SRAM access unit

SRAM
pin

inter-
face

SRAM

AMBA
bus

inter-
face

service priority
arbitration

microengine addr.
& command queues

AMBA addr.
queuescommand

decoder
& addr.

generator

memory
& FIFO

addr

microengine data

data

AMBA

from
XScale

Microengine
commands

clock

signals

address

data

Figure 22.7 The internal structure of the SRAM access unit that remains hid-
den in Figure 22.6. Each successive level in the architectural
hierarchy reveals further details and structure.

EXERCISES

22.1 If an engineer is offered a job as a system architect, what will the job entail?

22.2 What is the motivation for a computer that offers two buses?

22.3 A computer with a USB port contains hardware known as a USB hub that usually con-
nects the external ports to a PCI bus. Modify the diagram in Figure 22.2 to show a USB
hub.

22.4 If a computer contains two buses connected by a transparent bridge, and the memory
connects to one bus while the devices connect to the other, will the devices be able to
communicate with memory? Explain.

22.5 What is the purpose of a controller chip in modern bus architectures?

22.6 A computer has one device that uses an old bus, but does not have the normal sockets or
wires for the bus. How is such a situation possible?

22.7 In a PC, would a super high-speed video system connect to the Northbridge chip or the
Southbridge chip? Explain.

22.8 If it takes 40 seconds to transfer a video over a USB 3.0 port, approximately how long
will it take to transfer the same video over a Wi-Fi network that operates at 20 megabits
per second?

434 Architecture Examples And Hierarchy Chap. 22

22.9 A network processor, such as the one shown in Figure 22.6, is classified as a System on
Chip (SoC). Explain why.

22.10 In many hardware design documents, rectangular boxes are used to represent a subsys-
tem. Can one tell by looking at the diagram approximately how many gates will be
needed to implement the function the box represents? Explain.

www.ebook3000.com

http://www.ebook3000.org

Chapter Contents

23.1 Introduction, 437
23.2 Motivations For Modularity, 437
23.3 Software Modularity, 438
23.4 Parameterized Invocation Of Subprograms, 438
23.5 Hardware Scaling And Parallelism, 439
23.6 Basic Block Replication, 439
23.7 An Example Design (Rebooter), 439
23.8 High-level Rebooter Design, 440
23.9 A Building Block To Accommodate A Range Of Sizes, 441
23.10 Parallel Interconnection, 441
23.11 An Example Interconnection, 442
23.12 Module Selection, 442
23.13 Summary, 443

www.ebook3000.com

http://www.ebook3000.org

23

Hardware Modularity

23.1 Introduction

Earlier chapters give an overview of hardware architectures without discussing
design or implementation details. This brief chapter considers designs that employ
modularity. In particular, the chapter contrasts hardware modularity with software
modularity, and considers why common programming abstractions do not apply to
hardware. It then uses an example to illustrate how a basic hardware module can be
designed that is flexible, and how replication of a basic module allows a designer to
form a scalable hardware design.

23.2 Motivations For Modularity

Modular construction has two motivations: intellectual and economic. From an in-
tellectual perspective, a modular approach allows a designer to break a large complex
problem into smaller pieces. A small piece is easier to understand than the complete
solution. Consequently, it is easier for a designer to ensure that the piece is correct, and
easier for a designer to optimize an individual piece.

The economic motivation for modularity arises from the cost of designing and test-
ing products. In many cases, a company does not produce one isolated product. In-
stead, the company creates a set of related products. One common reason for multiple
products arises from size — a company might sell a set of related products that range in
size from small to large. For example, a company that sells network equipment might
offer four models of a network switch, where the models connect four computers,
twenty-four computers, forty-eight computers, or ninety-six computers. Alternatively, a

437

438 Hardware Modularity Chap. 23

company may offer a series of products that supply the same basic functionality, but
where each product has special features. For example, a company that sells network
equipment may offer one model that connects to a wireless Wi-Fi network and another
model that connects to a wired Ethernet.

Because designing a product is expensive, a company can save money if a basic
module can be designed once and then re-used in multiple products. Further savings
arise because once a basic module has been tested thoroughly, successive designs that
use the module can assume it works correctly.

23.3 Software Modularity

Modularity has played a key role in software design since early computers. The
principal abstraction consists of a subroutine (also called a procedure, subprogram or
function). The early motivation for using subroutines arose from limited memory size
— instead of repeating sections of code at multiple places throughout the program, a
single copy of the code could be placed in memory, and then used (i.e., called) at
several places in the program.

As software became more complex, subprograms became an important tool for
handling complexity. In particular, the use of a subprogram abstraction made it possi-
ble to have an expert build a piece of software that other programmers could use
without understanding the details. For example, an expert who understands numerical
mathematics can create a set of trigonometric functions, such as sin(x) and cos(x), that
are both efficient and accurate. Other programmers can invoke the functions without
writing the code themselves and without needing to understand the algorithms being
used. By raising the level of abstraction and hiding details, subprograms allow pro-
grammers to work at a higher level, meaning that they can be much more productive
and the resulting software will contain fewer errors.

23.4 Parameterized Invocation Of Subprograms

How can a basic building block be used for multiple purposes? The answer for
software is well known. When creating a subprogram, a programmer specifies a set of
formal parameters. Then, when writing code that invokes the subprogram, the pro-
grammer specifies actual arguments that are substituted in place of formal parameters.
The key point is:

When building modularized software, a single copy of each subpro-
gram exists. The only change among invocations consists of the actu-
al arguments supplied when the subprogram is invoked.

www.ebook3000.com

http://www.ebook3000.org

Sec. 23.5 Hardware Scaling And Parallelism 439

23.5 Hardware Scaling And Parallelism

Although it works well with software, the paradigm of parameterized function in-
vocation cannot be used with hardware. The reason is that software can invoke a func-
tion iteratively, but hardware requires separate physical instantiations that can be con-
trolled in parallel. For example, consider controlling a set of N items. In software, the
items can be stored in an array, a function can be written to perform an operation on
one item, and the program can iterate through the array, calling the function for each
element. The program can scale to a larger array merely by changing the bound on the
iteration.

When hardware is created to control a set of items, each item requires some
hardware dedicated to the item. If additional elements are added to the set, additional
hardware must be added to the design. In other words, scaling a hardware design al-
ways requires adding additional pieces of hardware. As a consequence:

When hardware designers think about a modular design, they look for
ways to make it possible to add additional hardware to the design, not
for ways to invoke a given piece of hardware iteratively.

23.6 Basic Block Replication

The fundamental technique used to make it possible to scale hardware consists of
defining a basic building block that can be replicated as needed. We have already seen
trivial examples. For instance, a latch circuit can be replicated N times to form an N-bit
register, and a full adder is replicated N–1 times and combined with a half adder to
build a circuit to compute the sum of two N-bit integers.

In the trivial cases described above, replication involves a small circuit (i.e., a few
gates), and the number of replications is fixed. Although replication of a small circuit
is an important aspect of design, the approach can be applied to significantly larger cir-
cuits and used to scale a design. For example, a chip manufacturer may use a multicore
architecture to produce a series of products that have two cores, four cores, eight cores,
and so on. Replication is especially important in designs where the number of inputs or
outputs visible to a user varies across a series of products.

23.7 An Example Design (Rebooter)

An example will clarify the idea. Rather than choose a hypothetical design, we
will consider a piece of hardware used in the author’s lab. The lab, which is used for
operating system and networking research, has a large set of backend computers that are
available for researchers and students in classes. The lab facilities allow a user to create
an operating system, allocate a backend computer, download the operating system into

440 Hardware Modularity Chap. 23

the backend computer’s memory, and start the computer running. The user then can in-
teract with the backend computer.

Unfortunately, experimental work on operating systems often results in crashes or
leaves the computer hardware in a state that cannot respond to further input. In such
situations, the backend computer must be power-cycled to regain control. Therefore, we
have created a special-purpose hardware system that can power-cycle individual back-
end computers as needed. We call the system a rebooter. Several generations of re-
booter hardware have been used in the lab; we will review one design.

23.8 High-level Rebooter Design

In principle, the rebooter hardware follows a straightforward approach. A rebooter
has a set of outputs that each supply power to a backend computer. The inputs to the
rebooter consist of a binary value that specifies one of the outputs to reboot plus an en-
able input that tells the rebooter to act. To use the rebooter, a binary value is placed on
the input lines (to specify one of the outputs) and the enable input is set to 1, which
causes the rebooter to power-cycle the specified output†. Figure 23.1 illustrates the in-
puts and outputs.

Rebooter Hardware Unit

N-bit binary
input value

power connections for
2N backend computers

enable input

Figure 23.1 The conceptual organization of rebooter hardware.

How many outputs should a rebooter have? The question is important because the
rebooter needs a physical connection for each output. Initially, the lab had only one
backend, but the size evolved quickly to two and then eight. To plan for the future, we
needed a rebooter circuit to accommodate at least 40 backends, and perhaps 100. The
situation illustrates a standard hardware dilemma:

d A design with too few outputs will not accommodate future needs

d A design with too many outputs is wasteful

��������������������������������
†The exact details of how the rebooter circuit is used are irrelevant to the discussion that follows; it is

only important to understand the basics.

www.ebook3000.com

http://www.ebook3000.org

Sec. 23.9 A Building Block To Accommodate A Range Of Sizes 441

23.9 A Building Block To Accommodate A Range Of Sizes

Rather than choose a specific size, we used a modular approach. That is, we chose
a basic building block and devised a way to interconnect basic blocks to form a larger
rebooter. The modular approach allowed us to construct a small rebooter, and then add
additional outputs as needed.

Our basic building block consists of a sixteen-output rebooter as Figure 23.2 illus-
trates.

Rebooter
Building

Block

8-bit binary
input value

power connections for
16 backend computers

enable
input

Figure 23.2 Illustration of the basic building block used for the rebooter.

Look carefully at the figure. The binary input value comprises eight bits, but there
are only sixteen outputs. Thus, only four bits are needed to select one of the outputs.
Why are extra input bits present? They are used to allow multiple copies of the build-
ing block to be combined to form a larger rebooter.

23.10 Parallel Interconnection

Our design uses a parallel approach common to many hardware systems. That is,
the inputs connect to all modules in parallel. Conceptually, each building block passes
a copy of its inputs (including the enable input) on to the next building block. Figure
23.3 illustrates the idea.

Rebooter
Building

Block

8-bit binary
input value

power connections for
16 backend computers

enable
input

copy of all
inputs for
next stage

Figure 23.3 Illustration of a basic building block passing all inputs to the
next stage of the rebooter.

442 Hardware Modularity Chap. 23

23.11 An Example Interconnection

Figure 23.4 illustrates how the building blocks can be connected.

module
responds

to ID 0

module
responds

to ID 1

module
responds

to ID 2

module
responds

to ID 3enable
input

additional modules can be added as needed

8-bit binary
input value

power connections for 64 backend computers

Figure 23.4 An example interconnection of four copies of the basic building
block that provides 64 outputs.

23.12 Module Selection

As Figure 23.4 indicates, the inputs are passed in parallel to all four modules. A
question arises: if the input specifies power-cycling computer number 5, does each
module power-cycle its fifth output? The answer is no. Only the fifth output on
module 1 is affected.

To understand how modules respond to inputs, it is necessary to know that each
module is assigned a unique ID (0, 1, 2, and 3 in our example). A module includes
hardware that checks the four high-order bits of the input to see if they match the as-
signed ID. If the input does not match the ID, the input is ignored. In other words, the
hardware interprets the four high-order bits as a module selection and the four low-order
bits as an output selection.

As an example, Figure 23.5 illustrates how the hardware interprets the input value
5 as module 0 and output 5.

0 0 0 0 0 1 0 1

77 66 55 44 33 22 11 00
input value is

5 in binary

module selection
is 0

output selection
is 5

Figure 23.5 The interpretation of input 5 by the rebooter in Figure 23.4.

www.ebook3000.com

http://www.ebook3000.org

Sec. 23.12 Module Selection 443

As Figure 23.5 shows, input 5 means the four high-order bits contain 0 0 0 0 and
the four low-order bits contain 0 1 0 1. The high order bits match the ID assigned to
module 0, but none of the other modules. Therefore, only module 0 responds to the in-
put.

Using the high-order bits of the input to select a module makes the hardware
extremely efficient. The module selection bits can be passed to a comparator chip
along with the ID of the module. As the name implies, a comparator compares two sets
of inputs, and sets an output line high if the two are equal. Thus, very little additional
hardware is needed to perform module selection.

