

Excel® Macros For Dummies®, 2nd Edition

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774,
www.wiley.com

Copyright © 2017 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without the prior written permission of the
Publisher. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making
Everything Easier, and related trade dress are trademarks or registered trademarks of
John Wiley & Sons, Inc. and may not be used without written permission. Microsoft
and Excel are registered trademarks of Microsoft Corporation. All other trademarks
are the property of their respective owners. John Wiley & Sons, Inc. is not associated
with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND
THE AUTHOR MAKE NO REPRESENTATIONS OR WARRANTIES WITH
RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS
OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES,
INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A
PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR
EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND
STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY
SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE
PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON
SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR
SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT
AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A
CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION
DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES
THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE
AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS

http://www.wiley.com
http://www.wiley.com/go/permissions

WRITTEN AND WHEN IT IS READ. FULFILLMENT OF EACH COUPON
OFFER IS THE SOLE RESPONSIBILITY OF THE OFFEROR.

For general information on our other products and services, please contact our
Customer Care Department within the U.S. at 877-762-2974, outside the U.S. at 317-
572-3993, or fax 317-572-4002. For technical support, please visit
https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand.
Some material included with standard print versions of this book may not be
included in e-books or in print-on-demand. If this book refers to media such as a CD
or DVD that is not included in the version you purchased, you may download this
material at http://booksupport.wiley.com. For more information about Wiley
products, visit www.wiley.com.

Library of Congress Control Number: 2017931733

ISBN: 978-1-119-36924-0

ISBN: 978-1-119-36926-4 (ePDF)

ISBN: 978-1-119-36927-1 (ePub)

https://hub.wiley.com/community/support/dummies
http://booksupport.wiley.com
http://www.wiley.com

Excel® Macros For Dummies®
To view this book's Cheat Sheet, simply go to
www.dummies.com and search for “Excel Macros For
Dummies Cheat Sheet” in the Search box.

Table of Contents
Cover
Introduction

About This Book
Foolish Assumptions
Icons Used in This Book
Beyond the Book
Where to Go from Here

Part 1: Holy Macro Batman!
Chapter 1: Macro Fundamentals

Why Use a Macro?
Macro Recording Basics
Comparing Absolute and Relative Macro Recording
Other Macro Recording Concepts
Examples of Macros in Action

Chapter 2: Getting Cozy with the Visual Basic Editor
Working in the Visual Basic Editor
Working with the Project Window
Working with a Code Window
Customizing the VBA Environment

Chapter 3: The Anatomy of Macros
A Brief Overview of the Excel Object Model
A Brief Look at Variables
Understanding Event Procedures
Error Handling in a Nutshell

Part 2: Making Short Work of Workbook Tasks

http://www.dummies.com
kindle:embed:0002?mime=image/jpg
kindle:embed:0002?mime=image/jpg

Chapter 4: Working with Workbooks
Creating a New Workbook from Scratch
Saving a Workbook when a Particular Cell Is Changed
Saving a Workbook before Closing
Protecting a Worksheet on Workbook Close
Unprotecting a Worksheet on Workbook Open
Opening a Workbook to a Specific Tab
Opening a Specific Workbook Defined by the User
Determining Whether a Workbook Is Already Open
Determining Whether a Workbook Exists in a Directory
Closing All Workbooks at Once
Printing All Workbooks in a Directory
Preventing the Workbook from Closing Until a Cell Is Populated
Creating a Backup of the Current Workbook with Today’s Date

Chapter 5: Working with Worksheets
Adding and Naming a New Worksheet
Deleting All but the Active Worksheet
Hiding All but the Active Worksheet
Unhiding All Worksheets in a Workbook
Moving Worksheets Around
Sorting Worksheets by Name
Grouping Worksheets by Color
Copying a Worksheet to a New Workbook
Creating a New Workbook for Each Worksheet
Printing Specified Worksheets
Protecting All Worksheets
Unprotecting All Worksheets
Creating a Table of Contents for Your Worksheets
Zooming In and Out of a Worksheet with Double-Click
Highlighting the Active Row and Column

Part 3: One-Touch Data Manipulation
Chapter 6: Feeling at Home on the Range

Selecting and Formatting a Range
Creating and Selecting Named Ranges
Enumerating Through a Range of Cells

Inserting Blank Rows in a Range
Unhiding All Rows and Columns
Deleting Blank Rows
Deleting Blank Columns
Limiting Range Movement to a Particular Area
Selecting and Formatting All Formulas in a Workbook
Finding and Selecting the First Blank Row or Column

Chapter 7: Manipulating Data with Macros
Copying and Pasting a Range
Converting All Formulas in a Range to Values
Text to Columns on All Columns
Converting Trailing Minus Signs
Trimming Spaces from All Cells in a Range
Truncating ZIP Codes to the Left Five
Padding Cells with Zeros
Replacing Blanks Cells with a Value
Appending Text to the Left or Right of Your Cells
Cleaning Up Non-Printing Characters
Highlighting Duplicates in a Range of Data
Hiding All but Rows Containing Duplicate Data
Selectively Hiding AutoFilter Drop-down Arrows
Copying Filtered Rows to a New Workbook
Showing Filtered Columns in the Status Bar

Part 4: Macro-Charging Reports and Emails
Chapter 8: Automating Common Reporting Tasks

Refreshing All PivotTables in a Workbook
Creating a PivotTable Inventory Summary
Adjusting All Pivot Data Field Titles
Setting All Data Items to Sum
Applying Number Formatting for All Data Items
Sorting All Fields in Alphabetical Order
Applying a Custom Sort to Data Items
Applying PivotTable Restrictions
Applying Pivot Field Restrictions
Automatically Deleting PivotTable Drill-Down Sheets

Printing a PivotTable for Each Report Filter Item
Creating a New Workbook for Each Report Filter Item
Resizing All Charts on a Worksheet
Aligning a Chart to a Specific Range
Creating a Set of Disconnected Charts
Printing All Charts on a Worksheet

Chapter 9: Sending Emails from Excel
Mailing the Active Workbook as an Attachment
Mailing a Specific Range as an Attachment
Mailing a Single Sheet as an Attachment
Sending Mail with a Link to Your Workbook
Mailing All Email Addresses in Your Contact List
Saving All Attachments to a Folder
Saving Certain Attachments to a Folder

Chapter 10: Wrangling External Data with Macros
Working with External Data Connections
Using Macros to Create Dynamic Connections
Iterating through All Connections in a Workbook
Using ADO and VBA to Pull External Data

Part 5: Part of Tens
Chapter 11: Ten Handy Visual Basic Editor Tips

Applying Block Comments
Copying Multiple Lines of Code at Once
Jumping between Modules and Procedures
Teleporting to Your Functions
Staying in the Right Procedure
Stepping through Your Code
Stepping to a Specific Line in Your Code
Stopping Your Code at a Predefined Point
Seeing the Beginning and End of Variable Values
Turning Off Auto Syntax Check

Chapter 12: Ten Places to Turn for Macro Help
Let Excel Write the Macro for You
Use the VBA Help Files
Pilfer Code from the Internet

Leverage User Forums
Visit Expert Blogs
Mine YouTube for Video Training
Attend Live and Online Training Classes
Learn from the Microsoft Office Dev Center
Dissect the Other Excel Files in your Organization
Ask Your Local Excel Genius

Chapter 13: Ten Ways to Speed Up Your Macros
Halt Sheet Calculations
Disable Sheet Screen Updating
Turn Off Status Bar Updates
Tell Excel to Ignore Events
Hide Page Breaks
Suspend PivotTable Updates
Steer Clear of Copy and Paste
Use the With Statement
Don’t Explicitly Select Objects
Avoid Excessive Trips to the Worksheet

About the Author
Connect with Dummies
End User License Agreement

Introduction
In its broadest sense, a macro is a sequence of instructions that automates some
aspect of Excel so that you can work more efficiently and with fewer errors. You
might create a macro, for example, to format and print a month-end sales report.
After you develop the macro, you can execute it to perform many time-consuming
procedures automatically.

Macros are written in VBA, which stands for Visual Basic for Applications. VBA is
a programming language developed by Microsoft and a tool used to develop
programs that control Excel.

Excel programming terminology can be a bit confusing. For example, VBA is a
programming language but also serves as a macro language. What do you call
something written in VBA and executed in Excel? Is it a macro or is it a program?
Excel’s Help system often refers to VBA procedures as macros, so this is the
terminology used in this book.

You’ll also see the term automate throughout this book. This word means that a
series of steps are completed automatically. For example, if you write a macro that
adds color to some cells, prints the worksheet, and then removes the color, you have
automated those three steps.

You’re probably aware that people use Excel for thousands of different tasks. Here
are just a few examples:

Keeping lists of things, such as customer names and transactions
Budgeting and forecasting
Analyzing scientific data
Creating invoices and other forms
Developing charts from data

The list could go on and on. The point is simply that Excel is used for a wide variety
of tasks, and everyone reading this book has different needs and expectations
regarding Excel. One thing most readers have in common, however, is the need to
automate some aspect of Excel, which is what macros (and this book) are all about.

About This Book
This book approaches the topic of Excel macros with the recognition that
programming VBA takes time and practice — time that you may not have right now.
In fact, many analysts don’t have the luxury of taking a few weeks to become expert

at VBA. So instead of the same general overview of VBA topics, this book provides
some of the most commonly used real-world Excel macros.

Each section in the book outlines a common problem and provides an Excel macro to
solve the problem — along with a detailed explanation of how the macro works and
where to use it.

Each section presents the following:

The problem
The macro solution
How the macro works

After reading each section, you'll be able to

Immediately implement the required Excel macro
Understand how the macro works
Reuse the macro in other workbooks or with other macros

The macros in this book are designed to get you up and running with VBA in the
quickest way possible. Each macro tackles a common task that benefits from
automation. The idea here is to learn through application. This book is designed so
that you can implement the macro while getting a clear understanding of what the
macro does and how it works.

Foolish Assumptions
I make three assumptions about you as the reader:

You've installed Microsoft Excel 2007 or a higher version.
You have some familiarity with the basic concepts of data analysis, such as
working with tables, aggregating data, creating formulas, referencing cells,
filtering, and sorting.
You have an Internet connection so you can download the sample files, found at
www.dummies.com/go/excelmacros.

Icons Used in This Book

 Tip icons cover tricks or techniques related to the current discussion.

http://www.dummies.com/go/excelmacros

 Remember icons indicate notes or asides that are important to keep in mind.

 Warning icons hold critical information about pitfalls you will want to avoid.

Beyond the Book
In addition to the material in the print or e-book you’re reading, this product comes
with more online goodies:

Sample files: Each macro in this book has an associated sample file that enables
you to see the macro working and to review the code. You can use the sample
files also to copy and paste the code into your environment (as opposed to typing
each macro from scratch). Download the sample files at:
www.dummies.com/go/excelmacros

Each macro in this book has detailed instructions on where to copy and paste the
code. In general terms, you open the sample file associated with the macro, go to
the Visual Basic Editor (by pressing Alt+F11), and copy the code. Then you go to
your workbook, open the Visual Basic Editor, and paste the code in the
appropriate location.

 Note that in some macros, you need to change the macro to suit your
situation. For example, in the macro that prints all workbooks in a directory (see
Chapter 4), you point to the C:\Temp\ directory. Before using this macro, you
must edit it to point to your target directory.

 If a macro is not working for you, most likely a component of the macro
needs to be changed. Pay special attention to range addresses, directory names,
and any other hard-coded names.
Cheat sheet: The cheat sheet offers shortcut keys that can help you work more
efficiently in Excel’s Visual Basic Editor. You can find the cheat sheet by visiting
www.dummies.com and searching for “Excel Macros Cheat Sheet”.

Where to Go from Here

http://www.dummies.com/go/excelmacros
http://www.dummies.com

If you’re completely new to Excel macros, start with Part 1 (Chapters 1 – 3) to get
the fundamentals you’ll need to leverage the macros in this book. There, you will
gain a concise understanding of how macros and VBA work, along with the basic
foundation you need to implement the macros provided in this book.

If you’ve got some macro experience and want to dive right into the macro examples,
feel free to peruse Chapters 4 – 9 and search for the task or macro that looks
interesting to you. Don’t worry. Each macro example stands on its own within its
own section that gives you all the guidance you need to understand and implement the
code in your own workbook.

Visit Part 2 if you’re interested in macros that automate common workbook and
worksheet tasks to save time and gain efficiencies.

Explore Part 3 to find macros that navigate ranges, format cells, and manipulate the
data in your workbooks.

If you want to find macros that work with PivotTables, charts, and emails, thumb
through the macros in Part 4 where you will discover macros that automate redundant
PivotTable and chart tasks, as well as macros that send emails and connect to
external data sources.

Don’t forget to hit Part 5 for some useful tips and advice on how to get the most out
of your new macro skills.

Here are some final things to keep in mind while working with the macros in this
book:

Any file that contains a macro must have the .xlsm file extension. See the
section on macro-enabled file extensions in Chapter 1 for more information.
Excel does not run macros until they are enabled. As you implement these
macros, you and your customers must comply with Excel’s macro security
measures. See the section in Chapter 1 on macro security in Excel for details.
You cannot undo macro actions. When working in Excel, you can often undo the
actions you've taken because Excel keeps a log (called the undo stack) recording
your last 100 actions. However, running a macro automatically destroys the undo
stack, so you can't undo the actions you take in a macro.
You need to tweak the macros to fit your workbook. Many of the macros
reference example sheet names and ranges that you may not have in your
workbook. Be sure to replace references like “Sheet 1” or Range(“A1”) with the
sheet names and cell addresses you are working with in your own workbooks.

Part 1

Holy Macro Batman!

IN THIS PART …
Build a foundation for your macro skills with fundamental macro recording concepts.

Get a solid understanding of the ground rules for using and distributing macros in
Excel.

Explore Excel’s coding environment with a deep-dive of the Visual Basic Editor.

Explore how to leverage the Excel object model to start writing your own macros
from scratch.

Understand the roles played by variables, events, and error handling in macro
development.

Chapter 1

Macro Fundamentals
IN THIS CHAPTER

 Why use macros
 Recording macros
 Understanding macro security
 Examples of macros in action

A macro is essentially a set of instructions or code that you create to tell Excel to
execute any number of actions. In Excel, macros can be written or recorded. The key
word here is recorded.

Recording a macro is like programming a phone number into your cell phone. You
first manually dial and save a number. Then when you want, you can redial those
numbers with the touch of a button. Just as on a cell phone, you can record your
actions in Excel while you perform them. While you record, Excel gets busy in the
background, translating your keystrokes and mouse clicks to written code (also
known as Visual Basic for Applications (VBA)). After a macro is recorded, you can
play back those actions anytime you want.

In this chapter, you’ll explore macros and learn how you can use macros to automate
your recurring processes to simplify your life.

Why Use a Macro?
The first step in using macros is admitting you have a problem. Actually, you may
have several problems:

Problem 1 - Repetitive tasks: As each new month rolls around, you have to
make the donuts (that is, crank out those reports). You have to import that data.
You have to update those PivotTables. You have to delete those columns, and so
on. Wouldn’t it be nice if you could fire up a macro and have those more
redundant parts of your dashboard processes done automatically?
Problem 2 - You’re making mistakes: When you go hand-to-hand combat with
Excel, you’re bound to make mistakes. When you’re repeatedly applying
formulas, sorting, and moving things around manually, there’s always that risk of
catastrophe. Add to that the looming deadlines and constant change requests, and

your error rate goes up. Why not calmly record a macro, ensure that everything is
running correctly, and then forget it? The macro is sure to perform every action
the same way every time you run it, reducing the chance of errors.
Problem 3 - Awkward navigation: You often create reports for an audience that
probably has a limited knowledge of Excel. It’s always helpful to make your
reports more user-friendly. Macros can be used to dynamically format and print
worksheets, navigate to specific sheets in your workbook, or even save the open
document in a specified location. Your audience will appreciate these little
touches that help make perusal of your workbooks a bit more pleasant.

Macro Recording Basics
To start recording your first macro, you need to first find the Macro Recorder, which
is on the Developer tab. Unfortunately, Excel comes out of the box with the
Developer tab hidden — you may not see it on your version of Excel at first. If you
plan to work with VBA macros, you'll want to make sure that the Developer tab is
visible. To display this tab

1. Choose File ⇒    Excel Options.
2. In the Excel Options dialog box, select Customize Ribbon.
3. In the list box on the right, place a check mark next to Developer.
4. Click OK to return to Excel.

Now that you have the Developer tab showing in the Excel Ribbon, you can start up
the Macro Recorder by selecting Record Macro from the Developer tab. This
activates the Record Macro dialog box, as shown in Figure 1-1.

FIGURE 1-1: The Record Macro dialog box.

Here are the four parts of the Record Macro dialog box:

Macro Name: This should be self-explanatory. Excel gives a default name to
your macro, such as Macro1, but you should give your macro a name more
descriptive of what it actually does. For example, you might name a macro that
formats a generic table as FormatTable.
Shortcut Key: Every macro needs an event, or something to happen, for it to run.
This event can be a button press, a workbook opening, or in this case, a keystroke
combination. When you assign a shortcut key to your macro, entering that
combination of keys triggers your macro to run. This is an optional field.
Store Macro In: This Workbook is the default option. Storing your macro in This
Workbook simply means that the macro is stored along with the active Excel file.
The next time you open that particular workbook, the macro is available to run.
Similarly, if you send the workbook to another user, that user can run the macro
as well (provided the macro security is properly set by your user — more on that
later in this chapter).
Description: This is an optional field, but it can come in handy if you have
numerous macros in a spreadsheet or if you need to give a user a more detailed
description about what the macro does.

With the Record Macro dialog box open, follow these steps to create a simple macro
that enters your name into a worksheet cell:

1. Enter a new single-word name for the macro to replace the default Macro1
name.
A good name for this example is MyName.

2. Assign this macro to the shortcut key Ctrl+Shift+N.
You do this by entering uppercase N in the edit box labeled Shortcut Key.

3. Click OK.
This closes the Record Macro dialog box and begins recording your actions.

4. Select any cell on your Excel spreadsheet, type your name into the selected
cell, and then press Enter.

5. Choose Developer ⇒    Code ⇒    Stop Recording (or click the Stop Recording
button in the status bar).

Examining the macro
The macro was recorded in a new module named Module1. To view the code in this
module, you must activate the Visual Basic Editor. You can activate the VB Editor in
either of two ways:

Press Alt+F11.
Choose Developer ⇒   Code ⇒   Visual Basic.

In the VB Editor, the Project window displays a list of all open workbooks and add-
ins. This list is displayed as a tree diagram, which you can expand or collapse. The
code that you recorded previously is stored in Module1 in the current workbook.
When you double-click Module1, the code in the module appears in the Code
window.

The macro should look something like this:
Sub MyName()
'
' MyName Macro
'
' Keyboard Shortcut: Ctrl+Shift+N
'
 ActiveCell.FormulaR1C1 = "Michael Alexander"

End Sub

The macro recorded is a Sub procedure named MyName. The statements tell Excel
what to do when the macro is executed.

Notice that Excel inserted some comments at the top of the procedure. These
comments are some of the information that appeared in the Record Macro dialog box.
These comment lines (which begin with an apostrophe) aren’t really necessary, and
deleting them has no effect on how the macro runs. If you ignore the comments, you'll
see that this procedure has only one VBA statement:

ActiveCell.FormulaR1C1 = "Michael Alexander"

This single statement causes the name you typed while recording to be inserted into
the active cell.

Testing the macro
Before you recorded this macro, you set an option that assigned the macro to the
Ctrl+Shift+N shortcut key combination. To test the macro, return to Excel by using
either of the following methods:

Press Alt+F11.
Click the View Microsoft Excel button on the VB Editor toolbar.

When Excel is active, activate a worksheet. (It can be in the workbook that contains
the VBA module or in any other workbook.) Select a cell and press Ctrl+Shift+N.
The macro immediately enters your name into the cell.

 In the preceding example, notice that you selected the cell to be altered
before you started recording your macro. This step is important. If you select a
cell while the macro recorder is turned on, the actual cell that you selected is
recorded into the macro. In such a case, the macro would always format that
particular cell, and it would not be a general-purpose macro.

Editing the macro
After you record a macro, you can make changes to it (although you must know what
you’re doing). For example, assume that you want your name to be bold. You could
re-record the macro, but this modification is simple, so editing the code is more
efficient. Press Alt+F11 to activate the VB Editor window. Then activate Module1
and insert the following statement before the End Sub statement:

ActiveCell.Font.Bold = True

The edited macro appears as follows:
Sub MyName()
'
' MyName Macro
'
' Keyboard Shortcut: Ctrl+Shift+N
'
 ActiveCell.Font.Bold = True

 ActiveCell.FormulaR1C1 = "Michael Alexander"

End Sub

Test this new macro, and you see that it performs as it should.

Comparing Absolute and Relative
Macro Recording

Now that you’ve read about the basics of the Macro Recorder interface, it’s time to
go deeper and begin recording macros. The first thing you need to understand before
you begin is that Excel has two modes for recording — absolute reference and
relative reference.

Recording macros with absolute references
Excel’s default recording mode is in absolute reference. As you may know, the term
absolute reference is often used in the context of cell references found in formulas.
When a cell reference in a formula is an absolute reference, it does not automatically
adjust when the formula is pasted to a new location.

The best way to understand how this concept applies to macros is to try it out. Open
the Chapter 1 Sample File.xlsx file and record a macro that counts the rows in the
Branchlist worksheet. (See Figure 1-2.)

FIGURE 1-2: Your pre-totaled worksheet containing two tables.

 The sample dataset used in this chapter can be found on this book’s
companion website at www.dummies.com/go/excelmacros.

Follow these steps to record the macro:

1. Before recording, make sure cell A1 is selected.
2. Select Record Macro from the Developer tab.
3. Name the macro AddTotal.
4. Choose This Workbook for the save location.
5. Click OK to start recording.

At this point, Excel is recording your actions. While Excel is recording, perform
the following steps:

1. Select cell A16 and type Total in the cell.
2. Select the first empty cell in Column D (D16) and enter =

COUNTA(D2:D15).
This gives a count of branch numbers at the bottom of column D. You need
to use the COUNTA function because the branch numbers are stored as
text.

3. Click Stop Recording on the Developer tab to stop recording the

http://www.dummies.com/go/excelmacros

macro.

The formatted worksheet should look something like the one in Figure 1-3.

FIGURE 1-3: Your post-totaled worksheet.

To see your macro in action, delete the total row you just added and play back your
macro by following these steps:

1. Select Macros from the Developer tab.
2. Find and select the AddTotal macro you just recorded.
3. Click the Run button.

If all goes well, the macro plays back your actions to a T and gives your table a total.
Now here’s the thing: No matter how hard you try, you can’t make the AddTotal
macro work on the second table (G1:I15 in Figure 1-3). Why? Because you recorded
it as an absolute macro.

To understand what this means, examine the underlying code. To examine the code,
select Macros from the Developer tab to get the Macro dialog box you see in Figure
1-4.

FIGURE 1-4: The Excel Macro dialog box.

Select the AddTotal macro and click the Edit button. This opens the Visual Basic
Editor to show you the code that was written when you recorded your macro:

Sub AddTotal()

 Range("A16").Select

 ActiveCell.FormulaR1C1 = "Total"

 Range("D16").Select

 ActiveCell.FormulaR1C1 = "=COUNTA(R[-14]C:R[-1]C)"

End Sub

Pay particular attention to lines 2 and 4 of the macro. When you asked Excel to select
cell range A16 and then D16, those cells are exactly what it selected. Because the
macro was recorded in absolute reference mode, Excel interpreted your range
selection as absolute. In other words, if you select cell A16, that cell is what Excel
gives you. In the next section, you take a look at what the same macro looks like
when recorded in relative reference mode.

Recording macros with relative references
In the context of Excel macros, relative means relative to the currently active cell. So
you should use caution with your active cell choice — both when you record the
relative reference macro and when you run it.

First, make sure the Chapter 1 Sample File.xlsx file is open. Then, use the following
steps to record a relative-reference macro:

 To download the Chapter 1 Sample file, visit
www.dummies.com/go/excelmacros.

1. Select the Use Relative References option from the Developer tab, as shown
in Figure 1-5.

2. Before recording, make sure cell A1 is selected.
3. Select Record Macro from the Developer tab.
4. Name the macro AddTotalRelative.
5. Choose This Workbook for the save location.
6. Click OK to start recording.
7. Select cell A16 and type Total in the cell.
8. Select the first empty cell in Column D (D16) and type = COUNTA(D2:D15).
9. Click Stop Recording on the Developer tab to stop recording the macro.

FIGURE 1-5: Recording a macro with relative references.

At this point, you have recorded two macros. Take a moment to examine the code for
your newly created macro.

Select Macros from the Developer tab to open the Macro dialog box. Here, choose
the AddTotalRelative macro and click Edit.

Again, this opens the Visual Basic Editor to show you the code that was written when
you recorded your macro. This time, your code looks something like the following:

Sub AddTotalRelative()

 ActiveCell.Offset(15, 0).Range("A1").Select

 ActiveCell.FormulaR1C1 = "Total"

 ActiveCell.Offset(0, 3).Range("A1").Select

 ActiveCell.FormulaR1C1 = "=COUNTA(R[-14]C:R[-1]C)"

End Sub

Notice that there are no references to any specific cell ranges at all (other than the

http://www.dummies.com/go/excelmacros

starting point “A1”). Let’s take a quick look at what the relevant parts of this VBA
code really mean.

Notice that in line 2, Excel uses the Offset property of the active cell. This property
tells the cursor to move a certain number of cells up or down and a certain number of
cells left or right.

The Offset property code tells Excel to move 15 rows down and 0 columns across
from the active cell (in this case, A1). There’s no need for Excel to explicitly select a
cell as it did when recording an absolute reference macro.

To see this macro in action, delete the total row for both tables and do the following:

1. Select cell A1.
2. Select Macros from the Developer tab.
3. Find and select the AddTotalRelative macro.
4. Click the Run button.
5. Now select cell F1.
6. Select Macros from the Developer tab.
7. Find and select the AddTotalRelative macro.
8. Click the Run button.

Notice that this macro, unlike your previous macro, works on both sets of data.
Because the macro applies the totals relative to the currently active cell, the totals
are applied correctly.

For this macro to work, you simply need to ensure that

You’ve selected the correct starting cell before running the macro.
The block of data has the same number of rows and columns as the data on which
you recorded the macro.

Hopefully, this simple example has given you a firm grasp of macro recording with
both absolute and relative references.

Other Macro Recording Concepts
At this point, you should feel comfortable recording your own Excel macros. Here
are some of other important concepts you’ll need to keep in mind when working with
macros.

Macro-enabled file extensions

Beginning with Excel 2007, Excel workbooks were given the standard file extension
.xlsx. Files with the .xlsx extension cannot contain macros. If your workbook contains
macros and you then save that workbook as an .xlsx file, your macros are removed
automatically. Excel warns you that macro content will be removed when saving a
workbook with macros as an .xlsx file.

If you want to retain the macros, you must save your file as an Excel Macro-Enabled
Workbook. This gives your file an .xlsm extension. The idea is that all workbooks
with an .xlsx file extension are automatically known to be safe, whereas you can
recognize .xlsm files as a potential threat.

Macro security in Excel 2010
With the release of Office 2010, Microsoft introduced significant changes to its
Office security model. One of the most significant changes is the concept of trusted
documents. Without getting into the technical minutia, a trusted document is
essentially a workbook you have deemed safe by enabling macros.

If you open a workbook that contains macros in Excel 2010, you see a yellow bar
message under the Ribbon stating that macros (active content) have, in effect, been
disabled.

If you click Enable, it automatically becomes a trusted document. This means you no
longer are prompted to enable the content as long as you open that file on your
computer. The basic idea is that if you told Excel that you “trust” a particular
workbook by enabling macros, it is highly likely that you will enable macros each
time you open it. Thus, Excel remembers that you’ve enabled macros before and
inhibits any further messages about macros for that workbook.

This is great news for you and your clients. After enabling your macros just one time,
they won’t be annoyed at the constant messages about macros, and you won't have to
worry that your macro-enabled dashboard will fall flat because macros have been
disabled.

Trusted locations
If the thought of any macro message coming up (even one time) unnerves you, you can
set up a trusted location for your files. A trusted location is a directory that is deemed
a safe zone where only trusted workbooks are placed. A trusted location allows you
and your clients to run a macro-enabled workbook with no security restrictions as
long as the workbook is in that location.

To set up a trusted location, follow these steps:

1. Select the Macro Security button on the Developer tab.
This activates the Trust Center dialog box.

2. Click the Trusted Locations button.

This opens the Trusted Locations menu (see Figure 1-6), which shows you all the
directories that are considered trusted.

3. Click the Add New Location button.
4. Click Browse to find and specify the directory that will be considered a

trusted location.

FIGURE 1-6: The Trusted Locations menu allows you to add directories that are considered trusted.

After you specify a trusted location, any Excel file opened from this location will
have macros automatically enabled.

Storing macros in your Personal Macro Workbook
Most user-created macros are designed for use in a specific workbook, but you may
want to use some macros in all your work. You can store these general-purpose
macros in the Personal Macro Workbook so that they’re always available to you. The
Personal Macro Workbook is loaded whenever you start Excel. This file, named
personal.xlsb, doesn't exist until you record a macro using Personal Macro
Workbook as the destination.

To record the macro in your Personal Macro Workbook, select the Personal Macro
Workbook option in the Record Macro dialog box before you start recording. This
option is in the Store Macro In drop-down list (refer to Figure 1-1).

If you store macros in the Personal Macro Workbook, you don’t have to remember to
open the Personal Macro Workbook when you load a workbook that uses macros.
When you want to exit, Excel asks whether you want to save changes to the Personal
Macro Workbook.

 The Personal Macro Workbook normally is in a hidden window to keep it
out of the way.

Assigning a macro to a button and other form
controls
When you create macros, you may want to have a clear and easy way to run each
macro. A basic button can provide a simple but effective user interface.

As luck would have it, Excel offers a set of form controls designed specifically for
creating user interfaces directly on spreadsheets. There are several different types of
form controls, from buttons (the most commonly used control) to scrollbars.

The idea behind using a form control is simple: You place a form control on a
spreadsheet and then assign a macro to it — that is, a macro you’ve already
recorded. When a macro is assigned to the control, that macro is executed, or played,
when the control is clicked.

Take a moment to create a button for the AddTotalRelative macro you created earlier.
Here’s how:

1. Click the Insert button under the Developer tab. (See Figure 1-7.)
2. Select the Button Form Control from the drop-down list that appears.
3. Click the location where you want to place your button.

When you drop the button control onto your spreadsheet, the Assign Macro dialog
box, shown in Figure 1-8, activates and asks you to assign a macro to this button.

4. Select the macro you want to assign to the button and then click OK.

FIGURE 1-7: You can find the form controls in the Developer tab.

FIGURE 1-8: Assign a macro to the newly added button.

At this point, you have a button that runs your macro when you click it! Keep in mind
that all the controls in the Form Controls group (shown in Figure 1-7) work in the
same way as the command button, in that you assign a macro to run when the control
is selected.

FORM CONTROLS VERSUS ActiveX
CONTROLS

Notice the form controls and ActiveX controls in Figure 1-7. Although they look similar,
they’re quite different. Form controls are designed specifically for use on a spreadsheet, and
ActiveX controls are typically used on Excel user forms. As a general rule, you should
always use form controls when working on a spreadsheet. Why? Form controls need less
overhead, so they perform better, and configuring form controls is far easier than configuring
their ActiveX counterparts.

Placing a macro on the Quick Access Toolbar
You can also assign a macro to a button in Excel’s Quick Access Toolbar. The Quick
Access Toolbar sits either above or below the Ribbon. You can add a custom button
that runs your macro by following these steps:

1. Right-click your Quick Access Toolbar and select Customize Quick Access
Toolbar.
This opens the dialog box shown in Figure 1-9.

2. Click the Quick Access Toolbar button on the left of the Excel Options

dialog box.
3. Select Macros from the Choose Commands From drop-down list on the left.
4. Select the macro you want to add and click the Add button.
5. Change the icon by clicking the Modify button.

FIGURE 1-9: Adding a macro to the Quick Access Toolbar.

Examples of Macros in Action
Covering the fundamentals of building and using macros is one thing. Coming up with
good ways to incorporate them into your reporting processes is another. Take a
moment to review a few examples of how macros automate simple reporting tasks.

 Open the Chapter 1 Samples.xlsm file to follow along in the next section. To
download the Chapter 1 Sample file, visit
www.dummies.com/go/excelmacros.

Building navigation buttons
The most common use of macros is navigation. Workbooks that have many
worksheets or tabs can be frustrating to navigate. To help your audience, you can
create some sort of a switchboard, like the one shown in Figure 1-10. When a user
clicks the Example 1 button, he’s taken to the Example 1 sheet.

http://www.dummies.com/go/excelmacros

FIGURE 1-10: Use macros to build buttons that help users navigate your reports.

Creating a macro to navigate to a sheet is quite simple.

1. Start at the sheet that will become your switchboard or starting point.
2. Start recording a macro.
3. While recording, click the destination sheet (the sheet this macro will

navigate to).
4. After you click in the destination sheet, stop recording the macro.
5. Assign the macro to a button.

 It’s useful to know that Excel has a built-in hyperlink feature, allowing
you to convert the contents of a cell into a hyperlink that links to another location.
That location can be a separate Excel workbook, a website, or even another tab
in the current workbook. Although using a hyperlink may be easier than setting up
a macro, you can’t apply a hyperlink to form controls (like buttons). Instead of a
button, you’d use text to let users know where they’ll go when they click the link.

Dynamically rearranging PivotTable data
Macros be used with any Excel object normally used in reporting. For instance, you
can use a macro to give your audience a way to dynamically change a pivot table. In
the example illustrated in Figure 1-11, macros allow a user to change the perspective
of the chart simply by selecting any one of the buttons shown.

FIGURE 1-11: This report allows users to choose their perspective.

Figure 1-12 reveals that the chart is actually a pivot chart tied to a PivotTable. The
recorded macros assigned to each button are doing nothing more than rearranging the
PivotTable to slice the data using various pivot fields.

FIGURE 1-12: The macros behind these buttons rearrange the data fields in a PivotTable.

Here are the high-level steps needed to create this type of setup:

1. Create your PivotTable and a pivot chart.
2. Start recording a macro.
3. While recording, move a pivot field from one area of the PivotTable to the

other. When you’re done, stop recording the macro.
4. Record another macro to move the data field back to its original position.
5. After both macros are set up, assign each one to a separate button.

You can fire your new macros in turn to see your pivot field dynamically move back

and forth.

Offering one-touch reporting options
The last two examples demonstrate that you can record any action that you find of
value. That is, if you think users would appreciate a certain feature being automated
for them, why not record a macro to do so?

In Figure 1-13, notice that you can filter the PivotTable for the top or bottom 20
customers. Because the steps to filter a PivotTable for the top and bottom 20 have
been recorded, users can get the benefit of this functionality without knowing how to
do it themselves. Also, recording a specific action allows you to manage risk a bit.
That is to say, you’ll know that your users will interact with your reports in a method
that has been developed and tested by you.

FIGURE 1-13: Offering prerecorded views not only saves time and effort, but it also allows users that don’t know
how to use advanced features to benefit from them.

This not only saves them time and effort, but it also allows users that don’t know how
to take these actions to benefit from them.

Figure 1-14 demonstrates how you can give your audience a quick and easy way to
see the same data on different charts. Don’t laugh too quickly at the uselessness of
this example. It’s not uncommon to be asked to see the same data different ways.
Instead of taking up real estate, just record a macro that changes the Chart Type of the
chart. Your clients can switch views to their heart’s content.

FIGURE 1-14: You can give your audience a choice in how they view data.

Chapter 2

Getting Cozy with the Visual
Basic Editor

IN THIS CHAPTER
 Understanding Visual Basic Editor components
 Working with the Project window
 Using the Code window
 Customizing the Visual Basic Editor

The Visual Basic Editor (VBE) is the environment where all Excel macros are stored
and processed. Each workbook you create comes with this interconnected VBE
environment free of charge. Even if you never record one macro, the VBE is in the
background waiting to be used. When you create a macro, the VBE quietly comes to
life ready to process the various procedures and routines you give it.

In this chapter, you'll take your first look behind the curtain to explore the Visual
Basic Editor.

Working in the Visual Basic Editor
The Visual Basic Editor is actually a separate application that runs when you open
Excel. In order to see this hidden VBE environment, you’ll need to activate it. The
quickest way to activate the VBE is to press Alt+F11 when Excel is active. To return
to Excel, press Alt+F11 again.

You can also activate the VBE by using the Visual Basic command found on Excel’s
Developer tab.

Figure 2-1 shows the VBE program with some of the key parts identified. Chances
are your VBE program window won’t look exactly like what you see in Figure 2-1.
The VBE contains several windows and is highly customizable. You can hide
windows, rearrange windows, dock windows, and so on.

FIGURE 2-1: The VBE with significant elements identified.

The VBE menu bar
The VBE menu bar works just like every other menu bar you’ve encountered. It
contains commands that you use to do things with the various components in the VBE.
You will also find that many of the menu commands have shortcut keys associated
with them.

The VBE also features shortcut menus. You can right-click virtually anything in the
VBE and get a shortcut menu of common commands.

The VBE toolbar
The Standard toolbar, which is directly under the menu bar by default, is one of four
VBE toolbars available. You can customize the toolbars, move them around, display
other toolbars, and so on. If you're so inclined, use the View  ⇒   Toolbars command
to work with VBE toolbars. Most people just leave them as they are.

The Project window
The Project window displays a tree diagram that shows every workbook currently
open in Excel (including add-ins and hidden workbooks). Double-click items to
expand or contract them. You’ll explore this window in more detail in the “Working
with the Project Window” section later in this chapter.

If the Project window is not visible, press Ctrl+R or use the View  ⇒   Project
Explorer command. To hide the Project window, click the Close button in its title
bar. Alternatively, right-click anywhere in the Project window and select Hide from
the shortcut menu.

The Code window
A Code window contains VBA code. Every object in a project has an associated
Code window. To view an object’s Code window, double-click the object in the
Project window. For example, to view the Code window for the Sheet1 object,
double-click Sheet1 in the Project window. Unless you’ve added some VBA code,
the Code window is empty.

You find out more about Code windows later in this chapter’s “Working with a Code
Window” section.

The Immediate window
The Immediate window may or may not be visible. If it isn’t visible, press Ctrl+G or
use the View  ⇒   Immediate Window command. To close the Immediate window,
click the Close button in its title bar (or right-click anywhere in the Immediate
window and select Hide from the shortcut menu).

The Immediate window is most useful for executing VBA statements directly and for
debugging your code. If you’re just starting out with VBA, this window won’t be all
that useful, so feel free to hide it and free up some screen space for other things.

Working with the Project Window
When you’re working in the VBE, each Excel workbook and add-in that’s open is a
project. You can think of a project as a collection of objects arranged as an outline.
You can expand a project by clicking the plus sign (+) at the left of the project’s name
in the Project window. Contract a project by clicking the minus sign (-) to the left of
a project’s name. Or, you can double-click the items to expand and contract them.

Figure 2-2 shows a Project window with two projects listed: a workbook named
Book1 and a workbook named Book2.

FIGURE 2-2: This Project window lists two projects. They are expanded to show their objects.

Every project expands to show at least one node called Microsoft Excel Objects.
This node expands to show an item for each sheet in the workbook (each sheet is
considered an object), and another object called ThisWorkbook (which represents
the Workbook object). If the project has any VBA modules, the project listing also
shows a Modules node.

Adding a new VBA module
When you record a macro, Excel automatically inserts a VBA module to hold the
recorded code. The workbook that holds the module for the recorded macro depends
on where you choose to store the recorded macro, just before you start recording.

In general, a VBA module can hold three types of code:

Declarations: One or more information statements that you provide to VBA. For
example, you can declare the data type for variables you plan to use, or set some
other module-wide options.
Sub procedures: A set of programming instructions that performs some action.
All recorded macros are Sub procedures.
Function procedures: A set of programming instructions that returns a single
value (similar in concept to a worksheet function, such as Sum).

A single VBA module can store any number of Sub procedures, Function procedures,
and declarations. How you organize a VBA module is completely up to you. Some
people prefer to keep all their VBA code for an application in a single VBA module;

others like to split up the code into several different modules. It’s a personal choice,
just like arranging furniture.

Follow these steps to manually add a new VBA module to a project:

1. Select the project’s name in the Project window.
2. Choose Insert  ⇒    Module.

Or you can

1. Right-click the project’s name.
2. Choose Insert  ⇒    Module from the shortcut menu.

The new module is added to a Modules folder in the Project window (see Figure 2-
3). Any modules you create in a given workbook is placed in this Modules folder.

FIGURE 2-3: Code modules are visible in the Project window in a folder called Modules.

Removing a VBA module
You may want to remove a code module that is no longer needed. To do so, follow
these steps:

1. Select the module’s name in the Project window.
2. Choose File  ⇒    Remove xxx, where xxx is the module name.

Or

1. Right-click the module’s name.
2. Choose Remove xxx from the shortcut menu.

 You can remove VBA modules, but there is no way to remove the other
code modules — those for the Sheet objects, or ThisWorkbook.

Working with a Code Window
As you become proficient with VBA, you spend lots of time working in Code
windows. Macros that you record are stored in a module, and you can type VBA
code directly into a VBA module.

