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Introduction

Welcome to Functional Programming in R! I wrote this book, to have teaching material 
beyond the typical introductory level most textbooks on R have. This book is intended 
to give an introduction to functions in R and how to write functional programs in R. 
Functional programming is a style of programming, like object-oriented programming, 
but one that focuses on data transformations and calculations rather than objects and 
state.

Where in object-oriented programming you model your programs by describing 
which states an object can be in and how methods will reveal or modify that state, in 
functional programming you model programs by describing how functions translate 
input data to output data. Functions themselves are considered data that you can 
manipulate, and much of the strength of functional programming comes from 
manipulating functions, building more complex functions by combining simpler 
functions.

The R programming language supports both object-oriented programming and 
functional programming, but it is mainly a functional language. It is not a “pure” 
functional language. Pure functional languages will not allow you to modify the state of 
the program by changing the values parameters hold and will not allow functions to have 
side effects (and need various tricks to deal with program input and output because of it).

R is somewhat closest to “pure” functional languages. In general, data are 
immutable, so changes to data inside a function do not ordinarily alter the state of data 
outside that function. But R does allow side effects, such as printing data or making plots, 
and of course it allows variables to change values.

Pure functions are functions that have no side effects and where a function called 
with the same input will always return the same output. Pure functions are easier to 
debug and to reason with because of this. They can be reasoned with in isolation and will 
not depend on the context in which they are called. The R language does not guarantee 
that the functions you write are pure, but you can write most of your programs using only 
pure functions. By keeping your code mostly purely functional, you will write more robust 
code and code that is easier to modify when the need arises.

You will just have to move the impure functions to a small subset of your program. 
These functions are typically those that need to sample random data or that produce 
output (either text or plots). If you know where your impure functions are, you know 
when to be extra careful with modifying code.

Chapter 1 contains a short introduction to functions in R. Some parts you might 
already know, so in that case feel free to skip ahead, but I give an exhaustive description 
of how functions are defined and used to make sure that we are all on the same page. The 
following chapters then move on to more complex issues.

http://dx.doi.org/10.1007/978-1-4842-2746-6_1
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CHAPTER 1

Functions in R

In this chapter, we cover how to write functions in R. If you are already familiar with the 
basics of R functions, feel free to skip ahead. We will discuss the way parameters are 
passed to functions as “promises,” a way of passing parameters known as lazy evaluation. 
If you are not familiar with that but know how to write functions, you can jump forward 
to that section. We will also cover how to write infix operators and replacement functions, 
so if you do not know what these are and how to write them, you can skip ahead to those 
sections. If you are new to R functions, continue reading.

Writing Functions in R
You create an R function using the function keyword. For example, we can write a 
function that squares numbers like this:

square <- function(x) x**2

and use it like this:

square(1:5)
## [1]  1  4  9 16 25

The function we have written takes one argument, x, and returns the result x**2. 
The return value of a function is always the last expression evaluated in it. If you write 
a function with a single expression, you can write it as above, but for more complex 
functions you will typically need several statements in it. If you do, you can put the body 
of the function in curly brackets ({ }).

The following function does this by including three statements: one for computing 
the mean of its input, one for getting the standard deviation, and a final expression that 
returns the input scaled to be centered on the mean and having one standard deviation:

rescale <- function(x) {
    m <- mean(x)
    s <- sd(x)
    (x - m) / s
}
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The first two statements are just there to define some variables you can use in the 
final expression. This is typical for writing short functions.

Assignments are really also expressions. They return an object, the value that is being 
assigned, and they just do so quietly. This is why if you put an assignment in parentheses 
you will still get the value you assign printed. The parentheses make R remove the 
invisibility of the expression result so you see the actual value:

(x <- 1:5)
## [1] 1 2 3 4 5

We usually use assignments for their side effect, assigning a name to a value, so 
you might not think of them as expressions. But everything you do in R is actually an 
expression. That includes control structures like if statements and for loops. They return 
values and are actually functions. They return the last expression evaluated in them, just 
like all other functions. Even parentheses and subscripting are functions.

If you want to return a value from a function before its last expression, you can use the 
return function. It might look like a keyword, but it is a function, and you need to include 
the parentheses when you use it. Many languages will let you return a value by writing:

  return expression

Not R. In R you need to write:

  return(expression)

Return is usually used to exit a function early and isn’t used that much in most R 
code. It is easier to return a value by just making it the last expression in a function rather 
than explicitly using return. But you can use it to return early like this:

rescale <- function(x, only_translate) {
    m <- mean(x)
    translated <- x - m
    if (only_translate) return(translated)
    s <- sd(x)
    translated / s
}
rescale(1:4, TRUE)
## [1] -1.5 -0.5  0.5  1.5
rescale(1:4, FALSE)
## [1] -1.1618950 -0.3872983  0.3872983  1.1618950

This function has two arguments: x and only_translate. Your functions can have 
any number of parameters. When a function takes many arguments, however, it becomes 
harder to remember in which order you have to put them. To get around that problem, R 
allows you to provide the arguments to a function using their names. So the two function 
calls above can also be written as:

rescale(x = 1:4, only_translate = TRUE)
rescale(x = 1:4, only_translate = FALSE)
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Named Parameters and Default Parameters
If you use named arguments, the order doesn’t matter, so this is also equivalent to these 
function calls:

rescale(only_translate = TRUE, x = 1:4)
rescale(only_translate = FALSE, x = 1:4)

You can mix positional and named arguments. The positional arguments have to 
come in the same order as that used in the function definition, and the named arguments 
can come in any order. All four function calls below are equivalent:

rescale(1:4, only_translate = TRUE)
rescale(only_translate = TRUE, 1:4)
rescale(x = 1:4, TRUE)
rescale(TRUE, x = 1:4)

When you provide a named argument to a function, you don’t need to use the full 
parameter name. Any unique prefix will do. So we could also have used the two function 
calls below:

rescale(1:4, o = TRUE)
rescale(o = TRUE, 1:4)

This is convenient for interactive work with R because it saves some typing, but it 
is not recommend when you are writing programs. It can easily get confusing, and if the 
author of the function adds a new argument to the function with the same prefix as the 
one you use, it will break your code. If the function author provides a default value for that 
parameter, your code will not break if you used the full argument name.

Now default parameters are provided when the function is defined. We could have 
given rescale a default parameter for only_translate like this:

rescale <- function(x, only_translate = FALSE) {
    m <- mean(x)
    translated <- x - m
    if (only_translate) return(translated)
    s <- sd(x)
    translated / s
}

Then, if we call the function we only need to provide x if we are happy with the 
default value for only_translate:

rescale(1:4)
## [1] -1.1618950 -0.3872983  0.3872983  1.1618950

R makes heavy use of default parameters. Many commonly used functions, such as 
plotting functions and model fitting functions, have a lot of arguments. These arguments 
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let you control in great detail what the functions do, making them very flexible, and 
because they have default values, you usually only have to worry about a few of them.

The “Gobble Up Everything Else” Parameter: ...
There is a special parameter all functions can take which is the special variable three 
dots: "...". This parameter is typically used to pass parameters on to functions called 
within a function. To give an example, we can use it to deal with missing values, NA, in the 
rescale function.

We can write (building from the shorter version):

rescale <- function(x, ...) {
    m <- mean(x, ...)
    s <- sd(x, ...)
    (x - m) / s
}

If we give this function a vector x that contains missing values, it will return NA:

x <- c(NA, 1:3)
rescale(x)
## [1] NA NA NA NA

It would also have done that before because that is how the functions mean and sd 
work. But both of these functions take an additional parameter, na.rm, that will make 
them remove all NA values before they do their computations. The rescale function can 
do the same now:

rescale(x, na.rm = TRUE)
## [1] NA -1  0  1

The first value in the output is still NA. Rescaling an NA value can’t be anything else. 
But the rest are rescaled values where that NA was ignored when computing the mean and 
standard deviation.

The ... parameter allows a function to take any named parameter at all. If you 
write a function without it, it will only take the specified parameters, but if you add this 
parameter, it will accept any named parameter at all:

f <- function(x) x
g <- function(x, ...) x
f(1:4, foo = "bar")
## Error in f(1:4, foo = "bar"): unused argument (foo = "bar")
g(1:4, foo = "bar")
## [1] 1 2 3 4

If you then call another function with ... as a parameter, all of the parameters the 
first function doesn’t know about will be passed on to the second function:
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f <- function(...) list(...)
g <- function(x, y, ...) f(...)
g(x = 1, y = 2, z = 3, w = 4)
## $z
## [1] 3
##
## $w
## [1] 4

In the example above, function f creates a list of named elements from ..., and as 
you can see it gets the parameters that g doesn’t explicitly takes.

Using ... is not particularly safe. It is often very hard to figure out what it actually 
does in a particular piece of code. What is passed on to other functions depends on what 
the first function explicitly takes as arguments, and when you call a second function using 
it, you pass on all the parameters in it. If the function doesn’t know how to deal with 
them, you get an error:

f <- function(w) w
g <- function(x, y, ...) f(...)
g(x = 1, y = 2, z = 3, w = 4)
## Error in f(...): unused argument (z = 3)

In the rescale function, it would have been much better to add the rm.na parameter 
explicitly.

That being said, ... is frequently used in R, particularly because many functions 
take very many parameters with default values, and adding these parameters to all 
functions calling them would be tedious and error-prone. It is also the best way to add 
parameters when specializing generic functions, which is a topic for another book in this 
series: Object Oriented Programming in R.

To explicitly get hold of the parameters passed along in ..., you can use this 
invocation: eval(substitute(alist(...))):

parameters <- function(...) eval(substitute(alist(...)))
parameters(a = 4, b = a**2)
## $a
## [1] 4
##
## $b
## a^2

The alist function creates a list of names for each parameter and values for the 
expressions given:

alist(a = 4, b = a**2)
## $a
## [1] 4
##
## $b
## a^2
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You cannot use the list function for this unless you want all the expression 
evaluated. If you try to use list you can get errors like this:

list(a = 4, b = a**2)
## Error in eval(expr, envir, enclos): object 'a' not found

Because R uses so-called lazy evaluation for function parameters, something we 
return to shortly, it will be perfectly fine to define a function with default parameters 
that are expressions that can’t necessarily be evaluated at the point where the function is 
defined, but that can be evaluated inside the function. Inside a function that knows the 
parameters a and b, you can evaluate expressions that use these parameters, even when 
they are not defined outside the function. So the parameters given to alist above can be 
used as default parameters when defining a function. But you cannot create the list using 
list because it will try to evaluate the expressions.

The reason you also need to substitute and evaluate is that alist will give you exactly 
the parameters you provide it. If you tried to use alist on ... you would just get ... back:

parameters <- function(...) alist(...)
parameters(a = 4, b = x**2)
## [[1]]
## ...

By substituting, we translate ... into the actual parameters given, and by evaluating, 
we get the list alist would give us in this context: the list of parameters and their 
associated expressions.

Functions Don’t Have Names
The last thing to stress when we talk about defining functions is that functions do not 
have names. Variables have names, and variables can refer to functions, but these are two 
separate things.

In many languages, such as Java, Python, or C++, you define a function and at the 
same time you give it an argument. Whenever possible, you need a special syntax to 
define a function without a name.

Not so in R. In R, functions do not have names, and when you define them, you are 
not giving them a name. We have given names to all the functions we have used above 
by assigning them to variables right where we defined them. We didn’t have to. It is the 
function(...) ... syntax that defines a function. We are defining a function whether or 
not we assign it to a variable.

We can define a function and call it immediately like this:

(function(x) x**2)(2)
## [1] 4

We would never do this, of course. Anywhere we would want to define an anonymous 
function and immediately call it, we could instead just put the body of the function. 
Functions that we do want to reuse we have to give a name so we can get to them again.
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The syntax for defining functions, however, doesn’t force you to give them names. 
When you start to write higher-order functions, that is functions that take other functions 
as input or return functions, this is convenient.

Such higher-order functions are an important part of functional programming, and 
you will see them used often later in the book.

Lazy Evaluation
Expressions used in a function call are not evaluated before they are passed to the 
function. Most common languages have so-called pass-by-value semantics, which means 
that all expressions given to parameters of a function are evaluated before the function is 
called. In R, the semantic is call-by-promise, also known as lazy evaluation.

When you call a function and give it expressions as its arguments, these are not 
evaluated at that point. What the function gets is not the result of evaluating them but 
the actual expressions, called promises (they are promises of an evaluation to a value you 
can get when you need it). Thus the term call-by-promise. These expressions are only 
evaluated when they are actually needed, thus the term lazy evaluation.

This has several consequences for how functions work. First, an expression that isn’t 
used in a function isn’t evaluated:

f <- function(a, b) a
f(2, stop("error if evaluated"))
## [1] 2
f(stop("error if evaluated"), 2)
## Error in f(stop("error if evaluated"), 2): error if evaluated

If you have a parameter that can only be meaningfully evaluated in certain contexts, 
it is safe enough to have it as a parameter as long as you only refer to it when those 
necessary conditions are met.

It is also very useful for default values of parameters. These are evaluated inside the 
scope of the function, so you can write default values that depend on other parameters:

f <- function(a, b = a) a + b
f(a = 2)
## [1] 4

This does not mean that all the expressions are evaluated inside the scope of the 
function, though. We discuss scopes in chapter 3, but for now, you can think of two 
scopes: the global scope where global variables live, and the function scope that has 
parameters and local variables as well.

If you call a function like this:

f(a = 2, b = a)

you will get an error if you expect b to be the same as a inside the function. If you are 
lucky, and there isn’t any global variable called a, you will get a runtime error. If you are 
unlucky and there is a global variable called a, that is what b will be set to. And if you 
expect it to be set to 2 here, your code will just give you an incorrect answer.

http://dx.doi.org/10.1007/978-1-4842-2746-6_3
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Using other parameters works for default values because these are evaluated inside 
the function. The expressions you give to function calls are evaluated in the scope outside 
the function.

This also means that you cannot change what an expression evaluates to just by 
changing a local variable:

a <- 4
f <- function(x) {
    a <- 2
    x
}
f(1 + a)
## [1] 5

In this example, the expression 1 + a is evaluated inside f, but the a in the 
expression is the a outside of f and not the a local variable inside f.

This is of course what you want. If expressions really were evaluated inside the scope 
of the function, then you would have no idea what they evaluated to if you called a function 
with an expression. It would depend on any local variables the function might use.

Because expressions are evaluated in the calling scope and not the scope of the 
function, you mostly won’t notice the difference between call-by-value or call-by-promise. 
There are certain cases where the difference can bite you, though, if you are not careful.

As an example, we can consider this function:

f <- function(a) function(b) a + b

This might look a bit odd if you are not used to it, but it is a function that returns 
another function. We will see many examples of this kind of functions in later chapters.

When we call f with a parameter a, we get a function back that will add a to its argument:

f(2)(2)
## [1] 4

We can create a list of functions from this f:

ff <- vector("list", 4)
for (i in 1:4) {
  ff[[i]] <- f(i)
}
ff
## [[1]]
## function (b)
## a + b
## <environment: 0x7fc048021f80>
##
## [[2]]
## function (b)
## a + b
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## <environment: 0x7fc048021550>
##
## [[3]]
## function (b)
## a + b
## <environment: 0x7fc04801c5f8>
##
## [[4]]
## function (b)
## a + b
## <environment: 0x7fc04801bb90>

Here, ff contains four functions and the idea is that the first of these adds 1 to its 
argument, the second add 2, and so on.

If we call the functions in ff, however, weird stuff happens:

ff[[1]](1)
## [1] 5

When we get the element ff[[1]], we get the first function we created in the loop. If 
we substitute into f the value we gave in the call, this is:

function(b) i + b

The parameter a from f has been set to the parameter we gave it, i, but i has not 
been evaluated at this point!

When we call the function, the expression is evaluated, in the global scope, but 
there i now has the value 4 because that is the last value it was assigned in the loop. The 
value of i was 1 when we called it to create the function, but it is 5 when the expression is 
actually evaluated.

This also means that we can change the value of i before we evaluate one of the 
functions, and this changes it from the value we intended when we created the function:

i <- 1
ff[[2]](1)
## [1] 2

This laziness is only in effect the first time we call the function. If we change i again 
and call the function, we get the same value as the first time the function was evaluated:

i <- 2
ff[[2]](1)
## [1] 2

We can see this in effect by looping over the functions and evaluating them:

results <- vector("numeric", 4)
for (i in 1:4) {
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  results[i] <- ff[[i]](1)
}
results
## [1] 5 2 4 5

We have already evaluated the first two functions so they are stuck at the values they 
got at the time of the first evaluation. The other two get the intended functionality but 
only because we are setting the variable i in the loop where we evaluate the functions. If 
we had used a different loop variable, we wouldn’t have been so lucky.

This problem is caused by having a function with an unevaluated expression 
that depends on variables in the outer scope. Functions that return functions are not 
uncommon, though, if you want to exploit the benefits of having a functional language. 
It is also a consequence of allowing variables to change values, something most 
functional programming languages do not allow for such reasons. You cannot entirely 
avoid it, though, by avoiding for loops. If you call functions that loop for you, you do not 
necessarily have control over how they do that, and you can end up in the same situation.

The way to avoid the problem is to force an evaluation of the parameter. If you 
evaluate it once, it will remember the value, and the problem is gone.

You can do that by just writing the parameter as a single statement. That will evaluate 
it. It is better to use the function force though, to make it explicit that this is what you 
are doing. It really just gives you the expression back, so it works exactly as if you had just 
written the parameter, but the code makes clear why you are doing it.

If you do this, the problem is gone:

f <- function(a) {
  force(a)
  function(b) a + b
}

ff <- vector("list", 4)
for (i in 1:4) {
  ff[[i]] <- f(i)
}

ff[[1]](1)
## [1] 2
i <- 1
ff[[2]](1)
## [1] 3

Getting back to parameters that are given expressions as arguments, we can take a 
look at what they actually are represented as. We can use the function parameters we 
wrote above.

If we give a function an actual value, that is what the function gets:

parameters <- function(...) eval(substitute(alist(...)))
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p <- parameters(x = 2)
class(p$x)
## [1] "numeric"

The class function here tells us the type of the parameter. For the number 2, this is 
"numeric".

If we give it a name, we are giving it an expression, even if the name refers to a single 
value:

a <- 2
p <- parameters(x = a)
class(p$x)
## [1] "name"

The type is "name". If we try to evaluate it, it will evaluate to the value of that 
parameter:

eval(p$x)
## [1] 2

It knows that the variable is in the global scope, so if we change it the expression will 
reflect this if we evaluate it:

a <- 4
eval(p$x)
## [1] 4

If we call the function with an expression, the type will be "call":

p <- parameters(x = 2 * y)
class(p$x)
## [1] "call"

This is because all expressions are function calls. In this case, it is the function * that 
is being called.

We can only evaluate it if the variables the expression refers to are in the scope of the 
expression. So evaluating this expression will give an error because y is not defined:

eval(p$x)
## Error in eval(expr, envir, enclos): object 'y' not found

The parameter 'y' has to be in the calling scope, just as we saw earlier. Expressions 
are evaluated in the calling scope, not inside the function, so we cannot define 'y' inside 
the parameters function and get an expression we can evaluate:

parameters2 <- function(...) {
  y <- 2
  eval(substitute(alist(...)))
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}
p2 <- parameters(x = 2 * y)
eval(p2$x)
## Error in eval(expr, envir, enclos): object 'y' not found

We can set the variable and then evaluate it, though:

y <- 2
eval(p$x)
## [1] 4

Alternatively, we can explicitly set the variable in an environment given to the eval 
function:

eval(p$x, list(y = 4))
## [1] 8

Actually, manipulating expressions and the scope they are evaluated in is a very 
powerful tool, but beyond what we will cover in this book.

