
www.allitebooks.com

http://www.allitebooks.org

Getting Started with
Electronic Projects

Build thrilling and intricate electronic projects using
LM555, ZigBee, and BeagleBone

Bill Pretty

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Electronic Projects

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2015

Production reference: 1080115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-451-5

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Bill Pretty

Reviewers
Mario Baldini

Chirag Nagpal

Dr. Philip Polstra

Glenn Vander Veer

Commissioning Editor
Amarabha Banerjee

Acquisition Editor
Owen Roberts

Content Development Editor
Pooja Nair

Technical Editors
Vivek Arora

Siddhi Rane

Copy Editor
Vikrant Phadkay

Project Coordinator
Leena Purkait

Proofreaders
Stephen Copestake

Ameesha Green

Indexers
Rekha Nair

Priya Sane

Graphics
Sheetal Aute

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Author

Bill Pretty began his career in electronics in the early '80s with a small telecom
start-up company that would eventually become a large multinational. He left that
company to pursue a career in commercial aviation in Canada's north. From there,
he joined the Ontario Center for Microelectronics, a provincially funded research
and development center. After that, a career in the military as a civilian contractor
at what was then called the Defense Research Establishment Ottawa. This began a
career that was to span the next 25 years, and continues today.

Over the years, he has acquired extensive knowledge in the field of technical
security and started his own company in 2010. That company is called William
Pretty Security Inc. and provides support, in the form of research and development,
to various law enforcement and private security agencies.

He has published and presented a number of white papers on the subject of technical
security. He was also a guest presenter for a number of years at the Western Canada
Technical Conference, a law enforcement-only conference held every year in western
Canada. A selection of these papers is available for download from his website
(http://www.williamprettysecurity.com/).

There a number of people I would like to thank, for without their
support, this book would never have been completed. My good
friends at Packt Publishing for having the patience and trust in
me once again. To my partner in life, Donna, who never stopped
believing in me. Last but not least, my good friends and fellow code
warriors Willie the Mad Scott and Glen the flying Dutchman.

www.allitebooks.com

http://www.williamprettysecurity.com/
http://www.allitebooks.org

About the Reviewers

Mario Baldini graduated in Computer Science from the Federal University
of Santa Catarina and enrolled in the Electrical Engineering Masters program.
He has developed several biomedical signal acquisition systems and mission-critical
industrial controllers. He works actively with start-ups in Brazil to foster embedded
electronic device development and Internet of Things projects in the region.

Chirag Nagpal is currently in the junior year of Computer Engineering at the
University of Pune, India. His research interests include machine learning and data
mining. He is currently an intern at the Supercomputer Education and Research
Centre at the Indian Institute of Science, Bangalore, where he works on problems
involving the application of AI techniques to analyze data from social networks.
He is a recipient of the Indian Academy of Sciences Research Fellowship and an
Institution of Engineering and Technology scholarship.

Apart from his academic work, he enjoys hacking hardware and explores the
developing area of the Internet of Things. Some of his work has been featured on
Hackaday and Dangerous Prototypes. He has also been involved with the Texas
Instruments Centre for Embedded Product Design at NSIT, Delhi, where he has
trained undergraduates from across India on TI microcontrollers and development
boards. He is also a licensed ham, with the call sign VU2CND. Complete details of
his projects are available at http://www.chiragnagpal.com.

For this book, I would like to thank my parents and Prof. DV Gadre
for constantly nudging me forward.

www.allitebooks.com

http://www.chiragnagpal.com
http://www.allitebooks.org

Dr. Philip Polstra (known to his friends as Dr. Phil) is an internationally
recognized hardware hacker. His work has been presented at numerous conferences
around the globe, including repeat performances at DEFCON, Blackhat, 44CON,
Maker Faire, GrrCON, ForenSecure, and other top conferences. He is a well-known
expert on USB forensics and has published several articles on this topic.

He has developed a penetration testing Linux distribution, known as The Deck,
for the BeagleBone and BeagleBoard family of small computer boards. He has also
developed a new way of doing penetration testing with multiple low-power devices,
including an aerial hacking drone. This work is described in his book, Hacking and
Penetration Testing With Low Power Devices, Syngress. He has also been a technical
reviewer on several books including BeagleBone for Secret Agents and BeagleBone
Home Automation, both by Packt Publishing.

He is an associate professor at Bloomsburg University, Pennsylvania
(http://bloomu.edu/digital_forensics), where he teaches digital forensics,
among other topics. In addition to teaching, he provides training and performs
penetration tests on a consulting basis. When not working, he is known to fly, build
aircrafts, and tinker with electronics. His latest happenings can be found on his blog
at http://philpolstra.com. You can also follow him on Twitter at @ppolstra.

Glenn Vander Veer has been an embedded developer for over 15 years in
various industries ranging from telecom to medical to electrical smart grids. He has
developed code for a large variety of microprocessors and microcontrollers over this
time. Lately, he has been developing code for electrical smart meters to aid in the
collection of billing data and transmitting that data to the billing company.

www.allitebooks.com

http://bloomu.edu/digital_forensics
http://philpolstra.com
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

This book is dedicated to the brave men and women from all corners of the civilized
world who watch over us so that we may "sleep peacefully in our beds."

Thank you and stay safe.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Introduction – Our First Project 7

Basic tools 8
Flashlight – step 1 12
Flashlight – step 2 13
Headlamp – step 1 17
Summary 19

Chapter 2: Infrared Beacon 21
What is a 555 timer and how does it work? 21
Our 555 timer circuit 24
Assembling our flasher PCB 24
Building and assembling the case 26
Going further 28
Summary 29

Chapter 3: Motion Alarm 31
How a 555 timer works in monostable mode 31
How our alarm works 32
Assembling the case 33
Assembling the PCB 34
Testing the alarm 36
Going further 39
Summary 39

Table of Contents

[ii]

Chapter 4: Sound Card-based Oscilloscope 41
The output section 42
The input section 44
The PCB assembly 47
Software 49
Sound card oscilloscope program 50
The Zelscope software 53
Visual Analyzer 55
The ZRLC meter 57

ZRLC hardware 58
Making ZRLC measurements 59

Using the sweep generator to measure frequency response 60
Peak detector hardware 60

Example test setup 62
Summary 62

Chapter 5: Calibrated RF Source 63
Assembling the PCB 68
Going further 70
Programmable attenuator 71
BeagleBone I/O pins 72
Control software 75
Summary 81

Chapter 6: RF Power Meter – Hardware 83
Making power measurements 85
Testing and calibration 87
Making actual measurements 89
Summary 94

Chapter 7: RF Power Meter – Software 95
Suggested hardware setup 95
Part 1 – installing and configuring the OS 96

Setting up PuTTY 96
Setting up root access 98
Expanding the filesystem 98
Installing the Ubuntu desktop 100

Part 2 – Installing the additional software and dependencies 100
Installing the Device Tree Compiler 101
Installing Derek Molloy's Device Tree Source (Optional) 101
Installing Node.js 102

Setting up external storage 102
Installing BoneScript 103

Table of Contents

[iii]

Installing Cloud9 104
Installing socket.io 104
Modifying the profiles in root and Debian 104

Using the RF power meter software 106
Part A – JavaScript 109
Part B – HTML code 111

Summary 114
Chapter 8: Creating a ZigBee Network of Sensors 115

Part 1 – setting up the ZigBee modules 115
Part 2A – the network hardware 125
Part 2B – the alarm system hardware 132

The zone monitor PCB 136
Isolated output PCB 138
Connecting devices to the board 142

Part 3 – building the actual network (software) 144
Step 1 – installing Oracle's JDK on BeagleBone Black 145
Step 2 – installing the Java serial port extension package 145
Step 3 – enabling serial ports on startup 145
Testing the hardware 146

Going further 151
Summary 153

Index 155

Preface
In this book, I have tried to include something for readers with various skill levels
and interests. It contains hardware projects, software projects, and a combination
of both. In all cases, I have tried to begin with a simple project and moved on to
progressively harder and more complex projects. Depending on your skill level,
some projects will take an hour or so to build and some will take longer.

Either way, I hope you will enjoy building the projects as much as I have enjoyed
writing about them.

What this book covers
Chapter 1, Introduction – Our First Project, explains how to practice our soldering and
de-soldering skills by building an infrared flash light and head lamp.

Chapter 2, Infrared Beacon, continues with our infrared light project—that is, building
an invisible infrared flashing beacon.

Chapter 3, Motion Alarm, explains how to build a simple but effective intruder alarm
with the always popular LM555 timer.

Chapter 4, Sound Card-based Oscilloscope, covers the beginning of the combined
hardware and software projects. We will be building some hardware. It will
allow you to use a USB sound card as a simple but useful oscilloscope.

Chapter 5, Calibrated RF Source, introduces you to the wonderful world of RF when
you build a 50 MHz calibrated reference. Useful on its own, it will also be used in
the next chapter.

Preface

[2]

Chapter 6, RF Power Meter – Hardware, shows us how to build ourselves a meter
capable of measuring RF power at various frequencies. We will avoid most of
the layout headaches by using a demo board provided by the manufacturer of
the power detector.

Chapter 7, RF Power Meter – Software, explains how to build a BeagleBone Black-based
software development system. Then, we will go on to write the software which will
not only measure RF power but will also control an external RF attenuator.

Chapter 8, Creating a ZigBee Network of Sensors, covers how to build a wireless security
system for your home or office based on the ZigBee RF module.

What you need for this book
What you need will depend on which projects you intend to build. The first
four projects can be built with the basic hand tools described in Chapter 1,
Introduction – Our First Project. The software referenced in Chapter 4, Sound
Card-based Oscilloscope, was tested on an IBM PC-running Windows XP,
so you do not need a powerhouse PC or laptop.

The next chapters will require access to some RF test equipment, such as a spectrum
analyzer and possibly an RF signal generator.

The final chapters will require you to purchase a BeagleBone Black system. Some of
the hardware is optional, but it is something I personally found useful. The reader
should note that all of the software and hardware for this book was written on a PC
running Windows XP.

Who this book is for
This book will hopefully have something of interest to a large variety of electronics
enthusiasts, from hams to hackers.

I would say that, as long as you have at least intermediate programming and
construction skills, you should have no problem completing the projects in this book.
All the projects use through-hole parts to make assembly easier. All the files used to
construct your own printed circuit boards, as well as all of the code, are available for
download from the Packt Publishing website.

Preface

[3]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles,
and explanations of their meanings.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"What the preceding highlighted code does, is to first read AN0 using the
analogRead() function."

A block of code is set as follows:

var app = require('http').createServer(handler);
var io = require('socket.io').listen(app);
var fs = require('fs');
var b = require('bonescript');

app.listen(8080);

console.log('Server running on: http://' + getIPAddress() + ':8080');

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

var app = require('http').createServer(handler);
var io = require('socket.io').listen(app);
var fs = require('fs');
var b = require('bonescript');

app.listen(8080);

console.log('Server running on: http://' + getIPAddress() + ':8080');

Any command-line input or output is written as follows:

git clone https://github.com/ajaxorg/cloud9/

cd cloud9

npm install

chmod 777 .sessions

cd ~/cloud9/node_modules

Preface

[4]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Once
again, all the switches are handled in the same manner with the exception of the
Load button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[5]

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from: https://www.packtpub.
com/sites/default/files/downloads/4515OS_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/sites/default/files/downloads/4515OS_ColoredImages.pdf
https://www.packtpub.com/sites/default/files/downloads/4515OS_ColoredImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Introduction – Our
First Project

In this book, we'll build several projects that will get progressively more challenging.
You should be able to build the first few projects in an afternoon. A finished product
may take you a while longer, depending on how professional you want it to look.

In order to build the first few projects in this book, you will need a few basic
assembly skills and tools described as follows. The RF projects will require
access to and knowledge of RF spectrum analyzers and/or RF power meters.

• You should be able to solder through hole parts
• You should be able to use a solder removal tool such as a solder sucker

or solder wick
• You should be able to read the color codes of resistors
• You should be able to read voltage, resistance, and current with a multimeter

That's it folks! In order to build and use the first few projects, you don't have to know
how to write a single line of code.

Introduction – Our First Project

[8]

Basic tools
The basic tools that you'll need are as follows:

• Soldering iron or soldering station:

• Diagonal cutters:

Chapter 1

[9]

• Needle-nose pliers:

• Jewelers' screwdriver set:

Introduction – Our First Project

[10]

• Solder sucker or solder wick. Or both:

• A multimeter is capable of measuring volts, ohms, and milliamperes.
The meter shown in the following image is a RadioShack/Micronta
multimeter. If you have an opportunity to purchase one of these on eBay
or at a Hamfest, I highly recommend you to do so. I have had this one for
years. In addition to the usual meter functions, it also has a serial RS-232
output that has come in extremely handy over the years.

Chapter 1

[11]

The more difficult projects will require access to either a BeagleBone Black or White,
but we'll get to that later. Let's start our first project.

This project is the first in a series of projects for all you weekend warriors—paintball
and Airsoft enthusiasts.

In this project, we will modify a standard LED flashlight that is available from
eBay or your local variety store for a few dollars. What we are going to do is remove
the visible light (white) LEDs and replace them with infrared LEDs. You might
ask, Why would we want to do that? This is because many Airsoft and paintball
rifles and pistols are equipped with a flashlight holder to allow the shooter to see
his/her target in the dark. The downside to this is that your enemies can see you
coming a mile away! So what we are going to do is make ourselves an infrared
flashlight, which will allow us to see our target in the dark without it seeing us. Most
inexpensive black-and-white video cameras can actually see well into the IR range,
as can night-vision goggles. There are a number of inexpensive night-vision devices
available from the sites that sell Airsoft gear, so I won't get into that here.

So, let's get started. This project basically involves desoldering and soldering.
By the time we are done, you will be really good at both.

Dollar store flashlight

Introduction – Our First Project

[12]

The preceding image is of the flashlight that I purchased at a local hardware store
for about $2.00 Yours might not be exactly the same, but the principle of what we are
about to do will work for just about any LED flashlight. All I would suggest is that
you purchase one with as many LEDs as possible.

Flashlight – step 1
The first thing we have to do is to remove the plastic lens from the flashlight.
We do this for two reasons: First of all, you will probably have to remove it in
order to get to the LEDs. The second is that plastic tends to diffuse and attenuate
infrared energy. I pierced the lens with a sharp object and popped it out, as you
can see in the following image:

Lens removed

Chapter 1

[13]

As you can see, the LED assembly is now loose in the case. If we remove the
assembly and turn it over, we can see how the LEDs are connected to the battery
pack. The positive or anode end of the LED is connected to the center terminal of
the pack while the negative or cathode end of the LED is connected to the case.

Rear view of PCB

Flashlight – step 2
OK, time to warm up the old soldering iron and have at it. What you have to do
is basically remove all the LEDs from the PCB without damaging it. Fortunately,
these flashlights are cheap, so you can buy a couple of flashlights depending on
your confidence level.

Once you have all the diodes LED's removed, it is time to replace them with the
infrared ones. If you're lucky, the LEDs you are installing will have a flat side on the
case. This is the cathode or negative side of the LED and it should be soldered to the
negative side of the PCB.

Introduction – Our First Project

[14]

Some LEDs have one short lead and one long one. The short one is supposed to be
the cathode, but I would highly advise checking to be sure. The following image
shows how to check your LED using the diode setting on your multimeter. In my
case, it is indicated by an image of a diode.

Finding the cathode with a meter

Checking an LED is like checking any other diode. With the negative lead of the
meter connected to the cathode (short lead) and the positive lead connected to the
anode (long lead), you should get the minimum reading of ohms.

Chapter 1

[15]

Because LEDs do not behave like normal diodes, this test might not work. If you
don't have a diode setting on your meter, just use the lowest ohm range. If you aren't
sure, then the easiest thing to do is solder one LED and then temporarily reassemble
the flashlight. If you cup your hands around the lens, you should see a faint red glow
from the LED.

Finding the cathode

Now that you have the first one installed correctly, all you have to do is repeat the
process for as many LEDs as you have. Once you have all of the LEDs installed, you
should check the project by pointing the flashlight at a cheap black-and-white video
camera. You should see the glow from the LEDs. One way to check if the camera will
work is to point your TV remote at the camera and see if you can see the LED flash
when you press a button on the remote.

www.allitebooks.com

http://www.allitebooks.org

Introduction – Our First Project

[16]

Once you have tested your Special Ops flashlight, you should use 5 minute epoxy
glue to hold the LED assembly in place.

Your finished flashlight will look much like the following image:

Finished flashlight

If you enjoyed this quick and hopefully easy project, there is another one similar to it
in the following pages. Many of you have probably seen LED headlamps in camping
and hardware stores. The following pages will show you how to modify one of these
lamps in pretty much the same way as we did the flashlight.

If you're a nature lover rather than a weekend warrior, you might find this project
useful because it will free your hands for your camera or binoculars.

Chapter 1

[17]

Headlamp – step 1
The following image shows the headlamp that I used. Yours will probably look very
much the same.