Minimizing and maximizing windows
Code windows are much like workbook windows in Excel. You can minimize them,
maximize them, resize them, hide them, rearrange them, and so on. Most people find
it much easier to maximize the Code window that they’re working on. Doing so lets
you see more code and keeps you from getting distracted.

To maximize a Code window, click the maximize button in its title bar (right next to
the X). Or, just double-click its title bar to maximize it. To restore a Code window to
its original size, click the Restore button.

Sometimes, you may want to have two or more Code windows visible. For example,
you may want to compare the code in two modules or copy code from one module to
another. You can arrange the windows manually, or use the Window  ⇒   Tile
Horizontally or Window  ⇒   Tile Vertically commands to arrange them automatically.

You can quickly switch among code windows by pressing Ctrl+Tab. If you repeat that
key combination, you keep cycling through all the open Code windows. Pressing
Ctrl+Shift+Tab cycles through the windows in reverse order.

Minimizing a Code window gets it out of the way. You can also click the window's
Close button in a Code window’s title bar to close the window completely. (Closing
a window just hides it; you won't lose anything.) To open it again, just double-click
the appropriate object in the Project window. Working with these Code windows
sounds more difficult than it really is.

Getting VBA code into a module
Before you can do anything meaningful, you must have some VBA code in the VBA
module. You can get VBA code into a VBA module in three ways:

Use the Excel macro recorder to record your actions and convert them to VBA
code.
Enter the code directly.

Copy the code from one module and paste it into another.

You have discovered the excellent method for creating code by using the Excel macro
recorder. However, not all tasks can be translated to VBA by recording a macro. You
often have to enter your code directly into the module. Entering code directly
basically means either typing the code yourself or copying and pasting code you have
found somewhere else.

Entering and editing text in a VBA module works as you might expect. You can
select, copy, cut, paste, and do other things to the text.

A single line of VBA code can be as long as you like. However, you may want to use
the line-continuation character to break up lengthy lines of code. To continue a single
line of code (also known as a statement) from one line to the next, end the first line
with a space followed by an underscore (_). Then continue the statement on the next
line. Here’s an example of a single statement split into three lines:

Selection.Sort Key1:=Range("A1"), _

Order1:=xlAscending, Header:=xlGuess, _

Orientation:=xlTopToBottom

This statement would perform exactly the same way if it were entered in a single line
(with no line-continuation characters). Notice that the second and third lines of this
statement are indented. Indenting is optional, but it helps clarify the fact that these
lines are not separate statements.

The VBE has multiple levels of undo and redo. If you delete a statement that you
shouldn’t have, use the Undo button on the toolbar (or press Ctrl+Z) until the
statement appears again. After undoing, you can use the Redo button to perform the
changes you’ve undone.

Ready to enter some real, live code? Try the following steps:

1. Create a new workbook in Excel.
2. Press Alt+F11 to activate the VBE.
3. Click the new workbook’s name in the Project window.
4. Choose Insert  ⇒    Module to insert a VBA module into the project.
5. Type the following code into the module:

Sub GuessName()

 Dim Msg as String

 Dim Ans As Long

 Msg = "Is your name " & Application.UserName & "?"

 Ans = MsgBox(Msg, vbYesNo)

 If Ans = vbNo Then MsgBox "Oh, never mind."

 If Ans = vbYes Then MsgBox "I must be clairvoyant!"

End Sub

6. Make sure the cursor is located anywhere within the text you typed and
press F5 to execute the procedure.

 The VBE has its own set of shortcut keys you can use to quickly fire a
command using your keyboard. F5 is a shortcut for the Run  ⇒   Run
Sub/UserForm command. For more VBE shortcut keys, check out the Cheat
Sheet by visiting www.dummies.com and search for “Excel Macros For
Dummies Cheat Sheet” in the Search box.

When you enter the code listed in Step 5, you might notice that the VBE makes some
adjustments to the text you enter. For example, after you type the Sub statement, the
VBE automatically inserts the End Sub statement. And if you omit the space before or
after an equal sign, the VBE inserts the space for you. Also, the VBE changes the
color and capitalization of some text. This is all perfectly normal. It’s just the VBE’s
way of keeping things neat and readable.

If you followed the previous steps, you just created a VBA Sub procedure, also
known as a macro. When you press F5, Excel executes the code and follows the
instructions. In other words, Excel evaluates each statement and does what you told it
to do. You can execute this macro any number of times — although it tends to lose its
appeal after a few dozen executions.

This simple macro uses the following concepts:

Defining a Sub procedure (the first line)
Declaring variables (the Dim statements)
Assigning values to variables (Msg and Ans)
Concatenating (joining) a string (using the & operator)
Using a built-in VBA function (MsgBox)
Using built-in VBA constants (vbYesNo, vbNo, and vbYes)
Using an If-Then construct (twice)
Ending a Sub procedure (the last line)

As mentioned previously, you can copy and paste code into a VBA module. For

http://www.dummies.com/

example, a Sub or Function procedure that you write for one project might also be
useful in another project. Instead of wasting time reentering the code, you can
activate the module and use the normal copy-and-paste procedures (Ctrl+C to copy
and Ctrl+V to paste). After pasting it into a VBA module, you can modify the code as
necessary.

Customizing the VBA Environment
If you’re serious about becoming an Excel programmer, you’ll spend a lot of time
with VBA modules on your screen. To help make things as comfortable as possible,
the VBE provides quite a few customization options.

When the VBE is active, choose Tools  ⇒   Options. You’ll see a dialog box with four
tabs: Editor, Editor Format, General, and Docking. Take a moment to explore some
of the options found on each tab.

The Editor tab
Figure 2-4 shows the options accessed by clicking the Editor tab of the Options
dialog box. Use the option in the Editor tab to control how certain things work in the
VBE.

FIGURE 2-4: The Editor tab in the Options dialog box.

The Auto Syntax Check option
The Auto Syntax Check setting determines whether the VBE pops up a dialog box if it
discovers a syntax error while you’re entering your VBA code. The dialog box tells
roughly what the problem is. If you don’t choose this setting, VBE flags syntax errors

by displaying them in a different color (red by default) from the rest of the code, and
you don’t have to deal with any dialog boxes popping up on your screen.

The Require Variable Declaration option
If the Require Variable Declaration option is set, VBE inserts the following
statements at the beginning of each new VBA module you insert:

Option Explicit
Changing this setting affects only new modules, not existing modules. If this statement
appears in your module, you must explicitly define each variable you use. Using a
Dim statement is one way to declare variables.

The Auto List Members option
If the Auto List Members option is set, VBE provides some help when you’re
entering your VBA code. It displays a list that would logically complete the statement
you’re typing. This is one of the best features of the VBE.

The Auto Quick Info option
If the Auto Quick Info option is selected, VBE displays information about functions
and their arguments as you type. This is similar to the way Excel lists the arguments
for a function as you start typing a new formula.

The Auto Data Tips option
If the Auto Data Tips option is set, VBE displays the value of the variable over
which your cursor is placed when you’re debugging code. This is turned on by
default and often quite useful. There is no reason to turn this option off.

The Auto Indent setting
The Auto Indent setting determines whether VBE automatically indents each new line
of code the same as the previous line. Most Excel developers are keen on using
indentations in their code, so this option is typically kept on.

 By the way, you should use the Tab key to indent your code, not the spacebar.
Also, you can use Shift+Tab to “unindent” a line of code. If you want to indent
more than just one line, select all lines you want to indent and then press the Tab
key.

The VBE’s Edit toolbar (which is hidden by default) contains two useful buttons:
Indent and Outdent. These buttons let you quickly indent or “unindent” a block of
code. Select the code and click one of these buttons to change the block’s indenting.

The Drag-and-Drop Text Editing option
The Drag-and-Drop Text Editing option, when enabled, lets you copy and move text

by dragging and dropping with your mouse.

The Default to Full Module View option
The Default to Full Module View option sets the default state for new modules. (It
doesn’t affect existing modules.) If set, procedures in the Code window appear as a
single scrollable list. If this option is turned off, you can see only one procedure at a
time.

The Procedure Separator option
When the Procedure Separator option is turned on, separator bars appear at the end
of each procedure in a Code window. Separator bars provide a nice visual line
between procedures, making it easy to see where one piece of code ends and where
another starts.

The Editor Format tab
Figure 2-5 shows the Editor Format tab of the Options dialog box. With this tab, you
can customize the way the VBE looks.

FIGURE 2-5: Change the way VBE’s looks with the Editor Format tab.

The Code Colors option
The Code Colors option lets you set the text color and background color displayed
for various elements of VBA code. This is largely a matter of personal preference.
Personally, most Excel developers stick with the default colors. But if you like to
change things up, you can play around with these settings.

The Font option
The Font option lets you select the font that’s used in your VBA modules. For best

results, stick with a fixed-width font such as Courier New. In a fixed-width font, all
characters are exactly the same width. This makes your code more readable because
the characters are nicely aligned vertically and you can easily distinguish multiple
spaces (which is sometimes useful).

The Size setting
The Size setting specifies the point size of the font in the VBA modules. This setting
is a matter of personal preference determined by your video display resolution and
how good your eyesight is.

The Margin Indicator Bar option
This option controls the display of the vertical margin indicator bar in your modules.
You should keep this turned on; otherwise, you won’t be able to see the helpful
graphical indicators when you’re debugging your code.

The General tab
Figure 2-6 shows the options available under the General tab in the Options dialog
box. In almost every case, the default settings are just fine.

FIGURE 2-6: The General tab of the Options dialog box.

The most important setting on the General tab is Error Trapping. If you are just
starting your Excel macro writing career, it’s best to leave the Error Trapping set to
Break on Unhandled Errors. This ensures Excel can identify errors as you type your
code.

The Docking tab
Figure 2-7 shows the Docking tab. These options determine how the various

windows in the VBE behave. When a window is docked, it is fixed in place along
one of the edges of the VBE program window. This makes it much easier to identify
and locate a particular window. If you turn off all docking, you have a big, confusing
mess of windows. Generally, the default settings work fine.

FIGURE 2-7: The Docking tab of the Options dialog box.

Chapter 3

The Anatomy of Macros
IN THIS CHAPTER

 Understanding the Excel object model
 Understanding variables
 Understanding event procedures
 Handling errors in a nutshell

The engine behind macros is VBA (Visual Basic for Applications). When you record
a macro, Excel is busy writing the associated VBA behind the scenes. To fully
understand macros, it’s important to understand the underlying VBA typically used in
Excel macros.

This chapter starts you on that journey by giving you a primer on some of the objects,
variables, events, and error handlers you will encounter in the macro examples found
in this book.

A Brief Overview of the Excel Object
Model

Visual Basic for Applications is an object-oriented programming language. The basic
concept of object-oriented programming is that a software application (Excel in this
case) consists of various individual objects, each of which has its own set of features
and uses. An Excel application contains cells, worksheets, charts, PivotTables,
drawing shapes — the list of Excel's objects is seemingly endless. Each object has
its own set of features, which are called properties, and its own set of uses, called
methods.

You can think of this concept just as you would the objects you encounter every day,
such as your computer in your office, your car in your garage, or the refrigerator in
your kitchen. Each of those objects has identifying qualities, such as height, weight,
and color. They each have their own distinct uses, such as your computer for working
with Excel, your car to transport you over long distances, and your refrigerator to
keep your perishable foods cold.

VBA objects also have their identifiable properties and methods of use. A worksheet
cell is an object, and among its describable features (its properties) are its address,

its height, its formatted fill color, and so on. A workbook is also a VBA object, and
among its usable features (its methods) are its abilities to be opened, closed, and
have a chart or PivotTable added to it.

In Excel you deal with workbooks, worksheets, and ranges on a daily basis. You
likely think of each of these “objects” as all part of Excel, not really separating them
in your mind. However, Excel thinks about these internally as all part of a
hierarchical model called the Excel object model. The Excel object model is a
clearly defined set of objects structured according to the relationships between them.

Understanding objects
In the real world, you can describe everything you see as an object. When you look at
your house, it is an object. Your house has rooms; those rooms are also separate
objects. Those rooms may have closets. Those closets are likewise objects. As you
think about your house, the rooms, and the closets, you may see a hierarchical
relationship between them. Excel works in the same way.

In Excel, the Application object is the all-encompassing object — similar to your
house. Inside the Application object, Excel has a workbook. Inside a workbook is a
worksheet. Inside that is a range. These are all objects that live in a hierarchical
structure.

To point to a specific object in VBA, you can traverse the object model. For
example, to get to cell A1 on Sheet 1, you can enter this code:

Activeworkbook.Sheets("Sheet1").Range("A1").Select

In most cases, the object model hierarchy is understood, so you don’t have to type
every level. Entering this code also gets you to cell A1 because Excel infers that you
mean the active workbook, and the active sheet:

Range("A1").Select

Indeed, if you have you cursor already in cell A1, you can simply use the ActiveCell
object, negating the need to actually spell out the range.

Activecell.Select

Understanding collections
Many of Excel’s objects belong to collections. Your house sits within a
neighborhood, for example, which is a collection of houses called a neighborhood.
Each neighborhood sits in a collection of neighborhoods called a city. Excel
considers collections to be objects themselves.

In each Workbook object, you have a collection of Worksheets. The Worksheets
collection is an object that you can call upon through VBA. Each worksheet in your
workbook lives in the Worksheets collection.

If you want to refer to a worksheet in the Worksheets collection, you can refer to it by

its position in the collection, as an index number starting with 1, or by its name, as
quoted text. If you run these two lines of code in a workbook that has only one
worksheet called MySheet, they both do the same thing:

Worksheets(1).Select
Worksheets("MySheet").Select

If you have two worksheets in the active workbook that have the names MySheet and
YourSheet, in that order, you can refer to the second worksheet by typing either of
these statements:

Worksheets(2).Select
Worksheets("YourSheet").Select

If you want to refer to a worksheet called MySheet in a particular workbook that is
not active, you must qualify the worksheet reference and the workbook reference, as
follows:

Workbooks("MyData.xls").Worksheets("MySheet").Select

Understanding properties
Properties are essentially the characteristics of an object. Your house has a color, a
square footage, an age, and so on. Some properties can be changed — such as the
color of your house. Other properties cannot be changed — such as the age of your
house.

Likewise, an object in Excel such as the Worksheet object has a sheet name property
that can be changed, and a Rows.Count row property that cannot.

You refer to the property of an object by referring to the object, and then the property.
For example, you can change the name of your worksheet by changing its Name
property.

In this example, you are renaming Sheet1 to MySheet:
Sheets("Sheet1").Name = "MySheet"

Some properties are read-only, which means that you can't assign a value to them
directly — for example, the Text property of cell. The Text property gives you the
formatted appearance of value in a cell, but you cannot overwrite or change it.

Understanding methods
Methods are the actions that you can perform against an object. It helps to think of
methods as verbs. You can paint your house, so in VBA, that translates to something
like

house.paint

A simple example of an Excel method is the Select method of the Range object:
Range("A1").Select

Another is the Copy method of the Range object:
Range("A1").Copy

Some methods have parameters that dictate how the method is applied. For example,
you can use the Paste method more effectively by explicitly defining the Destination
parameter:

ActiveSheet.Paste Destination:=Range("B1")

A Brief Look at Variables
Another concept you will see throughout the macros in this book is the concept of
variables. It’s important to dedicate a few words to this concept, as it plays a big
part in most of the macros you will encounter here.

You can think of variables as memory containers that you can use in your procedures.
There are different types of variables, each tasked with holding a specific type of
data.

The common variable types
Some of the common types of variables you will see in this book are

String: Holds textual data
Integer: Holds numeric data ranging from -32,768 to 32,767
Long: Holds numeric data ranging from -2,147,483,648 to 2,147,483,647
Double: Holds floating point numeric data
Variant: Holds any kind of data
Boolean: Holds binary data that returns True or False
Object: Holds an actual object from the Excel object model

The term used for creating a variable in a macro is "declaring a variable." You do so
by entering Dim (abbreviation for dimension), then the name of your variable, then
the type. For example:

Dim MyText as String

Dim MyNumber as Integer

Dim MyWorksheet as Worksheet

Once you create your variable, you can fill it with data. Here are a few simple
examples of how you would create a variable, then assign values to them.

Dim MyText as String
Mytext = Range("A1").Value

Dim MyNumber as Integer
MyNumber = Range("B1").Value * 25

Dim MyObject as Worksheet
Set MyWorksheet = Sheets("Sheet1")

The values you assign to your variables often come from data stored in your cells.
However, the values may also be information that you yourself create. It all depends
on the task at hand. This notion will become clearer as you go through the macros in
this book.

While it is possible to create code that does not use variables, you will encounter
many examples of VBA code where variables are employed. There are two main
reasons for this.

First, Excel doesn’t inherently know what your data is used for. It doesn’t see
numerals, symbols, or letters. It just sees data. When you declare variables with
specific data types, you help Excel know how it should handle certain pieces of data
so that your macros produce the results you'd expect.

Secondly, variables help by making your code more efficient and easier to
understand. For example, suppose you have a number in cell A1 that you are
repeatedly referring to in your macro. You could retrieve that number by pointing to
cell A1 each time you need it.

Sub Macro1()

Range("B1").Value = Range("A1").Value * 5

Range("C1").Value = Range("A1").Value * 10

Range("D1").Value = Range("A1").Value * 15

End Sub

However, this would force Excel to waste cycles storing the same number into
memory every time you point to cell A1. Also, if you need to change your workbook
so that the target number is not in cell A1, but in, let’s say, cell A2, you would need
to edit your code by changing all the references from A1 to A2.

A better way is to store the number in cell A1 just once. For example, you can store
the value in cell A1 in an Integer variable called myValue.

Sub WithVariable()

Dim myValue As Integer

myValue = Range("A1").Value

Range("C3").Value = myValue * 5

Range("D5").Value = myValue * 10

Range("E7").Value = myValue * 15

End Sub

This not only improves the efficiency of your code (ensuring Excel reads the number
in cell A1 just once), it also ensures that you only have to edit one line should the
design of your workbook change.

Understanding Event Procedures
Many of the example macros in this book implement code as event procedures. In
order to fully understand why these examples use event procedures, it’s important to
get acquainted with events.

An event is nothing more than an action that takes place during a session in Excel.
Everything that happens in Excel happens to an object through an event. A few
examples of events are opening a workbook, adding a worksheet, changing a value in
a cell, saving a workbook, double-clicking a cell, and the list goes on.

The nifty thing is that you can tell Excel to run a certain macro or piece of code when
a particular event occurs. For example, you may want to ensure that your workbook
automatically saves each time it closes. You can add code to the BeforeClose
workbook event that saves the workbook before it closes.

 Chapter 2 discussed how to create a new VBA module to hold the code you
write. However, event procedures are special in that they are not stored in the
standard modules discussed in Chapter 2. As you will see in the next few
sections, event procedures are stored directly within each object’s built-in
modules.

Worksheet events
Worksheet events occur when something happens to a particular worksheet, such as
when a worksheet is selected, when a cell on the worksheet is edited, or when a
formula on a worksheet is calculated. Each worksheet has its own built-in module
where you can place your own event procedure.

To get to this built-in module, you can right-click on the worksheet and select the
View Code option (see Figure 3-1).

FIGURE 3-1: Getting to the built-in module for a worksheet.

The Visual Basic Editor automatically opens to the built-in module for the worksheet.
This module has two drop-down boxes at the top.

Select the Worksheet option in the dropdown on the left. This action automatically
selects the SelectionChange event in the dropdown on the right. As you can see in
Figure 3-2, this also adds some starter code where you can enter or paste your code.

FIGURE 3-2: The default SelectionChange event for the Worksheet object.

The idea is to choose the most appropriate event from the Event dropdown for the
task at hand. Figure 3-3 illustrates the different events you can choose.

FIGURE 3-3: Click the Event dropdown to choose the most appropriate event.

The more commonly used worksheet events are

Worksheet_Change: Triggers when any data on the worksheet is changed
Worksheet_SelectionChange: Triggers each time a new cell or object on the
worksheet is selected
Worksheet_BeforeDoubleClick: Triggers before Excel responds to a double-
click on the worksheet
Worksheet_BeforeRightClick: Triggers before Excel responds to a right-click
on the worksheet
Worksheet_Activate: Triggers when the user moves from another worksheet to
this worksheet
Worksheet_Deactivate: Triggers when the user moves from this worksheet to
another worksheet
Worksheet_Calculate: Triggers each time a change on the worksheet causes
Excel to recalculate formulas

Workbook events
Workbook events occur when something happens to a particular workbook, such as
when a workbook is opened, when a workbook is closed, when a new worksheet is
added, or when a workbook is saved. Each workbook has its own built-in module
where you can place your own event procedure.

To get to this built-in module, you first need to activate the Visual Basic Editor (press
Alt+F11). Then in the Project Explorer menu, right-click on ThisWorkbook, and then
choose the View Code option (see Figure 3-4).

FIGURE 3-4: Getting to the built-in module for a workbook.

The Visual Basic Editor automatically opens to the built-in module for the workbook.
This module has two drop-down boxes at the top.

Select the Workbook option in the dropdown on the left. This action automatically
selects the Open event in the dropdown on the right. As you can see in Figure 3-5,
this also adds some starter code where you can enter or paste your code.

FIGURE 3-5: The default Open event for the Worksheet object.

The idea is to choose the most appropriate event from the Event dropdown for the
task at hand. Figure 3-6 illustrates some of the events you can choose.

FIGURE 3-6: Click the Event dropdown to choose the most appropriate event.

The more commonly used Workbook events are

Worksheet_Open: Triggers when the workbook is opened
Worksheet_BeforeSave: Triggers before the workbook is saved
Worksheet_BeforeClose: Triggers before Excel closes the workbook
Worksheet_SheetChange: Triggers when a user switches between sheets

Error Handling in a Nutshell
In some of the macros in this book, you will see a line similar to this:

On Error GoTo MyError

This is called an error handler. Error handlers allow you to specify what happens
when an error is encountered while your code runs.

Without error handlers, any error that occurs in your code prompts Excel to activate a
less-than-helpful error message which typically won’t clearly convey what actually
happened. However, with the aid of error handlers, you can choose to ignore the
error or exit the code gracefully with your own message to the user.

There are three types of On Error statements:

On Error GoTo SomeLabel: The code jumps to the specified label.
On Error Resume Next: The error is ignored and the code resumes.
On Error GoTo 0: VBA resets to normal error-checking behavior.

On Error GoTo SomeLabel
There are times when an error in your code means you need to gracefully exit the
procedure and give your users a clear message. In these situations, you can use the
On Error GoTo statement to tell Excel to jump to a certain line of code.

Take this small piece of code for example. Here, you are telling Excel to divide the
value in cell A1 by the value in cell A2, and then place the answer in cell A3. Easy.
What could go wrong?

Sub Macro1()

Range("A3").Value = Range("A1").Value / Range("A2").Value

End Sub

As it turns out, two major things can go wrong. If cell A2 contains a 0, you get a
divide by 0 error. If cell A2 contains a non-numeric value, you get a type mismatch
error.

To avoid a nasty error message, you can tell Excel that On Error, you want the code
execution to jump to the label called MyExit.

In the code below, you see the MyExit label is followed by a message to users that
gives them friendly advice rather than a nasty error message. Also note the Exit Sub
line before the MyExit label. This ensures that the code simply exits if no error is
encountered.

Sub Macro1()

On Error GoTo MyExit

Range("A3").Value = Range("A1").Value / Range("A2").Value
Exit Sub

MyExit:
MsgBox "Please Use Valid Non-Zero Numbers"

End Sub

On Error Resume Next
Sometimes, you want Excel to ignore an error and simply resume running the code. In
these situations, you can use the On Error Resume Next statement.

For example, this piece of code is meant to delete a file called GhostFile.exe from
the C:\Temp directory. After the file is deleted, a nice message box tells the user the
file is gone.

Sub Macro1()

Kill "C:\Temp\GhostFile.exe"

MsgBox "File has been deleted."

End Sub

It works great if there is indeed a file to delete. But if for some reason the file called
GhostFile.exe does not exist in the C:\Temp drive, an error is thrown.

In this case, you don’t care if the file is not there. You were going to delete it anyway.
So you can simply ignore the error and move on with the code.

By using the On Error Resume Next statement, the code runs its course whether or not
the targeted file exists.

Sub Macro1()

On Error Resume Next

Kill "C:\Temp\GhostFile.exe"

MsgBox "File has been deleted."

End Sub

On Error GoTo 0
When using certain error statements, it may be necessary to reset the error-checking
behavior of VBA. To understand what this means, take a look at this example.

Here, you first want to delete a file called GhostFile.exe from the C:\Temp directory.
In order to avoid errors that may stem from the fact that the targeted file does not
exist, you use the On Error Resume Next statement. After that, you are trying to do
some suspect math by dividing 100/Mike.

Sub Macro1()

On Error Resume Next

Kill "C:\Temp\GhostFile.exe"

Range("A3").Value = 100 / "Mike"

End Sub

Running this piece of code should generate an error due to the fuzzy math, but it
doesn’t. Why? Because the last instruction you gave to the code was On Error
Resume Next. Any error encountered after that line is effectively ignored.

To remedy this problem, you can use the On Error GoTo 0 statement to resume the
normal error-checking behavior.

Sub Macro1()

On Error Resume Next

Kill "C:\Temp\GhostFile.exe"

On Error GoTo 0

Range("A3").Value = 100 / "Mike"

End Sub

This code ignores errors until the On Error GoTo 0 statement. After that statement,
the code goes back to normal error checking where it triggers the expected error
stemming from the fuzzy math.

Part 2

Making Short Work of Workbook
Tasks

IN THIS PART …
Look at various techniques you can use to manipulate your workbooks.

See how you can leverage macros to automate the creation and duplication of Excel
files.

Uncover macros that automate common worksheet tasks.

Explore how you can use macros to protect and back up your Excel workbooks.

Chapter 4

Working with Workbooks
IN THIS CHAPTER

 Creating a new workbook from scratch
 Saving a workbook when a particular cell is changed
 Saving a workbook before closing
 Protecting an existing workbook on close
 Unprotecting an existing workbook on open
 Opening a workbook to a specific tab
 Opening a specific workbook defined by the user
 Determining if a workbook is already open
 Determining if a workbook exists in a directory

A workbook is not just an Excel file; it's also an object in Excel's object model (a
programming hierarchy that exposes parts of Excel to VBA).

This means that you can reference workbooks through VBA to do cool things like
automatically create new workbooks, prevent users from closing workbooks, and
automatically back up workbooks.

In this chapter, you explore a few of the more useful workbook-related macros.

Creating a New Workbook from
Scratch

You may sometimes want or need to create a new workbook in an automated way.
For example, you may need to copy data from a table and paste it into a newly
created workbook. The following macro copies a range of cells from the active sheet
and pastes the data into a new workbook.

How it works
This macro is relatively intuitive as you read through the lines of the code.

Sub Macro1()

'Step 1 Copy the data
 Sheets("Example 1").Range("B4:C15").Copy

'Step 2 Create a new workbook
 Workbooks.Add

'Step 3 Paste the data
 ActiveSheet.Paste Destination:=Range("A1")

'Step 4 Turn off application alerts
 Application.DisplayAlerts = False

'Step 5 Save the newly created workbook
 ActiveWorkbook.SaveAs _
 Filename:="C:\MyNewBook.xlsx"

'Step 6 Turn application alerts back on
 Application.DisplayAlerts = True

End Sub

1. In Step 1, you simply copy the data on the “Example 1” sheet ranging from cells
B4 to C15.
The thing to note here is that you are specifying both the sheet and the range by
name. This is a best practice when you are working with multiple workbooks
open at one time.

2. You are using the Add method of the Workbook object to create a new workbook.
This is equivalent to manually choosing File ⇒ New ⇒ Blank Document in the
Excel Ribbon.

3. In Step 3, you use the Paste method to send the data you copied to cell A1 of the
new workbook. Pay attention to the fact that the code refers to the ActiveSheet
object. When you add a workbook, the new workbook immediately gains focus,
becoming the active workbook. This is the same behavior you would see if you
were to add a workbook manually.

4. In Step 4 of the code, you set the DisplayAlerts method to False, effectively
turning off Excel’s warnings. You do this because in the next step of the code, you
save the newly created workbook. You may run this macro multiple times, in
which case Excel attempts to save the file multiple times.
What happens when you try save a workbook multiple times? That’s right —
Excel warns you that there is already a file out there with that name and then asks
if you want to overwrite the previously existing file. Because your goal is to
automate the creation of the new workbook, you want to suppress that warning.

5. In Step 5, you save the file by using the SaveAs method. Note that you are
entering the full path of the save location, including the final filename.

6. Because you turned application alerts off in Step 4, you need to turn them back
on. If you don’t, Excel continues to suppress all warnings for the life of the
current session.

How to use it
To implement this macro, you can copy and paste it into a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11 on your keyboard.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code in the newly created module.

You will probably need to change the sheet name, the range address, and the save
location.

Saving a Workbook when a Particular
Cell Is Changed

Sometimes, you may be working on data that is so sensitive that you'll want to save
every time a particular cell or range of cells is changed. This macro allows you to
define the range of cells that, when changed, forces the workbook to save.

In the example demonstrated in Figure 4-1, you want the workbook to save when an
edit is made to any of the cells in the range C5:C16.

FIGURE 4-1: Changing any cell in range C5:C16 forces the workbook to save.

How it works
The secret to this code is the Intersect method. Because you don’t want to save the
worksheet when any old cell changes, you use the Intersect method to determine if the
target cell (the cell that changed) intersects with the range you have specified to be

the trigger range (C5:C16 in this case).

The Intersect method returns one of two things: either a Range object that defines the
intersection between the two given ranges, or nothing. So in essence, you need to
throw the target cell against the Intersect method to check for a value of Nothing. At
that point, you can make the decision whether to save the workbook.

Private Sub Worksheet_Change(ByVal Target As Range)

'Step 1: Does the changed range intersect?
 If Intersect(Target, Range("C5:C16")) Is Nothing Then

'Step 2: If there is no intersection, exit procedure
 Exit Sub

'Step 3: If there is an intersection, save the workbook
 Else
 ActiveWorkbook.Save

'Close out the If statement
 End If

End Sub

1. In Step 1, you are simply checking to see if the target cell (the cell that has
changed) is in the range specified by the Intersect method. A value of Nothing
means the target cell falls outside the range specified.

2. Step 2 forces the macro to stop and exit the procedure if there is no intersection
between the target cell and the specified range.

3. If there is an intersection, Step 3 fires the Save method of the active workbook,
overwriting the previous version.

4. In Step 4, you simply close out the If statement. Every time you instantiate an If…
Then…Else check, you must close it out with a corresponding End If.

How to use it
To implement this macro, you need to copy and paste it into the Worksheet_Change
event code window. Placing the macro here allows it to run each time you make any
change to the sheet.

1. Activate the Visual Basic Editor by pressing Alt+F11 on your keyboard.
2. In the Project window, find your project/workbook name and click the plus

sign next to it in order to see all the sheets.
3. Click in the sheet from which you want to trigger the code.
4. Select the Change event from the Event drop-down menu (see Figure 4-2).
5. Type or paste the code in the newly created module, changing the range

address to suit your needs.

FIGURE 4-2: Enter or paste your code in the Worksheet_Change event code window.

Saving a Workbook before Closing
This macro is an excellent way to protect users from inadvertently closing their file
before saving. When implemented, this macro ensures that Excel automatically saves
before closing the workbook.

 Excel normally warns users who are attempting to close an unsaved
workbook, giving them an option to save before closing. However, many users
may blow past the warning and inadvertently click No, telling Excel to close
without saving. With this macro, you are protecting against this by automatically
saving before close.

How it works
This code is triggered by the workbook’s BeforeClose event. When you try to close
the workbook, this event fires, running the code within. The crux of the code is
simple — it asks the user whether he really wants to close the workbook (see Figure
4-3). The macro then evaluates whether the user clicked OK or Cancel.

FIGURE 4-3: A message box activates when you attempt to close the workbook.

The evaluation is done with a Select Case statement. The Select Case statement is an

alternative to the If…Then…Else statement, allowing you to perform condition
checks in your macros. The basic construct of a Select Case statement is simple:

Select Case <some expression to check>
Case Is = <some value>
 <do something>
Case Is=<some other value>
 <do something else>
Case Is=<some 3rd value>
 <do some 3rd thing>
End Select

With a Select Case statement, you can perform many conditional checks. In this case,
you are simply checking for OK or Cancel. Take a look at the code:

Private Sub Workbook_BeforeClose(Cancel As Boolean)

'Step 1: Activate the message box and start the check
 Select Case MsgBox("Save and close?", vbOKCancel)

'Step 2: Cancel button pressed, cancel the close
 Case Is = vbCancel
 Cancel = True

'Step 3: OK button pressed, save the workbook and close
 Case Is = vbOK
 ActiveWorkbook.Save

'Step 4: Close your Select Case statement
End Select

End Sub

1. In Step 1, you activate the message box as the condition check for the Select Case
statement. Here, you use the vbOKCancel argument to ensure that the OK and
Cancel buttons are presented as choices.

2. If the user clicked Cancel in the message box, the macro tells Excel to cancel the
Workbook_Close event. This is done by passing True to the Cancel Boolean (this
effectively cancels action, preventing the workbook from closing).

3. If the user clicked the OK button in the message box, Step 3 takes effect. Here,
you tell Excel to save the workbook. And because you did not set the Cancel
Boolean to True, Excel continues with the close.

4. In Step 4, you simply close out the Select Case statement. Every time you
instantiate a Select Case, you must close it out with a corresponding End Select.

How to use it
To implement this macro, you need to copy and paste it into the
Workbook_BeforeClose event code window. Placing the macro there allows it to run
each time you try to close the workbook.

1. Activate the Visual Basic Editor by pressing Alt+F11 on your keyboard.

2. In the Project window, find your project/workbook name and click the plus
sign next to it in order to see all the sheets.

3. Click ThisWorkbook.
4. Select the BeforeClose event in the Event drop-down list (see Figure 4-4).
5. Type or paste the code in the newly created module.

FIGURE 4-4: Type or paste your code in the Workbook BeforeClose event code window.

Protecting a Worksheet on Workbook
Close

Sometimes you need to send your workbook out into the world with specific
worksheets protected. If you find that you’re constantly protecting and unprotecting
sheets before distributing your workbooks, this macro can help you.

How it works
This code is triggered by the workbook’s BeforeClose event. When you try to close
the workbook, this event fires, running the code within. The macro automatically
protects the specified sheet with the given password, and then saves the workbook.

Private Sub Workbook_BeforeClose(Cancel As Boolean)

'Step 1: Protect the sheet with a password
 Sheets("Sheet1").Protect Password:="RED"

'Step 2: Save the workbook
 ActiveWorkbook.Save

End Sub

1. In Step 1, you are explicitly specifying which sheet you want to protect —
Sheet1, in this case. You are also providing the password argument,

Password:=RED. This defines the password needed to remove the protection.
This password argument is completely optional. If you omit this altogether, the
sheet is still protected, but you won’t need a password to unprotect it.
Also, be aware that Excel passwords are case-sensitive, so you’ll want pay
attention to the exact password and capitalization that you are using.

2. Step 2 tells Excel to save the workbook. If you don’t save the workbook, the
sheet protection you just applied won’t be in effect the next time the workbook is
opened.

How to use it
To implement this macro, you need to copy and paste it into the
Workbook_BeforeClose event code window. Placing the macro here allows it to run
each time you try to close the workbook.

1. Activate the Visual Basic Editor by pressing Alt+F11 on your keyboard.
2. In the Project window, find your project/workbook name and click the plus

sign next to it in order to see all the sheets.
3. Click ThisWorkbook.
4. Select the BeforeClose event in the Event drop-down list (see Figure 4-5).
5. Type or paste the code in the newly created module, modifying the sheet

name (if necessary) and the password.

FIGURE 4-5: Type or paste your code in the Workbook BeforeClose event code window.

Note that you can protect additional sheets by adding additional statements before the
Activeworkbook.Save statement.

Unprotecting a Worksheet on

Workbook Open
If you’ve distributed workbooks with protected sheets, you likely get the workbooks
back with the sheets still protected. Often, you need to unprotect the worksheets in a
workbook before continuing your work. If you find that you are continuously
unprotecting worksheets, this macro may be just the ticket.

How it works
This code is triggered by the workbook’s Open event. When you open a workbook,
this event triggers, running the code within. This macro automatically unprotects the
specified sheet with the given password when the workbook is opened.

Private Sub Workbook_Open()

'Step 1: Protect the sheet with a password
 Sheets("Sheet1").Unprotect Password:="RED"

End Sub

The macro explicitly names the sheet you want to unprotect — Sheet1, in this case.
Then it passes the password required to unprotect the sheet. Be aware that Excel
passwords are case-sensitive, so pay attention to the exact password and
capitalization that you are using.

How to use it
To implement this macro, you need to copy and paste it into the Workbook_Open
event code window. Placing the macro here allows it to run each time the workbook
opens.

1. Activate the Visual Basic Editor by pressing Alt+F11 on your keyboard.
2. In the Project window, find your project/workbook name and click the plus

sign next to it in order to see all the sheets.
3. Click ThisWorkbook.
4. Select the Open event in the Event drop-down list (see Figure 4-6).
5. Type or paste the code in the newly created module, modifying the sheet

name (if necessary) and the password.

FIGURE 4-6: Type or paste your code in the Workbook Open event code window.

Note that you can unprotect additional sheets by adding additional statements.

Opening a Workbook to a Specific Tab
In some situations, it's imperative that your workbook be started on a specific
worksheet. With this macro, if a user is working with your workbook, he or she can't
go astray because the workbook starts on the exact worksheet it needs to.

In the example illustrated in Figure 4-7, you want the workbook to go immediately to
the sheet called Start Here.

FIGURE 4-7: You want your workbook to automatically open to the sheet called Start Here.

How it works
This macro uses the workbook’s Open event to start the workbook on the specified
sheet when the workbook is opened.

Private Sub Workbook_Open()

'Step 1: Select the specified sheet
 Sheets("Start Here").Select

End Sub

The macro explicitly names the sheet the workbook should jump to when it's opened.

How to use it
To implement this macro, you need to copy and paste it into the Workbook_Open
event code window. Placing the macro here allows it to run each time the workbook
opens.

1. Activate the Visual Basic Editor by pressing Alt+F11 on your keyboard.
2. In the Project window, find your project/workbook name and click the plus

sign next to it in order to see all the sheets.
3. Click ThisWorkbook.
4. Select the Open event in the Event drop-down list (see Figure 4-8).
5. Type or paste the code in the newly created module, changing the sheet

name, if necessary.

FIGURE 4-8: Type or paste your code in the Workbook Open event code window.

Opening a Specific Workbook Defined
by the User

Want to give yourself or your users a quick way to search for and open a file? This
macro uses a simple technique that opens a friendly dialog box, allowing you to
browse for and open the Excel file of your choosing.

How it works
This macro opens the dialog box you see in Figure 4-9, allowing the user to browse
for and open an Excel file.

FIGURE 4-9: The Open dialog box activated by your macro.

Here's how this macro works:
Sub Macro1()

'Step 1: Define a string variable.
 Dim FName As Variant

'Step 2: GetOpenFilename Method activates dialog box.
 FName = Application.GetOpenFilename(_
 FileFilter:="Excel Workbooks,*.xl*", _
 Title:="Choose a Workbook to Open", _
 MultiSelect:=False)

'Step 3: If a file was chosen, open it!
 If FName <> False Then
 Workbooks.Open Filename:=FName
 End If

End Sub

1. The first thing this macro does is to declare a variant variable that holds the
filename that the user chooses. FName is the name of the variable.

2. In Step 2, you use the GetOpenFilename method to call up a dialog box that
allows you to browse and select the file you need.
The GetOpenFilename method supports a few customizable parameters. The
FileFilter parameter allows you to specify the type of file you are looking for.
The Title parameter allows you to change the title that appears at the top of the
dialog box. The MultiSelect parameter allows you to limit the selection to one
file.

3. If the user selects a file from the dialog box, the FName variable is filled with the
name of the file he or she has chosen. In Step 3, you check for an empty FName
variable. If the variable is not empty, you use the Open method of the Workbooks
object to open the file.

How to use it
To implement this macro, you can copy and paste it into a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11 on your keyboard.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code in the newly created module.
5. Optionally, you can assign the macro to a button (see Chapter 1).

Determining Whether a Workbook Is
Already Open

The previous macro automatically opened a workbook based on the user’s selection.
As you think about automatically opening workbooks, you must consider what may
happen if you attempt to open a book that is already open. In the non-VBA world,
Excel attempts to open the file again, with the message shown in Figure 4-10 warning
that any unsaved changes will be lost. You can protect against such an occurrence by
checking if a given file is already open before trying to open it again.

FIGURE 4-10: You can avoid this annoying message box when opening a workbook that is already open.

How it works
The first thing to notice about this macro is that it is a function, not a sub procedure.
As you will see, making this macro a function enables you to pass any filename to it
to test whether that file is already open.

The gist of this code is simple: You are testing a given filename to see if it can be
assigned to an object variable. Only opened workbooks can be assigned to an object
variable. When you try to assign a closed workbook to the variable, an error occurs.

So if the given workbook can be assigned, the workbook is open; if an error occurs,
the workbook is closed.

Function FileIsOpenTest(TargetWorkbook As String) As Boolean

'Step 1: Declare variables
 Dim TestBook As Workbook

'Step 2: Tell Excel to Resume on Error
 On Error Resume Next

'Step 3: Try to assign the target workbook to TestBook
 Set TestBook = Workbooks(TargetWorkbook)

'Step 4: If no error occurred then Workbook is already open
 If Err.Number = 0 Then
 FileIsOpenTest = True
 Else
 FileIsOpenTest = False
 End If

End Function

1. The first thing the macro does is to declare a string variable that holds the
filename that the user chooses. TestBook is the name of your string variable.