Vectorized Functions
Expressions in R are vectorized. When you write an expression, it is implicitly working on 
vectors of values, not single values. Even simple expressions that only involve numbers 
really are vector operations. They are just vectors of length 1.

For longer vectors, expressions work component-wise. So if you have vectors x and y, 
you can subtract the first from the second component just by writing x - y:

x <- 1:5
y <- 6:10
x - y
## [1] -5 -5 -5 -5 -5

If the vectors are not of the same length, the shorter vector is just repeated as many 
times as is necessary. This is why you can, for example, multiply a number to a vector:

2 * x
## [1]  2  4  6  8 10

Here 2 is a vector of length 1 and x a vector of length 5, and 2 is just repeated five 
times. You will get a warning if the length of the longer vector is not divisible by the length 
of the shorter vector, and you generally want to avoid this. The semantic is the same, 
though: R just keeps repeating the shorter vector as many times as needed:

x <- 1:6
y <- 1:3
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x - y
## [1] 0 0 0 3 3 3

Depending on how a function is written, it can also be used in vectorized 
expressions. R is happy to use the result of a function call in a vector expression as long 
as this result is a vector. This is not quite the same as the function operating component-
wise on vectors. Such functions are called vectorized functions.

Most mathematical functions such as sqrt, log, cos, and sin are vectorized, and you 
can use them in expressions:

log(1:3) - sqrt(1:3)
## [1] -1.0000000 -0.7210664 -0.6334385

Functions you write yourself will also be vectorized if their body consists only of 
vectorized expressions:

f <- function(a, b) log(a) - sqrt(b)
f(1:3, 1:3)
## [1] -1.0000000 -0.7210664 -0.6334385

The very first function we wrote in this book, square, was also a vectorized function. 
The function scale was also, although the functions it used, mean and sd, are not; they 
take vector input but return a summary of the entire vector and do not operate on the 
vector component-wise.

A function that uses control structures usually will not be vectorized. We can write a 
comparison function that returns -1 if the first argument is smaller than the second and 1 
if the second is larger than the first, and 0 otherwise, like this:

compare <- function(x, y) {
    if (x < y) {
        -1
    } else if (y < x) {
        1
    } else {
        0
    }
}

This function will work fine on single values but not on vectors. The problem is that 
the if expression only looks at the first element in the logical vector x < y. (Yes, x < y is 
a vector because < is a vectorized function.)

To handle if expressions, we can get around this problem by using the ifelse 
function. This is a vectorized function that behaves just as an if-else expression:

compare <- function(x, y) {
    ifelse(x < y, -1, ifelse(y < x, 1, 0))
}
compare(1:6, 1:3)
## [1] 0 0 0 1 1 1
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The situation is not always so simple that we can replace if statements with ifelse. 
In most cases, we can, but when we cannot we can instead use the function Vectorize. 
This function takes a function that can operate on single values and translate it into a 
function that can work component-wise on vectors.

As an example, we can take the compare function from before and vectorize it:

compare <- function(x, y) {
    if (x < y) {
        -1
    } else if (y < x) {
        1
    } else {
        0
    }
}
compare <- Vectorize(compare)
compare(1:6, 1:3)
## [1] 0 0 0 1 1 1

By default, Vectorize will vectorize on all parameters of a function. As an example, 
imagine that we want a scale function that doesn’t scale all variables in a vector by the 
same vector’s mean and standard deviation but instead uses the mean and standard 
deviation of another vector:

scale_with <- function(x, y) {
    (x - mean(y)) / sd(y)
}

This function is already vectorized on its first parameter since it just consists of a 
vectorized expression. But if we use Vectorize on it, we break it:

scale_with(1:6, 1:3)
## [1] -1  0  1  2  3  4
scale_with <- Vectorize(scale_with)
scale_with(1:6, 1:3)
## [1] NA NA NA NA NA NA

The function we create with Vectorize is vectorized for both x and y, which means 
that it operates on these component-wise. When scaling, the function only sees one 
component of y, not the whole vector. The result is a vector of missing values, NA, because 
the standard deviation of a single value is not defined.

We can fix this by explicitly telling Vectorize which parameters should be 
vectorized, in this example, only parameter x:

scale_with <- function(x, y) {
    (x - mean(y)) / sd(y)
}
scale_with <- Vectorize(scale_with, vectorize.args="x")
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scale_with(1:6, 1:3)
## [1] -1  0  1  2  3  4

Simple functions are usually already vectorized, or can easily be made vectorized 
using ifelse, but for functions more complex, the Vectorize function is needed.

As an example, we can consider a tree data structure and a function for computing 
the node depth of a named node: the node depth is defined as the distance from the root. 
For simplicity, we consider only binary trees. We can implement trees using lists:

make_node <- function(name, left = NULL, right = NULL)
  list(name = name, left = left, right = right)

tree <- make_node("root",
                  make_node("C", make_node("A"),
                                 make_node("B")),
                  make_node("D"))

To compute the node depth, we can traverse the tree recursively:

node_depth <- function(tree, name, depth = 0) {
    if (is.null(tree))     return(NA)
    if (tree$name == name) return(depth)

    left <- node_depth(tree$left, name, depth + 1)
    if (!is.na(left)) return(left)
    right <- node_depth(tree$right, name, depth + 1)
    return(right)
}

This is not an unreasonably complex function, but it is a function that is harder to 
vectorize than the scale_with function. As it is, it works well for single names:

node_depth(tree, "D")
## [1] 1
node_depth(tree, "A")
## [1] 2

But you will get an error if you call it on a sequence of names:

node_depth(tree, c("A", "B", "C", "D"))

It is not hard to imagine that a vectorized version could be useful, however, for 
example, to get the depth of a sequence of names:

node_depth <- Vectorize(node_depth, vectorize.args = "name",
                        USE.NAMES = FALSE)
node_depth(tree, c("A", "B", "C", "D"))
## [1] 2 2 1 1



Chapter 1 ■ FunCtions in r

16

Here the USE.NAMES = FALSE is needed to get a simple vector out. If we had 
not included it, the vector would have names based on the input variables. See the 
documentation for Vectorize for details.1

Infix Operators
Infix operators in R are also functions. You can overwrite them with other functions 
(but you really shouldn’t since you could mess up a lot of code), and you can also make 
your own infix operators.

User-defined infix operators are functions with special names. A function with 
a name that starts and ends with the percentage sign (%) will be considered an infix 
operator by R. There is no special syntax for creating a function to be used as an infix 
operator, except that it should take two arguments. There is a special syntax for assigning 
variables, though, including variables with names starting and ending with %.

To work with special variables you need to quote them using back-ticks. You cannot 
write +(2, 2), even though + is a function. R will not understand this as a function call 
when it sees it written like this. But you can take + and quote it using back-ticks, `+`, and 
then it is just a variable name like all other variable names:

`+`(2, 2)
## [1] 4

The same goes for all other infix operators in R and even control structures:

`if`(2 > 3, "true", "false")
## [1] "false"

The R parser recognizes control structure keywords and various operators (e.g., the 
arithmetic operators), and therefore these get to have a special syntax. But they are all 
really just functions. Even parentheses are a special syntax for the function `(` and the 
subscript operators are as well, `[` and `[[`. If you quote them using back-ticks, you get 
a variable name that you can use just like any other function name.

Just like all these operators have a special syntax, variables starting and ending with % 
get a special syntax. R expects them to be infix operators and will treat an expression like this:

exp1 %op% exp2

as the function call:

`%op%`(exp1, exp2)

Knowing that you can translate an operator name into a function name just by 
quoting it also tells you how to define new infix operators. If you assign a function to a 
variable name, you can refer to it by that name. If that name is a quoted special name, it 
gets to use the special syntax for that name.

1At the R terminal you can type
?Vectorize

to read the documentation for that function.
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So, to define an operator %x% that does multiplication, we can write:

`%x%` <- `*`
3 %x% 2
## [1] 6

Here we used quotes twice, first to get a variable name we could assign to for %x% and 
once to get the function that the multiplication operator, *, points to.

Just because all control structures and operators in R are functions that you can 
overwrite doesn't mean you should do that without extreme caution. You should never 
change the functions the control structures point to, and you should not change the 
other operators unless you are defining operators on new types where it is relatively 
safe to do so (which is discussed in the book Object Oriented Programming in R in this 
series). Defining entirely new infix operators, however, can be quite useful if they simplify 
expressions you write often.

As an example, let’s do something else with the %x% operator; after all, there is no 
point in having two different operators for multiplication. We can make it replicate the 
left-hand side a number of times given by the right-hand side:

`%x%` <- function(expr, num) replicate(num, expr)
3 %x% 5
## [1] 3 3 3 3 3
cat("This is ", "very " %x% 3, "much fun")
## This is  very  very  very  much fun

We are using the replicate function to achieve this. It does the same thing. It 
repeatedly evaluates an expression a fixed number of times. Using the %x% infix might give 
more readable code, depending on your taste.

In the interests of honesty, I must mention, though, that we haven’t just given 
replicate a new name here, switching of arguments aside. The %x% operator works 
slightly differently. In %x% the expr parameter is evaluated when we call replicate. So 
if we call %x% with a function that samples random numbers, we will get the same result 
repeated num times; we will not sample num times:

rnorm(1) %x% 4
## [1] -0.4895473 -0.4895473 -0.4895473 -0.4895473

Lazy evaluation only takes you so far.
To actually get the same behavior as replicate, we need a little more trickery:

`%x%` <- function(expr, num) {
  m <- match.call()
  replicate(num, eval.parent(m$expr))
}
rnorm(1) %x% 4
## [1] -0.01507434 -1.54676104  1.40091297
## [4]  0.82532076
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Here the match.call function just gets us a representation of the current function 
call from which we can extract the expression without evaluating it. We then use 
replicate to evaluate it a number of times in the calling function’s scope.

If you don’t quite get this, don’t worry. We cover scopes in chapter 3.

Replacement Functions
Another class of functions with special names is the so-called replacement functions. Data in 
R are immutable. You can change what data parameters point to, but you cannot change the 
actual data. Even when it looks like you are modifying data, you are, at least conceptually, 
creating a copy, modifying that, and making a variable point to the new copy.

We can see this in a simple example with vectors. If we create two vectors that point 
to the same initial vector, and then modify one of them, the other remains unchanged:

x <- y <- 1:5
x
## [1] 1 2 3 4 5
y
## [1] 1 2 3 4 5
x[1] <- 6
x
## [1] 6 2 3 4 5
y
## [1] 1 2 3 4 5

R is smart about it. It won’t make a copy of values if it doesn’t have to. Semantically it is 
best to think of any modification as creating a copy, but for performance reasons, R will only 
make a copy when it is necessary, at least for built-in data like vectors. Typically, this happens 
when you have two variables referring to the same data and you “modify” one of them.

We can use the address function to get the memory address of an object. This will 
change when a copy is made but will remain the same when it isn’t. And we can use the 
mem_change function from the pryr package to see how much memory is allocated for 
an expression. Using these two functions, we can dig a little deeper into this copying 
mechanism.

We can start by creating a long-ish vector and modifying it:

library(pryr)
rm(x) ; rm(y)
mem_change(x <- 1:10000000)
## 40 MB
address(x)
## [1] "0x10f1d0000"
mem_change(x[1] <- 6)
## 40 MB
address(x)
## [1] "0x1117f6000"

http://dx.doi.org/10.1007/978-1-4842-2746-6_3
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When we assign to the first element in this vector, we see that the entire vector is being 
copied. This might look odd since you just learned that R would only copy a vector if it had 
to, and here we are just modifying an element in it, and no other variable refers to it.

The reason we get a copy here is that the expression we used to create the vector, 
1:10000000, creates an integer vector. The value 6 we assign to the first element is a floating 
point, called numeric in R. If we want an actual integer, we have to write L after the number:

class(6)
## [1] "numeric"
class(6L)
## [1] "integer"

When we assign a numeric to an integer vector, R has to convert the entire vector into 
numeric, and that is why we get a copy:

z <- 1:5
class(z)
## [1] "integer"
z[1] <- 6
class(z)
## [1] "numeric"

If we assign another numeric to it, after it has been converted, we no longer get a copy:

mem_change(x[3] <- 8)
## -360 B
address(x)
## [1] "0x1117f6000"

All expression evaluations modify the memory a little, up or down, but the change is 
much smaller than the entire vector so we can see that the vector isn’t being copied and 
the address remains the same.

If we assign x to another variable, we do not get a copy. We just have the two names 
refer to the same value:

mem_change(y <- x)
## 1.15 kB
address(x)
## [1] "0x1117f6000"
address(y)
## [1] "0x1117f6000"

If we change x again, though, we need a copy to make the other vector point to the 
original, unmodified data:

mem_change(x[3] <- 8)
## 80 MB
address(x)

www.allitebooks.com

http://www.allitebooks.org
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## [1] "0x118d0c000"
address(y)
## [1] "0x1117f6000"

But after that copy, we can again assign to x without necessarily making additional 
copies (although what actually happens does depend on the garbage management details 
in the core of the R runtime system; for me, I don’t see a copy on the second assignment):

mem_change(x[4] <- 9)
## 888 B
address(x)
## [1] "0x118d0c000"

When you assign to a variable in R, you are calling the assignment function, `<-`. 
When you assign to an element in a vector or list, you are using the `[<-` function. But 
there is a whole class of such functions you can use to make the appearance of modifying 
an object, without actually doing it of course. These are called replacement functions and 
have names that end in <-. An example is the `names<-` function. If you have a vector x, 
you can give its elements names using this syntax:

x <- 1:4
x
## [1] 1 2 3 4
names(x) <- letters[1:4]
x
## a b c d
## 1 2 3 4
names(x)
## [1] "a" "b" "c" "d"

There are two different functions in play here. The last expression, which gives us 
x’s names, is the names function. The function we use to assign the names to x is the 
`names<-` function.

Any function you define whose name ends with <- becomes a replacement function, 
and the syntax for it is that which evaluates whatever is on the right-hand side of the 
assignment operator and assigns the result to the variable that it takes as its argument.

So this syntax:

names(x) <- letters[1:4]

is translated into:

x <- `names<-`(x, letters[1:4])

No values are harmed in the evaluation of this, but the variable is now set to the new 
value.

We can write our own replacement functions using this syntax. There are just two 
requirements. The function name has to end with <-, so we need to quote the name 
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when we assign to it, and the argument for the value that goes to the right-hand side of 
the assignment has to be named value. The last requirement is there so replacement 
functions can take more than two arguments.

The `attr<-` function is an example of this. Attributes are key-value maps that can 
be associated with objects. You can get the attributes associated with an object using 
the attributes function and set all attributes with the `attributes<-` function, but 
you can assign individual attributes using `attr<-`. It takes three arguments: the object 
to modify, a which parameter that is the name of the attribute to set, and the value 
argument that goes to the right-hand side of the assignment. The which argument is 
passed to the function on the left-hand side together with the object to modify:

x <- 1:4
attributes(x)
## NULL
attributes(x) <- list(foo = "bar")
attributes(x)
## $foo
## [1] "bar"
attr(x, "baz") <- "qux"
attributes(x)
## $foo
## [1] "bar"
##
## $baz
## [1] "qux"

We can write a replacement function to make the tree construction we had earlier in 
the chapter slightly more readable. Earlier we constructed the tree like this:

tree <- make_node("root",
                  make_node("C", make_node("A"),
                                 make_node("B")),
                  make_node("D"))

But we can make functions for setting the children of an object like this:

`left<-` <- function(node, value) {
    node$left = value
    node
}
`right<-` <- function(node, value) {
    node$right = value
    node
}

And then we can construct the tree like this:
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A <- make_node("A")
B <- make_node("B")
C <- make_node("C")
D <- make_node("D")
root <- make_node("root")
left(C) <- A
right(C) <- B
left(root) <- C
right(root) <- D
tree <- root

To see the results, we can write a function for printing a tree. To keep the function 
simple, we assume that either both children are NULL or both are trees. It is simple to extend 
it to deal with trees that do not satisfy that, but it just makes the function a bit longer:

print_tree <- function(tree) {
  build_string <- function(node) {
    if (is.null(node$left) && is.null(node$right)) {
        node$name
    } else {
        left <- build_string(node$left)
        right <- build_string(node$right)
        paste0("(", left, ",", right, ")")
    }
  }
  build_string(tree)
}
print_tree(tree)
## [1] "((A,B),D)"

This function shows the tree in what is known as the Newick format, which doesn’t 
show the names of inner nodes, but you can see the structure of the tree.



Chapter 1 ■ FunCtions in r

23

The order in which we build the tree using children is important. When we set the 
children for root, we refer to the variable C. If we set the children for C after we set the 
children for root, we get the old version of C, not the new modified version:

A <- make_node("A")
B <- make_node("B")
C <- make_node("C")
D <- make_node("D")
root <- make_node("root")
left(root) <- C
right(root) <- D
left(C) <- A
right(C) <- B
tree <- root
print_tree(tree)
## [1] "(C,D)"

Replacement functions only look like they are modifying data. They are not. They 
only reassign values to variables.
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CHAPTER 2

Pure Functional 
Programming

A pure function is a function that behaves like a mathematical function: it maps values 
from one space to another, the same value always maps to the same result, and there is no 
such thing as a side effect in a mathematical function.

The level to which programming languages go to ensure that functions are pure 
varies, and R does precious little in this regard. Because values are immutable, you have 
some guarantee about which side effects functions can have, but not much. Functions 
can modify variables outside their scope, for example, they can modify global variables. 
They can print or plot and alter the state of the R process this way. They can also sample 
random numbers and use them for their computations, making the results of a function 
nondeterministic, for all intents and purposes, so that the same value does not always 
map to the same result.

Pure functions are desirable because they are easier to reason about. If a function 
does not have any side effects, you can treat it as a black box that just maps between 
values. If it has side effects, you will also need to know how it modifies other parts of the 
program, and that means you have to understand, at least at some level, what the body 
of the function is doing. If all you need to know about a function is how it maps from 
input parameters to results, you can change their implementation at any point without 
breaking any code that relies on the functions.

Nondeterministic functions, those whose result is not always the same on the same 
input, are not necessarily hard to reason about. They are just harder to test and debug if 
their results depend on random numbers.

Since pure functions are easier to reason about and to test, you will want to write 
as much of your programs using pure functions. You cannot necessarily write all your 
programs in pure functions. Sometimes you need randomness to implement Monte Carlo 
methods or sometimes you need functions to produce output. But if you write most of 
your program using pure functions and know where the impure functions are, you are 
writing better and more robust programs.
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Writing Pure Functions
There is not much work involved in guaranteeing that a function you write is pure. You 
should avoid sampling random numbers and stay away from modifying variables outside 
the scope of the function.

It is trivial to avoid sampling random numbers. Don’t call any function that does this, 
either directly or through other functions. If a function only calls deterministic functions 
and doesn’t introduce any randomness itself, then the function will be deterministic.

It is only slightly less trivial to guarantee that you are not modifying something 
outside the scope of a function. You need a special function, <<-, to modify variables 
outside a function’s local scope (we return to this operator in Chapter 3), so avoid using 
that. Then all assignments will be to local variables, and you cannot modify variables 
in other scopes. If you avoid this operator, then the only risk you have of modifying 
functions outside of your scope is through lazy evaluation. Remember the example from 
Chapter 1 where we created a list of functions? The functions contained unevaluated 
expressions whose values depended on a variable we were changing before we evaluated 
the expressions.

