
www.allitebooks.com

http://www.allitebooks.org

HTML5 for Flash Developers

Leverage your Flash skill set and learn to create content
using a wide range of HTML5 web development features

Matt Fisher

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

HTML5 for Flash Developers

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2013

Production Reference: 1220713

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-332-5

www.packtpub.com

Cover Image by Siddharth Ravishankar (sidd.ravishankar@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Matt Fisher

Reviewers
Brad Manderscheid

Anirudh Prabhu

Mike Robinson

Acquisition Editors
Antony Lowe

Rukhsana Khambatta

Lead Technical Editor
Neeshma Ramakrishnan

Technical Editors
Vrinda Nitesh Bhosale

Aniruddha Vanage

Zafeer Rais

Copy Editors
Alfida Paiva

Gladson Monteiro

Project Coordinator
Amey Sawant

Proofreader
Stephen Swaney

Indexer
Rekha Nair

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

www.allitebooks.com

http://www.allitebooks.org

About the Author

Matt Fisher, Senior Developer at Jam3 (www jam3.com), is passionate
about technology. Whether it is building large-scale multi-user online applications
or programming a model plane to fly itself, he brings that passion with him
to every project. An interactive web and systems developer by day and an
electronics-obsessed person by night, Matt's diverse and highly-valued skill
set makes him stand out from the crowd. Matt's fascination with technology
and programming began at a young age and today, most of his technical and
programming skills are self-taught. In the recent past, Matt has also been a part-time
professor at both colleges and universities in Toronto, as well as an advisory board
member. His website, www.fisherinnovation.com, gives a detailed description of
his work.

I would like to thank all of my colleagues at Jam3 (www.jam3.com),
my close friends, family, and of course my beautiful better half,
Lindsay Munro, for all of their inspiration and support during the
time spent writing this book. It would have been impossible without
all of you.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Brad Manderscheid is currently a Senior Developer for Bader Rutter and Associates
and lives in Milwaukee, WI. He specializes in mobile and games and has a strong
passion for creating rich, interactive experiences for both desktop and mobile
devices. He previously spent the better part of a decade making documentary films,
working as a freelance developer and consultant for large companies and agencies
across the country, and has built everything from mobile applications to large CMS
applications and multi-player games for the Web.

He is currently working on his own publication, Beginning HTML5 Game Development
Using CreateJS.

Anirudh Prabhu is a software engineer at Xoriant Solutions with four years
experience in web designing and development. He is responsible for JavaScript
development and maintenance in his project. His areas of expertise are HTML, CSS,
JavaScript, jQuery, and SASS. He has completed an MSc in Information Technology
from Mumbai University.

He has also been a technical reviewer for Apress's Pro JavaScript Performance.

When not working, Anirudh loves to read, listen to music, and do photography.

www.allitebooks.com

http://www.allitebooks.org

Mike Robinson is a Senior Web Developer at Globacore. Solving problems with
code is something he loves to do and has been fortunate enough to have made
a great career of it for over 10 years. He's passionate about crafting beautiful
experiences and intuitive interactions using clean, concise, and manageable code.

I would like to thank my lovely wife Jessica and my son Will for
their ongoing love and support while I spent my free nights and
weekends reviewing this book.

www.allitebooks.com

http://www.allitebooks.org

www.packtpub.com

Support files, eBooks, discount offers
and more
You might want to visit www.packtpub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packtpub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.packtpub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.packtpub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Why HTML5? 7

Understanding HTML5 7
What is HTML5? 8
HTML standards 9
HTML syntax 9
HTML elements 10
Bringing in the style 10
Passing it over to JavaScript 13
What is JavaScript? 14
JavaScript in action 14

Why bother learning HTML5? 20
Write once, deploy everywhere 21
Exciting new features 21

canvas – 2D drawing API 21
Media playback 22
Offline storage 22
Document editing 22
Drag-and-drop 23
Geolocation 23
File API 23

Mobile accessibility 23
Flash Player on Mobile 24
Build on your existing skillset 24
ECMAScript 25

Avoiding the initial road blocks 25
Stage versus DOM 25
Positioning assets in the DOM 25
Dealing with media elements 26

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Securing your code 26
Browser and platform compatibility 27

Summary 28
Chapter 2: Preparing for the Battle 29

Preparing the asset 29
Images 31

JPEG 37
PNG 37
GIF 38

Audio 38
The audio element 38

Video 39
Video codecs 40
Video containers 40
Video encoding software 41
The video element 44

Debugging and output methods 45
Google Chrome 46
Firebug for Firefox 47
Safari 48
Opera 49
Internet Explorer 50

Syntax differences 51
Variables 51

Variable type conversion 51
Conditions and loops 52
Functions 53
Objects 53
DOM events 54

Mouse events 54
Example JavaScript in action 54
Timing JavaScript execution 57
Summary 57

Chapter 3: Scalability, Limitations, and Effects 59
HTML5 limitations 60
Object manipulation with CSS3 60

box-shadow 61
text-shadow 63
border-radius 64
Fonts 65

Acceptable font formats 66
External font libraries 66

Table of Contents

[iii]

Opacity 67
RGB and RGBA coloring 67
Element transforms 68

Translate 69
Rotate 69
Scale 69
Skew 70
Matrix 70
3D transforms 71

Transitions 80
Browser compatibility 81

Frame rate 81
Developing for mobile 82
Responsive layouts 82
CSS Media Queries 82

Audio and video playback control 84
Preloading 84
Autoplay 84
Looping 85
Sound effects 85
Media playback manipulation 86

Reading local files with the File API 86
Web Workers 87
WebSockets 88
The Canvas element 88
Stage3D versus WebGL 91
Summary 91

Chapter 4: Building Robust Applications with HTML5 93
Writing object-oriented JavaScript 93

Class syntax 97
Functions 97
Variable scope 98
Public and private variables and functions 100
Prototype 102
Instance types 105
Object literals 106
Constructors 106

Inheritance 107
Listing object properties 108

Making OOP in JavaScript easier 109
JavaScript events 110

Keyboard and mouse events 110
Touch events 110

Table of Contents

[iv]

Custom events 111
Event bubbling 113

Putting it all together 114
Summary 118

Chapter 5: Code Once, Release Everywhere 119
Covering all your bases 120
CreateJS 120

EaselJS 121
TweenJS 128
PreloadJS 130
SoundJS 133
CreateJS Toolkit 135

Setting up the Toolkit 135
Publishing your assets 138
Reviewing the CreateJS Toolkit output 139

Modernizr 140
Using Modernizr 140

Understanding Polyfills 141
Modernizr.load() 141

What Modernizr can detect 142
CSS media queries 143
Summary 144

Chapter 6: HTML5 Frameworks and Libraries 145
How frameworks and libraries can make your life easier? 146

What can I do with JavaScript frameworks and libraries? 146
Finding the right library or framework for your project 147

jQuery 149
Putting jQuery into action 150
Selecting elements with jQuery 152
Controlling CSS via jQuery 154

CSS animations 155
Requesting external data with jQuery Ajax 156
jQuery Mobile 158

HTML5 Boilerplate 161
Bootstrap 164

Bootstrap add-ons 165
StyleBootstrap.info 166
Font Awesome 166
bootstrap-wysihtml5 167

Hammer.js 168
GreenSock Animation Platform 169
Three.js 171

Table of Contents

[v]

Compiling JavaScript 174
Google's V8 Engine 175
Node.js 175
Node Package Manager 176
Hosting a public Node.js server 178

Summary 179
Chapter 7: Choosing How You Develop 181

Replacing the Flash development environment 182
Requirements of HTML5 development environments 182

Asset and file management 182
Code highlighting 183
Code completion 183
Creating and manipulating assets 184

Adobe Edge Animate 184
Coding environments 190

Adobe Dreamweaver CS6 191
Aptana 195
Brackets 196
Sublime Text 200

Execution and testing 202
Web browser developer consoles 202

Network analysis 203
Timeline profiling 204

Stats.js 205
Summary 207

Chapter 8: Exporting to HTML5 209
Google Swiffy 210

How does Swiffy work? 210
Examining Swiffy-generated code 213
Finding Swiffy's limits 214

Generating sprite sheets in Flash Professional CS6 219
Jangaroo 228
Haxe 230
Google Dart 232
Summary 235

Chapter 9: Avoiding the Roadblocks 237
The Jet Pack game 237

Building the game in Flash 240
Converting game assets 244
Converting ActionScript classes 252

Dealing with audio and playback 261

Table of Contents

[vi]

Rewriting AS3 code that can't be directly converted 262
Mobile platform support 263
Summary 266

Chapter 10: Preparing for Release 267
Targeting supported web browsers 268
Client-side tests 272

Browser Nightly builds 273
WebRTC 275

WebGL support 280
WebGL on mobile browsers 281

Allowing users to find your work 281
The HTML5 History API 282

Premade testing and benchmark solutions 284
Google's web development toolset 284
YSlow website grading 287

Code minimizing and obfuscation 288
External dependencies 291
Making deployment easy 292

Creating tasks with Grunt 292
Deploying content with Git 294

Summary 295
Index 297

Preface
HTML5 for Flash Developers has been specifically written for Flash developers
ready to dive right into HTML5 development. Starting off by analyzing each
of the elements that make up HTML5, we will then begin learning how to utilize
them by comparing their features to typical Flash development.

What this book covers
Chapter 1, Why HTML5?, begins by answering why learning how to develop in
HTML5 can be an incredibly important skillset to acquire. We will continue with
a complete overview of all of the different technologies that make up HTML5 and
how they are utilized.

Chapter 2, Preparing for the Battle, covers the important process of preparing assets such
images, audio, and video for the web. This chapter also covers many of the important
aspects of JavaScript development and how they differ from ActionScript 3.

Chapter 3, Scalability, Limitations, and Effects, aims to inform you about many of the
limitations that HTML5 developers regularly encounter while developing for the
web today. We will also take our first detailed look into the newest addition of
Cascading Style Sheets, CSS3. Finally we will overview some of the most interesting
new additions to HTML development by looking at HTML5 Web Workers, Web
Sockets, the Canvas element, and finally WebGL.

Chapter 4, Building Robust Applications with HTML5, continues to look deeper
into JavaScript development by aiming to structure code in an object-oriented
manner. Comparisons to ActionScript 3 class structure, usage, and syntax are made
as well as an overview of some libraries and frameworks to aid in building robust
HTML5 applications.

Preface

[2]

Chapter 5, Code Once, Release Everywhere, looks at applications and code libraries
that enabled developers to easily target multiple platforms with a single application
build, minimizing development time and maximizing public usage. We will spend a
good portion of our time diving into the CreateJS framework and all of its packages.
Finally we will cover how CSS3 media queries can allow for targeted element styling
on a wide variety of screens.

Chapter 6, HTML5 Frameworks and Libraries, continues to dig into the wide variety
of amazing framework and libraries available to you when developing your next
HTML5 application. We begin by checking out one of the most popular libraries
online today, that is jQuery. Along with the jQuery JavaScript library, we will look
at how the jQuery Mobile project can transform a simple HTML document into a
mobile-friendly user interface. Finally we will check out other open source projects
such as Google V8, Node.js, and Three.js.

Chapter 7, Choosing How You Develop, looks at many of the popular code editing
platforms that are available to HTML5 developers. We will overview many of
the absolute necessities most developers require from coding environments
when developing for the web. We will also take some time to check out the
Adobe Edge Animate platform which brings a Flash-like user interface for
creating HTML5 animations.

Chapter 8, Exporting to HTML5, continues to look at more software that allows you
to write your HTML5 applications in platforms like Adobe Flash and compile them
directly into HTML5. We will overview many popular platforms that export to
HTML5 such as Jangaroo, Haxe, and Google's Dart.

Chapter 9, Avoiding the Roadblocks, attempts to display and discuss many of the typical
issues developers face when working with many of the new additions to HTML5.
In this chapter, we will develop a simple 2D side scrolling game and examine where
common issues occur.

Chapter 10, Preparing for Release, concludes this book by discussing many of the
common tasks usually performed on HTML5 applications prior to publishing them
on the Internet. We will discuss proper browser testing methods and the utilization
of "nightly" web browser releases. We will discuss many ways to benchmark your
HTML5 content with external applications and browser plugins to enable you to
inspect for runtime issues. Finally we will discuss methods to automate processes that
web developers find themselves doing repeatedly by using applications like Grunt.

Preface

[3]

What you need for this book
For a complete understanding of the book, the following software are required:

• HTML5-compliant web browser (Google Chrome, Firefox, Opera, and so on.)
• An HTML5-friendly text editor (Sublime, Dreamweaver, Aptana,

and Adobe Brackets)
• Access to the Adobe Creative Cloud https://creative.adobe.com/
• Adobe Flash
• CreateJS toolkit http://www.adobe.com/ca/products/flash/flash-to-

html5.html

Access to the Internet to download up to date versions of open source libraries
and frameworks.

Who this book is for
This book has been specifically targeted at developers with experience with
developing web application and games in Adobe Flash who are ready to add
HTML5 development to their skillset.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through
the use of the include directive."

A block of code is set as follows:

 this.setX = function(x) { _xVal = x; }
 this.setY = function(y) { _yVal = y; }
 this.currentX = function() { return _xVal; }
 this.currentY = function() { return _yVal; }
 this.currentWidth = function() { return _widthVal; }
 this.currentHeight = function() { return _heightVal; }

Preface

[4]

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

 this.setX = function(x) { _xVal = x; }
 this.setY = function(y) { _yVal = y; }
 this.currentX = function() { return _xVal; }
 this.currentY = function() { return _yVal; }
 this.currentWidth = function() { return _widthVal; }
 this.currentHeight = function() { return _heightVal; }

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Preface

[5]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from http://www.packtpub.com/sites/
default/files/downloads/3325OT_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Preface

[6]

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

Why HTML5?
Before getting started, it is important that you understand what HTML5 is, how it
works, and how it relates to what you already know as a Flash developer. This book
uses Adobe Flash (CS6) as a reference when comparing functionalities of HTML5
with what Flash developers are commonly used to while creating applications in
Flash. Therefore, a solid understanding of both the Adobe Flash IDE as well as
ActionScript 3 will be required to properly follow the examples within this book.

In this chapter you will learn:

• What HTML5 actually is and what technologies are included within it
• Reasons for adding HTML5 development to your skillset
• Avoiding the initial issues involved in transitioning from Flash development
• Modern browser compatibility with HTML5 functionality

Understanding HTML5
As a Flash developer, you have probably worked with HTML on a frequent, if not
daily, basis as a platform for publishing your compiled Adobe Flash SWF files on
the Web. Although web browsers with Flash Player installed can view standalone
SWF files, it is normal practice to embed Flash content within an HTML document.
Thanks to the simplistic syntax and availability of HTML, many people who are
not even developers have learned traditional HTML development techniques.
Unfortunately, early HTML specifications fell short in many areas of displaying
content online. Common tasks such as creating rich interactive experiences, sharing
multimedia assets, or creating web-based user interfaces to act in a more typical
software-like manner became a massive chore, if not impossible. In the recent past,
Flash has been the obvious choice when developing and integrating assets such as
video and audio playbacks, web-based games, 3D interactive graphics, and inline
advertisements. Lately, many of these features on the Web have been remade using
HTML5 allowing users to access the content in the same manner, but without the use
of technology such as Adobe Flash Player.

Why HTML5?

[8]

The ability to build quality web-based content that can be globally accessible from
any device is the key to a successful product or service. Facebook, Google, and
Twitter are all using HTML5 to better the user experience of their applications and
deliver content to users without the need for third-party plugins. More businesses
are saving time, resources, and money during their application development process
by utilizing the HTML5 development stack to target not only web browsers on
desktop and mobile, but also installable applications on both platforms as well.

Transitioning your Flash development skills to HTML5 is a fun process that will not
only open you to more opportunity professionally, but enable you to better analyze
what tool is right for the job at hand. Adobe Flash isn't going anywhere anytime
soon, but the same can easily be said for HTML5.

Since many developers flock to Flash development from previous web and
application development technologies that may have had nothing to do with
HTML, let's start by covering the essentials of the HTML5 stack.

What is HTML5?
HTML5 is the fifth and latest version of the HTML standard developed by the World
Wide Web Consortium (http://www.w3.org/). Being a new version, it brought
some new features to the existing HTML specification as well as removed some of
the old outdated features. Many of these new and existing features are starting to
closely resemble the feature set within Adobe Flash, thus opening many new facets
of web development, which are not reliant on paid applications or browser plugins
such as the Adobe Flash Player.

The development of the HTML5 specification is still a work in progress and is
scheduled to be finalized and released sometime in 2014, but most of the modern
web browsers today support many features of the specification already.

Generally, references to HTML5 refer to a suite of features and technologies
surrounding the usage of not just HTML but Cascading Style Sheets (CSS) as well
as JavaScript. Without the use of CSS and JavaScript, plain HTML documents, even
HTML5 documents, will remain extremely simplistic in their functionality and
look and feel. Therefore, learning HTML5 is effectively learning three technologies
simultaneously. As tedious as that sounds, Adobe Flash is setup in a very similar
way. The Flash IDE allows easy creation, editing, and referencing of assets to be
used within your application. To integrate these assets into a dynamic interactive
application requires the use of ActionScript. HTML5 is very similar to this such
that HTML and CSS will be your Flash IDE and JavaScript will be the replacement
for ActionScript. With all this in mind, let's continue by reviewing the standards on
which HTML is built.

Chapter 1

[9]

HTML standards
The World Wide Web Consortium (http://www.w3.org/) or W3C, is responsible
for creating the standards on which HTML is developed today. These web
development standards have been created as an attempt to unify the syntax and
functionality developers create web pages with, as well as the feature set integrated
in web browsers to enable these features in HTML. By writing web applications in
a compliant markup that follows the HTML specification standards, developers can
better ensure that their content will be displayed properly no matter how a user
chooses to view it.

HTML syntax
Though it may look trivial, HTML syntax is the core of all web pages. Regardless of
whether it is hardcoded within an HTML file, compiled from another programming
language source, or injected into a document during application runtime, HTML
syntax is the blueprint for the assets used within an HTML page. The better a
developer understands HTML syntax and its limitations, the easier it will be for
them to build their applications.

HTML syntax is written with the use of tag elements which are wrapped in angle
brackets. HTML tags come in two different varieties: paired or empty elements.
Paired HTML tags are the most common and the first tag style that one usually uses
when creating an HTML document. The html tag is used to declare what is within an
HTML document and usually sits on the first and last lines of an HTML file:

<html>
 Add your HTML content here.
</html>

As you can see in the previous example, paired tags open and close a container for
more HTML elements to sit inside. Tags are always formatted the same, the only
difference between each tag in the pair is that a forward slash is used to declare that
a tag is closing an element. Therefore, <html> will not pair with any tag that does not
contain the same internal value. HTML tags are case insensitive, and in the early days
it was common for developers to always use capitals when writing tags. That tradition
has now disappeared and you will almost always see tags written in lower case.

Empty HTML tags are written without the use of a closure tag. For example, when
placing an image reference within an HTML document, there is no further HTML
element content that can be placed within that image. Therefore, image references
in HTML are formatted such as <imgsrc="my_image.jpg">. The image is referenced
within the img tag by appending the src parameter with its value set to the
image location.

Why HTML5?

[10]

If you have managed to use Adobe Flex to build any of your Flash
content and utilized the MXML user interface markup language, you
may have got the hang of closing empty tag elements with syntax such
as <imgsrc="my_image.jpg" />. In HTML5, this trailing forward
slash is not required but will still render your content properly if you
happen to append it. For best use case, try to get in the habit of not
using it in your HTML5 projects.

HTML is a tricky beast when it comes to debugging; a document with HTML errors
in the syntax will not display errors on loading like a traditional Flash application.
Writing clean and concise HTML is the key to maintaining an error-free, standard,
compliant web page. There are many applications and tools available to aid in
developing clean HTML code, some of which will be covered later in the book.
The W3C has created a robust HTML syntax validation service, which will check
a publicly available website for HTML errors (http://validator.w3.org/).

HTML elements
Every version of the HTML specification has a specific list of tags available to
developers while creating HTML documents. The current list of elements within
the HTML5 specification as defined by the W3C can be found within their language
reference documentation (http://www.w3.org/TR/html-markup/elements.html).

Within the HTML5 specification are some very interesting new elements available
to developers with regards to media integration into web pages. For example, Flash
requirements for media playback can now be avoided when embedding audio or
video into a web page with the addition of the audio and video tags. These exciting
new media tags are covered in more depth in Chapter 3, Scalability, Limitations,
and Effects.

Bringing in the style
Cascading Style Sheets or CSS is the primary method used for styling HTML
elements. Like HTML, there is a set list of styles in CSS that you can apply to
elements in an HTML documents. To get an idea of what CSS attributes are available
to you, head over to http://www.w3schools.com/cssref/ for the entire list. CSS
can be applied to HTML elements in a number of different ways. Traditionally, CSS
syntax is stored within an external .css file and referenced from within the head
element in an HTML document. However, CSS can be appended to elements within
the HTML document directly by adding a style parameter to almost any element
within the body tag:

<imgsrc="my_image.jpg" style="border:5px solid #000000;">

Chapter 1

[11]

The previous example uses the style parameter within an image element to apply
a 5-pixel thick black border around the image referenced in the src parameter.

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

What if you had five images or even 100 images in your page that needed the same
styles applied to each element? Applying the exact same style parameter to each
image tag is not only time consuming but will result in code that is oversized and
possibly extremely hard to maintain or update. CSS can target a single element
or a group of elements by using a class or id HTML parameter:

<div id="photo-gallery">
 <imgsrc="photo1.jpg" class="photo">
 <imgsrc="photo2.jpg" class="photo">
 <imgsrc="photo3.jpg" class="photo">
 <imgsrc="photo4.jpg" class="photo">
 <imgsrc="photo5.jpg" class="photo">
</div>

In the previous example, we attempted to display a group of different images within
an HTML document. Each image, referenced with an img element tag, also has a
class parameter appended to it with the photo value. The class HTML parameter
can be used and re-used on almost any element available and allow you to reference
a group of elements rather than modifying each element directly. All of the images
are also encased in a div element. div elements are used as containers to display
content in. In this case, the div element has an id parameter set to photo-gallery.
The id HTML parameter is very similar to class with the exemption of being able
to re-use the same value of id within the same HTML document.

Editing HTML, CSS, and JavaScript can be simplified by using a code
editing application setup to aid with HTML5 syntax. Applications like
Aptana (http://aptana.com/), Dreamweaver (http://adobe.
com/products/dreamweaver.html), and Sublime Text (http://
sublimetext.com/) are all recommended. However, if simplicity is
your thing, feel free to use something else.

Why HTML5?

[12]

With all this in mind, writing CSS to style this photo gallery could be done
as follows:

<!DOCTYPE html>
<html>
 <head>
 <title>My Photo Gallery</title>

 <!-- Our Photo Gallery CSS Styles -->
 <style type="text/css">
 body {
 background-color:#000000;
 }

 #photo-gallery {
 width:100%;
 }

 #photo-gallery .photo {
 width:200px;
 border:4px solid #ffffff;
 }
 </style>
 </head>
 <body>
 <div id="photo-gallery">
 <imgsrc="photo1.jpg" class="photo">
 <imgsrc="photo2.jpg" class="photo">
 <imgsrc="photo3.jpg" class="photo">
 <imgsrc="photo4.jpg" class="photo">
 <imgsrc="photo5.jpg" class="photo">
 </div>
 </body>
</html>

Instead of applying style parameter to each and every element in the document,
we can now use the style tag within the head element to place our raw CSS code.
In the previous example, HTML elements are selected in three different ways. To
start, the body of the document had the background color set to black by using its
hexadecimal value. We select the body tag element by simply using the tag reference.
This method of selecting raw elements can be used on a wide variety of elements
within your document but will affect all elements with that reference. The next
method of selection is by looking for elements with a specific ID. To designate the
use of an ID, # is placed in front of the ID value. Therefore, #photo-gallery will

Chapter 1

[13]

be selecting the div element with the id parameter set to photo-gallery. We set
the width parameter of the gallery container to 100%, which is calculated from the
browser width when viewing the HTML document. Finally, to style each one of
the images in the gallery, we style the class which was applied to each one of the
image tags in the body of the HTML document. Since the class HTML parameter
can be applied to an unlimited number of elements in an HTML document, we can
specifically target the classes within another element by chaining the CSS element
selection together. Classes are selected in CSS by appending . to the start of the class
name. Therefore, #photo-gallery .photo will select only the elements with the
photo class name inside the element with id of photo-gallery:

Passing it over to JavaScript
Styling HTML elements with CSS only gets you so far. HTML and CSS are effectively
the Flash IDE from the perspective of a Flash developer. What is missing is the code
that drives the interaction and functionality within your application. While using
Flash, ActionScript is the weapon of choice when creating robust applications. While
developing HTML5 content, JavaScript will be doing the grinding, allowing you to
bring life to your HTML elements.

Why HTML5?

[14]

What is JavaScript?
JavaScript has been around since the mid 1990s and has grown up to be one of
the most popular scripting languages available. JavaScript brings life to HTML
documents by adding features such as content modifications, animations, 3D
graphics, form submission, and data retrieval all without having to reload the
active HTML document. Features such as these allow web content to act more
like traditional software applications rather than static web pages.

Unlike ActionScript 3, JavaScript is a true scripting language as it requires no
preprocessing or compiling to be run. Just like HTML and CSS, a JavaScript
document's source is sent to user upon request and executed on client side.
Therefore, unlike technologies such as ActionScript, JavaScript source code is
open for public viewing.

JavaScript in action
Looking back at our My Photo Gallery example, an important missing feature is
the ability to view a selected photo in larger format. JavaScript is a perfect platform to
add this functionality as its main usage is to bring interaction to HTML documents.
Using the existing code example, we can extend its functionality by adding a new div
element at the bottom of the page body to contain the larger image view. This element
can be empty as we do not want a photo to be displayed by default on page load.
Finally, we set an identifier on the div tag of id="photo-display", which will allow
us to target the content in that element from CSS and JavaScript:

<div id="photo-display"></div>

Before integrating the JavaScript functionality, we need to append some CSS styles
to div using #photo-display to allow selected photos to fill the browser window at
a higher resolution, typical of most photo gallery displays. Within the CSS styles, we
have already set for this example, we will append some more style properties to the
#photo-display element:

#photo-display {
 display:none;
 position:absolute;
 top:0;
 width:100%;
 height:100%;
 background-color:#000000;
 text-align:center;
}

#photo-display img {

Chapter 1

[15]

 margin:auto;
 margin-top:50px;
 max-height:800px;
 border:4px solid #ffffff;
}

This CSS will target only one specific div as we have used the #photo-display
syntax to target it. To start the styles off, we begin with the most important
parameter, display:none, which hides the element on page load. This is perfect in
our case as we do not want the full-screen display visible on page load. By adding
position:absolute and top:0 to the style definition for our #photo-display
element, we will display the element on top of the previous elements declared
within the HTML body. The rest of the styles set on #photo-display are pretty
self-explanatory. The next lines of CSS specifically target the img elements within
div with the photo-display class. We can do this in CSS by chaining identifiers
together. In this case, we specify these styles for image tag elements within a custom
named element ID.

With the HTML and CSS to display the larger version of a selected photo in place,
the next step is adding the JavaScript code for displaying the selected photo within
the #photo-display container upon user interaction. To consolidate this example
into a single file, we will add the JavaScript within an HTML script element:

<!-- Our Photo Gallery JavaScript Source -->
<script>
 var largeImage = new Image();

 // Display a specific photo in the large
 // photo display element.
 var displayPhoto = function(source) {
 // If there is already an image inside the display
 // remove it.
 if(largeImage.src != '') {
 document.getElementById(
 "photo-display").removeChild(largeImage);
 }

 // Update the source location of the image
 largeImage.src = source;
 document.getElementById(
 "photo-display").appendChild(largeImage);

 // Display the large photo element.
 document.getElementById("photo-display").
 style.display = 'block';

www.allitebooks.com

http://www.allitebooks.org

Why HTML5?

[16]

 }

 // Closes the large photo display element.
 var closePhotoDisplay = function() {
 document.getElementById("photo-display").
 style.display = 'none';
 }
</script>

As a Flash developer, the previous function syntax should look pretty familiar.
A major change within the function scope is the variable syntax. Unlike AS3, the
HTML as well as the source variables are not strictly typed. This goes for all variables
within JavaScript syntax and is probably one of the biggest issues Flash developers
have with JavaScript.

Aside from some string manipulations to generate img HTML elements from the
source variable, the method also references the document object. Every HTML
document that is loaded into a browser then becomes the document object accessible
from within JavaScript. The document object within JavaScript has a number of
built-in properties and methods that are available to access information and elements
within the view HTML document. In our example, we make use of the easily
defined document object method getElementById(). As the method name implies,
when an HTML element's ID is supplied, the reference to the element within the
HTML document is returned for use within the script. Since JavaScript supports the
chaining of properties, we can apply the innerHTML property to manipulate the inner
content of an HTML element as well as the style property to change an element's
CSS properties.

To enable an image to close once a user has finished viewing it, we will add a second
JavaScript function to our example to revert all the changes made when displaying
the photo. Since the photo-display image will be updated when the user clicks on
a new image, all our closePhotoDisplay method needs to do is hide the visible
element to show the full photo gallery again:

functionclosePhotoDisplay() {
 document.getElementById("photo-display").style.display = 'none';
}

Setting the #photo-display element's style.display back to none hides the entire
element and reverts the user interface back to its initial state.

Adding events to each of the photos can easily be accomplished by appending an
onclick parameter to the targeted element. The addition would look as follows:

<imgsrc="photo1.jpg" class="photo"
 onclick="displayPhoto('photo1.jpg')">

Chapter 1

[17]

Now, when the image is clicked on, the onclick event gets fired and runs the
JavaScript code declared within the parameter. In this case, we use this opportunity
to call our displayPhoto method within our previously written JavaScript block.
Within the call, we supply the required source variable, which will be the image file
name as a String datatype. This will allow the proper image reference to be used
within the #photo-display element. All put together, our updated div tag with
id="#photo-gallery" will now look like the following:

<div id="photo-gallery">
 <imgsrc="photo1.jpg" class="photo"
 onclick="displayPhoto('photo1.jpg')">
 <imgsrc="photo2.jpg" class="photo"
 onclick="displayPhoto('photo2.jpg')">
 <imgsrc="photo3.jpg" class="photo"
 onclick="displayPhoto('photo3.jpg')">
 <imgsrc="photo4.jpg" class="photo"
 onclick="displayPhoto('photo4.jpg')">
 <imgsrc="photo5.jpg" class="photo"
 onclick="displayPhoto('photo5.jpg')">
</div>

Finally, to enable the user to close an open image within the #photo-display
element, we will apply an onclick event to call our closePhotoDisplay method.
Rather than applying the onclick event to the image within the #photo-display
element, we will target the display itself, allowing users to click anywhere in the
browser to close the display:

<div id="photo-display" onclick="closePhotoDisplay()"></div>

Putting all of these code snippets together, the gallery source now looks like
the following:

<!DOCTYPE html>
<html>
 <head>
 <title>My Photo Gallery</title>

 <!-- Our Photo Gallery CSS Styles -->
 <style type="text/css">
 body {
 background-color:#000000;
 }

 #photo-gallery {
 width:100%;
 }

Why HTML5?

[18]

 #photo-gallery .photo {
 width:200px;
 border:4px solid #ffffff;
 }

 #photo-display {
 display:none;
 position:absolute;
 top:0;
 width:100%;
 height:100%;
 background-color:#000000;
 text-align:center;
 }

 #photo-display img {
 margin:auto;
 margin-top:50px;
 max-height:800px;
 border:4px solid #ffffff;
 }
 </style>

 <!-- Our Photo Gallery JavaScript Source -->
 <script>
 var largeImage = new Image();

 // Displays a specific photo in the large
 // photo display element.
 var displayPhoto = function(source) {
 // If there is already a image inside the display
 // remove it.
 if(largeImage.src != '') {
 document.getElementById(
 "photo-display").removeChild(largeImage);
 }

 // Update the source location of the image
 largeImage.src = source;

Chapter 1

[19]

 document.getElementById(
 "photo-display").appendChild(largeImage);

 // Display the large photo element.
 document.getElementById(
 "photo-display").style.display = 'block';
 }

 // Closes the large photo display element.
 var closePhotoDisplay = function() {
 document.getElementById("photo-display").
 style.display = 'none';
 }
 </script>
 </head>
 <body>
 <div id="photo-gallery">
 <!-- Place all of the images inline with a 'photo' class
 for CSS manipulation. -->
 <imgsrc="photo1.jpg" class="photo"
 onclick="displayPhoto('photo1.jpg')">
 <imgsrc="photo2.jpg" class="photo"
 onclick="displayPhoto('photo2.jpg')">
 <imgsrc="photo3.jpg" class="photo"
 onclick="displayPhoto('photo3.jpg')">
 <imgsrc="photo4.jpg" class="photo"
 onclick="displayPhoto('photo4.jpg')">
 <imgsrc="photo5.jpg" class="photo"
 onclick="displayPhoto('photo5.jpg')">
 </div>

 <!-- An empty DIV element to contain the user selected photo
 in large scale. -->
 <div id="photo-display" onclick="closePhotoDisplay()"></div>
 </body>
</html>

Why HTML5?

[20]

Saving the text into an .html file and launching it in a web browser will now reveal
all of our hard work. Just as before, the gallery should start by displaying the list of
images by default. Once an image is clicked on, the selection will be passed to the
#display-window element and displayed at 100 percent of the browser width:

Finally, clicking anywhere within the document will close the large image and return
you back to the initial gallery display.

Although this example contains none of the new features of HTML5, it is a simple
way of showing some of the key technologies that make up HTML and some of the
methods used to reference assets in HTML.

Why bother learning HTML5?
As a Flash developer, getting yourself into the realm of HTML5 development is an
extremely logical step for many reasons. Building applications with HTML5 allows
you to easily reach users on desktop or mobile with rich integrated and interactive
content without the need for plugins. One of the most beneficial aspects of HTML5
development is the accessibility to the development environment. Since HTML5
requires no special compiler or software for writing code, developers are free to

Chapter 1

[21]

choose their favorite setup for writing and testing their projects. Applications can be
easily run and tested within any compliant web browser and tested locally without
the need of a web server. This makes HTML5 one of the most accessible and easy to
use technologies on the Web.

Write once, deploy everywhere
Unlike Flash applications, any device with a modern web browser can interact with
HTML5 web content. So, with the help of CSS for dynamic resizing of viewable
content, your HTML5 applications can be used without the need of application
installation or dependencies on desktop or mobile platforms. Developers can also
use technologies such as Phone Gap (http://phonegap.com/) or Appcelerator
(http://www.appcelerator.com/) to easily convert their existing HTML5 web
content to packaged mobile applications for market in all modern mobile operating
systems. Packaged applications can be integrated and sold using common mobile
application services such as Apple's App Store (http://store.apple.com) and
Google Play (https://play.google.com). On top of that, Microsoft Windows
8 desktop application development now supports a whole suite of different
programming languages, one of them being HTML5 (http://msdn.microsoft.
com/en-us/library/windows/apps/br211386.aspx). With the ability to package
HTML5 content into installable applications, developers can now begin to easily
monetize their work by sale on the various application distribution outlets.

Exciting new features
As just mentioned, HTML5 hosts a suite of new and exciting features, many of which
will be covered in the following chapters of this book. However, to allow you to better
understand why HTML5 is so exciting and important for Flash developers and the
web development community, here is a more detailed list of some of those features.

canvas – 2D drawing API
Flash developers can really flex their programming abilities within the new canvas
element and 2D drawing API. Just like the drawing API within ActionScript 3, the
canvas HTML5 element allows developers to create dynamic graphics during
runtime, all from within JavaScript. Flash game developers moving to HTML5
usually find their home within the utilization of the canvas element as it is the
closest representation of traditional Flash development when using HTML5.

Why HTML5?

[22]

Media playback
Web developers no longer require to develop their media playback elements with
platforms such as Flash or Quicktime. Audio and video can now be easily integrated
into the HTML document using audio and video tags. Not only does this allow for
easier and cheaper integration of playback elements into web pages but also mobile
devices have no issues reading and displaying these elements from within their
integrated browsers.

Offline storage
Traditionally, when web developers needed to save data locally on the user's
machine, they used cookies. HTML5 adds a new offline storage method called Web
Storage (http://dev.w3.org/html5/webstorage) that can drastically increase your
applications' abilities when you have the requirement to save data for re-use. Large
amounts of data like your clients user-specific application configuration can now be
stored in a more secure and quicker manner.

You can now also setup your HTML5 content to be available to your users even
when they go offline by utilizing the HTML5 cache manifest. The cache manifest is
just a simple text file, which is placed on your web server. If a web browser supports
the use of HTML5 cache manifests (all modern browsers currently do), the references
to files and assets, which you have placed within the manifest, are all cached on
the client side. Depending on whether your manifest is set to cache all the content
required to run your application, the user can then go offline and continue using the
application. Combined with the use of HTML Web Storage for archiving data to be
resent to a web server upon Internet reconnection, you can develop applications that
will allow your users to seamlessly use them despite their connection being broken.
A perfect example of this feature of HTML5 in action is Gmail by Google (https://
mail.google.com). By archiving message data on a user's device when accessed
initially, important information such as e-mails can still be reviewed when a user
goes to open a message while, say, he is underground in a subway.

Document editing
Many HTML5 elements now allow a parameter, contenteditable="true",
which allows users to edit all the content within the element. This feature brings
a sort of WYSIWYG environment directly to HTML content. Inline document editing
can be extremely handy as a developer when manipulating content within your
HTML5 projects.

Chapter 1

[23]

Drag-and-drop
HTML5 elements now have the ability to be draggable. Simple but important user
experience additions such as this bring more application-like interactivity which
traditionally would be built with JavaScript. Just like inline document editing,
setting elements to be draggable during development can aid in finding the
proper position properties.

Geolocation
The Geolocation API enables users to allow their current position to be sent to an
HTML5 document for use within JavaScript. Apart from the obvious usage of a
user's location in mapping applications, Geolocation values can add many new
features into web documents that allow for a more interactive user experience.

File API
The File API within HTML5 allows a more interactive experience when dealing with
files on a user's local machine. Local files can now be dragged into the browser and
previewed within the HTML document without uploading the data to the web server.

For a more in-depth look at the complete feature set within HTML5,
visit the online W3C API documentation (http://www.w3.org/
TR/html5/).

Mobile accessibility
As more devices become integrated with Internet accessibility, the need for
streamlined, multiplatform applications that allow for low overhead and integrated
device access is at an all-time high. Almost all modern mobile browsers already
support many features of HTML5, which web developers can harness to build mobile
applications that rival many natively built applications for specific mobile platforms.
Features such as Geolocation, local file access and offline storage allow applications to
easily integrate themselves into the device hardware that is running them.

Any of the examples in this book can be run on any modern mobile
device running an HTML5-compliant web browser. If you have an
iPhone, Android, or Windows phone handy, test out the examples on
your device to view how well mobile platforms run HTML5 content.

Why HTML5?

[24]

One of the biggest driving forces behind the advent of HTML5 was mobile. Mobile
application development requires a slightly different approach than typical application
development as the platform running the application not only has fewer resources as
compared to a typical desktop configuration but also things like battery life, screen
resolutions, and touch interfaces need to be taken into account. Dealing with all of
these requirements while developing applications with Flash can get a little bit tricky.
Flash applications traditionally tend to be a bit heavy on resource usage, though
optimizations can be made to compensate for some of these issues while running
applications on mobile platforms.

Flash Player on Mobile
Since the advent of iPhone, Flash developers had to deal with the fact that their
web-based Flash content would never be viewable from the integrated iOS web
browser. Apple made their stance on the usage of the Adobe Flash Player clear
in a publicly address letter from Steve Jobs in April 2010, which stated that the Flash
Player did not deliver the device or application performance that Apple required on
their device.

In June 2012, Adobe released a public statement regarding the future of the Adobe
Flash Player for mobile. As of August 15, 2012, Flash Player for Android will only
be available to devices certified to run the Flash Player as Adobe has suspended the
development of the mobile version of Flash Player. Users running Android Version
4.1+ will be unable to run Flash content within their browser and all web content
will rely on the use of the technologies within HTML5.

With the Flash Player removed from the mobile market, a Flash developer's only
resource, at this point in time, for creating mobile applications is developing them
with Adobe AIR and packaging their work as standalone applications rather than
on the Web.

Build on your existing skillset
Flash developers transitioning to HTML5 development have a leg up when it
comes to learning tricks to create amazing applications with purely HTML, CSS,
and JavaScript. Not only will all the lessons learned about handling and optimizing
media elements transition over, but also their ActionScript 3 skills will allow them to
understand and use JavaScript to its full potential.

Chapter 1

[25]

ECMAScript
The time developers invest to learn a programming language such as ActionScript 3
is far from a short endeavor. Fortunately, both JavaScript and ActionScript 3 are built
on the ECMAScript scripting language standard (http://www.ecmascript.org).
In a nutshell, this means that many of the method, variable, and property syntax
setups are extremely similar in look, feel, and usage. As we dig deeper and see more
examples of HTML5 in action, if you have experience with ActionScript 3, you will
instantly notice many similarities when utilizing JavaScript.

Avoiding the initial road blocks
All Flash developers generally have the same issues when transitioning to HTML5
development. Most of these problems arise from differences between platform
syntax, as well as dealing with the interaction between each element within the
HTML5 stack.

Stage versus DOM
The first and most obvious change when moving to HTML5 development is the lack
of the ever important Flash Stage. Dealing with element layout, asset animations,
and interactivity with HTML5 is all taken care of purely with code. Although there
are many web development IDEs with drag-and-drop type interfaces, to better
understand how to build cleaner web pages, this book will cover all examples
with hand written code examples.

Positioning assets in the DOM
One of the biggest initial issues many Flash developers have when moving into
web development is the concept of positioning content and assets within the DOM.
Unless specified, HTML elements are not simply placed in DOM with X and Y
position values. Since elements within an HTML document are displayed inline by
default, global X and Y position values are irrelevant. When positing an element
within DOM with CSS, properties such as margin, padding, top, left, right, and
bottom are used instead. As mentioned, if elements are specially styled with a
position of absolute or utilized within a canvas element then X and Y values can be
used. On top of the issues regarding simply controlling where elements are placed
within your project, there is the ordeal of making sure that all of the web browsers
that may view your content display it as per your specification.

Why HTML5?

[26]

Dealing with media elements
Media optimization is the key to delivering content over the Web. When working
with Flash, many of the assets used are vector-based and therefore lightweight on
the compiled SWF file size. Bitmap data used within the Flash SWF is compressed
during compilation, therefore automatically aiding you by minimizing file size. Since
what the majority of HTML documents do is reference raw files publicly accessible
on the Web, each asset used should be optimized for minimal file size while keeping
the intended quality as close to original as possible. As we cover different aspects
of HTML5 development throughout the chapters of this book, many optimization
methods will be covered for the different types of media used in web pages.

Securing your code
Publishing content in Adobe Flash outputs a compiled binary SWF file, which is
ready to be played in a compatible Flash Player. The code and assets used in the
application are protected from prying eyes since the application was compiled into
a single binary file. But when dealing with code and assets on the Web, the entire
game changes. Pretty much everything you create and deliver in an HTML5 project,
as with any website, is open for public viewing.

Code obfuscation is a practice some developers use while delivering production
level client-side code. Many websites and applications are available to obfuscate
your JavaScript code by rewriting the code in a hard to read, compressed format.
Although this is not a foolproof way of securing code, it adds a level of deterrence
when it comes to users poking around a document's source code.

Understanding client-side code usage and limitations is the key to writing secure
JavaScript applications. Sensitive information should never be hardcoded into
a document which can be viewed on client side. Chapter 2, Preparing for the Battle,
covers the usage of client-side script in a more in-depth manner in comparison
to ActionScript 3.

Chapter 1

[27]

Browser and platform compatibility
One of the major changes in development paradigm when moving from Flash to
HTML5 development is the need to target multiple platforms with the same code
base. While developing an application using Adobe Flash, you initially set a target
version of the Flash Player for your application to run within. By compiling your
application into a packaged SWF, the Flash runtime will have no issues rendering
your application in any compatible Flash Player. Since every browser and platform
tends to display web content a little bit differently, when developing HTML5 content
and applications, one must take note of the platforms and browsers that may be used
to view the content to better optimize the viewing experience.

Browser functionality checks can be written into JavaScript conditions to enable
users with browsers that lack the support for specific HTML5 features to still view
your HTML5 content. For instance, if a user visits a page with an HTML5 video
playback element within it, without the support for it within his browser, JavaScript
could alternatively embed a Flash video playback application instead.

Finding a modern web browser that doesn't support HTML5 is getting
harder day by day. When it comes to choosing a browser to test code in
while reading this book, Firefox (http://www.getfirefox.net/),
Chrome (http://www.google.com/chrome), Safari (http://www.
apple.com/safari/), and Opera (http://www.opera.com/) are
all great choices and available online for free.

Within the chapters of this book, many of these popular web browsers will be
utilized to show how content may sometimes differ in look and usage. Due to the
speed at which browser updates and changes are released, testing your site as much
as possible in every browser on every platform is a very important aspect of web
development. Many of these web browsers now have built-in development and
debugging tools, which allow for easier optimizations of your HTML5 projects.
Other applications and services are also available to ease the pain of browser testing,
some of which will be used and covered in this book.

Why HTML5?

[28]

Summary
In this chapter, we have covered the key aspects of the HTML5 stack and how to use
each of them in a simplistic manner. By creating a simple photo gallery web page,
we not only used HTML, CSS, and JavaScript, but also the methods to reference
elements in between them. Some of the new and exciting features available within
HTML5 were also explained and compared with functionality traditionally created
within Flash assets. The typical issues during the learning curve for Flash developers
moving to web development were reviewed to allow you to be aware of these issues
before finding out the hard way. Hopefully, this chapter has furthered your interest
in learning more about what HTML5 can do.

The development of the HTML5 standard maintained by the W3C is an interesting
but extremely in-depth topic, which will not fit within the constraints of this book.
If you are interested in learning more about how HTML5 standards are created
and maintained, I strongly recommend checking out and keeping up with the
information on specification and syntax development W3C publishes on their site
(http://www.w3.org).

With the platform overview out of the way, we will continue by digging further into
the most important aspect of the HTML5 stack, JavaScript, and how it relates to what
you already know from developing with ActionScript.

Preparing for the Battle
Now that you understand what technologies make up HTML5, we can start getting
our hands dirty. But before we jump right into coding HTML, CSS, and JavaScript,
we need to cover the fundamentals of the first step of developing a project, asset
preparation. Without a design, assets, and content, your web pages won't be very
appealing or, for that matter, functional. During the preparation we will also dig into
the syntax specification for JavaScript and how it's related to ActionScript 3, to prepare
us for full-fledged development in Chapter 3, Scalability, Limitations, and Effects.

In this chapter we will cover:

• The preparation of common assets such as images, audio, and video for use
within an HTML5 document

• In-browser code outputs and debugging
• The basics of JavaScript and the syntax variance from ActionScript 3
• Examples of JavaScript in action and the proper methods for code execution

Preparing the asset
While developing applications in Flash, integrating assets such as images, audio, and
video into a typical project can be accomplished in a couple of different ways. You
may choose to integrate assets in the typical way by importing them directly in a
Flash project library. The addition of an asset into a Flash project results in the asset
inclusion into the compiled SWF file. Since all assets are compiled within a single file,
there is no need to acquire assets from external resources such as the Internet. Assets
within a compiled Flash project are inherently protected from acquisition or being
referenced by public.

Preparing for the Battle

[30]

Unfortunately, assets internally referenced within the project library cannot be
updated or changed once the project has been exported. Developing applications such
as a video playback UI or photo gallery requires assets to be integrated dynamically,
resulting in a single application instance that can be used infinitely. External assets
may be integrated via requests for external files which are publicly accessible on the
Internet. External integration allows for smaller application sizes as well as the ability
to modify the external assets without the need for application updates. Unfortunately,
if the file is unavailable or the user isn't connected to the Internet, the asset cannot be
integrated and may result in a failure within the application.

