AlbertY. Zomaya - Sherif Sakr Editors

Handbook
of Big Data
Technologies

http://www.ebook3000.org

Handbook of Big Data Technologies

Albert Y. Zomaya - Sherif Sakr
Editors

Handbook of Big Data
Technologies

Foreword by Sartaj Sahni, University of Florida

@ Springer

vww.ebook3000.con)

http://www.ebook3000.org

Editors

Albert Y. Zomaya

School of Information Technologies
The University of Sydney

Sherif Sakr
The School of Computer Science
The University of New South Wales

Sydney, NSW Eveleigh, NSW
Australia Australia
and

King Saud Bin Abdulaziz University
of Health Science

Riyadh

Saudi Arabia

ISBN 978-3-319-49339-8
DOI 10.1007/978-3-319-49340-4

ISBN 978-3-319-49340-4 (eBook)

Library of Congress Control Number: 2016959184

© Springer International Publishing AG 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

To the loving memory of my Grandparents.

Albert Y. Zomaya

To my wife, Radwa,

my daughter, Jana,

and my son, Shehab

for their love, encouragement, and support.

Sherif Sakr

vww.ebook3000.con)

http://www.ebook3000.org

Foreword

Handbook of Big Data Technologies (edited by Albert Y. Zomaya and Sherif Sakr)
is an exciting and well-written book that deals with a wide range of topical themes
in the field of Big Data. The book probes many issues related to this important and
growing field—processing, management, analytics, and applications.

Today, we are witnessing many advances in Big Data research and technologies
brought about by developments in big data algorithms, high performance com-
puting, databases, data mining, and more. In addition to covering these advances,
the book showcases critical evolving applications and technologies. These devel-
opments in Big Data technologies will lead to serious breakthroughs in science and
engineering over the next few years.

I believe that the current book is a great addition to the literature. It will serve as
a keystone of gathered research in this continuously changing area. The book also
provides an opportunity for researchers to explore the use of advanced computing
technologies and their impact on enhancing our capabilities to conduct more
sophisticated studies.

The book will be well received by the research and development community and
will be beneficial for researchers and graduate students focusing on Big Data. Also,
the book is a useful reference source for practitioners and application developers.

Finally, I would like to congratulate Profs. Zomaya and Sakr on a job well done!

Sartaj Sahni

University of Florida
Gainesville, FL, USA

vii

Preface

We live in the era of Big Data. We are witnessing radical expansion and integration
of digital devices, networking, data storage, and computation systems. Data gen-
eration and consumption is becoming a main part of people’s daily life especially
with the pervasive availability and usage of Internet technology and applications. In
the enterprise world, many companies continuously gather massive datasets that
store customer interactions, product sales, results from advertising campaigns on
the Web in addition to various types of other information. The term Big Data has
been coined to reflect the tremendous growth of the world’s digital data which is
generated from various sources and many formats. Big Data has attracted a lot of
interest from both the research and industrial worlds with a goal of creating the best
means to process, analyze, and make the most of this data.

This handbook presents comprehensive coverage of recent advancements in Big
Data technologies and related paradigms. Chapters are authored by international
leading experts in the field. All contributions have been reviewed and revised for
maximum reader value. The volume consists of twenty-five chapters organized into
four main parts. Part I covers the fundamental concepts of Big Data technologies
including data curation mechanisms, data models, storage models, programming
models, and programming platforms. It also dives into the details of implementing
Big SQL query engines and big stream processing systems. Part II focuses on the
semantic aspects of Big Data management, including data integration and
exploratory ad hoc analysis in addition to structured querying and pattern matching
techniques. Part III presents a comprehensive overview of large-scale graph pro-
cessing. It covers the most recent research in large-scale graph processing plat-
forms, introducing several scalable graph querying and mining mechanisms in
domains such as social networks. Part IV details novel applications that have been
made possible by the rapid emergence of Big Data technologies, such as
Internet-of-Things (IOT), Cognitive Computing, and SCADA Systems. All parts
of the book discuss open research problems, including potential opportunities, that
have arisen from the rapid progress of Big Data technologies and the associated
increasing requirements of application domains. We hope that our readers will
benefit from these discussions to enrich their own future research and development.

ix

vww.ebook3000.con)

http://www.ebook3000.org

X Preface

This book is a timely contribution to the growing Big Data field, designed for
researchers and IT professionals and graduate students. Big Data has been recog-
nized as one of leading emerging technologies that will have a major contribution
and impact on the various fields of science and varies aspect of the human society
over the coming decades. Therefore, the content in this book will be an essential
tool to help readers understand the development and future of the field.

Sydney, Australia Albert Y. Zomaya
Eveleigh, Australia; Riyadh, Saudi Arabia Sherif Sakr

Contents

Part I Fundamentals of Big Data Processing

Big Data Storage and Data Models

Dongyao Wu, Sherif Sakr and Liming Zhu

Big Data Programming Models

Dongyao Wu, Sherif Sakr and Liming Zhu

Programming Platforms for Big Data Analysis

Jiannong Cao, Shailey Chawla, Yuqi Wang and Hanqing Wu

Big Data Analysison Clouds

Loris Belcastro, Fabrizio Marozzo, Domenico Talia and
Paolo Trunfio

Data Organization and Curation in BigData.

Mohamed Y. Eltabakh

Big Data Query Engines.

Mohamed A. Soliman

Large-Scale Data Stream Processing Systems.

Paris Carbone, Gabor E. Gévay, Gdbor Hermann,
Asterios Katsifodimos, Juan Soto, Volker Markl and Seif Haridi

Part I Semantic Big Data Management

Semantic Data Integration

Michelle Cheatham and Catia Pesquita

Linked Data Management

Manfred Hauswirth, Marcin Wylot, Martin Grund, Paul Groth
and Philippe Cudré-Mauroux

vww.ebook3000.con)

xi

http://www.ebook3000.org

xii Contents

Non-native RDF Storage Engines 339
Manfred Hauwirth, Marcin Wylot, Martin Grund, Sherif Sakr
and Phillippe Cudré-Mauroux

Exploratory Ad-Hoc Analytics for BigData. 365
Julian Eberius, Maik Thiele and Wolfgang Lehner

Pattern Matching Over Linked Data Streams 409
Yongrui Qin and Quan Z. Sheng

Searching the Big Data: Practices and Experiences
in Efficiently Querying Knowledge Bases 429
Wei Emma Zhang and Quan Z. Sheng

Part III Big Graph Analytics

Management and Analysis of Big Graph Data:

Current Systems and Open Challenges 457
Martin Junghanns, André Petermann, Martin Neumann and

Erhard Rahm

Similarity Search in Large-Scale Graph Databases 507
Peixiang Zhao

Big-Graphs: Querying, Mining, and Beyond. 531
Arijit Khan and Sayan Ranu

Link and Graph Mining in the BigDataEra. 583
Ana Paula Appel and Luis G. Moyano

Granular Social Network: Model and Applications 617
Sankar K. Pal and Suman Kundu

Part IV Big Data Applications

Big Data, IoT and Semantics 655
Beniamino di Martino, Giuseppina Cretella and
Antonio Esposito

SCADA Systems inthe Cloud 691
Philip Church, Harald Mueller, Caspar Ryan, Spyridon
V. Gogouvitis, Andrzej Goscinski, Houssam Haitof and Zahir Tari

Quantitative Data Analysis in Finance 719
Xiang Shi, Peng Zhang and Samee U. Khan

Emerging Cost Effective Big Data Architectures 755
K. Ashwin Kumar

Contents xiii

Bringing High Performance Computing to Big Data

Algorithms. 777
H. Anzt, J. Dongarra, M. Gates, J. Kurzak, P. Luszczek,

S. Tomov and 1. Yamazaki

Cognitive Computing: Where Big Data Is Driving Us. 807
Ana Paula Appel, Heloisa Candello and Fabio Latuf Gandour

Privacy-Preserving Record Linkage for Big Data:
Current Approaches and Research Challenges. 851
Dinusha Vatsalan, Ziad Sehili, Peter Christen and Erhard Rahm

vww.ebook3000.con)

http://www.ebook3000.org

Part I
Fundamentals of Big Data Processing

Big Data Storage and Data Models

Dongyao Wu, Sherif Sakr and Liming Zhu

Abstract Data and storage models are the basis for big data ecosystem stacks.
While storage model captures the physical aspects and features for data storage,
data model captures the logical representation and structures for data processing
and management. Understanding storage and data model together is essential for
understanding the built-on big data ecosystems. In this chapter we are going to
investigate and compare the key storage and data models in the spectrum of big data
frameworks.

The growing demand of storing and processing large scale data sets has been driving
the development of data storage and databases systems in the last decade. The data
storage has been improved and enhanced from that of local storage to clustered,
distributed and cloud-based storage. Additionally, the database systems have been
migrated from traditional RDBMS to the more current NoSQL-based systems. In
this chapter, we are going to present the major storage and data models with some
illustrations of related example systems in big data scenarios and contexts based on
taxonomy of data store systems and platforms which is illustrated in Fig. 1.

1 Storage Models

A storage model is the core of any big-data related systems. It affects the scalabil-
ity, data-structures, programming and computational models for the systems that are
built on top of any big data-related systems [1, 2]. Understanding about the under-

D. Wu () - S. Sakr - L. Zhu
Data61, CSIRO, Sydney, Australia
e-mail: Dongyao.Wu@data61.csiro.au

D. Wu - S. Sakr - L. Zhu
School of Computer Science and Engineering, University of New South Wales,
Sydney, Australia

S. Sakr
National Guard, King Saud Bin Abdulaziz University for Health Sciences,
Riyadh, Saudi Arabia

© Springer International Publishing AG 2017 3
A.Y. Zomaya and S. Sakr (eds.), Handbook of Big Data Technologies,
DOI 10.1007/978-3-319-49340-4_1

vww.ebook3000.con)

http://www.ebook3000.org

4 D. Wu et al.

Storage Models Data Models
b» Block-based -+ Key-Value
i i» Amazon EBS > Redis
i ‘» OpenStack Cinder ' Memcahed
i File—based “+» DynamoDB
i > NFS family 7 » Document
r MongoDB
‘.= HDFS H
i ‘- CouchDB
“w+ Object-based e * Extensible-record
| AaaEon 33 L.» Big Table
i» EMC Atoms Lo HBase
i» OpenStack Swift ‘ Casandra

---- * Relational

...... + MySQL Cluster

-~ \oltDB

....... » Vertica

-+ Amazon RDS

------- * Microsoft Azure SQL
~-» Google Cloud SQL

. Others:Xeround,
StormDB, EntrerpriseDB

Fig. 1 Taxonomy of data stores and platforms

lying storage model is also the key of understanding the entire spectrum of big-data
frameworks. For addressing different considerations and focus, there has been three
main storage models developed during the past a few decades, namely, Block-based
storage, File-based Storage and Object-based Storage.

1.1 Block-Based Storage

Block level storage is one of the most classical storage model in computer science.
A traditional block-based storage system presents itself to servers using industry
standard Fibre Channel and iSCSI [3] connectivity mechanisms. Basically, block
level storage can be considered as a hard drive in a server except that the hard drive
might be installed in a remote chassis and is accessible using Fibre Channel or iSCSI.
In addition, for block-based storage, data is stored as blocks which normally have a
fixed size yet with no additional information (metadata). A unique identifier is used to
access each block. Block based storage focus on performance and scalability to store
and access very large scale data. As a result, block-based storage is usually used as
a low level storage paradigm which are widely used for higher level storage systems
such as File-based systems, Object-based systems and Transactional Databases, etc.

Big Data Storage and Data Models 5

Fig. 2 Block-based storage
model

Y A 4 Y

Block Access Interface

Block Storage Device

1.1.1 Architecture

A simple model of block-based storage can be seen in Fig.2. Basically, data are
stored as blocks which normally have a fixed size yet with no additional information
(metadata). A unique identifier is used to access each block. The identifier is mapped
to the exact location of actual data blocks through access interfaces. Traditionally,
block-based storage is bound to physical storage protocols, such as SCSI [4], iSCSI,
ATA [5] and SATA [6].

With the development of distributed computing and big data, block-based storage
model are also developed to support distributed and cloud-based environments. As
we can see from the Fig.3, the architecture of a distributed block-storage system
is composed of the block server and a group of block nodes. The block server is
responsible for maintaining the mapping or indexing from block IDs to the actual
data blocks in the block nodes. The block nodes are responsible for storing the actual
data into fixed-size partitions, each of which is considered as a block.

vww.ebook3000.con)

http://www.ebook3000.org

6 D. Wu et al.

Block Server

T

Block#1, location address1 -
Block#2, location address2 -
Block#3, location address3 -|-

T

Block#

Block Node

Block#

Block Node Block Node

Fig. 3 Architecture of distributed Block-based storage

1.1.2 Amazon Elastic Block Store (Amazon EBS)

Amazon Elastic Block Store (Amazon EBS) [7] is a block-level storage service
used for AWS EC2 (Elastic Compute Cloud) [8] instances hosted in Amazon Cloud
platform. Amazon EBS can be considered as a massive SAN (Storage Area Network)
in the AWS infrastructure. The physical storage could be hard disks, SSDs, etc. under
the EBS architecture. Amazon EBS is one of the most important and heavily used
storage services of AWS, even the building blocks component offerings from AWS
like RDS [9], DynamoDB [10] and CloudSearch [11], rely on EBS in the Cloud.
In Amazon EBS, block volumes are automatically replicated within the availability
zone to protect against data loss and failures. It also provides high availability and
durability for users. EBS volumes can be used just as traditional block devices and
simply plugged into EC2 virtual machines. In addition, users can scale up or down
their volume within minutes. Since the Amazon EBS lifetime is separate from the
instance on which it is mounted, users can detach and later attach the volumes on
other EC2 instances in the same availability zone.

1.1.3 OpenStack Cinder and Nova

In the open-source cloud such as OpenStack [12], the block storage service is pro-
vided by the Nova [13] system working with the Cinder [14] system. When you
start a Nova compute instance, it should come configured with some block storage
devices by default, at the very least to hold the read/write partitions of the running
OS. These block storage instances can be “ephemeral” (the data goes away when

Big Data Storage and Data Models 7

Fig. 4 File-based storage
model

Directory Hierarchy Data Storage

the compute instance stops) or “persistent” (the data is kept, can be used later again
after the compute instances stops), depending on the configuration of the OpenStack
system you are using.

Cinder manages the creation, attaching and detaching of the block devices to
instances in OpenStack. Block storage volumes are fully integrated into OpenStack
Compute and the Dashboard allowing for cloud users to manage their own storage
on demand. Data in volumes are replicated and also backed up through snapshots.
In addition, snapshots can be restored or used to create a new block storage volume.

1.2 File-Based Storage

File-based storage inherits from the traditional file system architecture, considers
data as files that are maintained in a hierarchical structure. It is the most common
storage model and is relatively easy to implement and use. In big data scenario, a
file-based storage system could be built on some other low-level abstraction (such as
Block-based and Object-based model) to improve its performance and scalability.

1.2.1 Architecture

The file-based storage paradigm is shown in Fig.4. File paths are organized in a
hierarchy and are used as the entries for accessing data in the physical storage. For a
big data scenario, distributed file systems (DFS) are commonly used as basic storage
systems. Figure5 shows a typical architecture of a distributed file system which
normally contains one or several name nodes and a bunch of data nodes. The name
node is responsible for maintaining the file entries hierarchy for the entire system
while the data nodes are responsible for the persistence of file data.

In a file based system, a user would need to know of the namespaces and
paths in order to access the stored files. For sharing files across systems, the path
or namespace of a file would include three main parts: the protocol, the domain
name and the path of the file. For example, a HDFS [15] file can be indicated as:
“[hdfs://][ServerAddress:ServerPort]/[FilePath]” (Fig. 6).

vww.ebook3000.con)

http://www.ebook3000.org

8 D. Wu et al.

File Directories Data Nodes

;
/J —

Name Node S
I libs

\

Fig. 5 Architecture of distributed file systems

Meta-Data
(Path to the file, Replicas)
/user/path/data.., 3

Meta-data Operations

Name Node

Block-Ops

| Data Nodes J \ Data Nodes |
[[
Rack 1 Rack 2

Fig. 6 Architecture of Hadoop distributed file systems

For a distributed infrastructure, replication is very important for providing fault
tolerance in file-based systems. Normally, every file has multiple copies stored on
the underlying storage nodes. And if one of the copies is lost or failed, the name
node can automatically find the next available copy to make the failure transparent
for users.

Big Data Storage and Data Models 9
1.2.2 NFS-Family

Network File System (NFS) is a distributed file system protocol originally developed
by Sun Microsystems. Basically, A Network File System allows remote hosts to
mount file systems over a network and interact with those file systems as though they
are mounted locally. This enables system administrators to consolidate resources onto
centralized servers on the network. NFS is built on the Open Network Computing
Remote Procedure Call (ONC RPC) system. NFS has been widely used in Unix
and Linux-based operating systems and also inspired the development of modern
distributed file systems. There have been three main generations (NFSv2, NFSv3
and NFsv4) for the NFS protocol due to the continuous development of storage
technology and the growth of user requirements.

NEFS consists of a few servers and more clients. The client remotely accesses the
data that is stored on the server machines. In order for this to function properly, a few
processes have to be configured and running. NFS is well-suited for sharing entire
file systems with a large number of known hosts in a transparent manner. However,
with ease-of-use comes a variety of potential security problems. Therefore, NFS also
provides two basic options for access control of shared files:

e First, the server restricts which hosts are allowed to mount which file systems
either by IP address or by host name.

e Second, the server enforces file system permissions for users on NFS clients in
the same way it does for local users.

1.2.3 HDFS

HDFS (Hadoop Distributed File System) [15] is an open source distributed file system
written in Java. It is the open source implementation of Google File System (GFS)
and works as the core storage for Hadoop ecosystems and the majority of the existing
big data platforms. HDFS inherits the design principles from GFS to provide highly
scalable and reliable data storage across a large set of commodity server nodes [16].
HDFS has demonstrated production scalability of up to 200 PB of storage and a single
cluster of 4500 servers, supporting close to a billion files and blocks. Basically, HDFS
is designed to serve the following goals:

e Fault detection and recovery: Since HDFS includes a large number of commodity
hardware, failure of components is expected to be frequent. Therefore, HDFS have
mechanisms for quick and automatic fault detection and recovery.

e Huge datasets: HDFS should have hundreds of nodes per cluster to manage the
applications having huge datasets.

e Hardware at data: A requested task can be done efficiently, when the computation
takes place near the data. Especially where huge datasets are involved, it reduces
the network traffic and increases the throughput.

vww.ebook3000.con)

http://www.ebook3000.org

10 D. Wu et al.

As shown in Fig. 6, the architecture of HDFES consists of a name node and a set
of data nodes. Name node manages the file system namespace, regulates the access
to files and also executes some file system operations such as renaming, closing, etc.
Data node performs read-write operations on the actual data stored in each node and
also performs operations such as block creation, deletion, and replication according
to the instructions of the name node.

Data in HDEFS is seen as files and automatically partitioned and replicated within
the cluster. The capacity of storage for HDFS grows almost linearly by adding new
data nodes into the cluster. HDFS also provides an automated balancer to improve
the utilization of the cluster storage. In addition, recent versions of HDFS have
introduced a backup node to solve the problem caused by single-node failure of the
primary name node.

1.3 Object-Based Storage

The object-based storage model was firstly introduced on Network Attached Secure
devices [17] for providing more flexible data containers objects. For the past decade,
object-based storage has been further developed with further investments being made
by both system vendors such as EMC, HP, IBM and Redhat, etc. and cloud providers
such as Amazon, Microsoft and Google, etc.

In the object-based storage model, data is managed as objects. As shown in Fig.7,
every object includes the data itself, some meta-data, attributes and a globally unique
object identifier (OID). Object-based storage model abstracts the lower layers of
storage away from the administrators and applications. Object storage systems can
be implemented at different levels, including at the device level, system level and
interface level.

Data is exposed and managed as objects which includes additional descriptive
meta-data that can be used for better indexing or management. Meta-data can be
anything from security, privacy and authentication properties to any applications
associated information.

Fig. 7 Object-based storage Object
model

Object Storage

Big Data Storage and Data Models 11
datafil, location address1 |
meta#l, location address2

data#2, location address3

i Object Server blaaaa
metatt2, location address4 ‘ Server
Object-1D# >\
Object Node

| object#1, data= data##l, meta= meta#l
object#2, data= data#2, meta= meta#2
object#3, data= data#3, meta= meta#i3

Object Node

&

Fig. 8 Architecture of object-based storage

1.3.1 Architecture

The typical architecture of an object-based storage system is shown in Fig.8. As
we can see from the figure, the object-based storage system normally uses a flat
namespace, in which the identifier of data and their locations are usually maintained
as key-value pairs in the object server. In principle, the object server provides location-
independent addressing and constant lookup latency for reading every object. In
addition, meta-data of the data is separated from data and is also maintained as
objects in a meta-data server (might be co-located with the object server). As aresult,
it provides a standard and easier way of processing, analyzing and manipulating of
the meta-data without affecting the data itself.

Due to the flat architecture, it is very easy to scale out object-based storage sys-
tems by adding additional storage nodes to the system. Besides, the added storage
can be automatically expanded as capacity that is available for all users. Draw-
ing on the object container and meta-data maintained, it is also able to provide
much more flexible and fine-grained data policies at different levels, for example,
Amazon S3 [18] provides bucket level policy, Azure [19] provides storage account
level policy, Atmos [20] provides per-object policy.

1.3.2 Amazon S3

Amazon S3 (Simple Storage Service) [18] is a cloud-based object storage system
offered by Amazon Web Services (AWS). It has been widely used for online backup
and archiving of data and application programs. Although the architecture and imple-
mentation of S3 is not published, it has been designed with high scalability, avail-
ability and low latency at commodity costs.

vww.ebook3000.con)

http://www.ebook3000.org

12 D. Wu et al.

In S3, data is stored as arbitrary objects with up to 5 terabytes data size and up to
2 kilobytes of meta-data. These data objects are organized into buckets which are
managed by AWS accounts and authorized based on the AMI identifier and private
keys. In addition, S3 supports data/objects manipulation operations such as creation,
listing and retrieving through either RESTful HTTP interfaces or SOAP-based inter-
faces. In addition, objects can also be downloaded using the BitTorrent protocol, in
which each bucket is served as a feed. S3 claims to guarantee 99.9% SLA by using
technologies such as redundant replications, failover support and fast data recovery.

S3 was intentionally designed with a minimal feature set and was created to make
web-scale computing easier for developers. The service gives users access to the
same systems that Amazon uses to run its own Web sites. S3 employs a simple web-
based interface and uses encryption for the purpose of user authentication. Users can
choose to keep their data private or make it publicly accessible and even encrypt data
prior to writing it out to storage.

1.3.3 EMC Atmos

EMC Atmos [20] is a object-based storage services platform developed by EMC
Corporation. Atmos can be deployed as either a hardware appliance or a software
in a virtual environment such as cloud. Atmos is designed based on the object stor-
age architecture aiming to manage petabytes of information and billions of objects
across multiple geographic locations yet be used as a single system. In addition,
Atmos supports two forms of replication: synchronous replication and asynchro-
nous replication. For a particular object, both types of replication can be specified,
depending on the needs of the application and the criticality of the data.

Atmos can be used as a data storage system for custom or packaged applications
using either a REST or SOAP data API, or even traditional storage interfaces like
NFS and CIFS. It stores information as objects (files 4+ metadata) and provides a
single unified namespace/object-space which is managed by user or administrator-
defined policies. In addition, EMC has recently added support for the Amazon S3
application interfaces that allow for the movement of data from S3 to any Atmos
public or private cloud.

1.3.4 OpenStack Swift

Swift [21] is a scalable, redundant and distributed object storage system for the
OpenStack cloud platform. With the data replication service of OpenStack, objects
and files in Swift are written to multiple nodes that are spread throughout the cluster in
the data center. Storage in Swift can scale horizontally simply by adding new servers.
Once a server or hard drive fails, Swift automatically replicates its content from
other active nodes to new locations in the cluster. Swift uses software logic to ensure
data replication and distribution across different devices. In addition, inexpensive
commodity hard drives and servers can be used for Swift clusters (Fig.9).

Big Data Storage and Data Models 13

Proxy Account Container
Server Server Server

s, . TheRing

> |
a4 S

i

1

N
(D)

Fig. 9 Architecture of swift object store

The architecture of Swift consists of several components including proxy server,
account servers, container servers and object servers:

e The Proxy Server is responsible for tying together the rest of the Swift architecture.
It exposes the Swift API to users and streams objects to and from the client based
on requests.

e The Object Server is a simple blob storage server which handles storage functions
such as the retrieval and deletion of objects stored on local devices.

e The Container Server is responsible to handle the listings of objects. Objects in
Swift are logically organized in specific containers. The listings relations are stored
as sqlite database files and replicated across the cluster.

e The Account Server is similar to the Container Server except that it is responsible
for the listings of containers rather than objects.

Objects in Swift are accessed through the REST interfaces, and can be stored,
retrieved, and updated on demand. The object store can be easily scaled across a
large number of servers. Swift uses rings to keep track of the locations of partitions
and replicas for objects and data.

1.4 Comparison of Storage Models

In practice, there is no perfect model which can suit all possible scenarios. Therefore,
developers and users should choose the storage models according to their application
requirements and context. Basically, each of the storage model that we have discussed
in this section has its own pros and cons.

vww.ebook3000.con)

http://www.ebook3000.org

14 D. Wu et al.
1.4.1 Block-Based Model

e Block-based storage is famous for its flexibility, versatility and simplicity. In a
block level storage system, raw storage volumes (composed of a set of blocks) are
created, and then the server-based system connects to these volumes and uses them
as individual storage drives. This makes block-based storage usable for almost any
kind of applications, including file storage, database storage, virtual machine file
system (VMEFES) volumes, and more.

e Block-based storage can be also used for data-sharing scenarios. After creating
block-based volumes, they can be logically connected or migrated between dif-
ferent user spaces. Therefore, users can use these overlapped block volumes for
sharing data between each other.

e Block-based storage normally has high throughput and performance and is gener-
ally configurable for capacity and performance. As data is partitioned and main-
tained in fix-sized blocks, it reduces the amount of small data segments and also
increases the 10 throughput due to more sequential reading and writing of data
blocks.

e However, block-based storage is complex to manage and not easy to use due to
the lack of information (such as meta-data, logical semantics and relation between
data blocks) when compared with that of other storage models such as file-based
storage and object-based storage.

1.4.2 File-Based Model

e File storage is easy to manage and implement. It is also less expensive to use than
block-storage. It is used more often on home computers and in smaller businesses,
while block-level storage is used by larger enterprises, with each block being
controlled by its own hard drive and managed through a server-based operating
system.

e File-based storage is usually accessible using common file level protocols such as
SMB/CIFS (Windows) and NFS (Linux, VMware). At the same time, files contain
more information for management purposes, such as authentication, permissions,
access control and backup. Therefore, it is more user-friendly and maintainable.

e Due to the hierarchical structure, file-based storage is less scalable the the number
of files becomes extremely huge. It becomes extremely challenging to maintain
both low-latency and scalability for large scale distributed file systems such as
NFS and HDFS.

1.4.3 Object-Based Model

e Object-based storage solves the provisioning management issues presented by the
expansion of storage at very large scale. Object-based storage architectures can be
scaled out and managed simply by adding additional nodes. The flat name space

Big Data Storage and Data Models 15

Table 1 Comparison of storage models

Storage Model Data model Indexing Scalability Consistency
Block-based Blocks Block Id Flat Strong

with fixed size
File-based Files File path Hierarchy Configurable
Object-based Objects and meta data Block Id or URI | Flat Configurable

size not fixed

organization of the data, in combination with the expandable metadata function-
ality, facilitate this ease of use. Object storage are commonly used for the storage
of large scale unstructured data such as photos in Facebook, songs on Spotify and
even files in Dropbox.

e Object storage facilitates the storage for unstructured data sets where data is gen-
erally read yet not written-to. Object storage generally does not provide the ability
of incrementally editing one part of a file (as block storage and file storage do).
Objects have to be manipulated as a whole unit, requiring the entire object to be
accessed, updated then re-written into the physical storage. This may cause some
performance implications. It is also not recommended to use object storage for
transactional data because of the eventual consistency model.

1.4.4 Summary of Data Storage Models

As a result, the main features of each storage model can be summarized as shown
in Table 1. Generally, block-based storage has a fixed size for each storage unit
while file-based and object-based models can have various sizes of storage unit
based on application requirements. In addition, file-based models use the file-based
directory to locate the data whilst block-based and object-based models both reply
on a global identifier for locating data. Furthermore, both block-based and object-
based models have flat scalability while file-based storage may be limited by its
hierarchical indexing structure. Lastly, block-based storage can normally guarantee
a strong consistency while for file-based and object-based models the consistency
model is configurable for different scenarios.

2 Data Models

A data model illustrates how the data elements are organized and structured. It also
represents the relations among different data elements. A data model is at the core for
data storage, analytic and processing of contemporary big data systems. According
to different data models, current data storage systems can be categorized into two
big families: relational-stores (SQL) and NoSQL stores.

vww.ebook3000.con)

http://www.ebook3000.org

16 D. Wu et al.

For past decades, relational database management systems (RDBMS) have been
considered as the dominant solution for most of the data persistence and management
service. However, with the tremendous growth of the data size and data variety, the
traditional strong consistency and pre-defined schema for relational databases have
limited their capability for dealing with large scale and semi/un-structured data in the
new era. Therefore, recently, a new generation of highly-scalable, more flexible data
store systems has emerged to challenge the dominance of relational databases. This
new groups of systems are called NoSQL (Not only SQL) systems. The principle
underneath the advance of NoSQL systems is actually a trade-off between the CAP
properties of distributed storage systems.

As we know from the CAP theorem [22], a distributed system can only guarantee at
most two out of the three properties: Consistency, Availability and Partition tolerance.
Traditional RDBMS normally provide a strong consistency model based on their
ACID [23] transaction model while NoSQL systems try to sacrifice some extent of
consistency for either higher availability or better partition tolerance. As a result,
data storage systems can be categorized into three main groups base on their CAP
properties:

e CA systems, which are consistent and highly available yet not partition-tolerant.

e CP systems, which are consistent and partition-tolerant but not highly available.

e AP systems, which are highly available and partition-tolerant but not strictly con-
sistent.

In the remaining of this section, we will discuss about major NoSQL systems and
scalable relation databases, respectively.

2.1 NoSQL (Not only SQL)

Rational databases management systems (such as MySQL [24], Oracle [25], SQL
Server [26] and PostgreSQL [27]) have been dominating the database community
for decades until they face the limitation of scaling to very large scale datasets.
Therefore, recently a group of database systems which abandoned the support of
ACID transactions (Atomicity, Consistency, Isolation and Durability, which are key
principles for relational databases) has emerged to tackle the challenge of big data.
The group of these database systems are named as NoSQL (Not only SQL) systems
which aims to provide horizontal scalability towards any large scale of datasets. A
majority of NoSQL systems are originally designed and built to support distributed
environments with the need to improve performance by adding new nodes to the
existing ones. Recall that the CAP theorem states that a distributed system can only
choose at most two of the three properties: Consistency, Availability and Partition
tolerance. One key principle of NoSQL systems is to compromise the consistency to
trade for high availability and scalability. Basically the implementation of a majority
NoSQL systems share a few common design features as below:

Big Data Storage and Data Models 17

e High scalability, which requires the ability to scale up horizontally over a large
cluster of nodes;

e High availability and fault tolerance, which is supported by replicating and dis-
tributing data over distributed servers;

e Flexible data models, with the ability to dynamically define and update attributes
and schemas;

e Weaker consistency models, which abandoned the ACID transactions and are
usually referred as BASE models (Basically Available, Soft state, Eventually con-
sistent) [28];

e Simple interfaces, which are normally single call-level interfaces or protocol in
contrast to the SQL bindings.

For different scenarios and focus of usage, more NoSQL systems have developed
in both industry and academia. Based on different data model ported, these NoSQL
systems can be classified as three main groups: Key-Value Stores, Document stores
and Extensible-Record/Column-based stores.

2.1.1 Key-Value Stores

Key-value stores use a simple data model, in which data are considered as a set Key-
Value pairs, in which, keys are unique IDs for each data and also work as indexes
during accessing the data (Fig. 10). Values are attributes or objects which contains
the actual information of data. Therefore, these systems are called key-value stores.
The data in key-value stores can be accessed using simple interfaces such as insert,
delete and search by key. Normally, secondary keys and indexes are not supported.
In addition, these systems also provide persistence mechanism as well as replication,
locking, sorting and other features.

e Redis

Redis [29] is an open source Key-Value store system written in C. It supports a fairly
rich data model for stored values. Values can be lists, sets and structures in addition
to basic types (Integer, String, Double and Boolean). Apart from ordinary operations
such as reading and writing, Redis also provides a few atomic modifier such as
increment of a numeric value by one, adding an element to a list, etc. Redis mainly
stores data in memory, which ensures high performance. To provide persistence, data

Key -> Single-value Key Value

Key -> Attributes GRS — Name:wdy, Gender:male, Age:18

Key -> Array GGV ELEEMN—— Tom, John, Kate, Lilly, Martin

Fig. 10 Data model of Key-value stores

vww.ebook3000.con)

http://www.ebook3000.org

18 D. Wu et al.

snapshots and modification operations are written out to disk for failure tolerance.
Redis can scale out by distributing data (normally achieved at client side) among
multiple Redis servers and providing asynchronous data replication through master-
slaves.

e Memcached family

Memcached [30] is the first generation of Key-Value stores initially working as cache
for web servers then being developed as a memory based Key-value store system.
Memcahed has been enhanced to support features such as high availability, dynamic
growth and backup. The original design of Memcached does not support persis-
tence and replication. However, its follow-up variation: Membrain and Membase do
include these features which make them more like storage systems.

e DynamoDB

DynamoDB [10] is a NoSQL store service provided by Amazon. Dynamo supports a
much more flexible data model especially for key-value stores. Data in Dynamo are
stored as tables each of which has a unique primary ID for accessing. Each table can
have a set for attributes which are schema free and scalar types and sets are supported.
Data in Dynamo can be manipulated by searching, inserting and deletion based on
the primary keys. In addition, conditional operation, atomic modification and search
by non-key attributes are also supported (yet inefficient), which makes it also closer
to that of a document store. Dynamo provides a fast and scalable architecture where
sharding and replication are automatically performed. In addition, Dynamo provides
support for both eventually consistency and strong consistency for reads while strong
consistency degrades the performance. E.g. Redis, Memcached, DynamoDB (also
support document store).

2.1.2 Document Stores

Document stores provide a more complex data structure and richer capabilities than
Key-Value systems. In document stores, the unit of data is called a document which
is actually an object that can contains an arbitrary set of fields, values and even
nested objects and arrays (Fig. 11). Document stores normally do not have predefined
schemas for data and support search and indexing by document fields and attributes.
Unlike key-value stores, they generally support secondary indexes, nested objects
and lists. Additionally, some of them can even support queries with constraints,
aggregations, sorting and evaluations.

e MongoDB

MongoDB [31] is an open source project developed in C++ and supported by the
company 10gen. MongoDB provides its data model based on JSON documents and
maintained as BSON (a compact and binary representation of JSON). Each document
in MongoDB has a unique identifier which can be automatically generated by the

Big Data Storage and Data Models 19

Contact Document

_id : <Object_2>,
user :|<dﬁject 1>1

Sl AeE oo User Document
phone : “123456789”,

email : “wdy@gmail.com” {
} 14 _id: <Object_1>,
» username : “wdy”,
Access Document gender : “male”

_id : <Object_3>,

level: 9
group: “databases”

}

Fig. 11 Data model of document stores

server or manually created by users. A document contains an arbitrary set of fields
which can be either arrays or embedded documents. MongoDB is schema free and
even documents in the same collection can have completely different fields. Docu-
ments in MongoDB are manipulated based on the JSON representation using search,
insertion, deletion and modification operations. Users can find or query documents by
writing them as expressions of constraints of fields. In addition, complex operations
such as sorting, iteration and projecting are supported. Moreover, users can perform
MapReduce-like program and aggregation paradigms on documents, which makes
it possible to execute more complicated analytic queries and programs. Documents
can be completely replaced and any parts of their fields can also be manipulated and
replaced.

Indexes of one or more fields in a collection are supported to speed up the searching
queries. In addition, MongoDB scales up by distributing documents of a collection
among nodes based on a sharding key. Replication between master and slaves with
different consistency models depending on whether reading from secondary nodes
are allowed and how many nodes are required to reach a confirmation.

e CouchDB

CouchDB [32] is an Apache open source project written in Erlang. It is a distributed
documents-based store that manipulates JSON documents. CouchDB is schema free,
documents are organized as collections. Each document contains a unique identifier
and a set of fields which can be scalar fields, arrays and embedded documents.

vww.ebook3000.con)

http://www.ebook3000.org

20 D. Wu et al.

Queries on CouchDB documents are called views which are MapReduce-based
JavaScript functions specifying the matching constraints and aggregation logics.
These functions are structured into so-called designed documents for execution.
For these views, B-Tree based indexes are supported and updated during modifica-
tions. CouchDB also supports optimistic locks based on MVCC (Multi-Versioned
Concurrency Control) [33] which enables CouchDB to be lock-free during reading
operations. In addition, every modification is immediately written down to the disk
and old versions of data are also saved. CouchDB scales by asynchronous replication,
in which both master-slave and master-master replication is supported. Each client
is guaranteed to see a consistent state of the database, however, different clients may
see different states (as strengthened eventually consistency).

2.1.3 Extensible-Record Stores

Extensible-Record Stores (also called column stores) are initially motivated by
Google’s Big Table project [34]. In the system, data are considered as tables with
rows and column families in which both rows and columns can be split over multiple
nodes (Fig. 12). Due to this flexible and loosely coupled data model, these systems
support both horizontal and vertical partitioning for the scalability purposes. In addi-
tion, correlated fields/columns (named as column families) are located on the same
partition to facilitate query performance. Normally column families are predefined
before creating a data table. However, this is not a big limitation as new columns and
fields can always be dynamically added to the existing tables.

e BigTable

BigTable [34] is introduced by Google in 2004 as a column store to support various
Google services. Big Data is built on Google File System (GFS) [35] and can be easily
scaled up to hundreds and thousands of nodes maintaining Terabytes and Petabytes
scale of data.

Key Space 1
. Column Family 1 | Column Family 2
Key_1 Column_1 Column_2 Key_1 Column_3 Column_4
Key_2 Column_1 Column_2 Key_2 Column_3 Column_4
Key_3 Column_1 Column_2 Key 3 Column_3 Column_4
| Key Space 2
Column Family 1 Column Family 2
Key_4 Column_1 Column_2 Key_4 Column_3 Column_4
Key_5 Column_1 Column_2 Key_S Column_3 Column_4
Key_6 Column_1 Column_2 Key_6 Column_3 Column_4

Fig. 12 Data model of extensible-record stores

Big Data Storage and Data Models 21

BigTable is designed based on an extended table model which maintains a three
dimensional mapping from row key, column key and timestamps to associated data.
Each table is divided into a set of small segments called tablets based on row keys
and column keys. Tablets are also the unit for performing load balancing when
needed. Columns are grouped as column families which are collocated in the disk
and optimized for reading correlated fields in a table. Each column family may
contain an arbitrary set of columns and each column of a record in the table can have
several versions of data marked and ordered by timestamps.

BigTable supports operations including writing and deleting values, reading rows,
searching and scanning a subset of data. In addition, it supports creation and dele-
tion of tables and column families and modification of meta-data (such as access
rights). BigTable also supports asynchronous replication between clusters and nodes
to ensure an eventually consistency.

e Hbase

HBase [36] is an Apache open source project and is developed in Java based on
the principles of Google’s BigTable. HBase is built on the Apache Hadoop Frame-
work and Apache Zookeeper [37] to provide a column-store database. As HBase is
inherited from BigTable, they share a lot of features in both data model and architec-
ture. However, HBase is built on HDFS (Hadoop Distributed File System) instead of
GFS and it uses ZooKeeper for cluster coordination compared with using Chubby in
BigTable. HBase puts updates in the memory and periodically writes them to disk.
Row operations are atomic with the support of row-level transactions. Partitions and
distributions are transparent to users and there is no client-side hashing like some
of the other NoSQL systems. HBase provides multiple master nodes to tackle the
problem of single-point failure of the master node. Compared with BigTable, HBase
does not have location groups but only that of column families. In addition, HBase
does not support secondary indexing, therefore, queries can only be performed based
on primary keys or by fully scanning the table. Nevertheless, additional indexes can
be manually created using extra tables.

e Casandra

Casandra [38] is an open source NoSQL database initially developed by Facebook
in Java. It combines the ideas of both BigTable and Dynamo and it is now open
sourced under the Apache license. Casandra shares the majority of the features as
other extensible record stores (column stores) in both data model and functionality.
It has column groups and updates are cached in the memory first then flushed to disk.
However, there still some differences:

e Casandra have columns which are the minimum unit for storage and super columns
which contains a set of columns to provide additional nestedness.

e Casandra is fully decentralized of which every node in the cluster is considered
equal and performs identical functions. In Casandra, a leader is selected based
on the Gossip Protocol; failures are detected by using the phi accrual algorithm

vww.ebook3000.con)

http://www.ebook3000.org

22 D. Wu et al.

and scalability is achieved by Consistent Hashing. All the process that have been
mentioned before: leader selection, failure detection and recovery are performed
automatically.

e Casandra only supports the eventually consistency model. It provides quorum
reads to ensure clients get the latest data from majority of the replicas. Writes in
Casandra are atomic within a column family and some extent of versioning and
conflict resolution are supported.

2.1.4 Summary of Major Data Store Systems

Table 2 shows the comparison of existing data store systems. As we can see from the
table, Key-Value stores generally trade-off consistency for availability and partition-
tolerance while Document stores normally provide different levels of consistency
based on different requirements of availability and partition-tolerance. In addition, we
can see that the majority of NoSQL data stores provide at least eventual consistency
and use MVCC for concurrent controlling. Most of the NoSQL data stores still use
master-slave architecture while some more advanced systems (Casandra, etc.) are
built on a decentralized, share-nothing architecture.

2.2 Relational-Based

Traditional DBMSs are designed based on the relational paradigm in which all data
is represented in terms of tuples and grouped into relations. The purpose of the rela-
tional model is to provide a declarative method for specifying data and queries (SQL).
Unlike NoSQL systems, these databases have a complete pre-defined schema and
SQL interfaces with the support of ACID transactions. However, the ever increasing
need for scalability in order to store very large datasets have brought about some
key challenges for traditional DBMSs. Therefore, further performance improve-
ments have been made to relational databases to provide comparable scalability
with NoSQL databases. Those improvements are based on two main provisos:

e Small-scope operations: As large scale relational operations like Join cannot scale
well with partitioning and sharding, these operations are limited to smaller scopes
to achieve better performance.

e Small-scope transactions: Note that, transaction is also one key reason to cause
the scalability problem for relational databases. Therefore, limiting the scope of
transactions can significantly improve the scalability of DBMS clusters.

In terms of product systems, based on their model of usage, they can be classified
into two groups: Scalable Rational Systems and Database-as-a-service (DaaS).

23

Big Data Storage and Data Models

Suruonnred
Surypou-areys Asid + INVY [eIUOZLIOH anyv Suong dd sa[qe) [euone[oy d@IoA
QAB[S-IISEIA ysi | Surysey paseq-moy anyv Suong do So[qe) [euone[Y 1938010 TOSAIN
PazI[enUaR(ys1q | Sumysey juslsisuo) DDA Suong/remuoag dD/dv Aquuey-uwnjo) BIpULSE)D)
(11sey dnypoeq) DOAN s
QALS-IQISBIA ISIAd + INVY paseq-a8uey | Sunypool onstundo [emuaAg Ee) A[rurey-uwnjo) asegH
QALS-IQISBIA ySIq paseq-oSuey | sduels pue syo0] [emuaAg do A[uey-uwnjo) Jqer3ig
QABS-IQISBIA VY | Surysey juesisuo) SY00T + DIAIN [emuaAg do Juawndoq QI0ISBLIRL,
QABS-IQISBIA ysiq | Sumysey Jusisuo)) DDA [emuoAy do JuawIndoq dqyono)
Surpreys Sunyoor
QABS-I9)SBIN ySIqQ paseq-£ay[KyrrenueIs-nina Suong/remuosyg a JuUAWNOO(qgoSuoy
QAR[S-IQISEIA ddd o NVY | Surysey juo)sisuo) DOAIN aredar-peay av anyea-Aay] JIOWAP[OA
(s1o)sewr opdnnur) JUAWNO0P
QAB[S-IISEIA NI + JNVY | Suipreys paseq-£oy] DDAIN 1OLNS/[EMUIAT v 10 anjea-£ay] owreuA(
QAB[S-IQISEIA WV QUON $)00] [emuoAy av anjea-£ay] PAYOROWRI
Suruonnred
Sopou ejep-nnjA ISIAd + NV opIs-1uRI[D SY00] Suong/[emuoag dv anpea-£ay] SIpoy
yore paynqLusi(q a3e10)s elRQ Sutuonnred | [01UOD JUALINOUOD) Kougysisuo) dvD [opowt Bleq wIsAS

SwAISAs 2103s eyep Jolew jo uosuedwo) g I[qeL

vww.ebook3000.con)

http://www.ebook3000.org

24 D. Wu et al.
2.2.1 Scalable Rational Systems

With the requirement for dealing with large scale datasets, optimizations and
improvements have been done on traditional DBMS systems such as MySQL. And
several new products have also come out with the promise to have good per-node
performance as well as scalability.

e MySQL Cluster

MySQL Cluster [39] has been part of the mainline MySQL releases as an exten-
sion that supports distributed, Multi-master and ACID compliant databases. MySQL
Cluster automatically shards data across multiple nodes to scale out read and write
operations on large datasets. It can be accessed through both SQL and NoSQL APIs.

The synchronous replication MySQL Cluster is based on a two-phase commit
mechanism to guarantee the data consistency on multiple replicas. It also automati-
cally creates node groups among the replicas to protect against data loss and provide
support for swift failover.

MySQL Cluster is implemented as fully distributed databases with multi-master,
each of them can accept write operations and updates are instantly visible for all
the nodes within the cluster. Tables in MySQL Cluster are automatically partitioned
among all the data nodes based on a Hashing algorithm of the primary key of each
table. In addition, sharding, load balancing, failing over and recovery in MySQL
Cluster are transparent to users, so it is generally easy to setup.

e VoItDB

VoltDB [40] is an open source SQL-based in-memory database which is designed
for high performance as well as scalability. VoltDB is also ACID-compliant and built
on a shared nothing architecture. Tables are partitioned over multiple nodes and data
can be accessed through any server. Partitions are replicated among different nodes
and data snapshots are also supported to provide fast failover and data recovery.
VoltDB is designed as a database that can be fit into distributed RAM on the servers,
so generally operations do not need to wait for the disk 10. All VoltDB SQL calls
are made through stored procedures each of which is considered as one transaction.
VolItDB is fully ACID compliant of which data is durable on the disk and ensured by
continuous snapshots and command logging. VoltDB has been further developed in
recent releases to be able to be integrated with Big Data ecosystems such as Hadoop,
HDFS, Kafka, etc. And it is also extended to support geo-spatial query and data
models.

e Vertica Analytics Platform

Vertica Analytics Platform (Vertica for short) [41] is a cloud-based, column-oriented,
distributed database management system. It is designed for the management of large,
fast-growing volumes of data as well as supporting highly optimized query perfor-
mance for data warehouses and other query-intensive applications. Vertica claims to

Big Data Storage and Data Models 25

dramastically improve query performance over traditional relational database sys-
tems along with high-availability and petabyte-scalability on commodity enterprise
servers. The design features of Vertica include:

e Column-oriented store: Vertica leverages the columnar data store model to offer
significant improvement on the performance of sequential record access at the
expense of common transactional operations such as single record retrievals,
updates, and deletes. The column-oriented data model also improves the perfor-
mance of I/O, storage footprint and efficiency when it comes to analytic workloads
due to the lower volume of data during loading.

e Real-time loading and query: Vertica is designed with a novel time travel trans-
actional model that ensures extremely high query concurrency. Vertica is able to
load data up to 10x faster than traditional row-stores by leveraging on its design of
simultaneously loading data in the system. In addition, Vertica is purposely built
with a hybrid in-memory/on-disk architecture to ensure near-real-time availability
of information.

e Advanced database analytics: Vertica offers a set of Advanced In-Database Ana-
lytics functionality so that users can conduct their analytics computations within
the database rather than extracting data to a separate environment for processing.
The in-database analytics mechanism is especially critical for applying computa-
tion on large scale data sets with the size range from terabytes to petabytes and
beyond.

e Data compression: Vertica operates on encoded data which dramatically improves
analytic performance by reducing CPU, memory, and disk I/O at processing time.
Due to the aggressive data compression, Vertica can reduce the original data size
to 1/5th or 1/10th its original size even with high-availability redundancy.

e Massively Parallel Processing (MPP) [42] support: Vertica delivers a simple, but
highly robust and scalable MPP solution which offers linear scaling and native
high availability on industry standard parallel hardware.

e Shared nothing architecture: Vertica is designed in a shared nothing architecture
which, on one hand, reduces system contention for shared resources and on the
other hand allows gradual degradation of performance when the system encounters
both software or hardware failures.

2.2.2 Database-as-a-Service (DaaS)

Database-as-a-service is a service model where a third party service provider hosts
scalable relational databases as services by applying the multi-tenancy technology
on database systems. Those services relieve their users from the need to purchase and
maintain expensive hardware and software for provisioning database functionality.
Three main approaches including Shared Server, Shared Process and Shared Table
are used to avoid the problem of under-utilization of data center resources. In practice,
the shared-server model is most commonly used by DaaS providers as it is considered
the most efficient way for providing isolation for the data of each tenant.

vww.ebook3000.con)

http://www.ebook3000.org

26 D. Wu et al.

e Amazon RDS

Amazon RDS (Relational Database Service) [9] is a DaaS service provided by Ama-
zon Web Services (AWS). It is a cloud service to simplify setup, configuration,
operation and auto-scaling of relational databases for use by applications. It also
helps in the sake of backing up, patching and recovery of users database instances.
Amazon RDS provides asynchronous replication of data across multiple nodes to
improve the scalability of reading operations for relational databases. It also pro-
visions and maintains replicas across availability zones to enhance the availability
of database services. For flexibility considerations, Amazon RDS supports various
types of databases including MySQL, Oracle, PostgreSQL and Microsoft SQL, etc.

e Microsoft Azure SQL

Microsoft also released their SQL Azure [43] as a cloud based service for rela-
tional databases. Azure SQL is, namely, built on the Azure cloud infrastructure with
Microsoft SQL Server as its databases backend. It provides highly available, multi-
tenant database service with the support of T-SQL, native ODBC and ADO.NET for
data access. Azure SQL provides high availability by storing multiple copies of data-
bases with elastic scaling and rapid provisioning. It also provides self-management
functions for database instances and predictable performance during scaling.

e Google Cloud SQL

Google Cloud SQL [44] is another fully managed DaaS service hosted on Google
Cloud Platform. It provides easy setup, management, maintenance and administra-
tions for MySQL databases in cloud environments. Google Cloud SQL provides
automated replication, patch management, and database management with effortless
scaling based on users’ demand. For reliability, Google Cloud SQL also replicates
databases across multiple zones with automated failover and provides backups and
point-in-time recovery automatically.

e Other DaaS Platforms

Following the main stream of cloud-based solutions, more and more database soft-
ware providers have been migrating their products as cloud services. There are various
DaaS provided by different venders including:

e Xeround [45] offers its own elastic database service based on MySQL across a
variety of cloud providers and platforms. The Xeround service allows for high
availability and scalability and it can work across a variety of cloud providers
including AWS, Rackspace, Joyent, HP, OpenStack and Citrix platforms.

e StormDB runs its fully distributed, relational database on bare-metal servers,
meaning there is no virtualization of machines. Despite running on bare metal
servers, customers still share clusters of servers with promises of isolation among
customer databases. StormDB also automatically shards databases in its cloud
environments.

Big Data Storage and Data Models

Table 3 Comparison for different data models

27

Name Data model | CAP Consistency | Scalability | Schema Transaction
Key-value | Key-values | AP Loose High Key with BASE
stores scalar value
Record Column AP/CP Loose High Rows with | BASE
stores families scalar

columns
Document | Documents | AP/CP Loose High Schema free | BASE
stores JSON-like
Rational Relational | C/CP Strict Low Row-based | ACID
databases tables predefined

schema

e EnterpriseDB [46] provides its cloud database service mainly based on the open
source PostgreSQL databases. The Management Console in its cloud service pro-
visions PostgreSQL databases with database compatibility with Oracle. Users
can choose to deploy their database in single instances, high availability clusters,
or development sandboxes for Database-as-a-Service environments. With Enter-
priseDB’s Postgres Plus Advanced Server, enterprise users can deploy their appli-
cations written for Oracle databases through EnterpriseDB, which runs in cloud
platforms such as Amazon Web Services and HP.

2.3 Summary of Data Models

A comparison of the different data models is shown in Table 3. Basically, NoSQL
data models:Key-Value, Column families and Document-based models has looser
consistency constraints as a trade-off for high availability and/or partition-tolerance
in comparison with that of relational data models. In addition, NoSQL data models
have more dynamic and flexible schemas based on their data models while relational
databases use predefined and row-based schemas. Lastly, NoSQL databases apply
the BASE models while relational databases guarantee ACID transactions.

References

1. S. Sakr, M. Medhat Gaber (eds.), Large Scale and Big Data - Processing and Management
(Auerbach Publications, Boston, 2014)
2. S. Sakr, A. Liu, A.G. Fayoumi, The family of mapreduce and large-scale data processing
systems. ACM Comput. Surv. 46(1), 11 (2013)
3. J. Satran, K. Meth, Internet small computer systems interface (iscsi) (2004)

vww.ebook3000.con)

http://www.ebook3000.org

28

11.

12.

13.
14.

15.

16.
17.

18.

19.

20.

21.

22.
23.

24.
25.

26.