Strictly speaking, we would still have a pure function if we returned functions with 
such an unevaluated expression that depended on local variables. Even the functions 
we would be returning would be pure. They would be referring to local variables in the 
first function, variables that cannot be changed without the <<- operator once the first 
function returns. They just wouldn’t necessarily be the functions you intended to return.

While such a function would be pure by the strict definition, they do have the 
problem that the functions we return depend on the state of local variables inside the 
first function. From a programming perspective, it doesn’t much help that the functions 
are pure if they are hard to reason about, and in this case, we would need to know how 
changing the state in the first function affects the functionality of the others.

A solution to avoid problems with functions depending on variables outside their 
own scope, that is variables that are neither arguments nor local variables, is to simply 
never change what a variable points to.

Programming languages that guarantee that functions are pure enforce this. 
There simply isn’t any way to modify the value of a variable. You can define constants, 
but there is no such things as variables. Since R does have variables, you will have to 
avoid assigning to the same variable more than once if you want to guarantee that your 
functions are pure in this way.

It is very easy to accidentally reuse a variable name in a long function, even if you 
never intended to change the value of a variable. Keeping your functions short and simple 
alleviates this somewhat, but there is no way to guarantee that it doesn’t happen. The 
only control structure that actually forces you to change variables is for loops. You simply 
cannot write a for loop without having a variable to loop over.

Now for loops have a bad reputation in R, and many will tell you to avoid them 
because they are slow. This is not true. They are slow compared to loops in more low-
level languages, but this has nothing to do with them being loops. Because R is a very 
dynamic language where everything you do involves calling functions, and functions 
that can be changed at any point if someone redefines a variable, R code is just generally 
slow. When you call built-in functions like sum or mean, they are fast because they are 
implemented in C. By using vectorized expressions and built-in functions, you do not pay 

http://dx.doi.org/10.1007/978-1-4842-2746-6_3
http://dx.doi.org/10.1007/978-1-4842-2746-6_1
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the penalty for the dynamism. If you write a loop yourself in R, then you do. You pay the 
same price, however, if you use some of the other constructions that people recommend 
instead of loops; constructions will be discussed in Chapter 5.

The real reason you should use such constructions is that they make the intent 
behind your code clearer than a loop would, at least once you get familiar with functional 
programming, because you avoid the looping variable that can cause problems. The 
reason people often find that their loops are inefficient is that it is very easy to write loops 
that modify data, forcing R to make copies. This problem doesn’t go away just because we 
avoid loops, and this is something we return to later toward the end of this chapter.

Recursion as Loops
The way functional programming languages avoid loops is by using recursion instead. 
Anything you can write as a loop you can also write using recursive function calls, and most 
of this chapter will be focusing on getting used to thinking in terms of recursive functions.

Thinking of problems as recursive is not just a programming trick for avoiding loops. 
It is generally a method of breaking problems into simpler subproblems that are easier to 
solve. When you have to address a problem, you can first consider whether there are base 
cases that are trivial to solve. If we want to search for an element in a sequence, it is trivial 
to determine if it is there if the sequence is empty. Then it obviously isn’t there. Now, if 
the sequence isn’t empty, we have a more difficult problem, but we can break it into two 
smaller problems. Is the element we are searching for the first element in the sequence? 
If so, the element is there. If the first element is not equal to the element we are searching 
for, then it is only in the sequence if it is the remainder of the sequence.

We can write a linear search function based on this breakdown of the problem. 
We will first check for the base case and return FALSE if we are searching in an empty 
sequence. Otherwise, we check the first element, and if we find it, we return TRUE, and if it 
wasn’t the first element, we call the function recursively on the rest of the sequence:

lin_search <- function(element, sequence) {
    if (is_empty(sequence)) FALSE
    else if (first(sequence) == element) TRUE
    else lin_search(element, rest(sequence))
}

We have hidden away the test for emptiness, the extraction of the first element, 
and the remainder of the sequence in three functions, is_empty, first, and rest. For a 
vector, they can be implemented like this:

is_empty <- function(x) length(x) == 0
first <- function(x) x[1]
rest <- function(x) {
    if (length(x) == 1) NULL else x[2:length(x)]
}

A vector is empty if it has length zero. The first element is of course just the first 
element. The rest function is a little more involved. The indexing 2:length(x) will give 
us the vector 2 1 if x has length 1, so I handle that case explicitly.

http://dx.doi.org/10.1007/978-1-4842-2746-6_5


Chapter 2 ■ pure FunCtional programming

28

We can test the function on a few cases to assure ourselves that it works:

x <- 1:5
lin_search(0, x)
## [1] FALSE
lin_search(1, x)
## [1] TRUE
lin_search(5, x)
## [1] TRUE
lin_search(6, x)
## [1] FALSE

Now this search algorithm works, but you should never write code like the rest 
function in it. The way we extract the rest of a vector by slicing will make R copy that 
subvector. The first time we call rest, we get the entire vector minus the first element, the 
second time we get the entire vector minus the first two, and so on. This adds up to about 
half the length of the vector squared. So while the search algorithm should be run in 
linear time, the way we extract the rest of a vector makes it run in quadratic time.

In practice, this doesn’t matter. There is a limit in R on how deep we can go in 
recursive calls, and we will reach that limit long before performance becomes an issue. We 
return to these issues at the end of the chapter, but for now let’s just, for aesthetic reasons, 
avoid a quadratic running-time algorithm if we can make a linear-time algorithm.

Languages that are built for using recursion instead of loops usually represent 
sequences in a different way, where you can get the rest of a sequence in constant time. 
We can implement a version of such sequences by representing the elements in the 
sequence by a structure that has a next variable that points to the remainder of the 
sequence. Let’s call that kind of structure a next list. This is an example of a linked list, but 
there are different variants of linked lists. This one just has a next pointer to the rest of the 
sequence, thus the preference to call it a next list. We can translate a single element into 
such a sequence using this function:

next_list <- function(element, rest = NULL)
    list(element = element, rest = rest)

and construct a sequence by nested calls of the function, similar to how we constructed a 
tree in Chapter 1:

x <- next_list(1,
               next_list(2,
                         next_list(3,
                                   next_list(4))))

For this structure we can define the functions we need for the search algorithm like this:

nl_is_empty <- function(nl) is.null(nl)
nl_first <- function(nl) nl$element
nl_rest <- function(nl) nl$rest

http://dx.doi.org/10.1007/978-1-4842-2746-6_1
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and the actual search algorithm like this:

nl_lin_search <- function(element, sequence) {
    if (nl_is_empty(sequence))              FALSE
    else if (nl_first(sequence) == element) TRUE
    else nl_lin_search(element, nl_rest(sequence))
}

This works fine, in linear time, but constructing lists is a bit more cumbersome. We 
should write a function for translating a vector into a next list. To construct such function, 
we can again think recursively. If we have a vector of length zero, the base case, then the next 
list should be NULL. Otherwise, we want to make a next list where the first element is the first 
element of the vector, and the rest of the list is the next list of the remainder of the vector:

vector_to_next_list <- function(x) {
    if (is_empty(x)) NULL
    else next_list(first(x), vector_to_next_list(rest(x)))
}

This works, but of course, we have just moved the performance problem from the 
search algorithm to the vector_to_next_list function. This function still needs to get 
the rest of a vector, and it does it by copying. The translation from vectors to next lists 
takes quadratic time. We need a way to get the rest of a vector without copying.

One solution is to keep track of an index into the vector. If that index is interpreted as 
the index where the vector really starts, we can get the rest of the vector just by increasing 
the index. We could use these helper functions:

i_is_empty <- function(x, i) i > length(x)
i_first <- function(x, i) x[i]

and write the conversion like this:

i_vector_to_next_list <- function(x, i = 1) {
    if (i_is_empty(x, i)) NULL
    else next_list(i_first(x, i), i_vector_to_next_list(x, i + 1))
}

Of course, with the same trick we could just have implemented the search algorithm 
using an index:

i_lin_search <- function(element, sequence, i = 1) {
    if (i_is_empty(sequence, i))              FALSE
    else if (i_first(sequence, i) == element) TRUE
    else i_lin_search(element, sequence, i + 1)
}

Using the index implementation, we can’t really write a rest function. Writing a 
function that returns a pair of a vector and an index is harder to work with than just 
incrementing the index itself.
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When you write recursive functions on a sequence, the key abstractions you need 
will be checking if the sequence is empty, getting the first element, and getting the rest 
of the sequence. Using functions for these three operations doesn’t help unless these 
functions would let us work on different data types for sequences. It is possible to make 
such abstractions, but this is beyond the topics of this book, and we will not consider it 
more in this book. Here we will just implement the abstractions directly in our recursive 
functions from now on. If we do this, the linear search algorithm simply becomes:

lin_search <- function(element, sequence, i = 1) {
    if (i > length(sequence)) FALSE
    else if (sequence[i] == element) TRUE
    else lin_search(element, sequence, i + 1)
}

The Structure of a Recursive Function
Recursive functions all follow the same pattern: figure out the base cases that are easy 
to solve, and understand how you can break down the problem into smaller pieces that 
you can solve recursively. It is the same approach that is called divide and conquer in 
algorithm design theory. Reducing a problem to smaller problems is the hard part. There 
are two things to be careful about: Are the smaller problems really smaller? How do you 
combine solutions from the smaller problems to solve the larger problem?

In the linear search we have worked on so far, we know that the recursive call 
is looking at a smaller problem because each call is looking at a shorter sequence. It 
doesn’t matter if we implement the function using lists or use an index into a vector. We 
know that when we call recursively, we are looking at a shorter sequence. For functions 
working on sequences, this is generally the case; and if you know that each time you 
call recursively you are moving closer to a base case, you know that the function will 
eventually finish its computation.

The recursion doesn’t always have to be on everything except the first element in a 
sequence. For a binary search, for example, we can search in logarithmic time in a sorted 
sequence by reducing the problem to half the size in each recursive call. The algorithm 
works like this: if you have an empty sequence where you can’t find the element you are 
searching for, you return FALSE. If the sequence is not empty, you check if the middle 
element is the element you are searching for, in which case you return TRUE. If it isn’t, check 
if it is smaller than the element you are looking for, in which case you call recursively on the 
last half of the sequence, and if not, you call recursively on the first half of the sequence.

This sounds simple enough but first attempts at implementing this often end 
up calling recursively on the same sequence again and again, never getting closer to 
finishing. This happens if we are not careful when we pick the first or last half.

This implementation will not work. If you search for 0 or 5, you will get an infinite 
recursion:

binary_search <- function(element, x,
                          first = 1, last = length(x)) {
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    if (last < first) return(FALSE) # empty sequence

    middle <- (last - first) %/% 2 + first
    if (element == x[middle]) {
        TRUE
    } else if (element < x[middle]) {
        binary_search(element, x, first, middle)
    } else {
        binary_search(element, x, middle, last)
    }
}

This is because you get a middle index that equals first, so you call recursively on 
the same problem you were trying to solve, not a simpler one.

You can solve it by never including middle in the range you try to solve recursively; 
after all, you only call the recursion if you know that middle is not the element you are 
searching for:

binary_search <- function(element, x,
                          first = 1, last = length(x)) {

    if (last < first) return(FALSE) # empty sequence

    middle <- (last - first) %/% 2 + first
    if (element == x[middle]) {
        TRUE
    } else if (element < x[middle]) {
        binary_search(element, x, first, middle - 1)
    } else {
        binary_search(element, x, middle + 1, last)
    }
}

It is crucial that you make sure that all recursive calls actually are working on 
a smaller problem. For sequences, that typically means making sure that you call 
recursively on shorter sequences.

For trees, a data structure that is fundamentally recursive—a tree is either a leaf or 
an inner node containing a number of children that are themselves also trees—we call 
recursively on subtrees, thus making sure that we are looking at smaller problems in each 
recursive call.

The node_depth function we wrote in Chapter 1 is an example of this:

node_depth <- function(tree, name, depth = 0) {
    if (is.null(tree))     return(NA)
    if (tree$name == name) return(depth)

    left <- node_depth(tree$left, name, depth + 1)
    if (!is.na(left)) return(left)

http://dx.doi.org/10.1007/978-1-4842-2746-6_1
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    right <- node_depth(tree$right, name, depth + 1)
    return(right)
}

The base cases deal with an empty tree—an empty tree doesn’t contain the node we 
are looking for, so we trivially return NA. If the tree isn’t empty, we either have found the 
node we are looking for, in which case we can return the result. If not, we call recursively 
on the left tree. We return the result if we found the node we were looking for. Otherwise, 
we return the result of a recursive call on the right tree (whether or not we found it), and if 
the node wasn’t in the tree at all, the final result will be NA.

The functions we have written so far do not combine the results of the subproblems 
we solve recursively. The functions are all search functions, and the result they return 
is either directly found or the result the recursive functions return. It is not always that 
simple, and often you need to do something with the result from the recursive call(s) to 
solve the larger problem.

A simple example is computing the factorial. The factorial of a number n, n!, is equal 
to with a basis case. It is very simple to write a recursive function to return the factorial, 
but we cannot just return the result of a recursive call. We need to multiply the result we 
get from the recursive call with n:

factorial <- function(n) {
    if (n == 1) 1
    else n * factorial(n - 1)
}

Here I am assuming that is an integer and non-negative. If it is not, the recursion 
doesn’t move us closer to the basis case and we will (in principle) keep going forever. 
So here is another case where we need to be careful to make sure that when we call 
recursively, we are actually making progress on solving the problem. This function is only 
guaranteed for positive integers.

In most algorithms, we will need to do something to the results of recursive calls to 
complete the function we are writing. As another example, besides factorial, we can 
consider a function for removing duplicates in a sequence. Duplicates are elements that are 
equal to the next element in the sequence. It is similar to the unique function built into R 
except that this function only removes repeated elements that are right next to each other.

To write it, we follow the recipe for writing recursive functions. What is the base case? 
An empty sequence doesn’t have duplicates, so the result is just an empty sequence. The 
same is the case for a sequence with only one element. Such a sequence does not have 
duplicated elements, so the result is just the same sequence. If we always know that the 
input to our function has at least one element, we don’t have to worry about the first base 
case, but if the function might be called on empty sequences, we need to take care of 
both. For sequences with more than one element, we need to check if the first element 
equals the next. If it does, we should just return the rest of the sequence, thus removing 
a duplicated element. If it does not, we should return the first element together with the 
rest of the sequence where duplicates have been removed.
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A solution using next lists could look like this:

nl_rm_duplicates <- function(x) {
    if (is.null(x)) return(NULL)
    else if (is.null(x$rest)) return(x)

    rest <- nl_rm_duplicates(x$rest)
    if (x$element == rest$element) rest
    else next_list(x$element, rest)
}

(x <- next_list(1, next_list(1, next_list(2, next_list(2)))))
## $element
## [1] 1
##
## $rest
## $rest$element
## [1] 1
##
## $rest$rest
## $rest$rest$element
## [1] 2
##
## $rest$rest$rest
## $rest$rest$rest$element
## [1] 2
##
## $rest$rest$rest$rest
## NULL
nl_rm_duplicates(x)
## $element
## [1] 1
##
## $rest
## $rest$element
## [1] 2
##
## $rest$rest
## NULL

To get a solution to the general problem, we have to combine the smaller solution 
we get from the recursive call with information in the larger problem. If the first element 
is equal to the first element we get back from the recursive call, we have a duplicate and 
should just return the result of the recursive call. If not, we need to combine the first 
element with the next list from the recursive call.

We can also implement this function for vectors. To avoid copying vectors each time 
we remove a duplicate, we can split that function into two parts. First, we find the indices 
of all duplicates and then we remove these from the vector in a single operation:
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find_duplicates <- function(x, i = 1) {
    if (i >= length(x)) return(c())

    rest <- find_duplicates(x, i + 1)
    if (x[i] == x[i + 1]) c(i, rest)
    else rest
}
vector_rm_duplicates <- function(x) {
    dup <- find_duplicates(x)
    x[-dup]
}
vector_rm_duplicates(c(1, 1, 2, 2))
## [1] 1 2

R already has a built-in function for finding duplicates, called duplicated, and 
we could implement find_duplicates using it (it returns a boolean vector, but we can 
use the function which to get the indices of the TRUE values). It is a good exercise to 
implement it ourselves, though.

The structure is very similar to the list version, but here we return the result of the 
recursive call together with the current index if it is a duplicate and just the result of the 
recursive call otherwise.

This solution isn’t perfect. Each time we create an index vector by combining it with 
the recursive result, we are making a copy, so the running time will be quadratic in the 
length of the result (but linear in the length of the input). We can turn it into a linear time 
algorithm in the output as well by making a next list instead of a vector of the indices, and 
then translate that into a vector in the remove duplicates function before we index into 
the vector x to remove the duplicates. You can experiment with that as an exercise.

As another example of a recursive function where we need to combine results from 
recursive calls, we can consider computing the size of a tree. The base case is when the 
tree is a leaf. There it has size 1. Otherwise, the size of a tree is the sum of the size of its 
subtrees plus one:

size_of_tree <- function(node) {
  if (is.null(node$left) && is.null(node$right)) {
    size <- 1
  } else {
    left_size <- size_of_tree(node$left)
    right_size <- size_of_tree(node$right)
    size <- left_size + right_size + 1
  }
  size
}

Here, again, I assume that either both or none of the subtrees in a binary tree are 
NULL. We also use a slightly different approach to the function by setting the result in a 
local variable that is returned at the end:
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tree <- make_node("root",
                  make_node("C", make_node("A"),
                                 make_node("B")),
                  make_node("D"))

size_of_tree(tree)
## [1] 5

If we wanted to remember the size of subtrees so we wouldn’t have to recompute 
them, we could attempt something like this:

set_size_of_subtrees <- function(node) {
  if (is.null(node$left) && is.null(node$right)) {
    node$size <- 1
  } else {
    left_size <- set_size_of_subtrees(node$left)
    right_size <- set_size_of_subtrees(node$right)
    node$size <- left_size + right_size + 1
  }
  node$size
}

But remember that data in R cannot be changed. If we run this function on a tree, it 
would create nodes that knew the size of a subtree, but these nodes would be copies and 
not the nodes in the tree we call the function on:

set_size_of_subtrees(tree)
## [1] 5
tree$size
## NULL

To actually remember the sizes, we would have to construct a whole new tree where 
the nodes knew their size. So we would need this function:

set_size_of_subtrees <- function(node) {
  if (is.null(node$left) && is.null(node$right)) {
    node$size <- 1
  } else {
    left <- set_size_of_subtrees(node$left)
    right <- set_size_of_subtrees(node$right)
    node$size <- left$size + right$size + 1
  }
  node
}

tree <- set_size_of_subtrees(tree)
tree$size
## [1] 5
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Another thing we can do with a tree is compute the depth-first-numbers of nodes. 
There is a neat trick for trees you can use to determine if a node is in a given subtree. 
If each node knows the range of depth-first-numbers, and we can map leaves to their 
depth-first-number, we can determine if it is in subtree just by checking if its depth-first-
number is in the right range.