LED headlamp

We will be disassembling the headlamp in the same way as the flashlight. Simply
turn the bezel until it comes out in your hands. Once again, we are talking about a
$2.00 investment here so you might want to buy a couple, just in case you have to
sacrifice a few in the name of science.

Lamp with lens removed

Introduction – Our First Project

[18]

Once you remove the two small Philips screws, you can now remove the circuit
board containing the LEDs. The headlamp I purchased came with a switch that
allows you to have one, three, or all the LEDs on at the same time. I'm not sure
how practical this is for our project, except possibly to conserve battery power.

PCB removed for modification

Now that you have the lamp apart, it is time to fire up the soldering iron and solder
removal tool and go to it. As in the previous project, simply replace the white LEDs
with IR ones and off you go.

The cool thing about this lamp is the LED selector switch that allows you to turn on
one, three, or all LEDs. If you are going to use it for nature observation, you could
build yourself a lamp with three red LEDs and four white ones. That way, you
can move about with the red LEDs and not ruin your night vision, unless you see
something interesting.

Chapter 1

[19]

Summary
This chapter contained two hopefully simple projects that allowed you to blow the
dust off or enhance your soldering and desoldering skills. These skills will come in
handy in the chapters to follow. We built two inexpensive but useful projects. All for
about $5.00 per project, depending on how much the LEDs cost you.

Use your imagination. How about blue LEDs and wearing the lamp on your chest or
head for Halloween?

In the next few chapters, your soldering and construction skills will be challenged
even further, as we build a motion sensor out of a piece of a water pipe and a
flashing infrared beacon. So read on.

Infrared Beacon
In this chapter, we will be building a flashing beacon. It's not just any old flashing
light, though. This one will be invisible, unless you are wearing night vision goggles
or viewing a black-and-white video camera.

What is a 555 timer and how does
it work?
The integrated circuit that we will be using in this chapter has been around since
the 1970s and is still going strong today. You can see the 555 timer circuit in the
following diagram:

LM555 Timer pin out

Infrared Beacon

[22]

The LM555 has two modes of operation. For this project, we will be using it in
astable mode. The word astable means unstable, basically with respect to an
oscillator. Now, in some cases we do not want the circuit to be astable,
for example an amplifier. In this case, astable is a good mode.

The pins have various functions, depending on the mode in which we are using the
device. The functions are as follows:

• Pins 8 and 1 are always power and ground respectively.
• Pin 3 is always the output pin that we will use to turn the LEDs ON and OFF.
• Pin 4 is the reset pin. Pulling this pin low (to ground) disables the oscillator

in astable mode. Essentially the output goes low and stays low.
• Pin 5 is the control voltage pin. By applying a voltage to this pin, we can

change the frequency in astable mode. By applying various signals to this
pin, we can simulate UFO sounds from old science-fiction movies.

• Pin 6 is the threshold input to the on-chip comparator.
• Pin 7 is the discharge pin, used to discharge the timing capacitor.
• Pin 2 is the trigger input to a second on-chip comparator.

For those unfamiliar with how comparators work, a comparator compares the signals
at its plus and minus inputs. If the positive input is higher than the negative input,
then the output goes high. If it is lower than the negative input, then the output
goes low.

For those of you who don't know what an R-S flip-flop is, it's the simplest of all
memory devices. It's called a flip-flop because it has two complementary outputs
that flip and flop back and forth, depending on the input. They are labeled Q and
Q/ because Q/ is always the opposite of Q. Hence the name flip-flop.

When a high level (logic 1) is applied to the Set (S) input, the Q output goes high
and the Q/ output goes low. When a high level is applied to the Reset (R) input,
the Q output goes low and the Q/ output goes high.

The R-S flip-flop truth table as follows:

Set Reset Q Q/
1 X High Low
X 1 Low High

Chapter 2

[23]

The schematic for the circuit is shown in the following diagram:

Flasher schematic

In our flasher circuit, timing resistors R1 and R2 and capacitor C1 control the flash
rate. The two comparator inputs, pin 2 and pin 6, are connected together.

When the output is high, the internal discharge transistor is turned off and the
voltage across C1 increases until it reaches two-thirds of the Vcc, at which time the
comparator output on the trigger terminal becomes high. This resets the flip-flop,
which causes the timer output to go low.

Timer waveforms (copyright Fairchild Semiconductor)

Infrared Beacon

[24]

This turns on the discharging transistor and the capacitor is discharged through the
transistor and R2. Once the voltage across C1 falls below two-thirds of the Vcc, the
comparator output on the trigger terminal goes high, as does the timer output.
The discharging transistor turns off and the voltage across C1 begins to rise again.

The time that the output is high is approximately: Th = 0.693(R1+R2)xC1.

The time that the output is low is approximately: Tl = 0.693xR2xC1.

Since R2 has the most effect on the timing, if we make it a lot larger that R1, we will
get a square wave output. That is, the on and off times will be the same.

You can vary the on and off times by playing with various combinations of R1 and
R2. For example, you can have a one long or one short flash rate.

Our 555 timer circuit
In our circuit, when the output is high, it turns on Q1, which turns on D2. When the
output is low, it sinks the current, which turns off Q1 and turns on D1.

Breadboard layout

Assembling our flasher PCB
The following figure is of the PCB design that is available for download from the
Packt site (https://www.packtpub.com). This PCB is designed to fit inside a tube
with a one-inch internal diameter. You will see the reason for this in a moment.

https://www.packtpub.com

Chapter 2

[25]

Flasher PCB

Assembly of the PCB is straightforward. I would suggest that you solder in the
lowest parts first and work your way up to the higher ones. This way, the parts
won't fall out when you turn the board over to solder them in. In this case, install the
resistors first; then the LM555; and finally the capacitor and the transistor. You can
also see how the LEDs have been bent at 90 degrees.

Finished PCB

Infrared Beacon

[26]

Building and assembling the case
The flasher is designed to fit inside a piece of one-inch PVC plumbing pipe.
The LEDs are bent at 90 degrees to the PCB and inserted through holes drilled in
a one-inch PVC pipe cap. A #7 drill bit is used to drill the holes for the LEDs. The
cap is then turned over and a quarter of an inch drill bit is used to enlarge the rear of
the holes so that the LEDs will penetrate further into the cap. You should drill about
half way through the cap with the quarter of an inch drill. A drill press with a depth
gauge will come in handy here.

Cap showing drilled holes

One end of the case is sealed shut with another one-inch end cap, which is glued into
place. The cap with the holes is not, so that you can change the batteries. Also, I did
not include an on-off switch in the design for the sake of simplicity, and to make the
case as moisture-proof as I could.

PCB assembly inserted in cap

Chapter 2

[27]

The preceding image shows the completed PCB assembly installed in the end cap.
These are prototype PCBs, so the ones you download from Packt might look slightly
different. Basically, what I did is to remove some of the solder mask from the top
ground plane and solder the negative terminal of the battery case to the top copper
layer of the board. The white wire is the positive connection. This is where you
would put the on-off switch if you wanted to.

Cap and spacer ring

The cap assembly consists of the drilled cap and a spacer ring about one-quarter of
an inch thick, cut from the one-inch diameter pipe. The spacer is used to allow you to
glue the PCB to the cap and to make it easier to remove the cap, in order to insert and
remove the batteries.

PCB installed in cap

Infrared Beacon

[28]

The preceding image is a close-up of the board installed in the cap. You will notice
that the ring comes up the side of the PCB by about one-quarter of an inch. This is to
allow you to run a bead of epoxy along either side of the board. If you are reading
the digital version of this book, you should be able to zoom in and see that the LEDs
are recessed into the cap. That's why we drilled quarter of an inch holes.

The following image is of the finished project:

Finished flasher in case

Going further
There are a number of modifications that you can make to this project. For example,
it is possible to fit a miniature toggle switch into the top cap, alongside the LEDs.

It is also possible to fit the circuit into a smaller case by using a 3 V lithium coin cell.
I chose PVC pipe because I find it easier to machine than other materials and through
hole components for first-time builders.

The following image is of a much smaller device. Patents and non-disclosure
agreements prevent me from showing you anymore; however it is an example
of what can be achieved with a little ingenuity.

Chapter 2

[29]

Small IR flasher

Summary
In this chapter, we learned how LM555 timers work in astable mode. We built and
tested a simple but useful circuit to demonstrate this.

In the next chapter, we will be building another "secret agent" device: a covert
motion detector.

Motion Alarm
In this chapter, we will once again use the venerable 555 timer. This time, we will
be building a hidden motion sensor. By hanging several of these little gems around
your camp, you can keep your fellow paintball opponents from sneaking up on you!

How a 555 timer works in monostable
mode
In this case, we will be using the LM555 in a modified monostable mode. Actually,
we will not be using either comparator in this design. The only timing part of LM555
that we will be using is the internal R-S flip-flop (see the What is a 555 timer and how
does it work? section in Chapter 2, Infrared Beacon) in the following diagram:

LM555 block diagram

Motion Alarm

[32]

How our alarm works
Here's how our motion-triggered alarm works. It uses a mercury switch like the kind
used in car alarms. The mercury switch is connected to terminals W3 and W4. When
the switch is disturbed, it grounds the trigger input, which causes the output to go
high. This turns the buzzer on.

Motion-triggered alarm

The alarm will continue to sound until the internal flip-flop is reset. We do it by
placing a magnet within the range of the reed switch. Closing the switch grounds
the reset pin and turns off the buzzer by making the output go low. It's that simple.
A suggested breadboard layout is shown in the following image:

Chapter 3

[33]

Motion alarm breadboard

Assembling the case
The first thing we have to do is make ourselves the end cap that will have the PCB
fastened to it. This cap has a half-inch hole drilled in it for the buzzer. I made the grill
from a beer coaster I got from the local dollar store, but any coarse fabric will do.

We will be using a PVC water pipe (with a diameter of three-quarters of an inch) as
our case. You should cut yourself one piece about eight inches long. You will also
need a piece of pipe about one-quarter of an inch long as a retaining ring. I used
a coin as a template to cut a grill with a diameter of three-quarters of an inch.
These are shown in the following image:

Parts of the end cap

From left to right, we see the end cap, the retaining ring, and the grill cut from the
coaster, which is in the background.

Motion Alarm

[34]

The next step is to fasten the grill in place with a couple of beads of epoxy.

End cap with grill installed

Once the epoxy has set, it's time to insert the small one-quarter of an inch ring that
we made earlier. This ring will hold the PCB and buzzer in place. Carefully push
the ring into the cap, making sure that it goes in straight. You might have to use
the 8-inch tube that you cut for the body, to push it to the last bit. The finished
cap should look like the following image:

Cap with spacer installed

Assembling the PCB
Assembling the actual PCB is straightforward. Just solder all of the parts except the
mercury tilt switch into their locations marked on the silkscreen.

Chapter 3

[35]

The reed switch is marked SW1. The mercury tilt switch is connected to pads W3
and W4. The terminal marker plus or + of the buzzer (B1) goes to the square pad
of the component (pin 1).

Alarm PCB silkscreen

The mercury tilt switch is installed as shown in the following image. This board is
a prototype. Your PCB from the Packt site will have the pads relocated so that you
won't need the wire. The switch itself mounts in the same direction as the one in the
image, and should be held in place with epoxy or hot glue. The switches I got were
designed for car alarms and were extremely sensitive.

For those of you who don't know how a mercury switch works:
Mercury is the only metal that is liquid at room temperature. As with
any liquid, surface tension causes it to form a sphere. This shape
makes it roll around easily. If we use a small amount of mercury,
we get a small drop with very little mass that rolls around very easily.
A mercury tilt switch is just a glass tube with two contacts at each
end. When the mercury bead rolls to the contact end, it completes the
circuit (because it's a metal.) That's all there is to it.

PCB and battery assembly

www.allitebooks.com

http://www.allitebooks.org

Motion Alarm

[36]

I removed some of the solder mask from the top copper ground plane and soldered
the negative lead of the battery holder to the ground plane. The positive lead of the
holder is connected to W1 on the circuit board. Fasten the battery holder to the PCB
with epoxy or hot glue and when it dries, you are ready for the next step.

Testing the alarm
Now that we have a finished PCB assembly, it's time to test it. For these tests,
you will need a relatively strong magnet and two AA batteries. A magnet salvaged
from a car speaker or a rare earth one from a local hobby supplier should work fine.
It needs to be fairly strong, so a fridge magnet probably won't work. You are about
to find out if your magnet must be big enough by following the given steps:

1. Make sure you have the magnet handy and then insert the AA batteries into
the holder. There is no polarity protection, so be careful; the buzzer should be
squealing at this point.

2. Stand the PCB assembly on end, with the buzzer at the bottom.
3. Wave the magnet by the reed switch and the howling will stop. Your alarm is

now armed.
4. If you tilt the PCB assembly left or right, the squeal should start again.

This test should give you some idea of just how sensitive this alarm is!

This is an extremely simple circuit, so there is very little to troubleshoot.
If things don't work as I said, I suggest that you check the polarity of the
buzzer or the batteries.

If you want to make your circuit more foolproof, you can insert a small
switching diode in series with the white wire. The cathode (band) of the
diode connects to W1. This will give you reverse polarity protection in
case someone installs the batteries backwards.

Chapter 3

[37]

Now that we have a working PCB assembly, we can continue with the assembly.
What we now have to do is install the assembly in the case we assembled earlier.
The following image shows how the board should be attached to the cap:

PCB assembly in the cap

You might find it easier if you cut a second one-quarter of an inch ring and insert
it in the cap. That way, the ring will come further up the PCB. It really depends on
your mechanical assembly skills. Basically, the idea is to add several layers of epoxy
until the board is held firmly in place. Allow the epoxy to dry between layers and be
careful not to plug the hole in the buzzer.

What we are building here is a removable assembly that is attached to one of the
caps. This cap will not be glued to the tube, so that we can change the batteries and
get to the circuit if need be.

Motion Alarm

[38]

The other cap has a ring attached to it that allows you to hang the alarm from a tree
limb or whatever you have. Just like a Christmas decoration!

End cap with a ring

To deploy these little gems, I would suggest that you insert the batteries and then
hold the magnet near the alarm when you hang it; either that or use a piece of tape
to cover the speaker hole, and then gently remove it. I'll leave the details of the
installation up to you.

Assembled alarm

The preceding image shows a finished alarm. If the alarm is not triggered,
the batteries should last for quite a while, so I suppose you could use them
as a cheap perimeter alarm at home or in a dormitory.

Chapter 3

[39]

Going further
As it stands, the LM555 timer turns on the buzzer, but that does not mean that it
cannot control a transistor or a relay. With an RF remote control, you can turn on
floodlights or a bigger siren. I will leave the rest up to the reader.

Summary
In this chapter, we learned how to use the LM555 in a completely different way.
We used only a part of the chip to build ourselves a very simple but effective
motion-sensing alarm. What we have here is basically a repackaged car alarm.

In the next chapter, we will be building an oscilloscope interface for your USB
sound card.

Sound Card-based
Oscilloscope

The title of this chapter is Sound Card-based Oscilloscope; however, I am going to
start by highly recommending an external USB sound card such as this one from
Creative Labs:

Model SB-1090 from Creative Labs (Image courtesy: eBay)

This model from Creative Labs (http://us.creative.com/p/sound-blaster/
sound-blaster-x-fi-surround-5-1-pro) has very impressive specifications.
Whether you decide to go with an internal or external card, you will want one
with similar specifications:

• Playback: Up to 24 bits/96 kHz 5.1
• Signal-to-Noise ratio (SNR): Less than 100 dB
• Total harmonic distortion + noise at 1 kHz: 0.01 percent
• Recording: Up to 24 bits/96 kHz

http://us.creative.com/p/sound-blaster/sound-blaster-x-fi-surround-5-1-pro
http://us.creative.com/p/sound-blaster/sound-blaster-x-fi-surround-5-1-pro

Sound Card-based Oscilloscope

[42]

Note the 96 KHz sample rate. This gives us a maximum measurable frequency of
48 KHz at an SNR of less than 100 dB. You most likely won't get these specifications
from an internal card. Get the highest sample rate and highest SNR your budget
will allow.

The output section
We will start with a description of the output section of the project. I know that
oscilloscopes don't have outputs but sound cards do, and a number of software
vendors have used this to their advantage. We will cover the details of that subject
later. In the meantime, let's look at the output circuit.

48 KHz is only a theoretical maximum. The actual practical maximum
frequency you are able to measure might be much lower. For
information on the Nyquist–Shannon sampling theorem, refer to
http://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_
sampling_theorem.

The following circuit diagram shows the output buffer circuit. This circuit is used to
isolate the soundcard from the circuit being tested.

Output buffer circuit

The circuit may look odd to some of you, but there is method in our madness.
Many operational amplifiers have extremely high bandwidth at unity gain.
This causes them to oscillate. So the easiest way to avoid this is to add some
negative feedback.

http://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem
http://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem

Chapter 4

[43]

In this case, resistors R1 and R2 form a 2-to-1 voltage divider. The gain of the
amplifier is set to 2 by resistors R3 and R4 for a net gain of zero from the input to the
output. The reason we must have unity gain is that the software assumes that you
are connecting your sound card directly to the circuit you are testing. We have no
way of telling the software that there is a gain stage in between.