D. Wu et al.

SCSI Protocol. Information technologyscsi architecture model5 (sam-5). INCITS document,
10

S. Hopkins, B. Coile, Aoe (ata over ethernet). The Brantley Coile Company, Inc., Technical
report AoErl11, 2009

. ATA Serial. High-speed serialized at attachment. Serial ATA working group, available at www.

sata-io.org (2001)

. EBS Amazon. Elastic block store has launched all things distributed (2008). https://aws.

amazon.com/ebs/

. EC2 Amazon. Amazon elastic compute cloud (amazon ec2), Amazon Elastic Compute Cloud

(Amazon EC2) (2010)

. RDS Amazon. Amazon relational database service (amazon rds). https://aws.amazon.com/

rds/. Accessed 27 Feb 2016

. S. Sivasubramanian, Amazon dynamodb: a seamlessly scalable non-relational database service.

in Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data
(ACM, New York, 2012), pp. 729-730

Amazon. Amazon cloudsearch service. https://aws.amazon.com/cloudsearch/. Accessed 27
Feb 2016

O. Sefraoui, M. Aissaoui, M. Eleuldj, Openstack: toward an open-source solution for cloud
computing. Intern. J. Comput. Appl. 55(3), 38-42 (2012)

K. Pepple, Openstack nova architecture. Viitattu 25, 2012 (2011)

OpenStack. Openstack block storage cinder. https://wiki.openstack.org/wiki/Cinder. Accessed
27 Feb 2016

K. Shvachko, H. Kuang, S. Radia, R. Chansler, The Hadoop distributed file system. in JEEE
MSST (2010)

S. Sakr, Big Data 2.0 Processing Systems (Springer, Switzerland, 2016)

K. Goda, Network attached secure device. in Encyclopedia of Database Systems (Springer,
New York, 2009), pp. 1899-1900

S3 Amazon. Amazon simple storage service(amazon s3). https://aws.amazon.com/s3/.
Accessed 27 Feb 2016

Azure Microsoft. Microsoft azure: Cloud computing platform and services. https://azure.
microsoft.com. Accessed 27 Feb 2016

Atoms EMC. Atmos - cloud storage, big data - emc. http://australia.emc.com/storage/atmos/
atmos.htm. Accessed 27 Feb 2016

Swift OpenStack. Openstack swift - enterprise storage from swiftstack. https://www.swiftstack.
com/openstack-swift/. Accessed 27 Feb 2016

E.A. Brewer, Towards robust distributed systems. in Proceedings of the PODC, vol. 7 (2000)
J. Gray et al., The transaction concept: virtues and limitations. in Proceedings of the VLDB,
vol. 81 (1981), pp. 144-154

A.B.MySQL, MySQL: The World’s Most Popular Open Source Database (MySQL AB, 1995)
K. Loney, Oracle Database 10g: The Complete Reference (McGraw-Hill/Osborne, London,
2004)

Microsoft. Sql server 2014. https://www.microsoft.com/en-au/server-cloud/products/sql-
server/overview.aspx. Accessed 27 Feb 2016

. PostgreSQL Datatype. Postgresql: the world’s most advanced open source database. http://

www.postgresql.org. Accessed 27 Feb 2016

. D. Pritchett, Base: an acid alternative. Queue 6(3), 48-55 (2008)

. J. Zawodny, Redis: lightweight key/value store that goes the extra mile. Linux Mag. 79, (2009)
. B. Fitzpatrick, Distributed caching with memcached. Linux J. 2004(124), 5 (2004)

. MongoDB Inc. Mongodb for giant ideas. https://www.mongodb.org/. Accessed 27 Feb 2016
. Apache. Apache couchdb. http://couchdb.apache.org/. Accessed 27 Feb 2016

. P.A. Bernstein, N. Goodman, Concurrency control in distributed database systems. ACM

Comput. Surv. (CSUR) 13(2), 185-221 (1981)

. F.Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, M. Burrows, T. Chandra, A. Fikes,

R.E. Gruber, Bigtable: a distributed storage system for structured data. ACM Trans. Comput.
Syst. (TOCS) 26(2), 4 (2008)

www.sata-io.org
www.sata-io.org
https://aws.amazon.com/ebs/
https://aws.amazon.com/ebs/
https://aws.amazon.com/rds/
https://aws.amazon.com/rds/
https://aws.amazon.com/cloudsearch/
https://wiki.openstack.org/wiki/Cinder
https://aws.amazon.com/s3/
https://azure.microsoft.com
https://azure.microsoft.com
http://australia.emc.com/storage/atmos/atmos.htm
http://australia.emc.com/storage/atmos/atmos.htm
https://www.swiftstack.com/openstack-swift/
https://www.swiftstack.com/openstack-swift/
https://www.microsoft.com/en-au/server-cloud/products/sql-server/overview.aspx
https://www.microsoft.com/en-au/server-cloud/products/sql-server/overview.aspx
http://www.postgresql.org
http://www.postgresql.org
https://www.mongodb.org/
http://couchdb.apache.org/

Big Data Storage and Data Models 29

35

36.
37.

38.

39.

40.

41.

42.

43.

44,

45.
46.

S. Ghemawat, H. Gobioff, S.-T. Leung, The google file system. in ACM SIGOPS Operating
Systems Review, vol. 37 (ACM, Bolton Landing, 2003), pp. 29-43

L. George, HBase: The Definitive Guide (O’Reilly Media, Inc., Sebastopol, 2011)

P. Hunt, M. Konar, F.P. Junqueira, B. Reed, Zookeeper: wait-free coordination for internet-scale
systems. in USENIX Annual Technical Conference, vol. 8 (2010), p. 9

A. Lakshman, P. Malik, Cassandra: a decentralized structured storage system. ACM SIGOPS
Oper. Syst. Rev. 44(2), 35-40 (2010)

M. Ronstrom, L. Thalmann, Mysql cluster architecture overview. MySQL Technical White
Paper (2004)

M. Stonebraker, A. Weisberg, The voltdb main memory dbms. IEEE Data Eng. Bull. 36(2),
21-27 (2013)

A. Lamb, M. Fuller, R. Varadarajan, N. Tran, B. Vandiver, L. Doshi, C. Bear, The vertica
analytic database: C-store 7 years later. Proc. VLDB Endow. 5(12), 1790-1801 (2012)

F. Fernandez de Vega, E. Canti-Paz, Parallel and Distributed Computational Intelligence, vol.
269 (Springer, Berlin, 2010)

Microsoft. Sql database - relational database service. https://azure.microsoft.com/en-us/
services/sql-database/. Accessed 27 Feb 2016

Google. Cloud sql - mysql relational database. https://cloud.google.com/sql/. Accessed 27 Feb
2016

Xeround. Xeround. https://en.wikipedia.org/wiki/Xeround. Accessed 27 Feb 2016
EnterpriseDB. Enterprisedb - the postgres database company. https://www.enterprisedb.com.
Accessed 27 Feb 2016

vww.ebook3000.con)

https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/services/sql-database/
https://cloud.google.com/sql/
https://en.wikipedia.org/wiki/Xeround
https://www.enterprisedb.com
http://www.ebook3000.org

Big Data Programming Models

Dongyao Wu, Sherif Sakr and Liming Zhu

Abstract Big Data programming models represent the style of programming and
present the interfaces paradigm for developers to write big data applications and
programs. Programming models normally the core feature of big data frameworks
as they implicitly affects the execution model of big data processing engines and
also drives the way for users to express and construct the big data applications and
programs. In this chapter, we comprehensively investigate different programming
models for big data frameworks with comparison and concrete code examples.

A programming model is the fundamental style and interfaces for developers to
write computing programs and applications. In big data programming, users focus
on writing data-driven parallel programs which can be executed on large scale and
distributed environments. There have been a variety of programming models being
introduced for big data with different focus and advantages. In this chapter, we will
discuss and compare the major programming models for writing big data applications
based on the taxonomy which is illustrated in Fig. 1.

1 MapReduce

MapReduce [24] the current defacto framework/paradigm for writing data-centric
parallel applications in both industry and academia. MapReduce is inspired by the
commonly used functions - Map and Reduce in combination with the divide-and-

D. Wu () - S. Sakr - L. Zhu
Data61, CSIRO, Sydney, NSW, Australia
e-mail: Dongyao.Wu@data61.csiro.au

D. Wu - S. Sakr - L. Zhu
School of Computer Science and Engineering, University of New South Wales,
Sydney, NSW, Australia

S. Sakr
King Saud Bin Abdulaziz University for Health Sciences, National Guard,
Riyadh, Saudi Arabia

© Springer International Publishing AG 2017 31
A.Y. Zomaya and S. Sakr (eds.), Handbook of Big Data Technologies,
DOI 10.1007/978-3-319-49340-4_2

32 D. Wu et al.

Programming Models

L4 L4 v R 1] L4

‘
MapReduce Functional SQL-based Actor Statistical Dataflow BSP High-level DSL
. . ‘ and Analytical i :
-+ MapReduce ... Spark (> HiveQL v Akka) v Qozie o> Giraph L. pig Latin
£ i 1 i | |
-+ Hadoop s Flink r* CasandraQL ' = Storm :- R L—s Dryad .- * Hama : ----- * Crunch
i -+ SparkSQL i 54 L.» Mahout
-+ Drill
I+ Presto
-+ Impala [+ Green Marl
..... - AQL
L Sy)aql

Fig. 1 Taxonomy of programming models

a,2b,2
cld2
a,2b,2
e e
— a,7b7
alb,2 a,2b1

c2d1 a,2b,2

c1d,32
e B
c2d]l

a,2b,2

/ c,1d,2
c,1d,2

alb,1
c2dl

a,ab,b,c,
dd

Fig. 2 MapReduce paradigm

conquer [22] parallel paradigm. For a single MapReduce job, users implement two
basic procedure objects Mapper and Reducer for different processing stages as shown
in Fig.2. Then the MapReduce program is automatically interpreted by the execu-
tion engine and executed in parallel in a distributed environments. MapReduce is
considered as a simple yet powerful enough programming model to support a variety
of the data-intensive programs [43, 44].

1.1 Features

e Map and Reduce functions. A MapReduce program contains a Map function doing
the parallel transformation and a Reduce function doing the parallel aggregation
and summary of the job. Between Map and Reduce an implied Shuffle step is
responsible for grouping and sorting the Mapped results and then feeding it into
the Reduce step.

e Simple paradigm. In MapReduce programming, users only need to write the logic
of Mapper and Reducer while the logic of shuffling, partitioning and sorting is

vww.ebook3000.con)

http://www.ebook3000.org

Big Data Programming Models 33

automatically done by the execution engine. Complex applications and algorithms
can be implemented by connecting a sequence of MapReduce jobs. Due to this
simple programming paradigm, it is much more convenient to write data-driven
parallel applications, because users only need to consider the logic of processing
data in each Mapper and Reducer without worrying about how to parallelize and
coordinate the jobs.

e Key-Value based. In MapReduce, both input and output data are considered as
Key-Value pairs with different types. This design is because of the requirements
of parallelization and scalability. Key-value pairs can be easily partitioned and
distributed to be processed on distributed clusters.

e Parallelable and Scalable. Both Map and Reduce functions are designed to facil-
itate parallelization, so MapReduce applications are generally linearly-scalable to
thousands of nodes.

1.2 Examples

1.2.1 Hadoop

Hadoop [8] is the open-source implementation of Google’s MapReduce paradigm.
The native programming primitives in Hadoop are Mapper and Reducer interfaces
which can be implemented by programmers with their actual logic of processing
map and reduce stage transformation and processing. To support more complicated
applications, users may need to chain a sequence of MapReduce jobs each of which
is responsible for a processing module with well defined functionality.

Hadoop is mainly implemented in Java, therefore, the map and reduce functions
are wrapped as two interfaces called Mapper and Reducer. The Mapper contains
the logic of processing each key-value pair from the input. The Reducer contains the
logic for processing a set of values for each key. Programmers build their MapReduce
application by implementing those two interfaces and chaining them as an execution
pipeline.

As an example, the program below shows the implementation of a WordCount
program using Hadoop. Note that, the example only lists the code implementation
of map and reduce methods but omits the signature of the classes.

Listing 1 WordCount example in Hadoop
public void map(Object key,
Text value, Context context) {
String text = value.toString ();
StringTokenizer itr = new StringTokenizer(text);
while (itr .hasMoreTokens ()) {
word. set(itr.nextToken());
context.write (word, one);

}

34 D. Wu et al.

public void reduce(Text key,
Iterable <IntWritable > values, Context context) {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write (key, result);

2 Functional Programming

Functional programming is becoming the emerging paradigm for the next genera-
tion of big data processing systems, for example, recent frameworks like Spark [53],
Flink [1] both utilize the functional interfaces to facilitate programmers to write data
applications in a easy and declarative way. In functional programming, program-
ming interfaces are specified as functions that applied on input data sources. The
computation is treated as a calculation of functions. Functional programming itself
is declarative and it avoids mutable states sharing. Compared to Object-oriented
Programming it is more compact and intuitive for representing data driven transfor-
mations and applications.

2.1 Features

Functional Programming is one of the most recognized programming paradigms. It
contains a set of features which facilitate the development in different aspects:

e Declarative: In functional programming, developers build the programs by speci-
fying the semantic logic of computation rather than the control flow of the proce-
dures.

e Functions are the first level citizens in Functional Programming. Primitives of
programming are provided in functional manner and most of them can take user
defined functions as parameters.

e In principle, functional programming does not allow the sharing of states, which
means variables in functional programming are immutable. Therefore, there is no
side effects for calling functions. This makes it easier to write functionally correct
programs that are also easy to be verified formally.

e Recursive: In functional programming, many loops are normally represented as
recursively calling of functions. This facilitates the optimization of performance
by applying tail-recursive to reduce creating intermediate data and variables shared
in different loops.

e Parallelization: As there is generally no state sharing in functional programming,
it is easy and suitable for applying parallelization to multi-core and distributed
computing infrastructures.

vww.ebook3000.con)

http://www.ebook3000.org

Big Data Programming Models 35

e Referential Transparent: In functional programming, as there is no states shar-
ing and side effects. Functions are essentially re-producible. This means that re-
calculation of functional results is not necessary. Therefore, once a function is
calculated, its results could be cached and reused safely.

2.2 Example Frameworks

2.2.1 Spark

Spark provides programmers a functional programming paradigm with data-centric
programming interfaces based on its built-in data model - resilient distributed dataset
(RDD) [54]. Spark was developed in response to the limitations of the MapReduce
paradigm, which forces distributed programs to be written in a linear and coarsely-
defined dataflow as a chain of connected Mapper and Reducer tasks. In Spark, pro-
grams are represented as RDD transformation DAGs as shown in Fig. 3. Programmers
are facilitated by using a rich set of high-level function primitives, actions and trans-
formations to implement complicated algorithms in a much easier and compact way.
In addition, Spark provides data centric operations such as sampling and caching to
facilitate data-centric programming from different aspects.

Spark is well known for its support of rich functional transformations and actions,
Table 1 shows the major transformations and operators provided in Spark. The code
snippet in Listing 2 shows how to write a WoundCount program in Spark using its
functional primitives.

Basically, programming primitives in Spark just look like general functional pro-
gramming interfaces by hiding complex operations such as data partitioning, dis-
tribution and parallelization to programmers and leaving them to the cluster side.

HadoopRDD MappedRDD FilteredRDD ShuffledRDD

Fig. 3 RDD chain of a Spark program

36 D. Wu et al.

Table 1 Main operations in Spark

Transformation | Description

map Transform each element in the data set into a new type by passing them
through a map function

flatMap Transform elements in a set of collections into a plain sequence of elements
by passing through a function

reduce Aggregate elements in the data set with a function, the function needs to be
commutative and associative

filter find and return a subset of elements for the data set by checking a boolean
function

groupBy cluster the elements into different groups by mapping them with a function.
The result is in (key, list of values) format

union combine current data set with another data set to generate a new united data set

intersection find out the overlapping elements from two data sets

distinct find out the distinct elements from two data set

join join two key-value based data sets and group the values for the same key. The

result is in (key, (valuel, value2)) format

cogroup For two data sets of type (K, V) and (K, W), returns a grouped data set of (K,
(Iterable [V], Iterable [W])) tuples

Therefore, the client side code is very declarative and simple to write by program-
mers. The Spark programs are essentially RDD dependency flows which will be
eventually translated into parallel tasks to be executed on distributed environments.

Listing 2 WordCount example of Spark

val counts = text.flatMap{_.split(”\\s+")}
-map{(_, 1)}
.reduceByKey (_ + _)

counts . foreach(print(_))

2.2.2 Flink

Flink [1] is an emerging competitor to Spark which provides functional programming
interfaces that are quite similar to those of Spark. Filnk programs are regular programs
which are written with a rich set of transformation operations (such as mapping,
filtering, grouping, aggregating and joining) to the input data sets. Dataset in Flink is
based on a table based model, therefore programmers are able to use index numbers
to specify a certain field of a data set. Flink shared a lot of functional primitives
and transformations in the same way as what Spark does for batch processing. The
program below shows a WordCount example written in Flink.

vww.ebook3000.con)

http://www.ebook3000.org

Big Data Programming Models 37

Listing 3 WordCount example of Flink
val counts = text.flatMap{_.toLowerCase.split(”\\s+")}

-map{(_, 1)}
.groupBy (0)
.sum(1)

counts . print(_)

Apart from regular batch processing primitives, Flink is also natively designed
for stream processing with the support of a rich set of functional operations. The
streaming APIs of Flink is in its core bundle and users are able to write and execute
stream processing and batch processing applications in the same framework. Unlike
spark’s use a min-batch to simulate stream processing, Flink uses the producer-
consumer model for the execution of streaming programs. Therefore, it claims itself
as being a more natural framework which integrates both batch and stream processing.
Table 2 shows the major streaming operations provided in Flink.

In addition to normal transformations, the streaming API of Flink also provide
a couple of window-based operations to apply functions and transformations on
different groups of elements in the stream according to their time of arrival. A couple
of window-based operations for Flink is listed in Table 3.

Table 2 Main operations for streaming processing in Flink

Transformation | Description

map Takes one element and produces another one element with a transformation

flatMap Takes one element and produces a collection of elements with a
transformation function

KeyBy Split input stream into different Partitions, each partition has the same key

reduce Rolling combine elements in a keyed data stream with a aggregation function

filter Retains a subset of elements from the input stream by evaluating a boolean
function

fold Same like reduce but provides a initial value and then combines the current

element with the last folded value

Table 3 Window-based operations for streaming processing in Flink

Transformation Description

window ‘Windows can be applied on Keyed stream to group the data in each key
according to specific characteristics, e.g. arrival time

windowAll Windows can be applied on the entire input of a stream to divide data
into different groups based on specific characteristics

Window Reduce/Aggre-| After the input is grouped by windows, users can apply normal stream
gation/Fold APIs such as reduce, fold and aggregation on the grouped streams

38 D. Wu et al.

3 SQL-Like

SQL (Structured Query Language) is the most classic data query language, origi-
nally designed for rational databases based on the rational algebra. It contains four
basic primitives: create, insert, update, delete for modifying the datasets consid-
ered as tables with schemas. SQL is a declarative language and also includes a few
procedural elements.

SQL programs contain a few basic elements including: (1) Clauses which are
constituent elements of statements and queries; (2) Expressions which can be valuated
to produce a set of resulting data; (3) Predicates which specify conditions that can
be used to limit the effects of statements and queries; (4) Queries which retrieve the
data based on some specific criteria; (5) Statements which have a persistent effect
on data, schema or even the database.

During execution of SQL, the SQLs are explained as syntax trees and then further
translated into execution plans. And there are a bunch of optimizations have been
developed to optimize the performance based on the syntax trees and execution plans.

3.1 Features

e Declarative and self-interpretable: SQL is a typical declarative language, it clearly
specifies what transformation and operations are being done to which part of the
data. By reading the SQL queries users can easily understand the semantics of the
queries just like understand about literal descriptions.

e Data-driven: SQL is data-driven, all the operations and primitives are representing
the transformation and manipulation of the target dataset (tables of data in SQL).
This makes SQL one of the most facilitated programming model for data-centric
applications for traditional databases and recent big data context.

e Standardized and Inter-operable: SQL is officially standardized by data commu-
nities such as IBM and W3C. Therefore, different platform provider can provide
their own implementation while keeping the inter-operability between different
platforms and frameworks. In Big data context, although there are some variations
for SQL such as HQL (Hadoop Query Language) in Hive and CQL (Casandra
Query Language) in Casandra, users can still easily understand and ship such
programs into each other.

3.2 Examples
3.2.1 Hive Query Language (HQL)
Hive [47] is a query engine built on Hadoop ecosystems, it provides a SQL-like inter-

face called Hive Query Language (HQL), which read input data based on defined
schema and then transparently converts the queries into MapReduce jobs connected

vww.ebook3000.con)

http://www.ebook3000.org

Big Data Programming Models 39

as a directed acyclic graph (DAG). Although based on SQL, HQL does not fully fol-
low the SQL standard. Basically, HQL lacks support for transactions and materialized
views, and only support for limited indexing and sub-queries. However, HQL also
provides some extensions which are not supported in SQL, such as multi-table inserts
and creating table as select. The program below shows how to write a WordCount
program in Hive with HQL:

Listing 4 WordCount example of Hive

SELECT word, count(1l) AS words FROM(

SELECT EXPLODE(SPLIT(line ,’.’) AS word FROM myinput)
words GROUP BY word

Basically, HiveQL has great extent of compatibility with SQL, the Table 4 shows
the semantics and data types supported in current HiveQL v0.11.

3.2.2 Cassandra Query Language (CQL)

Apache Cassandra [36] was introduced by Facebook to power up the indexing of
their in-box searching. Cassandra follows the design of Amazon Dynamo with its
own query interfaces - Cassandra Query Language (CQL). CQL is an SQL based
query language that is provided as the alternative to the traditional RPC interface.
CQL adds an abstraction layer that hides implementation details of its query structure
and provides native syntaxes for collections and common encodings. The program
snippet below shows some simple operations written in CQL 3.0:

Listing 5 Code example of CQL

BEGIN BATCH

INSERT INTO users (userID, password, name)
VALUES (’user2’, ’chngemb’, ’second.user’)
UPDATE users SET password = ’psdhds’

WHERE userID = ’user2’

INSERT INTO users (userID, password)

VALUES (’user3’, ’ch@ngem3c’)

DELETE name FROM users WHERE userID = ’user2’
INSERT INTO users (userID, password, name)

Table 4 Hive SQL compatibility

Data types INT/TINYINT/SMALLINT/BIGINT, BOOLEAN, FLOAT, DOUBLE
STRING, TIMESTAMP, BINARY, ARRAY, MAP, STRUCT, UNION
DECIMAL

Semantics SELECT, LOAD, INSERT from query, WHERE, HAVING, UNION GROUP

BY, ORDER BY, SORT BY, CLUSTER BY, DISTRIBUTE BY LEFT,
RIGHT and FULL INNER/OUTER JOIN, CROSS JOIN Sub-quires in
FROM clause, ROLLUP and CUBE window functions (OVER, RANK, etc.)

40 D. Wu et al.

VALUES (’user4’, ’ch@ngem3c’, ’Andrew’)
APPLY BATCH;

Although CQL looks generally similar like SQL, there are some major differences:

e CQL uses KEYSPACE and COLUMNFAMILY compared to DATABASE and
TABLE in SQL. And KEYSPACE requires more specifications (such as strategy
and replication factor) than a standard relational database.

e Thereisno support for relation operations such as JOIN, GROUP BY, or FOREIGN
KEY in CQL. Leaving these features out is important towards ensuring that the
writing and retrieving data is much more efficient in Cassandra.

e Cheap writes, updates and inserts in CQL are extremely fast due to its Key-Value,
and column family organization.

e Expiring records, CQL enables users to set expiry time for records by using the
“USING TTL” (Time To Live) clause.

e Delayed Deletion, execution of DELETE queries doesn’t really remove the data
instantly. Basically, deleted records are marked with a tombstone (defined in TTL,
which would exist for a period of time affected by the GC interval). Then, those
marked data will be automatically removed during the upcoming compaction
process.

3.23 Spark SQL

Spark introduces its rational query interfaces as Spark SQL [13], which is built on the
DataFrame model and consider input data sets as table based structure. Spark SQL
can be embedded into general programs of native Spark and MLIib [38] to enable
interactability between different Spark modules. In addition, as Spark SQL draws on
Catalyst to optimize the execution plans of SQL queries, Spark SQL can outperform
native Spark APIs on most of the benchmarked APIs. The code snippet below shows
how to define a DataFrame and use it to apply Spark SQL queries:

Listing 6 Code example of Spark SQL

val people = sc.textFile ("people.txt”).map(_.split(”,”))
.map(p => Person(p(0), p(l).trim.toInt)).toDF()
people.registerTempTable ("people”)

sqlContext.sql ("SELECT name, age FROM people
WHERE age >= 13 AND age <= 197)

Basically, Spark SQL are embedded in the general programming context and supports
most of the basic syntaxes of SQL as shown in Listing 7. Spark SQL is also compatible
with various data sources including Hive, Avro [7], Parquet [10], ORC [6], JSON,
JDBC and ODBC compatible databases and supports data set joins across these data
sources.

vww.ebook3000.con)

http://www.ebook3000.org

Big Data Programming Models 41

Listing 7 Supported Syntax of Spark SQL

/%« The syntax of a SELECT query x/

SELECT [DISTINCT] [column names]|[wildcard]
FROM [kesypace name.] table name

[JOIN clause table name ON join condition]
[WHERE condition]

[GROUP BY column name]

[HAVING conditions]

[ORDER BY column names [ASC | DSC]]

/x The syntax of a SELECT query with joins. x/
SELECT statement

FROM statement

[JOIN | INNER JOIN | LEFT JOIN | LEFT SEMI JOIN |
LEFT OUIER JOIN | RIGHT JOIN | RIGHT OUTER JOIN |
FULL JOIN | FULL OUTER JOIN]

ON join condition

/% Several select clauses can be combined in a
UNION, INTERSECT, or EXCEPT query. x/

SELECT statement 1

[UNION | UNION ALL | UNION DISTINCT |
INTERSECT | EXCEPT]

SELECT statement 2

/x The syntax defines an INSERT query. x/
INSERT [OVERWRITE] INTO [keyspace name.]
table name [(columns)]

VALUES values

/% The syntax defines an CACHE TABLE query. x/
CACHE TABLE table name [AS table alias]

/x The syntax defines an UNCACHE TABLE query. =/
UNCACHE TABLE table name

3.2.4 Apache Drill

Apache Drill [3] is the open source version of Google’s Dremel system, which is a
schema-free SQL Query Engine for MapReduce, NoSQL and Cloud Storage. Drill
is well known for its connectivity to variety of NoSQL databases and file systems,
including HBase [26], MongoDB [39], MapR-DB, HDFS [45], MapR-FS, Amazon
S3 [46], Azure Blob Storage [15], Google Cloud Storage [27], Swift [41], NAS and

42 D. Wuet al.

local files. A single query can join data from multiple data stores. For example,
you can join a user profile collection in MongoDB with a directory of event logs in
Hadoop. The main features of Apache Drill are listed as below:

e Drill uses a JSON based data model similar to MongoDB and ElasticSearch.

e Drill supports multiple industry-standard APIs, such as JDBC/ODBC, SQL and
RESTful APIs.

e Drill is designed as a pluggable architecture which supports connecting with mul-
tiple data stores, including Hadoop, NoSQL and cloud-based storages.

e Drill also supports different of data formats such as JSON, Parquet and plain text.

Drill supports standard ANSI of SQL to query data from different databases and
file systems regardless of its source system or its schema and data types. Listing 8
shows an example about creating a table from a JSON file in Drill.

Listing 8 Create a table from JSON data source in Drill

CREATE TABLE dfs.tmp.sampleparquet AS
(SELECT trans_id ,

cast(‘date ° AS date) transdate ,

cast(‘time ‘ AS time) transtime ,

cast (amount AS double) amountm,
user_info , marketing_info, trans_info
FROM dfs. ‘/Users/drilluser/sample.json);

Apart from normal SQL syntaxes, Drill also offers a couple of nested function
within SQL queries as listed in Table 5.

3.2.5 Other SQL-like Query Frameworks

e Impala [21], provides high-performance, low-latency SQL queries on data stored
in popular Apache Hadoop file formats. The fast response for queries enables
interactive exploration and fine-tuning of analytic queries, rather than long batch
jobs traditionally associated with SQL-on-Hadoop technologies. Impala integrates
with the Apache Hive metastore database, to share databases and tables between
both components. The high level of integration with Hive, and compatibility with
the HiveQL syntax, lets you use either Impala or Hive to create tables, issue queries,
load data, and so on.

Table 5 Nested functions in Drill

FLATTEN Separate the elements in nested data from a repeated field into
individual records

KVGEN Return a repeated map generating key-value pairs for querying of
complex data having unknown column names

REPEATED_COUNT Count the values in an array

REPEATED_CONTAINS | Search for a keyword in an array

vww.ebook3000.con)

http://www.ebook3000.org

Big Data Programming Models 43

e Presto [25], is an open source distributed SQL query engine for running inter-
active analytic queries against data sources of all sizes ranging from gigabytes
to petabytes. Presto was designed and written from the ground up for interactive
analytics and approaches the speed of commercial data warehouses while scaling
to the size of organizations like Facebook.

4 Actor Model

The Actor model [29] is a programming model for concurrent computation, which
consider “Actor” as the universal primitive unit for computation meaning it treats
everything as an actor. An actor is responsible to react to a set of messages to trigger
specific processing logics (such as making decisions, building more actors, sending
more messages) for different contexts. The Actor model is also considered as a
reactive programming model in which programmers write acting logic in response
to events and context changes. Unlike other programming models which are normally
sequential, the actor model is inherently concurrent. The reactions of an actor can
happen in any order and actions for different actors are also in parallel.

4.1 Features

e Message-driven: The Actor model inherits the message-oriented architecture for
communication. messages are the primitive and the only data carrier among the
systems.

e Stateless and isolation: Actors are loosely coupled to each other. Therefore, there
is no global state shared between different actors. In addition, actors are separate
functional units which are not suppose to affect others when failures and errors
are encountered.

e Concurrent: Actors in the actor system are in action at the same time, and there
is no fixed order for sending and receiving messages. Therefore, the whole actor
system is inherently concurrent.

4.2 Examples

4.2.1 Akka

Akka [49] is a distributed and concurrent programming model developed by Typesafe
with inspiration drawn from Erlang. Akka has been widely used in recent distributed
and concurrent frameworks such as Spark, Play [50], Flink, etc. Akka provides
different programming models but it emphasizes the actor-based concurrency model.

44 D. Wu et al.

A4

Root guardian .

User space guardian ‘ . System space guardian

@SOS ..

User Actor Hierarchy Actor Hierarchy

Fig. 4 Hierarchy of Akka actors

Actors in Akka communicate with each other through asynchronous messages, so
typically no mutable data are shared and no synchronization primitives are used. In
addition, Akka provides a hierarchical supervision model which enforces failure and
fault management to the parental actors as shown in Fig. 4. Failures in Akka are also
considered as messages passed to parents. Lastly, actors in Akka are portable to be
executed in local and distributed environments without the need to modify existing
program logics.

Akka provides areflective way of creating a actor, in which users explicitly specify
the class object and the name of an actor. In addition, Akka offers two basic message
passing primitives to support communication among actors:

e ask (written as “?”"), sends a message to a target actor and waits for its response as
a future message.

o tell (written as “!”), sends a message to a target actor then finishes this communi-
cation, also known as fire-and-forget.

As an example, the program below shows the HelloWorld application written using
Akka:

Listing 9 HelloWorld exmaple in Akka
class HelloActor extends Actor {
val log = Logging(context.system, this)

def receive = {

case “hello” => log.info ("Hello World”)

case _ => log.info(”received unknown message”)
}

}

\x create an HelloActor instance x\
val system = ActorSystem ("mySystem”)

vww.ebook3000.con)

http://www.ebook3000.org

Big Data Programming Models 45

val actor = system.actorOf(Props[HelloActor],”actor”)
\x send a message to the actor x\
actor ! “hello”

4.2.2 Storm

Storm [48] is an open source programming framework for distributed realtime data
processing. Storm inherits from the actor-model and provides two types of processing
actors: Spouts and Bolts.

e Spout is the data source of a stream and is continuously generating or collecting
new data for subsequent processing.

e Boltis aprocessing entity within a streaming processing flow, each bolt is responsi-
ble for a certain processing logic, such as transformation, aggregation, partitioning
and redirection, etc.

Jobs in Storm is defined as directed acyclic graphs (DAG) with connected Spouts
and Bolts as vertices. Edges on the graph are data streams and direct data from one
node to another. Unlike batch jobs being only executed once, Storm jobs are running
until they are killed. The code snippet in Listing 10 shows an example about writing
a Bolt to produce tuple streams.

In Storm, a complete application is built by connecting Spouts and Bolts. As
shown in Listing 11 users can define the topology of the application by appending
each Bolt to its predecessor.

Listing 10 Building a Bolt to Generate Tuple Streams
public class DoubleAndTripleBolt extends BaseRichBolt{
private OutputCollectorBase _collector;

@Override
public void prepare(Map conf, TopologyContext context,
OutputCollectorBase collector){
_collector = collector;

}

@OQverride

public void execute(Tuple input) {
int val = input.getlnteger (0);
_collector.emit(input, new Values(val%x2, val%x3));
_collector.ack(input);

}

@Override
public void declareOutputFields (
OutputFieldsDeclarer declarer){

46 D. Wu et al.

declarer.declare (new Fields (”double”, "triple”));

}
}

Listing 11 Building a WordCount Topology in Storm

TopologyBuilder builder = new TopologyBuilder ();

builder.setSpout(”words”, new TestWordSpout(), 10);

builder.setBolt(”exclaim1”, new ExclamationBolt(), 3)
.shuffleGrouping ("words”);

builder.setBolt(”exclaim2”, new ExclamationBolt(), 2)
.shuffleGrouping ("exclaim1”);

4.2.3 Apache S4

Apache S4 (Simple Scalable Streaming System) was introduced by Yahoo in 2008
for stream processing. S4 is a general-purpose, distributed, scalable, fault-tolerant,
pluggable platform for processing continuous, unbounded streams of data. The main
features of S4 are listed as below:

e Decentralized: All nodes in S4 are symmetric with no centralized service and no
single point of failure.

e Scalable: The throughput of S4 increases linearly as additional nodes are added
to the cluster. There is no predefined limit on the number of nodes that can be
supported.

e Extensible: Applications can be easily written using a simple API. Building blocks
of the platform such as message queues and processors, serializer and checkpoint-
ing backend can be replaced by custom implementations.

e Fault-tolerant: Once a server in the cluster fails, a stand-by server is automatically
activated to take over the tasks.

In S4, each processing actor is called a ProcessElement (PE) which is responsible
to processing in response to each data element (an event) within the input stream. An
S4 application is built by connecting a couple of ProcessElement in a certain topology.
Listing 12 shows a example of implementing a Hello ProcessElement in S4.

Listing 12 Implement a Process Element in S4

public class HelloPE extends ProcessingElement {
// PEs can maintain some state
boolean seen = false;

// called upon every new Event on an incoming stream.
public void onEvent(Event event) {
System.out. println ("Hello” + event.get(’name”));
seen = true;

vww.ebook3000.con)

http://www.ebook3000.org

Big Data Programming Models 47

5 Statistical and Analytical

In recent years significant effort was spent to offer semantically friendly environ-
ments for statistical and analytical computation, which leads to the development and
revolution of statistical and analytical programming models. For example many cur-
rent analytics libraries or frameworks provide a linear algebra based programming
model which works with vectors, matrices and tensor data structures to deal with
algebraically defined mathematical problems in machine learning, statistics and data
mining, etc.

5.1 Features

Due to the mathematical nature of statistical and analytical programming, it is essen-
tially functional with manipulations on matrix and vector-based data structures.

e Functional: Mathematical operations are essentially functions consuming a set
of input parameters to generate an output. Also many complicated functions or
models are wrapped into functional libraries so that users can directly use it without
knowing the implementation details of the functions.

e Matrix-based data structure: A matrix is one of the most widely used data structure
for representing modern analytics and statistic problems and solutions. Therefore,
the majority of existing analytic programming frameworks are based on matrices,
vectors and data frames to manipulate the data.

e Declarative: In statistical and analytical programming, the programs explicitly
specify the functions and operations that have been applied on the data (matrix,
vector and data frame.)

5.2 Examples

521 R

R [32] combines the S [17] programming language and Lexical Scoping inspired
by Scheme [20]. It is well known for statistical programming and drawing graphics.
In R, data are essentially represented as matrices which are very convenient for
implementing mathematical and statistical formulas. R and its libraries implement
a wide variety of statistical and graphical techniques and is easy to be extended by
developers. Ris recently introduced to the big data processing context (RHadoop [23],
SparkR [11], RHIPE [28]) to facilitate the development of statistical and analytics
programs and applications. The code snippet below shows how to implement formula:
G =BB" —C —C" +s,5]¢"¢ using R:

48 D. Wu et al.

Listing 13 Writing formula of R
g <— t(b) %% b — ¢ — t(c)
+ (sq %% t(sq)) * (t(xi) %% xi)

5.2.2 Mahout

Apache Mahout [9] is an open-source implementations of distributed and scalable
machine learning and data mining algorithms. Mahout provides libraries that are
mainly focused in the areas of collaborative filtering, clustering and classification.
The initial implementation of Mahout is based on Apache Hadoop, but recently it
has started to provide compatible bindings on Spark and also being able to provide
matrix-based programming interfaces. For example the same formula shown in the
R section can be written in Mahout as the code segment below:

Listing 14 Code example of Mahout
val g = bt.t %% bt — c — c.t
+ (s_q cross s_q) * (xi dot xi)

The Mahout project recently (since release 1.0.0) shifts its focus to building backend-
independent programming framework, which is named “Samsara”. The new project
consists of an algebraic optimizer and an Scala DSL to unify both distributed and
in-memory algebraic operators. The current version supports execution of algebraic
programs on platforms including Apache Spark and H20. The support of Apache
Flink operators is also in progress.

6 Dataflow-Based

The dataflow programming paradigm models programs as directed graphs with oper-
ations and dependencies as nodes and edges. Dataflow programming [35] was first
introduced by Jack Dennis and his students at MIT in the 1960s. Dataflow pro-
gramming emphasizes the movement of data and considers programs as a series of
connections. Every operator and processor normally has explicitly defined inputs
and outputs and functions like black boxes. An operation runs as soon as all of its
inputs become valid. Thus, dataflow languages are inherently parallel and can work
well in large, decentralized systems.

In the big data scenario, data-centric jobs can also be modeled as dataflows in
which each node represents a small task while the edges represents the data depen-
dencies between different tasks. Developers may be need to write the process logic
of each node using other general programming languages such as Java, C and Python
while leave the dependency and connecting logic to the dataflow.

vww.ebook3000.con)

http://www.ebook3000.org

Big Data Programming Models 49

6.1 Features

The major features of dataflow programming can be listed as follows:

e Trackable states: Dataflow programming consider programs as connections of
tasks in combination with control logic. Therefore, unlike other programming
models, it provides a inherently trackable states during execution.

e Various representation: Dataflow programming model could be represented in
different ways for different purposes. As we have already discussed, it can be
inherently represented in a graph-based manner and also can be represented in
connected texts introductions and Hash tables.

6.2 Examples

6.2.1 Oozie

Apache Oozie [34] is a server side workflow scheduling system to manage complex
Hadoop jobs. In Oozie workflows are directed acyclic graphs with control flow and
nodes (each node as a MapReduce jobs). In Oozie, the workflow is specified as XML-
based documents presenting the connection and dataflow of different MapReduce
jobs. Oozie can be integrated with other Hadoop ecosystems and also support differ-
ent types of jobs such as Pig, Hive, Streaming MapReduce, etc. The XML segment
below shows a Fork—Join workflow defined in Oozie:

Listing 15 Fork and Join example in Oozie
<workflow—app name="sample—wf”
xmlns="uri:oozie:workflow:0.1">

<fork name="forking”>
<path start="firstparalleljob”/>
<path start="secondparalleljob”/>
</fork>
<action name="firstparallejob”>
<map—reduce>
<job—tracker>fo00:8021</job—tracker>
<name—node>bar:8020</name—node>
<job—xml>jobl . xml</job—xml>
</map—reduce>
<ok to="joining”/>
<error to="kill”/>
</action>
<action name="secondparalleljob”>
<map—reduce>
<job—tracker>f00:8021</job—tracker>

50 D. Wu et al.

<name—node>bar:8020</name—node>
<job—xml>job2 . xml</job—xml>
</map—reduce>
<ok to="joining”/>
<error to="kill”/>
</action>
<join name="joining” to="nextaction”/>

</workflow—app>

With the workflow specification, each action between control logic is a MapReduce
associated with its Job Tracker and job definition (in a separate xml file). Actions in
Oozie are triggered by time and data availability.

6.2.2 Microsoft Dryad

Microsoft Dryad [33] is a high performance, general purpose distributed comput-
ing engine which supports writing and execution of data-centric parallel programs.
Dryad allows a programmer to utilize the resources of a computer cluster or a data
center to run data-parallel programs. By using Dryad, programmers write simple
programs which will be concurrently executed on thousands of machines (each of
which with multiple processors or cores) while hiding the complexity of concurrent
programming. The code below shows an example about building a graph in Dryad:

Listing 16 Building Graphs in Dryad
GraphBuilder XlInputs = (ugrizl >= XSet)
II' (neighbor >= XSet);
GraphBuilder YlInputs = ugriz2 >= YSet;
GraphBuilder XToY = XSet >= DSet >> MSet >= SSet;
for (i = 0; i < Nx*4; ++i){
XToY = XToY |l (SSet.GetVertex(i) >= YSet.GetVertex(i/4));

}
GraphBuilder YToH = YSet >= HSet;
GraphBuilder HOutputs = HSet >= output;
GraphBuilder final = XInputs |l YInputs

[l XToY |l YToH |l HOutputs;

A Dryad job contains several sequential programs and are connected using one-way
channels. The program written by programmers is structured as a directed graphs, in
which, programs are vertices, while the channels are edges. A Dryad job is a graph
generator which can synthesize any directed acyclic graph. These graphs can also be
changed during execution to respond to important events or notifications.

vww.ebook3000.con)

http://www.ebook3000.org

Big Data Programming Models 51

7 Bulk Synchronous Parallel

The Bulk Synchronous Parallel (BSP) [51] is acomputation and programming model
for designing parallel algorithms. A BSP algorithm is considered as a computation
proceeds in a series of global super-steps, which consists of three components:

e Concurrent computation: Every participating processor may perform local com-
putations, i.e., each process can only make use of values stored in the fast local
memory of the processor. The computations occur asynchronously but may overlap
with communication.

e Communication: The processes exchange data between themselves to facilitate
remote data storage capabilities.

e Barrier synchronisation: When a process reaches this point (the barrier), it waits
until all other processes have reached the same barrier.

7.1 Features

The BSP model contains the following key features:

e Message-based communications: BSP considers every communication action as
a message and it also considers all messages of a super-step as a unit. This signif-
icantly reduces the effort for users to handle low-level parallel communications.

e Barrel-based Synchronization: BSP uses barrels to guarantee the consistency when
needed, although barrel is a costly operation, it provides strong consistency and
can also provides support for fault tolerance in an easy and understandable way.

7.2 Examples

7.2.1 Apache Giraph and Google Pregel

Apache Giraph [4] is an iterative graph processing system built for high scalability.
Giraph is inspired by Google’s Pregel [37] which is based on the Bulk Synchronous
Parallel (BSP) model of distributed computation. Giraph adds several features beyond
the basic Pregel model, including master computation, sharded aggregators, edge-
oriented input, out-of-core computation, etc.

Listing 17 Shortest Path implementation in Giraph
public void compute(Iterable <DoubleWritable> messages){
double minDist = Double .MAX VALUE;
for (DoubleWritable message : messages) {
minDist = Math. min(minDist, message.get());

}

52

if (minDist < getValue (). get()) {
setValue (new DoubleWritable (minDist));
for (Edge<LongWritable, FloatWritable >
edge : getEdges()) {

D. Wu et al.

double distance = minDist+edge.getValue (). get();

sendMessage (edge . getTargetVertexId (),
new DoubleWritable (distance));
}

}
voteToHalt ();

7.2.2 Hama

Apache Hama (stands for Hadoop Matrix) [5] is a distributed computing framework
based on Bulk Synchronous Parallel computing model for massive scientific compu-
tations. Writing a Hama graph application involves inheriting the predefined Vertex
class. Its template arguments define three value types, associated with vertices, edges,
and messages. Hama also provides very flexible input and output options such as the
ability to extract Vertex from programmers’ data without any pre-processing. Hama
also allows programmers to do optimizations by writing Combiner, Aggregator and
Counter in data processing flows. The following code snippet shows an example of

PageRank implementation in Hama:

Listing 18 PageRank implementation in Hama
public static class PageRankVertex extends
Vertex<Text, NullWritable, DoubleWritable> {

@Override

public void compute(Iterator <DoubleWritable> messages)
throws IOException {

// initialize this vertex to 1/count
if (this.getSuperstepCount() == 0) {
setValue (new DoubleWritable (1.0 /
this . getNumVertices ()));
} else if (this.getSuperstepCount() >= 1) {
double sum = O0;
for (DoubleWritable msg : messages) {
sum += msg.get();
}
double alpha = (1.0d-DAMPING_FACTOR)
/ this.getNumVertices ();
setValue (new DoubleWritable(alpha +

(sum*DAMPING_FACTOR))) ;

aggregate (0, this.getValue());

vww.ebook3000.con)

http://www.ebook3000.org

Big Data Programming Models 53

}

// if have not reached global error, then proceed.
DoubleWritable globalError = getAggregatedValue (0);

if (globalError != null && this.getSuperstepCount()>2
&& MAXIMUM_CONVERGENCE ERROR>globalError. get ()) {
voteToHalt ();
} else {
// in each superstep send a new rank to neighbours
sendMessageToNeighbors (new DoubleWritable (
this.getValue (). get ()/ this.getEdges ().size ()));

8 High Level DSL

There is no a single programming model that can satisfy everyone and every scenario.
Many frameworks provide their own Domain Specific Language (DSL, in contrast
to general purpose programming language) for writing data-intensive parallel appli-
cations/programs in order to provide a better programming model in certain domains
Of purposes.

8.1 Pig Latin

Pig [40] is a high level platform to create data centric programs on top of Hadoop.
The programming interface of Pig is called Pig Latin which is an ETL-like query
language. In comparison to SQL, Pig uses extract, transform, load (ETL) as its basic
primitives. In addition, in Pig Latin, it is able to store data at any point during a
pipeline. At the same time, Pig supports the ability to declare execution plans as
well as support for pipeline splits, thus allowing workflows to proceed along DAGs
instead of strictly sequential pipelines. Lastly, Pig Latin scripts are automatically
compiled to generate equivalent MapReduce jobs for execution.

Listing 19 WordCount example of Pig Latin
input_lines = LOAD ’/tmp/wordcount—input’
AS (line:chararray);
words = FOREACH input_lines
GENERATE flatten (TOKENIZE(line)) AS word;
filtered_words = FILTER words BY word MATCHES ’\\w+’;
word_groups = GROUP filtered_words BY word;

54

D. Wu et al.

Table 6 Basic relational operators in Pig Latin

Operators Description

LOAD Load data from underlying file systems

FILTER Select matched tuples from data set based on some conditions

FOREACH Generate new data transformations based on each columns of a data set

GROUP Group a data set based on some relations

JOIN Join two or more data sets based on expressions of the values of their column
fields

ORDERBY Sort the data set based on one or more columns

DISTINCT Remove duplicated elements from a given data set

MAPREDUCE | Execute native MapReduce jobs inside the Pig scripts

LIMIT Limit the number of elements in the output

word_count

= FOREACH word_groups
GENERATE count(filtered_words)
AS count, group AS word;

Pig offers a bunch of operators to support transformation and manipulation on
input datasets. Table 6 shows the basic relational operators provided in Pig Latin and
the code snippet in Listing 19 shows a WordCount example written in Pig scripts.

8.2 Crunch/Flumejava

Apache Crunch [2] is high-level library supports writing testing and running data-
driven pipelines on top of Hadoop and Spark. The programming interface of Crunch
is partially inspired by Google’s FlumeJava [19]. Crunch wraps native MapReduce
interface into high level declarative primitives such as parallelDo, groupByKey,
combineValues and union to make it easy for programmers to write and read their
applications. Crunch provides a couple of high level processing patterns (as shown
in Table 7) to facilitate developers to write data-centered applications.

Listing 20 WordCount example of Crunch
Pipeline pipeline = new MRPipeline (WordCount. class);
PCollection<String> lines = pipeline.readTextFile(args[0]);

DoFn<String ,

String > func = new DoFn<String , String >(){

public void process(String line,

Emitter<String > emitter){

for (String word : line.split(”\\s+7)) {
emitter.emit(word);

}

vww.ebook3000.con)

http://www.ebook3000.org

Big Data Programming Models 55

Table 7 Common data processing patterns in Crunch

Pattern Description

groupByKey Group and shuffle data set based on the key of the tuples

combineValues | Aggregate elements in a grouped data set based on the combination function

aggregations Common aggregation patterns are provided as methods on the PCollection
data type, including count, max, min, and length

join Join two keyed data sets by group the elements with the same key

sorting Sort data set based on the value of a selected column

}

PCollection<String > words =
lines . parallelDo (func, Writables.strings ());

for (Pair<String , Long> wordCount : words.count())) {
System.out. println (wordCount);

}

In Crunch, each job is considered as a Pipeline and data are considered as Collec-
tions. Programmers write their process logic within DoFn interfaces and use basic
primitives to apply transformation, filtering, aggregation and sorting to the input
data sets to implement expected applications. The WordCount example of Crunch is
shown in Listing 20.

8.3 Cascading

Apache Cascading [31] is a high-level development layer for building data appli-
cations on Hadoop. Cascading is designed to support the building and execution of
complex data processing pipelines on a Hadoop cluster while hiding the underly-
ing complexity of MapReduce jobs. The below code snippet shows the example of
WordCount written using the Cascading API:

Listing 21 WordCount example of Cascading
Tap docTap = new Hfs(new AvroScheme (), docPath);
Tap wcTap = new Hfs(new TextDelimited(), wcPath, true);
Pipe wcPipe = new Pipe(“wordcount”);
wcPipe new GroupBy(wcPipe, new Fields (”count”));
wcPipe = new Every(wcPipe,
Fields .ALL,
new Count(new Fields (”countcount™)),
Fields .ALL);

FlowDef flowDef = FlowDef. flowDef ()
.setName (“wc”)

56 D. Wu et al.

.addSource (wcPipe, docTap)
.addTailSink (wcPipe, wcTap);

Flow wcFlow = flowConnector.connect(flowDef);
wcFlow . writeDOT (”dot/wcr.dot”);
wcFlow . complete ();

As we can see from the example, a cascading job is defined as a Flow, in which it can
contains multiple pipes. Each pipe is actually a function block which is responsible
for a certain data process step such as GroupBy, Filtering, Joining and Sorting. Pipes
are connected to construct the final Flow for execution.

8.4 Dryad LINQ

DryadLINQ [52] is a compiler which translates LINQ (Language-Integrated Query)
programs to distributed computations which can be run on a cluster. The goal of
LINQ is to bridge the gap between the world of objects and the world of data. LINQ
uses query expressions akin to SQL statements such as select, where, join, groupBy
and orderBy, etc. In addition, LINQ also defines a set of method names (called stan-
dard query operators), along with translation rules used by the compiler to translate
fluent-style query expressions into expressions using these method names, lambda
expressions and anonymous types. In DryadLINQ, the data queries are automatically
compiled as DAG tasks to be executed on the Dryad engine to support the building
and execution of large scale data-driven applications and programs.

Listing 22 WordCount example of Dryad LINQ
public static IQueryable<Pair> Histogram(
IQueryable<string > input, int k){
IQueryable<string > words =
input.SelectMany (x => x.Split(’."));
IQueryable <IGrouping<string , string>> groups =
words . GroupBy (x => x);
IQueryable <Pair> counts =
groups . Select(x => new Pair(x.Key, x.Count()));
IQueryable <Pair> ordered =
counts.OrderByDescending (x => x.count);
IQueryable <Pair> top = ordered.Take(k);
return top;

}

The code snippet above shows an example of the WordCount program written using
DryadLINQ. As we can see from the example, LINQ actually provides ETL oper-
ations in an Object-oriented ways. Query primitives are object operations which
associated to the data, and the result of queries are represented as collections with
specific types.

vww.ebook3000.con)

http://www.ebook3000.org

Big Data Programming Models 57

8.5 Trident

Trident [12] is a high-level abstraction for doing realtime computing on top of Storm.
It allows you to seamlessly intermix high throughput (millions of messages per
second), stateful stream processing with low latency distributed querying. If you’re
familiar with high level batch processing tools like Pig or Cascading, the concepts
of Trident will be very familiar. Trident has joins, aggregations, grouping, functions,
and filters. In addition to these, Trident adds primitives for doing stateful, incremental
processing on top of any database or persistence store. Trident has consistent, exactly-
once semantics, so it is easy to reason about Trident topologies.

Listing 23 Code snippet of WordCount using Trident
TridentTopology topology = new TridentTopology ();
TridentState wordCounts =
topology .newStream (”spoutl”, spout)
.each(new Fields (”sentence”),
new Split(),
new Fields ("word”))
.groupBy (new Fields (”word”))
.persistentAggregate (new MemoryMapState. Factory (),
new Count(),
new Fields (”count”))
.parallelismHint (6);

8.6 Green Marl

Green Marl [30] is a DSL introduced by the Pervasive Parallelism Laboratory of
Stanford University and specifically designed for graph analysis. Green Marl allows
user to describe their graphs intuitively through a high level interface while inherently
provide data-driven parallelism. Green Marl, provides the ability to define both
directed graphs and undirected graphs and supports basic types (like Int, Long, Float,
Double and Bool) and collections (like Set, Sequence and Order). Green Marl intro-
duces its own compiler to interpret the program into C++ code for execution. The
compiler of Green Marl also introduces a couple of optimizations during compile-
time to improve the execution performance. The code snippet below shows an exam-
ple about the Betweenness Centrality algorithm written in Green Marl.

Listing 24 Betweenness Centrality algorithm described in Green Marl
Procedure Compute_BC(

G: Graph, BC: Node_Prop<Float>(G)) {
G.BC = 0; // initialize BC

Foreach(s: G.Nodes) {

// define temporary properties

58 D. Wu et al.

Node_Prop<Float >(G) Sigma;
Node_Prop<Float >(G) Delta;

s.Sigma = 1; // Initialize Sigma for root
// Traverse graph in BFS—order from s
InBFS(v: G.Nodes From s)(v!=s) {

// sum over BFS—parents

v.Sigma = Sum(w: v.UpNbrs) {w.Sigma};
}

// Traverse graph in reverse BFS—order
InRBFS (v!=s) {

// sum over BFS—children

v.Delta = Sum (w:v.DownNbrs) {

v.Sigma / w.Sigma x (l1+ w.Delta)

1

v.BC += v.Delta; //accumulate BC

}orod

8.7 Asterix Query Language (AQL)

The Asterix Query Language (AQL) [14] is the language interface provided by Aster-
ixDB which is a scalable big data management system (BDMS) with the capability
for querying semi-structured data sets. AQL is based on a NoSQL style data model
(ADM) which extends JSON with object database concepts. Basically, AQL is an
expressive and declarative query language for querying semi-structured data with
the support for a rich set of primitive types, including spatial, temporal and textual
data. The code snippet below shows an example about joining two data sets in AQL.