23.13 Summary

Both hardware and software engineers use modularity. In software, the fundamen-
tal abstraction for modularity is a subprogram. In hardware, the fundamental abstrac-
tion is the replication of a basic building block.

One method used to accommodate a range of hardware sizes consists of structuring
a module (i.e., a building block) to accept a set of N input lines that control a set of 2N

outputs. When building blocks are replicated, each is assigned a unique ID. Additional
input lines are added to the design, which means the high-order bits of the input can be
used to select one of the modules, and the low-order bits can be used to select an output
on the module.

EXERCISES

23.1 In enginnering, what is the relationship between modularity and re-use?

23.2 How does the ability to pass arguments to functions help programmers control the com-
plexity of software?

23.3 When a software engineer and a hardware engineer think about the design of a crypto
system that processes 128-bit integers, they each start with a bias. A software engineer
might imagine an algorithm that iterates through the integer, working on 32 bits at a
time. What will a hardware engineer envision?

23.4 Mathematically, one can have an arbitrary number of outputs from a module and use
arithmetic to extract a module number and an input for the module (e.g., for seven out-
puts per module divide the input value by 7 to get a module number and use the
remainder to select an ouput within the module). However, hardware engineers always
choose to make outputs a power of two. Explain.

23.5 What are the tradeoffs to consider when choosing how many outputs a piece of hardware
should have?

23.6 Suppose a basic building block contains 4 outputs, and a design must scale to 64 outputs.
How many building blocks will be used?

444 Hardware Modularity Chap. 23

23.7 If each building block contains 8 outputs and the input has 16 bits, how many total out-
puts can be controlled, and how many building block chips will be used?

23.8 In the previous exercise, draw a diagram similar to the one in Figure 23.5 that shows
how bits of the input are interpreted.

23.9 Look up comparator chips. How many pairs of inputs does a single comparator have?

23.10 In the previous exercise, suppose a comparator chip can compare K pairs of inputs and a
designer needs to compare 2K pairs. How can multiple chips be used?

www.ebook3000.com

http://www.ebook3000.org

Appendix 1

Lab Exercises For A
Computer Architecture
Course

A1.1 Introduction

This appendix presents a set of lab exercises for an undergraduate computer archi-
tecture course. The labs are designed for students whose primary educational goal is
learning how to build software, not hardware. Consequently, after a few weeks of intro-
duction to digital circuits, the labs shift emphasis to programming.

The facilities required for the lab are minimal: a small amount of hardware is
needed for the early weeks, and access to computers running a version of the Unix
operating system (e.g., Linux) is needed for later labs. A RISC architecture works best
for the assembly language labs because instructors find that CISC architectures absorb
arbitrary amounts of class time on assembly language details.

One lab asks students to write a C program that detects whether an architecture is
big endian or little endian. Few additional resources are needed because most of the
coding and debugging can be performed on one of the two architectures, with only a
trivial amount of time required to port and test the program on the other.

445

446 Lab Exercises For A Computer Architecture Course

A1.2 Hardware Required for Digital Logic Experiments

The hardware labs covered in the first few weeks require each student to have the
following:

d Solderless breadboard

d Wiring kit used with breadboard (22-gauge wire)

d Five-volt power supply

d Light-Emitting Diode (used to measure output)

d NAND and NOR logic gates

None of the hardware is expensive. To handle a class of 70 students, for example,
Purdue University spent less than $1000 on hardware. Smaller classes or sharing in the
lab can reduce the cost further. As an alternative, it is possible to institute a lab fee or
require students to purchase their own copy of the hardware.

A1.3 Solderless Breadboard

A solderless breadboard is used to rapidly construct an electronic circuit without
requiring connections to be soldered. Physically, a breadboard consists of a block of
plastic (typically three inches by seven inches) with an array of small holes covering the
surface.

The holes are arranged in rows with a small gap running down the center and extra
holes around the outside. Each hole on the breadboard is a socket that is just large
enough for a copper wire — when a wire is inserted in the hole, metal contacts in the
socket make electrical contact with the metal wire. The size and spacing of the sockets
on a breadboard are arranged to match the size and spacing of pins on a standard in-
tegrated circuit (technically an IC that uses a standard DIP package), and the gap on the
breadboard matches the spacing across the pins on an IC, which means that one or more
integrated circuits can be plugged into the breadboard. That is, the pins on an IC plug
directly into the holes in the breadboard.

The back of a breadboard contains metal strips that interconnect various sockets.
For example, the sockets on each side of the center in a given row are interconnected.
Figure A1.1 illustrates sockets on a breadboard and the electrical connections among the
sockets.

www.ebook3000.com

http://www.ebook3000.org

Sec. A1.3 Solderless Breadboard 447

(a) (b)

Figure A1.1 (a) Illustration of a breadboard with sockets into which wires
can be inserted, and (b) blue lines showing the electrical con-
nections among the sockets.

A1.4 Using A Solderless Breadboard

To use a breadboard, an experimenter plugs integrated circuits onto the breadboard
along the center, and then uses short wires to make connections among the ICs. A wire
plugged into a hole in a row connects to the corresponding pin on the IC that is plugged
into the row. To make the connections, an experimenter uses a set of pre-cut wires
known as a wiring kit. Each individual wire in the wiring kit has bare ends that plug
into the breadboard, but is otherwise insulated. Thus, many wires can be added to a
breadboard because the insulated area on a wire can rub against the insulation of other
wires without making electrical contact.

Figure A1.2 illustrates part of a breadboard that contains a 7400 IC, with wires
connecting some of the gates on the IC.

448 Lab Exercises For A Computer Architecture Course

7
4
0
0

1

2

3

4

5

6

7 8

9

10

11

12

13

14

(a) (b)

input 1

input 2 input 3

to 0 volts

to 5 volts

output

Figure A1.2 Illustrations of (a) the internal connections on a 7400 chip, and
(b) part of a breadboard with blue lines indicating wires con-
necting a 7400 chip. Using a set of sockets to connect power
and ground wires allows additional connections to be added.

A1.5 Power And Ground Connections

When multiple chips are plugged into a breadboard, each chip must have connec-
tions to power and ground (i.e., five volts and zero volts). To ensure that the power and
ground connections are convenient and to keep the wires short, most experimenters
choose to devote the outer sets of sockets on both sides of the breadboard to power and
ground.

The wires used to connect power and ground are semi-permanent in the sense that
they can be re-used for many experiments. Thus, experimenters often use the color of a
wire to indicate its purpose, and choose colors for power and ground that are not used
for other connections. For example, red wires can be used for all power connections,
black wires can be used for all ground connections, and blue wires can be used for other
connections. Of course, the wires themselves do not differ — the color of the insulation
merely helps a human understand the purpose of the wire. When disassembling a
breadboard after an experiment is finished, the experimenter can leave the power and
ground connections for a later experiment.

A1.6 Building And Testing Circuits

The easiest approach to building a digital circuit consists of constructing the circuit
in stages and testing each stage of the circuit as building proceeds. For example, after
connecting power and ground to a chip, a gate on the chip can be tested to verify that
the chip is working as expected. Similarly, after a particular gate has been connected,

www.ebook3000.com

http://www.ebook3000.org

Sec. A1.6 Building And Testing Circuits 449

the input(s) and output(s) of the gate can be measured to determine whether the connec-
tions are working.

Although it is possible to use a voltmeter to measure the output of a digital circuit,
most experimenters prefer an easy and inexpensive alternative: a Light Emitting Diode
(LED). The idea is to choose an LED that can be powered directly†. The LED glows
when it is connected to logical one (i.e., five volts), and is off when its input wire con-
nects to logical zero (i.e., zero volts). For example, to test the circuit in Figure A1.2, an
LED can be connected to the output (pin 11 of the integrated circuit).

A1.7 Lab Exercises

The next pages contain a series of lab exercises. Although each writeup specifies
the steps to be taken in lab, additional details that pertain to the local environment or
computer system must be supplied by the lab instructor. For example, the first lab asks
students to establish their computer account, including environment variables. Because
the set of directories to be included on the path depend on the local computer system,
the set of actual paths must be supplied for each environment.

��������������������������������
†Warning: the LED must have electrical characteristics that are appropriate for the circuit — an arbitrary

LED can draw so much electrical power that it will cause a 7400-series integrated circuit to burn out.

450 Lab Exercises For A Computer Architecture Course

Lab 1
Introduction And Account Configuration

Purpose

To learn about the lab facilities and set up a computer account for use in the lab
during the semester.

Background Reading And Preparation

Read about the bash shell available with Linux, and find out how to set Linux en-
vironment variables.

Overview

Modify your lab account so your environment will be set automatically when you
log in.

Procedure And Details (checkmark as each is completed)

������ 1. Modify your account startup file (e.g., .profile or .bash_profile) so your
PATH includes directories as specified by your lab instructor.

������ 2. Log out and log in again.

������ 3. Verify that you can reach the files and compilers that your lab instructor
specifies.

www.ebook3000.com

http://www.ebook3000.org

Lab Exercises 451

Lab 2
Digital Logic: Use Of A Breadboard

Purpose

To learn how to wire a basic breadboard and use an LED to test the operation of a
gate.

Background Reading And Preparation

Read Chapter 2 to learn about basic logic gates and circuits, and read the beginning
sections of this Appendix to learn about breadboards. Attend a lecture on how to prop-
erly use the breadboard and related equipment.

Overview

Place a 7400 chip on a breadboard, connect power and ground from a five-volt
power supply, connect the inputs of a gate to the four possible combinations of zero and
one, and use an LED to observe the output.

Procedure And Details (checkmark as each is completed)

������ 1. Obtain a breadboard, power supply, wiring kit, and parts box with the neces-
sary logic gates. Also verify that you have a data sheet that specifies the pins
for a 7400, which is a quad, two-input NAND gate. A copy of the pin di-
agram can also be found in Figure 2.13 of the text, which can be found on
page 22.

������ 2. Place the 7400 on the breadboard as shown in Figure A1.2b on page 448.

������ 3. Connect the two wires from a five-volt power supply to two separate sets of
sockets near the edge of the board.

������ 4. Add a wire jumper that connects pin 14 on the 7400 to five volts.

��������������������������������

452 Lab Exercises For A Computer Architecture Course

������ 5. Add a wire jumper that connects pin 7 on the 7400 to zero volts. NOTE: be
sure not to reverse the connections to the power supply or the chip will be
damaged.

������ 6. Add a wire jumper that connects pin 1 on the 7400 to zero volts.

������ 7. Add a wire jumper that connects pin 2 on the 7400 to zero volts.

������ 8. Connect the LED, from the lab kit, between pin 3 on the 7400 and ground
(zero volts). NOTE: the LED must be connected with the positive lead at-
tached to the 7400.

������ 9. Verify that the LED is lit (it should be lit because both inputs are zero which
means the output should be one).

����� 10. Move the jumper that connects pin 2 from zero volts to five volts, and verify
that the LED remains lit.

����� 11. Move the jumper that connects pin 2 back to zero volts, move the jumper that
connects pin 1 from zero volts to five volts, and verify that the LED remains
lit.

����� 12. Keep the jumper from pin 1 on five volts, move the jumper that connects pin
2 to five volts, and verify that the LED goes out.

Optional Extensions (checkmark as each is completed)

����� 13. Wire the breadboard as shown in Figure A1.2b (pin 3 connected to pin 12,
and pin 13 acting as an additional input).

����� 14. Connect the LED between pin 11 and ground.

����� 15. Record the LED values for all possible combinations of the three inputs.

����� 16. What Boolean function does the circuit represent?

www.ebook3000.com

http://www.ebook3000.org

Lab Exercises 453

Lab 3
Digital Logic: Building An Adder From Gates

Purpose

To learn how basic logic gates can be combined to perform complex tasks such as
binary addition.

Background Reading And Preparation

Read Chapter 2 about basic logic gates and circuits, and read the beginning sec-
tions of this Appendix to learn about breadboards.

Overview

Build a half adder and full adder circuit using only basic logic gates. Combine the
circuits to implement a two-bit binary adder with carry output.

Procedure And Details (checkmark as each is completed)

������ 1. Obtain a breadboard, power supply, wiring kit, and parts box with the neces-
sary logic gates as well as lab writeups that describe both the chip pinouts
and the logic diagram of an adder circuit.

������ 2. Construct a binary half adder as specified in the logic diagram that your lab
instructor provides.

������ 3. Connect the outputs to LEDs, the inputs to switches, and verify that the
results displayed on the LED are the correct values for a one-bit adder.

������ 4. Construct a binary full adder as specified in the logic diagram that your lab
instructor provides.

������ 5. Connect the outputs to LEDs, the inputs to switches, and verify that the
results displayed on the LED are the correct values for a full adder.