To compute the depth-first-numbers and annotate the tree with ranges, we need 
a slightly more complex function than the ones we have seen so far. It still follows the 
recursive function formula, though. We have a basis case for leaves and a recursive case 
where we need to call the function on both the left and the right subtrees. The complexity 
lies only in what we have to return from the function. We need to keep track of the depth-
first-numbers we have seen so far, we need to return a new node that has the range for its 
subtree, and we need to return a table of the depth-first-numbers:

depth_first_numbers <- function(node, dfn = 1) {
  if (is.null(node$left) && is.null(node$right)) {
    node$range <- c(dfn, dfn)
    new_table <- table
    table <- c()
    table[node$name] <- dfn
    list(node = node, new_dfn = dfn + 1, table = table)

  } else {
    left <- depth_first_numbers(node$left, dfn)
    right <- depth_first_numbers(node$right, left$new_dfn)

    new_dfn <- right$new_dfn
    new_node <- make_node(node$name, left$node, right$node)
    new_node$range <- c(left$node$range[1], new_dfn)
    table <- c(left$table, right$table)
    table[node$name] <- new_dfn
    list(node = new_node, new_dfn = new_dfn + 1, table = table)
  }
}
df <- depth_first_numbers(tree)
df$node$range
## [1] 1 5
df$table
##    A    B    C    D root
##    1    2    3    4    5

We can now use this depth-first-numbering to write a version of node_depth that 
only searches in the subtree where a node is actually found. We use a helper function for 
checking if a depth-first-number is in a node’s range:

in_df_range <- function(i, df_range)
    df_range[1] <= i && i <= df_range[2]
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and then simply check for this before we call recursively:

node_depth <- function(tree, name, dfn_table, depth = 0) {
    dfn <- dfn_table[name]

    if (is.null(tree) || !in_df_range(dfn, tree$range)) {
       return(NA)
    }
    if (tree$name == name) {
        return(depth)
    }

    if (in_df_range(dfn, tree$left$range)) {
        node_depth(tree$left, name, dfn_table, depth + 1)
    } else if (in_df_range(dfn, tree$right$range)) {
        node_depth(tree$right, name, dfn_table, depth + 1)
    } else {
        NA
    }
}

node_depth <- Vectorize(node_depth,
                        vectorize.args = "name",
                        USE.NAMES = FALSE)
node_depth(df$node, LETTERS[1:4], df$table)
## [1] 2 2 1 1

Tail-Recursion
Functions, such as our search functions, that return the result of recursive call without 
doing further computation on it are called tail-recursive. Such functions are particularly 
desired in functional programming languages because they can be translated into loops, 
removing the overhead involved in calling functions. R, however, does not implement this 
tail-recursion optimization. There are good but technical reasons why, having to do with 
scopes. This doesn’t mean that we cannot exploit tail-recursion and the optimizations 
possible if we write our functions to be tail-recursive. We just have to translate our 
functions into loops explicitly. We cover that in the next section. First, let’s look at a 
technique for translating an otherwise not tail-recursive function into one that is.

As long as you have a function that only calls recursively zero or one time, it is a very 
simple trick. You pass along values in recursive calls that can be used to compute the final 
value once the recursion gets to a base case.

As a simple example, we can take the factorial function. The way we wrote it above 
was not tail-recursive. We called recursively and then multiplied to the result:

factorial <- function(n) {
    if (n == 1) 1
    else n * factorial(n - 1)
}
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We can translate this into a tail-recursive function by passing the product of the 
numbers we have seen so far along to the recursive call. Such a value that is passed along 
is typically called an accumulator. The tail-recursive function would look like this:

factorial <- function(n, acc = 1) {
    if (n == 1) acc
    else factorial(n - 1, acc * n)
}

Similarly, we can take the find_duplicates function we wrote and turn it into a tail-
recursive function. The original function looks like this:

find_duplicates <- function(x, i = 1) {
    if (i >= length(x)) return(c())
    rest <- find_duplicates(x, i + 1)
    if (x[i] == x[i + 1]) c(i, rest) else rest
}

It needs to return a list of indices, so that is what we pass along as the accumulator:

find_duplicates <- function(x, i = 1, acc = c()) {
    if (i >= length(x)) return(acc)
    if (x[i] == x[i + 1]) find_duplicates(x, i + 1, c(acc, i))
    else find_duplicates(x, i + 1, acc)
}

All functions that call themselves recursively at most once can equally easily be 
translated into tail-recursive functions using an appropriate accumulator.

It is harder for functions that make more than one recursive call, like the tree 
functions we wrote earlier. It is not impossible to make them tail-recursive, but it requires 
a trick called continuation passing, which will be discussed in Chapter 4.

Runtime Considerations
Now for the bad news. All the techniques I have shown you in this chapter for writing 
pure functional programs using recursion instead of loops are not actually the best way to 
write programs in R.

You will want to write pure functions, but relying on recursion instead of loops 
comes at a runtime cost. We can replace the recursive linear search function with one that 
uses a for loop to see how much overhead we incur.

The recursive function looked like this:

r_lin_search <- function(element, sequence, i = 1) {
  if (i > length(sequence)) FALSE
  else if (sequence[i] == element) TRUE
  else r_lin_search(element, sequence, i + 1)
}

http://dx.doi.org/10.1007/978-1-4842-2746-6_4
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A version using a for loop could look like this:

l_lin_search <- function(element, sequence) {
  for (e in sequence) {
    if (e == element) return(TRUE)
  }
  return(FALSE)
}

We can use the function microbenchmark from the microbenchmark package to 
compare the two. If we search for an element that is not contained in the sequence we 
search in, we will have to search through the entire sequence, so we can use that worst-
case scenario for the performance measure:

library(microbenchmark)
x <- 1:1000
microbenchmark(r_lin_search(-1, x),
               l_lin_search(-1, x))
## Unit: microseconds
##                 expr     min        lq      mean
##  r_lin_search(-1, x) 1208.45 1349.9925 1683.4491
##  l_lin_search(-1, x)  197.24  215.0905  247.7755
##    median        uq      max neval
##  1495.173 1723.3685 5864.094   100
##   239.297  261.8335  466.682   100

The recursive function is almost an order of magnitude slower than the function that 
uses a loop. Keep that in mind if people tell you that loops are slow in R; they might be, 
but recursive functions are slower.

It gets worse than that. R has a limit as to how deep you can call a function 
recursively, and if we were searching in a sequence longer than about a thousand 
elements, we would reach this limit and R would terminate the call with an error.

This doesn’t mean that reading this chapter was a complete waste of time. It can be 
very useful to think in terms of recursion when you are constructing a function. There is a 
reason why divide and conquer is frequently used to solve algorithmic problems. You just 
want to translate the recursive solution into a loop once you have designed the function.

For functions such as linear search, we would never program a solution as a 
recursive function in the first place. The for loop version is much easier to write and 
much more efficient. Other problems are much easier to solve with a recursive algorithm, 
and there the implementation is also easier by first thinking in terms of a recursive 
function. The binary search is an example of such a problem. It is inherently recursive 
since we solve the search by another search on a shorter string. It is also less likely to hit 
the allowed recursion limit since it will only call recursively a number of times that is 
logarithmic in the length of the input, but that is another issue.
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The recursive binary search looked like this:

r_binary_search <- function(element, x,
                            first = 1, last = length(x)) {
  if (last < first) return(FALSE) # empty sequence

  middle <- (last - first) %/% 2 + first
  if (element == x[middle]) TRUE
  else if (element < x[middle]) {
    r_binary_search(element, x, first, middle - 1)
  } else {
    r_binary_search(element, x, middle + 1, last)
  }
}

It is a tail-recursive function, and we can exploit that to translate it into a version that 
uses a loop instead of recursive calls. To translate a tail-recursive function into a looping 
function, you put the body of the function in a repeat loop. A repeat loop will loop 
forever unless you explicitly exit from it, but the base case tests in the recursive function 
can be used to exit the loop using an explicit return call. When you would normally call 
recursively, you instead just update the local parameters you passed as arguments to the 
function. The result looks like this:

l_binary_search <- function(element, x,
                            first = 1, last = length(x)) {
  repeat {
    if (last < first) return(FALSE) # empty sequence

    middle <- (last - first) %/% 2 + first
    if (element == x[middle]) return(TRUE)

    else if (element < x[middle]) {
      last <- middle - 1
    } else {
      first <- middle + 1
    }
  }
}

www.allitebooks.com

http://www.allitebooks.org
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The translation always follows this simple pattern, which is why many programming 
languages will do it for you automatically. We don’t get as massive a performance boost 
by changing this algorithm into a looping version, simply because there aren’t that 
many function calls in a binary search—the power of logarithmic runtime algorithms—
but we do get a slightly more efficient version. We can again compare the two using 
microbenchmark to measure exactly how much improvement we get:

x <- 1:10000000
microbenchmark(r_binary_search(-1, x),
               l_binary_search(-1, x))
## Unit: microseconds
##                    expr    min      lq     mean
##  r_binary_search(-1, x) 47.442 55.6955 69.77639
##  l_binary_search(-1, x) 35.678 39.7615 47.62955
##   median      uq     max neval
##  58.9795 80.7550 156.367   100
##  41.8440 43.7525 117.331   100

If your function is not tail-recursive, it is a lot more work to translate it into a version 
that uses loops. You will essentially have to simulate the function call stack yourself. That 
involves a lot more programming, but this is not functional programming and is beyond 
the scope of this book. Not to worry, though, using continuations, a topic we cover in 
Chapter 4, you can generally translate your functions into tail-recursive functions and 
then use a trick called a trampoline to replace recursion with loops.

http://dx.doi.org/10.1007/978-1-4842-2746-6_4
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CHAPTER 3

Scope and Closures

A scope is something functions or expressions are associated with that tells them what 
values variables refer to. It is used to figure out which environment expressions are 
evaluated in. The same variable name can be used many places in a program, but the 
scope of an expression tells R exactly which variable of a given name is referred to in the 
expression.

A closure is a function with an associated scope. All functions in R have at least two 
different environments where they can find out what value a given variable is referring 
to. There is the local environment of the function, where function parameters and local 
variables can be looked up, and the global environment where global variables can be 
found. So by this definition of closure, all functions in R are closures. We typically reserve the 
term for functions that have more than these two environments, though; functions defined 
inside other functions that can refer to both the local and global environment and also 
the environment of the enclosing function and are used outside of the enclosing function. 
There is nothing special about closures. They are just functions. We use them to remember 
environments that existed at the time they were created. If this sounds confusing right now, 
hopefully it becomes clearer after you have read the section on scopes later in the chapter.

Scopes and Environments
There are really two conceptual mappings going on when looking up a variable in an R 
expression. Expressions that contain variables know the variable name, not the value that 
the variable points to. When an expression is evaluated, the expression needs that value, 
so R needs to figure out what the value is. Since a variable name is not necessarily unique, 
it first needs to determine which of the potentially many variables with the same name is 
being referred to, and then to figure out what value that variable is pointing to.

In the code below, we have two variables named x. One is a global variable that refers 
to a vector. The other is a function argument. Inside the function, we have an expression 
that refers to x. When we evaluate the function, the expression needs to figure out that the 
variable x is the function argument rather than the global variable before it can get to the 
value that the variable is referring to:

x <- 1:100
f <- function(x) sqrt(sum(x))
f(x**2)
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When we call the function, we also have an expression that refers to a variable 
named x, but this is a different x than the variable inside the function. This x is the global 
variable, so when we evaluate the function call expression, R needs to figure out that x 
refers to the global variable and then look up the value that this variable is referring to.

We can make this clearer by changing the names, so the variables become unique. 
We call the global variable gx and the parameter variable px:

gx <- 1:100
f <- function(px) sqrt(sum(px))
f(gx**2)

Because of lazy evaluation, both the expression gx**2 and the expression 
sqrt(sum(px)) are actually evaluated inside function f. The expression being evaluated 
is sqrt(sum(gx**2)). The reason we can write the original version and let R figure out 
which x we are referring to when we have two different xs is that the scopes of the two xs 
are different. To evaluate the expression, R needs to figure out what gx is pointing to, in 
this example, the vector 1:100.

At the risk of causing some confusion with terms used in R, the mapping from 
variable names to values will be called the environment of an expression and the mapping 
from variable names to actual variables will be called the scope of the expression. The risk 
of confusion is because if you evaluate an expression in R using the eval function, you 
can provide an environment to evaluate the expression in. But this environment works 
both as the scope and the environment. It can define mappings from variables to values, 
so it is an environment, but it also changes the scope the expression is evaluated in. If a 
variable in the expression exists in the environment, then the expression will refer to that 
variable and not the variable in the scope it would otherwise refer to.

When you write an expression such as x + y, you have an expression where 
variables x and y are defined in a scope. If you evaluate the expression, you get the value 
of the expression using the values that the variables in the scope are referring to:

x <- 2 ; y <- 2
x + y
## [1] 4

You can also create an expression that doesn’t have a scope associated to it. It can 
have variables, but these are just variable names. As long as we do not evaluate the 
expression, they do not even have to exist in any scope. We can create such an expression 
using the quote function:

quote(x + y)
## x + y
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We can use the eval function to evaluate such an expression. To evaluate the 
expression, we, of course, need both a scope, to figure out which variables the variable 
names refer to, and an environment that tells us which values these variables are pointing 
to. By default, eval will use the scope where you call eval:

If we write:

eval(x + y)
## [1] 4

there is nothing special going on. Lazy evaluation aside, the expression x + y already has 
a scope, here the global scope, and the expression will be evaluated there.

If we instead write:

eval(quote(x + y))
## [1] 4

the quoted expression is put in a scope, so the variable names in the expression that 
were just names before now refer to variables in the scope, and the expression is then 
evaluated in that scope.

The result is the same in this example because the scope that is used is the same 
(global) scope.

To see the difference, we need to provide eval with an environment in which to 
evaluate the expression.

You can create an environment using the new.env function and put a variable in 
it by assigning to a name in it using $. For example, to put a variable named x in a new 
environment, and give it the value 4, we would write:

env <- new.env()
env$x <- 4

We can also use a shortcut and create the environment and assign a value to a 
variable inside it using the function lst2env. It would look like this:

env <- list2env(list(x = 4))

If we evaluate the unquoted expression in this environment, we get the same result 
as before. In that expression, x and y already have a scope and that is what is being used:

eval(x + y, env)
## [1] 4

However, if we use the quoted expression, then env overrides the scope we are using. 
When quote(x + y) is evaluated, eval figures out that x should be found in the scope 
defined by env, and it looks up the value in the corresponding environment, while y, 
which is not defined in env, should be found in the enclosing scope in that environment:

eval(quote(x + y), env)
## [1] 6
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The function eval changes both the scope and environment at the same time, but 
conceptually scope and environment are two different things. What eval considers an 
environment is what we describe as both scope and environment. The reason that scope 
and environment are conflated in eval is that the two things are inherently linked in R. 
R has an explicit representation of environments but only an implicit representation of 
scopes; scopes are defined by the algorithm R uses to figure out which actual variable a 
variable name is referring to.

Environment Chains, Scope, and Function Calls
When you call a function in R, you first create an environment for that function. That 
environment is where its parameters will be stored, and any local variables the function 
assigns to it will go there as well. That environment is linked to another environment. If 
the function is defined inside another function, it will be the environment in that function 
instantiation; if the function is called directly from the outermost level, it will be linked to 
the global environment. Depending on how the function is defined, there might be many 
such linked environments, and it is this chain of environments that determines the scope 
used to find a variable and get its value.

We need another example to see this in action:

f <- function(x) 2 * x
x <- 4
f(2)

The following notation is used to explain how the scopes and environments work: "v 
refers to a variable name. Environments are written as mappings from variable names to 
values like this ["v -> value]. Environments are chained so ["v -> value1] -> ["w -> 
value2] will indicate that there is a chain of environments where the first environment 
maps variable name "v to value1 and the next in the chain maps variable "w to value2.

When there is a need for more complex chain graphs, graphical notations as shown 
in Figure 3-1 are used.

If we assume that there are no variables in the global environment when we start the 
program, we have the global environment [].1 After we evaluate the first expression, the 
definition of function f, we have changed the global environment, so it now maps "f to 
that function:

["f -> function(x) 2 * x]

Figure 3-1. Environment chain graph

1The global environment is actually a little more complex than the empty one we use here. It is 
nested inside environments where imported packages live. But for the purposes of this chapter, we 
do not need to worry about that.



Chapter 3 ■ SCope and CloSureS

47

The next expression assigns a value to the variable x, so after that the global 
environment is this:

["f -> function(x) 2 * x, "x -> 4]

In the third expression, we call function f and a lot is going on here. First, R 
needs to figure out what the variable name "f is referring to. It searches in the chain of 
environments—in this case a chain of only one environment—and finds it in the global 
environment. So at this point, the scope of the variable f is the global environment. It can 
get the value from that environment, and it gets the function function(x) 2 * x.

When we call the function, R creates a new environment to execute the function 
instance in. This environment is first empty, but it is linked to the global scope:

[] -> ["f -> function(x) 2 * x, "x -> 4]

Before any of the code in the function starts executing, though, the function 
parameters are put into this environment, so when we start executing the code in 
function f, the environment chain looks like this:

["x -> 2] -> ["f -> function(x) 2 * x, "x -> 4]

Inside the function, we need to evaluate the expression 2 * x. To find out how, we 
first need to figure out what the variable name "x refers to. Here R starts searching in 
the chain of environments and finds it in the first environment. So the scope of "x is the 
local environment; it is not the variable in the global environment that also has variable x 
defined. The result of the function call is therefore 4 rather than 8, as it would have been if 
"x were referring to the global variable x.

After the function returns, R removes the first environment from the chain, and 
future code will be evaluated in the environment chain:

["f -> function(x) 2 * x, "x -> 4]

This is simple enough, but what would happen if we next call the function like this:

f(3 * x)

The first steps are the same as before. R looks for "f, finds that it is a function, 
instantiates it, and creates an environment for it to execute in:

[] -> ["f -> function(x) 2 * x, "x -> 4]

As before, it then puts the function parameter into this environment, but now it 
gets a little more complicated. Remember that R doesn’t evaluate the expression used 
for function arguments before it calls the function? When we called f with the value 1, it 
actually did pass the value along. If we had written f(x), it would have as well, but here 
we call f with an expression, and that expression is not evaluated before it is used inside 
the function call.
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Such an expression is passed to the function in a type called call, and such a type has 
its own associated environment chain. This environment chain starts in the environment 
where the function is called, not the environment inside the function. So the call object 
has an environment chain that starts at the global environment. So the chain (now a 
graph) of environments is as shown in Figure 3-2.

When we evaluate the expression inside the function, 2 * x, R goes searching for "x 
and finds it in the first environment. It sees that it is referring to a call, so to get a value it 
needs to evaluate this call. Because the call has its own environment chain, it will use this 
chain to evaluate the expression. So evaluating the call 2 * x it uses this chain:

["f -> function(x) 2 * x, "x -> 4]

Here it finds that the variable name "x is mapped to 4, so it evaluates 3 * 4 and we 
get the value 12 back. This is then inserted into the environment for the function call so 
future evaluations will refer to the value and not the call expression:

["x -> 12] -> ["f -> function(x) 2 * x, "x -> 4]

It is now in this environment we search for "x and find 12 that we use to evaluate 2 * 
x and get 24.

We have two different variables x in play here. They both use the variable name "x, but 
they are associated with different environment chains and are therefore in different scopes.

We can now go back to the eval example and see what is really going on:

x <- 2 ; y <- 2
env <- new.env()
env$x <- 4
eval(x + y, env)

The first two assignments just put values in the global environment. After these, the 
global environment looks like this:

["x -> 2, "y -> 2]

Then we create a new environment. By default, that environment will be linked to 
the current environment chain, so we are actually creating this environment chain:

[] -> ["x -> 2, "y -> 2]

Figure 3-2. Environment chain graph



Chapter 3 ■ SCope and CloSureS

49

and we are inserting that into the global environment by assigning it to the name env. So 
we have a new global environment that knows about env, but env also knows about the 
global environment because it has a chain to it:

                            .---.
["x -> 2, "y -> 2, "env -> []]<-'

Into the new environment we assign the value 4 to variable x, so we now have:

                              .--------.
["x -> 2, "y -> 2, "env -> ["x -> 4]]<-'

When we then call eval, we create yet another environment, the one for the function 
instantiation, and give it the expression x + y together with the environment env. The 
parameter that eval uses to refer to the expression is called expr, so that is put into its 
environment together with env. (There actually is another parameter, but we ignore that in 
this example.) So when eval is ready to evaluate the expression we give it, the environment 
chain looks like the one shown in Figure 3-3. Here the global environment is shown with 
double-strokes and the environment inside the eval function is shown on the left.