Listing 25 Join two data sets by AQL
for $user in dataset FacebookUsers
for $message in dataset FacebookMessages
where $message.author—id = $user.id
return
{
“uname”: $user.name,
“message”: $message.message
3
As we can see from the example code, AQL combines the style of an SQL query
with the data model of JSON to provide a programming style that is both declarative
and data-driven. The core of AQL is called FLWOR (for-let-where-orderby-return)
expression which is borrowed from XQuery expressions. A FLWOR expression starts
with one or more clauses which establishes the variable bindings.

vww.ebook3000.con)

http://www.ebook3000.org

Big Data Programming Models 59

e A for clause binds a variable incrementally to each element of its associated
expression and includes an optional positional variable for counting/numbering
the bindings.

e A let clause binds a variable to the collection of elements computed by its associ-
ated expression.

e The where clause in a FLWOR expression filters the preceding bindings via a
boolean expression, much like a where clause does in an SQL query.

e The order by clause in a FLWOR expression induces an ordering on the data.

e The return clause defines the data expected to be sent back as the results of a query.

8.8 IBM Jagl

Jaql (or JAQL) [18] is a functional data processing and query language mostly focus-
ing on JSON-based query processing on BigData. Jaql was originally introduced by
Google and then further developed by IBM. Jaqgl is designed to elegantly handle
deeply nested semi-structured data and even deal with heterogeneous data. Jagl can
also be used in Hadoop as a expressive query language that is comparable with Pig
and Hive. The code snippet below shows some basic examples of queries written in
Jaql.

Listing 26 Basic opertions in Jaql

a = {name : ”scott”, age : 42, children : [”jake”, "sam”]};
a.name; //returns "scott”

a.children [0]; // returns “jake”

// for local file system

read (del (”file:///home/user/test.csv”));

// for hdfs file system

read (del ("hdfs://localhost:9000/user/test.csv”’));

recs = [{a: 1, b: 4}, {a: 2, b: 5}, {a: —1, b: 4}];
recs —> transform .a+.b; // returns [5, 7, 4]

9 Discussion and Conclusion

In this section, we summarize the main features and compare the various program-
ming models presented in this chapter.

Due to its declarative feature, functional programming is natural fit for data-driven
programs and applications. As pure functions are stateless and have no side effects,
functional programs are easier to be parallelized and proofed for correctness. In
addition, functional programs are easier to debug and test as functions are a better
isolation of functionalities without the uncertainties caused by state sharing and other

60 D. Wu et al.

side-effects. However, programming in a functional way is much different from pro-
gramming in the imperative programming. Developers need to shift from imperative
and procedure-based thinking to a functional way of thinking when writing the pro-
grams. This may require considerable efforts from the developer to learn and practice
in order to gain sufficient mastery.

MapReduce is considered as an easy way of writing data-driven parallel pro-
grams. The emergence of MapReduce significantly eased the task for developing
data-parallel applications on large scale data sets. Although the paradigm is simple,
it can still cover the majority of the algorithms in practice. MapReduce is not guar-
anteed to be fast as its focus is more on scalability and fault tolerance. In addition,
MapReduce is criticized for lacking the novelty of more recent developments and
its restricted programming paradigm which does not support iterative and streaming
algorithms.

SQL is considered as having limited semantics and not sufficiently expressive.
Basically, SQL is not a Turing-complete language, it is more towards a query rather
than a general programming language such as Java and C. As a result, it is more
suitable for writing ETL (Extract, Transform and Load) or CRUD (Create, Read,
Update and Delete) queries rather than general algorithms. For example, it would
be a horrible choice to use SQL for writing data mining and machine learning algo-
rithms. Traditional rational queries are slow and less scalable in Big Data scenarios,
therefore, query languages such as HQL and CQL cut down the majority of the ratio-
nal paradigms provided by traditional SQL in order to be more scalable in a big data
context.

The first advantage of dataflow programming is that it facilitates for visualized
programming and monitoring. Due to its simplified graph-based interfaces, it is
easy to prototype and implement certain systems and applications. In addition, it is

Table 8 Comparison for different programming models

Model Features Abstraction Semantics Computation
model
MapReduce Non-declarative | low Limited inherent | MapReduce
skeleton-based parallel
Functional Declarative High Rich and general | DAG or
stateless purpose Evaluation-based
SQL-based Declarative High Limited Execution plan
Data flow Non-declarative | mediate Rich DAG
modularized control-logic
based
Statistical Declarative High Limited Mathemetical
domain-specific
BSP Skeleton-based | Low Rich BSP
Actor Event-driven Low Rich and inherent | Reactive actors
message-based concurrency

vww.ebook3000.con)

http://www.ebook3000.org

Big Data Programming Models 61

also well known for providing end-user programming in which WYSIWYG (what
you see is what you get) interfaces are required. Another point in favour of data
flow programming is that, by writing programs in a dataflow manner, it actually
help developers to modularize their programs as connected processing components
and provide good loosely coupled structure and flexibility. However, compared to
other programming models such as functions and SQLs, dataflow-based model is
relatively non-declarative, unproductive for programming as it basically provides
low-level programming abstractions and interfaces, which is hard to be integrated
with.

To sum up, the comparison of basic programming models are listed in Table 8.
Basically, MapReduce and BSP models are programming skeletons, functional, SQL
and statistical models are declarative, while data-flow model is inherently modu-
larized and actor model is essentially event-driven and message-based. In addition,
functional, SQL and statistical models are high-level abstraction models and MapRe-
duce, BSP and actor models are low-level abstraction. Lastly, functional, BSP and
actor models are more semantically complete to support richer operations while other
models are generally limited in semantics to trade off among understandability, user-
convenience and productivity [16, 42].

References

1. A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag, F. Hueske, A. Heise, O. Kao, M. Leich,

U. Leser, V. Markl, F. Naumann, M. Peters, A. Rheinldnder, M.J. Sax, S. Schelter, M. Hoger,

K. Tzoumas, D. Warneke, The stratosphere platform for big data analytics, VLDB J. 23(6)

(2014)

Apache. Apache crunch (2016). https://crunch.apache.org/. Accessed 17 Mar 2016

Apache. Apache drill (2016). https://drill.apache.org/. Accessed 17 Mar 2016

Apache. Apache giraph (2016). https://giraph.apache.org/. Accessed 17 Mar 2016

Apache. Apache hama (2016). https://hama.apache.org/. Accessed 17 Mar 2016

Apache. Apache orc (2016). https://orc.apache.org/. Accessed 17 Mar 2016

Apache. Avro (2016). https://avro.apache.org/. Accessed 17 Mar 2016

Apache. Hadoop (2016). http://hadoop.apache.org/. Accessed 17 Mar 2016

Apache. Mahout: Scalable machine learning and data mining (2016). https://mahout.apache.

org/. Accessed 17 Mar 2016

10. Apache. Parquet (2016). https://parquet.apache.org/. Accessed 17 Mar 2016

11. Apache. Spark r (2016). https://spark.apache.org/docs/1.6.0/sparkr.html. Accessed 17 Mar
2016

12. Apache Storm. Trident (2016). http://storm.apache.org/documentation/Trident-tutorial.html.
Accessed 17 Mar 2016

13. M. Armbrust, R.S. Xin, C. Lian, Y. Huai, D. Liu, J.K. Bradley, X. Meng, T. Kaftan, M.J.
Franklin, A. Ghodsi, M. Zaharia, Spark SQL.: relational data processing in spark, in SIGMOD
(2015), pp. 1383-1394

14. AsterixDB. Asterix query language (aql) (2016). https://asterixdb.ics.uci.edu/documentation/
aqgl/manual.html. Accessed 17 Mar 2016

15. Azure Microsoft. Microsoft azure: Cloud computing platform and services (2016). https://
azure.microsoft.com. Accessed 27 Feb 2016

O XN LN

https://crunch.apache.org/
https://drill.apache.org/
https://giraph.apache.org/
https://hama.apache.org/
https://orc.apache.org/
https://avro.apache.org/
http://hadoop.apache.org/
https://mahout.apache.org/
https://mahout.apache.org/
https://parquet.apache.org/
https://spark.apache.org/docs/1.6.0/sparkr.html
http://storm.apache.org/documentation/Trident-tutorial.html
https://asterixdb.ics.uci.edu/documentation/aql/manual.html
https://asterixdb.ics.uci.edu/documentation/aql/manual.html
https://azure.microsoft.com
https://azure.microsoft.com

62

16

17.

18.

19.
20.
21.
22.
23.
24.
25.
26.
217.
28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

D. Wu et al.

O. Batarfi, R. El Shawi, A.G. Fayoumi, R. Nouri, S.-M.-R. Beheshti, A. Barnawi, S. Sakr,
Large scale graph processing systems: survey and an experimental evaluation. Clust. Comput.
18(3), 1189-1213 (2015)

R.A. Becker, J.M. Chambers, S: An Interactive Environment for Data Analysis and Graphics
(CRC Press, New York, 1984)

K.S. Beyer, V. Ercegovac, R. Gemulla, A. Balmin, M. Eltabakh, C.-C. Kanne, F. Ozcan, E.J.
Shekita, Jaql: a scripting language for large scale semistructured data analysis, in Proceedings
of VLDB Conference (2011)

C. Chambers, A. Raniwala, F. Perry, S. Adams, R.R. Henry, R. Bradshaw, N. Weizenbaum,
FlumeJava: easy, efficient data-parallel pipelines, in PLDI (2010)

W. Clinger, J. Rees, Ieee standard for the scheme programming language, in Institute for
Electrical and Electronic Engineers (1991), pp. 1178-1990

Cloudera. Apache impala (2016). http://impala.io/. Accessed 17 Mar 2016

T.H. Cormen, Introduction to Algorithms (MIT press, New York, 2009)

S.Das, Y. Sismanis, K.S. Beyer, R. Gemulla, P.J. Haas, J. McPherson, Ricardo: integrating r and
hadoop, in Proceedings of the 2010 ACM SIGMOD International Conference on Management
of data (ACM, 2010), pp. 987-998

J. Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters. Commun.
ACM 51(1) (2008)

Facebook. Presto (2016), https://prestodb.io/. Accessed 17 Mar 2016

L. George, HBase: The Definitive Guide (O’Reilly Media, Inc., 2011)

Google. Cloud sql - mysq] relational database (2016). https://cloud.google.com/sql/. Accessed
27 Feb 2016

S. Guha, R. Hafen, J. Rounds, J. Xia, J. Li, B. Xi, W.S. Cleveland, Large complex data: divide
and recombine (d&r) with rhipe. Stat 1(1), 53-67 (2012)

C. Hewitt, P. Bishop, R. Steiger, A universal modular actor formalism for artificial intelligence,
in Proceedings of the 3rd International Joint Conference on Artificial Intelligence (Morgan
Kaufmann Publishers Inc., 1973), pp. 235-245

S. Hong, H. Chafi, E. Sedlar, K. Olukotun, Green-marl: a dsl for easy and efficient graph
analysis, in ACM SIGARCH Computer Architecture News, vol. 40 (ACM, 2012), pp. 349-362
Inc Concurrent. Cascading - application platform for enterprise big data (2016). http:/www.
cascading.org/. Accessed 17 Mar 2016

R. Thaka, R. Gentleman, R: a language for data analysis and graphics. J. Comput. Graph. Stat.
5(3), 299-314 (1996)

M. Isard, M. Budiu, Y. Yu, A. Birrell, D. Fetterly, Dryad: distributed data-parallel programs
from sequential building blocks, in ACM SIGOPS Operating Systems Review, vol. 41 (ACM,
2007), pp. 59-72

M. Islam, A.K. Huang, M. Battisha, M. Chiang, S. Srinivasan, C. Peters, A. Neumann, A.
Abdelnur, Oozie: towards a scalable workflow management system for hadoop, in SIGMOD
Workshops (2012)

W.M. Johnston, J.R. Hanna, R.J. Millar, Advances in dataflow programming languages. ACM
Comput. Surv. (CSUR) 36(1), 1-34 (2004)

A. Lakshman, P. Malik, Cassandra: a decentralized structured storage system. ACM SIGOPS
Oper. Syst. Rev. 44(2), 35-40 (2010)

G. Malewicz, M.H. Austern, A.J.C. Bik, J.C. Dehnert, I. Horn, N. Leiser, G. Czajkowski,
Pregel: a system for large-scale graph processing, in SIGMOD Conference (2010)

X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D.B. Tsai,
M. Amde, S. Owen, et al., Mllib: machine learning in apache spark (2015). arXiv preprint,
arXiv:1505.06807

MongoDB Inc. Mongodb for giant ideas (2016). https://www.mongodb.org/. Accessed 27 Feb
2016

C. Olston, B. Reed, U. Srivastava, R. Kumar, A. Tomkins, Pig latin: a not-so-foreign language
for data processing, in SIGMOD (2008)

vww.ebook3000.con)

http://impala.io/
https://prestodb.io/
https://cloud.google.com/sql/
http://www.cascading.org/
http://www.cascading.org/
http://arxiv.org/abs/1505.06807
https://www.mongodb.org/
http://www.ebook3000.org

Big Data Programming Models 63

41.

42.
43.

44,

45.

46.

47.

48.

49.
50.
51.

52.

53.

54.

Swift OpenStack. Openstack swift - enterprise storage from swiftstack (2016). https://www.
swiftstack.com/openstack-swift/. Accessed 27 Feb 2016

S. Sakr, Big Data 2.0 Processing Systems (Springer, Berlin, 2016)

S. Sakr, M.M. Gaber (eds.) Large Scale and Big Data - Processing and Management (Auerbach
Publications, 2014)

Sherif Sakr, Anna Liu, Ayman G. Fayoumi, The family of mapreduce and large-scale data
processing systems. ACM Comput. Surv. 46(1), 11 (2013)

K. Shvachko, H. Kuang, S. Radia, R. Chansler, The hadoop distributed file system, in /EEE
MSST (2010)

S3 Amazon. Amazon simple storage service (amazon s3) (2016). https://aws.amazon.com/s3/.
Accessed 27 Feb 2016

A. Thusoo, J.S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff, R. Murthy,
Hive: a warehousing solution over a map-reduce framework. Proc. VLDB Endow. 2(2), 1626—
1629 (2009)

A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J.M. Patel, S. Kulkarni, J. Jackson, K.
Gade, M. Fu, J. Donham, et al., Storm@ twitter, in Proceedings of the 2014 ACM SIGMOD
international conference on Management of data (ACM, 2014), pp. 147-156

Typesafe. Akka (2016). http://akka.io/. Accessed 17 Mar 2016

Typesafe. Play framework - build modern & scalable web apps with java and scala (2016).
https://www.playframework.com/. Accessed 17 Mar 2016

L.G. Valiant, A bridging model for parallel computation. Commun. ACM 33(8), 103-111
(1990)

Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P.K. Gunda, J. Currey, Dryadling: a
system for general-purpose distributed data-parallel computing using a high-level language, in
OSDI, vol. 8 (2008), pp. 1-14

M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, I. Stoica, Spark: cluster computing with
working sets, in HotCloud (2010)

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M.J. Franklin, S. Shenker,
1. Stoica, Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster com-
puting, in NSDI (2012)

https://www.swiftstack.com/openstack-swift/
https://www.swiftstack.com/openstack-swift/
https://aws.amazon.com/s3/
http://akka.io/
https://www.playframework.com/

Programming Platforms for Big
Data Analysis

Jiannong Cao, Shailey Chawla, Yuqi Wang and Hanqing Wu

Abstract Big data analysis imposes new challenges and requirements on
programming support. Programming platforms need to provide new abstractions
and run time techniques with key features like scalability, fault tolerance, efficient
task distribution, usability and processing speed. In this chapter, we first provide a
comprehensive survey of the requirements, give an overview and classify existing big
data programming platforms based on different dimensions. Then, we present details
of the architecture, methodology and features of major programming platforms like
MapReduce, Storm, Spark, Pregel, GraphLab, etc. Last, we compare existing big
data platforms, discuss the need for a unifying framework, present our proposed
framework MatrixMap, and give a vision about future work.

Keywords Big data analysis - Programming platforms * Unifying framework - Data
parallel - Graph parallel - Task parallel - Stream processing

1 Introduction

The necessity of increased computing speed and capacity offered by big data pro-
gramming platforms has led to constantly evolving system architectures, novel devel-
opment environments, and multiple third-party software libraries and application
packages. Now, we are in an era where businesses, government sectors, small and
big organizations have all realized the potential of big data analysis. The great demand

J. Cao (X)) - S. Chawla - Y. Wang - H. Wu

Department of Computing, Hong Kong Polytechnic University, King’s Park, Hong Kong
email: csjcao@comp.polyu.edu.hk

URL: http://www4.comp.polyu.edu.hk/"csjcao/

S. Chawla
e-mail: csschawla@comp.polyu.edu.hk

Y. Wang
e-mail: csyqwang @comp.polyu.edu.hk

H. Wu
e-mail: cshwu@comp.polyu.edu.hk

© Springer International Publishing AG 2017 65
A.Y. Zomaya and S. Sakr (eds.), Handbook of Big Data Technologies,
DOI 10.1007/978-3-319-49340-4_3

vww.ebook3000.con)

http://www.ebook3000.org

66 J. Cao et al.

for big data analysis systems is giving a thrust to the research and development in
this area. Large amounts of data have to be handled in a parallel and distributed way
wherein, and the computations have to be distributed across many machines in order
to be finished in a reasonable amount of time. The issue of how the computation can
be parallelized, how data is distributed and how failures are handled in such a wide
distribution are compelling, and call for special programming platforms for big data
analysis.

Inrecent years, alot of programming platforms have emerged for big data analysis.
Figure 1 shows the time line of systems that handle large scale data. The timeline
clearly indicates the increasing amount of interest in these systems recently.

Big data processing can be done on either distributed clusters or high performance
computing machines like Graphical Processing Units [10].

In this section of the chapter, we provide an overview of existing programming
platforms for big data analysis, which gives the readers a brief impression on exist-
ing big data platforms. The remaining part of the chapter is organized as follows.
First, we discuss the special requirements and features of programming platforms
for large scale data analysis in the next section. We then present in Sect. 3, a classi-
fication schema for big data programming platforms based on different dimensions,
which would give insights on types of existing systems and their suitability to differ-
ent kinds of applications. In Sect.4, we will introduce the details of major existing
programming platforms. The programming platforms are described with respect to
their specific purpose, programming model, implementation details and important
features. We discuss our unifying framework and our proposed framework called
MatrixMap [15], as well as summarize the big data programming platforms accord-
ing to the essential requirements in Sect. 5. Finally, we conclude this chapter by giving
our understanding and vision on programming platforms. The chapter is intended to
benefit anyone who is new to big data analysis by presenting details and features of
popular big data programming platforms, analysts to choose appropriate program-

PARALLEL PREGEL
DATABASES G

LATE 80s

HADOOP

APACHE

CONDOR
1988 = STORM

Apache) 2l

010

Fig.1 Timeline of programming platforms for big data analysis

Programming Platforms for Big Data Analysis 67

ming platforms for their specific applications by offering comparison across them,
and also interested researchers by showing our current research work and vision on
future direction.

2 Requirements of Big Data Programming Support

Programming platforms constitute of systems and language environments that can
run on commodity, inexpensive hardware or software and can be programmed and
operated by programmers and analysts with average, mainstream skills. Big data
analysis need to have some essential requirements so as to deal with specific issues
related to vast data and large scale computations, they also need to support distributed
and local processing (data copies) and support ease of use, data abstraction, data flow
and data transformations. In traditional programming platforms, the key feature is
performance, but for systems with large scale data, there are many more features
essential for smooth functioning of the system and being useful.

Scalability

Scalability is the ability of a system, network, or process to handle a growing amount
of work in a capable manner or its ability to be enlarged to accommodate that growth
[5]. Scaling can be done by either scaling up the system, which means adding addi-
tional resources on a single computer/node to improve the performance or scaling
out the system, which refers to addition of more computers/nodes to the system in a
distributed software system.

Support Multiple Data Types
Big data systems should be able to support multiple data types, e.g., record, graph or
stream. Different common data types have been briefly explained in following text.

e Record data can be split into independent elements and thus data can be processed
independently. Independent results can be summed up to get the final result.

e Graph data cannot be split into independent elements like in the case of record
data. Elements may have relations with each other and thus the processing of one
element depends on other elements. Graph data not only include real graphs but
also other data which can be viewed as graph. The data can also be in form of
stream which would require fast processing in memory.

e Stream data arrive at a rate that makes it infeasible to store everything in active
storage. If it is not processed immediately or stored, then it is lost forever or we
lose the opportunity to process them at all. Thus, stream-processing algorithm is
executed in main memory, without or with only rare access to secondary storage.

Fault Tolerance

Fault tolerance is the property that enables a system to continue operating properly
in the event of the failure of (or one or more faults within) some of its components.
In a distributed framework with large scale data, it is imperative that some nodes

vww.ebook3000.con)

http://www.ebook3000.org

68 J. Cao et al.

carrying data can fail. For a fault tolerant system, when a server in the cluster fails, a
stand-by server is automatically activated to take over the tasks, there are also check
pointing and recovery to minimize state loss.

Efficiency

Massive computation capability is required for big data analysis and hence efficiency
is very critical when programming platforms are scaled up or scaled out for handling
large amounts of data. Efficiency means faster speed with respect to usage of certain
resources like memory or number of nodes.

Data I/0 Performance

Data I/O performance refers to the rate at which the data is transferred to/from a
peripheral device. In the context of big data analytics, this can be viewed as the rate
at which the data is read and written to the memory (or disk) or the data transfer rate
between the nodes in a cluster. The systems should have low latency to minimize
the time taken for reading and writing to the memory, and high throughput for data
transmission.

Iterative Task Support

This is the ability of a system to efficiently support iterative tasks. Since many of the
data analysis tasks and algorithms are iterative in nature, it is an important metric
to compare different platforms, especially in the context of big data analytics. The
systems must be suitable for iterative algorithms so that the result of one iteration
can be easily used in the next iteration, and all the parameters can be stored locally.
Processes can reside and can keep running as long as the machine is running.

The properties described above are very significant for description of program-
ming platforms. In the next section, we propose a classification of programming
system based on different dimensions. We have classified the programming plat-
forms based on the processing techniques and data sources.

3 Classification of Programming Platforms

The existing programming platforms for big data analysis have numerous special
features as discussed in the previous section. It is important to realize what kinds of
systems encompass what features so that it is easier to make a choice of program-
ming system with respect to the application. We classify the existing programming
platforms based on different dimensions as that have been described in the following
subsections.

3.1 Data Source

Data analysis is done for different kinds of source data. The data can arrive for
processing either in batches or continuous stream. Hence based on how the data

Programming Platforms for Big Data Analysis 69

arrives, various systems can be classified into Batch Processing Systems and Stream
Processing Systems. Many big data analysis applications work on batch-wise input,
and there are many like twitter or stock markets dealing with multiple data streams.
There have been much development in this regard, and specific programming plat-
forms have been fostered to deal with streaming data.

Batch Processing Systems are the systems that execute a series of programs
which take a set of data files as input, processes the data and produce a set of output
data files. It is termed as batch processing because the data is collected in batches as
sets of records and processed as a unit. Output is another batch that can be reused as
input if required.

Batch processing systems have existed for very long and they have various advan-
tages. These systems utilize computing resources in an optimum and efficient manner
based on the priority of other jobs. Batch processing techniques are likely to avoid
system overhead.

Many distributed programming platforms like MapReduce [8], Spark [32],
GraphX [12], Pregel [22] and HTCondor [14] are batch processing systems. They
analyze large scale data in batches in a distributed and parallel fashion.

Stream Processing Systems are the systems that process continuous input of
data. These systems should have faster rate of processing than rate of incoming data.
So an input dataset coming at time ¢ needs to be processed before dataset arrives at
time ¢ + /. The stream processing systems work under a very strict time constraint.
They are important in applications, which need continuous output from incoming
data like stock market, twitter etc. Big data programming platforms like Storm [30],
Spark Streaming [32] and S4 [24] are used for processing stream data.

3.2 Processing Technique

Programming platforms can also be classified based on the processing techniques.
Large scale processing can be done using different techniques like data parallel, task
parallel or graph parallel techniques. We have classified the programming platforms
according to the techniques they employ for processing data.

Data parallel programming platforms focus on distributed data across parallel
computing nodes. In data parallelism, each node executes the same task on differ-
ent pieces of distributed data. It emphasizes that data is distributed and executed in
parallel on different computing nodes, and then the result from different nodes is
consolidated and processed further. The data parallel systems tend to be very fault
tolerant as they can have redundancy. Also, this kind of arrangement makes process-
ing of large-scale data simpler by breaking down data into smaller units. MapReduce,
Spark, Hadoop are data parallel systems and have been very popular in big data pro-
gramming community. We also proposed MatrixMap to efficiently support matrix
computations.

Task parallel platforms are systems that process data in a parallel manner across
multiple processors. Task parallelism focuses on distributing execution processes

vww.ebook3000.con)

http://www.ebook3000.org

70 J. Cao et al.

Fig. 2 Classification //_,__-—— T — T
hema of big dat >
schiema o' BIg e /" Data Parallel /<Graph Paralm
programming platforms / \ :
(stream processing platforms // Hadoop Dryad \ Pregel \.__\
are mentioned in italics) Spark / \ = \
[P [GraphX | \

3 GraphLab
| MatrixMap | |

\ [PowerGraph /
“- Spark Streaming / owerlrap /

_ /> s/ N

J." ‘Inn moo_- =

Condor |

\ Task Paralicy

across different parallel computing nodes. HTCondor programming system is an
example of task parallel system.

Graph parallel platforms are systems that encode computation as vertex pro-
grams which run in parallel and interact along edges in the graph. Graph-parallel
abstractions rely on each vertex having a small neighborhood to maximize paral-
lelism, and effective partitioning to minimize communication. Formally, a graph-
parallel abstraction consists of a sparse graph G = {V, E}, and a vertex-program Q
which is executed in parallel on each vertex v belongs to set V, and can interact (e.g.,
through shared-state in GraphLab, or messages in Pregel) with neighboring instances
O (u) where (u, v) belongs to E. In contrast to more general message passing mod-
els, graph-parallel abstractions constrain the interaction of vertex-program to a graph
structure enabling the optimization of data-layout and communication [11]. Pregel,
Graphlab, GraphX are graph parallel systems popular for social network analysis.

Figure 2 depicts the classification schema of various programming platforms for
big data analysis. The Figure presents the classification in the form of a Venn diagram,
and the programming platforms are placed according to their matching criterion.
The systems in italics are stream processing systems, while the remaining are batch
processing systems. In the next section we describe the major existing programming
platforms in detail.

4 Major Existing Programming Platforms

In this section we describe in detail some major programming platforms that are
prominent in big data analysis. The programming platforms have been described
according to the prominent processing techniques used in their programming models.

Programming Platforms for Big Data Analysis 71

4.1 Data Parallel Programming Platforms

Data parallel programming platforms are the systems that distribute data over parallel
computing nodes [6]. In distributed systems, data parallelism is achieved by dividing
the data into a smaller size and each parallel computing node performing the same
task over small sized data. The intermediate result is then integrated to achieve the
final outcome of processing.

4.1.1 Hadoop

Hadoop is based on MapReduce programming model [8] which is the most popu-
lar paradigm for big data analysis till date, and brought a breakthrough in big data
programming. In this model, data-parallel computations are executed on clusters of
unreliable machines by systems, that automatically provide locality-aware schedul-
ing, fault tolerance, and load balancing. Hadoop MapReduce is an open source form
of Google MapReduce.

MapReduce is useful in a wide range of applications, including distributed pattern-
based searching, distributed sorting, web link-graph reversal, web access log stats,
inverted index construction, document clustering, machine learning, and statistical
machine translation. At Google, MapReduce was used to completely regenerate
Google’s index of the World Wide Web. It has replaced the old ad hoc programs that
updated the index and ran various analyses.

The MapReduce abstraction allows expressing simple computations without
revealing the complicated details of parallelization. There are two main primitives in
this abstraction called the Map and Reduce operations. The computation is expressed
in form of these two functions, wherein it takes a set of input key/value pairs and
produces a set of output key/value pairs.

Map, written by the user, takes an input pair and produces a set of intermedi-
ate key/value pairs. The MapReduce library groups together all intermediate values
associated with the same intermediate key and passes them to the Reduce function.

Reduce function, written by user too, accepts intermediate key and a set of values
for that key. It merges these values together to form a possibly smaller set of values.
This is done in an iterative fashion, so that list of values that are too large can fit
in memory. This is the key concept of the MapReduce paradigm that enables it to
handle large scale data in an efficient way.

The MapReduce framework transforms a list of (key, value) pairs into a list of
values. This behavior is different from the typical functional programming, Map
and Reduce combination, which accepts a list of arbitrary values and returns one
single value that combines all the values returned by map. Figure3 [4] depicts the
architecture of MapReduce programming model.

MapReduce framework for processing parallelizable problems across huge
datasets using a large number of computers (nodes), collectively referred to as a
cluster (if all nodes are on the same local network and use similar hardware) or a

vww.ebook3000.con)

http://www.ebook3000.org

72 J. Cao et al.

Map Shuffle Reduce

Fig. 3 Architecture of MapReduce model

grid (if the nodes are shared across geographically and administratively distributed
systems, and use more heterogeneous hardware). Processing can occur on data stored
either in a file system (unstructured) or in a database (structured). MapReduce can
take advantage of locality of data, processing it on or near the storage assets in order
to reduce the distance over which it must be transmitted.

“Map” step: Each worker node applies the “map()” function to the local data,
and writes the output to a temporary storage. A master node orchestrates that for
redundant copies of input data, only one is processed.

“Shuffle” step: Worker nodes redistribute data based on the output keys (produced
by the “map()” function), such that all data belonging to one key are located on the
same worker node.

“Reduce” step: Worker nodes now process each group of output data, per key, in
parallel.

The parallelism also offers some possibility of recovering from partial failure of
servers or storage during the operation: if one mapper or reducer fails, the work can
be rescheduled - assuming the input data is still available.

Hadoop has following important features:

Scalability: Hadoop is highly scalable and it can be scaled out instead of scaling up.
The main feature of Hadoop is that the machines with normal functioning capacity
can also be used for big data analysis. Multi-node clusters of Hadoop system can
be set up in distributed master slave architecture and scalability can be achieved for
thousands of nodes.

Fault tolerance: Fault tolerance is the most significant feature of MapReduce pro-
gramming model that makes it a robust and reliable programming system for large
scale data processing. Fault tolerance is achieved in MapReduce by redundancy of

Programming Platforms for Big Data Analysis 73

data. Each dataset is duplicated in 3—4 places. Even when a node fails, the same
dataset can be retrieved from other nodes.

Performance: MapReduce programming model is very efficient for large amounts
of data. However, the performance is not good when the dataset is small. The time
lag of Hadoop model is compromised because of its efficient fault tolerance and high
scalability.

4.1.2 Spark

Spark is an efficient and iterative processing model for big data processing. At its
core, Spark provides a general programming model that enables developers to write
applications by composing arbitrary operators, such as mappers, reducers, joins,
group-bys, and filters. This composition makes it easy to express a wide array of
computations, including iterative machine learning, streaming, complex queries, and
batch processing.

Spark programming model focuses on applications that reuse a working set of
data across multiple parallel operations. This includes many iterative machine learn-
ing algorithms, as well as interactive data analysis tools. It keeps track of the data
that each of the operators produces, and enables applications to reliably store this
data in memory. This feature enables efficient iterative algorithms and low latency
computations.

Spark provides two main abstractions for parallel programming: resilient dis-
tributed datasets and parallel operations on these datasets. Spark programming
model is shown in Fig.4 [27]. It describes two kinds of computations, iterative and

one-time
processing

[—

Distributed
memory

Input

(a) Low-latency computations (queries)

Input

(b) Iterative computations

Fig. 4 Spark programming model

vww.ebook3000.con)

http://www.ebook3000.org

74 J. Cao et al.

non-iterative. The main abstraction in Spark is that of a Resilient Distributed Dataset
(RDD), which represents a read-only collection of objects partitioned across a set of
machines that can be rebuilt if a partition is lost. The elements of an RDD need not
exist in physical storage; instead, a handle to an RDD contains enough information to
compute the RDD starting from data in reliable storage. This means that RDDs can
always be reconstructed if nodes fail. In Spark, each RDD is represented by a Scala
[25] object. Spark lets programmers construct RDDs in various ways like from a file
in a shared file system, by “parallelizing” a Scala collection (e.g., an array) in the
driver program, by transforming an existing RDD and by changing the persistence
of an existing RDD. Several parallel operations like reduce, collect, foreach etc. can
be performed on RDDs.

Spark also lets programmers create two restricted types of shared variables to
support two simple but common usage patterns. Programmer can create a “broadcast
variable” object that wraps the value and ensures that it is only copied to each worker
once. Also, Accumulators can be defined for any type that has an “add” operation
and a “zero” value. Due to their “add-only” semantics, they are easy to make fault-
tolerant.

Spark is built on top of Mesos [13], a “cluster operating system” that lets multiple
parallel applications share a cluster in a fine-grained manner and provides an API
for applications to launch tasks on a cluster. This allows Spark to run alongside
existing cluster computing frameworks, such as Mesos ports of Hadoop and MPI
[26], and share data with them. In addition, building on Mesos greatly reduced the
programming effort that had to go into Spark.

The two types of shared variables in Spark, broadcast variables and accumu-
lators, are implemented using classes with custom serialization formats. Spark is
implemented in Scala (Scala programming language.), a statically typed high-level
programming language for the Java Virtual Machine, and exposes a functional pro-
gramming interface similar to DryadLINQ [31]. In addition, Spark can be used
interactively from a modified version of the Scala interpreter, which allows the user
to define RDDs, functions, variables and classes and use them in parallel operations
on a cluster.

Spark has following important features:

Scalability: It is based on MapReduce architecture so it provides scalability feature.

Fault tolerant: Spark retains the fault tolerant feature of map reduce. Also, its novel
feature is the use of Resilient Distributed Datasets (RDD). The main property of
RDD is the capability to store its lineage or the series of transformations required
for creating it as well as other actions on it. This lineage provides fault tolerance to
RDDs.

Easy to use: Spark’s parallel programs look very much like sequential programs,
which make them easier to develop and reason about. Spark allows users to easily
combine batch, interactive, and streaming jobs in the same application. As a result, a
Spark job can be up to 100 times faster and requires writing 2—10 times less code than
an equivalent Hadoop job. One of Spark’s most useful features is the interactive shell,

Programming Platforms for Big Data Analysis 75

bringing Spark’s capabilities to the user immediately - no Integrated Development
Environment (IDE) and code compilation required. The shell can be used as the
primary tool for exploring data interactively, or as means to test portions of an
application you’re developing. Spark can read and write data from and to Hadoop
Distributed File System (HDFES).

Better Performance: Spark can outperform Hadoop by 10x in iterative machine
learning jobs, and can be used to interactively query a 39 GB dataset with sub-second
response time.

4.1.3 Dryad

Dryad [17] was a research project at Microsoft Research for writing parallel and
distributed programs to scale from a small cluster to a large data-center. From 2007,
Microsoft made several preview releases of this programming model technology
available as add-ons to Windows HPC Server 2008 R2. However, Microsoft dropped
Dryad processing work and focused on Apache Hadoop in October 2011. Dryad
allows a programmer to use the resources of a computer cluster or a data center for
running data-parallel programs. A Dryad programmer can use thousands of machines,
each of them with multiple processors or cores, without knowing anything about
concurrent programming.

A Dryad programmer writes several sequential programs and connects those using
one-way channels. The computation of an application written for Dryad is structured
as a Directed Acyclic Graph (DAG). The DAG defines the dataflow of the application,
and the vertices of the graph define the operations that are to be performed on the
data. The “computational vertices” are written using sequential constructs, devoid
of any concurrency or mutual exclusion semantics. A Dryad job is a graph generator
which can synthesize any directed acyclic graph. The structure of Dryad jobs is
shown in Fig.5 [28]. These graphs can even change during execution, in response

Fig. 5 The structure of Input files
Dryad jobs ? ? ? ?
R R [R

LR J

X X X X X X

TR S R TS

M M M M
] L]

Channels ! Vertices

M M
(processes)
Output files ; {

vww.ebook3000.con)

http://www.ebook3000.org

76 J. Cao et al.

to important events in the computation. The Dryad runtime parallelizes the dataflow
graph by distributing the computational vertices across various execution engines.
Scheduling of the computational vertices on the available hardware is handled by the
Dryad runtime, without any explicit intervention by the developer of the application
or administrator of the network.

The flow of data between one computational vertex to another is implemented by
using communication “channels” between the vertices, which in physical implemen-
tation is realized by TCP/IP streams, shared memory or temporary files. A stream is
used at runtime to transport a finite number of structured items.

Dryad defines a domain-specific language, implemented via a C++ library, that is
used to create and model a Dryad execution graph. Computational vertices are written
using standard C++ constructs. To make them accessible to the Dryad runtime, they
must be encapsulated in a class that inherits from the GraphNode base class. The
graph is defined by adding edges; edges are added by using a composition operator
that connects two graphs with an edge. A lot of operators are defined to help building
a graph, including Cloning, Composition, Merge and Encapsulation. Managed code
wrappers for the Dryad API can also be written.

Dryad’s architecture includes components that do resource management as well
as the job management. A Dryad job is coordinated by a component called the Job
Manager. Tasks of a job are executed on cluster machines by a Daemon process.
Communication with the tasks from the job manager happens through the Daemon,
which acts like a proxy. In Dryad, the scheduling decisions are local to an instance of
the Dryad Job Manager C i.e., it is decentralized. The logical plan for a Dryad DAG
results in each vertex being placed in a “Stage”. The stages are managed by a “Stage
manager” component that is part of the job manager. The Stage manager is used
to detect state transitions and implement optimizations like Hadoop’s speculative
execution.

Overall, Dryad is quite expressive. It completely subsumes other computation
frameworks, such as Google’s MapReduce, or the relational algebra. Moreover,
Dryad handles job creation and management, resource management, job monitoring
and visualization, fault tolerance, re-execution, scheduling, and accounting.

Dryad has following special features:

Scalability: Dryad is designed to scale to much larger implementations, up to thou-
sands of computers.

Fault tolerance: The fault tolerance model in the Dryad comes from the assump-
tion that vertices are deterministic. Since the communication graph is acyclic, it is
relatively straightforward to ensure that every terminating execution of a job with
immutable inputs will compute the same result, regardless of the sequence of com-
puter or disk failures over the course of the execution.

Performance: The Dryad system can execute jobs containing hundreds of thousands
of vertices, processing many terabytes of input data in minutes. Microsoft routinely
uses Dryad applications to analyze petabytes of data on clusters of thousands of
computers.

Programming Platforms for Big Data Analysis 77

Flexibility: Programmers can easily use thousands of machines and create large-
scale distributed applications, without requiring them to master any concurrency
programming beyond being able to draw a graph of the data dependencies of their
algorithms.

4.2 Graph Parallel Programming Platforms

Graph parallel systems are systems that encode computation as vertex programs
which run in parallel and interact along edges in the graph. Graph-parallel abstrac-
tions rely on each vertex having a small neighborhood to maximize parallelism and
effective partitioning to minimize communication.

4.2.1 Pregel

Pregel [22] is a programming model for processing large graphs in distributed envi-
ronment. It is a vertex-centric model, which defines serials of actions on an angle
of a single vertex, and then the program will run such vertices through a graph and
finally get the result.

Pregel has been created for solving large scale graph computations that is required
in modern systems like social networks and web graphs. Many graph computing
problems like shortest path, clustering, page rank, connected components etc. need
to be implemented for big graphs hence the requirement of the system.

Vertices iteratively process data and send messages to neighboring vertices. Edges
do not have any associated computation in this programming model. The computa-
tions consist of a sequence of iterations, called supersteps. Within each superstep,
the vertices compute in parallel, each executing the same user defined function that
expresses the logic of a given algorithm. A vertex can modify its state or that of its
outgoing edges, receive messages sent to it in the previous superstep, send messages
to other vertices (to be received in the next superstep), or even mutate the topology
of the graph. The state machine of vertex is shown in Fig. 6 [22].

The input to a Pregel computation is a directed graph in which each vertex is
uniquely identified by a string vertex identifier. Each vertex is associated with a
modifiable, user defined value. The directed edges are associated with their source
vertices, and each edge consists of a modifiable, user defined value and a target
vertex identifier. A typical Pregel computation consists of input, when the graph is

Fig. 6 State machine Vote to halt
for a vertex =T §
C__ Active | | Inactive D

Message received

vww.ebook3000.con)

http://www.ebook3000.org

78 J. Cao et al.

initialized, followed by a sequence of supersteps separated by global synchronization
points until the algorithm terminates, and finishing with output. Algorithm termina-
tion is based on every vertex voting to halt. The output of a Pregel program is the
set of values explicitly output by the vertices. It is often a directed graph isomorphic
to the input, but this is not a necessary property of the system because vertices and
edges can be added and removed during computation. A clustering algorithm, for
example, might generate a small set of disconnected vertices selected from a large
graph.

The Pregel library divides a graph into partitions, each consisting of a set of
vertices and all of those vertices’ outgoing edges. Assignment of a vertex to a partition
depends solely on the vertex ID, which implies it is possible to know which partition
a given vertex belongs to even if the vertex is owned by a different machine, or even if
the vertex does not yet exist. The default partitioning function is just hash (ID) mod N,
where N is the number of partitions, but users can replace it. The execution of Pregel
is depicted in Fig. 7 [16]. In the absence of faults, the execution of a Pregel program
consists of several stages. First, many copies of the user program begin executing on
a cluster of machines. One of these copies acts as the master. It is not assigned any
portion of the graph, but is responsible for coordinating worker activity. The workers
use the cluster management system’s name service to discover the master’s location,
and send registration messages to the master. Then, the master determines how many
partitions the graph will have, and assigns one or more partitions to each worker
machine. Having more than one partition per worker allows parallelism among the
partitions and better load balancing, and will usually improve performance. Each
worker is given the complete set of assignments for all workers.

Barrier Synchronization

can be combined

Fig. 7 Implementation of Pregel

Programming Platforms for Big Data Analysis 79

After this stage, the master assigns a portion of the user’s input to each worker.
The input is treated as a set of records, each of which contains an arbitrary number
of vertices and edges. The division of inputs is orthogonal to the partitioning of the
graph itself, and is typically based on file boundaries. If a worker loads a vertex
that belongs to that worker’s section of the graph, the appropriate data structures are
immediately updated. Otherwise the worker enqueuers a message to the remote peer
that owns the vertex. After the input has finished loading, all vertices are marked as
active.

Later, the master instructs each worker to perform a superstep. The worker loops
through its active vertices, using one thread for each partition. The worker calls
Compute() for each active vertex, delivering messages that were sent in the previous
superstep. When the worker is finished it responds to the master, telling the master
how many vertices will be active in the next superstep. This step is repeated as long
as any vertices are active, or any messages are in transit. After the computation halts,
the master may instruct each worker to save its portion of the graph.

Pregel has following special features:

Scalability: Pregel has very good scalability. It can work for large sized graphs with
millions of vertices.

Fault tolerance: Fault tolerance is achieved through check pointing. At the beginning
of a superstep, the master instructs the workers to save the state of their partitions
to persistent storage, including vertex values, edge values, and incoming messages;
the master separately saves the aggregator values. Worker failures are detected using
regular “ping” messages that the master issues to workers. If a worker does not receive
a ping message after a specified interval, the worker process terminates. When one
or more workers fail, the current state of the partitions assigned to these workers is
lost. The master reassigns graph partitions to the currently available set of workers,
and they all reload their partition state from the most recent available checkpoint at
the beginning of a superstep S.

Performance: Pregel is very fast compared to non-graph based frameworks. But
during implementation it waits for the slow workers that decrease its speed.

Flexibility: Pregel provides flexibility to implement different algorithms. The Pregel
implementation is easy to understand and implementation of varied algorithms can
be done on it. Programming complexity is simplified by using the supersteps.

4.2.2 GraphX

GraphX [12] s an efficient, resilient, and distributed graph processing framework that
provides graph-parallel abstractions and supports a wide range of iterative graph algo-
rithms. Existing specialized graph processing systems, such as Pregel and GraphLab,
are sufficient to process only graph data. Thus, using specialized graph processing
systems in large-scale graph analytics pipeline, requires extensive data movement
and duplication across file system, and even network. Moreover, users have to learn

vww.ebook3000.con)

http://www.ebook3000.org

80 J. Cao et al.

and manage multiple systems, such as Hadoop, Spark, Pregel and GraphLab. Over-
all, having separate systems in entire graph analytics pipeline is difficult to use and
inefficient.

GraphX addresses the above challenges by providing both table view and graph
view on the same physical data. On one hand, GraphX views physical data as graphs
so that it can naturally express and efficiently execute iterative graph algorithms. On
the other hand, graphs in GraphX are distributed as tabular data-structures so that
GraphX also provides table operations on physical data. By exploiting this unified
data representation, GraphX enables users to easily and efficiently express the entire
graph analytics pipeline. Since graph can be composed by tables in GraphX, tabular
data preprocessing and transformation between table and graph are directly real-
ized within one system. Meanwhile, GraphX provides APIs similar to specialized
graph processing systems for naturally expressing and efficiently executing itera-
tive graph algorithms. Moreover, GraphX can leverage in-memory computation and
fault-tolerance by being embedded in Spark, a general-purpose distributed dataflow
framework.

Programmers can implement iterative graph algorithms without caring much
about the iterations and only need to define a vertex program. However, the foun-
dation of GraphX’ graph-parallel abstractions is different from the common one
that is iterative local transformation [12]. GraphX further decomposes iterative local
transformation into specific dataflow operators, which are a sequence of join stages
and group-by stages punctuated by map operations. The join operation and group-
by operation are in the context of relational database, and the map operation is to
perform update. GraphX realizes the partitioning of graphs in its representation of
physical data, called distributed graph representation. Figure 8 [12] illustrates how a
graph is represented by horizontally partitioned vertex and edge collections and their
indices. The edges are divided into three edge partitions by applying a partition func-
tion (e.g., 2D Partitioning), and the vertices are partitioned by vertex id. Partitioned
with the vertices, GraphX maintains a routing table encoding the edge partitions for
each vertex.

GraphX is built as a library on top of Spark [32], which is a general-purpose dis-
tributed dataflow framework. The architecture of Spark with GraphX is illustrated by
Fig. 9 [12]. As seen from the architecture, there is one more layer called Gather Apply
Scatter (GAS) Pregel API between GraphX and some graph algorithms. The GAS
Pregel API is implementation of Pregel abstraction of graph-parallel using GraphX
dataflow operations. It is claimed that GraphX can implement Pregel abstractions in
less than 20 lines of codes. Data structure of GraphX, the distributed graph repre-
sentation, is built on Spark RDD abstraction, and GraphX API is expressed on top
of Spark standard dataflow operators. GraphX can also exploited Scala foundation
of Spark, which enables GraphX to interactively load, transform, and compute on
massive graphs. GraphX requires no modifications to Spark. As a result, GraphX
can also be seen as a general method to embed graph computation within distributed
dataflow frameworks and distill graph computation to a specific join-map-group-by
dataflow pattern. Being embedded in Spark allows GraphX to inherit many good

Programming Platforms for Big Data Analysis 81

Edges Vertices Routing Table
[edge partition A | | |1 vertex partition A § | [parttionA |
! ' ; | i
1 @—)—@ Hh bitmask ||, 1
Graph } vl h @ " : ! :
[
. edge ’.(j)—’@): ; | [(AT23]!
\, partition A el T L L, S L LK, ' @ 1 i[1] B 1]
\ I edge partition B : 1 : : C 1 :
edge) ! 1l @ 1 || I
partition C ! e~ | [.
1 || === || ———
{ J ! vertex partition B ' i partition B :
o ety it ot X |l] ; ! !
6 ‘; @ }—edge partition C : : bitmask : : :
. : I

e ! OII® [illi= |
L sesnrg | i B T75]
A e R HOR KN | SR
< partition B ! 6‘;-(---'-5“ ! :@ 0 | . :
|___'..______.l :. __________ [} | L iy, |

clustered indices on hash indices on

source vertex vertex id
Fig. 8 Distributed graph representations
PageRank || Connected K-core Trangle
(20) Comp. (20) €9 || ol o@e | LDA |[sVDH+
— 50 (220) || (110)
| GAS Pregel API (34) | &
Spark (30,000)

Fig. 9 Spark with GraphX

features of Spark, such as in-memory computation and fault-tolerance. Compared
with Pregel and GraphLab, GraphX can achieve these features with a smaller cost.
GraphX has following important features:

Scalability: Being embedded in Spark allows GraphX to inherit Spark scalable prop-
erty.

Fault tolerance: Being embedded in Spark allows GraphX to inherit Spark fault
tolerance. Different from checkpoint-based fault tolerance, which is adopted by other
graph systems, fault tolerance of GraphX is based on lineage. Compared with check-
point fault tolerance, lineage-based fault tolerance produces smaller performance
overhead and optimal dataset replication.

Efficient for graph analytics pipeline: Similar to specialized graph processing sys-
tems, such as Pregel and GraphLab, GraphX enables users to naturally express and

vww.ebook3000.con)

http://www.ebook3000.org

82 J. Cao et al.

efficiently execute iterative graph algorithms. Moreover, GraphX provides opera-
tions for tabular data preprocessing, and transformation between graph and tabular
data so that there is no data movement and duplication across the network and file
system.

Support for SQL: Being embedded in Spark allows GraphX to inherit Spark SQL.

4.2.3 GraphLab

GraphLab is an efficient and parallel processing model for big data processing espe-
cially for large graph processing. As its core, GraphLab supports the representation
of structured data dependencies, iterative computation, and flexible scheduling. By
targeting common patterns in machine learning algorithms and tasks, GraphLab
achieves notable usability, expressiveness and performance.

GraphLab programming model focuses on applications that share a coherent com-
putational pattern: asynchronous iterative and parallel computation on graphs with
a sequential model of computation. This pattern encodes a broad range of machine
learning algorithms, and facilitates efficient parallel implementations.

GraphLab exploits the sparse structure and common computational patterns of
machine learning algorithms, and by composing problem specific computation, data-
dependencies, and scheduling, it enables users to easily design and implement effi-
cient parallel algorithms.

GraphLab’s ease-of-use comes from its abstraction which consists of the fol-
lowing parts: the data graph, the update function, scheduling primitives, the data
consistency model, and the sync operation. The data graph represents user modifi-
able program state, stores the user-defined data and encodes the sparse computational
dependencies, an example is shown in Fig. 10 [21]. The update function represents
the operation and computation on the data graph by transforming data in small over-
lapping contexts called scopes. Scheduling primitives determine the computation
order. The data consistency model expresses how much computation can overlap.
Last, the sync operation concurrently keeps track of global states.

The GraphLab is implemented in the shared memory setting [20] and distributed
in-memory setting [21]. In the shared memory setting, the GraphLab abstraction
uses PThreads for parallelism. The data consistency models have been implemented
using race-free and deadlock-free ordered locking protocols. To attain maximum per-
formance, issues related to parallel memory allocation, concurrent random number
generation, and cache efficiency are addressed in [20]. The shared memory setting
is extended to the distributed setting by refining the execution model, relaxing the
scheduling requirements, and introducing a new distributed data-graph, execution
engines, and fault-tolerance systems [21].

The GraphLab API serves as an interface between the machine learning and sys-
tems communities. Parallel machine learning algorithms built on the GraphLab API
benefit from developments in parallel data structures. As new locking protocols and
parallel scheduling primitives are incorporated into the GraphLab API, they become

Programming Platforms for Big Data Analysis 83

Data Graph

Edge Data

Vertex Data

—— —
LY
]
]

Fig. 10 The GraphLab data graph and scope S; of vertex 1 are illustrated in this figure. Each gray
cylinder represents a block of user defined data and is associated with a vertex or edge. The scope
of vertex 1 is illustrated by the region containing vertices {1, 2, 3, 4}. An update function applied
to vertex 1 is able to read and modify all the data in S} (vertex data D1, D2, D3, D4 and edge data
D12, D13, and Dy_4)

r'“'““““"“‘““““
=
)
s

immediately available to the machine learning community. On the other hand, Sys-
tems experts can use machine learning algorithms to new parallel hardware more
easily by porting the GraphLab API. Actually, on top of GraphLab, several imple-
mented libraries of algorithms in various application domains are already provided
including topic modeling, graph analytics, clustering, collaborative filtering, com-
puter vision etc.

GraphLab has following important features:

Scalability: GraphLab scales very well in various machine learning and data mining
tasks, and scaling performance improves with higher computation to communication
ratio.

Expressivity: Unlike many high-level abstractions (i.e., MapReduce), GraphLab
is able to express complex computational dependencies with the data graph and
provides sophisticated scheduling primitives which can express iterative parallel
algorithms with dynamic scheduling.

Better Performance: GraphLab can outperform Hadoop by 20-60x in iterative
machine learning and data mining tasks, and is competitive with tailored MPI imple-
mentation. The C++ execution engine is optimized to leverage extensive multi-
threading and asynchronous IO.

Powerful Machine Learning Toolkits: GraphLab has a large selection of machine
learning methods already implemented. Users can also implement their own algo-
rithms on top of the GraphLab programming APIL.

vww.ebook3000.con)

http://www.ebook3000.org

84 J. Cao et al.

4.3 Task Parallel Platforms

Task parallelism (also known as function parallelism and control parallelism) is a
form of parallelization of computer codes across multiple processors in parallel com-
puting environments. Task parallelism focuses on distributing execution processes
(threads) across different parallel computing nodes. In a multiprocessor system, task
parallelism is achieved when each processor executes a different thread (or process)
on the same or different data. The threads may execute the same or different code. In
the general case, different execution threads communicate with one another as they
work. Communication usually takes place by passing data from one thread to the
next as part of a workflow.

4.3.1 HTCondor

HTCondor has been derived from Condor that is a batch system for harnessing
idle cycles on personal workstations [19]. Since then, it has matured to become a
major player in the compute resource management area and renamed HTCondor in
2012. HTCondor (HTCondor) is a high throughput computing system for compute-
intensive jobs. Like other full-featured batch systems, HTCondor provides a job
queueing mechanism, scheduling policy, priority scheme, resource monitoring, and
resource management.

HTCondor is able to transparently produce a checkpoint and migrate a job to a
different machine which would otherwise be idle when it detects that a machine is
no longer available. It does not require a shared file system across machines - if no
shared file system is available, it can transfer the job’s data files on behalf of the user,
or it may be able to transparently direct all the job’s I/O requests back to the submit
machine. As a result, it can be used to seamlessly combine all of an organization’s
computational power into one resource.

HTCondor programming model has several logical entities, as shown in Fig. 11
[23]. The central manager acts as a repository of the queues and resources. A process
called the “collector” acts as an information dashboard. A process called the “startd”
manages the computes resources provided by the execution machines (worker nodes
in the diagram). The startd gathers the characteristics of compute resources such as
CPU, memory, system load, etc. and publishes it to the collector. A process called the
“schedd” maintains a persistent job queue for jobs submitted by the users. A process
called the “negotiator” is responsible for matching the computer resources to user
jobs.