454 Lab Exercises For A Computer Architecture Course

������ 6. Chain the half adder circuit to the full adder circuit to make a two-bit adder.
Verify that the circuit correctly adds a pair of two-bit numbers and the carry
out value is correct.

Optional Extensions (checkmark as each is completed)

������ 7. Draw the logic diagram for a three-bit adder.

������ 8. Draw the logic diagram for a four-bit adder.

������ 9. Give a formula for the number of gates required to implement an n-bit adder.

��

Notes

www.ebook3000.com

http://www.ebook3000.org

Lab Exercises 455

Lab 4
Digital Logic: Clocks And Decoding

Purpose

To understand how a clock controls a circuit and allows a series of events to occur.

Background Reading And Preparation

Read Chapter 2 to learn about basic logic gates and clocks. Concentrate on under-
standing how a clock functions.

Overview

Use a switch to simulate a clock, and arrange for the clock to operate a decoder
circuit (informally called a demultiplexor circuit).

Procedure And Details (checkmark as each is completed)

������ 1. Obtain a breadboard, power supply, wiring kit, and parts box with the neces-
sary logic gates as well as lab writeups that describe both the chip pinouts
and the logic diagram of a decoder.

������ 2. Use a switch to simulate a slow clock.

������ 3. To verify that the switch is working, connect the output of the switch to an
LED, and verify that the LED goes on and off as the switch is moved back
and forth.

������ 4. Connect the simulated clock to the input of a four-bit binary counter (a 7493
chip).

������ 5. Use an LED to verify that each time the switch is moved through one cycle,
the outputs of the counter move to the next binary value (modulo four).

������ 6. Connect the four outputs from the binary counter to the inputs of a decoder
chip (a 74154).

456 Lab Exercises For A Computer Architecture Course

������ 7. Use an LED to verify that as the switch moves through one cycle, exactly one
output of the decoder becomes active. Warning: the 74154 is counterintuitive
because the active output is low (logical zero) and all other outputs are high
(logical one).

Optional Extensions (checkmark as each is completed)

������ 8. Use a 555 timer chip to construct a 1-Hz clock, and verify that the clock is
working.

������ 9. Replace the switch with the clock circuit.

����� 10. Use multiple LEDs to verify that the decoder continually cycles through each
output.

��

Notes

www.ebook3000.com

http://www.ebook3000.org

Lab Exercises 457

Lab 5
Representation: Testing Big Endian Vs. Little Endian

Purpose

To learn how the integer representation used by the underlying hardware affects
programming and data layout.

Background Reading And Preparation

Read Chapter 3 to learn about big endian and little endian integer representations
and the size of an integer.

Overview

Write a C program that examines data stored in memory to determine whether a
computer uses big endian or little endian integer representation.

Procedure And Details (checkmark as each is completed)

������ 1. Write a C program that creates an array of bytes in memory, fills the array
with zero, and then stores integer 0x04030201 in the middle of the array.

������ 2. Examine the bytes in the array to determine whether the integer is stored in
big endian or little endian order.

������ 3. Compile and run the program (without changes to the source code) on both a
big endian and little endian computer, and verify that it correctly announces
the integer type.

������ 4. Add code to the program to determine the integer size (hint: start with integer
1 and shift left until the value is zero).

������ 5. Compile and run the program (without changes to the source code) on both a
thirty-two bit and a sixty-four bit computer, and verify the program correctly
announces the integer size.

458 Lab Exercises For A Computer Architecture Course

Optional Extensions (checkmark as each is completed)

������ 6. Find an alternate method of determining the integer size.

������ 7. Implement the alternate method to determine integer size, and verify that the
program works correctly.

������ 8. Extend the program to announce the integer format (i.e., one’s complement or
two’s complement).

��

Notes

www.ebook3000.com

http://www.ebook3000.org

Lab Exercises 459

Lab 6
Representation: A Hex Dump Function In C

Purpose

To learn how values in memory can be presented in hexadecimal form.

Background Reading And Preparation

Read Chapter 3 on data representation, and find both the integer and address sizes
for the computer you use†. Ask the lab instructor for an exact specification for the out-
put format.

Overview

Write a C function that produces a hexadecimal dump of memory in ASCII. The
lab instructor will give details about the format for a particular computer, but the gen-
eral form is as follows:

AAddddrreessss WWoorrddss IInn HHeexxaaddeecciimmaall AASSCCIIII cchhaarraacctteerrss
------------------ ---------------- ---------------- ---------------- ---------------- --------------------------------
aaaaaaaaaaaaaaaa xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx cccccccccccccccccccccccccccccccc

In the example, each line corresponds to a set of memory locations. The string
aaaaaaaa denotes the starting memory address (in hexadecimal) for values on the line,
xxxxxxxx denotes the value of a word in memory (also in hexadecimal), and
cccccccccccccccc denotes the same memory locations when interpreted as ASCII char-
acters. Note: the ASCII output only displays printable characters; all other characters
are displayed as blanks.

Procedure And Details (checkmark as each is completed)

������ 1. Create a function, mdump that takes two arguments that each specify an ad-
dress in memory. The first argument specifies the address where the dump
should start, and the second argument specifies the highest address that needs
to be included in the dump. Test to ensure that the starting address is less
than the ending address.

��������������������������������
†On most computers, the address size equals the integer size.

460 Lab Exercises For A Computer Architecture Course

������ 2. Modify each of the arguments so they specify an appropriate word address
(i.e., an exact multiple of four bytes). For the starting address, round down
to the nearest word address; for the ending address, round up.

������ 3. Test the function to verify that the addresses are rounded correctly.

������ 4. Add code that uses printf to produce headings for the hexadecimal dump, and
verify that the headings are correct.

������ 5. Add code that iterates through the addresses and produces lines of hexadeci-
mal values.

������ 6. To verify that function mdump outputs correct values, declare a struct in
memory, place values in the fields, and invoke the mdump function to dump
items in the struct.

������ 7. Add code that produces printable ASCII character values for each of the
memory locations, as shown above.

������ 8. Verify that only printable characters are included in the output (i.e., verify
that a non-printable character such as 0x01 is mapped into a blank).

Optional Extensions (checkmark as each is completed)

������ 9. Extend mdump to start and stop on a byte address (i.e., omit leading values
on the first line of output and trailing values on the last line).

����� 10. Modify mdump so that instead of printing bytes in ASCII, it displays the
values of words in decimal.

����� 11. Modify mdump so that instead of printing ASCII values, the function assumes
the memory corresponds to machine instructions and gives mnemonic op-
codes for each instruction. For example, if the first word on the line
corresponds to a load instruction, print load.

����� 12. Add an argument to function mdump that selects from among the various
forms of output (ASCII characters, decimal, or instructions).

www.ebook3000.com

http://www.ebook3000.org

Lab Exercises 461

Lab 7
Processors: Learn A RISC Assembly Language

Purpose

To gain first-hand experience with an assembly language and understand the one-
to-one mapping between assembly language instructions and machine instructions.

Background Reading And Preparation

Read Chapters 5, 7, and 9 to learn the concepts of instruction sets and operand
types. Read about the specific instruction set available on your local computer. Con-
sult the assembler reference manual to learn the syntax conventions needed for the as-
sembler. Also read the assembler reference manual to determine the conventions used
to call an external function.

Overview

Write an assembly language program that shifts an integer value to the right and
then calls a C function to display the resulting value in hexadecimal.

Procedure And Details (checkmark as each is completed)

������ 1. Write a C function, int_out, that takes an integer argument and uses printf to
display the argument value in hexadecimal.

������ 2. Test the function to ensure it works correctly.

������ 3. Write an assembly language program that places the integer 4 in a register
and shifts the contents of the register right one bit.

������ 4. Extend the program to pass the result of the previous step as an argument to
external function int_out.

������ 5. Verify that the program produces 0x2 as the output.

462 Lab Exercises For A Computer Architecture Course

������ 6. Load integer 0xBD5A into a register and print the result to verify that sign
extension works correctly.

������ 7. Instead of shifting the integer 4 right one bit, load 0xBD5B7DDE into a 32-
bit register, shift right one bit, and verify that the output is correct.

Optional Extensions (checkmark as each is completed)

������ 8. Rewrite the external function int_out and the assembly language program to
pass multiple arguments.

��

Notes

www.ebook3000.com

http://www.ebook3000.org

Lab Exercises 463

Lab 8
Processors: Function That Can Be Called From C

Purpose

To learn how to write an assembly language function that can be called from a C
program.

Background Reading And Preparation

Read Chapter 9 to learn about the concept of subroutine calls in assembly
languages, and read the C and assembler reference manuals to determine the conven-
tions that C uses to call a function on your local computer.

Overview

Write an assembly language function that can be called from a C program to per-
form the exclusive or of two integer values.

Procedure And Details (checkmark as each is completed)

������ 1. Write a C function xor that takes two integer arguments and returns the
exclusive-or of the arguments.

������ 2. Write a C main program that calls the xor function with two integer argu-
ments and displays the result of the function.

������ 3. Write axor, an assembly language version of the C xor function that behaves
exactly like the C version. (Do not merely ask the C compiler to generate an
assembly file; write the new version from scratch.)

������ 4. Add a printf call to the axor function and use it to verify that the function
correctly receives the two values that the C program passes as arguments
(i.e., argument passing works correctly).

464 Lab Exercises For A Computer Architecture Course

������ 5. Arrange for the C main program to test axor to verify that the code returns
correct results for a reasonable range of inputs. Hint: generate values ran-
domly.

Optional Extensions (checkmark as each is completed)

������ 6. Modify the C program and the axor function so that the C program passes a
single structure as an argument instead of two integers. Arrange for the
structure to contain two integer values.

��

Notes

www.ebook3000.com

http://www.ebook3000.org

Lab Exercises 465

Lab 9
Memory: Row-Major And Column-Major Array Storage

Purpose

To understand storage of arrays in memory and row-major order and column-major
order.

Background Reading And Preparation

Read Chapters 10 through 13 to learn about basic memory organization and the
difference between storing arrays in row-major order and column-major order.

Overview

Instead of using built-in language facilities to declare two-dimensional arrays, im-
plement two C functions, two_d_store and two_d_fetch, that use linear storage to imple-
ment a two-dimensional array. Function two_d_fetch takes six arguments: the base ad-
dress in memory of a region to be used as a two-dimensional array, the size (in bytes)
of a single entry in the array, two array dimensions, and two index values. For exam-
ple, instead of the two lines:

iinntt dd[[1100,,2200]];;

xx == dd[[44,,00]];;

a programmer can code:

cchhaarr dd[[220000**ssiizzeeooff((iinntt))]];;

xx == ttwwoo__dd__ffeettcchh((dd,, ssiizzeeooff((iinntt)),, 1100,, 2200,, 44,, 00));;

Function two_d_store has seven arguments. The first six correspond to the six ar-
guments of two_d_fetch, and the seventh is a value to be stored. For example, instead
of:

iinntt dd[[1100,,2200]];;

dd[[44,,00]] == 557766;;

a programmer can code:

466 Lab Exercises For A Computer Architecture Course

cchhaarr dd[[220000**ssiizzeeooff((iinntt))]];;

ttwwoo__dd__ssttoorree((dd,, ssiizzeeooff((iinntt)),, 1100,, 2200,, 44,, 00,, 557766));;

Procedure And Details (checkmark as each is completed)

������ 1. Implement function two_d_store, using row-major order to store the array.

������ 2. Create an area of memory large enough to hold an array, initialize the entire
area to zero, and then call two_d_store to store specific values in various lo-
cations. Use the hex dump program created in Lab 6 to display the result,
and verify that the correct values have been stored.

������ 3. Implement function two_d_fetch, using row-major order to match the order
used by two_d_store.

������ 4. Verify that your implementations of two_d_store and two_d_fetch work
correctly.

������ 5. Test two_d_store and two_d_fetch for boundary conditions, such as the
minimum and maximum array dimensions.

������ 6. Rewrite two_d_store and two_d_fetch to use column-major order.

������ 7. Verify that the code for column-major order works correctly.

Optional Extensions (checkmark as each is completed)

������ 8. Verify that functions two_d_store and two_d_fetch work correctly for an ar-
ray that stores: characters, integers, or double-precision items.

������ 9. Extend two_d_store and two_d_fetch to work correctly with any range of ar-
ray index. For example, allow the first index to range from -5 to +15, and al-
low the second index to range from 30 to 40.

www.ebook3000.com

http://www.ebook3000.org

Lab Exercises 467

Lab 10
Input / Output: A Buffered I/O Library

Purpose

To learn how buffered I/O operates and to compare the performance of buffered
and unbuffered I/O.