External asset integration is the standard way of including content into web-based
documents. Files that will be referenced by HTML documents are typically placed
on the same web server as the HTML documents embedding them.

Assets can also be referenced from other web servers on the Internet, however
the content is at the mercy of the developers or administrators with access to that
content. Developer's laziness or attempts to lower bandwidth costs can result in
images or other assets being embedded from external sources, moving bandwidth
charges to a web server other than your own. This process is known as hotlinking
and is frowned upon within the web development community, as you force other
website owners to deal with the cost of asset distribution.

Due to lack of automatic optimization of web content as in the compiler in Flash,
web developers must take it upon themselves to prepare their content and assets for
web usage. Since web content is delivered on demand to users over variable Internet
connection speeds, assets should be as small in file size as possible to allow playback
and viewing with as little latency as possible for the end user. Let's review each of
the common asset types and the proper methods for preparing each of them for
embedding into our HTML documents.

All the assets used for optimizations and conversions can be
found in the downloadable examples files for book within the
Chapter 02_examples directory.

Chapter 2

[31]

Images
Adding images into your project is usually one of the first asset integration techniques
used in every web-based project. All images on the Web generally come in one of three
different formats: JPEG, PNG, or GIF. Each of these formats serves specific purposes
and should be used according to what a design and function requires. As common
as these image formats are within everyday use, it is important to understand what
each format can and can't do to allow for optimized image integration into
HTML documents.

Follow this book along with the example files available for download on
the Packt Publishing website (www.packtpub.com). If you don't have
a copy of Photoshop CS6, a demo for the same can be downloaded and
installed for free from http://www.adobe.com/cfusion/tdrc/
index.cfm?product=photoshop&loc=en_us&promoid=IICUB.

Consider this high-quality, uncompressed image in CR2 format taken directly from
a Cannon digital SLR camera. The size of this raw image is 27 megabytes and hence
it isn't compatible for viewing or embedding within any modern web browser.

Preparing for the Battle

[32]

Even if a web browser could handle placing this image within an HTML document,
the time it would take to download the image would be enormous. Despite today's
common high-speed Internet connections, not many users are willing to wait more
than a couple of minutes to view a single image while loading a web page. Therefore,
before using this image for the Web, it must be optimized for the Web. When this
CR2 image is opened in Photoshop, the Photoshop Camera RAW window will
display not only the photo data and file size but also the image dimensions.

Chapter 2

[33]

It looks like the digital camera used to take this photo saved this image at 17.9
megapixels, which makes this image 5184 pixels wide and 3456 pixels high. This image
would never be used at this resolution on the Web as it wouldn't fit on a computer
monitor and would need to be scaled down in order to be viewed. Scaling down an
image for using it on the Web may make it smaller in size and easier to view on the
Web, but the file needed to display it is still the enormous master version that will be
slow to load. Let's continue by opening this file in Photoshop by selecting Done within
the Camera RAW import window.

It is good practice to export a web-ready version of your images with the resolution
your web page design requires them to be displayed at. Changing the image
resolution to an appropriate size for the Web can be easily accomplished within
Photoshop by selecting Image Size under the Image tab.

Preparing for the Battle

[34]

In the Image Size window, we can enter some more realistic values into the Width
and Height parameters to see what kind of optimizations we can achieve. By using
values such as 1920 x 1280, which is still a very high-resolution image for the Web,
you can view what the expected output image source file size will be in the text
above the Width and Height parameters.

After updating the Width and Height parameters within the Image Size window,
the resulting file size can be viewed immediately above them. Keep in mind that the
file size change displayed will not be the final output size as we can still optimize
this image source with techniques such as JPEG compression.

While optimizing image sizes for usage within a specific web
design, there is generally no need to export images larger in size
than what is set within a design. If a thumbnail is needed within
a design, exporting two images, a large and a small, is better than
using a single image for both instances.

Chapter 2

[35]

Photoshop's Save for Web feature located under the File tab can be said to be web
developers' best friend. This tool allows you to easily export images from Photoshop
with the specific intent of optimization for the Web in mind. Whether spicing up
designs or converting assets to single instances, whenever you are going to export
something from Photoshop for usage on the Web, this tool is the best way to
accomplish it.

Clicking on the Save for Web option will open a dedicated window that will aid
you in selecting the best format and compression method while exporting your data.
So let's export a couple of versions of this photo to see what can be the minimum
possible file size while trying to retain as much image quality as possible.

www.allitebooks.com

http://www.allitebooks.org

Preparing for the Battle

[36]

With the format type set to JPG to allow for better compression, select the 4-Up tab
at the top of the window to bring up side-by-side comparisons of different levels of
compression on your image data. Play around with these values and see how low
you can take the quality levels before you see dramatic changes to your image.
While doing this, keep an eye on the expected file size to see how the level of
compression is affecting the size.

The background of this dog photo specifically takes a hit in quality as the compression
level rises. This is due to the long grass creates a very dynamic and busy area where
pixilation can be seen. Areas within the dog's solid color body maintain more of
the original quality as the pixels in the same area are very similar in color. Another
interesting feature within the Save for Web window is the expected time to download
output each version of image has with it. You can easily change the expected
bandwidth levels to see how much time it may take to deliver this image to a user
over the Internet.

Since every image is different, there is no single perfect
optimization setting. Taking the time to make sure that each
image looks its best at the smallest file size will reward you with
a better looking website that loads quickly.

Chapter 2

[37]

For example purposes, I have exported this image in a couple of different resolutions
and compression levels using the JPEG format.

As you can see from preceding the file listing, we initially started out with a 27-MB
photo taken directly from a digital SLR camera. Using different exporting methods
in Photoshop, we can easily get a decent version of the same image with a smaller
resolution in a file that is well under 500 kilobytes. Considering that in a fully
developed web page this image could be one of many, the general rule of thumb is to
keep every image files size as small as possible. This will allow your content to load
quickly and display properly for the design you have created.

Of course, as previously mentioned, JPG is not the only image format available for
use within web pages. Let's quickly cover each of the formats and what each of them
brings to the table.

JPEG
Outputting an image as .jpeg or more commonly .jpg allows for lossy image
compression, which aims to decrease file size by discarding some of the data within the
image. The amount of compression used when saving in JPEG format is typically user
defined, allowing designers and developers to create a smaller file than the original
such that is as close to its source as possible. One of the major downsides to the JPEG
format is the lack of transparency support as the format contains no alpha channels.

PNG
Portable Network Graphics (PNG) is a bitmap image format that doesn't use
compression when saving image data. PNG images are great for design and
asset images as they retain the quality and color palette used in design and also
support transparency. However, they are not typically utilized for images such as
photographs, as the resulting file size will be too large due to the amount of details
in the image.

Preparing for the Battle

[38]

GIF
The beloved GIF file, or more commonly seen nowadays as the animated GIF has been
available for usage since CompuServe released the format in 1987. GIF images support
256 colors, transparency, as well as animations via multiple image frames. Though it is
still in use all around the Web till date, due to the lack of timeline control of animated
images, techniques such as sprite sheets (of which we will cover more in the following
chapters) are becoming more popular for animated image integration.

Audio
Preparing audio for the Web is relatively straight forward as majority of web
browsers support MP3 audio formats within HTML5's new audio element. Aside
from MP3, some browsers support the use of OGG audio files. Therefore, exporting
audio in either of the formats will allow you to target all modern HTML5 compatible
browsers and ensure that your end user hears the audio regardless of what browser
they choose to view your content with.

The audio element
Creating the audio element, as with HTML syntax for most of the elements, is pretty
straight forward. One major difference from traditional source references within
HTML elements is the use of the source element which is encased within the audio
element. By utilizing this new source element, we can reference multiple assets
within the same element and load only the first file which is compatible:

<audio controls>
 <source src="horse.ogg" type="audio/ogg">
 <source src="horse.mp3" type="audio/mp3">
 Your browser does not support the audio tag.
</audio>

If a user attempts to open this element within a browser with no HTML5 audio
support, the remaining internal content within the audio element will be displayed.
In this case, we display only text, but you could easily append a reference to a Flash
audio playback application or a warning styled with CSS. However, if all is well with
the browser as per the given requisites, the page will display an audio playback UI
that look something like the following:

Chapter 2

[39]

The audio playback control user interface is specific to the browser displaying the
data. The preceding image is what Google Chrome currently renders as its internal
audio playback control user interface. Default audio controls can be removed by
excluding the controls parameter within the audio tag element. Without the
default control UI, you can build your own controls with images, HTML, and CSS
and control them with JavaScript.

Video
As mentioned in Chapter 1, Why HTML5?, video integration into HTML5 documents
is now easier than ever. As simple as integrating video into HTML5 documents is, it
all begins with preparing the video for use on the Web. This process should not only
minimize the size of the video file but also encode it with a specific codec and save it
within a specific video container.

The HTML5 video tag supports the inclusion of multiple video container formats.
While attempting to support the full range of HTML5 compliant browsers, developers
must include references to the same video saved in multiple formats as not every
browser supports all of the allowed video file types. Therefore, a solid understanding
of video containers and codecs is necessary for web developers to properly integrate
video into their documents.

Preparing for the Battle

[40]

Video codecs
Codecs are used for compression and decompression of videos, to decrease file size
and allow large video files to be shared using less bandwidth. Without the use of
compression on video files, users would have to wait an inordinate amount of time
to transfer a video over a typical Internet connection. To put this into perspective,
a raw high-definition video, around 5 minutes in length, can be well over 25 GB of
data. Video codecs are made up of advanced algorithms that remove similar data
that blends from frame to frame. Rather than storing each individual frame as a
separate image, an encoded video stores a specialized data set that is usually many
times smaller than the raw source material. For viewing, the encoded data needs to
be decoded from the streamlined data source back to viewable frame-based video.
Codecs are the all-in-one piece of technology to get this task completed. Each of the
supported video containers in HTML5 supports only one video codec, so choosing
one is pretty straight forward. However, since video is usually accompanied by
audio, the audio must also be run via a specific audio codec as well.

Video containers
One of the major issues while attempting to embed video into an HTML5 document
is supporting all modern browsers with the same content. Unfortunately, not all the
HTML5 compatible browsers available support the same video formats. Therefore,
in order to support the widest range of browsers, developers must embed multiple
versions of the same video file encoded in multiple formats. Since this issue is not
likely to change anytime in the near future, understanding the available video
containers and their corresponding codecs is an important step in preparing video
for your HTML5 documents.

MP4
From the perspective of a Flash developer, the MP4 container should be the most
familiar as they are very similar to FLV or F4V files. MPEG-4 or MP4 containers are
currently supported for embedding within the video element by Internet Explorer
9+, Google Chrome, and Safari. MP4 videos must be encoded using the H.264 codec,
which was also used by FLV and F4V videos in Flash.

Chapter 2

[41]

WebM
The WebM audio and video format is a project sponsored by Google to bring
a completely open multimedia container and codec to the Web. WebM files are
supported by Firefox, Google Chrome, and Opera. When encoding videos for use
within a WebM container, the VP8 video codec, which is also owned by Google,
is used.

GG
OGG containers are supported by Firefox, Google Chrome, and Opera. When
encoding videos for use within a OGG container, the Theora codec is used. Since the
full spectrum of browsers is covered by using just MP4 and WebM videos, encoding
in OGG format is not entirely necessary. There is no harm in adding it as a failsafe
anyways; only the first video file format the browser finds within the source list is
utilized during display, all of the other files are ignored and not downloaded.

Sample encoded video files as well as the high-quality master video
file can be found within the Chapter 02_examples directory.

Video encoding software
There are many great applications available online that can encode your video
content into formats compatible with HTML5. As long as the container and codec
specification is met, any application or method can be used to get the job done.
To aid in getting you up and running, for this chapter and the remainder of this
book, here are some of the most popular encoding tools and applications web
developers use to get videos on the Web in a snap.

Preparing for the Battle

[42]

Miro Video Converter
If you are looking for a simple way to get videos ready for the Web, look no further
than Miro Video Converter, which can be found on Miro's website http://www.
mirovideoconverter.com. This software is not only free and open source but also
supports exporting videos and audios in all HTML5 compatible formats. Miro Video
Converter is available for Windows and OS X and is probably the easiest way to
prepare audios and videos for your HTML5 projects.

With the application installed and opened, the next step is to simply
drag-and-drop your source video file into the application for queuing.
If you have multiple videos, you can also add them to the queue and all
of them will be encoded one after another.

Chapter 2

[43]

Once all the videos you require to be encoded have been added to the queue, select
the Format option at the bottom of the window and select one of the three available
formats within the convertor. Keep in mind that to enable video element playback
support in every browser, you will need to encode your videos once in each format.
If you require more in depth configuration in the encoding job, Miro Video Converter
allows us to control basic parameters such as aspect ratio and video dimensions.

Adobe Media Encoder
Flash developers who have included videos within their projects have probably
made use of the Adobe Media Encoder. This handy software comes bundled with
Flash and can easily encode videos for use within Flash and HTML5 projects.
Unfortunately, this application will only output videos natively in Flash video
formats of HTML5-ready MP4.

Preparing for the Battle

[44]

Handbrake
If you don't have access to Adobe Media Encoder, then the next easiest way to
encode MP4 videos for free is by heading over to http://handbrake.fr and
downloading Handbrake. Not only is Handbrake open source but also it is built
for Windows, OS X, and Linux so it's hard to be left out in the cold.

FFMPEG
Finally, my personal favorite, FFMPEG. If you are a lover of the command line as
I am, this amazing piece of software is for you. When it comes to media, it's hard to
say what FFMPEG can't be used to accomplish. If you're in need of high-level video
transcoding, be sure to visit http://ffmpeg.org to learn more.

The video element
Once our video content has been encoded in the necessary formats, all that is left is
to do is to reference the video from within the body of the HTML document. Just like
the audio element, instead of the typical src parameter used within an tag to create
a reference to the file, the video element supports the source tags within the video
element to allow referencing multiple assets. It should be noted that if you are only
embedding a single video reference, the src parameter within the video tag can be
used rather than adding the source tags:

Chapter 2

[45]

<video width="800" height="600" controls>
 <source src="my_video.mp4" type="video/mp4">
 <source src="my_video.webm" type="video/webm">
 <source src="my_video.ogg" type="video/ogg">
 Your browser does not support the video tag.
</video>

Again, just like the audio element, the video element allows for playback control
integration by appending the controls parameter in the video tag. Videos can be
played automatically on page load by appending autoplay="true" in the video tag.

Now that we have all of our assets prepped and ready for action, it's about time to
start moving into the development environment. Since the web browser is our target
platform, let's take some time to cover what the modern web browsers of today give
us in terms of web developer tools to aid us in our development cycle.

Debugging and output methods
With the popularity of HTML5 and other heavily client-side driven web content,
comes the need for a robust developer toolset to allow for easy debugging and
testing of web pages. Fortunately, each of the modern browsers have adapted or
integrated some very similar setups for doing just this. One of the most important
features within this toolset is the JavaScript console. The JavaScript console is to
web developers what the Flash Output window is to Flash developers. This is a
critically important area to print data from initialized applications or websites and
print statements or values specified within the code. In ActionScript, printing data
to the output window is accomplished by using the trace() function. In JavaScript,
we utilize the console object's built-in methods for doing the same. Consider the
following example:

function calculateSum(a, b) {
 sum = a + b;
 console.log("The sum of " + a + " + " + b + " = " + sum);
}

calculateSum(2, 3);

This example can be found within the Console-Example directory
within the Chapter 02_examples directory.

Preparing for the Battle

[46]

This code example creates a function in JavaScript to calculate the sum of numbers
and calls the method with example parameters to display the output in the browser
console. Similar to traces in ActionScript, console integration in JavaScript works
behind the scenes, segregated from the actual web page. The primary function of the
console is to aid a developer with debugging JavaScript, CSS, or HTML properties
during runtime. Not only can the developer console be used for printing data from
the application but it can also be used to trigger specific functions in your code
without the need for a specific event or interaction to take place.

As important as the console is, the entire user interface and interaction changes
depending on what browser is being used to view the document. Therefore,
understanding where to find and how to use the console in all popular browsers is an
important step in helping you build robust code. Let's quickly run our simple calculate
sum example in a couple of the common browsers to see how they handle the output.

Google Chrome
All versions of Google Chrome come packaged with a built-in developer toolset and
it can be easily opened by right-clicking on a web page and selecting the Inspect
Element option in the dialog box. This will reveal the developer tools window
attached to the bottom of the browser window. Selecting the Console tab will display
the JavaScript console to view the output from the web page. Opening our JavaScript
calculateSum function example in Chrome with the console open should display
something like the following image:

As you can see, the output from the console.log() call has been displayed along
with what file and line number the call was dispatched from. Even from a simple
perspective, I am sure you are starting to see how handy this tool could be if you
have 100 or even 1000 lines of code in multiple files to deal with. As similar to the
output window for traces in ActionScript this tool is, the cherry on top of the pie is
its ability to invoke further JavaScript execution directly from the console window.
Within the console, we can continue and find the sum of new numbers by calling the
calculateSum function with the necessary values directly from the console.

Chapter 2

[47]

Some browsers, such as Chrome, even have auto completion feature that expands
the text as you type in method or property names, a feature I am sure most Flash
developers wished they had within the Flash IDE.

Firebug for Firefox
Since Firefox does not come pre-packed with a robust developer toolset, a common
option for web developers is to install the Firebug extension to enable this feature.
The extension can easily be added to your Firefox installation in a couple of seconds
by visiting http://getfirebug.com. Once installed and activated, right-click
anywhere on a page and select Inspect Element with Firebug.

Preparing for the Battle

[48]

This should all feel pretty familiar to what we did within Chrome. Firebug is a
great little project that almost all developers I know utilize. There are a ton of great
features in all of these toolsets, many of which we will touch on in this book. Since
we have a very simple HTML page open with barely anything in it, now might be a
good time to see the UI and output from a more vanilla web page, so feel free to click
around and check things out.

Safari
To enable the developer tools in Safari, open the Preferences window and select
the Advanced tab. Select the check box at the bottom of the window labeled Show
Develop menu in menu bar and then you can close the window.

Chapter 2

[49]

From this point on, you can right-click, as usual, on any web page and select Inspect
Element to display the tools window.

If you were paying attention, you may notice that this console is almost identical to
the console within Google Chrome. Of course, it has a command-line integration as
we have seen in the other browsers.

Opera
Similar to Google Chrome, the developer tools in Opera can be easily accessed by
right-clicking on a web page and selecting Inspect Element. Once the developer
tools window opens at the bottom of the browser, select the Console tab to open the
developer console. Initially, the console will be blank and clear of any interaction
from the web page you are currently viewing.

Preparing for the Battle

[50]

Rather than having the console always active, Opera has decided to read console
commands only when the console is actually open. Therefore, refreshing the page
will reveal the console interaction:

Internet Explorer
As of Internet Explorer 9, Microsoft has begun including a developer's toolset
directly within the browser. The Developers Tools window can be opened at
anytime by pressing F12 while viewing a page. Just like Opera, Internet Explorer
requires a page to be refreshed to enable the usage of the console on the active page,
as it stays inactive when it is closed.

Of course, just like every other console, we can call our JavaScript methods
and variables from the command line.

Chapter 2

[51]

Syntax differences
Now that we have some media to work with and the browser tools at our disposal,
let's start some more toying with JavaScript and compare its syntax to what you
already know in ActionScript 3.

Variables
Unlike variables declared within ActionScript 3, JavaScript variables are not strictly
typed. This takes the familiar ActionScript 3 variable declaration from:

var myVariable:String = 'abc123';

to a simpler syntax within JavaScript which looks as follows:

var myVariable = 'abc123';

This lack of strict typing is referred to as dynamic typing. Variables in JavaScript
can be used as any type at any time. Consider this example:

var exampleVar; // A undefined variable
exampleVar = "Some example text"; // Variable is now a String
exampleVar = 12345; // Variable is now a Number

Dynamic typing allows code to be writing faster by requiring less input from
the developer, but this development ease comes at the cost of debugging large
applications. ActionScript 3's strict typing allows the compiler to catch issues even
before exporting a new version of your application. JavaScript will not do this
natively, and it is probably one of the biggest complaints most developers with
prior ActionScript 3 experience have when using the language.

Variable type conversion
Although variables in JavaScript are not strictly typed, there are methods to ensure
that variable data is in correct form for the desired action. Type conversion can be
used on variables to ensure they are formatted properly:

myString = String('12345'); // Convert to a String
myBoolean = Boolean('true'); // Convert to Boolean
myNumber = Number('12345'); // Convert to Number

Preparing for the Battle

[52]

Conditions and loops
We will cover these two aspects together as the syntax for conditions and loops in
JavaScript are almost the same to what you are used to in ActionScript 3. If, if...
else, and if... else if conditions are no different than that in ActionScript:

if(cats > dogs) {
 // Code for cat people...
} else if (cats < dogs) {
 // Code for dog people...
} else {
 // Code for everyone else...
}

Also, the switch statements can be used and just like if statements; the syntax
is exactly the same as that in ActionScript:

switch(animal) {
 case 'cat':
 // Code for cat people...
 break;
 case 'dog':
 // Code for dog people...
 break;
 default:
 // Code for everyone else...
}

Loops are no different to their counterparts in ActionScript. Consider these
for and while loops:

for(var n = 0; n < myArray.length; n++) {
 // Code within loop...
}

while(n < 100) {
 // Code within loop...
}

do {
 // Code within loop...
} while(n < 100);

Chapter 2

[53]

Functions
As in ActionScript 3, functions in JavaScript are blocks of code encased within curly
braces ({ }). Every function is associated with a keyword that is used to call the
function and run the encased code within it. As usual, functions may return values
back to the point where the call was originally made. This is accomplished using the
return statement.

The syntax of JavaScript function is very similar to ActionScript functions but
is without the need for strict typing of expected parameters and the function
return types. As a Flash developer, your ActionScript 3 functions probably
looked something like the follows:

function getCoffee (owner:String, milks:int, sugars:int):void {
 // Code...
}

This syntax can be easily converted to JavaScript just by removing the variable
and return type declarations so that the same function in JavaScript can be written
as follows:

function getCoffee (owner, milks, sugars) {
 // Code...
}

Objects
Technically, everything declared in JavaScript is an object, however, time will
come when you will need to create your own custom objects. This can be done in
one of the following two manners. The first one, which should be very familiar to
ActionScript developers is as follows:

player = new Object();
player.name = "John Smith";
player.lives = 5;
player.posX = 10;
player.posY = -30;

You can also create objects by defining them as a functions as follows:

function player(name, lives, posX, posY) {
 player.name = name;
 player.lives = lives;
 player.posX = posX;
 player.posY = posY;

Preparing for the Battle

[54]

}

var teddyBear = new player("Teddy", 5, 10, 10);
console.log(teddyBear.name);

DOM events
Integrating DOM events allows you to use JavaScript to deal with events that occur
within HTML documents.

Mouse events
The DOM exposes mouse events for basic user interactions with the mouse pointer.
By using the onclick event parameter within an HTML tag, we can execute
JavaScript when a user clicks on a specific element:

<img src="my-image.jpg" id="my-image"
 onclick="PLACE YOUR JAVASCRIPT HERE">

However, we can also target the element completely from JavaScript and deal with
the event handler outside our HTML source code, to keep our project clean and easy
to understand:

document.getElementById("my-image").onclick=function() {
 // Place your JavaScript here...
};

Of course, you are not limited to just clicks for mouse events. Events can also be
handled for mouse over, mouse out, mouse down, and mouse up. In the examples
within this book, we will utilize all of these events as well as methods to extend
them even further.

Example JavaScript in action
With all of the JavaScript syntax specifications covered, let's use some of them into
a working example and see what happens. Have a look at the following simple
HTML document containing JavaScript to sort a randomized array of numbers:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>Insertion Sort - JavaScript Syntax Example</title>

 <script type="text/javascript">

Chapter 2

[55]

 // Number of elements to sort.
 elementCount = 10000;
 // The array which will be sorted.
 sortlist = new Array();

 /**
 * Called on button click.
 */
 function init() {
 // Prepare random array for sorting.
 for(i = 0; i < elementCount; i++)
 sortlist.push(i);

 //shuffle(sortlist);
 sortlist.sort(function() {
 return 0.5 - Math.random();
 });

 // Display the random array prior to sorting.
 console.log(sortlist);

 // Start a timer.
 console.time('Iteration Sort Timer');

 // Sort the randomized array.
 insertionSort(sortlist);

 // Stop the timer.
 console.log('Sorted ' + elementCount + ' items.');
 console.timeEnd('Iteration Sort Timer');

 // Display the sorted array.
 console.log(sortlist);
 }

 /**
 * The popular Insertion Sort algorithm.
 */
 function insertionSort(list) {
 // It's always smart to only lookup array size once.
 l = list.length;

 // Loop over supplied list and sort.
 for(i = 0; i < l; i++) {

Preparing for the Battle

[56]

 save = list[i];
 j = i;

 while(j > 0 && list[j - 1] > save) {
 list[j] = list[j - 1];
 j -= 1;
 }

 list[j] = save;
 }
 }
 </script>
 </head>

 <body>
 <p>
 Click the button below to begin.
 Be sure to open up your browsers developer console.
 </p>
 <button onclick="init()">Start Sorting</button>
 </body>
</html>

This example covers many of the features and syntax specifications of JavaScript that
we have just covered. Within our JavaScript block declared in the HTML document
head tag, we have created two functions. The first function is our initiation method
to prepare and run the application once it called. The second function contains the
popular insertion sort algorithm, which will sort our randomized array of numbers.
To enable both functions to use the same variable, we create elementCount and
sortlist as global variables outside of each function's scope. Within the HTML
body tag is a button element, which renders a typical form button element on the
page and when a user clicks this button, the onclick handler calls the init function.

This example isn't flashy by any means but, as I mentioned above, it covers many
of the different aspects of the JavaScript syntax specifications.

Chapter 2

[57]

Timing JavaScript execution
One important point to note while dealing with JavaScript execution timing is to
be sure that the entire page has finished loading prior to allowing the JavaScript to
begin executing its code. The reason for waiting for page to load is to allow all of the
assets and external references to load on the page before attempting to manipulate
them. If your JavaScript attempts to perform an action on an element that doesn't
exist, your application flow could fail. To avoid this issue, we can add an event
listener to the DOM allowing it to run only once the page has been completely
loaded and comes to display. Utilizing the DOM event for JavaScript offers an
easy way to do just this as shown in the following code:

window.addEventListener("load", init, false);

var init = function() {
 // Start everything from in here.
}

Now, when the window has completed its load process the init function is called
and the remainder of the application code can begin execution. JavaScript actually
has a number of ways to accomplish execution of the code, specifically once the page
has finished loading. The following chapters of this book will use and explain many
of them using examples.

Summary
In this chapter, we spent some time to better familiarize ourselves with the process
involved in preparing media assets for our HTML5 projects. Also, preparation and
integration techniques for each of the typical multimedia formats as well as some
popular pieces of software available to aid in getting this done were covered in this
chapter. We took a quick jump right into ActionScript 3 versus JavaScript syntax
in order to become more familiar with the small but important difference while
writing JavaScript compared to ActionScript 3. This sets us up perfectly for Chapter 3,
Scalability, Limitations, and Effects, where we will begin putting HTML5 to the limits in
order to see what are its limitations and short comings as well as all of the surprising
things it can do.

Scalability, Limitations,
and Effects

With our media assets ready for HTML5 integration, let's continue this journey
by looking over some of the new and exciting object manipulation features within
CSS3 and JavaScript and how they relate to what you are familiar with as a Flash
Developer. During the course of this chapter, we will review many of the specific
features of HTML5 that have allowed it to gain extensive usage and popularity,
becoming more like typical Flash development.

What we will cover in this chapter:

• Initial development limitations and ways to avoid them
• Some of the new and exciting CSS3 additions
• Developing responsive layouts for mobile and desktop
• Targeting CSS styles for specific displays with CSS Media Queries
• Controlling and streaming audio and video, and the limitations compared

to Flash
• Client-side file integration and manipulation
• Sending heavy processes to the background with HTML5 Web Workers
• Introduction to server-side communication with WebSockets
• Understanding what the Canvas element is and why it's important
• Introduction to WebGL and its relation to Stage3D

Scalability, Limitations, and Effects

[60]

HTML5 limitations
If you haven't noticed by now, many of the HTML5 features you will use either
have failsafes, multiple versions, or special syntax to enable your code to cover
the entire spectrum of browsers and supported HTML5 feature sets within them.
As time passes and standards become solidified, one can assume that many of these
failsafes and other content display measures will mature into a single standard
that all browsers will share. However, in reality this process may take a while and
even at its best, developers may still have to utilize many of these failsafe features
indefinitely. Therefore, a solid understanding of when, where, and why to use these
failsafe measures will enable you develop your HTML5 web pages in a way that
can be viewed as intended on all modern browsers.

To aid developers in overcoming these previously stated issues, many frameworks and
external scripts have been created and open sourced, allowing for a more universal
development environment saving developers countless hours when starting each
new project. Modernizr (http://modernizr.com) has quickly become a must-have
addition for many HTML5 developers as it contains many of the conditions and
verifications needed to allow developers to write less code and cover more browsers.
Modernizr does all this by checking for a large majority (more then 40) of the new
features available in HTML5 in the clients browser and reporting back if they are
available or not in a matter of milliseconds. This will allow you as the developer to
determine if you should display an alternate version of your content or a warning to
the user.

Getting your web content to display properly in all browsers is and always has been
the biggest challenge for any web developer and when it comes to creating cutting
edge interesting content, the challenge usually becomes harder. This chapter will not
only cover many of the new HTML5 content manipulation features, but demonstrate
them in code examples as well. To allow you to better understand how these features
look without the use of third-party integration, we will avoid using external libraries
for the time being. It is worth noting how each of these features and others look in all
browsers. Therefore make sure to test the examples as well as your own work in not
just your favorite browser, but many of the other popular choices as well.

Object manipulation with CSS3
Prior to the advent of CSS3, web developers used a laundry list of content
manipulation, asset preparation, and asset presentation techniques in order to
get their web page layout the way they wanted in every browser. Most of these
techniques would be considered "hacks" as they would pretty much be a work
around to enable the browser to do something it normally wouldn't. Features
such as rounded corners, drop shadows, and transforms were all absent from a

Chapter 3

[61]

web developer's arsenal and the process of getting things the way you want could
get mind numbing. Understandably, the excitement level surrounding CSS3 for
all web developers is very high as it enables developers to perform more content
manipulation techniques then ever before without the need for prior preparation or
special browser hacks. Although the list of available properties in CSS3 is massive,
let's cover some of the newest and most exciting of the lot.

box-shadow
It's true that some designers and developers say drop shadows are a part of the
past, but the usage of shadowing HTML elements is still a popular design choice
for many. In the past, web developers needed to perform tricks such as stretching
small gradient images or creating the shadow directly into their background image
to achieve this effect in their HTML documents. CSS3 has solved this issue by
creating the box-shadow property to allow for drop shadow like effects on your
HTML elements.

To remind us how this effect was accomplished in ActionScript 3, let's review
this code snippet:

var dropShadow:DropShadowFilter = new DropShadowFilter();
dropShadow.distance = 0;
dropShadow.angle = 45;
dropShadow.color = 0x333333;
dropShadow.alpha = 1;
dropShadow.blurX = 10;
dropShadow.blurY = 10;
dropShadow.strength = 1;
dropShadow.quality = 15;
dropShadow.inner = false;
var mySprite:Sprite = new Sprite();
mySprite.filters = new Array(dropShadow);

As mentioned before, the new box-shadow property in CSS3 allows you to
append these shadowing effects with relative ease and many of the same
configuration properties:

.box-shadow-example {
 box-shadow: 3px 3px 5px 6px #000000;
}

Despite the lack of property names on each of the values applied to this style, you
can see that many of the value types coincide with what was appended to the drop
shadow we created in ActionScript 3.

Scalability, Limitations, and Effects

[62]

This box-shadow property is assigned to the.box-shadow-example class and
therefore will be applied to any element that has that classname appended to it.
By creating a div element with the box-shadow-example class, we can alter our
content to look something like the following:

<div class="box-shadow-example">CSS3 box-shadow Property</div>

As straightforward as this CSS property is to add to your project, it declares a lot
of values all in a single line. Let's review each of these values in order that we can
understand them better for future usage. To simplify the identification of each of the
variables in the property, each of these have been updated to be different:

box-shadow: 1px 2px 3px 4px #000000;

These variables are explained as follows:

• The initial value (1px) is the shadow's horizontal offset or if the shadow is
going to the left or to the right. A positive value would place the shadow on
the right of the element, a negative offset will put the shadow on the left.

• The second value (2px) is the vertical offset, and just like the horizontal
offset value, a negative number would generate a shadow going up and
a positive value would generate the shadow going down.

• The third value (3px) is the blur radius that controls how much blur effect
will be added to the shadow. Declaring a value, for example, 0 would create
no blur and display a very sharp looking shadow. Negative values placed
into the blur radius will be ignored and render no different then using 0.

• The fourth value (4px) and last of the numerical properties is the spread
radius. The spread radius controls how far the drop shadow blur will spread
past the initial shadow size declaration. If a value 0 is used, the shadow
will display with the default blur radius set and apply no changes. Positive
numerical values will yield a shadow that blurs further and negative value
will make the shadow blur smaller.

• The final value is the hexadecimal color value, which states the color that the
shadow will be in.

Chapter 3

[63]

Alternatively, you could use box-shadow to apply the shadow effect to the interior
of your element rather then the exterior. With ActionScript 3, this was accomplished
by appending dropShadow.inner = true; to the list of parameters in your
DropShadowFiler object. The CSS3 syntax to apply box-shadow properties in this
manner is very similar as all that is required is the addition of the inset keyword.
Consider the following code snippet, for example:

.box-shadow-example {
 box-shadow: 3px 3px 5px 6px #666666 inset;
}

This would produce a shadow that would look like the following screenshot:

Included in the code examples for this chapter is a box-shadow
tool that will allow you to better understand the affect each of the
properties will have.

text-shadow
Just like the box-shadow property, text-shadow lives up to its name by creating
the same drop-shadowing effect, specifically for text:

text-shadow: 2px 2px 6px #ff0000;

Scalability, Limitations, and Effects

[64]

Like box-shadow, the initial two values for text-shadow are the horizontal and
vertical offsets for the shadow placement. The third value, which is optional is the
blur size and the fourth value is the hexadecimal color:

border-radius
Just like element or text shadowing, adding rounded corners to your elements prior
to CSS3 was a chore. Developers would usually append separate images or use
other object manipulation techniques to achieve this effect on the typically square or
rectangle shaped elements. With the addition of the border-radius setting in CSS3,
developers can easily and dynamically set element corner roundness with only a
couple of line of CSS all without the usage of vector 9 slicing like in Flash.

Since HTML elements have four corners, when appending the border-radius
styling, we can either target each corner individually, or all the corners at once.
In order to easily append a border radius setting to all the corners at once,
we would create our CSS properties as follows:

#example {
 background-color:#ff0000; // Red background
 width: 200px;
 height: 200px;
border-radius: 10px;
}

The preceding CSS not only appends a 10px border radius to all of the corners of the
#example element, by using all the properties, which the modern browsers use, we can
be assured that the effect will be visible to all users attempting to view this content:

Chapter 3

[65]

As mentioned above, each of the individual corners of the element can be targeted
to only append the radius to a specific part of the element:

#example {
 border-top-left-radius: 0px; // This is doing nothing
 border-top-right-radius: 5px;
 border-bottom-right-radius: 20px;
 border-bottom-left-radius: 100px;
}

The preceding CSS now removes our #example element's left border radius by
setting it to 0px and sets a specific radius to each of the other corners. It's worth
noting here that setting a border radius equal to 0 is no different than leaving that
property completely out of the CSS styles:

Fonts
Dealing with customized fonts in Flash has had its ups and downs over the years.
Any Flash developer who has needed to incorporate and use customized fonts in
their Flash applications probably knows the pain that comes with choosing a font
embedding method as well as making sure it works properly for users who don't
have the font installed on their computer viewing the Flash application.

Scalability, Limitations, and Effects

[66]

CSS3 font embedding has implemented a "no fuss" way to include custom fonts
into your HTML5 documents with the addition of the @font-face declaration:

@font-face {
 font-family: ClickerScript;
 src: url('ClickerScript-Regular.ttf'),
 url('ClickerScript-Regular .otf'),
 url('ClickerScript-Regular .eot');
}

CSS can now directly reference your TTF, OTF, or EOT font which can be placed on
your web server for accessibility. With the font source declared in our CSS document
and a unique font-family identification applied to it, we can start using it on
specific elements by using the font-family property:

#example {
 font-family: ClickerScript;
}

Since we declared a specific font family name in the @font-face property, we can
use that custom name on pretty much any element henceforth. Custom fonts can
be applied to almost anything that contains text in your HTML document. Form
elements such as button labels and text inputs also can be styled to used your custom
fonts. You can even remake assets such as website logos in pure HTML and CSS with
the same custom fonts used in the original asset creation.

Acceptable font formats
Like many of the other embedding methods for assets online, fonts needs to be
converted into multiple formats to enable all common modern browsers to display
them properly. Almost all of the available browsers will be able to handle the
common True Type Fonts (.ttf file types) or Open Type Fonts (.otf file types),
so embedding one of those two formats will be all that is needed. Unfortunately
Internet Explorer 9 does not have support built in for either of those two popular
formats and requires fonts to be saved in the EOT file format.

External font libraries
Many great services have appeared online in the last couple of years allowing web
developers to painlessly prepare and embed fonts into their websites. Google's Web
Fonts archive available at http://www.google.com/webfonts hosts a large set of
open source fonts which can be added to your project without the need to worry
about licensing or payment issues. Simply add a couple of extras lines of code into
your HTML document and you are ready to go.

Chapter 3

[67]

Another great site that is worth checking out is Font Squirrel, which can be found
at http://www.fontsquirrel.com. Like Google Web Fonts, Font Squirrel hosts a
large archive of web-ready fonts with the copy-and-paste-ready code snippets to
add them to your document. Another great feature on this site is the @font-face
generator which give you the ability to convert your preexisting fonts into all the
web compatible formats.

Before getting carried away and converting all your favorite fonts into web ready
formats and integrating them into your work, it is worth noting the End User
License Agreement or EULA that came with the font to begin with. Converting
many available fonts for use on the web will break license agreements and could
cause legal issues for you down the road.

Opacity
More commonly known as "alpha" to the Flash developer, setting the opacity of an
element not only allows you to change the look and feel of your designs, but allows
you to add features like content that fades in and out. As simple as this concept
seems, it is relatively new to the available list of CSS properties available to web
developers. Setting the opacity of an element is extremely easy and looks something
like the following:

#example {
 opacity: 0.5;
}

As you can see from the preceding example, like ActionScript 3, the opacity value is
a numerical value between 0 and 1. The preceding example would display a element
at 50 percent transparency. The opacity property in CSS3 is now supported in all the
major browsers, so there is no need to worry about using alternative property syntax
when declaring it.

RGB and RGBA coloring
When dealing with color values in CSS, many developers would typically use
hexadecimal values, which would resemble something like #000000 to declare the
usage of the color black. Colors can also be implemented in their RGB representation
in CSS by utilizing the rgb() or rgba() calls in place of the hexadecimal value.
As you can see by the method name, the rgba color lookup in CSS also requires a
forth parameter which declares the colors alpha transparency or opacity amount.
Using RGBA in CSS3 rather than hexadecimal colors can be beneficial for a couple of
reasons. Consider you have just created a div element which will be displayed on top
of existing content within your web page layout.

Scalability, Limitations, and Effects

[68]

If you ever wanted to set a background color to the div as a specific color but
wish for only that background to be semi transparent and not the interior content,
the RGBA color declaration now allows you to do this easily as you can set the
colors transparency:

#example {
 // Background opacity
 background: rgba(0, 0, 0, 0.5); // Black 50% opacity

 // Box-shadow
 box-shadow: 1px 2px 3px 4px rgba(255, 255, 255, 0.8); // White 80%
 opacity

 // Text opacity
 color: rgba(255, 255, 255, 1); // White no transparency
 color: rgb(255, 255, 255); // This would accomplish the same
 styling

 // Text Drop Shadows (with opacity)
 text-shadow: 5px 5px 3px rgba(135, 100, 240, 0.5);
}

As you can see in the preceding example, you can freely use RGB and RGBA
values rather than hexadecimal anywhere color values are required in CSS syntax.

Element transforms
Personally, I find CSS3 transforms to be one of the most exciting and fun new
features in CSS. Transforming assets in the Flash IDE as well as with ActionScript
has always been easily accessible and easy to implement. Transforming HTML
elements is a relatively new feature to CSS and is still gaining full support by
all the modern browsers.

Transforming an element allows you to manipulate its shape and size by opening up
a ton of possibilities for animations and visual effects to assets without the need to
prepare the source before hand. When we refer to "transforming an element", we are
actually describing a number of properties that can be applied to the transformation
to give it different characteristics. If you have transformed objects in Flash or
possibly in Photoshop before, these properties may be familiar to you.

Chapter 3

[69]

Translate
As a Flash developer used to primarily dealing with X and Y coordinates when
positioning elements, the CSS3 Translate Transform property is a very handy way
of placing elements and it works on the same principal. The translate property
takes two parameters which are the X and the Y values to translate, or effectively
move the element:

transform:translate(-25px, -25px);

Unfortunately, to get your transforms to work in all browsers, you will need to target
each of them when you append transform styles. Therefore, the standard transform
style and property would now look something like this:

transform:translate(-25px, -25px);
-ms-transform:translate(-25px, -25px); /* IE 9 */
-moz-transform:translate(-25px, -25px); /* Firefox */
-webkit-transform:translate(-25px, -25px); /* Safari and Chrome */
-o-transform:translate(-25px, -25px); /* Opera */

Rotate
Rotation is pretty self-explanatory and extremely easy to implement. The rotate
properties take a single parameter to specify the amount of rotation, in degrees,
to apply to the specific element:

transform:rotate(45deg);
-ms-transform:rotate(45deg); /* IE 9 */
-moz-transform:rotate(45deg); /* Firefox */
-webkit-transform:rotate(45deg); /* Safari and Chrome */
-o-transform:rotate(45deg); /* Opera */

It is worth noting that regardless of the fact that the supplied value is always
intended to be a value in degrees, the value must always have deg appended
for the value to be properly recognized.

Scale
Just like rotate transforms, scaling is pretty straightforward. The scale property
requires two parameters, which declare the scale amount for both X and Y:

transform:scale(0.5, 2);
-ms-transform:scale(0.5, 2); /* IE 9 */
-moz-transform:scale(0.5, 2); /* Firefox */
-webkit-transform:scale(0.5, 2); /* Safari and Chrome */
-o-transform:scale(0.5, 2); /* Opera */

Scalability, Limitations, and Effects

[70]

Skew
Skewing a element will result in the angling of the X and Y axes:

transform:skew(10deg, 20deg);
-ms-transform:skew(10deg, 20deg); /* IE 9 */
-moz-transform:skew(10deg, 20deg); /* Firefox */
-webkit-transform:skew(10deg, 20deg); /* Safari and Chrome */
-o-transform:skew(10deg, 20deg); /* Opera */

The following illustration is a representation of skewing an image with the
preceding properties:

Matrix
The matrix properties combine all of the preceding transforms into a single property
and can easily eliminate many extra lines of CSS in your source:

transform:matrix(0.586, 0.8, -0.8, 0.586, 40, 20);
/* IE 9 */
-ms-transform:matrix(0.586, 0.8, -0.8, 0.586, 40, 20);
/* Firefox */
-moz-transform:matrix(0.586, 0.8, -0.8, 0.586, 40, 20);

Chapter 3

[71]

/* Safari and Chrome */
-webkit-transform:matrix(0.586, 0.8, -0.8, 0.586, 40, 20);
/* Opera */
-o-transform:matrix(0.586, 0.8, -0.8, 0.586, 40, 20);

The preceding example utilizes the CSS transform matrix property to apply multiple
transform styles in a single call. The matrix property requires six parameters to
rotate, scale, move, and skew the element. Using the matrix property is only really
useful when you actually need to implement all of the transform properties at once.
If you only need to utilize one aspect of element transforms, you will be better off
using just that CSS style property.

3D transforms
Up until now, all of the transform properties we have reviewed have been two
dimensional transformations. CSS3 now also supports 3D as well as 2D transforms.
One of the best parts of CSS3 3D transforms is the fact that many devices and
browsers support hardware acceleration allowing this complex graphical processing
to be done on your video cards GPU. At the time of writing this book, only Chrome,
Safari, and Firefox have support for CSS 3D transforms.

Interested in what browsers will support all these great HTML5
features before you start developing? Check out http://
caniuse.com to see what popular browsers support in a simple,
easy-to-use website.

When dealing with elements in a 3D world, we make use of the Z coordinate,
which allows the use of some new transform properties.

transform:rotateX(angle)
transform:rotateY(angle)
transform:rotateZ(angle)
transform:translateZ(px)
transform:scaleZ(px)

Let's create a 3D cube from HTML elements to put all of these properties into
a working example. To start creating our 3D cube, we will begin by writing the
HTML elements which will contain the cube as well as the elements which will be
making up the cube itself:

<body>
 <div class="container">
 <div id="cube">
 <div class="front"></div>

Scalability, Limitations, and Effects

[72]

 <div class="back"></div>
 <div class="right"></div>
 <div class="left"></div>
 <div class="top"></div>
 <div class="bottom"></div>
 </div>
 </div>
</body>

This HTML creates a simple layout for our cube by not only creating each of the six
sides, which makes up a cube with specific class names, but the container for the
entire cube as well as the main container to display all of our page content. Of course,
since there is no internal content in these containers and no styling yet, opening this
HTML file in your browser would yield an empty page. So let's start writing our CSS
to make all of these elements visible and position each to form our three dimensional
cube. We will start by setting up our main containers which will position our content
and contain our cubes sides:

.container {
 width: 640px;
 height: 360px;
 position: relative;
 margin: 200px auto;

 /* Currently only supported by Webkit browsers. */
 -webkit-perspective: 1000px;
 perspective: 1000px;
}
#cube {
 width: 640px;
 height: 320px;
 position: absolute;

/*
Let the transformed child elements preserve
the 3D transformations:
*/
 transform-style: preserve-3d;
 -webkit-transform-style: preserve-3d;
 -moz-transform-style: preserve-3d;
}

Chapter 3

[73]

The container class is our main element, which contains all of the other elements
within this example. After appending a width and height, we set the top margin to
200px to push the display down the page a bit for better viewing and the left and
right margins to auto which will align this element in the center of the page:

#cube div {
 display: block;
 position: absolute;
 border: 1px solid #000000;
 width: 640px;
 height: 320px;
 opacity:0.8;
}

By defining properties to the #cube div, we set the styles to every div element
within the #cube element. We are also kind of cheating the system of cube by setting
the width and height to rectangular proportions as the intention is to add videos to
each of the cube sides once we structure and position it.

With the basic cube-side styles appended, its time to start transforming each of the
sides to form the three-dimensional cube. We will start with the front of the cube by
translating it on the Z axis, bringing it closer to the perspective:

#cube .front {
-webkit-transform: translateZ(320px);
 -moz-transform: translateZ(320px);
 transform: translateZ(320px);
}

In order to append this style to our element in all modern browsers, we will need to
specify the property in multiple syntaxes for each browser that doesn't support the
default transform property:

Scalability, Limitations, and Effects

[74]

The preceding screenshot shows what has happened to the .front div after
appending a Z translation of 320px. The larger rectangle is the .front div, which is
now 320px closer to our perspective. For simplicity's sake, let's do the same to the
.back div and push it 320px away from the perspective:

#cube .back {
 -webkit-transform:
 rotateX(-180deg)
 rotate(-180deg)
 translateZ(320px);
 -moz-transform:
 rotateX(-180deg)
 rotate(-180deg)
 translateZ(320px);
 transform:
 rotateX(-180deg)
 rotate(-180deg)
 translateZ(320px);
}

As you can see from the preceding code, to properly move the .back element into
place without placing it upside down, we flip the element by 180 degrees on the X
axis and then translate Z by 320px just like we did for .front. Note that we didn't
set a negative value on the translate Z because the element was flipped. With the
.back CSS styles in place, our cube should look like the following:

Now the smallest rectangle visible is the element with the classname .back, the
largest is our .front element, and the middle rectangle is the remaining elements
to be transformed.