2. In Step 2, you are telling Excel that there may be an error running this code. In the
event of an error, resume the code. Without this line, the code would simply stop
when an error occurs. Again, you are testing a given filename to see if it can be
assigned to an object variable. So if the given workbook can be assigned, it’s
open; if an error occurs, it’s closed. You need to have the code continue if an
error occurs.

3. In Step 3, you are attempting to assign the given workbook to the TestBook object
variable. The workbook you are trying to assign is itself a string variable called
TargetWorkbook. TargetWorkbook is passed to the function in the function
declarations (see the first line of the code). This structure eliminates the need to
hard-code a workbook name, allowing you to pass it as a variable instead.

4. In Step 4, you simply check to see if an error occurred. If an error did not occur,
the workbook is open, so you set the FileIsOpenTest to True. If an error occurred,
that means the workbook is not open. In that case, you set the FileIsOpenTest to
False.

 Again, you can use this function to evaluate any file passed to it, via its
TargetWorkbook argument. That is the beauty of putting this macro into a function.

The following macro demonstrates how to implement this function. Here, you are
using the same macro you saw in the previous section, “Opening a Specific
Workbook Defined by the User,” but this time, you are calling the new
FileIsOpenTest function to make sure the user cannot open an already opened file.

Sub Macro1()

'Step 1: Define a string variable.
 Dim FName As Variant
 Dim FNFileOnly As String

'Step 2: GetOpenFilename Method activates dialog box.
 FName = Application.GetOpenFilename(_
 FileFilter:="Excel Workbooks,*.xl*", _
 Title:="Choose a Workbook to Open", _
 MultiSelect:=False)

'Step 3: Open the chosen file if not already opened.
 If FName <> False Then
 FNFileOnly = StrReverse(Left(StrReverse(FName), _
 InStr(StrReverse(FName), "\") - 1))

 If FileIsOpenTest(FNFileOnly) = True Then
 MsgBox "The given file is already open"
 Else
 Workbooks.Open Filename:=FName

 End If
 End If

End Sub

With this macro implemented, you get the friendlier message box shown in Figure 4-
11.

FIGURE 4-11: The final macro gives you a cleaner, more concise message.

How to use it
To implement this macro, you can copy and paste both pieces of code into a standard
module:

1. Activate the Visual Basic Editor by pressing Alt+F11 on your keyboard.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code in the newly created module.
5. Optionally, you can assign the macro to a button (see Chapter 1).

Determining Whether a Workbook

Exists in a Directory
You may have a process that manipulates a file somewhere on your PC. For example,
you may need to open an existing workbook to add new data to it on a daily basis. In
these cases, you may need to test to see whether the file you need to manipulate
actually exists. This macro allows you to pass a file path to evaluate whether the file
is there.

How it works
The first thing to notice about this macro is that it is a function, not a sub procedure.
Making this macro a function enables you to pass any file path to it.

This macro uses the Dir function. The Dir function returns a string that represents the
name of the file that matches what you pass to it. This function can be used in lots of
ways, but here, you are using it to check if the file path you pass to it exists:

Function FileExists(FPath As String) As Boolean

'Step 1: Declare your variables.
 Dim FName As String

'Step 2: Use the Dir function to get the file name
 FName = Dir(FPath)

'Step 3: If file exists, return True else False
 If FName <> "" Then FileExists = True _
 Else: FileExists = False

End Function

1. Step 1 declares a string variable that holds the filename that returns from the Dir
function. FName is the name of the string variable.

2. In Step 2, you attempt to set the FName variable. You do this by passing the FPath
variable to the Dir function. This FPath variable is passed via the function
declarations (see the first line of the code). This structure prevents you from
having to hard-code a file path, passing it as a variable instead.

3. If the FName variable can’t be set, this means the path you passed does not exist.
Thus the FName variable is empty. Step 3 merely translates that result to a True
or False expression.

 Again, you can use this function to evaluate any file path passed to it.
That's the beauty of writing this macro as a function.

The following macro demonstrates how to use this function:

Sub Macro1()

 If FileExists("C:\Temp\MyNewBook.xlsx") = True Then
 MsgBox "File exists."
 Else
 MsgBox "File does not exist."
 End If

End Sub

How to use it
To implement this macro, you can copy and paste both pieces of code into a standard
module:

1. Activate the Visual Basic Editor by pressing Alt+F11 on your keyboard.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code in the newly created module.

Closing All Workbooks at Once
One of the more annoying things in Excel occurs when you try to close many
workbooks at once. For each workbook you have opened, you need to activate the
work, close it, and confirm save changes. There is no easy way to close them all
down at one time. This little macro takes care of that annoyance.

How it works
In this macro, the Workbooks collection loops through all the opened workbooks. As
the macro loops through each workbook, it saves and closes them down.

Sub Macro1()

'Step 1: Declare your variables
 Dim wb As Workbook

'Step 2: Loop through workbooks, save and close
 For Each wb In Workbooks
 wb.Close SaveChanges:=True
 Next wb

End Sub

1. Step 1 declares an object variable that represents a Workbook object. This
allows you to enumerate through all the open workbooks, capturing their names
as you go.

2. Step 2 simply loops through the open workbooks, saving and closing them. If you
don’t want to save them, change the SaveChanges argument from True to False.

How to use it
The best place to store this macro is in your Personal Macro Workbook. This way,
the macro is always available to you. The Personal Macro Workbook is loaded
whenever you start Excel. In the VBE Project window, it is named personal.xlsb.

1. Activate the Visual Basic Editor by pressing Alt+F11 on your keyboard.
2. Right-click personal.xlb in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code in the newly created module.

If you don’t see personal.xlb in your project window, it doesn't exist yet. You’ll have
to record a macro, using Personal Macro Workbook as the destination.

 To record the macro in your Personal Macro Workbook, select the Personal
Macro Workbook option in the Record Macro dialog box before you start
recording. This option is in the Store Macro In drop-down box. Simply record a
couple of cell clicks and then stop recording. You can discard the recorded
macro and replace it with this one.

Printing All Workbooks in a Directory
If you need to print from multiple workbooks in a directory, you can use this macro.

How it works
In this macro, you use the Dir function to return a string that represents the name of
the file that matches what you pass to it.

In this code, you use the Dir function to enumerate through all the .xlsx files in a
given directory, capturing each file’s name. Then you open each file, print it, then
close the file.

Sub Macro1()

'Step 1:Declare your variables
 Dim MyFiles As String

'Step 2: Specify a target directory
 MyFiles = Dir("C:\Temp*.xlsx")
 Do While MyFiles <> ""

'Step 3: Open Workbooks one by one
 Workbooks.Open "C:\Temp\" & MyFiles
 ActiveWorkbook.Sheets("Sheet1").PrintOut Copies:=1
 ActiveWorkbook.Close SaveChanges:=False

'Step 4: Next File in the Directory
 MyFiles = Dir
 Loop

End Sub

1. Step 1 declares the MyFiles string variable that captures each filename in the
enumeration.

2. Step 2 uses the Dir function to specify the directory and file type you are looking
for. Note that the code here is looking for *.xlsx. This means that only xlsx files
are looped through. If you are looking for .xls files, you need to specify that
(along with the directory you need to search). The macro passes any filename it
finds to the MyFiles string variable.

3. Step 3 opens the file and then prints out one copy of Sheet1. Needless to say, you
probably want to change which sheets to print. You can also change the number of
copies to print.

4. Step 4 loops back to find more files. If there are no more files, the MyFiles
variable is blank. If that is the case, the loop and macro end.

How to use it
To implement this macro, you can copy and paste it into a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code in the newly created module, modifying the print

statement as needed.

Preventing the Workbook from
Closing Until a Cell Is Populated

There are times when you don’t want a user closing out a workbook without entering
a specific piece of data. In these situations, it would be useful to deny the user the
ability to close the workbook until the target cell is filled in (see Figure 4-12). This
is where this macro comes in.

FIGURE 4-12: You can prevent your workbook from closing until a specific cell is populated.

How it works
This code is triggered by the workbook’s BeforeClose event. When you try to close
the workbook, this event fires, running the code within. This macro checks to see if
the target cell (cell C7, in this case) is empty. If it is empty, the close process is
cancelled. If C7 is not empty, the workbook saves and closes.

Private Sub Workbook_BeforeClose(Cancel As Boolean)

'Step 1: Check to see if Cell C7 is blank
If Sheets("Sheet1").Range("C7").Value = "" Then

'Step 2: Blank: cancel the Close and tell the user
 Cancel = True
 MsgBox "Cell C7 cannot be blank"

'Step 3: Not Blank; Save and Close
Else
 ActiveWorkbook.Close SaveChanges:=True
End If

End Sub

1. Step 1 checks to see whether C7 is blank.
2. If it is blank, Step 2 takes effect, cancelling the close process. This is done by

passing True to the Cancel Boolean. Step 2 also activates a message box
notifying the user of his stupidity (well, it's not quite that harsh, really).

3. If cell C7 is not blank, the workbook saves and closes.

How to use it
To implement this macro, you need to copy and paste it into the
Workbook_BeforeClose event code window. Placing the macro here allows it to run
each time you try to close the workbook.

1. Activate the Visual Basic Editor by pressing Alt+F11.
2. In the Project window, find your project/workbook name and click the plus

sign next to it in order to see all the sheets.
3. Click ThisWorkbook.
4. Select the BeforeClose event in the Event drop-down list (see Figure 4-13).
5. Type or paste the code in the newly created module.

FIGURE 4-13: Type or paste your code in the Workbook_BeforeClose event code window.

Creating a Backup of the Current
Workbook with Today’s Date

We all know that making backups of your work is important. Now you can have a
macro do it for you. This simple macro saves your workbook to a new file with
today’s date as part of the name.

How it works
The trick to this macro is piecing together the new filename. The new filename has
three pieces: the path, today’s date, and the original filename.

The path is captured by using the Path property of the ThisWorkbook object. Today's
date is grabbed with the Date function.

You’ll notice that you are formatting the date (Format(Date, "mm-dd-yy")). This is
because by default, the Date function returns mm/dd/yyyy. You use hyphens rather
than forward slashes because the forward slashes would cause the file save to fail.
(Windows does not allow forward slashes in filenames.)

The last piece of new filename is the original filename. You use the Name property
of the ThisWorkbook object to capture that:

Sub Macro1()

'Step 1: Save workbook with new filename
 ThisWorkbook.SaveCopyAs _
 Filename:=ThisWorkbook.Path & "\" & _
 Format(Date, "mm-dd-yy") & " " & _
 ThisWorkbook.Name

End Sub

In the one and only step, the macro builds a new filename and uses the SaveCopyAs
method to save the file.

How to use it
To implement this macro, you can copy and paste it into a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code in the newly created module.

Chapter 5

Working with Worksheets
IN THIS CHAPTER

 Adding, naming, copying, and deleting worksheets
 Hiding and unhiding, moving, sorting, and grouping worksheets
 Protecting and unprotecting all worksheets
 Printing and creating a table of contents for your worksheets
 Zooming in and out of a worksheet

Excel analysts often need to automate tasks related to worksheets. Whether it is
unhiding all sheets in a workbook, or printing all sheets at the same time, many tasks
can be automated to save time and gain efficiencies. This chapter covers some of the
more useful macros related to worksheets.

Adding and Naming a New Worksheet
We start off this chapter with one of the simplest worksheet-related automations you
can apply with a macro — adding and naming a new worksheet.

How it works
If you read through the lines of the code, you'll see this macro is relatively intuitive.

Sub Macro1()

'Step 1: Tell Excel what to do if Error
 On Error GoTo MyError

'Step 2: Add a sheet and name it
 Sheets.Add
 ActiveSheet.Name = _
 WorksheetFunction.Text(Now(), "m-d-yyyy h_mm_ss am/pm")
 Exit Sub

'Step 3: If here, an error happened; tell the user
 MyError:
 MsgBox "There is already a sheet called that."

End Sub

1. You must anticipate that if you give the new sheet a name that already exists, an

error occurs. So in Step 1, the macro tells Excel to immediately skip to the line
that says MyError (in Step 3) if there is an error.

2. Step 2 uses the Add method to add a new sheet. By default, the sheet is called
Sheetxx, where xx represents the number of the sheet. You give the sheet a new
name by changing the Name property of the ActiveSheet object. In this case, you
are naming the worksheet with the current date and time.
As with workbooks, each time you add a new sheet via VBA, it automatically
becomes the active sheet. Finally, in Step 2, notice that the macro exits the
procedure. It has to do this so that it doesn’t accidentally go into Step 3 (which
should come into play only if an error occurs).

3. Step 3 notifies the user that the sheet name already exists. Again, this Step should
only be activated if an error occurs.

How to use it
To implement this macro, you can copy and paste it into a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code in the newly created module.

Deleting All but the Active Worksheet
At times, you may want to delete all but the active worksheet. In these situations, you
can use this macro.

How it works
This macro loops the worksheets and matches each worksheet name to the active
sheet’s name. Each time the macro loops, it deletes any unmatched worksheet. Note
the use of the DisplayAlerts method in Step 4. This effectively turns off Excel’s
warnings so you don’t have to confirm each delete.

Sub Macro1()

'Step 1: Declare your variables
 Dim ws As Worksheet

'Step 2: Start looping through all worksheets
 For Each ws In ThisWorkbook.Worksheets

'Step 3: Check each worksheet name
 If ws.Name <> ThisWorkbook.ActiveSheet.Name Then

'Step 4: Turn off warnings and delete

 Application.DisplayAlerts = False
 ws.Delete
 Application.DisplayAlerts = True
 End If

'Step 5: Loop to next worksheet
 Next ws

End Sub

1. The macro first declares an object called ws. This creates a memory container
for each worksheet it loops through.

2. In Step 2, the macro begins to loop, telling Excel it will evaluate all worksheets
in this workbook. There is a difference between ThisWorkbook and
ActiveWorkbook. The ThisWorkBook object refers to the workbook that the code
is contained in. The ActiveWorkBook object refers to the currently active
workbook. They often return the same object, but if the workbook running the
code is not the active workbook, they return different objects. In this case, you
don’t want to risk deleting sheets in other workbooks, so you use ThisWorkBook.

3. In this step, the macro simply compares the active sheet name to the sheet that is
currently being looped.

4. If the sheet names are different, the macro deletes the sheet. As mentioned before,
you use DisplayAlerts to suppress any confirmation checks from Excel. If you
want to be warned before deleting the sheets, you can omit the
Application.DisplayAlerts = False. This ensures you get the message in Figure 5-
1, allowing you to back out of the decision to delete worksheets.

5. In Step 5, the macro loops back to get the next sheet. After all sheets are
evaluated, the macro ends.

FIGURE 5-1: Omit the Application.DisplayAlerts = False line in the macro to ensure you get the opportunity to
cancel the deletion.

How to use it
To implement this macro, you can copy and paste it into a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11 on your keyboard.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code in the newly created module.

 Note that when you use ThisWorkbook in a macro rather than
ActiveWorkbook, you can’t run the macro from the Personal Macro Workbook.
This is because ThisWorkbook refers to the Personal Macro Workbook, not the
workbook to which the macro should apply.

Hiding All but the Active Worksheet
You may not want to delete all but the active sheet as you did in the last macro.
Instead, a more gentle option is to simply hide the sheets. Excel doesn't let you hide
all sheets in a workbook; at least one has to be showing. However, you can hide all
but the active sheet.

How it works
This macro loops the worksheets and matches each worksheet name to the active
sheet’s name. Each time the macro loops, it hides any unmatched worksheet.

Sub Macro1()

'Step 1: Declare your variables
 Dim ws As Worksheet

'Step 2: Start looping through all worksheets
 For Each ws In ThisWorkbook.Worksheets

'Step 3: Check each worksheet name
 If ws.Name <> ThisWorkbook.ActiveSheet.Name Then

'Step 4: Hide the sheet
 ws.Visible = xlSheetHidden
 End If

'Step 5: Loop to next worksheet
 Next ws

End Sub

1. Step 1 declares an object called ws. This creates a memory container for each
worksheet the macro loops through.

2. Step 2 begins the looping, telling Excel to evaluate all worksheets in this
workbook. There is a difference between ThisWorkbook and ActiveWorkbook.
The ThisWorkBook object refers to the workbook that the code is contained in.
The ActiveWorkBook object refers to the currently active workbook. They often
return the same object, but if the workbook running the code is not the active
workbook, they return different objects. In this case, you don’t want to risk hiding
sheets in other workbooks, so you use ThisWorkBook.

3. In this step, the macro simply compares the active sheet name to the sheet
currently being looped.

4. If the sheet names are different, the macro hides the sheet.
5. In Step 5, you loop back to get the next sheet. After all the sheets are evaluated,

the macro ends.

 You’ll notice the use of xlsheetHidden in the macro. This applies the
default hide state you would normally get when you right-click a sheet and select
Hide. In this default hide state, a user can right-click on any tab and choose
Unhide. This shows all the hidden sheets. But there is another, more clandestine
hide state than the default. If you use xlSheetVeryHidden to hide your sheets,
users will not be able to see them at all — not even if they right-click on any tab
and choose Unhide. The only way to unhide a sheet hidden in this manner is to
use VBA.

How to use it
To implement this macro, you can copy and paste it into a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code in the newly created module.

Unhiding All Worksheets in a
Workbook

If you’ve ever had to unhide multiple sheets in Excel, you know what a pain it is. You
are forced to use the Unhide dialog box shown in Figure 5-2 to unhide one sheet at a
time.

FIGURE 5-2: Without a macro, you’re stuck using Excel’s Unhide dialog box to unhide one worksheet at a time.

Although that may not sound like a big deal, try to unhide 10 or more sheets; it gets to
be a pain fast. This macro makes easy work of that task.

How it works
This macro loops the worksheets and changes the visible state.

Sub Macro1()

'Step 1: Declare your variables
 Dim ws As Worksheet

'Step 2: Start looping through all worksheets
 For Each ws In ActiveWorkbook.Worksheets

'Step 3: Loop to next worksheet
 ws.Visible = xlSheetVisible
 Next ws

End Sub

1. Step 1 declares an object called ws. This creates a memory container for each
worksheet the macro loops through.

2. In Step 2, the macro starts the looping, telling Excel to enumerate through all
worksheets in this workbook.

3. Step 3 changes the visible state to xlSheetVisible. Then it loops back to get the
next worksheet.

How to use it
The best place to store this macro is in your Personal Macro Workbook. That way,
the macro is always available to you. The Personal Macro Workbook is loaded
whenever you start Excel. In the VBE Project window, it is named personal.xlsb.

1. Activate the Visual Basic Editor by pressing Alt+F11.
2. Right-click personal.xlb in the Project window.
3. Choose Insert ⇒ Module.

4. Type or paste the code in the newly created module.

If you don’t see personal.xlb in your Project window, it means it doesn't exist yet.
You’ll have to record a macro using Personal Macro Workbook as the destination.

To record the macro in your Personal Macro Workbook, select the Personal Macro
Workbook option in the Record Macro dialog box before you start recording. This
option is in the Store Macro In drop-down box. Simply record a couple of cell clicks
and then stop recording. You can discard the recorded macro and replace it with this
one.

Moving Worksheets Around
We’ve all had to rearrange our spreadsheet so that some sheets came before or after
other sheets. If you find that you often have to do this, here is a macro that can help.

How it works
When you want to rearrange sheets, you use the Move method of either the Sheets
object or the ActiveSheet object. When using the Move method, you need to specify
where to move the sheet to. You can do this using the After argument, the Before
argument, or both.

Sub Macro1()

'Move the active sheet to the end
 ActiveSheet.Move After:=Worksheets(Worksheets.Count)

'Move the active sheet to the beginning
 ActiveSheet.Move Before:=Worksheets(1)

'Move Sheet 1 before Sheet 12
 Sheets("Sheet1").Move Before:=Sheets("Sheet12")

End Sub

This macro demonstrates how to move the active worksheet to three locations.

Move the active sheet to the end: When you need to move a worksheet to the
end of the workbook, you essentially want to tell Excel to move the sheet After
the last sheet. There is no code in VBA that lets you point to “the last sheet.” But
you can find the maximum count of worksheets, and then use that number as an
index for the Worksheets object. This means that you can enter something like
Worksheets(1) to point to the first sheet in a workbook. You can enter
Worksheet(3) to point to the third sheet in the workbook. To point to the last sheet
in the workbook, you can replace the index number with the Worksheets.Count
property. Worksheets.Count gives you the total number of worksheets, which so
happens to be the same number as the index for the last sheet. Thus
Worksheet(Worksheets.Count) points to the last sheet.

Move the active sheet to the beginning: Moving a sheet to the beginning of the
workbook is simple. You use Worksheets(1) to point to the first sheet in the
workbook, and then move the active sheet Before that one.
Move Sheet 1 before Sheet X: You can also move a sheet before or after
another sheet simply by calling that other sheet out by name. In the example
demonstrated in the previous macro, you are moving Sheet1 before Sheet12.

How to use it
The best place to store this kind of macro is in your Personal Macro Workbook. This
way, the macro is always available to you. The Personal Macro Workbook is loaded
whenever you start Excel. In the VBE Project window, it is named personal.xlsb.

1. Activate the Visual Basic Editor by pressing Alt+F11 on your keyboard.
2. Right-click personal.xlb in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code in the newly created module.

If you don’t see personal.xlb in your Project window, it means it doesn't exist yet.
You’ll have to record a macro, using Personal Macro Workbook as the destination.

To record the macro in your Personal Macro Workbook, select the Personal Macro
Workbook option in the Record Macro dialog box before you start recording. This
option is in the Store Macro In drop-down list. Simply record a couple of cell clicks
and then stop recording. You can discard the recorded macro and replace it with this
one.

Sorting Worksheets by Name
You may often need to sort worksheets alphabetically by name (see Figure 5-3). You
would think Excel would have a native function to do this, but alas, it does not. If you
don’t want to manually sort your spreadsheets anymore, you can use this macro to do
it for you.

FIGURE 5-3: It’s often useful to have your worksheets sorted in alphabetical order.

How it works
This macro looks more complicated than it is. The activity in this macro is actually
fairly simple. It simply iterates through the sheets in the workbook, comparing the
current sheet to the previous one. If the name of previous sheet is greater than the
current sheet (alphabetically), the macro moves the current sheet before it. By the
time all the iterations are done, you’ve got a sorted workbook!

Sub Macro1()

'Step 1: Declare your Variables
 Dim CurrentSheetIndex As Integer
 Dim PrevSheetIndex As Integer

'Step 2: Set the starting counts and start looping
 For CurrentSheetIndex = 1 To Sheets.Count
 For PrevSheetIndex = 1 To CurrentSheetIndex - 1

'Step 3: Check Current Sheet against Previous Sheet
 If UCase(Sheets(PrevSheetIndex).Name) > _
 UCase(Sheets(CurrentSheetIndex).Name) Then

'Step 4: If Move Current sheet Before Previous
 Sheets(CurrentSheetIndex).Move _
 Before:=Sheets(PrevSheetIndex)
 End If

'Step 5 Loop back around to iterate again
 Next PrevSheetIndex
 Next CurrentSheetIndex

End Sub

 Note this technique is doing a text-based sorting. So you may not get the
results you were expecting when working with number-based sheet names. For
example, Sheet10 will come before Sheet2 because textually, 1 comes before 2.
Excel does not do the numbers-based sorting that says 2 comes before 10.

1. Step 1 declares two integer variables. The CurrentSheetIndex holds the index
number for the current sheet iteration, and the PrevSheetIndex variable holds the
index number for the previous sheet iteration.

2. In Step 2, the macro starts iteration counts for both variables. Note that the count
for the PrevSheetIndex is one number behind the CurrentSheetIndex. After the
counts are set, it starts looping.

3. In Step 3, you check to see whether the name of the previous sheet is greater than
that of the current sheet.
In this step, note the use of the UCase function. You use this to get both names in
the same uppercase state. This prevents sorting errors due to differing case states.

4. Step 4 is reached only if the previous sheet name is greater than the current sheet
name. In this step, you use the Move method to move the current sheet before the
previous sheet.

5. In Step 5, you go back around to the start of the loop. Every iteration of the loop
increments both variables up one number until the last worksheet is touched.
After all iterations have been spent, the macro ends.

How to use it
The best place to store this macro is in your Personal Macro Workbook. This way,
the macro is always available to you. The Personal Macro Workbook is loaded
whenever you start Excel. In the VBE Project window, it is named personal.xlsb.

1. Activate the Visual Basic Editor by pressing Alt+F11 on your keyboard.
2. Right-click personal.xlb in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code in the newly created module.

If you don’t see personal.xlb in your Project window, it means it doesn't exist yet.
You’ll have to record a macro, using Personal Macro Workbook as the destination.

To record the macro in your Personal Macro Workbook, select the Personal Macro
Workbook option in the Record Macro dialog box before you start recording. This
option is in the Store Macro In drop-down list. Simply record a couple of cell clicks
and then stop recording. You can discard the recorded macro and replace it with this
one.

Grouping Worksheets by Color
Many of us assign colors to our worksheet tabs. You can right-click any tab and

select the Tab Color option (shown in Figure 5-4) to choose a color for your tab.

FIGURE 5-4: You can right-click on any worksheet to choose a tab color for the sheet.

This allows for the visual confirmation that the data in a certain tab is somehow
related to another tab because both have the same color. When you have many
colored sheets, it’s often useful to group tabs of similar color together for ease of
navigation.

This macro groups worksheets based on their tab colors.

How it works
You may think it's impossible to sort or group by color, but Excel offers a way. Excel
assigns an index number to every color. A light yellow color may have an index
number of 36, whereas a maroon color has the index number 42.

This macro iterates through the sheets in the workbook, comparing the tab color
index of the current sheet to that of the previous one. If the previous sheet has the
same color index number as the current sheet, the macro moves the current sheet
before it. By the time all the iterations are done, all the sheets are grouped together
based on their tab colors.

Sub Macro1()

'Step 1: Declare your Variables
 Dim CurrentSheetIndex As Integer
 Dim PrevSheetIndex As Integer

'Step 2: Set the starting counts and start looping
 For CurrentSheetIndex = 1 To Sheets.Count
 For PrevSheetIndex = 1 To CurrentSheetIndex - 1

'Step 3: Check Current Sheet against Previous Sheet
 If Sheets(PrevSheetIndex).Tab.ColorIndex = _
 Sheets(CurrentSheetIndex).Tab.ColorIndex Then

'Step 4: If Move Current sheet Before Previous
 Sheets(PrevSheetIndex).Move _
 Before:=Sheets(CurrentSheetIndex)
 End If

'Step 5 Loop back around to iterate again
 Next PrevSheetIndex
 Next CurrentSheetIndex

End Sub

1. Step 1 declares two integer variables. The CurrentSheetIndex holds the index
number for the current sheet iteration, and the PrevSheetIndex variable holds the
index number for the previous sheet iteration.

2. Step 2 starts iteration counts for both variables. Note that the count for the
PrevSheetIndex is one number behind the CurrentSheetIndex. After the counts are
set, the macro starts looping.

3. In Step 3, the macro checks to see whether the color index of the previous sheet
is the same as that of the current sheet. Note the use of the Tab.ColorIndex
property.

4. Step 4 is reached only if the color index of previous sheet is equal to the color
index of the current sheet. In this step, the macro uses the Move method to move
the current sheet before the previous sheet.

5. In Step 5, the macro goes back around to the start of the loop. Every iteration of
the loop increments both variables up one number until the last worksheet is
touched. After all of the iterations have run, the macro ends.

How to use it
The best place to store this macro is in your Personal Macro Workbook. This way,
the macro is always available to you. The Personal Macro Workbook is loaded
whenever you start Excel. In the VBE Project window, it is named personal.xlsb.

1. Activate the Visual Basic Editor by pressing Alt+F11 on your keyboard.
2. Right-click personal.xlb in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code in the newly created module.

If you don’t see personal.xlb in your project window, it doesn't exist yet. You’ll have
to record a macro, using Personal Macro Workbook as the destination.

To record the macro in your Personal Macro Workbook, select the Personal Macro
Workbook option in the Record Macro dialog box before you start recording. This
option is in the Store Macro In drop-down list. Simply record a couple of cell clicks
and then stop recording. You can discard the recorded macro and replace it with this
one.

Copying a Worksheet to a New
Workbook

In Excel, you can manually copy an entire sheet to a new workbook by right-clicking
the target sheet and selecting the Move or Copy option. Unfortunately, if you try to
record a macro while you do this, the macro recorder fails to accurately write the
code to reflect the task. So if you need to programmatically copy an entire sheet to a
brand new workbook, this macro delivers.

How it works
In this macro, the active sheet is first being copied. Then you use the Before
parameter to send the copy to a new workbook that is created on the fly. The copied
sheet is positioned as the first sheet in the new workbook.

The use of the ThisWorkbook object is important here. This ensures that the active
sheet being copied is from the workbook that the code is in, not the newly created
workbook.

Sub Macro1()

'Copy sheet, and send to new workbook
 ThisWorkbook.ActiveSheet.Copy _
 Before:=Workbooks.Add.Worksheets(1)

End Sub

How to use it
To implement this macro, you can copy and paste it into a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11 on your keyboard.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code in the newly created module.

Creating a New Workbook for Each
Worksheet

Many Excel analysts need to parse their workbooks into separate books per
worksheet tab. In other words, they need to create a new workbook for each of the
worksheets in their existing workbook. You can imagine what an ordeal this would
be if you were to do it manually. The following macro helps automate that task.

How it works
In this macro, you are looping the worksheets, copying each sheet, and then sending
the copy to a new workbook that is created on the fly. The thing to note here is that
the newly created workbooks are being saved in the same directory as your original
workbook, with the same filename as the copied sheet (wb.SaveAs
ThisWorkbook.Path & "\" & ws.Name).

Sub Macro1()

'Step 1: Declare all the variables.
 Dim ws As Worksheet
 Dim wb As Workbook

'Step 2: Start the looping through sheets
 For Each ws In ThisWorkbook.Worksheets

'Step 3: Create new workbook and save it.
 Set wb = Workbooks.Add
 wb.SaveAs ThisWorkbook.Path & "\" & ws.Name

'Step 4: Copy the target sheet to the new workbook
 ws.Copy Before:=wb.Worksheets(1)
 wb.Close SaveChanges:=True

'Step 5: Loop back around to the next worksheet
 Next ws

End Sub

 Not all valid worksheet names translate to valid filenames.

Windows has specific rules that prevent you from naming files with certain
characters. You cannot use these characters when naming a file: back slash (\),
forward slash (/), colon (:), asterisk (*), question mark (?), pipe (|), double quote (“),
greater than (>), and less than (<).

The twist is that you can use a few of these restricted characters in your sheet names;
specifically, double quote, pipe (|), greater than (>), and less than (<).

So as you’re running this macro, naming the newly created files to match the sheet
name may cause an error. For example, the macro throws an error when creating a
new file from a sheet called “May| Revenue” (because of the pipe character).

Long story short, avoid naming your worksheets with the restricted characters just
mentioned.

1. Step 1 declares two object variables. The ws variable creates a memory
container for each worksheet the macro loops through. The wb variable creates
the container for the new workbooks you create.

2. In Step 2, the macro starts looping through the sheets. The use of the
ThisWorkbook object ensures that the active sheet being copied is from the
workbook the code is in, not the newly created workbook.

3. In Step 3, you create the new workbook and save it. You save this new book in
the same path as the original workbook (ThisWorkbook). The filename is set to
be the same name as the currently active sheet.

4. Step 4 copies the currently active sheet, using the Before parameter to send it to
the new book as the first tab. Step 4 then saves and closes the newly created
workbook.

5. Step 5 loops back to get the next sheet. After all of the sheets are evaluated, the
macro ends.

How to use it
To implement this macro, you can copy and paste it into a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11 on your keyboard.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code in the newly created module.

Printing Specified Worksheets
If you want to print specific sheets manually in Excel, you need to hold down the Ctrl
key on the keyboard, select the sheets you want to print, and then click Print. If you
do this often enough, you may consider using this very simple macro.

How it works
This one is easy. All you have to do is pass the sheets you want printed in an array as
seen here in this macro, then use the PrintOut method to trigger the print job. All the
sheets you have entered are printed in one go.

Sub Macro1()

'Print Certain Sheets
 ActiveWorkbook.Sheets(_
 Array("Sheet1", "Sheet3", "Sheet5")).PrintOut Copies:=1

End Sub

Want to print all worksheets in a workbook? This one is even easier.
Sub Macro1()

'Print All Sheets
 ActiveWorkbook.Worksheets.PrintOut Copies:=1

End Sub

How to use it
The best place to store this macro is in your Personal Macro Workbook. This way,
the macro is always available to you. The Personal Macro Workbook is loaded
whenever you start Excel. In the VBE Project window, it is named personal.xlsb.

1. Activate the Visual Basic Editor by pressing Alt+F11 on your keyboard.
2. Right-click personal.xlb in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code in the newly created module.

If you don’t see personal.xlb in your Project window, it means it doesn't exist yet.
You’ll have to record a macro using Personal Macro Workbook as the destination.

To record the macro in your Personal Macro Workbook, select the Personal Macro
Workbook option in the Record Macro dialog box before you start recording. This
option is in the Store Macro In drop-down list. Simply record a couple of cell clicks
and then stop recording. You can discard the recorded macro and replace it with this
one.

Protecting All Worksheets
Before you distribute your workbook, you may want to apply sheet protection to all
the sheets. However, as you can see in Figure 5-5, Excel disables the Protect Sheet
command if you try to protect multiple sheets at one time. You are forced to protect
one sheet at a time.

FIGURE 5-5: The Protect Sheet command is disabled if you try to protect more than one sheet at a time.

You can use this macro to save you from protecting each sheet manually.

How it works
In this macro, you are looping the worksheets and simply applying protection with a
password. The Password argument defines the password needed to remove the
protection. The Password argument is completely optional. If you omit it altogether,

the sheet is still protected; you just won’t need to enter a password to unprotect it.
Also, be aware that Excel passwords are case-sensitive, so you’ll want pay attention
to the exact capitalization you are using.

Sub Macro1()

'Step 1: Declare your variables
 Dim ws As Worksheet

'Step 2: Start looping through all worksheets
 For Each ws In ActiveWorkbook.Worksheets

'Step 3: Protect and loop to next worksheet
 ws.Protect Password:="RED"
 Next ws

End Sub

1. Step 1 declares an object called ws. This creates a memory container for each
worksheet you loop through.

2. Step 2 starts the looping, telling Excel you want to enumerate through all
worksheets in this workbook.

3. In Step 3, the macro applies protection with the given password, and then loops
back to get the worksheet.

How to use it
The best place to store this macro is in your Personal Macro Workbook. This way,
the macro is always available to you. The Personal Macro Workbook is loaded
whenever you start Excel. In the VBE Project window, it is named personal.xlsb.

1. Activate the Visual Basic Editor by pressing Alt+F11 on your keyboard.
2. Right-click personal.xlb in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code in the newly created module.

If you don’t see personal.xlb in your Project window, it doesn't exist yet. You’ll have
to record a macro using Personal Macro Workbook as the destination.

To record the macro in your Personal Macro Workbook, select the Personal Macro
Workbook option in the Record Macro dialog box before you start recording. This
option is in the Store Macro In drop-down list. Simply record a couple of cell clicks
and then stop recording. You can discard the recorded macro and replace it with this
one.

Unprotecting All Worksheets

You may find yourself constantly having to unprotect multiple worksheets manually.
However, as you can see in Figure 5-6, Excel disables the Unprotect Sheet command
if you try to unprotect multiple sheets at one time. You are forced to unprotect one
sheet at a time.

FIGURE 5-6: The Unprotect Sheet command is disabled if you try to unprotect more than one sheet at a time.

You can use this macro to save you from unprotecting each sheet manually.

How it works
This macro loops the worksheets and uses the Password argument to unprotect each
sheet.

Sub Macro1()

'Step 1: Declare your variables
 Dim ws As Worksheet

'Step 2: Start looping through all worksheets
 For Each ws In ActiveWorkbook.Worksheets

'Step 3: Loop to next worksheet
 ws.UnProtect Password:="RED"
 Next ws

End Sub

1. Step 1 declares an object called ws. This creates a memory container for each
worksheet you loop through.

2. Step 2 starts the looping, telling Excel to enumerate through all worksheets in this
workbook.

3. Step 3 unprotects the active sheet, providing the password as needed, and then
loops back to get the worksheet.

Obviously, the assumption is that all the worksheets that need to be unprotected have
the same password. If this is not the case, you need to explicitly unprotect each sheet
with its corresponding password.

Sub Macro1()

Sheets("Sheet1").UnProtect Password:="RED"
Sheets("Sheet2").UnProtect Password:="BLUE"
Sheets("Sheet3").UnProtect Password:="YELLOW"
Sheets("Sheet4").UnProtect Password:="GREEN"

End Sub

How to use it
The best place to store this kind of a macro is in your Personal Macro Workbook.
This way, the macro is always available to you. The Personal Macro Workbook is
loaded whenever you start Excel. In the VBE Project window, it will be named
personal.xlsb.

1. Activate the Visual Basic Editor by pressing Alt+F11 on your keyboard.
2. Right-click personal.xlb in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code in the newly created module.

If you don’t see personal.xlb in your Project window, it means it doesn't exist yet.
You’ll have to record a macro, using Personal Macro Workbook as the destination.

To record the macro in your Personal Macro Workbook, select the Personal Macro
Workbook option in the Record Macro dialog box before you start recording. This
option is in the Store Macro In drop-down list. Simply record a couple of cell clicks
and then stop recording. You can discard the recorded macro and replace it with this
one.

Creating a Table of Contents for Your
Worksheets

Outside of sorting worksheets, creating a table of contents for the worksheets in a
workbook is the most commonly requested Excel macro. The reason is probably not
lost on you. We often have to work with files that have more worksheet tabs than can
easily be seen or navigated. A table of contents like the one shown in Figure 5-7
definitely helps.

FIGURE 5-7: A table of contents can help you more easily navigate your workbook.

The following macro not only creates a list of worksheet names in the workbook, but
it also adds hyperlinks so that you can easily jump to a sheet with a simple click.

How it works
It’s easy to get intimidated when looking at this macro. There is a lot going on here.
However, if you step back and consider the few simple actions it does, it becomes a
little less scary:

It removes any previous Table of Contents sheet.
It creates a new Table of Contents sheet.
It grabs the name of each worksheet and pastes it on the Table of Contents.
It adds a hyperlink to each entry in the Table of Contents.

That doesn’t sound so bad. Now look at the code:
Sub Macro1()

'Step 1: Declare Variables
 Dim i As Long

'Step 2: Delete Previous TOC if Exists
 On Error Resume Next
 Application.DisplayAlerts = False
 Sheets("Table Of Contents").Delete
 Application.DisplayAlerts = True
 On Error GoTo 0

'Step 3: Add a new TOC sheet as the first sheet
 ThisWorkbook.Sheets.Add _
 Before:=ThisWorkbook.Worksheets(1)
 ActiveSheet.Name = "Table Of Contents"

'Step 4: Start the i Counter
 For i = 1 To Sheets.Count

'Step 5: Select Next available row
 ActiveSheet.Cells(i, 1).Select

'Step 6: Add Sheet Name and Hyperlink
 ActiveSheet.Hyperlinks.Add _
 Anchor:=ActiveSheet.Cells(i, 1), _
 Address:="", _
 SubAddress:="'" & Sheets(i).Name & "'!A1", _
 TextToDisplay:=Sheets(i).Name

'Step 7: Loop back increment i
 Next i

End Sub

1. Step 1 declares an integer variable called i to serve as the counter as the macro
iterates through the sheets.

Note that this macro is not looping through the sheets the way previous macros in
this chapter did. In previous macros, you looped through the worksheets
collection and selected each worksheet there. In this procedure, you are using a
counter (your i variable). The main reason is because you not only have to keep
track of the sheets, but you also have to manage to enter each sheet name on a
new row into a table of contents. The idea is that as the counter progresses
through the sheets, it also serves to move the cursor down in the Table of
Contents so each new entry goes on a new row.

2. Step 2 essentially attempts to delete any previous sheet called Table of Contents.
Because there may not be any Table of Contents sheet to delete, you have to start
Step 2 with the On Error Resume Next error handler. This tells Excel to continue
the macro if an error is encountered here. You then delete the Table of Contents
sheet using the DisplayAlerts method, which effectively turns off Excel’s
warnings so you don’t have to confirm the deletion. Finally, you reset the error
handler to trap all errors again by entering On Error GoTo 0.

3. In Step 3, you add a new sheet to the workbook using the Before argument to
position the new sheet as first sheet. You then name the sheet Table of Contents.
As mentioned previously in this chapter, when you add a new worksheet, it
automatically becomes the active sheet. Because this new sheet has the focus
throughout the procedure, any references to ActiveSheet in this code refer to the
Table of Contents sheet.

4. Step 4 starts the i counter at 1 and ends it at the maximum count of all sheets in
the workbook. Again, instead of looping through the Worksheets collection like
you’ve done in previous macros, you are simply using the i counter as an index
number that you can pass to the Sheets object. When the maximum number is
reached, the macro ends.