The output impedance (resistance) of the TL082 operational amplifier is quite low;
so, if you want your project to have a 600-ohm output impedance, you can just add
a 620-ohm resistor (or two 300-ohm resistors) in series with C2.

The working of op-amps is explained at
http://en.wikipedia.org/wiki/Operational_amplifier.

The PCB for the output section has both channels on the same board. I chose to
make this system modular for several reasons. The good folks at ExpressPCB have
a deal on boards of a certain maximum size. Making the system modular helps keep
the price down for you and allows you to build only the modules you want. The
input circuitry is more complex, so one board is used for the input and another
for the output.

Output buffer PCB component placement

http://en.wikipedia.org/wiki/Operational_amplifier

Sound Card-based Oscilloscope

[44]

The PCB file that comes with this book has two of these boards on the same panel,
so you can use them for additional channels or whatever you like.

Assembled output buffer PCB

The input section
The input amplifiers are a bit more complex. The input is AC coupled with U1,
which has very high input impedance. AC coupling means that the DC component
(offset) from any input signal will be removed. The gain of the first amplifier is
R2/R1, or 1 in this case.

Oscilloscope probes come in times-one or times-ten varieties. In fact, some have an
X1/X10 selector switch, as shown in the following diagram:

Chapter 4

[45]

Oscilloscope input amplifiers

A times-ten oscilloscope probe multiplies the input impedance of your scope by
a factor of 10. So your 1-megohm input scope now has an input impedance of 10
megohm. However, since nothing in life is free, it also reduces the signal level by a
factor of 10. So, if it is not corrected, a 1-volt signal will appear as a 0.1-volt signal on
your scope. Many modern scopes do this automatically. Ours has a switch instead.

The reason modern oscilloscopes have this option is that a 10-megaohm probe will
tend to load a high impedance less than a 1 megohm probe and, therefore, affects the
measurement less.

For information on input impedance, refer to http://en.wikipedia.org/wiki/
Input_impedance.

When the switch is in the X10 position, meaning a times-ten probe is being used,
the output is multiplied by 10 to compensate for the probe's loss. When it is in the
X1 position, the output is multiplied by 1.

http://en.wikipedia.org/wiki/Input_impedance
http://en.wikipedia.org/wiki/Input_impedance

Sound Card-based Oscilloscope

[46]

The input amplifier is an inverting amplifier and the output amplifier U3 is
also an inverting amplifier, so the net result is no signal inversion. I chose this
configuration because the gain of an inverting amplifier is easier to obtain
with standard resistor values.

Oscilloscope input board PCB

Resistors R11 and R12 provide a mid-range voltage reference of about 4.5 volts. This
means that the AC signal will have a + 4.5 V offset. This is done so that the signal can
have a +/- 4.5-volt swing. This is also why the output capacitor, C3, is required—so
that the signal will once again swing +/- 4.5 volts about the ground voltage.

Signal offset

Chapter 4

[47]

In the preceding diagram, the top trace shows the internal voltage swing and the
bottom trace shows the output from the PCB with the DC offset removed.

The PCB assembly
Now that we have a better understanding of how the circuitry works, it is time to
heat up our soldering irons and get to work on assembling the actual hardware.

Here we have the two PCBs ready for final assembly. Notice that the 5/8" standoffs
on the output board, on the left, have 4 to 40 threaded studs on the bottom. You will
see why in the following image:

Assembled PCBs

Sound Card-based Oscilloscope

[48]

In the preceding image, we see the two boards mounted one on top of the other.
I had to do this in order to make them fit in the case I chose. I also had to use
90-degree mounted connectors. Depending on the case you choose, you may
or may not have to do this.

PCBs and SoundBlaster in a case

Here we see the SoundBlaster and PCBs installed in the case and ready for the wiring
harnesses. I would recommend that the SoundBlaster be held in place with Velcro for
easy removal. Once you have it installed, you are ready for the final assembly.

Case with PCBs and wiring

Chapter 4

[49]

In the preceding image, we see the case almost completed. I left the USB and power
connections out of the image for clarity. Notice that the wires are long enough for the
lid to lie flat next to the base.

Finished project

The previous image shows my finished prototype. If you use the parts in the bill of
materials, your prototype will look very much like this.

Software
Now that we have the hardware built, it is time to put it to use. A simple Google
search turned up several free and commercial packages. I have included the free
ones for download from the Packt Publishing site.

Sound Card-based Oscilloscope

[50]

Sound card oscilloscope program
One of the more useful packages I found was called sound card oscilloscope,
which is available for download from http://www.zeitnitz.de/Christian/scope.
The following screenshot was taken from this package when it was in use. The only
downside of this package is that it does not use the full 96 KHz sample rate of the
sound card I am using.

Signal generator window

http://www.zeitnitz.de/Christian/scope

Chapter 4

[51]

The preceding screenshot shows the signal generator window, which is detachable
from the main scope window—a handy feature in my opinion.

An oscilloscope

The preceding image shows the resulting output from our black box. Unfortunately,
we only have a 48 KHz sample rate, so the highest frequency we can generate is
about 24 KHz. Also, the software can only use 16 of the 24 bits, so the sine wave
is not as clean as it would have been if we had been able to use all 24 bits.

You will recall that the interface has a times-ten and a times-one probe selector
switch. The following screenshots are of the main oscilloscope screen, with the
switch set to the X1 probe and then the X10 probe.

Notice that, when the switch is set to the X10 probe, the signal is larger by a factor of
ten than when the switch is in the times one position. This is to compensate for the
loss caused by the probe when it is set to X10.

Sound Card-based Oscilloscope

[52]

With your probe set to X10 and the switch in the X10 position, you now have an
oscilloscope with an input impedance of 10 megohms that displays the correct
reading on the screen, just like the probe feature of a really expensive commercial
oscilloscope. Isn't that cool?

Switch set to X1

Here we see the results of the switch set to X1 and an actual input voltage of about
184 mV peak to peak.

Chapter 4

[53]

Switch set to X10

Notice in the preceding screenshot that the signal is now 10 times greater than the
previous signal, again to compensate for the loss of a times-ten probe.

The Zelscope software
Another interesting commercial package is the one available from Zelscope,
and a 14-day trial version can be downloaded from their website at
http://www.zelscope.com/.

http://www.zelscope.com/

Sound Card-based Oscilloscope

[54]

This is a commercial package but it has some very useful features. The main window
looks very much like (and has many of the same features as) an actual oscilloscope.

The Zelscope oscilloscope window

The software has a number of useful modes including an audio spectrum analyzer.
The following screenshot shows the same 1 KHz sine wave shown in the preceding
screenshot in the spectrum window:

The Zelscope spectrum window

Chapter 4

[55]

Visual Analyzer
In my search for interesting software, I found a very interesting and useful package
called Visual Analyzer. It is written by an Italian gentleman named Alfredo
Accattatis (http://www.sillanumsoft.org/intoduction.htm).

The software can be downloaded from http://www.sillanumsoft.org/download.
htm.

The software is "donate ware," which means that it is free for you to use but you get
additional support if you make a donation via PayPal. It is well worth a generous
donation in my opinion. The following screenshot is of the main window.

One annoying thing that I discovered about the site is that the pages are not linked
together very well, so I am including useful links wherever I can.

Main screen of the Visual Analyzer

http://www.sillanumsoft.org/intoduction.htm
http://www.sillanumsoft.org/download.htm
http://www.sillanumsoft.org/download.htm

Sound Card-based Oscilloscope

[56]

The main window displays two functions simultaneously. The top half is the
oscilloscope view and the bottom half is the audio spectrum analyzer view.

Oscilloscope window

The oscilloscope window contains all the controls that you would expect to find
on a bench oscilloscope. One thing I found handy is that both the zoom and the
milliseconds per division were variable. For example, you can set the zoom to X10 to
compensate for your X10 probe, and you can also compensate for losses in a test jig.

Spectrum analyzer screen

Chapter 4

[57]

Next to the spectrum analyzer window is the number of tabs. Only the frame labeled
y-axis controls the spectrum analyzer. I discovered that some of the features work
and some don't in this version of the software—something that I am sure will be
fixed in future revisions of the software.

A more complete description of all the features is available at
http://www.sillanumsoft.org/prod01.htm.

The ZRLC meter
One feature that I did find fascinating though was a built-in ZRLC meter. This meter
measures impedance (Z), resistance (R), inductance (L), and capacitance (C).

ZRLC meter

The software's author describes a simple test fixture for use with this feature.
After some digging, I managed to find a schematic for the circuit he was
referring to. The schematic is shown in the following diagram.

http://www.sillanumsoft.org/prod01.htm

Sound Card-based Oscilloscope

[58]

ZRLC hardware
The following diagram shows an improved version of the hardware we will be using:

Improved schematic

How the circuit is used to measure ZRLC is described at
http://www.sillanumsoft.org/ZRLC.htm.

However, I have made some of the improvements that he suggested and corrected
an error on the schematic he included. My circuit works mostly the same as he
described. The TL082 operational amplifier has a FET (short for Field Effect
Transistor) input, which gives it a very high input impedance. This is important
because as the author says, the input and output impedances of the sound card
adversely affect the readings.

Rotary switch connections

http://www.sillanumsoft.org/ZRLC.htm

Chapter 4

[59]

A rotary switch allows you to select various ranges for the jig. You will notice that
the reference (ohm) control is a textbox, so you can either use 1% resistors or measure
your resistance with a good digital meter and, theoretically, get even better accuracy.

Making ZRLC measurements
The test procedure on the web page is a bit hard to follow, so I have included my
own version here. I have not had an opportunity to build and test the fixture, so the
following steps are based on my understanding of how the jig is supposed to work:

1. Make sure that the Device Under Test (DUT) is not connected to the jig.
2. Choose a proper range, starting from the lowest if you are not sure of the

value of the device.
3. Click on the Measure button and the ZRLC meter will begin its

calibration cycle.
4. Wait until the Connect DUT message appears.
5. You should see the Over Range message on the display. This is because you

haven't connected the unknown device yet.
6. Now you are ready to make the actual measurement. Connect the DUT and

click on Measure again.

At this point, one of these four will happen:

 ° The measurement is correct and you simply read the value from
the display.

 ° The measurement is OK but a (u) symbol appears. In this case, switch
to the next higher range and start again from the calibration step.

 ° The measurement is OK but an (o) symbol appears. In this case,
switch to the next lower range and start again from the calibration step.

 ° If the Under Range or Over Range message does not go away, then
the value is much higher than your selected range, and you should
start over with a much higher or lower range setting.

According to the website, the jig and the software are capable of measuring
the following:

• Resistance
• Impedance (real and imaginary part):

http://en.wikipedia.org/wiki/Electrical_impedance

• Capacitance

http://en.wikipedia.org/wiki/Electrical_impedance

Sound Card-based Oscilloscope

[60]

• Inductance
• Input impedance of amplifiers, transformers, and so on
• All the previous parameters at different frequencies, and with automatic

sweep, in-time, and frequency domains

As I said, time and funding did not permit me to actually build and test the jig
described on the aforementioned web page, so I cannot testify to its accuracy.

Using the sweep generator to measure
frequency response
There is another useful function of this software that I was able to test: the sweep
generator. This feature will allow you to measure the frequency response of a filter
or amplifier.

Waveform generator

Peak detector hardware
There is another useful piece of hardware you can build that will work with any
sweep generator and almost any software. It is called an active peak detector. It
takes in an audio signal and outputs a DC level that is approximately equivalent to
the peak-to-peak voltage of the input signal. This is the type of circuit that drives the
VU meter on your stereo equipment.

Chapter 4

[61]

The reason it is called an active detector is that it uses operational amplifiers to buffer
the input signal so that the circuit does not load the source.

Peak detector

In the preceding diagram, amplifier U1 is used to create an active transformer that
feeds the AC inputs of the full wave rectifier. The amplifier, U1A, is an inverting
amplifier with a gain of 1 and U1B is a non-inverting amplifier with a gain of 2.
That is why we divide the input signal to U1B by 2. The result is two AC sine
waves 180 degrees out of phase, just like the secondary of a transformer.

Simplified peak detector

Capacitor C3 and resistors R7, R8, and R11 form a simple filter or envelope detector.
The variable resistor, R11, sets the time constant (a measure of how fast the capacitor
C3 discharges) of the circuit. Amplifier U2 is just a buffer and it can have any gain
you want.

Sound Card-based Oscilloscope

[62]

Example test setup
The following diagram shows a simple test setup used to measure the audio
frequency response of a device:

Test setup to measure the audio frequency response

In the preceding diagram, the device is shown as an amplifier, but it could just as
easily be an active or passive filter, for example a speaker cross-over network.

In any case, the basic technique is the same. What you do is set up so that the time
for one sweep and the time base of the oscilloscope are the same. This means one
sweep covers the full width of the oscilloscope screen.

You hook the test as shown and sweep away. You may have to play with the sweep
times and the oscilloscope time base to get an accurate display. Unless you can find
a generator program with a logarithmic sweep, the entire response might not fit on
one screen. You may have to sweep the test circuit in bands such as high, low, and
mid-range in the case of a simple speaker crossover network mentioned earlier.

Summary
We covered a great deal of content in this chapter. We built and tested a frontend
for a software oscilloscope and an audio signal generator. We also looked at several
useful software packages available for free in some cases. We also saw some
additional hardware that allows us to use the sound card to measure impedance,
inductance, resistance, and capacitance. In addition we also learned how to build
an active rectifier / envelope detector.

You will find the ZRLC and envelope detector printed circuits on the same panel
for manufacturing. That way, if you order your boards from EasyPCB, you will
get three of each. In the next chapter, we will be venturing into the mystical world
of RF design. In spite of what some HAMs may tell you, there is nothing magical
happening here (at least at these frequencies)—just a few simple rules that,
if followed, will lead to success.

Calibrated RF Source
We will be building the first of two RF projects in this chapter. In order to calibrate
the power meter in the next chapter, we first have to build ourselves a calibrated RF
reference. I am going to assume that you know how to make measurements using a
spectrum analyzer. If you're building an RF project for the first time, I'm sure a local
ham radio club will be happy to help you out. They'll probably want to build
one themselves.

What we are going to do is use a factory-programmed crystal oscillator (Digi-Key)
and another crystal of the same frequency as a filter. The manufacturer's part number
for the oscillator is MXO45HS-3C-50M0000. The other parts are listed in the bill of
materials, which is available for download along with the PCB and schematic files.

A crystal is simply a piece of quartz that has been cut and tuned to a specific
frequency. A crystal oscillator contains a tuned crystal and other circuitry to generate
a stable frequency that is not subject to external factors such as circuit loading.

All RF oscillators have one thing in common: a tuned section that determines the
frequency of the oscillator. Many oscillators use an inductor and a capacitor as the
tuned section. In this case, either the inductor, the capacitor, both can be adjustable.
We won't be using this type of oscillator in this design, so I won't waste any
more of your time, except to say that crystal oscillators tend to be more stable
and more accurate.

How good a filter is is based on what is called the Q of the filter. The higher the
Q, the better the filter. The Q of an L-C (inductor/capacitor) filter is reduced by
the resistance of the wire in the inductor and, in some cases, the inductance of the
capacitor. I know that the last statement sounds strange to you, but some capacitors
are constructed by wrapping a foil and an insulator into a tube-like shape. Believe it
or not, at higher frequencies this gives the capacitor an inductive property. By using
very good (expensive) components and some other tricks, we could build a fairly
good filter. But, for the price of one inductor, we can buy ourselves a crystal that
will act as a very high-Q filter.

Calibrated RF Source

[64]

What is Q or Q-Factor?
For more information, go to http://www.radio-electronics.com/
info/formulae/q-quality-factor/basics-tutorial.php.

You're probably wondering just why you need a filter. The reason is that the oscillator
we will be using is designed to supply the system clock for a microprocessor or CPU.
What this means is that the output resembles a square wave. For those of us that didn't
take digital signal processing in college, a square wave is creating by summing, or
mixing together, odd harmonics of the fundamental (center) frequency. So, in order to
get just the fundamental frequency, we pass the square wave through a high-Q filter.
This filter removes the harmonics and leaves just the fundamental frequency.

Diagram of a crystal filter

The following diagram shows the signal before (A) and after (B) the crystal filter.
You should see something much like B on a spectrum analyzer. Note that the
harmonics are significantly reduced.

Results of filtering

http://www.radio-electronics.com/info/formulae/q-quality-factor/basics-tutorial.php
http://www.radio-electronics.com/info/formulae/q-quality-factor/basics-tutorial.php

Chapter 5

[65]

The actual circuit is not quite as simple as the one shown in the first diagram.
Firstly, the output of the oscillator is quite high, so we are going to attenuate it
before applying it to the crystal. To do this we, will be using a pi pad. It is called
this because the arrangement of the resistors looks like the Greek letter pi (π).

A pi pad

The following diagram is the actual circuit. Resistors R1 through R3 make up
the pad.

The letters A and B refer to the signals in the previous figures (Diagram of a crystal
filter and Results of filtering).