Background Reading And Preparation

Read Chapters 14 through 16 to learn about I/O in general, and read Chapter 17 to
learn about buffering.

Overview

Build three C functions, buf_in, buf_out, and buf_flush that implement buffered
I/O. On each call, function buf_in delivers the next byte of data from file descriptor
zero. When additional input is needed from the device, buf_in reads sixteen kilobytes
of data into a buffer, and allows successive calls to return values from the buffer. On
each call, function buf_out writes one byte of data to a buffer. When the buffer is full
or when the program invokes function buf_flush, data from the buffer is written to file
descriptor one.

Procedure And Details (checkmark as each is completed)

������ 1. Implement function buf_in.

������ 2. Verify that buf_in operates correctly for input of less than sixteen kilobytes
(i.e., less than one buffer of data).

������ 3. Redirect input to a file that is larger than thirty-two kilobytes, and verify that
buf_in operates correctly for input that requires buf_in to fill a buffer multiple
times.

������ 4. Implement functions buf_out and buf_flush.

468 Lab Exercises For A Computer Architecture Course

������ 5. Verify that buf_out and buf_flush operate correctly for output of less than one
buffer (i.e., less than sixteen kilobytes).

������ 6. Verify that buf_out and buf_flush operate correctly for output that spans mul-
tiple buffers.

Optional Extensions (checkmark as each is completed)

������ 7. Compare the performance of functions buf_in, buf_out, and buf_flush to the
performance of unbuffered I/O (i.e., read and write of one byte) for various
size files. Plot the results.

������ 8. Measure the performance of buf_in, buf_out, and buf_flush for various size
buffers when copying a large file. Use buffers that range in size from 4 bytes
to 100 Kbytes, and plot the results.

��

Notes

www.ebook3000.com

http://www.ebook3000.org

Lab Exercises 469

Lab 11
A Hex Dump Program In Assembly Language

Purpose

To gain experience coding assembly language.

Background Reading And Preparation

Review Chapters 5, 7, and 9, and assembly language programs written in earlier
labs.

Overview

Rewrite the hex dump program from Lab 6 in assembly language.

Procedure And Details (checkmark as each is completed)

������ 1. Rewrite the basic hex dump function from Lab 6 in assembly language.

������ 2. Verify that the assembly language version gives the same output as the C ver-
sion.

Optional Extensions (checkmark as each is completed)

������ 3. Extend the assembly language dump function to start and stop on a byte ad-
dress (i.e., omit leading values on the first line of output and trailing values
on the last line).

������ 4. Change the function to print values in decimal instead of ASCII character
form.

������ 5. Modify the dump function so instead of printing ASCII values, the function
assumes the memory corresponds to machine instructions and gives
mnemonic opcodes for each instruction. For example, if the first word on the
line corresponds to a load instruction, print load.

470 Lab Exercises For A Computer Architecture Course

������ 6. Add an argument to the dump function that selects from among the various
forms of output (ASCII characters, decimal, or instructions)

��

Notes

www.ebook3000.com

http://www.ebook3000.org

Appendix 2

Rules For Boolean Algebra
Simplification

A2.1 Introduction

Boolean expressions can be simplified by applying the rules of Boolean algebra.
Specifically, there are rules that cover associative, reflexive, and distributive properties.
From an engineering perspective, the motivation for simplification is that an implemen-
tation requires fewer gates. For example, consider a logical or. We know that if either
of the two expressions is true, the logical or will also be true. Thus, the expression X
or true can be replaced by true.

A2.2 Notation Used

In the table that follows, a dot (⋅) denotes logical and, a plus sign (+) denotes
logical or, an apostrophe (’) denotes logical not, 0 denotes false, and 1 denotes true.
Using the notation, the expression:

(X + Y) ⋅Z’

represents:

(X or Y) and (not Z)

471

472 Rules For Boolean Algebra Simplification

A2.3 Rules Of Boolean Algebra

Figure A2.1 lists nineteen rules of Boolean algebra. Although many of the initial
rules may seem obvious, they are included for completeness.

��

x + 0 = x
x + 1 = 1
x ⋅ 0 = 0
x ⋅ 1 = x
x + x = x

x + x’ = 1
x ⋅ x = x

x ⋅ x’ = 0
(x’)’ = x

x ⋅ y = y ⋅ x
x + y = y + x

x ⋅ (y ⋅ z) = (x ⋅ y) ⋅ z
x + (y + z) = (x + y) + z
x ⋅ (y + z) = (x ⋅ y) + (x ⋅ z)
x + (y ⋅ z) = (x + y) ⋅ (x + z)
x ⋅ (x + y) = x
x + (x ⋅ y) = x

(x ⋅ y)’ = x’ + y’
(x + y)’ = x’ ⋅ y’

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure A2.1 Rules of Boolean algebra that can be used to simplify Boolean
expressions.

www.ebook3000.com

http://www.ebook3000.org

Appendix 3

A Quick Introduction To x86
Assembly Language

A3.1 Introduction

Engineers use the term x86 to refer to a series of processors that use an architecture
created by Intel Corporation†. Each processor in the Intel series was more powerful
than its predecessor. Over time, the design changed from a 16-bit architecture to a 32-
bit architecture. During the transition, Intel enforced backward compatibility to guaran-
tee that newer chips in the series could execute code written for earlier chips. Thus, the
fundamentals remain the same.

The x86 has undergone another transition, this time from a 32-bit architecture to a
64-bit architecture; the change was led by AMD, an Intel competitor. Once again,
backward compatibility is a key part of the transition. In this brief chapter, we will dis-
cuss the 32-bit version first, and then describe 64-bit extensions.

Because it follows a CISC approach, an x86 processor has a large, complex in-
struction set. In fact, the instruction set is huge — the vendor’s manuals that document
the instructions comprise nearly 3000 pages. An x86 can contain special instructions
for high-speed graphics operations, trigonometric functions, and the large set of instruc-
tions an operating system uses to control processor modes, set protection, and handle
I/ O. In addition to the 32-bit instructions used by applications running on recent pro-
cessors, an Intel x86 processor retains hardware that supports previous versions. Conse-
quently, we cannot review the entire instruction set in a brief appendix. Instead, we
provide an overview that introduces basics. Once a programmer masters a few funda-
mentals, learning new instructions is straightforward.

��������������������������������
†The name arises because Intel assigned part numbers such as 8086, 80286, 80386, and 80486.

473

474 A Quick Introduction To x86 Assembly Language

A3.2 The x86 General-Purpose Registers

As a result of extensions, the x86 architecture suffers from confusing and unex-
pected inconsistencies. For example, the architecture includes eight general-purpose re-
gisters, and inconsistencies are especially apparent in the way the general-purpose regis-
ters are named and referenced. In particular, the initial design used four general-
purpose 16-bit registers, and the assembly language provided names for individual bytes
of each register. When the registers were extended to thirty-two bits, each extended re-
gister was given a name, and the architecture mapped each of the original 16-bit regis-
ters onto the low-order sixteen bits of the corresponding extended register. Thus, the
assembly language provides a set of names that allows a programmer to reference an
entire 32-bit register, the low-order 16-bit region of the register, or individual bytes
within the 16-bit region. Unfortunately, the names are confusing. Initially, registers
were assigned specific purposes, and the names reflect the historical use. Figure A3.1
illustrates the eight general-purpose registers, lists their historical purpose, and gives
names for the registers as well as each subpart†.

Accumulator EAX

Base EBX

Count ECX

Data EDX

Source Index ESI

Destination Index EDI

Base Pointer EBP

Stack Pointer ESP

AX (16 bits)

BX (16 bits)

CX (16 bits)

DX (16 bits)

ALAH

BLBH

CLCH

DLDH

Figure A3.1 The eight general-purpose registers on an x86 processor, their
historical purpose, and the names used to reference a register
and the subparts.

��������������������������������
†Because most assemblers do not distinguish between uppercase and lowercase, names eax and EAX refer

to the same register. Programmers tend to use lowercase; documentation tends to use uppercase.

www.ebook3000.com

http://www.ebook3000.org

Sec. A3.2 The x86 General-Purpose Registers 475

Although most of the registers are no longer restricted to their original purpose, the
stack pointer (ESP) and base pointer (EBP) still have special meaning. The use of the
base and stack pointers during a procedure call is explained below.

A3.3 Allowable Operands

Operands specify the values to be used in an operation and a location for the result.
An operand can specify one of the registers, a location in memory, or a constant. Each
instruction specifies the combinations that are allowed. For example, a mov instruction
copies data from one location to another. Mov can copy a constant to a register or to
memory, or can copy a data value from a register to memory, from memory to a regis-
ter, or from one register to another. However, mov cannot copy data from one memory
location directly to another. Thus, to copy data between two memory locations, a pro-
grammer must use two instructions. First, a programmer uses a mov to copy the data
from memory to a register, and second, a programmer uses a mov to copy the data from
the register to the new memory location.

Figure A3.2 lists the nomenclature used to describe the set of operands that are al-
lowed for a given instruction.

Name Meaning���
<reg32> Any 32-bit register, such as EAX, EBX, ...
<reg16> Any 16-bit register, such as AX, BX, ...
<reg8> Any 8-bit register, such as AH, AL, BH, BL...
<reg> Any 32-bit, 16-bit, or 8-bit register
<con32> Any 32-bit constant
<con16> Any 16-bit constant
<con8> Any 8-bit constant
<con> Any 32-bit, 16-bit, or 8-bit constant
<mem> Any memory address

Figure A3.2 Nomenclature used to specify allowable operands.

A later section explains how a memory address can be computed. For now, it is
sufficient to understand that we will use the terminology from Figure A3.2 to explain
instructions. As an example, consider the mov instruction, which copies a data item
specified by a target operand into the location specified by a source operand. Figure
A3.3 uses the nomenclature in Figure A3.2 to list the allowable operand combinations
for mov.

476 A Quick Introduction To x86 Assembly Language

Source Operand Target Operand����������������������������������
<reg> <reg>

<mem> <reg>
<reg> <mem>
<con> <reg>
<con> <mem>

Figure A3.3 Allowable operand combinations for a mov instruction.

A3.4 Intel And AT&T Forms Of x86 Assembly Language

Before we examine instructions, it is important to know a few assembly language
basics. For example, assembly language employs a fixed statement format with one
statement per line:

label opcode operands...

The label on a statement. which is optional, consists of a name used to identify the
statement. If the statement defines a data item, the label specifies a name for the item;
if a statement contains code, the label is followed by a colon, and can be used to pass
control to the statement. The opcode field defines the type of data item or specifies an
instruction; zero or more operands follow the opcode to give further details for the data
or operation.

Unfortunately, many x86 assemblers have been created, and each has features that
distinguish it from the others. Rather than examining each individual assembler, we
will focus on two major categories. The first category employs a syntax that was origi-
nally defined by Intel and adopted by Microsoft; it is known informally as Intel assem-
bly language or Microsoft-Intel assembly language. The second category employs a
syntax originally defined by AT&T Bell Labs for Unix and adopted by the open source
community for use in Linux; it is known as AT&T assembly language or GNU assembly
language (gas).

Assemblers in either category are functionally equivalent in that they allow a pro-
grammer to code an arbitrary sequence of x86 instructions and to declare arbitrary data
items in memory. Despite overall similarities, the two types of assemblers differ in
many details. For example, the order in which operands are listed, the way registers are
referenced, and the comment syntax differ. Although either type can be used, a pro-
grammer may find that one type is more intuitive, more convenient, or helps catch more
programming errors. Because both types of assemblers are widely used in industry, we
will examine examples for each.

www.ebook3000.com

http://www.ebook3000.org

Sec. A3.4 Intel And AT&T Forms Of x86 Assembly Language 477

A3.4.1 Characteristics Of Intel Assembly Language

An Intel assembler has the following characteristics:

d Operand order is right-to-left, with the source on the right
and the target on the left

d Comments begin with a semicolon (;)
d Register names are coded without punctuation (e.g., eax)
d Immediate constants are written without punctuation
d The assembler deduces opcode type from the operand(s)

To remember the operand order, a programmer can think of an assignment state-
ment in a high-level language: the expression is on the right and the value is assigned to
the variable on the left. Thus, in Intel assembly language, a data movement operation is
written:

mov target, source

For example, the following code adds two to the contents of register EBX and
places the result in register EAX:

mov eax, ebx+2

The x86 hardware has implicit operand types, which means that at run-time, the
opcode specifies the types of the operands. For example, instead of one mov instruc-
tion, the hardware contains an opcode for each possible operand type. That is, the x86
has an opcode to move a byte, another opcode to move a word, and so on. The hexa-
decimal values are 88, 89, 8A, 8B, 8C, ... When it produces binary code, an Intel as-
sembler deduces the correct opcode from the operand types. If the target is a single
byte, the assembler chooses the opcode that moves a byte, if the target is a sixteen-bit
register, the assembler chooses the opcode that moves a sixteen-bit value, and so on.
Each instruction follows the same pattern — although a programmer uses a single
mnemonic in the program (e.g., add for addition or sub for subtraction), the processor
has a set of opcodes for each operation, and the Intel assembler chooses the opcode that
is appropriate for the operands the programmer specifies.