The eval function doesn’t evaluate the expression inside its own environment, 
however, but that inside the environment pointed to by its env parameter. So the 
expression is evaluated in the environment to the right in Figure 3-3. 

It doesn’t matter, though, whether it evaluated the expression in its own environment 
or in env because the expression is a call, with its own environment chain, consisting in 
this case just of the global environment, and that is the environment the call object will be 
evaluated in. In this environment, it finds both variable names "x and "y, and finds them 
to refer to value 2 and 2, so that determines the result.

For the eval call with the quoted expression:

eval(quote(x + y), env)

the situation is different. Here eval gets a quoted expression, not a call, so this expression 
does not carry its own environment along with it. The environment chain graph is shown 
in Figure 3-4. The eval function does the same thing; it evaluates the expression in the 

Figure 3-3. Environment chain graph in eval(x + y, env)
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environment pointed to by env, which is the rightmost environment in Figure 3-4. So 
when R needs to look up variable names "x and "y, it finds "x in the first environment 
and "y in the global environment. The "x in the global environment is overshadowed 
by the "x in the first environment, so it is not the variable in the scope of the evaluation. 
Thus the values used in evaluating the expression are 4 and 2.

Scopes are not static. They always depend on the environment chain expressions 
are evaluated in and what these environments look like at the time the expressions are 
evaluated. Consider the program below:

y <- 2
f <- function(x) {
    result <- x + y
    y <- 3
    return(result)
}
f(2)
## [1] 4

After evaluating the two first expressions, the assignment to y and f, we have a global 
environment that looks like this:

["y -> 2, "f -> function(x) ...]

When we start evaluating the body of function f, after the parameter has been added 
to its environment, the current environment chain looks like this:

["x -> 2] -> ["y -> 2, "f -> function(x) ...]

When we evaluate the x + y expression, R will search for these parameter names 
and find "x in the local environment and "y in the global environment, so the scope of 
"x is local and the scope of "y is global. The result is therefore 4, which is put in the local 
variable result. So now the environment chain is:

["x -> 2, "result -> 4] -> ["y -> 2, "f -> function(x) ...]

Figure 3-4. Environment chain graph in eval(quote(x + y), env)
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We then assign the value 3 to a local variable and get the environment chain:

["x -> 2, "result -> 4, "y -> 3] ->
    ["y -> 2, "f -> function(x) ...] 

Now both x and y have local scope. It doesn’t matter for the result, though. We have 
already evaluated the expression x + y to get the result, so what we return is 4, not 6.

Situations like this don’t just happen when we assign to a local variable later in a 
function. If we conditionally assign to a local variable, this is also in effect. In the function 
below, when we evaluate x + y the scope of these parameters depends on whether we 
assigned to them before we evaluated the expressions. So these variables can have local 
or global scope depending on which parameters we called the function with:

f <- function(condx, x, condy, y) {
    if (condx) x <- 2
    if (condy) y <- 2
    x + y
}

So to briefly summarize how scopes and environments work in R: whenever you 
evaluate an expression, there is an associated chain of environments. The scope of the 
variables in the expression, which variables the actual variable names refer to, depends on 
where in this chain the variables can be found. While data are immutable in R, environments 
are not; whenever you assign to a variable with the <- operator, you are modifying the top 
environment in the environment chain. This can not only change the value a variable refers 
to but also its scope. If we assign to a variable inside a function, we are only changing the 
environment inside that function. Other functions that might be referring to a global variable 
with the same name will still be referring to the global variable, not the new local variable, 
because the environment that will be created when these functions are called will not be 
chained to the local environment where a new variable has been put.

The rules for how variables are mapped to values are always the same. It involves a 
search in the chain of environments that are active at the time the expression is evaluated. 
The only difficulty is knowing which environments are in the chain at any given time.

Here the rules are not that complex either. We can explicitly create an environment 
and put it at the top of the chain of environments using the eval function, we can create 
a call environment when we pass expressions as arguments to a function—where the 
environment will be the same environment chain as where we call the function—or we 
can create a new environment by running code inside a function.

Scopes, Lazy Evaluation, and Default Parameters
Knowing the rules for how variables are mapped into values also helps us understand 
why we can use function parameters in expressions we use for default parameters when 
defining a function, but we cannot use them when we call a function.
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If we define a function with a default parameter set to an expression that refers to 
another parameter:

f <- function(x, y = 2 * x) x + y

we can call it like this:

f(x = 2)
## [1] 6

but not necessarily like this:

f(x = 2, y = 2 * x)

It will work if you have a global variable x, and this variable will be used to set the 
value of y. But the behavior is different from using the default value for y. In both cases 
the function body will execute in an environment chain where the parameters have been 
put, and in both cases y will refer to a call object:

["x -> 2, "y -> call(2 * x)] -> <global environment>

The difference between the two calls is which environment the call object is 
associated with. The difference is illustrated in Figure 3-5. The call object defined as 
the default parameter will be evaluated in an environment chain starting with the local 
function environment. The call object passed along in the function call, however, will be 
evaluated in the global environment because that is where we call the function from.

Figure 3-5. Environment chain graph in f(x = 2, y = 2 * x) and f(x = 2)
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In the second function call, x will, therefore, be referring to a variable in the global 
environment when we evaluate the expression for y. If x is not defined there, we get an 
error. If x is defined there, but we meant y to be referring to the parameter x and not the 
global variable x, we have a potentially hard to debug error.

It is not an error that pops up often. I have never seen it in the wild. When people call 
a function, they expect the expressions in the function call to be referring to variables in 
the environment where the function is called, not some local variables inside the function 
body, and that is what they get by this semantics.

Nested Functions and Scopes
Whenever you instantiate a function, you create a new environment in which to execute 
its body. That environment is chained to the global environment in all the functions we 
have considered so far in this chapter, but for functions defined inside the body of other 
functions, the environment will instead be chained to the environment created by the 
outer function.

Let’s first look at a simple example of this. Consider the program below:

f <- function(x) {
    g <- function(y) x + y
    g(x)
}
f(2)
## [1] 4

Ignoring that there can be other variables in the global environment, the 
environment chain just before we call g inside f looks like this:

["x -> 2, "g -> function(y) x + 1] ->
    ["f -> function(x) ...]

Here x is referring to the value 2 and not a call since we passed a constant value 
along to f when we called the function.

When we call g we now get a new environment, as we do for all function calls 
and where function parameters are put before we evaluate anything else, but this 
environment is linked not to the global environment but the environment inside the 
function call to f where g was defined. So when we evaluate the expression x + y, we 
have the following chain of environments:

["y -> 2] ->
    ["x -> 2, "g -> function(y) x + 1] ->
        ["f -> function(x) ...]

and it is in this chain we find the variables x and y to get their values.
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Here is a slightly more complex example:

f <- function(x) {
    g <- function(y) x + y
    g
}
h <- f(2)
h(2)
## [1] 4

Just before we return from the function call to f, the environment chain looks like before:

["x -> 2, "g -> function(y) x + 1] ->
    ["f -> function(x) ...]

and after we return it looks like this: 

["f -> function(x) ..., "h -> function(y) ...]

We have defined two functions and assigned them to variables f and h. What 
happens when we then call h? It turns out that the environment chain, after we have put 
parameter variables into the new function call environment, will look like this:

["y -> 2] ->
    ["x -> 2, "g -> function(y) x + 1] ->
        ["f -> function(x) ...]

The environment from the function call to f is back in play. When we call the 
function h, we instantiate a function, g, that was defined inside a call to f, and this function 
remembers that environment. When we call this function, it will chain its local environment 
to the environment in which it was defined, which is a local environment inside f.

Functions, when called, will always chain their local environment to the 
environment in which they were defined. There are not actually two rules for how 
the environments are chained together; it is just that functions defined in the global 
environment will be chained to that environment and functions defined in other 
environments will be chained to those.

All functions have an associated environment they will chain their local 
environments to. These haven’t been shown in the environment chains so far in this 
book. But from now on they will. Think of functions as similar to call objects. Call objects 
are actually function calls, so they behave in much the same way; for functions you just 
have to explicitly call where call objects are evaluated when you need their value.

Just for fun, let’s call f twice and create two functions referring to the inner function g:

h1 <- f(1)
h2 <- f(2)
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The environment chain graph after we have defined these two functions is shown in 
Figure 3-6. Here functions are shown in gray, and each function points to the environment 
its instances will be chained to. There are three functions: f, h1, and h2. Even though both 
h1 and h2 were constructed from the function g inside f, they were constructed in different 
calls to f, so they are different functions with different environments.

If we call h1, we will create an environment chain that first has its local environment, 
then the environment created when h1 was defined, the environment that remembers 
that variable x refers to 1, and then the global environment. If we instead call h2, we will 
have the chain from the local environment to the instance of f where x was 2 and then the 
global environment.

This environment chain graph is determined by where the functions are defined, 
not where they are called. If we define a global function g that takes a function as an 
argument and calls that function with the value 1, we can see what happens:

gg <- function(ff) ff(1)
gg(h1)
## [1] 2
gg(h2)
## [1] 3

Figure 3-6. Environment chain graph after defining h1 and h2
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The global environment will know f, gg, h1, and h2. When we call gg, we get a local 
environment where ff now refers either to h1 or h2 depending on which call we consider. 
Inside the call to gg, the environment chain looks like this:

["ff -> <a h function>] -> <global environment>

where <a h function> refers to the functions that is either h1 or h2.
When gg then calls the (local) function ff, we create another local environment in 

which to execute the function. This environment is chained to the environment the function 
remembers, not the local environment for gg. When we call gg(h1), we need to evaluate the 
expression x + y and we will do that in an environment chain that looks like this:

["y -> 1] ->
    ["x -> 1, "g -> <function(y) ...>] ->
        <global environment>

The local environment for gg is nowhere in this chain. When we call h1 through gg, 
the function h1 doesn’t know anything about gg. It knows the environment in which it 
was created, the instance of f, and because this environment is chained to the global 
environment, it knows about that as well. It doesn’t know where it is being called from, 
only where it was defined.

This rule for finding the variable’s values, based on the environment where functions 
are defined, is called lexical scoping and it is the most common standard for scopes. They 
are called that because you can, in principle, figure out what variables in an expression 
are defined where. You first check if the variables are set in the local environment, so 
either local variables or function parameters. If not, then you look at the enclosing code 
and check if the variable is in the environment. The enclosing code can be the global 
environment or a function. If it is a function and the variables are not defined there, you 
work your way further out in the code where the function is defined. If the mapping from 
variables to values depended on where a function was called rather than where it was 
defined, something called dynamic scope, you couldn’t figure out which variables the 
variable names were referring to just from reading the code where the function is defined.

Figuring out the variable name to variable mapping in R is not quite so easy that 
you can just figure it out from the code. The problem is that which variables are defined 
depends on the code executed in function calls, so it is only known at runtime. We saw an 
example of this earlier. That is why I told you the whole complicated story rather than just 
the simple rule of thumb; sometimes the rule just isn’t completely true. If you are careful 
and never do conditional assignments to variables without first giving them a default 
value, though, the rule of thumb applies.

Closures
Functions like h1 and h2 that remember the environment of another function invocation 
are what we call closures. The term derives from enclosing scope and refers to the property 
these functions have, of remembering the enclosing environment in which they were 
created.
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Recall the definition I gave at the beginning of the chapter, that closures are functions 
that carry a scope with them, so in practice functions that have an environment chain, all 
functions in R are closures. But we will restrict the term to mean functions that remember 
an environment from a previous function instantiation that is no longer active. Because 
functions in R remember the environment in which they were created, the only thing that 
is required for a function to be a closure is that we return it from a function call.

The function f in the previous example creates closures. It creates an environment in 
which x is known and returns a function that adds that x to its input. With more sensible 
names, the creation of h1 and h2 can be written like this, making it clearer what the 
functions are really doing:

make_adder <- function(x) {
    add_y <- function(y) x + y
    add_y
}
add1 <- make_adder(1)
add2 <- make_adder(2)

In themselves, closures are not that useful. Making a function that takes one 
argument and returns another function that takes a second argument just so we can 
call the second function to do some operation is just a very complex way of doing the 
operation; writing a function that takes two arguments is much simpler. The usefulness 
of closures is in combination with higher-order functions. Higher-order functions are 
functions that either take other functions as arguments or return functions. A function 
that creates a closure is thus a higher-order function, and where closures are used is 
with higher-order functions that take functions as input. We return to such functions in 
Chapter 4 where we will see many uses for closures.

Reaching Outside Your Innermost Scope
When we assign to a variable using the <- operator, we modify the environment at the top 
of the current environment chain. We modify the local environment. So what does this 
code do?

make_counter <- function() {
    x <- 0
    count <- function() {
        x <- x + 1
        x
    }
}
counter <- make_counter()

http://dx.doi.org/10.1007/978-1-4842-2746-6_4
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The intent behind the function is to create a function, a closure, that returns an 
increasing number each time we call it. It is of course not a pure function, but it is 
something we could find useful. In the depth-first-numbering algorithm we wrote in 
Chapter 2, we had to pass along in recursive calls the current number, but if we had such 
a counter, we could just use it to get the next number each time we needed it.

It doesn’t work, though:

counter()
## [1] 1
counter()
## [1] 1
counter()
## [1] 1

We can unwrap the function and see what is really going on. When we create the 
counter, we call the make_counter function, which creates an environment where x is set 
to zero and then the count function, which it returns.

When we call the counter function, it knows x because it is a closure, so it can 
evaluate x + 1, which it then assigns to x. This is where the problem lies. The x used in 
evaluating x + 1 is found by searching up the environment chain, but the x the function 
assigns to is put in the counter function’s environment. Then the function returns and 
that environment is gone. The next time counter is called, it is a new function instance, so 
it is a new environment that is created. The variable x from the make_counter function is 
never updated.

When you use <-, you create a new local variable if it didn’t exist before. Even if 
the variable name is found deeper in the environment chain, it doesn’t matter. The 
assignment always is to the local environment.

To assign to a variable deeper in the environment chain, you need to use the 
operator <<- instead. This operator will search through the environment chain, the 
same way R does to figure out what expressions should evaluate to and to update the 
environment where it finds the variable (or add it to the global environment if it doesn’t 
find it anywhere in the environment chain).

If we change the assignment operator in the example, we can see what happens:

make_counter <- function() {
    x <- 0
    count <- function() {
        x <<- x + 1
        x
    }
}
counter <- make_counter()
counter()
## [1] 1
counter()
## [1] 2
counter()
## [1] 3

http://dx.doi.org/10.1007/978-1-4842-2746-6_2
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This time around, when we do the assignment we find that there is an x in the 
enclosing environment, the x that was initialized when we called make_counter, so the 
assignment is to that environment instead of to the local environment. Each time we call 
counter we create a new function instance environment, but all the instances are linked 
to the same enclosing environment, so each time we call the function we are updating the 
same environment.

We can use this counter function together with the <<- operator to make a much 
simpler version of the depth_first_numbers function, where we do not need to pass data 
along in the recursive calls. We can create a table and a counter function in the outermost 
scope and simply use the counter and assign, with <<- to the table:

depth_first_numbers <- function(tree) {
  table <- c()
  counter <- make_counter()

  traverse_tree <- function(node) {
    if (is.null(node$left) && is.null(node$right)) {
      dfn <- counter()
      node$range <- c(dfn, dfn)
      table[node$name] <<- dfn
      node

    } else {
      left <- traverse_tree(node$left)
      right <- traverse_tree(node$right)
      new_node <- make_node(node$name, left, right)
      new_node$range <- c(left$range[1], right$range[2])
      new_node
    }
  }

  new_tree <- traverse_tree(tree)
  list(tree = new_tree, table = table)
}
result <- depth_first_numbers(tree)
print_tree(result$tree)
## [1] "((A,B),D)"
result$table
## A B D
## 1 2 3

We still need to create a new tree here if we want to annotate all nodes with their 
depth-first-number ranges. We still cannot modify data, but we can use the variables in 
the outer scope inside the recursive function.
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Lexical Scope and Dynamic Scope
The last thing I want to mention in this chapter is how R supports dynamic scope in 
addition to lexical scope. It is not something we will use further in this book, but a 
discussion of R’s scope rules would be incomplete without it.

I will return to the eval example we had before:

x <- 2; y <- 2
eval(quote(x + y))
## [1] 4

Here we create a quoted expression, x + y, so x and y do not refer to any variables, 
they are just variable names, and then we evaluate that expression. In doing so, eval 
manages to find the variables to do so in the global environment. There is nothing 
surprising here; all functions can find the variables in the global environment.

But consider this example, where we remove the global variables for x and y and call 
eval inside a function that has them as local variables:

rm(x); rm(y)
f <- function() {
    x <- 2; y <- 2
    eval(quote(x + y))
}
f()
## [1] 4

You might not be surprised that eval manages to do this, after all, it is what you 
would expect it to do, but it doesn’t follow the rules about how functions know their 
environment chain. The eval function is not defined inside the f function, so it shouldn’t 
know about these parameters. Somehow, though, it manages to get them anyway.

This is because R supports dynamic scope as well as lexical scope. Remember, 
dynamic scope is where we find variables based on which functions are on the call stack, 
not which functions are lexically enclosing the place where we define them.

The eval function manages to get the calling scope, instead of the enclosing scope, 
using the function parent.frame. Using this function, you can get to the environment of 
functions on the call stack.
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These call stack environments are not chained. They behave just as they were 
described earlier. So you cannot do this:

g <- function(y) {
  y
  eval(quote(x + y))
}
f <- function(x) {
  g(2)
}
f(2)

but you can do this:

f <- function(x) {
  x <- x
  g <- function(y) {
    y
    eval(quote(x + y))
  }
  g(2)
}
f(2)
## [1] 4

To test if you understand the environment and scope rules in R, take a piece of paper 
and write down the environment chain graph for this example and work out why the first 
does not work but the second does.
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CHAPTER 4

Higher-Order Functions

The term higher-order functions refers to functions that either take functions as 
arguments or return functions. The functions we used to create closures in Chapter 3 are 
thus higher-order functions. Higher-order functions are frequently used in R instead of 
looping control structures, and we will cover how you can do this in general in Chapter 6. 
A quick example is provided in this chapter before moving on to more interesting things 
we can do with functions working on functions.

The function sapply (it stands for simplifying apply) lets you call a function for all 
elements in a list or vector. You should mainly use this for interactive use in R because it is 
a little unsafe. It tries to guess at which type of output you want, based on what the input 
and the function you give it do. There are safer alternatives, vapply and lapply, where the 
output is always a predefined type or always a list, respectively.

In any case, if you want to evaluate a function for all elements in a vector, you can 
write code like this:

sapply(1:4, sqrt)
## [1] 1.000000 1.414214 1.732051 2.000000

This evaluates sqrt on all the elements in vector 1:4 and gives you the result. It is an 
analog to the vectorized expression:

sqrt(1:4)

and the vectorized version is probably always preferable if your expressions can be 
vectorized. The vector expression is easier to read and usually much faster if it involves 
calling built-in functions.

You can use sapply to evaluate a function on all elements in a sequence when the 
function you want to call is not vectorized, however, and in fact, the Vectorize function 
we saw in Chapter 1 is implemented using sapply’s cousin, lapply.