Chapter 3

[75]

To position the sides of our cubes we will need to rotate the side elements on the Y
axis to get them to face the proper direction. Once they are rotated into place, we can
translate the position on the Z axis to push it out from the center as we did with the
front and back faces:

#cube .right {
 -webkit-transform: rotateY(90deg) translateZ(320px);
 -moz-transform: rotateY(90deg) translateZ(320px);
 transform: rotateY(90deg) translateZ(320px);
}

With the right side in place, we can do the same to the left side but rotate it in the
opposite direction to get it facing the other way:

#cube .left {
-webkit-transform: rotateY(-90deg) translateZ(320px);
 -moz-transform: rotateY(-90deg) translateZ(320px);
 transform: rotateY(-90deg) translateZ(320px);
}

Scalability, Limitations, and Effects

[76]

Now that we have all four sides of our cube aligned properly, we can finalize the
cube positioning by aligning the top and bottom sides. To properly size the top and
bottom we will set their own width and height to override the initial values set in the
#cube div styles:

#cube .top {
 width: 640px;
 height: 640px;

 -webkit-transform: rotateX(90deg) translateZ(320px);
 -moz-transform: rotateX(90deg) translateZ(320px);
 transform: rotateX(90deg) translateZ(320px);
}
#cube .bottom {
 width: 640px;
 height: 640px;

 -webkit-transform: rotateX(-90deg) translateZ(0px);
 -moz-transform: rotateX(-90deg) translateZ(0px);
 transform: rotateX(-90deg) translateZ(0px);
}

To properly position the top and bottom sides, we rotate the .top and .bottom
elements +-90 degrees on the X axis to get them to face up and down, and only need
to translate the top on the Z axis to raise it to the proper height to connect with all of
the other sides.

With all of those transforms appended to our layout, the resulting cube should look
like the following:

Chapter 3

[77]

Although it looks 3D, since there is nothing in the containers, the perspective isn't
really showing off our cube very well. So let's add some content such as a video in
each of the sides of the cube to get a better visualization of our work. Within each
of the sides, let's add the same HTML5 video element code:

<video width="640" height="320" autoplay="true" loop="true">
 <source src="cube-video.mp4" type="video/mp4">
 <source src="cube-video.webm" type="video/webm">
 Your browser does not support the video tag.
</video>

Since we have not added the element playback controls in order to display more
visible area of the cube, our video element is set to autoplay the video as well as loop
the playback on completion. Now we get a result that properly demonstrates what
3D transforms can do and is a little more visually appealing:

Since we set the opacity of each of the cube sides, we can now see all four videos
playing on each side, pretty cool! Since we are already here, why not kick it up one
more notch and add user interaction to this cube so we can spin it around and see the
video on each side.

To perform this user interaction, we need to use JavaScript to translate the mouse
coordinates on the page document to the X and Y 3D rotation of our cube. So let's
start by creating the JavaScript to listen for mouse events:

window.addEventListener("load", init, false);

function init() {
 // Listen for mouse movement
 window.addEventListener('mousemove', onMouseMove, false);
}

function onMouseMove(e) {

Scalability, Limitations, and Effects

[78]

 var mouseX = 0;
 var mouseY = 0;

 // Get the mouse position
 if (e.pageX || e.pageY) {
 mouseX = e.pageX;
 mouseY = e.pageY;
 } else if (e.clientX || e.clientY) {
 mouseX = e.clientX + document.body.scrollLeft +
 document.documentElement.scrollLeft;
 mouseY = e.clientY + document.body.scrollTop +
 document.documentElement.scrollTop;
 }

 console.log("Mouse Position: x:" + mouseX + " y:" + mouseY);
}

As you can see from the preceding code example, when the mousemove event
fires and calls the onMouseMove function, we need to run some conditionals to
properly parse the proper mouse position. Since, like so many other parts of web
development, retrieving the mouse coordinates differs from browser to browser,
we have added a simple condition to attempt to gather the mouse X and Y in a
couple of different ways.

With the mouse position ready to be translated into the transform rotation of our
cube, there is one final bit of preparation we need to complete prior to setting
the CSS style updates. Since different browsers support the application of CSS
transforms in different syntaxes, we need to figure out, in JavaScript, which syntax
to use during runtime to allow our script to run on all browsers. The following code
example does just that. By setting a predefined array of the possible property values
and attempting to check the type of each as an element style property, we can find
which element is not undefined and know it can be used for CSS transform styles:

// Get the support transform property
var availableProperties = [
 'transform',
 'MozTransform',
 'WebkitTransform',
 'msTransform',
 'OTransform'
];
// Loop over each of the properties
for (var i = 0; i < availableProperties.length; i++) {
 // Check if the type of the property style is a string (ie. valid)
 if (typeof document.documentElement.style[availableProperties[i]] ==

Chapter 3

[79]

'string'){
 // If we found the supported property, assign it to a variable
 // for later use.
 var supportedTranformProperty = availableProperties[i];
 }
}

Now that we have the user's mouse position and the proper syntax for CSS transform
updates for our cube, we can put it all together and finally have 3D rotational control
of our video cube:

<script>
 var supportedTranformProperty;

 window.addEventListener("load", init, false);

 function init() {
 // Get the support transform property
 var availableProperties = ['transform', 'MozTransform',
 'WebkitTransform', 'msTransform', 'OTransform'];
 for (var i = 0; i < availableProperties.length; i++) {
 if (typeof document.documentElement.
 style[availableProperties[i]] == 'string'){
 supportedTranformProperty = availableProperties[i];
 }
}

 // Listen for mouse movement
 window.addEventListener('mousemove', onMouseMove, false);
 }

 function onMouseMove(e) {
 // Get the mouse position
 if (e.pageX || e.pageY) {
 mouseX = e.pageX;
 mouseY = e.pageY;
 } else if (e.clientX || e.clientY) {
 mouseX = e.clientX + document.body.scrollLeft +
 document.documentElement.scrollLeft;
 mouseY = e.clientY + document.body.scrollTop +
 document.documentElement.scrollTop;
}

 // Update the cube rotation
 rotateCube(mouseX, mouseY);

Scalability, Limitations, and Effects

[80]

 }

 function rotateCube(posX, posY) {
 // Update the CSS transform styles
 document.getElementById("cube").style[supportedTranformProperty] =
 'rotateY(' + posX + 'deg) rotateX(' + posY * -1 + 'deg)';
 }

</script>

Regardless of the fact we have attempted to allow for multi browser use of this
example, it is worth opening it up in each to see how something like 3D transforms
with heavy internal content run. During the time of writing this book, all WebKit
browsers were the easy choice when viewing content like this, as browsers such
as Firefox and Internet Explorer render this example at a much slower and lower
quality output:

Transitions
With CSS3, we can add an effect when changing from one style to another,
without using Flash animations or JavaScripts:

div {
 transition: width 2s;
 -moz-transition: width 2s; /* Firefox 4 */
 -webkit-transition: width 2s; /* Safari and Chrome */
 -o-transition: width 2s; /* Opera */
}

Chapter 3

[81]

If the duration is not specified, the transition will have no effect, because the default
value is 0:

div {
 transition: width 2s, height 2s, transform 2s;
 -moz-transition: width 2s, height 2s, -moz-transform 2s;
 -webkit-transition: width 2s, height 2s, -webkit-transform 2s;
 -o-transition: width 2s, height 2s,-o-transform 2s;
}

It should be worth noting that Internet Explorer currently does
not have support for CSS3 transitions.

Browser compatibility
If you haven't noticed yet, the battle of browser compatibility is one of the biggest
aspects of a web developer's job. Over time, many great services and applications
have been created to help developers overcome these hurdles in a much simpler
manner than trial-and-error techniques. Websites such as http://css3test.com,
http://caniuse.com, and http://html5readiness.com are all great resources
to keep on top of HTML5 specification developer and browser support for all the
features within.

Frame rate
One would assume since you, the reader, are coming from a Flash development
background, a moment should be taken to talk about frame rates or frames
per second when developing HTML5 applications. Since every asset in Flash
applications is based on the timeline model, calculating how many frames of that
timeline are displayed every second is a pretty simple calculation. However, all the
technologies that make up HTML5 development do not rely on the use of a timeline
during runtime. Therefore calculating the frames per second or FPS value of a
webpage is not always an accurate measure of performance of your HTML5 projects.

Our CSS 3D Transform example found in the chapter code examples
includes the use of a great piece of JavaScript called Stats.js to
monitor the frames per second as well as the ms. Stats.js is a open
source project that can be found at https://github.com/
mrdoob/stats.js.

Scalability, Limitations, and Effects

[82]

Developing for mobile
Another one of the driving forces behind the popularity of HTML5 is the
overwhelming support for it on most of the modern mobile browsers (http://
mobilehtml5.org). With the loss of Flash Player on all mobile platforms now, the
use of HTML5 to deliver content is at an all time high and the usage is growing
daily. Applications, frameworks, and templates such as jQuery Mobile (http://
jquerymobile.com), Phone Gap (http://phonegap.com), Appcelerator (http://
www.appcelerator.com) and the Mobile Boilerplate (http://html5boilerplate.
com/html5boilerplate.com/dist/mobile) all of which will be covered in
detail in Chapter 5, Code Once, Release Everywhere, are all specifically built to aid
web developers for building web content that is specifically targeted for mobile
viewing. CSS can be set up in a responsive manner to allow the same page content
to be displayed in an optimized format depending on the device and viewport
configuration a user is viewing your content with.

Responsive layouts
The term "responsive layout" seems to get used on a more frequent basis as HTML5
development has grown in popularity. It has, to some, become a keyword to define one
of the key features of good HTML5 development. Regardless of how the term is used,
at the end of the day when we refer to "responsive layouts" in web development, we
are referring to the usage of modern web development techniques to enable the same
page content to transition its layout and content within it to adjust for the users device
and viewing resolution. In other words, making sure your page content is set up in an
optimized manner for all viewing resolutions and is able to transition between any one
of the layouts without the need for content of page refreshing.

CSS Media Queries
One of the most important assets when creating responsive layouts is the use of CSS
Media Queries. Media Queries allow you to target specific CSS styles depending
on your user's device, resolution, rotation, and more. Knowing as much as possible
about the device and software loading your HTML documents will allow you to not
only specify how specific devices and browsers are to display your content, but it can
also allow your code to monitor real-time changes to the viewing methods as well.
For instance, the following Media Query example changes the background color
depending on device rotation:

@media screen and (orientation:portrait) {
 background-color: #FF0000;
}

Chapter 3

[83]

@media screen and (orientation:landscape) {
 background-color: #0000FF;
}

The list of CSS Media Queries properties is short but it is important to understand
what is available to you when creating your conditions. Therefore, let's quickly
review what properties you have at your disposal when writing your Media Queries:

• width: Describes the width of the targeted display area.
• height: Describes the height of the targeted display area.
• device-width: Describes the width of the rendering display of the

output device.
• device-height: Describes the height of the rendering display of the

output device.
• orientation: Is portrait when the value of the height media feature is

greater than or equal to the value of the width media feature. Otherwise the
orientation is landscape.

• aspect-ratio: Defined as the ratio of the value of the width media feature
to the value of the height media feature.

• device-aspect-ratio: Defined as the ratio of the value of the device-
width media feature to the value of the device-height media feature.

• color: Describes the number of bits per color component of the output
device. If the device is not a color device, the value is zero.

• color-index: Describes the number of entries in the color look up table of
the output device. If the device does not use a color look up table, the value
is zero.

• monochrome: Describes the number of bits per pixel in a monochrome frame
buffer. If the device is not a monochrome device, the output device value will
be 0.

• resolution: Describes the resolution of the output device, that is, the
density of the pixels. When querying devices with non-square pixels, in
min-resolution queries the least-dense dimension must be compared to the
specified value and in max-resolution queries the most-dense dimensions
must be compared instead. A resolution (without a "min-" or "max-" prefix)
query never matches a device with non-square pixels.

• scan: Describes the scanning process of "tv" output devices.
• grid: Used to query whether the output device is grid or bitmap. If the output

device is grid-based (for example, a "tty" terminal, or a phone display with
only one fixed font), the value will be 1. Otherwise, the value will be 0.

Scalability, Limitations, and Effects

[84]

Audio and video playback control
As we saw in the last chapter, integrating audio and video assets with basic
controls into and HTML5 document is extremely easy. But if you intend to use your
multimedia in other forms than just a straightforward video playback element, you
will need to understand the properties available for custom playback code integration.

Preloading
By default, when an audio or video element is displayed in a HTML5 document, the
source asset declared within it will be preloaded to allow for instantaneous playback
when the user initiates the player. Assets will be preloaded only as far as the
browsers deems necessary to enable fluid uninterrupted playback. To override this
setting, we can use the preload parameter within the audio element to declare what
we would like to be preloaded when a user views our page.

Setting the preload parameter to auto will preload the entire audio upon page
load and could be a useful addition to any audio you are almost certain a user will
watch at some point after the page loads. With the preload parameter set, our audio
element would look something like the following:

<audio controls preload="all">
 <source src="my-audio .mp3" type="audio/mpeg">
 <source src="my-audio.ogg" type="audio/ogg">
 Your browser does not support the audio element.
</audio>

Aside from preloading everything, we can also preload absolutely nothing by
setting preload="none" rather than auto. Removing preloading from audio will
allow users to surf your pages without the need for unnecessary audio downloads
but will result in longer loading times for audio to player once the user initiates
the audio playback. Finally we can also just load audio metadata when preloading
by setting preload="metatdata". This will allow the audio element to view what
data it is about to load, which can be very useful when dynamically adding audio
into an audio element and requiring the need to verify if it is fit for playback before
attempting to do so.

Autoplay
As described in Chapter 2, Preparing for the Battle, with the autoplay setting
appended to a video element, the video will begin to play the moment it is able to do
so without the need to stop the video for further buffering. Unlike many of the other
element parameters in HTML, the autoplay parameter does not require a value.
So just appending autoplay to the element will be enough to do the job. It is worth

Chapter 3

[85]

keeping in mind that the autoplay setting will be ignored when loaded on almost
all mobile browsers. Mobile browsers tend to ignore this setting in an attempt to
conserve bandwidth on a wireless connection.

Looping
With the loop setting appended to the audio element, the video will restart every
time is finishes. Like the autoplay parameter, the loop parameter does not require
a value. If you only wanted a video to loop a specific number of times, you can either
watch how many times its loops with the loop parameter set and then remove it
when necessary, or control the entire playback from JavaScript to control the loop
count without the loop parameter in the video element.

Sound effects
Playing a sound effect at a specific moment can be accomplished in a number of
ways with the use of the HTML5 audio element and JavaScript. In its simplest form,
playing sound effects can be implemented as done the following code example:

<body>
 <audio src="audio/ping.mp3" preload="auto" id="audio-ping">
 </audio>

 <script>
 window.addEventListener("load", init, false);

 function init() {
 window.addEventListener(
 'mousedown',
 onMouseDown,
 false
);
 }

 function onMouseDown(e) {
 document.getElementById('audio-ping').play();
 }
 </script>
</body>

www.allitebooks.com

http://www.allitebooks.org

Scalability, Limitations, and Effects

[86]

When the audio element is created inside the HTML document body, we set the
preload="auto" which will make sure the audio is preloaded completely as soon
as possible. We do this so there is no latency when the sound is needed during the
effect event. The audio element is also given an ID to enable referencing in JavaScript
a couple line down. With the window load event listener, we wait for page load then
apply an event listener to any mousedown event anywhere in the browser window.
When this fires, we select our audio element by ID and call the built in play()
method resulting in the audio playback on every click of the browser window.

Media playback manipulation
Aside from the play() method in the preceding example, JavaScript has the
accessibility to control much more of the audio and video element directly. Audio
volume can be set as a value between 0 and 1 as shown in the following example:

document.getElementById('audio-ping').volume = 0.5; // Set the volume
to 50%

We can also gather all the stats on the element by utilizing the following exposed
objects within it:

var media = document.getElementById('audio-ping');
media.seekable.start(); // Start time (seconds)
media.seekable.end(); // End time (seconds)
media.currentTime = 20; // Seeks playback to 20 seconds
// Total amount of seconds the playback has displayed
media.played.end();

Reading local files with the File API
Another feature that brings HTML5 content into a more application-like feature set
is the addition of the File API. Users can now interact with their local content on a
much more in depth level than ever before. Users can import files in the traditional
HTML form manner or now just drag the file into specified drop zones in your
HTML5 layouts. Once a file has been submitted to the web page by the user, your
JavaScript File API usage can allow you to view, edit, and manipulate the file data
prior to ever submitting it to the server. We will dig deeper into the the File API in
many of the examples in chapters to come.

Chapter 3

[87]

Web Workers
In the past when executing processor intensive JavaScript, browsers would often tend
to freeze until the processing had been completed and the results were returned. With
the advent of HTML5 Web Workers, you can now execute your processor intensive
JavaScript code as a background process that will not affect the performance of the
active document. Users will be able to continue using the site as intended as they wait
for the Web Worker to complete its jobs in the background.

To easily check if a user's browser has support for HTML5 Web Workers, we can
check if the type of the Worker object is undefined or not:

if(typeof(Worker) == "undefined") {
 // This browser doesn't support Web Workers...
}

Depending on whether the browser supports the usage of Web Workers, we can
easily create a new worker at anytime by instantiating a new Worker object and
a reference to its JavaScript source:

worker = new Worker("worker.js");

In the preceding example, we created a new worker and referenced it to the source
within the worker.js file. The next step is to create the event listener for when
the worker posts an update. To create this listener, we create a function on the
onmessage property and retrieve the message from the event.data property:

// Create an event listener for worker updates.
worker.onmessage = function (event) {
 console.log('New worker event - ' + event.data);
};

The code within the worker can be anything, although it makes the most sense for it
to be something that would normally freeze the browser for a short period of time.
Regardless of what your worker is doing, to enable the callback to your code you
will use the postMessage built-in function:

postMessage(YOUR_DATA);

Since your Web Worker code is located in external files, it will
not have access to the window, document or parent object in its
JavaScript source.

You will find more usage of Web Workers in this chapter's example files as well
as some of the examples in chapters to come when we start building bigger
JavaScript projects.

Scalability, Limitations, and Effects

[88]

WebSockets
Adding server-side communication to your web pages to enable features such as
multiuser interactivity or push notifications is becoming more and more popular with
the advent of WebSockets. To put it in a nutshell, WebSockets fill the void when you
need a server to communicate with the client without requiring the client's request.

When building Flash applications, typically one would use technologies and
frameworks such as Real-Time Media Flow Protocol (RTMFP) or SmartFoxServer
(http://www.smartfoxserver.com) to allow for server-based multiuser applications.
This concept is now available with the use of WebSockets and is a true testament to
how far the development of the HTML specification has come.

In the upcoming chapters, we will continue to look into more thorough examples
of WebSockets in action, as well as some other interesting methods for connecting
users viewing your HTML5 content, such as Socket.io (http://socket.io), Node.js
(http://nodejs.org), and Google V8 (http://code.google.com/p/v8).

The Canvas element
We can't finish this chapter without at least beginning to make mention of the HTML5
Canvas element. The Canvas allows developers to use the Canvas 2D Drawing API
to draw graphics on the fly into an empty controllable area. From the perspective of
a Flash developer, the easiest way to understand the Canvas elements feature set is
that it uses similar features to the ActionScript 3 Drawing and Graphics API within
an empty area in the HTML layout which is very similar to the Flash Stage.

To better understand what all the fuss is about, let's create a simple drawing
application with the use of the Canvas. To begin, we need to append the Canvas
element into the body of our HTML document. There is no content required to be
inside the element's tags, as it will only be viewable when the user is attempting to
view this content from a browser without the support for the Canvas element:

<body>
 <canvas id="example" width="640" height="480" style="border:1px
 solid #000000;">
 Your browser does not support the HTML5 Canvas element.
 </canvas>
</body>

Two important additions have been appended to the Canvas in this example and
they are the element ID, which will be used in JavaScript in the following steps, as
well as the width and height declaration. Without the width and height set in the
element, most browsers will render the Canvas at 300px x 150px. To aid us in the

Chapter 3

[89]

development of this application, a 1px border has been added to the Canvas to allow
us to see exactly where its boundaries are within the browser window. Finally as
mentioned, the internal content within the Canvas element will only display if the
element is not supported within the browser rendering it. If the application has been
also written as a Flash application, the object embed for the Flash SWF could be used
in place of the text warning we are using in this example.

The next step is to set up the reference to our Canvas and its 2D context within
JavaScript, and since we set an ID on our element, we can easily reference it to
a variable within our code:

var canvas, context; // Variables to hold Canvas references

window.addEventListener("load", init, false);

function init() {
 // Set the canvas reference to a JavaScript variable.
 canvas = document.getElementById('example');

 // Get the 2D canvas context to allow for 2D Drawing API integration
 context = canvas.getContext('2d');
 if(!context) {
 alert("Failed to get canvas context!");
 return;
}

 canvas.addEventListener('mousemove', onMouseMove, false);
 canvas.addEventListener('mousedown', onMouseDown, false);
 canvas.addEventListener('mouseup', onMouseUp, false);
}

function onMouseDown(e) {
 isDrawing = true;
}
function onMouseUp(e) {
 isDrawing = false;
}

With our Canvas referenced and mouse event listeners set up to watch for when
the user has the mouse button down, let us finalize this example by writing our
onMouseMove function to draw a line when the isDrawing variable is true:

function onMouseMove(e) {
 var x, y;

Scalability, Limitations, and Effects

[90]

 if (e.pageX || e.pageY) {
 x = e.pageX;
 y = e.pageY;
 } else if (e.clientX || e.clientY) {
 x = e.clientX + document.body.scrollLeft +
 document.documentElement.scrollLeft;
 y = e.clientY + document.body.scrollTop +
 document.documentElement.scrollTop;
 }

 if(!isDrawing) {
 // Since the mouse isn't down, just move
// the context to the latest mouse position.
 context.beginPath();
 context.moveTo(x, y);
 } else {
 // The mouse is down so draw the line to
// the current mouse position.
 context.lineTo(x, y);
 context.stroke();
 }
}

If you notice, the initial code in our onMouseMove function is taken from our 3D
Transforms example and allows us to read the mouse X and Y position on the
different modern browsers. The condition following the mouse position lookup
should look semi-familiar if you had used the Drawing API in ActionScript 3.
Assuming the mouse is down, we draw a line to the current mouse position and set
the default stroke on it. In this case, the default stroke is a 1px black solid line. When
the mouse is not down, we simply move the context to the mouse position but do
not draw any lines. This allows us to constantly reset and wait for a new line to be
started. When tested in the browser, this example will look something like this:

Chapter 3

[91]

This example really is only the start of what is available to developers but hopefully
gives you an idea of how it works. We will continue to look into the Canvas element
in the next chapter.

Stage3D versus WebGL
Before we end this chapter, some mention should be made about the availability of
WebGL and its similarities and differences to Stage3D in Adobe Flash. WebGL is a
cross-platform web standard which allows developers to create and manipulate low-
level 3D graphics, bringing plugin-free 3D development to the Web. WebGL can be
implemented and viewed in all modern browsers, an exception is Internet Explorer.

Take note that it seems Microsoft is planning to release Internet
Explorer 11 with WebGL support.

The key aspects of WebGL and Stage 3D are that they both support the use of
hardware acceleration. This can drastically increase the performance of graphical
processing loads when viewing content on devices and browsers with proper support.
Although this book doesn't contain the room to dive too deep into the use of WebGL,
we will look at a couple of frameworks and libraries which support and use it in
Chapter 6, HTML5 Frameworks and Libraries.

For more information and to see if your current web browser supports
the use of WebGL, head over to http://get.webgl.org, the
WebGL public wiki (http://www.khronos.org/webgl/wiki),
or view some intriguing examples at http://www.khronos.org/
webgl/wiki/Demo_Repository.

Summary
Although we have covered a ton of interesting features during the course of this
chapter, there are still many very cool additions to HTML5 we will be looking at in
the upcoming chapters. The key thought to take away from what we have covered
so far is how the relationships between features in Flash and HTML5 are similar yet
different at the same time. Understanding what technology will be able to allow you
to develop your applications in the best possible manner is a key trait for any good
developer. In the next chapter, we will dig deeper into the use of JavaScript and how
it relates to ActionScript 3 when programming in an object-oriented manner.

Building Robust Applications
with HTML5

Since the advent of ActionScript 3, Flash developers have become accustomed to
developing in an object-oriented programming (OOP) paradigm. When transitioning
to JavaScript, many developers with an experience of OOP would initially be put
off by the syntax JavaScript uses to accomplish the same functionality. However, a
misunderstanding of the syntax may lead to a misunderstanding of the functionality.
Therefore, in this chapter we will cover the use of JavaScript OOP, Events, and Event
Listeners as well.

In this chapter we will cover the following:

• JavaScript class structure, usage, and syntax
• Object inheritance
• Class constructors
• Tools and frameworks to aid in development
• Creating custom events and listeners

Writing object-oriented JavaScript
In 2006, when Adobe released Flash Player 9 with the inclusion of ActionScript 3
support, the Flash development community saw a major paradigm shift in the way
they developed their Flash applications. Prior to the use of ActionScript 3, developers
were tasked with writing their applications in ActionScript 2, which is primarily
used as a scripting programming language. ActionScript 3 was designed as a true
object-oriented programming language with strict typing, which allows for code to
be written in a reusable, more controlled manner.

Building Robust Applications with HTML5

[94]

With the use of ActionScript 3 and the new ActionScript Virtual Machine compiler
released for Flash Player 9, the code within Flash applications was not only written
in an OOP structure but could also run up to 10 times faster than the previous legacy
Flash applications. Over time, Flash developers have become accustomed to writing
proper OOP structured code, which has allowed them to easily transition their
programming skill set to other languages such as Java, C++, or C#.

The use of the OOP paradigm in JavaScript is a bit tricky to understand at first,
so let's create an example class structure in ActionScript 3 and port it directly to
JavaScript to see the visual syntax differences. In this example, we will create a
sample "Player" class that will emulate the basic functionality of a character in a
game. Rather than setting up each Player in our game with a separate code, based
on functionality, we will use the Player class to create as many players as we need
in our game and alter their properties via constructors, getters, setters, and public
variables. To get a better idea of this concept, consider the following code example:

package {
public class Player {
 // Private Variables
 private var lives:int; // How many lives our player has.
 private var xPosition:int; // The players X position.
 private var yPosition:int; // The players Y position.

 // Public Variables
 public var name:String = 'John'; // The players name.

 /**
 * The Player constructor.
 * This function is called when a new Player is *
 instantiated.
 *
 * @param playerName: The name to give to our player.
 * @param lives: How many lives to give our player.
 */
 public function Player(playerName:String,
 playerLives:int = 5):void {
 // Update the player variables with
 // the supplied parameters.
 name = playerName;
 lives = playerLives;
 }

 /**
 * Return the current amount of lives the player has.

Chapter 4

[95]

 */
 public function get lives():int {
 return lives;
 }

 /**
 * Move the players x and y position.
 *
 * @param x: The new X position to move the player to.
 * @param y: The new Y position to move the player to.
 */
 public function move(x:int, y:int):void {
 // Update the player position variables.
 xPosition = x;
 yPosition = y;

 updatePosition();
 }

 /**
 * The would be the function that actually moves the
 * displayed player display object on the stage.
 * This would get called every time a players X and Y
 * position values are updated.
 */
 private function updatePosition():void {
 // Code to update the players display object...
 }
 }
}

Although simplified for example purposes, this class example should look pretty
familiar to any developer with the experience of coding in ActionScript 3. With this
class within our Flash project, we can import it and instantiate it at any time within
our application. Declared within the object are properties and methods that can be
called by the parent object to manipulate the data for the specific Player object,
and this is typical of any class. When you are ready to add a new Player into your
application, we can instantiate a new object with the following ActionScript 3 code:

var player:Player = new Player('John', 10);

By appending the required values into the constructor, we give our Player a unique
name as well as an initial value as to how many lives this Player will have. We now
have our new Player, which we can manipulate in our imaginary game.

Building Robust Applications with HTML5

[96]

Now let's take a look at the same class that is rewritten in JavaScript:

function Player(playerName, playerLives) {
 // Private variables
 var lives = playerLives;
 var xPosition = 0;
 var yPosition = 0;

 // Public variables
 this.name = playerName;

 // Return the current amount of lives the player has.
 this.lives = function() {
 return lives;
 }

 /**
 * Move the players x and y position.
 *
 * @param x: The new X position to move the player to.
 * @param y: The new Y position to move the player to.
 */
 this.move = function(x, y) {
 xPosition = x;
 yPosition = y;

 updatePosition();
 }

 /**
 * The would be the function that actually moves the displayed
 * player display object on the stage. This would get called
 * every time a players X and Y position values are updated.
 */
 function updatePosition() {
 //
 }
}

At first glance one can see that there is no class declaration, which one would be
familiar with, as in many other programming languages. Instead, when creating
"classes" in JavaScript, one uses a function to simulate the usage of a traditional
class structure. Package declarations are removed from the equation as well as the
inclusion of JavaScript is appended to the HTML document rendering the web

Chapter 4

[97]

page. By all means, pending it was logical; one could separate all one's JavaScript
classes into separate files for ease of development. However, when publishing large
amounts of JavaScript to a public-hosted environment, to conserve the amount
of requests to the web server for data, JavaScript should be consolidated as much
as possible. We will dig further into the preparation of your HTML5 projects for
production environments in Chapter 10, Preparing for Release.

One thing must be noted at this point of time. With the lack of
strict typing and many other specific class structure rules, the same
JavaScript functionality can be written in numerous ways. During
the course of this chapter, I have written the examples to be as user-
friendly as possible in order to allow us to examine the syntax better.

Class syntax
In the initial JavaScript class example, we examined the differences between
ActionScript 3's class structure as compared to JavaScript when creating
object-oriented code. The example used one of the more traditional methods
of creating a class in JavaScript by using a function in place of the typical
class declaration.

Functions
Many of the example JavaScript functions we have used in code examples so far
have shown some of the different ways in which we can define a new function.
As I just mentioned, depending on what the developers are comfortable with,
they may choose to write their functions in JavaScript in one of the following ways:

function isAlive1() { return true; }
var isAlive2 = function() { return true; };
window.isAlive3 = function() { return true; };

console.log(isAlive1());
console.log(isAlive2());
console.log(isAlive3());

Each of the three console.log outputs in the previous example would yield the
proper Boolean return of true. It is also worth noting that the order of the function
definitions and function usage is not required to be as demonstrated in the preceding
sample of code. The following example would yield the exact same result:

console.log(isAlive1());

function isAlive1() { return true; }
var isAlive2 = function() { return true; };

Building Robust Applications with HTML5

[98]

window.isAlive3 = function() { return true; };

console.log(isAlive2());
console.log(isAlive3());

When attempting to call a function that has not been defined, a ReferenceError
error will be dispatched and displayed in the JavaScript console.

Although our application would continue running despite this runtime error, it
would generally mean that there is an issue with our code. Rather than having the
default ReferenceError error sent to the JavaScript console, we could use a simple
condition to handle this issue within our code.

try {
 console.log(isAlive4());
} catch(error) {
 console.log('Failed to call isAlive4() - ' + error);
 // Run alternate code here...
}

Variable scope
Understanding properly how variables scope in JavaScript is a critical step in
understanding the core aspects of the language. Scope refers to the accessibility
that the variables have to other parts of the code when they are created somewhere
within your code. Variables can be instantiated and referenced depending on the
syntax used to declare them. JavaScript utilizes what many refer to as function
scope, whereby all variables and functions scope in the same manner. At the top of
the scope chain are the global variables and functions. As with all programming
paradigms, global means everything, and a global variable or function is accessible
anywhere else within your code.

var name = 'John';

function getName() {

Chapter 4

[99]

 return name;
}

// Both calls return the name as it is accessible globally.
console.log(name);
console.log(getName());

This code demonstrates the use of a global variable. Since the variable name
is declared above the scope of the function that uses it, there would be no errors
when running this code. However, variables can also be locally declared from
within a function.

function getName() {
 var name = 'John';
 return name;
}

console.log(name); // Error
console.log(getName()); // Success

As the Player's name (which in this case is John) is created within the getName
function, it is not globally accessible to any of the code outside of that function.
As simple as the concept of global and local variables is, when you begin to consider
the lack of strict typing and the use of exact variable names for global and local
variables, your head may begin to spin. Not to worry, this is another one of the
typical learning curve issues developers have with JavaScript. But as mentioned
before, mastering variable scope in JavaScript is one of the essential skills every
good HTML5 developer must have.

To demonstrate some of the issues presented, and to allow you to fully view scoping
in action, let's review the following example:

// We will start with a globally scoped variable which is
 accessible by everything.
var alpha = 'a';

// Global scope example.
function a() {
 console.log(alpha); // Reference the global alpha variable.
}

// Local scope using a supplied variable.
function b(alpha) {
 console.log(alpha); // Reference the supplied alpha variable.
}

Building Robust Applications with HTML5

[100]

// Local scope using a variable created within the function.
function c() {
 var alpha = 'c';
 console.log(alpha);
}

// Update the global object property.
function d() {
 this.alpha = 'd'; // Create an internal object property.
}

function e() {
 var n = 'e';

 this.alpha = function() {
 console.log(n);
 }
};

function f() {};

a(); // A
b('b'); // B
c(); // C

console.log(new d().alpha); // D

var e = new e().alpha(); // E

f.prototype.alpha = 'f';
console.log(new f().alpha); // F

The previous example, although an illogical way to output the characters A to F,
demonstrates many of the ways in which variables and functions can be manipulated
to access data from specific areas in your application's scope chain.

Public and private variables and functions
The next step for understanding variables and functions within JavaScript is by
learning how to create and utilize public and private members. Unlike in ActionScript
3, variables are not typed as private or public, thus making the syntax a little harder
to understand.

Chapter 4

[101]

Local or private variables
Private (or local) variables are declared by utilizing the var keyword when creating
variables within an object. The resulting variable will only be accessible within that
specific object and would require a getter and setter method to allow for external
manipulation. This manner of variable declaration is similar to using the private
keyword when creating variables in ActionScript 3. A general rule of thumb in OOP
development is to use private variables whenever possible as it will lead to far less
issues with variable corruption or other misusage.

function Example() {
 var foobar = 'abc'; // Only accessible within the Example
scope.
}

Public variables
Public variables or properties are declared by using the this.myVariableName
syntax. Similar to the public keyword when creating variables in ActionScript 3,
public variables in JavaScript are accessible not only to the code within the object's
scope chain but also from outside of the object it was created in as well.

function Example() {
 this.foobar = 'abc'; // Accessible outside the Example scope.
}

Private functions
Private functions, which are only accessible within the object scope, can be written
in a couple of different ways.

function Example() {
 function TestOne() {
 return true;
 }

 var testTwo = function() {
 return true;
 };
}

Both examples demonstrated previously yield a private function. Any attempt
to call the function from outside of the object scope would result in a runtime error.

Building Robust Applications with HTML5

[102]

Public functions
Public or privileged functions, like public variables, are accessible from outside of
the object they were created in, and are created using the this.myFunctionName =
function() {...} syntax.

function Example() {
 this.test = function() {
 return true;
 }
}

Prototype
One of the more confusing aspects of a JavaScript object's syntax is the use of
the prototype object. As we have seen in the examples and explanations up to
this point, everything in JavaScript is an object, and within every JavaScript object
is a prototype property.

If you were using Flash back in the days of ActionScript 1 or
ActionScript 2, you may be familiar with the concept of the prototype
object (http://help.adobe.com/en_US/as2/reference/
flashlite/WS5b3ccc516d4fbf351e63e3d118ccf9c4
7f-7ec2.html). This object was utilized in both programming
languages, but dropped on the release of ActionScript 3.

To see this concept in action, let's start simple and work our way forward into more
complex usages of the prototype object. We will start by looking at the prototype
object for a new empty object.

var player = {}; // Create a new empty object.
console.log(Object.getPrototypeOf(player)); // Return the prototype
object.

Running this code in a web browser would result in a JavaScript log that would
resemble something very close to the following code, if not the same:

Object
__defineGetter__: function __defineGetter__() { [native code]
}
__defineSetter__: function __defineSetter__() { [native code]
}
__lookupGetter__: function __lookupGetter__() { [native code]
}
__lookupSetter__: function __lookupSetter__() { [native code]
}

Chapter 4

[103]

constructor: function Object() { [native code] }
hasOwnProperty: function hasOwnProperty() { [native code] }
isPrototypeOf: function isPrototypeOf() { [native code] }
propertyIsEnumerable: function propertyIsEnumerable() {
[native code] }
toLocaleString: function toLocaleString() { [native code] }
toString: function toString() { [native code] }
valueOf: function valueOf() { [native code] }

This output can give us a lot more sense of what the prototype object is really about.
As you already know from previous ActionScript 3 development, object variable
types come with many built-in methods to manipulate the content within it. Looking
at the output of the prototype of our Player object, you may notice that many of
these familiar methods and properties are listed.

We can use this prototype object to append new properties to an object at any time.
Consider the following example where we create a simplified Player object and
append the move functionality to it via the prototype object rather than directly
within the object itself:

function Player(name) {
 this.name = name;
 this.lives = 0;
 this.xPosition = 0;
 this.yPosition = 0;
}

Player.prototype.move = function(x, y) {
 this.xPosition = x;
 this.yPosition = y;
}

The same concept could be used for overriding the default object behavior.
By modifying the move properties via the prototype object, any further calls
to the move method would result in a newly appended behavior.

function Player(name) {
 this.name = name;
 this.lives = 0;
 this.xPosition = 0;
 this.yPosition = 0;

 this.move = function(x, y) {
 this.xPosition = x;
 this.yPosition = y;
 }

Building Robust Applications with HTML5

[104]

}

Player.prototype.move = function(x, y) {
 this.xPosition = x + 5;
 this.yPosition = y + 5;
}

Keep in mind that these changes are targeted to the object itself and not the
instance. Therefore, these changes will affect each and every Player instance
demonstrated as follows:

function Player(name) {
 this.name = name;
 this.lives = 0;
 this.xPosition = 0;
 this.yPosition = 0;

 this.move = function(x, y) {
 this.xPosition = x;
 this.yPosition = y;
 }
}

function init() {
 var susan = Player('Susan');
 var john = Player('John');

 // Modify the move function for ALL Player instances.
 Player.prototype.move = function(x, y) {
 this.xPosition = x + 5;
 this.yPosition = y + 5;
 }
}

So why is this important? While depending on how your application is built,
by utilizing the prototype object, you can easily append shared code to objects
directly, without the need for coding the same thing more than once. Less code
means less memory, and it will always make your life easier when it comes to
maintaining your projects.

Chapter 4

[105]

Instance types
As you begin to float around all of this new JavaScript code and syntax in these
examples and in your own, adding checks and conditions for instance types will
prove to be an important addition. The lack of strict typing will require you to write
and maintain clean and optimized code to get your applications working properly.
Consider some of the following code snippets for acquiring information on the
instance type of our Player object:

// Create a player instance
var player = new Player('John');

// Check the type of player.
console.log(typeof(player));

// Output the constructor data from the player.
console.log(player.constructor);

// Check if the player is a Object - returns a Boolean.
console.log(player instanceof Object);

Each of these calls to the console.log method are performing different ways to look
up the instance of the Player object. When we run this code in a web browser and
open up the developer console, we get the following output:

The initial object output is a result of the typeof() function call made on the
Player object. The second output is the code block returned when calling the
constructor of the Player object. Finally, the conditional console call (console.
log(player instanceof Object)) results in the Boolean return in the console
letting us know that the instanceof condition is true.

Building Robust Applications with HTML5

[106]

Object literals
Literals are simply a shorter method to define arrays and objects within JavaScript.
We are already creating new objects in JavaScript with the following syntax:

var player = new Object();
var player= Object.create(null);
var player = {};

We can further extend the preceding syntax by creating the internals of the object
directly within the variable declaration.

var player = {
 name: "John",
 lives: 5,
 xPosition: 0,
 yPosition: 0,
 move: function(x, y) {
 xPosition = x;
 yPosition = y;

 // Update the position display...
 }
}

This Object syntax, however, creates major issues with its lack of reusability as
its instance already will have existed when it is created. Since there is no need to
instantiate the object, we can continue our code by referencing its properties.

 player.name = "Susan";
 player.move(5, 5);

Constructors
As we have seen in some of the previous examples, in comparison to ActionScript 3,
the object constructor syntax is a bit different than one would typically be used to.
Since classes are just functions, we can just place the code typically found within the
constructor directly within the class.

You can easily look up the reference to the function that initially created an object,
by calling the constructor property on it.

console.log(player.constructor);

Chapter 4

[107]

When attempting to look up the constructor of a built-in object type such as an array,
string, or date, the output will conceal the inner code and display a warning of the
use of native code as follows.

var test = Array();
console.log(test.constructor);

This would generate the following in the browser's JavaScript console:

function Array() { [native code] }

Inheritance
By using the call() method on a pre-existing object, we can update the reference
to this from the object itself to somewhere else in the code.

function Player(name) {
 this.name = name;
 this.age = 20;
}

function John() {
 Player.call(this, 'John');

 this.age += 35;
}

function Jill() {
 this.age += 20;
}
Jill.prototype = new Player('Jill');

function init() {
 var john = new John();
 console.log(john.name + ' is ' + john.age);

 var jill = new Jill();
 console.log(jill.name + ' is ' + jill.age);
}
window.addEventListener("load", init);

Building Robust Applications with HTML5

[108]

This example demonstrates a simple inheritance of the Player object within the
new John object. This allows us to access the internal values within Player and use
them externally within the John class. In this example case, we make John 35 years
older than the default Player. We can also use the prototype object to declare object
inheritance.

function Player(name) {
 this.name = name;
 this.age = 20;
}

function Jill() {
 this.age += 20;
}
Jill.prototype = new Player('Jill');

function init() {
 var jill = new Jill();
 console.log(jill.name + ' is ' + jill.age);
}
window.addEventListener("load", init);

When the new jill object is created, it inherits all of the base properties and
functions from Player as the prototype reference has declared object inheritance.
The resulting output for this example on page load would display the following:

John is 55
Jill is 40

Listing object properties
At any point you can look up the available properties within an object by using the
Object.getOwnPropertyNames() method. Keeping private and public syntax in
mind, let's review the following example to view the output when looking up an
object's properties:

function Player() {
 // Private variables
 var _this = this; // Reference to this object
 var lives;
 var positionX = 0;
 var positionY = 0;
 var playerElement;

 // Public variables

Chapter 4

[109]

 this.name = ''; // The players name.
 this.age = 10; // The players age (default = 10).

 this.move = function(x, y) {
 positionX = x;
 positionY = y;

 // Move the player...
 };

 function blink() {
 // Blink players eyes...
 }
}

var player = new Player();
var properties = Object.getOwnPropertyNames(player);

console.log(properties);

Again, with public and private variables in mind, only variables created with the
keyword this are visible outside of the object scope. Executing the preceding code
example would provide the following array of properties' names as the output:

["name", "age", "move"]

Making OOP in JavaScript easier
To many developers, the culmination of all of these workarounds and syntax
changes that come with developing object-oriented JavaScript may seem just like
a laundry list of "hacks". Regardless of your point of view on the matter, there are
many options available to aid in building large-scale JavaScript-based applications
with a more traditional development flow. In Chapter 6, HTML5 Frameworks and
Libraries, we will dig into many of the popular JavaScript libraries and frameworks
available, and how they can be used to not only speed up your development time
but also provide a more solid end result on all modern browsers and devices.

Building Robust Applications with HTML5

[110]

JavaScript events
As with most languages, events are what really brings an application to life. Without
the use of events, programs would usually just run from start to finish without the
need for human interaction. JavaScript events are built around the asynchronous
event model. Rather than checking continually to see if a condition is met, events
can use call-back structures, like in ActionScript, to execute code once an event has
been fired. A great example of this, which you may have already seen in many other
examples thus far:

window.addEventListener("load", init, false);

We use this Event Listener on the window object to allow our code to determine when
the window object will finish loading, so that we can call our initial method to begin
JavaScript manipulation of our document.

Keyboard and mouse events
Mouse events are another one of the core elements almost all JavaScript projects
contain. Although we will be using these events within the examples all throughout
this book, it's worth reviewing a consolidated list of not only the mouse, but
keyboard and touch events as well, so that you can have a better understanding of
what is easily available to you for input event listening. The different keyboard and
mouse events are listed as follows:

• mousedown: A mouse button has been pressed down
• mouseup: A mouse button has been released
• click: A mouse button has been clicked
• dblclick: A mouse button has been double-clicked
• contextmenu: Some action to trigger a context menu has occurred
• scrolling: The context has been moved on the scroll axis
• keydown: A keyboard key has been pressed into the down state
• keypress: A keyboard key has been pressed and released
• keyup: A keyboard key has been released

Touch events
Touch event support is growing closer to a set standard; however, you will notice
support and feature set differences depending on what device and browser you
are testing on. It's worth noting that just like Flash applications running on a touch
interface, you can use the mouse events with no issues, and still support the use of

Chapter 4

[111]

an actual mouse. However, as a mouse can only click on one point at a time, if your
application will need multitouch support, you will have to begin utilizing the touch
event structure. In the next two chapters, we will look further into the use of HTML
on touch devices and how the development differs. The touch events supported are
as follows:

• touchstart: A user has started to touch an element
• touchmove: A user has moved the touch position since touchstart
• touchend: A user has removed his/her finger from the element

Custom events
Having the ability to create custom events and dispatch them to waiting Event
Listeners allows you to further extend your application's OOP syntax and structure.
Typically, as a Flash developer using ActionScript 3, you would utilize the flash
events class to create custom events so as to create the flow of communication from
class to class. In its simplest form, it would look like the following:

import flash.events.Event;
import flash.events.EventDispatcher;

var myEvent:Event = new Event("myEvent", false);
dispatchEvent(myEvent);

As with most of the functionality in ActionScript 3, to optimize the application's file
size and execution speed, packages must be directly imported into the project when
utilizing extended internal functionality. Therefore, when creating and dispatching
events in ActionScript 3, we should always import the Event and EventDispatcher
classes, after which we can instantiate a new event with our custom event type
that is supplied as a string. When the event is dispatched, there will need to be
an Event Listener to execute further code to complete the event sequence within
your application. I am sure you are well aware that the typical Event Listener in
ActionScript 3 is described in the following syntax:

addEventListener("myEvent", myCustomEventHandeler, false, 0,
true);

Using the same ActionScript 3 syntax like all Event Listener setups, the custom event
type, which is again in the form of a string, is supplied to the identifier. The second
parameter supplied is always the function to be called once this listener has fired.
The final three parameters control bubbling and weak referencing for event control
and memory cleanup.