A3.4.2 Characteristics Of AT&T Assembly Language

An AT&T assembler has the following characteristics:

d Operand order is left-to-right, with the source on the left
and the target on the right

d Comments are enclosed in /*... */ or begin with a hash
mark (#)

d Register names are preceded by a percent sign (e.g., %eax)
d Immediate constants are preceded by a dollar sign ($)
d The programmer chooses a mnemonic that indicates the

type as well as the operation

478 A Quick Introduction To x86 Assembly Language

The operand order is the exact opposite of that used by an Intel assembler. Thus,
in AT&T assembly language, a data movement operation is written:

mov source, target

For example the following code adds two to the contents of register EBX and
places the thirty-two-bit result in register EAX.

movl %ebx+2, %eax

A3.5 Arithmetic Instructions

Addition And Subtraction. Many arithmetic and logical operations on the x86 take
two arguments: a source and a target. The target specifies a location, such as a regis-
ter, and the source specifies a location or a constant. The processor uses the two
operands to perform the specified operation, and then places the result in the target
operand. For example, the instruction:

add eax,ebxIntel:

add %ebx,%eaxAT&T:

causes the processor to add the values in registers EAX and EBX, and then place the
result in register EAX. In other words, the processor changes EAX by adding the value
in EBX. Figure A3.4 lists the allowable combinations of operands for addition and sub-
traction.

Source Operand Target Operand����������������������������������
<reg> <reg>

<mem> <reg>
<reg> <mem>
<con> <reg>
<con> <mem>

Figure A3.4 The allowable combinations of operands for add or subtract.

Increment And Decrement. In addition to add and sub, the x86 offers increment
and decrement instructions that add or subtract one. The instructions, which have op-
codes inc and dec (followed by a designator on the AT&T assembler), each take a sin-
gle argument that can be any register or any memory location. For example, the in-
struction:

inc ecxIntel:

incl %ecxAT&T:

www.ebook3000.com

http://www.ebook3000.org

Sec. A3.5 Arithmetic Instructions 479

increments the value of register ECX by one. A programmer must decide whether to
use inc or add.

The inclusion of increment and decrement instructions in the instruction set illus-
trates an important principle about the architecture:

A CISC architecture, such as the one used with x86, often provides
more than one instruction to perform a given computation.

Multiplication And Division. Integer multiplication and division pose an interest-
ing challenge for computer architects. The product that results when a pair of registers
are multiplied can exceed a single register. In fact, the product can be twice as long as
a register. Most computers also permit the dividend used in integer division to be larger
than a single register.

The x86 includes many variations of integer multiplication and division. Some of
the variations of multiplication allow a programmer to restrict the result to a specific
size (e.g., restrict the product to thirty-two bits). To handle the case where the product
will exceed one register, the x86 uses a combination of two registers to hold the result.
For example, when multiplying two thirty-two-bit values, the x86 places the sixty-four-
bit result in the EDX and EAX registers, with EDX holding the most significant thirty-
two bits and EAX holding the least significant thirty-two bits.

The x86 also permits integer division to have a sixty-four-bit operand, stored in a
pair of registers. Of course, integer division can also be used with small items. Even if
the dividend does not occupy sixty-four bits, an x86 can use two registers to hold the
result of an integer division: one holds the quotient and the other holds the remainder.
Having a way to capture a remainder makes computations such as hashing efficient.

An x86 offers two basic forms of multiplication. The first form follows the same
paradigm as addition or subtraction: the multiplication instruction has two arguments,
and the result overwrites the value in the first argument. The second form takes three
arguments, the third of which is a constant. The processor multiplies the second and
third arguments, and places the result in the location specified by the first argument.
For example,

imul eax,edi,42Intel:

imul %edi,42,%eaxAT&T:

multiplies the contents of register EDI by 42, and places the result in register EAX.

A3.6 Logical Operations

The x86 processors offer logical operations that treat data items as a string of bits
and operate on individual bits. Three of the logical operations perform bit-wise opera-
tions on two operands: logical and, or, and xor. The fourth logical operation, not, per-

480 A Quick Introduction To x86 Assembly Language

Logical and, or, xor
Source Operand Target Operand����������������������������������

<reg> <reg>
<mem> <reg>
<reg> <mem>
<con> <reg>
<con> <mem>

Logical not
Target Operand���������������

<reg>
<mem>

Figure A3.5 The allowable combinations of operands for and, or, xor, and
not instructions.

forms bit inversion on a single operand. Figure A3.5 lists the operand types used with
logical operations.

In addition to bit-wise logical operations, an x86 supports bit shifting. Shifting can
be applied to a register or memory location. In essence, a shift takes the current value,
moves bits left or right by the amount specified, and places the result back in the regis-
ter or memory location. When shifting, the x86 supplies zero bits to fill in when
needed. For example, when shifting left by K bits, the hardware sets the low-order K
bits of the result to zero, and when shifting right by K bits, the hardware sets the high-
order K bits of the result to zero. Figure A3.6 lists the allowable operands used with
left and right shift operations.

shift left (shl) and shift right (shr)
Source Operand Target Operand����������������������������������

<con8> <reg>
<con8> <mem>

<cl> <reg>
<cl> <mem>

Figure A3.6 Allowable operand combinations for shift instructions. The no-
tation <cl> refers to the 8-bit register CL.

A3.7 Basic Data Types

Assembly language for an x86 allows a programmer to define initialized and unini-
tialized data items. Data declarations must be preceded by a .data assembler directive,
which tells the assembler that the items are to be treated as data. A programmer can de-
fine each individual data item or can define a sequence of unnamed data items to
occupy successive memory locations. Figure A3.7 lists the basic data types available;
the figure assumes the AT&T assembler is set to produce code for a thirty-two-bit pro-
cessor.

www.ebook3000.com

http://www.ebook3000.org

Sec. A3.7 Basic Data Types 481

Intel Name AT&T Name Size In Bytes���
DB (Data Byte) .byte (single byte) 1
DW (Data Word) .hword (half word) 2
DD (Data Double) .long (long word) 4
DQ (Data Quad) .quad (quad word) 8

Figure A3.7 Basic data types used by Intel and AT&T assemblers.

Each type of assembler permits a programmer to assign an initial value to data
items. In Intel assembly program, a label starts in column 1, the data type appears next,
and an initial value for the item follows the data type. An Intel assembler uses a ques-
tion mark to indicate that the data item is uninitialized. In an AT&T assembly program,
a label ends in a colon, and is followed by the type and an initial value; if the initializa-
tion is omitted, zero is assumed. Figures A3.8 and A3.9 illustrate declarations for the
two types of assemblers.

.DATA ; start of data declarations (Intel assembler)
z DD ? ; four bytes that are uninitialized
y DD 0 ; four bytes that are initialized to zero
x DW -54 ; two bytes initialized to -54
w DW ? ; two bytes that are uninitialized
v DB ? ; one byte that is uninitialized
u DB 6 ; one byte initialized to 6

Figure A3.8 Examples of data declarations when using an Intel assembler.

An assembler places successive data items in adjacent bytes of memory. In the
figures, the item named u is placed in the byte following the item named v. Similarly, y
is placed just beyond z; because z is four bytes long, y starts four bytes beyond the loca-
tion at which z starts.

.data ; start of data declarations (AT&T assembler)
z: .long ; four bytes that are initialized to zero
y: .long 0 ; four bytes that are initialized to zero
x: .hword -54 ; two bytes initialized to -54
w: .hword ; two bytes that are initialized to zero
v: .byte ; one byte that is initialized to zero
u: .byte 6 ; one byte initialized to 6

Figure A3.9 Examples of data declarations when using an AT&T assembler.

482 A Quick Introduction To x86 Assembly Language

A3.8 Data Blocks, Arrays, And Strings

Although it does not provide data aggregates, such as structs, x86 assembly
languages do allow a programmer to declare multiple occurrences of a data item that oc-
cupy contiguous memory locations. For example, to declare three sixteen-bit items that
are initialized to 1, 2, and 3, a programmer can write three separate lines that each de-
clare one item or can list multiple items on a single line:

q DW 1, 2, 3Intel:

q: .hword 1, 2, 3AT&T:

The Intel assembler uses the modifier K DUP(value) to repeat a data value multiple
times; the AT&T assembler uses .space to fill a specified size of memory with a value.
For example, to declare one thousand repetitions of a data byte that is initialized to the
numeric value 220, one writes:

s DB 1000 DUP(220)Intel:

s: .space 1000, 220AT&T:

The AT&T assembler provides a .rept macro to declare repetitions of larger items, such
as a dozen occurrences of four-byte zero:

DD 12 DUP(0)Intel:

.rept 12

.long 0

.endr

AT&T:

In addition to numeric values, x86 assembly language allows a programmer to use
ASCII characters as initial values. The Intel assembler encloses character constants in
single quote marks, and allows multiple characters to be used to form a string. The as-
sembler does not add a trailing zero (null termination). An AT&T assembler surrounds
a string of characters with double quotes, and uses the directive .ascii or .asciz to de-
clare a string; .ascii does not add a null termination byte, and .asciz does. For example,
a programmer can declare a byte in memory that is initialized to the letter Q or a string
that contains the characters hello world, with or without null termination.

c DB ’Q’
d DB ’hello world’
e DB ’hello world’, 0

Intel:

c: .ascii "Q"
d: .ascii "hello world"
e: .asciz "hello world"

AT&T:

www.ebook3000.com

http://www.ebook3000.org

Sec. A3.9 Memory References 483

A3.9 Memory References

As we have seen, many x86 instructions permit an operation to reference memory,
either to fetch a value for use in the instruction or to store a result. The x86 hardware
offers a complex mechanism that a programmer can use to compute a memory address:
an address can be formed by adding the contents of two general-purpose registers plus a
constant. Furthermore, one of the registers can be multiplied by two, four, or eight. A
few examples will illustrate some of the possibilities.

Data Names. The most straightforward form of memory reference consists of a
reference to a named data item. Intel assemblers use square brackets to enclose the
name of a memory item, and AT&T assemblers precede the name by a dollar sign. In
either case, the assembler computes the memory address assigned to the item, and sub-
stitutes the constant in the instruction. For example, if an assembly program contains a
declaration for a 16-bit data item named T, the following instructions are used to move
the 16-bit value from the memory into register DX:

mov dx, [T]Intel:

movw $T, %dxAT&T:

Indirection Through A Register. A programmer can compute a numeric value,
place the value in a register, and then specify that the register should be used as a
memory address. For example, the instruction:

mov eax, [ebx]Intel:

movl (%ebx), %eaxAT&T:

uses the contents of register EBX as a memory address, and moves four bytes starting at
that address into register EAX.

Expressions that compute an address are permitted, provided they adhere to the
rule of adding at most two registers and a constant, with the option of multiplying one
of the registers by two, four, or eight. For example, it is possible to form a memory ad-
dress by adding the contents of EAX, the contents of ECX, and the constant 16, and
then using the address to store the value of register EDI. In Intel notation, the operation
is written:

mov [eax+exb+16], edi

The rules for addresses can be difficult to master at first because they seem some-
what arbitrary. Figure A3.10 lists examples of valid and invalid memory references.

484 A Quick Introduction To x86 Assembly Language

Valid references

mov eax, [lab1] ; move 4 bytes from label lab1 in memory to EAX
mov [lab2], ebx ; store 4 bytes from EBX to label lab2 in memory
and eax, [esi-4] ; and EAX with 4 bytes at address given by ESI - 4
not [edi+8] ; invert 32 bits at location given by EDI + 8
mov [eax+2*ebx],0 ; store zero in 4 bytes at address given by EAX+2*EBX
mov cl, [esi+4*ebx] ; move byte from ESI+4*EBX into register CL

Invalid references

mov eax, [esi-ebx] ; cannot subtract two registers
mov [eax+ebx+cl], 0 ; cannot specify more than two registers

Figure A3.10 Examples of valid and invalid memory references using Intel
notation.