5. Step 5 selects the corresponding row in the Table of Contents sheet. That is to
say, if the i counter is on 1, it selects the first row in the Table of Contents sheet.
If the i counter is at 2, it selects the second row, and so on.
You are able to do this using the Cells item. The Cells item provides an
extremely handy way of selecting ranges through code. It requires only relative
row and column positions as parameters. So Cells(1,1) translates to row 1,
column 1 (or cell A1). Cells(5, 3) translates to row 5, column 3 (or cell C5). The
numeric parameters in the Cells item are particularly handy when you want to
loop through a series of rows or columns using an incrementing index number.

6. Step 6 uses the Hyperlinks.Add method to add the sheet name and hyperlinks to
the selected cell. This step feeds the Hyperlinks.Add method the parameters it
needs to build out the hyperlinks.

7. The last step in the macro loops back to increment the i counter to the next count.
When the i counter reaches a number that equals the count of worksheets in the

workbook, the macro ends.

How to use it
To implement this macro, you can copy and paste it into a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code in the newly created module.

Zooming In and Out of a Worksheet
with Double-Click

Some spreadsheets are huge. Sometimes, you are forced to shrink the font size down
so that you can see a decent portion of the spreadsheet on the screen. If you find that
you are constantly zooming in and out of a spreadsheet, alternating between scanning
large sections of data and reading specific cells, here is a handy macro that auto-
zooms on double-click.

How it works
With this macro in place, you can double-click on a cell in the spreadsheet to zoom in
200 percent. Double-click again and Excel zooms back to 100 percent. Obviously,
you can change the values and complexity in the code to fit your needs.

Private Sub Worksheet_BeforeDoubleClick(ByVal Target As Range, Cancel As Boolean)

'Check current Zoom state
'Zoom to 100% if to at 100
'Zoom 200% if currently at 100
 If ActiveWindow.Zoom <> 100 Then
 ActiveWindow.Zoom = 100
 Else
 ActiveWindow.Zoom = 200
 End If

End Sub

 Note that the side effect of double-clicking a cell is that it goes into edit
mode. You can exit edit mode by pressing the escape key (Esc) on your
keyboard. If you find it annoying to keep pressing Esc when triggering this
macro, you can add this statement to the end of the procedure:

Application.SendKeys ("{ESC}")

This statement mimics you pressing the escape key on your keyboard.

How to use it
To implement this macro, you need to copy and paste it into the
Worksheet_BeforeDoubleClick event code window. Placing the macro there allows
it to run each time you double-click on the sheet.

1. Activate the Visual Basic Editor by pressing Alt+F11 on your keyboard.
2. In the Project window, find your project/workbook name and click the plus

sign next to it in order to see all the sheets.
3. Click on the sheet from which you want to trigger the code.
4. Select the BeforeDoubleClick event from the Event drop-down list (see

Figure 5-8).
5. Type or paste the code in the newly created module.

FIGURE 5-8: Type or paste your code into the Worksheet_BeforeDoubleClick event code window.

Highlighting the Active Row and
Column

When looking at a table of numbers, it would be nice if Excel automatically
highlighted the row and column you’re on (as demonstrated in Figure 5-9). This
effect gives your eyes a lead line up and down the column as well as left and right
across the row.

FIGURE 5-9: A highlighted row and column makes it easy to track data horizontally and vertically.

The following macro enables the effect you see in Figure 5-9 with just a simple
double-click. When the macro is in place, Excel highlights the row and column for
the active cell, greatly improving your ability to view and edit a large grid.

How it works
Take a look at how this macro works:

Private Sub Worksheet_BeforeDoubleClick(ByVal Target As Range, Cancel As Boolean)

'Step 1: Declare Variables
 Dim strRange As String

'Step2: Build the range string
 strRange = Target.Cells.Address & "," & _
 Target.Cells.EntireColumn.Address & "," & _
 Target.Cells.EntireRow.Address

'Step 3: Pass the range string to a Range
 Range(strRange).Select

End Sub

1. You first declare an object called strRange. This creates a memory container you
can use to build a range string.

2. A range string is nothing more than the address for a range. “A1” is a range string
that points to cell A1. “A1:G5” is also a range string; this points to a range of
cells encompassing cells A1 to G5. In Step 2, you are building a range string that
encompasses the double-clicked cell (called Target in this macro), the entire
active row, and the entire active column. The Address property for these three
ranges is captured and pieced together into the strRange variable.

3. In Step 3, you feed the strRange variable as the address for a Range.Select
statement. This is the line of the code that finally highlights the double-clicked

selection.

How to use it
To implement this macro, you need to copy and paste it into the
Worksheet_BeforeDoubleClick event code window. Placing the macro there allows
it to run each time you double-click on the sheet.

1. Activate the Visual Basic Editor by pressing Alt+F11 on your keyboard.
2. In the Project window, find your project/workbook name and click the plus

sign next to it in order to see all the sheets.
3. Click on the sheet from which you want to trigger the code.
4. Select the BeforeDoubleClick event from the Event drop-down list (see

Figure 5-10).
5. Type or paste the code in the newly created module.

FIGURE 5-10: Type or paste your code into the Worksheet_BeforeDoubleClick event code window.

Part 3

One-Touch Data Manipulation

IN THIS PART …
Go beyond basic macros and look at some advanced techniques for navigating ranges
through VBA.

See how macros can automate the selection and manipulation of specific cells.

Explore how you can use macros to clean and transform the data in your workbooks.

Uncover techniques that can help you automate the export of your Excel data.

Chapter 6

Feeling at Home on the Range
IN THIS CHAPTER

 Selecting and formatting a range
 Creating and selecting a named range
 Enumerating through a range of cells
 Inserting blank rows in a range
 Unhiding all rows and columns
 Deleting blank rows
 Deleting blank columns
 Limiting range movement to a particular area
 Selecting and formatting all formulas in a workbook
 Finding and selecting the first blank row or column

One of the most important things you do in Excel is navigate the worksheet. When
you work with Excel manually, you are constantly navigating to appropriate ranges,
finding the last row, moving to the last column, hiding and unhiding ranges, and so on.
This all comes instinctively as part of doing work in Excel.

When you attempt to automate your work through VBA, you’ll find that navigating
your spreadsheet remains an important part of the automation process. In many cases,
you need to dynamically navigate and manipulate Excel ranges, just as you would
manually — only through VBA code. This chapter provides some of the most
commonly used macros in terms of navigating and working with ranges.

Selecting and Formatting a Range
One of the basic things you need to do in VBA is select a specific range to do
something with it. This simple macro selects the range D5:D16.

How it works
In this macro, you explicitly define the range to select by using the Range object.

Sub Macro1()

Range("D5:D16").Select

End Sub

After the range of cells is selected, you can use any of the Range properties to
manipulate the cells. Alter this macro so that the range is colored yellow, converted
to number formatting, and bold.

Sub Macro1()

 Range("D5:D16").Select
 Selection.NumberFormat = "#,##0"
 Selection.Font.Bold = True
 Selection.Interior.ColorIndex = 36

End Sub

 You don’t have to memorize all the properties of the cell object in order to
manipulate them. You can simply record a macro, do your formatting, and then
look at the code that Excel has written. After you've seen what the correct syntax
is, you can apply it as needed. Many Excel programmers start learning VBA this
way!

You’ll notice that Selection is referred to many times in the previous sample code. To
write more efficient code, you can simply refer to the range, using the With…End
With statement. This statement tells Excel that any action you perform applies to the
object to which you’ve pointed. Note that this macro doesn’t actually select the range
at all. This is a key point. In a macro, you can work with a range without selecting it
first.

Sub Macro1()

 With Range("D5:D16")
 .NumberFormat = "#,##0"
 .Font.Bold = True
 .Interior.ColorIndex = 36
 End With

End Sub

Another way you can select a range is by using the Cells item of the Range object.

The Cells item gives you an extremely handy way of selecting ranges through code. It
requires only relative row and column positions as parameters. Cells(5,4) translates
to row 5, column 4 (or Cell D5). Cells(16, 4) translates to row 16, column 4 (or cell
D16).

If you want to select a range of cells, simply pass two items into the Range object.
This macro performs the same selection of range D5:D16:

Sub Macro1()

Range(Cells(5, 4), Cells(16, 4)).Select

End Sub

Here is the full formatting code using the Cells item. Again, note that this macro
doesn’t actually select the range you are altering at all. You can work with a range
without selecting it first.

Sub Macro1()

 With Range(Cells(5, 4), Cells(16, 4))
 .NumberFormat = "#,##0"
 .Font.Bold = True
 .Interior.ColorIndex = 36
 End With

End Sub

How to use it
To implement this kind of a macro, you can copy and paste it into a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11 on your keyboard.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code into the code window.

Creating and Selecting Named Ranges
One of the more useful features in Excel is the ability to name your range (that is, to
give your range a user-friendly name, so that you can more easily identify and refer to
it via VBA).

Here are the steps you would perform to create a named range manually:

1. Select the range you want to name.
2. Go to the Formulas tab in the Ribbon and choose the Define Name command

(see Figure 6-1).
3. Give the chosen range a user-friendly name in the New Name dialog box, as

shown in Figure 6-2.

FIGURE 6-1: Click the Define Name command to name a chosen range.

FIGURE 6-2: Give your range a name.

When you click OK, your range is named. To confirm this, you can go to the Formula
tab and select the Name Manager command. This activates the Name Manager dialog
box (see Figure 6-3), where you can see all the applied named ranges.

FIGURE 6-3: The Name Manager dialog box lists all the applied named ranges.

Creating a named range via VBA is much less involved. You can directly define the
Name property of the Range object:

Sub Macro1()

Range("J6:J17").Name = "MyData"

End Sub

Admittedly, you’d be hard pressed to find a situation where you would need to
automate the creation of named ranges. The real efficiency comes in manipulating
them via VBA.

How it works
You simply pass the name of the range through the Range object. This allows you to
select the range:

Sub Macro1()

Range("MyData").Select

End Sub

As with normal ranges, you can refer to the range using the With…End With
statement. This statement tells Excel that any action you perform applies to the object
to which you’ve pointed. This not only prevents you from having to repeat syntax, but
it also allows for the easy addition of actions by simply adding them between the
With and End With statements.

Sub Macro1()

 With Range("MyData")
 .NumberFormat = "#,##0"

 .Font.Bold = True
 .Interior.ColorIndex = 36
 End With

End Sub

How to use it
To implement this kind of a macro, you can copy and paste it into a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code.

Enumerating Through a Range of
Cells

One must-have VBA skill is the ability to enumerate (or loop) through a range. If you
do any serious macro work in Excel, you will soon encounter the need to go through
a range of cells one by one and perform some action.

This basic macro shows you a simple way to enumerate through a range.

How it works
In this macro, you are essentially using two Range object variables. One of the
variables captures the scope of data you are working with, whereas the other is used
to hold each individual cell as you go through the range. Then you use the For Each
statement to activate or bring each cell in the target range into focus:

Sub Macro1()

'Step 1: Declare your variables.
 Dim MyRange As Range
 Dim MyCell As Range

'Step 2: Define the target Range.
 Set MyRange = Range("D6:D17")

'Step 3: Start looping through the range.
 For Each MyCell In MyRange

'Step 4: Do something with each cell.
 If MyCell.Value > 3000 Then
 MyCell.Font.Bold = True
 End If

'Step 5: Get the next cell in the range
 Next MyCell

End Sub

1. The macro first declares two Range object variables. One, called MyRange,
holds the entire target range. The other, called MyCell, holds each cell in the
range as the macro enumerates through them one by one.

2. In Step 2, you fill the MyRange variable with the target range. In this example,
you are using Range(“D6:D17”). If your target range is a named range, you could
simply enter its name — Range(“MyNamedRange”).

3. In this step, the macro starts looping through each cell in the target range,
activating each cell as it goes through.

4. After a cell is activated, you would do something with it. That “something” really
depends on the task at hand. You may want to delete rows when the active cell
has a certain value, or you may want to insert a row between each active cell. In
this example, the macro is changing the font to Bold for any cell that has a value
greater than 3,000.

5. In Step 5, the macro loops back to get the next cell. After all cells in the target
range are activated, the macro ends.

How to use it
To implement this macro, you can copy and paste it into a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11 on your keyboard.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code.

Inserting Blank Rows in a Range
Occasionally, you may need to dynamically insert rows into your dataset. Although
blank rows are generally bothersome, in some situations, the final formatted version
of your report requires them to separate data. The macro in this section adds blank
rows into a range.

How it works
This macro performs a reverse loop through the chosen range using a counter. It starts
at the last row of the range by inserting two blank rows, and then moves to the
previous row in the range. It keeps doing that same insert for every loop, each time
incrementing the counter to the previous row.

Sub Macro1()

'Step1: Declare your variables.
 Dim MyRange As Range
 Dim iCounter As Long

'Step 2: Define the target Range.
 Set MyRange = Range("C6:D17")

'Step 3: Start reverse looping through the range.
 For iCounter = MyRange.Rows.Count To 2 Step -1

'Step 4: Insert two blank rows.
 MyRange.Rows(iCounter).EntireRow.Insert
 MyRange.Rows(iCounter).EntireRow.Insert

'Step 5: Increment the counter down
 Next iCounter

End Sub

1. You first declare two variables. The first variable is an object variable called
MyRange. This is an object variable that defines the target range. The other
variable is a Long Integer variable called iCounter. This variable serves as an
incremental counter.

2. In Step 2, the macro fills the MyRange variable with the target range. In this
example, you are using Range(“C6:D17”). If your target range is a named range,
you could simply enter its name — Range(“MyNamedRange”).

3. In this step, the macro sets the parameters for the incremental counter to start at
the max count for the range (MyRange.Rows.Count) and end at 2 (the second row
of the chosen range). Note that you are using the Step-1 qualifier. Because you
specify Step -1, Excel knows you are going to increment the counter backward,
moving back one increment on each iteration. In all, Step 3 tells Excel to start at
the last row of the chosen range, moving backward until it gets to the second row
of the range.

4. When working with a range, you can explicitly call out a specific row in the
range by passing a row index number to the Rows collection of the range. For
example, Range(“D6:D17”).Rows(5) points to the fifth row in the range D6:D17.
In Step 4, the macro uses the iCounter variable as an index number for the Rows
collection of MyRange. This helps pinpoint which exact row the macro is
working with in the current loop. The macro then uses the EntireRow.Insert
method to insert a new blank row. Because you want two blank rows, you do this
twice.

5. In Step 5, the macro loops back to increment the counter down.

How to use it
To implement this macro, you can copy and paste it into a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code.

Unhiding All Rows and Columns
When you are auditing a spreadsheet that you did not create, you often want to ensure
you’re getting a full view of what is exactly in the spreadsheet. To do so, you need to
ensure that no columns and rows are hidden. This simple macro automatically
unhides all rows and columns for you.

How it works
In this macro, you call on the Columns collection and the Rows collection of the
worksheet. Each collection has properties that dictate where its objects are hidden or
visible. Running this macro unhides every column in the Columns collection and
every row in the Rows collection.

Sub Macro1()

Columns.EntireColumn.Hidden = False
Rows.EntireRow.Hidden = False

End Sub

How to use it
The best place to store this macro is in your Personal Macro Workbook. This way,
the macro is always available to you. The Personal Macro Workbook is loaded
whenever you start Excel. In the VBE Project window, it is named personal.xlsb.

1. Activate the Visual Basic Editor by pressing Alt+F11.
2. Right-click personal.xlb in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code.

If you don’t see personal.xlb in your Project window, it means it doesn't exist yet.
You’ll have to record a macro, using Personal Macro Workbook as the destination.

To record the macro in your Personal Macro Workbook, select the Personal Macro
Workbook option in the Record Macro dialog box before you start recording. This
option is in the Store Macro In drop-down list. Simply record a couple of cell clicks
and then stop recording. You can discard the recorded macro and replace it with this
one.

Deleting Blank Rows
Work with Excel long enough, and you’ll find out that blank rows can often cause
havoc on many levels. They can cause problems with formulas, introduce risk when
copying and pasting, and sometimes cause strange behaviors in PivotTables. If you
find that you are manually searching out and deleting blank rows in your data sets,
this macro can help automate that task.

How it works
In this macro, you are using the UsedRange property of the Activesheet object to
define the range you are working with. The UsedRange property gives you a range
that encompasses the cells that have been used to enter data. You then establish a
counter that starts at the last row of the used range to check if the entire row is empty.
If the entire row is indeed empty, you remove the row. You keep doing that same
delete for every loop, each time incrementing the counter to the previous row.

Sub Macro1()

'Step 1: Declare your variables.
 Dim MyRange As Range
 Dim iCounter As Long

'Step 2: Define the target Range.
 Set MyRange = ActiveSheet.UsedRange

'Step 3: Start reverse looping through the range.
 For iCounter = MyRange.Rows.Count To 1 Step -1

'Step 4: If entire row is empty then delete it.
 If Application.CountA(Rows(iCounter).EntireRow) = 0 Then
 Rows(iCounter).Delete
 End If

'Step 5: Increment the counter down
 Next iCounter

End Sub

1. The macro first declares two variables. The first variable is an Object variable
called MyRange. This is an object variable that defines your target range. The
other variable is a Long Integer variable called iCounter. This variable serves as
an incremental counter.

2. In Step 2, the macro fills the MyRange variable with the UsedRange property of
the ActiveSheet object. The UsedRange property gives you a range that
encompasses the cells that have been used to enter data. Note that if you wanted
to specify an actual range or a named range, you could simply enter its name —
Range(“MyNamedRange”).

3. In this step, the macro sets the parameters for the incremental counter to start at

the max count for the range (MyRange.Rows.Count) and end at 1 (the first row of
the chosen range). Note that you are using the Step-1 qualifier. Because you
specify Step -1, Excel knows you are going to increment the counter backward,
moving back one increment on each iteration. In all, Step 3 tells Excel to start at
the last row of the chosen range, moving backward until it gets to the first row of
the range.

4. When working with a range, you can explicitly call out a specific row in the
range by passing a row index number to the Rows collection of the range. For
example, Range(“D6:D17”).Rows(5) points to the fifth row in the range D6:D17.
In Step 4, the macro uses the iCounter variable as an index number for the Rows
collection of MyRange. This helps pinpoint which exact row you are working
with in the current loop. The macro checks to see whether the cells in that row
are empty. If they are, the macro deletes the entire row.

5. In Step 5, the macro loops back to increment the counter down.

How to use it
The best place to store this macro is in your Personal Macro Workbook. This way,
the macro is always available to you. The Personal Macro Workbook is loaded
whenever you start Excel. In the VBE Project window, it is named personal.xlsb.

1. Activate the Visual Basic Editor by pressing Alt+F11.
2. Right-click personal.xlb in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code.

If you don’t see personal.xlb in your Project window, it means it doesn't exist yet.
You’ll have to record a macro, using Personal Macro Workbook as the destination.

To record the macro in your Personal Macro Workbook, select the Personal Macro
Workbook option in the Record Macro dialog box before you start recording. This
option is in the Store Macro In drop-down list. Simply record a couple of cell clicks
and then stop recording. You can discard the recorded macro and replace it with this
one.

Deleting Blank Columns
Just as with blank rows, blank columns also have the potential of causing unforeseen
errors. If you find that you are manually searching out and deleting blank columns in
your data sets, this macro can automate that task.

How it works

In this macro, you are using the UsedRange property of the ActiveSheet object to
define the range to work with. The UsedRange property gives you a range that
encompasses the cells that have been used to enter data. You then establish a counter
that starts at the last column of the used range, checking if the entire column is empty.
If the entire column is indeed empty, you remove the column. You keep doing that
same delete for every loop, each time incrementing the counter to the previous
column.

Sub Macro1()

'Step 1: Declare your variables.
 Dim MyRange As Range
 Dim iCounter As Long

'Step 2: Define the target Range.
 Set MyRange = ActiveSheet.UsedRange

'Step 3: Start reverse looping through the range.
 For iCounter = MyRange.Columns.Count To 1 Step -1

'Step 4: If entire column is empty then delete it.
 If Application.CountA(Columns(iCounter).EntireColumn) = 0 Then
 Columns(iCounter).Delete
 End If

'Step 5: Increment the counter down
 Next iCounter

End Sub

1. You first declare two variables. The first variable is an object variable called
MyRange. This is an Object variable that defines your target range. The other
variable is a Long Integer variable called iCounter. This variable serves as your
incremental counter.

2. In Step 2, you fill the MyRange variable with the UsedRange property of the
ActiveSheet object. The UsedRange property gives you a range that encompasses
the cells that have been used to enter data. Note that if you wanted to specify an
actual range or a named range, you could simply enter its name —
Range(“MyNamedRange”).

3. In this step, you set the parameters for your incremental counter to start at the max
count for the range (MyRange.Columns.Count) and end at 1 (the first row of the
chosen range). Note that you are using the Step-1 qualifier. Because you specify
Step -1, Excel knows you are going to increment the counter backward; moving
back one increment on each iteration. In all, Step 3 tells Excel that you want to
start at the last column of the chosen range, moving backward until you get to the
first column of the range.

4. When working with a range, you can explicitly call out a specific column in the
range by passing a column index number to the Columns collection of the range.
For example, Range(“A1:D17”).Columns(2) points to the second column in the

range (column B).
In Step 4, the macro uses the iCounter variable as an index number for the
Columns collection of MyRange. This helps pinpoint exactly which column you
are working with in the current loop. The macro checks to see whether all the
cells in that column are empty. If they are, the macro deletes the entire column.

5. In Step 5, the macro loops back to increment the counter down.

How to use it
The best place to store this macro is in your Personal Macro Workbook. This way,
the macro is always available to you. The Personal Macro Workbook is loaded
whenever you start Excel. In the VBE Project window, it is named personal.xlsb.

1. Activate the Visual Basic Editor by pressing Alt+F11.
2. Right-click personal.xlb in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code.

If you don’t see personal.xlb in your Project window, it doesn't exist yet. You’ll have
to record a macro, using Personal Macro Workbook as the destination.

To record the macro in your Personal Macro Workbook, select the Personal Macro
Workbook option in the Record Macro dialog box before you start recording. This
option is in the Store Macro In drop-down box. Simply record a couple of cell clicks
and then stop recording. You can discard the recorded macro and replace it with this
one.

Limiting Range Movement to a
Particular Area

Excel gives you the ability to limit the range of cells that a user can scroll through.
The macro demonstrated here is something you can easily implement today.

How it works
Excel’s ScrollArea property allows you to set the scroll area for a particular
worksheet. For example, this statement sets the scroll area on Sheet1 so the user
cannot activate any cells outside of A1:M17.

Sheets("Sheet1").ScrollArea = "A1:M17"

Because this setting is not saved with a workbook, you’ll have to reset it each time
the workbook is opened. You can accomplish this by implementing this statement in

the Workbook_Open event:
Private Sub Worksheet_Open()

Sheets("Sheet1").ScrollArea = "A1:M17"

End Sub

If for some reason you need to clear the scroll area limits, you can remove the
restriction with this statement:

ActiveSheet.ScrollArea = ""

How to use it
To implement this macro, you will need to copy and paste it into the Workbook_Open
event code window. Placing the macro here allows it to run each time the workbook
opens.

1. Activate the Visual Basic Editor by pressing Alt+F11 on your keyboard.
2. In the Project window, find your project/workbook name and click the plus

sign next to it in order to see all the sheets.
3. Click ThisWorkbook.
4. Select the Open event in the Event dropdown (see Figure 6-4).
5. Type or paste the code.

FIGURE 6-4: Type or paste your code in the Workbook Open event code window.

Selecting and Formatting All
Formulas in a Workbook

When auditing an Excel workbook, it’s paramount to have a firm grasp of all the
formulas in each sheet. This means finding all the formulas, which can be an arduous

task if done manually.

However, Excel provides a slick way of finding and tagging all the formulas on a
worksheet. The macro in this section exploits this functionality to dynamically find
all cells that contain formulas.

How it works
Excel has a set of predefined “special cells” that you can select by using the Go To
Special dialog box. To select special cells manually, go to the Home tab on the
Ribbon, click the Find & Select dropdown, and then select Go To Special. This
opens the Go To Special dialog box shown in Figure 6-5. Alternatively, you can
press the F5 key on your keyboard to activate the Go To Special dialog box.

FIGURE 6-5: The Go To Special dialog box.

Here, you can select a set of cells based on a few defining attributes. One of those
defining attributes is formulas. Selecting the Formulas option effectively selects all
cells that contain formulas (see Figure 6-6). At this point, you can color the cells to
indicate they contain a formula.

FIGURE 6-6: Choosing Formulas in the Go To Special dialog box tells Excel to select all cells containing a formula.

This macro programmatically does the same thing for the entire workbook at the
same time. Here, you are using the SpecialCells method of the Cells collection. The
SpecialCells method requires a Type parameter that represents the type of special
cell. In this case, you use xlCellTypeFormulas.

In short, you are referring to a special range that consists only of cells that contain
formulas. You refer to this special range using the With…End With statement. This
statement tells Excel that any action you perform applies only to the range to which
you’ve pointed. Here, you are coloring the interior of the cells in the chosen range.

Sub Macro1()

'Step 1: Declare your Variables
 Dim ws As Worksheet

'Step 2: Avoid Error if no formulas are found
 On Error Resume Next

'Step 3: Start looping through worksheets
 For Each ws In ActiveWorkbook.Worksheets

'Step 4: Select cells and highlight them
 With ws.Cells.SpecialCells(xlCellTypeFormulas)
 .Interior.ColorIndex = 36
 End With

'Step 5: Get next worksheet
 Next ws

End Sub

1. Step 1 declares an object called ws. This creates a memory container for each
worksheet the macro loops through.

2. If there are no formulas in the spreadsheet, Excel throws an error. To avoid the
error, you tell Excel to continue with the macro if an error is triggered.

3. Step 3 begins the looping, telling Excel to evaluate all worksheets in the active

workbook.
4. In this step, the macro selects all cells containing formulas, then formats them.
5. In Step 5, you loop back to get the next sheet. After all of the sheets are

evaluated, the macro ends.

How to use it
The best place to store this macro is in your Personal Macro Workbook. This way,
the macro is always available. The Personal Macro Workbook is loaded whenever
you start Excel. In the VBE Project window, it's named personal.xlsb.

1. Activate the Visual Basic Editor by pressing Alt+F11.
2. Right-click personal.xlb in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code.

If you don’t see personal.xlb in your Project window, it doesn't exist yet. You’ll have
to record a macro, using Personal Macro Workbook as the destination.

To record the macro in your Personal Macro Workbook, select the Personal Macro
Workbook option in the Record Macro dialog box before you start recording. This
option is in the Store Macro In drop-down list. Simply record a couple of cell clicks
and then stop recording. You can discard the recorded macro and replace it with this
one.

Finding and Selecting the First Blank
Row or Column

You may often run across scenarios where you have to append rows or columns to an
existing data set. When you need to append rows, you will need to be able to find the
last used row and then move down to the next empty cell (illustrated in Figure 6-7).
Likewise, in situations where you need to append columns, you need to be able to
find the last used column and then move over to the next empty cell.

FIGURE 6-7: You can use a macro to tell Excel to dynamically find the first available cell in a row or column.

The macros in this section allow you to dynamically find and select the first blank
row or column.

How it works
These macros both use the Cells item and the Offset property as key navigation tools.

The Cells item belongs to the Range object. It provides an extremely handy way of
selecting ranges through code. It requires only relative row and column positions as
parameters. Cells(5,4) translates to row 5, column 4 (or Cell D5). Cells(16, 4)
translates to row 16, column 4 (or cell D16).

In addition to passing hard numbers to the Cells item, you can also pass expressions.

Cells(Rows.Count, 1) is the same as selecting the last row in the spreadsheet and the
first column in the spreadsheet. In Excel 2007 and later, that essentially translates to
cell A1048576.

Cells(1, Columns.Count) is the same as selecting the first row in the spreadsheet and
the last column in the spreadsheet. In Excel 2007 and later, that translates to cell
XFD1.

Combining the Cells statement with the End property allows you to jump to the last
used row or column. This statement is equivalent to going to cell A1048576 and
pressing Ctrl+Shift+Up Arrow on the keyboard. When you run this statement, Excel
automatically jumps to the last used row in column A:

Cells(Rows.Count, 1).End(xlUp).Select

Running this statement is equivalent to going to cell XFD1 and pressing
Ctrl+Shift+Left Arrow on the keyboard. This gets you to the last used column in row
1:

Cells(1, Columns.Count).End(xlToLeft).Select

When you get to the last used row or column, you can use the Offset property to move
down or over to the next blank row or column.

The Offset property uses a row and column index to specify a changing base point.

For example, this statement selects cell A2 because the row index in the offset is
moving the row base point by one:

Range("A1").Offset(1, 0).Select

This statement selects cell C4 because the row and column indexes move the base
point by three rows and two columns:

Range("A1").Offset(3, 2).Select

Pulling all these concepts together, you can create a macro that selects the first blank
row or column.

This macro selects the first blank row:
Sub Macro1()

'Step 1: Declare Your Variables.
 Dim LastRow As Long

'Step 2: Capture the last used row number.
 LastRow = Cells(Rows.Count, 1).End(xlUp).Row

'Step 3: Select the next row down
 Cells(LastRow, 1).Offset(1, 0).Select

End Sub

1. You first declare a Long Integer variable called LastRow to hold the row number
of the last used row.

2. In Step 2, you capture the last used row by starting at the very last row in the
worksheet and using the End property to jump up to the first non-empty cell (the
equivalent of going to cell A1048576 and pressing Ctrl+Shift+Up Arrow on the
keyboard).

3. In this step, you use the Offset property to move down one row and select the first
blank cell in column A.

This macro selects the first blank column:
Sub Macro1()

'Step 1: Declare Your Variables.
 Dim LastColumn As Long

'Step 2: Capture the last used column number.
 LastColumn = Cells(5, Columns.Count).End(xlToLeft).Column

'Step 3: Select the next column over
 Cells(5, LastColumn).Offset(0, 1).Select

End Sub

1. You first declare a Long Integer variable called LastColumn to hold the column
number of the last used column.

2. In Step 2, you capture the last used column by starting at the very last column in
the worksheet and using the End property to jump up to the first non-empty
column (the equivalent of going to cell XFD5 and pressing Ctrl+Shift+Left
Arrow on the keyboard).

3. In this step, you use the Offset property to move over one column and select the
first blank column in row 5.

How to use it
You can implement these macros by pasting them into a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code.

Chapter 7

Manipulating Data with Macros
IN THIS CHAPTER

 Copying and pasting a range and converting formulas in a range
 Performing text to columns on all columns
 Converting trailing minus signs and padding cells with zeros
 Truncating postal codes to the left five
 Appending text to the left or right of your cells
 Cleaning up data including duplicates, extra cell space, and blank cells
 Selectively hiding AutoFilter dropdowns
 Copying filtered rows and showing filtered columns in status bar

When working with information in Excel, you often have to transform the data in
some way. Transforming it generally means cleaning, standardizing, or shaping data
in ways that are appropriate for your work. This can mean anything from cleaning out
extra spaces, to padding numbers with zeros, to filtering data for certain criteria.

This chapter shows you some of the more useful macros you can use to dynamically
transform the data in your workbooks. If you want, you can combine these macros
into one, running each piece of code in a sequence that essentially automates the
scrubbing and shaping of your data.

Copying and Pasting a Range
One of the basic data manipulation skills you’ll need to learn is copying and pasting
a range of data. It’s fairly easy to do this manually. Luckily, it’s just as easy to copy
and paste via VBA.

How it works
In this macro, you use the Copy method of the Range object to copy data from
D6:D17 and paste to L6:L17. Note the use of the Destination argument. This
argument tells Excel where to paste the data.

Sub Macro1()

Sheets("Sheet1").Range("D6:D17").Copy _
Destination:=Sheets("Sheet1").Range("L6:L17")

End Sub

When working with your spreadsheet, you likely often have to copy formulas and
paste them as values. To do this in a macro, you can use the PasteSpecial method. In
this example, you copy the formulas in F6:F17 to M6:M17. Notice that you are not
only pasting as values using xlPasteValues, but you are also using xlPasteFormats to
apply the formatting from the copied range.

Sub Macro1()

Sheets("Sheet1").Range("F6:F17").Copy
Sheets("Sheet1").Range("M6:M17").PasteSpecial xlPasteValues
Sheets("Sheet1").Range("M6:M17").PasteSpecial xlPasteFormats

End Sub

 Keep in mind that the ranges specified here are for demonstration purposes.
Alter the ranges to suit the data in your worksheet.

How to use it
To implement this macro, you can copy and paste it into a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11 on your keyboard.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒    Module.
4. Type or paste the code.

Converting All Formulas in a Range
to Values

In some situations, you may want to apply formulas in a certain workbook, but you
don’t necessarily want to keep or distribute the formulas with your workbook. In
these situations, you may want to convert all the formulas in a given range to values.

How it works
In this macro, you essentially use two Range object variables. One of the variables
captures the scope of data you are working with, whereas the other is used to hold
each individual cell as you go through the range. Then you use the For Each statement
to activate or bring each cell in the target range into focus. Every time a cell is
activated, you check to see whether the cell contains a formula. If it does, you
replace the formula with the value shown in the cell.

Sub Macro1()

'Step 1: Declare your variables
 Dim MyRange As Range
 Dim MyCell As Range

'Step 2: Save the Workbook before changing cells?
 Select Case MsgBox("Can't Undo this action. " & _
 "Save Workbook First?", vbYesNoCancel)
 Case Is = vbYes
 ThisWorkbook.Save

 Case Is = vbCancel
 Exit Sub
 End Select

'Step 3: Define the target Range.
 Set MyRange = Selection

'Step 4: Start looping through the range.
 For Each MyCell In MyRange

'Step 5: If cell has formula, set to the value shown.
 If MyCell.HasFormula Then
 MyCell.Formula = MyCell.Value
 End If

'Step 6: Get the next cell in the range
 Next MyCell

End Sub

1. Step 1 declares two Range object variables, one called MyRange to hold the
entire target range, and the other called MyCell to hold each cell in the range as
you enumerate through the cells one by one.

2. When you run a macro, it destroys the undo stack. This means you can’t undo the
changes a macro makes. Because you are actually changing data, you need to give
yourself the option of saving the workbook before running the macro. This is
what Step 2 does.
Here, you call up a message box that asks if you want to save the workbook first.
It then gives you three choices: Yes, No, and Cancel. Clicking Yes saves the
workbook and continues with the macro. Clicking Cancel exits the procedure
without running the macro. Clicking No runs the macro without saving the
workbook.

3. Step 3 fills the MyRange variable with the target range. In this example, you use
the selected range — the range that was selected on the spreadsheet. You can
easily set the MyRange variable to a specific range such as Range(“A1:Z100”).
Also, if your target range is a named range, you could simply enter its name:

Range(“MyNamedRange”).
4. This step starts looping through each cell in the target range, activating each cell

as it goes through.
5. After a cell is activated, the macro uses the HasFormula property to check

whether the cell contains a formula. If it does, you set the cell to equal the value
shown in the cell. This effectively replaces the formula with a hard-coded value.

6. Step 6 loops back to get the next cell. After all cells in the target range are
activated, the macro ends.

How to use it
To implement this macro, you can copy and paste it into a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11 on your keyboard.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒    Module.

Text to Columns on All Columns
When you import data from other sources, you may sometimes wind up with cells
where the number values are formatted as text. You typically recognize this problem
because no matter what you do, you can’t format the numbers in these cells to
numeric, currency, or percentage formats. You may also see a smart tag on the cells
(see Figure 7-1) that tells you the cell is formatted as text.

FIGURE 7-1: Imported numbers are sometimes formatted as text.

It’s easy enough to fix this manually by clicking on the Text to Columns command on
the Data tab (Figure 7-2). This opens the Text to Columns dialog box shown in Figure
7-3. There is no need to go through all the steps in this Wizard; simply click the
Finish button to apply the fix.

FIGURE 7-2: Click on the Text to Columns command.

FIGURE 7-3: Clicking Finish in the Text to Columns dialog box corrects incorrectly formatted numbers.

Again, this is a fairly simple action. The problem, however, is that Excel doesn't let
you perform the Text to Columns fix on multiple columns. You have to apply this fix
one column at a time. This can be a real nuisance if you’ve got this issue in many
columns.

Here is where a simple macro can help you save your sanity.

How it works
In this macro, you use two Range object variables to go through your target range,
leveraging the For Each statement to activate each cell in the target range. Every time
a cell is activated, you simply reset the value of the cell. This in effect does the same
thing as the Text to Columns command.

Sub Macro1()

'Step 1: Declare your variables
 Dim MyRange As Range
 Dim MyCell As Range

'Step 2: Save the Workbook before changing cells?
 Select Case MsgBox("Can't Undo this action. " & _
 "Save Workbook First?", vbYesNoCancel)
 Case Is = vbYes
 ThisWorkbook.Save

 Case Is = vbCancel
 Exit Sub
 End Select

'Step 3: Define the target Range.
 Set MyRange = Selection

'Step 4: Start looping through the range.
 For Each MyCell In MyRange

'Step 5: Reset the cell value.
 If Not IsEmpty(MyCell) Then
 MyCell.Value = MyCell.Value
 End If

'Step 6: Get the next cell in the range
 Next MyCell

End Sub

1. Step 1 declares two Range object variables, one called MyRange to hold the
entire target range, and the other called MyCell to hold each cell in the range as
the macro enumerates through the cells one by one.

2. When you run a macro, it destroys the undo stack. This means you can’t undo the
changes a macro makes. Because the macro is actually changing data, you need to
give yourself the option of saving the workbook before running the macro. This is
what Step 2 does. Here, you call up a message box that asks if you want to save
the workbook first. It gives you three choices: Yes, No, and Cancel. Clicking Yes
saves the workbook and continues with the macro. Clicking Cancel exits the
procedure without running the macro. Clicking No runs the macro without saving
the workbook.

3. Step 3 fills the MyRange variable with the target range. In this example, you are
using the selected range — the range that was selected on the spreadsheet. You
can easily set the MyRange variable to a specific range such as
Range(“A1:Z100”). Also, if your target range is a named range, you could simply
enter its name: Range(“MyNamedRange”).

4. Step 4 starts looping through each cell in the target range, activating each cell as
it goes through.

5. After a cell is activated, the macro uses the IsEmpty function to make sure the
cell is not empty. You do this to save a little on performance by skipping the cell

if there is nothing in it. You then simply reset the cell to its own value. This
removes any formatting mismatch.

6. Step 6 loops back to get the next cell. After all cells in the target range are
activated, the macro ends.

How to use it
To implement this macro, you can copy and paste it into a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11 on your keyboard.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒    Module.
4. Type or paste the code.

Converting Trailing Minus Signs
Legacy and mainframe systems are notorious for outputting trailing minus signs. In
other words, instead of a number such as -142, some systems output 142-. This
obviously wreaks havoc on your spreadsheet — especially if you need to perform
mathematic operations on the data. This nifty macro goes through a target range and
fixes all the negative minus signs so that they show up in front of the number rather
than the end.

How it works
In this macro, you use two Range object variables to go through your target range,
leveraging the For Each statement to activate each cell in the target range. Every time
a cell is activated, you convert the value of the cell into a Double numeric data type
by using the Cdbl function. The Double data type forces any negative signs to show at
the front of the number.

Sub Macro1()

'Step 1: Declare your variables
 Dim MyRange As Range
 Dim MyCell As Range

'Step 2: Save the Workbook before changing cells?
 Select Case MsgBox("Can't Undo this action. " & _
 "Save Workbook First?", vbYesNoCancel)
 Case Is = vbYes
 ThisWorkbook.Save

 Case Is = vbCancel
 Exit Sub
 End Select

'Step 3: Define the target Range.
 Set MyRange = Selection

'Step 4: Start looping through the range.
 For Each MyCell In MyRange

'Step 5: Convert the value to a Double.
 If IsNumeric(MyCell) Then
 MyCell = CDbl(MyCell)
 End If

'Step 6: Get the next cell in the range
 Next MyCell

End Sub

1. Step 1 declares two Range object variables, one called MyRange to hold the
entire target range, and the other called MyCell to hold each cell in the range as
you enumerate through the cells one by one.

2. When you run a macro, it destroys the undo stack. This means you can’t undo the
changes a macro makes. Because you are actually changing data, you need to give
yourself the option of saving the workbook before running the macro. This is
what Step 2 does. Here, you call up a message box that asks if you want to save
the workbook first. It then gives you three choices: Yes, No, and Cancel. Clicking
Yes saves the workbook and continues with the macro. Clicking Cancel exits the
procedure without running the macro. Clicking No runs the macro without saving
the workbook.

3. Step 3 fills the MyRange variable with the target range. In this example, you use
the selected range — the range that was selected on the spreadsheet. You can
easily set the MyRange variable to a specific range such as Range(“A1:Z100”).
Also, if your target range is a named range, you could simply enter its name —
Range(“MyNamedRange”).

4. Step 4 starts looping through each cell in the target range, activating each cell as
it goes through.

5. After a cell is activated, Step 5 uses the IsNumeric function to check to see if the
value can be evaluated as a number. This is to ensure you don’t affect textual
fields. You then pass the cell’s value through the Cdbl function. This effectively
converts the value to the Double numeric data type, forcing the minus sign to the
front.

6. Step 6 loops back to get the next cell. After all cells in the target range are
activated, the macro ends.

 Because you define the target range as the current selection, you want to
be sure to select the area where your data exists before running this code. In other
words, you wouldn’t want to select the entire worksheet. Otherwise, every empty
cell in the spreadsheet would be filled with a zero. Of course, you can ensure this
is never a problem by explicitly defining the target range, such as Set MyRange =
Range(“A1:Z100”).