Building Robust Applications with HTML5

[112]

Fortunately, the customized events' setup and structure in JavaScript are extremely
similar with some obvious differences. Consider this working example in comparison
to what we just reviewed and what you already know about events in ActionScript 3.

function init() {
 // Create an event listener
 document.addEventListener("myEvent", myEventHandeler, false);

 // Create our custom event
 var myEvent = document.createEvent("Event");

 // initEvent(event type, allow bubbling, allow prevented)
 myEvent.initEvent("myCustomEvent", true, true);
 myEvent.customData = "We can add more data into our event
 easily!";
 document.dispatchEvent(myEvent);
}

function myEventHandeler(event) {
 console.log('The custom event has been dispatched - ' +
 event);
 console.log('And retrieve our appended data - ' +
 event.customData);
}

window.addEventListener("load", init);

Apart from the lack of imported classes, this event example should look pretty
familiar in the eyes of any Flash developer. As with majority of the examples in
this book, we wait for the window to load with an Event Listener that we have
often seen up to this point. Within the init function, we start by creating our Event
Listener. In this case, we append the listener to the document; however, this could be
appended to any object within your code. Note that not only is the method to create
a new Event Listener exactly the same (addEventListener), but the syntax of the
initial two parameters is the same as well. The final Boolean value supplied controls
event bubbling, which we will refer back to in a while. The remaining code within
the init function contains our event instantiation as well as the dispatching of that
event. Again, thanks to the glory that is, ECMAScript, the syntax and structure of the
custom event is nearly identical.

Chapter 4

[113]

While creating our event type in JavaScript with the createEvent() method,
the availability of event modules depends on the DOM Level support that the
viewing browser has. At the time of writing this book, majority of the browsers are
moving towards full support of the DOM Level 3 Events, which include UIEvent,
DOMFocus, DOMActivate, Event, MouseEvent, MutationEvent, TextEvent,
KeyboardEvent, and HTMLEvent. You can always check out the complete list of
currently available or future specified DOM Level 3 Events by heading over to
http://www.w3.org/TR/DOM-Level-3-Events/.

The third parameter of the addEventListener method specifies whether the
registered Event Handler captures the specified event or not. If the Event Handler
captures an event, then each time the event occurs on the element or its descendants,
the Event Handler will be called.

Event bubbling
When an event is dispatched, it will follow the object's parent tree to the absolute
parent object until it is either handled or stopped. This behavior is known as event
bubbling and is found in ActionScript 3 as well as JavaScript event structure. In Flash
projects, an event will bubble all the way to the main object or in most cases, the
Stage. In JavaScript, the event will bubble to the document object.

In the following example, we will examine dealing with the mousedown event on the
document and object by controlling the propagation of the event:

function init() {
 // Add a mouse click listener to the document.
 document.addEventListener("mousedown", onDocumentClick,
 false);

 // Add a mouse click listener to the box element.
 var box = document.getElementById('box');
 box.addEventListener("mousedown", onBoxClick, false);
}

function onDocumentClick(event) {
 console.log('The document has been clicked - ' + event);
}

function onBoxClick(event) {
 console.log('The box has been clicked. - ' + event);

 // Stop this event from reaching the document object
 // and calling the document level event listener.

Building Robust Applications with HTML5

[114]

 event.stopPropagation();
}

window.addEventListener("load", init);

This JavaScript snippet applies a mousedown Event Listener to both an element
within the document as well as the document itself. If the user was to click on the
element within the page, both Event Listeners would be called, resulting in two
different handlers handling the same mouse click. Although this may be handy
in some applications, the natural way to deal with this issue and only allow a
single handler to be called is by stopping the flow of the event bubbling with the
stopPropagation() method.

Dealing with event propagation in JavaScript is identical to what you are used to in
ActionScript 3. At any point in the event flow, you can easily stop the traversal of the
event by calling either the stopPropagation() or stopImmediatePropagation()
method. If you are familiar with these methods from ActionScript 3 development,
you will already know that they are almost identical by nature. The only difference is
that the stopImmediatePropagation() call stops the event flow from reaching any
further Event Listeners in the current node.

Putting it all together
At the end of the day, all of these code examples only define each of the individual
pieces of JavaScript's functionality. Continuing with our Player class concept that
we have been using throughout this chapter, we then put some finishing touches to
our example "Player in a game" class structure.

function Game() {
 // An array to hold all our player objects
 var players = new Array();

 // Game Constructor
 // Reference to the game element in the document.
 var gameElement = document.getElementById('game');

 // Get the game element size.
 var gameElementWidth = gameElement.offsetWidth;
 var gameElementHeight = gameElement.offsetHeight;

 // Be sure to update these values if the window is
 // to ever be resized.
 window.onresize = function() {
 console.log("NOTICE: Browser Resize: " +

Chapter 4

[115]

gameElementWidth + " x " + gameElementHeight);
 gameElementWidth = gameElement.offsetWidth;
 gameElementHeight = gameElement.offsetHeight;
 };

 // Player Class.
 function Player(name) {
 this.name = name;

 // Create the element for the player.
 var playerElement = document.createElement("div");
 playerElement.class = 'element';
 playerElement.style.position = "absolute";
 playerElement.style.left = Math.floor((Math.random() *
 gameElementWidth - 100) + 1) + 'px'; // Random position within
 viewabled bounds
 playerElement.style.top = Math.floor((Math.random() *
 gameElementHeight - 100) + 1) + 'px';
 playerElement.style.color = "#000000";
 playerElement.style.display = "block";
 playerElement.style.padding = "5px";
 playerElement.style.border = "1px solid #000000";
 playerElement.style.width = "100px";
 playerElement.style.height = "100px";
 playerElement.innerHTML = this.name;
 gameElement.appendChild(playerElement);

 // Move this players X and Y positions.
 this.move = function(x, y) {
 playerElement.style.left = x + "px";
 playerElement.style.top = y + "px";
 }

 // Return the current position of this player
 // as a object.
 this.getPostion = function() {
 var position = {};
 position.x = parseInt(playerElement.style.left);
 position.y = parseInt(playerElement.style.top);
 return position;
 }
 }

 // Public Methods

Building Robust Applications with HTML5

[116]

 this.addNewPlayer = function(name) {
 // Check if this player name is already created
 var l = players.length;
 for(var i = 0; i < l; i++) {
 if(name == players[i].name) {
 console.log('Error: Player with the name ' +
 name + ' already exsits.');
 return;
 }
 }

 // Create the new player instance
 var player = new Player(name);

 // Add a reference to the global players array.
 players.push(player);
 }

 this.getPlayer = function(name) {
 // Check if this player name is already created
 var l = players.length;
 for(var i = 0; i < l; i++) {
 if(name == players[i].name) {
 return players[i];
 }
 }

 return false;
 }
}

function init() {
 // Create the game instance.
 var game = new Game();

Chapter 4

[117]

 // For this game we will automatically create two players.
 game.addNewPlayer('Jack');
 // Try to add another Jack to view name check.
 game.addNewPlayer('Jack');
 game.addNewPlayer('Jill');

 document.addEventListener('keydown', onKeyDown);

 // Called when the user presses a key on the keyboard.
 function onKeyDown(event) {
 // The key that was just pressed (ID).
 var key = event.keyCode;

 // Lookup the player to reference.
 var player = game.getPlayer('Jack');

 // Make sure the player exsists.
 if(player == false) return;

 // Get the players current position.
 var position = player.getPostion();

 // Forward
 if(key == 38) player.move(position.x, position.y - 10);

 // Backwards
 if(key == 40) player.move(position.x, position.y + 10);

 // Left
 if(key == 37) player.move(position.x - 10, position.y);

 // Right
 if(key == 39) player.move(position.x + 10, position.y);
 }
}

window.addEventListener("load", init);

Building Robust Applications with HTML5

[118]

Though still a simple example of what all this could look like in a single package,
this example encompasses many of the features we have looked at within this chapter:

Summary
Although this chapter covers the main concepts surrounding the syntax and structure
of objects in JavaScript development, in reality we could write a whole book on the
topic. That being said, we will continue to cover these and more aspects of the more
advanced side of JavaScript development throughout this book. As mentioned in
the introduction of this chapter, many of the differences and paradigm changes
presented with advanced JavaScript development may seem a bit daunting to some
Flash developers. However, once you get your head wrapped around most of these
core concepts, the rest of the puzzle pieces begin to fit together with ease. In the next
chapter, we will be looking into some of the tools available for porting pre-existing
Flash content to HTML5.

Looking for even more advanced JavaScript syntax and structure tips
and techniques? You can check these books from Packt Publishing,
Object-Oriented JavaScript by Stoyan Stefanov, Learning jQuery,
Third Edition by Jonathan Chaffer and Karl Swedberg, and jQuery for
Designers: Beginner's Guide by Natalie MacLees.

Code Once, Release
Everywhere

As I am sure you may have noticed by now that although all the modern browsers
support many aspects of the specified HTML5 feature set, in many cases, developers
have to write their code in specific ways to enable proper cross-browser support
for their projects. Not only is this a time consuming task that requires a lot of
redundancy and conditioning, but it requires developers to stay caught up on
the cutting edge of the current browser support of the HTML5 specification; not
only for every browser targeted, but every update for each browser as well. With
the popularity of HTML5 development growing at an extremely fast rate, many
developers have created libraries and frameworks to aid in targeting all platforms
with a single instance of code.

In this chapter, we will learn:

• An overview of the CreateJS Toolkit, a Flash developer's best friend for
HTML5 development as well as its internal libraries, EaselJS, SoundJS,
PreloadJS, and TweenJS

• Using Modernizr to detect clients' browser features
• Looking deeper into CSS3 media queries

Code Once, Release Everywhere

[120]

Covering all your bases
One of the biggest differences in the development paradigm between Flash and
HTML5 is the expectation a developer has from the user who will be viewing the end
product. Typically, a Flash developer will preset the publish settings for the project,
when starting a project to the Flash Player that will best support the feature set to be
built into the application. Of course, this means that the user's Flash Player installed
on their computer must be up-to-date in order to fill the prerequisite version. When
developing any HTML-based web project, this issue is exponentially greater because
the developer loses control over how a user is exactly able to view their content.
Although some browsers are more common than others, there is a massive range of
Internet Browser software available today, not only for desktops and mobiles, but
for devices such as televisions as well. Unfortunately, each of these browsers is not
built to the exact same specification and if you ignore testing your project in each and
every one of them, you cannot guarantee that your content will be displayed and will
act as you had created it to.

With the release of Microsoft's Internet Explorer Version 10, long gone are the days
of web developers complaining about developing web pages for Internet Explorer
Version 6. However, a new set of issues have been born with the advent of HTML5.
Web pages and web-based applications are now gaining accessibility to many of the
features you have become accustomed to with native desktop applications. New
system integration, such as file accessibility, peripheral support, as well as hardware
acceleration have required that modern web browsers implement support for these
features to enable proper support for users viewing this new HTML5 content.

So which browser is the best? Well, from the developer's perspective, as nice as it
is to have a favorite, this really doesn't matter if you want everyone to view your
content. Understanding the differences and how they have changed, and will
change, will keep your HTML5 skill set up-to-date and ahead of the curve. As
mentioned before, if you are using any of the popular and modern web browsers
available today, most of your bases will be covered. At the time of writing this book,
upcoming features such as WebRTC, which we will cover later in this book, are only
supported in browsers such as Google Chrome.

CreateJS
Since this book is written specifically for Flash developers extending their skill set
with HTML5, the first library we cover to aid in JavaScript development has to be
CreateJS. CreateJS is a collection of open source, modular JavaScript libraries that
can work separately to enable a more seamless transition from ActionScript 3 to
JavaScript. CreateJS has been specifically created to easily allow web developers to
create, embed, and manipulate media assets into their HTML5 projects with relative
ease. This point is especially true if you come from a Flash development background.

Chapter 5

[121]

The latest versions of all of the elements within CreateJS as well as the
full documentation can be found at http://www.createjs.com.

CreateJS focuses on the asset integration and manipulation end of things to enable
you, the developer, to spend more time making sure your project is pixel perfect.
There have been some great examples of some amazing projects in the recent past
that have made use of this library, producing some stunning HTML5 experiences,
such as http://www.findyourwaytooz.com, http://www.atari.com/arcade, and
http://shinobicorp.com/retro-soccer.

Although we could go into great detail about each of the exciting features within
the CreateJS package, we would probably end up filling half this book. Therefore,
to make sure you can at least get your feet wet and understand what CreateJS has
to offer, let's review each of the elements within the package and how they can be
utilized in your HTML5 projects.

EaselJS
EaselJS is a JavaScript library which aims at mimicking the Flash Display List
syntax within ActionScript 3 into JavaScript. It does this by using the HTML5
Canvas element like a stage within Flash. As a newcomer to HTML5 and JavaScript
syntax, EaselJS may be a library that will not only allow you to continue creating
applications in a similar manner as what you have been developing up to this point
but also allow you to easily port your preexisting Flash applications to HTML5 with
relative ease.

The most up-to-date EaselJS documentation can easily be found
at http://www.createjs.com/Docs/EaselJS.

EaselJS can be used to handle all your graphical elements such as bitmaps, vectors,
and sprite sheets for your HTML5 project. One of the best use cases of EaselJS is
porting an existing ActionScript 3 class into JavaScript. Since EaselJS is set up to
emulate the display list in Flash, once our ActionScript 3 class has been converted,
we can begin to use it in our JavaScript project almost the same way we did in our
Flash project.

Code Once, Release Everywhere

[122]

Every project using EaselJS, or any other CreateJS library, needs to import the library
source into their HTML5 project. Once you have acquired the necessary JavaScript
source files from the CreateJS website, set up your HTML document as demonstrated
in the following example:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>CreateJS - EaselJS Example</title>

 <!-— Import the EaselJS Library -->
 <script src="easeljs-0.5.0.min.js"></script>

 <script>
 function init() {
 // We can place our custom code here.
 }
 </script>
 </head>

 <body onload="init()">
 <canvas id="exampleCanvas" width="800" height="600">
 </body>
</html>

As you can see from the preceding example, the EaselJS library is imported into our
document within the <script> tag. We have also added an empty Canvas element
to the body of our document. Since EaselJS uses the HTML5 Canvas element in
replacement of the Stage in Flash, this will be a requirement in this example and all
projects using this library.

To kick things off in our example, we will start by reviewing a basic ActionScript 3
class, which could be used in any Flash project. This class is a simple demonstration
to apply a bitmap graphic to the position of the mouse over the stage and update the
graphic's position as the mouse moves. This example encompasses not only the use
of external graphic references but mouse- and time-based events as well:

package {

 import flash.display.*;

 public class MouseLine() {

 private var oldX:int;

Chapter 5

[123]

 private var oldY:int;

 public function MouseLine() { }

 public function update(container:Sprite, x:int, y:int):void {
 container.graphics.setStrokeStyle(1);
 container.graphics.moveTo(oldX, oldY);
 container.graphics.lineTo(x, x);

 oldX = x;
 oldY = y;
 }
 }
}

All of this should look very familiar provided you have spent any time working with
ActionScript 3 classes, so let's jump right into the conversion process. As we have seen
in the examples throughout the book so far, when creating classes in JavaScript, there
are some immediate differences in syntax, layout, and usage from ActionScript 3. First
and foremost are the package declaration as well as the import statements. Packages
do not exist in JavaScript; therefore, that code can be removed. The code directory
and the file structure you have grown accustomed to can still be utilized; however,
there will be no reference needed in code to distinguish what code is in what package.
Import statements can also be completely removed as they are not used in JavaScript as
well. Instead, any further external code required within the project should be imported
within a <script> tag element inside the HTML document.

Since we intend to keep all of our classes as separate files within the project source
structure, we can replace the typical package syntax in ActionScript 3 classes with
the following self-executing anonymous function:

(function(window) {
 // Place Your Code here
})(window);

When our class source code is placed within this function, it will automatically
be executed when it has been loaded, allowing us to utilize this class from the rest
of our project's code. After the strict typing on functions and variables has been
removed, as well as the public and private variables converted into JavaScript
syntax, our class will look something as the following:

(function(window) {

 function MouseLine() {
 this.oldX = 0;

Code Once, Release Everywhere

[124]

 this.oldY = 0;
 };

 MouseLine.update = function(container, x, y) {
 container.graphics.setStrokeStyle(1);
 container.graphics.moveTo(this.oldX, this.oldY);
 container.graphics.lineTo(x, y);

 this.oldX = x;
 this.oldY = y;
 }

 window.MouseLine = MouseLine;

})(window);

Notice the final line appended within the self-executing anonymous function,
window.MouseLine = MouseLine;

This final addition to the class allows us to instantiate a new MouseLine object from
our application base and utilize the functionality within the class. But before we can
start using this class, we need to import it into our project as follows:

<script type="text/javascript" src="MouseLine.js"></script>

With our class saved as MouseLine.js, we can now import it into our HTML
document as usual by using the <script> tag in the head of our HTML5 document.
For this example, we will also open another <script> tag within the document head,
where we will place our custom JavaScript code that utilizes our new class:

<script type="text/javascript">
 var stage;
 var line;

 function init() {
 stage = new createjs.Stage("exampleCanvas");
 }
</script>

In the preceding example, we start constructing the stage for our EaselJS project.
We begin by creating two global variables, one for our stage element and the
other for our mouse graphic element. Following the global variables is our init()
function, which will be called on page load. The next step within our init function
is to set up the Canvas element we applied to the body of this HTML document.
We use the new.createjs.Stage('canvas-element') syntax to tell EaselJS that
our Canvas with the ID of exampleCanvas is our intended stage.

Chapter 5

[125]

With EaselJS applied into our project and referencing our Canvas element, the
next step is to apply a ticker to allow us to emulate the onEnterFrame event in
ActionScript 3. Since we intend for the graphic in our MouseGraphic class to follow
our mouse when on the Canvas, we will need to constantly check the position of the
mouse to translate those values into the x and y position values of the graphic. As
mentioned, in ActionScript 3, one would traditionally use an onEnterFrame event;
however, without the concept of MovieClips and frames in JavaScript, the setup uses
a Ticker object from EaselJS instead.

Still within our init() function we have just created, we can now apply the
following code to set up our Ticker object:

createjs.Ticker.setFPS(60);
createjs.Ticker.addListener(window);

Not only have we created a new event listener for our Ticker object with the
preceding lines of code, but we are also setting the intended frames per second of
our Canvas rendering by utilizing one of the many internal CreateJS object methods.
However, with our event listener created, we need a function to be called every time
a new frame has been rendered. When using the Ticker object in CreateJS, we can
simply append a tick() function in the same scope as the Ticker object, which will
be called upon every interval:

function tick() {
 stage.update();
}

Within this tick function, we also add the call to our global variable reference to our
Stage object created in our init() function. This, as you may assume, is the call that
actually tells the stage object to update itself by rendering the next interval in the
stage progression. Therefore, any of the code one would typically append inside of
an onEnterFrame event in ActionScript 3 would be placed before calling the stage.
update() method.

With our basic EaselJS structure in place, our example should now look something
as the following:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>CreateJS - EaselJS Example</title>

 <script src="easeljs-0.5.0.min.js"></script>
 <script src="MouseLine.js"></script>

Code Once, Release Everywhere

[126]

 <script>
 var stage;
 var mouseImage;

 function init() {
 stage = new createjs.Stage("exampleCanvas");

 createjs.Ticker.setFPS(60);
 createjs.Ticker.addListener(window);
 }

 function tick() {
 stage.update();
 }

 </script>
 </head>

 <body onload="init()">
 <canvas id="exampleCanvas" width="800" height="600">
 </body>
</html>

Finally, we need to import our custom class and read the mouse position property
at each interval of the Ticker object in order to reposition the image:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>CreateJS - EaselJS Example</title>

 <style>
 canvas {
 border:1px solid #000;
 }
 </style>

 <!-- Import the EaselJS library. -->
 <script type="text/javascript" src="../js/easeljs-0.5.0.min.js">
 </script>

 <!-- Import our custom classes. -->
 <script type="text/javascript" src="MouseLine.js"></script>

Chapter 5

[127]

 <script type="text/javascript">
 // A global reference to our stage object.
 var stage;
 var line;

 /**
 * Called on body load.
 */
 function init() {
 // Initialize the stage.
 stage = new createjs.Stage("exampleCanvas");
 line = new createjs.Shape();
 stage.addChild(line);

 // Create our ticker (ie. onEnterFrame).
 // Sets the target frames per second.
 createjs.Ticker.setFPS(60);
 createjs.Ticker.addListener(window);
 }

 /**
 * The 'tick' function is continuously called on the
 specified interval set by Ticker.setFPS()
 */
 function tick() {
 line.graphics.beginStroke(createjs.Graphics.getRGB(0, 0, 0));

 MouseLine.update(line, stage.mouseX, stage.mouseY);

 stage.update();
 }

 </script>
 </head>

 <body onload="init()">
 <!— Canvas element to be used as our Stage. -->
 <canvas id="exampleCanvas" width="800" height="600">
 </body>
</html>

Code Once, Release Everywhere

[128]

This simple example is only the tip of the iceberg when it comes to using EaselJS, but
it shows off the core of how the flow of using the Canvas element as a stage can be
done. EaselJS is really the core of the CreateJS bundle, as when it is utilized with any
or all of the other libraries within the bundle, everything comes to life. Let's continue
with the list of libraries within CreateJS by looking into the next library, TweenJS.

TweenJS
For a Flash developer, the concept of tweening an object should be nothing
new. However, dealing with object animations in ActionScript 3 is far easier
than using CSS3 animations or writing your own tweening engine. This is where
TweenJS comes into play. TweenJS (http://www.createjs.com/#!/TweenJS)
uses the common tweening syntax used in ActionScript and libraries such as
TweenMax (http://www.greensock.com/tweenmax) to allow you to easily
create HTML5-ready animations by allowing TweenJS to do all the object property
manipulation over a specific period of time. Although TweenJS is a very simple
library, the time it may be able to save you while developing a new project or
converting your preexisting Flash project can be priceless. As with all the CreateJS
package elements, TweenJS works extremely well with the EaseJS library, as we can
demonstrate in the following code example:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>CreateJS - TweenJS Example</title>

 <style>
 canvas {
 border:1px solid #000;
 }
 </style>

 <!-- Import the TweenJS library. -->
 <script type="text/javascript" src="easeljs-0.6.1.min.js">
 </script>
 <script type="text/javascript" src="tweenjs-0.4.1.min.js">
 </script>
<!-- Import the TweenJS Ease library as well. -->
 <script type="text/javascript" src="Ease.js"></script>

 <script type="text/javascript">
 var canvas, stage;

Chapter 5

[129]

 // Called on body load.
 function init() {
 stage = new createjs.Stage("exampleCanvas");

 var circle = new createjs.Shape();
 circle.graphics.beginFill("#00FF00").drawCircle(100, 100,
 100);

 stage.addChild(circle);

 createjs.Tween.get(circle, {loop:true})
 .to({
 x:600,
 }, 1000)
 .wait(500)
 .to({
 scaleX:0.2,
 scaleY:0.2
 }, 500)
 .to({
 x:600,
 y:400
 }, 1000)
 .to({
 scaleX:1,
 scaleY:1
 },1000)
 .to({
 x:0,
 y:0
 }, 1000);

 createjs.Ticker.setFPS(30);
 createjs.Ticker.addEventListener("tick", stage);
 }
 </script>
 </head>

 <body onload="init()">
 <!-- Canvas element to be used as our Stage. -->
 <canvas id="exampleCanvas" width="800" height="600">
 </body>
</html>

Code Once, Release Everywhere

[130]

As you can see in the preceding example code, tweening elements within the stage
created by EaselJS is extremely straightforward and familiar to any Flash developer.
As with all the elements within CreateJS, TweenJS can be used with or without
the remainder of the CreateJS suite. Therefore, if you are in need of a simple but
powerful tweening engine to save massive amounts of time and overhead while
animating elements in your HTML5 projects, TweenJS is definitely worth a look.

PreloadJS
Just as in Flash applications, preloading your assets within your HTML5 projects can
be a critical step to ensure your content is being delivered in the proper manner to your
end users. PreloadJS (http://www.createjs.com/#!/PreloadJS) allows for easy set
up of multiple assets preloading with real-time progress feedback and queue support.
As we saw with the EaselJS example, CreateJS has set up its own asset management
system which easily integrates into the PreloadJS API (http://www.createjs.com/
Docs/PreloadJS/modules/PreloadJS.html). Consider the following simplified
example, which loads external audio and image assets from the Web.

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>CreateJS - PreloadJS Example</title>

 <!-- Import the PreloadJS library. -->
 <script type="text/javascript"
 src="../js/preloadjs-0.3.1.min.js">
 </script>
 <!-- Import the SoundJS library. -->
 <script type="text/javascript"
 src="../js/soundjs-0.4.1.min.js">
 </script>

 <script type="text/javascript">

 // Called on body load.
 function init() {
 var loadCount = 0;

 var queue = new createjs.LoadQueue(false);
 queue.installPlugin(createjs.Sound);
 queue.addEventListener("complete", handleComplete);
 queue.addEventListener("fileload", handleFileLoad);

 // We can load a specific external file...

Chapter 5

[131]

 queue.loadFile({id:"sound",
 src:"http://www.w3schools.com/html/horse.mp3"});

 // Or create a manifest which lists all of the files to load.
 queue.loadManifest([
 // Load some Google Doodles from the Google Servers.
 { id: "doodle1",
 src:"http://www.google.com/logos/2013/first_day_of_
 summer_2013-1536005-hp.gif" },
 { id: "doodle2",
 src:"http://www.google.com/logos/2013/first_day_of_
 winter_2013-1985005-hp.gif" },
 { id: "doodle3",
 src:"http://www.google.com/logos/2013/140th_
 anniversary_of_the_rcmp-1580006-hp.jpg" }
]);

 // Called on LoadQueue file load complete.
 function handleFileLoad(event) {
 var item = event.item;
 console.log("File Loaded: " + item.id);

 loadCount++;
 console.log((loadCount / 4) * 100 + "% completed.");
 }

 // Called on LoadQueue load complete.
 function handleComplete() {
 console.log("File Loading Completed!");

 createjs.Sound.play("sound");

 var d1 = queue.getResult("doodle1");
 document.body.appendChild(d1);

 var d2 = queue.getResult("doodle2");
 document.body.appendChild(d2);

 var d3 = queue.getResult("doodle3");
 document.body.appendChild(d3);
 }
 }

 </script>
 </head>

 <body onload="init()">
 </body>
</html>

Code Once, Release Everywhere

[132]

As we have seen in the previous examples in this book, waiting for all of the document
and its assets to load prior to interacting with them is a critical step almost every
JavaScript application will utilize. However, when your assets are being downloaded
during a page load, there is no easy way to monitor the download or completion
process. Although our typical onload calls will still wait until our assets are ready to
be used, in many applications, the use of a progress bar can greatly enhance the end
user experience during longer application load times.

Reviewing the preceding example again, you can see that we have added event
listeners for each file when it is loaded as well as when all assets have completed
loading. Combining the numerical value of how many assets are to be loaded with
the number of assets that have been loaded, we can easily find the current preload
completion percentage. To avoid a long code example, I have supplemented the use
of some preload user interfaces by just using the developer console:

Chapter 5

[133]

SoundJS
At the time of writing this book, dealing with audio and audio interaction support
on all the modern HTML5 compatible browsers is unfortunately still pretty difficult.
The current level of HTML5 audio support can be extremely varying from browser
to browser and even more so on most mobile platforms. Properly conditioning your
audio interactions and manipulations to work on every device and browser can almost
seem like an impossible task. Thankfully, SoundJS is here to help and solve many of
the common issues that arise with HTML5 audio development. SoundJS allows you to
easily query the client's browser capabilities to ensure you are delivering audio with
the proper features and plugins that the user's device supports:

<script>
 var preload;

 function init() {
 if (window.top != window) {
 document.getElementById("header").style.display = "none";
 }

 createjs.FlashPlugin.BASE_PATH = "../src/soundjs/"
 // Initialize the base path from this document to the Flash Plugin
 if (!createjs.SoundJS.checkPlugin(true)) {
 document.getElementById("error").style.display = "block";
 document.getElementById("content").style.display = "none";
 return;
 }

 document.getElementById("loader").className = "loader";
 var assetsPath = "assets/";
 var manifest = [
 {src:assetsPath+"Game-Break.mp3|"+assetsPath+"Game-Break.ogg",
 id:1, data: 1},
 {src:assetsPath+"Game-Spawn.mp3|"+assetsPath+"Game-Spawn.ogg",
 id:2, data: 1},
 {src:assetsPath+"Game-Shot.mp3|"+assetsPath+"Game-Shot.ogg",
 id:3, data: 1},

 {src:assetsPath+"GU-StealDaisy.mp3|"+assetsPath+"GU-
 StealDaisy.ogg", id:4, data: 1},
 {src:assetsPath+"Humm.mp3|"+assetsPath+"Humm.ogg", id:5, data:
 1},
 {src:assetsPath+"R-Damage.mp3|"+assetsPath+"R-Damage.ogg",
 id:6, data: 1},

 {src:assetsPath+"Thunder1.mp3|"+assetsPath+"Thunder1.ogg",
 id:7, data: 1},
 {src:assetsPath+"S-Damage.mp3|"+assetsPath+"S-Damage.ogg",
 id:8, data: 1},

Code Once, Release Everywhere

[134]

 {src:assetsPath+"U-CabinBoy3.mp3|"+assetsPath+"U-CabinBoy3.
 ogg", id:9, data: 1},

 {src:assetsPath+"ToneWobble.mp3|"+assetsPath+"ToneWobble.ogg",
 id:10, data: 1},
 {src:assetsPath+"Game-Death.mp3|"+assetsPath+"Game-Death.ogg",
 id:11, data: 1},
 {src:assetsPath+"Game-Break.mp3|"+assetsPath+"Game-Break.ogg",
 id:12, data: 1}
];

 preload = new createjs.PreloadJS();
 //Install SoundJS as a plugin, then PreloadJS will initialize it
 automatically.
 preload.installPlugin(createjs.SoundJS);

 //Available PreloadJS callbacks
 preload.onFileLoad = function(event) {
 // Show the icon on loaded items.
 var div = document.getElementById(event.id);
 div.style.backgroundImage =
 "url('assets/audioButtonSheet.png')";
 };
 preload.onComplete = function(event) {
 document.getElementById("loader").className = "";
 }

 //Load the manifest and pass 'true' to start loading
 immediately. Otherwise, you can call load() manually.
 preload.loadManifest(manifest, true);
 }

 function stop() {
 if (preload != null) { preload.close(); }
 createjs.SoundJS.stop();
 }

 function playSound(target) {
 //Play the sound: play (src, interrupt, delay, offset, loop,
 volume, pan)
 var instance = createjs.SoundJS.play(target.id,
 createjs.SoundJS.INTERRUPT_NONE, 0, 0, false, 1);
 if (instance == null || instance.playState ==
 createjs.SoundJS.PLAY_FAILED) {
 return; }
 target.className = "gridBox active";
 instance.onComplete = function(instance) {
 target.className = "gridBox";
 }

 }
</script>

Chapter 5

[135]

CreateJS Toolkit
One of the greatest aspects of CreateJS is the CreateJS Toolkit created by Grant
Skinner (http://www.gskinner.com) and Adobe. This Toolkit is an Adobe Flash
Professional plugin that enables you to easily create CreateJS-ready animations and
elements from within the Flash Professional environment, something every Flash
developer is already used to.

You can get the latest news and documentation for the CreateJS
Toolkit at http://www.adobe.com/devnet/createjs.html.

Setting up the Toolkit
To begin, you will need to head over to the Adobe CreateJS Toolkit page on the
Adobe website (http://www.adobe.com/devnet/createjs.html) to download
the latest version of the plugin to install on your machine. One of the easiest ways to
find this page is by clicking on the link that may already be displayed when opening
Flash CS6:

Code Once, Release Everywhere

[136]

Once you have downloaded the extension, be sure to have quit any running
instances of Flash CS6 and open the downloaded file within the Adobe Extension
Manager CS6 application to install it into your machine's Creative Suite setup.
Read over and accept the terms and conditions to finish the installation.

Once the installation is finished, you should be able to see the CreateJS Toolkit
extension listed under the Flash extensions, and that's it, we are ready to start
using the Toolkit back again inside Flash:

With the extension installed and Flash reopened, start a new ActionScript 3 project
and open the CreateJS Toolkit window by selecting it from the Window dropdown.
The resulting Toolkit window will look similar to the following image. From this
window, you will be able to configure and publish your current project within Flash
Professional with the CreateJS Toolkit rather than the traditional export to the
SWF setup:

Chapter 5

[137]

Before we dig into publishing content, it is worth looking into the configuration
settings within the Toolkit window. Click on the Edit Settings button within the
Toolkit window to open the Publish Settings window of the CreateJS Toolkit:

Code Once, Release Everywhere

[138]

The configuration settings for publishing your content from within your Flash
project is relatively straightforward. The default Output value will be in the same
directory where the FLA file your project is saved within and asset paths are set up.
The final values within the Options section are again pretty straight forward apart
from the following values:

• Compact Shapes: This value compacts the code into a minimal version
for drawing API class

• Multiframe bounds: This value calculates boundsRect for assets

Publishing your assets
Once your assets are all ready within your library and timelines, you can click on the
Publish button within the Toolkit window. The result will be the typical application
output but rather than being compiled into a SWF, the result is set up completely
within HTML5:

The best part of this CreateJS Toolkit compiler is the ability to easily grab a piece
of the exported source code and use it in a specific part of your application. This
process dramatically improves the ability for designers and developers to easily
work on HTML5 content and assets and update preexisting media with ease.

Chapter 5

[139]

Reviewing the CreateJS Toolkit output
Before we finish up with the toolkit, it's worth reviewing some of the code that has
been exported from its compiler. Let's check out what it has created for our space
game example:

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>CreateJS export from SpaceAssets</title>

<script src="http://code.createjs.com/easeljs-0.5.0.min.js"></script>
<script src="SpaceAssets.js"></script>

<script>
var canvas, stage, exportRoot;

function init() {
 canvas = document.getElementById("canvas");
 exportRoot = new lib.SpaceAssets();

 stage = new createjs.Stage(canvas);
 stage.addChild(exportRoot);
 stage.update();

 createjs.Ticker.setFPS(30);
 //createjs.Ticker.addListener(stage);
}
</script>
</head>

<body onload="init();" style="background-color:#D4D4D4">
 <canvas id="canvas" width="800" height="600"
 style="background-color:#ffffff">
</canvas>
</body>
</html>

As you can see, by all the examples and libraries above, CreateJS is a big collection
of JavaScript functionality packaged into a couple of very well-maintained open
source JavaScript libraries. As mentioned before, there is far more to get into than
we have time to cover in this book, so be sure to head over to the CreateJS website
(http://www.createjs.com) and read the documentation of the latest build.

Code Once, Release Everywhere

[140]

Modernizr
An important feature we saw within the CreateJS bundle was the ability to easily
check whether the client's web browser supports the intended HTML5 functionality
to be used on your web page. However, only CreateJS has the ability to check for
functionality compatibility for the features it uses within the libraries. If you are
in need of digging deeper into checking whether your users have the appropriate
functionality in their web browsers, the Modernizr project is definitely worth a look.
Modernizr allows you to easily check for every feature within the HTML5 feature set
with only a couple of lines of code and an external JavaScript file that is only a couple
of kilobytes.

Using Modernizr
To start, you will need to head over to http://modernizr.com and download the
latest version of the library. As with many JavaScript libraries, you will have the
option of downloading the production or the development version of the code in
order to conserve file size and bandwidth:

Chapter 5

[141]

For ease of example and the sake of learning, we will download the development
version of the code, which will include the entire Modernizer library. Once the
JavaScript file has been downloaded, it can be included into your HTML document
as you would include any JavaScript reference.

If you are still having issues finding Modernizr setup, head over
to the official installation documentation present at http://
modernizr.com/docs/#installing.

Understanding Polyfills
The concept of a Polyfill in web development is pretty straightforward once you
deal with it in an actual project. Fortunately, even if you are coming from a 100
percent Flash development background, you may have had an experience with this
concept before. When embedding Flash content within an HTML page, even with
the automated publish setting within Flash Professional, the resulting code will have
created an HTML object element with references to the compiled SWF file. However
if you look closely, or disable Flash in your web browser, you will notice there will
still be a warning displayed alerting you to the fact that you need to download the
Flash player as well as a link to the Flash player download page. This content is only
displayed while the Flash content cannot be displayed and is an example of a Polyfill
in its simplest form.

Using Polyfills in HTML5 may be a necessity in order to reach the intended audience
on specific browsers and platforms. However, using Polyfills should not always be
necessary. If you are trying to deliver the best experience possible, it may not be worth
attempting to target browsers like IE7 with your cutting-edge HTML5 functionality.

Modernizr.load()
The load method within Moderizr may be one of the most powerful, yet easy-to-use
utilities within the library. In a nutshell, the load method allows you to selectively
choose which scripts and data should be loaded based on a simple condition that the
user has the ability to utilize a specific piece of the HTML5 feature set. Consider the
following example:

Modernizr.load({
 test: Modernizr.geolocation,
 yep : 'geo.js',
 nope: 'geo-polyfill.js'
});

Code Once, Release Everywhere

[142]

This simple example shows how we can easily select which JavaScript file to load
depending on whether the user has the ability to use the geolocation functionality
within their browser. If the client has the ability to use geolocation API within their
browser, the geo.js file will be loaded and the script will continue on. If the user is
unable to use geolocation, the nope value is used and the geo-polyfill.js file will
be loaded instead.

As you can see by this demo, Modernizr is a simple library with one main goal:
to ease the mess of dealing with multiple browsers and platforms attempting
to view your HTML5 content, and it does it very well.

What Modernizr can detect
Thanks to the contribution by many JavaScript developers around the world,
Modernizr boasts the fact that it is able to detect and create a Polyfill for every
HTML5 feature currently specified. With so many features to be listed, I will leave
the researching on the Modernizr API documentation to you and give you this
following code example to demonstrate some further use of this great library:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>Modernizr Example</title>

 <!-- Import the Modernizr library. -->
 <script type="text/javascript"
 src="modernizr-latest.js">
 </script>

 <script>
 function init() {
 // Touch
 if(Modernizr.touch){
 console.log('You are on a touch enabled device.');
 } else {
 console.log('You are not on a touch enabled device.');
 }

 // WebGL
 if(Modernizr.webgl){
 console.log('You are on a WebGL enabled browser.');
 } else {
 console.log('You are on a WebGL enabled browser.');

Chapter 5

[143]

 }

 // Display all values
 console.log(Modernizr);
 }
 </script>
 </head>

 <body onload="init()">
 </body>
</html>

As you can see in the example above, the implementation of Modernizr is extremely
straightforward. Conditions are easy to recognize as their naming conventions almost
directly match the feature set which can be tested. To get a better understanding
of the ever-growing API that Modernizr offers, head over to the official project
documentation at http://modernizr.com/docs.

CSS media queries
Although we have already touched on CSS3 media queries in the previous chapters,
it is worth stopping to make note of them in this chapter as well. If the active
viewport was to change size while dealing with setting up your content to be
viewable on all devices and to have a responsive layout and display set up, CSS3
media queries can easily allow you to avoid manipulating any of your site content
and only manipulate the styles appended to them. This concept is great not only
for implementing it on all your desktop and mobile projects but can be utilized for
much more. Consider the following list of some of the properties that can be queried
directly from within your CSS source:

• All: This property allows all the devices to listen to this property
• Braille: This property is used for braille-tactile feedback devices
• Embossed: This property is used for paged braille printers
• Handheld: This property is used for handheld devices (smartphones and

tablets do not listen to this!)
• Print: This property is used for paged material and for documents viewed

on screen in print preview mode
• Projection: This property is used for projected presentations,

for example, projectors
• Screen: This property is used primarily for color computer screens

and smartphones

Code Once, Release Everywhere

[144]

• Speech: This property is used for speech synthesizers
• tty: This property is used for media using a fixed-pitch character grid such

as teletypes, terminals, or portable devices with limited display capabilities
• Tv: This property is used for television-type devices such as low resolution,

color, limited-scroll-ability screens with available audio

Properly utilized media queries can easily allow you to target a broad range of
devices by allowing your content to respond to the specific size, platform and setup
of the browser viewing it:

#mycontent {
 background-repeat: no-repeat;
 background-image:url('image.gif');
}

@media screen and (min-width: 1200px) {
 # mycontent {
 background-image:url('large-image.gif');
 }
}

@media print {
 #mycontent {
 display: none;
 }
}

Summary
In this chapter, we have covered some of the options available to you when
converting or porting your existing Flash applications to HTML5 as well as methods
to enable users to properly view their content on any device. We dug into each of
the great libraries that make up CreateJS, from emulating the Flash Display List
in JavaScript, to animating elements with the traditional ActionScript 3 tweening
syntax. We checked out how useful the CreateJS Toolkit is to anyone with any prior
knowledge of the Adobe Flash Professional IDE, and how assets can be compiled
directly from the stage and library ready for use in web documents. We also learned
about unifying your development experience by using libraries such as Modernizr.
By querying browser feature support, you can easily decide whether an alternate
display method or shim is necessary to enable the user to have a proper experience.

HTML5 Frameworks
and Libraries

One of the most exciting aspects of working with any programming language
is discovering new libraries and frameworks which can be utilized to extend
and simplify the code that drives your applications. With the rise in popularity
surrounding HTML5 development on many different platforms and devices, the
amount of code that has been made publicly available to aid anyone with their HTML5
development has grown at an outstanding rate. In this chapter, we will overview some
of the most popular libraries and frameworks, which you can utilize at any time to not
only save you time, but also allow you to focus more on your user experience rather
than writing complex JavaScript to work within every modern browser.

In this chapter, we will cover the following things:

• How frameworks and libraries can make your life easier
• Things we can create with a framework or library
• An overview of the ever-popular jQuery library and jQuery mobile

framework
• Building HTML pages with the HTML5 Boilerplate template
• Creating responsive unified page layouts with Bootstrap
• Animating your content using familiar tweening engines with GreenSock's

Animation Platform
• Developing your JavaScript in the popular MVC structure with Backbone.js
• Programming hardware-accelerated 3D graphics with WebGL and Three.js
• An overview of JavaScript compilers by checking out Google's V8 project
• Pushing JavaScript to the limits of application development with Node.js

HTML5 Frameworks and Libraries

[146]

How frameworks and libraries can make
your life easier?
From an outsider's or non-developer's perspective, the idea of using someone else's
code within your project may bring up many negative connotations. If you're using the
code that has been created and freely distributed by someone you don't know, how
can you trust that it performs as advertised and won't show malicious functionality?
Traditionally, when importing libraries and using frameworks in any programming
language, only a small fraction of the entire code base will be utilized. This results in
a larger overhead and possible implication on application runtime execution speeds.
As valid as all of these arguments are, many of the popular concerns around using
external libraries and frameworks have been solved. The concept of using external
resources within HTML5 projects has become so common that JavaScript has easily
become the most popular programming language shared on the social coding website
GitHub (https://github.com/languages).

Thanks to sites such as GitHub (http://github.com), the concept of sharing and
contributing to open source projects has exploded. With the aid of external libraries
and frameworks, developers can easily move from a concept or an idea in their mind
to having a prototype built in a matter of minutes to hours. Developers can also focus
more on the actual concept integration rather than dealing with small issues such as
browser optimization and platform support. Therefore, as the environment around
developers expands and the open source projects that back your projects grow,
upgrading your external dependencies will result in having the latest and greatest
support for your applications' feature set.

What can I do with JavaScript frameworks
and libraries?
As you have seen in the chapters up to this point in the book, the support for
JavaScript within modern web browsers is getting better every day. The idea of
moving the entire typical application flow for all application types to the Web is
becoming more of a reality as time passes. JavaScript is now starting to make its way
into operating system applications on both desktop and mobile. With this new reach

Chapter 6

[147]

to so many platforms, JavaScript can do many things you may not even be aware of
at this point in time. As a developer with experience in creating Flash applications,
you may find that you will have another upper hand in terms of moving to HTML5
when it comes to understanding and implementing many of the new and interesting
JavaScript APIs. From microphone and camera integration to multi-touch gestures on
a touch-enabled device, the amount of things you can do with JavaScript is growing
every day. To get you a little more excited about what is possible, here is a short list of
some of the great things the HTML5 applications can do:

• Dynamically control CSS properties to create 2D and 3D animations
• Real-time audio and video streaming from the client camera and microphone
• Render 3D graphics and high frame rate with hardware acceleration
• Compile the JavaScript directly to the machine code to be run as a server

or application

Finding the right library or framework for
your project
When it comes to finding the right external resources to include into your project, it
can become a tedious task of sorting through projects as all seem to do the same thing.
With the current popularity of JavaScript development, one can only expect that this
issue will continue to worsen as more and more developers publish their projects.
Thankfully the development community is on your side! So where does one go to find
the latest and great open source projects to use within their HTML5 projects? Well,
as with anything on the Internet, there is no one-stop shop for finding all of these
available projects. However, as the time passes, more and more projects are being
hosted on GitHub (http://github.com), which easily allows the developers to share
and contribute to projects while utilizing the Git version control system.

HTML5 Frameworks and Libraries

[148]

The best aspect of social coding websites such as GitHub when attempting to
find new projects is not only the ability to sort projects by specific programming
language, but by the current popularity of the project as well (https://github.
com/explore). GitHub ranks project popularity by the number of other users who
watch, fork, and contribute to the project in question. So just by sorting those values,
countless popular and up-to-date projects will be displayed. Of course, using the site
search will only refine your results when looking for specific topics and platforms:

So after some digging around, you may have found a couple of libraries or frameworks
that you consider to be an appropriate solution to your needs. The next decision is
narrowing down the selection to something you can start with. So how do you choose?
Well, obviously there is no simple answer to this question either. However, there are
some important considerations worth making prior to downloading and implementing
the library or framework you have located. The first consideration should always
be what your expected end result is. If you are just having fun writing the code for
yourself to learn about new frameworks, you pretty much have free rein to download
and test anything you wish. If you are considering using this code for professional
use or a project that may be open to public, spending some time on researching some

Chapter 6

[149]

more specifics about the project in question will help you keep out of trouble down
the road. If you happen to find an open source project of interest but the project
contains little or no development activity, be it bug fixes or updates, chances are the
development team behind it has moved on to new projects. Therefore, the version of
code you will download and use will require you to maintain and update it in order
to implement and use it without any issues. Chances are if the developer who created
the project in the beginning has abandoned it, they won't be coming back anytime
soon to specifically help you with your issues. On the other hand, if you are looking
at a project that has just been born or is still in early development, chances are if you
implement the project into yours, you will need to manually correct any critical issues
in the dependencies back into your project whenever they are made. Although this is
typical of most development situations, it is always worth keeping in the back of your
mind during the early stages (picking and choosing external assets) that you may use
this code in the lifetime of your project.

In order to keep you updated with some features of what is out there, let's overview
some of the great open source projects waiting to be used by you in your next project.

jQuery
There is no way we can start off with the list of JavaScript libraries without starting
with jQuery. Up to this point in this book, we have yet to use jQuery in any of our
examples. However, if you have spent any time looking into web development prior
to reading this book, chances are you have already heard of this project. Originally
released in 2006, jQuery has risen up to easily become the most popular JavaScript
library in use as (at the time of writing this book) more than 55 percent of the top
10,000 most visited websites on the Internet. Due to the overwhelming use of jQuery
in projects from big to small scattered all over the Internet, it has become an almost
essential skill in the HTML5 developer's arsenal.

To keep you updated with everything related to jQuery, head over
to the project website http://jquery.com.

Of course with the overwhelming popularity jQuery has had, comes the
overwhelming amount of documentation, examples, and tutorials for using it.
Therefore, rather than dedicating a vast amount of time looking at all of the features
in jQuery, we will just overview the fundamentals of how it works and what you can
do with it.

HTML5 Frameworks and Libraries

[150]

As with all the topics in this book, if you are so inclined to learn more,
a quick Google search will be extremely helpful:

So what actually is jQuery? Well, jQuery is a relatively small JavaScript library to aid
in all sorts of common JavaScript development tasks and issues. With easily selecting
elements within your document, creating and handling events of all sorts, animating
elements within your document, calling and retrieving external data with Ajax,
jQuery can give you a much simpler, easy-to-use, and unified syntax that will work
across a ton of web browsers. The best part about jQuery is that it can do all of this
work with only the cost of importing a JavaScript file that is less than 50 KB.