A3.10 Data Size Inference And Explicit Size Directives

Because a memory address can be calculated at run time, an address merely con-
sists of an unsigned thirty-two-bit integer value. That is, an address by itself does not
specify the size of an item in memory. An x86 assembler uses heuristics to infer the
data size whenever possible. For example, because the following instruction moves a
value from memory into register EAX, which is four bytes long, an assembler will infer
that the memory address refers to a four-byte value. For example, in Intel notation, the
instruction is written:

mov eax, [ebx+esi+12]

Similarly, if a name has been assigned to a data item that is declared to be a single byte,
an assembler infers that a memory reference to the name refers to one byte. In some
cases, however, a programmer must use an explicit size directive to specify the size of a
data item. For example, suppose a programmer wishes to store –1 in a sixteen-bit word
in memory. The programmer computes a memory address, which is placed in register
EAX. An assembler cannot know that the programmer thinks of the address as pointing
to a sixteen-bit (i.e., two-byte) data item, and will infer that it refers to a four-byte item.
Therefore, a programmer must add a size directive before the memory reference, as in
the following example that uses Intel notation:

mov WORD PTR [eax], -1

It is good programming practice to use a size directive to make the intention clear
if there is any doubt, even in cases where the inference rules of the assembler produce
the correct result. Figure A3.11 summarizes the three size directives available.

www.ebook3000.com

http://www.ebook3000.org

Sec. A3.10 Data Size Inference And Explicit Size Directives 485

Directive Meaning��
BYTE PTR The address refers to a single byte in memory
WORD PTR The address refers to a 16-bit value in memory
DWORD PTR The address refers to a 32-bit value in memory

Figure A3.11 Size directives that can be prepended to memory references for
the Intel assembler.

A3.11 Computing An Address

We said that an integer value can be computed, placed in a register, and then used
as a memory address. However, most address computation begins with a known loca-
tion in memory, such as the initial location of an array. For example, for the Intel as-
sembler, suppose an array of four-byte integers has been declared using the name iarray
and initialized to zero:

iarray DB 1000 DUP(0)

The memory location of the ith element can be computed by multiplying i by four (be-
cause each element is four bytes long) and adding the result to the address of the first
byte of the array.

How can a running program obtain the address of the first byte of an array? More
generally, how can a program obtain the memory address of an arbitrary variable? The
answer lies in a special instruction that loads an address into a register rather than a
value. Specified by the name load effective address and the mnemonic lea, the special
instruction takes a register and a memory location as operands. Unlike the mov instruc-
tion, lea does not access an item in memory. Instead, lea stops after it computes the
memory address, and places the address in the specified register. For example,

lea eax, [iarray]

places the memory address of the first byte of item iarray in register EAX.

Observe that computing the offset of the ith element of an array of four-byte in-
tegers is straightforward. First, place i in a register, for example, EBX. Once the index
is in the register, the memory location corresponding to that element of the array can be
computed with a single lea instruction:

mov ebx, [i] ; obtain index from variable i in memory
lea eax, [4*ebx+iarray] ; place address of ith element in EAX

486 A Quick Introduction To x86 Assembly Language

A3.12 The Stack Operations Push And Pop

The x86 hardware includes instructions that manipulate a memory stack. The stack
operates as a Last-In-First-Out (LIFO) data structure, with the most recently added item
being accessed first. Like the stack on other processors, an x86 stack grows downward,
with new items being added at successively lower memory addresses. Despite growing
downward in memory, we say that the most recently added item is on the “top” of the
stack.

When an item is added to a stack, we say the item is pushed onto the stack, and
the top of the stack corresponds to the new item. When the top item is removed from
the stack, we say that the stack has been popped.

An x86 stack always uses four-byte items — when an item is pushed onto a stack,
four additional bytes of memory are used. Similarly, when an item is popped from a
stack, the item contains four bytes, and the stack occupies four fewer bytes of memory.

In an x86, the ESP register (stack pointer) contains the current address of the top
of the stack. Thus, although ESP does not appear explicitly, stack manipulation instruc-
tions always change the value in ESP. The names of stack instructions reflect the gen-
eric terminology described above: push and pop. Figure A3.12 lists the allowable argu-
ment types.

push <reg32> pop <reg32>
push <mem> pop <mem>
push <con32>

Figure A3.12 Operands allowed with the push and pop instructions.

Once register ESP has been set, adding items to the stack is trivial. For example,
the instruction:

push eax

pushes the value of register EAX onto the stack, and the instruction:

pop [qqqq]

pops the top of the stack and places the value in the memory location with name qqqq.
Similarly, the instruction:

push -1

pushes the constant -1 onto the stack. The x86 hardware does not have a stack bound,
which means that a programmer must plan stack use carefully to avoid situations in
which a stack grows downward into a memory area used for other variables.

www.ebook3000.com

http://www.ebook3000.org

Sec. A3.13 Flow Of Control And Unconditional Branch 487

A3.13 Flow Of Control And Unconditional Branch

Normally, after a statement is executed, the processor proceeds to the next state-
ment. An x86 supports three types of instructions that change the flow of control:

d unconditional branch

d conditional branch

d procedure call and return

An unconditional branch instruction is the easiest to understand: the opcode is jmp
(for “jump”), and the only operand is the label on a statement. When it encounters a
jmp instruction, the processor immediately moves to the specified label and continues
execution. For example,

jmp prntname

means the next instruction the processor will execute is the instruction with label
prntname. The programmer must have placed the label on an instruction (presumably
the first instruction in a sequence that prints a name). In Intel notation, the programmer
writes:

prntname: mov eax, [nam]
.
.
.

A3.14 Conditional Branch And Condition Codes

Each arithmetic instruction sets an internal value in the processor known as a con-
dition code. A conditional branch instruction uses the value of the condition code to
choose whether to branch or continue execution with the next sequential statement. A
set of conditional branch instructions exists; each instruction encodes a specific test.
Figure A3.13 summarizes.

Opcode Meaning��������������������������������������
jeq jump if equal
jne jump if not equal
jz jump if zero
jnz jump if not zero
jg jump if greater than
jge jump if greater than or equal
jl jump if less than
jle jump if less than or equal

Figure A3.13 Conditional branch instructions and the meaning of each.

488 A Quick Introduction To x86 Assembly Language

For example, the following code in Intel notation decrements register EBX and
jumps to label atzero if the resulting value is zero.

dec ebx ; subtract 1 from ebx
jz atzero ; jump to label atzero if EBX reaches zero

Some of the instructions in Figure A3.13 require a programmer to compare two
items. For example, jge tests for greater-than-or-equal. However, conditional branch
instructions do not perform comparisons — they have a single operand that consists of a
label specifying where to branch. As with arithmetic tests, conditional branches involv-
ing a comparison rely on the condition code. Various instructions set the condition
code, which means that a conditional branch can be executed immediately after the con-
dition code has been set. If a conditional branch does not immediately follow the in-
struction that sets the condition code, a programmer must code an extra instruction that
sets the condition. The x86 architecture includes two instructions used to set a condi-
tion code: test and cmp. Neither of the two modifies the contents of registers or
memory. Instead, they merely compare two values and set the condition code. The
cmp instruction checks for equality. In essence, a cmp performs a subtraction and then
discards the answer, keeping only the condition code. For example, the following code
in Intel notation tests whether the four-byte value in memory location var1 has the
value 123, and jumps to label bb if it does.

cmp DWORD PTR [var1], 123 ; compare memory item var1 to 123
jeq bb ; jump to label bbb if they are equal

The test instruction is more sophisticated: it performs a bit-wise and of the two
operands, and sets various condition code bits accordingly. As a result, test sets condi-
tions such as whether a data value contains odd or even parity.

A3.15 Subprogram Call And Return

The x86 hardware supports subroutine invocation (i.e., the ability to call a subpro-
gram and have the subprogram return to its caller). Subroutine invocation forms a key
part of the run-time support needed for a high-level procedural language.

Figure A3.14 summarizes the two x86 instructions that make subprograms possi-
ble: one instruction is used to invoke a subprogram and the other is used by a subpro-
gram to return to its caller.

www.ebook3000.com

http://www.ebook3000.org

Sec. A3.15 Subprogram Call And Return 489

call <label>
ret

Figure A3.14 Instructions used to invoke a subprogram: call invokes a sub-
program, and ret returns to the caller.

Subprogram call and return use the run-time stack. For example, a call instruction
pushes a return address on the stack. The next section discusses details.

A3.16 C Calling Conventions And Argument Passing

The term calling conventions refers to rules that calling and called programs use to
guarantee agreement about details, such as the location of arguments. Calling conven-
tions assign responsibilities to the calling program and the called subprogram. For ex-
ample, the conventions specify exactly how a calling program pushes arguments on the
stack for the subprogram to use, and exactly how a subprogram can return a value for
the calling program to use.

Each high-level language defines a set of calling conventions. We will use the po-
pular C calling conventions in examples. Although the conventions are intended to al-
low C or C++ programs to invoke an assembly language program and an assembly
language program to invoke C functions, C calling conventions can also be used when
an assembly language program invokes an assembly language subprogram. Thus, our
examples are general.

The easiest way to understand calling conventions is to visualize the contents of a
run-time stack when a subprogram is invoked. Our example consists of a call that
passes three integer arguments (four bytes per argument) with values 100, 200, and 300
to a subprogram that has four local variables, each of which is thirty-two bits. The cal-
ling conventions specify the following during a call:

d Caller Actions. The caller pushes the values of registers EAX, ECX, and
EDX onto the stack to save them. The caller then pushes arguments onto
the stack in reverse order. Thus, if the arguments are 100, 200, and 300,
the caller pushes 300, pushes 200, and then pushes 100. Finally, the caller
invokes the call instruction, which pushes the return address (i.e., the ad-
dress immediately following the call instruction) onto the stack and jumps
to the subprogram.

d Called Subprogram Actions. The called subprogram pushes the EBP re-
gister onto the stack, and sets the EBP to the current top of the stack. The
caller pushes the EBX, EDI, and ESI registers onto the stack, and then
pushes each local variable onto the stack (or merely changes the stack
pointer to allocate space if a local variable is uninitialized).

490 A Quick Introduction To x86 Assembly Language

Figure A3.15 illustrates the stack immediately after a subprogram call has occurred
(i.e., after both the caller and called subprogram have followed the conventions outlined
above). To understand the figure, remember that a stack grows downward in memory.
That is, a push operation decrements the stack pointer and a pop operation increments
the pointer.

stack grows toward lower memory addresses

EBP

ESP

saved EAX

saved ECX

saved EDX

arg. 3 (300)

arg. 2 (200)

arg. 1 (100)

ret. addr

saved EBP

saved EBX

saved EDI

saved ESI

local var 1

local var 2

local var 3

local var 4

pushed on
by caller

pushed on
by called
subprogram

set by
subprogram

pushed by call
removed by ret

Figure A3.15 Illustration of the run-time stack after a subprogram has been
called with three arguments and the subprogram has reserved
space for four local variables.

When it finishes, the called subprogram must undo actions taken during the call
and return to its caller. The following specifies steps the subprogram and caller take
during a return.

d Called Subprogram Return Actions. The called subprogram deallocates
local variables from the stack. To do so, the subprogram adds 4N bytes to
the stack pointer, where N is the number of local variables (each local
variable is assumed to be four bytes long). The subprogram then restores
the ESI, EDI, EBX, and EBP registers by popping their saved values off
the stack. Finally, the subprogram executes a ret instruction to pop the re-
turn address from the stack and jump back to the caller.

www.ebook3000.com

http://www.ebook3000.org

Sec. A3.16 C Calling Conventions And Argument Passing 491

d Caller Return Actions. When a called subprogram returns, the caller deal-
locates the arguments (e.g., by adding a constant to the stack pointer equal
to four times the number of arguments). Finally, the caller restores the
values of EDX, ECX and EAX.

A3.17 Function Calls And A Return Value

Technically, the above set of calling conventions applies to a procedure call. In the
case of a function call, the subprogram must return a value to the caller. By convention,
the return value is passed in register EAX. Therefore, when a function is invoked, the
above calling conventions are modified so the caller does not restore the saved value of
EAX.

Does it make sense for a caller to save EAX on the stack before calling a function?
Once the function returns, EAX will contain the returned value. However, there are two
reasons why EAX should be saved. First, a symbolic debugger will expect the stack to
have the same layout for each procedure or function that has been called. Second, a caller
may choose to continue computation after saving the result from a function. For example,
suppose a compiler has used EAX to hold an index variable for a loop. If the loop contains
a statement such as:

r = f(t);

the compiler may generate code to save the value of EAX before the call, store the return
value in memory location r immediately after function f returns, and then restore EAX and
allow the loop to continue.