How to use it
To implement this macro, you can copy and paste it into a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11 on your keyboard.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒    Module.
4. Type or paste the code.

Trimming Spaces from All Cells in a
Range

A frequent problem when you import dates from other sources is leading or trailing
spaces. That is, the imported values have spaces at the beginning or end of the cell.
This obviously makes it difficult to do things like VLOOKUP or sorting. Here is a
macro that makes it easy to search for and remove extra spaces in your cells.

How it works
In this macro, you enumerate through a target range, passing each cell in that range
through the Trim function.

Sub Macro1()

'Step 1: Declare your variables
 Dim MyRange As Range
 Dim MyCell As Range

'Step 2: Save the Workbook before changing cells?
 Select Case MsgBox("Can't Undo this action. " & _
 "Save Workbook First?", vbYesNoCancel)
 Case Is = vbYes
 ThisWorkbook.Save

 Case Is = vbCancel
 Exit Sub
 End Select

'Step 3: Define the target Range.
 Set MyRange = Selection

'Step 4: Start looping through the range.
 For Each MyCell In MyRange

'Step 5: Trim the Spaces.
 If Not IsEmpty(MyCell) Then
 MyCell = Trim(MyCell)
 End If

'Step 6: Get the next cell in the range
 Next MyCell

End Sub

1. Step 1 declares two Range object variables, one called MyRange to hold the
entire target range, and the other called MyCell to hold each cell in the range as
the macro enumerates through the cells one by one.

2. When you run a macro, it destroys the undo stack. You can’t undo the changes a
macro makes. Because you are actually changing data, you need to give yourself
the option of saving the workbook before running the macro. Step 2 does this.
Here, you call up a message box that asks if you want to save the workbook first.
It then gives you three choices: Yes, No, and Cancel. Clicking Yes saves the
workbook and continues with the macro. Clicking Cancel exits the procedure
without running the macro. Clicking No runs the macro without saving the
workbook.

3. Step 3 fills the MyRange variable with the target range. In this example, you use
the selected range — the range that was selected on the spreadsheet. You can
easily set the MyRange variable to a specific range such as Range(“A1:Z100”).
Also, if your target range is a named range, you could simply enter its name —
Range(“MyNamedRange”).

4. Step 4 starts looping through each cell in the target range, activating each cell as
it goes through.

5. After a cell is activated, the macro uses the IsEmpty function to make sure the
cell is not empty. You do this to save a little on performance by skipping the cell
if there is nothing in it. You then pass the value of that cell to the Trim function.
The Trim function is a native Excel function that removes leading and trailing
spaces.

6. Step 6 loops back to get the next cell. After all cells in the target range are
activated, the macro ends.

How to use it
To implement this macro, you can copy and paste it into a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11 on your keyboard.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒    Module.
4. Type or paste the code.

Truncating ZIP Codes to the Left Five
U.S. ZIP codes come in either five or ten digits. Some systems output a 10-digit ZIP
code, which, for the purposes of a lot of Excel analysis, is too many. A common data
standardization task is to truncate ZIP codes to the left five digits. Many of us use
formulas to do this, but if you are constantly cleaning up your ZIP codes, the macro
outlined in this section can help automate that task.

It’s important to note that although this macro solves a specific problem, the concept
of truncating data remains useful for many other types of data cleanup activities.

How it works
This macro uses the Left function to extract the left five characters of each ZIP code
in the given range.

Sub Macro1()

'Step 1: Declare your variables
 Dim MyRange As Range
 Dim MyCell As Range

'Step 2: Save the Workbook before changing cells?
 Select Case MsgBox("Can't Undo this action. " & _
 "Save Workbook First?", vbYesNoCancel)
 Case Is = vbYes
 ThisWorkbook.Save

 Case Is = vbCancel
 Exit Sub
 End Select

'Step 3: Define the target Range.
 Set MyRange = Selection

'Step 4: Start looping through the range.
 For Each MyCell In MyRange

'Step 5: Extract out the left 5 characters.
 If Not IsEmpty(MyCell) Then

 MyCell = Left(MyCell, 5)
 End If

'Step 6: Get the next cell in the range
 Next MyCell

End Sub

1. Step 1 declares two Range object variables, one called MyRange to hold the
entire target range, and the other called MyCell to hold each cell in the range as
the macro enumerates through the cells one by one.

2. When you run a macro, it destroys the undo stack. This means you can’t undo the
changes a macro makes. Because you are actually changing data, you need to give
yourself the option of saving the workbook before running the macro. This is
what Step 2 does. Here, you call up a message box that asks if you want to save
the workbook first. It gives you three choices: Yes, No, and Cancel. Clicking Yes
saves the workbook and continues with the macro. Clicking Cancel exits the
procedure without running the macro. Clicking No runs the macro without saving
the workbook.

3. Step 3 fills the MyRange variable with the target range. In this example, you use
the selected range — the range that was selected on the spreadsheet. You can
easily set the MyRange variable to a specific range such as Range(“A1:Z100”).
Also, if your target range is a named range, you could simply enter its name:
Range(“MyNamedRange”).

4. Step 4 starts looping through each cell in the target range, activating each cell.
5. After a cell is activated, Step 5 uses the IsEmpty function to make sure the cell is

not empty. You do this to save a little on performance by skipping the cell if there
is nothing in it. You then pass the cell’s value through Left function. The Left
function allows you to extract out the nth leftmost characters in a string. In this
scenario, you need the left five characters in order to truncate the ZIP code to five
digits.

6. Step 6 loops back to get the next cell. After all of the cells in the target range are
activated, the macro ends.

 As you may have guessed, you can also use the Right function to extract
out the nth rightmost characters in a string. As an example, it’s not uncommon to
work with product numbers where the first few characters hold a particular
attribute or meaning, whereas the last few characters point to the actual product
(as in 100-4567). You can extract out the actual product by using
Right(Product_Number, 4).

 Because the target range is defined as the current selection, you need to
select the area where your data exists before running this code. In other words,
you wouldn’t want to select cells that don’t conform to the logic you placed in
this macro. Otherwise, every cell you select is truncated, whether you mean it to
be or not. Of course, you can ensure this is never a problem by explicitly defining
the target range, such as Set MyRange = Range(“A1:Z100”).

How to use it
To implement this macro, you can copy and paste it into a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11 on your keyboard.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒    Module.
4. Type or paste the code.

Padding Cells with Zeros
Many systems require unique identifiers (such as customer number, order number, or
product number) to have a fixed character length. For example, you frequently see
customer numbers that look like this: 00000045478. This concept of taking a unique
identifier and forcing it to have a fixed length is typically referred to as padding. The
number is padded with zeros to achieve the prerequisite character length.

It’s a pain to do this manually in Excel. However, with a macro, padding numbers
with zeros is a breeze.

 Some Excel gurus are quick to point out that you can apply a custom number
format to pad numbers with zeros by going to the Format Cells dialog box,
selecting Custom on the Number tab, and entering “0000000000” as the custom
format.

The problem with this solution is that the padding you get is cosmetic only. A quick
glance at the formula bar reveals that the data actually remains numeric without the
padding (it does not become textual). So if you copy and paste the data into another
platform or non-Excel table, you lose the cosmetic padding.

How it works

Say that all of your customer numbers need to be ten characters long. So for each
customer number, you need to pad the number with enough zeros to get it to ten
characters. This macro does just that.

As you review this macro, keep in mind that you need to change the padding logic in
Step 5 to match your situation.

Sub Macro1()

'Step 1: Declare your variables
 Dim MyRange As Range
 Dim MyCell As Range

'Step 2: Save the Workbook before changing cells?
 Select Case MsgBox("Can't Undo this action. " & _
 "Save Workbook First?", vbYesNoCancel)
 Case Is = vbYes
 ThisWorkbook.Save

 Case Is = vbCancel
 Exit Sub
 End Select

'Step 3: Define the target Range.
 Set MyRange = Selection

'Step 4: Start looping through the range.
 For Each MyCell In MyRange

'Step 5: Pad with ten zeros then take the right 10
 If Not IsEmpty(MyCell) Then

 MyCell.NumberFormat = "@"
 MyCell = "0000000000" & MyCell
 MyCell = Right(MyCell, 10)

 End If

'Step 6: Get the next cell in the range
 Next MyCell

End Sub

1. Step 1 declares two Range object variables, one called MyRange to hold the
entire target range, and the other called MyCell to hold each cell in the range as
the macro enumerates through the cells one by one.

2. When you run a macro, it destroys the undo stack, meaning that you can’t undo the
changes a macro makes. Because you are actually changing data, you need to give
yourself the option of saving the workbook before running the macro. This is
what Step 2 does. Here, you call up a message box that asks if you want to save
the workbook first. It then gives you three choices: Yes, No, and Cancel. Clicking

Yes saves the workbook and continues with the macro. Clicking Cancel exits the
procedure without running the macro. Clicking No runs the macro without saving
the workbook.

3. Step 3 fills the MyRange variable with the target range. In this example, you use
the selected range — the range that was selected on the spreadsheet. You can
easily set the MyRange variable to a specific range such as Range(“A1:Z100”).
Also, if your target range is a named range, you could simply enter its name:
Range(“MyNamedRange”).

4. Step 4 starts looping through each cell in the target range, activating each cell.
5. After a cell is activated, Step 5 uses the IsEmpty function to make sure the cell is

not empty. You do this to save a little on performance by skipping the cell if there
is nothing in it.
The macro then ensures that the cell is formatted as text. This is because a cell
formatted as a number cannot have leading zeros — Excel would automatically
remove them. On the next line, you use the NumberFormat property to specify that
the format is @. This symbol indicates text formatting.
Next, the macro concatenates the cell value with ten zeros. You do this simply by
explicitly entering ten zeros in the code, and then using the ampersand (&) to
combine them with the cell value.
Finally, Step 5 uses the Right function to extract out the ten rightmost characters.
This effectively gives us the cell value, padded with enough zeros to make ten
characters.

6. Step 6 loops back to get the next cell. After all of the cells in the target range are
activated, the macro ends.

How to use it
To implement this macro, you can copy and paste it into a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11 on your keyboard.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒    Module.
4. Type or paste the code.

Replacing Blanks Cells with a Value
In some analyses, blank cells can cause all kinds of trouble. They can cause sorting
issues, they can prevent proper auto filling, they can cause your PivotTables to apply
the Count function rather than the Sum function, and so on.

Blanks aren’t always bad, but if they are causing you trouble, you can use this macro
to quickly replace the blanks in a given range with a value that indicates a blank cell.

How it works
This macro enumerates through the cells in the given range and then uses the Len
function to check the length of the value in the active cell. Blank cells have a
character length of 0. If the length is indeed 0, the macro enters a 0 in the cell,
effectively replacing the blanks.

Sub Macro1()

'Step 1: Declare your variables
 Dim MyRange As Range
 Dim MyCell As Range

'Step 2: Save the Workbook before changing cells?
 Select Case MsgBox("Can't Undo this action. " & _
 "Save Workbook First?", vbYesNoCancel)
 Case Is = vbYes
 ThisWorkbook.Save

 Case Is = vbCancel
 Exit Sub
 End Select

'Step 3: Define the target Range.
 Set MyRange = Selection

'Step 4: Start looping through the range.
 For Each MyCell In MyRange

'Step 5: Ensure the cell has Text formatting.
 If IsEmpty(MyCell.Value) Or Len(MyCell.Value) = 0 Then
 MyCell = 0
 End If

'Step 6: Get the next cell in the range
 Next MyCell

End Sub

1. You first declare two Range object variables, one called MyRange to hold the
entire target range, and the other called MyCell to hold each cell in the range as
the macro enumerates through the cells one by one.

2. When you run a macro, it destroys the undo stack. This means you can’t undo the
changes a macro makes. Because you are actually changing data, you need to give
yourself the option of saving the workbook before running the macro. This is
what Step 2 does. Here, you call up a message box that asks if you want to save
the workbook first. It then gives you three choices: Yes, No, and Cancel. Clicking

Yes saves the workbook and continues with the macro. Clicking Cancel exits the
procedure without running the macro. Clicking No runs the macro without saving
the workbook.

3. Step 3 fills the MyRange variable with the target range. This example uses the
selected range — the range that was selected on the spreadsheet. You can easily
set the MyRange variable to a specific range such as Range(“A1:Z100”). Also, if
your target range is a named range, you could simply enter its name:
Range(“MyNamedRange”).

4. Step 4 starts looping through each cell in the target range, activating each cell.
5. After a cell is activated, you use the IsEmpty function to make sure the cell is not

empty. You do this to save a little on performance by skipping the cell if nothing
is in it. You then use the Len function, which is a standard Excel function that
returns a number corresponding to the length of the string being evaluated. If the
cell is blank, the length will be 0, at which point, the macro replaces the blank
with a 0. You could obviously replace the blank with any value you want (N/A,
TBD, No Data, and so on).

6. Step 6 loops back to get the next cell. After all of the cells in the target range are
activated, the macro ends.

 Because the target range is defined as the current selection, you want to
be sure to select the area where your data exists before running this code. That is
to say, you wouldn’t want to select the entire worksheet. Otherwise, every empty
cell in the spreadsheet would be filled with a zero. Of course, you can ensure this
is never a problem by explicitly defining a range, such as Set MyRange =
Range(“A1:Z100”).

How to use it
To implement this macro, you can copy and paste it into a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11 on your keyboard.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒    Module.
4. Type or paste the code.

Appending Text to the Left or Right of
Your Cells

Every so often, you come upon a situation where you need to attach data to the
beginning or end of the cells in a range. For example, you may need to add an area
code to a set of phone numbers. The macro demonstrates how you can automate the
data standardization tasks that require appending data to values.

How it works
This macro uses two Range object variables to go through the target range,
leveraging the For Each statement to activate each cell in the target range. Every time
a cell is activated, the macro attaches an area code to the beginning of the cell value.

Sub Macro1()

'Step 1: Declare your variables
 Dim MyRange As Range
 Dim MyCell As Range

'Step 2: Save the Workbook before changing cells?
 Select Case MsgBox("Can't Undo this action. " & _
 "Save Workbook First?", vbYesNoCancel)
 Case Is = vbYes
 ThisWorkbook.Save

 Case Is = vbCancel
 Exit Sub
 End Select

'Step 3: Define the target Range.
 Set MyRange = Selection

'Step 4: Start looping through the range.
 For Each MyCell In MyRange

'Step 5: Ensure the cell has Text formatting.
 If Not IsEmpty(MyCell) Then
 MyCell = "(972) " & MyCell
 End If

'Step 6: Get the next cell in the range
 Next MyCell

End Sub

1. Step 1 declares two Range object variables, one called MyRange to hold the
entire target range, and the other called MyCell to hold each cell in the range as
you enumerate through the cells one by one.

2. When you run a macro, it destroys the undo stack. This means you can’t undo the
changes a macro makes. Because you are actually changing data, you need to give
yourself the option of saving the workbook before running the macro. This is
what Step 2 does. Here, you call up a message box that asks if you want to save

the workbook first. It then gives you three choices: Yes, No, and Cancel. Clicking
Yes saves the workbook and continues with the macro. Clicking Cancel exits the
procedure without running the macro. Clicking No runs the macro without saving
the workbook.

3. Step 3 fills the MyRange variable with the target range. This example uses the
selected range — the range that was selected on the spreadsheet. You can easily
set the MyRange variable to a specific range such as Range(“A1:Z100”). Also, if
your target range is a named range, you could simply enter its name:
Range(“MyNamedRange”).

4. Step 4 starts looping through each cell in the target range, activating each cell as
it goes through.

5. After a cell is activated, you use the ampersand (&) to combine an area code
with the cell value. If you need to append text to the end of the cell value, you
would simply place the ampersand and the text at the end. For example, MyCell =
MyCell & “Added Text”.

6. Step 6 loops back to get the next cell. After all of the cells in the target range are
activated, the macro ends.

How to use it
To implement this macro, you can copy and paste it into a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11 on your keyboard.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒    Module.
4. Type or paste the code.

Cleaning Up Non-Printing Characters
Sometimes you have non-printing characters in your data such as line feeds, carriage
returns, and non-breaking spaces. These characters often need to be removed before
you can use the data for serious analysis.

Now, anyone who has worked with Excel for more than a month knows about the
Find and Replace functionality. You may have even recorded a macro while
performing a Find and Replace (a recorded macro is an excellent way to automate
your find and replace procedures). So your initial reaction may be to simply find and
replace these characters. The problem is that these non-printing characters are for the
most part invisible and thus difficult to clean up with the normal Find and Replace
routines. The easiest way to clean them up is through VBA.

If you find yourself struggling with those pesky invisible characters, use this general-

purpose macro to find and remove all the non-printing characters.

How it works
This macro is a relatively simple Find and Replace routine. You are using the
Replace method, telling Excel what to find and what to replace it with. This is
similar to the syntax you would see when recording a macro while manually
performing a Find and Replace.

The difference is that instead of hard-coding the text to find, this macro uses
character codes to specify your search text.

Every character has an underlying ASCII code, similar to a serial number. For
example, the lowercase letter a has an ASCII code of 97. The lowercase letter c has
an ASCII code of 99. Likewise, invisible characters also have a code:

The line feed character code is 10.
The carriage return character code is 13.
The non-breaking space character code is 160.

This macro utilizes the Replace method, passing each character’s ASCII code as the
search item. Each character code is then replaced with an empty string:

Sub Macro1()

'Step 1: Remove Line Feeds
 ActiveSheet.UsedRange.Replace What:=Chr(10), Replacement:=""

'Step 2: Remove Carriage Returns
 ActiveSheet.UsedRange.Replace What:=Chr(13), Replacement:=""

'Step 3: Remove Non-Breaking Spaces
 ActiveSheet.UsedRange.Replace What:=Chr(160), Replacement:=""

End Sub

1. Step 1 looks for and removes the Line Feed character. The code for this character
is 10. You can identify the code 10 character by passing id through the Chr
function. After Chr(10) is identified as the search item, this step then passes an
empty string to the Replacement argument.
Note the use of ActiveSheet.UsedRange. This essentially tells Excel to look in all
the cells that have had data entered into them. You can replace the UsedRange
object with an actual range if needed.

2. Step 2 finds and removes the carriage return character.
3. Step 3 finds and removes the non-breaking spaces character.

 The characters covered in this macro are only a few of many non-printing
characters. However, these are the ones you most commonly run into. If you work
with others, you can simply add a new line of code, specifying the appropriate
character code. You can enter “ASCII Code Listing” in any search engine to see a
list of the codes for various characters.

How to use it
To implement this macro, you can copy and paste it into a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11 on your keyboard.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒    Module.
4. Type or paste the code.

Highlighting Duplicates in a Range of
Data

Ever wanted to expose the duplicate values in a range? The macro in this section
does just that. There are many manual ways to find and highlight duplicates — ways
involving formulas, conditional formatting, sorting, and so on. However, all these
manual methods take setup and some level of maintenance as the data changes.

This macro simplifies the task, allowing you find and highlight duplicates in your
data with a click of the mouse (see Figure 7-4).

FIGURE 7-4: This Macro dynamically finds and highlights the duplicate values in a selected range.

How it works

This macro enumerates through the cells in the target range, leveraging the For Each
statement to activate each cell one at a time. It then uses the CountIf function to count
the number of times the value in the active cell occurs in the range selected. If that
number is greater than 1, it formats the cell yellow.

Sub Macro1()

'Step 1: Declare your variables
 Dim MyRange As Range
 Dim MyCell As Range

'Step 2: Define the target Range.
 Set MyRange = Selection

'Step 3: Start looping through the range.
 For Each MyCell In MyRange

'Step 4: Ensure the cell has Text formatting.
 If WorksheetFunction.CountIf(MyRange, MyCell.Value) > 1 Then
 MyCell.Interior.ColorIndex = 36
 End If

'Step 5: Get the next cell in the range
 Next MyCell

End Sub

1. Step 1 declares two Range object variables, one called MyRange to hold the
entire target range, and the other called MyCell to hold each cell in the range as
the macro enumerates through the cells one by one.

2. Step 2 fills the MyRange variable with the target range. This example uses the
selected range — the range that was selected on the spreadsheet. You can easily
set the MyRange variable to a specific range such as Range(“A1:Z100”). Also, if
your target range is a named range, you could simply enter its name:
Range(“MyNamedRange”).

3. Step 3 starts looping through the cells in the target range, activating each cell.
4. The WorksheetFunction object provides a way to run many of Excel’s

spreadsheet functions in VBA. Step 4 uses the WorksheetFunction object to run a
CountIf function in VBA.
In this case, you are counting the number of times the active cell value
(MyCell.Value) is found in the given range (MyRange). If the CountIf expression
evaluates to greater than 1, the macro changes the interior color of the cell.

5. Step 5 loops back to get the next cell. After all of the cells in the target range are
activated, the macro ends.

How to use it
To implement this macro, you can copy and paste it into a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11 on your keyboard.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒    Module.
4. Type or paste the code.

Hiding All but Rows Containing
Duplicate Data

With the previous macro, you can quickly find and highlight duplicates in your data.
This in itself can be quite useful. But if you have many records in your range, you
may want to take the extra step of hiding all the non-duplicate rows.

Take the example in Figure 7-5. Note that only the rows that contain duplicate values
are visible. This more readily exposes the duplicate values because they are the only
rows showing.

FIGURE 7-5: This macro ensures that only those rows that contain duplicate values are visible.

How it works
This macro enumerates through the cells in the target range, leveraging the For Each
statement to activate each cell one at a time. It then uses the CountIf function to count
the number of times the value in the active cell occurs in the range selected. If that
number is one, it hides the row in which the active cell resides. If that number is
greater than one, it formats the cell yellow and leaves the row visible.

Sub Macro1()

'Step 1: Declare your variables
 Dim MyRange As Range
 Dim MyCell As Range

'Step 2: Define the target Range.
 Set MyRange = Selection

'Step 3: Start looping through the range.
 For Each MyCell In MyRange

'Step 4: Ensure the cell has Text formatting.
 If Not IsEmpty(MyCell) Then

 If WorksheetFunction.CountIf(MyRange, MyCell) > 1 Then
 MyCell.Interior.ColorIndex = 36
 MyCell.EntireRow.Hidden = False
 Else
 MyCell.EntireRow.Hidden = True
 End If

 End If

'Step 5: Get the next cell in the range
 Next MyCell

End Sub

1. Step 1 declares two Range object variables, one called MyRange to hold the
entire target range, and the other called MyCell to hold each cell in the range as
you enumerate through the cells one by one.

2. Step 2 fills the MyRange variable with the target range. In this example, you use
the selected range — the range selected on the spreadsheet. You can easily set the
MyRange variable to a specific range such as Range(“A1:Z100”). Also, if your
target range is a named range, you could simply enter its name:
Range(“MyNamedRange”).

3. Step 3 loops through cells in the target range, activating each cell as you go
through.

4. You first use the IsEmpty function to make sure the cell is not empty. You do this
so the macro won’t automatically hide rows with no data in the target range.
You then use the WorksheetFunction object to run a CountIf function in VBA. In
this particular scenario, you are counting the number of times the active cell
value (MyCell.Value) is found in the given range (MyRange).
If the CountIf expression evaluates to greater than 1, you change the interior color
of the cell and set the EntireRow property to Hidden=False. This ensures the row
is visible.
If the CountIf expression does not evaluate to greater than 1, the macro jumps to
the Else argument. Here you set the EntireRow property to Hidden=True. This
ensures the row is not visible.

5. Step 5 loops back to get the next cell. After all cells in the target range are

activated, the macro ends.

 Because the target range is defined as the current selection, you want to
be sure to select the area where your data exists before running this code. You
wouldn’t want to select an entire column or the entire worksheet. Otherwise, any
cell that contains data that is unique (not duplicated) triggers the hiding of the
row. Alternatively, you can explicitly define the target range to ensure this is
never a problem — such as Set MyRange = Range(“A1:Z100”).

How to use it
To implement this macro, you can copy and paste it into a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11 on your keyboard.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒    Module.
4. Type or paste the code.

Selectively Hiding AutoFilter Drop-
down Arrows

It goes without saying that the AutoFilter function in Excel is one of the most useful.
Nothing else allows for faster on-the-spot filtering and analysis. The only problem is
that the standard AutoFilter functionality applies drop-down arrows to every column
in the chosen dataset (see Figure 7-6). This is all right in most situations, but what if
you want to prevent your users from using the AutoFilter drop-down arrows on some
of the columns in your data?

FIGURE 7-6: The standard AutoFilter functionality adds drop-down arrows to all the columns in your data.

The good news is that with a little VBA, you can selectively hide AutoFilter drop-
down arrows, as shown in Figure 7-7.

FIGURE 7-7: With a little VBA, you can choose to hide certain AutoFilter drop-down arrows.

How it works
In VBA, you can use the AutoFilter object to turn on AutoFilters for a specific range.
For example:

Range("B5:G5").AutoFilter

After an AutoFilter is applied, you can manipulate each of the columns in the
AutoFilter by pointing to it. For example, you can perform some action on the third
column in the AutoFilter, like this:

Range("B5:G5").AutoFilter Field:3

You can perform many actions on an AutoFilter field. In this scenario, you are
interested in making the drop-down arrow on field 3 invisible. For this, you can use
the VisibleDropDown parameter. Setting this parameter to False makes the drop-
down arrow invisible:

Range("B5:G5").AutoFilter Field:3, VisibleDropDown:=False

Here is an example of a macro where you turn on AutoFilters, and then make only the
first and last drop-down arrows visible:

Sub Macro1()

With Range("B5:G5")
.AutoFilter
.AutoFilter Field:=1, VisibleDropDown:=True
.AutoFilter Field:=2, VisibleDropDown:=False
.AutoFilter Field:=3, VisibleDropDown:=False
.AutoFilter Field:=4, VisibleDropDown:=False
.AutoFilter Field:=5, VisibleDropDown:=False
.AutoFilter Field:=6, VisibleDropDown:=True
End With

End Sub

 Not only are you pointing to a specific range, but you are also explicitly
pointing to each field. When implementing this type of macro in your
environment, alter the code to suit your particular data set.

How to use it
To implement this macro, you can copy and paste it into a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11 on your keyboard.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒    Module.
4. Type or paste the code.

Copying Filtered Rows to a New
Workbook

Often, when you're working with an AutoFiltered set of data, you want to extract the
filtered rows to a new workbook. Of course, you can manually copy the filtered
rows, open a new workbook, paste the rows, and then format the newly pasted data
so that all the columns fit. But if you are doing this frequently enough, you may want
to have a macro to speed up the process.

How it works
This macro captures the AutoFilter range, opens a new workbook, and then pastes the
data.

Sub Macro1()

'Step 1: Check for AutoFilter- Exit if none exists
 If ActiveSheet.AutoFilterMode = False Then
 Exit Sub
 End If

'Step 2: Copy the AutoFiltered Range to new workbook
 ActiveSheet.AutoFilter.Range.Copy
 Workbooks.Add.Worksheets(1).Paste

'Step 3: Size the columns to fit
 Cells.EntireColumn.AutoFit

End Sub

1. Step 1 uses the AutoFilterMode property to check whether the sheet even has
AutoFilters applied. If not, you exit the procedure.

2. Each AutoFilter object has a Range property. This Range property obligingly
returns the rows to which the AutoFilter applies, meaning it returns only the rows
shown in the filtered data set. In Step 2, you use the Copy method to capture those
rows, and then paste the rows to a new workbook. Note that you use
Workbooks.Add.Worksheets(1). This tells Excel to paste the data into the first
sheet of the newly created workbook.

3. Step 3 simply tells Excel to size the column widths to autofit the data you just
pasted.

How to use it
To implement this macro, you can copy and paste it into a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11 on your keyboard.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒    Module.
4. Type or paste the code.

Showing Filtered Columns in the
Status Bar

When you have a large table with many AutoFiltered columns, it is sometimes hard to
tell which columns are filtered and which aren’t. Of course, you could scroll through
the columns, peering at each AutoFilter drop-down list for the telltale icon indicating
the column is filtered, but that can get old quickly.

This macro helps by specifically listing all the filtered columns in the status bar. The
status bar is the bar (shown in Figure 7-8) that runs across the bottom of the Excel
window.

FIGURE 7-8: This macro lists all filtered columns in the status bar.

How it works
This macro loops through the fields in your AutoFiltered data set. As it loops, you
check to see if each field is actually filtered. If so, you capture the field name in a
text string. After looping through all the fields, you pass the final string to the
StatusBar property.

Sub Macro1()

'Step 1: Declare your Variables
 Dim AF As AutoFilter
 Dim TargetField As String
 Dim strOutput As String
 Dim i As Integer

'Step 2: Check if AutoFilter exists- If not Exit
 If ActiveSheet.AutoFilterMode = False Then
 Application.StatusBar = False
 Exit Sub
 End If

'Step 3: Set AutoFilter and start looping
 Set AF = ActiveSheet.AutoFilter
 For i = 1 To AF.Filters.Count

'Step 4: Capture filtered field names
 If AF.Filters(i).On Then
 TargetField = AF.Range.Cells(1, i).Value
 strOutput = strOutput & " | " & TargetField
 End If

 Next

'Step 5: Display the filters if there are any
 If strOutput = "" Then
 Application.StatusBar = False
 Else
 Application.StatusBar = "DATA IS FILTERED ON " & strOutput
 End If

End Sub

1. Step 1 declares four variables. AF is an AutoFilter variable used to manipulate
the AutoFilter object. TargetField is a string variable you use to hold the field
names of any field that is actually filtered. strOutput is the string variable used to
build out the final text that goes into the status bar. Finally, the i variable serves
as a simple counter, allowing you to iterate through the fields in your AutoFilter.

2. Step 2 checks the AutoFilterMode property to see if a sheet even has AutoFilters
applied. If not, you set the StatusBar property to False. This has the effect of
clearing the status bar, releasing control back to Excel. You then exit the
procedure.

3. Step 3 sets the AF variable to the AutoFilter on the active sheet. You then set
your counter to count from 1 to the maximum number of columns in the
AutoFiltered range. The AutoFilter object keeps track of its columns with index
numbers. Column 1 is index 1, column 2 is index 2, and so on. The idea is that
you can loop through each column in the AutoFilter by using the i variable as the
index number.

4. Step 4 checks the status of the AF.Filters object for each (i), i being the index
number of the column you are evaluating. If the AutoFilter for that column is
filtered in any way, the status for that column is On.
If the filter for the column is indeed on, you capture the name of the field in the
TargetField variable. You actually get the name of the field by referencing the
Range of your AF AutoFilter object. With this range, you can use the Cells item
to pinpoint the field name. Cells(1,1) captures the value in row 1, column 1.
Cells(1,2) captures the value in row 1, column 2, and so on.
As you can see in Step 4, you have hard-coded the row to 1 and used the i
variable to indicate the column index. This means that as the macro iterates
through the columns, it always captures the value in the first row of the auto-
filtered table as the TargetField name (the first row is where the field name is
likely to be).
After you have the TargetField name, you can pass that information to a simple
string container (strOutput in this case). strOutput simply keeps all the target field
names you find and concatenates them into a readable text string.

5. Step 5 first checks to make sure that there is something in the strOutput string. If

strOutput is empty, it means the macro found no columns in your AutoFilter that
were filtered. In this case, Step 5 simply sets the StatusBar property to False,
releasing control back to Excel.
If strOutput is not empty, Step 5 sets the StatusBar property to equal some helper
text along with your strOutput string.

How to use it
You ideally want this macro to run each time a field is filtered. However, Excel does
not have an OnAutoFilter event. The closest thing to that is the Worksheet_Calculate
event. That being said, AutoFilters in themselves don’t actually calculate anything, so
you need to enter a "volatile" function on the sheet that contains your AutoFiltered
data. A volatile function is one that forces a recalculation when any change is made
on the worksheet.

In the sample files that come with this book, notice that the =Now() function is used.
The Now function is a volatile function that returns a date and time. With this on the
sheet, the worksheet is sure to recalculate each time the AutoFilter is changed.

 To access the sample files for this chapter, visit the web site:
www.dummies.com/go/excelmacros.

Place the Now function anywhere on your sheet (by typing =Now() in any cell). Then
copy and paste the macro into the Worksheet_Calculate event code window:

1. Activate the Visual Basic Editor by pressing Alt+F11 on your keyboard.
2. In the Project window, find your project/workbook name and click the plus

sign next to it in order to see all the sheets.
3. Click on the sheet from which you want to trigger the code.
4. Select the Calculate event from the Event drop-down list (see Figure 7-9).
5. Type or paste the code.

http://www.dummies.com/go/excelmacros

FIGURE 7-9: Type or paste your code in the Worksheet_Calculate event code window.

In order to make the code run as smoothly as possible, consider adding these two
pieces of code under the Worksheet_Calculate event:

Private Sub Worksheet_Deactivate()

Application.StatusBar = False

End Sub

Private Sub Worksheet_Activate()

Call Worksheet_Calculate

End Sub

Also, add this piece of code in the workbook BeforeClose event:
Private Sub Workbook_BeforeClose(Cancel As Boolean)

Application.StatusBar = False

End Sub

The Worksheet_Deactivate event clears the status bar when you move to another
sheet or workbook. This avoids confusion as you move between sheets.

The Worksheet_Activate event fires the macro in Worksheet_Calculate. This brings
back the status bar indicators when you navigate back to the filtered sheet.

The Workbook_BeforeClose event clears the status bar when you close the
workbook. This avoids confusion as you move between workbooks.

Part 4

Macro-Charging Reports and
Emails

IN THIS PART …
Gain an understanding of how macros can be leveraged to automate your reporting
processes.

Discover how to automate the more mundane aspects of building PivotTables.

See how macros can help work with the charts in your reports and dashboards.

Explore some of the techniques you can leverage to send emails from Excel.

Discover techniques to wrangle data from external databases and data files.

Chapter 8

Automating Common Reporting
Tasks

IN THIS CHAPTER
 Refreshing all PivotTables
 Creating a PivotTable inventory summary or a set of disconnected charts
 Adjusting all pivot data field titles
 Setting all data items to sums
 Setting the number format or custom sort for all data items
 Sorting all fields in alphabetical order
 Applying PivotTable and pivot field restrictions
 Automatically deleting PivotTable drilldown sheets
 Printing PivotTable for each report filter item or for all charts
 Creating new workbook for each report filter item
 Resizing or aligning charts

For those of us tasked with building dashboards and reports, PivotTables and charts
are a daily part of our work life. Few of us have had the inclination to automate any
aspect of these reporting tools with macros. But some aspects of our work lend
themselves to a bit of automation. This chapter explores a handful of macros that can
help you save time and gain efficiencies when working with PivotTables and charts.

Refreshing All PivotTables in a
Workbook

It’s not uncommon to have multiple PivotTables in the same workbook. Many times,
these PivotTables link to data that changes, requiring a refresh of the PivotTables. If
you find that you need to refresh your PivotTables en mass, you can use this macro to
refresh all PivotTables on demand.

How it works
It’s important to know that each PivotTable object is a child of the worksheet it sits

in. The macro has to loop through the worksheets in a workbook first, and then loop
through the PivotTables in each worksheet. This macro does just that — loops
through the worksheets, and then loops through the PivotTables. On each loop, the
macro refreshes the PivotTable.

Sub Macro1()

'Step 1: Declare you Variables
 Dim ws As Worksheet
 Dim pt As PivotTable

'Step 2: Loop through each sheet in workbook
 For Each ws In ThisWorkbook.Worksheets

'Step 3: Loop through each PivotTable
 For Each pt In ws.PivotTables
 pt.RefreshTable
 Next pt
 Next ws

End Sub

1. Step 1 first declares an object called ws. This creates a memory container for
each worksheet you loop through. It also declares an object called pt, which
holds each PivotTable the macro loops through.

2. Step 2 starts the looping, telling Excel you want to evaluate all worksheets in this
workbook. Notice the use of ThisWorkbook rather than ActiveWorkbook. The
ThisWorkbook object refers to the workbook that the code is contained in. The
ActiveWorkbook object refers to the workbook that is currently active. They
often return the same object, but if the workbook running the code is not the
active workbook, they return different objects. In this case, you don’t want to risk
refreshing PivotTables in other workbooks, so use ThisWorkbook.

3. Step 3 loops through all the PivotTables in each worksheet, and then triggers the
RefreshTable method. After all PivotTables have been refreshed, you move to the
next sheet. After all sheets have been evaluated, the macro ends.

 As an alternative method for refreshing all PivotTables in the workbook,
you can use ThisWorkbook.RefreshAll. This refreshes all the PivotTables in the
workbook. However, it also refreshes all query tables also. So if you have data
tables connected to an external source or the web, these will be affected by the
RefreshAll method. If this is not a concern, you can simply enter
ThisWorkbook.RefreshAll into a standard module.

How to use it

To implement this macro, you can copy and paste it into a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code.

Creating a PivotTable Inventory
Summary

When your workbook contains multiple PivotTables, it’s often helpful to have an
inventory summary (similar to the one shown in Figure 8-1) that outlines basic
details about the PivotTables. With this type of summary, you can quickly see
important information such as the location of each PivotTable, the location of each
PivotTable’s source data, and the pivot cache index each PivotTable is using.

FIGURE 8-1: A PivotTable inventory summary.

The following macro outputs such a summary.

How it works
When you create a PivotTable object variable, you expose all of a PivotTable’s
properties — properties like its name, location, cache index, and so on. In this
macro, you loop through each PivotTable in the workbook and extract specific
properties into a new worksheet.

Because each PivotTable object is a child of the worksheet it sits in, you have to
loop through the worksheets in a workbook first, and then loop through the
PivotTables in each worksheet.

Take a moment to walk through the steps of this macro in detail.
Sub Macro1()

'Step 1: Declare you Variables
 Dim ws As Worksheet
 Dim pt As PivotTable
 Dim MyCell As Range

'Step 2: Add a new sheet with column headers
 Worksheets.Add
 Range("A1:F1") = Array("Pivot Name", "Worksheet", _
 "Location", "Cache Index", _
 "Source Data Location", _
 "Row Count")

'Step 3: Start Cursor at Cell A2 setting the anchor here
 Set MyCell = ActiveSheet.Range("A2")

'Step 4: Loop through each sheet in workbook
 For Each ws In Worksheets

'Step 5: Loop through each PivotTable
 For Each pt In ws.PivotTables
 MyCell.Offset(0, 0) = pt.Name
 MyCell.Offset(0, 1) = pt.Parent.Name
 MyRange.Offset(0, 2) = pt.TableRange2.Address
 MyRange.Offset(0, 3) = pt.CacheIndex
 MyRange.Offset(0, 4) = Application.ConvertFormula _
 (pt.PivotCache.SourceData, xlR1C1, xlA1)
 MyRange.Offset(0, 5) = pt.PivotCache.RecordCount

'Step 6: Move Cursor down one row and set a new anchor
 Set MyRange = MyRange.Offset(1, 0)

'Step 7: Work through all PivotTables and worksheets
 Next pt
 Next ws

'Step 8: Size columns to fit
 ActiveSheet.Cells.EntireColumn.AutoFit

End Sub

1. Step 1 declares an object called ws. This creates a memory container for each
worksheet you loop through. You then declare an object called pt, which holds
each PivotTable you loop through. Finally, you create a range variable called
MyCell. This variable acts as your cursor as you fill in the inventory summary.

2. Step 2 creates a new worksheet and adds column headings that range from A1 to
F1. Note that you can add column headings using a simple array that contains
your header labels. This new worksheet remains your active sheet from here on
out.

3. Just as you would manually place your cursor into a cell if you were to start
typing data, Step 3 places the MyCell cursor in cell A2 of the active sheet. This
is your anchor point, allowing you to navigate from here.
Throughout the macro, you see the use of the Offset property. The Offset property
allows you to move a cursor x number of rows and x number of columns from an

anchor point. For example, Range(A2).Offset(0,1) would move the cursor one
column to the right. If you wanted to move the cursor one row down, you would
enter Range(A2).Offset(1, 0).
In the macro, you navigate by using Offset on MyCell. For example,
MyCell.Offset(0,4) would move the cursor four columns to the right of the anchor
cell. After the cursor is in place, you can enter data.

4. Step 4 starts the looping, telling Excel you want to evaluate all worksheets in this
workbook.

5. Step 5 loops through all the PivotTables in each worksheet. For each PivotTable
it finds, it extracts out the appropriate property and fills in the table based on the
cursor position (see Step 3).
You are using six PivotTable properties: Name, Parent.Range,
TableRange2.Address, CacheIndex, PivotCache.SourceData, and
PivotCache.Recordcount.

The Name property returns the name of the PivotTable.
The Parent.Range property gives the sheet where the PivotTable resides.
The TableRange2.Address property returns the range that the PivotTable
object sits in.
The CacheIndex property returns the index number of the pivot cache for
the PivotTable. A pivot cache is a memory container that stores all the
data for a PivotTable. When you create a new PivotTable, Excel takes a
snapshot of the source data and creates a pivot cache. Each time you
refresh a PivotTable, Excel goes back to the source data and takes another
snapshot, thereby refreshing the pivot cache. Each pivot cache has a
SourceData property that identifies the location of the data used to create
the pivot cache.
The PivotCache.SourceData property tells you which range is called upon
when you refresh the PivotTable. By default, the PivotCache.SourceData
property returns range addresses in the R1C1 reference style — for
example: 'Raw Data'!R1C1:R5000C14. Unfortunately, range objects
cannot use the R1C1 style, so you need to convert the address to the A1
reference style — 'Raw Data'!A1:N5000. This is a simple enough
fix. You simply pass the SourceData property through the
Application.ConvertFormula function. This handy function converts ranges
to and from the R1C1 reference style.
The PivotCache.Recordcount property outputs the count of records found
in the pivot cache.