Putting jQuery into action
As with all JavaScript projects, the best way to understand jQuery is by example.
So let's quickly touch on how to properly add jQuery into your project as well as
how to start using its functionality within your code.

It all starts by heading over to the jQuery project website to obtain the latest stable
version of the project (http://jquery.com). It is probably worth noting that with
almost all the actively developed open source projects, you will find a number
of different build types available for you to download and use. Generally, when
visiting a project website such as the jQuery website, you will usually find a link

Chapter 6

[151]

to download the latest stable release of the project. Stable releases of the actively
developed projects are generally not the latest versions, but the stable version is
one that is tested and approved to be used by the public. As the contributions to
the project continue to roll in from the developers, they will continue to roll in until
the development team has approved the current code base to be ready for public
usage. Therefore, the entire time between each version release of the software, there
will be a development version of the project, which in many cases you can also
download and use, of course with the known possibility of encountering new and
undocumented issues.

After reaching the jQuery download page (http://jquery.com/download), you will
have the option of downloading either the compressed or uncompressed version of
the current releases. The reason for compressing the code is to keep file size down
and allowing for faster load times when requested by your web server. Compressing
or condensing JavaScript is actually something you can easily do with your code and
we will continue to dig deeper into that topic in the later chapters. For now, you can
go ahead and save either of those jQuery source JavaScript files on your computer,
preferably within the directory you will be creating your HTML5 project. Once you
have created an empty HTML document, importing jQuery is as simple as importing
any other external JavaScript document:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>jQuery Importing Example</title>
 <script src="jquery.min.js"></script>
 </head>

 <body>
 </body>
</html>

With that hard work completed, you can now utilize all of jQuery's functionality
within your project. However, there is a key place you will usually need to start from
and that is controlling the point at which your code is ready to be executed. Up to
this point, we have used a number of common techniques to accomplish this task
such as setting the body onload parameter to a JavaScript function.

<body onload="init()">

HTML5 Frameworks and Libraries

[152]

Or setting an onload event on the window object:

window.onload = function() {
 // Start executing your code here...
}

One issue with this way of calling your JavaScript is the fact that this way of waiting
for your document to load includes waiting for all the image assets to be loaded
including uncontrolled external assets such as banner ads. Therefore, jQuery has
created its own document-ready event handler syntax for circumventing this issue.
Generally with all jQuery-based projects, the first snippet of code to append will be
the document ready handler:

$(document).ready(function() {
 // Start executing your code here...
});

Selecting elements with jQuery
One of the greatest aspects of jQuery is its selector engine, otherwise known as
Sizzle (http://sizzlejs.com). What makes the selector engine so great is how
easy it makes the entire development process when dealing with interacting
elements within your HTML document. Consider our working example with
some simple content additions within the body:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>jQuery Importing Example</title>

 <!-- Always import external libraries before your custom
 site code. -->
 <script src="jquery.min.js"></script>

 <script>
 $(document).ready(function() {
 // Start executing your code here...
 });
 </script>
 </head>

 <body>
 <div>
 <p>

Chapter 6

[153]

 Go to Google
 </p>
 </div>
 </body>
</html>

As simple as this page layout is, each of the elements that make up the page can
be easily controlled through the code by using jQuery selectors. To append an
event listener to our link to Google, we can add it within our document ready
callback function:

$(document).ready(function() {
 $("a").click(function(event) {
 alert("Tell Google I said hello!");
 });
});

Although the preceding example is very simplistic, there are a couple of key aspects,
which should be covered right off the bat. jQuery selector syntax relies on the $()
syntax. In case of our example, within the selector syntax brackets, we supply the
parameter "a" to select all of the <a> element tags within the body of our document.
Just selecting an element isn't going to get you too far; therefore, the next step in the
example is to chain a click event listener to the selected elements. Of course the click
event is far from being the only available event you could apply to an element, you
can reference the event documentation to see the entire list (http://api.jquery.
com/category/events). The final step is to define the method to be used on event
callback, and in our example, we have simply defined the function directly into the
callback parameter.

With this change appended, saved, and then reloaded within a browser, the resulting
action will be an alert dialog displayed when the link is clicked, followed by the page
location (http://google.com). As you can see, our event listener has been fired
before the predefined action of moving to the referenced URL in the anchor tag.
The selector engine used in tandem with the vast amounts of jQuery events allows
you to control a ton of user and web interactions that can occur within your pages.

HTML5 Frameworks and Libraries

[154]

Overriding the predefined actions is easily done as well. As you can see within
the callback function defined in our example, when it is called, it passes the event
variable into the method. This event property is used to control the event and can
easily be manipulated or completely overridden:

$(document).ready(function() {
 $("a").click(function(event) {
 alert("You're not going anywhere!");
 event.preventDefault();
 });
});

By calling the preventDefault() method on the event object, we can disable
the default action of the event and use our own code to control the result.

Controlling CSS via jQuery
Another great aspect of jQuery is the ability to easily control the look and feel of your
elements with CSS3 properties. Getting and setting CSS values on any elements is a
breeze when using jQuery selectors and CSS methods:

$("#example").css("width", 200);
$("#example").css("height", 300);

As you can see in the preceding example, setting the CSS properties for the width
and height of a specific element is pretty straightforward. We could simplify these
two lines of CSS property updates into one by passing the CSS properties to an object
rather than passing them independently:

$("#example").css({ width:200, height:300 });

It is the equivalent of appending the following within your document's CSS
structure:

#example {
 width:200px;
 height:300px;
}

CSS manipulation in jQuery isn't just for setting the width and height of an element
in your document. jQuery now has full support for CSS3 properties, which include
properties such as rounded corners, text effects, opacity, shadowing 2D and 3D
transformations, and filters.

Chapter 6

[155]

CSS animations
Since controlling CSS properties for pretty much any element via jQuery is possible,
so is the ability to easily animate them as well.

Before looking at some examples, there are some important points to note. As
mentioned in Chapter 2, Preparing for the Battle, and Chapter 3, Scalability, Limitations,
and Effects, when covering CSS properties and their values in comparison to the
ActionScript 3 API, the values when positioning elements within the document are
not based on the traditional x and y value set. Rather when animating the position of
an element, the element position value should be noted to properly define the right
values to move an element when you intend for it to move around:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>jQuery CSS Animation Example</title>

 <style>
 html, body {
 margin:0;
 padding:0;
 height:100%;
 }
 #example {
 width:200px;
 margin:auto;
 background-color:#EFEFEF;
 border:1px solid #000;
 text-align:center;
 cursor:pointer;
 }
 </style>

 <script src="jquery.min.js"></script>
 <script>
 $(document).ready(function() {
 $('#example').click(function(event){
 // Animate the #example element
 $("#example").animate({
 marginLeft: '0',
 width:'100%',
 height:'100%',
 fontSize:'40px'

HTML5 Frameworks and Libraries

[156]

 }, 500, function(event) {
 // Update the element paragraph inner HTML.
 $("#example p").html('Animation Complete!');
 });
 });
 });
 </script>
 </head>

 <body>
 <div id="example">
 <p>Click To Begin Animation</p>
 </div>
 </body>
</html>

Requesting external data with jQuery Ajax
Thanks to the built-in URLLoader and URLRequest classes available in ActionScript 3,
requesting external data either local to your project or external on the Web is pretty
straightforward. A URLLoader is created, along with a URLRequest object containing
the path reference to the data. Finally the URLRequest object is passed into the loader
object and the load method is called:

Var loader:URLLoader = new URLLoader();
var request:URLRequest = new URLRequest("data.xml");
loader.load(request);

Of course to finish this example properly, you would need to add event handlers to
catch the return of the data and know when you can begin manipulating or utilizing
it. Nevertheless, the concept of calling and retrieving external data from your
application is probably not new to you.

When developing your applications in JavaScript, the goto for this type of
functionality is AJAX. AJAX (Asynchronous JavaScript and XML), is the concept
of exchanging data with your web server while the client is using your web page
without the need for ever reloading the page. The use of AJAX on the Web today is
so widespread that it is almost impossible to go a day without utilizing it in one of
the many websites or services you reply on. A perfect example of this is the infinite
scrolling when viewing your Facebook Timelines or Twitter Feeds. As you scroll
down the page viewing content, the JavaScript running under the hood detects you
are getting to the bottom of the page and calls the server for more data to continually
populate the list. Traditionally, this would be done by applying the data to multiple
pages and requiring the user to refresh the page for each view.

Chapter 6

[157]

So what can jQuery do to aid in the development of your application's AJAX
functionality? Well, within the jQuery library are a number of methods specifically
designed to deal with the AJAX requests and request types.

In its most basic form, the jQuery load method can retrieve external data and place it
within a selected element all in a single line of JavaScript:

$('#myElement').load('example.html');

Of course the external asset does not need to be an HTML document. XML, JavaScript,
JSON, Plain Text, and HTML documents are all supported within AJAX requests.

Understandably you probably don't always want to just place the incoming data
from your AJAX request right into your document, so a response handler is usually
commonly placed amongst these types of calls. This can be achieved by using the
AJAX method itself in a self-instantiating jQuery syntax:

$.ajax({
 url: 'example.html'
}).done(function(data) {
 if(data != '') {
 $("body").append(data);
 }
});

Now with the data returned, you can easily manipulate and verify the returned data
from the AJAX call before assuming it is ready to include within your document.

Data can also be supplied with the call for external data. Depending on the
requirements by the script in the referenced document, you can choose to send data
over an HTTP GET request:

$.get("getmyphotos.php", { user:"johnsmith", id:"200" })
.done(function(data) {
 console.log(data);
});

Alternatively, you can choose to send data over an HTTP POST request:

$.post("getmyphotos.php", { user:"johnsmith", id:"200" })
.done(function(data) {
 console.log(data);
});

HTML5 Frameworks and Libraries

[158]

jQuery Mobile
In the recent past, the team behind jQuery has released jQuery Mobile (http://
jquerymobile.com), which creates a unified HTML5 user interface for developers
to build the content on, and will be properly displayed over a wide range of modern
mobile devices. Just like jQuery itself, jQuery Mobile is extremely lightweight and
even comes with prebuilt packaged themes to be used within the themeable element
designs. jQuery Mobile aims to ease your mobile development process by allowing
you to focus more on your application content rather than writing special shims and
conditional code for browser support. Updates are released from the development
team at a pace that is able to keep up with the astounding speed of the mobile
device marketplace. Therefore, you can write mobile web applications that will
run on the maximum number of devices possible, without having to target each
device specifically:

Since its initial release, jQuery Mobile has grown to be used by big and small
websites throughout the Web. The core aspects of the jQuery Mobile framework
include the usage of pages, dialogs, toolbars, listviews, and buttons. By developing
your web pages and content around these core elements within the framework,
you can layout your pages for mobile without ever needing to open Photoshop.

Chapter 6

[159]

jQuery Mobile makes great use of Custom Data Attributes, a new feature within
HTML5. If you examine the example multipage jQuery Mobile layout below, you
will see many element properties that use the data-* syntax. These are the Custom
Data Attributes that anyone can now implement into their HTML5 project. They
can have any string, which is at least a single character and can be utilized to easily
declare values when setting element properties:

<body>
 <div data-role="page" id="one">
 <div data-role="header">
 <h1>Page 1</h1>
 </div>
 <div data-role="content" >
 <h2>Page One</h2>
 <p>Show Page 2</p>
 <p><a href="page3.html"
 data-role="button">Show Page 3</p>
 </div>
 <div data-role="footer" data-theme="d">
 <h4>Page Footer</h4>
 </div>
 </div>

 <div data-role="page" id="two" data-theme="a">
 <div data-role="header">
 <h1>Page 2</h1>
 </div>

 <div data-role="content" data-theme="a">
 <h2>Page Two</h2>
 <p><a href="#one" data-direction="reverse"
 data-role="button" data-theme="b">Back to Page 1</p>
 </div>

 <div data-role="footer">
 <h4>Page Footer</h4>
 </div>
 </div>
</body>

HTML5 Frameworks and Libraries

[160]

As you can see, this single HTML file is actually two pages long separated into
DIV elements with the data-role="page" element. Now when the jQuery Mobile
framework loads the HTML file containing these two pages, only the initial page
will display and the second will wait for user interaction to slide into view. Within
the first page you can see that the link to our second page is actually just an anchor
tag, as it uses the # character prior to referencing the ID of another page within the
current HTML document. To further demonstrate this difference, there is a second
link to the third page within the initial pages navigation, which links out to an
external HTML document in the traditional manner.

By default, when a new page is requested, the data is loaded (if it hasn't been
already) and displayed within a DIV element, which is actually out of view to the
end user. When the loading of data and document preparation is completed, the new
page then animates from right to left into the visible display of the user. This content
animation is typical of many modern mobile device application user interfaces
therefore making your application more familiar to your end user:

One of the easiest and most refined examples of jQuery Mobile in action is the
documentation for the framework. As you can see in the preceding screenshot, by
default, jQuery Mobile's user interface looks very mobile-friendly. The buttons are
big and easily stretch to fit the page, allowing the users to easily select menu items
without worrying about a misclick. Header and paragraph text is easy to read and
positioned in a pixel perfect manner. Icons are added to specific elements within
the documentation navigation. What isn't visible in a printed screenshot is the
responsiveness of the layout. To better illustrate the importance of responsiveness on
mobile, here is a screenshot of the same jQuery Mobile documentation webpage in an
even larger window size:

Chapter 6

[161]

As you can see, the same page has now responded to the larger browser window
size and reoriented the page layout to better fit the visible display area. Rather than
have multiple designs for the same page to have displayed on different browser
sizes, jQuery Mobile uses CSS Media Queries to define the current viewport size
and orient the page content to fit properly. The greatest part of this process when
building a site with jQuery Mobile is the fact that you don't need to bother writing
a single line of CSS or define special CSS Media Queries yourself.

HTML5 Boilerplate
Libraries like jQuery are great for aiding you in coding your JavaScript with ease but
getting your project up and running is a different question. Page layouts, browser
failsafes, and tracking codes are usually all the things you will eventually add to your
project and these are just some of the great features within the HTML5 Boilerplate
(http://html5boilerplate.com). The HTML5 Boilerplate isn't technically
a library or a framework, as at its core, it is simply a starting point for creating
HTML5 documents.

HTML5 Frameworks and Libraries

[162]

However, because of its simplicity, eagerness to stay up-to-date with all the changes
around the Web, and a large group of open source contributions behind it, this
HTML5 template is a great start when working on any project big or small:

Upon downloading the latest version of the HTML5 Boilerplate from the project
website, you will find a collection of files that not only includes your basic ready-to-
go index.html file and the file's references within, but a group of other common files
usually found within the base level website directory on the public web server.

To understand exactly what this template looks like and what it actually does for
you, let's take a quick glance at the following default index.html file:

<!DOCTYPE html>
<!--[if lt IE 7]> <html class="no-js lt-ie9 lt-ie8 lt-ie7">
<![endif]-->
<!--[if IE 7]> <html class="no-js lt-ie9 lt-ie8">
<![endif]-->
<!--[if IE 8]> <html class="no-js lt-ie9"> <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js"> <!--<![endif]-->
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible"
 content="IE=edge,chrome=1">
 <title></title>
 <meta name="description" content="">
 <meta name="viewport" content="width=device-width">

 <!-- Place favicon.ico and apple-touch-icon.png in the
 root directory -->

Chapter 6

[163]

 <link rel="stylesheet" href="css/normalize.css">
 <link rel="stylesheet" href="css/main.css">
 <script src="js/vendor/modernizr-2.6.2.min.js"></script>
 </head>
 <body>
 <!--[if lt IE 7]>
 <p class="chromeframe">You are using an
 outdated browser. Please upgrade your browser or
 <a href="http://www.google.com/
 chromeframe/?redirect=true"> activate Google Chrome
 Frame to improve your experience.</p>
 <![endif]-->

 <!-- Add your site or application content here -->
 <p>Hello world! This is HTML5 Boilerplate.</p>

 <script
 src="//ajax.googleapis.com/ajax/libs/jquery/1.9.0/jquery.min.
 js"></script>
 <script>window.jQuery || document.write('<script
 src="js/vendor/jquery-1.9.0.min.js"><\/script>')</script>
 <script src="js/plugins.js"></script>
 <script src="js/main.js"></script>

 <!-- Google Analytics: change UA-XXXXX-X to be your site's
 ID. -->
 <script>
 var _gaq=[['_setAccount',
 'UA-XXXXX-X'],['_trackPageview']];
 (function(d,t){var g=d.createElement(t),s=d.
 getElementsByTagName(t)[0];
 g.src=('https:'==location.protocol?'//ssl':'//www')
 +'.google-analytics.com/ga.js';
 s.parentNode.insertBefore(g,s)}(document,'script'));
 </script>
 </body>
</html>

As you can see, this template HTML file is doing quite a bit and thankfully it is
extremely well documented. From top to bottom, this example is full of browser
checks and failsafes, references to website icons for web and mobile platforms,
references to Modernizr to clean and set the development environment to a unified
platform to start from, and references to jQuery and default code including Google
Analytics visitor tracking.

HTML5 Frameworks and Libraries

[164]

HTML5 Boilerplate is developed under the MIT license and even includes some
refined and optimized web server configurations to use if you are interested in
streamlining the way your web server delivers its content.

Bootstrap
If you're like me and enjoy writing code rather than dealing with designing and
creating pages in Photoshop, you may be very interested in Bootstrap, created by two
Twitter employees. Bootstrap is an HTML5 framework designed to allow developers
to easily create powerful and responsive page layouts and designs based on a
12-column grid system. With support for rendering your page layouts properly on
all modern devices and browsers, Bootstrap cuts out much of the need to write hours
of CSS and JavaScript in order to properly get your content displayed in a universal
manner for all the users, no matter how they are attempting to view your content:

Chapter 6

[165]

Getting up and running with a new project developed with Bootstrap, like many of the
projects covered in this chapter, is painfully simple. Simply head over to the project
website at http://twitter.github.com/bootstrap and download the latest version.
Once downloaded and unarchived, move the downloaded directory contents into
the root of your project directory. You will notice that the downloaded Bootstrap files
do not contain an HTML file for you to begin working from, rather it expects you to
generate your own. The reason for this is due to the fact that pages are not defined to a
specific layout template. Bootstrap utilizes the grid layout system to allow developers
to easily place their site content in the format of a grid to easily allow a properly
defined layout that can easily respond to dynamic browser window sizes:

The default bootstrap layout is built on a 12-column grid layout with an infinite
amount of rows, as an overflow of rows will just result in typical web page scrolling.
Reviewing the example grid layouts in the preceding image, you can pretty much
visualize every website you use on a daily basis and how it is arranged within a grid
like this. Because this grid layout system is so valuable for almost any web page
design, it can be of use to you on almost every HTML5 project you encounter in
the future.

If you are still not convinced that Bootstrap is a viable solution for your website,
head over to the Examples section of the Bootstrap project website to check out the
latest list of popular websites that are using this project http://twitter.github.
com/bootstrap/getting-started.html#examples.

Bootstrap add-ons
With the popularity of Bootstrap growing at such a fast rate, the amount of user
contributions has begun to follow suit. Many of these third-party external plug-
ins and features can be added on to the existing Bootstrap setup, to extend its base
functionality. Let's take a quick glance at some of the most popular of these projects
to give you some sense of what is available.

HTML5 Frameworks and Libraries

[166]

StyleBootstrap.info
Although Bootstrap comes packaged with a number of different color choices
to choose from when creating elements, the chance you would want to further
that level of customization is pretty high. StyleBootstrap.info (http://
stylebootstrap.info) is a great online resource to easily customize the look and
feel of your Bootstrap setup with a simple click and select user interface. Once you
have completed your design, the site will generate the necessary CSS files for you to
download and include within your project.

Font Awesome
Another great library that extends the already existing feature set within Bootstrap
is Font Awesome (http://fortawesome.github.com/Font-Awesome). Although
it may sound like this is a new font addition to the framework, it is actually an
additional icon set, which can be easily implemented into your design. The reason
for the referencing to the idea of a font is that the icon set is actually implemented
within a packaged font to enable a scalable vector graphic rather than the typical
bitmap graphic found in HTML documents. Since you're coming from a Flash
background you probably already understand how important vector graphics can
be when scaling images, you can probably see why using the font packaging concept
makes for an extremely easy-to-use library. All of the icons within the package have
specific names and can be easily implemented into your page by calling that unique
icon name as a class in an HTML element:

Chapter 6

[167]

As you can see in the preceding screenshot, which displays only a small section of
the available icons in the package, each icon has a specific name. As specified by the
project documentation, the best way to append an icon into your document is to
call the unique icon name within the class attribute of the <i> or italics HTML tag.
As an example, if we wanted to place a book icon beside the word "Books" in our
document, the HTML syntax would be represented as follows:

<p><i class="icon-book"></i> Books</p>

Since the italics tag can be placed within almost any HTML element, this allows
you to place the icon wherever you need, like inside a Bootstrap customized button:

<i class="icon-book"></i> Books

Again, it is worth noting that since font packages are saved in vector formats to
allow for dynamic font sizes, the icons within the default Bootstrap setup as well as
this project are all in vector format as well. To change the size of an icon within your
document, you can just set the font-size property or append it into an element that
already has the font styles configured.

bootstrap-wysihtml5
If you're planning on building web applications that require large amount of
text-based user input, the Bootstrap WYSIWYG (What You See Is What You
Get) library is worth a look (http://jhollingworth.github.com/bootstrap-
wysihtml5). With only a few lines of code, you can easily implement elegant
tool-based input forms for your users to construct formatted HTML-based
text content:

HTML5 Frameworks and Libraries

[168]

Although simple, this is just another one of the many great examples of what is freely
distributed on the Internet and ready for you to use in your projects at any time.

Hammer.js
If you are planning on moving into the fast moving world of mobile web
development, dealing with new events such as touch interaction is going to be a
must. Although traditional JavaScript mouse events will translate directly to the
basic touch events when used on a touch-enabled device, events such as swiping
and pinching are not common to traditional desktop user interaction (http://
eightmedia.github.com/hammer.js).

Hammer.js currently supports tap, double tap, swipe, hold, pinch (transform), and
drag events, and is easily implemented into any preexisting website regardless of
whether you are using jQuery or not. Due to the library's simplicity, the resulting file
size is only 2 KB when minified and compressed:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>Hammer.js Example</title>

 <style>
 body {
 padding:10px;
 }
 #touch-area {
 border: 5px dashed #000;
 text-align: center;
 width: 100%;
 line-height:10px;
 padding-top:200px;
 padding-bottom:200px;
 }
 #touch-area p {
 font-size: 30px;
 }
 #touch-area p.subtext {
 font-size:12px;
 color:#666;
 }
 </style>

Chapter 6

[169]

 <script type="text/javascript"
 src="http://code.jquery.com/jquery-1.9.1.min.js">
 </script>
 <script type="text/javascript" src="lib/hammer.js"></script>
 <script type="text/javascript"
 src="lib/jquery.specialevent.hammer.js">
 </script>
 <script>
 function hammerLog(event){
 event.preventDefault();
 $('#output').prepend("Type: " + event.type + ", Fingers: "
 + event.touches.length + ", Direction: " +
 event.direction + "
");
 }

 $(document).ready(function() {
 var events = ['hold', 'tap', 'swipe', 'doubletap',
 'transformstart', 'transform', 'transformend',
 'dragstart', 'drag', 'dragend', 'swipe', 'release'];

 $.each(events, function(key, val) {
 console.log('NOTICE: Applying Touch Event: ' + val);
 $('#touch-area').on(val, hammerLog);
 });
 });
 </script>
 </head>

 <body>
 <div id="touch-area">
 <p>Touch here to see results<p>
 <p class="subtext">For best results, open this page on a touch
 enabled device.</p>
 </div>

 <p id="output"></p>
 </body>
</html>

GreenSock Animation Platform
If you have spent enough time developing Flash applications, chances are that you
have ran into the GreenSock TweenMax or TweenLite library before. The TweenMax
and TweenLite library easily allows you to tween your Flash objects around your
stage with support for ActionScript 2 and ActionScript 3 projects. GreenSock has now
produced and released a pure JavaScript implementation of their library with no
dependencies that brings many of the great familiar features to your HTML5 projects.

HTML5 Frameworks and Libraries

[170]

So after looking at the jQuery animation methods and what they can do, why would
you need to use a library like this? Well, unlike jQuery, GSAP JS is built to do one
and only one thing very well. Features like sequencing animations to enable properly
timed animations, overwrite control to stop running animations at anytime, and the
ability to animate pretty much anything will extend your web application's visual
appeal with relative ease.

Like the ActionScript companion, the GreenSock JavaScript library (http://www.
greensock.com/v12) contains a ton of great up-to-date documentation and examples
that will guide you in the right starting direction. In fact, they have specifically created
a visual jump start guide to easily get you up and running with the library and
demonstrate the results of the code right in the browser:

The best addition to the GSAP JS documentation is the Interactive Jump Start
Guide that can be found at http://www.greensock.com/jump-start-js/.
This simple-to-use, interactive application takes you from never using the library
before, to understanding exactly what it can do in a matter of minutes; I can't stress
how great of a feature this is.

Again, if you have had any experience using the GreenSock TweenMax or TweenLite
libraries in any of your previous Flash projects, you are going to have an extremely
easy time moving over to GSAP JS. As mentioned, the main issue most ActionScript
3 developers will face when using this library, is properly dealing with the CSS3
properties, which are supplied for the Tweens to properly run.

Chapter 6

[171]

Three.js
If the world of hardware accelerated 3D graphics is to your liking, Three.js
(http://mrdoob.github.com/three.js) is definably worth a look. This lightweight
3D library is extremely easy to get up and running, and has loads of examples and
documentation scattered all over the Web. Three.js uses not only the <canvas>
element for rendering but <svg>, CSS3D, and WebGL as well allowing it to support a
wide range of modern browsers and devices.

To give you some appreciation of what Three.js can do in print, check out some of
these beautiful screen captures I took while viewing some example projects found on
the Three.js project website:

HTML5 Frameworks and Libraries

[172]

As you can see from the preceding screenshots, JavaScript and WebGL have come
a long way in a very short period of time. Again, all of these screenshots were taken
from the examples found on the Three.js project website, so be sure to head over
there and try these out for yourself to get a sense of how well they run on your
machine and browser. Keep in mind that many of the modern mobile device web
browsers are begging to have more robust WebGL support, so try it out on your
phone or tablet as well.

Before starting the development of your Three.js project, it would be wise to
make sure you are familiar with many of the common aspects and principals of 3D
programming. At its core, a typical Three.js application will include a scene, a
renderer, a camera, and an object. Each of these elements will work with one another
to enable the creation of a 3D environment. One of the best introductory tutorials to
learn about Three.js online is the Getting Started with Three.js article by Paul Lewis
(http://www.aerotwist.com/tutorials/getting-started-with-three-js). In
it, he covers all of the principals of 3D programming and how to utilize them within
the Three.js framework.

Without getting into too much detail, as there are already many great books and
online resources to learn Three.js development, here is a very simple code layout
for rendering a scene in Three.js:

// Scene sizes
var WIDTH = 500;
var HEIGHT = 300;

// set some camera attributes
var VIEW_ANGLE = 45,
 ASPECT = WIDTH / HEIGHT,
 NEAR = 0.1,
 FAR = 10000;

// get the DOM element to attach to
var $container = document.getElementById('example');

// create a WebGL renderer, camera
// and a scene
var renderer = new THREE.WebGLRenderer();
var camera = new THREE.PerspectiveCamera(VIEW_ANGLE,
 ASPECT,
 NEAR,
 FAR);
var scene = new THREE.Scene();

Chapter 6

[173]

// the camera starts at 0,0,0 so pull it back
camera.position.z = 300;

// start the renderer
renderer.setSize(WIDTH, HEIGHT);

// attach the render-supplied DOM element
$container.append(renderer.domElement);

// create the sphere's material
var sphereMaterial = new THREE.MeshLambertMaterial({ color:
 0xCC0000 });

// Set up the sphere vars
var radius = 50, segments = 16, rings = 16;

// Create a new mesh with sphere geometry -
// we will cover the sphereMaterial next!
var sphere = new THREE.Mesh(
 new THREE.SphereGeometry(radius, segments, rings),
 sphereMaterial);

// Add the sphere to the scene
scene.add(sphere);

// and the camera
scene.add(camera);

// create a point light
var pointLight = new THREE.PointLight(0xFFFFFF);

// set its position
pointLight.position.x = 10;
pointLight.position.y = 50;
pointLight.position.z = 130;

// add to the scene
scene.add(pointLight);

// draw!
renderer.render(scene, camera);

HTML5 Frameworks and Libraries

[174]

Starting from the top of the preceding Three.js code example, we can see that
initially the stage size is appended to a WIDTH and HEIGHT variable. These properties,
which are familiar to every Flash developer define the viewable area where the
content will be rendered. Following the stage configuration comes the initial camera
configuration. As the 3D scene is created, the resulting view in the rendered frontend
will be from the perspective of a camera that has been placed in the scene. Just like
any other object, the camera can be moved around based on x, y and, z values as well
as properties such as viewing angle, camera aspect and, zooming abilities. After the
camera configuration, we need to target a specific element within the document to
set as our stage, and a document.getElementById lookup to an element we have
already created in our HTML document will do the trick. With the configuration
values set, and an element selected ready to set our scene in, we can actually begin
initializing our scene element.

Of course Three.js projects are not required to be 100 percent JavaScript. Once your
scene is set up and ready for viewing, moving over to a 3D modeling software such
as Blender or Maya will allow you to create extremely detailed 3D objects, which can
be easily imported back into your HTML5 project. As you have seen in some of the
example images previously, the level of detail that can be obtained can be
simply amazing.

One final note about working with 3D or WebGL in JavaScript:. the current
support for WebGL in the browser has been widespread in the desktop environment.
You should have little or no issue viewing or testing your projects in almost every
modern desktop web browser; however, you may still find many limitations on
mobile browsers. Google's Chrome Browser on desktop and mobile is attempting
to push the limits of WebGL with the advent of the Chrome Experiments site
(http://www.chromeexperiments.com/webgl/). Containing a ton of great
examples and projects, this site can easily let you test whatever browser,
device, or platform you are running to see how well it copes with hardware
accelerated graphics.

Compiling JavaScript
Long gone are the days of considering JavaScript just as a frontend development
language used for HTML element manipulation. With the advent of JavaScript
compilers, some pretty unimaginable things can be done by just writing some
JavaScript code. Just like the methods you were used to in Flash, where ActionScript
is compiled into binary packages, JavaScript compilers convert pure JavaScript into
machine code, which can be run on a computer just like any other application. As far
out as a concept this may seem, there are actually many great reasons for it and the
best being for use in the Web browser.

Chapter 6

[175]

Google's V8 Engine
In late 2008, Google released the initial version of Chrome and with it came the initial
release of the V8 engine as well. V8 compiles JavaScript directly to native machine
code and even optimizes the code when doing so. The result is applications that can
run just like applications that are written in Python or C++. V8 is written in C++
and has been open source and freely available to the public since its original release.
You can find out more about the Google V8 project by visiting the project website at
http://code.google.com/p/v8.

Node.js
Easily one of the coolest new projects to be born from the Google V8 Engine is Node.
js (http://nodejs.org). Node.js allows you to write server-side applications
(usually web servers) in 100 percent JavaScript, something typically done in
programming languages such as PHP, Perl, Python, and even C or C++.

Like many of the frameworks and libraries covered in this chapter, Node.js has a
massive amount of great documentation and examples all over the Web. However,
with the speed at which some of the projects are being developed, the documentation
available can easily become outdated. One of the best resources for Node.js,
which is constantly updated to the current stable release of the project, is http://
nodeguide.com created by Felix Geisendörfer, one of the early core contributors to the
Node.js project.

Since Node.js is made to run server side, rather than including it into your HTML5
project, you must install it on a computer to be run as an application. So after
downloading and installing the Node.js files on the machine of your choice, you can
now run your Node.js-ready JavaScript files from the command line as you would
any other command-line application.

To demonstrate the basic usage of how to start a Node.js application, we will use
the popular Node.js web server example, which can be found within the official
documentation. Create a new JavaScript file with the filename example.js and
populate it with the following JavaScript:

var http = require('http');

http.createServer(
 function (request, response)
 {
 response.writeHead(200, {'Content-Type': 'text/plain'});
 response.end('Hello World\n');
 }

HTML5 Frameworks and Libraries

[176]

).listen(8000);

console.log('Server running at http://localhost:8000/');

The first line of the example code is importing the HTTP module within the Node.
js framework. With the HTTP module included, the createServer method is called
with a success function supplied. The function contains a simple "Hello World"
greeting and has the Content-Type set to text/plain, so the browser viewing it
knows it is just plain text. Finally, the listen method is chained into the server
declaration to specify the port, which the HTTP server will listen for requests on.

With the example.js file saved, open the command line on your system running
Node.js and point the current working directory to the location of your new
JavaScript file and type the following command. Executing the file with Node.js is
as easy as referencing the JavaScript file with the node application:

% node example.js

Executing this command will result in the following response:

Server running at http://localhost:8000/

The command line will sit waiting for physical termination. Before stopping the
server, we have to test to make sure it works. So head over to the URL stated in
the response after executing the node command:

As simple as this output is, the reality is you just created a simple custom web server
only using JavaScript. This is just the beginning of what Node.js has to offer and
the best part is many of the great things that can be done with Node.js, have been,
and are available for you to locate and use anytime you wish. Rather than spending
hours on Google searching for modules to include in your project, Node.js uses its
own system for finding and installing further functionality into your Node.js server.

Node Package Manager
If you are still unsure as to what Node.js could do for you, the NPM (Node Package
Manager) may be able to help you out. A package manager is an online collection of
packages available to be downloaded and utilized within your node projects with
ease. Since Node.js is installed on your machine, the package manager can do all of

Chapter 6

[177]

the hard work when it comes to checking for dependencies, versions, and platform
support. To easily search the current Node.js NPM directory, head over to https://
npmjs.org and browse around until you find what you are interested in installing:

Any package that is located in the registry can easily be installed on your system
by running the install command in the command line:

% npm install PACKAGE-NAME

As mentioned before, if the package you have requested to be installed requires other
packages within the registry, they will automatically be downloaded and installed
as well without you having to dig around to find the proper version yourself. As
developers work on the packages you may be using and release updates, the NPM
registry will automatically take care of updating you with the release information as
well as allow for easy updating of any out-of-date packages you may have installed.

HTML5 Frameworks and Libraries

[178]

Hosting a public Node.js server
Since you are required to have a server to run your Node.js projects, you will
need to set up a public facing server to host any projects you wish to be open to the
Internet. Since installing Node.js on your computer for testing won't accomplish
this, you will need to either setup your own, with the proper networking in place, or
pay for this service from a Node.js hosting company. Since the company you use for
your web hosting usually won't allow you to accomplish this, looking into services
such as Nodejitsu (http://nodejitsu.com) may be of use:

Just like a traditional web hosting company, Nodejitsu offers your own public facing
Node.js server, which can be used from any of your web projects online. You can
always start with a free trial account to get a sense of how the service allows you
to use your Node.js server from anywhere in the world and then move into paid
accounts if your needs continue.

Chapter 6

[179]

Summary
This chapter has only dusted the surface of what is available to you as an HTML5
developer. What has been presented here is a collection of some of the most popular
libraries and frameworks currently available. The vast amount of amazing code
that has been publicly released and actively developed on by developers all around
the world is growing at what seems beyond an exponential rate. Allocating and
utilizing external assets like those listed in this chapter require you, the developer,
to understand the implications and benefits of using the library or framework prior
to implementing them into a publicly available website.

Spending the time to dig around, test, and contribute too many of these projects that
interest you will not only benefit your existing development skill set, but allow you
to utilize the best tool for the job at hand. As time passes and the landscape of web
development continues to evolve, keeping up-to-date with as many of these popular
libraries and frameworks will always aid in keeping you updated with the entire
HTML5 development environment.

In the next chapter, we will extend this newly acquired knowledge of HTML5
frameworks and libraries into the realm of directly porting your preexisting Flash
applications into HTML5 web-ready projects.

Choosing How You Develop
Moving into the HTML5 development flow will require you to move away from
the applications which become familiar during the Flash development cycle.
Applications such as Flash Professional, Flash Builder, and Flash Develop are all
specifically designed to work with Flash content and Flash content alone. As great as
these applications are, there are many similar HTML5 development applications that
allow you to build rich web experiences in a very similar manner that you are used
to. This chapter will cover the process of moving away from using the Adobe Flash
Professional development environment and beginning the hard decision of what
new development software to use when creating your HTML5 projects. Although
there is an endless variety of great software that you could use, this chapter will
cover many of the new and popular applications that the web developers are using
right now.

In this chapter, we will cover the following:

• Understanding what is needed in an HTML5 IDE
• Tools for asset creation and manipulation
• Creating interactive animated HTML5 elements with Adobe Edge
• An overview of some of the most popular HTML5 code editors
• Tools for code execution and run time testing

Choosing How You Develop

[182]

Replacing the Flash development
environment
The best part of developing applications in the Flash environment is the fact that
Adobe has put in a ton of time building the tools and applications contained in
the Creative Suite which allow you to create your entire application within their
application set. Although, there is an argument that this system is confining and
slow to update. The fact of the matter is, when all of the right tools are available to
help you build your applications, jumping into your next project is that much easier.
Since it's not regulated or controlled by one specific company, HTML5 development
is a much more open development platform as developers can freely choose how and
what they use to build their projects.

I must emphasize, in this chapter we will overview many of the common methods
and applications that HTML5 developers are using to get the job done. Of course,
none of these applications or methods are the absolute right way to build HTML5
projects, hopefully you will find an application that fits what you are looking for.
As time progresses and you build more and more HTML5-related projects, be sure to
always put in the extra effort when researching the best tool for the job at hand. The
rapidly changing environment leads many projects to rise and fall in a short period
of time. Staying on top of what is out there will help to keep you on top of the game,
as well as continue to extend your HTML5 development skill set.

Requirements of HTML5 development
environments
When it comes to writing HTML, CSS, and JavaScript all within the same code editor,
there are some general considerations that most developers usually make to ensure
that they acquire a feature set that suits their needs. Since the entire HTML5 stack is
rendered as plain text documents, technically any text editor will get the job done.
Although every developer has their own unique setup and development style, there
are many common pieces of functionality that are always worth looking out for.

Asset and file management
Having the ability to preview and even manipulate assets that are included into
your projects, such as images, video, audio, and other external assets, directly within
your development environment can allow you to speed up the development flow
by containing your focus within a specific application. Applications such as Adobe's
Dreamweaver, which we will cover in a moment, are a great example of a software
that has been designed to marry the process of design and development. It's worth

Chapter 7

[183]

noting that many of the plain and simple code editors, which will be overviewed
in this chapter, may not contain features which support easy file and asset
management. However, when large feature integrations like this are not included
within code editors, the general end result is a much faster, light-weight application.

Code highlighting
As with any programming language, code highlighting or coloring is an essential
feature to have within your code editor. The ability to easily understand what parts
of your code are doing what, will allow you to not only develop your applications
with greater ease, it will also help you understand other developer's code with
far fewer issues. Code highlighting is also the key in making sure you're writing
your code in the proper language syntax. For a code editor to be able to properly
color or highlight your code, the applications must be able to properly recognize
and parse the specific language that your code has been written in. Therefore,
keeping an eye out for code-editing applications that have support for the specific
programming language you intend to use it for is critical when attempting to find
the best fit. Luckily, in our case, HTML5 development or HTML, CSS, and JavaScript
development is widely supported by many code-editing applications available, so
the amount of choice you have is extremely substantial.

Code completion
Having good code completion built into the code editor you choose to use can be a
huge help with attempting to learn a new programming language. If you have spent
time using Flash Builder in your Flash development career, I am sure that you have
already seen how much faster you can write good, working code. Although, some
developers argue that code completion just creates a lazy developer who avoids
remembering the specifics of anything in the language syntax. The reality is that code
completion is used by developers from new to seasoned veterans to avoid delays
while writing code and to just generally speed up the time it takes to write long
snippets of code.

When developing Flash applications with development environments such as
Flash Builder (http://www.adobe.com/products/flash-builder.html) or Flash
Develop (http://www.flashdevelop.org), you are presented with one of the best
case scenarios for utilizing code completion. Since these code editors are specifically
built for writing ActionScript 3, they can optimize this development experience by
focusing on what is available in the ActionScript 3 API.

Choosing How You Develop

[184]

In reality there are two forms of code completion when developing HTML5 or
many other languages for that matter. The obvious form of this is auto completing
text as you type. An example of this would be when you have typed a declared
variable name and hit the . key to get ready to specify a property on that object.
Some editors will generate a dropdown menu below the active line of code with a
list of available properties you can append on the current object. This form of code
completion can be super handy when learning a new language as it is laying out
the available possibilities right in front of you as you develop. The second form of
code completion is the generation of larger snippets of code. For example, when you
attempt to declare a new function by typing the word function in your code editor
some editors will recognize this and automatically generate the default function
layout for you. All you have to do is fill in the internal code and you're done. Some
developers have issues with this feature as it may not generate the code to their exact
specification, but many editors now support the ability to modify the pre-existing
code snippets and even add your own.

Creating and manipulating assets
As a developer with previous experience creating applications in Flash, you
may have grown accustomed to using the Flash Professional development
environment to not only store your application asset files in SWC files for project
inclusion, but to build entire projects as well. The ability to work with project assets
within a feature-rich development environment such as Flash Professional is one of
the reasons why Flash became so popular in the first place. When moving to HTML5
development, it would be a shame to lose such a great development environment for
building and manipulating assets. Luckily, with the popularity of HTML5 booming,
many new exciting projects and applications have been released to bring this type of
asset control to the web development cycle.

Adobe Edge Animate
As Adobe grows its products into a fully cloud-based software setup, they have also
introduced a number of HTML5-based projects allowing web developers to easily
create HTML5 content in the traditional Adobe user-friendly environment. One of
the newest and exciting pieces of software in this collection is Adobe Edge. Edge
allows for easy creation of interactive and animated HTML5 content, all within a
point and click user interface. In essence, you can think of Edge as the replacement
for the Flash IDE when developing with HTML, CSS, and JavaScript in the HTML5
stack. Although this software has nowhere near the current power that the Flash IDE
supports, its feature support has been growing on an exponential scale since it has
been released.

Chapter 7

[185]

Adobe Edge can be downloaded for free by signing in to Adobe's Application
Manager. Head over to http://html.adobe.com/edge/animate to download Edge
and sign up for an Adobe account if you haven't done so already. Once you have set
up your account, locate the Edge Tools & Services section within the Application
Manager and download the software to your computer. It's worth noting that, as
mentioned, this new cloud-based software delivery system is the new direction
Adobe is heading in to enable easier access to the software in their catalogue. You
can easily test out any other product by Adobe by clicking on the Try link under
each of the available software descriptions as shown in the following screenshot:

Choosing How You Develop

[186]

Once you have managed to get Edge downloaded and installed, fire it up, and you
can get your first glance at the user interface. Although, it is not exactly like the
Flash Professional user interface you may be used to, you can probably see many
similarities that will easily allow you to integrate your existing Adobe user interface
skills you gained from Flash, Photoshop, and so on:

Let's take a moment to overview some of the exciting features and support Edge
has for unique features such as CSS3 filters and animations. We can start, as most
do, with a simple blue box, our Hello World of the user interface realm. The main
toolbar by default is located on the top of the window and the square shape tool is
easily found within:

Chapter 7

[187]

It's worth glancing at some of the other tools within the toolbar as they will be pretty
familiar and self-explanatory. Regardless, we will come back and check those out
shortly. For now we will select the square shape tool and draw a decently-sized
rectangle on the stage presented in the user interface. Take notice of how similar
this process is to creating content in Flash:

Choosing How You Develop

[188]

By default your shape won't be blue, so after it has been placed on the stage, head
over to the Properties panel located on the left side of the application window by
default and modify the color of the shape by using the color selector.

With our box ready to be animated, let's move our focus down to the Timeline panel
displayed on the bottom of the application window by default. As mentioned, if you
spent any time with Flash Professional and timeline-based animations, this feature
within Edge will not only be familiar, but should probably excite you as well. If the
concept of timeline animations is new to you, it is the process of controlling an element
within the application view over a set amount of time. By defining how your assets
animate over time, you can easily control their behavior on a specific playback interval.
To demonstrate this, we will use the timeline to animate our new blue rectangle
around the stage, applying different effects and properties to it as it moves around.

To start, we will enable the Toggle Pin which will easily allow us to set the new
state of an element within a key frame of the animation timeline. The Toggle Pin
is located in the Timeline panel in the top button navigation. It is represented with
a blue pin marker:

With the Toggle Pin activated, when the timeline is set to a new position, any update
to the element will only be applied within that new key frame. The resulting action
will be an automatically created motion tween over a given period of time.

By dragging the play head on the timeline to 1 second, we have now told Edge to
start applying new properties to any element on the stage. So, let's drag our blue box
from the top-left corner of the stage to the top-right corner and then hit the Space bar
to view the resulting animation:

Chapter 7

[189]

Of course, in text you will have to take my word, but the resulting action is that of
what you are used to when tweening elements in Flash. As the play head travels
from 0 seconds to our new keyframe at 1 second, the position of the blue box is
automatically updated to animate the position from start to finish. As simple as this
example is, it not only presents many of the extremely similar aspects Edge has with
Flash Professional, but it highlights the core of what Edge has been made to do.

Let's spend a bit more time checking out what else can be done to our blue box by
checking out what is available within the Properties panel. Without getting into
too much detail of every bit of the Properties panel, the easiest way to sum it up is
that it is obviously inspired by the Properties panel in Flash Professional. Although
some of the properties available to you within Edge are different than that of Flash,
the layout and style is almost identical. If Adobe Edge interests you, it would be
worth spending some time and checking out some of the available properties that
are available in the current release. I also recommend that when testing, open the
published files in as many of the browsers you have at your disposal, from desktop
to mobile. Get an idea as to how different devices and platforms react to the load of
HTML5 animations to better judge how far to push your applications in the future.

Choosing How You Develop

[190]

Of course, at any time during your development or testing phase, you can select the
Preview in Browser option in the File menu to view how your current project looks
and feels within an actual web browser. This is also a perfect time to dig into the
generated source code to get a better idea as to what the Edge compiler has actually
done for us.

Edge builds the application source into HTML, CSS, and minimized JavaScript
files and saves the JavaScript data with the filename of YOUR-PROJECT-NAME_
edgePreload.js. Although this minimized JavaScript is hard to read or understand,
it is set up to be as small of a filesize as possible to optimize the loading when
retrieved over the Internet by your end users.

Adobe Edge also contains a built-in code editor to allow you to easy append code
into your Edge projects further extending what your web application can do. This
code editor, though used in a slightly different manner, is an extremely recognizable
panel to anyone who has written any ActionScript within the Flash IDE. Within
the code editing panel, you will find a collection of code snippets that can be
appended to your project with a single click. From adding features as simple as a
play method call on one of your elements, to dynamically creating and destroying
new instantiations of your elements, the built-in code snippets can easily get you on
your feet. The code editor also can simplify the code display by only displaying what
is needed for you to manipulate your elements. This can be toggled by selecting the
Full Code tab available on the top-right corner of the code window and will result in
the entire project JavaScript document source being displayed.

Coding environments
Generally, the bulk of the work to create an HTML5 project is going to take place
within an environment set up to allow you to write HTML, CSS, and JavaScript all
within the same location. Since all of these different development languages are all
contained in plain text files, there is no specific requirement when choosing what
editor you could use. However, as HTML5 grows into a more evolved web and
application development platform, the need for platforms that support features such
as media integration, code formatting and completion, device testing and debugging
have pretty much become a must. Many software titles that have been around
since before HTML5 have updated their feature set to include support for HTML5
development and have added new features to make developing for the Web easier.
A perfect example of this in action is the latest version of Adobe's Dreamweaver
included in the latest version of the Creative Suite.