The communication flow in Condor is fully asynchronous. Each startd and each
schedd advertise the information to the collector asynchronously. Similarly, the nego-
tiator starts the matchmaking cycle using its own timing. The negotiator periodically
queries the schedd to get the characteristics of the queued jobs and matches them
to available resources. All the matches are then ordered based on user priority and
communicated back to the schedds that in turn transfer the matched user jobs to

Programming Platforms for Big Data Analysis 85

Condor
Collector

{

Condor
Negotiator

Condor
Schedd

Fig. 11 Condor architecture overview

the selected startds for execution. To fairly distribute the resources among users,
the negotiator tracks resource consumption by users and calculates user priorities
accordingly.

Condor supports the transferring of input files to a worker node (startd) before
a job is launched and of output files to the submit node (schedd) after the job is
finished. Using a flexible plugin architecture, HTCondor can easily be extended to
support domain specific protocols, such as GridFTP and Globus Online.

HTCondor has following important features:

Flexibility: The ClassAd mechanism in HTCondor provides an extremely flexible
and expressive framework for matching resource requests (jobs) with resource offers
(machines). Jobs can easily state both job requirements and job preferences. Like-
wise, machines can specify requirements and preferences about the jobs they are
willing to run.

Efficiency: HTCondor is a high throughput computing system. Also, it utilizes the
computing resources in a very efficient way.

4.4 Stream Processing Programming Platforms

Much of “big data” is received in real time, and is most valuable at its time of arrival.
For example, a social network may wish to detect trending conversation topics in
minutes; a search site may wish to model which users visit a new page; and a service
operator may wish to monitor program logs to detect failures in seconds. To enable
these low-latency processing applications, there is need for streaming computation
models that scale transparently to large clusters, in the same way that batch models
like MapReduce simplified offline processing.

Designing such models is challenging, however, because the scale needed for the
largest applications can be hundreds of nodes. At this scale, two major problems are
faults and stragglers (slow nodes). Both problems are inevitable in large clusters,

vww.ebook3000.con)

http://www.ebook3000.org

86 J. Cao et al.

so streaming applications must recover from them quickly. Given below are some
popular programming platforms for stream processing.

44.1 Storm

Apache Storm is a free and open source distributed real-time computation system.
Storm is a complex event processing engine from Twitter [30]. Storm makes it easy
to reliably process unbounded streams of data, doing for real-time processing what
Hadoop did for batch processing [29].

It has been used by various companies for many purposes like real time analytics,
online machine learning, continuous computation, distributed RPC, ETL, and more.
The fundamental concept in Storm is that of a stream, which can be defined as
an unbounded sequence of tuples. Storm provides ways to transform the stream in
various ways in decentralized and fault tolerant manner [1].

The storm topology lays down the architecture for processing of streams. The
topology comprises of a spout, which is a reader or source of streams and a bolt,
which is a processing entity and wiring together of spouts and bolts as shown in
Fig. 12 [2].

Clients submit topologies to a master node, which is called the Nimbus. Nimbus
is responsible for distributing and coordinating the execution of the topology. The
actual work is done on worker nodes. Each worker node runs one or more worker
processes. At any point in time a single machine may have more than one worker
processes, but each worker process is mapped to a single topology. Note more than
one worker process on the same machine may be executing different part of the same
topology. The high level architecture of Storm is shown in Fig. 13 [22].

Each worker process runs a JVM, in which itruns one or more executors. Executors
are made of one or more tasks. The actual work for a bolt or a spout is done in

Fig. 12 Storm topology

Programming Platforms for Big Data Analysis 7

Supervisor Workers

Supervisor Workers

NN

Nimbus ZooKeeper) |«

Y

Supervisor Workers

ZooKeeper Supervisor Workers

i

Supervisor Workers

Fig. 13 High level architecture of Storm

the task. Thus, tasks provide intra-bolt/intra-spout parallelism, and the executors
provide intra-topology parallelism. Worker processes serve as containers on the host
machines to run Storm topologies. Spouts can read streams from Kafka (distributed
publish-subscribe system from LinkedIn), Twitter, RDBMS etc.

Storm supports the following types of partitioning strategies. Shuffle grouping
randomly partitions the tuples. Fields grouping hashes on a subset of the tuple
attributes/fields. All grouping replicates the entire stream to all the consumer tasks.
Global grouping sends the entire stream to a single bolt. Local grouping sends tuples
to the consumer bolts in the same executor. The partitioning strategy is extensible
and a topology can define and use its own partitioning strategy.

Each worker node runs a Supervisor that communicates with Nimbus. The cluster
state is maintained in Zookeeper [3], and Nimbus is responsible for scheduling the
topologies on the worker nodes and monitoring the progress of the tuples flowing
through the topology.

Storm currently runs on hundreds of servers (spread across multiple datacenters)
at Twitter. Several hundreds of topologies run on these clusters, some of which run
on more than a few hundred nodes. Many terabytes of data flows through the Storm
clusters every day, generating several billions of output tuples. Storm topologies are
used by a number of groups inside Twitter, including revenue, user services, search,
and content discovery. These topologies are used to do simple things like filtering
and aggregating the content of various streams at Twitter (e.g., computing counts),
and also for more complex things like running simple machine learning algorithms
(e.g., clustering) on stream data.

Storm has following important features:

vww.ebook3000.con)

http://www.ebook3000.org

88 J. Cao et al.

Scalability: It is scalable. It is easy to add or remove nodes from storm cluster without
disrupting existing data flows.

Fault tolerance: Storm guarantees that the data will be processed. Storm is very
resilient in regards to fault tolerance.

Easy to use: Storm is very easy to set up and operate.

Extensibility: Storm topologies may call arbitrary external functions (e.g., Looking
up a MySQL service for the social graph), and thus needs a framework that allows
extensibility.

Efficiency: Storm uses a number of techniques, including keeping all its storage
and computational data structures in memory. Storm is very fast in processing. A
benchmark clocked it at over a million tuples processed per second per node.

442 S4

Simple Scalable Streaming System (shorted for S4) [24] was released for processing
continuous, unbounded streams of data by Yahoo. S4 is a general-purpose, distrib-
uted, scalable, fault-tolerant, pluggable platform that allows programmers to easily
develop applications for processing continuous unbounded streams of data.

S4 is designed to solve real-world problems in the context of search applica-
tions that use data mining and machine learning algorithms. Compared with current
processing systems, S4, a low latency, scalable stream processing engine, is devel-
oped. The stream throughput is improved by 1000% (200k + messages /s /stream)
in S4 [18].

The design goal of S4 is developing a high performance computing platform that
can hide the complexity inherent in a parallel processing system from the applica-
tion programmer. Simple programming interfaces for processing data streams are
provided in S4. A cluster with high availability is designed; the cluster can scale
using commodity hardware. Latency is minimized by using local memory in each
processing node, and the disk I/O bottlenecks are avoided as well. A symmetric and
decentralized architecture is used in S4. Because all nodes in S4 share the same
functionality and responsibilities, there is no central node with specialized respon-
sibilities. Thus, the deployment and maintenance of S4 are greatly simplified. The
design is friendly and easy to program and flexible by using a pluggable architec-
ture. The gap between complex proprietary systems and batch-oriented open source
computing platforms is filled in S4 [18].

S4 provides a runtime distributed platform that handles communication, schedul-
ing and distribution across containers. The nodes are the distributed containers, which
are deployed in S4 clusters. The size of clusters is fixed in S4, the size of an S4 cluster
corresponds to the number of logical partitions (tasks). The key concepts are shown
in Fig. 14 [18].

In S4, computation is executed by Processing Elements (PEs) and messages are
transmitted between them in the form of data events. The stream is defined as a

Programming Platforms for Big Data Analysis 89

Multiple Unlimited Apps An isa PE instances
applications number of encapsulate gm:ﬁp are clones of
deployed on S4 nodes. units of work. composed of the prototype.
clusters can be can PE prototypes They are
interconnected consume and and streams associated with
to create more produce event that produce, a unique key
sophisticated streams. consume, and and contain the
systems transmit msgs. state.

Fig. 14 Key concepts in S4 (Incubator)

sequence of elements (events). The only mode of interaction between PEs is event
emission and consumption. PE cannot access to the state of other PEs. The framework
provides the capability to route events to appropriate PEs and to create new instances
of PEs [24].

PEs are assembled into applications using the Spring Framework. Processing
Elements (PEs) are the basic computational units in S4. Each instance of a PE is
uniquely identified by four components (the functionality, the types of events, the
keyed attribute and the value of keyed attribute).

Processing nodes (PNs) are the logical hosts to PEs. They are responsible for
listening to events, executing operations on the incoming events, dispatching events
with the assistance of the communication layer, and emitting output events (Fig. 15
[24]). S4 routes each event to PNs based on a hash function of the values of all known

Fig. 15 Processing node Processing Node

Processing Element Container
PE: PE: see PEn
4 v
Event —— — o
Listener Dispatcher Emiter =

[+

Communication Layer

Routing | Load Balancing
Failover Management
Transport Protocols

Zookeeper

vww.ebook3000.con)

http://www.ebook3000.org

90 J. Cao et al.

keyed attributes in that event. A single event may be routed to multiple PNs. The set
of all possible keying attributes is known from the configuration of the S4 cluster. An
event listener in the PN passes incoming events to the processing element container
(PEC) which invokes the appropriate PEs in the appropriate order. There is a special
type of PE object: the PE prototype. It has the first three components of its identity
(functionality, event type, keyed attribute); the attribute value is unassigned.

The communication layer uses Zookeeper (an open source subproject of Hadoop
maintained) (Apache ZooKeeper) to coordinate between nodes in a cluster. The
communication layer can provide cluster management and automatic failover to
standby nodes and maps physical nodes to logical nodes. The communication layer
uses a pluggable architecture to select network protocol. Events may be sent with or
without a guarantee.

The core platform is written in Java. The implementation is modular and plug-
gable, and S4 applications can be easily and dynamically combined for creating
more sophisticated stream processing systems. Every PE consumes exactly those
events which correspond to the value on which it is keyed. It may produce output
events. Two primary handlers are implemented by developers: an input event handler
processEvent() and an output mechanism output(). The output() method is optional
and is set to be invoked in a variety of ways. The output() method implements the
output mechanism for the PE, typically to publish internal state of the PE to some
external system [24].

S4 has following important features:

Fault tolerance: When a server in the cluster fails, a stand-by server is automatically
activated to take over the tasks. Check pointing and recovery mechanism are used to
minimize state loss.

Flexible deployment: Application packages and platform modules are standard jar
files (suffixed.s4r). The keys are homogeneously sparsed over the cluster, the flexible
deployment can help balance the load, especially for fine grained partitioning.

Modular design: Both the platform and the applications are built by dependency
injection, and configured through independent modules. The system is easy to be
customized according to specific requirements.

Dynamic and loose coupling of applications: The subsystems are easy to be assem-
bled into larger systems. The applications can be reused in S4, and pre-processing
can be separated. The subsystems can be controlled and updated independently.

4.4.3 Spark Streaming

Spark Streaming system simplifies the construction of scalable fault-tolerant stream-
ing applications. The authors propose a new processing model, discretized streams
(D-Streams), that overcomes these challenges [33]. D-Streams enable a parallel
recovery mechanism that improves efficiency over traditional replication and backup
schemes, and tolerates stragglers. D-Streams build applications through high-level

Programming Platforms for Big Data Analysis 91

operators and make efficient fault tolerance while combining streaming with batch
and interactive queries.

Existing streaming models use replication or upstream backup for fault tolerance.
This mechanism costs much time on fault tolerance and stragglers. Also their event
driven programming interface does not directly support parallel processing. The pur-
poses of Spark Streaming are to directly support parallel processing, fault tolerance
and efficient stragglers.

Unlike stateful programming model, Spark Streaming use batch processing
method to process continuous streaming and cut streaming into discretized intervals.
It can take advantage of batch operations in Spark and also provide typical streaming
operations. Spark Streaming uses short stateless, deterministic tasks instead of con-
tinues, stateful operators. The state stored in memory across tasks into RDD. Spark
Streaming runs a streaming computation as a series of very small, deterministic batch
jobs. When the streaming data is coming, Spark Streaming chops up the live stream
into batches of 0.5—1 second. It treats each batch of data as RDDs and processes them
using RDD operations. In this way, it has potential for combining batch processing
and streaming processing in the same system.

For fault-tolerance, RDDs remember the operations that created them and repli-
cated batches of input data in memory for fault-tolerance. So data lost due to worker
failure can be recomputed from replicated input data via RDD. Therefore, all data is
fault-tolerant. The lineage graph of RDD is shown in Fig. 16 [33].

Spark Streaming can easily be composed with batch and query model. It provides
both batch operation in Spark and standard streaming systems (Das) [7]. Batch API
in Spark includes Map, Reduce, GroupBy, Join operations. Streaming API in Spark
supports Windowing, Incremental Aggregation operations.

Spark Streaming consists of three components, shown in Fig. 17 [7]. A master,
that tracks the D-Stream lineage graph and schedules tasks to compute new RDD

pageViews ones counts
DStream DStream DStream
interval
[0, 1)
interval
[1.2)

Fig. 16 Lineage graph for RDDs

vww.ebook3000.con)

http://www.ebook3000.org

92 J. Cao et al.

Spark Master .
Spark Context Spark Client
\\ | RDD graph | Scheduler |
hY

DStream graph \\ [Block manager| [SToTe

‘ Network Input Tracker ‘ T cuw

Manager

Y

Job Scheduler Spark Worker

Task Block
‘ Job Manager ‘ ‘ thr:st mar?acgg

Fig. 17 Components of Spark Streaming architecture

partitions. Worker nodes that receive data, store the partitions of input and computed
RDDs, and execute tasks. A client library used to send data into the system.

In the Spark Master, network Input Tracker keeps track of the datareceived by each
network receiver and maps them to the corresponding input DStreams. Job Scheduler
periodically queries the DStream graph to generate Spark jobs from received data,
and hands them to Job Manager for execution. Job Manager maintains a job queue
and executes the jobs in Spark.

Spark Streaming has many important features that make it a desirable program-
ming platform. It scales to 100s of nodes and achieves second scale latencies. It
enables efficient and fault-tolerant stateful stream processing while integrating with
Spark’s batch and interactive processing. Spark provides a simple batch-like API for
implementing complex algorithms.

S A Unifying Framework

The existing programming platforms have various features that are relevant for par-
ticular kinds of applications. While some systems like traditional systems, MapRe-
duce, Hadoop, Pregel are generic systems with limited abilities, and other systems
are very specific for certain kind of applications like streaming data or graph based
data. In this section, we compare different programming platforms against features
that are important for big data analysis as mentioned in Sect. 2. We then discuss the
existing challenges, and describe the need for a unifying framework that allows a
generic abstraction over the underlying models and any new upcoming models. Then
we present our framework MatrixMap that overcomes the challenges of supporting
matrix computations in an efficient manner.

Programming Platforms for Big Data Analysis 93

5.1 Comparison of Existing Programming Platforms

The comparison of various programming platforms with respect to some important
features as discussed in the corresponding sections is summarized in Table 1. Most of
the data parallel programming platforms have high scalability. Hadoop derivatives
like Spark and Spark Streaming inherit similar characteristics for high scalability
with distributed processing. Real time processing is supported by Storm, S4 and
Spark Streaming in an efficient manner. Fault tolerance in big data analytics is a
critical feature because of dependency on multiple systems and size of application. It
is observed that Hadoop, Spark, Spark Streaming, GraphX and Storm are highly fault
tolerant as they use redundancy and special data structures called RDDs. GraphLab,
Pregel and S4 use checkpointing for fault tolerance.

The newer programming platforms like Storm, Spark Streaming have most
attributes required for efficient big data analysis. Much research is being carried
out to develop all machine learning algorithms for newer systems. For MapReduce
based systems, not all the machine learning algorithms can be formulated as map
and reduce problems. For interactive analysis, Storm, S4 and Spark Streaming can
be used as programming platforms.

Table 1 Comparison of Programming platforms for big data analysis

Processing Features/ |Scalability |Fault Efficiency .Usnhilil)« Real-time Iterative
Techniques |Platforms Tolerance Processing | Task
éSupport
= HTCondor |[Medium Low High Medium IYes
§ Storm High High High .Mcdium Yes Yes
%’ sS4 High Medium |Medium |High [Yes
s Hadoop | High High .Mcdium .rMcdium .
‘fu Spark High High High High Yes
=
?i Spark High High High High Yes Yes
3 Streaming !
Dryad Medium Medium |Low High %Yes
MatrixMap |High Medium |High :Mcdium Yc;
:"') GraphX Medium High High High "fes
§. GraphLab |Low Medium |High High ‘ues
Pregel Low Medium |Low [Medium i‘:’es

vww.ebook3000.con)

http://www.ebook3000.org

94 J. Cao et al.

5.2 Need for Unifying Framework

One of the existing challenges in big data programming is that no single programming
model or framework can excel at every problem. Different big data programming
platforms address different requirements, e.g., some platforms support graph based
processing and some systems are specifically designed for streaming data. Program-
mers need to spend much time learning individual models and their corresponding
language, and there are always tradeoffs between simplicity, expressivity, fault tol-
erance, performance etc.

Therefore, there is need of a unifying framework that allows for a generic abstrac-
tion on top of the underlying models and upcoming new models like MatrixMap as
shown in Fig. 18. Such an abstraction would integrate different programming plat-
forms so that the programmers only need to learn a single language and techniques
for diverse big data applications. Integration of big data platforms would require
unifying the interface so that data and operations supported by different models can
be abstracted, and mapping each data processing stage to underlying models. In addi-
tion, both inter-model and intra-model tasks need to be scheduled on processing units
for better efficiency. The cloud resources also have to be allocated dynamically after
analyzing the different computation requirements. Integrating data storage systems
such as file systems and special databases are another issue. There are various open
challenges in it calling for future research efforts.

Besides this, there are still many problems for the existing platforms when per-
forming big data analysis in different application scenarios. Thus, designing new pro-
gramming platform is another challenge that attracts much attention in the research
communities. We will present our proposed platform MatrixMap in the next section.

Big Data Application Shell

| API

General Interface

Mapping Schedule Resource Allocation Data Managem ent

Data Warchouse

Pig Latin Hive SQL

Spark | Pregel 54 New Model| ypFs ‘ RDBMS

NoSQL

MapReduce File

Working | Working | Working \lachine: i g .: Workin
Machine | Machine || Machine | 3 Machine |Cloud Storage Storage | 8 g
: _ =" A_Storage Storage

Fig. 18 Integration of diverse big data programming platforms

Programming Platforms for Big Data Analysis 95

5.3 MatrixMap Framework

Machine learning and graph algorithms play vital important roles in big data analyt-
ics. Most algorithms are formulated based into matrix computations. That is they
apply matrix operations on values and perform various manipulations of values
according to their labels. However, existing big data programming platforms do
not provide efficient support for matrix computations.

Most programming platforms provide separate models for machine learning and
graph algorithms, e.g., in Spark has different interfaces: GraphX for graph algorithms
and Spark for machine learning. The existing systems do not have direct support
for important matrix operations, e.g., in MapReduce, matrix multiplication must be
formulated into a series of map and reduce operations. The support is mostly limited to
matrix multiplication, but not other popular machine learning and graph algorithms,
e.g., Presto. Systems besides Spark save temporal data in secondary storage, slow to
load data for operations. The cache memory uses LRU algorithm (e.g., Spark), which
may not be efficient for all operations. These challenges have led us to develop a
model and framework for handling matrix based computations for big data analysis.

MatrixMap [15] is a new model and framework to support data mining and graph
algorithms. It provides matrix as language-level construct. The data is loaded into
key matrices and then powerful and simple matrix patterns are provided that support
basic operations for machine learning and graph algorithms. This model unifies data-
parallel and graph-parallel models by abstracting matrix computations into graph
patterns.

The framework implements parallel processing of matrix operations and data
manipulations invoked by user defined functions. MatrixMap supports high-volume
data with pattern-specific fetching and caching across memory and secondary stor-
age.

Algorithms are formulated as a series of matrix patterns, which define sequences
of operations on each element. Unary Operator: Map, Reduce; Binary Operator: Plus,
Multiply; Mathematical matrix operations are special cases of matrix patterns filled
with specific pre-defined lambda functions; User defined lambda functions according
to matrix patterns to support various algorithms.

The data is loaded into Bulk Key Matrix (BKM) which is suitable for large volume
data. BKM is a shared distributed data structure which spreads data into whole
clusters. It can keep data across matrix patterns. It is constant and cannot be changed,
after initiation. BKM is row-oriented or column-oriented. It cannot slice concrete
matrix element. BKM use key (string or digit) to index row or column. MatrixMap
adopts BSP model, while supporting asynchronous pipeline of IO and processing
with data partitioning as shown in Fig. 19 [15].

There are many applications of matrix patterns like logistic regression, alternat-
ing least squares, all pairs shortest path, Pagerank among other applications. When
compared with Spark, it achieved 20% improvement on execution time - the more
iterations, the better as shown in Fig. 20.

vww.ebook3000.con)

http://www.ebook3000.org

96 J. Cao et al.

Asynchronous
Matrix Pattern Queue
_________ I |
! Task 1
| I i
1 JTe) .
T . ol |
i |
it > [
I]
]

Data f ————————————————————————

Data From Network
A -

(i

Bulk
Key
Matrix
Fig. 19 Implementation of MatrixMap
Logitic Regrinsien Aermation Leait Saquares 200 die i
il Spark } i s 3 i Spare

Matrihan MatrizMap

iy i = “] 1 [0 = : 1 [El 0]
amser of mrsara b of B Wumber of Eavatiars

Fig. 20 MatrixMap performance w.r.t. Spark

MatrixMap provides powerful yet simple abstraction, consisting of a distributed
data structure called bulk key matrix and a computation interface defined by matrix
patterns. Users can easily load data into bulk key matrices and program algorithms
into parallel matrix patterns. MatrixMap outperforms current state-of-the-art sys-
tems by employing three key techniques: matrix patterns with lambda functions for
irregular and linear algebra matrix operations, asynchronous computation pipeline
with optimized data shuffling strategies for specific matrix patterns and in-memory
data structure reusing data in iterations. Moreover, it can automatically handle the
parallelization and distribute execution of programs on a large cluster.

Programming Platforms for Big Data Analysis 97

6 Conclusion and Future Directions

The purpose of this chapter is to survey various existing programming platforms for
big data analysis. We have enumerated various essential features that a programming
environment should possess for big data analysis. The prominent programming plat-
forms have been discussed in brief to give an insight into their purpose, programming
model, implementation and features. The comparisons of existing programming plat-
forms against various features have been summarized as well as the need for a uni-
fying framework and our proposed MatrixMap framework that implements machine
learning and graph based algorithms using matrices as language constructs, which
can handle large data in an efficient manner. In future, we would investigate more
in unifying framework for different big data platforms, and improve the MatrixMap
framework so that multiple machine learning algorithms can be implemented for
different kinds of data. In summary, we can say that research and development of big
data programming platforms are driven by real world applications and key industrial
stakeholders and it’s a challenging but compelling task. Programming platforms for
handling big data specially streaming data are still evolving. Samza [9] is a recent
addition to programming platforms for streaming data. The concept of “Lambda
Architecture” that integrates batch processing and real time processing together in a
harmonious way in terms of batch, speed and serving is also an area of interest for
the researchers. The integration of different big data programming platforms is an
open challenge with various issues related to task scheduling, resource allocation and
model mapping to be resolved; while designing new platforms to better perform big
data analysis in different application scenarios is another one. Developing a higher-
level programming support on top of multiple models can help ease and shorten the
development of big data applications.

Acknowledgements This work was partially supported by the funding for Project of Strategic
Importance provided by The Hong Kong Polytechnic University (1-ZE26) and HK RGC under
GREF Grant (PolyU 5104/13E).

References

1. V. Agneeswaran, Big Data Analytics Beyond Hadoop: Real-Time Applications with Storm,
Spark, and More Hadoop Alternatives, 1st edn. (Pearson FT Press, USA, 2014)

2. Apache storm documentation, https://storm.apache.org/documentation/Home.html

3. Apache zookeeper, http://zookeeper.apache.org

4. Architecture of mapreduce model, https://cloud.google.com/appengine/docs/-python/images/
mapreduce_mapshuffle.png

5. A.B. Bondi, Characteristics of scalability and their impact on performance, in Workshop on
Software and Performance (2000), pp. 195C203

6. W.Daniel Hillis, G.L. Steele, Jr., Data parallel algorithms. Commun. ACM, 29(12), 1170C1183
(1986)

7. T. Das, Deep dive into spark streaming. http://spark.apache.org/-documentation.html (2013)

vww.ebook3000.con)

https://storm.apache.org/documentation/Home.html
http://zookeeper.apache.org
https://cloud.google.com/appengine/docs/-python/images/mapreduce_mapshuffle.png
https://cloud.google.com/appengine/docs/-python/images/mapreduce_mapshuffle.png
http://spark.apache.org/-documentation.html
http://www.ebook3000.org

98

10.

11.

12.

13.

14.
15.

16.
17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

J. Cao et al.

. J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large clusters. Commun.
ACM 51(1):107C113 (2008)

. T. Feng, Z. Zhuang, Y. Pan, H. Ramachandra, A memory capacity model for high performing

data-filtering applications in samza framework, in 2015 IEEE International Conference on Big

Data, Big Data 2015, Santa Clara, CA, USA, October 29 - November 1, 2015, p. 2600C2605

A.Fernandez, S. del R6, V. Lopez, A. Bawakid, M. José del Jestus, J. Manuel Bentez, F. Herrera,

Big data with cloud computing: an insight on the computing environment, mapreduce, and

programming frameworks. Wiley Interdisc. Rew.: Data Min. Knowl. Discov. 4(5), 380C409

(2014)

J.E. Gonzalez, Y. Low, H. Gu, D. Bickson, C. Guestrin, Powergraph: distributed graph-parallel

computation on natural graphs, in /0th USENIX Symposium on Operating Systems Design and

Implementation, OSDI 2012, Hollywood, CA, USA, October 8-10, 2012, p. 17C30

J.E. Gonzalez, R.S. Xin, A. Dave, D. Crankshaw, M.J. Franklin, I. Stoica, Graphx: graph

processing in a distributed dataflow framework, in //th USENIX Symposium on Operating

Systems Design and Implementation, OSDI 14, Broomfield, CO, USA, October 6-8, 2014, p.

599C613

B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A.D. Joseph, R.H. Katz, S. Shenker, I.

Stoica, Mesos: A platform for fine-grained resource sharing in the data center, in Proceedings

of the 8th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2011,

Boston, MA, USA (2011)

Htcondor, http://research.cs.wisc.edu/htcondor/description.html

Y. Huangfu, J. Cao, H. Lu, G. Liang, Matrixmap: programming abstraction and implementation

of matrix computation for big data applications, in 2/st IEEE International Conference on

Parallel and Distributed Systems, ICPADS 2015, Melbourne, Australia (2015), p. 19C28

Implementation of pregel, http://people.apache.org/~edwardyoon/documents/-pregel.pdf

M. Isard, M. Budiu, Y. Yu, A. Birrell, D. Fetterly, Dryad: distributed data-parallel programs

from sequential building blocks, in Proceedings of the 2007 EuroSys Conference, Lisbon,

Portugal, March 21-23, 2007, p. 59C72

Key concepts in s4 (incubator), https://incubator.apache.org/s4/doc/0.6.0/-overview

M. J. Litzkow, M. Livny, M.W. Mutka, Condor - a hunter of idle workstations, in Proceedings

of the 8th International Conference on Distributed Computing Systems, San Jose, California,

USA, June 13-17, 1988, p. 104C111

Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, J.M. Hellerstein, Graphlab: a new

framework for parallel machine learning, in UAI 2010, Proceedings of the Twenty-Sixth Con-

ference on Uncertainty in Artificial Intelligence, Catalina Island, CA, USA, July 8-11, 2010,

p. 340C349

Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, J.M. Hellerstein, Distributed graphlab:

a framework for machine learning in the cloud. PVLDB 5(8), 716C727 (2012)

G. Malewicz, M.H. Austern, A.J.C. Bik, J.C. Dehnert, I. Horn, N. Leiser, G. Czajkowski, Pregel:

a system for large-scale graph processing, in Proceedings of the ACM SIGMOD International

Conference on Management of Data, SIGMOD 2010, Indianapolis, Indiana, USA (2010), p.

135C146

P. Mhashilkar, Z. Miller, R. Kettimuthu, G. Garzoglio, B. Holzman, C. Weiss, X. Duan, L.

Lacinski, End-to-end solution for integrated workload and data management using glideinwms

and globus online. J. Phys. Conf. Ser. 396(3), 032076 (2012)

L. Neumeyer, B. Robbins, A. Nair, A. Kesari, S4: distributed stream computing platform, in

ICDMW 2010, The 10th IEEE International Conference on Data Mining Workshops, Sydney,

Australia, 13 Dec 2010, p. 170C177

Scala programming language, http://www.scala-lang.org

M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dongarra, MPI-The Complete Reference,

vol. 1: The MPI Core, 2nd (revised) edn. (MIT Press, Cambridge 1998)

Spark programming model, http://blog.cloudera.com/blog/2013/11/-putting-spark-to-use-

fast-in-memory-computing-for-your-big-data-applications

The structure of dryad jobs, http://research.microsoft.com/en-us/projects/dryad

http://research.cs.wisc.edu/htcondor/description.html
http://people.apache.org/~edwardyoon/documents/-pregel.pdf
https://incubator.apache.org/s4/doc/0.6.0/-overview
http://www.scala-lang.org
http://blog.cloudera.com/blog/2013/11/-putting-spark-to-use-fast-in-memory-computing-for-your-big-data-applications
http://blog.cloudera.com/blog/2013/11/-putting-spark-to-use-fast-in-memory-computing-for-your-big-data-applications
http://research.microsoft.com/en-us/projects/dryad

Programming Platforms for Big Data Analysis 99

29.

30.

31.

32.

33.

M. Tim Jones, Process real-time big data with twitter storm. Technical Report pp. 1-9, IBM
Developer Works (2013)

A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J.M. Patel, S. Kulkarni, J. Jackson, K.
Gade, M. Fu, J. Donham, N. Bhagat, S. Mittal, D.V. Ryaboy, Storm @twitter, in International
Conference on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014,
p. 147C156

Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. Kumar Gunda, J. Currey, Dryadling: a
system for general-purpose distributed data-parallel computing using a high-level language, in
8th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2008, San
Diego, California, USA, Proceedings (2008), p. 1C14

M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, I. Stoica, Spark: cluster computing
with working sets, in 2nd USENIX Workshop on Hot Topics in Cloud Computing, HotCloud 10,
Boston, MA, USA (2010)

M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, I. Stoica, Discretized streams: fault-tolerant
streaming computation at scale, in ACM SIGOPS 24th Symposium on Operating Systems Prin-
ciples, SOSP 13, Farmington, PA, USA (2013), p. 423C438

vww.ebook3000.con)

http://www.ebook3000.org

Big Data Analysis on Clouds

Loris Belcastro, Fabrizio Marozzo, Domenico Talia
and Paolo Trunfio

Abstract The huge amount of data generated, the speed at which it is produced,
and its heterogeneity in terms of format, represent a challenge to the current storage,
process and analysis capabilities. Those data volumes, commonly referred as Big
Data, can be exploited to extract useful information and to produce helpful knowl-
edge for science, industry, public services and in general for humankind. Big Data
analytics refer to advanced mining techniques applied to Big Data sets. In general,
the process of knowledge discovery from Big Data is not so easy, mainly due to
data characteristics, as size, complexity and variety, that require to address several
issues. Cloud computing is a valid and cost-effective solution for supporting Big
Data storage and for executing sophisticated data mining applications. Big Data ana-
Iytics is a continuously growing field, so novel and efficient solutions (i.e., in terms
of platforms, programming tools, frameworks, and data mining algorithms) spring
up everyday to cope with the growing scope of interest in Big Data. This chapter
discusses models, technologies and research trends in Big Data analysis on Clouds.
In particular, the chapter presents representative examples of Cloud environments
that can be used to implement applications and frameworks for data analysis, and an
overview of the leading software tools and technologies that are used for developing
scalable data analysis on Clouds.

Keywords Cloud computing - Big data - Data analytics - Data mining

L. Belcastro (X)) - F. Marozzo - D. Talia - P. Trunfio
DIMES, University of Calabria, Rende, Italy
e-mail: Ibelcastro@dimes.unical.it

F. Marozzo
e-mail: fmarozzo@dimes.unical.it

D. Talia
e-mail: talia@dimes.unical.it

P. Trunfio
e-mail: trunfio@dimes.unical.it

© Springer International Publishing AG 2017 101
A.Y. Zomaya and S. Sakr (eds.), Handbook of Big Data Technologies,
DOI 10.1007/978-3-319-49340-4_4

102 L. Belcastro et al.

1 Introduction

In the last years the ability to produce and gather data has increased exponentially. In
fact, in the Internet of Things’ era, huge amounts of digital data are generated by and
collected from several sources, such as sensors, cams, in-vehicle infotainment, smart
meters, mobile devices, web applications and services. The huge amount of data
generated, the speed at which it is produced, and its heterogeneity in terms of format
(e.g., video, text, xml, email), represent a challenge to the current storage, process
and analysis capabilities. In particular, thanks to the growth of social networks (e.g.,
Facebook, Twitter, Pinterest, Instagram, Foursquare, etc.), the widespread diffusion
of mobile phones, and the large use of location-based services, every day millions of
people access social network services and share information about their interests and
activities. Those data volumes, commonly referred as Big Data, can be exploited to
extract useful information and to produce helpful knowledge for science, industry,
public services and in general for humankind.

Although nowadays the term Big Data is often misused, it is very important in
computer science for understanding business and human activities. As defined by
Gartner': “Big Data is high volume, high velocity, and/or high variety information
assets that require new forms of processing to enable enhanced decision making,
insight discovery, and process optimization.” Thus, Big Data is not only characterized
by the large size of data sets, but also by the complexity, by the variety, and by the
velocity of data that can be collected and processed. In fact, we can collect huge
amounts of digital data from sources, at a very high rate that the volume of data is
overwhelming our ability to make use of it. This situation is commonly called “data
deluge”.

In science and business, people are analyzing data to extract information and
knowledge useful for making new discoveries or for supporting decision processes.
This can be done by exploiting Big Data analytics techniques and tools. As an
example, one of the leading trends today is the analysis of big geotagged data for
creating spatio-temporal sequences or trajectories tracing user movements. Such kind
of information is clearly highly valuable for science and business: tourism agencies
and municipalities can know the most visited places by tourists, the time of year when
such places are visited, and other useful information [4, 23]; transport operators can
know the places and routes where is it more likely to serve passengers [58] or crowed
areas where more transportation resources need to be allocated [57]; city managers
may exploit social media analysis to reveal mobility insights in cities such as incident
locations [24], or to study and prevent crime events [16, 26].

But it must be also considered that just Twitter and Facebook produce about 20
TB of data every day. According to a study conducted by the International Data
Corporation (IDC), the whole world produced about 165 exabytes (1 exabytes is
equal to 10'® bytes) of data in 2007, 800 exabytes in 2009, and it is estimated that in
2020 the global amount of data produced will reach the 35 zettabytes (1 zettabytes is
equal to 10?! bytes). Then to extract value from such kind of data, novel technologies

Uhttp://www.gartner.com/it- glossary/big-data.

vww.ebook3000.con)

http://www.gartner.com/it-glossary/big-data
http://www.ebook3000.org

Big Data Analysis on Clouds 103

and architectures have been developed by data scientists for capturing and analyzing
complex and/or high velocity data. In this scenario data mining raised in the last
decades as a research and technology field that provides several different techniques
and algorithms for the automatic analysis of large data sets. The usage of sequential
data mining algorithms for analyzing large volumes of data requires a very long
time for extracting useful models and patterns. For this reason, high performance
computers, such as many and multi-core systems, Clouds, and multi-clusters, paired
with parallel and distributed algorithms are commonly used by data analysts to tackle
Big Data issues and to reduce response time to a reasonable value.

Big Data analytics refer to advanced mining techniques applied to Big Data sets.
In general, the process of knowledge discovery from Big Data is not so easy, mainly
due to data characteristics, as size, complexity and variety, that require to address
several issues. To overcame these problems and to get valuable information and
knowledge in shorter time, high performance and scalable computing systems are
used in combination with data and knowledge discovery techniques. In this con-
text, Cloud computing is a valid and cost-effective solution for supporting Big Data
storage and for executing sophisticated data analytic applications. In fact, thanks to
elastic resource allocation and high computing power, Cloud computing represents a
compelling solution for Big Data analytics, allowing faster data analysis, that means
more timely results and then greater data value.

Actually, despite the Cloud is an affordable solution for many users, the number
of analytics data solutions available is very limited. Most available solutions today
are based on open source frameworks, such as Hadoop and Spark, but there are also
some proprietary solutions, such as those proposed by IBM, EMC or Kognitio. Big
Data analytics is a continuously growing field, so novel and efficient solutions (i.e.,
in terms of platforms, programming tools, frameworks, and data mining algorithms)
spring up everyday to cope with the growing scope of interest in Big Data.

The remainder of the chapter is organized as follows. Section 2 introduces the main
Cloud computing concepts. Section3 describes representative examples of Cloud
environments that can be used to implement applications and frameworks for data
analysis in the Cloud. Section4 provides an overview of the leading software tools
and technologies used for developing scalable data analysis on Clouds. Section5
discusses some research trends and open challenges on Big Data analysis. Finally,
Sect. 6 concludes the chapter.

2 Introducing Cloud Computing

This section introduces the basic concepts of Cloud computing, which provides scal-
able storage and processing services that can be used for extracting knowledge from
Big Data repositories. In the following we provide basic Cloud computing defini-
tions (Sect.2.1) and discuss the main service distribution and deployment models
provided by Cloud vendors (Sect.2.2).

104 L. Belcastro et al.

2.1 Basic Concepts

In the last years, Clouds have emerged as effective computing platforms to face the
challenge of extracting knowledge from Big Data repositories in limited time, as well
as to provide effective and efficient data analysis environments to both researchers and
companies. From a client perspective, the Cloud is an abstraction for remote, infinitely
scalable provisioning of computation and storage resources. From an implementation
point of view, Cloud systems are based on large sets of computing resources, located
somewhere “in the Cloud”, which are allocated to applications on demand [2]. Thus,
Cloud computing can be defined as a distributed computing paradigm in which all
the resources, dynamically scalable and often virtualized, are provided as services
over the Internet. As defined by NIST (National Institute of Standards and Technol-
ogy) [37] Cloud computing can be described as: “A model for enabling convenient,
on-demand network access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, and services) that can be rapidly pro-
visioned and released with minimal management effort or service provider inter-
action”. From the NIST definition, we can identify five essential characteristics of
Cloud computing systems, which are on-demand self-service, broad network access,
resource pooling, rapid elasticity, and measured service. Cloud systems can be clas-
sified on the basis of their service model and their deployment model.

2.2 Cloud Service Distribution and Deployment Models

Cloud computing vendors provide their services according to three main distribution
models:

e Software as a Service (SaaS), in which software and data are provided through
Internet to customers as ready-to-use services. Specifically, software and asso-
ciated data are hosted by providers, and customers access them without need to
use any additional hardware or software. Examples of SaaS services are Gmail,
Facebook, Twitter, Microsoft Office 365.

e Platform as a Service (PaaS), in an environment including databases, applica-
tion servers, development environment for building, testing and running custom
applications. Developers can just focus on deploying of applications since Cloud
providers are in charge of maintenance and optimization of the environment
and underlying infrastructure. Examples of PaaS services are Windows Azure,
Force.com, Google App Engine.

e Infrastructure as a Service (laaS), that is an outsourcing model under which cus-
tomers rent resources like CPUs, disks, or more complex resources like virtual-
ized servers or operating systems to support their operations (e.g., Amazon EC2,
RackSpace Cloud). Compared to the PaaS approach, the IaaS model has a higher
system administration costs for the user; on the other hand, IaaS allows a full
customization of the execution environment.

vww.ebook3000.con)

http://www.ebook3000.org

Big Data Analysis on Clouds 105

The most common models for providing Big Data analytics solution on Clouds are
PaaS and SaaS. TaaS is usually not used for high-level data analytics applications but
mainly to handle the storage and computing needs of data analysis processes. In fact,
IaaS is the more expensive delivery model, because it requires a greater investment
of IT resources. On the contrary, PaaS is widely used for Big Data analytics, because
it provides data analysts with tools, programming suites, environments, and libraries
ready to be built, deployed and run on the Cloud platform. With the PaaS model users
do not need to care about configuring and scaling the infrastructure (e.g., a distributed
and scalable Hadoop system), because the Cloud vendor will do that for them. Finally,
the SaaS model is used to offer complete Big Data analytics applications to end users,
so that they can execute analysis on large and/or complex data sets by exploiting
Cloud scalability in storing and processing data.

Regarding deployment models, Cloud computing services are delivered according
to three main forms:

e Public Cloud: it provides services to the general public through the Internet and
users have little or no control over the underlying technology infrastructure. Ven-
dors manage their proprietary data centers delivering services built on top of them.

e Private Cloud: it provides services deployed over acompany intranet or in a private
data center. Often, small and medium-sized IT companies prefer this deployment
model as it offers advance security and data control solutions that are not available
in the public Cloud model.

e Hybrid Cloud: it is the composition of two or more (private or public) Clouds that
remain different entities but are linked together.

As outlined in [27], users access Cloud computing services using different client
devices and interact with Cloud-based services using a Web browser or desk-
top/mobile app. The business software and users data are executed and stored on
servers hosted in Cloud data centers that provide storage and computing resources.
Resources include thousands of servers and storage devices connected each other
through an intra-Cloud network. The transfer of data between data center and users
takes place on wide-area network. Several technologies and standards are used by the
different components of the architecture. For example, users can interact with Cloud
services through SOAP-based or RESTful Web services [42] and Ajax technologies
allow Web interfaces to Cloud services to have look and interactivity equivalent to
those of desktop applications. Open Cloud Computing Interface (OCCI)? specifies
how Cloud providers can deliver their compute, data, and network resources through
a standardized interface.

20CCI Working Group, http://www.occi-wg.org.

http://www.occi-wg.org

106 L. Belcastro et al.

3 Cloud Solutions for Big Data

At the beginning of the Big Data phenomenon, only big IT companies, such as
Facebook, Yahoo!, Twitter, Amazon, LinkedlIn, invested large amounts of resources
in the development of proprietary or open source projects to cope with Big Data
analysis problems. But today, Big Data analysis becomes highly significant and
useful for small and medium-sized businesses. To address this increasing demand a
large vendor community started offering highly distributed platforms for Big Data
analysis. Among open-source projects, Apache Hadoop is the leading open-source
data-processing platform, which was contributed by IT giants such as Facebook and
Yahoo.

Since 2008, several companies, such as Cloudera, MapR, and Hortonworks,
started offering enterprise platform for Hadoop, with greats efforts to improve
Hadoop performances in terms of high-scalable storage and data processing. Instead,
IBM and Pivotal started offering its own customized Hadoop distribution. Other big
companies decided to provide only additional softwares and support for Hadoop
platform developed by external providers: for example, Microsoft decided to base
its offer on Hortonworks platform, while Oracle decided to resell Cloudera plat-
form. However Hadoop is not the only solution for Big Data analytics. Out of the
Hadoop box other solutions are emerging. In particular, in-memory analysis has
become a widespread trend, so that companies started offering tools and services
for faster in-memory analysis, such as SAP, that is considered the leading company
with its Hana? platform. Other vendors, including HP, Teradata and Actian, devel-
oped analytical database tools with in-memory analysis capabilities. Moreover, some
vendors, like Microsoft, IBM, Oracle, and SAP, stand out from their peers for offer-
ing a complete solution for data analysis, including DBMS systems, software for
data integration, stream-processing, business intelligence, in-memory processing,
and Hadoop platform.

In addition, many vendors decided to focus whole offer on the Cloud. Among these
certainly there are Amazon Web Services (AWS) and 1010 data. In particular, AWS
provides a wide range of services and products on the Cloud for Big Data analysis,
including scalable database systems and solutions for decision support. Other smaller
vendors, including Actian, InfiniDB, HP Vertica, Infobright, and Kognitio, focused
their big-data offer on database management systems for analytics only. Following
the approach in [48], the remainder of the section introduces representative examples
of Cloud environments: Microsoft Azure as an example of public PaaS, Amazon Web
Services as the most popular public TaaS, OpenNebula and OpenStack as examples
of private IaaS. These environments can be used to implement applications and
frameworks for data analysis in the Cloud.

3https://hana.sap.com.

vww.ebook3000.con)

https://hana.sap.com
http://www.ebook3000.org

Big Data Analysis on Clouds 107

3.1 Microsoft Azure

Azure* is the Microsoft Cloud proposal. It is environment providing a large set of
Cloud services that can be used by developers to create Cloud-oriented applications,
or to enhance existing applications with Cloud-based capabilities. The platform pro-
vides on-demand compute and storage resources exploiting the computational and
storage power of the Microsoft data centers. Azure is designed for supporting high
availability and dynamic scaling services that match user needs with a pay-per-use
pricing model. The Azure platform can be used to perform the storage of large
datasets, execute large volumes of batch computations, and develop SaaS appli-
cations targeted towards end-users. Microsoft Azure includes three basic compo-
nents/services:

e Compute is the computational environment to execute Cloud applications. Each
application is structured into roles: Web role, for Web-based applications; Worker
role, for batch applications; Virtuam Machines role, for virtual-machine images.

e Storage provides scalable storage to manage: binary and text data (Blobs), non-
relational tables (7Tables), queues for asynchronous communication between com-
ponents (Queues). In addition, for relational databases, Microsoft provides its own
Cloud database services, called Azure SQL Database.

e Fabric controller whose aim is to build a network of interconnected nodes from
the physical machines of a single data center. The Compute and Storage services
are built on top of this component.

Microsoft Azure provides standard interfaces that allow developers to interact
with its services. Moreover, developers can use IDEs like Microsoft Visual Studio
and Eclipse to easily design and publish Azure applications.

3.2 Amazon Web Services

Amazon offers compute and storage resources of its IT infrastructure to developers
in the form of Web services. Amazon Web Services (AWS)’ is a large set of Cloud
services that can be composed by users to build their SaaS applications or integrate
traditional software with Cloud capabilities. It is simple to interact with these service
since Amazon provides SDKs for the main programming languages and platforms
(e.g. Java, .Net, PHP, Android).

AWS compute solution includes Elastic Compute Cloud (EC2), for creating and
running virtual servers, and Amazon Elastic MapReduce for building and execut-
ing MapReduce applications. The Amazon storage solution is based on S3 Stor-
age Service, with a range of storage classes designed to cope with different use
cases (i.e., Standard, Infrequent Access, and Glacier for long term storage archive).

“https://azure.microsoft.com.
Shttps://aws.amazon.com.

https://azure.microsoft.com
https://aws.amazon.com

108 L. Belcastro et al.

A full set of database systems are also proposed: Relational Database Service (RDS)
for relational tables; DynamoDB for non-relational tables; SimpleDB for managing
small datasets; ElasticCache for caching data. Even though Amazon is best known
to be the first IaaS provider (based on its EC2 and S3 services), it is now also a
PaaS provider, with services like Elastic Beanstalk, that allows users to quickly cre-
ate, deploy, and manage applications using a large set of AWS services, or Amazon
Machine Learning, that provides visualization tools and wizards for easily creating
machine learning models.

3.3 OpenNebula

OpenNebula [45] is an open-source framework mainly used to build private and
hybrid Clouds. The main component of the OpenNebula architecture is the Core,
which creates and controls virtual machines by interconnecting them with a virtual
network environment. Moreover, the Core interacts with specific storage, network
and virtualization operations through pluggable components called Drivers. In this
way, OpenNebula is independent from the underlying infrastructure and offers a uni-
form management environment. The Core also supports the deployment of Services,
which are a set of linked components (e.g., Web server, database) executed on sev-
eral virtual machines. Another component is the Scheduler, which is responsible for
allocating the virtual machines on the physical servers. To this end, the Scheduler
interacts with the Core component through appropriate deployment commands.

OpenNebula can implement a hybrid Cloud using specific Cloud Drivers that
allow to interact with external Clouds. In this way, the local infrastructure can be
supplemented with computing and storage resources from public Clouds. Currently,
OpenNebula includes drivers for using resources from Amazon EC2 and Eucalyp-
tus [40], another open source Cloud framework.

3.4 OpenStack

OpenStack® is an open source Cloud operating system realesed under the terms of
the Apache License 2.0. It allows the management of large pools of processing,
storage, and networking resources in a datacenter through a Web-based interface.
Most decisions about its development are decided by the community to the point that
every six months there is a design summit to gather requirements and define new
specifications for the upcoming release. The modular architecture of OpenStack is
composed by four main components, as shown in Fig. 1.

OpenStack Compute provides virtual servers upon demand by managing the pool
of processing resources available in the datacenter. It supports different virtualization

Shttps://www.openstack.org/.

vww.ebook3000.con)

https://www.openstack.org/
http://www.ebook3000.org

Big Data Analysis on Clouds 109

Compute Networking Storage

OpenStack Shared Services

Fig. 1 OpenStack architecture (source: http://openstack.org)

technologies (e.g., VMware, KVM) and is designed to scale horizontally. OpenStack
Storage provides a scalable and redundant storage system. It supports Object Storage
and Block Storage: the former allows storing and retrieving objects and files in the
datacenter. OpenStack Networking manages the networks and IP addresses. Finally,
OpenStack Shared Services are additional services provided to ease the use of the
datacenter, such as Identity Service for mapping users and services, Image Service
for managing server images, and Database Service for relational databases.

4 Systems for Big Data Analytics
in the Cloud

In this section we describe the most used tools for developing scalable data analysis
on Clouds, such as MapReduce, Spark, workflow systems, and NoSQL database
management systems. In particular, we discuss some frameworks commonly used
to develop scalable applications that analyze big amounts of data, such as Apache
Hadoop, the best-known MapReduce implementation, and Spark. We present also
some powerful data mining programming tools and strategies designed to be exe-
cuted in the Cloud for exploiting complex and flexible software models, such as
the distributed workflows. Workflows provide a declarative way of specifying the
high-level logic of an application, hiding the low-level details. They are also able to
integrate existing software modules, datasets, and services in complex compositions
that implement discovery processes. In this section we presented several data min-
ing workflow systems, such as the Data Mining Cloud Framework, Microsoft Azure
Machine Learning, and ClowdFlows. Moreover, we discuss about NoSQL database
technology that recently became popular as an alternative or as a complement to
relational databases. In the last years, several NoSQL systems have been proposed
for providing more scalability and higher performance than relational databases.

http://openstack.org

110 L. Belcastro et al.

We introduce the basic principles of NoSQL, described representative NoSQL sys-
tems, and outline interesting data analytics use cases where NoSQL tools are useful.
Finally, we present a brief overview of well known visual analytics tools, that help
users in analytical reasoning by interactive visual interfaces.

4.1 MapReduce

MapReduce is a programming model developed by Google [11] in 2004 for large-
scale data processing to cope efficiently with the challenge of processing enormous
amounts of data generated by Internet-based applications.

Since its introduction, MapReduce has proven to be applicable to a wide range
of domains, including machine learning and data mining, social data analysis, finan-
cial analysis, scientific simulation, image retrieval and processing, blog crawling,
machine translation, language modelling, and bioinformatics. Today, MapReduce
is widely recognized as one of the most important programming models for Cloud
computing environments, being it supported by Google and other leading Cloud
providers such as Amazon, with its Elastic MapReduce service,” and Microsoft,
with its HDInsight,® or on top of private Cloud infrastructures such as OpenStack,
with its Sahara service.’

Hadoop'? is the most used open source MapReduce implementation for devel-
oping parallel applications that analyze big amounts of data. It can be adopted for
developing distributed and parallel applications using many programming languages
(e.g., Java, Ruby, Python, C++). Hadoop relieves developers from having to deal with
classical distributed computing issues, such as load balancing, fault tolerance, data
locality, and network bandwidth saving.

The Hadoop project is not only about the MapReduce programming model
(Hadoop MapReduce module), as it includes other modules such as:

e Hadoop Distributed File System (HDFS): a distributed file system providing fault
tolerance with automatic recovery, portability across heterogeneous commodity
hardware and operating systems, high-throughput access and data reliability.

e Hadoop YARN: a framework for cluster resource management and job scheduling.

e Hadoop Common: common utilities that support the other Hadoop modules.

In particular, thanks to the introduction of YARN in 2013, Hadoop turns from a
batch processing solution into a platform for running a large variety of data appli-
cations, such as streaming, in-memory, and graphs analysis. As a result, Hadoop
became a reference for several other frameworks, such as: Giraph for graph analy-
sis; Storm for streaming data analysis; Hive, which is a data warehouse software

http://aws.amazon.com/elasticmapreduce/.
8http://azure.microsoft.com/services/hdinsight/.
9http://wiki.openstack.org/wiki/Sahara.
10http:// hadoop.apache.org/.

vww.ebook3000.con)

http://aws.amazon.com/elasticmapreduce/
http://azure.microsoft.com/services/hdinsight/
http://wiki.openstack.org/wiki/Sahara
http://hadoop.apache.org/
http://www.ebook3000.org

Big Data Analysis on Clouds 111

for querying and managing large datasets; Pig, which is as a dataflow language for
exploring large datasets; Tez for executing complex directed-acyclic graph of data
processing tasks; Oozie, which is a workflow scheduler system for managing Hadoop
jobs. Besides Hadoop and its ecosystem, several other MapReduce implementations
have been implemented within other systems, including GridGain, Skynet, MapSharp
and Twister [14]. One of the most popular alternative to Hadoop is Disco, which is
a lightweight, open-source framework for distributed computing. The Disco core is
written in Erlang, a functional language designed for building fault-tolerant distrib-
uted applications. Disco has been used for a variety of purposes, such as log analysis,
text indexing, probabilistic modeling and data mining.

4.2 Spark

Apache Spark!! is another Apache framework for Big Data processing. Differently
from Hadoop in which intermediate data are always stored in distributed file sys-
tems, Spark stores data in RAM memory and queries it repeatedly so as to obtain
better performance for some class of applications (e.g., iterative machine learning
algorithms) [56]. For many years, Hadoop has been considered the leading open
source Big Data framework, but recently Spark has become the more popular so
that it is supported by every major Hadoop vendors. In fact, for particular tasks,
Spark is up to 100 times faster than Hadoop in memory and 10 times faster on disk.
Several other libraries have been built on top of Spark: Spark SQL for dealing with
SQL and DataFrames, MLIib for machine learning, GraphX for graphs and graph-
parallel computation, and Spark Streaming to build scalable fault-tolerant streaming
applications.