We could implement our own version like this:

myapply <- function(x, f) {
  result <- x
  for (i in seq_along(x)) result[i] <- f(x[i])
  result
}

http://dx.doi.org/10.1007/978-1-4842-2746-6_3
http://dx.doi.org/10.1007/978-1-4842-2746-6_6
http://dx.doi.org/10.1007/978-1-4842-2746-6_1
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myapply(1:4, sqrt)
## [1] 1.000000 1.414214 1.732051 2.000000

Here a result vector of the right length is created just by copying x. The assignments 
into this vector might create copies. The first is guaranteed to do this because we are 
changing a vector, which R avoids by making a copy. Later assignments might do it again 
to convert the type of the results. Still, it is reasonably simple to see how it works and if 
the input and output have the same type it is running in linear time (in the number of 
function calls to f, which of course can have runtime complexity).

Using a function like sapply or myapply, or any of their cousins, lets you replace a 
loop, where all kinds of nastiness can happen with assignments to local variables that we 
do not necessarily want with a single function call. We just need to wrap the body of the 
loop in another function we can give to the apply function.

Closures can be particularly useful in combination with apply functions if we need 
to pass some information along to the function. Let’s, for example, consider a situation 
where we want to scale the element in a vector. We wrote such a function in Chapter 1:

rescale <- function(x) {
  m <- mean(x)
  s <- sd(x)
  (x - m) / s
}
rescale(1:4)
## [1] -1.1618950 -0.3872983  0.3872983  1.1618950

This was written using vector expressions, which is the right thing to do, but let’s see 
what we can do with an apply function. Obviously we still need to compute m and s and 
then a function for computing (x - m) / s:

rescale <- function(x) {
  m <- mean(x)
  s <- sd(x)
  f <- function(y) (y - m) / s
  myapply(x, f)
}
rescale(1:4)
## [1] -1.1618950 -0.3872983  0.3872983  1.1618950

There is really no need to give the function a name and then pass it along, so we can 
also just write:

rescale <- function(x) {
  m <- mean(x)
  s <- sd(x)
  myapply(x, function(y) (y - m) / s)
}
rescale(1:4)
## [1] -1.1618950 -0.3872983  0.3872983  1.1618950

http://dx.doi.org/10.1007/978-1-4842-2746-6_1
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The function we pass to myapply knows the environment in which it was created, so 
it knows m and s and can use these variables when it is being called from myapply.

Currying
It is not unusual to have a function of two arguments where you want to bind one of them 
and return a function that takes, as a parameter, the second argument. For example, if we 
want to use the function:

f <- function(x, y) x + y

we might want to use it to add 2 to each element in a sequence using myapply. Once 
again, this example is just to show you a general technique and you should never do 
these things when you can solve a problem with vector expressions, but let’s for a second 
pretend that we don’t have vector expressions. Then we would need to create a function 
for one of the parameters, say y, and then when called, evaluate f(2,y).

We could write it like this, obviously:

g <- function(y) f(2, y)
myapply(1:4, g)
## [1] 3 4 5 6

which would suffice if we only ever needed to add 2 to all elements in a sequence. If we 
wanted a more general solution, we would want a function to create the function we 
need, a closure that remembers x and can be called with y. Such a function is only slightly 
more complicated to write, we simply need a function that returns a function like this:

h <- function(x) function(y) f(x, y)
myapply(1:4, h(2))
## [1] 3 4 5 6

The function f and the function h eventually do the same thing, the only difference is 
in how we provide parameters to them. Function f needs both parameters at once, while 
function h takes one parameter at a time:

f(2, 2)
## [1] 4
h(2)(2)
## [1] 4

A function such as h, one that takes a sequence of parameters not in a single 
function call but through a sequence of function calls, each taking a single parameter and 
returning a new function, is known as a curried function. What we did to transform f into 
h is called currying f. The name refers to the logician Haskell Curry, from whom we also 
get the name of the functional programming language Haskell.
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The transformation we did from f to h was manual, but we can write functions that 
transform functions: functions that take a function as input and return another function. 
We can thus write a general function for currying a function: another high-level function. 
A function for currying functions of two parameters can be written like this:

curry2 <- function(f)
  function(x) function(y) f(x, y)

The argument f is the function we want to curry and the return value is the function:

function(x) function(y) f(x, y)

which needs to be called first with parameter x and then with parameter y and then it 
will return the value f(x, y). The name of the variables do not matter here, they are just 
names and need not correspond with the names of the variables that f actually takes.

Using this function, we can automatically create h from f:

h <- curry2(f)
f(2, 3)
## [1] 5
h(2)(3)
## [1] 5

Since + is just a function in R, we can also simply use it instead of writing the function 
f first:

h <- curry2(`+`)
h(2)(3)
## [1] 5

and thus write the code that adds 2 to all elements in a sequence like this:

myapply(1:4, curry2(`+`)(2))
## [1] 3 4 5 6

Whether you find this clever or too terse to be easily understood is a matter of taste. 
It is clearly not as elegant as vector expressions, but once you are familiar with what 
currying does, it is not difficult to parse either.

The function we wrote for currying only works on functions that take exactly two 
arguments. We explicitly created a function that returns a function that returns the final 
value, so the curried version has to work on functions with two arguments. But functions 
are data that we can examine in R, so we can create a general version that can handle 
functions of any number of arguments. We simply need to know the number of arguments 
the function takes and then create a sequence of functions for taking each parameter.

The full implementation is shown below, which will be explained in detail after the 
function listing:
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curry <- function(f) {
  n <- length(formals(f))
  if (n == 1) return(f) # no currying needed

  arguments <- vector("list", length = n)
  last <- function(x) {
    arguments[n] <<- x
    do.call(f, arguments)
  }
  make_i <- function(i, continuation) {
    force(i) ; force(continuation)
    function(x) {
      arguments[i] <<- x
      continuation
    }
  }

  continuation <- last
  for (i in seq(n-1, 1)) {
    continuation <- make_i(i, continuation)
  }
  continuation
}

First, we get the number of arguments that function f takes:

  n <- length(formals(f))

We can get these arguments using the formals function. It returns what is called a 
pair-list, which is essentially a linked list similar to the one we saw in Chapter 2, and it 
is used internally in R but not in actual R programming. You can treat it as a list, and it 
behaves the same way except for some runtime performance differences. We just need to 
know the length of the list.

We just return if f only takes a single argument. Then it is already as curried as it 
can get. Otherwise, we create a table in which we will store variables when the chain of 
functions is called:

  arguments <- vector("list", length = n)

We need to collect the arguments that are passed to the individual functions we 
create. We cannot simply use parameter arguments x and y as we did in curry2 because 
we do not know how many arguments we would need before we have examined the input 
function, f. In any case, we would need to create names dynamically to make sure they 
don’t clash. Just saving the arguments in a list is simpler, and since it is a list, we can put 
any kind of values that are passed as arguments in it.

Now we need to create the actual function we should return. We do this in steps. The 
final function we create should call f with all the arguments. It takes the last argument as 
input, so we need to store that in arguments. And since this means modifying a list outside of 
the scope of the actual function, we need the <<- assignment operator for that. To call f with 

http://dx.doi.org/10.1007/978-1-4842-2746-6_2
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a list of its arguments, we need to use the function do.call. It lets us specify the arguments to 
the function in a list instead of giving them directly as comma-separated arguments:

  last <- function(x) {
    arguments[n] <<- x
    do.call(f, arguments) 
  }

Each of the other functions needs to store an argument as well, so they will need 
to know the corresponding index, and then they should return the next function in the 
curried chain. We can create such functions like this:

  make_i <- function(i, continuation) {
    force(i) ; force(continuation)
    function(x) {
      arguments[i] <<- x
      continuation
    }
  }

The parameter i is just the index, which we use to assign a value to an argument, 
and the parameter continuation is the function that still remains to be called before the 
final result can be returned from the function last. It is the continuation of the curried 
function. We need to evaluate both parameters inside make_i before we return the 
function. Otherwise, we run into the lazy-evaluation problem where, when eventually we 
call the function, values of variables might have changed since we created the function. 
We do this by calling force on the arguments.

We now simply need to bind it all together. We do this in reverse order, so we always 
have the continuation we need when we create the next function. The first continuation is 
the last function. It is the last function that should be called, and it will return the desired 
result of the entire curried chain. Each call to make_i will return a new continuation that 
we provide to the next function in the chain (in reverse order):

  continuation <- last    
  for (i in seq(n-1, 1)) {
    continuation <- make_i(i, continuation)
  }

The final continuation we create is the curried function, so that is what we return at 
the end of curry.

Now we can use this curry function to translate any function into a curried version:

f <- function(x, y, z) x + 2*y + 3*z
f(1, 2, 3)
## [1] 14
curry(f)(1)(2)(3)
## [1] 14
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It is not quite the same semantics as calling f directly; we are evaluating each 
expression when we assign it to the arguments table, so lazy evaluation isn’t in play here. 
To write a function that can deal with the lazy evaluation of the parameters requires a lot 
of mucking about with environments and expressions that is beyond the scope of this 
book. Aside from that, though, we have written a general function for translating normal 
functions into their curried form.

It is much harder to make a transformation in the other direction automatically. If we 
get a function, we cannot see how many times we would need to call it to get a value, if 
that is even independent of the parameters we give it. So there is no way to figure out how 
many parameters we should get for the uncurried version of a curried function.

The curry function isn’t completely general. We cannot deal with default 
arguments—all arguments must be provided in the curried version—and we cannot 
create a function where some arguments are fixed and others are not. The curried version 
always needs to take the arguments in the exact order the original function takes them.

A Parameter Binding Function
We already have all the tools we need to write a function that binds a set of parameters for 
a function and returns another function where we can give the remaining parameters and 
get a value:

bind_parameters <- function(f, ...) {
  remembered <- list(...)
  function(...) {
    new <- list(...)
    do.call(f, c(remembered, new))
  }
}

f <- function(x, y, z, w = 4) x + 2*y + 3*z + 4*w

f(1, 2, 3, 4)
## [1] 30
g <- bind_parameters(f, y = 2)
g(x = 1, z = 3)
## [1] 30
h <- bind_parameters(f, y = 1, w = 1)
f(2, 1, 3, 1)
## [1] 17
h(x = 2, z = 3)
## [1] 17

We get the parameters from the first function call and save them in a list, and then we 
return a closure that can take the remaining parameters, turn them into a list, combine 
the remembered and the new parameters, and call function f using do.call.

With all the building blocks mentioned so far, we are just combining them to 
translate one function into another.
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Using list here to remember the parameters from ... means that we are evaluating 
the parameters. We are explicitly turning off lazy evaluation in this function. It is possible 
to keep the lazy-evaluation semantics as well, but it requires more work. We would need 
to use the eval(substitute(alist(...))) trick to get the unevaluated parameters into a 
list. We saw this trick used in Chapter 1, but that would give us raw expressions in the lists, 
and we would need to be careful to evaluate these in the right environment chain to make 
this work. I leave this as an exercise to the reader, or you can look at the partial function 
from the pryr package to see how it is done.

Such partial binding functions aren’t used that often in R. It is just as easy to write 
closures to bind parameters and those are usually easier to read, so use partial bindings 
with caution.

Continuation-Passing Style
The trick we used to create curry involved creating a chain of functions where each 
function returns the next function that should be called, the continuation. This idea of 
having the remainder of a computation as a function you can eventually call can be used 
in many other problems.

Consider the simple task of adding all elements in a list. We can write a function for 
doing this in the following three ways:

my_sum_direct <- function(lst) {
  if (is_empty(lst)) 0
  else first(lst) + my_sum_direct(rest(lst))
}
my_sum_acc <- function(lst, acc = 0) {
  if (is_empty(lst)) acc
  else my_sum_acc(rest(lst), first(lst) + acc)
}
my_sum_cont <- function(lst, cont = identity) {
  if (is_empty(lst)) cont(0)
  else my_sum_cont(rest(lst),
                   function(acc) cont(first(lst) + acc))
}

The first function handles the computation in an obvious way by adding the current 
element to the result of the recursive call. The second function uses an accumulator to 
make a tail-recursive version, where the accumulator carries a partial sum along with the 
recursion. The third version also gives us a tail-recursive function but in this case via a 
continuation function. This function works as the accumulator in the second function. It 
just wraps the computation inside a function that is passed along in the recursive call.

Here, the continuation captures the partial sum moving down the recursion. This is 
the same job the accumulator has in the second function, but it is expressed as an as-yet-
not-evaluated function. This function will eventually be called by the sum of values for 
the rest of the recursion, so the job at this place in the recursion is simply to take the value 
it will eventually be provided, add the current value, and then call the continuation it was 
passed earlier to complete the computation.

http://dx.doi.org/10.1007/978-1-4842-2746-6_1
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For something as simple as adding the numbers in a list, continuation passing is of 
course overkill. If you need tail-recursion, the accumulator version is simpler and faster, 
and in any case, you are just replacing recursion going down the vector with function 
calls in the continuation moving up again (a solution to this problem is presented later). 
Still, seeing the three approaches to recursion—direct, accumulator, and continuation-
passing—in a trivial example makes it easier to see how they work and how they differ.

A common use of continuations is to translate non-tail-recursive functions into 
tail-recursive. As an example, we return to the function from Chapter 2 that we used to 
compute the size of a tree. In that solution, we needed to handle internal nodes by first 
calling recursively on the left subtree and then the right subtree to get the sizes of these, 
and then combining them and adding one for the internal node. Because we needed the 
results from two recursive calls, we couldn’t directly make the function tail-recursive. 
Using continuations we can.

The trick is to pass a continuation along that is used to wrap one of the recursions 
while we handle the other recursion in a tail-recursive call. The solution looks like this:

size_of_tree <- function(node, continuation = identity) {
  if (is.null(node$left) && is.null(node$right)) {
    continuation(1)
  } else {
    new_continuation <- function(left_result) {
      continuation(left_result + size_of_tree(node$right) + 1)
    }
    size_of_tree(node$left, new_continuation)
  }
}

size_of_tree(tree)
## [1] 5

The function takes a continuation along in its call, and this function is responsible for 
computing “the rest of what needs to be done.” If the node we are looking at is a leaf, we call 
it with 1, because a leaf has size one, and then it will do whatever computation is needed to 
compute the size of the tree we saw earlier wrapped in the continuation parameter.

The default continuation is the identity function:

function(x) x

So if we just call the function with a leaf, we will get 1 as the value. But we modify the 
continuation when we see an internal node to wrap some of the computation we cannot 
do yet because we do not have the full information we need to compute.

For internal nodes, we would do this:

    new_continuation <- function(left_result) {
      continuation(left_result + size_of_tree(node$right) + 1)
    }
    size_of_tree(node$left, new_continuation)

http://dx.doi.org/10.1007/978-1-4842-2746-6_2
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We create a continuation that, if given the size of the left subtree, can compute the 
size of the full tree by calling recursively on the right subtree and then adding the size of 
the left subtree. That wraps up the computations we need to do with the right subtree, 
so we only need to call recursively on the left subtree, and that we can do with a tail-
recursive call.

Because it is tail-recursive, we can replace the recursive calls with a loop. This time 
we need to remember to force the evaluation of the continuation when we create the 
new continuation because when we loop we are modifying local parameters. Otherwise, 
it would look like you would expect from the general pattern for translating tail-recursive 
functions into looping functions:

size_of_tree <- function(node) {
  continuation <- identity # function(x) x
  repeat {
    if (is.null(node$left) && is.null(node$right)) {
      return(continuation(1))
    }
    new_continuation <- function(continuation) {
      force(continuation)
      function(left_result) {
        continuation(left_result + size_of_tree(node$right) + 1)
      }
    }
    # simulated recursive call
    node <- node$left
    continuation <- new_continuation(continuation)
  }
}

size_of_tree(tree)
## [1] 5

There is a catch, though. We avoid deep recursions to the left, but the continuation 
we create is going to call functions just as deeply as we would earlier do in the recursion. 
Each time we would usually call recursively, we are wrapping a function inside another. 
And when these need to be evaluated, we still have a deep number of function calls.

There is a trick to get around this. It won’t give us the performance boost of using 
a loop instead of recursions, and it will actually be slightly slower, but it will let us write 
functions with more than one recursion without having too deep recursive calls.

Thunks and Trampolines
There are two pieces to the solution of too deep recursions. The first is something called 
a thunk. It is simply a function that takes no arguments and returns a value. It is used to 
wrap up a little bit of computation that you can evaluate later. We can turn a function, 
with its arguments, into a thunk like this:
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make_thunk <- function(f, ...) {
  force(f)
  params <- list(...)
  function() do.call(f, params)
}

We force the function parameter, f, just in case. We don’t want it to change if it refers to 
an expression that might change after we have defined the thunk. Then we remember the 
parameters to the function. This evaluates the parameters, so no lazy evaluation here (it is 
much harder to keep track of the thunk if we need to keep the evaluation lazy), and then we 
return a function with no arguments that simply evaluates f on the remembered parameters.

Now we can turn any function into a thunk:

f <- function(x, y) x + y
thunk <- make_thunk(f, 2, 2)
thunk()
## [1] 4

If you are wondering why such functions are called thunks, here is what the Hackers 
Dictionary has to say:

Historical note: There are a couple of onomatopoeic myths circulating about 
the origin of this term. The most common is that it is the sound made by data 
hitting the stack; another holds that the sound is that of the data hitting an 
accumulator. Yet another holds that it is the sound of the expression being 
unfrozen at argument-evaluation time. In fact, according to the inventors, 
it was coined after they realized (in the wee hours after hours of discussion) 
that the type of an argument in Algol-60 could be figured out in advance 
with a little compile-time thought, simplifying the evaluation machinery. 
In other words, it had “already been thought of”; thus it was christened a 
thunk, which is “the past tense of ‘think’ at two in the morning”.

—The Hackers Dictionary1

We are going to wrap recursive calls into thunks where each thunk takes one step 
in a recursion. Each thunk evaluates one step and returns a new thunk that will evaluate 
the next step, and so on until a thunk eventually returns a value. The term for such 
evaluations is a trampoline, and the imagery is that each thunk bounce on the trampoline 
evaluates one step and lands on the trampoline again as the next thunk.

A trampoline is just a function that keeps evaluating thunks until it gets a value, and 
the implementation looks like this:

trampoline <- function(thunk) {
  while (is.function(thunk)) thunk <- thunk()
  thunk
}

1http://www.catb.org/jargon/html/T/thunk.html

http://www.catb.org/jargon/html/T/thunk.html
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To see how thunks and trampolines can be combined to avoid recursion, we will first 
consider the simpler case of calculating the factorial of a number instead of the size of a tree.

We wrote the recursive factorial function in Chapter 2 and the non-tail-recursive 
version looked like this:

factorial <- function(n) {
  if (n == 1) 1
  else n * factorial(n - 1)
}

and the tail-recursive version, using an accumulator, looked like this:

factorial <- function(n, acc = 1) {
  if (n == 1) acc
  else factorial(n - 1, acc * n)
}

To get the thunk-trampoline version, we are first going to rewrite this using 
continuation passing. This is mostly just turning the accumulator in the tail-recursive 
version into a continuation for computing the final result:

cp_factorial <- function(n, continuation = identity) {
  if (n == 1) {
    continuation(1)
  } else {
    new_continuation <- function(result) {
      continuation(result * n)
    }
    cp_factorial(n - 1, new_continuation)
  }
}

factorial(10)
## [1] 3628800
cp_factorial(10)
## [1] 3628800

This function does the same as the accumulator version, and because there is no 
tail-recursion optimization, it will call cp_factorial all the way down from n to 1. It will 
evaluate continuation functions just as many times. We can get it to work for n maybe 
up to a thousand or so times, but after that, we hit the recursion stack limit. Before we 
reach that limit, the number will be too large to represent as floating point numbers in R 
anyway, but that is not the point; the point is that the number of recursive calls can get 
too large for R to handle.