Chapter 7

[191]

Adobe Dreamweaver CS6
Since the Adobe Creative Suite should already be somewhat familiar to you,
we will start the overview of HTML5 code editors with Adobe's Dreamweaver.
Dreamweaver has been a part of the Creative Suite since Version 3. Although
you may find that many web developers have a love or hate relationship with
Dreamweaver, because of its ease of accessibility if you have purchased the Creative
Suite, many web developers have used it at one point or another. The important
thing to note now, regardless of if you have used Dreamweaver before or not, is
that Adobe has added a ton of new features specifically related to HTML5 web
development to aid in your entire development cycle:

Choosing How You Develop

[192]

I won't dive too deep into the use of Dreamweaver, as there are many great books
and tutorials available all over the Web to aid you when starting to learn its feature
set and user interface. I will, however, overview some of the new and exciting
features that Dreamweaver CS6 has included to allow web developers to integrate
HTML5 elements and features into their web projects with ease. It is worth noting
that many of these features, at the time of writing this book, are only available in
the second update to Dreamweaver CS6 on the Creative Cloud. Users who have
the natively installed version of Dreamweaver are currently out of luck. If you are
interested in testing some of these features yourself, download the 30-day trial of
Dreamweaver from the Creative Cloud and give it a go.

Audio and video embedding
The latest update to Dreamweaver CS6 added some great new features surrounding
the inclusion and manipulation of HTML5-ready audio and video files into your
documents. As with many forms of media that can be imported into your HTML5
projects, audio and video can now be easily selected from your project source
directories and placed into your document with a couple of clicks. Setting element
properties such as auto play, enabling playback controls, and even setting poster
images can all be done directly from within the Dreamweaver user interface. This
process can not only ensure you are developing your media playback code to proper
syntax specification, but easily allows you to set playback alternatives for browsers
and platforms that only support specific file types.

Adobe Edge support
As you have already learned about some of the power of Adobe Edge Animate,
you can probably understand why direct Adobe Edge integration into Dreamweaver
is a huge win for web developers. Rather than manually stripping the exported
data from your Adobe Edge projects and applying them into your own, you can
now seamlessly integrate your interactive and animated elements right into your
Dreamweaver project. If you have ever been fortunate enough to save a couple
hours with the Import From Photoshop feature in Flash Professional, you will easily
understand how this cross-application communication can save you countless hours
of development.

PhoneGap and jQuery Mobile support
You may be surprised to learn that Adobe actually played a major role in the
development of the jQuery Mobile framework. It seems the relationship is still
strong, as Adobe has continued its full jQuery Mobile support from Dreamweaver
CS5.5 into CS6. The newest jQuery Mobile feature updates have made it incredibly
easy to theme your jQuery Mobile projects:

Chapter 7

[193]

As you can see in the previous screenshot, the jQuery Mobile Swatches panel allows
us to easily select specific elements within the live view of our project, and apply new
theme properties to that element with a click of the mouse. The resulting code update
is presented as the highlighted change showing you what has been modified in your
existing document. This feature moves far beyond supporting just the default jQuery
Mobile themes. Dreamweaver will automatically detect any customized themes that
have been appended into your project and allow you to continue to manipulate and
implement that theme within the Dreamweaver jQuery Mobile Swatches panel. You
can drill your selection down to specific elements within your webpages and modify
assets such as icons and fonts as well. The most popular HTML5 mobile framework
just became a lot easier to use.

PhoneGap users are not left out in the cold either. If you are looking to build your
mobile projects into native applications Dreamweaver has made it extremely user
friendly from a developer's perspective. The new PhoneGap Build Service panel
allows you to build your current working project for any of the support mobile
platforms with a couple clicks of the mouse. Your PhoneGap builds can be sent
and downloaded from the PhoneGap build server all from within Dreamweaver.
Building native applications in HTML5 for five different popular mobile platforms
has never been easier or more user friendly.

Choosing How You Develop

[194]

Fluid Grid Layout and HiDPI support
The new Fluid Grid Layout system in Dreamweaver allows you to easily target and
customize your webpage layouts for specific devices right from project creation. With
the grid system activated in your page layouts, you can begin specifying exactly how
many columns a specific element can take up. If the browser window is resized or
the page is loaded on a display that is above or below the targeted screen resolutions,
the grid system will automatically respond to the change by updating how many
columns will be displayed. The concept of laying out elements within your webpages
is not a new one. However, with the release of so many devices which can now access
your content, the requirements to stay on top of modern display specifications can
be draining. Adobe has enabled Dreamweaver users to easily integrate an optimized
condition set allowing for easy responsive web design:

Today we are seeing mobile and desktop screens getting higher in pixel density.
The need for proper environments that will allow developers to test on these
displays, even if they do not have access to one, has become a must. Dreamweaver
has now integrated HiDPI support into an easy to use user interface making testing
for specific display types a breeze.

Chapter 7

[195]

Aptana
If you're coming from a Flash development background that mainly existed in Flash
Builder, then Aptana (http://www.aptana.com) may be worth a look. Built on the
same Eclipse (http://www.eclipse.org) editor that Flash Builder has been created
with, Aptana brings an extremely recognizable code development user interface to
many Flash developers:

Aptana includes a ton of great features specifically designed to aid with web
development. Code-assist features are in place to aid with HTML, CSS, and JavaScript
syntax and deployment wizards can easily integrate automated file updating to your
public web server. Aptana also contains built-in support for Git integration so you
can easily integrate version control support for your projects. Like Flash Builder,
Aptana allows you to easily add multiple projects into the application at the same time.
Having the code from multiple projects in front of you can easily save you time when
referencing source code from a feature you added elsewhere. Aptana is free to use,
open source, and actively developed on by a large group of contributors.

Choosing How You Develop

[196]

Brackets
One of the newest and the most exciting HTML5 code editors in the works is Brackets
by Adobe (http://brackets.io/). This open-source editor is not only designed
specifically for HTML5 developers, but the application itself is actually written with
the HTML5 stack, allowing you to easily customize your editing experience.

Brackets is actually an amazing representation as to how far HTML development has
come in the last couple years. The ability to create such a rich interactive environment
to manipulate local files on your computer with web technology is just another step in
moving towards a completely web application-based lifestyle.

Brackets is still in the early development process but is already in a useable state to
be used by anyone today. Despite being written in HTML, CSS, and JavaScript, since
it is packaged and run as a desktop application, it can easily create and manipulate
file on your local machine.

To start using Brackets, you will need to head over to the project website to get the
links to the latest builds (http://download.brackets.io/). As with many open
source projects, as the end user, you will be presented with the choice to download
a pre-packaged build of the software which is usually the most stable. Or you
can download the nightly, or latest development build which the contributors to
the project are actively working on. Development builds are, as you may assume,
unstable and may result in some issues upon usage. However, if you are willing to
brave the storm of buggy software, the information and experiences you have while
using it can be extremely important to the development team working on the project.
Submitting issues and bugs that you may have encountered during your usage
should be logged within the Brackets Issue Tracker on their GitHub project account
(https://github.com/adobe/brackets/issues).

For the purpose of example, I will download the latest pre-packaged stable build
of the software to show you some of the exciting features that Brackets has to offer.
After downloading the installer and running it, open up the application on your
Windows or OS X-based machine. On the initial boot up of the application, you
will be presented with a default example setup that will look something like the
following screenshot:

Chapter 7

[197]

As you can see in the previous screenshot, the interface, though familiar to many
of you, is extremely simplistic yet elegantly styled and laid out.

Inline editing
One of the coolest features currently built into Brackets is its easy to use inline code
editing system. As a web developer, you will find yourself jumping from not only
program to program while developing your projects, but from file to file containing
a completely different language of code. To simplify this process and speed up the
development of elements within your documents, Brackets allows you to select
elements within your HTML files, and view their relative CSS styles. To accomplish
this, select an element within the HTML example file, and press Ctrl +E or Cmd + E
(depending on your operating system) to display the styles for that element directly
within the same HTML file.

Choosing How You Develop

[198]

No longer do you have to waste time sifting through line after line of CSS in dedicated
CSS files to find your element styles. Now Brackets can do all the hard work searching
while you continue to write code:

When the inline editor is displayed (as seen in the preceding screenshot under the
<body> HTML element tag), not only can you easily edit the styles related to the
selected element, but some important data is also displayed. In the top-left corner of
the inline style window is the filename of the document containing the relative styles
and beside the filename is the line number where the styles can be located.

As simple as the concept of inline editing is, we can take it even further by inspecting
the styles of elements that contain multiple styles definitions. For example, looking
at the following link element in brackets displays a number of different styles which
are all applied to the same element in one way or another. By selecting the different
definitions in the inline editor, you can easily switch between each of the style
settings, edit them, and continue on your way. Of course this inline editing concept is
not only for HTML and CSS, it reaches in your JavaScript development cycle as well.
The team behind Brackets is still building more of this inline editing functionality
into the application by extending features such as color and gradient selections.

Chapter 7

[199]

Live Preview
Another great feature already built into Brackets is Live Preview. Instead of the
traditional method of editing code, saving it, and then moving over to the browser to
test it, the Live Preview system simplifies this into an automated test build as you type.
When the Live Preview button is activated in the top-right corner of the application
window, the default system web browser will open containing the current working
HTML page. As mentioned, with this feature selected, you can continue to modify the
current document and view the reflected changes as you type:

The preceding screenshot illustrates a change to the body element background-color
style property, changing it from white to red. This simple automated save and reload
functionality is just another piece of Brackets that allows web developers to spend
less time doing recurring time consuming tasks.

Plugins
Thanks to the fact that Brackets is open source and created with the same platforms
it is intended to be used for, many developers have begun creating their own
customized extensions and plugins for Brackets. From adding the ability to do
custom code highlighting with the mouse, to added support for code completion, the
spectrum of public input has been pretty amazing. Of course you don't have to rely
on the public to get new features into Brackets. As stated before, the entire project
has been built with the technology you are learning about in this book. So if you are
willing to take the jump, attempting to add some new unique feature into Brackets
could be a great learning project.

Choosing How You Develop

[200]

Contributing
The best part of Brackets is not only the fact that it is completely open source,
freely available, and actively developed, but the entire application is built on the
HTML5 stack. As your web development skill set grows, the Brackets project can
be a fantastic place to expand and share your development skills with the rest of
the world. The development team consistently appends updates and modifications
submitted by the public and is always asking for further input from its users. Since
Brackets is still cooking in the development oven, now is a great time to jump aboard
and help create what could be the next big HTML5 code editor. All of the project
information can be found within the project website pages, as well as the project
GitHub page. If you wish to dive even deeper, hop onto IRC and checkout the
#brackets channel on freenode.net.

Sublime Text
If a light-weight code editor such as Brackets is more up your alley, then Sublime
Text is another editor worth checking out (http://www.sublimetext.com). Sublime
is simple and light weight and supports massive amount of programming languages
right out of the box, so it can be used for much more than just HTML5 development:

Chapter 7

[201]

Sublime's multiple text selection feature is one worth noting. When working on
larger documents of code, the need to make the same edit to a large amount of text,
such as spacing, seems to come up quite a bit. To alleviate this issue, Sublime uses a
multiple text selection and edit feature to allow you to easy modify many parts of the
same document with a single change:

As you can see in the preceding screenshot, Sublime also includes a minimized
layout of your code to easily allow you to locate specific sections of your code based
on how they look. As weird as this may sound, surprisingly it is really effective.
Sublime has a ton of other great features making it one of my personal favorite
code editors out there.

Available on Window, OS X, and Linux, Sublime can be downloaded and installed
for free and used indefinitely. However to remove purchase alerts, a license can be
purchased for $70 USD from the Sublime Text website (https://www.sublimetext.
com/buy).

Choosing How You Develop

[202]

Execution and testing
Many of the software titles shown so far have contained their own methods to
aid you in the process of testing and debugging your websites and applications.
However, the amount of technology out there to test for and test with is growing at a
rate which makes it very hard for a specific piece of software to stay on top. Having a
library of different applications and services at your disposal will not only allow you
to test many different aspects of your project, but possibly save you a ton of time in
the process.

Web browser developer consoles
Although we have already spent some time in this book looking into some of the
functionality contained within many of the popular browser developer consoles, there
are a couple other aspects of the console that are worth looking into when considering
frontend execution benchmarks and tests. As your projects grow in size and
complexity, the requirement that you spend time optimizing the flow and execution of
your application grows with it. If you have ever had the chance to use the Adobe Flash
Profiler or Adobe Scout to dig into how and what your application is doing during
runtime, you may already understand the benefit of this type of precaution:

Chapter 7

[203]

The preceding screenshot is from the new Adobe Scout (http://gaming.adobe.
com/technologies/scout/) profiling tools used by game developers to look at
what is going on inside their game as it is actually being played. Moving out of
the realm of Flash development unfortunately means dropping the use of great
new applications and profilers such as Scout, however, there are many alternatives
available to you as a HTML5 developer, we will just need to go hunting for them.

During the 2013 Adobe Max Conference, details of a new version of
Adobe Scout specifically built for HTML5 development in the works
were discussed. Keep an eye out for this fantastic tool's release date
on the Adobe website. You can also watch the video demonstration
from the conference at http://tv.adobe.com/watch/max-
2013/adobe-scout-profiling-taken-to-the-next-level/.

We have already spent some time looking at the JavaScript or web developer
consoles in many of the popular web browsers today, but there are many more
features these panels contain that can aid in running tests and benchmarks on your
project prior to releasing it to the public.

Network analysis
Many developer consoles within web browsers contain network consoles which
allow you to visualize how the data within your webpages are loading from the
perspective of your users. Open the console up prior to loading the page and when
the page is loaded, the real-time data is passed into an easy-to-read table that can
display exactly what files are being loaded, if they succeeded or failed loading, what
the filesize of the asset was, as well as exactly how long it took to load:

Choosing How You Develop

[204]

Combining all of this data can easily allow you to find issues within your webpages
that you may have missed during the development phase. One easy thing to look out
for is what the total page load size is once the page has completely loaded. Keeping
in mind the various methods and speeds at which users connect to the Internet, it is
always wise to think of the end user first when attempting to optimize the filesize of
the assets used in your projects.

Timeline profiling
With many of the common built-in timeline profiling tools, you can literally hit
the record button and capture exactly what is going on under the hood of your
application during runtime. When events are captured, they are displayed in real
time and displayed with the total memory usage. This data can be extremely helpful
when attempting to locate where any potential memory leaks in your application
may be taking place:

Chapter 7

[205]

If some of these forms of application analysis methods are foreign to you, don't
worry, we will be covering more on this topic in the chapters to come. Spending the
time to check out how well your websites and applications actually run on different
platforms can save you a ton of headaches post launch.

Stats.js
Dealing with the concept of Frames per Second or FPS in Flash is regular occurrence.
Since the entire platform is built on the concept of a timeline, having your application
run at a specific FPS or at its maximum FPS is usually the end goal of every Flash
project. During your Flash development career, there may have been a chance you
ran into, or even used, a version of Mr. Doob's Hi-ReS Stats script (https://github.
com/mrdoob/Hi-ReS-Stats). This great little piece of code allows you to easily
append an overlay on your applications displaying the FPS over time as well as the
current amount of memory your application is using:

As you can see in the previous example from a prototype found on the great Flash
resource site WonderFl (http://wonderfl.net/c/6fCf) the stats script is being
used to display how well this Rubik's cube application is running as it is used. This is
extremely handy when attempting to find locations in the execution of your projects
that may be causing issues.

Choosing How You Develop

[206]

Although the idea of FPS within HTML5 development is not exactly the same,
as static HTML pages don't have an active FPS during or after they are loaded.
However, when dealing with animation and timer intervals within JavaScript, the
FPS concept can be used as we have become used to in Flash development. Thanks to
the work of Mr. Doob, the Stats script that once only existed for Flash project is now
available to be used within your HTML5 projects as well.

Visit https://github.com/mrdoob/stats.js/ to download the latest version of the
project. Implementing the Stats display in JavaScript is a little more involved than
with ActionScript 3, however, it is still relatively straightforward. Take a look at this
example implementation of the Stats display from the project documentation:

var stats = new Stats();
stats.setMode(1); // 0: fps, 1: ms

// Align top-left
stats.domElement.style.position = 'absolute';
stats.domElement.style.left = '0px';
stats.domElement.style.top = '0px';

document.body.appendChild(stats.domElement);

setInterval(function () {
 stats.begin();

 // your code goes here

 stats.end();
}, 1000 / 60);

The major difference here is the fact that you are required to create the interval
from which the Stats window will draw its calculations on your own. Since,
as mentioned, JavaScript isn't based on a frame-based development paradigm,
applying your own method for application intervals is the only way for data such
as frames per second to be calculated. This is easily accomplished by using the
built-in setInterval() method in JavaScript and setting the intended frame rate
manually. Since the time a frame will be rendered in will be effectively emulated,
we can do some simple math to get things in line to what we are already used to. In
the previous example, we have set the interval duration to 1000/60, where 60 is the
intended frames per second value. This calculation is equal to 16.66666666666667
which is the millisecond value to sum 60 intervals in a single second. So after the
Stats object is created and the display mode is set with the setMode() method,
you will also need to manually set up the display location on the display.

Chapter 7

[207]

We will continue to dig deeper into some of these applications as well as overview
more platforms that can aid in project testing and benchmarking in the upcoming
chapters. As I mentioned a couple chapters ago, the importance of going over your
finished project in great detail to test execution time, memory usage, and browser
performance is extremely important in making sure you can trust that everyone
can view your content as you have intended in design. Web development lacks the
benefit of the Flash compiler to automatically optimize our applications prior to
runtime. The job is up to you to make sure your programs run smooth.

Summary
The one thing I probably can't stress enough is how important it is for you to go out
and explore as many of the different applications and other services that you can. The
better understanding you have about what is available to you, as the web developer,
the better you can judge what the right tool for the job at hand is. If it hasn't sunk in
yet, though similar in many aspects, HTML5 development is far more of an open
style of development. Without the need to use a specific application set, you are free
to do and use whatever your heart desires. This chapter barely scratches the surface
of some of the popular applications developers are using today. However, it is my
hope that with this general overview of the software that was explained, you can start
developing your own HTML5 applications with the best tool for the job.

In the next chapter, will take a look at some of the popular options for pushing
JavaScript even further by compiling not only JavaScript to other programming
languages, but other programming languages to JavaScript.

Exporting to HTML5
In Chapter 5, Code Once, Release Everywhere, we spent some time learning about the
CreateJS JavaScript framework as well as the CreateJS Toolkit plugin for Flash
Professional CS6 (http://www.adobe.com/ca/products/flash/flash-to-
html5.html) and how they can easily integrate your pre-existing knowledge of
Flash development directly into HTML5 projects. Over the last year, Adobe has
adopted this framework to be the official way to work with Flash-based assets in
your HTML5 projects. That being said, there are actually a number of other ways
that you can achieve somewhat of the same effect when attempting to directly move
your Flash-based applications and games into pure HTML5. In this chapter, we will
continue to look at some of the third-party tools and applications that may aid you in
your asset and code development flow.

In this chapter, we will cover the following:

• Automatically generating HTML5 projects from a Flash SWF with
Google's Swiffy

• Manually converting animated assets to HTML5-ready sprite sheets
• Writing your JavaScript libraries and frameworks in ActionScript 3

with Jangaroo
• Targeting all of your platform development needs in a single language

source with Haxe
• Building robust web applications using Google's Dart programming

language

Exporting to HTML5

[210]

Google Swiffy
The Swiffy project created by Google (https://www.google.com/doubleclick/
studio/swiffy) is one of the easiest ways to port your pre-existing Flash
applications into HTML5 projects. The aim of the project is to take in the already
compiled Flash SWF files, and convert the data within into a JSON object with SVG
vector animation data. The resulting Swiffy compiled JavaScript, can then be run
directly within a modern web browser with the aid of the Google Swiffy Runtime.

Although this project is still in Beta and has many limitations, Swiffy supports
Flash projects written in both ActionScript 2 and ActionScript 3 allowing you to
possibly avoid having to ever think about manually converting your AS2 to AS3
projects manually. The support for more complex Flash assets within your projects
is growing at a steady rate, however, it will be worth your time to check out the
current browser and feature-support lists on the project website prior to usage as it
may not fully cover the application you intend to convert (https://www.google.
com/doubleclick/studio/swiffy/gettingstarted.html). ActionScript 3 support
within Swiffy is limited to using specific methods within specific classes to be
sure the conversion can properly take place. At the time of writing this book, the
ActionScript 3 support within Swiffy contains the following limitations:

• Exception handling is not supported
• Optional arguments are not supported
• XML handling is not supported
• The order of object initialization and construction is not constant

You can find the full, up-to-date documentation for current ActionScript 3 support
on the Swiffy ActionScript 3 Support page on the project website (https://www.
google.com/doubleclick/studio/swiffy/actionscript3.html). If you head over
to the ActionScript Support page, you can get a better sense of what classes and
methods can be used within your Flash applications. If your application exceeds
the supported properties listed in the project support page, there is a very high
likelihood of your application not converting properly.

How does Swiffy work?
To get an idea of how Swiffy works and to see the output and limitations first
hand, let's create a simple Flash application and convert it to HTML5 and view
what happens. We will start with what is possibly the best case scenario for Swiffy
conversions. Our Flash project will contain assets and animations completely created
from within the Flash Professional IDE and avoid the use of any ActionScript for
the time being. To make this example a little closer to a real-world example, we can
pretend this Flash application is a pre-existing banner ad or other simple Flash movie

Chapter 8

[211]

which we would like to display on mobile devices or any other devices that don't
have access to the Adobe Flash Player:

As ugly as the preceding example is, it actually represents some important factors
to test. First off, we have a circle which has been motion tweened around the stage.
Second, we have a rectangle filled with a gradient background color, again in the
vector format. Finally, we have two lines of text: one is a simple use of the Times
New Roman font and the other is a test of a more complex font such as Wingdings.
Just like the two shapes, the text will be animated across the stage upon playback.
The idea with this test is to see how well Swiffy deals with the extremely common
SWF setup of just timeline modified elements. To make this test less complicated,
we will also leave out any ActionScript and assume the timeline will loop infinitely.

With the timeline created, we can go ahead and output a SWF of this movie into our
project directory. All Swiffy requires to generate its Web-ready output is the single
SWF created from your Flash project, so open up a web browser and head over to the
Swiffy project website (https://www.google.com/doubleclick/studio/swiffy).

At the time of writing this book, Swiffy will allow you to upload
any SWF file that equals or is less than 1 MB in size.

Exporting to HTML5

[212]

When you are all ready to convert your SWF, use the form on the front page of
the project website to upload your SWF to the Swiffy servers. It should only take
a moment or two for the results to appear, as shown in the following screenshot:

The results should display something like the preceding screenshot. A preview of
the converted SWF will appear in Web-ready display as well as all of the output
messages and links to download the output. The supplied QR code on every SWF
conversion page will allow you to easily test the generated source on a mobile device
to verify it is working properly. As displayed on the output page, you can easily

Chapter 8

[213]

download the HTML document along with all the other data by right-clicking on the
link to the external output example (in this case, Banner-Test.html) and save the
referenced page that way.

Examining Swiffy-generated code
With the content saved onto your local machine, let's take a quick moment to review
exactly what has been done, and how we could transplant this asset into a pre-
existing website. After opening up the HTML file, the first thing to take note of is the
use of external libraries:

<script src="https://www.gstatic.com/swiffy/v5.0/runtime.js"></script>

This JavaScript call is importing the Google Swiffy runtime from the Google file
server and is required to properly display the data following it. Just like CreateJS, the
code that has been created is a hybrid of JavaScript and needs a final interpreter in
order to properly function. This is a critically important thing to note about Swiffy.
Including the runtime.js file is an absolute requirement to your project provided
any assets generated from Swiffy were added.

Directly after the Swiffy runtime inclusion, you will notice a huge blob of text
contained in more HTML <script> tags. The following is a snippet of what it
looks like:

swiffyobject = {"tags":[{"frames":[],"scenes":[{"name":"Scene 1","offs
et":0}],"type":23},{"bounds":[{"ymin":0,"ymax":2240,"xmin":0,"xmax":10
399}],"id":1,"fillstyles":[{"transform":["4738D::1056F199e20k"],"type
":2,"gradient":{"stops":[{"color":[-65536],"offset":[0]},{"color":[-
256],"offset":[42]},{"color":[-16711936],"offset":[93]},{"color":[-
16711681],"offset":[127]}….

This data is the JavaScript object which represents all of the data from your assets
and animations included in the original SWF. Since our example contained no
Bitmap images, and everything within it was vector based, the entire application has
been compiled down to 100 percent code and can be displayed with a couple lines of
further JavaScript:

var swiffyElement = document.getElementById('swiffycontainer');
var stage = new swiffy.Stage(swiffyElement), swiffyobject);
stage.start();

Exporting to HTML5

[214]

Finding Swiffy's limits
All of this is fine and dandy until we start to make things a little more complicated.
In the next example, I have created a very simple game in ActionScript 3. The idea
of the game is to control the position of the box on the stage by moving your mouse
around the visible stage. As time passes, your box will begin to grow and take up
more space on the stage. The goal of the game is to go as long as possible without
letting your box touch any of the randomly moving black dots. For simplicity, I have
not included any user interface in this game. All of the results and output will just
be sent to the web browser developer console for the time being. As always, you can
check out the example in the working form as it is contained in the downloadable
chapter example files:

Yes, it is extremely crude, but it covers many common aspects of Flash applications
in a manageable number of lines of code, which is perfect for our purposes of
demonstration. As mentioned, there is no user interface in the game as any of the
game output will just be sent to the Flash output debug window. Let's take a look
at the code before going any further so you can take note of the specific features,
classes, and variable types that have been utilized:

package {

 import flash.display.MovieClip;
 import flash.events.Event;
 import flash.events.MouseEvent;

 // Setting the frame rate is important here as we calculate
 // the users score from how many frames have passed.
 // It's worth noting that the TimerEvent class can be used
 // without any issue by applications converted with
 // Google Swiffy.

Chapter 8

[215]

 [SWF(backgroundColor="0xEFEFEF", width="1024", height="768",
 frameRate="30")]

 public class PlayerMoveTest extends MovieClip {
 // Setting a static const variable, defines
 // how many bad guy dots to add to the stage.
 private static const BAD_GUY_COUNT:int = 10;

 // The 'Player' class is a red box created and defined
 // within an SWC included into this project.
 private var _player:Player;

 // An array to hold all of the bad guys created
 // when the game is created.
 private var _badGuys:Array;

 private var _lifeTimer:int;
 private var _playerTarget:Object = new Object();

 /**
 * PlayerMoveTest Constructor
 */
 public function PlayerMoveTest() {
 // Start by creating and adding all of the bad
 // guys to the game stage.
 _badGuys = new Array();
 for(var i:int = 0; i < BAD_GUY_COUNT; i++) {
 // Using MovieClips instead of Sprites
 // as Sprites are not supported by the
 // Google Swiffy compiler.
 var badGuy:MovieClip = new MovieClip();
 badGuy.graphics.beginFill(0x000000, 1);
 badGuy.graphics.drawRect(-5, -5, 10, 10);
 badGuy.graphics.endFill();
 badGuy.x = Math.floor(Math.random() * (1000 + 1));
 badGuy.y = Math.floor(Math.random() * (700 + 1));
 _badGuys.push(badGuy);
 addChild(badGuy);
 }

// Create the users Player object
// Again, this is created within a included SWC.
 _player = new Player();
 _player.x = 100;

Exporting to HTML5

[216]

 _player.y = 100;
 _playerTarget.x = _player.x;
 _playerTarget.y = _player.y;
 addChild(_player);

 // Add a on enter frame to update the game stage.
 this.addEventListener(Event.ENTER_FRAME, updateEnviroment,
 false, 0, true);
 }

/**
 * Called on every frame when the game is in a playable
 * state.
 */
 private function updateEnviroment(event:Event):void {
 // Update the life timer, used for player score.
 _lifeTimer++;

 // Set the new player position target.
 // this position is based of the current X and Y
 // position of the user's mouse.
 _playerTarget.x = this.mouseX - 50;
 _playerTarget.y = this.mouseY - 50;

// Calculate the distance to the current
// player target.
 var xDistance:int = _playerTarget.x - _player.x;
 var yDistance:int = _playerTarget.y - _player.y;

 // Update the position of the player object. Use
 // a simple method to ease the position into the
 // target.
 _player.x = _playerTarget.x - (xDistance * 0.9);
 _player.y = _playerTarget.y - (yDistance * 0.9);
 _player.width += 0.5;
 _player.height += 0.5;

// Randomly move the position of each bad guy on
// every frame.
 for(var i:int = 0; i < BAD_GUY_COUNT; i++) {
 _badGuys[i].x += Math.round(Math.random() * (15 - (-15)) +
 (-15));
 _badGuys[i].y += Math.round(Math.random() * (15 - (-15)) +
 (-15));

Chapter 8

[217]

// Using the common hitTestObject method
// to check and see if any of these bad guys
// are currently touching the player object.
 if(_player.hitTestObject(_badGuys[i])) {
 // The player is touching a bad guy
 // so stop the on enter frame event
 // and alert the users score.
 this.removeEventListener(Event.ENTER_FRAME,
 updateEnviroment);

 trace('GAME OVER!!!');
 trace('You lasted ' + Math.round(_lifeTimer / 30) + '
seconds.');
 }
 }
 }
 }
}

If you are interested in actually compiling the source of this application, you can find
all of the files to open it within Flash Builder as an ActionScript project. Compile the
application to a SWF and test the application locally to confirm it is working. If all is
well, let's attempt to send this file to Swiffy and see what happens:

Provided you followed the steps properly, Swiffy will fail when attempting to
convert this SWF and generate the error list in the previous screenshot. Let take a
quick look at what went wrong, the limitations, and workarounds that could be put
into place to correct the issue. To begin, the first error listed the notice that arrays are
not supported by the Swiffy compiler. In our application's case, we used an array to
contain all of the bad-guy instances in a single global variable. Without the use of
arrays in this or any application, the requirement to manage data in a more primitive
manner is required. This issue alone can be the deciding factor when deciding to use
Swiffy to do your conversion. Although there are many ways to get around this issue,
the fact of the matter is, if you have an application that is littered with arrays, chances
are the current version of Swiffy will not be able to help you. Regardless of all that
bad news, let's move on to the second issue. Not surprisingly, the hitTestObject
method, which is common in ActionScript 3 development, is not supported by the
compiler either.

Exporting to HTML5

[218]

This easy-to-use method can be a life saver when simple collision detection is
required in Flash development, but since there is no direct JavaScript equivalent
to convert it to. Again, this can be compensated for but the resulting code would
be far larger then calling a single method as one is used to in typical ActionScript 3
development. So this can be considered an issue, but not a dead end provided your
collision detection is only using the supported methods and properties. The final
error listed in our conversion attempt was the use of the Sprite.graphics class.
If you recall, the code example specifically used MovieClips rather than Sprites, as
Sprites are not supported by the Swiffy compiler. However, unlike the Player object,
which was originally created within the Flash Professional IDE and saved into a
SWC, the bad guy objects were created within the code with the use of the internal
ActionScript 3 Graphics API:

badGuy.graphics.beginFill(0x000000, 1);
badGuy.graphics.drawRect(-5, -5, 10, 10);
badGuy.graphics.endFill();

These three lines are the reason for the final error. Since the MovieClip object in Flash
is built on top of the Sprite class, the resulting error follows suit. Since the SWC deals
with the creation of the Player object, no errors are passed for that object. However,
it is worth noting that even with these errors fixed by removing all of the bad guys
and only having a box moving around, the successfully converted result still displays
nothing on the HTML version of the game. At the moment, it seems Swiffy doesn't
support the use of SWC's in the ActionScript 3 project, it is more comfortable using the
old school pure Flash IDE development style of application development.

All of this being said, the reality is that the majority of the work Swiffy can reliably
do for you is simple Flash applications and movie conversions, not your typical Flash
game or application. Despite the lack for many features that have commonly been
used in Flash development for years, Swiffy can still be a very handy tool for assets
such as integrated website animations or advertisement banners.

Chapter 8

[219]

Generating sprite sheets in Flash
Professional CS6
If you ever intend to port or copy some of your pre-existing Flash-based timeline
animations to a HTML5 project, you are going to have to do some conversion of
your own. As you have seen in the examples in this book, timeline animations just
don't exist in the HTML5 stack. Therefore, you will need to convert the animation
sequence into a new format that can be displayed properly on the Web. One of the
easiest options is converting the animation into a video file and using the <video>
tag element to play it back. Unfortunately, converting bitmap or vector assets into a
video file that can properly be played back on the Web will result in a ton of quality
loss. To top that off, the video playback will be very heavy resulting in slower
application load times. Finally, videos in HTML5 lack many important features such
as support of alpha transparency, resulting in all of your assets contained in a fully
visible rectangular container. To get around all of these issues, many web developers
are turning to the tried and true method of sprite sheets. The concept behind sprite
sheets is pretty simple. Take all of the frames in your animation sequence, place
them all side by side on the same image (with a transparent background), and save
the image as an uncompressed PNG file. This way, when loaded by a client over
the Web, downloading a single file is all that is needed to have the entire animation
sequence in memory ready for playback. Converting your Flash-based timeline
animations into sprite sheets manually, by copy and pasting each frame into a PNG
document, is a long a tedious undertaking. Thankfully, it is one undertaking you
will not need to deal with as Flash Professional CS6 has incorporated a sprite sheet
generator right in the IDE.

Using the sprite sheet generator in Flash CS6 is painfully simple. The good folks
at Adobe have managed to create a tool that will easily have you using your Flash
animations in your HTML5 projects in minutes. Though simple to use, the feature
can be a little hidden, so let's quickly take a look at the sprite sheet generator in
action and place some of the results in a working HTML5 document to test.

Exporting to HTML5

[220]

For example purposes, I have created a very simple example of a Flash animation on
the timeline which includes only three different shapes. Each shape is displayed for
only 5 frames for a total of 15 frames of animation:

As always, you can find all the example files in the
downloadable chapter examples.

Locate the MovieClip within the library of the Flash project and right-click on it.
Reviewing the context menu displayed when right-clicking on any MovieClip, you
will find a Generate Sprite Sheet option. Select this option and you will be presented
with the new, feature rich, Generate Sprite Sheet window:

Chapter 8

[221]

Upon initial inspection, you can see every frame in your animation has automatically
been appended to the same document and lined up in a grid format. As mentioned,
this animation contains 15 frames, therefore, every frame has been appended to the
sprite sheet Preview window and is displayed with the default configuration. Before
saving this output, let's check out some of the options available to see if we can
optimize this sprite sheet any further.

Exporting to HTML5

[222]

We can start by getting a general overview of what we are about to export. At the
bottom-left corner of the Generate Sprite Sheet window, you will find the details of
the current MovieClip containing the frame count and duration based on a specific
frame rate. On the right side of the window, you can see an easy-to-view preview of
what the sprite sheet will look like when generated under the current configuration.
Selecting the second Preview tab will display the animation running in its native form.

Below the preview window is all of the configuration properties available to you
when exporting the animation assets and dataset. The dimensions of the exported
image can be automatically sized by Flash or configured manually to set the
available area where your animation frame can be placed. The image format can
also be configured as PNG or JPG formats to allow for further compression on the
exported image. It is recommended that you set this as PNG with no background
unless required to allow for proper image background transparency:

The right size of the configuration properties contains the settings for the dataset
export. Since the image exported for the sprite sheet will only contain the frame assets
and no animation data, the sprite sheet will require some form of data in order to
properly playback. You will usually have no issue when using the basic algorithm
from the available slicing algorithms. With the basic setting, sprites are arranged in
nice uniform rows in an easy-to-use grid layout. This is the optimal output setting
when dealing with any simple animation. The other current option for algorithms
is the MaxRects option. This option is used to attempt to pack the frames as tightly
together as possible. The reason one would do this is to minimize the exported
image filesize to allow for faster download times over an Internet connection. Once
an algorithm has been selected, we can move on to probably the most important
setting in this export window. The Data format selection allows you to set the data

Chapter 8

[223]

export format to specifically work with how ever you are developing your HTML5
application. Support for The Sparrow Framework for iOS development (http://
gamua.com/sparrow), The Starling Framework for ActionScript 3 (http://gamua.
com/starling/), as well as Cocos2D (http://cocos2d.org/) have been included.
As a HTML5 developer, the three main export settings you will probably be most
interested in are the JSON, JSON-Array, and easeljs options. Exporting the dataset
as a simple JSON export will allow you to use the data universally as JSON in the
open standard for human-readable data storage. The JSON-Array setting is extremely
similar with the difference of storing the data in JSON arrays rather than direct
objects. The difference between the two will really only affect how you interpret the
data within your code. Finally, the easlejs export setting allows you to automatically
prepare the exported animation for inclusion in your CreateJS, or EaselJS project. This
export setting is handy when you are attempting to include an external asset within
another Flash project into a pre-existing CreateJS toolkit-based project:

The final settings in the configuration are the Trim and Stack frames options.
Trimming the frames in the sprite sheet will remove any unused empty space
between each of the elements within. This will again optimize your end result by
minimizing the exported image filesize. Finally, the Stack frames option allows you
to further optimize your animation by removing or stacking any frames that are
identical in your animation.

Exporting to HTML5

[224]

Since there will be no need to store the same image twice since the exported dataset
will contain the timeline information, these assets can be removed without issue:

With all of these settings covered, let's export this animation with the settings in
the previous screenshot to see what we get for an output. When the Export button
is clicked, the window will close when completed, and you will be able to find
the exported material in the root of your project directory. With the JSON setting
appended to the Data format option, two files are exported. The first file is the sprite
sheet image in the PNG format:

Chapter 8

[225]

The second file is our JSON output containing all of the frame positions and sizes
of the animation. The following is a snippet from the exported JSON containing the
animation data for the first three frame of animation:

{"frames": {

"ShapeAnimation0000":
{
 "frame": {"x":0,"y":0,"w":100,"h":100},
 "rotated": false,
 "trimmed": false,
 "spriteSourceSize": {"x":0,"y":0,"w":100,"h":100},
 "sourceSize": {"w":100,"h":100}
},
"ShapeAnimation0001":
{
 "frame": {"x":0,"y":0,"w":100,"h":100},
 "rotated": false,
 "trimmed": false,
 "spriteSourceSize": {"x":0,"y":0,"w":100,"h":100},
 "sourceSize": {"w":100,"h":100}
},
"ShapeAnimation0002":
{

Exporting to HTML5

[226]

 "frame": {"x":0,"y":0,"w":100,"h":100},
 "rotated": false,
 "trimmed": false,
 "spriteSourceSize": {"x":0,"y":0,"w":100,"h":100},
 "sourceSize": {"w":100,"h":100}
},
"ShapeAnimation0003":
{
 "frame": {"x":0,"y":0,"w":100,"h":100},
 "rotated": false,
 "trimmed": false,
 "spriteSourceSize": {"x":0,"y":0,"w":100,"h":100},
 "sourceSize": {"w":100,"h":100}
},

The data is extremely simple to read and understand which is good, as from this
point out without the use of a game development framework or CreateJS, we have
to interpret and display this data and assets ourselves:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>ShapeAnimation Sprite Sheet Example</title>

 <style>
 #animation {
 width:100px;
 height:100px;
 overflow:hidden;
 }
 </style>

 <script type="text/javascript" src="js/jquery-1.9.1.min.js">
 </script>
 <script>
 var animationData = Array();
 var currentFrame = 0;

 $(document).ready(function() {
 // Get the Sprite Sheet JSON
 $.getJSON('ShapeAnimation.json', function(data) {
 // Save each of the objects into an array.
 $.each(data['frames'], function(key, val) {
 animationData.push(val);

Chapter 8

[227]

 });

 // Start the animation.
 runAnimation();
 });
 });

 function runAnimation() {
 // Update the CSS properties of the Sprite Sheet image.
 $('#animation img').css('margin-left',
 animationData[currentFrame]['frame']['x'] * -1);
 $('#animation img').css('margin-top',
 animationData[currentFrame]['frame']['y'] * -1);

 // Update the frame counter and reset if needed.
 currentFrame++;
 if(currentFrame == animationData.length) currentFrame = 0;

 // Keep calling this method every 200ms.
 setTimeout(runAnimation, 200);
 }
 </script>
 </head>

 <body>
 <div id="animation">

 </div>
 </body>
</html>

Due to the tremendous support for CreateJS in Flash Professional CS6, the export
and usage of the EaselJS setting for sprite sheets is definitely the easiest way to go.
However, as demonstrated in the previous code snippet, with the standardized JSON
export methods, you can implement any Flash animation as a sprite sheet into your
HTML5 projects with relative ease.

If you are interested in learning more about sprite sheets but you don't
want to spend time creating all of the assets, head over to Google
images and search for sprite sheets. You will find an endless resource
of great sprite sheets to test your applications with. Of course, you
should always be sure to have permission or ownership of any asset
when used on a public facing website.

Exporting to HTML5

[228]

Jangaroo
The story behind the development of Jangaroo (http://www.jangaroo.net)
is actually pretty interesting. Created by the development team at CoreMedia
(http://www.coremedia.com), Jangaroo was built out of the frustrations the internal
development team had with the current JavaScript development capabilities. Rather
than dealing with many of the common syntax issues that JavaScript possess, the
development team at CoreMedia set about to create a ActionScript 3 to JavaScript
compiler written in Java. As absurd as that may sound, the actuality is that Flash
developers can easily continue writing in a familiar syntax while specifically
targeting HTML5-based web development. Jangaroo aims to allow developers
to write high quality JavaScript frameworks and applications with the power of
ActionScript 3. In a nutshell, it will take in ActionScript 3 files, and with the use
of its compiler written in Java, convert them into ready to use JavaScript:

Chapter 8

[229]

So why would anyone want to avoid writing native JavaScript and begin writing
ActionScript 3 for the next HTML5 project? Well, as a developer with previous
experience writing ActionScript 3, you can probably already answer this question
from all of the examples and overviews so far in this book. When it comes to writing
large robust applications in HTML5, the lack of packages, classes, and proper
inheritance in JavaScript can begin to create a minefield of code which can be tricky
to manage. By allowing yourself to continue developing your applications in a
language that you are not only used to, but allows for easier management of the
classes in your project, you can surpass many common hurdles that would have
arisen during a pure JavaScript development cycle.

The heart of the Jangaroo project is the Jangaroo ActionScript 3 to JavaScript
compiler called jooc. The compiler will take in your ActionScript .as files and
export them as compiled JavaScript .js files. To install and run Jangaroo, you will
need to begin by making sure you have installed an up-to-date version of the Java
Runtime Environment (http://www.oracle.com/technetwork/java/javase/
downloads/index.html) as well as Maven (http://maven.apache.org). The
installation and setup of these two pieces of software may seem intimidating, but be
sure the process is extremely straightforward and well-documented, so I will leave
that process up to you.

One note worth making when dealing with installing the Java
Runtime Environment on your computer is to be sure the JAVA_
HOME environment variable is properly set. If you encounter any
issue during the installation of testing process of Jangaroo, this will
be a good place to start debugging.

To give you an example of a simplified development cycle of a JavaScript-driven
application created with ActionScript 3 and compiled with Jangaroo, let's
use the HelloWorld example that can be found on the project website
(http://www.jangaroo.net/tutorial):

package {
/**
 * The most simple Jangaroo class on earth.
 */
public class HelloWorld {
 /**
 * Let the browser display a welcome message.
 */
 public static function main():void {
 window.document.body.innerHTML =
 "Hello World from Jangaroo!";

Exporting to HTML5

[230]

 }
}
}

As you can see in the code example, the syntax available to your ActionScript classes
is a hybrid of common ActionScript 3 as well as some special window and document
object references to allow you to integrate your application into the browser
properly. If you are interested in learning more about the language and code syntax
options when preparing ActionScript 3 for the Jangaroo compiler, head over to the
Writing Code page in the official Jangaroo documentation (http://www.jangaroo.
net/tutorial/writing_code).

The bulk of Jangaroo is open source and the project code and assets can be found
on the CoreMedia Github page (https://github.com/CoreMedia).

Haxe
Keeping on the topic of compiling applications and other programming languages
directly to JavaScript, I should take a moment and cover some of the exciting features
in the world of Haxe development:

Chapter 8

[231]

Haxe (http://haxe.org) is its own standalone open source programming language.
Where most programming languages are built for a specific application type in mind,
JavaScript for the Web, ActionScript for Flash, Haxe can be compiled and run on
a variety of platforms and devices all from the same source code. Haxe source can
selectively be compiled into JavaScript, Flash, PHP, C++, C#, and Java and with your
prior experience with ActionScript 3 and new skills you have learned in JavaScript,
learning the Haxe language syntax is a breeze.

Although cross-platform development may not be of interest to you right now,
having at least a basic understanding of what languages such as Haxe offer may
allow you to fill some more gaps in your development skill set. Just for some
final clarity before we move on, let's take a quick peek at an example snippet of
Haxe code which can be found on the Code Snippets page on the Haxe project
website (http://haxe.org/doc/snip). The following code is an example of
implementing the popular sorting method, Quicksort (http://en.wikipedia.org/
wiki/Quicksort). Since we already have an idea of what this sorting algorithm
is attempting to accomplish, let's review this code to mainly get an idea of class,
method, and variable syntax in the Haxe programming language:

class Quicksort {

 static var arr = [4,8,0,3,9,1,5,2,6,7];

 static function quicksort(lo : Int, hi : Int) : Void {
 var i = lo;
 var j = hi;
 var buf = arr;
 var p = buf[(lo+hi)>>1];
 while(i <= j) {
 while(arr[i] > p) i++;
 while(arr[j] < p) j--;
 if(i <= j) {
 var t = buf[i];
 buf[i++] = buf[j];
 buf[j--] = t;
 }
 }
 if(lo < j) quicksort(lo, j);
 if(i < hi) quicksort(i, hi);
 }

 static function main() {
 quicksort(0, arr.length-1);
 trace(arr);
 }
}

Exporting to HTML5

[232]

As you can see directly in the first line, Haxe has full class support unlike JavaScript.
This concept alone may be a selling point as ActionScript developers moving over
into Haxe will find many more similarities which are unavailable in JavaScript.
Other features such as static functions, strict variable typing, and common debug
methods such as trace() are just a couple more of the great features within
Haxe that specifically let a developer with previous ActionScript 3 development
experience shine.

If you are interested in learning more about the exciting world of
Haxe development, checkout the book Haxe 2 Beginners Guide, Packt
Publishing (http://www.packtpub.com/haxe-2-beginners-
guide/book).

Haxe itself is a beast of a project. The ability to cross compile your application source
code directly to almost every modern platform available is an extremely valuable
asset when you are developing a project with very specific platform requirements.
Even if you intend to target only HTML5 web projects with your Haxe source code,
having the ability to move your application to another platform with only a couple
clicks of the mouse is pretty amazing. Also, as with many of the other platforms
and compilers we have reviewed in this chapter, Haxe can alleviate many of the
common complaints web developers have with JavaScript syntax. The project is still
relatively new although many developers have already jumped on the bandwagon.
If developing your next application in Haxe sounds like an interesting challenge,
I highly recommend looking into it some more.

Google Dart
With the goal of helping developers from all platforms build complex, high-
performance client apps for the modern Web, Google's Dart (https://code.
google.com/p/dart/) is another great example of pushing web development,
more specifically JavaScript development, to the limit. Just like Haxe, Dart is an
open-source project that uses its own specific programming language to compile
into Web-ready JavaScript documents and just like Jangaroo, Dart was built out of
the frustrations with the limits of the current web development platforms. In an
attempt to bring a new structured, single language workflow Google has released
a Technology Preview of the Dart project for early testing and feedback from the web
development community:

Chapter 8

[233]

Of course, since Dart is built on its own language syntax, there will be a learning
curve involved when first starting out. To aid in the strain of learning a new
language, I highly recommend checking out the official Dart Editor. The Dart Editor
(http://www.dartlang.org/docs/editor/) is probably the easiest way to get up
and running with Dart development.