For these reasons, Spark is becoming the primary execution engine for data
processing and, in general, a must-have for Big Data applications. But even though in
some applications Spark can be considered a better alternative to Hadoop, in many
other applications it has limitations that make it complementary to Hadoop. The
main limitation of Spark is that it does not provide its own distributed and scalable
storage system, that is a fundamental requirement for Big Data applications that use
huge and continually increasing volume of data stored across a very large number of
nodes. To overcome this lack, Spark has been designed to run on top of several data
sources, such as Cloud object storage (e.g., Amazon S3 Storage, Swift Object Stor-
age), distributed filesystem (e.g., HDFS), no-SQL databases (e.g., HBase, Apache
Cassandra), and others. Today an increasing number of big vendors, such Microsoft
Azure or Cloudera, offer Spark as well as Hadoop, so developers can choose the
most suitable framework for each data analytic application.

With respect to Hadoop, Spark loads data from data sources and executes most of
its tasks in RAM memory. In this way, Spark reduces significantly the time spent in
writing and reading from hard drives, so that the execution is far faster than Hadoop.

http://spark.apache.org.

http://spark.apache.org

112 L. Belcastro et al.

Regarding task recovering in case of failures, Hadoop flushes all of the data back to
the storage after each operation. Similarly, Spark allow recovering in case of failures
by arranging data in Resilient Distributed Datasets (RDD), which are a immutable
and fault-tolerant collections of records which can be stored in the volatile memory
or in a persistent storage (e.g., HDFS, HBase). Moreover, Spark’s real-time process-
ing capability is increasingly being used by Big Data analysts into applications that
requires to extract insights quickly from data, such as recommendation and monitor-
ing systems.

Several big companies and organizations use Spark for Big Data analysis pur-
pose: for example, Ebay uses Spark for log transaction aggregation and analytics,
Kelkoo for product recommendations, SK Telecom analyses mobile usage patterns
of customers.

4.3 Mahout

Apache Mahout'? is an open-source framework that provides scalable implementa-
tions of machine learning algorithms that are applicable on big input. Originally, the
Mahout project provided implementations of machine learning algorithms executable
on the top of Apache Hadoop framework. But the comparison of the performance
of Mahout algorithms on Hadoop with other machine learning libraries, showed that
Hadoop spends the majority of the processing time to load the state from file system
at every intermediate step [44].

For these reasons, the latest version of Mahout goes beyond Hadoop and provides
several machine learning algorithms for collaborative filtering, classification, and
clustering, implemented not only in Hadoop MapReduce, but also in Spark, H20."3
Both Apache Spark and H20 process data in memory so they can achieve a significant
performance gain when compared to Hadoop framework for specific classes of appli-
cations (e.g., interactive jobs, real-time queries, and stream data) [44]. In addition,
the latest release of Mahout introduces a new math environment, called Samsara [29],
that helps users in creating their own math providing general linear algebra and sta-
tistical operations. In the following, some examples for each algorithm’s category
are listed: analyzing user history and preferences to suggest accurate recommenda-
tions (collaborative filtering), selecting whether a new input matches a previously
observed pattern or not (classification), and grouping large number of things together
into clusters that share some similarity (clustering) [41]. In the future, Mahout will
support Apache Flink,'* an open source platform that provides data distribution,
communication, and fault tolerance for distributed computations over data streams.

2http://mahout.apache.org/.
Bhttp://www.h20.ai.
https:/flink.apache.org/.

vww.ebook3000.con)

http://mahout.apache.org/
http://www.h2o.ai
https://flink.apache.org/
http://www.ebook3000.org

Big Data Analysis on Clouds 113

4.4 Hunk

Hunk'’ is a commercial data analysis platform developed by Splunk for rapidly
exploring, analyzing and visualizing data in Hadoop and NoSQL data stores. Hunk
uses a set of high-level user and programming interfaces to offer speed and simplic-
ity of getting insights from large unstructured and structured data sets. One of the
key components of the Hunk architecture is the Splunk Virtual Index. This system
decouples the storage tier from the data access and analytics tiers, so enabling Hunk
to route requests to different data stores. The analytics tier is based on Splunks Search
Processing Language (SPL) designed for data exploration across large, different data
sets. The Hunk web framework allows building applications on top of the Hadoop
Distributed File System (HDFS) and/or the NoSQL data store.

Developers can use Hunk to build their Big Data applications on top of data in
Hadoop using a set of well known languages and frameworks. Indeed, the frame-
work enables developers to integrate data and functionality from Hunk into enterprise
Big Data applications using a web framework, documented REST API and software
development kits for CSharp, Java, JavaScript, PHP and Ruby. Also common devel-
opment languages such as HTMLS5 and Python can be used by developers.

The Hunk framework can be deployed on on-premises Hadoop clusters or private
Clouds and it is available as a preconfigured instance on the Amazon public Cloud
using the Amazon Web Services (AWS). This public Cloud solution allows Hunk
users to utilize the Hunk facilities and tools from AWS, also exploiting commodity
storage on Amazon S3, according to a pay-per-use model. Finally, the framework
implements and makes available a set of applications that enable the Hunk analytics
platform to explore, explore and visualize data in NoSQL and other data stores,
including Apache Accumulo, Apache Cassandra, MongoDB and Neo4j. Hunk is
also provided in combination with the Cloudera’s enterprise data hub to develop
large-scale applications that can access and analyze Big Data sets.

4.5 Sector/Sphere

Sector/Sphere!® is a Cloud framework designed at the University of Illinois-Chicago
to implement data analysis applications involving large, geographically distributed
datasets in which the data can be naturally processed in parallel [19]. The frame-
work includes two components: a storage service called Sector, which manages the
large distributed datasets with high reliability, high performance 10, and a uniform
access, and a compute service called Sphere, which makes use of the Sector service
to simplify data access, increase data IO bandwidth, and exploit wide area high per-
formance networks. Both of them are available as open source software.'” Sector is a

Bhttp://www.splunk.com/en_us/products/hunk.html.
1ohttp://sector.sourceforge.net/.
Thttp://sector.sourceforge.net.

http://www.splunk.com/en_us/products/hunk.html
http://sector.sourceforge.net/
http://sector.sourceforge.net

114 L. Belcastro et al.

distributed storage system that can be deployed over a wide area network and allows
users to ingest and download large datasets from any location with a high-speed
network connection to the system. The system can be deployed over a large number
of commodity computers (called nodes), located either within a data center or across
data centers, which are connected by high-speed networks.

In an example scenario, nodes in the same rack are connected by 1 Gbps networks,
two racks in the same data center are connected by 10 Gbps networks, and two
different data centers are connected by 10 Gbps networks. Sector assumes that the
datasets it stores are divided into one or more separate files, called slices, which are
replicated and distributed over the various nodes managed by Sector.

The Sector architecture includes a Security server, a Master server and a number
of Slave nodes. The Security server maintains user accounts, file access information,
and the list of authorized slave nodes. The Master server maintains the metadata of
the files stored in the system, controls the running of the slave nodes, and responds to
users’ requests. The Slaves nodes store the files managed by the system and process
the data upon the request of a Sector client. Sphere is a compute service built on
top of Sector and provides a set of programming interfaces to write distributed data
analysis applications. Sphere takes streams as inputs and produces streams as outputs.
A stream consists of multiple data segments that are processed by Sphere Processing
Engines (SPEs) using slave nodes. Usually there are many more segments than SPEs.
Each SPE takes a segment from a stream as an input and produces a segment of a
stream as output. These output segments can in turn be the input segments of another
Sphere process. Developers can use the Sphere client APIs to initialize input streams,
upload processing function libraries, start Sphere processes, and read the processing
results.

4.6 BigML

BigML'? is a system provided as a Software-as-a-Service (SaaS) for discovering
predictive models from data and it uses data classification and regression algorithms.
The distinctive feature of BigML is that predictive models are presented to users
as interactive decision trees. The decision trees can be dynamically visualized and
explored within the BigML interface, downloaded for local usage and/or integration
with applications, services, and other data analysis tools. Recently, BigML launched
its PaaS solution, called BigML PredictServer, which is a dedicated machine image
that can be deployed on Amazon AWS. An example of BigML prediction model is
shown in Fig.2.

Extracting and using predictive models in BigML consists in multiple steps, as
detailed as follows:

e Data source setting and dataset creation. A data source is the raw data from which
a user wants to extract a predictive model. Each data source instance is described

Bhttps://bigml.com.

vww.ebook3000.con)

https://bigml.com
http://www.ebook3000.org

Big Data Analysis on Clouds 115

o ,@ Rain days: 115.50 8.66 ®
% P [48 . ’ g 50 -) (e # @O
-m?
Prediction path
Rain
> 2,330.00
>513.00
& { Rain
> 3,700.00

Wind speed
>73.00

L i

i
Qo @ ®
L @ @ © U
000000000
0

Fig. 2 Example of BigML prediction model for air pollution (source: http://bigml.com)

by a set of columns, each one representing an instance feature, or field. One of
the fields is considered as the feature to be predicted. A dataset is created as a
structured version of a data source in which each field has been processed and
serialized according to its type (numeric, categorical, etc.).

e Model extraction and visualization. Given a dataset, the system generates the
number of predictive models specified by the user, who can also choose the level
of parallelism level for the task. The interface provides a visual tree representation
of each predictive model, allowing users to adjust the support and confidence
values and to observe in real time how these values influence the model.

e Prediction making. A model can be used individually, or in a group (the so-called
ensemble, composed of multiple models extracted from different parts of a dataset),
to make predictions on new data. The system provides interactive forms to submit
a predictive query for a new data using the input fields from a model or ensemble.
The system provides APIs to automate the generation of predictions, which is
particularly useful when the number of input fields is high.

e Models evaluation. BigML provides functionalities to evaluate the goodness of
the predictive models extracted. This is done by generating performance measures
that can be applied to the kind of extracted model (classification or regression).

http://bigml.com

116 L. Belcastro et al.

4.7 Kognitio Analytical Platform

Kognitio Analytical Platform,'® available as Cloud based service or supplied as a pre-
integrated appliance, allows users to pull very large amounts of data from existing
data storage systems into high-speed computer memory, allowing complex analytical
questions to be answered interactively. Although Kognitio has its own internal disk
subsystem, it is primarily used as an analytical layer on top of existing storage/data
processing systems, e.g., Hadoop clusters and/or existing traditional disk-based data
warehouse products, Cloud storage, etc. A feature called External Tables allows
persistent data to reside on external systems. Using this feature the system admin-
istrator, or a privileged user, can easily setup access to data that resides in another
environment, typically a disk store such as the above-mentioned Hadoop clusters and
data warehouse systems. To a final user, the Kognitio Analytical Platform looks like
a relational database management system (RDBMS) similar to many commercial
databases. However, unlike these databases, Kognitio has been designed specifically
to handle analytical query workload, as opposed to the more traditional on-line trans-
action processing (OLTP) workload. Key reasons of Kognitios high performance in
managing analytical query workload are:

e Data is held in high-speed RAM using structures optimized for in-memory analy-
sis, which is different from a simple copy of disk-based data, like a traditional
cache.

e Massively Parallel Processing (MPP) allows scaling out across large arrays of
low-cost industry standard servers, up to thousands nodes.

e Query parallelization allows every processor core on every server to be equally
involved in every query.

e Machine code generation and advanced query plan optimization techniques ensure
every processor cycle is effectively used to its maximum capacity.

Parallelism in Kognitio Analytical Platform fully exploits the so-called shared noth-
ing? distributed computing approach, in which none of the nodes share memory or
disk storage, and there is no single point of contention across the system.

4.8 Data Analysis Workflows

A workflow consists of a series of activities, events or tasks that must be performed to
accomplish a goal and/or obtain a result. For example, a data analysis workflow can
be designed as a sequence of pre-processing, analysis, post-processing, and inter-
pretation steps. At a practical level, a workflow can be implemented as a computer
program and can be expressed in a programming language or paradigm that allows
expressing the basic workflow steps and includes mechanisms to orchestrate them.

19 www.kognitio.com.

vww.ebook3000.con)

www.kognitio.com
http://www.ebook3000.org

Big Data Analysis on Clouds 117

Workflows have emerged as an effective paradigm to address the complexity
of scientific and business applications. The wide availability of high-performance
computing systems, Grids and Clouds, allowed scientists and engineers to implement
more and more complex applications to access and process large data repositories
and run scientific experiments in silico on distributed computing platforms. Most
of these applications are designed as workflows that include data analysis, scientific
computation methods and complex simulation techniques. The design and execution
of many scientific applications require tools and high-level mechanisms. Simple and
complex workflows are often used to reach this goal. For this reason, in the past years,
many efforts have been devoted towards the development of distributed workflow
management systems for scientific applications. Workflows provide a declarative way
of specifying the high-level logic of an application, hiding the low-level details that
are not fundamental for application design. They are also able to integrate existing
software modules, datasets, and services in complex compositions that implement
scientific discovery processes.

Another important benefit of workflows is that, once defined, they can be stored
and retrieved for modifications and/or re-execution: this allows users to define typ-
ical patterns and reuse them in different scenarios [5]. The definition, creation, and
execution of workflows are supported by a so-called Workflow Management System
(WMS). A key function of a WMS during the workflow execution (or enactment) is
coordinating the operations of the individual activities that constitute the workflow.
There are several WMSes on the market, most of them targeted to a specific appli-
cation domain. In the following we focus on some well-known software tools and
frameworks designed implementing data analysis workflows on Clouds systems.

Data Mining Cloud Framework

The Data Mining Cloud Framework (DMCF) [32] is a software system that we devel-
oped at University of Calabria for allowing users to design and execute data analysis
workflows on Clouds. DMCEF supports a large variety of data analysis processes,
including single-task applications, parameter sweeping applications, and workflow-
based applications [33]. A Web-based user interface allows users to compose their
applications and to submit them for execution to a Cloud platform, according to a
Software-as-a-Service approach. Recently, DMCF has been extended to include the
execution of MapReduce tasks [3].

The DMCFs architecture includes a set of components that can be classified as
storage and compute components (see Fig. 3). The storage components include:

e A Data Folder that contains data sources and the results of knowledge discovery
processes. Similarly, a Tool folder contains libraries and executable files for data
selection, pre-processing, transformation, data mining, and results evaluation.

e The Data Table, Tool Table and Task Table that contain metadata information
associated with data, tools, and tasks.

e The Task Queue that manages the tasks to be executed.

118 L. Belcastro et al.

Cloud platform
: I Folders :
E Virtual Compute Servers E : i Lol '
E ['—L ;-\ B I;.L i E Data folder Tool folders E
B o] o} o} cIEE ;
E E ' Queues :
5 ¥ [.. [T :
E Virtual Web Servers E i Task queue :
: Bl @ e '
: |)) s Tables '
! ga/ .__‘Q_./ i '
E o o EEE B .. BEEE O
1 ! i Data Table Tool Table Task Table :
s s e Compute ; | Storage
!nfrastrucrure

Fig. 3 DMCEF architecture

The compute components are:

A pool of Virtual Compute Servers, which are in charge of executing the data
mining tasks.
e A pool of Virtual Web Servers host the Web-based user interface.

The user interface provides three functionalities:

App submission, which allows users to submit single-task, parameter sweeping,

or workflow-based applications;

e App monitoring, which is used to monitor the status and access results of the
submitted applications;

e Data/Tool management, which allows users to manage input/output data and tools.

The DMCF architecture has been designed as a reference architecture to be imple-
mented on different Cloud systems. However, a firstimplementation of the framework
has been carried out on the Microsoft Azure Cloud platform and has been evaluated
through a set of data analysis applications executed on a Microsoft Cloud data cen-
ter. The DMCF framework takes advantage of Cloud computing features, such as
elasticity of resources provisioning. In DMCEF, at least one Virtual Web Server runs
continuously in the Cloud, as it serves as user front-end. In addition, users specify the
minimum and maximum number of Virtual Compute Servers. DMCF can exploit the
auto-scaling features of Microsoft Azure that allows dynamic spinning up or shutting
down Virtual Compute Servers, based on the number of tasks ready for execution
in the DMCFs Task Queue. Since storage is managed by the Cloud platform, the
number of storage servers is transparent to the user.

vww.ebook3000.con)

http://www.ebook3000.org

Big Data Analysis on Clouds 119

For designing and executing a knowledge discovery application, users interact
with the system performing the following steps:

1. The Website is used to design an application (either single-task, parameter sweep-
ing, or workflow-based) through a Web-based interface that offers both the visual
programming interface and the script.

2. When a user submits an application, the system creates a set of tasks and inserts
them into the Task Queue on the basis of the application requirements.

3. Each idle Virtual Compute Server picks a task from the Task Queue, and concur-
rently executes it.

4. Each Virtual Compute Server gets the input dataset from the location specified
by the application. To this end, file transfer is performed from the Data Folder
where the dataset is located, to the local storage of the Virtual Compute Server.

5. After task completion, each Virtual Compute Server puts the result on the Data
Folder.

6. The Website notifies the user as soon as her/his task(s) have completed, and allows
her/him to access the results.

The set of tasks created on the second step depends on the type of application
submitted by a user. In the case of a single-task application, just one data mining task
is inserted into the Task Queue. If users submit a parameter sweeping application,
a set of tasks corresponding to the combinations of the input parameters values are
executed in parallel. If a workflow-based application has to be executed, the set
of tasks created depends on how many data analysis tools are invoked within the
workflow. Initially, only the workflow tasks without dependencies are inserted into
the Task Queue.

In DMCF workflows may encompass all the steps of discovery based on the
execution of complex algorithms and the access and analysis of scientific data. In
data-driven discovery processes, knowledge discovery workflows can produce results
that can confirm real experiments or provide insights that cannot be achieved in
laboratories. In particular, DMCF allows to program workflow applications using
two languages:

e VLA4Cloud (Visual Language for Cloud), a visual programming language that lets
users develop applications by programming the workflow components graphi-
cally [33].

e JS4Cloud (JavaScript for Cloud), a scripting language for programming data
analysis workflows based on JavaScript [34].

Both languages use two key programming abstractions:

e Data elements denote input files or storage elements (e.g., a dataset to be analyzed)
or output files or stored elements (e.g., a data mining model).

e Tool elements denote algorithms, software tools or complex applications perform-
ing any kind of operation that can be applied to a data element (data mining,
filtering, partitioning, etc.).

120 L. Belcastro et al.

Data Mining Cloud Framework

Fig. 4 Example of data analysis application designed using VL4Cloud

Another common element is the task concept, which represents the unit of par-
allelism in our model. A task is a Tool, invoked in the workflow, which is intended
to run in parallel with other tasks on a set of Cloud resources. According to this
approach, VL4Cloud and JS4Cloud implement a data-driven task parallelism. This
means that, as soon as a task does not depend on any other task in the same workflow,
the runtime asynchronously spawns it to the first available virtual machine. A task
T; does not depend on a task 7; belonging to the same workflow (with i # j), if
T; during its execution does not read any data element created by 7;. In VL4Cloud,
workflows are directed acyclic graphs whose nodes represent data and tools elements.
The nodes can be connected with each other through direct edges, establishing spe-
cific dependency relationships among them. When an edge is being created between
two nodes, a label is automatically attached to it representing the type of relationship
between the two nodes. Data and Tool nodes can be added to the workflow singularly
or in array form. A data array is an ordered collection of input/output data elements,
while a tool array represents multiple instances of the same tool. Figure 4 shows an
example of data analysis workflow developed using the visual workflow formalism
of DMCEF [6].

In JS4Cloud, workflows are defined with a JavaScript code that interacts with
Data and Tool elements through three functions:

e Data Access, for accessing a Data element stored in the Cloud;

e Data Definition, to define a new Data element that will be created at runtime as a
result of a Tool execution,;

e Tool Execution: to invoke the execution of a Tool available in the Cloud.

Once the JS4Cloud workflow code has been submitted, an interpreter translates the
workflow into a set of concurrent tasks by analysing the existing dependencies in the
code. The main benefits of JS4Cloud are:

1. Itextends the well-known JavaScript language while using only its basic functions
(arrays, functions, loops).

2. Itimplements both a data-driven task parallelism that automatically spawns ready-
to-run tasks to the Cloud resources, and data parallelism through an array-based
formalism.

3. These two types of parallelism are exploited implicitly so that workflows can be
programmed in a totally sequential way, which frees users from duties like work
partitioning, synchronization and communication.

vww.ebook3000.con)

http://www.ebook3000.org

Big Data Analysis on Clouds 121

Data Mining Cloud Framework

App subs App monitoring Data/Tocl management About

var n = 16;
var DRef = Data. get(“Dataset™), TrRef = Data.define("TrainSet”), TeRef = Data.define("TestSet”);
PartitionerTT({dotoset:DRef, percTroin:®.7, trginSet:TrRef, testSet:TeRef});
var PRef = Data.define("TrainsetPart”, n);
f’ir‘t)tlmpr({aar"se* TrRef, dotas erPar‘t PReF}},
var MRef = Data.define("V a'lel 5 M)
for(var i=8; i<n; i++)
J48({dataset:PRef[i], model:MRef[i], confidence:0.1});
var CRef = Data.define("ClassTestSet”, n);
for(var i=8; i<n; i++)
. Pr LulLlUI’({(U[(?bH :TeRef, model: MReF[il, classDataset:CRef[1]});
var FRef = Data.define("FinalClassTestSet”
Voter({classData:(Ref, finalClassData: Fﬂef}),

Fig. 5 Example of data analysis application designed using JS4Cloud

Figure 5 shows the script-based workflow version of the visual workflow shown in
Fig.4. In this example, parallelism is exploited in the for loop at line 7, where up to 16
instances of the J48 classifier are executed in parallel on 16 different partitions of the
training sets, and in the for loop at line 10, where up to 16 instances of the Predictor
tool are executed in parallel to classify the test set using 16 different classification
models.

Figure 5 shows a snapshot of the parallel classification workflow taken during its
execution in the DMCFs user interface. Beside each code line number, a colored circle
indicates the status of execution. This feature allows user to monitor the status of the
workflow execution. Green circles at lines 3 and 5 indicate that the two partitioners
have completed their execution; the blue circle at line 8 indicates that J48 tasks are
still running; the orange circles at lines 11 and 13 indicate that the corresponding
tasks are waiting to be executed.

Microsoft Azure Machine Learning

Microsoft Azure Machine Learning (Azure ML) is a SaaS that provides a Web-based
machine learning IDE (i.e., integrated development environment) for creation and
automation of machine learning workflows. Through its user-friendly interface, data
scientists and developers can perform several common data analysis/mining tasks on
their data and automate their workflows.

Using its drag-and-drop interface, users can import their data in the environment or
use special readers to retrieve data form several sources, such as Web URL (HTTP),
OData Web service, Azure Blob Storage, Azure SQL Database, Azure Table. After
that, users can compose their data analysis workflows where each data process-
ing task is represented as a block that can be connected with each other through
direct edges, establishing specific dependency relationships among them. Azure ML
includes a rich catalog of processing tools that can be easily included in a workflow
to prepare/transform data or to mine data through supervised learning (regression
e classification) or unsupervised learning (clustering) algorithms. Optionally, users
can include their own custom scripts (e.g., in R or Python) to extend the tools catalog.
When workflows are correctly defined, users can evaluate them using some testing
dataset.

122 L. Belcastro et al.

aﬁa Adul Census Income Binary ...
» B
g Saved Datasets I

» Data Format Conversions o
[Eﬂn Clean Missing Data

* [Dstalnput and Output L3

L Q’ﬂ;m Data Transformation
?m Project Columns
r _ﬁ) Feature Selection

O WD EB™

» (] Machine Learning @ Two-Class Boosted Decision ... I
B colit Data

» §™ OpenCV Library Modules “An

+ @ Python Language Modules '/—J

» €R' R Language Modules Train Model

» 2yl Statistical Functions %

5E Text Analytics

Score Model
B Deprecated F_}
@ Evaluate Model

Fig. 6 Example of Azure machine learning workflow (source: http://studio.azureml.net)

Users can easily visualize the results of the tests and find very useful information
about models accuracy, precision and recall. Finally, in order to use their models to
predict new data or perform real time predictions, users can expose them as Web
services. Always through a Web-based interface, users can monitor the Web services
load and use by time. Azure Machine Learning is a fully managed service provided
by Microsoft on its Cloud platform; users do not need to buy any hardware/software
nor manage virtual machine manually. One of the main advantage of working with a
Cloud platform like Azure is its auto-scaling feature: models are deployed as elastic
Web services so as users do not have to worry about scaling them if the models usage
increased. An example of workflow built on Microsoft Azure Machine Learning is
shown in Fig. 6.

ClowdFlows

ClowdFlows [22] is an open source Cloud-based platform for the composition, exe-
cution, and sharing of data analysis workflows. It is provided as a software as a
service that allows users to design and execute visual workflows through a simple
Web browser and so it can be run from most devices (e.g., desktop PCs, laptops,
and tablets). ClowdFlows is based on two software components: the workflow editor
(provided by a Web browser) and the server side application that manages the execu-
tion of the application workflows and hosts a set of stored workflows. The server side
consists of methods for supporting the client-side workflow editor in the composition
and for executing workflows, and a relational database of workflows and data. The
workflow editor includes of a workflow canvas and a widget repository. The widget
repository is a list of all available workflow components that can be added to the
workflow canvas. The repository includes a set of default widgets. Figure 7 shows
an example of workflow built on CloudFlow.

vww.ebook3000.con)

http://studio.azureml.net
http://www.ebook3000.org

Big Data Analysis on Clouds 123

Itw L
Sentiment graph
g T r— Ist @ | s Itw
& A g -
Active Learning Sliding Window Display tweets q
= Tweet Sentiment Positive tweets
Itw Y Itw Analysis E
Itw <: ptw lst I,-’I\ st =8 T o
Filter tweets by ~
language " Stiding Windows Positive Word Cloud
: o Split positive and
t‘i o negative tweets T q
s st u‘% ist
© Negative tweets

Sliding Window

fw | S

HNegative word cloud

Fig. 7 Example of CloudFlow workflow (source: http://clowdflows.org)

According to this approach, the CloudFlows service-oriented architecture allows
users to include in their workflow the implementations of various algorithms, tools
and Web services as workflow elements. For example, the Weka’s algorithms have
been included and exposed as Web services and so they can be added in a workflow
application. ClowdFlows is also easily extensible by importing third-party Web ser-
vices that wrap open-source or custom data mining algorithms. To this end, a user
has only to insert the WSDL URL of a Web service to create a new workflow element
that represents the Web service in a workflow application.

Pegasus

Pegasus [12] is a workflow management system developed at the University of South-
ern California for supporting the implementation of scientific applications also in
the area of data analysis. Pegasus includes a set of software modules to execute
workflow-based applications in a number of different environments, including desk-
tops, Clouds, clusters and grids. It has been used in several scientific areas includ-
ing bioinformatics, astronomy, earthquake science, gravitational wave physics, and
ocean science. The Pegasus workflow management system can manage the execu-
tion of an application expressed as a visual workflow by mapping it onto available
resources and executing the workflow tasks in the order of their dependencies. In par-
ticular, significant activities have been recently performed on Pegasus to support the
system implementation on Cloud platforms and manage computational workflows
in the Cloud for developing data-intensive scientific applications (Juve et al. 2010;
Nagavaram et al. 2011). The Pegasus system has been used with TaaS Clouds for
workflow applications and the most recent versions of Pegasus can be used to map
and execute workflows on commercial and academic laaS Clouds such as Amazon
EC2, Nimbus, OpenNebula and Eucalyptus [12]. The Pegasus system includes four
main components:

e the Mapper, which builds an executable workflow based on an abstract workflow
provided by a user or generated by the workflow composition system. To this end,

http://clowdflows.org

124 L. Belcastro et al.

this component finds the appropriate software, data, and computational resources
required for workflow execution. The Mapper can also restructure the workflow
in order to optimize performance, and add transformations for data management
or to generate provenance information.

e the Execution Engine (DAGMan), which executes in appropriate order the tasks
defined in the workflow. This component relies on the compute, storage and net-
work resources defined in the executable workflow to perform the necessary activ-
ities. It includes a local component and some remote ones.

e the Task Manager, which is in charge of managing single workflow tasks by super-
vising their execution on local and/or remote resources.

e The Monitoring Component, which monitors the workflow execution, analyzes the
workflow and job logs and stores them into a workflow database used to collect
runtime provenance information. This component sends notifications back to users
notifying them of events like failures, success and completion of workflows and
jobs.

The Pegasus software architecture includes also an error recovery system that
attempts to recover from failures by retrying tasks or an entire workflow, re-mapping
portions of the workflow, providing workflow-level checkpointing, and using alterna-
tive data sources, when possible. The Pegasus system records provenance information
including the locations of data used and produced, and which software was used with
which parameters. This feature is useful when a workflow must be reproduced.

Swift

Swift [53] is a implicitly parallel scripting language that runs workflows across
several distributed systems, like clusters, Clouds, grids, and supercomputers. The
Swift language has been designed at the University of Chicago and at the Argonne
National Lab to provide users with a workflow-based language for grid computing.
Recently has been ported on Clouds and exascale systems. Swift separates the appli-
cation workflow logic from runtime configuration. This approach allows a flexible
development model.

As the DMCF programming interface, the Swift language allows invocation and
running of external application code and allows binding with application execution
environments without extra coding from the user. Swift/K is the previous version
of the Swift language that runs on the Karajan grid workflow engine across wide
area resources. Swift/T is a new implementation of the Swift language for high-
performance computing. In this implementation, a Swift program is translated into
an MPI program that uses the Turbine and ADLB runtime libraries for scalable
dataflow processing over MPI. The Swift-Turbine Compiler (STC) is an optimizing
compiler for Swift/T and the Swift Turbine runtime is a distributed engine that maps
the load of Swift workflow tasks across multiple computing nodes. Users can also
use Galaxy [17] to provide a visual interface for Swift.

The Swift language provides a functional programming paradigm where work-
flows are designed as a set of code invocations with their associated command-line
arguments and input and output files. Swift is based on a C-like syntax and uses an

vww.ebook3000.con)

http://www.ebook3000.org

Big Data Analysis on Clouds 125

implicit data-driven task parallelism [54]. In fact, it looks like a sequential language,
but being a dataflow language, all variables are futures, thus execution is based on data
availability. When input data is ready, functions are executed in parallel. Moreover,
parallelism can be exploited through the use of the foreach statement. The Turbine
runtime comprises a set of services that implement the parallel execution of Swift
scripts exploiting the maximal concurrency permitted by data dependencies within
a script and by external resource availability. Swift has been used for developing
several scientific data analysis applications, such as prediction of protein structures,
modeling the molecular structure of new materials, and decision making in climate
and energy policy.

4.9 NoSQL Models for Data Analytics

With the exponential growth of data to be stored in distributed network scenarios,
relational databases exhibit scalability limitations that significantly reduce the effi-
ciency of querying and analysis [1]. In fact, most relational databases have little
ability to scale horizontally over many servers, which makes challenging storing and
managing the huge amounts of data produced everyday by many applications.

The NoSQL or non-relational database approach became popular in the last years
as an alternative or as a complement to relational databases, in order to ensure hor-
izontal scalability of simple read/write database operations distributed over many
servers [8]. Compared to relational databases, NoSQL databases are generally more
flexible and scalable, as they are capable of taking advantage of new nodes transpar-
ently, without requiring manual distribution of information or additional database
management [46]. Since database management may be a challenging task with huge
amounts of data, NoSQL databases are designed to ensure automatic data distrib-
ution and fault tolerance [15]. In the remainder of this section, we describe some
representative NoSQL systems, and discuss some use cases for NoSQL databases,
with a focus on data analytics.

NoSQL databases provide ways to store scalar values (e.g., numbers, strings),
binary objects (e.g., images, videos), or more complex values. According to their
data model, NoSQL databases can be grouped into three main categories [8]: Key-
value stores, Document stores, Extensible Record stores.

Key-value stores provide mechanisms to store data as (key, value) pairs over
multiple servers. In such kind of databases a distributed hash table (DHT) can be
used to implement a scalable indexing structure, where data retrieval is performed
by using key to find value [8].

Document stores are designed to manage data stored in documents that use differ-
ent formats (e.g., JSON), where each document is assigned a unique key that is used
to identify and retrieve the document. Therefore, document stores extend key-value
stores because they provide for storing, retrieving, and managing semi-structured
information, rather than single values. Unlike the key-value stores, document stores
generally support secondary indexes and multiple types of documents per database,

126 L. Belcastro et al.

and provide mechanisms to query collections based on multiple attribute value con-
straints [8].

Finally, Extensible Record stores (also known as Column-oriented data stores)
provide mechanisms to store extensible records that can be partitioned across mul-
tiple servers. In this type of database, records are said to be extensible because new
attributes can be added on a per-record basis. Extensible record stores provide both
horizontal partitioning (storing records on different nodes) and vertical partitioning
(storing parts of a single record on different servers). In some systems, columns
of a table can be distributed over multiple servers by using column groups, where
pre-defined groups indicate which columns are best stored together.

A brief comparison of noSQL databases is shown in Table 1. For a more detailed
comparison see also [20, 28, 39].

Google Bigtable

Google Bigtable?® is a popular table store. Built above the Google File System, it is
able to store up to petabytes of data and supporting tables with billions of rows and
thousands of columns. Thanks to its high read and write throughput at low latency,
Bigtable it is an ideal data source for batch MapReduce operations [9] and other
applications oriented to the processing and analysis of large volumes of data.

Data in Bigtable are stored in sparse, distributed, persistent, multi-dimensional
tables composed of rows and columns. Each row is indexed by a single row key, and
a set of columns that are grouped together into sets called column families. Instead,
a generic column is identified by a column family and a column qualifier, which is a
unique name within the column family. Each value in the table is indexed by a tuple
(row key, column key, timestamp). To improve scalability and to balance the query
workload, data are ordered by row key and the row range for a table is dynamically
partitioned into contiguous blocks, called tablets. These tablets are distributed among
different Bigtable cluster’s nodes (i.e., Tablet Servers). To improve load balancing, the
Bigtable master is able to split larger and merge smaller tablets, redistributing them
across nodes as needed. To ensure data durability, Bigtable stores data on Google
File System (GFS) and protects it from disaster events through data replication and
backup. Bigtable can be used into applications through multiple clients, including
Cloud Bigtable HBase, a customized version of the standard client for the industry-
standard Apache HBase.

Apache Cassandra

Apache Cassandra®! is a distributed database management system providing high
availability with no single point of failure. Born at Facebook and inspired by Amazon
Dynamo and Google BigTable, Apache Cassandra is designed for managing large
amount of data across multiple data centers and Cloud availability zones.
Cassandra uses a masterless ring architecture, where all nodes play an identical
role, that allows any authorized user to connect to any node in any data center.

2Ohttps://cloud.google.com/bigtable/.
2lhttp://cassandra.apache.org/.

vww.ebook3000.con)

https://cloud.google.com/bigtable/
http://cassandra.apache.org/
http://www.ebook3000.org

127

Big Data Analysis on Clouds

douaysisiad/sordoy/or-sipar//:dny ur paurejdxs se 3so[2q ued sauenb jse,

¢IdO NND | ¢1dDV NND Arejorrdorg 0°C dyoedy asd 07 ayoedy 0°C dyoedy Arejondorg ENIER |
Aqny ‘oD
BAR[++) ‘uoyikq ‘eaef Suepyg D-Isuy eAR[BAR[eAR[o3en3ue|
Aiqepreae
SOk S9K Sk Sk S9K Sk Sk S9K yStyg
o[qeLreA ‘ysiy ysiy Y3y ysiy ysty Y3y ysiy ysSty | eouewIONd]
ysny ysIy 43y 43y ysIy Y31y Y3y ysty Aiqereos
SOk SoK Sk Sk SoK sk Sk SOk uornjeoridoy
eSHI

Sk Sk sk Sk m ‘sok Sak Sk Sk QOUQSISIO]
ou sok SoK sok ou Sk sok sok sonpayden
Sd ‘AN Sd ‘WAN S45 Sd ‘AN Sd ‘WAN SddH S4D ‘SddH Sd ‘WAN a5eI0)s e
ydein JUWNO0(J uwnjo)) JUWNO0(anfeA-Aay uwnjo) uwnjo) anyeA-A3y] odAT,

[ooN qqoSuojy JIqer3ig qgquono) SIpY aseqq BIpUBSSED) qgqowreuiqg

KIOWIN-U] = INHIA ‘WISAS 9[1 = S "soseqerep TOSON dwos jo uostredwo) | I[qel,

http://redis.io/topics/persistence

128 L. Belcastro et al.

This is a really simple and flexible architecture that allows to add nodes without
service downtime. The process of data distribution across nodes is very simple and
no programmatic operations are needed by the developers.

Since all nodes communicate each other equally, Cassandra has no single point
of failure, that ensures continuous data availability and service uptime. Moreover,
Cassandra provides very customizable data replication service that allows to replicate
data across nodes that participate in a ring. In this manner, in case of node failure,
one or more copies of the needed data are available on other nodes.

Cassandra also provides built-in and customizable replication, which stores redun-
dant copies of data across nodes that participate in a Cassandra ring. This means that
if a node in a cluster goes down, one or more copies of data stored on that node is
available on other machines in the cluster. Replication can be configured to work
across one data center, many data centers, and multiple Cloud availability zones.
Focusing on performance and scalability, Cassandra reaches a quite linear speedup,
that means the OPS (Operations Per Second) capacity can be increased by adding
new nodes (e.g., if 2 nodes can handle 10,000 OPS, 4 nodes will support 20,000
OPS, and so on).

Many companies have successfully deployed and benefited from Apache Cas-
sandra including some large companies such as: Apple (75,000 nodes storing over
10 PB of data), Chinese search engine Easou (270 nodes, 300 TB, over 800 million
requests per day), and eBay (over 100 nodes, 250 TB), Netflix (2,500 nodes, 420
TB, over 1 trillion requests per day), Instagram, Spotify, eBay, Rackspace, and many
more.

Neodj Graph Database

If we need to take into account real time data relationships (e.g. create queries using
data relationships), NoSQL databases are not the best choice. In fact, relationship-
based or graph databases has been created for naturally supporting operations on
data that use data relationships. Graph databases provide a novel and powerful data
modeling technique that does not store data in tables, but in graph models [43], with
several benefits in storing and retrieving data connected by complex relationships.

There are several graph data models, such as Neo4j, OrientDB, Virtuoso, Allegro,
Stardog, InfiniteGraph. Among all we focus on Neo4j. Neo4j is an open-source
NoSQL graph database implemented in Java and Scala that is considered the most
popular graph database used today. The Neo4j source code and issue tracking are
available on GitHub, with a large support community. It is used today by a very large
number of organizations working in different sectors, including software analytics,
scientific research, project management, recommendations, and social networks.

In the Neo4j graph model, each node contains a list of relationship records that
refer to other nodes, and additional attributes (e.g. timestamp, metadata, key-value
pairs, and more). Each relationship record must have a name, a direction, a start node
and an end node, and can contains additional properties. One or more labels can be
assigned both to nodes and relationships. In particular, such labels can be used for
representing the roles a node plays in the graph (e.g., user, address, company, and so

vww.ebook3000.con)

http://www.ebook3000.org

Big Data Analysis on Clouds 129

{1234567800123456) -
0 155-555-5555 3
o, y o
%, Q% 7
“n“Ow o’

Fig. 8 Example of bank fraud graph dataset (source: http://neo4j.com)

on) or for associating indexes and constraints to groups of nodes. Figure 8 shows an
example of a graph model used for detecting bank fraud.

Moreover, Neo4j clusters are designed for high availability and horizontal read
scaling using master-slave replication. Focusing on performance, Neo4;j is thousands
of times faster than SQL in executing traversal operation. The traversal operation
consists of visiting a set of nodes in the graph by moving along relationships (e.g.,
find potential friends in social network from user friendship). With such kind of
operations, graph models allow to take into account only the data that is required,
without doing expensive grouping operations as done by relational database during
join operations [51]. Queries in Neo4j are written using Cypher, a declarative and
SQL-based language for describing patterns in graphs. Cypher is a relative simple
but very powerful language, that allows to execute queries in a easy way on a very
complex graph database.

4.10 Visual Analytics

A primary problem in data analysis is to interpret results easily. To overcome this
problem, in the last years, great progress has been made in the field of visual ana-
Iytics. As defined by [50], visual analytics is the science of analytical reasoning
facilitated by interactive visual interfaces. Nowadays, people use visual analytics
tools and methodologies to extract synthetic information from often confusing data
and use them in further analysis or business operations. The power of visual analytics
techniques relies on human brain capabilities to process graphics faster than text. In
particular, through a graphical data presentation, the human brain could be able to
find complex and often hidden patterns and relationships in data that are difficult to

http://neo4j.com

130 L. Belcastro et al.

discover using automatic methods. Also in the Big Data context, the tools used to
visualize results and to interact with data play a key role. Thus, in order to support
data presentation and interaction also in presence of Big Data, innovative method-
ologies (e.g., interactive charts, animations, diagrams, and much more) have been
developed.

In particular, to ride the wave of visual analytics technologies, several big IT com-
pany, such as Microsoft, Google, and SAS, developed advanced data presentation
and data visualization tools able to interact with existent Big Data platforms, includ-
ing Hadoop-based ones. For example, Microsoft extended Excel functions to allow
integration with its Big Data solution. In particular, Excel’s users can be connected
to Azure Storage associated to an Hadoop HDInsight cluster using the Microsoft
Power Query for Excel add-in. Once data has been retrieved, users can exploit Excel
functions to make more interesting charts or graphs.

Google Fusion Tables?” is an other alternative for turning data into graphics in a
very easy way. It allows to load tabular data, filter and summarize across hundreds of
thousands of rows, and create geo maps, heat maps, graphs, charts, animations, and
more. Also Google Charts?? are a powerful Javascript library for making interactive
charts for browsers and mobile devices. Google Charts allows to create several types
of charts, from simple line charts to complex hierarchical tree maps. In the field of
maps and location-based applications, advanced platforms, such as Google Maps,>*
Mapbox,? can be used to create interactive and dynamic maps, display additional
layers on a map or generate routes. In the field of visual data analysis, several Big
Data start-ups spring up in the last years. Tableau,?® for example, is a Big Data
company from Stanford with multinational operations in fifteen cities, and more
than 39,000 customer accounts in 150 countries. It developed software solutions for
easily creating complex charts from huge amount of data. In fact, thanks to its Cloud
analytics platform, Tableau allows users to manipulate data through a simple web
control panel. In this way, users can interact directly with data to find interesting
insights. Among all the competitors in this field, SAS?’ probably stands out among
its peers.

SAS Visual Analytics, in fact, represents a complete solution for advanced data
visualization and exploratory analyses. Thanks to its drag-and-drop capabilities and
no code requirements, it allows users to easily solve complex issues using several
sophisticated techniques for data analysis (e.g. decision trees, network diagrams,
scenario analysis, path analysis, sentiment analysis) and business intelligence. In
addition, exploiting in-memory processing, SAS software makes analytic applica-
tions faster.

22https://tables.googlelabs.com.
2https://developers.google.com/chart.
2 https://www.google.com/maps.
ZShttps://www.mapbox.com/.
ohttp://www.tableau.com.
2Thttps://www.sas.com.

vww.ebook3000.con)

https://tables.googlelabs.com
https://developers.google.com/chart
https://www.google.com/maps
https://www.mapbox.com/
http://www.tableau.com
https://www.sas.com
http://www.ebook3000.org

Big Data Analysis on Clouds 131

4.11 Big Data Funding Projects

Open-source projects discussed in the previous sections (e.g., Hadoop, Spark, and
NoSQL databases) have been widely used in several public funding projects. As
examples:

e BigFoot project®® is a cloud-based solution featuring scalable and optimized
engines to store, process and interact with Big Data. It has received funding from
the European Union’s Horizon 2020 program.

e Optique?® is a EU funding project with a total budget of about 14 million EUR.
It is aims to provide a novel end-to-end OBDA (Ontology-Based Data Access)
[7, 38] solution for improving Big Data access. In particular, Optique platform
allows to quickly formulate intuitive queries exploiting user vocabularies and con-
ceptualizations, and executing them using massive parallelism.

Also government agencies invested large amount of money on Big Data technolo-
gies in many public sector fields, such as intelligence, defense, weather forecasting,
crime prediction and prevention, and scientific research.

As example, US Administration invested more that 250 million USD for Big
Data research and development initiative across multiple agencies and departments.
Moreover, in 2014 UK government decided to invest about 73 million GBP in Big
Data and other analytics technologies with the goals of creating 58,000 new jobs in
Britain by 2017, contributing 216 billion GBP to the countrys economy.

4.12 Historical Review

In this section a brief historical review of Big Data is presented. Undoubtedly, main
events in Big Data evolution are due to big IT and Internet companies, like Google
and Yahoo, who faced first the need of new solutions for tackling the rise of Big Data.
A significant role in this context has been played by Hadoop and its related projects,
that made Big Data analytics accessible also to a larger number of organizations.
Hadoop was created by Doug Cutting and it has its origins in Apache Nutch
(2002), an open source web search engine, itself a part of the Lucene project (2000).
After Google released the Google File System (GFS) paper (October 2003) and the
MapReduce paper (December 2004), Cutting went to work with Yahoo and decided
to build open source frameworks based on them: in 2006 Yahoo! created Hadoop
based on GFS and MapReduce, and one year later, it started using Hadoop on a 1000
node cluster. In 2006, Yahoo Labs created Pig based on Hadoop, and then donated
it to the Apache Software Foundation (ASF). In few years, several other projects
was created around Hadoop and, in a short time, graduated to a Apache Top Level
Project: HBase (2008), Hive (2008), Cassandra (2008), Storm (2011), Giraph (2011),

Z8http://bigfootproject.eu/.
2http://optique-project.eu.

http://bigfootproject.eu/
http://optique-project.eu

132 L. Belcastro et al.

Coc Hadoop Flink
. i Hortonworks Tez
** Cloudera @1 Hadoop2 2014
2008 YARN
MapReduce MapR Storm
2004 | ?C'_UE‘ 2012 Today »

1998 2003 2004 2005 2006 2009 2010 2011 2012 2013 2014 2015
| 1
2003 ?(J‘ﬂf) : 2008 ?E"EIE? | 2011 2013 2015
GFS Nutchwith Cassandra o0 | Giraph Mesos Mahout
MapReduce ~ Hbase 2010 Storm Samsara
Hive Spark

Fig. 9 A short Hadoop ecosystem’s history

and so on. At the same time, many Hadoop distributor was founded, such as Cloudera
(2008), MapR (2009), Hortonworks (2011). A short history of Hadoop and related
project is shown in Fig. 9.

Spark represents another milestone in Big Data analytics. Spark was initially
created at UC Berkeley’s AMPLab in 2009, open sourced in 2010 under a BSD
license, and donated to the ASF in 2013. Finally, in February 2014, Spark became a
Top-Level Apache Project and declared the most active ASF project. As discussed
before, Spark is nowadays considered the primary execution engine for several Big
Data applications, sometimes used to complement Hadoop.

4.13 Summary

It is not easy to summarize all the features of the systems discussed till now or to
do a proof comparison among them. Some of those systems have common features
and, in some cases, using one rather than another is an hard choice. In fact, given a
specific data analytic task, such as a machine learning application, it is possible to
use several tools. Some of those are widely used commercial tools, provided through
cloud services, that can be easily used by no skilled people (e.g., Azure Machine
Learning or Amazon Machine Learning); other are open-source frameworks that
require skilled users who prefer to program their application using a more technical
approach. In addition, choosing the best solution for developing a data analytic
application may depend on many other factors, such as budget (e.g., often high-level
services are easy-to-use but more expensive than low-level solutions), data format,
data source, the amount of data to be analyze and its velocity, and so on. Table2
presents a brief comparison of the Big Data analytics systems.

vww.ebook3000.con)

http://www.ebook3000.org

133

Big Data Analysis on Clouds

Seel X X H1mg
Seed X X SMO[IPMOID
Seep X X snse3oq
Seeg X X X X | TN uozewry
TN 2Inzy
Sees X X X 1JOSOIDIA
Seed ‘Sees X X X X DN
[eonAreue
Seed X X onrusoy
seed ‘seeg X TSI
Seeg X X a1oydg/101008
Seeg Juny
SeeJ X X Siq
Seel X X QATH
See] X X uLoj§
See[X X ydenn
See] X X 73],
Seey X X 1200
See] X X X INOYeIN
Seep X X X X X X X yredg
Seey X X X X X X X doopey
Surssaooxd Surure9|
MOPIOM eleq mog ereq | 10OS QuIyoRIN Krowow-uy | ydein | Surweang
[opow pno[D) | 9d1nos-uadQ SonA[euy | S[00L/SWQISAS

swa)sAs sonkreue ejep §1q uowrwod jsowr Jo uostredwod Jorq vV g dqeL

134 L. Belcastro et al.

Table 3 Summary considerations about graph databases

Graph databases

Horizontal scaling Poor horizontal scaling

When to use For storing objects without a fixed schema and linked together by
relationships; when users can done naturally their reasoning about
data via graph traversals instead of using complex SQL queries

CAP tradeoff Usually prefer availability over consistency

Pros Powerful data modeling and relationships representation; locally
indexed connected data; easy to query

Cons Highly specialized query capabilities that make them the best for
graph data, but not suitable for non-graph data

Hadoop represents the most used framework for developing distributed Big Data
analytics application. In fact, Hadoop-ecosystem is undoubtedly the most complete
solution for any kind of problem, but at the same time it is thought for high skilled
users. On the other hand, many other solutions are designed for low-skilled users
or for low-medium organizations that do not want to spend resources in developing
and maintaining enterprise data analytics solutions (e.g., Microsoft Azure Machine
Learning, Amazon Machine Learning, Data Mining Cloud Framework, Kognitio
Analytical, or BigML). Finally, other solutions have been created mainly for scientific
research purposes and, for this reason, they are poorly used for developing business
applications (e.g., Sector/Sphere, Pegasus).

Choosing the best database solution for creating a Big Data application is another
key-step, so several aspects need to be considered. To decide what kind of database
to adopt, the first aspect to be considered is probably the classes of queries will be
run. So graph databases are probably the best solution for representing and querying
highly connected data (e.g., data gathered from social network) or that have com-
plex relationships and/or dynamic schema. In any other case, when non-graph data
are analyzed, graph databases could result in really bad performance. About that,
summary considerations on graph databases are presented in Table 3.

Another aspect to be considered in choosing the best database solution should
be the CAP (Consistency, Availability, and Partition) capabilities offered, because
distributed NoSQL database systems can’t be fully CAP compliant. In fact, the CAP
theorem, also named Brewer’s theorem [18], states that a distributed system can’t
simultaneously guarantee all three of the following properties:

e Consistency (C), that means all nodes see the same data at the same time;

e Availability (A), that means every request will receive a response within a reason-
able amount of time;

e Partition (P) tolerance, that means the system continues to function also if arbitrary
network partitions occur due to failures.

vww.ebook3000.con)

http://www.ebook3000.org

Big Data Analysis on Clouds 135

Table 4 Summary considerations about Key-Value databases

Key-value databases

Horizontal scaling | Very high scale provided via sharding

When to use When you have a very simple data schema or extreme speed scenario (like
real-time)

CAP tradeoff Most solutions prefer consistency over availability

Pros Simple data model; very high scalability, data can be accessed using query
language like SQL

Cons Some queries could be inefficient or limited due to sharding (e.g., join
operations across shards); no API standardization; maintenance is
difficult; poor for complex data

Table 5 Summary considerations about column-oriented databases.

Column-oriented databases

Horizontal scaling | Very high scale capabilities

When to use When you need consistency and higher scalability performance than a
single machine (i.e., usually using more than 1,000 nodes), without using
indexed caching front end

CAP tradeoff Most solutions prefer consistency over availability

Pros Higher throughput and stronger concurrency when it is possible to
partition data; multi-attribute queries; data is naturally indexed by
columns; support semi-structured data

Cons More complex than the document stores; poor for interconnected data

Thus if a distributed database system guarantees Consistency and Partitioning, it
can never ensure Availability. Similarly, if you need a full Availability and Partition
tolerance, you can’t have Consistency, anyway not immediately. In fact, on a dis-
tributed environment, data changes on one node need some time to be propagated to
the other nodes. During that time the copies will be mutually inconsistent, that may
lead to the possibility of reading not updated data. To try to overcome this limitation,
the Eventual Consistency property is usually provided: it ensures that the system,
sooner or later, will become consistent. This is a weak property, so if the adopted
database system only provides eventual consistency, the developer must be aware
that exists the possibility of reading inconsistent data. NoSQL databases usually
offer a balance among CAP properties, which is the key difference among the dif-
ferent available solutions. For each database family, some summary considerations
are also provided for Key-Value databases (Table 4), Column-oriented (Table 5), and
Document-oriented databases (Table 6).

136 L. Belcastro et al.

Table 6 Summary considerations about document-oriented databases

Document-oriented databases

Horizontal scaling Scale provided via replication or replication and sharding

When to use When your record structure is relatively small and it is possible to store
all of its related properties in a single doc

CAP tradeoff In most cases prefer consistency over availability

Pros High scalability and simple data model; generally support secondary

indexes, multiple types of documents per database, and nested
documents or lists; MapReduce support for adhoc querying.

Cons Eventually consistent model with limited atomicity and isolation; poor
for interconnected data; query model is limited to keys and indexes

5 Research Trends

Big Data analysis is a very active research area with significant impact on industrial
and scientific domains where is important to analyze very large and complex data
repositories. In particular, in many cases data to be analyzed are stored in Cloud plat-
forms and elastic computing Clouds facilities are exploited to speedup the analysis.
This section outlines and discusses main research trends in Big Data analytics and
Cloud systems for managing and mining large-scale data repositories.