So instead of calling recursively, we want each recursive call to create a thunk 
instead. This will create a thunk that does the next step and returns a thunk for the step 
after that, but it will not call the next step, so no recursion. We need such thunks both for 
the recursions and the continuations. The implementation is simple, we just replace the 
recursions with calls to make_thunk:

http://dx.doi.org/10.1007/978-1-4842-2746-6_2
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thunk_factorial <- function(n, continuation = identity) {
  if (n == 1) {
    continuation(1)
  } else {
    new_continuation <- function(result) {
      make_thunk(continuation, n * result)
    }
    make_thunk(thunk_factorial, n - 1, new_continuation)
  }
}

Calling this function with 1 directly gives us a value:

thunk_factorial(1)
## [1] 1

Calling it with 2 creates a thunk. We need to call this thunk to move down the 
recursion to the base case. This will give us a thunk for the continuation there, and we 
need to evaluate that thunk to get the value:

thunk_factorial(2)()()
## [1] 2

For each additional step in the recursion, we thus get two more thunks, one for going 
down the recursion and the next for evaluating the thunk. But eventually we will have 
evaluated all the thunks and will get a value:

thunk_factorial(3)()()()()
## [1] 6
thunk_factorial(4)()()()()()()
## [1] 24
thunk_factorial(5)()()()()()()()()
## [1] 120

Of course, we don’t want to call all these thunks explicitly, that is what the 
trampoline is for:

trampoline(thunk_factorial(100))
## [1] 9.332622e+157

We can write another higher-order function for translating such a thunkenized 
function into one that uses the trampoline to do the calculation like this:

make_trampoline <- function(f) function(...) trampoline(f(...))
factorial <- make_trampoline(thunk_factorial)
factorial(100)
## [1] 9.332622e+157
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For computing the size of a tree, we just do exactly the same thing. It doesn’t matter 
that the continuation we use here does something more complex. It calls the depth-first 
traversal on the right subtree instead of just computing an expression directly because it 
is just a continuation and we just need to wrap it up as a thunk:

thunk_size <- function(node, continuation = identity) {
  if (is.null(node$left) && is.null(node$right)) {
    continuation(1)
  } else {
    new_continuation <- function(left_result)
      make_thunk(continuation,
                 left_result + thunk_size(node$right) + 1)
    make_thunk(thunk_size, node$left, new_continuation)
  }
}

size_of_tree <- make_trampoline(thunk_size)
size_of_tree(tree)
## [1] 5

The way we make the trampoline version is exactly the same as what we did for the 
factorial function. We made a continuation passing version of the recursion, then we 
translated the direct recursive calls into thunks, and we made our continuations return 
thunks. Using the trampoline, we never run into problems with hitting the call stack limit; 
we never call recursively, we just create thunks on the fly whenever we would otherwise 
need to call a function.

Isn’t this just mind-boggling clever?
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CHAPTER 5

Filter, Map, and Reduce

Chapter 4 covered some pieces of functional programming that can be hard to wrap 
your head around, but this chapter will be much simpler. We will just look at three 
general methods that are used in functional programming instead of loops and instead 
of explicitly writing recursive functions. They are really three different patterns for 
computing on sequences, and they come in different flavors in different functions, but 
just these three allow you do almost anything you would otherwise do with loops. Note 
the emphasis on almost!

These three functions do not replace everything you can do with loops. You can 
replace for loops, where you already know how much you are looping over, but they 
cannot substitute for while and repeat loops. Still, by far the most loops you write in R 
are for loops, and in general, you can use these functions to replace those.

The functions, or patterns, are Filter, Map, and Reduce. Filter takes a sequence and 
a predicate, a function that returns a boolean value, and it returns a sequence where all 
elements when the predicate was true are included and the rest are removed. Map evaluates 
a function on each item in a sequence and returns a sequence with the results of evaluating 
the function. It is similar to the sapply function we briefly saw in Chapter 4. Reduce takes a 
sequence and a function and evaluates the function repeatedly to reduce the sequence to a 
single value. This pattern is also called fold in some programming languages.

The General Sequence Object in R Is a List
Sequences come in two flavors in R: vectors and lists. Vectors can only contain basic 
types, and all elements in a vector must have the same type. Lists can contain a sequence 
of any type, and the elements in a list can have different types. Lists are thus more general 
than vectors and are often the building blocks of data structures such as the “next lists” 
and the trees we used earlier in the book.

It, therefore, comes as no surprise that general functions for working on sequences 
would work on lists. The three functions, Filter, Map, and Reduce, are also happy to take 
vectors, but they are treated just as if you had explicitly converted them to lists first. The 
Reduce function returns a value, not a sequence, of a type that depends on its input, while 
Filter and Map both return sequences in the form of a list.

From a programming perspective, it is just as easy to work with lists as it is to work 
with vectors, but some functions do expect vectors—plotting functions and functions 
for manipulating data frames, for example. So sometimes you will have to translate a list 

http://dx.doi.org/10.1007/978-1-4842-2746-6_4
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from Filter or Map into a vector. You can do this with the function unlist. This function 
will convert a list into a vector when this is possible, that is when all elements are of the 
same basic type, and otherwise will just give you the list back. We will use unlist in many 
examples in this chapter just because it makes the output nicer to look at, but in most 
programs, we would not bother doing so until we really need a vector. A list is just as good 
for storing sequences.

For example, this code:

list(1, 2, 3, 4)
## [[1]]
## [1] 1
##
## [[2]]
## [1] 2
##
## [[3]]
## [1] 3
##
## [[4]]
## [1] 4

gives us a much longer output listing to put in the book than:

1:4
## [1] 1 2 3 4

If you follow along in front of your compute you can see the results with and without 
unlist to get a feeling for the differences.

You rarely need to convert sequences the other way, from vectors to lists. Functions 
that work on lists usually also work on vectors, but if you want to, you could use the as.
list function and not the list function. The former gives you a list with one element per 
element in the vector:

as.list(1:4)
## [[1]]
## [1] 1
##
## [[2]]
## [1] 2
##
## [[3]]
## [1] 3
##
## [[4]]
## [1] 4



Chapter 5 ■ Filter, Map, and reduCe

79

whereas the latter gives you a list with a single element that contains the vector:

list(1:4)
## [[1]]
## [1] 1 2 3 4

Filtering Sequences
The Filter function is the simplest of the three main functions we cover in this chapter. 
It simply selects a subset of a sequence based on a predicate. A predicate is a function 
that returns a single boolean value, and Filter will return a list of elements where the 
predicate returned TRUE and discard the elements where the predicate returned FALSE:

is_even <- function(x) x %% 2 == 0
unlist(Filter(is_even, 1:10))
## [1]  2  4  6  8 10

The function is often used together with closures so the predicate can depend on 
local variables:

larger_than <- function(x) function(y) y > x
unlist(Filter(larger_than(5), 1:10))
## [1]  6  7  8  9 10

And of course this works with the curry functions we wrote earlier:

unlist(Filter(curry2(`<`)(5), 1:10))
## [1]  6  7  8  9 10
unlist(Filter(curry2(`>=`)(5), 1:10))
## [1] 1 2 3 4 5

Using curry2 with a binary operator as shown here can look a little confusing, 
though. We have the left-hand side of the operator immediately to the right of the 
operator, so the casual reader would expect curry2(<)(5) to pick numbers less than five 
while in fact it does the opposite since curry2(<)(5) translates to function(y) 5 < y. 
We can easily fix this by reversing the order of arguments in the curry function:

rcurry2 <- function(f) function(y) function(x) f(x, y)
unlist(Filter(rcurry2(`>=`)(5), 1:10))
## [1]  5  6  7  8  9 10
unlist(Filter(rcurry2(`<`)(5), 1:10))
## [1] 1 2 3 4

Here we have used a vector as input to Filter, but any list will do, and we do not 
need to limit it to sequences of the same type:

s <- list(a = 1:10, b = list(1,2,3,4,5,6),
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          c = y ~ x1 + x2 + x3, d = vector("numeric"))
Filter(function(x) length(x) > 5, s)
## $a
##  [1]  1  2  3  4  5  6  7  8  9 10
##
## $b
## $b[[1]]
## [1] 1
##
## $b[[2]]
## [1] 2
##
## $b[[3]]
## [1] 3
##
## $b[[4]]
## [1] 4
##
## $b[[5]]
## [1] 5
##
## $b[[6]]
## [1] 6

When printed, the results aren’t pretty, but we can’t solve that with unlist in this 
case. Using unlist we would get a vector, but not one remotely reflecting the structure of 
the result. The vector a and list b would be flattened into a single vector.

Mapping Over Sequences
The Map function evaluates a function for each element in a list and returns a list with the 
results:

unlist(Map(is_even, 1:5))
## [1] FALSE  TRUE FALSE  TRUE FALSE

As with Filter, Map is usually combined with closures:

add <- function(x) function(y) x + y
unlist(Map(add(2), 1:5))
## [1] 3 4 5 6 7
unlist(Map(add(3), 1:5))
## [1] 4 5 6 7 8
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and can be applied on lists of different types:

s <- list(a = 1:10, b = list(1,2,3,4,5,6),
          c = y ~ x1 + x2 + x3, d = vector("numeric"))
unlist(Map(length, s))
##  a  b  c  d
## 10  6  3  0

Map can be applied to more than one sequences if the function you provide it takes a 
number of parameters that matches the number of sequences:

unlist(Map(`+`, 1:5, 1:5))
## [1]  2  4  6  8 10

In this example, we use the function `+`, which takes two arguments, and we give 
the Map function two sequences, so the result is the component-wise addition.

You can pass along named parameters to a Map call, either directly as a named 
parameter:

x <- 1:10
y <- c(NA, x)
s <- list(x = x, y = y)
unlist(Map(mean, s))
##   x   y
## 5.5  NA
unlist(Map(mean, s, na.rm = TRUE))
##   x   y
## 5.5 5.5

or as a list provided to the MoreArgs parameter:

unlist(Map(mean, s, MoreArgs = list(na.rm = TRUE)))
##   x   y
## 5.5 5.5

For a single value, the two approaches work the same, but the semantics are slightly 
different, which comes into play when providing arguments that are sequences. Providing 
a named argument directly to Map works just as if providing an unnamed argument 
(except that you can pick a specific variable by name instead of by position). So Map 
assumes that you want to apply your function to every element of the argument. The 
reason this works with a single argument is that, as R generally does, the shorter sequence 
is repeated as many times as needed. With a single argument, that is exactly what we 
want, but it isn’t necessarily with a sequence.

If we want that behavior, we can just use the named argument to Map, but if we want 
the function to be called with the entire sequence each time it is called, we must put the 
sequence as an argument to the MoreArgs parameter.
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As an example, we can consider our trusted friend the scale function and make a 
version where a vector, x, is scaled by the mean and standard deviation of another vector, y:

scale <- function(x, y) (x - mean(y))/sd(y)

If we just provide Map with two arguments for scale, it will evaluate all pairs 
independently (and we will get a lot of NA values because we are calling the sd function on 
a single value):

unlist(Map(scale, 1:10, 1:5))
##  [1] NA NA NA NA NA NA NA NA NA NA

The same happens if we name parameter y:

unlist(Map(scale, 1:10, y = 1:5))
##  [1] NA NA NA NA NA NA NA NA NA NA

But if we use MoreArgs, the entire vector y is provided to scale in each call:

unlist(Map(scale, 1:10, MoreArgs = list(y = 1:5)))
##  [1] -1.2649111 -0.6324555  0.0000000  0.6324555
##  [5]  1.2649111  1.8973666  2.5298221  3.1622777
##  [9]  3.7947332  4.4271887

Just as Filter, Map is not restricted to work on vectors, so we can map over arbitrary 
types as long as our function can handle the different types:

s <- list(a = 1:10, b = list(1,2,3,4,5,6),
          c = y ~ x1 + x2 + x3, d = vector("numeric"))
unlist(Map(length, s))
##  a  b  c  d
## 10  6  3  0

Reducing Sequences
While Filter and Map produce lists, the Reduce function transforms a list into a value. Of 
course that value can also be a list, since lists are also values, but Reduce doesn’t simply 
process each element in its input list independently. Instead, it summarizes the list by 
applying a function iteratively to pairs. You provide it a function, f, of two elements, and 
it will first call f on the first two elements in the list. Then it will take the result of this and 
call f with this and the next element, and continue doing that through the list.

So calling Reduce(f, 1:5) will be equivalent to calling:

f(f(f(f(1, 2), 3), 4), 5)

It is just more readable to write Reduce(f, 1:5).
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We can see this in action using `+` as the function:

Reduce(`+`, 1:5)
## [1] 15

You can also get the step-wise results back by using the parameter accumulate. This 
will return a list of all the calls to f and include the first value in the list, so Reduce(f, 1:5) 
will return the list:

c(1, f(1, 2), f(f(1 ,2), 3), f(f(f(1, 2), 3), 4),
   f(f(f(f(1, 2), 3), 4), 5))

So for addition we would get:

Reduce(`+`, 1:5, accumulate = TRUE)
## [1]  1  3  6 10 15

By default Reduce does its computations from left to right, but by setting the option 
right to TRUE, you instead get the results from right to left:

Reduce(`+`, 1:5, right = TRUE, accumulate = TRUE)
## [1] 15 14 12  9  5

For an associative operation like `+`, this will, of course, give the same result if we do 
not ask for the accumulative function calls.

In many functional programming languages, which all have this function, although 
it is sometimes called fold or accumulate, you need to provide an initial value for the 
computation. This is then used in the first call to f, so the folding instead starts with 
f(init, x[1]) if init refers to the initial value and x is the sequence.

You can also get that behavior in R by explicitly giving Reduce an initial value through 
parameter init:

Reduce(`+`, 1:5, init = 10, accumulate = TRUE)
## [1] 10 11 13 16 20 25

You just don’t need to specify this initial value that often. In languages that require 
it, it is used to get the right starting point when accumulating results. For addition, we 
would use 0 as an initial value if we want Reduce to compute a sum because adding zero 
to the first value in the sequence would just get us the first element. For multiplication, 
we would instead have to use 1 as the initial value since that is how the first function 
application will just give us the initial value.

In R we don’t need to provide these initial values if we are happy with just having the 
first function call be on the first two elements in the list. So multiplication works just as 
well as addition without providing init:

Reduce(`*`, 1:5)
## [1] 120
Reduce(`*`, 1:5, accumulate = TRUE)
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## [1]   1   2   6  24 120
Reduce(`*`, 1:5, right = TRUE, accumulate = TRUE)
## [1] 120 120  60  20   5

You wouldn’t normally use Reduce for summarizing values as their sum or product. 
There are already functions in R for this (sum and prod, respectively), and these are much 
faster as they are low-level functions implemented in C while Reduce has to be a high-
level function to handle arbitrary functions. For more complex data where we do not 
already have a function to summarize a list, Reduce is often the way to go.

Here is an example taken from Hadley Wickham’s Advanced R book:1

samples <- replicate(3, sample(1:10, replace = TRUE),
                                     simplify = FALSE)
str(samples)
## List of 3
##  $ : int [1:10] 7 10 4 3 7 10 4 4 4 3
##  $ : int [1:10] 3 6 2 1 8 10 3 3 10 3
##  $ : int [1:10] 7 10 10 3 9 7 9 8 1 4
Reduce(intersect, samples)
## [1] 10  3

We have a list of three vectors each with ten samples of the numbers from 1 to 10, 
and we want to get the intersection of these three lists. That means taking the intersection 
of the first two and then taking the intersection of that result and the third list. Perfect for 
Reduce. We just combine it with the intersection function.

Bringing the Functions Together
The three functions are often used together, where Filter first gets rid of elements that 
should not be processed, then Map processes the list, and finally Reduce combines all the 
results.

In this section, we will see a few examples of how we can use these functions 
together. We start with processing trees. Remember that we can construct trees using the 
make_node function we wrote earlier, and we can, of course, create a list of trees:

A <- make_node("A")
C <- make_node("C", make_node("A"),
                    make_node("B"))
E <- make_node("E",
               make_node("C", make_node("A"), make_node("B")),
               make_node("D"))

trees <- list(A = A, C = C, E = E)

1Advanced R, Hadley Wickham, September 25, 2014, Chapman and Hall/CRC,  
ISBN 9781466586963.
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Printing a tree gives us the list representation of it. If we unlist a tree, we get the 
same representation, just flattened, so the structure is shown in the names of the resulting 
vector. But here we wrote a print_tree function that gives us a string representation in 
Newick format:

trees[[2]]
## $name
## [1] "C"
##
## $left
## $left$name
## [1] "A"
##
## $left$left
## NULL
##
## $left$right
## NULL
##
##
## $right
## $right$name
## [1] "B"
##
## $right$left
## NULL
##
## $right$right
## NULL
unlist(trees[[2]])
##       name  left.name right.name
##        "C"        "A"        "B"
print_tree(trees[[2]])
## [1] "(A,B)"

We can use Map to translate a list of trees into their Newick format and flatten this list 
to just get a vector of characters:

Map(print_tree, trees) 
## $A
## [1] "A"
##
## $C
## [1] "(A,B)"
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##
## $E
## [1] "((A,B),D)"
unlist(Map(print_tree, trees))
##           A           C           E
##         "A"     "(A,B)" "((A,B),D)"

We can combine this with Filter to only get the trees that are not single leaves. Here 
we can use the size_of_tree function we wrote earlier:

unlist(Map(print_tree,
           Filter(function(tree) size_of_tree(tree) > 1, trees)))
##           C           E
##     "(A,B)" "((A,B),D)"

or we can get the size of all trees and compute their sum by combining Map with Reduce:

unlist(Map(size_of_tree, trees))
## A C E
## 1 3 5
Reduce(`+`, Map(size_of_tree, trees), 0)
## [1] 9

We can also search for the node depth of a specific node and for example get the 
depth of "B" in all the trees:

node_depth_B <- function(tree) node_depth(tree, "B")
unlist(Map(node_depth_B, trees))
##  A  C  E
## NA  1  2

The names we get in the results are just confusing. They refer to the names we gave 
the trees when we constructed the list, and we can get rid of them by using the parameter 
use.names in unlist. In general, if you don’t need the names of a vector, you should 
always do this. It speeds up computations when R doesn’t have to drag names along with 
the data you are working on:

unlist(Map(node_depth_B, trees), use.names = FALSE)
## [1] NA  1  2

For trees that do not have a "B" node, we get NA when we search for the node depth, 
and we can easily remove those using Filter:

Filter(function(x) !is.na(x),
       unlist(Map(node_depth_B, trees), use.names = FALSE))
## [1] 1 2
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or we can explicitly check if a tree has node "B" before we Map over the trees:

has_B <- function(node) {
  if (node$name == "B") return(TRUE)
  if (is.null(node$left) && is.null(node$right)) return(FALSE)
  has_B(node$left) || has_B(node$right)
}
unlist(Map(node_depth_B, Filter(has_B, trees)), use.names = FALSE)
## [1] 1 2

The solution with filtering after mapping is probably preferable since we do not have 
to remember to match the has_B with node_depth_B if we replace them with general 
functions that handle arbitrary node names, but either solution will work.

The Apply Family of Functions
The Map function is a general solution for mapping over elements in a list, but R has a 
whole family of Map-like functions that operate on different types of input. These are 
all named “something”-apply, and we have already seen sapply in Chapter 4. The Map 
function is actually just a wrapper around one of these, the function mapply, and since 
we have already seen Map in use, I will not discuss mapply here, but I will give you a brief 
overview of the other functions in the apply family.

sapply, vapply, and lapply
The functions sapply, vapply, and lapply all operate on sequences. The difference is that 
sapply tries to simplify its output, vapply takes a value as an argument and will coerce its 
output to have the type of this value and give an error if it cannot, and lapply maps over lists.