Actual circuit

The pad is also used to trim the output for 0 dBm. I would suggest this level
because it is somewhat standard and makes the mathematics easy if you decide
to add external attenuators.

Calibrated RF Source

[66]

The following image is of the actual output from the crystal filter to the 50-ohm load
of the spectrum analyzer.

RF output

For those of you who are unfamiliar with spectrum analyzers, I'll explain a few
things. The top of the screen (Ref Level) is +20 dBm and the scale (Vert Display) is
10 dB per division; so two squares down from the top is 0 dBm. This is the output
level we are trying to achieve. Each square is divided into five equal parts or 2 dB,
so our output signal in this case is about +2 dBm. This measurement was made right
at the crystal. Once the board and output connector losses were subtracted, I had an
output of exactly 0 dBm.

Chapter 5

[67]

Why 0 dBm? Because it's a common reference value in RF measurements. Basically,
it makes the mathematics easier. If you look at the right-hand side of the screen on
my analyzer, you will see a scale marked LOG dB. If you set the Reference Level in
the Ref Level field to 0 dBm and have a 0 dBm output from your circuit, then gain
and attenuation measurements are a piece of cake.

I have no way of knowing what the output of your oscillator and crystal combination
will be, so you are going to have to calculate your own attenuation pad values.

There are numerous sites on the Internet that will provide you with the formula for
doing this, but personally I am lazy so I used the following site to do it for me:

http://n9zia.ampr.org/att_pad.main.cgi

Pi attenuator calculator

The preceding screenshot shows the results for my pad. I simply chose the closest
1-percent value for my resistors. There might be some trial and error involved here,
but 6 dB seems to be a good value to start with.

http://n9zia.ampr.org/att_pad.main.cgi

Calibrated RF Source

[68]

Assembling the PCB
The following diagram shows the component placement on the actual PCB, which is
available for download from the Packt site.

Component placement on the PCB

The following diagram shows the top copper layer. This figure was included because
it is important to show the pattern of vias placed on the board. This pattern ensures
that there is a good connection between the top and bottom ground planes. If you
decide to make your own board, you should do the same.

Chapter 5

[69]

Top copper layer

The following image is of the finished PCB. The original design had two pi
attenuators. As it turns out, only one was necessary, so your board will look
slightly different. The jumper will not be present.

Finished prototype

You will notice that there is no solder mask or silkscreen on this PCB. This is a
common practice of mine when building RF circuitry, because you never know
when you will have to add decoupling or a shield.

Calibrated RF Source

[70]

Going further
What we now have is a calibrated 50 MHz RF source that we will use to test our
next two projects. As I mentioned before, the output is 0 dBm. This is just the value
I chose. You can set it to any value you like using the attenuator calculator web page.
In all projects from now on, I will assume that you are using a 50 MHz 0 dBm source.

You can achieve different output levels by using either a fixed or variable attenuator.
The following image shows an example of a fixed attenuator:

SMA attenuator (copyright Mini-Circuits)

I used an SMA connector on my prototype because of its small size and ease of
mounting to the PCB. Theses connectors have a much higher frequency range than
we will be using on these boards, so you can use a BNC connector if you like.
The following image is of a BNC-type attenuator:

BNC attenuator (copyright Mini-Circuits)

A manual variable attenuator is shown in the following image. If you are lucky
enough to either have or borrow one of these, your life will be a lot simpler. Make
yourself a couple of coax pigtails and connect it between the output of the oscillator
and the crystal. Then just adjust it for the output level you want and read the setting
off the side of the attenuator. No trial and error, or at least less, are needed; just enter
the setting on the web page and off you go!

Chapter 5

[71]

Manual attenuators

Programmable attenuator
For this part of the project, we will be using the Mini-Circuits ZX76-15R5-PP+
programmable attenuator. In the following image, you will notice that the attenuator
has SMA input and output. That is the other reason I chose an SMA connector for the
oscillator. No adapter required!

Mini-Circuits attenuator (copyright Mini-Circuits)

Calibrated RF Source

[72]

The internal construction of the attenuator is actually quite simple. It's a bank of
switches that can be opened or closed to remove or add attenuation, respectively.
These switches are controlled by 3 V digital logic.

Attenuator internal schematic (copyright Mini-Circuits)

The fact that the device uses 3 V logic makes it easy to interface to our BeagleBone.

BeagleBone I/O pins
The operating system image that comes with this book is supposed to work on either
the BeagleBone White board or the newer BeagleBone Black board. The Black board
uses some of the I/O for the LCD display and the eMMC chip, thus, in order to make
the system hardware work with either version, we must take care not to use any of
the I/O used by the Black board.

The following table shows the I/O pins common to both boards.

P9 P8
GPIO Pin # Signal GPIO Pin # Signal
N/A 1 Gnd 45 11 1 dB

2 Gnd 44 12 2 dB
3 VDD_3V3 23 13
4 VDD_3V3 26 14 4 dB
43 Gnd 47 8 dB
44 Gnd 46 16 0.5 dB
45,46 Gnd 27 17 LE

Chapter 5

[73]

The attenuator is connected directly to the I/O pins of the BeagleBone, and
attenuator power comes from the BeagleBone. The attenuator has only inputs,
so power sequencing cannot damage the BeagleBone I/O pins.

Connector pinout

Calibrated RF Source

[74]

The signals are brought out to an eight-pin male connector that mates with a female
connector installed on the cable purchased separately from Mini-Circuits. You might
be interested to know that the same cable is also available with a DB-25 connector.
This cable is designed to connect to the printer port on older PCs. Mini-Circuits also
provides software to control the attenuator from a Windows program. Depending
on your mechanical design, it might be better to order this cable. I'll leave that up
to you.

Prototype on breadboard

The preceding image is of the circuit built on a prototype board. The small circuit
encircled in red is a test circuit that I built so that I could check the outputs one at
a time. I could have just built the interface circuit on one of the many BeagleBone
prototype capes available, but I chose to make a custom board that we will be using
in the next chapter as well.

The following diagram is of my one-transistor test circuit:

Transistor test circuit

Chapter 5

[75]

Control software
As with previous projects, I have chosen to use jQuery Mobile to build the GUI.
This allows you to control the mobile device if you so choose.

Control interface

The GUI is shown in the preceding screenshot and is very simple to use. Each slide
switch corresponds to one control bit of the attenuator. The attenuation is set to
8 dB + 2 dB = 10 dB.

The code is composed of two parts. The first part is JavaScript that sets up the
hardware and then calls the GUI. It also receives and processes commands from
the GUI using add-ons called socket.io and bonescript.

Calibrated RF Source

[76]

The code is well documented; however, there are a few things that might be of
interest to the advanced reader. The following code defines the I/O pins of the
BeagleBone and sets up their direction.

var outputPin1 = "P8_16"; //0.5dB
var outputPin2 = 'P8_11'; //1dB
var outputPin3 = 'P8_12'; //2dB
var outputPin4 = 'P8_14'; //4db
var outputPin5 = 'P8_15'; //8dB
var outputPin6 = 'P8_17'; //Latch Enable
// configure pins and set all low
b.pinMode(outputPin1, 'out');
b.pinMode(outputPin2, 'out');
b.pinMode(outputPin3, 'out');
b.pinMode(outputPin4, 'out');
b.pinMode(outputPin5, 'out');
b.pinMode(outputPin6, 'out');

This is where we use bonescript to check the status of each switch on the GUI and
react to any change. All the switches are polled in the same manner, except for the
Load button.

io.sockets.on('connection', function (socket) {
 // This is where we check the status of each Switch on the GUI
 socket.on('Output1', function (data) {
 if (data == 'on') {
 //Set the Pin High
 b.digitalWrite(outputPin1,1);
 console.log ("0.5dB On");
 } else if (data == 'off') {
 //Set the Pin Low
 b.digitalWrite(outputPin1,0);
 console.log ("0.5dB Off");
 }
});

To send this information to the attenuator, press the Load button that toggles the
latch enable (LE) pin of the attenuator and loads the new setting into the device.

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you
have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the
files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Chapter 5

[77]

The Load button is processed in a slightly different manner. In this case, the pin is set
high and then low. This is done to generate the LE signal required by the attenuator.
JavaScript is basically an interoperated language, so it generates a fairly wide pulse
as you can see in the following image.

LE signal

The following code toggles the LE pin:

socket.on('Output6', function () {
 b.digitalWrite(outputPin6,1);
 console.log("Latch Enable High");
 b.digitalWrite(outputPin6,0);
 console.log("Latch Enable Low");
});

The code that generates the actual GUI is written using HTML5 and some style sheet
add-ons.

<!-- jQuery and jQuery Mobile -->
<link rel="stylesheet"
 href="http://code.jquery.com/mobile/1.3.1/jquery.mobile-
 1.3.1.min.css" />
<script src="http://code.jquery.com/jquery-1.9.1.min.js"></script>
<script src="http://code.jquery.com/mobile/1.3.1/jquery.mobile-
 1.3.1.min.js"></script>
<script src="/socket.io/socket.io.js"></script>

Calibrated RF Source

[78]

Once again, all the switches are handled in the same manner with the exception of
the Load button.

function Switch1(sel){
 if (sel.value == "on") {
 socket.emit('Output1', sel.value);
 } else if (sel.value == "off") {
 socket.emit('Output1', sel.value);
 }
}

In the case of the Load button, the switch information is first sent as on followed by
off to simulate a momentary-action push button.

function Switch6(sel){
 socket.emit('Output6', "on");
 socket.emit('Output6', "off");
}

The slide switches are defined using the following code:

<div data-role="content">
 <div data-role="fieldcontain">
 <label for="Output1">
 0.5 dB
 </label>
 <select name="toggleswitch1" id="Output1" data-theme="b"
 data-role="slider" onchange="Switch1(this);">
 <option value="off">Off</option>
 <option value="on">On</option>
 </select>
 </div>
</div>

The code for the Load button is considerably simpler:

<button type="button" onclick="Switch6()">Load</button>

More information on jQuery and jQuery Mobile can be found at the
following links:
http://demos.jquerymobile.com/1.4.2/

http://demos.jquerymobile.com/1.4.2/button/

http://demos.jquerymobile.com/1.4.2/icons/

http://demos.jquerymobile.com/1.4.2/
http://demos.jquerymobile.com/1.4.2/button/
http://demos.jquerymobile.com/1.4.2/icons/

Chapter 5

[79]

The following image shows of a 50 MHz, -30 dBm signal that is applied to the
attenuator with the attenuation set to 0 dBm.

-30dBm signal

The following image is of the same signal with 10 dB of attenuation. Notice that the
output is now -40 dBm.

-40dBm signal

Calibrated RF Source

[80]

The following diagram is of the adapter board that is used to connect the BeagleBone
to the attenuator. The same board is also used in the next chapter to connect an RF
Power Detector to the BeagleBone.

Adapter board

For this chapter, we will only be using the connector J1 and solder points W4
and W3. The 3.3 V power from the BeagleBone is connected to W3, and W4 is
the ground return.

These two connections will have to be attached to the attenuator via a separate cable.
The following image shows the cable from Mini-Circuits that has been modified for
this project.

Attenuator control cable

Chapter 5

[81]

Summary
The project in this chapter was probably more challenging than the previous
ones, so I hope you were successful and made some new friends in the local
ham-radio community.

We learned about crystal filters and how they work. We also learned about crystal
oscillators and how they work. The oscillator we used in this project is a simple
crystal oscillator. There are two other types of fixed-frequency oscillators that
you might have heard of and can substitute if you like.

The first type is called a TCXO, which stands for Temperature Controlled Xtal
Oscillator. This oscillator has a built-in heat sinking ability that keeps the crystal
at a fairly constant temperature. A crystal's frequency can change slightly with
temperature, so this makes a TCXO more accurate than a simple crystal oscillator,
and more expensive.

The second type is called an OCXO, which stands for Oven Controlled Xtal
Oscillator. As the name implies, the oscillator package contains a heater that
keeps the crystal at a constant temperature no matter what the environmental
temperature is. These tend to be even more expensive than the TXCO.

In the next chapter, we will use this project to calibrate a digital RF Power meter.

RF Power Meter – Hardware
In this chapter, we will be building an RF power meter capable of measuring power
levels from approximately +3 dBm to -60 dBm.

For those of you who are not familiar with RF terminology:

• 0 dBm is equivalent to 1 mW or 1/1000 of a watt
• A power level of -30 dBm is equivalent to 1 microwatt or 1/1000,000 of a watt
• A power level of -60 dBm is equivalent to 0.001 microwatts

Basically, the meter is capable of reading extremely low power levels, but requires an
external attenuator to measure high power levels. The pros and cons of this feature
will become clearer as we go on.

The heart of this project is Linear Technology's LTC5582 RMS RF power detector,
as shown in the following image:

Linear Technology power detector

RF Power Meter – Hardware

[84]

The actual interface to the BeagleBone is quite simple. Power is supplied by the
BeagleBone and one of the analog inputs is used to measure the output from the
detector. The output voltage swing from the detector is approximately 1.2 volts to
2.4 volts. The 2.4-volt output exceeds the maximum input voltage of 1.8 volts to the
DAC; thus, to keep things simple, I divide the output of the detector by two. So we
now have an input range of 0.6 to 1.2 volts.

Detector/BeagleBone interface

The graph on page 4 of the Linear Technology data sheet (http://cds.linear.com/
docs/en/datasheet/5582f.pdf) shows the detector output voltage versus power
at various frequencies. The reader will notice that, below 2700 MHz, the graphs
are very similar. In order to measure the higher frequencies, we would have to
recalibrate the meter software.

In the previous chapter, we saw the layout of the custom adapter PCB that was used
in this project. For the purpose of writing this book, I simply bought a prototype
board from Circuitco and used it. You can use it too, if you like.

http://cds.linear.com/docs/en/datasheet/5582f.pdf
http://cds.linear.com/docs/en/datasheet/5582f.pdf

Chapter 6

[85]

Protoboard top

I simply mounted the demo board on the Circuitco adapter using double-sided
tape. The resistor divider is in the upper left of the board. I also installed the 8-pin
connector required by the attenuator in Chapter 5, Calibrated RF Source, as well as the
3.3-volt power connector. All I did was to remove P3 in order to make room for the
8-conductor cable.

This way, the RF step attenuator can be used with either project. One thing that
you should be aware of is that the power detector has a wider bandwidth than the
attenuator, so you will have to use discrete attenuators at higher frequencies.

Making power measurements
One of the handy features of this detector is that it gives you an output voltage that
is proportional to the RMS input power.

www.allitebooks.com

http://www.allitebooks.org

RF Power Meter – Hardware

[86]

What is RMS?
Find out more about RMS at http://en.wikipedia.org/wiki/
Root_mean_square#RMS_of_common_waveforms.

What this means to us is that we don't have to calculate the RMS power with our
software; the chip does that for us. The schematic of the demo board is shown in
the following diagram:

Demo board schematic (copyright Linear Technology Inc.)

The most important features of the schematic are the fact that the input is 50 ohms,
single-ended (not double-ended, using a transformer), and the fact that the 3.3 V
power is well filtered. This means that we do not have to worry about noise on the
3.3 V power coming from the BeagleBone.

In our case, the EN or Enable pin is simply connected to the 3.3 V rail, because
I couldn't see any value in turning the detector on and off. If you want to do this,
I suppose you could connect the EN pin to a BeagleBone I/O pin.

http://en.wikipedia.org/wiki/Root_mean_square#RMS_of_common_waveforms
http://en.wikipedia.org/wiki/Root_mean_square#RMS_of_common_waveforms

Chapter 6

[87]

Testing and calibration
Now that we have our circuit built, it is time to test and calibrate it. In order to do
that, I have provided you with simple JavaScript that you can use to read the input
from AN0 on the BeagleBone:

var b = require('bonescript');
var inputPin = "P9_39";
loop();
function loop() {
 var value = b.analogRead(inputPin);
 var diff = value-0.667; //0dBm input
 console.log ("Value");
 console.log(value); //DAC Reading
 console.log("Difference");
 console.log(diff); //Difference between
 //current reading and 0dBm
 console.log ("Power");
 console.log((diff/0.007)); // ~ 7% change per dBm
 setTimeout(loop, 1);
}

The preceding script outputs various calculations for calibration and debugging
purposes. The first variable value is the raw input from the DAC. This value is a
number between 0 and 1 that represents the percentage of the full-scale reading.
So a reading of 0.667 means that the voltage in is 66.7 percent of 1.8 volts, or full
scale. This can be confusing, but I managed to determine that a change of 1 dBm
in input power results in a 7 percent change in voltage reading by the DAC.

In order to calibrate our software, we will first run the software with a 0dBm power
input. We will make note of what the first output is to the console. In my case, it was
about 0.667 or 66.7 percent.

Stop the code and enter your number in place of 0.667 in the code. If you increase or
decrease the input power by 1 dB, you can confirm that the reading changes by about
7 percent or whatever your number is. You can now modify your code accordingly.

Once we have a reference point, 0 dBm, and a percentage change of 7 percent, we
can now calculate the input power by subtracting the 0dBm reading from the current
reading and dividing by the change per dBm value. In my case, the change is 7
percent but yours might be slightly different.