As we discussed, scalable data analytics requires high-level, easy-to-use design
tools for programming large applications dealing with huge, distributed data sources.
Moreover, Clouds are widely adopted by many organizations, however several exist-
ing issues remain to be addressed, so that Cloud solutions can improve their efficiency
and competitiveness at each business size, from medium to large companies. This
requires further research and development in several key areas such as:

e Programming models for Big Data analytics. Big Data analytics programming
tools require novel complex abstract structures. The MapReduce model is often
used on clusters and Clouds, but more research is needed to develop scalable
higher-level models and tools. State-of-the-art solutions generated major success
stories, however they are not mature and suffer several problems from data transfer
bottlenecks to performance unpredictability. Several other processing models have
been proposed as alternative to MapReduce, such as Dryad [21] or Pregel [30],
but they have never been widely used by developers.

e Data storage scalability. The increasing amount of data generated needs even more
scalable data storage systems. As discussed in the previously, traditional RDBMS
systems are not the best choice for supporting Big Data applications in the Cloud,
and that leads to the popularity of noSQL platforms [8]. Several noSQL solutions
have been proposed, with good experimental results in term of performance gain,
but several other improvements are still needed [47, 52]. In fact, RDBMS systems
have been around for a long time, are quite stable and offers lots of features. In
the other hand, most noSQL systems are in its early version and several additional

vww.ebook3000.con)

http://www.ebook3000.org

Big Data Analysis on Clouds 137

features have yet to be improved or implemented, such as integrating capabilities
from DBMS (e.g., indexing techniques), facilities for ad-hoc queries, and more.

e Data availability. Cloud service provides have to deal with the problem of granting
service and data availability. Especially in presence of huge amounts of data,
granting high-quality service is an opened challenge. Several solutions have been
proposed for improving exploitation, such as using a cooperative multi-Cloud
model to support Big Data accessibility in emergency cases [25], but more studies
are still needed to handle the continue increasing demand for more real time and
broad network access to Cloud services.

e Data and tool interoperability and openness. Interoperability is a main issue in
large-scale applications that use resources such as data and computing nodes.
Standard formats and models are needed to support interoperability and ease coop-
eration among teams using different data formats and tools. The National Institute
of Standards and Technology (NIST) just released the Big Data interoperability
framework,? a collection of documents, organized in 7 volumes, which aim to
define some standards for Big Data.

e Data quality and usability. Big Data sets are often arranged by gathering data from
several heterogeneous and often not well-known sources. This leads to a poor data
quality that is a big problem for data analysts. In fact, due to the lack of a common
format, inconsistent and useless data can be produced as a result of joining data
from heterogeneous sources. Defining some common and widely adopted format
would lead to data that are consistent with data from other sources, that means
high quality data. Since real-world data is highly susceptible to inconsistency,
incompleteness, and noise, finding effective methodologies for data preprocessing
is still an open challenge for improve data quality and the analysis results [10]. In
this regard, an interesting discussion about challenges of data quality in the Big
Data has been presented in [6].

e Integration of Big Data analytics frameworks. The service-oriented paradigm
allows running large-scale distributed workflows on heterogeneous platforms
along with software components developed using different programming lan-
guages or tools. Scalable software architectures for fine grain in-memory data
access and analysis. Exascale processors and storage devices must be exploited
with fine-grain runtime models. Software solutions for handling many cores and
scalable processor-to-processor communications have to be designed to exploit
exascale hardware [13, 36].

e Tools for massive social network analysis. The effective analysis of social net-
work data on a large scale requires new software tools for real-time data extraction
and mining, using Cloud services and high-performance computing approaches
[31, 35]. Social data streaming analysis tools represent very useful technologies
to understand collective behaviors from social media data. Tools for data explo-
ration and models visualization. New approaches to data exploration and models
visualization are necessary taking into account the size of data and the complexity
of the knowledge extracted. As data are bigger and bigger, visualization tools will

3http://www.nist.gov/itl/bigdata/bigdatainfo.cfm.

http://www.nist.gov/itl/bigdata/bigdatainfo.cfm

138 L. Belcastro et al.

be more useful to summarize and show data patterns and trends in a compact and
easy-to-see way.

e Local mining and distributed model combination. As Big Data applications often
involve several local sources and distributed coordination, collecting distributed
data sources to a centralized server for analysis is not practical or in some cases
possible. Scalable data analysis systems have to enable local mining of data sources
and model exchange and fusion mechanisms to compose the results produced in
the distributed nodes [55]. According to this approach the global analysis can be
performed by distributing the local mining and supporting the global combination
of every local knowledge to generate the complete model.

e In-memory analysis. Most of the data analysis tools query data sources on disks
while, differently from those, in-memory analytics query data in main memory
(RAM). This approach brings many benefits in terms of query speed up and faster
decisions. In-memory databases are, for example, very effective in real-time data
analysis, but they require high-performance hardware support and fine-grain par-
allel algorithms [49, 59]. New 64-bit operating systems allow to address memory
up to one terabyte, so making realistic to cache very large amount of data in RAM.
This is why this research area is very promising.

6 Conclusions

In the last years the ability to gather data has increased exponentially. Advances and
pervasiveness of computers have been the main driver of the very huge amounts of
digital data that today are collected and stored in digital repositories. Those data vol-
umes can be analyzed to extract useful information and producing helpful knowledge
for science, industry, public services and in general for humankind. However, the huge
amount of data generated, the speed at which it is produced, and its heterogeneity,
represent a challenge to the current storage, process and analysis capabilities. Then
to extract value from such kind of data, novel technologies and architectures have
been developed by data scientists for capturing and analyzing complex and/or high
velocity data. In this scenario was born also the Big Data mining field as a discipline
that today provides several different techniques and algorithms for the automatic
analysis of large data sets. But, the process of knowledge discovery from Big Data is
not so easy, mainly due to data characteristics, and to get valuable information and
knowledge in shorter time, high performance and scalable computing systems are
needed. In many cases, Big Data are stored and analyzed in Cloud platforms.
Clouds provide scalable storage and processing services that can be used for
extracting knowledge from Big Data repositories, as well as software platforms for
developing and running data analysis environments on top of such services. In this
chapter we provided an overview of Cloud technologies by describing the main
service models (SaaS, PaaS, and IaaS) and deployment models (public, private or
hybrid Clouds) adopted by Cloud providers. We also described representative exam-
ples of Cloud environments (Microsoft Azure, Amazon Web Services, OpenNebula

vww.ebook3000.con)

http://www.ebook3000.org

Big Data Analysis on Clouds 139

and OpenStack) that can be used to implement applications and frameworks for
data analysis in the Cloud. The development of data analysis applications on Cloud
computing systems is a complex task that needs to exploit smart software solu-
tions and innovative technologies. In this chapter we presented the leading software
tools and technologies used for developing scalable data analysis on Clouds, such as
MapReduce, Spark, workflow systems, and NoSQL database management systems.
In particular, we particularly focused on Hadoop, the best-known MapReduce imple-
mentation, that is commonly used to develop scalable applications that analyze big
amounts of data. As we discussed, Hadoop is also a reference tool for several other
frameworks, such as Storm, Hive, Oozie and Spark. Moreover, besides Hadoop and
its ecosystem, several other MapReduce implementations have been implemented
within other systems, including GridGain, Skynet, MapSharp, and Disco.

As such Cloud platforms become available, researchers are increasingly port-
ing powerful data mining programming tools and strategies to the Cloud to exploit
complex and flexible software models, such as the distributed workflow paradigm.
Workflows provide a declarative way of specifying the high-level logic of an appli-
cation, hiding the low-level details. They are also able to integrate existing software
modules, datasets, and services in complex compositions that implement discovery
processes. In this chapter we presented several data mining workflow systems, such as
Data Mining Cloud Framework, Microsoft Azure Machine Learning, ClowdFlows.

Then we also discussed NoSQL database technology that became popular in the
latest years as an alternative or as a complement to relational databases. In fact,
NoSQL systems in several application scenarios are more scalable and provide
higher performance than relational databases. We introduced the basic principles
of NoSQL, described representative NoSQL systems, and outlined interesting data
analytics use cases where NoSQL tools are useful. Finally, some research trends
and open challenges on Big Data analysis has been discussed, such as scalable data
analytics requirements of high-level, easy-to-use design tools for programming large
applications dealing with huge distributed data sources.

Acknowledgements This work is partially supported by EU under the COST Program Action
IC1305: Network for Sustainable Ultrascale Computing (NESUS).

References

1. V. Abramova, J. Bernardino, P. Furtado, Which nosql database? a performance overview. Open
J. Databases (OJDB) 1(2), 17-24 (2014)

2. R. Barga, D. Gannon, D. Reed, The client and the cloud: democratizing research computing.
IEEE Internet Comput. 15(1), 72-75 (2011)

3. L. Belcastro, F. Marozzo, D. Talia, P. Trunfio, Programming visual and script-based big data
analytics workflows on clouds, in Big Data and High Performance Computing. Advances in
Parallel Computing, vol. 26 (I0S Press, 2015), pp. 18-31

4. L. Bermingham, I. Lee, Spatio-temporal sequential pattern mining for tourism sciences. Pro-
cedia Comput. Sci. 29, 379-389 (2014). 2014 International Conference on Computational
Science

140

5.

(o]

10.

11.

12.

13.

14.

15.
16.

20.

21.

22.

23.

24.

25.

26.

217.

L. Belcastro et al.

S. Bowers, B. Luddscher, A.H. Ngu, T. Critchlow, Enabling scientificworkflow reuse through
structured composition of dataflow and control-flow, in 22nd International Conference on Data
Engineering Workshops, 2006. Proceedings (IEEE, 2006), pp. 70-70

. L. Cai, Y. Zhu, The challenges of data quality and data quality assessment in the big data era.

Data Sci. J. 14, 2 (2015)

. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, Tractable reasoning and

efficient query answering in description logics: the dl-lite family. J. Autom. Reason. 39(3),
385-429 (2007)

. R. Cattell, Scalable sql and nosql data stores. ACM SIGMOD Record 39(4), 12-27 (2011)
. F.Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, M. Burrows, T. Chandra, A. Fikes,

R.E. Gruber, Bigtable: a distributed storage system for structured data. ACM Trans. Comput.
Syst. (TOCS) 26(2), 4 (2008)

D. Che, M. Safran, Z. Peng, From big data to big data mining: challenges, issues, and opportuni-
ties, in Database Systems for Advanced Applications: 18th International Conference, DASFAA
2013, International Workshops: BDMA, SNSM, SeCoP, Wuhan, China, 22-25 April 2013.
Proceedings (Springer, Berlin, 2013), pp. 1-15

J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large clusters, in Proceedings
of the 6th Conference on Symposium on Opearting Systems Design & Implementation - Volume
6, OSDI’04, Berkeley, USA (2004), p. 10

E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P.J. Maechling, R. Mayani, W. Chen,
R.F. da Silva, M. Livny et al., Pegasus, a workflow management system for science automation.
Futur. Gener. Comput. Syst. 46, 17-35 (2015)

J. Dongarra et al., The international exascale software project roadmap. Int. J. High Perform.
Comput. Appl. 25, 3-60 (2011)

J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.H. Bae, J. Qiu, G. Fox, Twister: a runtime
for iterative mapreduce, in Proceedings of the 19th ACM International Symposium on High
Performance Distributed Computing. HPDC ’10 (ACM, New York, 2010), pp. 810-818

S.K. Gajendran, A survey on nosql databases. University of Illinois (2012)

M.S. Gerber, Predicting crime using twitter and kernel density estimation. Decision Support
Syst. 61, 115-125 (2014)

. B. Giardine, C. Riemer, R.C. Hardison, R. Burhans, L. Elnitski, P. Shah, Y. Zhang, D. Blanken-

berg, 1. Albert, J. Taylor et al., Galaxy: a platform for interactive large-scale genome analysis.
Genome Res. 15(10), 1451-1455 (2005)

. S. Gilbert, N. Lynch, Brewer’s conjecture and the feasibility of consistent, available, partition-

tolerant web services. ACM SIGACT News 33(2), 51-59 (2002)

. Y. Gu, R.L. Grossman, Sector and sphere: the design and implementation of a high-performance

data cloud. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 367(1897), 2429-2445 (2009)
I.LA.T. Hashem, I. Yaqoob, N.B. Anuar, S. Mokhtar, A. Gani, S.U. Khan, The rise of big data
on cloud computing: review and open research issues. Inf. Syst. 47, 98—115 (2015)

M. Isard, M. Budiu, Y. Yu, A. Birrell, D. Fetterly, Dryad: distributed data-parallel programs
from sequential building blocks. SIGOPS Oper. Syst. Rev. 41(3), 59-72 (2007)

J. Kranjc, V. Podpecan, N. Lavra¢, Clowdflows: a cloud based scientific workflow platform, in
Machine Learning and Knowledge Discovery in Databases (Springer, 2012), pp. 816-819

T. Kurashima, T. Iwata, G. Irie, K. Fujimura, Travel route recommendation using geotags in
photo sharing sites, in Proceedings of the 19th ACM International Conference on Information
and Knowledge Management. CIKM ’10 (ACM, New York, 2010), pp. 579-588

R. Lee, S. Wakamiya, K. Sumiya, Urban area characterization based on crowd behavioral
lifelogs over twitter. Personal Ubiquitous Comput. 17(4), 605-620 (2013)

S. Lee, H. Park, Y. Shin, Cloud computing availability: multi-clouds for big data service, in
Convergence and Hybrid Information Technology (Springer, 2012), pp. 799-806

A. Lemieux, Geotagged photos: a useful tool for criminological research? Crime Sci. 4(1), 3
(2015)

A. Li, X. Yang, S. Kandula, M. Zhang, Cloudcmp: comparing public cloud providers, in
Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement (ACM, 2010),
pp- 1-14

vww.ebook3000.con)

http://www.ebook3000.org

Big Data Analysis on Clouds 141

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.
4.
43.
44.
45.
46.
47.
48.

49.

J.R. Lourenco, B. Cabral, P. Carreiro, M. Vieira, J. Bernardino, Choosing the right nosql
database for the job: a quality attribute evaluation. J. Big Data 2(1), 1-26 (2015)

D. Lyubimov, A. Palumbo, Apache Mahout: Beyond MapReduce (Chapman and Hall/CRC,
Boca Raton, 2016)

G. Malewicz, M.H. Austern, A.J. Bik, J.C. Dehnert, I. Horn, N. Leiser, G. Czajkowski, Pregel:
a system for large-scale graph processing, in Proceedings of the 2010 ACM SIGMOD Inter-
national Conference on Management of Data. SIGMOD ’10 (ACM, New York, 2010), pp.
135-146

G. Marciani, M. Piu, M. Porretta, M. Nardelli, V. Cardellini, Real-time analysis of social
networks leveraging the flink framework, in Proceedings of the 10th ACM International Con-
ference on Distributed and Event-Based Systems. DEBS 16 (ACM, New York, 2016), pp.
386-389

F. Marozzo, D. Talia, P. Trunfio, A cloud framework for parameter sweeping data mining
applications, in 2011 IEEE Third International Conference on Cloud Computing Technology
and Science (CloudCom) (IEEE, 2011), pp. 367-374

F. Marozzo, D. Talia, P. Trunfio, Using clouds for scalable knowledge discovery applications,
in Euro-Par Workshops, Rhodes Island, Greece. Lecture Notes in Computer Science, vol. 7640
(2012), pp. 220-227

F. Marozzo, D. Talia, P. Trunfio, Scalable script-based data analysis workflows on clouds,
in Proceedings of the 8th Workshop on Workflows in Support of Large-Scale Science (ACM,
2013), pp. 124-133

A. Martin, A. Brito, C. Fetzer, Real-time social network graph analysis using streammine3g,
in Proceedings of the 10th ACM International Conference on Distributed and Event-Based
Systems. DEBS 16 (ACM, New York, 2016), pp. 322-329

I. Mavroidis, I. Papaefstathiou, L. Lavagno, D.S. Nikolopoulos, D. Koch, J. Goodacre, I. Sour-
dis, V. Papaefstathiou, M. Coppola, M. Palomino, Ecoscale: reconfigurable computing and
runtime system for future exascale systems, in 2016 Design, Automation Test in Europe Con-
ference Exhibition (DATE) (2016), pp. 696-701

PM. Mell, T. Grance, Sp 800-145. the nist definition of cloud computing. Technical report,
National Institute of Standards & Technology, Gaithersburg, MD, United States (2011)

R. Moller, B. Neumann, Ontology-based reasoning techniques for multimedia interpretation
and retrieval, in Semantic Multimedia and Ontologies: Theory and Applications, ed. by Y.
Kompatsiaris, P. Hobson (Springer, London, 2008), pp. 55-98

A.B.M. Moniruzzaman, S.A. Hossain, Nosql database: new era of databases for big data ana-
lytics - classification, characteristics and comparison. CoRR abs/1307.0191 (2013)

D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, D. Zagorodnov, The
eucalyptus open-source cloud-computing system, in 9th IEEE/ACM International Symposium
on Cluster Computing and the Grid, 2009. CCGRID ’09 (2009), pp. 124-131

S. Owen, R. Anil, T. Dunning, E. Friedman, Mahout in Action (Manning Publications Co.,
Greenwich, 2011)

L. Richardson, S. Ruby, RESTful Web Services (O’Reilly Media, Inc., Sebastopol, 2008)
M.A. Rodriguez, P. Neubauer, The graph traversal pattern. CoRR abs/1004.1001 (2010)

S. Shahrivari, Beyond batch processing: Towards real-time and streaming big data. CoRR
abs/1403.3375 (2014)

B. Sotomayor, R.S. Montero, I.M. Llorente, I. Foster, Virtual infrastructure management in
private and hybrid clouds. IEEE Internet Comput. 13(5), 14-22 (2009)

M. Stonebraker, Sql databases v. nosql databases. Commun. ACM 53(4), 10-11 (2010)

A. Tai, M. Wei, M.J. Freedman, I. Abraham, D. Malkhi, Replex: a scalable, highly available
multi-index data store, in 2016 USENIX Annual Technical Conference (USENIX ATC 16)
(USENIX Association, Denver, 2016), pp. 337-350

D. Talia, P. Trunfio, F. Marozzo, Data Analysis in the Cloud (Elsevier, 2015). ISBN 978-0-12-
802881-0

K.L. Tan, Q. Cai, B.C. Ooi, W.F. Wong, C. Yao, H. Zhang, In-memory databases: challenges and
opportunities from software and hardware perspectives. SIGMOD Rec. 44(2), 35-40 (2015)

142

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

L. Belcastro et al.

J.J. Thomas, K.A. Cook, A visual analytics agenda. IEEE Comput. Graph. Appl. 26(1), 10-13
(2006)

A. Vukotic, N. Watt, T. Abedrabbo, D. Fox, J. Partner, Neo4j in Action (Manning, Shelter
Island, 2015)

Z. Wang, Y. Chu, K. Tan, D. Agrawal, A. El Abbadi, X. Xu, Scalable data cube analysis over
big data. CoRR abs/1311.5663 (2013)

M. Wilde, M. Hategan, J.M. Wozniak, B. Clifford, D.S. Katz, I. Foster, Swift: a language for
distributed parallel scripting. Parallel Comput. 37(9), 633-652 (2011)

J.M. Wozniak, M. Wilde, 1.T. Foster, Language features for scalable distributed-memory
dataflow computing, in 2014 Fourth Workshop on Data-Flow Execution Models for Extreme
Scale Computing (DFM) (2014), pp. 50-53

X. Wu, X. Zhu, G.Q. Wu, W. Ding, Data mining with big data. IEEE Trans. Knowl. Data Eng.
26(1), 97-107 (2014)

R.S. Xin, J. Rosen, M. Zaharia, M.J. Franklin, S. Shenker, I. Stoica, Shark: sql and rich analytics
at scale, in Proceedings of the 2013 ACM SIGMOD International Conference on Management
of Data. SIGMOD 13 (ACM, New York, 2013), pp. 13-24

L. You, G. Motta, D. Sacco, T. Ma, Social data analysis framework in cloud and mobility
analyzer for smarter cities, in 2014 IEEE International Conference on Service Operations and
Logistics, and Informatics (SOLI) (2014), pp. 96-101

J. Yuan, Y. Zheng, L. Zhang, X. Xie, G. Sun, Where to find my next passenger, in Proceedings
of the 13th International Conference on Ubiquitous Computing. UbiComp ’11 (ACM, New
York, 2011), pp. 109-118

H. Zhang, G. Chen, B.C. Ooi, K.L. Tan, M. Zhang, In-memory big data management and
processing: a survey. IEEE Trans. Knowl. Data Eng. 27(7), 1920-1948 (2015)

vww.ebook3000.con)

http://www.ebook3000.org

Data Organization and Curation
in Big Data

Mohamed Y. Eltabakh

Abstract This chapter covers advanced techniques in Big Data analytics and query
processing. As the data is getting bigger and, at the same time, workloads and ana-
Iytics are getting more complex, the advances in big data applications are no longer
hindered by their ability to collect or generate data. But instead, by their ability to
efficiently and effectively manage the available data. Therefore, numerous scalable
and distributed infrastructures have been proposed to manage big data. However, it
is well known in literature that scalability and distributed processing alone are not
enough to achieve high performance. Instead, the underlying infrastructure has to
be highly optimized for various types of workloads and query classes. These opti-
mizations typically start from the lowest layer of the data management stack, which
is the storage layer. In this chapter, we will cover two well-known techniques for
optimized storage and organization of data that have big influence on query per-
formance, namely the indexing, and data layout techniques. However, in the cases
of non-traditional workloads where queries have special execution and data-access
characteristics, the standard indexing and layout techniques may fall short in pro-
viding the desired performance goals. Therefore, further optimizations specific to
the workload characteristics can be applied. In this chapter, we will cover tech-
niques addressing several of these non-traditional workloads in the context of big
data. Some of these techniques rely on curating either the data or the workflows
(or both) with useful metadata information. This curation information can be very
valuable for both query optimization and the business logic. In this chapter, we will
cover the curation and metadata management of big data in query optimization and
different systems. In this chapter, we focus on the MapReduce-like infrastructures,
more specifically its open-source implementation Hadoop. The chapter covers the
state-of-art in big data indexing techniques, and the data layout and organization
strategies to speedup queries. It will also cover advanced techniques for enabling
non-traditional workloads in Hadoop. Hadoop is primarily designed for workloads
that are characterized by being batch, offline, ad-hoc, and disk-based. Yet, this chapter
will cover recent projects and techniques targeting non-traditional workloads such as

M.Y. Eltabakh (<)

Computer Science Department, Worcester Polytechnic Institute,
Worcester, MA, USA

e-mail: meltabakh@cs.wpi.edu

© Springer International Publishing AG 2017 143
A.Y. Zomaya and S. Sakr (eds.), Handbook of Big Data Technologies,
DOI 10.1007/978-3-319-49340-4_5

144 M.Y. Eltabakh

continuous query evaluation, main-memory processing, and recurring workloads. In
addition, the chapter covers recent techniques proposed for data curation and efficient
metadata management in Hadoop. These techniques vary from being semantic spe-
cific, e.g., provenance tracking techniques, to generic frameworks for data curation
and annotation.

1 Big Data Indexing Techniques

1.1 Overview

Big data infrastructures such as Hadoop are increasingly supporting applications
that manage structured or semi-structured data. In many applications including sci-
entific applications, weblog analysis, click streams, transaction logs, and airline ana-
lytics, at least partial knowledge about the data structure is known. For example,
some attributes may have known types and possible domain of values, while other
attributes may have little information known about them. This knowledge, even if
it is partial, can enable optimization techniques that otherwise would not be possi-
ble. Query optimization in big data is fundamentally important, especially because
(1) the datasets to be processed are getting very large, (2) the analytical queries are
increasing in complexity and may take hours to execute if not carefully optimized,
and (3) the pay-as-you-go cost models for cloud computing add additional urgency
for optimized processing.

A typical query in big data applications may touch files in the order of 100s of GBs
or TBs of size. These queries are typically very expensive as they consume significant
resources and require long periods of time to execute. For example, in transaction
log applications, e.g., transaction history of customer purchases, one query might be
interested in retrieving all transactions from the last two months that exceed a certain
amount of dollar money. Such query may need to scan billions of records and go
over TBs of data.

Indexing techniques are well-known techniques in database systems, especially
relational databases, to optimize query processing. Examples of the standard index-
ing techniques are the B+-Tree, R-Tree, and Hash-based indexes along with their
variations. However, transforming these techniques and structures to big data is
not straightforward due to the unique characteristics of both the data itself and the
underlying infrastructure processing the data. At the data level, the data is no longer
assumed to be stored in relational tables. Instead, the data is received and stored in
the forms of big batches of flat files. In addition, the data size exceeds what relational
database systems can typically handle.

On the other hand, at the infrastructure level, the processing model no longer
follows the relational model of query execution, which relies on connecting a set of
query operators together to form a query tree. Instead, the MapReduce computing
paradigm is entirely different as it relies on two rigid phases of map and reduce.

vww.ebook3000.con)

http://www.ebook3000.org

Data Organization and Curation in Big Data 145

Moreover, the access pattern of the data from the file system is also different. In
relational databases, the data records are read in the form of disk pages (a.k.a disk
blocks), which are very small in size (typically between 8 and 128 KBs) and usually
hold few data records (10s or at most 100s of records). And thus, we assume that
the database systems can support record-level access. In contrast, in the Hadoop file
system (HDFS), a single data block ranges between 64 MBs and 1 GB, and usually
holds many records. Therefore, the record-level access no longer holds. Even the
feasible operations over the data are different from those supported in relational
databases. For example, record updates and deletes are not allowed in the MapReduce
infrastructure. All of these unique characteristics of big data fundamentally affect
the design of the appropriate indexing and pre-processing techniques.

Plain Hadoop is found to be orders-of-magnitudes slower than distributed data-
base management systems when evaluating queries on structured data [1, 67]. One
of the main observed reasons for this slow performance is the lack of indexing
in the Hadoop infrastructure. As a result, significant research efforts have been
dedicated to designing indexing techniques suitable for the Hadoop infrastruc-
ture. These techniques have ranged from record-level indexing [27, 28, 46, 65]
to split-level indexing [34, 38], from user-defined indexes [27, 38, 46] to system-
generated and adaptive indexes [28, 34, 65], and from single-dimension indexes
[27, 28, 34, 46, 65] to multi-dimensional indexes [30, 56, 58].

In Table 1, we compare several of the Hadoop-based indexing techniques with
respect to different criteria. Record-level granularity techniques aim for skipping
irrelevant records within each data split, but eventually they may touch all splits.
In contrast, the split-level granularity techniques aim for skipping entire irrelevant
splits. SpatialHadoop system provides both split-level global indexing as well as
record-level local indexing, and thus it can skip irrelevant data at both granularities.
Some techniques index only one attribute at a time (Dimensionality = 1), while
others allow indexing multi-dimensional data (Dimensionality = m). Techniques
like HadoopDB and Polybase Index inherit the multi-dimensional capabilities from
the underlying DBMS. E3 technique enables indexing pairs of values (from two
attributes), but only for a limited subset of the possible values. Most techniques
operate only on the HDFS data (DB-Hybrid = N), while HadoopDB and Polybase
Index have a database system integrated with HDFS to form a Hybrid system. In
most of the proposed techniques, the system’s admin decides on which attributes
to be indexed. The only exceptions are the LIAH index, which is an adaptive index
that automatically detects the changes of the workload and accordingly creates (or
deletes) indexes, and the E3 index, which automatically indexes all attributes in
possibly different ways depending on the data types and the workload. Finally, the
index structure is either stored in HDFS along with its data as in Hadoop++, HAIL,
LIAH, SpatialHadoop, and ScalaGist, in a database system along with its data as in
HadoopDB, or in a database system while the data resides in HDFS as in E3 and
Polybase Index. In the following, we present few of these techniques in more details.

Target Queries: Indexing techniques target optimizing queries that involve selec-
tion predicates, which is the common theme for all techniques listed in Table 1. Yet,

146 M.Y. Eltabakh

Table 1 Comparison of Hadoop-based indexed techniques

Technique Granularity | Dimensionality | DB-hybrid | Definition | Index location
Hadoop++ [27] Record 1 No Admin HDFS

HAIL [28] Record 1 No Admin HDFS

LIAH [65] Record 1 No System HDFS

E3 [34] Split 1 and 2 No System DB
SpatialHadoop [30] | Record/Split | m No Admin HDFS
ScalaGist [58] Record m No Admin HDEFS
HadoopDB [4] Record m Yes Admin DB

Polybase Split m Yes Admin DB

Index [38]

they may differ on how queries are expressed and the mechanism by which the selec-
tion predicates are identified. For example, Hadoop++, HAIL, and LIAH they allow
expressing the query in Java while also passing the selection predicates as arguments
within the job configuration. As a result, a customized input format will receive these
predicates (if any) and perform the desired filtering during execution. In contrast, E3
framework is built on top of the Jaql high-level query language [14], and thus queries
are expressed, compiled, and optimized using Jaql. An example query is as follows:

read(hdfs("docs.json"))
-> transform { author: $.meta.author,
products: $.meta.product,
Total: $.meta.Qty * $.meta.Price}
-> filter $.products == "XYZ";

Jaqgl has the feature of applying selection-push-down during query compilation
whenever possible. As a result, in the given query the £ilter operator will be
pushed before the transform operator, with the appropriate re-writing. The E3
framework can then detect this filtering operation directly after the read operation
of the base file, and thus can push the selection predicate into its customized input
format to apply the filtering as early as possible.

HadoopDB provides a front-end for expressing SQL queries on top of its data,
which is called SMS. SMS is an extension to Hive. In HadoopDB queries are
expressed in an identical way to standard SQL as in the following example.

SELECT pageURL, pageRank
FROM Rankings
WHERE pageRank > 10;

SpatialHadoop is designed for spatial queries, and thus it provides a high-level
language and constructs for expressing these queries and operating on spatial objects,
e.g., points and rectangles. For example, a query can be expressed as follows:

vww.ebook3000.con)

http://www.ebook3000.org

Data Organization and Curation in Big Data 147

Objects = LOAD "points" AS (id:int, Location:POINT) ;
Result = FILTER Objects BY
Overlaps (Location, Rectangle(xl, yl, x2, v2));

ScalaGist enables building Gist indexes, e.g., B+-tree and R-tree, over HDFS data.
A single query in ScalaGist can make use of multiple indexes at the same time. For
example, given a table 7' with schema {x, ..., (al, a2)}, where x is a one-dimensional
column, and (al, a2) is a two-dimensional column, the following query can use both
a B+-tree index (on x) and an R-tree index (on (al, a2)) during its evaluation:

SELECT *
FROM T
WHERE x < 100
AND 10 < al < 20
AND 30 < a2 < 60;

Finally, the Polybase system enables expressing queries using standard SQL over
HDFS data that are defined as external tables. First, users need to define the external
table as in the following example:

Create External Table hdfsLineItem
(1_orderkey BIGINT Not Null,
1_partkey BIGINT Not Null,

.)
With (Location = ’/tpchlgb/lineitem.tbl’,
Data_Source = VLDB_HDP_Cluster,
File_Format = Text_Delimited);

And then, a query on the external table can be expressed as follows:

SELECT *
FROM hdfsLineItem
WHERE 1_orderkey = 1;

1.2 Record-Level Non-adaptive Indexing

Hadoop++ [27] is an indexing technique built on top the Hadoop infrastructure.
Unlike other techniques that require extensive changes to Hadoop’s execution model
to offer run-time optimizations, e.g., HadoopDB [4, 5], Hadoop++ relies on aug-
menting the indexing structures to the data in a way that does not affect the execution

148 M.Y. Eltabakh

mechanism of Hadoop. All processing on the indexes, e.g., creating the indexes,
augmenting them to the data, and their access, are all performed through pluggable
user-defined functions (UDFs) that are already available within the Hadoop frame-
work.

The basic idea of the Hadoop++ index, which is referred to as a Trojan Index, is
illustrated in Fig. 1a. At the loading time, the base data is partitioned using a map-
reduce job. This job partitions the data based on the attribute to be indexed, i.e., if
attribute X is to be indexed then depending on the X’s value in each record, the
record will be assigned to a specific split Id. This assignment is performed by the
mapper function. On the other hand, the reducer function receives all the records
belonging to a specific split, and creates the trojan index corresponding to that split.
The index is then augmented to the data split to form a bigger split, referred to as
an indexed split as depicted in the figure. Each indexed split will also have a Split
Header (H), and a Split Footer (F), which together hold the metadata information
about each indexed split, e.g., the split size, the number of records, the smallest and
largest indexed values within this split, etc. In general, Hadoop++ can be configured
to create several trojan indexes for the same data on different attributes. However,
only one index can be the primary index according to which the data records are
sorted within each split. This primary index is referred to as the clustered index,
while the other additional indexes are non-clustered indexes.

At query time, given a query involving a selection predicate on one of the indexed
attributes, the processing works as follows. First, a custom InputFormat function
would read each indexed split (instead of the data splits), and consult the trojan
index for that split w.r.t the selection predicate. If there are multiple indexes, then the
appropriate index is selected based on the selection predicate. If none of the records
satisfies the query predicate, then the entire split is skipped and the map function
terminates without actually checking any record within this split. Otherwise, the
trojan index will point to the data records within the split that satisfies the query. If
the trojan index is clustered, then this means that the data records within the given
block are ordered according to the indexed attribute, and thus the retrieval of the
records will be faster and requires less I/Os.

It is worth highlighting that trojan indexes are categorized as local indexes mean-
ing that a local index is created for each data split in contrast to building a single
global index for the entire dataset. Local indexes have their advantages and disad-
vantages. For example, one of the advantages is that the entire dataset does not need
to sorted, which is important because global sorting is prohibitively expensive in big
data. However, one disadvantage is that each indexed split has to touched at query
time. This implies that a mapper function has to be scheduled and initiated by Hadoop
for each split even if many of these splits are irrelevant to the query.

Hadoop++ framework also provides a mechanism, called Trojan Join, to speedup
the join operation between two datasets, say S and T (Refer to Fig. 1b). The basic idea
is to partition both datasets (at the same time) on the join key. This partitioning can be
performed at the loading time as a pre-processing step. The actual join does not take
place during this partitioning phase. Instead, only the corresponding data partitions
from both datasets are grouped together in bigger splits, referred to as Co-Partition

vww.ebook3000.con)

http://www.ebook3000.org

Data Organization and Curation in Big Data 149

Header

‘ Indexed Split 7 N

A~ E o~ E fndex

|Data Split / |

1
I
I
1
1
I
I
\
~

Partitions
data on the
indexed key

e EEEER

(a) Hadoop—++ Trojan Index

/>< Data Split 1> Data Split / | { Data Split 2> Data Split 2 |

Co-group \ Co-group

I Y)
Header Info
for each split

Y
Co-partition Split without Trojan Index

T T
s M s M

<Data Split 1> |Data Split / | <Data Split 2> |Data Split 2 |
\ Co-group] \ Co-group)
I I
\)

Y
Co-partition Split Combined with Trojan Index

(b) Hadoop++ Trojan Join

Fig.1 Hadoop++ Trojan Index and Trojan Join

Splits. And then, at query time when S and 7 need to be joined, the join operation
can take place as a map-only job, where each mapper will be assigned one complete
co-partition split. As such, each mapper can join the corresponding partitions within
its split. Therefore, the join operation becomes significantly less expensive since the
shuffling/sorting and reduce phases have been eliminated (compared to the traditional
map-reduce join operation in Hadoop). As highlighted in Fig. 1b, the individual splits
from either of S or T’ (or both) within a single co-partitioned may or may not have a
trojan index on them.

Hadoop++ framework is suitable for static indexing and joining. That is, at the
time of loading the data into Hadoop, the system needs to know whether or not
indexes need to be created (and on which attributes), and also whether or not
co-partitioning between specific datasets need to be performed. After loading the

150 M.Y. Eltabakh

data no additional indexes or co-partitioning can be created unless the entire dataset
is re-processed from scratch. Similarly, if new batches of files arrive and need to be
appended to an existing indexed dataset, then the entire dataset need to be re-loaded
(and the entire indexes to be re-created) in order to accommodate for the new batches.

1.3 Record-Level Adaptive Indexing

The work proposed in [28, 65] overcomes some of the limitations of other previous
indexing techniques, e.g., [27, 46]. The key limitations include the following. First,
high creation overhead for indexes. Usually building the indexes requires a pre-
processing step, and this step can be expensive since it has to go over the entire
dataset. Previous evaluations have shown that this overhead is usually redeemed from
few queries, i.e., the execution of few queries using the index will redeem the cost
paid upfront to create the index. Although that is true, reducing the creation overhead
is always a desirable thing. The second limitation is the question of which attributes
to index? In general, if the query workload is changing, then different indexes may
need to be created (or deleted) over time. The work in [28, 65] addresses these two
limitations.

HAIL (Hadoop Aggressive Indexing Library) [28] makes use of the fact that
Hadoop, by default, creates three replicas of each data block—This default behavior
can be altered by the end-users to either increase or decrease the number of replicas. In
plain Hadoop, these replicas are exact mirror of each other. However, HAIL proposes
to re-organize the data in each replica in a different way, e.g., each of the three replicas
of the same data block can be sorted on a different attribute. As a result, a single file
can have multiple clustered indexes at the same time. For example, as illustrated in
Fig. 2, the 1*' replica can have each of its splits sorted on attribute X, the 2"¢ replica
sorted on attribute Y, and the 3"? replica sorted on attribute Z. These sorting orders
are local within each split. Given this ordering, a clustered trojan index as proposed
in [27] can be built on each replica independently.

HAIL also proposes a replica-aware scheduling policy. In plain Hadoop, since all
replicas are the same, the task scheduling decision does not differentiate between the
replicas. In contrast in HAIL the task scheduler needs to take the query predicates
into account while selecting the target replica to work on. For example referring
to Fig.2, given a query involving a selection predicate on attribute Y, then HAIL
scheduler will try to assign the map tasks to the splits of the 2" replica. Otherwise,
a full scan operation has to be performed on either of the other replicas because their
indexes cannot help in evaluating the given predicate.

LIAH (Lazy Indexing and Adaptivity in Hadoop) indexing framework [65] further
extends the idea of HAIL by adaptively selecting the columns to be indexed under
changing workloads, and also lazily building these indexes as more queries execute
in the system. LIAH can incrementally build a given index starting from indexing
few splits, and incrementally indexing more splits as more queries are executed until
the entire index is built. This strategy is based on the idea of piggybacking the index

vww.ebook3000.con)

http://www.ebook3000.org

Data Organization and Curation in Big Data 151

Each split is locally Each split is locally Each split is locally
sorted on X sorted on Y sorted on Z
Replica 1 Replica 2) Replica3} Trojan index on Z

<

Trojan index on ¥

i Three replicas of the
same block but of
different ordering

e EEEIEIER

Fig. 2 HAIL indexing framework

creation task over other user’s queries to reduce the overheads involved in the index
creation. For example, referring to Fig. 2, in LIAH it is possible that the system starts
without any indexes on the base data. And then, by automatically observing the
query workload, the system decides that attributes X and Y are good candidates for
indexing, e.g., many queries have selection predicates on either of these two attributes.
LIAH puts a strategy to incrementally make the splits of the 1/ replica sorted based
on X, and for each split where its data becomes sorted, its corresponding trojan
index is built. LIAH framework keeps track of which blocks have been indexed, and
which blocks need to indexed (which will be done progressively and piggybacked
over future users’ jobs). As more user jobs are submitted to the system, and the data
blocks are read anyway, additional blocks can be indexed. In this way, the overheads
involved in the index creation are distributed over many user queries.

1.4 Split-Level Indexing

Most of the previous indexing techniques proposed over the Hadoop Infrastructure try
to mimic the indexes in traditional databases in that they are record-level indexes. That
is, their objective is to eliminate and skip irrelevant records from being processed.
Although these techniques show some improvements in query execution, they still
encounter unnecessary high overhead during execution. For example, imagine the
extreme case where a queried value x appears only in very few splits of a given file.
In this case, the indexing techniques like Hadoop++ and HAIL would encounter the
overheads of starting a map task for each split, reading the split headers, searching
the local index associated with the split, and then reading few data records or directly

152 M.Y. Eltabakh

terminating. These overheads are substantial in a map-reduce job, and if eliminated
can improve the performance.

The proposed E3 framework in [34] is based on the aforementioned insight.
Its objective is not to build a fine-grained record-level index, but instead be more
Hadoop-compliant and build a coarse-grained split-level index to eliminate entire
splits whenever possible. E3 proposes a suite of indexing mechanisms that work
together to eliminate irrelevant splits to a given query before the execution, and thus
map tasks start only for a potentially small subset of splits (See Fig.3a). E3 inte-
grates four indexing mechanisms, which are: split-level statistics, Inverted indexes,
materialized views, and adaptive caching, each is beneficial under specific cases.
The split-level statistics are calculated for each Number and Date field in the dataset.
These statistics include the min and max values of each field in each split, and if this
min-max range is very sparse, then the authors have proposed a domain segmenta-
tion algorithm to divide this range into possibly many but tighter ranges to avoid
false positives (a false positive is when the index indicates that a value may exist in
the dataset while it is actually not present). The inverted index is built on top of the
String fields in the dataset, i.e., each string value is added to the index and it points to
all splits including this values. By combining these two types of indexes for a given
query involving a selection predicate, £3 can identify which splits are relevant to
the query, and only for those splits a set of mappers will be triggered.

The other two mechanisms, i.e., materialized views and adaptive caching, are
used in the cases where indexes are mostly useless. One example provided in [34] is
highlighted in Fig. 3b. This example highlights what is called “nasty values”, which
are values that are infrequent over the entire dataset, but scattered over most of the
data splits, e.g., each split has one or few records of this value. In this case, the
inverted index will point to all splits, and becomes almost useless. E3 framework
handles these nasty values by coping their records into an auxiliary materialized
view. For example, the base file A in Fig.3b will now have an addition materialized
view file stored in HDFS that contains a copy of all records having the nasty value
v. Identifying the nasty values and deciding on which ones have a higher priority to
handle has been proven to be an NP-Hard problem, and the authors have proposed
an approximate greedy algorithm to solve it [34].

The adaptive caching mechanismin E3 is used to optimize conjunctive predicates,
e.g., (A =x and B = y), under the cases where each of x and y individually are
frequent, but their combination in one record is very infrequent. In other words, none
of x or y are nasty values, but their combination is a nasty pair. In this case, neither
the indexes nor the materialized views are useful. Since it is prohibitively expensive
to enumerate all pairs and identify the nasty ones, the E3 framework handles these
nasty pairs by dynamically observing the query execution, and identifying on-the-fly
the nasty pairs. For example, for the conjunctive predicates (A = x and B = y), E3
will consult the indexes to select a subset of splits to read. And then, it will observe
the number of mappers that actually produced matching records. If the number of
mappers is very small compared to the triggered ones, then E3 identifies (x, y) to be
a nasty pair. Consequently, (x, y) will be cached along with pointers to its relevant
splits.

vww.ebook3000.con)

http://www.ebook3000.org

Data Organization and Curation in Big Data 153

For “nasty” value pairs
Adaptive Caching

" E3Indexing

For number & date fields For “nasty infrequent” values

Auxiliary
Materialized Views

Split-level statistics
(min, max,
domain-segmentation ranges)

3

For _string fields
Global Inverted Index

(a) E3 Indexing Framework

i File A :
v appears infrequently in i 1
many splits (nasty atom) V| e v, v, ..} b
Split-Level i IRy | {v, ..} E
1
Inverted Index ' Split1 Split2 Split3 Split N |

WVA123, LN NO\ LT i LTl

Building a materialized view
including all records containing v

i Materialized View over A
1

| i |
1 1 1
1 1 I 1
i ! ! {v, .} {v, ..} 1
: I 1 {v, ...} :
: I [N I R pesvvens) !
i i i i
! 1 't Split 1 SplitM
1 Split 1 Split 2 Split 3 Split N | e
tTTTTTTTTTTTTT T o T m T T T (b) Using materialized view to answer
(a) Using inverted index to answer Query Q(v): Query Q(v): Read only M splits
Read all splits containing value v (up to N) instead of N (M << N)

(b) E3 Inverted Indexes vs. Materialized Views

Fig. 3 E3 indexing framework [34]

1.5 Hadoop-RDBMS Hybrid Indexing

There has been a long debate on whether or not Hadoop and database system can
co-exist together in a single working environment, and whether or not this strat-
egy is beneficial. There are several successful projects that built such integration
[4, 13, 36-38]. HadoopDB is one of the early projects that brings the optimizations
of relational database systems to Hadoop [4]. HadoopDB proposes major changes
to Hadoop’s infrastructure by replacing the HDFS storage layer by a database man-
agement layer. That is, the Data Node and Task Tracker on each slave node in the
Hadoop’s cluster will be running an instance of a database system. This database
instance replaces the HDFS layer, and thus the data on each slave node are stored
and managed by the database engine. HadoopDB will push as much of work as
possible to the database engine, and as a result all indexing capabilities and query

154 M.Y. Eltabakh

optimizations of database systems automatically become accessible. However, the
drawbacks of HadoopDB is that the management of dynamic scheduling and fault
tolerance becomes more complicated. In addition, the integration of structured and
un-structured data in the same workflow becomes tricky to perform.

Polybase [38] is another system that enables the integration of Hadoop and data-
base engines. In Polybase, the HDFS datasets are defined within the database system
as external tables. And then, users’ queries can span both the data stored in the DBMS
and the data stored in HDFS’s external tables. At execution time, part of the query
can be translated to map-reduce jobs, while another part is SQL-based. The data flow
between the two systems through custom InputFormats and Database Connectors.
However, without efficient access plans to the data in the external tables, these tables
can easily become a bottleneck and the entire execution plan slows down. The work
in [38] proposes an indexing technique, called Polybase Split-Indexing, that creates
B+-Tree indexes on the HDFS datasets. These indexes reside within the database
system. These indexes can be leveraged in different ways. For selection queries, they
can be used as early split-level filters to identify the relevant splits in HDFS. For
join queries, they can be used for performing a semi-join within the database system
before retrieving HDFS’s data. Moreover, they can be used as caches of hot HDFS
data within the database system, and if a query touches only the attributes within the
index, then the entire processing can be performed inside the database.

2 Data Organization and Layout Techniques

2.1 Overview

One of the dominant factors in query performance is the data layout, which determines
the structure and organization of the data in the file system. Data organization is
a well-known and effective strategy in boosting performance in database systems
that has been studied for decades. However, not all techniques are transferable to
the context of big data and the Hadoop infrastructure. Even if the same basic idea
can be transferred to Hadoop, the technical details and challenges would be different
because the characteristics of the data and the infrastructure are different as explained
in Sect. 1.1.

At the conceptual level, both of the data organization (or re-organization) and the
indexing strategies presented in Sect. 1 have the same objective, which is avoiding a
full scan over the data whenever possible, and touching only a subset of the records.
However, at the design level, the two strategies are different. Indexing techniques
build auxiliary structures of special properties, called indexes, in addition to the base
data, and then at query time these auxiliary structures are consulted first to identify
the relevant subset of records to the query. In contrast, re-organization and data layout
techniques may or may not create auxiliary structures.

vww.ebook3000.con)

http://www.ebook3000.org

Data Organization and Curation in Big Data 155

Post-processing new Re-organization with no
auxiliary data new auxiliary data

\ \
[Vo

CountryCode
|

. Complexworkflow v

ve @ =

us

CA
Intermediate Dataset D with no
Dataset T,) organization Dataset D’ (D after
Intermediate INtermediate partitioning it on
Dataset T, Dataset T, CountryCode Attribute)

Fig. 4 Data organization with and without auxiliary data creation

In some cases as illustrated in Fig. 4, the base data is re-organized in a certain way
(usually offline) to enable better query evaluation in the future. For example, the base
dataset D in Fig. 4 has no specific organization or ordering for its records. As a result,
aquery involving a selection predicate over the CountryCode attribute would have
to scan all records in D. However, if D is re-organized in the form of dataset D’,
where the records are partitioned based on the CountryCode values (R.H.S of
Fig.4), then the same query would execute much faster on D’ since the query can
now scan only the relevant partition(s). Depending on the application needs, the base
data D may or may not be kept after the creation of D’.

In some other cases, data organization may involve building auxiliary datasets
(in addition to the base data), where these datasets are processed or massaged in a
certain way. For example, given the base dataset D in Fig.4 and after applying a
complex workflow on D, it can be beneficial to keep not only the final results of the
workflow, but also the intermediate data at specific points, e.g., storing the datasets
Ty, T, and T3 as illustrated in L.H.S of Fig.4. This is because these datasets may
have interesting properties that may help speeding up future queries. In this case,
datasets T1, T», and T usually do not replace D and it remains stored in the system.
In the following, we present in more details several data organization techniques,
which are proposed in the context of the Hadoop infrastructure.

2.2 Result Materialization and Caching Techniques

Result materialization is a known technique from relational databases where it is also
referred to as materialized views [76]. In relational databases, materialized views are
typically defined by the database admin in an explicit way through a SQL command.

156 M.Y. Eltabakh

Once the materialized view is created, the key challenge is how to maintain this view
up to date. It is a challenging task especially because the base tables on which the
view is built may change in anyway through insertions, updates, or deletes [50, 75].
Another challenge is that given a query, the system needs to decide whether or not
the existing materialized views can optimize this query and in which way. Several
techniques in the context of big data and the Hadoop infrastructure have inherited
the same concept of materialized view but with some variations to match the new
environment. Examples of these techniques include [16, 31, 60]. However, different
from database systems, these techniques do not have to deal with maintaining the
materialized results since in the context of big data, the data tuples usually do not
change. However, they still monitor the cases where the base files got deleted or new
files are appended to the existing base data. In these cases, the materialized results
are deleted as well.

The ReStore system [31] creates possible materialization points while executing
a workflow of map-reduce jobs expressed in Apache Pig. Similar to the L.H.S of
Fig. 4, the materialization points can be at any stage within the workflow. The system
allows the materialization of the results generated after each job within the workflow,
or even at a finer granularity where the materialization may take place within the
same job, e.g., store a map output within a map-reduce job. Since materializing
everything is prohibitively expensive, ReStore deploys several heuristics to decide
on which materialization points to add within a given workflow. Ultimately, the
system maintains a repository of these materialized results in HDFS along with
metadata information on each materialized result. This metadata includes the query or
workflow structure produced the result, the dependent base files, and access statistics.
And then, given a subsequent query or workflow of map-reduce jobs, the system
optimizes this workflow based on the stored materialized results. As illustrated in
Table 2, ReStore enables the re-usability at the workflow level, a single job, or a
subset of a job.

The MRShare system [60] is different from ReStore in that the former system
requires all queries targeting optimization to be submitted to the system at once
in the form of a single batch. MRShare will then build a single optimized query

Table 2 Comparison of Hadoop-based sharing techniques

Technique Granularity Knowledge of Sharing opportunities
Workload

ReStore [31] Across workflows Dynamic Workflow, one job,
partial job

MRShare [60] Single batch Known in advance Scan, map output, map
function

Multi-query [70] Across batches Dynamic Scan, map output,
reduce input

HaLoop [16] Single iterative job Known in advance Map input, reduce
input, reduce output

vww.ebook3000.con)

http://www.ebook3000.org

Data Organization and Curation in Big Data 157

plan for their execution. During the execution of this batch, intermediate results can
be shared across multiple queries. Yet, these intermediate results are not kept in the
system beyond the execution of the given batch. Therefore, in some sense the ReStore
and MRShare systems are complementary to each other. MRShare proposes several
sharing opportunities specific to the MapReduce computing paradigm as indicated in
Table 2. These opportunities include: (1) Sharing Scan, in which two jobs accessing
the same file in the same key-value pair formats can share the scan over this file,
(2) Sharing Map Output, in which the output stream from the mapper function of
two jobs can be merged into one stream if they produce the same key-value pair
types. In this case, each output record will be tagged with a special tag indicating
whether it belongs to either or both jobs. And (3) Sharing Map Function, in which
the map function of both jobs can be identical and can be shared. As an extension to
MRShare, the work proposed in [70] generalizes the grouping strategy of MRShare
to identify better sharing opportunities, and it also enables materialization of results
and re-usability across batches.

HaLoop [16] is another system that enables caching and re-usability of results
in MapReduce. However, HaLLoop provides such features within a single iterative
workflow. These workflows are very common in data mining techniques such as Page
Rank, K-means clustering, and graph analysis. These techniques are usually iterative
in nature, and they may need to access the same data again and again across iterations,
which creates opportunities for sharing and re-using of results from previous itera-
tions. As presented in Table 2, HalLoop proposes extensions to the Hadoop framework
to enable the caching and re-usability at different stages including: (1) Map Input
Cache, in which a mapper retrieving remote data from another DataNode will cache
this data locally to re-use it in subsequent iterations, (2) Reduce Input Cache, in which
reducers may cache their inputs from the invariant dataset (the dataset that does not
change across iterations) and re-use that in subsequent iterations, and (3) Reduce
Output Cache, which allows reducers to compare the results from the current and
previous iterations without remote data access. Not all of the three caching types
are useful in all iterative jobs, and it depends on the nature of the job. For example,
a PageRank job assigns a rank for every webpage depending on the ranking of the
pages it points to, and the ranks of those pages iteratively depend on their references
(PageRank is explained in details in [16]). In this job type of job, it can make use
of the Reduce Input Cache and Reduce Output Cache, but not Map Input Cache.
HalLoop is designed to optimize a single iterative job, and thus the caches are purged
after the completion of the job.

2.3 Pre-processing and Colocation Techniques

CoHadoop [33] is a system that re-organizes the data in place without creating aux-
iliary datasets. The key idea of CoHadoop is to extend Hadoop’s internals, more
specifically the logic of the NameNode, to allow more informative decisions regard-
ing the storage location of each data block. Typically, by default, each data block in

158 M.Y. Eltabakh

Locator 1

(a) Files are blindly distributed (b) Files are colocated to account
over the DataNodes for the application’s semantics

Fig. 5 Data colocation in CoHadoop

HDFS is replicated three times. The NameNode decides to which DataNode each
replica of a given block should go to. This procedure is referred to as the Data Place-
ment Policy. In the earlier versions of Hadoop (before Hadoop version 1.x.x), the
placement policy is built-in within Hadoop and it aims for a single objective, which
is load balancing. This means that each DataNode should have approximately equal
storage load. Clearly, this policy is blind to the higher-level application semantics,
and the decision may not align with the application’s best interest. For example, As
indicated in Fig. 5, the two files A and B can be semantically related and frequently
accessed together, e.g., one file is a data file while the other one is its associated
index, the two files usually join together, etc. Similarly, the two files C and D are
semantically related. As shown in Fig. 5a, plain Hadoop is blind to such relationships
and may randomly put un-related files together.

CoHadoop provides an interface through HDFES that enables applications to pro-
vide hints to HDFS regarding the relationships among the uploaded files. These hints
can be viewed as simple tokens (or locators), where all files having the same token
are assumed to be related, and now CoHadoop will try to colocate them in the same
set of nodes. Referring to Fig.5, while the four files are being uploaded (or gen-
erated), the application can assign files A and B the same token, while C and D
will be assigned a different token. As a result, as shown in Fig. 5b, CoHadoop will
try to colocate related files together on the same DataNotes. A typical application of
CoHadoop is the join of two data files, say Customers and Transactions. Each file get
partitioned on the join key using a map-reduce job, and then corresponding partition
pairs from both files is assigned a specific locator, and this assignment is performed
by the reduce function.

It is worth highlighting that the newer versions of Hadoop (version 1.x.x and
later) enable applications to plugin an application-specific logic for the placement
policy function so that, to some extent, applications can control where to store their

vww.ebook3000.con)

http://www.ebook3000.org

Data Organization and Curation in Big Data 159

data. One of the issues with CoHadoop is load balancing. That is, colocating many
files together may negatively affect load balancing and few DataNodes may become
heavily loaded. However, It has been studied in [33] that as long as new tokens
are frequently introduced into the system, the overall data distribution will not be
significantly affected. Moreover, the proposed colocation functionality is a best-
effort approach meaning that the system does not have to enforce it if the distribution
becomes skewed.