Exporting to HTML5

[234]

It supports features such as real-time error and syntax checking to alert you of any
issues before you compile, as well as code completion to help you understand what
can be done with each method and property:

The Dart Editor, like many others, is built on the popular Eclipse IDE. As simplified
as the code editor is, this can be considered another win for anyone with Flash
Builder experience as the interface will be extremely familiar. I say this editor is
simplified because the editor does not come as a plugin for Eclipse, instead it comes
packaged as its own standalone Eclipse-based editor with all of the unnecessary
elements removed from it.

Like the overview of Haxe, I will keep this brief as Dart is still a very new project and
I have yet to personally meet anyone who has developed a popular web application
with it. That being said, there is absolutely no reason to discredit a language such as
Dart. As the JavaScript specification evolves and browser support follow suit, the need
for these projects may become less. However, as any Flash developer knows, the ability
to compile projects with a proper debug and output flow can allow them to find and
fix issues faster than many traditional methods of writing client-side scripts.

Chapter 8

[235]

Summary
During the course of this chapter, we spent some time looking at some projects that
are pushing the limits of web application development from websites and libraries
such as Google's Swiffy project that easily allow you to convert simple Flash SWF
files directly to a Web-friendly HTML and JavaScript configuration, to familiar
methods of exporting Flash vector and bitmap animations into Web-ready sprite
sheets right from within the Flash Professional IDE. Projects such as Haxe, Dart,
and Jangaroo give developers new options when attempting to create their HTML5
projects. The native JavaScript that will drive their application can actually be written
in a completely different language altogether. Extending the capabilities of JavaScript
into other languages may seem backwards at first, but the reasons for creating
these projects generally all come down to the lack of common language syntax and
development flow issues developers have when writing JavaScript. As mentioned
earlier, none of the projects or features within specific applications mentioned in this
chapter are required when developing you next HTML5 project. Arming yourself
with the knowledge of what projects and platforms web developers have available
to them right now will allow you to come to better conclusions as to the best way for
you to tackle your next HTML5 project.

I have to stress, the list of applications, features, and compilers mentioned in this
chapter is only a small fraction of what is available to you when working with
JavaScript. If you are interested in seeing more projects that can compile to and or
extend JavaScript, head over to http://altjs.org to get a start. There you will
find a listing of projects that target beginner to advanced developer styles, so I am
sure there will be something there to interest you. Many of these projects are based
off of CoffeeScript (http://coffeescript.org), yet another dedicated language
that compiles directly to JavaScript, which is yet another great project I recommend
checking out. The number of projects related to extending JavaScript's development
flow and abilities seems endless, and growing every day. No one can ever expect
you to know all of them, but having a general understanding of what is out there
and what many of these platforms can do will allow you to make faster and better
decisions when setting out to develop your next project.

In the next two chapters, we will begin taking everything we have covered up to
this point into an actual HTML5 application development flow. We will cover many
of the important aspects every developer should be aware of when developing for
the Web as well as a way to properly test your application as you develop. Finally
to wrap everything up, we will take that application to the Internet and cover some
ways to publish and maintain your project once it is live.

Avoiding the Roadblocks
Up to this point in the book, we have covered many of the new and exciting aspects
of web development with HTML5. However, during this time we have only ever
looked at each feature as an individual aspect rather than a piece of a larger project.
When it comes to building applications for the real world, you will inevitably have
to begin merging these new features together to build the appropriate feature set
within your app. In this chapter, we will build a playable game using some of the
new and old features available to you as a web developer. Beginning with a version
built-in Flash, we will then build a direct port of the application into HTML5 and
discuss the differences and issues you may encounter while dealing with assets and
functionality that you have become used to in the ActionScript and Flash world
of development.

The Jet Pack game
The application we will build is a simple 2D, side scrolling game with simplistic
controls that can easily be converted to touch event for mobile devices. To keep things
easy to explain and understand, I have modeled this game after the popular Helicopter
Game (http://www.helicopter-game.org/) that has been played all over the
Internet for many years.

Avoiding the Roadblocks

[238]

The following screenshot shows the Helicopter Game:

Although there are already many versions of this game on the Internet, the most
popular ones are written in Flash, cutting out many users on mobile and desktop
browsers from playing it. The gameplay and controls are extremely simplistic and
only require the player to use a single key on their keyboard or use their mouse to
click instead.

Rather than attempt to directly copy this popular game, we will use it as a starting
point for gameplay design. To add our own personal touch to the game, we will
switch the helicopter character to a little man with a jet pack. Before we get started,
take a look at the following screenshot of the game in action to get a better idea of
what our end result will look like. Of course you can always play the game yourself
by checking out the Flash and HTML versions of this application located with the
example files for this chapter:

Chapter 9

[239]

You play this game as the character, the Jet Pack man, displayed on the left of the
previous screenshot. Your goal is to control the character's altitude by activating
his jetpack. As your character travels deeper into the cave system, not only will the
cave become increasingly tighter, but there will be randomly placed obstacles which
you will need to pilot yourself around. Gravity plays an important role as well since
when your jetpack is not activated, your player will begin falling back down to the
ground. The level objects are dynamically generated in real time as the player travels
deeper into the cave and constrained to tighter positions as the difficulty increases.
During every interval of the game source code, each section of the level is checked
for collision with the player to determine if the game is over or not. Each interval
of the game also increases the player's current score, so the deeper into the cave
you travel, the higher your score will be. High scores are tracked within the game
instance and displayed within the UI to allow the player to easily see what the next
attempt's goal will be.

Avoiding the Roadblocks

[240]

As I mentioned before, we will initially look at this game's source code written in
ActionScript 3 to get an understanding of how I have written it. Of course this comes
with the disclaimer that although some aspects of this games code may work for you
in other projects, the source code for this game has been set up to aid in our learning
and understanding of ActionScript 3 to HTML5 conversions. This game has not been
optimized to the point it should be for public release and I will do my best during this
chapter to point out what some of these short comings are. With all of this in mind,
let's jump right into the source structure of the Flash version of this Jet Pack game.

Building the game in Flash
To keep things easy to understand we will keep the line and file count to a minimum
for this game. We will begin with the base class for our ActionScript project named
Game. Check out the following condensed base class example to get an idea of the
game's code structure. You can always look at the full version in the downloadable
chapter example files:

package {
 import flash.display.Sprite;
 import flash.events.Event;
 import flash.events.KeyboardEvent;

 [SWF(width='1000', height='800', backgroundColor='#000000',
 frameRate='60')]
 public class Game extends Sprite {
 private var _levelBlocks:Array = new Array();
 private var _interval:int;
 private var _blockInterval:int;
 private var _player:JetPackMan;
 private var _difficulty:int = 10;
 private var _speed:int = 10;
 private var _keyDown:Boolean;
 private var _score:int;
 private var _highScore:int;
 private var _scoreBoard:ScoreBoard;
 private var _gameOver:Boolean;

 public function Game() {
 generateLevel();
 createPlayer();
 displayScore();

 this.addEventListener(Event.ENTER_FRAME, updateI terval,
 false, 0, true);
 stage.addEventListener(KeyboardEvent.KEY_DOWN, onKeyDown,
 false, 0, true);

Chapter 9

[241]

 stage.addEventListener(KeyboardEvent.KEY_UP, onKeyUp, false,
 0, true);
 }

 // Starts a new game.
 private function startNewGame():void {
 // Reset the game switches and counters.
 _gameOver = false;
 _score = 0;
 _speed = 10;
 _difficulty = 10;

 for each(var block:LevelBlock in _levelBlocks) {
 block.destroy();
 removeChild(block);
 }
 _levelBlocks = new Array();

 removeChild(_player);
 _player.destroy();
 _player = null;

 generateLevel();
 createPlayer();

 this.addEventListener(Event.ENTER_FRAME, updateInterval,
 false, 0, true);
 }

 // Adds the score board to the stage.
 private function displayScore():void {
 _scoreBoard = new ScoreBoard();
 _scoreBoard.x = -40;
 _scoreBoard.y = -20;
 addChild(_scoreBoard);
 }

 // Generates the beginnings of a new level.
 private function generateLevel():void {
 for(var i:int = 0; i < 20; i++) {
 var randomHeight:int = (Math.floor(Math.random() *
 (_difficulty - (_difficulty - 10) + 1)) + (_difficulty -
 10));
 var levelBlock:LevelBlock = new LevelBlock(_speed, 800 +
 (20 * i), randomHeight - 10, 20, 100);
 _levelBlocks.push(levelBlock);
 addChildAt(levelBlock, 0);

Avoiding the Roadblocks

[242]

 randomHeight = (Math.floor(Math.random() * (_difficulty -
 (_difficulty - 10) + 1)) + (_difficulty - 10));
 var bottomLevelBlock:LevelBlock = new LevelBlock(_speed, 800 +
 (20 * i), (randomHeight * -1) + 750, 20, 100);
 _levelBlocks.push(bottomLevelBlock);
 addChildAt(bottomLevelBlock, 0);
 }
 }

 // Creates and adds a player object to the stage.
 private function createPlayer():void {
 _player = new JetPackMan();
 _player.x = 80;
 _player.y = 400;
 addChild(_player);
 }

 // Called on keyboard key down.
 private function onKeyDown(e:KeyboardEvent):void {
 if(_gameOver) startNewGame();
 _keyDown = true;
 }

 // Called on keyboard key up.
 private function onKeyUp(e:KeyboardEvent):void {
 _keyDown = false;
 }

 // Game interval. Called on each frame.
 private function updateInterval(e:Event):void {
 _score = _score + 1;
 _scoreBoard.score.text = String(_score);

 if(_keyDown) {
 _player.jetPackOn();
 _player.y = _player.y - 5;
 } else {
 _player.jetPackOff();
 _player.y = _player.y + 5;
 }

 _interval++;
 var increaseSpeed:Boolean = false;
 if(_interval >= 100) {
 increaseSpeed = true;
 _difficulty = _difficulty + 5;

Chapter 9

[243]

 //_speed++;
 _interval = 0;
 }

 // Update every block
 for each(var block:LevelBlock in _levelBlocks) {
 block.update();

 if(block.hitTestObject(_player)) {
 _player.explode();
 _gameOver = true;

 if(_score > _highScore) {
 _highScore = _score;
 _scoreBoard.highscore.text = String(_highScore);
 }

 this.removeEventListener(Event.ENTER_FRAME,
 updateInterval);
 }

 if(increaseSpeed) block.setSpeed(_speed);
 }

 // Check if new blocks need to be added
 if(_levelBlocks[_levelBlocks.length - 1].currentX() < 2000)
 {
 var randomHeight:int = (Math.floor(Math.random() *
 (_difficulty - (_difficulty - 10) + 1)) + (_difficulty -
 10));
 var levelBlock:LevelBlock = new LevelBlock(_speed, _
 levelBlocks[_levelBlocks.length - 1].currentX() + 20,
 randomHeight - _difficulty, 20, 100 + _difficulty);
 _levelBlocks.push(levelBlock);
 addChildAt(levelBlock, 0);

 randomHeight = (Math.floor(Math.random() * (_difficulty -
 (_difficulty - 10) + 1)) + (_difficulty - 10));
 var bottomLevelBlock:LevelBlock = new LevelBlock(_speed,
 _levelBlocks[_levelBlocks.length - 1].currentX(),
 (randomHeight * -1) + 750, 20, 100 + _difficulty);
 _levelBlocks.push(bottomLevelBlock);
 addChildAt(bottomLevelBlock, 0);
}

 // Add a random block every now and then to make things
 interesting.

Avoiding the Roadblocks

[244]

 // We will base the frequency of random blocks on the
 // current difficulty in the game.
 _blockInterval++;
 if(_blockInterval > 5000 / _difficulty) {
 _blockInterval = 0;

 randomHeight = (Math.floor(Math.random() * (750 - 5 + 1))
 + 5);
 var randomY:int = (Math.floor(Math.random() * (750 - 5 +
 1)) + 5);
 var randomBlock:LevelBlock = new LevelBlock(_speed,
 _levelBlocks[_levelBlocks.length - 1].currentX(), randomY,
 20, 100 + _difficulty);
 _levelBlocks.push(randomBlock);
 addChildAt(randomBlock, 0);
 }
 }

 }
}

This single class manages to take care of the majority of the gameplay and user
interactions. The game is constantly updated based on the current difficulty factor
set within the game. As the game progresses, the difficulty is translated into scrolling
speed as each asset within the level is updated and set to change its x position value
in larger amounts. Although there are two more classes to support the creation of the
Player as well as all of the LevelBlock, I will leave that to you to dig into.

Converting game assets
To start preparing this game to be ported to HTML5, we will begin with the assets
used within the game, converting and preparing each of them for the web. To create
the user interface and player object within this game, I have created and published
a Flash SWC which is included into this ActionScript project in Flash Builder. The
assets within the SWC contain not only the objects and animations used in the game,
but the sounds as well as shown in the following screenshot:

Chapter 9

[245]

As you can see in the previous screenshot, my crudely hand drawn Jet Pack man
has a timeline based key frame animation sequence attached to him to allow him to
visually turn on and off his jetpack as well as explode when he impacts any wall.
This timeline animation has some simple ActionScript appended to some of the
frames which allow for easy stopping and looping for the animation sequence.

Avoiding the Roadblocks

[246]

To convert the Player MovieClip into an HTML5 ready asset, we will use the
Sprite Sheet Generator tool we discussed in previous chapters as shown in the
following screenshot:

After condensing the image into the smallest layout possible and optimizing the
output properties in the Generate Sprite Sheet window, set the Data format
property to JSON and export the data. The compiled Sprite Sheet as well as
the JSON file will be used to replicate the Player's animation from our HTML5
conversion. Once we have prepped the Player Sprite Sheet, we can put it aside
for the time being while we convert the remainder of the assets.

Chapter 9

[247]

Now let's move on to preparing the audio used within the game. The audio assets
within the Flash SWF can easily be prepared for HTML5 by simply locating the source
MP3 files and placing them within the HTML5 game project directory. Since the MP3
files are supported for use within HTML5 under the <audio> element, no further
preparation will be needed in order to get the audio ready for our conversion. The
tricky part with HTML5 audio only comes when you need to deal with it in the code,
which we will get into shortly.

Without the use of the Flash Timeline or any other HTML5 sprite sheet library, we
will have to import and manipulate the Sprite Sheet data of our Player completely on
our own. Handy calls like gotoAndPlay(); and stop(); do not exist in JavaScript,
so we will need to recreate that functionality on our own. This may sound like a
monumental task, but rest assured, Sprite Sheets images and datasets contain all
of the necessary information required for you to display them properly. All you
need is to understand the data format and the properties that need referencing.
Since Sprite Sheets are broken up into frames, the concept of playback control via
numerical frame referencing should be extremely familiar to you. The frames that
have been exported within the Sprite Sheet dataset will directly correspond to the
numerical value of the frames within the source MovieClip in Flash. However, since
the frame data in the JSON file is in an array, we will encounter an off by one error
if we don't compensate for the fact numerical array keys start at 0 and not 1. Again,
it's worth mentioning that this method of displaying the Sprite Sheet is just one of
thousands of implementations of Sprite Sheets in HTML5. Many developers have
created their own open source projects to alleviate much of the stress of having to do
this yourself within every one of your projects.

There are a ton of great open source resources on the web that
can aid in Sprite Sheet integration into your HTML5 project. One
library worth checking out is http://www.spritely.net, a
fully HTML5 and jQuery based Sprite Sheet library.

Take a look at the condensed version of the converted JetPackMan class which is
shown in the following JavaScript. This will give you a much clearer idea of frame
control for this Sprite Sheet:

var JetPackMan = function() {
 var _jetPackSound = document.getElementById("jetpack");
 _jetPackSound.addEventListener("ended", onSoundDone, false);

 var _explosionSound = document.getElementById("explosion");
 var _soundPlaying = false;

 var _animationData = Array();
 var _imageSource = 'imgs/JetPackMan.png';

Avoiding the Roadblocks

[248]

 var _currentFrame = 0;
 var _canvas = document.getElementById("player");
 var _context = _canvas.getContext("2d");

 var _imageObj = new Image();
 _imageObj.src = _imageSource;

 var _currentY = 0;
 var _jetPackOn = false;
 var _explode = false;
 var _interval;

 var _xVal = 0;
 var _yVal = 0;
 var _widthVal = 0;
 var _heightVal = 0;

 // Append the Sprite Sheet JSON to a local Array.
 $.each(JetPackManData['frames'], function(key, val) {
 _animationData.push(val);
 });

 _widthVal = _animationData[_currentFrame]['frame']['w'];
 _heightVal = _animationData[_currentFrame]['frame']['h'];

 // Starts the animation sequence.
 this.startAnimation = function() {
 runAnimation();
 }

 // Turns the Jet Pack on.
 this.jetPackOn = function() {
 _jetPackOn = true;

 if(!_soundPlaying) {
 _jetPackSound.play();
 _soundPlaying = true;
 }
 }

 // Runs the character's animation sequence.
 function runAnimation() {
 // Clear the entire canvas as the player sits in its own.
 _context.clearRect(0, 0, 1000, 800);

Chapter 9

[249]

 if(_jetPackOn) {
 if(_currentFrame == 0) _currentFrame = 1;

 if(_currentFrame == 5) {
 _currentFrame = 0;
 } else {
 _currentFrame++;
 }
 }

 if(_explode) {
 if(_currentFrame < 7) {
 _currentFrame = 7;
 } else {
 if(_currentFrame < 13)
 _currentFrame++;
 else
 return; // The explosion has finished, stop the
 interval.
 }
 }

 _currentY = _yVal;

 _context.drawImage(
 _imageObj,
 _animationData[_currentFrame]['frame']['x'],
 _animationData[_currentFrame]['frame']['y'],
 _animationData[_currentFrame]['frame']['w'],
 _animationData[_currentFrame]['frame']['h'],
 _xVal,
 _yVal,
 _animationData[_currentFrame]['frame']['w'],
 _animationData[_currentFrame]['frame']['h']
);

 _widthVal = _animationData[_currentFrame]['frame']['w'];
 _heightVal = _animationData[_currentFrame]['frame']['h'];

 // Call the animation interval again.
 setTimeout(runAnimation, 1000/60);
 }

 // Called on jetpack sound effect complete.
 function onSoundDone(e) {

Avoiding the Roadblocks

[250]

 _soundPlaying = false;
 }

 // Turns the Jet Pack off.
 this.jetPackOff = function() {
 _jetPackOn = false;
 _currentFrame = 0;
 }

 // Explodes the JetPackMan.
 // To be called on level collision.
 this.explode = function() {
 _explode = true;
 _jetPackOn = false;
 _explosionSound.play();
 }

 this.setX = function(x) { _xVal = x; }
 this.setY = function(y) { _yVal = y; }
 this.currentX = function() { return _xVal; }
 this.currentY = function() { return _yVal; }
 this.currentWidth = function() { return _widthVal; }
 this.currentHeight = function() { return _heightVal; }

 // Destroys the JetPackMan.
 this.destroy = function() {
 _explosionSound = null;
 _jetPackSound = null;
 }
}

This method of graphic manipulation, though similar to the concepts used in
the Flash Timeline, differ in that we are using 100 percent bitmap data which
requires us to manually redraw the visible area of the Sprite Sheet on each frame
interval. During each update interval to the animation sequence, we utilize the
built in drawImage(); method to append the updated frame location to the HTML
<canvas> element. This means that if the pre-existing visible data that had been
drawn to the canvas in the previous frame is not manually removed from the
canvas, the next drawImage(); call will just append the new frames graphics over
top of the old. To avoid this issue we call another built in method, clearRect();,
with the position values of where the pre-existing graphic was located. This may
understandably sound confusing, however there is a very easy way to visualize
this Sprite Sheet manipulation in action. If you open the HTML5 version of the
Jet Pack game included within this chapter's example files and comment out the

Chapter 9

[251]

clearRect(); within the runAnimation function, you can now play the game and
see what the Player element will look like during runtime. As time passes and more
frames are displayed on top of each other, it can quickly become a mess of layered
images that will never get updated. As annoying as this is, it does serve a great
purpose as it could be utilized for some very interesting visualizations. However,
since we only want one character in our game at a time we must be sure to clean up
the canvas display on each interval.

Although it is avoided in this example, another important note worth making about
integrating this Sprite Sheet is the issues you may encounter while attempting to
import the JSON dataset containing the Sprite Sheet frame properties as follows:

$.getJSON('json/JetPackMan.json', function(data) {
 // Your code here…
});

If used for external data loading, the popular jQuery getJSON method (http://api.
jquery.com/jQuery.getJSON/) will attempt an AJAX request to the external data
source in order to read the data and pass it back into the return method. However if
you are executing the JavaScript from your local machine without the use of a web
server, your browser will not accept the request and display a warning that looks
something like the following console screenshot:

One way of fixing this issue is by simply publishing your HTML5 project to a
working web server. From there you can open up the reference to the data from
the website URL in a browser. You could also setup your own web server on your
computer to have the ability to connect to http://localhost in order to view your
content. Projects like WAMP (http://www.wampserver.com/en/) and MAMP
(http://www.mamp.info/en/index.html) are all-in-one packages including the
Apache web server, MySQL Server and PHP. These server setups, traditionally run
on Linux servers, allow you to easily emulate the environment that your website
will eventually reside on and give you all the benefits from the software stack
described above.

Avoiding the Roadblocks

[252]

Of course the content you run on your local web server will not be public on
the Internet, so you won't be able to share it with your friends unless you start
performing some network configuration (you can search for "port forwarding" on
Google if you're interested). The final and probably the more logical way to fix this
issue when attempting to run this code locally without a web server is to strip the
data from inside the JSON Sprite Sheet output and append it into the JavaScript
source which is included in the HTML document of the game as follows:

var JetPackManData = {
 "frames": {
 "Player0000": {
 "frame": {"x":0…

By simply appending the JSON object as it is exported from Flash to a standard
JavaScript variable, we can now call the JetPackManData variable rather than a
jQuery getJSON() call allowing us to run this game locally with no further Access
Control issues.

The Mozilla Developer Network has a great resource for more
detailed information as to why Access Control issues may occur
(https://developer.mozilla.org/en-US/docs/HTTP/
Access_control_CORS).

Another issue you may encounter, depending on the browser size you use to play
this game on, is browser page scrolling or other unwanted actions when the user is
attempting to control the player within the game.

Converting ActionScript classes
Since you have already got a glimpse of the converted game source by checking
out the Player class which has been modified to deal with Sprite Sheets rather than
the Flash Timeline, let's continue down that road by looking at how we can set up
the base class of the application in HTML5. To aid in a couple of event listeners
and element selection, I have included the jQuery library within this project. I have
already made note of this controversial decision in the previous chapters of this
book, but it is worth noting again that many developers dislike the usage of jQuery
simply for use with element selection. Since the game we are currently converting
to HTML5 is extremely simplistic, there really is no need for jQuery within this
example. However, if you were to take this simple game source and extend it into
a more developed game with rich UI and better game play, the use of a library like
jQuery will easily become extremely valid.

Chapter 9

[253]

The following source is a simplified copy of the Game.js file which is included
within the HTML5 version of this game. I have simplified the code and further
added commented documentation to aid in understanding how the flow of this
game source operates:

// Wait for the page load to finish before starting the game.
$(document).ready(function() {
 // Create a new instance of our Game object.
 // This is effectively like declaring our base class
 // in our Flash Builder ActionScript project.
 var game = new Game();
});

// Declaring the Game Object
var Game = function() {
 // Setup all of the private object variables.
 var _levelBlocks = Array();
 var _interval = 0;
 var _blockInterval = 0;

 // Calls the (JetPackMan) object source we just reviewed above
 var _player = new JetPackMan();

 var _difficulty = 10;
 var _speed = 10;
 var _keyDown = false;
 var _score = 0;
 var _highScore = 0;
 var _gameOver = false;
 var _gameInterval;

 // Use the 'game' canvas for level assets.
 var _canvas = document.getElementById("game");

 // Append the stats display to the stage for benchmarking.
 var _stats = new Stats();
 _stats.setMode(0);
 document.body.appendChild(_stats.domElement);
 _stats.domElement.style.position = 'absolute';
 _stats.domElement.style.left = '960px';
 _stats.domElement.style.top = '41px';
 _stats.domElement.style.zIndex = '2';

 // Prepare the initial aspecs of the level.

Avoiding the Roadblocks

[254]

 generateLevel();

 // Create a player object for the user to control.
 createPlayer();

 // Set up Enter Frame and keyboard even listeners.
 // To emulate the 60 frames per second runtime in the Flash
 // version of this game, we divide 1000 by the specific frame
 // rate.
 _gameInterval = setInterval(
 function() {
 // On every frame interval
 updateInterval();
 }
 , 1000 / 60);

 // Set up the keyboard event listeners as they were set up
 // in the Flash version.
 $(document).keydown(function() { onKeyDown(); });
 $(document).keyup(function() { onKeyUp(); });

 // Do the same for the mouse click events.
 window.addEventListener('mousedown', onKeyDown, false);
 window.addEventListener('mouseup', onKeyUp, false);

 // Finally add support for touch events.
 window.addEventListener('touchstart', onKeyDown, false);
 window.addEventListener('touchend', onKeyUp, false);

 /**
 * Starts a new game.
 * Note: The structure of this function declares it as a
 * private function within the Game object scope.
 */
 function startNewGame() {
 // Reset the game switches and counters.
 _gameOver = false;
 _score = 0;
 _speed = 10;
 _difficulty = 10;

 // Clear all level blocks by calling the destroy method
 // on each of the active blocks.

Chapter 9

[255]

 // NOTE: By appending the _levelBlocks.length to a
 // variable prior to looping over the Array, we avoid
 // having to duplicate the same lookup multiple times.
 var l = _levelBlocks.length;
 for(var i = 0; i < l; i++) {
 _levelBlocks[i].destroy();
 }
 _levelBlocks = new Array();

 // Remove player.
 _player.destroy();
 _player = null;

 generateLevel();
 createPlayer();

 // Start the game interval event again.
 _gameInterval = setInterval(function() { updateInterval(); }, 1000
 / 60);
 }

 /**
 * Generates the beginnings of a new level.
 * By running this prior to starting the game, we can
 * assure that there is some level already created for the
 * Player to initially fly into.
 */
 function generateLevel() {
 // Run a loop to generate LevelBlocks on both the top
 // and bottom of the level.
 for(var i = 0; i < 20; i++) {
 // Top LevelBlocks
 // Base the height of the LevelBlock on the
 // current game difficulty.
 var randomHeight = (Math.floor(Math.random() * (_difficulty - (_
 difficulty - 10) + 1)) + (_difficulty - 10));
 var levelBlock = new LevelBlock(_speed, 800 + (20 * i),
 randomHeight - 10, 20, 100);
 // Once created, add the LevelBlock reference to
 // the _LevelBlocks Array.
 _levelBlocks.push(levelBlock);

 // Bottom LevelBlocks
 // We will perform the same operation as above

Avoiding the Roadblocks

[256]

 // with some some changes to place this block on
 // the bottom of the level.
 randomHeight = (Math.floor(Math.random() * (_difficulty -
 (_difficulty - 10) + 1)) + (_difficulty - 10));
 var bottomLevelBlock = new LevelBlock(_speed, 800 + (20 *
 i), (randomHeight * -1) + 750, 20, 100);
 _levelBlocks.push(bottomLevelBlock);
 }
 }

 /**
 * Creates and adds a player object to the stage.
 */
 function createPlayer() {
 _player = new JetPackMan();
 _player.setX(80);
 _player.setY(400);
 _player.startAnimation();
 }

 /**
 * Called on keyboard key down.
 */
 function onKeyDown(e) {
 // Start a new game if the current one has ended.
 if(_gameOver) startNewGame();

 _keyDown = true;
 }

 /**
 * Called on keyboard key up.
 */
 function onKeyUp(e) {
 _keyDown = false;
 }

 /**
 * Game interval. Called on each frame.
 */
 function updateInterval(e) {
 _stats.begin();

 // Update the player's score.

Chapter 9

[257]

 _score = _score + 1;
 $('#scoreboard .score').html(String(_score));

 // Move player
 if(_keyDown) {
 _player.jetPackOn();
 _player.setY(_player.currentY() - 5);
 } else {
 _player.jetPackOff();
 _player.setY(_player.currentY() + 5);
 }

 // Speed game up as it plays
 _interval++;

 // Check if the interval is far enough to increase
 // the difficulty factor.
 var increaseSpeed = false;
 if(_interval >= 100) {
 increaseSpeed = true;
 _difficulty = _difficulty + 5;
 //_speed++;
 _interval = 0;
 }

 // Update every block
 var l = _levelBlocks.length;
 for(var i = 0; i < l; i++) {
 _levelBlocks[i].update();

 // This is where things get really interesting.
 // Since we do not have access to the
 // hitTestObject() method like in ActionScript 3
 // we will need to do our own collision detec-tion.
 // This process is further explained after this
 // code example.
 if(
 _levelBlocks[i].currentX() < _player.currentX() +
 _player.currentWidth() &&
 _levelBlocks[i].currentX() +
 _levelBlocks[i].currentWidth() > _player.currentX() &&
 _levelBlocks[i].currentY() < _player.currentY() +
 _player.currentHeight() &&
 _levelBlocks[i].currentY() +
 _levelBlocks[i].currentHeight() > _player.currentY()

Avoiding the Roadblocks

[258]

) {
 _player.explode();
 _gameOver = true;

 // Check for highscore.
 if(_score > _highScore) {
 _highScore = _score;
 $('#scoreboard .highscore').html(String(_highScore));
 }

 // Like the Flash version, we need to stop
 // the game interval once the user has hit
 // a part of the level. To do this, we can
 // utilize the clearInterval() method and
 // pass in the _gameInterval reference.
 window.clearInterval(_gameInterval);
 }

 // If the condition for the game speed to increase
 // was met and the increaseSpeed Boolean is set to
 // true, call the setSpeed method on each of the
 // LevelBlocks.
 if(increaseSpeed) _levelBlocks[i].setSpeed(_speed);
 }

 // As time passes and the LevelBlocks scroll across
 // the screen we need to check if new blocks need to be
 // added in order to keep the level filled with blocks.
 // To do this, we just monitor the X position value of
 // last block in the _levelBlocks Array.
 if(_levelBlocks[_levelBlocks.length - 1].currentX() < 2000) {
 // Just as in the generateLevel() method, we
 // create a block on both the top and bottom
 // and set its height based on the _ difficulty.
 var randomHeight = (Math.floor(Math.random() * (_difficulty
 - (_difficulty - 10) + 1)) + (_difficulty - 10));
 var levelBlock = new LevelBlock(_speed,
 _levelBlocks[_levelBlocks.length - 1].currentX() + 20,
 randomHeight - _difficulty, 20, 100 + _difficulty);
 _levelBlocks.push(levelBlock);

 // Bottom
 randomHeight = (Math.floor(Math.random() * (_difficulty -
 (_difficulty - 10) + 1)) + (_difficulty - 10));
 var bottomLevelBlock = new LevelBlock(_speed,

Chapter 9

[259]

 _levelBlocks[_levelBlocks.length - 1].currentX(),
 (randomHeight * -1) + 750, 20, 100 + _difficulty);
 _levelBlocks.push(bottomLevelBlock);
 }

 // To make the game interesting, we add a random block
 // every now and then to make things interesting.
 // We will base the frequency of random blocks on the
 // current difficulty in the game.
 _blockInterval++;
 if(_blockInterval > 5000 / _difficulty) {
 // When the condition is met, reset the counter.
 _blockInterval = 0;

 // Create random height and Y position values
 // to keep things interesting. This method of
 // generating a random number within a range
 // is one of the most common.
 // Math.floor(Math.random()*(max-min+1))+min;
 randomHeight = (Math.floor(Math.random() * (750 - 5 + 1)) +
 5);
 var randomY = (Math.floor(Math.random() * (750 - 5 + 1)) +
 5);
 var randomBlock = new LevelBlock(_speed,
 _levelBlocks[_levelBlocks.length - 1].currentX(), randomY,
 20, 100 + _difficulty);
 _levelBlocks.push(randomBlock);
 }

 _stats.end();
 }
};

Avoiding the Roadblocks

[260]

In print, this may seem like a ton of code but in reality this is a very simplistic
example of a 2D game built in JavaScript. Be sure to read over the comments
included in the code which highlight what each part of the code accomplishes and
how it is laid out. When all is said and done and the main index.html file is opened
up in a HTML5 compliant web browser, you will hopefully see the resulting Jet Pack
game in 100 percent HTML5 as shown in the following screenshot:

Notice that we have even managed to get a statistics readout at the top right corner
of the game area just like in our Flash version. Just like how we reviewed in Chapter
7, Choosing How You Develop, we utilize the stats display made possible by the same
developer (Ricardo Cabello Miguel also known as Mr. Doob) who provided us
with the stats display we used in Flash. Checkout the GitHub page for Stats.js
(https://github.com/mrdoob/stats.js/) to learn more about the project.

Chapter 9

[261]

Dealing with audio and playback
Using the knowledge we have gained during the overview of HTML5 audio file type
and codec support in this book, we can set up the audio for this game pretty easily.
Rather than using the SWC importing method that was used in our Flash project,
when importing audio into an HTML5 project, we can just append the reference to
the source directly into the body of the HTML document inside of a <audio> element
as follows:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>Jet Pack</title>

 <link rel="stylesheet" type="text/css" href="css/Game.css">

 <script src="js/jquery.min.js"></script>
 <script src="js/Stats.js"></script>
 <script src="js/LevelBlock.js"></script>
 <script src="js/JetPackMan.js"></script>
 <script src="js/JetPackManData.js"></script>
 <script src="js/Game.js"></script>
 </head>

 <body>
 <canvas id="game" width="1000" height="800"></canvas>
 <canvas id="player" width="1000" height="800"></canvas>

 <div id="scoreboard">
 <p>Score: 0</p>
 <p>HighSchore: 0</p>
 </div>

 <audio id="explosion" src="audio/explosion.mp3"></audio>
 <audio id="jetpack" src="audio/jetpack.mp3"></audio>
 </body>
</html>

Avoiding the Roadblocks

[262]

By default the audio will not play and because we excluded the option to create
playback controls, there will be no visible element created within the HTML
document during page render. Therefore to begin utilizing the audio in JavaScript,
which will allow us to play it on-demand, we begin by referencing the element that
was appended into the HTML document as follows:

var _jetPackSound = document.getElementById("jetpack");

With the audio file referenced, we can easily begin to control the playback by calling
the play() method on the _jetPackSound variable. However, to avoid overlapping
the same audio track multiple times during the game play, we can also append an
event listener to the element to be called when the sound playback has completed
as follows:

_jetPackSound.addEventListener("ended", onSoundComplete, false);

By creating the event handler for this listener, we can also update the _
soundPlaying Boolean variable located in the JetPackMan class. From this point
forward, we can now easily determine if the sound effect is playing or not from
anywhere within the JetPackMan object.

You can find some more detailed information on HTML5 audio
and video playback control in JavaScript on the Mozilla Developer
Network website https://developer.mozilla.org/en-US/
docs/HTML/Using_HTML5_audio_and_video.

Rewriting AS3 code that can't be directly
converted
As I mentioned in one of the previous code examples earlier, the lack of the
commonly used hitTestObject() method from ActionScript 3 in any HTML5
project means that many of these common yet complex pieces of functionality
need to be written yourself. In the example Jet Pack game in HTML5, we use one
of the more simplistic methods of collision detection by checking over the Players
bounding box or the area that the Player takes up and compare it with each one
of the LevelBlocks that has been generated. This condition, when simplified, looks
something like the following code:

if(
 a.x < b.x + b.width && a.x + a.width > b.x && a.y < b.y +
 b.height && a.y + a.height > b.y
) {
 // 'a' is touching 'b'
}

Chapter 9

[263]

One of the tricky aspects of implementing a functionality like collision detection is
that with the advent of the Canvas element in HTML5, there are multiple ways to
create and manipulate elements within your HTML document. Flash applications
have the advantage of utilizing some great built-in functionality because the
development structure is far more structured. When developing HTML5 applications
that are heavily dependent on JavaScript, the development flow becomes a little
more of a wild west setting.

When digging around to see how other developers may have
implemented a feature like collision detection, a great resource as
always is Github. The Github project search allows you to narrow
your searches down to a specific programming language making it
that much easier to find an open source project that may help you out
(https://github.com/search?l=JavaScript&q=Collision
+Detection&ref=cmdform&type=Repositories).

Mobile platform support
Since we now have an HTML5 ready version of our game, one of the initial benefits
that we can consider is the fact that most mobile device browsers will support the
playback of this application. However, because we have set up the game specifically
to be controlled via the user's keyboard, we have not created a control method for
users that don't have access to one. Correcting this issue in the case of our Jet Pack
game is actually pretty easy since our control system only uses one input. In reality,
we have two options as to how we implement this feature as almost every mobile
browser that supports touch events registers them as click events as well. This means
that we can either implement the same keyboard event listener as a specific touch
event or as a common mouse click event. The upside of setting the mouse event over
the touch event is that the mouse event will also register for any user who happens
to play the game on a device with a mouse as well. Using only default JavaScript
syntax we can accomplish this with the following code:

window.addEventListener('mousedown', onKeyDown, false);
window.addEventListener('mouseup', onKeyUp, false);

As you can see, since we don't condition the key press in the onKeyDown or onKeyUp
methods, we can simply tie the mouse event to the same event handler and call
it a day. Depending on whether you have rather used touch events instead of
mouse events, we would only have to modify the event parameter within the
addEventListener call as follows:

window.addEventListener('touchstart', onKeyDown, false);
window.addEventListener('touchend', onKeyUp, false);

Avoiding the Roadblocks

[264]

The Mozilla Developer Network also contains a detailed outline
of what Touch Events and the properties within are available to
you when developing the touch-enabled HTML5 applications
(https://developer.mozilla.org/en-US/docs/DOM/
Touch_events). Although this is a Mozilla site, most of the
documentation is cross browser compliant.

Probably one of the most troubling aspects of testing this game on a mobile device
is the fact that the canvas element utilized to display the game elements has a static
width and height. The width and height I chose to originally create the game are
1000px by 600px. These dimensions may render properly on some mobile devices,
but the chances are if you were to play this on a phone, some area of the canvas will
either be cut off from display, or presented in a manner that scales the canvas to fit
the screen as shown in the following screenshot:

The previous screenshot is taken directly from a Samsung Galaxy S2 and clearly
shows how the game is cut off from the default view in the landscape display.
Zooming in and out of the page is still available as an interactive browser feature,
but even when zoomed out when the game is in landscape display, I am unable to
view the entire viewable game area. Now check out the next screenshot taken on the
same phone of the game in portrait display:

Chapter 9

[265]

Now with the page view completely zoomed out, we can see the entire game area
but the bottom half of the viewable area is wasted as the game is set up to display
in a 1000px x 600px display. This issue, though painful to deal with, is actually very
common to many Flash developers. If you have developed any web applications in
Flash that require a scalable display, you would have had to write event listeners in
your application to watch for window resizing and move the position of the elements
within your application accordingly. You can update the canvas size from JavaScript
easily with calls to your elements width and height properties with the following code:

myCanvas.width = 1920;
myCanvas.height = 1080;
myCanvas.style.width = "1920px";
myCanvas.style.height = "1080px";

This setup covers all of your bases by updating the CSS style of the element as well
as the base element width and height values. Of course, with this update you will
also have to manually update the position values for all of the playable elements
that are being displayed in this game. If you wish to continue digging more into the
source of this game, I advise either attempting to extend the gameplay or working
with the Canvas element resizing for dynamic window display sizes.

Avoiding the Roadblocks

[266]

Summary
By using an application originally built in Flash, in this chapter we have covered
some more interesting aspects of HTML5 development. By developing the HTML5
Version of our game without the use of any third party JavaScript libraries, we
can easily compare the two development paradigms. In reality, Flash and HTML5
development are extremely similar. Asset preparation and manipulation stands
out as one of the most complicated aspects of transitioning your ActionScript and
Flash development experience over to HTML5 development. Understanding your
limitations, regardless of whether they are browser or device specific is a key factor
in making sure you're ready to display your content to as many users as possible.

In the next and final chapter of the book, we will continue putting together working
HTML5 applications with more emphasis on preparation for public release. We will
attempt to push the limits of what HTML5 can do with peripherals like the webcams
and microphones, and discuss what your next steps in HTML5 development could
be once you have finished this book.

Preparing for Release
Throughout the chapters of this book we have covered many different applications
and tools for developing your HTML5 content. As with the Flash development
cycle you have become accustomed to, you will usually need to spend some time
optimizing your application for use on the web in the final stages of your HTML5
application development flow. Thankfully, just like the asset management and
coding stages of our HTML5 development, there are a ton of great resources to aid
in the preparation of moving your application onto a public-facing web server. When
testing your HTML5 applications locally on the computer you are developing them
on, your local network, unless specially configured, will not allow the content to be
viewed on any other computer, either on your local network or on the Internet. If
you were to install a web server on your computer and configure your networking
to allow incoming connections, only then could you share your work with others on
the Internet. To avoid any domain name or security issues, the common way to host
your work on the Internet is to purchase a web hosting plan from a vendor online.
This way your content is external from your working version and is placed on a
server specifically dedicated to host your web content. This process isn't new for
HTML5 by any means and is typical of what you would have done with your Flash
SWF files, provided you had the same intentions. However, since HTML5 projects
are not compiled into a single binary file such as Flash, we will need to take great
care in making sure our project assets and code are properly set up to deliver a fast
and secure experience to our end users. In this chapter, we will conclude the book
by looking over many of the most optimal ways to prepare your project for the web.

Preparing for Release

[268]

Targeting supported web browsers
Many developers fail to constantly test their work in multiple web browsers during
HTML5 development, either because they are too lazy to spend the time to do it,
or they just all together forget. Easily one of the biggest issues you will encounter
when testing and publishing your final application for public usage will be browser
support. If you didn't manage to test your project in various browsers on different
platforms, you may be surprised when a user complains that your application
doesn't work for them. As HTML5 still is the new kid on the block, many browsers
are still running to catch up with the feature support needed to display your HTML5
content properly.

Keeping up-to-date with what current web browsers support in the realm of HTML5
feature support can be an extremely important asset to gain as a developer. Keeping
yourself and your project out of impending doom, because you were able to spot a
lack of support on a specific device or platform early, cannot only save you tons of
time, but money as well. A great "One Stop Shop" for web browser HTML5 feature
support checks is http://caniuse.com. After opening the site in a web browser
you can easily select any of the specified HTML5 features and look into what
browsers, and more importantly what browser versions support that specific feature:

Chapter 10

[269]

Taking a look at the preceding screenshot of the Canvas tag element support
statistics (at the time of writing this book), we can see that the Canvas element is
now supported by around 85 percent of browsers. This site is almost a must have
when sitting down to create your initial technical outline for your project. With even
a slight idea of some of the features in HTML5 you may use in your project, you can
simply jump over to http://caniuse.com and determine what your end users will
be required to use to properly view your content.

http://html5readiness.com is a great example of a great HTML5 project in action
as the site uses the data from http://caniuse.com to display the HTML5 Readiness
in an easy to view, single page, interactive graphic.

This can be a great resource just like http://caniuse.com, however your
clients or designers may like it even more for its ease of use and feature support
timeline visualizations.

Preparing for Release

[270]

Having the overview of global browser support is a great resource, but if you are
interested in digging into the specifications and statistics of the browser you use on
your computer, head over to http://html5test.com and let the site score
your browser.

The score generated by the site can be taken as a general overview of all of the
HTML5 features that this site tests your browser for. Scrolling down the results page,
you will find the complete outline of each of the tested features and if it passed the
test or not.

Chapter 10

[271]

With these easy to use tools that are all accessible online for free, you have all of the
data at your fingertips to allow for proper planning and outlining of your HTML5
applications. Keep in mind that as new browsers are released and current versions
are updated, this data will continue to evolve. You may even find that some of the
data you referenced at the beginning of your project development has changed by
the time you finish. Therefore, testing your project for browser compatibility during
development is always worth the extra effort.

Be sure to also checkout the HTML5 tests for mobile browsers as well
at http://html5test.com/results/mobile.html. There you
can easily find out which current mobile devices best support not only
the features your HTML5 application utilizes, but also the HTML5
specification as a whole. This resource can be of great help when also
looking to purchase your next mobile phone or tablet.

Preparing for Release

[272]

Client-side tests
With the amount of mobile and desktop devices that have an HTML5-compliant
browser, growing at an exponential rate, the requirement for developers to
test applications or web content on a variety of different setups has become a
requirement. Unfortunately, the amount of time required to set yourself up with
testing environments on all of these devices can add up very quickly. To save
yourself copious amounts of time during the testing phase, you may be interested
in checking out http://www.browserstack.com.

After signing up with BrowserStack, you can easily access all of the modern desktop
and mobile browsers right from the service. Rather than having to configure each
machine and browser independently, BrowserStack has done all of the hard work
for you by only delivering access to the specific browser of your choice already
preconfigured with development tools. BrowserStack is a paid service, but free trials
are available if you are interested. Personally I still suggest doing this type of testing
manually at least once, to see how much you can justify the cost of a service like
this. If you are the type of person with 10 computers sitting in your basement, by all
means set up your own testing environment. You can also always set up a number

Chapter 10

[273]

of virtual machines on your development computer to enable you to turn on and off
your testing machines from a single computer. Regardless of how you do it, it will
only usually be a matter of time before you are sick and tired of spending countless
hours just maintaining your testing environment and a service such as BrowserStack
may be the ultimate solution.

Browser Nightly builds
If you are really pushing the limits of what HTML5 can do, it may be a wise decision
to test your content on the absolute latest version of all of the intended browsers
that will be viewing your site. With privately developed browsers such as Internet
Explorer, you will have to wait for Microsoft to release or prerelease the next version,
but with open source browsers such as Google Chrome (https://www.google.com/
intl/en/chrome/browser/) or Mozilla's Firefox (http://www.mozilla.org/en-
US/firefox/new/), you can download the Nightly or actively developed version of
the software to see what direction the next version is heading in.

Google Chrome browser's nightly build is referred to as the Canary build and can be
found at https://www.google.ca/intl/en/chrome/browser/canary.html. As
you can see from the tagline in the preceding project website screenshot, this build of
Chrome is absolute latest and comes with the warning of its possible instability right
out front. It's worth keeping in mind that you can safely install the standard version
of Google Chrome on your computer to continue to utilize for normal web usage.
The Canary build can be opened at any time and is preset to continually update itself
from the Google distribution server when a new version is posted for public usage.

Preparing for Release

[274]

Of course, as mentioned, Mozilla has their own nightly build of Firefox available for
download as well at http://nightly.mozilla.org.

The nightly builds of Firefox currently come in both the desktop and mobile versions
of the web browser and again can easily be installed side-by-side with your preexisting
version of Firefox stable on your computer. Using these development versions of
popular web browsers not only allows you to test your code on software that will
soon be available, but it also give you an inside look at some of the new and exciting
features that the general public may not be able to use until the next stable release.

So is it really worth the time to test on these browsers, that, in effect, no one is really
using yet? Well, being preemptive with your development can really pay off for
applications that may go untouched from updates or patches on the Internet. If you
don't manage to catch the fact that your HTML5 web application isn't working in the
browser that was released a couple months after you published your application,
that could be a really bad thing. On top of that, spending time with these new web
browsers will only make you more aware and savvy to what features you can utilize
when developing your applications. You will begin to learn more about the inner
workings of a specific browser's development and release cycles as well.

Chapter 10

[275]

WebRTC
The move to utilize media inputs, such as camera and microphones, within your
HTML5 applications at an all-time high, WebRTC has come to provide a solution to
this issue. The WebRTC project is currently supported by Google, Mozilla, and Opera,
and the project website can be found at http://www.webrtc.org. From a Flash
developers perspective, the concept of using web cameras and microphones without
the need for third party plugins should get you even more excited about HTML5
development. The features that WebRTC has started to bring to the hands of HTML5
developers pushes the limits of what HTML5 can do even closer to that of Flash.