6. Each time the macro encounters a new PivotTable, it moves the MyCell cursor
down a row, effectively starting a new row for each PivotTable.

7. Step 7 tells Excel to loop back around to iterate through all PivotTables and all
worksheets. After all PivotTables have been evaluated, you move to the next
sheet. After all sheets have been evaluated, the macro moves to the last step.

8. Step 8 finishes off with a little formatting, sizing the columns to fit the data.

How to use it
To implement this macro, you can copy and paste it into a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code.

Adjusting All Pivot Data Field Titles
When you create a PivotTable, Excel tries to help you out by prefacing each data
field header with Sum of, Count of, or whichever operation you use. Often, this is not
conducive to your reporting needs. You want clean titles that match your data source
as closely as possible. Although it’s true that you can manually adjust the titles for
you data fields (one at a time), this macro fixes them all in one go.

How it works
Ideally, the name of the each data item matches the field name from your source data
set (the original source data used to create the PivotTable). Unfortunately,
PivotTables won’t allow you to name a data field the exact name as the source data
field. The workaround for this is to add a space to the end of the field name. Excel
considers the field name (with a space) to be different from the source data field
name, so it allows it. Cosmetically, the readers of your spreadsheet don't notice the
space after the name.

This macro utilizes this workaround to rename your data fields. It loops through each
data field in the PivotTable, and then resets each header to match its respective field
in the source data plus a space character.

Sub Macro1()

'Step 1: Declare your Variables
 Dim pt As PivotTable
 Dim pf As PivotField

'Step 2: Point to the PivotTable in the active cell
 On Error Resume Next
 Set pt = ActiveSheet.PivotTables(ActiveCell.PivotTable.Name)

'Step 3: Exit if active cell is not in a PivotTable
 If pt Is Nothing Then
 MsgBox "You must place your cursor inside of a PivotTable."
 Exit Sub
 End If

'Step 4: Loop through all pivot fields adjust titles
 For Each pf In pt.DataFields
 pf.Caption = pf.SourceName & Chr(160)
 Next pf

End Sub

1. Step 1 declares two object variables. It uses pt as the memory container for your
PivotTable and pf as a memory container for the data fields. This allows the
macro to loop through all the data fields in the PivotTable.

2. This macro is designed so that you infer the active PivotTable based on the active
cell. In other words, the active cell must be inside a PivotTable for this macro to
run. You assume that when the cursor is inside a particular PivotTable, you want
to perform the macro action on that pivot.
Step 2 sets the pt variable to the name of the PivotTable on which the active cell
is found. You do this by using the ActiveCell.PivotTable.Name property to get the
name of the target pivot.
If the active cell is not inside of a PivotTable, an error is thrown. This is why you
use the On Error Resume Next statement. This tells Excel to continue with the
macro if there is an error.

3. In Step 3, you check to see if the pt variable is filled with a PivotTable object. If
the pt variable is set to Nothing, the active cell was not on a PivotTable, thus no
PivotTable could be assigned to the variable. If this is the case, you tell the user
in a message box and then exit the procedure.

4. If the macro reaches Step 4, it has successfully pointed to a PivotTable. The
macro uses a For Each statement to iterate through each data field. Each time a
new pivot field is selected, the macro changes the field name by setting the
Caption property to match the field’s SourceName. The SourceName property
returns the name of the matching field in the original source data.

To that name, the macro concatenates a nonbreaking space character: Chr(160).

Every character has an underlying ASCII code, similar to a serial number. For
example, the lowercase letter a has an ASCII code of 97. The lowercase letter c has
an ASCII code of 99. Likewise, invisible characters such as the space have a code.
You can use invisible characters in your macro by passing their code through the
CHR function.

After the name has been changed, the macro moves to the next data field. After all the

data fields have been evaluated, the macro ends.

How to use it
To implement this macro, you can copy and paste it into a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code.

Setting All Data Items to Sum
When creating a PivotTable, Excel, by default, summarizes your data by either
counting or summing the items. The logic Excel uses to decide whether to sum or
count the fields you add to your PivotTable is fairly simple. If all the cells in a
column contain numeric data, Excel chooses to Sum. If the field you are adding
contains a blank or text, Excel chooses Count.

Although this seems to make sense, in many instances, a pivot field that should be
summed legitimately contains blanks. In these cases, you are forced to manually go in
after Excel and change the calculation type from Count back to Sum. That’s if you’re
paying attention! It’s not uncommon to miss the fact that a pivot field is being counted
rather than summed up.

The macro in this section aims to help by automatically setting each data item’s
calculation type to Sum.

How it works
This macro loops through each data field in the PivotTable and changes the Function
property to xlSum. You can alter this macro to use any one of the calculation choices:
xlCount, xlAverage, xlMin, xlMax, and so on. When you go into the code window
and type pf.Function =, you see a drop-down list showing you all your choices (see
Figure 8-2).

Sub Macro1()

'Step 1: Declare your Variables
 Dim pt As PivotTable
 Dim pf As PivotField

'Step 2: Point to the PivotTable in the active cell
 On Error Resume Next
 Set pt = ActiveSheet.PivotTables(ActiveCell.PivotTable.Name)

'Step 3: Exit if active cell is not in a PivotTable

 If pt Is Nothing Then
 MsgBox "You must place your cursor inside of a PivotTable."
 Exit Sub
 End If

'Step 4: Loop through all pivot fields apply SUM
 For Each pf In pt.DataFields
 pf.Function = xlSum
 Next pf

End Sub

1. Step 1 declares two object variables. It uses pt as the memory container for the
PivotTable and pf as a memory container for the data fields. This allows you to
loop through all the data fields in the PivotTable.

2. This macro is designed so that you infer the active PivotTable based on the active
cell. The active cell must be inside a PivotTable for this macro to run. The
assumption is that when the cursor is inside a particular PivotTable, you want to
perform the macro action on that pivot.
Step 2 sets the pt variable to the name of the PivotTable on which the active cell
is found. You do this by using the ActiveCell.PivotTable.Name property to get the
name of the target pivot.
If the active cell is not inside of a PivotTable, an error is thrown. This is why you
use the On Error Resume Next statement. This tells Excel to continue with the
macro if it encounters an error.

3. Step 3 checks to see if the pt variable is filled with a PivotTable object. If the pt
variable is set to Nothing, the active cell was not on a PivotTable, thus no
PivotTable could be assigned to the variable. If this is the case, you tell the user
in a message box and then exit the procedure.

4. If the macro has reached Step 4, it has successfully pointed to a PivotTable. It
uses a For Each statement to iterate through each data field. Each time a new
pivot field is selected, it alters the Function property to set the calculation used
by the field. In this case, you are setting all the data fields in the PivotTable to
Sum.

FIGURE 8-2: Excel helps out by showing you your enumeration choices.

After the name has been changed, you move to the next data field. After all the data
fields have been evaluated, the macro ends.

How to use it
To implement this macro, you can copy and paste it into a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code.

Applying Number Formatting for All
Data Items

A PivotTable does not inherently store number formatting in its pivot cache.
Formatting takes up memory; so in order to be as lean as possible, the pivot cache
contains only data. Unfortunately, this results in the need to apply number formatting
to every field you add to a PivotTable. This takes from eight to ten clicks of the
mouse for every data field you add. When you have PivotTables that contain five or
more data fields, you’re talking about more than 40 clicks of the mouse!

Ideally, a PivotTable should be able to look back at its source data and adopt the
number formatting from the fields there. The macro outlined in this section is
designed to do just that. It recognizes the number formatting in the PivotTable’s
source data and applies the appropriate formatting to each field automatically.

How it works
Before running this code, you want to make sure that

The source data for your PivotTable is accessible. The macro needs to see it in
order to capture the correct number formatting.
The source data is appropriately formatted. Money fields are formatted as
currency, value fields are formatted as numbers, and so on.

This macro uses the PivotTable SourceData property to find the location of the
source data. It then loops through each column in the source, capturing the header
name and the number format of the first value under each column. After it has that
information, the macro determines whether any of the data fields match the evaluated
column. If it finds a match, the number formatting is applied to that data field.

Sub Macro1()

'Step 1: Declare your Variables
 Dim pt As PivotTable
 Dim pf As PivotField
 Dim SrcRange As Range
 Dim strFormat As String
 Dim strLabel As String
 Dim i As Integer

'Step 2: Point to the PivotTable in the activecell
 On Error Resume Next
 Set pt = ActiveSheet.PivotTables(ActiveCell.PivotTable.Name)

'Step 3: Exit if active cell is not in a PivotTable
 If pt Is Nothing Then
 MsgBox "You must place your cursor inside of a PivotTable."
 Exit Sub
 End If

'Step 4: Capture the source range
 Set SrcRange = _
 Range(Application.ConvertFormula(pt.SourceData, xlR1C1, xlA1))

'Step 5: Start looping through the columns in source range
 For i = 1 To SrcRange.Columns.Count

'Step 6: Trap the source column name and number format
 strLabel = SrcRange.Cells(1, i).Value
 strFormat = SrcRange.Cells(2, i).NumberFormat

'Step 7: Loop through the fields PivotTable data area
 For Each pf In pt.DataFields

'Step 8: Check for match on SourceName then apply format
 If pf.SourceName = strLabel Then
 pf.NumberFormat = strFormat
 End If
 Next pf
 Next i

End Sub

1. Step 1 declares six variables. It uses pt as the memory container for the
PivotTable and pf as a memory container for the data fields. The SrcRange
variable holds the data range for the source data. The strFormat and strLabel
variables are both text string variables used to hold the source column label and
number formatting respectively. The i variable serves as a counter, helping you
enumerate through the columns of the source data range.

2. The active cell must be inside a PivotTable for this macro to run. The assumption
is that when the cursor is inside a particular PivotTable, you want to perform the

macro action on that pivot.
Step 2 sets the pt variable to the name of the PivotTable on which the active cell
is found. You do this by using the ActiveCell.PivotTable.Name property to get the
name of the target pivot.
If the active cell is not inside a PivotTable, an error is thrown. This is why the
macro uses the On Error Resume Next statement. This tells Excel to continue
with the macro if it encounters an error.

3. Step 3 checks to see whether the pt variable is filled with a PivotTable object. If
the pt variable is set to Nothing, the active cell was not on a PivotTable, thus no
PivotTable could be assigned to the variable. If this is the case, you tell the user
in a message box and then exit the procedure.

4. If the macro reaches Step 4, it has successfully pointed to a PivotTable. You
immediately fill your SrcRange object variable with the PivotTable’s source data
range.
All PivotTables have a SourceData property that points to the address of its
source. Unfortunately, the address is stored in the R1C1 reference style — like
this: 'Raw Data'!R3C1:R59470C14. Range objects cannot use the R1C1 style, so
you need the address to be converted to 'Raw Data'!A3:N59470.
This is a simple enough fix. You simply pass the SourceData property through the
Application.ConvertFormula function. This handy function converts ranges to and
from the R1C1 reference style.

5. After the range is captured, the macro starts looping through the columns in the
source range. In this case, you manage the looping by using the i integer as an
index number for the columns in the source range. You start the index number at 1
and end it at the maximum number of rows in the source range.

6. As the macro loops through the columns in the source range, you capture the
column header label and the column format.
You do this with the aid of the Cells item. The Cells item gives you an extremely
handy way of selecting ranges through code. It requires only relative row and
column positions as parameters. Cells(1,1) translates to row 1, column 1 (or the
header row of the first column). Cells(2, 1) translates to row 2, column 1 (or the
first value in the first column).
strLabel is filled by the header label taken from row 1 of the selected column.
strFormat is filled with the number formatting from row 2 of the selected column.

7. At this point, the macro has connected with the PivotTable’s source data and
captured the first column name and number formatting for that column. Now it
starts looping through the data fields in the PivotTable.

8. Step 8 simply compares each data field to see if its source matches the name in
strLabel. If it does, that means the number formatting captured in strFormat

belongs to that data field.
9. After all data fields have been evaluated, the macro increments i to the next

column in the source range. After all columns have been evaluated, the macro
ends.

How to use it
To implement this macro, you can copy and paste it into a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code.

Sorting All Fields in Alphabetical
Order

If you frequently add data to your PivotTables, you may notice that new data doesn't
automatically fall into the sort order of the existing pivot data. Instead, it gets tacked
to the bottom of the existing data. This means that your drop-down lists show all new
data at the very bottom, whereas existing data is sorted alphabetically.

How it works
This macro works to reset the sorting on all data fields, ensuring that any new data
snaps into place. The idea is to run it each time you refresh your PivotTable. In the
code, you enumerate through each data field in the PivotTable, sorting each one as
you go.

Sub Macro1()

'Step 1: Declare your Variables
 Dim pt As PivotTable
 Dim pf As PivotField

'Step 2: Point to the PivotTable in the activecell
 On Error Resume Next
 Set pt = ActiveSheet.PivotTables(ActiveCell.PivotTable.Name)

'Step 3: Exit if active cell is not in a PivotTable
 If pt Is Nothing Then
 MsgBox "You must place your cursor inside of a PivotTable."
 Exit Sub
 End If

'Step 4: Loop through all pivot fields and sort
 For Each pf In pt.PivotFields
 pf.AutoSort xlAscending, pf.Name
 Next pf

End Sub

1. Step 1 declares two object variables, using pt as the memory container for the
PivotTable and using pf as a memory container for the data fields. This allows
the macro to loop through all the data fields in the PivotTable.

2. The active cell must be inside a PivotTable for this macro to run. The assumption
is that when the cursor is inside a particular PivotTable, you want to perform the
macro action on that pivot.
In Step 2, you set the pt variable to the name of the PivotTable on which the
active cell is found. You do this by using the ActiveCell.PivotTable.Name
property to get the name of the target pivot.
If the active cell is not inside of a PivotTable, an error is thrown. This is why you
use the On Error Resume Next statement. This tells Excel to continue with the
macro if it encounters an error.

3. Step 3 checks to see whether the pt variable is filled with a PivotTable object. If
the pt variable is set to Nothing, the active cell was not on a PivotTable, thus no
PivotTable could be assigned to the variable. If this is the case, the macro puts up
a message box to notify the user, and then exits the procedure.

4. Finally, you use a For Each statement to iterate through each pivot field. Each
time a new pivot field is selected, you use the AutoSort method to reset the
automatic sorting rules for the field. In this case, you are sorting all fields
ascending order. After all the data fields have been evaluated, the macro ends.

How to use it
To implement this macro, you can copy and paste it into a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code.

Applying a Custom Sort to Data Items
On occasion, you may need to apply a custom sort to the data items in your
PivotTable. For example, if you work for a company in California, your organization
may want the West region to come before the North and South. In these types of

situations, neither the standard ascending nor descending sort order will work.

How it works
You can automate the custom sorting of your fields by using the Position property of
the PivotItems object. With the Position property, you can assign a position number
that specifies the order in which you want to see each pivot item.

In this example code, you first point to the Region pivot field in the Pvt1 PivotTable.
Then you list each item along with the position number indicating the customer sort
order you need.

Sub Macro1()

With Sheets("Sheet1").PivotTables("Pvt1").PivotFields _
 ("Region ")
 .PivotItems("West").Position = 1
 .PivotItems("North").Position = 2
 .PivotItems("South").Position = 3

End With

End Sub

 The other solution is to set up a custom sort list. Custom sort lists are defined
lists stored in your instance of Excel. To create a custom sort list, go to the
Excel Options Dialog and choose Edit Custom Lists. Here, you can type West,
North, and South in the List Entries box and click the Add button. After setting
up a custom list, you can select a data item in the target field (in this case,
Region) and then click Data ⇒ Sort & Filter ⇒ Custom Sort on the Excel
Ribbon. This will activate the Sort dialog box. Here, you can click the Order
dropdown and select a Custom List as the sort order.

As brilliant as this option is, custom lists do not travel with your workbook. So a
macro helps in cases where it’s impractical to expect your audience to set up their
own custom lists.

How to use it
You can implement this kind of macro in a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code.

Applying PivotTable Restrictions
We often send PivotTables to clients, co-workers, managers, and other groups of
people. In some cases, we’d like to restrict the types of actions our users can take on
the PivotTable reports we send them. The macro outlined in this section demonstrates
some of the protection settings available via VBA.

How it works
The PivotTable object exposes several properties that allow you (the developer) to
restrict different features and components of a PivotTable:

EnableWizard: Setting this property to False disables the PivotTable Tools
context menu that normally activates when clicking inside of a PivotTable. In
Excel 2003, this setting disables the PivotTable and Pivot Chart Wizard.
EnableDrilldown: Setting this property to False prevents users from getting to
detailed data by double-clicking a data field.
EnableFieldList: Setting this property to False prevents users from activating the
field list or moving pivot fields around.
EnableFieldDialog: Setting this property to False disables the users' ability to
alter the pivot field via the Value Field Settings dialog box.
PivotCache.EnableRefresh: Setting this property to False disables the ability to
refresh the PivotTable.

You can set any or all of these properties independently to either True or False. In
this macro, you apply all the restrictions to the target PivotTable.

Sub Macro1()

'Step 1: Declare your Variables
 Dim pt As PivotTable

'Step 2: Point to the PivotTable in the activecell
 On Error Resume Next
 Set pt = ActiveSheet.PivotTables(ActiveCell.PivotTable.Name)

'Step 3: Exit if active cell is not in a PivotTable
 If pt Is Nothing Then
 MsgBox "You must place your cursor inside of a PivotTable."
 Exit Sub
 End If

'Step 4: Apply Pivot Table Restrictions
 With pt
 .EnableWizard = False

 .EnableDrilldown = False
 .EnableFieldList = False
 .EnableFieldDialog = False
 .PivotCache.EnableRefresh = False
 End With

End Sub

1. Step 1 declares the pt PivotTable object variable that serves as the memory
container for your PivotTable.

2. Step 2 sets the pt variable to the name of the PivotTable on which the active cell
is found. You do this by using the ActiveCell.PivotTable.Name property to get the
name of the target pivot.

3. Step 3 checks to see if the pt variable is filled with a PivotTable object. If the pt
variable is set to Nothing, the active cell was not on a PivotTable, thus no
PivotTable could be assigned to the variable. If this is the case, you tell the user
in a message box and then exit the procedure.

4. In the last step of the macro, you are applying all PivotTable restrictions.

How to use it
You can implement this kind of macro in a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code.

Applying Pivot Field Restrictions
Like PivotTable restrictions, pivot field restrictions enable you to restrict the types of
actions users can take on the pivot fields in a PivotTable. The macro outlined in this
section demonstrates some of the protection settings available via VBA.

How it works
The PivotField object exposes several properties that allow you (the developer) to
restrict different features and components of a PivotTable:

DragToPage: Setting this property to False prevents the users from dragging any
pivot field into the Report Filter area of the PivotTable.
DragToRow: Setting this property to False prevents the users from dragging any
pivot field into the Row area of the PivotTable.
DragToColumn: Setting this property to False prevents the users from dragging

any pivot field into the Column area of the PivotTable.
DragToData: Setting this property to False prevents the users from dragging any
pivot field into the Data area of the PivotTable.
DragToHide: Setting this property to False prevents the users from dragging pivot
fields off the PivotTable. It also prevents the use of the right-click menu to hide
or remove pivot fields.
EnableItemSelection: Setting this property to False disables the drop-down lists
on each pivot field.

You can set any or all of these properties independently to either True or False. In
this macro, you apply all the restrictions to the target PivotTable.

Sub Macro1()

'Step 1: Declare your Variables
 Dim pt As PivotTable
 Dim pf As PivotField

'Step 2: Point to the PivotTable in the activecell
 On Error Resume Next
 Set pt = ActiveSheet.PivotTables(ActiveCell.PivotTable.Name)

'Step 3: Exit if active cell is not in a PivotTable
 If pt Is Nothing Then
 MsgBox "You must place your cursor inside of a PivotTable."
 Exit Sub
 End If

'Step 4: Apply Pivot Field Restrictions
 For Each pf In pt.PivotFields
 pf.EnableItemSelection = False
 pf.DragToPage = False
 pf.DragToRow = False
 pf.DragToColumn = False
 pf.DragToData = False
 pf.DragToHide = False
 Next pf

End Sub

1. Step 1 declares two object variables, using pt as the memory container for the
PivotTable and pf as a memory container for the pivot fields. This allows you to
loop through all the pivot fields in the PivotTable.

2. Set the pt variable to the name of the PivotTable on which the active cell is
found. You do this by using the ActiveCell.PivotTable.Name property to get the
name of the target pivot.

3. Step 3 checks to see whether the pt variable is filled with a PivotTable object. If
the pt variable is set to Nothing, the active cell was not on a PivotTable, thus no

PivotTable could be assigned to the variable. If this is the case, the macro
notifies the user via a message box and then exits the procedure.

4. Step 4 of the macro uses a For Each statement to iterate through each pivot field.
Each time a new pivot field is selected, you apply all of your pivot field
restrictions.

How to use it
You can implement this kind of macro in a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code.

Automatically Deleting PivotTable
Drill-Down Sheets

One of the coolest features of a PivotTable is that it gives you the ability to double-
click on a number and drill into the details. The details are output to a new sheet that
you can review. In most cases, you don’t want to keep these sheets. In fact, they often
become a nuisance, forcing you to take the time to clean them up by deleting them.

This is especially a problem when you distribute PivotTable reports to users who
frequently drill into details. There is no guarantee they will remember to clean up the
drill-down sheets. Although these sheets probably won't cause issues, they can clutter
up the workbook.

Here is a technique you can implement to have your workbook automatically remove
these drill-down sheets.

How it works
The basic premise of this macro is actually very simple. When the user clicks for
details, outputting a drill-down sheet, the macro simply renames the output sheet so
that the first ten characters are PivotDrill. Then before the workbook closes, the
macro finds any sheet that starts with PivotDrill and deletes it.

The implementation does get a bit tricky because you essentially have to have two
pieces of code. One piece goes in the Worksheet_BeforeDoubleClick event, whereas
the other piece goes into the Workbook_BeforeClose event.

Private Sub Worksheet_BeforeDoubleClick(ByVal Target As Range,
 Cancel As Boolean)

'Step 1: Declare you Variables
 Dim pt As String

'Step 2: Exit if Double-Click did not occur on a PivotTable
 On Error Resume Next
 If IsEmpty(Target) And ActiveCell.PivotField.Name <> "" Then
 Cancel = True
 Exit Sub
 End If

'Step 3: Set the PivotTable object
 pt = ActiveSheet.Range(ActiveCell.Address).PivotTable

'Step 4: If Drilldowns are Enabled, Drill down
 If ActiveSheet.PivotTables(pt).EnableDrilldown Then
 Selection.ShowDetail = True
 ActiveSheet.Name = _
 Replace(ActiveSheet.Name, "Sheet", "PivotDrill")
 End If

End Sub

1. Step 1 starts by creating the pt object variable for your PivotTable.
2. Step 2 checks the double-clicked cell. If the cell is not associated with any

PivotTable, the double-click event is cancelled.
3. If a PivotTable is indeed associated with a cell, Step 3 fills the pt variable with

the PivotTable.
4. Finally, Step 4 checks the EnableDrillDown property. If it is enabled, you trigger

the ShowDetail method. This outputs the drill-down details to a new worksheet.
The macro follows the output and renames the output sheet so that the first ten
characters are PivotDrill. You do this by using the Replace function. The Replace
function replaces certain text in an expression with other text. In this case, you
are replacing the word Sheet with PivotDrill: Replace(ActiveSheet.Name,
“Sheet”, “PivotDrill”).
Sheet1 becomes PivotDrill1, Sheet12 becomes PivotTrill12, and so on.
Next, the macro sets up the Worksheet_BeforeDoubleClick event. As the name
suggests, this code runs when the workbook closes:

Private Sub Workbook_BeforeClose(Cancel As Boolean)

'Step 5: Declare you Variables
 Dim ws As Worksheet

'Step 6: Loop through worksheets

 For Each ws In ThisWorkbook.Worksheets

'Step 7: Delete any sheet that starts with PivotDrill
 If Left(ws.Name, 10) = "PivotDrill" Then
 Application.DisplayAlerts = False
 ws.Delete
 Application.DisplayAlerts = True
 End If
 Next ws

End Sub

5. Step 5 declares the ws Worksheet variable. This is used to hold worksheet
objects as you loop through the workbook.

6. Step 6 starts the looping, telling Excel you want to evaluate all worksheets in this
workbook.

7. In the last step, you evaluate the name of the sheet that has focus in the loop. If the
left ten characters of that sheet name are PivotDrill, you delete the worksheet.
After all of the sheets have been evaluated, all drill-down sheets have been
cleaned up and the macro ends.

How to use it
To implement the first part of the macro, you need to copy and paste it into the
Worksheet_BeforeDoubleClick event code window. Placing the macro here allows it
to run each time you double-click on the sheet:

1. Activate the Visual Basic Editor by pressing Alt+F11.
2. In the Project window, find your project/workbook name and click the plus

sign next to it in order to see all the sheets.
3. Click on the sheet in which you want to trigger the code.
4. Select the BeforeDoubleClick event from the Event drop-down list box (see

Figure 8-3).
5. Type or paste the code.

FIGURE 8-3: Type or paste your code in the Worksheet_BeforeDoubleClick event code window.

To implement this macro, you need to copy and paste it into the
Workbook_BeforeClose event code window. Placing the macro here allows it to run
each time you try to close the workbook:

1. Activate the Visual Basic Editor by pressing Alt+F11.
2. In the Project window, find your project/workbook name and click the plus

sign next to it in order to see all the sheets.
3. Click ThisWorkbook.
4. Select the BeforeClose event in the Event drop-down list (see Figure 8-4).
5. Type or paste the code.

FIGURE 8-4: Enter or paste your code in the Workbook_BeforeClose event code window.

Printing a PivotTable for Each Report
Filter Item

PivotTables provide an excellent mechanism to parse large data sets into printable
files. You can build a PivotTable report, complete with aggregations and analysis,
and then place a field (such as Region) into the report filter. With the report filter,
you can select each data item at a time, and then print the PivotTable report.

The macro in this section demonstrates how to automatically iterate through all the
values in a report filter and print.

How it works
In the Excel object model, the Report Filter drop-down list is known as the
PageField. To print a PivotTable for each data item in a report filter, you need to
loop through the PivotItems collection of the PageField object. As you loop, you
dynamically change the selection in the report filter, and then use the
ActiveSheet.PrintOut method to print the target range.

Sub Macro1()

'Step 1: Declare your Variables
 Dim pt As PivotTable
 Dim pf As PivotField
 Dim pi As PivotItem

'Step 2: Point to the PivotTable in the activecell
 On Error Resume Next
 Set pt = ActiveSheet.PivotTables(ActiveCell.PivotTable.Name)

'Step 3: Exit if active cell is not in a PivotTable
 If pt Is Nothing Then
 MsgBox "You must place your cursor inside of a PivotTable."
 Exit Sub
 End If

'Step 4: Exit if more than one page field
 If pt.PageFields.Count > 1 Then
 MsgBox "Too many Report Filter Fields. Limit 1."
 Exit Sub
 End If

'Step 5: Start looping through the page field and its pivot items
 For Each pf In pt.PageFields
 For Each pi In pf.PivotItems

'Step 6: Change the selection in the report filter
 pt.PivotFields(pf.Name).CurrentPage = pi.Name

'Step 7: Set Print Area and print
 ActiveSheet.PageSetup.PrintArea = pt.TableRange2.Address
 ActiveSheet.PrintOut Copies:=1

'Step 8: Get the next page field item
 Next pi
 Next pf

End Sub

1. For this macro, Step 1 declares three variables: pt as the memory container for
the PivotTable, pf as a memory container for the page fields, and pi to hold each
pivot item as you loop through the PageField object.

2. The active cell must be inside a PivotTable for this macro to run. The assumption
is that when the cursor is inside a particular PivotTable, you want to perform the
macro action on that pivot.
Step 2 sets the pt variable to name of the PivotTable on which the active cell is
found. You do this by using the ActiveCell.PivotTable.Name property to get the
name of the target pivot.
If the active cell is not inside of a PivotTable, the macro throws an error. This is
why you use the On Error Resume Next statement. This tells Excel to continue
with the macro if it encounters an error.

3. Step 3 checks to see whether the pt variable is filled with a PivotTable object. If
the pt variable is set to Nothing, the active cell was not on a PivotTable, thus no
PivotTable could be assigned to the variable. If this is the case, the user is
notified via a message box, and then you exit the procedure.

4. Step 4 determines whether there is more than one report filter field. (If the count
of PageFields is greater than 1, there is more than one report filter.) You do this
check for a simple reason: If you have multiple report filter fields, you might
wind up printing hundreds of pages. The macro stops with a message box if the
PivotTable contains more than one report filter field. You can remove this
limitation simply by deleting or commenting out Step 4 in the macro.

5. Step 5 starts two loops. The outer loop tells Excel to iterate through all the report
filters. The inner loop tells Excel to loop through all the pivot items in the report
filter that currently has focus.

6. For each pivot item, the macro captures the item name and uses it to change the
report filter selection. This effectively alters the PivotTable report to match the
pivot item.

7. Step 7 prints the active sheet and then moves to the next pivot item. After you
have looped through all pivot items in the report filter, the macro moves to the
next PageField. After all PageFields have been evaluated, the macro ends.

How to use it
You can implement this kind of macro in a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code.

Creating a New Workbook for Each
Report Filter Item

PivotTables provide an excellent mechanism to parse large data sets into separate
files. You can build a PivotTable report, complete with aggregations and analysis,
and then place a field (such as Region) into the report filter. With the report filter,
you can select each data item at a time, and then export the PivotTable data to a new
workbook.

The macro in this section demonstrates how to automatically iterate through all the
values in a report filter and export to a new workbook.

How it works
In the Excel object model, the Report Filter drop-down list is known as the
PageField. To copy a PivotTable report for each data item in a report filter, the
macro needs to loop through the PivotItems collection of the PageField object. As the
macro loops, it must dynamically change the selection in the report filter, and then
export the PivotTable report to a new workbook.

Sub Macro1()

'Step 1: Declare your Variables
 Dim pt As PivotTable
 Dim pf As PivotField
 Dim pi As PivotItem

'Step 2: Point to the PivotTable in the activecell
 On Error Resume Next
 Set pt = ActiveSheet.PivotTables(ActiveCell.PivotTable.Name)

'Step 3: Exit if active cell is not in a PivotTable
 If pt Is Nothing Then
 MsgBox "You must place your cursor inside of a PivotTable."
 Exit Sub
 End If

'Step 4: Exit if more than one page field
 If pt.PageFields.Count > 1 Then
 MsgBox "Too many Report Filter Fields. Limit 1."
 Exit Sub
 End If

'Step 5: Start looping through the page field and its pivot items
 For Each pf In pt.PageFields
 For Each pi In pf.PivotItems

'Step 6: Change the selection in the report filter
 pt.PivotFields(pf.Name).CurrentPage = pi.Name

'Step 7: Copy the data area to a new workbook
 pt.TableRange1.Copy

 Workbooks.Add.Worksheets(1).Paste
 Application.DisplayAlerts = False

 ActiveWorkbook.SaveAs _
 Filename:="C:\" & pi.Name & ".xlsx"
 ActiveWorkbook.Close
 Application.DisplayAlerts = True

'Step 8: Get the next page field item
 Next pi
 Next pf

End Sub

1. Step 1 declares three variables, pt as the memory container for the PivotTable, pf
as a memory container for the page fields, and pi to hold each pivot item as the
macro loops through the PageField object.

2. The active cell must be inside a PivotTable for this macro to run. The assumption
is that when the cursor is inside a particular PivotTable, you want to perform the
macro action on that pivot.
Step 2 sets the pt variable to the name of the PivotTable in which the active cell
is found. The macro does this by using the ActiveCell.PivotTable.Name property
to get the name of the target pivot.
If the active cell is not inside of a PivotTable, an error is thrown. This is why you
use the On Error Resume Next statement. This tells Excel to continue with the
macro if it encounters an error.

3. Step 3 checks to see whether the pt variable is filled with a PivotTable object. If
the pt variable is set to Nothing, the active cell was not in a PivotTable, thus no
PivotTable could be assigned to the variable. If this is the case, the macro
notifies the user via a message box and then exits the procedure.

4. Step 4 determines whether there is more than one report filter field. If the count
of PageFields is greater than 1, there is more than one report filter. You do this
check for a simple reason: If you have multiple report filter fields, you might
wind up creating hundreds of workbooks. The macro stops with a message box if
the PivotTable contains more than one report filter field. You can remove this

limitation simply by deleting or commenting out Step 4 in the macro.
5. Step 5 starts two loops. The outer loop tells Excel to iterate through all the report

filters. The inner loop tells Excel to loop through all the pivot items in the report
filter that currently has focus.

6. For each pivot item, Step 6 captures the item name and uses it to change the
report filter selection. This effectively alters the PivotTable report to match the
pivot item.

7. Step 7 copies TableRange1 of the PivotTable object. TableRange1 is a built-in
range object that points to the range of the main data area for the PivotTable. You
then paste the data into a new workbook and save it. Note that you need to change
the save path to one that works in your environment.

8. Step 8 moves to the next pivot item. After the macro has looped through all pivot
items in the report filter, the macro moves to the next PageField. After all
PageFields have been evaluated, the macro ends.

How to use it
You can implement this kind of macro in a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code.

Resizing All Charts on a Worksheet
When building a dashboard, you often want to achieve some degree of symmetry and
balance. This sometimes requires some level of chart size standardization. The
macro in this section gives you an easy way to set a standard height and width for all
your charts at once.

How it works
All charts belong to the ChartObjects collection. To take an action on all charts at
one time, you simply iterate through all the charts in ChartObjects. Each chart in the
ChartObjects collection has an index number that you can use to bring it into focus.
For example, ChartObjects(1) points to the first chart in the sheet.

In this macro, you use this concept to loop through the charts on the active sheet with
a simple counter. Each time a new chart is brought into focus, you change its height
and width to the size you’ve defined.

Sub Macro1()

'Step 1: Declare your variables
 Dim i As Integer

'Step 2: Start Looping through all the charts
 For i = 1 To ActiveSheet.ChartObjects.Count

'Step 3: Activate each chart and size
 With ActiveSheet.ChartObjects(i)
 .Width = 300
 .Height = 200
 End With

'Step 4: Increment to move to next chart
 Next i

End Sub

1. Step 1 declares the variable i as an integer object used for a looping mechanism.
2. Step 2 starts the looping by setting i to count from 1 to the maximum number of

charts in the ChartObjects collection on the active sheet. When the code starts, i
initiates with the number 1. As you loop, the variable increments up one number
until it reaches a number equal to the maximum number of charts on the sheet.

3. Step 3 passes i to the ChartObjects collection as the index number. This brings a
chart into focus. You then set the width and height of the chart to the number you
specify here in the code. You can change these numbers to suit your needs.

4. In Step 4, the macro loops back around to increment i up one number and get the
next chart. After all charts have been evaluated, the macro ends.

How to use it
To implement this macro, you can copy and paste it into a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code into the newly created blank module.

Aligning a Chart to a Specific Range
Along with adjusting the size of our charts, many of us spend a good bit of time
positioning them so that they align nicely in our dashboards. This macro helps easily
snap your charts to defined ranges, getting perfect positioning every time.

How it works
Every chart has four properties that dictate its size and position. These properties are
Width, Height, Top, and Left. Interestingly enough, every Range object has these same
properties. So if you set a chart's Width, Height, Top, and Left properties to match
that of a particular range, the chart essentially snaps to that range.

The idea is that after you have decided how you want your dashboard to be laid out,
you take note of the ranges that encompass each area of your dashboard. You then use
those ranges in this macro to snap each chart to the appropriate range. In this
example, you adjust four charts so that their Width, Height, Top, and Left properties
match a given range.

Note that you are identifying each chart with a name. Charts are, by default, named
“Chart” and the order number they were added (Chart 1, Chart 2, Chart 3, and so on).
You can see what each of your charts are named by clicking any chart, and then going
up to the Ribbon and selecting Format ⇒ Selection Pane. This activates a task pane
(shown in Figure 8-5) that lists all the objects on your sheet with their names.

FIGURE 8-5: The Selection pane allows you to see all of your chart objects and their respective names.

You can use it to get the appropriate chart names for your version of this macro.
Sub Macro1()

Dim SnapRange As Range

Set SnapRange = ActiveSheet.Range("B6:G19")
 With ActiveSheet.ChartObjects("Chart 1")
 .Height = SnapRange.Height
 .Width = SnapRange.Width
 .Top = SnapRange.Top
 .Left = SnapRange.Left
 End With

Set SnapRange = ActiveSheet.Range("B21:G34")
 With ActiveSheet.ChartObjects("Chart 2")
 .Height = SnapRange.Height
 .Width = SnapRange.Width
 .Top = SnapRange.Top

 .Left = SnapRange.Left
 End With

Set SnapRange = ActiveSheet.Range("I6:Q19")
 With ActiveSheet.ChartObjects("Chart 3")
 .Height = SnapRange.Height
 .Width = SnapRange.Width
 .Top = SnapRange.Top
 .Left = SnapRange.Left
 End With

Set SnapRange = ActiveSheet.Range("I21:Q34")
 With ActiveSheet.ChartObjects("Chart 4")
 .Height = SnapRange.Height
 .Width = SnapRange.Width
 .Top = SnapRange.Top
 .Left = SnapRange.Left
 End With

End Sub

How to use it
To implement this macro, you can copy and paste it into a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code into the newly created module.

Creating a Set of Disconnected Charts
When you need to copy charts from a workbook and paste them elsewhere (another
workbook, PowerPoint, Outlook, and so on), it’s often best to disconnect them from
the original source data. This way, you won’t get any of the annoying missing link
messages that Excel throws. This macro copies all of the charts in the active sheet,
pastes them into a new workbook, and disconnects them from the original source
data.

How it works
This macro uses the ShapeRange.Group method to group all the charts on the active
sheet into one shape. This is similar to what you would do if you were to group a set
of shapes manually. After the charts are grouped, you copy the group and paste it into
a new workbook. You then use the BreakLink method to remove references to the
original source data. When you do this, Excel hard-codes the chart data into array
formulas.

Sub Macro1()

'Step 1: Declare your variables
Dim wbLinks As Variant

'Step 2: Group the charts, copy the group, and then ungroup
 With ActiveSheet.ChartObjects.ShapeRange.Group
 .Copy
 .Ungroup
 End With

'Step 3: Paste into a new workbook and ungroup
 Workbooks.Add.Sheets(1).Paste
 Selection.ShapeRange.Ungroup

'Step 4: Break the links
 wbLinks = ActiveWorkbook.LinkSources(Type:=xlLinkTypeExcelLinks)
 ActiveWorkbook.BreakLink Name:=wbLinks(1), _
 Type:=xlLinkTypeExcelLinks
End Sub

1. Step 1 declares the wbLinks variant variable. The macro uses this in Step 4 to
pass the link source when breaking the links.

2. Step 2 uses ChartObjects.ShapeRange.Group to group all the charts into a single
shape. The macro then copies the group to the clipboard. After the group is
copied, the macro ungroups the charts.

3. Step 3 creates a new workbook and pastes the copied group to Sheet 1. After the
group has been pasted, you can ungroup so that each chart is separate again. Note
that the newly created workbook is now the active object, so all references to
ActiveWorkbook points back to this workbook.

4. Step 4 captures the link source in the wbLinks variable. The macro then tells
Excel to break the links.

 Note that because this technique converts the chart source links to an
array formula, this technique can fail if your chart contains too many data points.
How many is too many? It can be different for every PC because it is limited by
memory.

How to use it
To implement this macro, you can copy and paste it into a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11.
2. Right-click the project/workbook name in the Project window.

3. Choose Insert ⇒ Module.
4. Type or paste the code into the newly created module.

Printing All Charts on a Worksheet
To print a chart, you can click any embedded chart in your worksheet and then click
Print. This prints the chart on its own sheet without any of the other data on the sheet.
This sounds easy enough, but it can become a chore if you’ve got to do this for many
charts. This macro makes short work of this task.

How it works
All charts belong to the ChartObjects collection. To take an action on all charts at
one time, you simply iterate through all the charts in ChartObjects. Each chart in the
ChartObjects collection has an index number that you can use to bring it into focus.
For example, ChartObjects(1) points to the first chart in the sheet.

In this macro, you use this concept to loop through the charts on the active sheet with
a simple counter. Each time a new chart is brought into focus, print it.

Sub Macro1()

'Step 1: Declare your variables
 Dim ChartList As Integer
 Dim i As Integer

'Step 2: Start Looping through all the charts
 For i = 1 To ActiveSheet.ChartObjects.Count

'Step 3: Activate each chart and print
 ActiveSheet.ChartObjects(i).Activate
 ActiveChart.PageSetup.Orientation = xlLandscape
 ActiveChart.PrintOut Copies:=1

'Step 4: Increment to move to next chart
 Next i

End Sub

1. Step 1 declares the variable i as an integer object used for a looping mechanism.
2. Step 2 starts the looping by setting i to count from 1 to the maximum number of

charts in the ChartObjects collection on the active sheet. When the code starts, i
initiates with the number 1. As you loop, the variable increments up one number
until it reaches a number equal to the maximum number of charts on the sheet.

3. Step 3 passes i to the ChartObjects collection as the index number. This brings a
chart into focus. You then use the ActiveChart.Printout method to trigger the print.

Note that you can adjust the Orientation property to either xlLandscape or
xlPortrait depending on what you need.