Using sapply is convenient for interactive sessions since it essentially works like Map 
combined with unlist when the result of a map can be converted into a vector. Unlike 
unlist, it will not flatten a list. So if the result of a map is more complex than a vector, 
sapply will still give you a list as its result. Because of this, sapply can be dangerous to use 
in a program. You don’t necessarily know which type the output will have, so you have to 
program defensively and check if you get a vector or a list:

sapply(trees, size_of_tree)
## A C E
## 1 3 5
sapply(trees, identity)
##       A    C      E
## name  "A"  "C"    "E"
## left  NULL List,3 List,3
## right NULL List,3 List,3

http://dx.doi.org/10.1007/978-1-4842-2746-6_4
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Using vapply you get the same simplification as using sapply if the result can be 
transformed into a vector, but you have to tell the function what type the output should 
have. You do this by giving it an example of the desired output. If vapply cannot translate 
the result into that type, you get an error instead of a type of a different type, making 
the function safer to use in your programming. After all, getting errors is better than 
unexpected results due to type confusion:

vapply(trees, size_of_tree, 1)
## A C E
## 1 3 5

The lapply function is the most similar to Map. It takes a list as input and returns 
a list. The main difference between lapply and Map is that lapply always operates on 
a single list, while Map can take multiple lists (which explains the name of mapply, the 
function that Map is a wrapper for):

lapply(trees, size_of_tree)
## $A
## [1] 1
##
## $C
## [1] 3
##
## $E
## [1] 5

The apply Function
The apply function works on matrices and higher-dimensional arrays instead of 
sequences. It takes three parameters, plus any additional parameters that should just 
be passed along to the function called. The first parameter is the array to map over, the 
second determines which dimension(s) should be marginalized, and the third gives the 
function that should be applied.

We can see this in action by creating a matrix to apply over:

(m <- matrix(1:6, nrow=2, byrow=TRUE))
##      [,1] [,2] [,3]
## [1,]    1    2    3
## [2,]    4    5    6

To see what is actually happening, we will create a function that collects the data that 
it gets so we can see exactly what it is called with:

collaps_input <- function(x) paste(x, collapse = ":")
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If we marginalize on rows, it will be called on each of the two rows and the function 
will be called with the entire row vectors:

apply(m, 1, collaps_input)
## [1] "1:2:3" "4:5:6"

If we marginalize on columns, it will be called on each of the three columns and 
produce tree strings:

apply(m, 2, collaps_input)
## [1] "1:4" "2:5" "3:6"

If we marginalize on both rows and columns, it will be called on each single element 
instead:

apply(m, c(1, 2), collaps_input)
##      [,1] [,2] [,3]
## [1,] "1"  "2"  "3"
## [2,] "4"  "5"  "6"

The tapply Function
The tapply function works on so-called ragged tables, tables where the rows can have 
different lengths. You cannot directly make an array with different sizes of dimensions 
in rows, but you can use a flat vector combined with factors that indicate which virtual 
dimensions you are using. The tapply function groups the vectors according to a factor 
and then calls its function with each group:

(x <- rnorm(10))
##  [1]  0.1311435 -2.8011897 -0.5525549  0.7913567
##  [5]  0.1799513  0.9231047 -0.7701383  0.2615430
##  [9]  0.4992433 -1.3999893
(categories <- sample(c("A", "B", "C"), size = 10, replace = TRUE))
##  [1] "B" "A" "A" "C" "C" "A" "A" "B" "B" "C"
tapply(x, categories, mean)
##          A          B          C
## -0.8001945  0.2973099 -0.1428937

You can use more than one factor if you wrap the factors in a list:

(categories2 <- sample(c("X", "Y"), size = 10, replace = TRUE))
##  [1] "Y" "X" "Y" "X" "X" "X" "X" "X" "X" "Y"
tapply(x, list(categories, categories2), mean)
##            X          Y
## A -0.8827411 -0.5525549
## B  0.3803931  0.1311435
## C  0.4856540 -1.3999893
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Functional Programming in purrr
The Filter, Map, and Reduce functions are the building blocks of many functional 
algorithms, in addition to recursive functions. However, many common operations 
require various combinations of the three functions and combinations with unlist, so 
writing functions using only these three or four functions means building functions from 
the most basic building blocks. This is not efficient, so you want to have a toolbox of more 
specific functions for common operations.

The package purrr implements a number of such functions for more efficient 
functional programming, in addition to its own versions of Filter, Map, and Reduce. 
Complete coverage of the purrr package is beyond the scope of this book, but I will give 
a quick overview of the functions available in the package and urge you to explore the 
package more if you are serious in using functional programming in R.

Using library(purr)
The functions in purrr all take the sequence they operate on as their first argument, similar 
to the apply family of functions but different from the Filter, Map, and Reduce functions.

Filter-like Functions
The purrr analog of Filter is called keep and it works exactly like Filter. It takes a 
predicate and returns a list of the elements in a sequence where the predicate returns 
TRUE. The function discard works similarly but returns the elements where the predicate 
returns FALSE:

keep(1:5, rcurry2(`>`)(3))
## [1] 4 5
discard(1:5, rcurry2(`>`)(3))
## [1] 1 2 3

If you give these functions a vector, you get a vector back, of the same type, and if you 
give them a list, you get a list back:

keep(as.list(1:5), rcurry2(`>`)(3))
## [[1]]
## [1] 4
##
## [[2]]
## [1] 5

Two convenience functions that you could implement by checking the length of the 
list returned by Filter are every and some, which check if all elements in the sequence 
satisfy the predicate or if some elements satisfy the predicate, respectively:

every(1:5, rcurry2(`>`)(0))
## [1] TRUE
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every(1:5, rcurry2(`>`)(3))
## [1] FALSE
some(1:5, rcurry2(`>`)(3))
## [1] TRUE
some(1:5, rcurry2(`>`)(6))
## [1] FALSE

In the examples here I have used the rcurry2 function we defined earlier, but with 
purrr it is very easy to write anonymous functions in a less verbose way than the typical 
R functions. You can use the “formula notation” and define an anonymous function by 
writing ~ followed by the body of the function, where the function argument is referred to 
by the variable .x:

keep(1:5, ~ .x > 3)
## [1] 4 5
discard(1:5, ~ .x > 3)
## [1] 1 2 3

This shorthand for anonymous functions is only available within functions from 
purrr, though. Just because you have imported the purrr package, does not mean that 
you can use this shorthand for specifying anonymous functions outside of calls to purrr 
functions.

Map-like Functions
The Map functionality comes in different flavors in purrr, depending on the type of output 
you want and the number of input sequences you need to map over.

The map function always returns a list, while the functions map_lgl, map_int, map_
dbl, and map_chr return vectors of logical values, integer values, numeric (double) values, 
and characters, respectively:

map(1:5, ~ .x + 2)
## [[1]]
## [1] 3
##
## [[2]]
## [1] 4
##
## [[3]]
## [1] 5
##
## [[4]]
## [1] 6
##
## [[5]]
## [1] 7
map_dbl(1:5, ~ .x + 2)
## [1] 3 4 5 6 7
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The map family of functions all take a single sequence as input, but there are 
corresponding functions for two sequences, the map2 family, and for an arbitrary number 
of sequences, the pmap family.

For the map2 functions, you can create anonymous functions that refer to the two 
input values they will be called with by using the variables .x and .y:

map2(1:5, 6:10, ~ 2 * .x + .y)
## [[1]]
## [1] 8
##
## [[2]]
## [1] 11
##
## [[3]]
## [1] 14
##
## [[4]]
## [1] 17
##
## [[5]]
## [1] 20
map2_dbl(1:5, 6:10, ~ 2 * .x + .y)
## [1]  8 11 14 17 20

For arbitrary numbers of sequences, you must use the pmap family and wrap the 
sequences in a list that is given as the first parameter. If you use anonymous functions, 
you will need to define them using the general R syntax; there are no shortcuts for 
specifying anonymous functions with three or more parameters:

pmap(list(1:5, 6:10, 11:15),
     function(x, y, z) x + y + z)
## [[1]]
## [1] 18
##
## [[2]]
## [1] 21
##
## [[3]]
## [1] 24
##
## [[4]]
## [1] 27
##
## [[5]]
## [1] 30
pmap_dbl(list(1:5, 6:10, 11:15),
         function(x, y, z) x + y + z)
## [1] 18 21 24 27 30

www.allitebooks.com

http://www.allitebooks.org
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The function map_if provides a variation of map that only applies the function it is 
mapping if a predicate is TRUE. If the predicate returns FALSE for an element, that element 
is kept unchanged.

For example, we can use it to multiply only numbers that are not even by two like this:

unlist(map_if(1:5, ~ .x %% 2 == 1, ~ 2*.x))
## [1]  2  2  6  4 10

A particularly nice feature of purrr’s map functions is that you can provide them with a 
string instead of a function. This is used when you are working with sequences of elements 
that have names, like data frames and lists, to extract named components. So if we map over 
the trees from earlier, we can, for example, use map to extract the left child of all the trees:

map_chr(map(keep(trees, ~ size_of_tree(.x) > 1), "left"),
        print_tree)
##       C       E
##     "A" "(A,B)"

Here we combine three different functions: we use keep so we only look at trees that 
actually have a left child. Then we use map with "left" to extract the left child, and finally, 
we use map_chr to translate the trees into Newick format for printing.

Reduce-like Functions
The Reduce function is implemented in two different functions: reduce and reduce_
right. The first reduces from the left and the second from the right:

reduce(1:5, `+`)
## [1] 15

reduce_right(1:5, `*`)
## [1] 120
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CHAPTER 6

Point-Free Programming

In this last chapter we will not so much discuss actual programming but a programming 
style called point-free programming (not pointless programming), which is characterized 
by constructing functions through a composition of other functions and not by actually 
writing new functions.

A lot of computing can be expressed as the steps that data flow through and how 
data are transformed along the way. We write functions to handle all the most basic steps, 
the atoms of a program, and then construct functions for more complex operations by 
combining more fundamental transformations, building program molecules from the 
program atoms.

The term point free refers to the intermediate states data can be in when computing a 
sequence of transformations. The points it refers to are the states the data are in after each 
transformation, and point free means that we do not focus on these points in any way. 
They are simply not mentioned anywhere in code written using point-free programming.

This might all sound a bit abstract, but if you are used to writing pipelines in shell 
scripts, it should soon become very familiar because point-free programming is exactly 
what you do when you write a pipeline. There, data flow through a number of programs, 
tied together, so the output of one program becomes the input for the next in the pipeline, 
and you never refer to the intermediate data, only the steps of transformations the data go 
through as they are processed by the pipeline.

Function Composition
The simplest way to construct new functions from basic ones is through function 
composition. In mathematics, if we have a function, f, mapping from domain A to  
domain B, and another function g, mapping from B to C, we can create a new function h, 
mapping from A to C, by composing the two: h(x) = g(f(x)).

We can do exactly the same thing in R and define h in terms of functions f and g like 
this:

h <- function(x) g(f(x))
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or even more verbose:

h <- function(x) {
  y <- f(x)
  g(y)
}

Either way, there is a lot of extra fluff in writing a new function explicitly just to 
combine two other functions. In mathematical notation, we don’t write the combination 
of two functions that way. We write the function composition as h = g o f. Composing 
functions to define new functions, rather than defining functions that just explicitly call 
others, is what we call point-free programming, and it is easily done in R.

We can write a function composition function, a higher-order function that takes two 
functions as arguments and returns their composition:

compose <- function(g, f) function(...) g(f(...))

We can then use this function to handle a common case when we are using Map and 
frequently want to unlist the result:

umap <- compose(unlist, Map)
umap(curry2(`+`)(2), 1:4)
## [1] 3 4 5 6

To get something similar to the mathematical notation, we want it to be an infix operator, 
but the package pryr has already defined it for us, so we can write the same code as this:

library(pryr)
umap <- unlist %.% Map
umap(curry2(`+`)(2), 1:4)
## [1] 3 4 5 6

We are not limited to only composing two functions, and since function composition 
is associative, we don’t need to worry about the order in which they are composed, 
so we don’t need to use parentheses around compositions. We can combine three or 
more functions as well, and we can combine functions with anonymous functions if we 
need some extra functionality that isn’t already implemented as a named function. For 
example, we could define a function for computing the root mean square error like this:

rmse <- sqrt %.% mean %.% function(x, y) (x - y)**2
rmse(1:4, 2:5)
## [1] 1

We need a new function for computing the squared distance between x and y, so we 
add an anonymous function for that, but then we can just use mean and sqrt to get the 
rest of the functionality.
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In the mathematical notation for function composition, you always write the 
functions you compose in the same order as you would write them if you explicitly called 
them, so h o g o f would be evaluated on a value x as h(g(f(x))). This is great if you 
are used to reading from right to left, but if you are used to reading left to right, it is a bit 
backward.

Of course, nothing prevents us from writing a function composition operator that 
reverses the order of the functions. To avoid confusion with the mathematical notation  
for function composition, we would use a different operator so we could define; such that 
f; g = g o f and in R use that for function composition:

`%;%` <- function(f, g) function(...) g(f(...))
rmse <- (function(x, y) (x - y)**2) %;% mean %;% sqrt
rmse(1:4, 2:5)
## [1] 1

Here we need parentheses around the anonymous function to prevent R from 
considering the composition as part of the function body, but otherwise, the functionality 
is the same as before, and we can just read the composition from left to right.

Pipelines
The magrittr package already implements a left-to-right function composition as the 
operator %>%. The magrittr package aims at making pipelines of data analysis simpler. 
It allows you to chain together various data transformations and analyses in ways very 
similar to how you chain together command-line tools in shell pipelines. The various 
operations are function calls, and these functions are chained together with the %>% 
operator, moving the output of one function to the input of the next.

For example, to take the vector 1:4, get the mean of it, and then take the sqrt, you can 
write a pipeline like this:

library(magrittr)
1:4 %>% mean %>% sqrt
## [1] 1.581139

The default is that the output from the previous step in the pipeline is passed as the 
first argument to the next function in the pipeline. To write your own functions to fit into 
this pattern, you just need to make sure the data that come through a pipeline are the first 
argument for your function. Because magrittr pipelines are now frequently used in R, 
this is the pattern that most functions follow, and it is used in popular packages like dplyr 
and tidyr. The purrr package is also designed to work well with magrittr pipelines. All 
its functions take the data they operate on as their first parameter, so stringing together 
several transformations using %>% is straightforward.

Not all functions follow the pattern, mostly older functions do not, but you can use 
the variable “ . ” to refer to the data being passed along the pipeline when you need it to go 
at a different position than the first:

data.frame(x = 1:4, y = 2:5) %>% plot(y ~ x, data = .)
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If the input is a data frame, you can access its columns using the column names as 
you would with any other data frame; the argument is still “ . ” and you just need to use 
that parameter to refer to the data:

data.frame(x = 1:4, y = 2:5) %>% plot(.$x, .$y)

The “ . ” parameter can be used several times in a function call in the pipeline and can 
be used together with function calls in a pipeline, for example:

rnorm(4) %>% data.frame(x = ., y = cos(.))
##            x           y
## 1  2.4314053 -0.75823974
## 2 -0.1664974  0.98617130
## 3 -1.5018321  0.06890957
## 4  0.6464462  0.79822948

There is one caveat, though, if “ . ” only appears in function calls, it will also be given 
to the function as a first parameter. This means that code such as the example below will 
create a data frame with three variables, the first being a column named “ . ”:

rnorm(4) %>% data.frame(x = sin(.), y = cos(.))
##            .          x           y
## 1  0.9582171  0.8181677  0.57497963
## 2  0.2870045  0.2830805  0.95909615
## 3  0.1195326  0.1192482  0.99286448
## 4 -1.6182240 -0.9988755 -0.04740988

While the package is mainly intended for writing such data processing pipelines, it can 
also be used for defining new functions by composing other functions, this time with the 
functions written in left-to-right order. You write such functions just as you would write data 
processing pipelines, but let the first step in the pipeline be “ . ”, so this is a data pipeline:

mean_sqrt <- 1:4 %>% mean %>% sqrt
mean_sqrt
## [1] 1.581139

while this is a function:

mean_sqrt <- . %>% mean %>% sqrt
mean_sqrt(1:4)
## [1] 1.581139

which of course is a function that you can use in a pipeline:

1:4 %>% mean_sqrt
## [1] 1.581139



Chapter 6 ■ point-Free programming

99

You can only use this approach to define functions taking a single argument as input. 
If you need more than one argument, you will need to define your function explicitly. The 
whole pipeline pattern works by assuming that it is a single piece of data that is passed 
along between function calls. But nothing prevents you from having complex data, such 
as data frames, and emulate having more than one argument in this way.

Take for example the root mean square error function we wrote above:

rmse <- (function(x, y) (x - y)**2) %;% mean %;% sqrt

This function takes two arguments so we cannot create it using “.”. We can instead 
change it to take a single argument, for example, a data frame, and get the two values 
from there:

rmse <- . %>% { (.$x - .$y)**2 } %>% mean %>% sqrt
data.frame(x = 1:4, y = 2:5) %>% rmse
## [1] 1

Here we also used another feature of magrittr, a less verbose syntax for writing 
anonymous functions. By writing the expression {(.$x - .$y)**2} in curly braces, we 
are making a function, in which we can refer to the argument as “ . ”.

Being able to write anonymous functions by just putting expressions in braces is 
very convenient when the data need to be massaged just a little to fit the output of one 
function to the expected input of the next.

Anonymous functions are also the way to prevent the “ . ” parameter from getting 
implicitly passed as the first argument to a function when it is otherwise only used in 
function calls. If the expression is wrapped in curly braces, then the function call is not 
modified in any way and “ . ” is not implicitly added as a first parameter:

rnorm(4) %>% { data.frame(x = sin(.), y = cos(.)) }
##            x          y
## 1  0.7087547 -0.7054550
## 2  0.8377746  0.5460162
## 3 -0.7275843  0.6860183
## 4 -0.1222865  0.9924948
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Afterword

This concludes this book on functional programming in R. You now know all the basic 
programming patterns used in day-to-day functional programming and how to use them 
in the R programming language.

Getting used to writing functional programs might take a little effort if you are only 
used to imperative or object-oriented programming, but the combination of higher-order 
functions and closures is a very powerful paradigm for effective programming, and writing 
pure functions whenever possible makes for code that is much simpler to reason with.

R is not a pure functional programming language, though, so your code will usually 
mix imperative programming—which in most cases means using loops instead of 
recursions, both for convenience and efficiency reasons—with functional patterns. With 
careful programming, you can still keep the changing states of a program to a minimum 
and keep most of your program pure.

Helping you keep programming pure is the immutability of data in R. Whenever 
you “modify” data, you will implicitly create a copy of the data and then modify the 
copy. For reasoning within your programs, that is good news. It is very hard to create 
side effects from functions. It does come with some drawbacks, however. Many classical 
data structures assume that you can modify data. Since you cannot do this in R, you will 
instead have to construct your data structures so that updating them means creating new, 
modified, data structures.

We have seen how we can use linked lists (“next lists” in the terminology I used in 
this book) and trees with functions that modify the data when computing on it. Lists and 
trees form the basic constructions for data structures in functional programs, but efficient 
functional data structures are beyond the scope of this book. I plan to return to it in a later 
book in the series.

I will end the book here, but I hope it is not the end of your exploration of functional 
programming in R.
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