RF Power Meter – Hardware

[88]

If you comment out the debugging information, you should get a real-time reading
of the input power to the detector. Out of all the console.log statements, the last
one does the calculation.

Here we have the script running in the Cloud IDE provided with BeagleBone.
The input power is +1 dBm. As you can see in the following screenshot,
the software is giving us a reading of 1.06 dBm power:

Script running in Cloud9 IDE

You will notice that the readings tend to jump around a bit. Using the custom
PCB, and perhaps a filter capacitor from the AN0 input to ground, will help in
this situation. I'll leave that refinement to the reader.

Chapter 6

[89]

Making actual measurements
For those unfamiliar with this type of power meter, there are two types of
measurement you can make. The first and by far the easier is the direct-connect
method. This is the one I used when doing the calibration. One simply connects the
meter to the RF source with a cable. At one point, I had access to high-end equipment
and was able to measure the loss in the test cables that I used. For this project, that
kind of precision is probably not necessary, except at higher frequencies.

The second type of measurement is off-air measurement. In this case, an antenna
and various filters are used. Probably, the single most important component in
off-air measurements is the calibrated antenna. These antennas can range in price
from tens to thousands of dollars.

The antennas that I will be using in this book are available on eBay
for about $20 to $30 at http://stores.ebay.ca/KB5UBE-
Engineering/About-KB5UBE-Engineering.html.

They come with calibration information in the form of antenna factor numbers.

There is a good explanation of antenna factors available from
Wikipedia so I won't go into it here.
You can read more at http://en.wikipedia.org/wiki/
Antenna_factor.

What we really need to do is figure out what the gain of our antenna is at a given
frequency. Once again, it is Google to the rescue.

A handy web page for converting antenna factor to antenna gain
is at the following link:
http://rfcalculator.mobi/gain-from-antenna-
factor.html

I am not going to go into the details of RF measurement in this book because there
are many good reference books available, and frankly, the math is beyond me and
probably beyond many of the readers of this book.

http://stores.ebay.ca/KB5UBE-Engineering/About-KB5UBE-Engineering.html
http://stores.ebay.ca/KB5UBE-Engineering/About-KB5UBE-Engineering.html
http://en.wikipedia.org/wiki/Antenna_factor
http://en.wikipedia.org/wiki/Antenna_factor
http://rfcalculator.mobi/gain-from-antenna-factor.html
http://rfcalculator.mobi/gain-from-antenna-factor.html

RF Power Meter – Hardware

[90]

All you Hams and RF engineers out there: if I have offended you, I apologize
in advance.

Here, we have a typical setup for off-air measurements. The antenna I am using
is a log-periodic antenna. I chose it because it allows me to measure a number of
different frequencies with the same antenna. For those of you who are unsure of
what a log-periodic antenna is or would like to learn more, I have provided the
following link.

Explanation of what a log-periodic antenna is available here:
http://en.wikipedia.org/wiki/Log-periodic_antenna

Typical test setup

What you have to do is select a filter for the frequency range that you want to
measure. Shown in the following images are typical bandpass filters. In this case,
they are connector-connectorized versions from Mini-Circuits. Mini-Circuits also
sells solder in module versions of the same filter.

Filter for 2.4 GHz Wi-Fi band

http://en.wikipedia.org/wiki/Log-periodic_antenna

Chapter 6

[91]

The preceding image shows a bandpass filter for the 2.4 GHz ISM band used by
Wi-Fi, Bluetooth, and many cheap video cameras.

5.8 GHz bandpass filter

The filter shown in the preceding image is for the 5.8 GHz band that is used by many
cordless phones and other devices. The frequency response of these filters is shown
in the following pages.

2.4 GHz bandpass filter response

RF Power Meter – Hardware

[92]

In the preceding graph, you can see that the filter has a fairly sharp roll-off
(steep edges), which makes it a reasonable filter for our purposes.

5.6 GHz bandpass filter response

In this case, the network analyzer I had access to only had a measurement range of
up to 6 GHz, but you can clearly see the steepness of the filter edge.

The following image shows the antenna I will be using in this book, along with
antenna factors at various frequencies. Remember that a log-periodic antenna
is a broadband antenna, so we have to specify the antenna factor at various
frequencies. In practical applications, I would use the antenna factor closest
to the frequency I was measuring.

Chapter 6

[93]

850-6500 log-periodic antenna

Here, we have an antenna that will probably measure any frequency in the ISM
bands that you might be interested in, from 900 MHz to 5.8 GHz. An antenna for
measuring lower frequencies would be much larger since L = C / F, where L is the
wavelength, C is the speed of light and F is the frequency in hertz.

A simple rule of thumb I use is that, since the speed of light is 300 meters per
microsecond, a 300 MHz signal will have a wavelength of 1 meter. Therefore a
quarter-wave, 300 MHz antenna is 250 mm long (one quarter of a meter).

The data sheet for this antenna is available for downloading, but I have included the
antenna factor information in the following table as an example of how to calculate
antenna gain, given the antenna factor at a given frequency.

Frequency Antenna Factor Gain
900MHz 24.0 5.29dBi
1.0GHz 24.2 6.01dBi
1.5GHz 27.5 6.23dBi
2.0GHz 30.1 6.13dBi
2.4GHz 32.0 5.81dBi
3.0GHz 33.0 6.75dBi
6.0GHz 40.0 5.77dBi

RF Power Meter – Hardware

[94]

The term dBi means dB gain compared to a perfect isotropic antenna. An isotropic
antenna is an antenna with a perfectly circular antenna pattern. These antennas
do not exist in real life for various reasons. This is simply a term used to define
antenna gain.

Read more on how to make antenna measurements at the following link:
http://en.wikipedia.org/wiki/DBi#Antenna_measurements

The takeaway from the measurements in the preceding table is that the gain of
the antenna tends to vary a bit over the frequency range of the antenna. For a $30
antenna etched on PCB material, it is pretty good. Certainly, it is good enough for
home hobbyists.

Summary
In this chapter, we built and tested the RF Power Meter hardware that was based on
the Linear Technology LTC5582 (RMS) power detector. We also wrote some simple
software to read one of the analog inputs on the BeagleBone and convert the reading
to a dBm power measurement. We briefly discussed making hard-wired and off-air
power measurements using various bandpass filters. In the next chapter, we will be
developing the BeagleBone software that will be used with this hardware.

http://en.wikipedia.org/wiki/DBi#Antenna_measurements

RF Power Meter – Software
In this chapter, we will be building the development system that I used to write the
remaining software. Those of you who would rather just download the image file
can skip to the actual software section, but beware that it's an 8-GB file.

Suggested hardware setup
Firstly, let me tell you that I have no financial connection to Special Computing.
I just really like their stuff. If you already have a BeagleBone Black board (covered in
the previous chapters), then you can purchase only the docking station and cables by
contacting them via e-mail or by visiting the following link:

https://specialcomp.com/beaglebone/index.htm

My development system hardware

https://specialcomp.com/beaglebone/index.htm

RF Power Meter – Software

[96]

Part 1 – installing and configuring the OS
The first step is to get the latest Debian ARM7 image from the following link:

http://debian.beagleboard.org/images/bone-debian-7.5-2014-05-14-2gb.
img.xz

Simply burn the image to an 8-GB, class 10 microSD card. There are a lot of
instructions to do this with various operating systems, so I won't include them here.

Once you have burned the image, install the card in the BeagleBone and power it up.
The default username is debian and the password is temppwd.

The easiest way to access the BeagleBone I have found is via SSH, even though the
Lapdock has a keyboard. The brief instructions for setting up SSH using PuTTY are
explained in the following section.

Setting up PuTTY
After connecting the board to the same network of the host computer, on the
development system lapdock open a terminal window and enter ifconfig.
The results are shown in the following screenshot:

Result of the ifconfig command

You will notice in the second line of the preceding screenshot that the Internet
address is 192.168.10.108. This is the IP address that DHCP assigned to the
BeagleBone on my lab's router. Yours will depend on your network settings.
I will use this address in my examples from now on.

http://debian.beagleboard.org/images/bone-debian-7.5-2014-05-14-2gb.img.xz
http://debian.beagleboard.org/images/bone-debian-7.5-2014-05-14-2gb.img.xz

Chapter 7

[97]

PuTTY SSH setup screen

The preceding screenshot is of the PuTTY setup screen. All you should have
to do is enter the network address of the development system. In my case, it is
192.168.10.108 as I mentioned earlier. Now that we have PuTTY installed and
set up, we can continue the installation and setup of our development system:

SSH login screen

RF Power Meter – Software

[98]

Setting up root access
For a number of programs to run properly, we will need root access. Normally,
this is not a wise privilege to give to a user, so we will do it from a terminal window
rather that setting up a root user on the Ubuntu desktop. The following are brief
instructions on how to do this, so enter the following commands:

1. apt-get update.
2. sudo passwd root.
3. Enter a root password.

You should now have root access, so you can start another SSH session and log in as
a root user.

Expanding the filesystem
There's an excellent tutorial on expanding the filesystem at the following link:

http://elinux.org/Beagleboard:Desktops_On_Ubuntu/Debian#Ubuntu_
Precise_On_A_microSD_With_Ubuntu_Desktop

However, I will outline the basic steps as follows:

1. First of all we must execute the fdisk command on the device containing the
Linux root partition. To do this, we enter the following:
fdisk /dev/mmcblk0

2. You will see something similar to the following commands. The sector
information will be different on your screen:
Command (m for help): p

Disk /dev/mmcblk0: 8270 MB, 8270118912 bytes
4 heads, 16 sectors/track, 252384 cylinders, total 16152576
sectors
Units = sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disk identifier: 0x80000000

 Device Boot Start End Blocks Id
System
/dev/mmcblk0p1 * 2048 4095 1024 1 FAT12
/dev/mmcblk0p2 4096 3751935 1873920 83 Linux

Command (m for help):

http://elinux.org/Beagleboard:Desktops_On_Ubuntu/Debian#Ubuntu_Precise_On_A_microSD_With_Ubuntu_Desktop
http://elinux.org/Beagleboard:Desktops_On_Ubuntu/Debian#Ubuntu_Precise_On_A_microSD_With_Ubuntu_Desktop

Chapter 7

[99]

3. Next, enter d to delete a partition and then enter 2 for partition 2:
/dev/mmcblk0p2

4. Now create a new partition by entering n, p, and then 2.
5. You should hit Enter to have your default start sector used.
6. Hit Enter to use the entire card.

Now it's time to write the information to the microSD card:
7. In order to do that, we enter w to write out the changes as shown in the

following command:
Command (m for help): w

The partition table has been altered!

Calling ioctl() to re-read partition table.

WARNING: Re-reading the partition table failed with error 16:
Device or resource busy.

The kernel still uses the old table. The new table will be used at

the next reboot or after you run partprobe(8) or kpartx(8)

Syncing disks.

8. Reboot the system using the following command:
reboot

9. Now it's time to actually resize the filesystem by entering the following:
resize2fs /dev/mmcblk0p2

10. If we enter the df command, we will see the following:

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/mmcblk0p2 7674968 501400 6845508 7% /

devtmpfs 253772 4 253768 1% /dev

none 50784 276 50508 1% /run

none 5120 0 5120 0% /run/lock

none 253916 0 253916 0% /run/shm

/dev/mmcblk0p1 1004 472 532 48% /boot/uboot

Now that we have resized the filesystem, it's time for the next step: installing the
Ubuntu desktop.

RF Power Meter – Software

[100]

Installing the Ubuntu desktop
The following are the steps to install the Ubuntu desktop on our system:

1. First we must update the file database with the following commands:
sudo apt-get update

2. Then we will update to the latest copies of everything in the root file system
with the following commands:
sudo apt-get upgrade

3. Once the software has finished downloading and installing, it's time to install
the desktop:

sudo apt-get install Ubuntu-desktop

Part 2 – Installing the additional software
and dependencies
Follow these steps to install the additional dependencies:

1. Install TightVNC Server by entering the following commands:
apt-get install tightvncserver

Enter vncserver to start the server. The first time you run VNC server,
you will see the following:
root@ubuntu-armhf:~# vncserver

You will require a password to access your desktops.

Password:

Verify:

Would you like to enter a view-only password (y/n)? n

xauth: file /root/.Xauthority does not exist

New 'X' desktop is ubuntu-armhf:1

Creating default startup script /root/.vnc/xstartup

Starting applications specified in /root/.vnc/xstartup

Log file is /root/.vnc/ubuntu-armhf:1.log

In future, you can just type vncserver in the terminal or add it to a
startup script.

Chapter 7

[101]

2. Install the Emacs editor. This is optional:
apt-get install emacs

3. Install Build Essentials:
apt-get install -y build-essential g++ curl libssl-dev apache2-
utils git libxml2-dev

Installing the Device Tree Compiler
Build the Device Tree Compiler from source code using Robert Nelson's script:

wget -c https://raw.github.com/RobertCNelson/tools/master/pkgs/dtc.sh

chmod +x dtc.sh

./dtc.sh

Installing Derek Molloy's Device Tree Source
(Optional)
To install the Device Tree Source, do the following steps:

1. Install the Device Tree source code from Derek Molloy using the
following command:
git clone https://github.com/derekmolloy/boneDeviceTree.git

cd ~/boneDeviceTree/overlay

2. Edit the device tree source file:
 nano DM-GPIO-Test.dts

3. Compile the source code using the Make script provided:
./build

4. Copy the object file to the firmware directory:
cp DM-GPIO-Test-00A0.dtbo /lib/firmware/

5. To check that it is present:
Cd /lib/firmware

Ls

6. Apply the overlay to the Kernel:

Echo DM-GPIO-Test > $SLOTS

RF Power Meter – Software

[102]

Installing Node.js
To install Node.js, run the following commands:

wget http://nodejs.org/dist/v0.8.25/node-v0.8.25.tar.gz

tar –zxvf node-v0.8.25.tar.gz

cd node-v0.8.25

./configure

make

make install

Setting up external storage
To set up external storage, add an entry to /etc/fstab that automatically mounts
the drive at boot time, as shown in the following commands:

proc /proc proc defaults 0 0

/dev/mmcblk0p2 / auto errors=remount-ro 0 1

/dev/mmcblk0p1 /boot/uboot auto defaults 0 0

/dev/sda1 /media/disk1 vfat auto,umask=0 0 0

Then reboot. This will mount the USB memory stick each time the BeagleBone
is booted.

If you type mount after the reboot, you will see something similar to the
following commands:

mount

/dev/mmcblk0p1 on /boot/uboot type vfat (rw)

/dev/sda1 on /media/disk1 type vfat (rw,umask=0)

Chapter 7

[103]

External filesystem

Now that we have the external storage set up, we can continue with the
software installation.

Installing BoneScript
To install BoneScript, do the following steps:

1. Enter cd /home/debian.
2. Enter mkdir local to create a local directory.
3. Enter cd /home/debian/local to switch to your local directory.
4. Enter npm install bonescript to install BoneScript.

RF Power Meter – Software

[104]

Installing Cloud9
Without leaving the /home/debian/local directory, enter the following commands:

git clone https://github.com/ajaxorg/cloud9/

cd cloud9

npm install

chmod 777 .sessions

cd ~/cloud9/node_modules

Installing socket.io
The command to install socket.io is as follows:

npm install socket.io

Modifying the profiles in root and Debian
For user (Debian): nano /etc/profile

PATH=$PATH:/home/debian/local/cloud9/:/home/debian/local/cloud9/bin/

export PATH

export NODE_PATH=/usr/local/bin/cloud9/node_modules

Required For Device Tree Overlays

export SLOTS=/sys/devices/bone_capemgr.9/slots

export PINS=/sys/kernel/debug/pinctrl/44e10800.pinmux/pins

For root: nano /root/.bash_profile

PATH=$PATH:/home/debian/local/cloud9/:/home/debian/local/cloud9/bin/

export PATH

export NODE_PATH=/usr/local/bin/cloud9/node_modules

Required For Device Tree Overlays

export SLOTS=/sys/devices/bone_capemgr.9/slots

export PINS=/sys/kernel/debug/pinctrl/44e10800.pinmux/pins

Chapter 7

[105]

Our new development system file structure should look like the following figure:

Finished filesystem

To run the Cloud9 Integrated Development Environment (IDE), log in to the root
via SSH and enter cloud9.sh -l 0.0.0.0. You should get a message in your
terminal window similar to the following screenshot:

Cloud9 running on BeagleBone

RF Power Meter – Software

[106]

Using the RF power meter software
If we open another SSH session and look at the $SLOTS environment before running
the attenuator software, we will see the following:

Before running the attenuator software

If we then run the software in Cloud9 IDE and again check the $SLOTS environment,
we will see that a number of additional slots have been added by the software:

Attenuator.js software running

The additional slots that configure the IO pins on connector P8 are added at the
bottom. The JavaScript also added an override for the analog input AN0.