4. Step 4 loops back around to increment i up one number and get the next chart.
After all charts have been evaluated, the macro ends.

How to use it
To implement this macro, you can copy and paste it into a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code into the newly created module.

Chapter 9

Sending Emails from Excel
IN THIS CHAPTER

 Mailing the active workbook as an attachment
 Mailing a specific range as an attachment
 Mailing a single sheet as an attachment
 Sending mail with a link to your workbook
 Mailing all email addresses in your contact list
 Saving all attachments to a folder
 Saving certain attachments to a folder

Did you know that you probably integrate Excel and Outlook all the time? It’s true. If
you've sent or received an Excel workbook through Outlook, you’ve integrated the
two programs, albeit manually. This chapter shows you a few examples of how you
can integrate Excel and Outlook in a more automated fashion.

 The macros in this chapter automate Microsoft Outlook. For these macros to
work, you need Microsoft Outlook installed on your system.

Mailing the Active Workbook as an
Attachment

The most fundamental Outlook task you can perform through automation is sending an
email. In the sample code shown here, the active workbook is sent to two email
recipients as an attachment.

 Some of you may notice that we are not using the SendMail command native
to Excel. With the SendMail command, you can send simple email messages
directly from Excel. However, the SendMail command is not as robust as
Outlook automation. SendMail does not allow you to attach files, or use the CC

and BCC fields in the email, which makes the technique that this macro uses a
superior method.

How it works
Because this code runs from Excel, you need to set a reference to the Microsoft
Outlook Object Library. You can set the reference by opening the Visual Basic Editor
in Excel and choosing Tools ⇒ References. Scroll down until you find the entry
Microsoft Outlook XX Object Library, where the XX is your version of Outlook.
Select the check box next to the entry.

Sub Macro1()

'Step 1: Declare our variables
 Dim OLApp As Outlook.Application
 Dim OLMail As Object

'Step 2: Open Outlook start a new mail item
 Set OLApp = New Outlook.Application
 Set OLMail = OLApp.CreateItem(0)
 OLApp.Session.Logon

'Step 3: Build our mail item and send
 With OLMail
 .To = "admin@datapigtechnologies.com; mike@datapigtechnologies.com"
 .CC = ""
 .BCC = ""
 .Subject = "This is the Subject line"
 .Body = "Sample File Attached"
 .Attachments.Add ActiveWorkbook.FullName
 .Display
 End With

'Step 4: Memory cleanup
 Set OLMail = Nothing
 Set OLApp = Nothing

End Sub

1. Step 1 declares two variables. OLApp is an object variable that exposes the
Outlook Application object. OLMail is an object variable that holds a mail item.

2. Step 2 activates Outlook and starts a new session. Note that you use
OLApp.Session.Logon to log on to the current MAPI session with default
credentials. It also creates a mail item. This is equivalent to clicking the New
Message button in Outlook.

3. Step 3 builds the profile of your mail item. This includes the To recipients, the
CC recipients, the BCC recipients, the Subject, the Body, and the Attachments.
This step notes that the recipients are entered in quotes and separates recipients
with a semicolon. The standard syntax for an attachment is .Attachments.Add
“File Path”. Here in this code, you specify the current workbook’s file path with

the syntax ActiveWorkbook.Fullname. This sets the current workbook as the
attachment for the email. When the message has been built, you use the .Display
method to review the email. You can replace .Display with .Send to
automatically fire the email without reviewing.

4. Releasing the objects assigned to your variables is generally good practice. This
reduces the chance of any problems caused by rogue objects that may remain
open in memory. As you can see in the code, you simply set the variables to
Nothing.

How to use it
To implement this macro, copy and paste it into a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code into the newly created module.

Mailing a Specific Range as an
Attachment

You may not always want to send your entire workbook through email. This macro
demonstrates how to send a specific range of data rather than the entire workbook.

How it works
Because this code is run from Excel, you need to set a reference to the Microsoft
Outlook Object Library. You can set the reference by opening the Visual Basic Editor
in Excel and choosing Tools ⇒ References. Scroll down until you find the entry
Microsoft Outlook XX Object Library, where the XX is your version of Outlook.
Select the check box next to the entry.

Sub Macro1()

'Step 1: Declare our variables
 Dim OLApp As Outlook.Application
 Dim OLMail As Object

'Step 2: Copy range, paste to new workbook, and save it
 Sheets("Revenue Table").Range("A1:E7").Copy
 Workbooks.Add
 Range("A1").PasteSpecial xlPasteValues
 Range("A1").PasteSpecial xlPasteFormats
 ActiveWorkbook.SaveAs ThisWorkbook.Path & "\TempRangeForEmail.xlsx"

'Step 3: Open Outlook start a new mail item
 Set OLApp = New Outlook.Application
 Set OLMail = OLApp.CreateItem(0)
 OLApp.Session.Logon

'Step 4: Build our mail item and send
 With OLMail
 .To = "admin@datapigtechnologies.com; mike@datapigtechnologies.com"
 .CC = ""
 .BCC = ""
 .Subject = "This is the Subject line"
 .Body = "Sample File Attached"
 .Attachments.Add (ThisWorkbook.Path & "\TempRangeForEmail.xlsx")
 .Display
 End With

'Step 5: Delete the temporary Excel file
 ActiveWorkbook.Close SaveChanges:=True
 Kill ThisWorkbook.Path & "\TempRangeForEmail.xlsx"

'Step 6: Memory cleanup
 Set OLMail = Nothing
 Set OLApp = Nothing

End Sub

1. Step 1 declares two variables. OLApp is an object variable that exposes the
Outlook Application object. OLMail is an object variable that holds a mail item.

2. Step 2 copies a specified range and pastes the values and formats to a temporary
Excel file. The macro then saves that temporary file, giving it a file path and
filename.

3. Step 3 activates Outlook and starts a new session. Note that you use
OLApp.Session.Logon to log on to the current MAPI session with default
credentials. You also create a mail item. This is equivalent to clicking the New
Message button in Outlook.

4. Step 4 builds the profile of the mail item. This includes the To recipients, the CC
recipients, the BCC recipients, the Subject, the Body, and the Attachments. This
step notes that the recipients are entered in quotes and separates recipients by a
semicolon. Here in this code, you specify your newly created temporary Excel
file path as the attachment for the email. When the message has been built, you
use the .Display method to review the email. You can replace .Display with
.Send to automatically fire the email without reviewing.

5. You don’t want to leave temporary files hanging out there, so after the email has
been sent, Step 5 deletes the temporary Excel file you created.

6. It is generally good practice to release the objects assigned to your variables.
This reduces the chance of any problems caused by rogue objects that may remain

open in memory. In Step 6, you simply set the variables to Nothing.

How to use it
To implement this macro, copy and paste it into a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code into the newly created module.

Mailing a Single Sheet as an
Attachment

This example demonstrates how to send a specific worksheet of data rather than the
entire workbook.

How it works
Because this code is run from Excel, you need to set a reference to the Microsoft
Outlook Object Library. You can set the reference by opening the Visual Basic Editor
in Excel and choosing Tools ⇒ References. Scroll down until you find the entry
Microsoft Outlook XX Object Library, where the XX is your version of Outlook.
Place a check in the check box next to the entry.

Sub Macro1()

'Step 1: Declare our variables
 Dim OLApp As Outlook.Application
 Dim OLMail As Object

'Step 2: Copy Worksheet, paste to new workbook, and save it
 Sheets("Revenue Table").Copy
 ActiveWorkbook.SaveAs ThisWorkbook.Path & "\TempRangeForEmail.xlsx"

'Step 3: Open Outlook start a new mail item
 Set OLApp = New Outlook.Application
 Set OLMail = OLApp.CreateItem(0)
 OLApp.Session.Logon

'Step 4: Build our mail item and send
 With OLMail
 .To = "admin@datapigtechnologies.com; mike@datapigtechnologies.com"
 .CC = ""
 .BCC = ""
 .Subject = "This is the Subject line"
 .Body = "Sample File Attached"
 .Attachments.Add (ThisWorkbook.Path & "\TempRangeForEmail.xlsx")

 .Display
 End With

'Step 5: Delete the temporary Excel file
 ActiveWorkbook.Close SaveChanges:=True
 Kill ThisWorkbook.Path & "\TempSheetForEmail.xlsx"

'Step 6: Memory cleanup
 Set OLMail = Nothing
 Set OLApp = Nothing

End Sub

1. Step 1 declares two variables. OLApp is an object variable that exposes the
Outlook Application object. OLMail is an object variable that holds a mail item.

2. Step 2 copies the specified sheet and pastes the values and formats to a
temporary Excel file. You then save that temporary file, giving it a file path and
filename.

3. Step 3 activates Outlook and starts a new session. Note that you use
OLApp.Session.Logon to log on to the current MAPI session with default
credentials. You also create a mail item. This is equivalent to clicking the New
Message button in Outlook.

4. Step 4 builds the profile of the mail item. This includes the To recipients, the CC
recipients, the BCC recipients, the Subject, the Body, and the Attachments. The
recipients are entered in quotes and separated by a semicolon. In this code, you
specify your newly created temporary Excel file path as the attachment for the
email. When the message has been built, you use the .Display method to review
the email. You can replace .Display with .Send to automatically fire the email
without reviewing.

5. You don’t want to leave temporary files hanging out there, so after the email has
been sent, you delete the temporary Excel file you created.

6. It is generally good practice to release the objects assigned to your variables.
This reduces the chance of any problems caused by rogue objects that may remain
open in memory. As you can see in the code, you simply set the variables to
Nothing.

How to use it
To implement this macro, copy and paste it into a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒ Module.

4. Type or paste the code into the newly created module.

Sending Mail with a Link to Your
Workbook

Sometimes, you don’t need to send an attachment at all. Instead, you simply want to
send an automated email with a link to a file. This macro does just that.

 Your users or customers need at least read access to the network or location
tied to the link.

How it works
Keep in mind that because this code is run from Excel, you need to set a reference to
the Microsoft Outlook Object Library. You can set the reference by opening the
Visual Basic Editor in Excel and choosing Tools ⇒ References. Scroll down until
you find the entry Microsoft Outlook XX Object Library, where the XX is your
version of Outlook. Select the check box next to the entry.

Sub Macro1()

'Step 1: Declare our variables
 Dim OLApp As Outlook.Application
 Dim OLMail As Object

'Step 2: Open Outlook start a new mail item
 Set OLApp = New Outlook.Application
 Set OLMail = OLApp.CreateItem(0)
 OLApp.Session.Logon

'Step 3: Build our mail item and send
 With OLMail
 .To = "admin@datapigtechnologies.com; mike@datapigtechnologies.com"
 .CC = ""
 .BCC = ""
 .Subject = "Monthly Report Email with Link"
 .HTMLBody = _
 "<p>Monthly report is ready. Click the link to get it.</p> " & _
 "<p><a href=" & Chr(34) & "Z:\Downloads\MonthlyReport.xlsx" & _
 Chr(34) & ">Download Now</p>"
 .Display
 End With

'Step 4: Memory cleanup
 Set OLMail = Nothing
 Set OLApp = Nothing

End Sub

1. Step 1 declares two variables. OLApp is an object variable that exposes the

Outlook Application object. OLMail is an object variable that holds a mail item.
2. Step 2 activates Outlook and starts a new session. Note that you use

OLApp.Session.Logon to log on to the current MAPI session with default
credentials. This step also creates a mail item. This is equivalent to clicking the
New Message button in Outlook.

3. Step 3 builds the profile of your mail item. This includes the To recipients, the
CC recipients, the BCC recipients, the Subject, and the HTMLBody. To create the
hyperlink, you need to use the HTMLBody property to pass HTML tags. You can
replace the file path address shown in the macro with the address for your file.
Note that this macro is using the .Display method, which opens the email for
review. You can replace .Display with .Send to automatically fire the email
without reviewing.

4. It is generally good practice to release the objects assigned to your variables.
This reduces the chance of any problems caused by rogue objects that may remain
open in memory. In Step 4, you simply set the variables to Nothing.

How to use it
To implement this macro, copy and paste it into a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11 on your keyboard.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code into the newly created module.

Mailing All Email Addresses in Your
Contact List

Ever need to send out a mass mailing such as a newsletter or a memo? Instead of
manually entering each of your contacts’ email addresses, you can run the following
procedure. This procedure sends out one email, automatically adding all the email
addresses in your contact list to the email.

How it works
Because this code is run from Excel, you need to set a reference to the Microsoft
Outlook Object Library. You can set the reference by opening the Visual Basic Editor
in Excel and choosing Tools ⇒ References. Scroll down until you find the entry
Microsoft Outlook XX Object Library, where the XX is your version of Outlook.
Select the check box next to the entry.

Sub Macro1()

'Step 1: Declare our variables
 Dim OLApp As Outlook.Application
 Dim OLMail As Object
 Dim MyCell As Range
 Dim MyContacts As Range

'Step 2: Define the range to loop through
 Set MyContacts = Sheets("Contact List").Range("H2:H21")

'Step 3: Open Outlook
 Set OLApp = New Outlook.Application
 Set OLMail = OLApp.CreateItem(0)
 OLApp.Session.Logon

'Step 4: Add each address in the contact list
 With OLMail

 For Each MyCell In MyContacts
 .BCC = .BCC & Chr(59) & MyCell.Value
 Next MyCell

 .Subject = "Sample File Attached"
 .Body = "Sample file is attached"
 .Attachments.Add ActiveWorkbook.FullName
 .Display

 End With

'Step 5: Memory cleanup
 Set OLMail = Nothing
 Set OLApp = Nothing

End Sub

1. Step 1 declares four variables: OLApp is an object variable that exposes the
Outlook Application object. OLMail is an object variable that holds a mail item.
MyCell is an object variable that holds an Excel range. MyContacts is an object
variable that holds an Excel range.

2. Step 2 points the MyContacts variable to the range of cells that contains your
email addresses. This is the range of cells you loop through to add email
addresses to your email.

3. Step 3 activates Outlook and starts a new session. Note that you use
OLApp.Session.Logon to log on to the current MAPI session with default
credentials. You also create a mail item. This is equivalent to clicking the New
Message button in Outlook.

4. Step 4 builds the profile of your mail item. Note that you are looping through
each cell in the MyContacts range and adding the contents (which are email
addresses) to the BCC. Here, you are using the BCC property rather than To or

CC so that each recipient gets an email that looks as though it was sent only to
him. Your recipients won't be able to see any of the other email addresses
because the addresses have been sent with BCC (Blind Courtesy Copy). Note
also that this macro is using the .Display method, which opens the email for
review. You can replace .Display with .Send to automatically fire the email
without reviewing.

5. It is generally good practice to release the objects assigned to your variables.
This reduces the chance of any problems caused by rogue objects that may remain
open in memory. In Step 5, you simply set the variables to Nothing.

How to use it
To implement this macro, copy and paste it into a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11 on your keyboard.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code into the newly created module.

Saving All Attachments to a Folder
You may often find that certain processes lend themselves to the exchange of data via
email. For example, you may send out a budget template for each branch manager to
fill out and send back to you via email. Well, if there are 150 branch members, it
could be a bit of a pain to download all those email attachments.

The following procedure demonstrates one solution to this problem. In this
procedure, you use automation to search for all attachments in the inbox and save
them to a specified folder.

How it works
Because this code is run from Excel, you need to set a reference to the Microsoft
Outlook Object Library. You can set the reference by opening the Visual Basic Editor
in Excel and choosing Tools ⇒ References. Scroll down until you find the entry
Microsoft Outlook XX Object Library, where the XX is your version of Outlook.
Select the check box next to the entry.

Sub Macro1()

'Step 1: Declare our variables
 Dim ns As Namespace
 Dim MyInbox As MAPIFolder
 Dim MItem As MailItem
 Dim Atmt As Attachment
 Dim FileName As String

'Step 2: Set a reference to our inbox
 Set ns = GetNamespace("MAPI")
 Set MyInbox = ns.GetDefaultFolder(olFolderInbox)

'Step 3: Check for messages in our inbox; exit if none
 If MyInbox.Items.Count = 0 Then
 MsgBox "No messages in folder."
 Exit Sub
 End If

'Step 4: Create directory to hold attachments
 On Error Resume Next
 MkDir "C:\Temp\MyAttachments\"

'Step 5: Start to loop through each mail item
 For Each MItem In MyInbox.Items

'Step 6: Save each attachment then go to the next attachment
 For Each Atmt In MItem.Attachments
 FileName = "C:\Temp\MyAttachments\" & Atmt.FileName
 Atmt.SaveAsFile FileName
 Next Atmt

'Step 7: Move to the next mail item
 Next MItem

'Step 8: Memory cleanup
 Set ns = Nothing
 Set MyInbox = Nothing

End Sub

1. Step 1 declares five variables. ns is an object used to expose the MAPI
namespace. MyInbox is used to expose the target mail folder. MItem is used to
expose the properties of a mail item. Atmt is an object variable that holds an
Attachment object. FileName is a string variable that holds the name of the
attachment.

2. Step 2 sets the MyInbox variable to point to the inbox for the default mail client.
3. Step 3 performs a quick check to make sure there are actual messages in the

inbox. If no messages are found, the macro exits the procedure with a message
box stating that there are no messages.

4. Step 4 creates a directory to hold the attachments you find. Although you could
use an existing directory, using a directory dedicated specifically for the
attachments you bring down is usually best. Here, you are creating that directory
on the fly. Note you are using On Error Resume Next. This ensures that the code

does not error out if the directory you are trying to create already exists.
5. Step 5 starts the loop through each mail item in the target mail folder.
6. Step 6 ensures that each mail item you loop through gets checked for attachments.

As you loop, each attachment you find gets saved into the specified directory you
created.

7. Step 7 loops back to Step 5 until there are no more mail items to go through.
8. Releasing the objects assigned to your variables is good general practice. This

reduces the chance of any problems caused by rogue objects that may remain
open in memory. Step 8 simply sets the variables to Nothing.

How to use it
To implement this macro, copy and paste it into a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code into the newly created module.

Saving Certain Attachments to a
Folder

The previous procedure showed how to use automation to search for all attachments
in your inbox and save them to a specified folder. However, in most situations, you
probably only want to save certain attachments; for example, those attached to emails
that contain a certain Subject. This example demonstrates how to check for certain
syntax and selectively bring down attachments.

How it works
Because this code is run from Excel, you need to set a reference to the Microsoft
Outlook Object Library. You can set the reference by opening the Visual Basic Editor
in Excel and choosing Tools ⇒ References. Scroll down until you find the entry
Microsoft Outlook XX Object Library, where the XX is your version of Outlook.
Select the check box next to the entry.

Sub Macro1()

'Step 1: Declare our variables
 Dim ns As Namespace
 Dim MyInbox As MAPIFolder
 Dim MItem As Object
 Dim Atmt As Attachment

 Dim FileName As String
 Dim i As Integer

'Step 2: Set a reference to our inbox
 Set ns = GetNamespace("MAPI")
 Set MyInbox = ns.GetDefaultFolder(olFolderInbox)

'Step 3: Check for messages in our inbox; exit if none
 If MyInbox.Items.Count = 0 Then
 MsgBox "No messages in folder."
 Exit Sub
 End If

'Step 4: Create directory to hold attachments
 On Error Resume Next
 MkDir "C:\OffTheGrid\MyAttachments\"

'Step 5: Start to loop through each mail item
 For Each MItem In MyInbox.Items

'Step 6: Check for the words Data Submission in Subject line
 If InStr(1, MItem.Subject, "Data Submission") < 1 Then
 GoTo SkipIt
 End If

'Step 7: Save each with a log number; go to the next attachment
 i = 0
 For Each Atmt In MItem.Attachments
 FileName = _
 "C:\Temp\MyAttachments\Attachment-" & i & "-" & Atmt.FileName
 Atmt.SaveAsFile FileName
 i = i + 1
 Next Atmt

'Step 8: Move to the next mail item
SkipIt:
 Next MItem

'Step 9: Memory cleanup
 Set ns = Nothing
 Set MyInbox = Nothing

End Sub

1. Step 1 declares six variables. ns is an object used to expose the MAPI
namespace. MyInbox is used to expose the target mail folder. MItem is used to
expose the properties of a mail item. Atmt is an object variable that holds an
Attachment object. FileName is a string variable that holds the name of the
attachment. i is an integer variable used to ensure each attachment is saved as a
unique name.

2. Step 2 sets the MyInbox variable to point to the inbox for your default mail client.
3. Step 3 performs a quick check to make sure there are actual messages in your

inbox. If no messages are found, it exits the procedure with a message box stating
that there are no messages.

4. Step 4 creates a directory to hold the attachments you find. Note that it uses On
Error Resume Next. This ensures that the code does not error out if the directory
you are trying to create already exists.

5. Step 5 starts the loop through each mail item in the target mail folder.
6. In Step 6, you use the Instr function to check whether the string “Data

Submission” is in the Subject line of the email. If that string does not exist, you
don't care about any attachments to that message. Therefore, you force the code to
go to the SkipIt reference (in Step 8). Because the line of code immediately
following the SkipIt reference is essentially a Move Next command, this
effectively tells the procedure to move to the next mail item.

7. Step 7 loops through and saves each attachment into the specified directory you
created. Note that you are adding a running integer to the name of each
attachment. This is to ensure that each attachment is saved as a unique name,
helping to avoid overwriting attachments.

8. Step 8 loops back to Step 5 until there are no more mail items to go through.
9. Releasing the objects assigned to your variables is generally good practice. This

reduces the chance of any problems caused by rogue objects that may remain
open in memory. In Step 9, you simply set the variables to Nothing.

How to use it
To implement this macro, copy and paste it into a standard module:

1. Activate the Visual Basic Editor by pressing Alt+F11.
2. Right-click the project/workbook name in the Project window.
3. Choose Insert ⇒ Module.
4. Type or paste the code into the newly created module.

Chapter 10

Wrangling External Data with
Macros

IN THIS CHAPTER
 Working with external data connections
 Connecting to external databases
 Using macros to pull external data
 Working with external text files

External data is exactly what it sounds like: data that isn’t located in the Excel
workbook in which you’re operating. Some examples of external data sources are
text files, CSV files, Access tables, and even SQL Server tables.

There are numerous ways to get data into Excel. In fact, between the functionality
found in the UI and the VBA/code techniques, there are too many techniques to focus
on in one chapter. Instead, then, this chapter focuses on a handful of techniques that
you can implement in most situations and that don’t come with a lot of pitfalls and
gotchas.

Working with External Data
Connections

Every Excel workbook has the ability to store syntax that allows the workbook to
pull in data from external databases, files, and websites. This ability is made
possible by Excel’s External Data Connection feature. You can create any number of
data connections in order to retrieve the needed external data.

This next section walks you through the ins and outs of working with external data
connections.

Manually creating a connection
Excel has made it easy to manually connect to external data sources such as
Microsoft Access, SQL Server, or any other ODBC connection you regularly use. For
example, you can connect to an Access database by following these steps:

 Feel free to follow along by using the Facility Services.accdb Access
database found on book's website, which you can access at
www.dummies.com/go/excelmacros. The DynamicDataConnection.xlsm file
contains the sample macros found in this section.

1. Open a new Excel workbook and click the Data tab on the Ribbon.
2. In the Get External Data group, select the From Microsoft Access icon.

The Select Data Source dialog box opens, as shown in Figure 10-1. If the
database from which you want to import data is local, browse to the file’s
location and select it. If your target Access database resides on a network drive
at another location, you need the proper authorization to select it.

3. Navigate to your sample database and click Open.
4. Click OK.

The Select Table dialog box shown in Figure 10-2 opens. This dialog box lists
all the available tables and queries in the selected database.
The Select Table dialog box contains a column called Type. There are two types
of Access objects you can work with: views and tables. View indicates that the
dataset listed is an Access query, and Table indicates that the dataset is an
Access table. In this example, Sales_By_Employee is actually an Access query.
This means that you import the results of the query. This is true interaction at
work; Access does all the back-end data management and aggregation, and Excel
handles the analysis and presentation.

5. Select your target table or query and click OK.

 In cases when your Access database is password protected, Step 3
activates a series of Data Link Properties dialog boxes asking for credentials
(that is, username and password). Most Access databases don’t require logon
credentials, but if your database does require a username and password, type
them in the Data Link Properties dialog box.
The Import Data dialog box shown in Figure 10-3 opens. Here you define where
and how to import the table. You have the option of importing the data into a
Table, a PivotTable Report, a PivotChart, or a Power View Report. You also
have the option of creating only the connection, making the connection available
for later use.
Note that if you choose PivotChart or PivotTable Report, the data is saved to a
pivot cache without writing the actual data to the worksheet. Thus your

http://www.dummies.com/samplefiles.excelmacros

PivotTable can function as normal without you having to import potentially
hundreds of thousands of data rows twice (once for the pivot cache and once for
the spreadsheet).

6. Select Table as the output view and define cell A1 as the output location, as
shown in Figure 10-3.

7. Click OK.

FIGURE 10-1: Choose the source database that contains the data you want imported.

FIGURE 10-2: Select the Access object you want to import.

FIGURE 10-3: Choosing how and where to view your Access data.

Your reward for all your work is a table (see Figure 10-4) which contains the
imported data from your Access database.

FIGURE 10-4: Data imported from Access.

The incredibly powerful thing about importing data this way is that it’s refreshable.
That’s right. If you import data from Access using this technique, Excel creates a
table that you can update by right-clicking it and selecting Refresh from the pop-up
menu, as shown in Figure 10-5. When you update your imported data, Excel
reconnects to your Access database and imports the data again. As long as a
connection to your database is available, you can refresh with a mere click of the
mouse.

FIGURE 10-5: As long as a connection to your database is available, you can update your table with the latest
data.

Again, a major advantage to using the Get External Data group is that you can
establish a refreshable data connection between Excel and Access. In most cases,
you can set up the connection one time and then just update the data connection when
needed. You can even record an Excel macro to update the data on some trigger or
event, which is ideal for automating the transfer of data from Access.

Manually editing data connections
Once you have a connection, you can use the connection properties to point to another
database table or query. You can even write your own SQL statements. SQL
(Structured Query Language) is the language that relational database systems (such as
Microsoft Access) use to perform various tasks. You can pass instructions right from
Excel by using SQL statements. This can give you more control over the data you pull
into your Excel model.

Although a detailed discussion of SQL is beyond the scope of this book, let’s step a
bit outside our comfort zone and edit our external data connection using a simple
SQL statement to pull in a different set of data.

1. Go to the Data tab on the Ribbon and select Connections. This activates the
Workbook Connections dialog box shown in Figure 10-6.

2. Choose the connection you want to edit and then click the Properties button.
3. The Connection Properties dialog box opens. Here, you can click the

Definition tab (see Figure 10-7).
4. Change the Command Type property to SQL and then enter your SQL

statement. In this case, you can enter:
SELECT * FROM [Sales_By_Employee]
WHERE ([Market] = 'Tulsa')

This statement tells Excel to pull in all records from the Sales_By_Employee
table where the Market equals Tulsa.

5. Click OK to confirm your changes and close the Connection Properties

dialog box.
Excel immediately triggers a refresh of your external connection, bringing in your
new data.

FIGURE 10-6: Choose the Properties button for the connection you want to change.

FIGURE 10-7: On the Definitions tab, select the SQL command type and enter your SQL statement.

Using Macros to Create Dynamic
Connections

By now, you should have noticed that you haven’t used any macros yet. So far, you
have simply hard-coded the criteria for your connection. For example, in Figure 10-
7, Tulsa is specified directly into the SQL statement WHERE clause. This obviously
would cause the data being returned to always be data for Tulsa.

But what if you wanted to select a market and have the SQL statement to dynamically
change to respond to your selection? Well, you can use a bit of VBA to change the
SQL statement on the fly. Follow these steps:

1. Designate a cell in your worksheet that will catch the dynamic selection for
your criteria.
For example, in Figure 10-8, cell C2 will be the place that users can select a
market. You would typically give users a way to select criteria with either a
Combo Box or a Data Validation list.

2. Open the Workbook Connections dialog box by clicking the Connections
command on the Data tab.
Take note of the name for the connection you want to dynamically change. In
Figure 10-9, you see the connection name is Facility Services.

3. Close the Workbook Connections dialog box and press Alt+F11 on your
keyboard. This takes you to the Visual Basic Editor.

4. In the Visual Basic Editor, choose Insert ⇒    Module from menu bar.
5. Enter the following code in the newly created module:

Sub RefreshQuery()

ActiveWorkbook.Connections(_
"Facility Services").OLEDBConnection.CommandText = _
"SELECT * FROM [Sales_By_Employee] WHERE [Market] = '" & _
 Range("C2").Value & "'"

ActiveWorkbook.Connections("Facility Services").Refresh
End Sub

This code creates a new macro called RefreshQuery. This macro uses the
Workbook.Connections collection to change the attributes of the specified
connection. In this case, you want to change the CommandText property of the
Facility Services connection.
The command text is essentially the SQL Statement you want the connection to
use when connecting to the data source. In this example, the command text selects
from the [Sales_By_Employee] table and sets the criteria for the [Market] field
to the value in cell C2. The code then refreshes the Facility Services connection.

6. Close the Visual Basic Editor and place a new command button on your
worksheet. To do this, click the Developer tab, select the Insert dropdown,
and add a Button Form control.

7. Assign the newly created RefreshQuery macro to the command button.

FIGURE 10-8: Designate a cell that will trap the criteria selection.

FIGURE 10-9: Take note of the connection name (Facility Services in this example).

If all went smoothly, you have a nifty mechanism that allows for the dynamic
extraction of data from your external database based on the criteria you specified
(see Figure 10-10).

FIGURE 10-10: You now have an easy-to-use mechanism to pull external data for a specified market.

Iterating through All Connections in a
Workbook

You can also use the Workbook.Connections collection to iterate through all the

connection objects in a workbook and examine or modify their properties. For
example, say you have a workbook with multiple external data connections. You can
use this macro to populate a worksheet with a list of all connection objects in the
current workbook, along with their associated connection strings and command texts:

Sub ListConnections()

'Step 1: Declare your variables
Dim i As Long
Dim Cn As WorkbookConnection

'Step 2: Add a worksheet with header for
 'Connection Name, Connection String, and Command Text
Worksheets.Add
With ActiveSheet.Range("A1:C1")
.Value = Array("Cn Name","Connection String","Command Text")
.EntireColumn.AutoFit
End With

'Step 3: Iterate through each connection and write the
'needed properties to the newly created worksheet.
For Each Cn In ThisWorkbook.Connections
i = i + 1

Select Case Cn.Type
Case Is = xlConnectionTypeODBC

With ActiveSheet
.Range("A1").Offset(i,0).Value=Cn.Name
.Range("A1").Offset(i,1).Value=Cn.ODBCConnection.Connection
.Range("A1").Offset(i,2).Value=Cn.ODBCConnection.CommandText
End With

Case Is = xlConnectionTypeOLEDB

With ActiveSheet
.Range("A1").Offset(i,0).Value=Cn.Name
.Range("A1").Offset(i,1).Value=Cn.OLEDBConnection.Connection
.Range("A1").Offset(i,2).Value=Cn.OLEDBConnection.CommandText
End With

End Select

Next Cn
End Sub

1. Step 1 declares two variables: an integer variable that ensures the data for each
connection string is written on its own row, and a Workbook Connection object
used to expose the properties you are looking for.

2. In Step 2 you add a new worksheet along with column headers for each
connection property you want to document.

3. Step 3 iterates through all the connections in the workbook, outputting the
specified properties for each connection. Note that you are testing to check the
kind of connection currently in focus. There are two types of connections:
xlConnectionTypeODBC and xlConnectionTypeOLEDB. Because the syntax for
getting their properties are slightly different, you need to test to check which type

you are working with.

 A working version of this macro is available at
www.dummies.com/go/excelmacros in the Dynamic Data Connection.xlsm
file for this chapter.

Using ADO and VBA to Pull External
Data

Another technique for working with external data is to use VBA with ADO (ActiveX
Data Objects). Using the combination of ADO with VBA allows you to work with
external data sets in memory. This comes in handy when you need to perform
complex, multilayered procedures and checks on external data sets, but you don’t
want to create workbook connections or return those external data sets to the
workbook.

 When working with complex Excel workbooks that pull data from external
sources, you will periodically encounter code (written by others) that utilizes
ADO. It’s important you recognize and understand the basics of ADO so you can
deal with this kind of code. The next few sections walk you through some of the
fundamental concepts of ADO and show you how to construct your own ADO
procedures to pull data. Keep in mind that ADO programming is a broad topic
that cannot be fully covered here. If you find that you need to work extensively
with ADO and external data in your Excel application, you'll probably want to
invest in one or more books that cover this topic in detail.

Understanding ADO syntax
When trying to grasp the basics of ADO, it helps to think of ADO as a tool that will
help you accomplish two tasks: connect to a data source and specify the dataset to
work with. The following section explores the fundamental syntax you need to know
in order to do just that.

The connection string
The first thing you must do is connect to a data source. To do this, you must give VBA
few pieces of information. This information is passed to VBA in the form of a
connection string. Here is an example connection string that points to an Access
database:

http://www.dummies.com/samplefiles.excelmacros

"Provider=Microsoft.ACE.OLEDB.12.0;" & _
"Data Source= C:\MyDatabase.accdb;" & _
"User ID=Administrator;" & _
"Password=AdminPassword"

Don’t be intimidated by all the syntax here. A connection string is fundamentally
nothing more than a text string that holds a series of variables (also called
arguments), which VBA uses to identify and open a connection to a data source.
Although connection strings to either Access or Excel can get pretty fancy with a
myriad of arguments and options, there are only a handful of commonly used
arguments that novices of ADO should focus on: Provider, Data Source, Extended
Properties, User ID, and Password.

Provider: The Provider argument tells VBA what type of data source you are
working with. When using Access or Excel as the data source, the Provider
syntax will read: Provider=Microsoft.ACE.OLEDB.12.0.
Data Source: The Data Source argument tells VBA where to find the database or
workbook that contains the data needed. With the Data Source argument, you pass
the full path of the database or workbook. For example: Data
Source=C:\Mydirectory\MyDatabaseName.accdb.
Extended Properties: The Extended Properties argument is typically used when
connecting to an Excel workbook. This argument tells VBA that the data source is
something other than a database. When working with an Excel workbook, this
argument would read: Extended Properties=Excel 12.0.
User ID: The User ID argument is optional and only used if a user ID is required
to connect to the data source: User Id=MyUserId.
Password: The Password argument is optional and only used if a password is
required to connect to the data source: Password=MyPassword.

Take a moment now to re-examine the syntax previously shown. You can easily pick
out the arguments in the connection string.

"Provider=Microsoft.ACE.OLEDB.12.0;" & _
"Data Source= C:\MyDatabase.accdb;" & _
"User ID=Administrator;" & _
"Password=AdminPassword"

Declaring a Recordset
In addition to building a connection to your data source, you need to define the data
set you need to work with. In ADO, this dataset is referred to as the Recordset. A
Recordset object is essentially a container for the records and fields returned from
the data source. The most common way to define a Recordset is to open an existing
table or query using the following arguments:

Recordset.Open Source, ConnectString, CursorType, LockType

The Source argument specifies the data to be extracted. This is typically a table,
query, or an SQL statement that retrieves records.
The ConnectString argument specifies the connection string used to connect to
your chosen data source.
The CursorType argument defines how a Recordset allows you to move through
the data to be extracted. In terms of pulling external data into Excel, the setting
for this argument is adOpenForwardOnly. This CursorType is the most efficient
type because it only allows you to move through the Recordset one way: from
beginning to end. This is ideal for reporting processes where data only needs to
be retrieved.
The LockType argument lets you specify whether the data returned by the
Recordset can be changed. This argument is typically set to adLockReadOnly (the
default setting) to indicate that there is no need to edit the data returned.
Alternatively, this argument can be set to adLockOptimistic which allows for the
free editing of the data returned (in the Recordset, not the source database).

The following shows the syntax for declaring a Recordset and opening the Products
table:

MyRecordset.Open "Products", _
MyConnection, adOpenForwardOnly, adLockReadOnly

Using ADO in a macro
With these basic ADO fundamentals under your belt, you’re ready to create your own
ADO procedure. But before you do anything with ADO, you need to first set a
reference the ADO object library. Just as Excel has its own set of VBA objects,
properties, and methods, so does ADO. Because Excel does not inherently know the
ADO object model, you need to point Excel to the ADO reference library.

1. Open a new Excel workbook and open the Visual Basic Editor.
2. Once you are in the Visual Basic Editor, go up to the application menu and

choose Tools ⇒    References. This opens the References dialog box shown in
Figure 10-11.

3. Scroll down until you locate the latest version of the Microsoft ActiveX Data
Objects Library.
It’s normal to have several versions of the same library displayed in the
References dialog box, and generally best to select the latest version available.
Note that versions after 2.8 are called Microsoft ActiveX Data Objects
Recordset Library.

4. Click OK to confirm your selection.

FIGURE 10-11: Select the latest version of the Microsoft ActiveX Data Objects Library.

You can open the References dialog box again to ensure that your reference is set.
You will know that your selection took effect when the Microsoft ActiveX Data
Objects Library appears at the top of the References dialog box with a check next to
it.

 The references you set in any given workbook or database are not applied at
the application level. This means that you will need to repeat these steps with
each new workbook or database you create.

Now you can bring together what you just learned in a macro. The following example
uses ADO to connect to an Access database and retrieve the Products table:

Sub GetAccessData()

'Step 1: Declare your variables
 Dim MyConnect As String
 Dim MyRecordset As ADODB.Recordset

'Step 2: Define your connection string and open recordset
 MyConnect = "Provider=Microsoft.ACE.OLEDB.12.0;" & _
 "Data Source= C:\MyDir\MyDatabaseName.accdb"
 Set MyRecordset = New ADODB.Recordset
 MyRecordset.Open "LocationMaster", _
 MyConnect, adOpenStatic, adLockReadOnly

'Step 3: Copy data from recordset to spreadsheet
 Sheets("MySheetName").Range("A2").CopyFromRecordset _
 MyRecordset

'Step 4: Add data labels and
 With ActiveSheet.Range("A1:C1")
 .Value = Array("Product", "Description", "Segment")
 .EntireColumn.AutoFit
 End With

End Sub

1. Step 1 declares two variables: a string variable to hold the connection string, and
a Recordset object to hold the results of the data pull. In this example, the
variable called MyConnect holds the connection string identifying the data
source. Meanwhile, the variable called MyRecordset holds the data returned by
the procedure.

2. In Step 2, you define the connection string for the ADO procedure. In this
scenario, you are connecting to the MyDatabaseName.accdb file found in the
C:\MyDir\ directory. Once you have defined your data source, you can open your
Recordset and use MyConnect to return static read-only data.

3. Step 3 uses Excel’s CopyFromRecordset method to get the data out of the
RecordSet and into your spreadsheet. This method requires two pieces of
information: the location of the data output and the Recordset object that holds the
data. In this example, you are copying the data in the MyRecordset object onto the
sheet called MySheetName (starting at cell A2).

4. Interestingly enough, the CopyFromRecordset method does not return column
headers or field names. This forces one final action (Step 4) where you add
column headers by simply defining them in an array and writing them to the active
sheet.

With ADO and VBA, you can build all the necessary components one time in a nicely
packaged macro, and then simply forget about it. As long as the defined variables in
your code (that is, the data source path, the Recordset, the output path) do not change,
then your ADO-based procedures require virtually zero maintenance.

 A working version of this macro is available at
www.dummies.com/go/excelmacros in the Dynamic Data Connection.xlsm
file for this chapter.

Working with text files
VBA contains a number of statements that allow for manipulation of files. These
input/output (I/O) statements give you much more control over files than Excel's
normal text file import and export options.

Opening a text file

http://www.dummies.com/samplefiles.excelmacros

The VBA Open statement opens a file for reading or writing. Before you can read
from or write to a file, you must open it.

The VBA Open statement is not the same as the Open method of the Workbook object.
VBA’s Open statement has its own set of arguments (shown as follows in bold). Here
is the required syntax for the Open statement:

Open [pathname] For [mode] As [#]filenumber

pathname: The pathname part of the Open statement simply contains the name
and path (the path is optional) of the file to be opened.
mode: The mode part of the Open statement specifies if and how the file can be
edited or written to. This argument is a required field that can be any one of the
following:
Append: This mode allows the file to be read and the data to be appended to the
end of the file.
Input: This mode allows the file to be read but not written to.
Output: This mode always creates a new file that can be read and written to.
Binary: A random-access mode that allows data to be read or written to on a
byte-by-byte basis.
Random: A random-access mode that allows data to be read or written in units
determined by an optional reclength argument of the Open statement.
filenumber: This required argument is a file number ranging from 1 to 511. You
can use the FreeFile function to get the next available file number.

In the following example, you are using the Open statement to open a text file called
MyFile as a read-only file designated as file #1:

Open "myfile.txt" For Input As #1

Reading the opened text file
After a text file has been opened, you will typically want to either read the file or
write to the file.

There are three ways you can tell VBA to read a text file. These statements are used
for reading data from a sequential text file:

Input: Reads a specified number of characters from a file.
Input #: Reads data as a series of variables, with variables separated by a
comma.
Line Input #: Reads a complete line of data (delineated by a carriage return
character, a linefeed character, or both).

Two statements are used for writing data to your opened text file:

Write #: Writes a series of values, with each value separated by a comma and
enclosed in quotes.
Print #: Writes a series of values, with each value separated by a tab character.

A practical example: Logging workbook usage in a text file
If you’re completely confused, don’t worry. Things should clear up with a practical
example. Say you want to log each time Excel is opened. You can create a macro that
writes data to a text file every time Excel is opened and closed.