Trojan Join technique proposed in [27] is another example of data pre-processing
and organization (Refer to Sect. 1.2). In Trojan Join, two datasets S and T are both
pre-partitioned on the join key using a single map-reduce job. And then, each pair of
corresponding partitions are stored together to form one logical split referred to as
Co-Partition Splits. Certainly, each pair of partitions can be colocated on the same
DataNode to speedup their retrieval. More details on Trojan Join technique can be
found in Sect. 1.2.

The work in [46] has also studied the advantages of pre-partitioning the data on the
join performance. For example, two datasets D; and D, can be both pre-partitioned
on the join column, and at query time, a map-only job can join these two datasets
where each mapper will read a pair of corresponding partitions; one from D; and
one from D,. In general, the pre-partitioning has shown to speedup join queries
between 5x and 10x as studied in [27, 33, 46]. The colocation has shown to further
add between 2x and 4x speedup on top of the pre-partitioning [33].

2.4 None Row-Oriented Storage Layouts

The standard layout of the data records in HDFS, or more specifically within
each block of HDFS is the Row-Oriented layout. In this layout (See Fig.6a), the
data blocks are horizontal partitions of the data file, and each block consists of a
set of entire data records. And then, within each block the records are organized

\ ’\90\9
o

Block 2

Block 1 g Block 1 M
g e Block 2 m

(a) Row Layout (b) Column Layout (¢) PAX Layout

Fig. 6 Different types of data layouts

160 M.Y. Eltabakh

row-by-row as illustrated in Fig. 6a. This layout has a big advantage if the access
pattern requests the entire records along with all their columns. This is because there
is no overhead in constructing each record. However, the disadvantage is that if the
data file has many columns, and typical queries are only interested in few columns
each time, then there is a significant I/O waste due to reading un-needed data.

The Column-Oriented layout (Fig.6b) is designed to overcome this limitation.
This layout is proposed in several techniques including [12, 35, 48]. In this layout,
the data blocks are vertical partitions of the data file. Depending on the number of
records in the file and the HDFS block size, one HDFS block may contain sub-
column, one column, or many columns. In some techniques [35], each column is
stored as one file with varying number of data blocks depending on the number of
values. The column-oriented layout is suitable for workloads in which each query
accesses few columns while the data file originally has very large number of columns.
In this case, only the columns of interest to the query are touched without wasting any
I/O accessing the other columns. In addition, the column-oriented layout allows for
efficient compression of the data. That s, the values within one column are of the same
type, and tend to be highly compressible unlike the row-oriented layout. It is worth
mentioning that writing and accessing column-oriented data only requires special
output and input formats without the need for changing the internals of Hadoop.
However, the disadvantage of this layout is that constructing an entire record (or many
columns of each record) turns out to be an expensive process. Especially because
different columns are most probably located on different DataNodes in Hadoop.
Therefore, constructing records (if needed) would involved high communication
and processing overheads. It has been studied in [47] that if a query is referencing
a number of column around 13 or more, then the column-oriented layout performs
worse than the row-oriented layout.

The PAX (Partition across) layout (Fig. 6¢) is proposed to overcome the limitations
of both previous layouts, and hopefully combining their advantages [21]. In this
layout, the data blocks are horizontal partitions of the data file as in the row-oriented
layout. Yet, the difference is that within each data block, the data is arranged in
column-oriented layout. As a hybrid layout, PAX has several advantages including
it avoids expensive tuple construction since the values contributing to one record
are usually in the same data block, it does not add unnecessary network overhead,
and it can still avoid reading segments of the data blocks that are irrelevant to the
query at hand. In most workloads, PAX layout outperforms the row-oriented and
column-oriented layouts. However, under workloads in which most of the columns
are accessed by most of the queries, then PAX adds unnecessary CPU overhead for
record construction, such overhead adds up for large files of billions of records.

The Trojan layout proposed in [47] differs from the previous approaches in three
aspects. First, it proposes an algorithm to dynamically decide on the column group-
ings, which are groups of relevant columns that if stored together would enhance
the performance of the majority of queries. Second, as in plain Hadoop, each data
block is replicated three times, but in Trojan layout, each replica may have different
layout—although it is the same content. And third, a query will be routed to access
specific replica depending on the query’s access pattern.

vww.ebook3000.con)

http://www.ebook3000.org

Data Organization and Curation in Big Data 161

In summary, data organization and layout is critical for improved query perfor-
mance. The different layouts and organizations covered in this section in the context
of Hadoop have shown more than 10x improvement over naive solutions under differ-
ent scenarios. Certainly, there is no single optimal layout as it significantly influenced
by the query workload. As the workload changes, the data layout may also need to
be changed accordingly.

3 Non-traditional Workloads in Big Data

3.1 Overview

There are various ways to categorize queries (and workloads) according to different
criteria. For example, one criteria considers the response time of queries, and based
on that queries can be categorized as being interactive or batch queries. Another
criteria considers the amount of data being touched by a query, and the granularity
of the retuned results, e.g., whether it is tuple oriented or aggregation and mining
oriented, and based on that queries can be categorized as OLTP (Online Transaction
Processing), or OLAP (Online Analytical Processing). Another important criteria—
which is our focus in this section—considers the frequency of queries’ execution
including how many times and how frequently the queries execute (See Fig.7). On
one end of this categorization spectrum are the ad-hoc queries, which are queries that
are submitted once, get executed by the system, and then discarded (forgotten) by
the system. This is the typical type of queries in big data, and more specifically the

Recurring

/ Continuous
! Queries

H

H

Queries

Ad-Hoc
Queries

Execute once Execute periodically Execute frequently

Disk-based Disk-based Memory-based

Batch processing Batch incremental processing Real-time processing

Static Data Slow Evolving Data Fast Evolving Data

No window semantics Window semantics Window semantics

Single-execution Multi-execution Multi-execution
optimization ‘., optimization K optimization

Fig. 7 Spectrum of ad-hoc, recurring, and continuous query types

162 M.Y. Eltabakh

Hadoop infrastructure. On the other side of the spectrum are the continuous queries,
which are queries that are registered in the system before execution, live long in
the system, and get executed frequently according to user-defined parameters. The
characteristics of the ad-hoc and continuous queries are fundamentally different from
each other, and thus the underlying systems and infrastructures supporting them are
also significantly distinct as presented in Fig.7.

Ad-hoc queries are queries that are submitted to the system in an ad-hoc way
meaning that the system has no prior knowledge about them, and there is no mech-
anism to expect whether or not a given query will execute again, or what will be
submitted next. When an ad-hoc query is submitted, the system tries to find the best
execution plan to execute this query in isolation from any other queries. In the ad-hoc
query model, the underlying data is assumed to be relatively static and does not fre-
quently change. A typical example of the ad-hoc queries over big data infrastructures
are the traditional Hadoop map-reduce jobs.

The opposite to the ad-hoc queries are the continuous queries, which are queries
that are registered in the system before execution, and hence the system knows
many details about these queries, and it can also learn more characteristics about
these queries over time. Continuous queries are frequently executed by the system—
usually in a high frequency—and the execution is initiated by a triggering mechanism,
which can be a time-based (e.g., every 10min re-executed the query), event-based
(e.g., whenever a sensor’s reading exceeds a specific threshold re-execute the query),
or count-based (e.g., when 1000 tuples are collected re-execute the query). Since
continuous queries are long lived in the system, shared execution and global execution
plan(s) are typically used to efficiently execute many queries altogether [2, 3]. In the
continuous query model, the underlying data is assumed to be streaming data that is
arriving to the system in a very high rate and continuously changing. Each execution
of a continuous query considers only a limited segment of the streaming data (known
as window), which moves (a.k.a slides) over the data from one execution to another.
A typical example of the continuous queries are the queries in stream management
systems [2, 3], and complex event processing (CEP) systems [64, 74].

Big data applications were initially focusing on ad-hoc disk-based queries, e.g.,
the traditional map-reduce jobs. Yet, as the applications are getting more diverse
and the analytics horizon expands, there is recent interest in supporting continu-
ous queries over Hadoop-like infrastructure (The R.H.S of Fig. 7). Moreover, recent
big data applications have introduced a third type of queries, which we refer to as
recurring queries. Recurring queries are very common in most Hadoop-based appli-
cations, and big data applications in general. They appear in numerous applications
that periodically generate and collect huge volumes of fresh data that must be peri-
odically integrated into complex analytics. Examples of these applications include
log processing, clickstream analysis, news feed updates, and social network services.
Recurring queries are analytical queries that periodically execute over data subsets
identified by a sliding window on the evolving data. For example, executing a query
at the end of each day and processing the last n hours, days, weeks, or even months
worth of data, depending on the granularity of interest.

vww.ebook3000.con)

http://www.ebook3000.org

Data Organization and Curation in Big Data 163

As presented in Fig.7, recurring queries have distinct characteristics from both
ad-hoc and continuous query types. In fact, recurring queries combine properties
from both worlds in an interesting way. For example, recurring queries are similar
to continuous queries in that both are long-lived, re-execute periodically over the
incoming data, have the notion of sliding windows to limit of the scope of the data to
be processed, and process (possibly) large segments of overlapping data. However,
they fundamentally differ in that recurring queries do not always mandate real-time
millisecond processing. Instead, they tend to have a larger granularity of execution,
e.g., they may execute once every hour or every day. Also, they may return the
results within a certain period of time, e.g., few minutes to a couple of hours. Hence
a query may remain idle for longer periods of time. Moreover, recurring queries are
inherently data-intensive disk-based queries as they may process TBs of disk-resident
data in each execution. In contrast, stream processing systems are optimized mostly
for main-memory realtime processing.

On the other side of the spectrum, ah-hoc batch-processing systems such as
plain Hadoop, are well-designed for scalability and disk-based processing—both
are shared properties for recurring queries. However, these systems lack the notion
of recurring execution, sliding windows, and overlapping data sets. Hence they fall
short in providing backbone support for recurring queries and optimizing the execu-
tion according to their characteristics.

Example Queries: In the following, we illustrate few examples queries under each
of the three categories highlighted in Fig.].

Ad-hoc Queries: Any Hadoop job given in isolation from any other job is con-
sidered as an ad-hoc query. The standard Word Count query is a typical ad-hoc
query. Transactional log processing queries that aggregate transactions by cus-
tomers, items, or regions are all examples of ad-hoc queries. These queries have
the characteristics of the L.H.S column in Fig.7 including that they execute only
once, they read their data from disk (the distributed file system), the input data to a
query is static and does not change, and their is no notion of window semantics.

Recurring Queries: In log processing, an aggregation query may need to execute
every 12 or 24 h (the frequency of execution), and in each execution it processes
and aggregates the log data from the recent past (the window of execution), e.g., the
last 10 days or last month, over different dimensions such as age, country, gender
to detect emerging patterns. This query has characteristics of the middle column in
Fig. 7 including that the system is aware of its execution frequency, the input data is
read from disk (the distributed file system), the query execution may still take long
time, e.g., hours, and thus it is viewed as batch execution, and the query must have the
notion of a window to define the scope of each execution. Since with each execution,
the window slides over the data, there can be significant overlap between consecutive
executions, and thus incremental evaluation is critical for recurring queries.

Continuous Queries: Online aggregation is an example of continuous queries
where continuous real-time update of results is needed. Compared to recurring
queries, in online aggregation, the window of execution is usually very small, e.g.,
few hours, and execution’s frequency is usually higher, e.g., few minutes. Given this

164 M.Y. Eltabakh

small granularity, the data under processing is usually kept in memory, and also
passed from the mapper phase to the reducer phase (within a single Hadoop job) or
even across jobs through the main memory as well.

In this section, we will cover several techniques proposed in literature for the non-
traditional workloads in Hadoop, namely the recurring workloads and the online
analytics.

3.2 Techniques for Recurring Workloads

As mentioned previously, a recurring query is a query that repeats periodically.
Therefore, there are possibilities for new optimization opportunities to optimize such
queries if treated as a first-class citizen. A naive approach for executing a recurring
query is to manually re-issue the query every time it needs to be executed. How-
ever, this naive approach lacks both convenience and system-level optimizations. To
overcome these limitations, several systems have been proposed such as Oozie [10],
Nova [61], and Redoop [51, 52].

Apache Oozie [10] is a workflow scheduler that provides partial support by
enabling developers to write scripts for automatic scheduling of jobs. Using this,
end-users would no longer need to re-issue the recurring query over and over manu-
ally, but instead have it kicked off in an automated fashion. The Nova system [61] is
also a workflow management system on top of Pig/Hadoop. It offers scheduling of
job and queries such that a recurring query can be automatically triggered when an
event takes place. Nova forms the execution flow as a directed graph, where the nodes
represent either dataset or analytical tasks, and edges represent the flow of the data.
The edges are annotated with instructions that guide the execution. For example, an
analytical task may receive in each execution a delta changes (new data) or an entire
data set including the changes. Similarly, the output from an analytical task can be
either delta to the previous results or a complete new results. To support continu-
ous and recurring workloads, the analytical tasks can have different types to enable
incremental processing. Examples of these types are Stateless Incremental, Stateless
Incremental with Lookup Table, or Stateful Incremental. Nova also provides several
triggering mechanisms to trigger the execution of a given task. These mechanisms
are either data-driven, e.g., when a new data arrives, time-driven, e.g., every one
hour, or cascade, e.g., when another task finishes.

Both Oozie and Nova work on top of Hadoop without the need to change any
of Hadoop’s internals or its execution engine. This approach has advantages and
disadvantages. The advantages are that the system design is relatively easier as it
does not involve altering Hadoop’s behavior, and also the portability since these
systems can seamlessly work on different versions of Hadoop. However, the main
disadvantage as pointed in [51] is the lack of system-level optimizations (See Fig. 8).
Basically, in both Oozie and Nova, Hadoop infrastructure is unaware of the recurring
nature of the submitted queries, e.g., it is unaware of the window semantics, the
possible overlapping of the data being re-processed by consecutive execution, etc.

vww.ebook3000.con)

http://www.ebook3000.org

Data Organization and Curation in Big Data 165

Significant overlapping Execution 1
between executions ' Execution 2

Execution 3

t 't
2 3 > Time

Window 1 New data

k_\.

X New data

Window 2 !

Expired data

———| Window 3

Expired data

Fig. 8 Consecutive executions of a recurring query

For example, referring to Fig. 8 which shows three consecutive executions of one
recurring query at times fy, f,, and t3, and each execution processes a window of data
configured by the query, e.g., the last 30 days of data. As the time moves forward,
Execution 2 will be triggered at time #, to process Window 2. It is clear that there is a
significant amount of work that may be re-done if the overlapping segments between
Window 1 and Window 2 is ignored. And the same applies for Window 3, and so on.
The Redoop system [51] has proposed extensions to Hadoop that enable reg-
istering these recurring queries inside Hadoop. And then, by analyzing the query
semantics and configuration parameters, e.g., the window size, and the sliding fre-
quency, it provides various types of query optimizations. For example, it can divide
each window into smaller units, called panes, which become the unit of processing.
The results from each pane can be shared across possibly many windows of execu-
tions, and hence redundant execution is avoided. For example, in Fig. 8, Window 1 is
divided into three panes, where pane I evaluation belongs only to Window 1, pane
2 evaluation is shared between Window I and Window 2, while pane 3 evaluation
is shared between the three windows. Redoop also offers caching strategies in the
local file system of the DataNotes that allows future executions to efficiently make
use and build on top of previous execution results. Redoop system focuses on opti-
mizing a single recurring query. As an extension to Redoop, the Helix system [52]
proposes different mechanisms to enable efficient sharing of execution among mul-
tiple recurring queries possibly having different configuration parameters such as
different window sizes, sliding frequencies, and quality of service requirements.

3.3 Techniques for Fast Online Analytics

Plain Hadoop is designed to suit a wide range of applications, and thus several of its
design choices aim for flexibility and simplicity instead of performance. Therefore

166 M.Y. Eltabakh

by default, Hadoop is suitable for fast online analytics. Several techniques and opti-
mizations have been proposed to overcome this limitation of Hadoop and remove
many of its bottleneck operations [8, 11, 23, 53].

The HOP (Hadoop Online Prototype) system modifies Hadoop to support con-
tinuous and online analytics [23, 24]. A key bottleneck in Hadoop that HOP has
resolved is the materialization point between mappers and reducers. In Hadoop, the
output from the mappers within a map-reduce job is an intermediate data that is mate-
rialized and stored in the local file system of the DataNodes running the mappers.
And then, when reducers start, each reducer has information on which files to access
and bring from the remote mapper nodes to its local node. The materialization is an
important step to simplify the communication between mappers and reducers and
also to the fault tolerance mechanism. However, it slows down the processing and it
cannot be part of an infrastructure targeting fast online analytics.

HOP proposes to replace the built-in materialization step with a pipelining mech-
anism where the data flows from mappers to reducers through main memory buffers.
Mappers are extended to push (pipeline) their output records to reducers using estab-
lished TCP connections between each mapper and all reducers. For efficiency, map-
pers will not push each record as it get produced, instead they will buffer a specific
number of records in main memory, possibly apply a combiner over the buffer, and
once the pre-defined threshold is reached, the buffer is pushed to the reduce function.
Given this change of the communication channel between the map and reduce phases,
HOP has re-visited the fault tolerance mechanism to ensure seamless recovery under
failures. Under these changes, HOP has shown to enable fast online analytical queries
on Hadoop, e.g., online aggregations, and also enable continuous queries. That is, a
set of mappers and reducers are continuous running to consume newly arriving data,
pipeline the outputs from mappers to reducers, and produce continuous stream of
results (Table 3).

The SOPA system proposed in [53] also enables one-pass analytics over Hadoop.
The system relies more on in-memory processing, reading the input data only
once, and incrementally processing new batches of arrived data. One of the built-in

Table 3 Comparison of Hadoop-based indexed techniques

Technique | Primary Pipelining | Shuffling phase Analytics
storage
HOP [23] HDEFS Yes Disk-based sorting Incremental and
non-incremental

SOPA [53] | HDFS Yes Memory-based Incremental and
hashing non-incremental

M3 [8] Memory Yes Memory-based Incremental
hashing

M3R [66] Memory Yes Memory-based Incremental
hashing

C-MR [11] | Memory Yes Memory-based Incremental
sorting

vww.ebook3000.con)

http://www.ebook3000.org

Data Organization and Curation in Big Data 167

operations in Hadoop that has been replaced is the sort-merge operation, which is
part of the shuffle/sort phase between the mappers and the reducers. Sorting the data
is performed in the shuffle/sort phase to group all map outputs records having specific
key k altogether and passing that to a single reducer instance. However, it is well
known that sorting is an expensive process—especially when performed over very
large datasets. SOPA proposes to replace the sort-merge operation with another less-
expensive operation, which is a hash-based partitioning operation. The hash-based
operation would still achieve the same goal, which is grouping all records of the
same key together, but without encountering the high overhead. Another advantage
of the hash-based operation is that it is not a blocking operation, meaning it does not
need to collect all the input before it starts producing output. Therefore, it can be
easily pipelined and it can leverage in-memory processing more easily.

Several types of hash functions have been proposed in SOPA depending on
whether or not the reduce function can be incrementally computed. If incremen-
tal computation is possible, e.g., in the case of simple aggregates such as sum() and
count() functions, then reducers can receive partial inputs, incrementally update their
state, and then consume more inputs. This flow enables better pipelining between
mappers and reducers, yet it requires an extended interface for reducers that allows for
creating and maintaining a state for each key in the reduce function. The design tries
to keep as many states as possible in memory such that their incremental updates
become more efficient. However, if that is not the case, the paper has presented
another mechanism, referred to as dynamic hashing, to adaptively select a subset of
key states to keep in memory while moving the other states to local disk.

Other techniques have been proposed to alter Hadoop’s disk-based and batch
processing nature to be streaming nature. The M3 system [8] is designed to replace
the HDFS layer in data and rely only on main-memory processing. Moreover, in
M3 the jobs are continuous jobs in the sense that they get registered in the system,
and the mappers and reducers remain continuously running and consuming data. M3
mimics stream processing systems in its design as well as its functionalities. For
example, it supports incremental processing and the query results is also computed
incrementally by reporting delta changes over the previously reported results. The
Continuous-MapReduce (C-MR) [11], and Main Memory Map Reduce (M3R) [66]
systems aim for the same objective as M3. They try to entirely (or partially) replace
the disk-based file system HDFS with main-memory storage and processing. In all
of these techniques, especial consideration has to be given to fault tolerance to be
able to recover from failures. The common strategy used by these techniques is to
replicate the data multiple times in the memory of different machines. Moreover,
since these techniques will manage continuous queries over possibly infinite input
data, they all inherit the window semantics from stream processing systems to limit
the scope of their computations. Certainly, main-memory processing puts limitations
on the size of the data to be processed, and also puts restrictions on the type of jobs to
be supported, e.g., M3 supports only jobs that can be incrementally evaluated. Yet,
the availability of large memories in the modern clusters, e.g., each single machine
can have 100s of GBs of memory, enable many applications to store and manage
their data entirely in memory.

168 M.Y. Eltabakh

4 Curation and Metadata Management in Big Data

4.1 Overview

Metadata is a general term that references all auxiliary information that is related
to the base data, but not really part of the data. This auxiliary information may
range from execution statistics, optimization hints, users’ comments, related articles
or documents, to corrections and highlights of errors, provenance information, and
special tagging or marking. As highlighted in Fig. 9a, the metadata information can be
attached at different granularities and be related to, for example, specific table cells,
row, columns or arbitrary combination of them. This type of metadata is referred to
as data-centric annotations, where is the metadata is associated with the base data
regardless of any execution workflows. Another type of metadata captures execution
statistics as data goes under complex transformations and workflows, and this type
is referred to as execution-centric annotations (Fig.9b). In contrast, another type of
metadata may capture the lineage of the data including the input records contributed to
each output, the applied transformation functions, and the configuration parameters
used during execution. This type is referred to as provenance-centric annotations
(Fig.9¢).

Metadata and annotation management is relatively a new research topic in the
database community. However, the concept of annotations and curating the data has
been known for a long time. Historically, it goes back to the paper-based Post-It
yellow notes that scientists and people have used in early 1970s to write down their
thoughts, ideas, and exchange information [29]. Then, with the advances of data
management and the increasing use of DBMSs in scientific applications, the virtue,
size, and complexity of the annotation repositories have increased. Consequently,

Takes 30.3 secs, 20 MBs Takes 70 secs, 100 MBs

memory buffer, and memory buffer, and

B1: Curated by user admin 30041/0s 15001/0s

\ B5: This gene has an unknown function

E|&- B @-

GID \ GName | GSequence

s
i [P
{Tw0080 | mraW | |ATGATGGAAAA... 1| (b) Execution-centric annotations capturing resources
1

consumption and performance metrics.

X : x LN
JWO0041 | fixB ! |'ATGARCACGTT. ¢4 g

1
1
UW0037 | caiB__! |'ATGGATCATCT. .1 |

T
_____ 1 i) - .)
ol B4: pseudogene Lineage: File A, record Lineage: File B, record
JW0055_|iyabl _ 2 |'ATGARAGTATC.. Ids 20, 30, 55 Ids 102, 509
Gene B3: obtained from GenoBase C \‘
B2: possibly split by frameshift E t ‘n' - é (ﬁ' -

(a) Data-centric annotations at different File A Flle 8 File €

granularities (table cell, rows, columns, etc.). (c) Provenance-centric annotations capturing the lineage of
output records in terms of the input records.

Fig. 9 Examples of metadata usage

vww.ebook3000.con)

http://www.ebook3000.org

Data Organization and Curation in Big Data 169

there was a pressing need to develop annotation management techniques that can
capture and query the annotations in more systematic and advanced ways. This trig-
gered numerous projects and research initiatives to address annotation management
in the context of relational database management systems.

In general, the metadata and the annotations cannot be treated as regular data.
This is because they have a fundamental logical difference compared to the base
data, which is that they are viewed as auxiliary information that should propagate
(be carried) automatically with the data. For, example, since scientific data may
go though complex transformations during query processing, e.g., projection, join,
grouping and aggregation, and duplicate elimination, the related annotations must
also go though corresponding transformations by each query operator. If annota-
tions are modeled as regular data—which was the case before the development of
annotation management engines—then the annotation management tasks are entirely
delegated to end-users and higher-level applications starting from the storage and
indexing of annotations and ending by explicitly encoding the propagation seman-
tics within each of the users’ queries. Both tasks have been shown to be very complex
and sophisticated. For example, the storage and indexing mechanisms need to deal
with the combinatorial relationship between annotations and data, e.g., annotations
can be attached to single table cells (attributes), rows, columns, arbitrary sets and
combinations of them, or even attached to sub-attributes [32, 42]. Moreover, manu-
ally encoding the annotations’ propagation within each query is not only error-prune,
and lacks optimizations, but also renders even simple queries very complex [17, 41,
68]. That is why annotation management engines have been proposed to efficiently
and transparently manage such complexities across applications.

Annotation management in relational databases has ranged from developing
generic frameworks [15, 22, 32, 43, 68] to developing semantic-specific tech-
niques for annotations [19, 40, 49]. The generic frameworks, e.g., Mondrian [43],
DBNotes [22], InsightNotes [44, 73], and others [54], target extending the data-
base functionalities with annotation management capabilities. This includes efficient
storage and indexing, interfaces to add and query the annotations, and new algebraic
semantics—and possibly new query operators—to enable efficient annotation propa-
gation within a query pipeline. The semantic-specific techniques have mostly focused
on lineage and provenance tracking [18, 20, 26, 71], where each output record from
a SQL query carries references to all input records that have contributed to the output
record.

As the data management systems have evolved to the cloud-based systems and
the emerging infrastructures such as Hadoop for managing big data, the annota-
tion management techniques have also evolved to operate on these new infrastruc-
tures. The usage of annotations in these techniques varies from execution statistics
[55, 61], and provenance tracking [6, 9, 45, 62] to tagging for query optimiza-
tion [7] and generic frameworks [59]. In the following, we describe several of these
techniques in more details.

170 M.Y. Eltabakh

4.2 Execution-Centric Metadata Approach

Several techniques have been proposed in the context of MapReduce to leverage
annotations and metadata information in job execution. Examples of these systems
are the high-level languages of Hadoop including Apache Pig [39], Hive [69], and
Jaql [14]. These query languages offer some optimizations while compiling the high-
level scripts into map-reduce jobs. Yet, they do not have sophisticated query opti-
mizer, and thus they rely on users’ annotations of the query script and use that as
hints for the query optimizer. For example, a join statement can be annotated with
keyword “replicated” in Pig to indicate that one of the two joined datasets is small,
and it should be sent out (broadcast) to every mapper reading a portion of the big
dataset. In this case, the join operation can take place as a map-only job instead of
an expensive map-reduce job.

Other systems that leverage annotations during execution are the Nova [61] and
Stubby [55] systems. Nova is a workflow management system on top the Pig/Hadoop
infrastructure. It uses process-related and system-generated annotations to provide
execution hints to the system such as the transfer mode of the data between processes,
the output format and schema of each task, and the behavior of each task. On the other
hand, Stubby uses the annotations to collect execution statistics, profiling jobs, and
providing execution hints. Annotations can be related to a dataset, a specific operator
in a workflow, or execution statistics. Examples of the dataset-related annotations can
the physical layout of the dataset or any special ordering or partitioning properties
about the data. Stubby uses the annotations as a mean to communicate information
needed for the workflow optimization.

4.3 Provenance-Centric Metadata Approach

Lineage or provenance tracking means tracking the source of a given piece of data,
e.g., from where it comes, which input records have contributed to a given output
record, which derivations and transformations have been applied to get such output.
Provenance tracking is very important in many applications because in some cases
the trustworthy of the data cannot be assessed without knowing the source of the
data. In some other cases it can be important for applications to go back to the source
data and analyze why the output includes such values.

Lineage tracing has been recently studied in the context of Hadoop
[6, 9, 45, 62]. Unlike relational database systems where complex transformations
are possible though complex SQL queries, in Hadoop the transformation is only
possible though the map and reduce phases. However, database execution is an open
box in the sense that the system knows exactly the semantics of each operator and the
type of transformation being applied to each tuple. In contrast, Hadoop execution is
black box and the system may not know what type of transformation is being applied
inside the map and reduce functions. This is especially true if the job is expressed in
java.

vww.ebook3000.con)

http://www.ebook3000.org

Data Organization and Curation in Big Data 171

Ramp system [45, 63] tracks the lineage of the data generated from map-reduce
jobs by assigning artificial object identifiers (OIDs) for each input data record, and
then producing each output record along with its provenance information (the con-
tributing input OIDs). The OIDs are assigned to the <key, value> pairs generated
from the input formats, and this OID reflects the offset of each input record in its
HDEFS file. And then, Ramp uses system-generated wrappers around the mapper and
reducer functions as well as the RecordReader and RecordWriter functions within
the InputFormat and OutputFormat, respectively (See Fig. 10). These wrappers will
transparently carry the input OIDs to the output side while bypassing the user-defined
map and reduce functions. For example, referring to Fig. 10a, the wrapper around
the InputFormat RecordReader automatically adds a unique OID (p in the example)
to each generated record, and then the wrapper around the user’s mapper function
extracts this provenance information and bypass it to the output record. Similar
extensions have been designed for the reduce-side functions (Fig. 10b).

Since the map and reduce functions are black boxes with no known semantics to the
system, Ramp puts some restrictions to ensure correct tracking of provenance infor-
mation. For example, Ramp supports one-to-one and one-to-many input-to-output
granularity in the mapper function. This means that Ramp can track the provenance if
each input record to the map function generates zero, one or many outputs. However,
many-to-one input-to-output can not be tracked. For example, if the map function
internally performs some buffering, and then based on some internal semantics the
function periodically generates output records, then the provenance cannot be tracked
under such hidden behavior. Similar restrictions apply to the reduce side. For exam-
ple, Ramp assumes that all inputs values corresponding to a key contribute to the
output record. If the function internally does not follow this logic, then the provenance
information will not be correctly tracked.

Several other provenance tracking systems have been proposed over Hadoop.
This includes the Kepler+Hadoop system [25] that tracks the provenance within the

Fig. 10 Ramp extensions Input Map Output
for provenance tracking [63] l(km' V™, ydyes <V, pOT)
Wrapper Wrapper
(K" [,y)
RecordReader =
(K, vi) iP
W 4 (ko’ vo)
(K, {vi, p))
(ko' (Vo' kaD>)
Wrapper
(i, vi) Wrapper
ke, v)
o I s
ecordWriter [
(k™, v) (k™p,)
(km, {vm, P)) (q, k™p)
Map Output Output Provenance

(a) Map-Side Extension (b) Reduce-Side Extension

172 M.Y. Eltabakh

scientific workflows, and Newt [57] that uses fine-grained lineage information for
debugging and error tracking. Most of the aforementioned techniques encounter high
overheads due to provenance tracking. This is because the size of the provenance
information can be very large, and it may need to be carried out though the shuf-
fling and sorting phases of MapReduce. The work proposed in HadoopProv [6] and
MrLazy [7] overcomes this drawback by separating the provenance tracking of the
map and reduce phases, where each phase writes its provenance information to disk
separately, and no provenance information is shuffled in between these two phases.
And then, only when needed, another job can join the separate results to construct
the final output-to-input lineage information. This join operation is regarded as an
offline task, and thus the involved overhead is no longer carried on the users’ jobs.

All of the above mentioned techniques are coarse-grained techniques in the sense
that they track the provenance at the record level, where a record is the object cre-
ated from the underlying InputFormat function. These techniques cannot track the
provenance at the attribute level since the map and reduce functions are assumed to
be black boxes. The Lipstick technique [9] is distinct from these systems in that it
is a fine-grained attribute-level provenance tracking system. However, Lipstick uses
Apache Pig as its query interface, which enables the system to understand and track
the logic and the semantics of the queries.

4.4 Data-Centric Metadata Approach

Unlike the other two approaches, the data-centric techniques are generic annota-
tion management frameworks that do not bind the annotations to specific semantics.
Instead, they enable applications to annotate and curate their data freely [59]. Con-
ceptually, these generic frameworks can be leveraged in implementing the other types
including the execution-centric and provenance-centric techniques.

In general, designing generic annotation management engines is greatly influ-
enced by the underlying infrastructure in three aspects, which are: (1) The inter-
action with the annotation management engine, i.e., the mechanisms by which the
annotations are added and/or retrieved, (2) The granularities at which annotations
are supported, and (3) The propagation and possible transformations that can be
automatically supported on top of the raw annotations. For example, the CloudNotes
system proposed in [59] is a generic annotation management engine on top of the
Hadoop/HDFS infrastructure. CloudNotes is different from those generic annotation
engines in RDBMSs because of the inherent characteristics of Hadoop/HDFS, which
affect the three aspects mentioned above as follows:

o Automated Creation and Consumption of Annotations: In RDBMSs, end-
users may manually investigate and annotate their data. However, in Hadoop-based
applications, such manual investigation and curation is not practical. Instead, the
assumption is that the annotations will be produced by automated processes (map-
reduce jobs), and also consumed and leveraged by other automated processes (map-
reduce jobs). And it can be the case that the same job acts as both a producer and a
consumer of the annotations.

vww.ebook3000.con)

http://www.ebook3000.org

Data Organization and Curation in Big Data 173

o Single-Granularity Annotations: Annotation management engines typically
support annotating the data at the finest granularity provided by the underlying data
model. For example, in RDBMSs, annotations can be at the granularity of table cells,
rows, columns, etc. [15, 42], and in array-based systems, annotations are defined at
the granularity of array cells [72]. Supporting annotations at a smaller granularity,
e.g., asub-value within a table cell, becomes an application-specific task and encoded
by the application. CloudNotes inherits the same principle. Since HDFS has a single
unit of granularity, which is the object formed from the InputFormat layer and passed
to the mapper layer, the system supports annotating the data at this granularity.

e Blackbox Annotation Propagation: Hadoop uses a blackbox map-reduce com-
puting paradigm, where the actual computations and transformations applied to the
data are unknown. As a result, CloudNotes does not provide automated transforma-
tion rules for the annotations. Instead, it provides the application developers with
interfaces to integrate the annotations into the processing cycle as fits each applica-
tion’s semantics.

CloudNotes works by extending the internals of the Hadoop infrastructure to
accept, store, and propagate the annotations attached to each data object (See Fig. 11).
It provides interfaces in the map functions to be able to either add new annotations to
its input records, add new annotations to its output records, or retrieve the annotations
on the input records. Similarly, it provides interfaces for the reduce functions to be
able to either retrieve their inputs’ annotations (which are passed from mappers to
reducers), or add new annotations to their output records. As illustrated in Fig. 11,
reducers cannot annotate their inputs because this input is intermediate and gets
automatically purged after the job completion.

Introducing the annotations into Hadoop creates several challenges including:
(1) The data is no longer assumed to be read-only because the annotations associ-
ated with the data may change over time. Therefore, a concurrency control module
needs to be developed to ensure correct execution among multiple jobs. (2) Anno-
tations should automatically and transparently propagate with the data. And hence,
effective buffering and proactive prefetching techniques need to be developed. It
is worth mentioning that the techniques in the execution-centric and provenance-
centric categories focus on creating the annotations, but they do not address how
these annotations propagate in future queries whenever the data is accessed. And
(3) Annotation jobs, i.e., the map-reduce jobs that only targeted to add more annota-
tions, can be lazily evaluated as long as no other job is asking for these annotations.
Therefore, possible optimizations and batching of jobs become feasible. CloudNotes
system proposes different techniques to address these challenges.

CloudNotes proposes different storage schemes for the annotations, where the
annotations can be either stored in HBase or HDFS. In both schemes, the storage is
transparent from the end-users. Whenever a map-reduce job access a specific HDFS
file, the annotations attached to each record in this file automatically propagate to
the map functions and get cached locally (either in main memory or local disk) for
fast retrieval by upon request.

174

M.Y. Eltabakh

¢ . .
~ — —> Annotation Addition

I::» Annotation Propagation

HDEFS Input HDFS Input
Annotate _ = 7 mm— Annotate _ -
inputs , ~ inputs , ~
1 p \
. v !
~
=~ Map-Only S Map
7 a job - Function
Annotate| ~ Annotate l\
outputs | intermediates “ _

|
~

-~

)

-~

Reduce
Function

HDFS Output l’
Annotate |
outputs \

HDFS Output

Fig. 11 Annotation flow (addition and propagation) in CloudNotes system

5 Conclusion

This chapter covered several advanced techniques related to data indexing, organi-
zation, and curation in the context of the emerging Hadoop MapReduce infrastruc-
ture. Several data indexing techniques have been presented covering the spectrum of
record-level versus split-level indexing, static versus adaptive indexing, and Hadoop-
centric versus hybrid (Hadoop plus relational DBMS) indexing. In addition to data
indexing, the layout on disk also plays an important role in query processing and opti-
mization. The chapter covered several advanced techniques for special data organi-
zation and layouts including data colocation, result materialization and caching, pre-
partitioning, and different types of layouts such as row-oriented, column-oriented,
or PAX layouts. Both the indexing and special organization techniques have shown
in literature to speedup query processing by orders of magnitudes. Yet, under non-
traditional workloads, additional optimizations can be applied to further enhance
the performance. The chapter covered several of these non-traditional workloads
and their optimizations including recurring workloads and online analytics. Finally,

vww.ebook3000.con)

http://www.ebook3000.org

Data Organization and Curation in Big Data 175

the chapter covered the state-of-art techniques in big data curation and their lever-
age either in query and workload optimizations (the execution-centric approaches),
or capturing higher-level semantics and business logic (the provenance-centric and
data-centric approaches).

References

10.
11.

12.

14.

15.

16.

17.

. D.J. Abadi, Tradeoffs between parallel database systems, hadoop, and hadoopdb as platforms

for petabyte-scale analysis, in SSDBM (2010), pp. 1-3

. DJ. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, C. Erwin, E.F. Galvez, M.

Hatoun, A. Maskey, A. Rasin, A. Singer, M. Stonebraker, N. Tatbul, Y. Xing, R. Yan, S.B.
Zdonik, Aurora: a data stream management system, in SIGMOD Conference (2003), p. 666

. DJ. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J.-H. Hwang, W. Lindner,

A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, S.B. Zdonik, The design of the borealis
stream processing engine, in CIDR (2005), pp. 277-289

. A. Abouzeid, K. Bajda-Pawlikowski, A.R. Daniel Abadi, A. Silberschatz, HadoopDB: an

architectural hybrid of MapReduce and DBMS technologies for analytical workloads, in VLDB
(2009), pp. 922-933

. A. Abouzied, K. Bajda-Pawlikowski, J. Huang, D.J. Abadi, A. Silberschatz, Hadoopdb in

action: building real world applications, in SIGMOD Conference (2010), pp. 1111-1114

. S. Akoush, R. Sohan, A. Hopper, HadoopProv: towards provenance as a first class citizen in

MapReduce, in USENIX Workshop on the Theory and Practice of Provenance (2013)

. S. Akoush, L. Carata, R. Sohan, A. Hopper, MrLazy: lazy runtime label propagation for MapRe-

duce, in HotCloud (2014)

. AM. Aly, A. Sallam, B.M. Gnanasekaran et al., M3: stream processing on main-memory

mapreduce, in ICDE (2012), pp. 1253-1256

. Y. Amsterdamer, S.B. Davidson, D. Deutch, T. Milo, J. Stoyanovich, V. Tannen, Putting lipstick

on pig: enabling database-style workflow provenance, in PVLDB (2011), pp. 346-357
Apache. Oozie: hadoop workflow system. http://yahoo.github.com/oozie/

N. Backman, K. Pattabiraman, R. Fonseca et al., C-mr: continuously mapreduce workflows on
multi-core processors, in Proceedings of 3rd International Workshop on MapReduce and Its
Applications Date (2012), pp. 1-8

A. Balmin, T. Kaldewey, S. Tata, Clydesdale: structured data processing on hadoop, in Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD
2012, Scottsdale, AZ, USA, May 20-24 (2012), pp. 705-708

. A. Balmin, K.S. Beyer, V. Ercegovac, J. McPherson, F. Ozcan, H. Pirahesh, E.J. Shekita, Y.

Sismanis, S. Tata, Y. Tian, A platform for extreme analytics. IBM J. Res. Develop. 57(3/4), 4
(2013)

K. Beyer, V. Ercegovac, R. Gemulla, A. Balmin, M.Y. Eltabakh, C.-C. Kanne, F. Ozcan, E.
Shekita, Jaql: a scripting language for large scale semi-structured data analysis, in PVLDB,
vol. 4 (2011)

D. Bhagwat, L. Chiticariu, W. Tan, An annotation management system for relational databases,
in VLDB (2004), pp. 900-911

Y. Bu, B. Howe, M. Balazinska, M.D. Ernst, Haloop: efficient iterative data processing on large
clusters. Proc. VLDB Endow. 3(1-2), 285-296 (2010)

P. Buneman et al., On propagation of deletions and annotations through views, in PODS (2002),
pp. 150-158

. P. Buneman, A. Chapman, J. Cheney, Provenance management in curated databases, in SIG-

MOD (2006), pp. 539-550

. P. Buneman, J. Cheney, W.-C. Tan, S. Vansummeren, Curated databases, in Proceedings of the

27th ACM symposium on Principles of database systems (PODS) (2008), pp. 1-12

http://yahoo.github.com/oozie/

176 M.Y. Eltabakh

20. P. Buneman, S. Khanna, W. Tan, Why and where: a characterization of data provenance. Lect.
Notes Comput. Sci. 316-333, 2001 (1973)

21. S. Chen, Cheetah: a high performance, custom data warehouse on top of mapreduce. PVLDB
3(2), 1459-1468 (2010)

22. L. Chiticariu, W.-C. Tan, G. Vijayvargiya, DBNotes: a post-it system for relational databases
based on provenance, in SIGMOD (2005), pp. 942-944

23. T. Condie, N. Conway, P. Alvaro, J.M. Hellerstein, K. Elmeleegy, R. Sears, Mapreduce online,
in NSDI (2010), pp. 313-328

24. T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, J. Gerth, J. Talbot, K. Elmeleegy, R. Sears,
Online aggregation and continuous query support in mapreduce, in SIGMOD (2010), pp. 1115-
1118

25. D. Crawl, J. Wang, I. Altintas, Provenance for MapReduce-based data-intensive workflows, in
WORKS Workshop (2011), pp. 21-30

26. Y. Cui,J. Widom, Lineage tracing for general data warehouse transformations, in VLDB (2001),
pp- 471-480

27. J. Dittrich, J.-A. Quiané-Ruiz, A. Jindal, Y. Kargin, V. Setty, J. Schad, Hadoop++: making a
yellow elephant run like a cheetah (without it even noticing). VLDB 3, 518-529 (2010)

28. J. Dittrich, J. Quiané-Ruiz, S. Richter, S. Schuh, A. Jindal, J. Schad, Only aggressive elephants
are fast elephants. PVLDB 5(11), 1591-1602 (2012)

29. T. Donnelly, 9 Brilliant Inventions Made by Mistake. Inc. Accessed 24 Aug 2012

30. A.Eldawy, M.F. Mokbel, Spatialhadoop: a mapreduce framework for spatial data, in 3/st IEEE
International Conference on Data Engineering, ICDE 2015, Seoul, South Korea, April 13—-17
(2015), pp. 1352-1363

31. I. Elghandour, A. Aboulnaga, Restore: reusing results of mapreduce jobs. Proc. VLDB Endow.
5(6), 586-597 (2012)

32. M.Y. Eltabakh, W.G. Aref, A.K. Elmagarmid, M. Ouzzani, Y.N. Silva, Supporting annotations
on relations, in EDBT (2009), pp. 379-390

33. M.Y. Eltabakh, Y. Tian, F. Ozcan, R. Gemulla, A. Krettek, J. McPherson, Cohadoop: flexible
data placement and its exploitation in hadoop. PVLDB 4(9), 575-585 (2011)

34. M.Y. Eltabakh, F. Ozcan, Y. Sismanis, P. Haas, H. Pirahesh, J. Vondrak, Eagle-eyed elephant:
split-oriented indexing in Hadoop, in Proceedings of the 16th International Conference on
Extending Database Technology (EDBT) (2013), pp. 89-100

35. A. Floratou, J.M. Patel, E.J. Shekita, S. Tata, Column-oriented storage techniques for mapre-
duce. PVLDB 4(7), 419-429 (2011)

36. A.Floratou, U.E. Minhas, F. Ozcan, Sql-on-hadoop: full circle back to shared-nothing database
architectures. PVLDB 7(12), 1295-1306 (2014)

37. A.Floratou, F. Ozcan, B. Schiefer, Benchmarking sgl-on-hadoop systems: TPC or not tpc? in
Big Data Benchmarking - 5th International Workshop, WBDB, Potsdam, Germany, August
5-6, 2014. Revised Selected Papers 2014, 63-72 (2014)

38. V.R. Gankidi, N. Teletia, J.M. Patel, A. Halverson, D.J. DeWitt, Indexing HDFS data in PDW:
splitting the data from the index. PVLDB 7(13), 1520-1528 (2014)

39. A.F. Gates, O. Natkovich, S. Chopra, P. Kamath, S.M. Narayanamurthy, C. Olston, B. Reed,
S. Srinivasan, U. Srivastava, Building a high-level dataflow system on top of map-reduce: the
pig experience. Proc. VLDB Endow. 1414—-1425 (2009)

40. W. Gatterbauer, M. Balazinska, N. Khoussainova, D. Suciu, Believe it or not: adding belief
annotations to databases. Proc. VLDB Endow. 2(1), 1-12 (2009)

41. F Geerts, J. Van Den Bussche, Relational completeness of query languages for annotated
databases, in DBPL (2007), pp. 127-137

42. F. Geerts et al., Mondrian: annotating and querying databases through colors and blocks, in
ICDE (2000), p. 82

43. F. Geerts, A. Kementsietsidis, D. Milano, MONDRIAN: annotating and querying databases
through colors and blocks, Proceedings of the 22nd International Conference on Data Engi-
neering, ICDE 2006, 3-8 April 2006 (GA, USA, Atlanta, 2006), p. 82

vww.ebook3000.con)

http://www.ebook3000.org

Data Organization and Curation in Big Data 177

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

K. Ibrahim, D. Xiao, M.Y. Eltabakh, Elevating annotation summaries to first-class citizens
in insightnotes, in Proceedings of the 18th International Conference on Extending Database
Technology, EDBT 2015, Brussels, Belgium, March 23-27 (2015), pp. 49-60

R. Ikeda, H. Park, J. Widom, Provenance for generalized map and reduce workflows, in CIDR
(2011), pp. 273283

D. Jiang, B. C. Ooi, L. Shi, S. Wu, The performance of mapreduce: an in-depth study. Proc.
VLDB Endow. 472-483 (2010)

A. Jindal, J. Quiané-Ruiz, J. Dittrich, Trojan data layouts: right shoes for a running elephant,
in ACM Symposium on Cloud Computing in conjunction with SOSP 2011, SOCC ’11, Cascais,
Portugal, October 26-28 (2011), p. 21

T. Kaldewey, E.J. Shekita, S. Tata, Clydesdale: structured data processing on mapreduce, in /5th
International Conference on Extending Database Technology, EDBT ’12, Berlin, Germany,
March 27-30, 2012, Proceedings (2012), pp. 15-25

G. Karvounarakis, T.J. Green, Semiring-annotated data: queries and provenance. SIGMOD
Rec. 41(3), 5-14 (2012)

P. Larson, J. Zhou, View matching for outer-join views. VLDB J. 16(1), 29-53 (2007)

C. Lei, E. Rundensteiner, M. Y. Eltabakh, Redoop: supporting recurring queries in Hadoop, in
Proceedings of the 16th International Conference on Extending Database Technology (EDBT)
(2013)

C.Lei, Z.Zhuang, E.A. Rundensteiner, M. Y. Eltabakh, Shared execution of recurring workloads
in mapreduce. PVLDB 8(7), 714-725 (2015)

B.Li, E. Mazur et al. A platform for scalable one-pass analytics using mapreduce, in SIGMOD
(2011), pp. 985-996

Q.Li, A. Labrinidis, P.K. Chrysanthis, ViP: a user-centric view-based annotation framework for
scientific data, in Proceedings of the 20th international conference on Scientific and Statistical
Database Management (SSDBM) (2008), pp. 295-312

H. Lim, H. Herodotou, S. Babu, Stubby: a transformation-based optimizer for MapReduce
workflows. PVLDB 5(11), 1196-1207 (2012)

Y. Liu, S. Hu, T. Rabl, W. Liu, H. Jacobsen, K. Wu, J. Chen, J. Li, Dgfindex for smart grid:
enhancing hive with a cost-effective multidimensional range index. PVLDB 7(13), 14961507
(2014)

D. Logothetis, S. De, K. Yocum, Scalable lineage capture for debugging DISC analytics, in
SOCC (2013), pp. 17:1-17:15

P. Lu, G. Chen, B.C. Ooi, H.T. Vo, S. Wu, Scalagist: scalable generalized search trees for
mapreduce systems [innovative systems paper]. PVLDB 7(14), 1797-1808 (2014)

Y. Lu, Y. Li, M.Y. Eltabakh, Decorating the cloud: enabling annotation management in MapRe-
duce. PVLDB 5(11), 1-26 (2016)

T. Nykiel, M. Potamias, C. Mishra, G. Kollios, N. Koudas, Mrshare: sharing across multiple
queries in mapreduce. Proc. VLDB Endow. 494-505 (2010)

C. Olston, G. Chiou, L. Chitnis, F. Liu, Y. Han, M. Larsson, A. Neumann, V.B. N. Rao,
V. Sankarasubramanian, S. Seth, C. Tian, T. ZiCornell, X. Wang, Nova: continuous pig/hadoop
workflows, in SIGMOD Conference (2011), pp. 1081-1090

H.Park, R.Ikeda, J. Widom, Ramp: a system for capturing and tracing provenance in mapreduce
workflows. PVLDB 4(12), 1351-1354 (2011)

H. Park, R. Ikeda, J. Widom, Ramp: a system for capturing and tracing provenance in mapreduce
workflows, in VLDB. Stanford InfoLab (2011)

M. Ray, E.A. Rundensteiner, M. Liu, C. Gupta, S. Wang, 1. Ari. High-performance complex
event processing using continuous sliding views, in EDBT (2013), pp. 525-536

S. Richter, J. Quiané-Ruiz, S. Schuh, J. Dittrich, Towards zero-overhead adaptive indexing in
hadoop, in CoRR (2012). arXiv:abs/1212.3480

A. Shinnar, D. Cunningham, B. Herta et al., M3r: increased performance for in-memory hadoop
jobs. PVLDB 1736-1747 (2012)

M. Stonebraker et al., Mapreduce and parallel dbmss: friends or foes? Commun. ACM 53(1),
64-71 (2010)

http://arxiv.org/abs/abs/1212.3480

178 M.Y. Eltabakh

68. W.-C. Tan, Containment of relational queries with annotation propagation, in DBPL (2003)

69. A.Thusoo, J.S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff, R. Murthy,
Hive - a warehousing solution over a map-reduce framework. PVLDB, 1626-1629 (2009)

70. G. Wang, C.-Y. Chan, Multi-query optimization in mapreduce framework. PVLDB 7(3), 145—
156 (2013)

71. A. Woodruff, M. Stonebraker, Supporting fine-grained data lineage in a database visualization
environment, in /CDE (1997), pp. 91-102

72. E. Wu, S. Madden, M. Stonebraker, SubZero: a fine-grained lineage system for scientific
databases, in ICDE (2013), pp. 865-876

73. D. Xiao, M.Y. Eltabakh, InsightNotes: summary-based annotation management in relational
databases, in SIGMOD Conference (2014), pp. 661-672

74. D. Zhang, M. Ray, M. Liu, D. Dougherty, E.A. Rundensteiner, Nested complex event
processing: predicate specification and evaluation, in Transactions on Large-Scale Data- and
Knowledge-Centered Systems V. Special Issue on Advanced Data Stream Management and
Processing of Continuous Queries (Springer, Berlin, 2013)

75. J. Zhou, P. Larson, H.G. Elmongui, Lazy maintenance of materialized views, in Proceedings
of the 33rd International Conference on Very Large Data Bases, University of Vienna, Austria,
September 23-27, 2007 (2007), pp. 231-242

76. J. Zhou, P. Larson, J. Goldstein, L. Ding, Dynamic materialized views, in Proceedings of
the 23rd International Conference on Data Engineering, ICDE 2007, The Marmara Hotel,
Istanbul, Turkey, April 15-20 (2007), pp. 526-535

vww.ebook3000.con)

http://www.ebook3000.org

Big Data Query Engines

Mohamed A. Soliman

Abstract Big data analytics are techniques that are used to analyze large datasets in
order to extract patterns, trends, correlations and summaries. Analytics are used in
several big data applications ranging from the generation of simple reports to running
deep and complex query workloads. The insights drawn by running big data analytics
depend primarily on the capabilities of the underlying query engine, which is respon-
sible for translating user queries into efficient data retrieval and processing opera-
tions, as well as executing these operations on one or multiple nodes in order to find
query answers. Classically, parallel database systems have been adopted in various
domains, particularly enterprise data warehouses, as the data processing platform for
running big data analytics. An SQL-based query engine, running on a shared-nothing
cluster, is typically used by these platforms. Scalability is realized by partitioning
data across multiple machines that communicate via a high speed interconnect layer.
These systems often rely on dedicated expensive hardware resources in order to scale-
out query processing and provide fault tolerance. With the emergence of Hadoop, it
became possible to use cheap commodity hardware for achieving linear scalability
and fault tolerance. A typical Hadoop environment involves a software stack run-
ning in one ecosystem, while sharing hardware resources across different systems,
called tenants. Earlier Hadoop query engines leveraged programming frameworks
such as MapReduce to run analytics using programs executed on a distributed file
system. The Hadoop Distributed File System (HDFS) has been effectively used for
batch processing of simple analytics. The need for coding and manual optimiza-
tion of analytics, the lack of support to complex queries and the limited interactive
processing capabilities, have triggered the need for adopting new technologies with
more expressive query languages and advanced query processing techniques. Inte-
grating parallel database systems into Hadoop ecosystem is an obvious approach to
combine the advantages of both worlds. In this respect, multiple challenges needed
to be addressed to fit a parallel database query engine in Hadoop software stack.
Data placement, query optimization, query execution and resource management
are some of the technical problems that are actively studied in this area. In this
chapter, we discuss the state-of-the-art of query engines in parallel database systems,

M.A. Soliman (<)
Datometry Inc., San Francisco, CA, USA
e-mail: mohamed.soliman @datometry.com; mohamed.fathi@gmail.com

© Springer International Publishing AG 2017 179
A.Y. Zomaya and S. Sakr (eds.), Handbook of Big Data Technologies,
DOI 10.1007/978-3-319-49340-4_6

180 M.A. Soliman

Hadoop-based systems, as well as the hybrid systems that integrate parallel databases
and Hadoop technologies. We present the architectures of multiple example systems
and highlight their similarity and differences. We also give an overview of the research
problems and proposed techniques in the areas of query optimization and execution.