Chapter 7

[107]

The next two screenshots show the code running in Cloud9 IDE. I have separated the
code window from the HTML window so as to make the text more readable. When
you run the IDE, the two windows will appear as one. The following screenshot
shows the code window:

Cloud9 IDE screen

Beneath the code window is the output window that displays messages that would
normally appear on your terminal device. Some are messages from the IDE and
others are the messages you send via the console.log statement.

Output window

RF Power Meter – Software

[108]

The web page (HTML) display is shown in the following screenshot. The icons
in the upper right corner allow you to refresh, open a separate browser page,
and close the window, respectively.

Browser window

Note that the IP Address shown in the browser box is 192.168.10.108:8080,
the BeagleBone Black board address plus the 8080 port. This is the port
referenced in the JavaScript.

Chapter 7

[109]

The RF detector is not connected, so the RF power measurement is meaningless.
It's just for show.

Part A – JavaScript
There are actually two parts of the RF Power Meter software: the JavaScript portion
and an HTML web document (called by the JavaScript portion). What follows is a
brief description of JavaScript and what its various sections do. This is not intended
to replace the inline documentation that is part of the code.

The first thing we do is to define some variables and set up the port on which the
application will be listening. In our case, the port number is 8080:

var app = require('http').createServer(handler);
var io = require('socket.io').listen(app);
var fs = require('fs');
var b = require('bonescript');

app.listen(8080);

console.log('Server running on: http://' + getIPAddress() + ':8080');

Next, we assign variables to the physical pins on the BeagleBone connector. You will
notice that inputPin7 is assigned a physical pin number but not configured in the
following code, unlike the other pins. This is because the analog input is accessed in
a slightly different fashion, as you will see shortly:

var outputPin1 = "P8_16"; //0.5dB
var outputPin2 = 'P8_11'; //1dB
var outputPin3 = 'P8_12'; //2dB
var outputPin4 = 'P8_14'; //4db
var outputPin5 = 'P8_15'; //8dB
var outputPin6 = 'P8_17'; //Latch Enable
var inputPin7 = 'P9_39'; //Analog input AN0

// configure pins and set all low
b.pinMode(outputPin1, 'out');
b.pinMode(outputPin2, 'out');
b.pinMode(outputPin3, 'out');
b.pinMode(outputPin4, 'out');
b.pinMode(outputPin5, 'out');
b.pinMode(outputPin6, 'out');

RF Power Meter – Software

[110]

Now that we have the pins and variable configured, it's time to load the web page,
which will be our user interface. One of the reasons that I chose JavaScript and
HTML is that I can access the instrument from a smartphone or tablet. Basically,
the code loads the web page and prints an error message if the page is not accessible:

function handler (req, res) {
 if (req.url == "/favicon.ico"){ // handle requests for favico.ico
 res.writeHead(200, {'Content-Type': 'image/x-icon'});
 res.end();
 console.log('favicon requested');
 return;
 }
 fs.readFile('webpage2.html', // load html file
 function (err, data) {
 if (err) {
 res.writeHead(500);
 return res.end('Error loading webpage.html');
 }
 res.writeHead(200);
 res.end(data);
 });
}

From now on, what we have to do is check the status of every switch icon on the GUI
and perform the requested function on the BeagleBone. Basically, we will set an I/O
pin either high or low, based on the message received by socket.io. The code is the
same for all six switches, so it is not shown here:

io.sockets.on('connection', function (socket) {

socket.on('Output1', function (data) {
 if (data == 'on') {
 //Set the Pin High
 b.digitalWrite(outputPin1,1);
 console.log ("0.5dB On");
 } else if (data == 'off') {
 //Set the Pin Low
 b.digitalWrite(outputPin1,0);
 console.log ("0.5dB Off");
 }
 });

Chapter 7

[111]

Analog data is handled differently, because it travels through socket.io in the
opposite direction. Rather than the web page (client) sending data to the BeagleBone
(server), the BeagleBone reads the analog input, formats the data, and sends it to the
web page. It does so every 100 milliseconds:

io.sockets.on('connection', function(socket){
 //send data to client
 setInterval(function(){
 socket.emit('date',{'date': ((b.analogRead(inputP
in7)-0.667)/0.007)+ " dBm"});
 }, 100);
});

What the preceding highlighted code does is to first read AN0 using the
analogRead() function. It then subtracts a constant that I measured earlier. This is
the reading that I measured with 0 dBm at 50 MHz. Your number might be different,
but it should be close. You will know you are close when, with 0 dBm, the display
reads about 0 dBm. There is a certain amount of noise in the system, so you will
never get an exact 0 dBm reading with 0 dBm input. This is, however, a good test
of how well your hardware has been constructed.

Once we have the difference between the current input power and 0 dBm measured,
the next step is to calculate the actual input power. From the datasheet provided by
Linear Technology, I calculated that there is approximately a change of 7 percent
in output voltage for every 1 dBm of input power. This calculation was necessary
because the analogRead() function produces a number between 0 and 10, with 0
meaning 0 volts and 10 meaning 1.8 volts.

The output of the detector swings between 0 and 2.4 volts. For that reason, a 2:1
voltage divider was used to protect the input of the BeagleBone. Unfortunately, this
means that we lose about one third of our dynamic range. There's probably some
way of scaling the input using an amplifier, but resistors don't add any noise to
the system.

Part B – HTML code
The other part of the software is the HTML page, which is called by JavaScript.
The following is a description of the web page and how the various scripts work.

RF Power Meter – Software

[112]

The first thing we have to do is open a socket to the server so that we can send data
back and forth:

 <!-- Code for socket.io -->

 <script>
 var socket = io.connect();
 // Send data through socket

function Switch1(sel){
 if (sel.value == "on") {
 socket.emit('Output1', sel.value);
 } else if (sel.value == "off") {
 socket.emit('Output1', sel.value);
 }
 }

The preceding code opens a socket to the server. The Switch1 function checks the
state of the first toggle switch and sends a message via socket.io to the server
(BeagleBone), where it is interpreted by the JavaScript as we saw earlier. The code is
the same for five of the six switches. The first five switches are virtual toggle switches
and therefore have an on and an off position. The sixth switch is a pushbutton,
so the code for it is slightly different:

function Switch6(sel){

 socket.emit('Output6', "on");
 socket.emit('Output6', "off");
 }

There is no decision to be made; the code sends an on command followed by an off
command. This generates a positive-going pulse on the pin of the BeagleBone.

The only remaining part of the script is the code that receives data from the server
via socket.io and makes it available on the web page:

socket.on('date', function(data){
 $('#date').text(data.date);
 });

Chapter 7

[113]

The rest of the code is used to draw various elements on the webpage. The first few
lines implement the headers. The highlighted code is what displays the processed
analog data on the web page:

<body>
<!-- Home -->
<div data-role="page" id="page1">
 <div data-theme="a" data-role="header">
 <h3>
 RF Power Meter
 </h3>
 </div>

 <div data-role="content">
 <h3>
 RF Power
 </h3>
 <div id = "date" /div>
 </div>

 <div data-role="content">
 <h3>
 Attenuator Controller
 </h3>

The next few modules draw the various switches and label them. When the object
is left-clicked, the value changes between on and off, and the information is sent to
the server:

<div data-role="fieldcontain">
 <label for="Output1">
 0.5 dB
 </label>
 <select name="toggleswitch1" id="Output1" data-theme="b"
data-role="slider" onchange="Switch1(this);">
 <option value="off">Off</option>
 <option value="on">On</option>
 </select>

RF Power Meter – Software

[114]

Again, the exception to this is the pushbutton:

<button type="button" onclick="Switch6()">Load Settings</button>

There is nothing to change in the GUI, so it simply sends a switch6() event to
the server.

Summary
In the first part of this chapter, we built our development system and configured the
Cloud9 IDE so that it could be run locally on our BeagleBone.

In the second part of the chapter, we enhanced our GUI so that, in addition to
controlling the programmable attenuator, it also measured and displayed the
RF power.

Once again, the GUI uses the mobile JavaScript add-on, so that the attenuator and
power meter can be controlled from a tablet or smartphone.

Creating a ZigBee Network
of Sensors

In this chapter, we will be creating a star-shaped network of sensors based on the
802.15.4 or ZigBee protocol. We will see how to configure the ZigBee module using
Windows-based tools. We will interface the ZigBee module with alarm system
boards and test the setup.

It is important to note that XBee modules come in two different types. Not only do
they have different features, but they also cannot communicate with one another.
In order to give the Series 2 devices mesh network capability, some of the features
of the Series 1 modules had to be left out. Most notably, I/O line passing is only
available in the Series 1 modules. However, the "pro" versions can communicate
with devices in their own series. They just have different antenna connectors and
more output power.

You can find more information related to mesh networking at
http://en.wikipedia.org/wiki/Mesh_networking.

Part 1 – setting up the ZigBee modules
Follow the steps to easily set up the ZigBee modules:

1. The first thing we have to do is to install the XCTU software from the Digi
website at http://www.digi.com/support/productdetail?pid=3352&typ
e=utilities.

2. The next thing we have to do is to install the first ZigBee module in what
is called a "discovery board." This is an adapter that allows us to talk to the
module using a virtual serial port.

http://en.wikipedia.org/wiki/Mesh_networking
http://www.digi.com/support/productdetail?pid=3352&type=utilities
http://www.digi.com/support/productdetail?pid=3352&type=utilities

Creating a ZigBee Network of Sensors

[116]

3. You will need the FTDI USB drivers installed before connecting the
discovery board to your computer. These drivers are available at
http://www.ftdichip.com/FTDrivers.htm.

When you first plug in the discovery board, you will get a New hardware found
message and your operating system will install a virtual serial port. Depending on
your operating system, it will show up in your device manager as "USB Serial Port"
and your OS will assign it a com number. In my case, it was assigned com 9.
The following image is of my development system hardware:

ZigBee discovery board

http://www.ftdichip.com/FTDrivers.htm

Chapter 8

[117]

Here we have a SparkFun XBee Series 1 board (https://www.digikey.com,
Catalog#: XBP24-ASI-001-ND) installed on an XBee explorer board (http://www.
robotshop.com/ca/en/sfe-xbee-explorer-usb.html). I have also installed two
LEDs and two push-button switches. The right-most LED flashes indicate whether
data is being sent or received. The LED beside it indicates whether or not the module
is sleeping. This LED serves as a power indicator, because the module never goes
to sleep. The two pushbuttons are used to reset the module after changing the
firmware, and the commission (COMM) button is used to place the module in
various special modes. The functions of these buttons will be described later on.
To start the XCTU development package, double-click the icon that was installed
by software installer:

1. When we start the XCTU software, the first thing we will be asked to do is to
select a serial port for the software to scan for connected ZigBee modules.

Select a port to scan

https://www.digikey.com
http://www.robotshop.com/ca/en/sfe-xbee-explorer-usb.html
http://www.robotshop.com/ca/en/sfe-xbee-explorer-usb.html

Creating a ZigBee Network of Sensors

[118]

2. The next thing we have to do is configure our virtual com port so that it can
communicate with the discovery board.

Configure the port

Chapter 8

[119]

3. The final step is to tell the Windows software to search for ZigBee modules.

Scan for modules

Creating a ZigBee Network of Sensors

[120]

Once you select the device, the workbench software will query the ZigBee module
for its current settings.

Select a module to program

So, now that we have the hardware and software installed, it is time to start
configuring our ZigBee modules:

1. As the preceding screenshot says, just select our module and it is time to
play around a bit. The following screenshot shows settings for the XBee pro
module, which we will be installing in our alarm panel. This is because it has
a higher power output than the other modules and a reverse-polarity SMA
connector that allows us to connect an external antenna to the module.

Enabling the Coordinator function

2. Next, we have to set up the I/O settings for this module. The Coordinator
module has three I/O pins programmed as outputs, two of which will be
used as digital I/O passing outputs.

Chapter 8

[121]

I/O settings

3. In order to enable digital I/O line passing on the Coordinator module,
we have to change the I/O input address to FFFF.

Input address setup

4. Now that we have everything set up, it is time to write the new settings to
the module.

Module programming

Creating a ZigBee Network of Sensors

[122]

5. Now that we have the Coordinator module set up, it is time to program some
end units. All the end units are programmed similarly, so you can repeat
this process for as many end units as you have. The first step is to set up the
destination address for the end unit.

Destination address setup

6. The destination address is the 64-bit address of the Coordinator module.
This is where the end units will send their I/O packets and digital I/O line
passing information. You will recall that we enabled I/O pins DI01 and DI02
as outputs on the Coordinator module. What we do to enable digital I/O line
passing is enable the same I/O pins on the end units as inputs.

I/O pin configuration

There are two ways in which the Coordinator module can detect a change in the
inputs on one of the end (remote) units. It can either continuously ask each unit
to sample its inputs, or the units can generate a local interrupt when an I/O line
changes state. This second method is much more efficient, and that is the method
we will be using. In order to do that, we have to set up what is called an I/O mask.
This tells the module which I/O pins to monitor for any change.

Chapter 8

[123]

There are 8 input output pins, so the mask is 8 bits wide. In our case, we are using
I/O pins DI01 and DI02, so the mask is: 0000 0110, or 0x06 in hexadecimal form.

XBee alarm system

The preceding diagram shows the network we'll be building in the remaining
portion of this chapter. An alarm input board and an output board are connected
directly to the end units. An alarm system output board can also be connected to the
Coordinator module so that it can signal the wired alarm system if an event occurs in
the wireless portion of the alarm system.

The network topology we're using is called a star topology. This is because, unlike
a mesh network that has a mixture of coordinators, routers, and end units, the star
configuration has only a coordinator and end units:

• The star topology was chosen for this book because of its simplicity from a
software perspective. The reader should be aware that the XBee modules are
pin-compatible between series. What this means is that, should the reader
wish to implement a series 2 network at a later date, all that it would require
is exchanging the series 1 modules for series 2 modules (and a software
change, of course).

• The other reason that a star topology was chosen is that it is only in this
configuration that I/O line passing is a possibility.

• I/O line passing does not require us to decode any of the receive packets as
we would have to with the mesh network topology. The downside to this is
that we don't have the robustness (fault tolerance) of a mesh network because
XBees cannot "route" (pass on) packets not intended for them.

Creating a ZigBee Network of Sensors

[124]

• In a mesh network, we have three types of XBee devices. We have at least
one Coordinator, routers, and end units. A coordinator does the same job
in both topologies. It is usually connected to the host computer (in our the
BeagleBone) and passes messages to the rest of the network. In series 2 mesh
networks, it can also remotely configure the other devices on the network.

• The second type of device is a router. This type acts almost the same as the
router connected to your computer at home. Its job is to relay packets to and
from the other XBees in the network. It also has I/O of its own thus if the
packet is intended for it, then it can respond accordingly.

• The third type is called an end unit. This unit is found at the end of a branch.
The only reason to program an XBee as an end unit is so that it can be put
to sleep and conserve power. It is actually a kind of napping because it can
be programmed to wake up at regular intervals and check for messages
(packets), or it can wake when it receives a packet intended for it.

Mesh network

Chapter 8

[125]

Part 2A – the network hardware
Now that we have the XCTU workbench installed and tested, we can discuss the
network we'll be building. There will be two different types of ZigBee devices on the
network, from a software perspective. From a hardware perspective, all the units are
the same.

The following table shows the standard XBee pin numbers and their functions:

Pin Number Signal Name AT Command Functions
1 Vcc N/A 3.3V power
2 Tx – Out N/A Transmit
3 Rx – In N/A Receive
4
5
6 RSSI – PWM
7
8
9 None Sleep control
10 N/A Power supply

ground
11 D4
12 D7 CTS or DIO7
13 On None On/Sleep indicator
14 VREF None Reference voltage for

A/D converters
15 DIO5 D5 Association indicator
16 DIO6 D6 RTS
17 DIO3/AD3 D3 Analog input 3
18 DIO2/AD2 D2 Analog input 2
19 DIO1/AD1 D1 Analog input 1
20 DIO0/AD0 D0 Commissioning

button

Creating a ZigBee Network of Sensors

[126]

A ZigBee device can be configured as one of two types. A coordinator is a device in
charge of setting up and managing the network and the traffic flow. The other type is
called an end unit. As the name suggests, it is at the end of one of the branches of the
network tree. It can only receive and process information sent specifically to it.

XBee modules

In the preceding image, one of the end unit (remote) modules is shown on the left
and the coordinator is on the right.

There are two types of XBee adapter boards. Here we have the adapter board that
will provide the interface between the XBee module and the alarm panel boards,
in the end (remote) unit:

Chapter 8

[127]

XBee alarm system adapter board

In addition to providing the interface signals, the adapter board will also provide
3.3-volt power to the alarm boards. This board will be mounted on top of the alarm
boards in end (remote) units. The 3.3-volt power is supplied by a low-dropout
3.3-volt regulator that is capable of supplying 1-ampere current to the various loads.

Adapter board power

Creating a ZigBee Network of Sensors

[128]

In the following image, we see the three boards connected together and ready for
final assembly in the remote unit:

Remote XBee alarm module assembly

The alarm system consists of two types of boards. The first board is the interface to
the alarm system sensors. This board has two outputs. They are connected to DIO11
and DIO12. The second board is a general-purpose output board that provides four
optically isolated outputs for controlling external devices. The input to this board is
connected to pins DIO1 through DIO4.