A3.18 Extensions To Sixty-four Bits (x64)

The x86 architecture has been expanded to a sixty-four-bit version. Interestingly,
AMD Corporation defined an extension scheme that was eventually adopted by Intel and
other vendors. Known as x86-64, and often shortened to x64, the architecture includes
many changes. For example, arithmetic and logical instructions, instructions that involve
two registers, instructions that involve a register and memory location, and instructions that
involve two memory locations have all been extended to operate on sixty-four-bit quanti-
ties. The stack operations have been changed so they push and pop sixty-four bits (eight
bytes) at a time, and pointers are sixty-four-bits wide. The two changes most pertinent to
our discussion involve general-purpose registers:

d Each general-purpose register has been extended to make it sixty-four-bits long.

d Eight additional general-purpose registers have been added, making a total of
sixteen general-purpose registers.

492 A Quick Introduction To x86 Assembly Language

As in the x86, the x64 architecture attempts to preserve backward compatibility. For
example, the lower half of each sixty-four-bit register can be referenced as a thirty-two-bit
register. Furthermore, it is possible to reference the sixteen-bit and eight-bit parts of the
first four registers exactly as in the x86. Figure A3.16 illustrates the general-purpose regis-
ters available in the x64; readers should compare the figure with Figure A3.1 on page 474.

A3.19 Summary

We reviewed x86 fundamentals, including data declarations, registers, operand types,
basic instructions, arithmetic and logical instructions, memory references, stack operations,
conditional and unconditional branch, and subprogram invocation. Because the x86 archi-
tecture provides many instructions, a programmer may have a choice of multiple mecha-
nisms to perform a given task. A sixty-four-bit extension has been designed that is known
by the name x64.

www.ebook3000.com

http://www.ebook3000.org

Sec. A3.19 Summary 493

RAX EAX

RBX EBX

RCX ECX

RDX EDX

RSI ESI

RDI EDI

RBP EBP

RSP ESP

R8

R9

R10

R11

R12

R13

R14

R15

AX (16 bits)

BX (16 bits)

CX (16 bits)

DX (16 bits)

ALAH

BLBH

CLCH

DLDH

new

Figure A3.16 General-purpose registers in the x64 architecture.

www.ebook3000.com

http://www.ebook3000.org

Appendix 4

ARM Register Definitions
And Calling Sequence

A4.1 Introduction

The previous appendix presents an overview of the x86 and x64 architectures. As
we have seen, the x86 is a canonical example of a CISC instruction set. This appendix
continues the discussion by providing information about the ARM architecture. ARM
provides a canonical example of a RISC architecture.

Although ARM has defined a set of processors, this appendix focuses on features
that are common to most of the thirty-two-bit ARM products. The reader is referred to
ARM documentation for details about specific models.

A4.2 Registers On An ARM Processor

An ARM processor has 16 general-purpose registers numbered 0 through 15, and
generally denoted with names r0 through r15. Registers r0 through r3 are used to pass
arguments to a called subroutine and to pass results back to the caller. Registers r4
through r11 are used to hold local variables for the subroutine that is currently being
run. Register r12 is an intra-procedural call scratch register. Register r13 is the stack
pointer. Register r14 is a link register, and is used in a subroutine call. Finally, regis-
ter r15 is the program counter (i.e., an instruction pointer). Thus, loading an address
into r15 causes the processor to branch to the address. Figure A4.1 summarizes the pur-
pose of the registers, and gives alternate names used by the gcc assembler.

495

496 ARM Register Definitions And Calling Sequence

Register Name Purpose _���
r15 pc Program counter
r14 lr Link register during function call
r13 sp Stack pointer
r12 ip Intra-procedural scratch
r11 fp Frame or argument pointer
r10 sl Stack limit

r9 v6 Local variable 6 (or real frame pointer)
r8 v5 Local variable 5
r7 v4 Local variable 4
r6 v3 Local variable 3
r5 v2 Local variable 2
r4 v1 Local variable 1

r3 a4 Argument 4 during a function call
r2 a3 Argument 3 during a function call
r1 a2 Argument 2 during a function call
r0 a1 Argument 1 during a function call

Figure A4.1 The general-purpose registers in an ARM architecture, the alter-
nate name used in assembly language, and the meaning assigned
to each register.

In addition to general-purpose registers, each ARM processor has a thirty-two-bit
Current Program Status Register (CPSR). The CPSR is divided into many fields, in-
cluding fields that control the processor mode and operation, control interrupts, report
the condition code after an operation, report hardware errors, and control the endianness
of the system. Figure A4.2 summarizes the bit fields in the CPSR.

A4.3 ARM Calling Conventions

Programming languages support a call mechanism in which a piece of code calls a
subroutine, the subroutine executes, and control passes back to the point at which the
call occurred. In terms of the run-time environment, subroutine calls are pushed onto
the run-time stack. We say that code becomes a caller when it invokes a subroutine,
and use the term callee to refer to the subroutine that is invoked. In the C Program-
ming Language, a subroutine is known as a function; we will use the term throughout
the remainder of the appendix.

Although the hardware places constraints on function invocation, a programmer or
a compiler is free to choose some of the details. Throughout this chapter, we will
describe the calling conventions that gcc follows, which have become widely accepted.

www.ebook3000.com

http://www.ebook3000.org

Sec. A4.3 ARM Calling Conventions 497

Name Bit Range Purpose _���
N 31 Negative/less than
Z 30 Zero
C 29 Carry/borrow/extend
V 28 Overflow
Q 27 Sticky overflow
J 24 Java state

DNM 20 – 23 Do not modify
GE 16-19 Greater-than-or-equal-to
IT 10 – 15 and 25 – 26 The if-then state
E 9 Data endianness
A 8 Imprecise data abort disable
I 7 IRQ disable
F 6 FIQ disable
T 5 Thumb state
M 0 – 4 Processor mode

Figure A4.2 Bits in an ARM CPSR and the meaning of each.

The argument passing conventions for ARM have the following characteristics:

d Allow a caller to pass zero or more arguments to a callee

d Optimize access for the first four arguments

d Allow a callee to return a set of results to the caller

d Specify which registers the callee can change and which must be
unchanged when the call returns

d Specify how the run-time stack is used when a function is called
and returns

Many functions have four or fewer parameters. To optimize access for the first
four arguments, the values are passed in general-purpose registers a1 through a4 (i.e.,
registers r0 through r3). Additional arguments are placed on the stack in memory. Be-
cause a callee can access the first four arguments merely by referencing a register, ac-
cess is extremely fast.

A callee can use registers a1 through a4 to return a result to the called program. In
most programming languages, a function only returns one result, which is found in re-
gister a1. If an argument or a result is larger than 32 bits, the value is placed in
memory and the address is passed in an argument register.

Figure A4.3 shows an example of the stack layout immediately after a function
call. The example will clarify the calling conventions and explain how register values
are preserved during a function call.

498 ARM Register Definitions And Calling Sequence

saved lr (r14)

saved fp (r7)

saved registers
r4 – r6

and
r8 – r11

local variables
for function A

Arg 5 for B

Arg 6 for B

...

saved lr (r14)

saved fp (r7)

saved registers
r4 – r6

and
r8 – r11

local variables
for function B

stack grows downward

stack area
for function A

(caller)

address to which A returns

stack area
for function B

(callee)

address to which B returns

values saved when
function A starts

values saved when
function B starts

stack used by function A
prior to calling B

extra arguments passed to
B beyond the first four

Figure A4.3 Layout of items on the run-time stack just after function A calls
function B with six arguments.

In the figure, function A was executing and has called function B, which takes six
arguments. The first four arguments are passed in registers†, which means they do not
appear on the stack. However, arguments beyond the first four must be passed on the
stack. Therefore, function A pushes arguments 5 and 6 onto the runtime stack in re-

��������������������������������
†Recall that the first four arguments are passed in registers a1 through a4.

www.ebook3000.com

http://www.ebook3000.org

Sec. A4.3 ARM Calling Conventions 499

verse order before calling function B. As the figure shows, the extra arguments are the
last two items on the stack when the call occurs.

A caller expects that values in most of the general-purpose registers will be
preserved during a function call. That is, a caller expects the called function will not
disturb register values. Of course, most functions need to use registers. Therefore, a
called function saves the register contents upon entry and restores them before return-
ing. As the figure illustrates, the prelude code in function B pushes the link register
(r14), the frame pointer (r7), registers r4 through r6, and registers r8 through r11 onto
the stack. The prelude code in function B then reserves space on the stack for its local
variables (if any). Once local storage has been allocated, function B is ready to run.
Before function B returns, postlude code in the function runs. The postlude code re-
stores the registers from the saved values on the stack, and leaves the stack exactly as it
was before the call.

www.ebook3000.com

http://www.ebook3000.org

Index

Constants and numeric items

0-address 128
1-address 129
14-pin Dual In-line Package 22
1 1/2 - address 130
2-address 129
3-address 130
64-bit x86 architecture 491
7400 family 22
8086 473

A

abacus 12
absolute branch instruction 98
abstraction 343
access protocol 291
adders 453
address 210, 297

and data multiplexing 295
conflict 298
mapping 253
space 214, 297, 298
space hole 304
translation 253

Advanced Graphics Port 427
aggregate 62
AGP 427
alignment 213
ALU 74, 119, 151, 361
AMP 366
ampere (amp) 12

analog computer 11
ANSI 51
Application Specific Integrated Circuit 39
architecture 5

Harvard 70
Von Neumann 70
one-address 129
two-address 129
zero-address 128

argument passing 99, 174
Arithmetic Logic Unit 74, 119, 151
ARM

processor 495
registers 495

array processor 364
ASCII 51, 52
ASIC 39
assembler 79, 165
assembly

language 165, 461, 469
language function 463

asymmetric
assignment 302
parallelism 362

Asymmetric Multiprocessor 366
asynchronous programming 321, 342
AT&T assembly language 476
autoincrement 216
auxiliary bus 307
Avogadro constant 58
AX register 474, 493

502 Index

B

backward compatibility 143, 424, 473
bank

of memory 219, 257
of registers 90

base-bound 259
BCD 61
benchmark 415
bias constant 60
bidirectional transfer 282
big endian 54, 457
binary

counter 27, 455
digit 46

Binary Coded Decimal 61
bit 46

big endian 54
little endian 54
serial 361

block-oriented device 338
board-level architecture 423
Boolean algebra 14
bootstrap 81
branch prediction 158
breadboard 446, 451
bridge 306
bridging (between two buses) 424
bubble 94
buffer 347, 383

chaining 328
flushing 349

buffered I/O 467
buffering 347
burst of packets 328
bus 151, 209, 289, 297

access protocol 291
arbiter 291
controller 292
interface 292

BX register 474, 493
byte 46

addressing 211
alignment 213

C

C.mmp 366
cache 228

coherence protocol 236
flushing 272
hierarchy 233
hit 229
locality 229
miss 229
preloading 233
replacement policy 231
transparency 229
write-back 235
write-through 235

caching 228
callee 496
caller 496
calling

conventions 176, 463
conventions (ARM) 496

CAM 221, 246
capacitor 204
Carnegie multiminiprocessor 366
carry 53
carry bit 20
CDC6600 367
Central Processing Unit 71
chaining of buffers 328
channel (IBM) 367
character set 51
character-oriented device 338
chip-level architecture 423
CISC 91
clock 28, 207, 282, 455

skew 36
synchronization 37
zone 36

clockless logic 37
close 346
cluster computer 375
CMOS 14, 38
coarse granularity mapping 261
coarse-grain parallelism 362
column-major order 270, 465

www.ebook3000.com

http://www.ebook3000.org

Index 503

combinatorial circuit 22
command interpreter 383
communication 369
compatibility mode 143
compiler 79
Complementary Metal Oxide

Semiconductor 14, 38
Complex Instruction Set Computer 91
computational engine 73
condition code 104, 171, 487
conditional

execution 171
statement 172

conflict (registers) 91
Content Addressable Memory 221, 246
contention 369
context switch 323
contiguous

address space 304
addresses 256
virtual address space 255

Control and Status Registers 318, 336
controller 119, 206, 281

(bus) 292
chips 426

cooling 399
coordination 369
coprocessor 76
core 38, 142
cosine 91
counter 27, 455
CPSR (ARM) 496
CPU 71
crossbar switch 308
CSR 318, 336
current 12
current program status register