If you have a friend online and you want to test a simple WebRTC
web cam chat application, head over to http://apprtc.
appspot.com and connect to the server which will return an ID
for your user. Send that ID to a friend along with the URL to the
site and connect to each other online in a pure HTML5 audio and
video chat.

Since WebRTC is still a very new specification, only some of the modern browsers
available right now support it and unfortunately for developers, the support
methods are a little bit different for each browser. This initial step that any developer
working with WebRTC should make is to check if the current browser even supports
this feature. This can be done with some JavaScript function such as the following
code snippet:

function hasGetUserMedia() {
 return !!(navigator.getUserMedia ||
 navigator.webkitGetUserMedia ||
 navigator.mozGetUserMedia ||
 navigator.msGetUserMedia
);
}

As you can see, the methods for interacting with the User Media object element
within JavaScript differ from getUserMedia all the way to msGetUserMedia,
depending on the type of web browser attempting to load it. By conditioning all of
the ways to lookup the user media object into a single return statement, this function
will either return the user media object, if the browser supports it, or return a value
of false if nothing was found. With this hasGetUserMedia function applied into an
HTML5 project, we can easily incorporate the function call into further code, that
applies the user's web cam feed onto the web page if available.

var video = document.getElementById('camera');
if(hasGetUserMedia()) {

Preparing for Release

[276]

 navigator.webkitGetUserMedia(
{
audio: true,
video: true
}, function(stream) {
video.src = window.URL.createObjectURL(stream);
 }, onConnectionFail);
} else {
 alert('WebRTC is not supported!');
}

The initial line of this code example applies the element with the ID of camera to the
variable video. This element in the HTML document is actually a video tag element
and looks like the following:

<video id="camera" autoplay></video>

You may also recall that the video element can be styled by CSS3 properties, giving
you a ton of design options for displaying the web camera video feed. So let's extend
these WebRTC related code snippets into a working example with some CSS3 styles.
We will start by creating our initial HTML page to be displayed in the web browser.

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8" />
 <title>Web RTC Demo</title>
 <style>
 .grayscale {
 -webkit-filter:grayscale(1);
 }
 .sepia {
 -webkit-filter:sepia(1);
 }
 .blur {
 -webkit-filter:blur(10px)
 }
 </style>
 </head>

 <body>
 <video id="camera" autoplay></video>
 <p>
 <button id="button0">Clear Styles</button>
 <button id="button1">Grayscale</button>

Chapter 10

[277]

 <button id="button2">Sepia</button>
 <button id="button3">Blur</button>
 </p>
 <script src="js/webrtc.js"></script>
 </body>
</html>

Within this HTML page we have also added some simple CSS3 filters with unique
class names for each. Each of the different CSS styles appended into the HTML
document also have an HTML button element to correspond with it, located within
the body of the document. Finally we reference the external JavaScript file that will
deal with the WebRTC functionality which we will create next.

With the HTML file saved and a new file open to write our JavaScript into, we can
append the code snippets we have already looked at, as well as some code to append
the CSS styles, to the video element, when the user clicks the buttons on the
HTML page.

var video = document.getElementById('camera');
var clearBtn = document.getElementById('button0');
var grayscaleBtn = document.getElementById('button1');
var speiaBtn = document.getElementById('button2');
var blurBtn = document.getElementById('button3');

if(hasGetUserMedia()) {
 navigator.webkitGetUserMedia({audio: true, video: true},
 function(stream) {
 video.src = window.URL.createObjectURL(stream);
 }, onConnectionFail);
} else {
 alert('getUserMedia() is not supported in your browser');
}

// Checks if the users browser has Web RTC support.
function hasGetUserMedia() {
 return !!(navigator.getUserMedia ||
 navigator.webkitGetUserMedia ||
 navigator.mozGetUserMedia ||
 navigator.msGetUserMedia
);
}

// Called if the connection to the video stream fails.
var onConnectionFail = function(e) {
 console.log('ERROR: User Media connection failure!', e);
};

// Clear Styles

Preparing for Release

[278]

clearBtn.addEventListener('click', function() {
 video.className = '';
});

// Grayscale
grayscaleBtn.addEventListener('click', function() {
 video.classList.add('grayscale');
});

// Sepia
speiaBtn.addEventListener('click', function() {
 video.classList.add('sepia');
});

// Blur
blurBtn.addEventListener('click', function() {
 video.classList.add('blur');
});

As you can see, the bulk of this JavaScript is dealing with the CSS manipulation
of the video element and not the setup of the web camera stream. Setting up a
WebRTC connection to the end user, provided their browser supports it, is easily
accomplished with a few lines of a JavaScript.

Chapter 10

[279]

Thankfully, I was smart enough to add in the blur effect to hide myself using
this example in the preceding screenshot. Keep in mind that just like camera and
microphone connections in Flash, the stream is completely local to the user and
not sent to any other server unless you have manually added that feature into the
application. For applications such as multi-user chat and public streaming, you will
require a server to send your audio or video stream to. Node.js would be a perfect
place to begin if this type of HTML5 development sounds exciting to you. There is
even a Node.js package dedicated to dealing with WebRTC (https://npmjs.org/
package/webrtc.io) to help get you started in the right direction.

Privacy can be a huge issue when it comes to gaining the ability to stream audio
and video over the Internet without the use of third party plugins such as Flash
Player. Therefore, web browsers will always prompt the end user for approval,
when an attempt is made to connect to their media channels via WebRTC. If you are
developing HTML5 applications that plan on utilizing features in WebRTC, this is an
important fact to remember. If a user decides to opt out of enabling their microphone
or web camera, the user experience of your application may break all together.
Another step that some browsers such as Google Chrome are taking to keep you
safe online is by applying a unique icon to any browser tab that has an active media
stream attached to it. Regardless of whether the stream is delivering the content to a
third party server or just using it locally, the icon will always be visible.

As you can see in the preceding screenshot, when WebRTC has been activated in
Google Chrome and the user is streaming audio or video to the website, the browser
tab gains a glowing red recording icon to alert you that the feed is active.

If you are interested in learning more about not only the origins of the
WebRTC project and its support on modern browsers, but also about
how to properly utilize it in your projects, check out the great article
on Capturing Audio & Video in HTML on http://www.html5rocks.
com/en/tutorials/getusermedia/intro/.

What's even more exciting about WebRTC is the possible future for the technology.
As you have seen in the overview of this technology so far, the aim is really to get
audio and video working without dependencies on the web. However, there is also a
goal to get a dedicated data channel working in WebRTC, which could enable a slew
of amazing new web-based technology, as your computer could really act as its own
server while using specific web applications.

Preparing for Release

[280]

WebGL support
WebGL, like WebRTC, is one of the new and exciting features to start seeing high
quality support on many modern web browsers on desktop and on mobile. Taking
advantage of hardware-accelerated graphics on a client's computer or device can
enable you to bring many of the fully-featured 2D and 3D animations and interactions
you may have used while developing Flash projects in the past. When attempting to
verify if the browser you are using supports WebGL, the easiest tool for verification
can be found at http://get.webgl.org.

If your browser passed the WebGL verification tests, the site will be displayed as
shown in the previous screenshot, rendering a 3D wireframe rotating cube, and
the text alerting you of the results. You can of course utilize http://caniuse.com
to check what browsers currently support WebGL as well as dig into the official
WebGL public wiki found at http://www.khronos.org/webgl/wiki/Main_Page.

If you are interested in learning more about the exciting world of
WebGL in HTML5, check out the WebGL Beginner's Guide found
on the Packt Publishing website (http://www.packtpub.
com/webgl-javascript-beginners-guide/book).

Chapter 10

[281]

WebGL on mobile browsers
Depending on the intensity of the WebGL application you are viewing, you
may notice extremely slow frame rates, as well as, applications that may become
unresponsive. As WebGL has gained support on a small number of devices
and browsers, the development community is slowly creating optimizations for
mobile experiences utilizing this technology. Unfortunately, the processing power
between most desktop and a mobile devices are still pretty far apart, therefore the
requirement for developers to optimize their experiences if intending for mobile
browsers to view them is critical.

A great resource for checking out WebGL content on your mobile device is the
Three.js project page found at http://threejs.org. From the index of projects
and examples on the main page, you can easily get a sense of how some of the
coolest WebGL examples run on any device.

If you are interested in getting a more in depth look at any web
browsers' WebGL capabilities, check out http://webgl-
bench.appspot.com for an online benchmarking tool to help
examine and display your WebGL rendering statistics.

Allowing users to find your work
Although search engine indexing is not directly related to HTML5, since you are
coming from a Flash developer's perspective, it is definitely worth noting. Many
search engines have become increasingly better at parsing Flash content for search
engine results, but at the end of the day, creating a full Flash site will require you to
perform some work around to have your content displayed properly, when someone
attempts to search for it. Search engine bots will have a much easier time reading
your HTML5 projects as they have a more direct approach to reading the important
data about the pages on your website.

With the growth in what HTML element tags may now contain, the ability to tag
specific elements on your site, specifically for search engines, is a new and exciting
way to optimize your website's search engine optimization. One of the key aspects of
web content the Google search engine is looking for in recent years is content related
to authorship. For instance, if you have an article or piece written by a specific author
on your site, you can easily integrate the author's information as meta data within
the HTML page.

Preparing for Release

[282]

When tagged properly, this will not only allow the search engines, but also social
websites, to easily parse those specific pages' content with ease. For instance, consider
some of these methods for defining specific elements in your HTML source:

<!--
 Link to a Spanish version of your site, defined by the
 'hreflang' parameter.
-->
<link hreflang="es" href="index_es.html" rel="alternate">

<!-- The link to the authors website (external) -->
<link rel="author" href="https://www.johnsmith.com″>

In these examples, we append the rel and hreflang tag elements to aid in
describing a link's content preemptively.

License information
Next
Previous

<link rel="search" href="http://www.johnsmith.com/search.xml">

<figure id="myfigure>

 <figcaption>A Photo of my Cat</figcaption>
</figure>

Although none of these tags are technically required when developing your HTML
documents, the effort to put meta data into your content, especially if it will be
dynamically supplied, will more likely than not result in better traffic and search
engine result ranking once your web site has been published online.

As mentioned, many social websites such as Google+ or Facebook will attempt to
parse your web pages content to create a detailed link structure back to your site.
The more viable content and meta data that you can supply to the websites and
systems that attempt to read it, will result in better link structure and information
output when users link back to your site.

The HTML5 History API
If you happen to have built a website completely in Flash before, you may have
had experience with using JavaScript libraries such as SWFAddress (http://www.
asual.com/swfaddress) to emulate the URL update functionality typical to normal
web page display. If you are unaware of this project, or the idea of URL updating,
the concept is simply that when you load a new page on the Internet, the URL in

Chapter 10

[283]

the address bar changes according to the location of the page you are viewing. With
typical HTML web content, each page is displayed in a new HTML document,
therefore the URL could easily be defined for each section of the website. With a
website built in Flash, all of the content will be compiled into a single SWF that will
be embedded on a single HTML page. So when the content changes in the Flash,
there will be no change in the address bar of the web browser as no new page was
requested. By including SWFAddress into your Flash project for the web, you can
easily send a command via the SWFAddress JavaScript API to append customized
updates to the address bar of the web browsers. Most importantly, if a user was to
hit one of the custom URLs that your application has utilized, you can easily skip the
user experience directly to a section of your application that they originally intended
to visit. With the rise in popularity of features such as the Canvas element and AJAX
requests in HTML5, the need for many websites to physically reload the web page on
every request is dropping. Therefore, a system similar to SWFAddress is needed to
properly integrate your sites on the web.

The HTML5 History API (http://www.whatwg.org/specs/web-apps/current-
work/multipage/history.html) is your key to not only controlling the address
bar of the clients web browser, but also to control many elements of their browsers
history records to enable the browsers' back-and-forward functionality to continue to
work. Although some of the older versions of popular modern browsers lack support
for the HTML5 History API, the overwhelming majority of the latest versions
of all browsers available now seem to support this feature (http://caniuse.
com/#feat=history). However, when attempting to use any feature where you are
not 100 percent positive every use will have support, some initial checks are usually
worth the effort. To check for history API support, we can attempt to lookup the type
of the history.pushState object which is responsible for writing changes to the
browsers page history.

if (typeof history.pushState === 'undefined') {
 // The HTML5 History API is Unavailable...
} else {
 // The HTML5 History API is Available!
}

Provided everything passes, you are good to read and write data to the clients
browser history. Mozilla has written a fantastic outline of the History API and its
usage which can be found at https://developer.mozilla.org/en/docs/DOM/
Manipulating_the_browser_history.

For a down to earth example of the HTML5 History API in action,
check out the online demo and source code from HTML5 Demos
(http://html5demos.com/history).

Preparing for Release

[284]

The important factor to note in regards to the History API and search engine
optimization is the freedom that your applications have when it comes to referencing
application state in the URL displayed in the browser address bar. Setting unique
URLs to specific locations and elements in your content will allow for easier
debugging and generation of user statistics and analytics.

Premade testing and benchmark
solutions
In previous chapters, we have covered and utilized features of many modern web
browser developer tool sets, mainly utilizing the JavaScript console for easy output
and code debugging during development. Many of these pre-installed developer tool
sets within popular web browsers also include many tools that allow you to not only
dig into your own websites structure to locate issues, but debug other websites on
the Internet to get an idea of their inner workings as well.

Google's web development toolset
When it comes to tools for debugging and analyzing HTML5 content in the browser,
Google has really stepped up to the plate by creating not only the Chrome Developer
Tools (https://developers.google.com/chrome-developer-tools/) but the
Google Web Toolkit (https://developers.google.com/web-toolkit/overview)
as well. All of these tools combined can be utilized to do a majority of the deep down
application debugging that your application may require prior to public deployment.
For instance, if you have managed to develop your own HTML5 game and need to
dig into the game structure and flow to determine where optimizations are required,
you can go through the process of writing tests for each and every element of the
game, or you can use a tool like Google's Speed Tracer (https://developers.
google.com/web-toolkit/speedtracer/index).

Chapter 10

[285]

As you can see in the screenshot of Speed Tracer in action, the application manages
to dig deep into the application runtime to display statistics on many aspects of how
the active application is actually running on a given machine. Within the statistical
output is the time to load, time to execute, time to display, and so much more. Simple
websites that display content and video in a traditional manner may not find any
benefit in using a tool that digs this deep. However, for anyone interested in building
robust interactive Canvas, WebGL or any other heavy computation, or calculation
applications that may require debugging of the runtime, this tool is defiantly worth
looking into.

Preparing for Release

[286]

For the vast majority of HTML5 development, the Chrome Developer Tools is a
browser feature that many web developers can't live without. With the entire toolset
included in every installation of Chrome, you can easily open and start debugging
any website with the tool in seconds. From inspecting the page elements and their
associated styles with the Elements Inspector, displayed in the following screenshot,
to displaying the load time of every internal and external request made by your page
on load and during runtime with the Network Inspector, almost everything you
need to debug your content is in one handy built in window.

Since Google has been promoting this piece of software extremely well in the last
couple years, I really don't need to go into great detail of its usage here. There are
more than a couple of amazing video tutorials that can easily be found on the project
website along with great documentation of every feature within the application
feature set.

The Chrome Developer Tools project website contains a bunch
of great resources both video and in text to aid in understanding
everything the extension is capable of doing. Be sure to head over
to https://developers.google.com/chrome-developer-
tools/docs/videos and check it out.

As time passes, you will probably find yourself quickly opening and closing this
extension as you browse the web. As a developer, one the great aspects of HTML5
development is that when the content is public, so is the code that run it. Digging
into how someone managed to create web content that amazed you is a very easy
way to get extremely knowledgeable about the HTML5 stack.

Chapter 10

[287]

YSlow website grading
Although many of us hated getting our grades in school, having someone grade
your website can be an incredibly useful resource. The YSlow (http://yslow.org)
browser extension is an open source project that can be added to Chrome, Firefox,
Opera, Safari, and many other forms of web-based content. Upon opening and
activating the extension, you can run the system on the website you currently have
opened in your web browser. Consider the YSlow extension window after we run
the tests on http://www.packtpub.com.

In the top left corner of the extension window, you can see that the website was
given a B grade. Now without any detail on what makes up the grade, that data
is effectively useless. So to confirm the graded result, let's dig into why this site
received the grade it did. Below the grade in a color coded list you will find the
individual tests results from all of the areas that are examined by YSlow. For the vast
majority of the tests, the Packt Publishing website scored very well. However, the
test concluded that for one, the site can make fewer HTTP requests, meaning that too
much of the code and assets that make up the page are referenced from a variety of
external resources. Secondly, the test results also display bad results for the inclusion
of expire headers.

Preparing for Release

[288]

This means that there are many assets on the page with caching expire times very far
in the future. Configurations like this could very well cause some users to see page
content during page load that has actually been updated on the server. Because the
cache time for some assets is set so far in the future, if the user has been to your site
before, their web browser may not re-request the same asset, thinking that since the
cache time is so far away, there is no possibility that the data could have changed.

If you are interested into how YSlow manages to do what it does,
be sure to head over to the project GitHub page to learn more
(https://github.com/marcelduran/yslow).

YSlow covers a lot more than just the short list of results you can see in the previous
screenshot. Since the test literally only takes a couple seconds and the browser
extension setup of the application allows you to install it in seconds, I highly
recommend downloading this extension and testing it out; not only on your web
content but others as well.

Code minimizing and obfuscation
After you have finished developing your HTML5 application, you may notice that
the amount of referencing to external JavaScript and CSS files may have gotten a
little out of hand. One of the easiest ways to begin the battle for faster page loads is
to minimize your JavaScript and CSS source code into the smallest file size possible.
This will allow for the client to retrieve the content over the Internet in a shorter time
allowing the remainder of the page to finish loading.

Some CSS compilers such as LESS (http://lesscss.org) and SAS (http://sass-
lang.com) contain the ability to minimize your CSS automatically, saving you the
hassle of remembering to do it yourself after every update to your site. However,
if you are not using a CSS compiler, there are still many great ways to accomplish
the same task. One of my personal favorite online resources for CSS compression is
http://www.csscompressor.com. This easy to use CSS compressor gives you the
ability to not only configure the actions performed to optimize your CSS, but also
control the level of compression as well. To get a better idea of what this compression
looks like, consider the following example CSS syntax:

#example {
 width:800px;
 height:600px;
 overflow:hidden;
 margin-right:10px;
 top:20px;
}
#example a {

Chapter 10

[289]

 color:#FFFFFF;
 text-decoration:none;
}
#example li {
 line-height:20px;
 color:#EFEFEF;
 padding-left:20px;
}
#example .alert {
 display:none;
}

There is nothing really special about these CSS styles other than the fact that we are
styling only the #example tag element and its inner content. This CSS example really
will just serve as an example as to what you would probably be used to seeing all
over your projects. Of course your final application will probably contain far more
than four CSS properties, but the end result will be the same regardless of CSS source
code size. To keep things simple and conserve space within the book, we will just use
these styles.

After opening up a web browser and heading over to http://www.csscompressor.
com, we can copy these styles into the large text area on the site.

Preparing for Release

[290]

Before we begin our CSS compressor, take note of the options above the text input
area. Although this specific CSS minimizing website is only one of many freely
available on the Internet, the general configuration properties are the same. As
you can see by the previous screenshot, you also have the option of selecting Sort
Properties which will output your CSS styles sorted into minimalistic configurations
effectively optimizing your code. Most important is the dropdown selector which
allows you to choose the Compression Mode for the compressed output. For
instance, selecting High and compressing our example CSS would output the
following:

#example{width:800px;height:600px;overflow:hidden;margin-
right:10px;top:20px}
#example a{color:#FFF;text-decoration:none}
#example li{line-height:20px;color:#EFEFEF;padding-left:20px}
#example .alert{display:none}

Since our example CSS is simple to begin with, the amount of work done to compress
our code in the configuration is pretty minimal. Effectively all the compressor
needed to do was remove all extra whitespace from the supplied CSS and place all
of the element properties on single lines. This may seem like a minimal amount of
work and output, but the fact of the matter is that the compressed CSS source is now
14.8 percent smaller in file size than the originally supplied source. For only a couple
minutes of work, that is a huge amount of optimization. We can take it even one step
further by selecting the Highest option for the Compression Mode. With this option
selected, the compressor will now put the entire compressed CSS source on a single
line. With this setup, our file size drops another 2.2 percent totaling 16 percent file
size reduction.

#example{width:800px;height:600px;overflow:hidden;ma
rgin-right:10px;top:20px}#example a{color:#FFF;text-
decoration:none}#example li{line-height:20px;color:#EFEFEF;padding-
left:20px}#example .alert{display:none}

As mentioned, file compression like this is not only for your CSS source code. This
technique is actually even more useful for JavaScript. As your JavaScript source is
usually responsible for all of the client side actions, the size of your source code can
grow extremely large. Not only can this external source code be large in file size,
but it may also contain some semi-sensitive code that you would prefer the end user
not to be aware of. Of course JavaScript is no place for hard coding user names and
passwords, but if you were to write a game in JavaScript, you probably wouldn't
want users to locate the method to progress to the next level. You can use JavaScript
compression to aid in your fight for code privacy, but of course always remember
that JavaScript is a client-side language. No matter how hard you try, the end user
will always have access to your source code, so always keep that in mind while
developing your applications.

Chapter 10

[291]

JavaScript compression is common amongst many popular JavaScript libraries and
frameworks, many of which we have already looked at in this book. The jQuery
(http://jquery.com) library comes in two different packages, Development and
Production. The difference between the two being that the Production version is
compressed, ready for use online, whereas the development version is the user
friendly JavaScript source ready for further manipulation. Websites such as http://
www.minifyjavascript.com are a great online resource for accomplishing this task
with your own custom JavaScript that is included within your HTML5 projects.

External dependencies
As your HTML5 projects become more and more feature rich, the requirement
to include external dependencies such as jQuery or various jQuery plugins will
probably increase just the same. By the end of your application development cycle
you could possibly have over a dozen external JavaScript files referenced from a
single HTML file. Although from a human standpoint, the segregation of all of your
application's functionality in separate files may be optimal for ease of development,
when it comes to publishing all of these files on the web you are effectively making
your end users connection do more work when attempting to load your content.
Since each piece of the JavaScript (or CSS) functionality may be broken in different
files, the browser will need to individually request and receive each and every file
referenced in the document before the document can finish loading. One solution
to this issue is to combine all of the external third party JavaScript or CSS files into
a single file for your HTML documents to request. This way only a single request
will be made to the server, cutting down on page load times and bandwidth
consumption. However, in most cases you will probably only want to combine
JavaScript and CSS content that you do not plan on editing in the future. When all of
your files are combined into one, the difficulty factor when the time comes to debug
issues can be increased. Keeping your custom JavaScript and CSS in their own files
can allow for far easier editing and republishing.

After your published site is live on the Internet for a while, regardless of whether you
update it or not, there is a high likelihood of the dependencies that your application
utilizes may fall out of date. Developers behind the projects your application uses
may release small bug fixes to entire version updates to their libraries or frameworks
without your knowledge. Although your application should live on without issue,
provided it did before, you may be so inclined to update a specific plugin to gain the
newest feature set or security fixes. If the updated version of, for example, a jQuery
Plugin was published to a site where the utilized version of jQuery was either out of
date or incompatible, you will probably encounter various issues when attempting to
run your application.

Preparing for Release

[292]

The issue may be easily resolved by updating your site's utilized version of jQuery to
the required version; however if the other plugins you are using are not compatible
with the newest version of jQuery you appended, those may break as well.

It is because of this downward spiral that I stress two specific things all HTML5
developers should be aware of. Firstly, attempt to stay on top of the development
progression of the external dependencies you utilize in your projects. Even if you
are not interested in an expanded feature set, the developers of these projects often
release security updates and code optimizations. Finally, attempt to spend the time
to properly research and test if updating any of the dependencies your projects uses
will directly affect any of the other dependencies that work alongside it.

Making deployment easy
If you are working on a HTML5 site or application that will require constant updates,
you may be interested in finding ways to ease the pain of manual file updating when
it comes to publishing updates to your web server. Manually updating specific files
over a FTP or SFTP connection to your web server that may be in different directories
can easily become a pain. Finding ways to automate any time wasting process is
usually a point of interest for any developer. So for the sake of your sanity in future
projects, let's cover a few of the interesting options available to web developer for
automating many processes from compressing code to deploying a website.

Creating tasks with Grunt
Grunt (http://gruntjs.com) is a relatively new kid on the web development block
but has seen extremely active development since its inception in 2011. The concept
behind the software is pretty simple—automation. The key to Grunt's success in the
HTML5 web developer community is the fact that the scripts you write to perform
your customized tasks automatically are entirely written in JavaScript. This allows
anyone, with experience writing JavaScript, to create tasks that would normally
be created with BASH scripts or some other command line deployed
programming language.

Chapter 10

[293]

Grunt is built on the Node.js (http://nodejs.org/) framework and requires Node.
js to be installed on the machine utilizing it. Because of Grunt's relationship with
Node.js, you can locate plugins to begin the foundation of your Grunt tasks and
install them the same way you install the Node.js packages. In terms of automated
deployment of your website source to a web server, you would probably need to
start by figuring out how to establish a connection from your Grunt scripts code
to a web server via FTP or SFTP. Fortunately, as mentioned, the Node.js Package
Manager or NPM system can set you off on the right foot with a quick search for
Grunt SFTP on https://npmjs.org. In the results you will locate the grunt-sftp-
deploy (https://npmjs.org/package/grunt-sftp-deploy) plugin which will give
your Grunt tasks the ability to easily connect and deploy your local website source to
an external web server over a SFTP connection.

If you are interested in learning more about Grunt or want to install
it on your computer, head over to the official Grunt documentation at
http://gruntjs.com/getting-started and follow the Getting
Started tutorial.

Preparing for Release

[294]

In reality, when it comes to creating customized tasks with Grunt, your imagination
is really the limit. If you ever find yourself doing the same task over and over and
want to automate the repetition, regardless if the issue is a personal or global one,
writing some code to perform the automation for you can be a really great learning
experience and time saver. Head over to the Grunt Plugins page on the office project
site (http://gruntjs.com/plugins) to find more inspiration for great tasks that
you can create or utilize.

Deploying content with Git
Another piece of software you will probably find yourself using if you haven't
already is Git (http://git-scm.com/). Git is a free and open source version control
system utilized by both large and small projects around the world. Most developers
can't fathom a world where they didn't use version control software of some kind
and most web developers who use it, use Git. The majority of Git's success in the
world of web development is not only because it is such a great and reliable piece of
software, but because websites such as Github (https://github.com) and BitBucket
(https://bitbucket.org) have been created to allow developer to store their code
privately or share it publically. Rather than freely distributing code as an archived
ZIP file, developers can download the entire repository of code which include all of
the previous edit history made by other developers who have contributed. This also
means that if you were to make a change to someone else's code, they can still retain
the right to choose to integrate your edits into their release. The benefits of version
control could fill an entire book, so if you are not using Git or some other form of
version control yet, be sure to dig deeper into it.

Using Git to automatically deploy your web content can be a little tricky to set up
at first, but once configured, the setup can not only allow you to publish content
to your web server easily, but any other developer that may be working on the
same application as well. Git utilizes the idea of branches to allow developers
to work in their own environment of the applications code without stepping on
other developer's toes. When both developers have completed the updates to the
application in each of their branches, Git can be utilized to merge the edits in the two
branches back into a single file automatically. By utilizing the concepts of branches,
developers can agree to make a specific branch (usually the Master branch) the
working branch that is deployed on the applications web server. If you were to
append the Git repository on the web server itself and call the Git pull command
from a web based script, anyone from your development team could easily push the
latest version of the website from the Git repository to the active web server without
ever having to connect via FTP or SFTP and manually copy files over.

Chapter 10

[295]

If you are interested in learning more or curious as to how to go about
setting this type of solution up for one of your web based HTML5
project, check out the git-deploy project on Github (https://
github.com/git-deploy/git-deploy).

Summary
In this chapter, we spent some time going over some of the common aspects for
preparing your HTML5 application or website for deployment on a public web
server. Although there is no common practice for project preparation for the web,
there are many aspects like optimization of code and file structure that, when given
the proper amount of time, will keep your content stable and keep delivery times
from server requests to a minimum. Sometimes anticipating issues is not a reality
until you have had valid user testing completed on your project. This form of user
testing, unless you have a team at your disposal, usually comes in the initial launch
of your application to the public. Making sure that your application is set up in a
way to report errors or generate statistics will decrease the time it takes for you to
locate and correct any issues that may arise. Even additions as simple as appending
Google Analytics (http://www.google.ca/analytics/) into your site will enable
you to view where users may have hit a dead end or bad request.

The road to learning HTML5 and what it has to offer the web development
community is an endless commitment that will extremely benefit your career
as a developer. Though still in its early stages, this latest version of the HTML
specification has proved to be one of the most important aspects of moving the web
into a more application-like infrastructure. The world of HTML5 development has
opened its doors to developers coming from many development skillsets in other
languages. As a developer with experience in Flash and ActionScript 3, not only do
you already have a leg up in terms of the learning curve JavaScript has to offer, but
the understanding every Flash developer has of multimedia and its integration in
code will be an invaluable skill to constantly fall back on as you continue to learn.

Preparing for Release

[296]

Finally, I would like to give you my full appreciation for taking the time to read
through the pages of this book. It is my hope that your venture into HTML5
development was as pleasant as my own. The amazing projects that have sprung up
in the last couple years are a testament to the excitement surrounding HTML5 and
the new features that have been added to the specification. Some new and exciting
framework or library is put into the community spotlight every week it seems. As
great as the variety of projects can be, the vast sea of great 3rd party content available
to utilize in your project means to make valid decisions of what to use, you need to
keep up to date with as much as you can. Hop on your favorite social network, find
some other developers with similar interest to your own, and start a new project to
push the limits of what you can accomplish with HTML5. Who knows, maybe I will
end up using a library you wrote in my next project!

Index
Symbols
3D transforms 71-80
#example tag element 289
@font-face property 66

A
ActionScript 8
addEventListener method 113
Adobe AIR 24
Adobe Dreamweaver CS6

about 191, 192
Adobe Edge support 192
audio, embedding 192
Fluid Grid Layout 194
HiDPI support 194
jQuery Mobile support 192, 193
PhoneGap 192

Adobe Edge
downloading 185

Adobe Edge Animate 184-189
Adobe Flash 7
Adobe Flex 10
Adobe Media Encoder 43
Adobe Scout 203
AJAX (Asynchronous JavaScript and XML)

156
All property 143
animated GIF 38
Appcelerator

URL 21
App Store 21
Aptana 195

URL 11

AS3 code
rewriting 262

asset preparation
about 30
audio 38
images 31
video 39

audio
about 38
audio element 38, 39
dealing with 261, 262
MP3 38
OGG 38

audio/video playback control
about 84
autoplay 84
looping 85
media playback manipulation 86
preloading 84
sound effects 85, 86

autoplay 84

B
BitBucket 294
blur radius 62
Bootstrap

about 164, 165
add-ons 165
Hammer.js 168

Bootstrap, add-ons
bootstrap-wysihtml5 167
Font Awesome 166, 167
StyleBootstrap.info 166

border-radius 64

[298]

box-shadow
about 61, 62
blur radius 62
horizontal offset variables 62
spread radius 62
vertical offset variables 62

box-shadow property 61, 62
Brackets

about 196, 197
contributing feature 200
inline editing 197, 198
Live Preview 199
plugins 199

Braille property 143
browser

searching 120
Build Service panel 193

C
cache manifest 22
calculateSum function 46
call() method 107
Canary build

URL 273
canvas element 25
Canvas element 88-91
Cascading Style Sheets. See CSS
Chrome 273
click event 110
client-side tests

about 272
Nightly builds 273
WebRTC 275-279

closePhotoDisplay method 16, 17
Cocos2D

URL 223
console.log method 105
Console tab 46
constructor property 106
container class 73
contextmenu event 110
contributing feature 200
CoreMedia 228
CoreMedia Github page 230
CR2 format 31
createEvent() method 113

CreateJS
about 120, 121
EaselJS 121-128
PreloadJ 130, 132
SoundJS 133
toolkit 135
TweenJS 128, 130
website 139

CreateJS toolkit
about 135
assets, publishing 138
output, reviewing 139
setting up 135-138

createServer method 176
CSS

about 8
animations 155
controlling, via jQuery 154

CSS code
minimizing 288-290

CSS compilers
LESS 288
SAS 288

CSS Media Queries
about 143, 144
All property 143
aspect-ratio 83
Braille property 143
color 83
color-index 83
device-aspect-ratio 83
device-height 83
Embossed property 143
grid 83
height 83
monochrome 83
orientation 83
resolution 83
scan 83
width 83

custom events 111, 112

D
Dart Editor 233
Data format option 224
dblclick event 110

[299]

Developers Tools 50
display:none 15
displayPhoto method 17
DOM events

mouse events 54
drawImage(); method 250
Dreamweaver

URL 11

E
EaselJS 121-128
ECMAScript 25
element transforms

3D transforms 71-80
about 68
matrix 70, 71
rotate 69
scale 69
Skew 70
translate 69

Embossed property 143
encoding software of video

Adobe Media Encoder 43
FFMPEG 44
Handbrake 44
Miro Video Converter 42, 43

environment 196
environment coding

about 190
Adobe Dreamweaver CS6 191, 192
Aptana 195
audio embedding 192
brackets 196
Sublime Text 200

event bubbling 113
events, JavaScript

about 110
custom 111, 112
event bubbling 113, 114
Keyboard 110
mouse 110
touch events 110

example JavaScript 54, 56
external dependencies 291

F
FFMPEG 44
File API

about 23
used, for reading local files 86

Firebug 47
Firefox 27
Flash

Jet Pack game, building 240, 244
Flash development environment

replacing 182
flash events class 111
Flash Player

on mobile 24
Flash Professional CS6

sprite sheets, generating 219-227
Flash SWF files 267
Fluid Grid Layout 194
FLV files 40
Font Awesome 166
font-family property 66
fonts

about 65, 66
acceptable formats 66
external libraries 66

FPS 205
frame rate

about 81
CSS Media Queries 82, 83
developing, for mobile 82
responsive layouts 82

Frames per Second. See FPS
frameworks

benefits 146
choosing 147-149

Full Code tab 190

G
Generate Sprite Sheet window 220, 222
Geolocation API 23
getElementById() method 16
getJSON method 251
Github 294
Gmail

URL 22

[300]

Google
web development toolset 284

Google Chrome 46, 47
Google Dart

about 232-234
Dart Editor 234

Google Play
URL 21

Google's web development toolset
about 284-286
Chrome Developer Tools 284
Google Web Toolkit 284
Speed Tracer 284

Google Swiffy. See Swiffy
GreenSock Animation Platform 169, 170
GreenSock JavaScript library 170
Grunt

about 292
used, for task creating 292

H
H.264 codec 40
Hammer.js 168
Handbrake 44
Handheld property 143
Haxe

about 230-232
project website 231
URL 231

Helicopter Game 237
HiDPI support 194
hitTestObject() method 217, 262
horizontal offset 62
hotlinking 30
HTML5

about 7, 8
deploying 21
elements 10
features 21
learning need 20, 21
limitations 60
passing, it to JavaScript 13
standards 9
style 10-13
syntax 9, 10

HTML5 Boilerplate 161-164

HTML5 development environments
requirements 182

HTML5 development environments,
requirements

asset and file management 182
assets manipulation 184
code completion 183
code highlighting 183
environment coding 190

HTML5, features
2D drawing API 21
about 21
document editing 22
drag-and-drop 23
File API 23
geolocation 23
media playback 22
offline storage 22

HTML5 History API 283

I
images

about 31-37
JPEG 37
PNG 37, 38

Image Size window 34
Import From Photoshop feature 192
init() function 57, 125
inline editing 197, 198
innerHTML property 16
Inspect Element 49
Internet Explorer 50
issues

code, securing 26
media elements, dealing with 26
platform compatibility 27
positioning assets 25
Stage versus DOM 25

Issue Tracker 196

J
Jangaroo 228, 229
JavaScript

about 8, 14
compiling 174
events 110

[301]

in action 14-20
JavaScript compilation

Google's V8 Engine 175
Node.js 175, 176
Node Package Manager 176, 177
public Node.js server, hosting 178

JavaScript execution
executing 57

JavaScript frameworks
tasks 146, 147

Jet Pack game
about 237-240
ActionScript classes, converting 252-260
assets, converting 244-252
building, in Flash 240, 244

JetPackMan class 247, 262
JetPackManData variable 252
JPEG 37
jQuery 291

about 149, 150
elements, selecting 152, 153
in action 150-152
jQuery Mobile 158

jQuery Ajax
external data, requesting 156, 157

jQuery Mobile 158-161

K
keydown event 110
keypress event 110
keyup event 110

L
libraries

benefits 146
Live Preview 199
local files

reading, with File API 86
looping 85

M
Matrix 70, 71
MaxRects option 222
Microsoft Windows 8 21
Miro Video Converter 42

mobile accessibility 23, 24
Mobile platform support 263-265
Modernizr

about 60, 140
detecting 142, 143
Modernizr.load() 141, 142
Polyfills 141
using 140, 141

Modernizr.load() 141
mousedown event 86, 110
MouseGraphic class 125
mouseup event 110
Mozilla

URL 274
Mozilla's Firefox 273
MP4 40
MP4 container 40
MPEG-4 40
MXML 10

N
Nodejitsu 178
Node.js 293
NPM (Node Package Manager) 176

O
Object.getOwnPropertyNames() method

108
Object manipulation

CSS3, using 60, 61
Object manipulation, CSS3 used

about 60
border-radius 64, 65
box-shadow 62, 63
browser compatibility 81
element transforms 68
fonts 65, 66
opacity 67
RGBA coloring 67
RGB coloring 67
text-shadow 63, 64
transitions 80, 81

object-oriented JavaScript
class syntax 97
constructors 106
functions 97, 98

[302]

inheritance 107, 108
instance types 105
object literals 106
object properties, listing 108, 109
private variable 100
prototype 102-104
public variable 100
variable scope 98, 99, 100
writing 93-96

object-oriented programming. See OOP
OGG containers 41
onMouseMove function 90
OOP

about 93
in JavaScript 109

opacity 67
Opera 27, 49
output methods

about 45
Firebug 47
Firebug for Firefox 47
Google Chrome 46, 47
Internet Explorer 50
Opera 49, 50
Safari 48, 49

P
Phone Gap

URL 21
playback

dealing with 261, 262
Player class 114, 252
plugins 199
PNG 37
Polyfills 141
Portable Network Graphics. See PNG
preloading 84
PreloadJS 130, 132
preventDefault() method 154
Print property 143
Projection property 143
Publish Settings window 137

R
Real-Time Media Flow Protocol. See

RTMFP
RGBA coloring 67
RGB coloring 67
Rotate 69
RTMFP 88
runAnimation function 251

S
Safari 27, 48, 49
Save for Web option 35
Scale 69
Screen property 143
scrolling event 110
search engine

HTML5 History API 282, 283
using 281, 282

setInterval() method 206
Sizzle 152
Skew 70
SoundJS 133
Speech property 144
spread radius 62
sprite sheets

generating, in Flash Professional CS6
219-227

Stack frames option 223
Stage3D

versus WebGL 91
stage.update() method 125
Stats.js 81, 205, 206, 207
stopImmediatePropagation() method 114
StyleBootstrap.info 166
Sublime Text 200, 201

URL 11
website 201

supported web browsers
targeting 268-271

Swiffy
about 210
generated code, examining 213
limits, searching 214-218
working, steps 210-212

[303]

syntax differences
about 51
conditions 52
functions 53
loops 52
objects 53
variables 51

T
text-shadow 64
Theora codec 41
The Sparrow Framework

URL 223
The Starling Framework

URL 223
Three.js 171-174
tick() function 125
Timeline panel 188
touch events

about 111
touchend 111
touchmove 111
touchstart 111

trace() function 45, 232
transitions 80, 81
tty property 144
Tv property 144
TweenJS 128, 130
typeof() function 105

V
variables

about 51
type conversions 51

vertical offset 62
video

about 39
codecs 40
containers 40

element 44
encoding software 41

video containers
about 40
MP4 40
OGG 41
WebM 41

W
W3C 9
W3C API documentation

RL 23
Web browser developer consoles

about 202, 203
network analysis 203, 204
timeline profiling 204, 205

WebGL
about 280
on mobile browsers 281
versus, Stage3D 91

WebM 41
WebRTC 275-279
website deployment

Git, using 294
tasks creating, Grunt used 292, 294

WebSockets 88
Web Storage

URL 22
Web Workers 87
window element 20
WonderFl 205
World Wide Web Consortium. See W3C
WYSIWYG (What You See Is What You Get)

167

Y
YSlow

about 287, 288
website grading 287, 288

Thank you for buying
HTML5 for Flash Developers

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Designing Next Generation Web
Projects with CSS3
ISBN: 978-1-84969-326-4 Paperback: 288 pages

A practical guide to the usage of CSS3 - a journey
through properties, tools, and techniques to better
understand CSS3

1. CSS3 properties and techniques have been
applied to complete web projects

2. Explains tools to deal with CSS increasing
in complexity, such as experimental vendor
prefixes

3. Fast and concise style focused primarily
on practical aspects like implementation
techniques and fallback strategies

HTML5 iPhone Web Application
Development
ISBN: 978-1-84969-102-4 Paperback: 338 pages

An introduction to web application development for
mobile within the iOS Safari browser

1. Simple and complex problems will be covered
with examples and resources that backup the
approach and technique.

2. Real world solutions that are broken down
for multiple target audiences; from beginner
developers to technical architects.

3. Learn to build true web applications using the
latest industry standards for iOS Safari.

Please check www.packtpub.com for information on our titles

HTML5 and CSS3 Responsive
Web Design Cookbook
ISBN: 978-1-84969-544-2 Paperback: 204 pages

Learn the secrets of developing responsive websites
capable of interfacing with today’s mobile Internet
devices

1. Learn the fundamental elements of writing
responsive website code for all stages of the
development lifecycle

2. Create the ultimate code writer’s resource using
logical workflow layers

3. Full of usable code for immediate use in your
website projects

HTML5 Data and Services
Cookbook
ISBN: 978-1-78355-928-2 Paperback: 486 pages

Over hundred website building recipes utilizing all
the modern HTML5 features ands techniques!

1. Learn to effectively display lists and tables,
draw charts, animate elements and use modern
techniques such as templates and data-
binding frameworks through simple and short
examples.

2. Examples utilizing modern HTML5 features
such as rich text editing, file manipulation,
graphics drawing capabilities, real time
communication.

3. Explore the full power of HTML5 - from
number rounding to advanced graphics to real-
time data binding - we have it covered.

Please check www.packtpub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.packtpub.com
	Table of Contents
	Preface
	Chapter 1: Why HTML5?
	Understanding HTML5
	What is HTML5?
	HTML standards
	HTML syntax
	HTML elements
	Bringing in the style
	Passing it over to JavaScript
	What is JavaScript?
	JavaScript in action

	Why bother learning HTML5?
	Write once, deploy everywhere
	Exciting new features
	canvas – 2D drawing API
	Media playback
	Offline storage
	Document editing
	Drag-and-drop
	Geolocation
	File API

	Mobile accessibility
	Flash Player on Mobile
	Build on your existing skillset
	ECMAScript

	Avoiding the initial road blocks
	Stage versus DOM
	Positioning assets in the DOM
	Dealing with media elements
	Securing your code
	Browser and platform compatibility

	Summary

	Chapter 2: Preparing for the Battle
	Preparing the asset
	Images
	JPEG
	PNG
	GIF

	Audio
	The audio element

	Video
	Video codecs
	Video containers
	Video encoding software
	The video element

	Debugging and output methods
	Google Chrome
	Firebug for Firefox
	Safari
	Opera
	Internet Explorer

	Syntax differences
	Variables
	Variable type conversion

	Conditions and loops
	Functions
	Objects
	DOM events
	Mouse events

	Example JavaScript in action
	Timing JavaScript execution
	Summary

	Chapter 3: Scalability, Limitations,
and Effects
	HTML5 limitations
	Object manipulation with CSS3
	box-shadow
	text-shadow
	border-radius
	Fonts
	Acceptable font formats
	External font libraries

	Opacity
	RGB and RGBA coloring
	Element transforms
	Translate
	Rotate
	Scale
	Skew
	Matrix
	3D transforms

	Transitions
	Browser compatibility

	Frame rate
	Developing for mobile
	Responsive layouts
	CSS Media Queries

	Audio and video playback control
	Preloading
	Autoplay
	Looping
	Sound effects
	Media playback manipulation

	Reading local files with the File API
	Web Workers
	WebSockets
	Canvas element
	Stage3D versus WebGL
	Summary

	Chapter 4: Building Robust Applications with HTML5
	Writing object-oriented JavaScript
	Class syntax
	Functions
	Variable scope
	Public and private variables and functions
	Prototype
	Instance types
	Object literals
	Constructors

	Inheritance
	Listing object properties

	Making OOP in JavaScript easier
	JavaScript events
	Keyboard and mouse events
	Touch events
	Custom events
	Event bubbling

	Putting it all together
	Summary

	Chapter 5: Code Once, Release Everywhere
	Covering all your bases
	CreateJS
	EaselJS
	TweenJS
	PreloadJS
	SoundJS
	CreateJS Toolkit
	Setting up the Toolkit
	Publishing your assets
	Reviewing the CreateJS Toolkit output

	Modernizr
	Using Modernizr
	Understanding Polyfills
	Modernizr.load()

	What Modernizr can detect

	CSS media queries
	Summary

	Chapter 6: HTML5 Frameworks
and Libraries
	How frameworks and libraries can make your life easier
	What can I do with JavaScript frameworks and libraries
	Finding the right library or framework for your project

	jQuery
	Putting jQuery into action
	Selecting elements with jQuery
	Controlling CSS via jQuery
	CSS animations

	Requesting external data with jQuery Ajax
	jQuery Mobile

	HTML5 Boilerplate
	Bootstrap
	Bootstrap add-ons
	StyleBootstrap.info
	Font Awesome
	bootstrap-wysihtml5

	Hammer.js
	GreenSock Animation Platform
	Three.js
	Compiling JavaScript
	Google's V8 Engine
	Node.js
	Node Package Manager
	Hosting a public Node.js server

	Summary

	Chapter 7: Choose How You Develop
	Replacing the Flash development environment
	Requirements of HTML5 development environments
	Asset and file management
	Code highlighting
	Code completion
	Creating and manipulating assets
	Adobe Edge Animate

	Coding environments
	Adobe Dreamweaver CS6
	Aptana
	Brackets
	Sublime Text

	Execution and testing
	Web browser developer consoles
	Network analysis
	Timeline profiling

	Stats.js

	Summary

	Chapter 8: Export to HTML5
	Google Swiffy
	How does Swiffy work?
	Examining Swiffy-generated code
	Finding Swiffy's limits

	Generating sprite sheets in Flash Professional CS6
	Jangaroo
	Haxe
	Google Dart
	Summary

	Chapter 9: Avoiding the Roadblocks
	The Jet Pack game
	Building the game in Flash
	Converting game assets
	Converting ActionScript classes

	Dealing with audio and playback
	Rewriting AS3 code that can't be directly converted
	Mobile platform support
	Summary

	Chapter 10: Preparing for Release
	Targeting supported web browsers
	Client-side tests
	Browser Nightly builds
	WebRTC

	WebGL support
	WebGL on mobile browsers

	Allowing users to find your work
	The HTML5 History API

	Premade testing and benchmark solutions
	Google's web development toolset
	ySlow website grading

	Code minimizing and obfuscation
	External dependencies
	Making deployment easy
	Creating tasks with Grunt
	Deploying content with Git

	Summary

	Index