XBee: alarm board adapter PCB

Chapter 8

[129]

The adapter PCB shown in the preceding diagram has a number of important
features. The COMISSION button is included for hardware compatibility with
series 2 modules, and is not used by series 1 modules.

The RESET button is required when changing the firmware from API mode to AT
mode. There are also two LED indicators. The On/Sleep indicator should be on
when you are trying to communicate with the module. If it is off, pressing the reset
button should wake up the module. The commission LED will flash at various rates,
depending on what is happening at the time. If the module is programmed and
associated with a network, the LED should flash on and off at about a 1 Hz rate.

The other XBee adapter board is the one that mounts on the BeagleBone. The
BeagleBone can act as a standalone wireless alarm system, with the capability of
signaling a wired alarm system of your choice, or the wired alarm system described
in my previous book. The alarm output of the first board is an opto-isolator that can
drive a relay. This relay can be connected to either a siren in the stand alone case,
or to the zone contacts of a commercial alarm system.

BeagleBone adapter #1

Creating a ZigBee Network of Sensors

[130]

Most of the connections are the same with the exception of the opto-isolator (U2)
as mentioned earlier and the lack of a 3.3 V regulator. In the latter case, the module
receives power from the BeagleBone, so the regulator is not required. The reader
will notice that the adapter PCB extends past the edge of the BeagleBone PCB.
This was done so as to get the XBee module as far from the BeagleBone CPU as
possible in order to limit the amount of RF interference between the module and
the BeagleBone.

BeagleBone remote adapter PCB

The ground plane has also been removed from under the XBee module for the
same reason.

The other PCB that I have provided with this book allows the buyers of my first
book (http://www.packtpub.com/building-a-home-security-system-with-
Beaglebone/book) to integrate wireless technology with their existing wired system.
I won't go too much into the details here except to say that it is basically the same
circuit with connectors added to match the ones on the wired system.

http://www.packtpub.com/building-a-home-security-system-with-Beaglebone/book
http://www.packtpub.com/building-a-home-security-system-with-Beaglebone/book

Chapter 8

[131]

The BeagleBone adapter board is slightly different, because it is designed to
mount on the BeagleBone itself. The XBee breakout board has the same LEDs
and switches connected to it. However, it gets its power from the BeagleBone
and is connected to UART 1 of the BeagleBone. The following is a circuit diagram
of the BeagleBone-to-XBee adapter PCB:

BeagleBone XBee adapter

The following image is of the prototype adapter board I built while writing this
book. An actual PCB of the adapter is available for download along with the
other files.

Prototype BeagleBone XBee adapter

Creating a ZigBee Network of Sensors

[132]

For those of you who didn't buy my first book, Building a Home Alarm System with
BeagleBone, I will provide a brief description of how the zone input board works,
how it is constructed, and how you can test it before installing it.

Part 2B – the alarm system hardware
First of all, what is a zone? A zone is an area that is being protected and/or a
collection of sensors that are protecting the zone. For example, ground floor
windows could be a zone. Ground floor PIRs could be another zone. There are also
special zones, such as fire alarm zones. In a commercial installation, fire zones and
carbon monoxide (CO) detectors must have their own zone.

But first of all, the alarm system, in this case the BeagleBone, must be able to monitor
the world around it. It does this by using ICs called comparators. You can think of
a comparator as an op-amp with extremely high gain. Like an op-amp, when the
voltage on the positive input (+) is higher than the voltage on the negative input (-),
the output goes high. When the opposite is true, the output goes low.

We will be using an LM339 comparator. This device has an open collector output.
What this means is that a resistor is required to pull the output high. By connecting
the output pull-up resistor to 3.3 V, we now have a level converter that can be safely
connected to the BeagleBone.

In the following diagram, a 4.7 K ohm resistor R5 is used as a pull up. The LM339
can sink plenty of current; so, for debugging purposes, we will also connect D1 and
R6 to the output. That way when the comparator is triggered, D1 will turn on. The
other handy feature of open collector outputs is that you can "OR" them together.

The following circuit actually monitors for two different conditions. If condition 1 is
true then pin 2 goes low or if condition 2 is true, pin 1 goes low.

Chapter 8

[133]

Alarm zone input circuit

So how does the circuit work?

What is an End of Line (EOL) resistor and what is it used for?

An EOL resistor is a resistor that is installed in the last device (sensor) of a chain of
devices; hence the term "end of line resistor."

The resistors, R4 and R3, and the EOL resistor form a voltage divider. Basically,
you have 5.6K Ohms and 2.2K Ohms in series and connected to a 12-volt battery.
Therefore, the ohms law tells us that there will be about 3.4 volts at the plus input
of the comparator when the alarm contacts are closed.

Creating a ZigBee Network of Sensors

[134]

Resistors R1 and R2 form a voltage divider that provides a 2-volt reference for the
negative input. As we learned before, if the plus input (3.4V) is higher than the
minus input (2.0V) then the output will be high.

If an alarm condition happens and the switch opens, then the 2.2K Ohms resistor,
R3, will pull the input to 0 volts and the output will go low, because now it is less
than 2.0V.

This also happens if the wire is cut by a burglar.

Open circuit alarm condition

But what if the burglar tries to jumper the alarm contacts and shorts out the
EOL resistor?

In this case, the negative input of the LM339 goes higher than the positive input
and once again, the output is pulled low. In this case, the reference voltage (9.0 V)
is applied to the positive input and the sense voltage is applied to the minus input.
If the EOL resistor is shorted, then 12 V is applied to the negative input of the
comparator, and the output is pulled low. As we learned before, the outputs of the
two circuits are ORed together, so that, if either an open OR a short occurs, the alarm
will be triggered.

Chapter 8

[135]

Alarm contacts shorted

You may have also noticed that there is a considerable difference between the sense
voltage and the reference voltage. This is to allow for long runs of wire, for those of
you who like to use Google, it is called hysteresis.

If you have a professionally installed alarm panel or know someone who
does, open the panel and look at the terminal blocks where the wires
are attached to the panel. If you see resistors connected across screw
terminals with wires connected to the alarm system, this means it was not
installed properly! What you do about this is up to you. They are called
EOL resistors for a reason. They belong at the end of the line. They should
each be installed on the last sensor in the loop.

The first is the module that monitors the various zones, in this case two zones.
The second module is the optically isolated output board. This is a board that is
used to activate lights and sirens and such. You can control up to four devices
with this board.

Creating a ZigBee Network of Sensors

[136]

The zone monitor PCB
This is a relatively simple board to assemble. All the parts used in this project are
through-hole parts, so no advanced surface mount soldering skills are required.
You will also find that this is much easier to test and repair.

When I assemble PCBs, I always start with the lowest parts and work towards the
highest. That way, when you flip the board on its back, all the parts don't fall out!

Just follow the parts list and the silkscreen on the board and you should not have
any problems. Just be sure to double-check that the integrated circuit U1 is installed
correctly. The LEDs and diodes are also polarity sensitive.

Two-zone alarm input board

The schematic for the two-zone alarm system is shown in the following diagram for
reference purposes:

Chapter 8

[137]

Two zone alarm schematic

The connectors J3 and J4 on the zone monitor schematic are your connections to the
zones that you wish to monitor. Pins 1 and 2 of each connector are the zone inputs.
Pins 3 and 4 are used to supply power to PIRs and other active sensors. Pin 4, which
is called GND or ground, is the +12 V return. It is not the same as the COM or
common input.

Connector J5 is the key switch input. Applying +12 V to pin 2 and ground to pin 1
will turn on the opto-isolator U2. This will pull the /key signal low.

Creating a ZigBee Network of Sensors

[138]

This +12 V can come from a key switch, a push button switch, a toggle switch,
or anything you like as long as it applies +12 V to the opto-isolator.

Zone input board

The preceding image shows the completed PCB. You will notice that I have used
sockets for the ICs. This is not strictly necessary, but when I build prototypes, I use
sockets until I am sure that the design will work. Also notice that the rectifier diodes
D3 and D4 are raised off of the board. This was to allow better cooling, should they
need it.

Isolated output PCB
The optically-isolated output PCB is a very simple construction. There are two
reasons why I made a separate board in this case, as follows:

• This form factor allows a more modular design. You can have as many
outputs as you can find I/O pins on your XBee modules.

Chapter 8

[139]

• It is also cheaper to order small 3.8-inch x 2.5-inch mini boards from
ExpressPCB than to order a larger custom-size board.

Optically isolated output board

The assembly of this board is very much the same as with the first board:

1. Install the resistors first.
2. Install the LEDs, making sure that the polarity is correct.
3. Install the transistors, again checking for correct installation.
4. Install the ICs, preferably on sockets to make repairs easier.

Creating a ZigBee Network of Sensors

[140]

5. Finally, install the connectors.

Optically isolated output board schematic

All four circuits are identical. A logical value 1 on the input applies 3.3 V to the base
of the NPN transistor. This turns on the transistor, which pulls the collector of the
transistor low. This turns on the LED and the opto-isolator. The LED is provided for
debugging purposes. The LED turns on when the opto-isolator is activated.

Chapter 8

[141]

Optically isolated output board

The preceding image shows the assembled PCB. Observant readers may notice
that the color code of the 1K resistor for the first output is different from the rest.
This resistor is what you're probably used to and has the normal 5-percent color
code: brown, black, red, gold meaning 1 - 0 + 00 5-percent tolerance.

The other resistors are 1-percent tolerance resistors, so three decimal places are
required: 1 - 0 - 0 + 0 1 percent.

There is no need to use 1-percent resistors in this design. I had them in my lab stock
so I used them.

You will also note that the white connector hangs over the edge of the board.
This is to make it easier to attach the connector when the boards are stacked
during final assembly.

Creating a ZigBee Network of Sensors

[142]

Connecting devices to the board
Congratulations! You now have a finished PCB capable of turning 3.3V logic signals
into a real-world action. Not only can you turn on lights and sirens, you can also use
this board to turn on your lawn sprinkler!

Here are two methods of doing just that:

• You can use a mechanical relay
• You can use a solid state relay (SSR)

The following diagram shows a small relay connected directly to the output
transistor of the opto-isolator. If you want to maintain isolation between the alarm
panel and the device you are controlling, the 12V battery powering the relay should
have a separate ground return from the panel ground.

External mechanical relay control

Chapter 8

[143]

You can now hook your siren or flashing light to the contacts of the mechanical
relay without the fear of blowing the output transistor of the isolator on the board.
Accidents happen, and that is why I suggested putting the opto-isolators on sockets.
They aren't very expensive so I suggest you order spares.

In this case, we are using one opto-isolator to drive another. In the schematic form,
this probably looks a bit odd. However, in the real world, the second isolator can be
a high-current device capable of switching high voltage and current. In addition to
the transistor shown in the drawing, it is also possible to buy opto-isolators with triac
outputs for switching AC loads.

External opto-isolator connection

An example of one such AC load might be the motor that opens and closes your
garage door or the gate at the end of your lane.

The wiring of such high-voltage and high-current loads should probably
be left to your local licensed electrician. Meeting the local electrical codes
is up to you. As the system was built by you, it will not be CSA/UL
approved, and the electrician may not want to install or connect it.

Creating a ZigBee Network of Sensors

[144]

Another application of this type of relay would be to turn on exterior lighting.
This could be done, either automatically using a zone input and a light sensor,
or remotely by connecting to the panel via the Internet.

Solid state relay

The preceding image shows a high current SSR capable of switching AC loads.
Note the two mounting fins on either side, so that the device can be mounted
to a heat sink.

One thing I should mention about SSRs are that, in this project, the panel will be
doubly isolated from the AC load. This is because you have one SSR driving another.

One handy use of an AC relay might be to turn on a backup sump pump when the
alarm system detects a flood and the primary pump has failed. This would be handy
for those of us who live in low-lying areas.

Part 3 – building the actual network
(software)
First of all, we have to install the software that will be required to communicate with
the XBee modules.

Chapter 8

[145]

Step 1 – installing Oracle's JDK on
BeagleBone Black
The software we will be writing requires Java and JavaScript, so the first step is to
install Oracle's JDK. Then download the Linux ARM v6/v7 Hard Float ABI Version:

1. Copy jdk-7u40-linux-arm-vfp-*.gz to your BeagleBone Black.
2. Perform tar xzf jdk-7u40-linux-arm-vfp-*.gz to extract the JDK.
3. Perform export PATH=$PATH:/home/root/jdk1.7.0_40/bin to add the

JDK to your path.
4. Perform export JAVA_HOME=/home/root/jdk1.7.0_40 to set the

JAVA_HOME on your installation.
5. Perform java -version to verify your installation.

Step 2 – installing the Java serial port
extension package
To install this package, perform the following commands on your terminal:

apt-get install build-essential

sudo apt-get install nodejs

npm install serialport

Step 3 – enabling serial ports on startup
In the serials.sh file, use the following code:

#!/bin/bash
cd /lib/firmware/
echo ttyO1_armhf.com > /sys/devices/bone_capemgr*/slots
echo ttyO2_armhf.com > /sys/devices/bone_capemgr*/slots
echo ttyO4_armhf.com > /sys/devices/bone_capemgr*/slots
cd ~

Creating a ZigBee Network of Sensors

[146]

Modify rc.local to run scripts on startup. Scripts should be in /usr/local/bin/
cd/etc:

nano rc.local

!/bin/sh -e

#

rc.local

#

This script is executed at the end of each multiuser runlevel.

Make sure that the script will "exit 0" on success or any other

value on error.

#

In order to enable or disable this script just change the execution

bits.

#

By default this script does nothing.

/usr/local/bin/serials.sh

exit 0

Testing the hardware
To test the hardware, perform the following steps:

1. The first thing we are going to do is run some code in the Cloud9 IDE,
which will make sure that our network is configured correctly and that
the hardware is working properly. We first have to power up our remote
modules. We do this by applying about 6 volts to the DC input pin of our
remote module board. Four AA cells in a holder will work fine for now.

2. You should see the LED connected to the SLEEP pin on continuously because
we will not be using the sleep mode in this version of the software. The LED
connected to the COMMISSION pin should be flashing, which indicates that
it is ready to receive network packets.

3. Next, power up the BeagleBone, and wait for it to boot Debian. Once the boot
sequence has finished, you can log in as root with the password password.
The reason that we have to log in as root is that there appears to be a bug in
the Cloud9 IDE that requires this method of login.

4. To find the IP Address that has been assigned to your BeagleBone,
enter ifconfig.

5. To run the Cloud9 IDE, enter cloud9.sh –l 0.0.0.0.

Chapter 8

[147]

6. Now that you have the IP Address, open a browser and enter the
address plus port number 3131. For example, in my case, it was
192.168.10.105:3131.
The code we want to run is called send_packet_test.js and will send a
command to all the remote XBee modules to turn on D1. This is the same
function that is used in the actual alarm code. It has just been simplified for
this test.
The first thing we have to do is to set up the serial port configuration using
the JavaScript add-on we installed earlier. The baud rate is set to the same as
the one we configured earlier using XCTU:

// Serial Port Setup
var serialPort, sp;
var comPort = '/dev/ttyO1';
var serialPort = require('serialport').SerialPort
sp = new serialPort(comPort, { baudrate: 9600,});

7. Now that we have the port configured, we need to set up some constants
and variables:
// Constants and Variables
const frameStartByte = 0x7E;
const frameTypeRemoteAT = 0x17;
const remoteATOptionApplyChanges = 0x02;

var sum; // Calculated Checksum
var pin_state; // On or Off 0x5=On 0x4=OFF

These variables will be used by the actual alarm software. They are
hardcoded for this example:

var pin_num; // Pin number 1 - 3
var mod_address_H; // 16bit address of module High byte
var mod_address_L; // 16bit address of module Low byte

8. Now we call the send_packet() function:

send_packet();

function send_packet(){
 sp.on("open", function () {
 console.log(comPort + ' is open');
 sum = 0; // Calculate the checksum as we go

Creating a ZigBee Network of Sensors

[148]

What we are going to do is send the following packets to the other modules on
the network:

To turn the LED on, we send these packets:

7E 00 10 17 01 00 00 00 00 00 00 FF FE FF FE 02 44 31 05 71

To turn the LED off, we send the following packets:

7E 00 10 17 01 00 00 00 00 00 00 FF FE FF FE 02 44 31 04 72

To do this we send a remote AT command that consists of an ASCII letter D followed
by the ASCII number of the I/O port; in this case port D1:

/The text of the AT command

 sp.write([0x44]);

 sum += (0x44); //Capital 'D'

 sp.write([0x31]);

 sum += (0x31); //Number '1'

The actual value that we write is either 0x4 to turn the LED off or 0x5 to turn it on:

// The value (0x4 for off, 0x5 for on)

//sp.write[pin_state];

//sum +=(pin_state);

 sp.write([0x4]);

 sum +=(0x4);

Now we calculate the actual checksum based on the information we have been
accumulating as we sent the bytes. Then all we have to do is send it and an LED
should turn on at the other end:

// Send the checksum
var checksum = (0xFF - (sum & 0xFF));
// Mask off the MSB and then subtract from 0xFF to get checksum
 sp.write([checksum]);
 });
 }

The next feature we have to test is called I/O Line Passing. This feature is only
available on series 1 XBee modules, and that is why they were chosen for this
book. This feature vastly simplifies the software. The way line passing works is
that an I/O output pin on the Coordinator is paired with I/O input pins on the
end units. So, if a pin on one of the end (remote) units goes low, the corresponding
pin on the Coordinator goes low. All we have to do is monitor the output pin of
the Coordinator XBee module with the BeagleBone and trigger an alarm when
something happens.