For this example to work reliably, the macro must be located in a workbook that’s
opened every time you start Excel. Storing the macro in your Personal Macro
Workbook is an excellent choice.

The Personal Macro Workbook is loaded whenever you start Excel. In the VBE
Project window, it is named personal.xlsb.

1. Activate the Visual Basic Editor by pressing Alt+F11 on your keyboard.
2. In the Project window, find the personal.xlb project/workbook name and

click the plus sign next to it in order to see all the sheets in the Project
window.

3. Click ThisWorkbook.
4. Select the Open event in the Event dropdown.
5. Type or paste the following code:

Private Sub Workbook_Open()

Open Application.DefaultFilePath & _
"\excelusage.txt" For Append As #1

Print #1, "Excel Started " & Now

Close #1

End Sub

 A working version of this macro is available at
www.dummies.com/go/excelmacros in the Excel Usage Log.xlsm file for this
chapter.

This macro first opens a text file called excelusage.txt in your Windows Documents
directory (Application.DefaultFilePath). If the text file does not exist, Excel creates

http://www.dummies.com/samplefiles.excelmacros

it. Once the text file is open, this macro appends a new line containing the current
date and time and might look something like this:

Excel Started 12/5/2016 2:37:13 PM

A practical example: Importing a text file to a range
The example in this section opens and reads the TextFile.CSV (found with the sample
files for this chapter at www.dummies.com/go/excelmacros). It then stores the
values beginning at the active cell in the active worksheet. The code reads each
character and essentially parses the line of data, ignoring quote characters and
looking for commas to delineate the columns.

 A working version of this macro is available at
www.dummies.com/go/excelmacros in the Import Text File.xlsm file for this
chapter.

Sub ImportRange()

 Dim ImpRng As Range
 Dim Filename As String
 Dim r As Long, c As Integer
 Dim txt As String, Char As String * 1
 Dim Data
 Dim i As Integer
 Set ImpRng = ActiveCell

 On Error Resume Next
 Filename = Application.ThisWorkbook.Path & "\textfile.csv"

 Open Filename For Input As #1
 If Err <> 0 Then
 MsgBox "Not found: " & Filename, vbCritical, "ERROR"
 Exit Sub
 End If
 r = 0
 c = 0
 txt = ""

 Application.ScreenUpdating = False

 Do Until EOF(1)
 Line Input #1, Data
 For i = 1 To Len(Data)
 Char = Mid(Data, i, 1)
 If Char = "," Then 'comma
 ActiveCell.Offset(r, c) = txt
 c = c + 1
 txt = ""
 ElseIf i = Len(Data) Then 'end of line
 If Char <> Chr(34) Then txt = txt & Char
 ActiveCell.Offset(r, c) = txt
 txt = ""
 ElseIf Char <> Chr(34) Then
 txt = txt & Char
 End If
 Next i

http://www.dummies.com/samplefiles.excelmacros
http://www.dummies.com/samplefiles.excelmacros

 c = 0
 r = r + 1
 Loop

 Close #1
 Application.ScreenUpdating = True

End Sub

 The preceding procedure works with most data, but it has a flaw: It doesn't
handle data that contains a comma or a quote character. But commas resulting
from formatting are handled correctly (they’re ignored). In addition, an imported
date will be surrounded by number signs: for example, #2016-12-12#.

Part 5

Part of Tens

IN THIS PART …
Take a look at a few tricks that help you more efficiently use the Visual Basic Editor.

Discover some of the debugging tips for avoiding errors in your VBA code.

Learn how to most effectively use the Excel Help system when searching for VBA
help.

Gain insight into some of the resources available online to further your macro skills.

Chapter 11

Ten Handy Visual Basic Editor
Tips

IN THIS CHAPTER
 Applying block comments
 Copying multiple lines of code at once
 Jumping between modules and procedures
 Teleporting to your functions
 Staying in the right procedure
 Stepping through your code
 Stepping to a specific line in your code
 Stopping your code at a predefined point
 Seeing the beginning and end of variable values
 Turning off Auto Syntax Check

If you’re going to be spending time working with macros in the Visual Basic Editor,
then why not take advantage of a few of the built-in tools that will make your job
easier? Whether you’re a fresh-faced analyst new to programming, or a jaded veteran
living on Mountain Dew and sunflower seeds, these tips will greatly improve your
macro programming experience.

Applying Block Comments
Placing a single apostrophe in front of any line of code effectively tells Excel to skip
that line of code. This is called commenting out code. Most programmers use the
single apostrophe to create comments or notes within the code (see Figure 11-1).

FIGURE 11-1: A single apostrophe in front of any line turns that line into a comment.

It’s sometimes beneficial to comment out multiple lines of code. This way, you can
test certain lines of code while telling Excel to ignore the commented lines.

Instead of spending time commenting out one line at a time, you can use the Edit
toolbar to comment whole blocks of code.

You can activate the Edit toolbar by going to the VBE menu and choosing View ⇒   
Toolbars ⇒   Edit.

The idea is to select the lines of code you want commented out and then click the
Comment Block icon on the Edit toolbar (see Figure 11-2).

FIGURE 11-2: The Edit toolbar allows you to select entire blocks of code, then apply comments to all the lines at
once.

 You can ensure the Edit toolbar is always visible by dragging it up to the
VBE menu. It anchors itself to the location you choose.

Copying Multiple Lines of Code at
Once

You can copy entire blocks of code by highlighting the lines you need, and then
holding down the Ctrl key on your keyboard while dragging the block where you
need it. This is an old Windows trick that works even when you drag across modules.

You’ll know you are dragging a copy when your cursor shows a plus symbol next to
it, as shown in Figure 11-3.

FIGURE 11-3: Holding down the Ctrl key while dragging code creates a copy of that code to where you point
your cursor.

Jumping between Modules and
Procedures

Once your cache of macro code starts to grow, it can be a pain to move quickly
between modules and procedures. You can ease the pain by using a few hot keys.

Press Ctrl+Tab to move quickly between modules.

Press Ctrl+Page Up and Ctrl+Page Down to move between procedures within a
module.

Teleporting to Your Functions
When reviewing a macro, you may sometimes encounter a variable or function name
that is obviously pointing to some other piece of code. Instead of scouring through all
the modules to find where that function or variable name comes from, you can simply
place your cursor on that function/variable name and press Shift+F2.

As Figure 11-4 illustrates, you will instantly be teleported to the origin of that
function or variable name.

FIGURE 11-4: Pressing Shift+F2 with your cursor on a function or variable name will take you to it.

Pressing Ctrl+Shift+F2 takes you back to where you started.

Staying in the Right Procedure
When your modules contain multiple procedures, it can get difficult to scroll through
a particular procedure without inadvertently scrolling into another procedure. You
will often find yourself scrolling up, then down, trying to get back into the correct
piece of code.

To avoid this nonsense, you can use the Procedure View button on the lower left-hand
corner of the VBE (see Figure 11-5). Clicking this button limits scrolling to only the
procedure you're in.

FIGURE 11-5: Use the Procedure View button to limit scrolling to just the active procedure.

Stepping through Your Code
VBA offers several tools to help you “debug” your code. In programming, the term
debugging means finding and correcting possible errors in code.

One of the more useful debugging tools is the ability to step through your code one
line at a time. When you step through code, you are literally watching as each line
executes.

To step through your code, place your cursor anywhere within your macro and then
press the F8 key on your keyboard. This places your macro into debug mode.

The first line of code highlights and a small arrow appears on the code window’s left
margin (see Figure 11-6). Press F8 again to execute the highlighted line of code and
move to the next line. You can keep pressing F8 to watch each line execute until the
end of the macro.

FIGURE 11-6: Press the F8 key on your keyboard to step through each line of your macro at your own pace.

As a bonus, while stepping through the code, you can hover over any string or integer
variable to see the current value of that variable.

To get out of debug mode, you can go up to the VBE menu and choose Debug  ⇒   Step
Out.

Stepping to a Specific Line in Your
Code

In the last example, you saw how you can step through your code by placing your
cursor anywhere within your macro and then pressing the F8 key on your keyboard.
This puts your macro into debug mode, highlighting the first line of code and placing
a small arrow in the left margin of the code window.

This is great, but what if you want to start stepping through your code at a specific
line? Well, you can do just that by simply moving the arrow!

When a line of code is highlighted in debug mode, you can click and drag the arrow
in the left margin of the code window upward or downward, dropping it at
whichever line of code you want to execute next (see Figure 11-7).

FIGURE 11-7: You can click and drag the yellow arrow while stepping through your code.

Stopping Your Code at a Predefined
Point

Another useful debugging tool is the ability to set a breakpoint in your code. When
you set a breakpoint, your code runs as normal and then halts at the line of code you
defined as the breakpoint.

This debugging technique comes in handy when you want to run tests on small blocks
of code at a time. For example, if you suspect there may be an error in your macro
but you know that the majority of the macro runs without any problems, you can set a
breakpoint starting at the suspect line of code then run the macro. When the macros
reaches your breakpoint, execution halts. At this point, you can then press the F8 key
on your keyboard to watch as the macro runs one line at a time.

To set a breakpoint in your code, place your cursor where you want the breakpoint to
start, and then press the F9 key on your keyboard. As Figure 11-8 demonstrates, VBA
clearly marks the breakpoint with a dot in the code window's left margin, and the
code line itself is shaded maroon.

FIGURE 11-8: A breakpoint is marked by a dot in the left margin along with shaded text.

 Hitting a breakpoint effectively puts your macro into debug mode. To get out
of debug mode, you can go up to the VBE menu and choose Debug ⇒   Step Out.

Seeing the Beginning and End of
Variable Values

If you hover over a string or integer variable in VBA while in debug mode, you can
see the value of that variable in a tooltip. This allows you to see the values being
passed in and out of variables — very useful.

However, these tooltips can hold only 77 characters (including the variable name).
This basically means if the value in your variable is too long, it gets cut off.

To see the last 77 characters, simply hold down the Ctrl key on your keyboard while
you hover.

Figure 11-9 demonstrates what the tooltip looks like when hovering over a variable
in debug mode.

FIGURE 11-9: Showing the beginning and ending characters in a variable tooltip.

Turning Off Auto Syntax Check
Often times, while working on some code, you find that you need to go to another line
to copy something. You’re not done with the line — you just need to leave it for a
second. But VBE immediately stops you in your tracks with an error message, similar
to the one shown in Figure 11-10, warning you about something you already know.

FIGURE 11-10: Leaving a line of code unfinished, even for a second, results in a jarring error message.

These message boxes force you to stop what you’re doing to acknowledge the error
by clicking the OK button, not pressing. After a half-day of these abrupt message
boxes, you’ll be ready to throw your computer against the wall.

Well, you can save your computer and your sanity by turning off Auto Syntax Check.
Go up to the VBE menu and choose Tools ⇒   Options.

The options dialog box activates, exposing the Editor tab shown in Figure 11-11.
Uncheck the Auto Syntax Check option to stop these annoying error messages.

FIGURE 11-11: Uncheck the Auto Syntax Check option to prevent warning messages while coding.

Don’t worry about missing a legitimate mistake. Your code still turns red if you goof
up, providing a visual indication that something is wrong.

Chapter 12

Ten Places to Turn for Macro
Help

IN THIS CHAPTER
 Letting Excel write the macro for you
 Using the VBA Help files
 Pilfering code from the Internet
 Leveraging user forums
 Visiting expert blogs
 Mining YouTube for video training
 Attending live and online training classes
 Learning from the Microsoft Office Dev Center
 Dissecting the other Excel files in your organization
 Asking your local Excel genius

No one is going to be a macro expert in one day. VBA is a journey of time and
practice. The good news is that plenty of resources are out there that can help you on
your path. In this chapter, you’ll discover ten of the most useful places to turn to when
you need an extra push in the right direction.

Let Excel Write the Macro for You
One of the best places to get macro help is the Macro Recorder in Excel. When you
record a macro with the Macro Recorder, Excel writes the underlying VBA for you.
After recording, you can review the code; see what the recorder is doing, and then try
to turn the code it creates into something more suited to your needs.

For example, say you need a macro that refreshes all the PivotTables in your
workbook and clears all the filters in each PivotTable. Writing this macro from a
blank canvas would be a daunting task. Instead, you can start the Macro Recorder
and record yourself refreshing all the PivotTables and clearing all the filters. Once
you’ve stopped recording, you can review the macro and make any changes you deem
necessary.

Use the VBA Help Files
To a new Excel user, the Help system may seem like a clunky add-in that returns a
perplexing list of topics that has nothing to do with the original topic of the search.
The truth is, however, once you learn how to use the Excel Help system effectively,
it’s often the fastest and easiest way to get extra help on a topic.

You just need to remember two basic tenants of the Excel Help system:

Location matters when asking for help. In Excel, there are actually two Help
systems: one providing help on Excel features, and another providing help on
VBA programming topics. Instead of doing a global search with your criteria,
Excel throws only your search criteria that is relevant to your current location
against the Help system. This essentially means that the help you get is
determined by the area of Excel in which you’re working. So, if you need help on
a topic that involves macros and VBA programming, you’ll need to be in the VBA
Editor while performing your search. This ensures that you perform your
keyword search on the correct Help system.
Online help is better than offline help. When you search for help on a topic,
Excel checks to see if you’re connected to the Internet. If you are, Excel returns
help results based on online content from Microsoft’s website. If you aren’t,
Excel uses the Help files stored locally with Microsoft Office. One way to
maximize the help you get in Excel is to use the online help. Online help is
generally better than offline help because the content you find with online help is
often more detailed and includes updated information, as well as links to other
resources not available offline.

Pilfer Code from the Internet
The dirty secret about programming in the Internet age is that there is no original
code out there anymore. All the macro syntax that will ever be needed has been
documented somewhere on the Internet. In many ways, programming has become less
about the code one creates from scratch, and more about how to take existing code
and apply it creatively to a particular scenario.

If you are stuck trying to create a macro for a particular task, fire up your favorite
online search engine and simply describe the task you are trying to accomplish. For
the best results, enter “Excel VBA” before your description.

For example, if you are trying to write a macro that deletes all blank rows in a
worksheet, search for “Excel VBA delete blank rows in a worksheet.” You can bet
two months’ salary that someone out there on the Internet has already tackled the
same problem. Nine times out of ten, you will find some example code that will give

you the nugget of information you need to jump-start some ideas for building your
own macro.

Leverage User Forums
If you find yourself in a bind, you can post your question in a forum to get customized
guidance based on your scenario.

User forums are online communities that revolve around a particular topic. In these
forums, you can post questions and have experts offer advice on how to solve
particular problems. The folks answering the questions are typically volunteers who
have a passion for helping the community solve real-world challenges.

There are many forums dedicated to all things Excel. To find an Excel forum, enter
the words “Excel Forum” in your favorite online search engine.

Here are a few tips for getting the most out of user forums:

Always read and follow the forum rules before you get started. These rules often
include advice on posting questions and community etiquette guidelines.
Use concise and accurate subject titles for your questions. Don’t create forum
questions with vague titles like “Need advice,” or “Please Help.”
Keep the scope of your questions as narrow as possible. Don’t ask questions like
“How do I build an invoicing macro in Excel?”
Be patient. Remember the folks answering your questions are volunteers who
typically have day jobs. Give the community some time to answer your question.
Check back often. After posting your question, you may receive requests for more
details about your scenario. Do everyone a favor and return to your posting to
either review the answers or respond to follow-up questions.
Thank the expert who answered your question. If you receive an answer that
helps you, take a moment to post a thank you to the expert who helped you out.

Visit Expert Blogs
A few dedicated Excel gurus share their knowledge through blogs. These blogs are
often treasure troves of tips and tricks, offering nuggets that can help build up your
skills. Best of all, they are free!

Although these blogs will not necessarily speak to your particular needs, they offer
articles that advance your knowledge of Excel and can even provide general
guidance on how to apply Excel in practical business situations.

Here is a list of a few of the best Excel blogs on the Internet today:

ExcelGuru: Ken Puls is a Microsoft Excel MVP who shares knowledge at his
blog, www.excelguru.ca/blog. In addition to his blog, Ken offers several
learning resources for advancing your knowledge in Excel.
Chandoo.org: Purna “Chandoo” Duggirala is a Microsoft Excel MVP out of
India, who burst onto the scene in 2007. His innovative blog
(http://chandoo.org/) offers many free templates and articles aimed at
“making you awesome in Excel.”
Contextures: Debra Dalgleish is a Microsoft Excel MVP and the owner of one
of the most popular Excel sites, www.contextures.com. With an alphabetized
list of over 350 Excel topics, you’re sure to find something that will interest you.
DailyDose: Dick Kusleika is the owner of the longest running Excel blog,
www.dailydoseofexcel.com. He is the king of Excel VBA blogging with over
ten years’ worth of articles and examples.
MrExcel: Bill Jelen is the larger-than-life ambassador of Excel. This long-time
Excel MVP offers over a thousand free videos and a huge library of training
resources on his site: www.mrexcel.com

Mine YouTube for Video Training
Some of us learn better if we watch a task being done. If you find that you absorb
video training better than online articles, consider mining YouTube. There are dozens
of channels run by amazing folks who have a passion for sharing knowledge. You’ll
be surprised at how many free high-quality video tutorials you’ll find.

Go to www.YouTube.com and search for the words “Excel VBA.”

Attend Live and Online Training
Classes

Live and online training events are an awesome way to absorb Excel knowledge
from a diverse group of people. Not only is the instructor feeding you techniques, but
the lively discussions during the class offer a wealth of ideas and new tips that you
probably never thought of before. If you thrive on the energy of live training events,
then consider searching for Excel classes.

Here are a few sites that provide excellent instructor-led Excel courses:

http://academy.excelhero.com/excel-hero-academy-tuition

http://chandoo.org/wp/vba-classes

https://exceljet.net

http://www.excelguru.ca/blog
http://chandoo.org/
http://www.contextures.com/
http://www.dailydoseofexcel.com/
http://www.mrexcel.com/
http://www.YouTube.com
http://academy.excelhero.com/excel-hero-academy-tuition
http://chandoo.org/wp/vba-classes
https://exceljet.net

Learn from the Microsoft Office Dev
Center

The Microsoft Office Dev Center is a site dedicated to helping new developers get a
quick start in programming Office products. You can get to the Excel portion of this
site by going to https://msdn.microsoft.com/en-
us/library/office/fp179694.aspx.

Although the site can be a bit difficult to navigate, it’s worth a visit to see all the free
resources, including sample code, tools, step-by-step instructions, and much more.

Dissect the Other Excel Files in your
Organization

Like finding gold in your backyard, the existing files in your organization are often a
treasure trove for learning. Consider cracking open those Excel files that contain
macros, and have a look under the covers. See how others in your organization use
macros. Try going through the macros line-by-line and see if you can spot new
techniques.

You could find a few new tricks you never thought of. You may even stumble upon
entire chunks of useful code you can copy out and implement in your own workbooks.

Ask Your Local Excel Genius
Do you have an Excel genius in your company, department, organization, or
community? Make friends with that person today. What you have there is your own
personal Excel forum.

Most Excel experts love sharing their knowledge, so don’t be afraid to approach
your local Excel guru to ask questions or seek out advice on how to tackle certain
macro problems.

https://msdn.microsoft.com/en-us/library/office/fp179694.aspx

Chapter 13

Ten Ways to Speed Up Your
Macros

IN THIS CHAPTER
 Disabling performance draining Excel features
 Avoiding unnecessary macro actions
 Optimizing your macro code for better performance

As your macros become increasingly robust and complex, you may find they lose
performance. When discussing macros, the word performance is usually synonymous
with speed. Speed is how quickly your VBA procedures perform their intended tasks.

There are steps you can take to improve the performance of your macros. In this
chapter, you find ten ways you can help keep your Excel macros running at their
optimum performance level.

Halt Sheet Calculations
Did you know that each time a cell that affects any formula in your spreadsheet is
changed or manipulated, Excel recalculates the entire worksheet? In worksheets that
have a large amount of formulas, this behavior can drastically slow down your
macros.

If your workbook is formula intensive, you may not want Excel to trigger a
recalculation every time your macro alters a cell value. You can use the
Application.Calculation property to tell Excel to switch to manual calculation mode.
When a workbook is in manual calculation mode, the workbook does not recalculate
until you explicitly trigger a calculation by pressing the F9 key on your keyboard.

Turning off the automatic calculation behavior of Excel can dramatically speed up
your macro. The idea is to place Excel into manual calculation mode, run your code,
and then switch back to automatic calculation mode.

Sub Macro1()

Application.Calculation = xlCalculationManual

'Place your macro code here

Application.Calculation = xlCalculationAutomatic

End Sub

 Setting the calculation mode back to xlCalculationAutomatic automatically
triggers a recalculation of the worksheet. So there is no need to press the F9 key
on your keyboard after your macro runs.

 Depending on the task at hand, you may actually need calculations to be
performed during the running of your macro, in which case you would not want
to evoke manual calculation mode. Be sure to think about your specific scenario
and determine what will happen when calculations are turned off while your
macro runs.

Disable Sheet Screen Updating
You may notice that when your macros run, your screen does a fair amount of
flickering. This flickering is Excel trying to redraw the screen in order to show the
current state the worksheet is in. Unfortunately, each time Excel redraws the screen,
it takes up memory resources. In most cases, you don’t need Excel using up resources
to redraw the screen each time your macro performs some action.

In addition to setting the calculation mode to manual, you can use the
Application.ScreenUpdating property to disable any screen updates until your macro
has completed. This saves time and resources, allowing your macro to run a little
faster. Once you macro code is done running, you can turn screen updating back on.

Sub Macro1()

Application.Calculation = xlCalculationManual
Application.ScreenUpdating = False

'Place your macro code here

Application.Calculation = xlCalculationAutomatic
Application.ScreenUpdating = True

End Sub

 After you set the ScreenUpdating property back to True, Excel automatically
triggers a redraw of the screen.

Turn Off Status Bar Updates
At the bottom of the Excel window, you see the Excel status bar. The status bar
normally displays the progress of certain actions in Excel. For example, if you
copy/paste a range, Excel shows the progress of that operation in the status bar.
Oftentimes, the action is performed so fast, you don’t see the status bar progress.
However, if your macro is working with lots of data, the status bar takes up some
resources.

It’s important to note that turning off screen updating is separate from turning off the
status bar display. That is to say, the status bar continues to be updated even if you
disable screen updating. You can use the Application.DisplayStatusBar property to
temporarily disable any status bar updates, further improving the performance of your
macro.

Sub Macro1()

Application.Calculation = xlCalculationManual
Application.ScreenUpdating = False
Application.DisplayStatusBar = False

'Place your macro code here

Application.Calculation = xlCalculationAutomatic
Application.ScreenUpdating = True
Application.DisplayStatusBar = True

End Sub

Tell Excel to Ignore Events
As discussed in Chapter 3, you can implement macros as event procedures, telling
Excel to run certain code when a worksheet or workbook changes.

Sometimes, standard macros make changes that will actually trigger an event
procedure. For example, say you have a Worksheet_Change event implemented for
Sheet1 of your workbook. Any time a cell or range is altered, the Worksheet_Change
event fires.

So if you have a standard macro that manipulates several cells on Sheet1, each time a
cell on that sheet is changed, your macro has to pause while the Worksheet_Change
event runs. You can imagine how this behavior would slow down your macro.

You can add another level of performance-boosting by using the EnableEvents
property to tell Excel to ignore events while your macro runs.

Simply set the EnableEvents property to False before running your macro. Once your
macro code is done running, you can set the EnableEvents property back to True.

Sub Macro1()

Application.Calculation = xlCalculationManual
Application.ScreenUpdating = False
Application.DisplayStatusBar = False
Application.EnableEvents = False

'Place your macro code here

Application.Calculation = xlCalculationAutomatic
Application.ScreenUpdating = True
Application.DisplayStatusBar = True
Application.EnableEvents = True

End Sub

 Although disabling events can indeed speed up your macros, you may
actually need some events to trigger while your macro runs. Be sure to think
about your specific scenario and determine what will happen if your worksheet
or workbook events are turned off while your macro runs.

Hide Page Breaks
Another opportunity for a performance boost can be found in page breaks. Each time
your macro modifies the number of rows, modifies the number of columns, or alters
the page setup of a worksheet, Excel is forced to take up time recalculating where the
page breaks are shown on the sheet.

You can avoid this by simply hiding the page breaks before starting your macro.

Set the DisplayPageBreaks sheet property to False in order to hide page breaks. If
you want to continue to show page breaks after your macro runs, you can set the
DisplayPageBreaks sheet property back to True.

Sub Macro1()

Application.Calculation = xlCalculationManual
Application.ScreenUpdating = False
Application.DisplayStatusBar = False
Application.EnableEvents = False
Activesheet.DisplayPageBreaks = False

'Place your macro code here

Application.Calculation = xlCalculationAutomatic
Application.ScreenUpdating = True
Application.DisplayStatusBar = True
Application.EnableEvents = True
Activesheet.DisplayPageBreaks = True

End Sub

Suspend PivotTable Updates
If your macro manipulates PivotTables that contain large data sources, you may
experience poor performance when doing things like dynamically adding or moving
pivot fields. This is because each change you make to the structure of the PivotTable
requires Excel to recalculate the values in the PivotTable for each pivot field your
macro touches.

You can improve the performance of your macro by suspending the recalculation of
the PivotTable until all your pivot field changes have been made. Simply set the
PivotTable.ManualUpdate property to True to defer recalculation, run your macro
code, and then set the PivotTable.ManualUpdate property back to False to trigger the
recalculation.

Sub Macro1()

ActiveSheet.PivotTables("PivotTable1").ManualUpdate=True

'Place your macro code here

ActiveSheet.PivotTables("PivotTable1").ManualUpdate=False

End Sub

Steer Clear of Copy and Paste
It’s important to remember that while the Macro Recorder saves time by writing
VBA code for you, it does not always write the most efficient code. A prime example
of this is how the Macro Recorder captures any copy-and-paste action you perform
while recording.

If you were to copy cell A1 and paste it into cell B1 while recording a macro, the
Macro Recorder would capture this:

 Range("A1").Select

 Selection.Copy

 Range("B1").Select

 ActiveSheet.Paste

While this code indeed copies from cell A1 and pastes into B1, it forces Excel to
utilize the clipboard which adds a kind of middle man where there does not need to
be one.

You can give your macros a slight boost by cutting out the middle man and
performing a direct copy from one cell to a destination cell. This alternative code
uses the Destination argument to bypass the clipboard and copy the contents of cell

A1 directly to cell B1.
Range("A1").Copy Destination:=Range("B1")

If you only need to copy values (not formatting or formulas), you can improve
performance even more by avoiding the Copy method altogether. Simply set the value
of the destination cell to the same value found in the source cell. This method is
approximately 25 times faster than using the Copy method.

Range("B1").Value = Range("A1").Value

If you need to copy only the formulas from one cell to another (not values or
formatting), you can set the formula of the destination cell to the same formula
contained in the source cell.

Range("B1").Formula = Range("A1").Formula

Use the With Statement
When recording macros, you often manipulate the same object more than once. For
example, your code may change the formatting of cell A1 so that it is underlined,
italicized, and formatted bold. If you were to record a macro when applying these
formatting options to cell A1, you would get something like this:

 Range("A1").Select
 Selection.Font.Bold = True
 Selection.Font.Italic = True
 Selection.Font.Underline = xlUnderlineStyleSingle

Unfortunately, this code is not as efficient as it could be because it forces Excel to
select and then change each property separately.

You can save time and improve performance by using the With statement to perform
several actions on a given object in one shot.

The With statement utilized in this example tells Excel to apply all the formatting
changes at one time:

 With Range("A1").Font

 .Bold = True
 .Italic = True
 .Underline = xlUnderlineStyleSingle

 End With

Getting into the habit of chunking actions into With statements not only keeps your
macros running faster, but it also helps to more easily read your macro code.

Don’t Explicitly Select Objects
If you were to record a macro while entering the value 1000 in cell A1 for multiple

sheets, you would end up with code that looks similar to this:
 Sheets("Sheet1").Select
 Range("A1").Select
 ActiveCell.FormulaR1C1 = "1000"

 Sheets("Sheet2").Select
 Range("A1").Select
 ActiveCell.FormulaR1C1 = "1000"

 Sheets("Sheet3").Select
 Range("A1").Select
 ActiveCell.FormulaR1C1 = "1000"

As you can see, the Macro Recorder is fond of using the Select method to explicitly
select objects before taking actions on them. While this code will run fine, it is not
all that efficient. It forces Excel to take the time to explicitly select each object being
manipulated.

There is generally no need to select objects before working with them. In fact, you
can dramatically improve macro performance by not using the Select method.

After recording your macros, make it a habit to alter the generated code to remove
the Select methods. In this case, the optimized code would look like this. Note that
nothing is being selected. The code simply uses the object hierarchy to apply the
needed actions.

 Sheets("Sheet1").Range("A1").FormulaR1C1 = "1000"
 Sheets("Sheet2").Range("A1").FormulaR1C1 = "1000"
 Sheets("Sheet3").Range("A1").FormulaR1C1 = "1000"

Avoid Excessive Trips to the Worksheet
Another way to speed up your macros is to limit the amount of times you reference
worksheet data in your code. It is always less efficient to grab data from the
worksheet than from memory. That is to say, your macros run much faster if they do
not have to repeatedly interact with the worksheet.

For example, this simple code forces VBA to continuously return to
Sheets(“Sheet1”).Range(“A1”) to get the number needed for the comparison being
performed in the If statement:

For ReportMonth = 1 To 12

 If Range("A1").Value = ReportMonth Then
 MsgBox 1000000 / ReportMonth

End If

Next ReportMonth

A much more efficient way is to save the value in Sheets(“Sheet1”).Range(“A1”)
into a variable called MyMonth. This way, the code references the MyMonth
variable rather than the worksheet.

Dim MyMonth as Integer
MyMonth = Range("A1").Value

For ReportMonth = 1 To 12
If MyMonth = ReportMonth Then
MsgBox 1000000 / ReportMonth
End If

Next ReportMonth

Dedication
For my family.

Author’s Acknowledgments
My deepest thanks to everyone who helped bring this book to fruition. And a thank
you to Mary, who will open this book long enough to read the dedication and
acknowledgments.

About the Author
Mike Alexander is a Microsoft Certified Application Developer (MCAD) with over
15 years’ experience consulting and developing Office solutions. He is the author of
over a dozen books on business analysis using Microsoft Excel and Access. He has
been named Microsoft Excel MVP for his contributions to the Excel community. Visit
Mike at DataPigTechnologies.com where he offers free Excel and Access
training.

http://datapigtechnologies.com

Publisher’s Acknowledgments
Executive Editor: Katie Mohr

Development Editor/Copy Editor: Scott Tullis

Technical Editor: Mike Talley

Editorial Assistant: Serena Novosel

Sr. Editorial Assistant: Cherie Case

Production Editor: Magesh Elangovan

Project Manager: Maureen Tullis

Cover Image: iStockphoto

Take Dummies with you everywhere
you go!

Go to our Website

Like us on Facebook

Follow us on Twitter

Watch us on YouTube

Join us on LinkedIn

Pin us on Pinterest

Circle us on google+

http://www.dummies.com
http://www.dummies.com
http://www.facebook.com/fordummies
http://www.facebook.com/fordummies
http://www.twitter.com/fordummies
http://www.twitter.com/fordummies
http://www.youtube.com/user/fordummies
http://www.youtube.com/user/fordummies
http://www.linkedin.com/groups?home=&gid=3229946&trk=anet_ug_hm
http://www.linkedin.com/groups?home=&gid=3229946&trk=anet_ug_hm
http://pinterest.com/fordummies/
http://pinterest.com/fordummies/
https://plus.google.com/105265587979403653723
https://plus.google.com/105265587979403653723

Subscribe to our newsletter

Create your own Dummies book cover

Shop Online

http://www.dummies.com/go/newsletter
http://www.dummies.com/go/newsletter
http://covers.dummies.com/
http://covers.dummies.com/
http://dummiesmerchandise.com
http://dummiesmerchandise.com

WILEY END USER LICENSE
AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

Table of Contents

Introduction 10
About This Book 10
Foolish Assumptions 11
Icons Used in This Book 11
Beyond the Book 12
Where to Go from Here 12

Part 1: Holy Macro Batman! 14
Chapter 1: Macro Fundamentals 16

Why Use a Macro? 16
Macro Recording Basics 17
Comparing Absolute and Relative Macro Recording 20
Other Macro Recording Concepts 25
Examples of Macros in Action 30

Chapter 2: Getting Cozy with the Visual Basic Editor 35
Working in the Visual Basic Editor 35
Working with the Project Window 37
Working with a Code Window 40
Customizing the VBA Environment 43

Chapter 3: The Anatomy of Macros 48
A Brief Overview of the Excel Object Model 48
A Brief Look at Variables 51
Understanding Event Procedures 53
Error Handling in a Nutshell 56

Part 2: Making Short Work of Workbook Tasks 60
Chapter 4: Working with Workbooks 62

Creating a New Workbook from Scratch 62
Saving a Workbook when a Particular Cell Is Changed 64
Saving a Workbook before Closing 66
Protecting a Worksheet on Workbook Close 68
Unprotecting a Worksheet on Workbook Open 69
Opening a Workbook to a Specific Tab 71
Opening a Specific Workbook Defined by the User 72
Determining Whether a Workbook Is Already Open 74
Determining Whether a Workbook Exists in a Directory 76
Closing All Workbooks at Once 78

Printing All Workbooks in a Directory 79
Preventing the Workbook from Closing Until a Cell Is Populated 80
Creating a Backup of the Current Workbook with Today’s Date 82

Chapter 5: Working with Worksheets 84
Adding and Naming a New Worksheet 84
Deleting All but the Active Worksheet 85
Hiding All but the Active Worksheet 87
Unhiding All Worksheets in a Workbook 88
Moving Worksheets Around 90
Sorting Worksheets by Name 91
Grouping Worksheets by Color 93
Copying a Worksheet to a New Workbook 96
Creating a New Workbook for Each Worksheet 96
Printing Specified Worksheets 98
Protecting All Worksheets 99
Unprotecting All Worksheets 100
Creating a Table of Contents for Your Worksheets 102
Zooming In and Out of a Worksheet with Double-Click 105
Highlighting the Active Row and Column 106

Part 3: One-Touch Data Manipulation 109
Chapter 6: Feeling at Home on the Range 111

Selecting and Formatting a Range 111
Creating and Selecting Named Ranges 113
Enumerating Through a Range of Cells 116
Inserting Blank Rows in a Range 117
Unhiding All Rows and Columns 119
Deleting Blank Rows 120
Deleting Blank Columns 121
Limiting Range Movement to a Particular Area 123
Selecting and Formatting All Formulas in a Workbook 124
Finding and Selecting the First Blank Row or Column 127

Chapter 7: Manipulating Data with Macros 131
Copying and Pasting a Range 131
Converting All Formulas in a Range to Values 132
Text to Columns on All Columns 134
Converting Trailing Minus Signs 137
Trimming Spaces from All Cells in a Range 139
Truncating ZIP Codes to the Left Five 141

Padding Cells with Zeros 143

Replacing Blanks Cells with a Value 145
Appending Text to the Left or Right of Your Cells 147
Cleaning Up Non-Printing Characters 149
Highlighting Duplicates in a Range of Data 151
Hiding All but Rows Containing Duplicate Data 153
Selectively Hiding AutoFilter Drop-down Arrows 155
Copying Filtered Rows to a New Workbook 157
Showing Filtered Columns in the Status Bar 158

Part 4: Macro-Charging Reports and Emails 163
Chapter 8: Automating Common Reporting Tasks 165

Refreshing All PivotTables in a Workbook 165
Creating a PivotTable Inventory Summary 167
Adjusting All Pivot Data Field Titles 170
Setting All Data Items to Sum 172
Applying Number Formatting for All Data Items 174
Sorting All Fields in Alphabetical Order 177
Applying a Custom Sort to Data Items 178
Applying PivotTable Restrictions 180
Applying Pivot Field Restrictions 181
Automatically Deleting PivotTable Drill-Down Sheets 183
Printing a PivotTable for Each Report Filter Item 186
Creating a New Workbook for Each Report Filter Item 189
Resizing All Charts on a Worksheet 191
Aligning a Chart to a Specific Range 192
Creating a Set of Disconnected Charts 194
Printing All Charts on a Worksheet 196

Chapter 9: Sending Emails from Excel 198
Mailing the Active Workbook as an Attachment 198
Mailing a Specific Range as an Attachment 200
Mailing a Single Sheet as an Attachment 202
Sending Mail with a Link to Your Workbook 204
Mailing All Email Addresses in Your Contact List 205
Saving All Attachments to a Folder 207
Saving Certain Attachments to a Folder 209

Chapter 10: Wrangling External Data with Macros 212
Working with External Data Connections 212

Using Macros to Create Dynamic Connections 217
Iterating through All Connections in a Workbook 219

Using ADO and VBA to Pull External Data 221
Part 5: Part of Tens 230

Chapter 11: Ten Handy Visual Basic Editor Tips 232
Applying Block Comments 232
Copying Multiple Lines of Code at Once 234
Jumping between Modules and Procedures 234
Teleporting to Your Functions 234
Staying in the Right Procedure 235
Stepping through Your Code 236
Stepping to a Specific Line in Your Code 237
Stopping Your Code at a Predefined Point 238
Seeing the Beginning and End of Variable Values 239
Turning Off Auto Syntax Check 239

Chapter 12: Ten Places to Turn for Macro Help 241
Let Excel Write the Macro for You 241
Use the VBA Help Files 242
Pilfer Code from the Internet 242
Leverage User Forums 243
Visit Expert Blogs 243
Mine YouTube for Video Training 244
Attend Live and Online Training Classes 244
Learn from the Microsoft Office Dev Center 245
Dissect the Other Excel Files in your Organization 245
Ask Your Local Excel Genius 245

Chapter 13: Ten Ways to Speed Up Your Macros 246
Halt Sheet Calculations 246
Disable Sheet Screen Updating 247
Turn Off Status Bar Updates 248
Tell Excel to Ignore Events 248
Hide Page Breaks 249
Suspend PivotTable Updates 250
Steer Clear of Copy and Paste 250
Use the With Statement 251
Don’t Explicitly Select Objects 251
Avoid Excessive Trips to the Worksheet 252

About the Author 254
Connect with Dummies 258
End User License Agreement 260

Table of Contents 5
Begin Reading 10
i 2
ii 3
v 5
vi 5
vii 5
viii 5
ix 5
x 5
xi 5
xii 5
xiii 5
1 10
2 10
3 11
4 12
5 13
7 14
8 14
9 16
10 16
11 17
12 18
13 19
14 20
15 21
16 22
17 23

18 24
19 25
20 26
21 27
22 28
23 29
24 30
25 31
26 32
27 32
28 34
29 35
30 35
31 36
32 37
33 38
34 39
35 40
36 41
37 42
38 43
39 44
40 45
41 46
42 46
43 48
44 48
45 49
46 50
47 51
48 52
49 53

50 54
51 55
52 56
53 56
54 57
55 58
56 59
57 60
58 60
59 62
60 62
61 63
62 64
63 65
64 66
65 67
66 68
67 68
68 69
69 71
70 71
71 72
72 73
73 74
74 75
75 75
76 77
77 77
78 78
79 79
80 80
81 81

82 82
83 83
85 84
86 84
87 85
88 86
89 87
90 88
91 89
92 90
93 91
94 92
95 93
96 94
97 94
98 95
99 96
100 97
101 98
102 99
103 99
104 100
105 101
106 102
107 103
108 104
109 105
110 105
111 106
112 107
113 109
114 109

115 111
116 111
117 112
118 113
119 114
120 115
121 116
122 117
123 117
124 118
125 119
126 120
127 121
128 122
129 123
130 123
131 124
132 126
133 126
134 128
135 128
136 129
137 131
138 131
139 132
140 133
141 134
142 135
143 135
144 136
145 137
146 138

147 139
148 139
149 141
150 141

151 143
152 143
153 144
154 145
155 146
156 147
157 148
158 148
159 149
160 150
161 151
162 152
163 153
164 153
165 155
166 156
167 157
168 158
169 159
170 159
171 160
172 162
173 163
174 163
175 165
176 165
177 166

178 167
179 167
180 169
181 170
182 170

183 172
184 172
185 173
186 174
187 174
188 176
189 177
190 177
191 178
192 179
193 180
194 181
195 182
196 183
197 183
198 184
199 185
200 186
201 187
202 188
203 189
204 189
205 191
206 191
207 192
208 193

209 193
210 194
211 195
212 196
213 198
214 198

215 199
216 200
217 201
218 202
219 202
220 203
221 204
222 205
223 206
224 206
225 207
226 207
227 209
228 209
229 211
231 212
232 212
233 213
234 215
235 216
236 216
237 218
238 218
239 219
240 220

241 221
242 222
243 223
244 224
245 225
246 226
247 227

248 228
249 228
251 230
252 230
253 232
254 232
255 233
256 234
257 236
258 237
259 238
260 239
261 240
263 241
264 241
265 242
266 243
267 244
268 245
269 246
270 246
271 247
272 248
273 249

274 250
275 251
276 251
277 252
295 254
296 254
297 255
298 257

	Table of Contents
	Begin Reading
	i
	ii
	v
	vi
	vii
	viii
	ix
	x
	xi
	xii
	xiii
	1
	2
	3
	4
	5
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94
	95
	96
	97
	98
	99
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	295
	296
	297
	298