(ARM) 496
CX register 474, 493

D

D-cache 239
data

(assembly language) 480

aggregate 62
cache 239
memory 110
multiplexing 295
path 75, 115
pipelining 381
store 198
transfer 281

dead beef 217
decoding 455
deep sleep 403
definite iteration 172
definition (assembly macro) 185
demand paging 262
demultiplexor 29, 284
demux 29
destination operand 130
device

driver 336
independence 336

digital computer 11
Digital Video Disc 346
DIMM 206
DIP 22
direct mapped cache 240
Direct Memory Access 328
directive (assembly language) 177
directory table 274
dirty bit 235
disabling interrupts 324
DMA 328
double

data rate 208
indirection 135
precision 58, 90

drain (transistor) 13
DRAM 204
driver 336
Dual

In-line Memory Module 206
In-line Package 22

dual core 362
dual-processor computer 363
dumb device 327
dump 469

504 Index

DVD 346
DX register 474, 493
dynamic RAM 204

E

EAX, EBX, ECX, EDX registers 474,
493

EBCDIC 51
elegance 104
embedded 432
embedded systems processor 76
enable line 23
enabling interrupts 324
encapsulation 336
endian 457
endmacro 186
engine 73
ESI, EDI, ESP, EBP registers 474, 493
event 321
exact match search 222
exclusive use 372
execution pipeline 92
explicit operand encoding 132
exponent 58
extended value 89

F

falling edge 27
fanout 17
fast data rate memory 208
feedback 31
FET 13
fetch 88
fetch-execute cycle 78, 322
fetch-store 199, 294
fib-arm.s 182
fib-x86.s 180
fib.c 178
Fibonacci sequence 177
Field Effect Transistor 13
Field Programmable Gate Array 149
FIFO 197
file 343
fine granularity mapping 261

fine-grain parallelism 362
finger 292
First-In-First-Out 197
fixed logic processor 72
fixed-length instructions 88
flash memory 197
flip-flop 25
floating

point 58
point accelerator 76
point operations per second 413

FLOPS 413
flush 348
flush time 391
flushing

a buffer 349
a cache 272

Flynn 360
for statement 172
for-loop in assembly 172
forwarding 97
FPGA 149
fragmentation 262
full adder 21
full-duplex interaction 282
fully associative cache 245
function

call in assembly 174
invocation 488

G

gas 476
gate 14

(transistor) 13
delay 400

gather write 329
GB 215
general-purpose

processor 76
register 88, 110, 198

gigabyte 215
GNU assembly language 476
graphics

accelerator 73

www.ebook3000.com

http://www.ebook3000.org

Index 505

engine 73
grid computing 375
ground 12

H

half adder 20
half-duplex interaction 283
halting a processor 80
hardware

lock 372
pipeline 382

hardwired 72
Harvard

Architecture 70
Mark I 70

heat dissipation 399
Hertz 28
heterogeneous pipeline 383
hex dump 469
hexadecimal 49
hibernation 403
hiding of hardware details 336
hierarchy 233
hierarchy of memory 198
High Level Language 79
high-level

language 163
programming language 163

hit 229
hit ratio 231
HLL 79
hole 256, 304
homogeneous pipeline 383
Hz 28

I

I-cache 239
I/O library 467
IBM 86
IC 38
IEEE floating point 58
if statement in assembly 171
if-then-else 172
immediate operand 131

implicit
operand encoding 132
parallelism 363

indefinite iteration 172
indirection 135
Industry Standard Architecture 425
input 279
instantaneous power 396
instruction

cache 239
format 86
memory 110, 116
mix 415
pipeline 92, 385
pointer 88, 98, 114
register 136
representation 86
scheduling 156
set 86, 110
set architecture 86
stall 94
store 198

integrated circuit 38
Intel assembly language 476
interface

(bus) 292
width 282

interleaved memory 220
internal bus 291
interrupt 320

disabling 324
during fetch-execute 322
enabling 324
handler 323
mechanism 321
vector 323

inverter 17
invocation (subroutine) 488
ioctl 346
ISA 86, 425
ISP 385
I/O 279

bound 370
bus 289

506 Index

J

jsr instruction 99, 173
jump instruction 98
jump subroutine 173

K

Kbyte (Kilobyte) 215
kilowatt 395

L

L1, L2, L3 cache 237
label (assembly language) 166, 177
Last-In-First-Out 486
latch 23
latency 206, 283
lea 485
Least Recently Used 232
LED 449
level of cache 237
library 79
LIFO 486
Light Emitting Diode 449
limited parallelism 283
link register (ARM) 495
Linux 432, 476
little endian 54, 457
load 199

balancer 375
effective address 485

locality of reference 229
logic gate 14, 453
long (assembly language) 176
longest prefix match 223
loosely coupled 375
low-level

code 336
language 163
programming language 164

lower half (device driver) 337
LPM 403
LRU 232
LSB 48

M

macro 185
macro instruction set 146
macroscopic

architecture 423
parallelism 360, 362

mantissa 58
mapping of addresses 253
master-slave 367
math coprocessor 367
MB 215
Mbps and MBps 283
Megabits per second 215, 283
megabyte 215
Megabytes per second 283
megawatt 395
memory 110, 195

address 210
bank 219, 257
bus 209, 289, 297
cache 234
controller 206, 209
cycle time 207
dump 217
hierarchy 198
mapped architecture 305
module 257
organization 196, 209
technology 196
transfer size 209

Memory Management Unit 252
Metal Oxide Semiconductor 13
microcode 146
microcontroller 76, 146
microengines 432
microprocessor 146
microscopic

architecture 423
parallelism 360, 361

millions of instructions per second 413
milliwatt 395
MIMD 363, 366
minimalistic instruction set 103
MIPS 413

www.ebook3000.com

http://www.ebook3000.org

Index 507

MISD 363
miss 229
miss ratio 231
MMU 252
mode of execution 143, 258
modified bit 267
Modified Harvard Architecture 239
module 257
MOSFET 13
mother board 291
move instruction 297
MSB 48
multicore 38, 362
multicore processors 402
multilayer board 39
multilevel cache hierarchy 233
Multiple Instructions Multiple Data 366
multiple level interrupts 325
multiplexing 283, 295
multiplexor 119, 284
multiprocessing 257
multiprogramming 257
mutual exclusion 343, 372

N

n-channel MOSFET 13
N-type silicon 38
N-way interleaving 220
name (assembly language) 177
nand 15
network cluster 375
Network File System 416
NFS 416
nibble 62
no-op instruction 96
non-selfreferential 507
nonvolatile memory 196
nor 15
normalized 58
Northbridge 427

O

octal 49
off-chip cache 237

on-chip cache 237
one-address 129
opcode 87, 113
opcode (assembly language) 166
open 346
open/read/write/close paradigm 345
operand 87, 166
operation chaining 330
organization

of computer 5
of memory 196, 209

orthogonal instruction set 104
orthogonality 104
out-of-order execution 157
output 279
overflow 28, 53

P

p-channel MOSFET 13
P-type silicon 38
packed BCD 62
page 262

fault 263
replacement 263
table 264

parallel
data transfer 291
interface 281

parallelism 359
parameterized

logic processor 72
macro 185
procedure 174

partial match search 223
passive 291
pattern engine 74
PCB 39
PCI 425
performance 385
Peripheral Component Interconnect 425
peripheral processors 367
physical

memory address 210
memory cache 234

508 Index

pin 22, 38, 283
pinout 38
pipe 382
pipeline 92, 381

architectures 390
characteristics 382
performance 385
stage 382

pipelining 359
pluggable device 326
pointer 216
polling 315
pop 128, 486
power 395

density 399
down 80

Power Saving Polling 406
prefetch 233
preloading 233
preprocessor 79
presence bit 267
primary memory 197
principle of orthogonality 104
printed circuit board 39
procedure

call 173, 491
call in assembly 174
invocation 488

processor 71
program

counter 88, 98
counter (ARM) 495

programmable 77
programmable logic processor 72
Programmable Read Only Memory 197
programmed I/O 314
programming 77
programming interface 285
PROM 197
propagation delay 24
proprietary bus 290
protection 261
PSP 406
push 128, 486

Q

quad core 362
quad-processor PC 363
quadruple data rate 208
query engine 74
queue of requests 339

R

RAM 197, 203
Random Access Memory 197, 203
RAX, RBX, RCX, RDX registers 493
read 199, 294, 346
read cycle time 207
Read Only Memory 77, 197
real address 252
real mode 259
Reduced Instruction Set Computer 91
redundant hardware 374
refresh circuit 205
register 24, 74, 88, 110, 198

(x86) 493
allocation 89
bank 90
conflict 91
file 110
spilling 89
window 100

register-offset mechanism 133
relative branch instruction 99
replacement policy 231
request queue 339
reset 27, 81
resident set 264
ret instruction 173
return

address 174
from interrupt 323
from subroutine 173

RISC 91
RISC assembly 461
rising edge 27
ROM 77, 197
row-major order 269, 465
RSI, RDI, RSP, RBP registers 493

www.ebook3000.com

http://www.ebook3000.org

Index 509

S

scaling 363
scatter read 329
scheduling 156
schematic diagram 14
scientific

computation 412
notation 58

scoreboard 157
search key 221
secondary memory 197
seek 346
segment 262
segmentation 262
selectable logic processor 72
self-clocking 282
sequential 321

architecture 364
circuit 23

Sequential Access Memory 197
serial interface 282
set associative memory cache 245
setup time 390
shared bus 291
shell 383
sign-magnitude 55
silicon 38
SIMD 363, 364
sine 91
Single

Instruction Multiple Data 364
Instruction Single Data 364

single precision 58
SISD 363, 364
size directive 484
slave 367
sleep 403
slot in CAM 221
smart device 327
SMP 366
SoC 38
soft

error 327
power switch 81

software pipeline 382
solderless breadboard 446
solid state disk 196, 197
source

(transistor) 13
code 79
operand 130

Southbridge 427
space
SPEC 415

cfp2006 415
cint2006 415

SPECmark 415
speedup 370
spilling (registers) 89
SRAM 204
SSD 196, 197
stack

architecture 128
pointer 495

stage of a pipeline 382
stall 391
standard I/O library 352
Standard Performance Evaluation

Corporation 415
state 23
static RAM 204
status register 318
stdio 352
store 88, 199, 294
stored

program 71
program computer 63

string 482
struct 217
subprogram invocation 488
subroutine

call 173
invocation 488

supercomputer 375
switching

context 323
fabrics 308

symbol table 184
Symmetric Multiprocessor 366

510 Index

symmetric parallelism 362
synchronization 314
synchronous

memory 208
pipeline 382
programming 321, 342

system
call 346
controller 427

System on Chip 38
system-level architecture 423
System/360 86

T

TCAM 223
terminal (on a transistor) 13
ternary CAM 223
test-and-set 343
threshold voltage 401
throughput 283
Tianhe-2 supercomputer 376
tightly coupled 375
timeout 299
timing 35
TLB 269, 270
transistor 13
Transistor-Transistor Logic 17
transition diagram 26
translation

lookaside buffer 269
of addresses 253

transparency of interrupts 322
transparent 93, 306, 425

bridge 308
cache 229
coprocessor 76

trap 346
tRC 207
truth table 15, 19
TTL 17
Turbo Boost (Intel) 402
tWC 207
two-pass assembler 183, 184

U

unassigned address 299
unconditional branch 487
underflow 53
Unicode 53
uniprocessor 364
Universal Serial bus 326
Unix 416
unsigned integer 53
upper half (device driver) 337
USB 326
use bit 267

V

valid bit 242
variable-length instructions 88
vector

instruction 365
processor 364

vectored interrupt 323
vertical microcode 150
virtual

address 252
address space 252
memory 251
memory system 252

VM 251
volatile memory 196
voltage 12
voltmeter 12
Von Neumann Architecture 70
Von Neumann bottleneck 131

W

wafer 38
Web load balancer 375
while-loop in assembly 172
width

of bus 294
of interface 282
of word 210

window (register) 100
wiring 451

www.ebook3000.com

http://www.ebook3000.org

Index 511

wiring kit 447
word

(assembly language) 176
addressing 210
in memory 210
size 210
width 210

write 199, 294, 346
write cycle time 207
write-back cache 235
write-through cache 235

X

x64 491
x86 473
x86 general-purpose registers 474
x86-64 491
XScale 432

Z

zero-address 128

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94
	95
	96
	97
	98
	99
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483
	484
	485
	486
	487
	488
	489
	490
	491
	492
	493
	494
	495
	496
	497
	498
	499
	500
	501
	502
	503
	504
	505
	506
	507
	508
	509
	510
	511
	512
	513
	514
	515
	516
	517
	518
	519
	520
	521
	522
	523
	524
	525
	526
	527
	528
	529
	530
	531
	532
	533
	534
	535
	536