Chapter 8

[149]

That is exactly what the following JavaScript does.

The first step is to get the bonescript add-on for JavaScript and then enable the
output pins on the BeagleBone:

var b = require('bonescript');

var outputPin1 = "P8_13"; //Alarm Output 1
var outputPin2 = 'P8_11'; //Alarm Output 2
var outputPin3 = 'P8_12'; //Alarm Output 3
var outputPin4 = 'P8_14'; //Alarm Output 4
var outputPin5 = 'P9_27'; //Xbee Alarm Output

// configure output pins and set all low
b.pinMode(outputPin1, 'out');
b.pinMode(outputPin2, 'out');
b.pinMode(outputPin3, 'out');
b.pinMode(outputPin4, 'out');
b.pinMode(outputPin5, 'out');

//Setup input pin directions
b.pinMode(inputPin1, b.INPUT);
b.pinMode(inputPin2, b.INPUT);
b.pinMode(inputPin3, b.INPUT);
b.pinMode(inputPin4, b.INPUT);
b.pinMode(xBeePin1, b.INPUT);
b.pinMode(xBeePin2, b.INPUT);
b.pinMode(keyPin, b.INPUT);

// This is where the Alarm System code starts

var inputPin1 = 'P8_19'; //Zone 1 is connected to this pin
var inputPin2 = 'P8_15'; //Zone 2 is connected to this pin
var inputPin3 = 'P8_9'; //Zone 3 is connected to this pin
var inputPin4 = 'P8_7'; //Zone 4 is connected to this pin
var keyPin = 'P8_17'; //Key switch connected to this pin
var xBeePin1 = 'P9_15'; //Remote Zone 1 Alarm
var xBeePin2 = 'P9_23'; //Remote Zone 2 Alarm

Creating a ZigBee Network of Sensors

[150]

Next, we have to attach an interrupt to each input pin so that an interrupt handler
will be called if the pin goes low:

// Setup interupts
b.attachInterrupt(inputPin1, true, b.FALLING, Zone1Callback);
b.attachInterrupt(inputPin2, true, b.FALLING, Zone2Callback);
b.attachInterrupt(inputPin3, true, b.FALLING, Zone3Callback);
b.attachInterrupt(inputPin4, true, b.FALLING, Zone4Callback);
b.attachInterrupt(xBeePin1, true, b.FALLING, XBeeZone1Callback);
b.attachInterrupt(xBeePin2, true, b.FALLING, XBeeZone2Callback);
b.attachInterrupt(keyPin, true, b.FALLING, keyCallback);

Now that we have our interrupts set up, all we have to do is sit back and wait for
something to happen. When it does, we send a message to the console and then turn
on the opto-isolator to signal an alarm:

console.log ('Waiting for an Alarm Interupt');

//Alarm Interupt Handlers Start Here:
//Alarm Detected in Remote Zone 1
function XBeeZone1Callback() {
 flag4 ++;
 if (flag4 > 1){
 console.log ("Alarm Detected in Zone 4");
 state = 1;
 b.digitalWrite(outputPin5, state);//Turn ON the Opto-Isolator
 }
}

//Alarm Detected in Remote Zone 1
function XBeeZone1Callback() {
 flag4 ++;
 if(flag4 > 1){
 console.log ("Alarm Detected in Zone 4");
 state = 1;
 b.digitalWrite(outputPin5, state);//Turn ON the Opto-Isolator
 }
}

If you got this far and everything is working, congratulations! You now are the
proud owner of a wireless alarm system.

For the more adventurous among you, I have included a Going further section.

Chapter 8

[151]

Going further
In this section, I will describe to you the makeup of the packet that the end unit sends
to the coordinator. This is important for you software folks, because it will tell you
which remote or end unit triggered the alarm; assuming that you have more than
one end unit.

The following is a sample of packets received from two different end units:

Module #1

7E 00 0A 83 00 00 3F 00 01 00 06 00 04 32 <- Button 1 Down

7E 00 0A 83 00 00 41 00 01 00 06 00 06 2E <- Button 1 Up

7E 00 0A 83 00 00 4B 00 01 00 06 00 02 28 <- Button 2 Down

7E 00 0A 83 00 00 53 00 01 00 06 00 06 1C <- Button 2 Up

==

Module #2

7E 00 0A 83 00 00 30 00 01 00 06 00 04 41

7E 00 0A 83 00 00 31 00 01 00 06 00 06 3E

7E 00 0A 83 00 00 32 00 01 00 06 00 02 41

7E 00 0A 83 00 00 34 00 01 00 06 00 06 3B

The following is an explanation of the packet contents:

Module #1

7E 00 0A 83 00 00 3F 00 01 00 06 00 04 32 <- Button 1 Down

7E 00 0A 83 00 00 41 00 01 00 06 00 06 2E <- Button 1 Up

The following table is a breakdown of the packet contents and what the various
bytes mean:

Field Name Module#1 Button Down Description
Start Delimiter 7E All API frames start with 7E.
Length 000A Length of the frame (not including

Checksum).
Frame Type 83 This is a 16-bit I/O sample.

Creating a ZigBee Network of Sensors

[152]

Field Name Module#1 Button Down Description
16-bit Source Address 0000 * 16-bit address of the XBee that sent

the sample. This matches the MY of
the remote module.

RSSI 3F Signal strength in dBm of the
received packet. (-63dBm).

Option Byte 00 Additional information about
the frame.

Number of Samples 01 How many samples are included, this
is determined by the IT parameter.

Channel Mask 00 06 A bit field mask that indicates
which analog and digital lines are
configured as inputs.

Digital Samples 00 04 Digital sample data.
Analog Sample #1 ** Two-byte analog sample.
Analog Sample #2 ** Two-byte analog sample.
Analog Sample #3 ** Two-byte analog sample.
Checksum 32 Checksum of the API frame.
Note the following:

• * This is the 16-bit address. I left it blank; the user should assign an address so that
they can identify the module that is sending the information. That way, all you have
to do is parse the first few bytes of the frame.

• ** If no analog channels are enabled, then these six bytes are not sent.

If we take a look at the two different digital samples 00 04 and 00 06, they indicate that
DIO1 has gone low (04) and then returned high (06).

The following is another useful table as a reference:

BeagleBone
UART pins

RX TX CTS RTS Device Remarks

UART0 J1_4 J1_5 - - /dev/ttyO0 For BeagleBone
Black only

UART1 P9_26 P9_24 P9_20 P9_19 /dev/ttyO1
UART2 P9_22 P9_21 P8_37 P8_38 /dev/ttyO2
UART3 - P9_42 P8_36 P8_34 /dev/ttyO3 TX only
UART4 P9_11 P9_13 P8_35 P8_33 /dev/ttyO4
UART5 P8_38 P8_37 P8_31 P8_32 /dev/ttyO5

Chapter 8

[153]

Essentially, what you do is read an analog input and convert the reading to millivolts
by dividing the reading by 4096 (the maximum reading from the ADC) and then
multiplying by 1800 (the reference voltage). This will give you the actual reading
in millivolts.

Now that we have the reading in millivolts, it is time to convert the reading to
degrees Celsius. To do this we subtract 500 mV (the output offset of the TMP36) from
the calculation and then divide by 10. We now have the reading in degrees Celsius.

For those of you who live in countries that still use the Fahrenheit scale, simply
multiply the Celsius reading by 9, divide it by 5, and add 32, just like they taught
you in school.

Summary
Well folks, that's it for this book. I hope you have enjoyed reading it as much
as I did writing it. By now you have discovered that this is not your average
BeagleBone projects book. I have tried to include something for everyone in
this book.

This chapter was by far the most advanced. In it, we built our own wireless
alarm system, using ZigBee technology and our very own alarm system boards.

Index
Symbol
555 timer

about 21-24
circuit 24
working 21-24
working, in monostable mode 31

A
active peak detector 60
actual measurements

creating 89-94
actual network

building 144
hardware, testing 146-150
Java serial port extension package,

installing 145
Oracle's JDK, installing on BeagleBone

Black 145
serial ports, enabling on startup 145

alarm
testing 36-38
working 32

alarm system hardware
about 132-135
devices, connecting to board 142-144
isolated output PCB 138-141
zone monitor PCB 136-138

antenna measurements
URL 94

antennas
URL 89

astable 22

B
basic tools 8-11
BeagleBone Black

Oracle's JDK, installing on 145
BeagleBone Black board

URL 95
BeagleBone I/O pins 72-74
BeagleBone-to-XBee adapter PCB

circuit diagram 131
BNC attenuator 70
board

devices, connecting to 142-144
BoneScript

installing 103
bytes 151

C
carbon monoxide (CO) 132
case

assembling 26-28, 33, 34
building 26-28

circuit
calibration 87, 88

Cloud9
installing 104

crystal filter 64-67
crystal oscillator 63

D
Debian, root

modifying 104, 105
dependencies, installing

about 100, 101

[156]

Cloud9 104
Device Tree Compiler 101
Device Tree Source 101
Node.js 102
profiles in root, modifying 104
socket.io 104
steps 100, 101

devices
connecting, to board 142-144

Device Tree Compiler
installing 101

drivers
URL 116

DUT (Device Under Test) 59

E
End of Line (EOL) resistor 133
end unit 124

F
FET (Field Effect Transistor) 58
filesystem

expanding 98, 99
filter

need for 64
filtering

results 65
flasher PCB

assembling 24, 25
flashlight

about 12-16
plastic lens, removing from 12, 13

floodlights
turning on 39

H
hardware

testing 146-150
hardware setup 95
headlamp 17, 18
HTML code 112, 113

I
impedance

URL 60
input impedance

URL 45
input section, sound cards 44-47
Integrated Development

Environment (IDE) 105
isolated output PCB 138-141

J
JavaScript 109-111
Java serial port extension package

installing 145
jQuery

URL 78
jQuery Mobile

URL 78

L
latch enable (LE) 76
Linear Technology

URL 84
log-periodic antenna

URL 90

M
mercury switch

working 35
mercury tilt switch 35
mesh networking

URL 115
model, Creative Labs

specifications 41, 42
URL 41

monostable mode
555 timer, working in 31

multimeter 10

[157]

N
network hardware 125-131
Node.js installation

about 102
BoneScript, installing 103
external storage, setting up 102, 103

Nyquist-Shannon sampling theorem
URL 42

O
one-transistor test circuit 74
op-amps, working

URL 43
Oracle's JDK

installing, on BeagleBone Black 145
OS

configuring 96
installing 96

OS configuration
additional software, installing 100, 101
dependencies, installing 100
filesystem, expanding 98, 99
PuTTY, setting up 96
root access, setting up 98
Ubuntu desktop, installing 100

output section, sound cards 42, 43

P
packet contents 151
PCB

assembling 34-36, 68, 69
PCB assembly 47-49
peak detector hardware 60, 61
pins, 555 timer

functions 22
pi pad 65
plastic lens

removing, from flashlight 12, 13
power measurements

creating 85, 86
profiles, root

modifying 104, 105
programmable attenuator 71, 72

project
modifying 28

PuTTY
setting up 96, 97

Q
Q, of filter

about 63
URL 64

R
Ref Level 67
RESET button 129
RF power meter

about 83-85, 106-109
HTML code 111-113
JavaScript 109-111

RMS
URL 86

root access
setting up 98

router 124
R-S flip-flop

truth table 22

S
sample packets 151
serial ports

enabling, on startup 145
siren

turning on 39
SMA connector

using 70
socket.io

installing 104
software

controlling 75-80
software, sound card 49
soldering iron

using 13-16
solid state relay (SSR) 142
sound card oscilloscope

about 50-53
URL 50

[158]

SparkFun XBee Series 1 board
URL 117

star topology 123
sweep generator

used, for measuring frequency response 60

T
test setup 62
three-pin temperature sensor

about 153
URL 153

tuned section 63

U
Ubuntu desktop

installing 100

V
Visual Analyzer

about 55, 56
URL 55

X
XBee

functions 125, 126
pin numbers 125, 126

XBee adapter boards 126
XBee explorer board

URL 117

Z
Zelscope software

about 53, 54
URL 53

ZigBee modules
setting up 115-124

zone 132
zone monitor PCB 136-138
ZRLC hardware 58, 59
ZRLC measurements

creating 59, 60
peak detector hardware 60, 61
sweep generator used, for measuring

frequency response 60
ZRLC meter

about 57
ZRLC hardware 58, 59

Thank you for buying
Getting Started with Electronic Projects

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Raspberry Pi Cookbook for
Python Programmers
ISBN: 978-1-84969-662-3 Paperback: 402 pages

Over 50 easy-to-comprehend tailor-made recipes to
get the most out of the Raspberry Pi and unleash its
huge potential using Python

1. Install your first operating system, share files
over the network, and run programs remotely.

2. Unleash the hidden potential of Raspberry Pi's
powerful VideoCore IV graphics processor with
your own hardware accelerated 3D graphics.

3. Discover how to create your own electronic
circuits to interact with Raspberry Pi.

BeagleBone Home Automation
ISBN: 978-1-78328-573-0 Paperback: 178 pages

Live your sophisticated dream with home automation
using BeagleBone

1. Practical approach to home automation using
BeagleBone; starting from the very basics of
GPIO control and progressing up to building
a complete home automation solution.

2. Covers the operating principles of a range
of useful environment sensors, including
their programming and integration to the
server application.

3. Easy-to-follow approach with electronics
schematics, wiring diagrams, and controller
code all broken down into manageable and
easy-to-understand sections.

Please check www.PacktPub.com for information on our titles

Building a Home Security System
with BeagleBone
ISBN: 978-1-78355-960-2 Paperback: 120 pages

Build your own high-tech alarm system at a fraction of
the cost

1. Build your own state-of-the-art security system.

2. Monitor your system from anywhere you can
receive e-mail.

3. Add control of other systems such as sprinklers
and gates.

4. Save thousands on monitoring and rental fees.

BeagleBone Robotic Projects
ISBN: 978-1-78355-932-9 Paperback: 244 pages

Create complex and exciting robotic projects with the
BeagleBone Black

1. Get to grips with robotic systems.

2. Communicate with your robot and teach it to
detect and respond to its environment.

3. Develop walking, rolling, swimming, and
flying robots.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction – Our
First Project

	Basic tools
	Flashlight – step 1
	Flashlight – step 2
	Headlamp – step 1
	Summary

	Chapter 2
: Infrared Beacon
	What is a 555 timer and how does
it work?
	Our 555 timer circuit
	Assembling our flasher PCB
	Building and assembling the case
	Going further
	Summary

	Chapter 3
: Motion Alarm
	How a 555 timer works in monostable mode
	How our alarm works
	Assembling the case
	Assembling the PCB
	Testing the alarm
	Going further
	Summary

	Chapter 4
: Sound Card-based Oscilloscope
	The output section
	The input section
	The PCB assembly
	Software
	Sound card oscilloscope program
	The Zelscope software
	Visual Analyzer
	The ZRLC meter
	ZRLC hardware

	Making ZRLC measurements
	Using the sweep generator to measure frequency response
	Peak detector hardware

	Example test setup
	Summary

	Chapter 5
: Calibrated RF Source
	Assembling the PCB
	Going further
	Programmable attenuator
	BeagleBone I/O pins
	Control software
	Summary

	Chapter 6
: RF Power Meter – Hardware
	Making power measurements
	Testing and calibration
	Making actual measurements
	Summary

	Chapter 7
: RF Power Meter – Software
	Suggested hardware setup
	Part 1 – installing and configuring the OS
	Setting up PuTTY
	Setting up root access
	Expanding the filesystem
	Installing the Ubuntu desktop

	Part 2 – Installing the additional software and dependencies
	Installing the Device Tree Compiler
	Installing Derek Molloy's Device Tree Source (Optional)
	Installing Node.js
	Setting up external storage
	Installing BoneScript

	Installing Cloud9
	Installing socket.io
	Modifying the profiles in root and Debian

	Using the RF power meter software
	Part A – JavaScript
	Part B – HTML code

	Summary

	Chapter 8
: Creating a ZigBee Network
of Sensors
	Part 1 – setting up the ZigBee modules
	Part 2A – the network hardware
	Part 2B – the alarm system hardware
	The zone monitor PCB
	Isolated output PCB
	Connecting devices to the board

	Part 3 – building the actual network (software)
	Step 1 – installing Oracle's JDK on BeagleBone Black
	Step 2 – installing the Java serial port extension package
	Step 3 – enabling serial ports on startup
	Testing the hardware

	Going further
	Summary

	Index