1 Introduction

The architecture of Hadoop-based data processing systems and Massively Parallel
Processing (MPP) databases are similar in many aspects. Both architectures store big
data by slicing it across a large number of shared-nothing independent nodes. Scal-
ability is achieved by parallelizing query evaluation over these independent nodes.
Fault tolerance is realized by replicating the same data blocks on multiple nodes.

Earlier technologies have integrated MPP databases and Hadoop-based data
processing systems by building connectors that port data from one platform to the
other. More recent technologies have achieved tighter integration of both worlds by
adopting different approaches. Adapting MPP database systems to run in Hadoop
ecosystems, strengthening the capabilities of Hadoop-based query engines to match
parallel databases, and building parallel database systems designed specifically for
Hadoop are some of the approaches that have been adopted in this respect.

1.1 MPP Query Engines

MPP database systems are primarily based on relational database technologies. A
major requirement of these technologies is the existence of a relational schema that
describes the structure of different data entities. A schema is defined as a set of rela-
tions, where each relation represents a logical data entity. Physically, each relation is
stored as a table, which maps to one or more files on disk. The rows in each table cap-
ture relation instances, while the columns capture relation attributes. Normalization
methods are used to eliminate redundancy and maintain data integrity by enforcing
dependencies among relations.

In MPP systems, a database is partitioned into smaller databases stored at different
physical machines (nodes) in an underlying cluster. Data partitioning in MPP systems
is typically based on horizontal partitioning of data across nodes. Data storage and
query evaluation are dual features that need to be provided by each node in the MPP
cluster.

The query language in MPP databases is typically the Structured Query Language
(SQL), which is a declarative language widely used in various domains for exploring
large datasets and implementing business logic. SQL has a number of key strengths
including well-defined semantics, industry-grade standards, and expressive power
that allows specifying complex query constructs concisely.

vww.ebook3000.con)

http://www.ebook3000.org

Big Data Query Engines 181

Fault tolerance is the ability of the system to recover form disasters or unexpected
errors that result in data loss such as disk failures. Fault tolerance in MPP systems
is typically achieved by using replicas, which are nodes that maintain a copy of the
original data. Consistency between the original nodes and their replicas is achieved by
sharing the query logs, or by using publisher/subscriber mechanisms to synchronize
data updates.

A given query is transformed by the query optimizer into an execution plan that
defines the sequence of steps that need to be performed to compute query results.
The optimizer-generated plan includes explicit data movement operations. The cost
of moving data is taken into account during optimization.

A query executing in an MPP database can include several pipelined execution
stages, with explicit communication between nodes at each stage. Query evaluation
is parallelized by running data processing operations in parallel on different nodes.
During query evaluation, nodes need to communicate with each other by sending
and receiving partial query results.

1.2 Hadoop Query Engines

Hadoop data processing environments adopt a more flexible data model. Input data,
both structured and unstructured, following different formats are consumed by the
data processing engines in the Hadoop ecosystem. Relationships among data entities
and integrity constraints are not strictly enforced. Users are typically required to
implement consistency check logic to maintain the correct behavior of their data
processing applications.

Query languages in Hadoop environments require writing imperative programs
that utilize programming frameworks to implement the data processing task at
hand. The earlier programming frameworks provided basic APIs for manipulating
key/value pairs. The more recent frameworks introduced advanced programming
techniques including functional programming and high-order functions to allow
expressing more complex operations in a concise form.

Data partitioning in Hadoop environments is managed by a scalable distributed file
system, the Hadoop Distributed File System (HDFS). Data is partitioned into small
blocks stored at different nodes in the cluster. In order to achieve fault tolerance, new
nodes are automatically added to store data blocks that were stored at failed nodes,
while updating the HDFS data location tracking service.

Query execution in Hadoop environments requires building a data processing
pipeline that divides the required data processing into multiple stages, and may
require materializing the intermediate results between stages. The first widely
adopted query execution framework of this nature is MapReduce [5].

The flexibility of Hadoop allows separating data storage and computation across
different cluster nodes. In this environment, data could be stored on a subset of cluster
nodes, and processed by a different subset of nodes.

182 M.A. Soliman

1.3 Chapter Organization

We present the state-of-the-art of big data query engines in different environments,
and discuss a number of research challenges related to big data query processing.
We primarily focus on system architectures and the research challenges in the query
optimization and query execution areas.

The remainder of this chapter is organized as follows. In Sect. 2, we present the
architectures of some examples of MPP query engines. In Sect.3, we present the
architectures of some examples of Hadoop query engines. In Sect. 4, we present the
architectures of some examples of hybrid systems that integrate MPP and Hadoop
technologies. We then discuss in Sect. 5 the technical challenges involved in building
query optimizers in big data systems. We describe the techniques used in building
query executors for big data systems in Sect. 6. We summarize this chapter in Sect. 7
with final remarks.

2 Massively Parallel Query Engines

In this section, we present the system architectures of some examples of MPP query
engines. The presented systems are only a small subset of the available solutions.
Many of the design principles adopted by the presented systems are common in many
query engines.

2.1 Teradata

Teradata [29] is probably the earliest MPP system that was commercially available
and widely adopted by many enterprise customers. Teradata database is based on
Symmetric Multiprocessing (SMP) technology, combined with a communications
network that connects the SMP nodes to provide a Massively Parallel Processing
system architecture. A node in Teradata architecture is a combination of hardware
and software components running multiple symmetric CPUs. Each node has one or
more disk arrays. An MPP configuration is two or more loosely coupled nodes. An
interconnect layer, called BYNET, is used to link nodes on the MPP system. BYNET
provides the communication means that is needed to provide message exchange
among the nodes.

The Teradata MPP architecture is based on the concept of virtualized processors
(vprocs) that abstract the details of the underlying physical node. Vprocs are software
processes that run on Teradata node. There are multiple types of vprocs including
the following:

vww.ebook3000.con)

http://www.ebook3000.org

Big Data Query Engines 183

Parsing
Engine(s) (PEs)

BYNET

I

AMP AMP AMP AMP
O O O 3
Disk Storage Disk Storage Disk Storage || Disk Storage

Fig. 1 Access Module Processors (AMPs) in teradata [29]

e Access Module Processor (AMP): A vproc that performs query execution. Each
AMP owns a portion of the overall database storage. An AMP exclusively manages
a disk space in its underlying node. During query processing, each AMP handles
the tasks of sorting, joining and aggregation.

e Parsing Engine (PE): A vproc that performs query parsing and query optimization.

Teradata architecture is shared-nothing. The AMP and PE vprocs share neither
memory nor disk across processing nodes. Figure 1 shows the architecture of AMPs
in Teradata system.

Each table row is owned by exactly one AMP. That AMP is the only subsystem
that can create, read, update, or lock its data. The local control on logging and locking
in each AMP enhances system parallelism and reduces BYNET traffic.

Load balance in Teradata database is achieved by distributing table rows evenly
across its AMPs and by giving the AMPs the responsibility for the data they own.
Teradata is a self-organizing parallel database system. Tables do not have explicit
distribution keys. Instead, table rows are hashed across the AMPs of a system using
the row hash value of their primary index. When a new row is inserted, the value of
its primary index column(s) are used to compute a hash value that maps to one AMP.
The row is sent to the selected AMP, where it gets stored in the disk space managed
by the AMP.

Users need to carefully choose the primary index for each table, so that rows that
are frequently joined hash to the same AMP. This is crucial for performance as it
allows eliminating the need to send rows across the BYNET in order to join them.

184 M.A. Soliman

iy
sQL --—.

+ Analytics
v
Master Servers - -
Query planning & ese see
dispatch l.. = | s " ||
e e et ol
T) e T e o) i e

Segment ----------
Servers

Bt oo B A0 a0 O O A Al Ol

EEEEEEEEE

External Sources
Loading, streaming, Data Files & g
etc. Streams Databases Hadoop

Fig. 2 Greenplum database architecture [23]

2.2 Greenplum

Pivotal Greenplum Database (GPDB) [23] is a massively parallel processing analytics
database. GPDB adopts a shared-nothing computing architecture with two or more
cooperating processors. Each processor has its own memory, operating system and
disks. GPDB leverages this high-performance system architecture to distribute the
load of petabyte data warehouses, and use system resources in parallel to process a
given query. Figure 2 shows a high level architecture of GPDB.

Storage and processing of large amounts of data are handled by distributing the
load across several servers or hosts to create an array of individual databases, all
working together to present a single database image. The master is the entry point
to GPDB, where clients connect and submit SQL statements. The master coordi-
nates work with other database instances, called segments, to handle data processing
and storage. When a query is submitted to the master, it is optimized and broken
into smaller components dispatched to segments to work together on delivering the
final results. The interconnect is the networking layer responsible for inter-process
communication between the segments.

When creating a new table in GPDB, the table can be associated with a distribution
method. The supported methods include hashed distribution and random distribution.

vww.ebook3000.con)

http://www.ebook3000.org

Big Data Query Engines 185

The goal of data distribution is to spread data across many nodes and disks in order
to scale out query processing.

During query execution, data can be distributed to segments in multiple ways
including hashed distribution, where tuples are distributed to segments based on
some hash function, replicated distribution, where a full copy of a table is stored at
each segment and singleton distribution, where the whole distributed table is gathered
from multiple segments to a single host (usually the master).

A query is submitted to the master node, where it gets parsed and optimized into
a query plan. The master node obtains catalog information required to optimize the
given query by looking up data objects in the system catalog. After query plan is
created, a copy of the plan is dispatched to each node.

The query plan is an operator tree that captures the order of query execution.
During query execution, a leaf operator in the query plan, running on a given node,
reads data from its local node storage and returns data to upper level operators. Upper
level operators carry on query execution while communicating with query operators
running on other nodes. This communication is enabled through the interconnect
layer.

2.3 Vertica

Vertica [16] is the commercialized analytical database system resulting from the
C-Store research project [28]. The architecture of Vertica is based on the concept
of column projections, which are restricted forms of materialized views. A column
projection is a sorted subset of the attributes of a table. The physical data organiza-
tion in Vertica stores tables as column projections, rather than self-contained units.
Each projection is possibly stored in a separate data file that could be compressed.
A super projection that contains all table columns is also maintained to allow for
reconstructing the full table when needed.

The main insight behind using column projections is that in many analytical
queries, users are only interested in a subset of table columns. Reading data from full
tables is not often required. Hence, by materializing and sorting vertical fragments of
each table, there is a good chance that a small subset of these fragments is sufficient
to answer a given query, without the need to scan and read the full tables.

Vertica supports join operations by materializing prejoin projections. By phys-
ically materializing the join results between a fact table and multiple dimension
tables, many join queries have an improved performance. However, this comes with
the expense of maintaining the prejoins in the physical storage and keeping them in
sync with other projections in the presence of data updates. This cost can be lessened
by employing compression and encoding techniques.

Figure 3 illustrates the high level design of column projections in Vertica using a
sample sales table. Two projections are maintained for sales table. The first projec-
tion is a super projection, while the second projection contains two columns. Both
projections can be horizontally partitioned and stored at multiple nodes to allow for
parallel query processing.

186

Fig. 3 Column projections

in Vertica [16]

Original Data
sale_id cid
1 11

2 17
3 27
4 28
5 89
1000 89
1001 1
Split in two

projections

cust
Andrew
Chuck
Nga
Matt
Ben
Ben
Andrew

date

01/01/06
01/05/06
01/02/06
01/03/06
01/01/06
01/02/06
01/03/06

M.A. Soliman

price
$100
$98
$90
$101
$103
$103
$95

s D

(a) Partitioning a table into projections

date price cid cust sale_id
01/02/06 $90.00 27 Nga 3
01/03/06 $95.00 11 Andrew 1001
01/03/06 $101.00 28 Matt 4
cust price
Andrew $95.00
Andrew $100.00 Node 1
Chuck $98.00
Nga $90.00
date price cid cust sale_id
01/01/06 $100.00 11 Andrew 1
01/01/06 $103.00 89 Ben 5
01/02/06 $103.00 89 Ben 1000
01/05/06 $98.00 17 Chuck 2
cust price
Ben $103.00 Node 2
Ben $103.00
Matt $101.00

(b) Maintaining

nodes

vww.ebook3000.con)

projection fragments on several

http://www.ebook3000.org

Big Data Query Engines 187

3 Hadoop Query Engines

In this section, we describe the architectures of a number of Hadoop query engines.
Earlier Hadoop query engines required implementing elaborate imperative programs
for performing data processing tasks. The underlying framework provided simple
APIs as the building blocks of these programs. More recent solutions extended
Hadoop programming frameworks with more advanced techniques such as functional
programming. A number of Hadoop query engines have also considered adding a
declarative SQL-like interface to be used as the main query language for writing big
data applications.

3.1 MapReduce

MapReduce [5] is a programming framework that can be used for processing large
data sets. The input to a MapReduce program is stored in a distributed file system as
a set of partitions stored on different nodes in the computing cluster. The framework
requires users to specify two basic functions:

e Map: A function that transforms a key/value pair into a set of intermediate
key/value pairs. A typical map function processes input records by applying filter-
ing and transformation operations, and generates as output a set of intermediate
key/value pairs. Before the map function produces its output, a hash function is
used to split output records into a set of disjoint partitions. The map function even-
tually generates a file for each partition and stores these files to the disk of local
nodes.

e Reduce: A function that merges intermediate values that are associated with the
same key, producing potentially a smaller set of values compared to the input. Each
instance of the reduce function reads a number of partition files from a number
of cluster nodes. Each partition file is consumed by one instance of the reduce
function. The output of the reduce function is also stored to a file in the distributed
file system.

Programs written using the previous framework can be easily parallelized and
executed on a large cluster of commodity machines.

The structure of input files in MapReduce programs must be handled by the
user program. While support for simple data types of key/value pairs is readily
available, parsing and processing more complex structures requires adding logic to
user program to perform these operations. When input data is shared by multiple
applications, the structure of the input files must be enforced and maintained by
some external service [21]. This problem does not usually exist in database systems,
where catalog services are used to abstract the definition and maintenance of metadata
(description of how data is structured) from the logic of the underlying applications.

188 M.A. Soliman

CLl HiveServer2

~.

Driver

Parser

/ Metastore

Planner

RDBMS
(PostgreSQL)

Execution

—

Data Processing Engine
(MapReduce)

\ SerDe

\

Storage Handler

File Format
(ORC)

HDFS

Fig. 4 The architecture of Hive [12]

3.2 Hive

Hive [12, 30] is a query translation layer on top of MapReduce. The design of Hive
exposes a dialect of SQL to Hadoop users. The expressed queries are translated to
graphs of MapReduce jobs. The expressiveness power of SQL allows users to formu-
late complex queries in a declarative manner, without the need to write MapReduce
programs that specify the exact operations to be performed.

While abstracting the query language interface is key to improve the usability of
Hadoop query engines, two additional aspects are also addressed by Hive to improve
the productivity of Hadoop query engines:

e Storage: storing datasets in an efficient format that allows fast data access and
better use of storage resources.

e Query optimization and execution: A sophisticated query optimizer and an
advanced query executor are highly needed to improve query response times and
optimize utilization of computation resources.

Figure 4 shows the architecture of Hive [12]. Two interfaces are exposed to clients
to submit queries: (1) Command Line Interface (CLI), and (2) HiveServer2. The client
facing interface is used to submit queries to the Driver component. The Driver com-
ponent transforms the incoming query into a parse tree representation. The Planner

vww.ebook3000.con)

http://www.ebook3000.org

Big Data Query Engines 189

component receives the query parse tree and then, based on the type of submitted
query, a specific planner implementation is chosen to analyze the given query parse
tree. During query analysis, catalog information regarding metadata objects (e.g.,
table definitions) may be needed. This information is obtained by contacting the
Metastore, which is implemented using a Relational Database Management System
(RDBMS), typically PostgreSQL [25].

The Planner component in Hive generates a directed acyclic graph of MapReduce
tasks that represents the required data processing operations. The graph is submitted
to the Data Processing Engine for execution.

To read/write a table with a specific file format, Hive assigns the corresponding file
reader/writer to MapReduce tasks reading/writing this table. For a given file format, a
serialization-deserialization library (SerDe) is used to serialize and deserialize data.

After all MapReduce jobs have finished, the Driver fetches the results of the
query, and sends the results back to the query client. Besides processing data directly
stored in HDFS, Hive can also process data stored in other storage systems, e.g.
HBase [11]. For those systems, a corresponding Storage Handler is needed. For
example, the HBase storage handler is used when a query needs to read or write data
from or to HBase.

3.3 Spark

The key advantage of the MapReduce framework is the seamless scalability, fault tol-
erance and parallelization capabilities it provides for big data applications. However,
managing distributed memory in the computing cluster is missing in MapReduce.
Intermediate results are typically stored to temporary files on disks and may not
be shared across applications. This means that it is not possible to efficiently reuse
previous computations in new data processing tasks.

A number of classes of big data applications can largely benefit from reusing
previous computations. For example, in machine learning and graph algorithms,
iterative computation is used to analyze and process a large dataset. In each iteration,
the previously computed values are used to generate new values. The intermediate
computation used by one application may also be usable in other applications. Data
reuse is highly needed to improve the efficiency of this type of applications.

Apache Spark [33] is a Hadoop-based computational framework that mainly tar-
gets iterative applications. The framework provides a general-purpose query engine,
a set of functional programming APIs, and a number of libraries for streaming, graph
processing and machine learning.

The functional programming APIs provided by Spark allow users to manipulate
distributed data collections called Resilient Distributed Datasets (RDDs). An RDD
is a collection of data objects that are partitioned across a cluster. A number of
operations can be applied to RDDs including map, filter, and reduce operations.

RDDs maintain their lineage information in a reliable way. The lineage is the
sequence of operations that were performed to construct an RDD. Maintaining lin-

190 M.A. Soliman

eage information is the key for fault tolerance in Spark, which allows recovering
lost data using the lineage graph of the RDDs. Replaying the sequence of operations
encoded in the RDD lineage allows reconstructing an RDD in the event of data loss.

The query evaluation on RDD is performed lazily. All data processing operations
that do not require producing output are implicitly encoded in the RDD lineage,
but not actually performed. When an output operation, for example producing some
aggregated value, is requested, the sequence of data processing operations (encoded
in the lineage) is triggered.

A first effort towards building a relational query interface on top of Spark was a
system called Shark [31], which is a shorthand for Spark on Hive. Shark modified the
Apache Hive system to run on Spark as the underlying computation framework that
is used instead of MapReduce. Traditional query optimizations, such as columnar
processing, are implemented on top of the Spark engine. However, Shark could only
be used to query external data stored in the Hive catalog. This limitation means that
it was not possible to use Shark for processing data inside a Spark user program.

A recent solution has addressed this limitation by introducing a native SQL layer
on top of Spark. The resulting system is called SparkSQL [2]. We discuss the details
of query optimization in SparkSQL in Sect. 5.3.

4 SQL on Hadoop

While Hadoop’s scalability and fault-tolerance match the requirements of running
analytics on big data, the need to formulate analytics as complex MapReduce pro-
grams as well as the lack of support to interactive data exploration (with short response
times) were considerable limitations.

To address these limitations, SQL-like declarative languages, such as HiveQL in
Hive [30], were first developed in a query language layer on top of Hadoop. HiveQL
queries are compiled into MapReduce jobs. While HiveQL improved the usability of
Hadoop ecosystem for running complex big data analytics, the generated MapReduce
jobs had typically poor performance. It became obvious that more advanced query
optimization and execution techniques are still lacking in Hadoop environments.

A number of systems (e.g., HAWQ [24], Impala [14] and Presto [3]) have imple-
mented from scratch (or ported) full-fledged relational query engines to work on top
of HDFS. There are two main advantages of these systems, compared to the native
Hadoop-based query engines:

e Query optimizers are sophisticated enough to generate more efficient query plans.
This means that the probability of running analytics based on bad execution plans,
which often translates to long execution times, is relatively small.

e Query execution is not following the MapReduce execution style. This means
that using these query engines for data exploration in Hadoop is possible. A key
advantage of these engines is pipelining intermediate query results without the
need to materialize them, in contrast to MapReduce.

vww.ebook3000.con)

http://www.ebook3000.org

Big Data Query Engines 191

In this section, we describe the system architectures of some examples of SQL-
on-Hadoop systems, and highlight their main similarities and differences.

4.1 HAWQ

HAWQ [24] is a massively parallel processing SQL engine on top of HDFS. HAWQ
originated as a redesign of Greenplum database into a hybrid of MPP database and
Hadoop technologies. The layered architecture of Greenplum database (Fig.2) is
adopted and reused to build an SQL engine that relies on the Hadoop distributed file
system for data replication and fault tolerance.

By building on the extensive query language and optimization capabilities of
Greenplum database, HAWQ has a high degree of SQL standard compliance as well
as extensive query optimization capabilities. In particular, HAWQ employs Orca [27],
an industry-grade optimizer, at its core, to devise efficient query plans minimizing
the cost of accessing data in Hadoop clusters. The architecture of HAWQ combines
the benefits of using a state-of-the-art cost-based optimizer with the scalability and
fault-tolerance of Hadoop to enable interactive processing on Big Data in Hadoop
environments. We describe the architecture of Orca query optimizer in Sect.5.2.

The main difference between HAWQ and Greenplum Database is the underlying
data storage characteristics. Greenplum database assumes dedicated data servers
that handles data storage, while HAWQ runs on a cluster of commodity machines.
HAWQ achieves its scalability and fault tolerance by relying on Hadoop’s ability to
seamlessly scale the underlying cluster, and its built-in replication mechanisms.

The first design of HAWQ [4], shown in Fig. 5, re-architected various components
of Greenplum database including distributed transaction processing, fault tolerance,
unified catalog service and metadata dispatch. HAWQ’s architecture is based on three
type of nodes: master, HDFS name node, and segment nodes. The segment nodes
run both HAWQ’s compute units (each compute unit manages a physical partition
of the database) as well as the typical HDFS data nodes.

The master node is the main entry point of the system, where user queries are
submitted. The master node is responsible for authenticating users based on given
credentials, parsing incoming queries, invoking query optimizer to produce execution
plan, and finally dispatching query plans to segment nodes to initiate query execution.
The master node has an accompanying standby master, which is kept in-sync with
the primary master by sharing log files.

Each physical node in HAWQ’s cluster runs an HDFS data node as well as multiple
compute units. The compute units leverage multi-core architecture during query
execution. In a typical configuration, each compute unit is assigned to a processor
core in the physical node that the unit runs on. This allows operations like scanning
input data to be conducted in parallel by initiating multiple compute units on the
same physical node, each utilizing a dedicated processing core.

HDFS data nodes are collocated with compute units on the same physical
machines to leverage data locality. Nodes access HDFS storage layer through lib-

192 M.A. Soliman

Pig, Other

PSQL ETL tools Bl Tools MapReduce applications

SQL (JDBC, ODBC, libpq) @ Direct Access (HDFS API)

log
Master > Standby NameNode

o TR

I Network Interconnect (UDP, TCP) I

&

Segment Segment Segment
libhdfs3 pxf libhdfs3 pxf libhdfs3| pxf
External External External
DataNode Data DataNode || paia DataNode Data

Fig. 5 Initial HAWQ architecture [4]

hdfs3, an HDFS library. Pivotal extension framework (PXF) is an extensible frame-
work, which enables SQL access to external data sources such as HBase [11] and
Hive [12].

A major requirement that was not addressed in the first design of HAWQ is
elasticity within Hadoop ecosystem. This is important to allow HAWQ to share
resources with other Hadoop tenants. Computing and storage resources should be
dynamically allocated during query execution by negotiating with Hadoop resource
managers.

The redesign of HAWQ is called Apache HAWQ [22] and its architecture is shown
in Fig. 6. In this architecture, on each physical host, HAWQ runs a segment node, an
HDFS data node and a node manager. The master nodes of Apache HAWQ, HDFS
and YARN [32] (Hadoop utility for resource management) run on separate nodes.
Apache HAWQ is integrated with YARN for resource management.

When a query is submitted to Apache HAWQ, a set of virtual segments are allo-
cated according to the estimated cost of a query, as given by HAWQ’s query opti-
mizer, and the current usage of resources in the Hadoop cluster, as given by YARN.
After virtual segments are determined, the query is dispatched to the corresponding
physical hosts. The set of physical hosts that will execute a query can be a subset

vww.ebook3000.con)

http://www.ebook3000.org

Big Data Query Engines 193

YARN Node Node Node
Resource Manager Manager Manager Manager
i i C 2 C i £ 5
Catalog service c) c Y ((Container) (Container J

S
< N7

= o @y By @,

| ®

NameNode DataNode | ‘ ‘ DataNode ‘ DataNode J ‘

Fig. 6 Apache HAWQ architecture [22]

of physical hosts of the whole Hadoop cluster. The HAWQ resource enforcer on
each node monitors and controls the real time resources used by the query to avoid
resource usage violations. Nodes can be added dynamically without data redistribu-
tion. When a new node is added, the HAWQ master is notified to make the additional
resources given by the new node visible for future queries.

4.2 Impala

Impala [14] is a massively-parallel query execution engine, developed specifically
to run on Hadoop clusters. The design of Impala decouples the query engine from
the underlying storage engine. The architecture of Impala is based on multiple com-
ponents that interact together to provide query processing and data storage function-
alities. The architecture is shown in Fig.7. The architecture is based on three main
services:

e Impalad: A daemon service that is responsible for accepting queries from client
processes and managing query execution across the cluster. This daemon service
is also responsible for executing individual query fragments on behalf of other
Impalad’s. One Impalad is deployed on every machine in the cluster. When an
Impalad operates in the first role (managing query execution), it is said to be the
coordinator for that query. All Impalad’s may operate in all roles. This property is
important for fault-tolerance and load-balancing. Each node also runs a datanode
process, which is responsible for accessing data in the underlying HDFS. This
allows taking advantage of data locality by reading from the filesystem without
going through the network.

194 M.A. Soliman

HDFS :

Impalad Impalad Impalad

P]
‘ Query Planner Query Planner Query Planner |
i >
; Query Coordinator Query Coordinator 5 Query Coordinator
(3) ¥ 4(5) \"‘-.____ i

-+ 3
Query Execut Query Executor Query Executol

Hive

Metastore

SQL App
ODBC

(6) Query results

(1) Send SQL

Fig. 7 Architecture of Impala [14]

e Statestored: A daemon service that is responsible for metadata publish-subscribe
service. This service is used to disseminate metadata updates to Impala processes
in the cluster. There is a single statestored instance.

e Catalog: A daemon service that serves as the catalog repository. Using catalog,
Impala daemons may execute data definition language (DDL) commands (e.g.,
creating data objects such as relational tables). The object definitions are reflected
in external catalog stores such as the Hive Metastore. Changes to the system catalog
are broadcast via the statestore.

Impala synchronizes cluster-wide metadata by leveraging its symmetric-node
architecture, where all nodes are able to accept and execute queries. Therefore, a
fresh version of system-wide catalog must be obtainable by all nodes at any point of
time. A holistic view of resource utilization in the system must also be available at
all nodes, so that queries can be optimized and scheduled properly.

These capabilities are provided by pushing metadata updates to interested nodes.
This is implemented by the satestore, which is a publish-subscribe service that pushes
metadata updates to a set of subscribers. The statestore maintains a table that stores
a set of topics. Processes that are interested in receiving updates on a particular topic
subscribe with the statestore service.

After registration, the statestore periodically sends two message types to each
subscriber:

e Topic update message: A message that has all changes to a topic since the last
update. In response to a topic update, each subscriber sends a list of changes in
its subscribed topics. Those changes are guaranteed to be applied by the time the
next update is received.

e Keepalive message: The statestore uses keepalive messages to maintain the connec-
tion with subscribers. When keepalive message is not received from a subscriber
after some time threshold, the subscription times-out, and the subscriber needs to
re-register with statestore.

We discuss query optimization and query execution techniques in Impala in
Sects. 5.5 and 6.4, respectively.

vww.ebook3000.con)

http://www.ebook3000.org

Big Data Query Engines 195

Architecture

Data
Location API

4 4

Parser/

Analyzer Planner — Scheduler

Client

Data Stream API

Fig. 8 Architecture of Presto [3]

4.3 Presto

Presto [3] is a distributed SQL query engine optimized for interactive processing in
Hadoop clusters. Unlike MapReduce framework, which is a computation framework
primarily designed for batch processing, Presto is designed to support data explo-
ration tasks that typically involve running analytics with low latency requirements.

Figure 8 shows the architecture of Presto. The query client submits SQL statements
to the coordinator component. The submitted queries are parsed, optimized and
turned into query execution plans. While optimizing a query, a Metadata interface to
Hive Metastore is used to obtain definitions of data and query objects such as tables
and functions.

The query execution plan is turned by the scheduler component into an execution
pipeline. The pipeline assigns work to nodes closest to the data. The query execution
progress is monitored by the scheduler. The pipeline workers produce output by
pulling data from the previous workers, apply corresponding data processing tasks,
and sending the results upon request to later stages in the pipeline. An installation of
Presto’s components is shown in Fig.9.

Presto query execution engine does not spawn MapReduce jobs. The query execu-
tion model employs a custom engine with special query operators designed to support
SQL operations. Query processing is done in memory and intermediate results are
pipelined across the network between stages. This avoids unnecessary I/O where
intermediate results need to be written to disk between query processing stages. The
pipelined execution model in Presto can run multiple stages at once, and streams
data from one stage to the next as it becomes available. This reduces end-to-end
latency of queries. However, in-memory query execution in Presto has its pitfalls

196 M.A. Soliman

Fig. 9 Components of Presto [3]

when processing a large data set that exceeds the total available memory. In this
case, query execution fails.

Presto has a storage abstraction that allows using disparate data sources. Storage
connectors, to different types of data sources are designed by writing interfaces for
fetching metadata getting data locations, and accessing the contents. The storage
connectors support ingesting data from multiple sources including Hive and HBase.

Presto is offered as a cloud service by Qubole [26]. By using Presto cloud service,
analytics can run on cloud data storage (e.g., Amazon storage service). This can
be useful for running interactive workloads for data exploration, or integrating data
from multiple sources by using storage connectors. The cloud elasticity is leveraged
so that resources needed for data storage and query execution dynamically shrink or
expand depending on the requirements of each query workload.

5 Query Optimization

The job of a query optimizer is to turn a user query into an efficient query execution
plan. The optimizer typically generates the execution plan by considering a large
space of possible alternative plans and assigning an estimated cost to each alternative
in order to pick the cheapest one. The art of query optimization is a combination of
technically challenging problems (e.g., plan enumeration, cost estimation, statistics
derivation, property enforcement and join ordering), some of them are known to be
NP-Hard.

Query optimizer is one of the most performance-sensitive components in a data-
base system. Differences in query plans may result in several orders of magnitude
of difference in query performance, significantly more than any other contributing
factor. Big data has triggered a renewed interest in query optimization techniques

vww.ebook3000.con)

http://www.ebook3000.org

Big Data Query Engines 197

as a set of principled methods that could, when combined with scalable hardware
resources and robust execution engines, make analyzing and processing petabytes
of data finally possible. The increased amounts of data that need to be processed
in today’s world stress on the importance of building an intelligent query optimizer
at the core of any query engine.

The impact of having a good optimizer on query performance is known to be
substantial. The extensive research done by the database community in query opti-
mization over the past decades provides a plethora of techniques that can be leveraged
and adopted in new data processing environments such as Hadoop.

In this section, we discuss query optimization in big data systems. We start by
presenting a number of query optimization research problems. We then describe the
architectures of query optimizers of some examples of big data query engines. We
highlight the main similarities and differences of discussed optimizers, and present
a number of technical problems tackled by these optimizers.

5.1 Research Problems

Building a query optimizer is not an easy undertaking. It takes a lot of design and
development efforts to get the query optimizer in the required shape. There are many
challenges involved in the design of query optimizers in big data query engines. In
this section, we give an overview of some of these challenges.

Modularity. Building query optimizer as a complex monolithic software component
does not allow adapting the optimizer design to the changing processing environ-
ments of big data. New data formats and query execution engines are constantly
adopted in big data domains. The optimizer design needs to be modular to allow
plugging new components that consume data in new formats, and exploit the query
processing capabilities of new query execution engines.

An crucial interface to query optimizer is metadata acquisition. The optimizer
makes extensive use of metadata (e.g., table/index definitions and data statistics)
during plan enumeration, transformation rules, statistics derivation and cost com-
putation. Using a highly extensible abstraction of metadata and system capabilities
is important to allow query optimizer to deal with new data types and processing
environments. Designing the optimizer’s statistical and cost models as pluggable
components is an important challenge that needs to be addressed in this respect.

Extensibility. Having all elements of a query and its optimizations as first-class
citizens in optimizer’s architecture is an important challenge that impacts optimizer
design. When an optimizer is designed based on a strict set of optimizations and query
elements, adding new optimizations becomes technically hard. This often leads to
resorting to multiple optimization phases, where the decisions made in earlier phases
are revisited in later phases.

One example of new requirements that were triggered by big data processing
environments is data distribution. In big data environments, scalability is realized

198 M.A. Soliman

by distributing data load across machines in the cluster. Such requirement did not
exist in earlier database systems. Optimizers ported from older systems, or the ones
that adopted older designs handle data distribution by adding a plan parallelization
phase, where data distribution is considered after some optimization decisions have
been already made.

Multi-phase optimizer design impacts the quality of final query plan since the
available information does not impact all optimizer’s decisions. Multi-phase opti-
mizers are notoriously difficult to extend as new optimizations or query constructs
often do not match the predefined phase boundaries.

Addressing this challenge by abstracting query elements, data properties and
query optimizations as first-class constructs that optimizer treats similarly can avoid
the problems of multi-phase optimization where certain constructs are dealt with as
an afterthought.

Exploiting multi-core architectures. Query optimization is probably the most CPU-
intensive operation that a query engine performs. The space of plan alternatives is
combinatorial by definition. There are pressing needs for efficient exploration and
pruning of the plan space in order to produce high-quality execution plans.

Exploiting multi-core architectures is an important tool that allows optimizers to
scale. By dividing the optimization tasks into a set of work units, using multiple CPU
cores for query optimization becomes possible.

A crucial challenge in this respect is formulating and capturing dependencies
among optimizer’s work units, and designing a work unit scheduler that assigns
optimization tasks to processing cores and efficiently gathers the computation results
of these units to generate the optimizer’s plan space.

Testing optimizer accuracy. Evaluating the accuracy of query optimizers objec-
tively is a difficult problem. Benchmarks developed for assessing the query perfor-
mance test the system as a whole end-to-end. However, no benchmarks are currently
available to test a query optimizer in isolation [10]. Being able to compare the accu-
racy of optimizers across different products independently is highly desirable.

The most performance-critical element in a cost-based optimizer is probably the
accuracy of its cost model as it determines how to prune inferior plan alternatives.
There is no standard way to test an optimizer’s accuracy. The cost units used in the
cost model and displayed with the plan do not reflect anticipated wall clock time but
are used only for comparison of alternative plans pertaining to the same input query.
Comparing this cost value with the actual execution time does not permit conclusions
about the accuracy of the cost model.

Moreover, the optimization results are highly system-specific and therefore defy
the standard testing approach where results are compared to a reference or baseline
to check if the optimizer finds the ‘correct’ solution: the optimal query plan for
System A may widely differ from that for System B because of implementation
differences in the query executors and the optimizers. These differences can lead
to choosing radically different plans. Building testing infrastructure for evaluating
query optimizers is an important research problem.

vww.ebook3000.con)

http://www.ebook3000.org

Big Data Query Engines 199

Fig. 10 Interaction between
Orca and database Database System
system [27] Query ——’1 Parser H Catalog | | Executor F—" Results
I ¥
|Query20xt| [MD Provider| | DXL2Plan |
Ly
0
1
i L 3 1 L 4 <
DXL Query ' [oxump | [pxtpian
1
1

! I

[Orca I

5.2 Orca

Orca [1, 6, 20, 27] is the query optimizer of Pivotal’s data management products,
including Greenplum database [23] and HAWQ [24]. While many query optimizers
are tightly-coupled with their host systems, a unique feature of Orca is its ability to
run outside the database system as a stand-alone optimizer. This ability is crucial
for supporting query engines with different computing architectures (e.g., MPP and
Hadoop) using one optimizer. It also allows leveraging the extensive legacy of rela-
tional optimization in new query processing paradigms. Furthermore, running the
optimizer as a stand-alone product enables elaborate testing without going through
the monolithic structure of a database system.

Figure 10 shows the interaction between Orca and an external database system.
The database system needs to include translators that consume/emit data using Data
Exchange Language (DXL), which is an XML-based language that is used to define
an interface for accessing Orca. The Query2DXL translator converts a query parse
tree into a DXL query, while the DXL2Plan translator converts a DXL plan into
an executable plan. The implementation of such translators is done completely out-
side Orca, which allows multiple systems to interact with Orca by providing the
appropriate translators.

The input to Orca is a DXL query. The output of Orca is a DXL plan. During
optimization, the database system can be queried for metadata (e.g., table definitions).
Orca abstracts metadata access details by allowing database system to register a
metadata provider (MD Provider) that is responsible for serializing metadata into
DXL before being sent to Orca. Metadata can also be consumed from regular files
containing metadata objects serialized in DXL format.

The design of Orca is based on the Cascades optimization framework [9]. The
space of plan alternatives generated by the optimizer is encoded in a compact
in-memory data structure called the Memo. The Memo structure consists of a set
of containers called groups, where each group contains logically equivalent expres-
sions. Memo groups capture the different sub-goals of a query (e.g., a filter on a table,
or a join of two tables). Group members, called group expressions, achieve the group
goal in different logical ways (e.g., different join orders). Each group expression is

200 M.A. Soliman

. GROUPO :
1 1
Inner Join ! '
(T1.a=T2.b) ' GROUP1 !
— i 0: Get(T1) [] :
Get(T1) Get(T2) i GROUP 2 i
Logical Expression i 0: Get(T2)] '
. 1
1 1

Initial Memo

Fig. 11 Memo structure [9]

an operator that has other groups as its children. This recursive structure of the Memo
allows compact encoding of a huge space of possible plans.

A DXL query message is shipped to Orca, where it is parsed and transformed to
an in-memory logical expression tree that is copied-in to the Memo. For example,
Fig. 11 shows the logical expression of a simple inner join query between two tables
T1 and T2. The logical expression creates three groups for the two tables and the
Inner-Join operation. Group 0 is called the root group since it corresponds to the
root of the logical expression. The dependencies between operators in the logical
expression are captured as references between groups. For example, Inner-Join [1,
2] refers to Group 1 and Group 2 as children.

Orca optimizes queries in top-down fashion by computing optimization requests
in the Memo. Each optimization request specifies physical properties (e.g., data
distribution and sort order) that need to be satisfied. A Memo group is optimized
under a given optimization request by finding the best plan, rooted at the group, that
satisfies the required properties at the least cost.

Figure 12 shows how Orca processes optimization requests in the Memo for
a simple join query between two tables T1 and T2 based on the join condition
(T1.a=T2.b). The query results are required to be sorted on column T1.a. Assume

Groups Hash Tables Memo Extracted final plan
GROUP 0

Opt. Request | Best GExpr |[z Inner NUoin [2,1] || 3 Inner NUoin [1,2]][4: Inner Hashloin [1,2] |[5: Inner HashJoin [2, 1]h GatherMerge(T1.a)

Singleton, <Tl.a> |8 #4 #7 #10

Singleton, Any

7
Any, <TL.a> 6 6:Sort(T1.a) [0] | 7: Gather[U] 8: GalherMerge(Tl a)[0]

Opt. Request Best GExpr | GROUP 1

Ay, Any 1 1:scan(12)1] | [Sort(Tl a) [1] | 3: Replicate[1]
o8 1]

Hashed(T1.a), Any
Any, <T1.a>

Sort(T1.a)

Inner Hash Join

& w o] [

o [~]o [[
NNE

GROUP 2

Opt. Request Best GExpr

Any, Any 1 2: Replicate[2]
Hashed(T2.b), Any | 3 -.
Replicated, Any | 2 --

Fig. 12 Processing optimization requests in Orca [27]

=

3: Redistribute(T2.b) [2]

©

Redistribute(T2.b)

=
o

i
=

vww.ebook3000.con)

http://www.ebook3000.org

Big Data Query Engines 201

that relation T'1 is hash-distributed on column T1.a, and relation T2 is hash-distributed
on column T2.a.

The initial optimization requestisreq. #1: {Singleton, < 7'1.a >}, which specifies
that query results are required to be gathered to a single node (typically the master)
based on the order given by column T1.a. The group hash tables are shown, where
each request is associated with the best group expression (GExpr) that satisfies it at
the least estimated cost. The black boxes indicate enforcer operators that are plugged
in the Memo to deliver sort order and data distribution:

e Gather operator gathers tuples from all segments to the master.

e GatherMerge operator gathers sorted data from all segments to the master, while
keeping the sort order.

e Redistribute operator distributes tuples across segments based on the hash value
of given argument.

e Sort operator enforces a given sort order to the partition of tuples residing on each
node.

Figure 13 shows the detailed optimization of req. #1 by InnerHashJoin[1,2], which
is a hash-based algorithm for joining two relational inputs given by groups 1 and 2.
For the join condition (T1.a=T2.b), one of the alternative plans is aligning child
distributions based on join condition, so that tuples to be joined are co-located. This
is achieved by requesting Hashed(T1.a) distribution from group 1 and Hashed(T2.b)

{Singleton, <T1.a>} {Singleton, <T1.a>}
M ¥
| Inner Hash Join [1,2] | | Inner Hash Join
e--"""" T TTe——l > " P

{Hashed(T1.a), Any} {Hashed(T2.b), Any} | tid i
) ! ! Scan(T1) ! H Redistribute(T2.b)
GROUP 1 GROUP2 | TTTTTTTTT '
Scan(T2)

(a) Passing requests to child groups (b) Combining child groups best plans

Sort(T1.a)

GatherMerge(T1.a)

Sort(T1.a) Gather

| Inner Hash Join | | Inner Hash Join |

Scan(T1) Scan(T1)

Redistribute(T2.b) Redistribute(T2.b)

scan(r2)

(c) Enforcing missing properties to satisfy {Singleton, <T1.a>} request

Fig. 13 Plan generation in Orca [27]

202 M.A. Soliman

distribution from group 2. Both groups are requested to deliver ANY sort order. After
child best plans are found, InnerHashJoin combines child properties to determine the
delivered distribution and sort order. Note that the best plan for group 2 needs to hash-
distribute T2 on T2.b, since T2 is originally hash-distributed on T2.a, while the best
plan for group 1 is a simple Scan, since T1 is already hash-distributed on T1.a.

When it is determined that delivered properties do not satisfy the initial require-
ments, unsatisfied properties have to be enforced. Property enforcement in Orca in
a flexible framework that allows each operator to define the behavior of enforcing
required properties based on the properties delivered by child plans and operator
local behavior.

Enforcers are added to the group containing the group expression being optimized.
Figure 13 shows two possible plans that satisfy req. #1 through property enforcement.
The left plan sorts join results on segments, and then gather-merges sorted results at
the master. The right plan gathers join results from segments to the master, and then
sorts them. These different alternatives are encoded in the Memo and it is up to the
cost model to differentiate their costs.

Finally, the best plan is extracted from the Memo based on the linkage structure
given by optimization requests. Figure 12 illustrates plan extraction in Orca. The
local hash tables of relevant group expressions are illustrated. Each local hash table
maps incoming optimization request to corresponding child optimization requests.
The best group expression of req. #1 in the root group is first looked-up, which leads
to GatherMerge operator. The corresponding child request in the local hash table
of GatherMerge is req #3. The best group expression for req #3 is Sort. Therefore,
GatherMerge is linked to Sort. The corresponding child request in the local hash
table of Sort is req #4. The best group expression for req #4 is InnerHashJoin[1,2],
and so Sort is linked to InnerHashJoin. This procedure is followed to complete plan
extraction leading to the final plan shown in Fig. 12.

5.3 Catalyst

Catalyst [2] is the query optimizer of SparkSQL [2], which is used to turn SQL queries
into Spark execution plans. Many constructs in Catalyst are represented using tree
data structures, including logical expressions, intermediate expressions and physical
query execution plans. The optimizer design is based on decoupling the optimization
phases which gives room for including further optimizations as the design evolves.

The design of Catalyst is based on a query rewrite engine that runs batches of
transformation rules. Each transformation rule converts an input tree to an equiva-
lent output tree. Transformation rules are partitioned into batches. Batches are run
sequentially, and rules within each batch are also run sequentially. The rule engine
terminates when reaching a fixed point, which means that applying further trans-
formations would not change the input expression anymore, or when a maximum
number of iterations is reached.

vww.ebook3000.con)

http://www.ebook3000.org

Big Data Query Engines 203

Logical Physical Code
Optimization Planning Generation

Selected
Physical RDDs
Plan

Analysis

Physical
Plans

SQL Query
Unresolved Logical Plan Optimized
Logical Plan 9 Logical Plan

Catalog

Cost Model

DataFrame

Fig. 14 Query optimization phases in SparkSQL [2]

Query optimization in Catalyst takes place in a number of sequential phases, as
depicted in Fig. 14. We describe in the following the different phases that Catalyst
optimizer goes through to produce the final query execution plan. We give a step-
by-step illustration using the example shown in Fig. 15.

e Query Parsing: A HiveQL-based parser is used to generate an abstract syntax
tree for an incoming SQL query. Figure 15a shows the tree representation of an
example SQL query.

e Metadata Lookup: The abstract syntax tree is preprocessed by resolving table
names referenced in the query by looking up the MetaStore to obtain table defini-
tion. Figure 15b shows a MetaStoreRelation created for an unresolved relation in
the query after looking up the MetaStore.

e Resolving References: A globally unique identifier is assigned to each attribute
(column) referenced in the query tree. Then, derivation of data types of every data
item in the query tree takes place. Figure 15¢ shows unique numerical identifiers
assigned to columns in the query tree.

e Logical Planning: Multiple logical rewrites are conducted to simplify the input
query tree. These rewrite operations include the following:

— Removing redundant query operators.

— Constant folding, where inlined constant expressions are reduced to simple
atomic values.

— Filter simplification, where trivial filters are removed, and subtrees that are
known to return no results are pruned.

— Filter push down, so that filtering operations are applied as early as possible.

— Eliminate unused column references that are not needed to compute the final
query answers.

Figure 15d shows the transformed query tree after applying the previous logical
rewrites. For example, the Filter operator has been pushed down, while the Sub-
query operator was eliminated because of being a redundant operator.

e Physical Planning: In this phase, the optimized logical plan is transformed into
a number of possible physical plans. This is done by recognizing operators in
the logical plan that can be directly transformed into physical counterparts. For
example, a filter on a MetaStore relation can be transformed into HiveTableScan.
In addition, a list of strategy objects, each of which can return a list of physical
plan options, is used to transform logical operators to equivalent physical ones.

204

SELECT a.name

FROM

(SELECT name, state AS
location FROM people
WHERE 1=1) a

WHERE location="CA'

Project

‘a.name
1

Filter
’Iocaticfn='CA'

Subquery

a
|

Project
‘name, ‘state AS location
|
Filter
1=1
|
UnresolvedRelation
people

(a) AST representation

Project
a.name#24510
I

Filter
location#24490="CA’
|
Subquery

a
|

Project
name#24510,
state#24509AS

Iocatior‘l#24490
Filter

1=1
I
MetaStoreRelation
databasename: default
tablename: people

(c) Resolving references

Project

a.name#24510

Filter

location#24490="CA’

MetaStoreRelation
databasename: default
tablename: people

Fig. 15 Query optimization example in SparkSQL

(d) Logical planning

Project

‘a.name
1

Filter
‘Iocaticl)n=’CA’

Subquery

a
|

Project
‘name, ’stattla AS location

Filter
lfl

MetaStoreRelation
databasename: default
tablename: people

(b) Metadata lookup

M.A. Soliman

HiveTableScan
attributes: name#24510
relation: MetaStoreRelation people
partition pruning predicate:
location#24490="CA’

(e) Physical

planning

Examples of strategy objects include HashJoin and NestedLoopJoin strategies. If
a given strategy object is unable to plan all of the remaining operators in the tree,
it creates a placeholder to be filled by other strategy objects. Figure 15e shows the
final physical plan, which is reduced to a simple HiveTableScan with an embedded

filter.

e Plan Parallelization: In this phase, data exchange operators are plugged into the
generated physical plans to establish the required data distributions. Distribution
requirements could arise from operator local requirements, or from query-specific
requirements. Physical operators may not be able to establish data distributions on
their own. In this case distribution enforcers are used to guarantee delivering the
required data distribution. The enforced distributions include the following:

vww.ebook3000.con)

http://www.ebook3000.org

Big Data Query Engines 205

— Clustered distribution: Tuples that share the same values of clustering expres-
sions are co-located.

— Ordered distribution: Tuples are sorted according to ordering expressions.

— All Tuples distribution: A single partition is created where all tuples are
co-located.

Similar to many other operations, distribution enforcement is a transformation rule
in SparkSQL. A transformation rule is used to ensure that distribution of input data
meets the distribution requirements of each operator by inserting Exchange (data
movement operators) when required. Given a physical plan, the Add-Exchange
rule performs the following operations:

— Check if every child distribution satisfies the distribution required from that
child

— Check if children distributions are compatible with each other. For example, in
order for a join operation to be conducted correctly, the data of joined inputs
must be either co-located or hashed to the same nodes, or, alternatively, one of
the two inputs needs to be replicated to all nodes.

— If a child does not meet required distribution, or is not compatible with other
children, an exchange operator is added.

54 V20pt

V20pt is the latest query optimizer of Vertica MPP database system [16]. The goal
of building a new optimizer in Vertica database is to integrate the awareness of data
distribution, sort orders, and non-star schemas into all optimizer decisions.

The design of V2Opt is extensible and allows adding new optimizations with
small modifications to the codebase. In V20pt, the physical properties of a given
query are first identified. These properties includes column selectivity, sort order
and integrity constraints. The identified physical properties are used by a cost-based
pruning strategy. The underlying cost model, used in pruning, combines different
factors including data compression and CPU/Network transfer costs. The objective
of pruning is to retain the most important properties that need to influence optimizer
decisions. The collected properties are used to reduce optimization search space, and
integrate data distribution into join order enumeration phase. By having optimizer
extensibility mechanisms in place, new physical properties could be added to the
optimizer without changing the entire architecture.

5.5 Impala Query Optimizer

The query optimizer of Impala [14] generates execution plans by following a two-
phase approach:

206 M.A. Soliman

e Phase | (Single node planning): In this phase, a query plan that runs on a single node
(i.e., without considering data partitioning in the Hadoop cluster) is generated.

e Phase 2 (Plan parallelization): In this phase, a parallelized query plan that processes
distributed data in the cluster is generated.

In the first optimization phase, the query parse tree is translated into a non-
executable single-node plan tree. The single node plan consists of different types
of operators including table scan, join, aggregation, sort and analytic evaluation
functions. In this phase, filters specified in the given query are pushed down to be
applied as close as possible to data sources. This is important to early-prune parts of
the data that are not needed to compute the final query answer. New filters could also
be inferred from existing filters to prune data more aggressively. Another important
optimization that takes place in this phase is join ordering, where an efficient eval-
uation order of relational joins is identified. Heuristics are typically used to avoid
exhaustive enumeration of the join orderings space.

In the second optimization phase, the single-node plan is turned into a distributed
(parallel) execution plan. The optimization objective of this phase is to minimize
data movement and maximize scan locality.

Data movement is controlled by adding Exchange operators between plan nodes,
and by adding extra non-exchange plan nodes to minimize data movement across the
network (e.g., local aggregation nodes). During this second phase, the join strategy
for every join node is decided, including broadcast (one input of the join is replicated
on all nodes) and partitioned/hashed (the two join inputs are partitioned across nodes
using the join expression, so that tuples that would join together reside on the same
node).

All aggregations are executed as a local aggregation followed by a merge aggre-
gation operation. The local aggregation output is partitioned on the grouping expres-
sions and the merge aggregation is done in parallel on all nodes. Sort is parallelized
similarly using a local sort followed by a single-node merge operation.

At the end of the second phase, the distributed plan tree is split into a set of plan
fragments at the boundaries given by the exchange operators. Each plan fragment
constitutes a unit of execution encapsulating a portion of the plan tree that operates
on the same data partition on a single machine.

Figure 16 gives an example for a query joining two HDFS tables (t1, t2) and one
HBase table (t3) followed by an aggregation and sort with a limit, where only the
top-n sorted answers are required. The single-node plan is shown on the left, while
the distributed and fragmented plan is shown on the right. The colored rounded
rectangles indicate plan fragments and arrows indicate data exchange operations.

The table data is randomly partitioned. Tables t1 and t2 are joined using the
partitioned strategy, while their join results are joined with t3 using the broadcast
strategy. Each scan node is placed in its own fragment since scan results are exchanged
to the join node, which requires a hash-based partition of the data. The following
join with t3 is a broadcast join placed in the same fragment as the join between t1
and t2 because a broadcast join preserves the existing data partition.

vww.ebook3000.con)

http://www.ebook3000.org

Big Data Query Engines 207

Single-Node Distributed Plan
Plan

at HDFS MergeAgg

Agg at HBase

Hash(t1.custid)
at Coordinator

| HashJoin |<—| Scan: t3 | q

Hashioin || Sean: 2 | [Hashoin |Broadeast

Fig. 16 Two-phase query optimization in Impala [14]

A two-phase distributed aggregation is performed after the second join. The local
aggregation is computed in the same fragment as the second join. The local aggre-
gation results are hash-exchanged based on the grouping keys, and then merge-
aggregated again to generate the final aggregation result. The same two-phased
approach is used to compute the top-n query results. The final top-n step is per-
formed at the coordinator, which returns the results to the user.

6 Query Execution

Query executor is responsible for executing the data processing operations, as given
by the plan generated by the optimizer, to the underlying data. The end results of
query execution is producing the required query answers.

A key feature of many query executors is the ability to pipeline query results. This
means that intermediate query results are progressively staged in a data processing
pipeline, where each node in the pipeline performs a single operation, until the final
query answer is obtained. Each operator in the pipeline is able to produce intermediate
output results without reading the full input data. Pipelining may not be possible for
certain types of operations that require consuming the full input before producing the
output. These operations are called ‘blocking’. One example is the Sort operation.

Pipelining in many query executors is based on the pull-based iterator model [8].
This model abstracts the details of query execution using three main APIs:

e Open: This API is used to start pulling data from a child operator by initializing
operator’s internal state.

e GetNext: This API is used by an operator to pull the next result from its child.

e Close: This API is used to signal end of processing, and triggers the cleanup of
used resources.

208 M.A. Soliman

Query plans are modeled as binary trees of operators communicating through
iterator calls. Each operator pulls data incrementally from its child operators, until
input is exhausted.

Consider for example a join operator that has two child operators representing
scan operations on two input relations. The join operator pulls data from the two scan
nodes, computes the joins and returns the join results to the client. Query execution
terminates when the two inputs are exhausted, and no more join results still need to
be computed.

In this section, we describe some of the query execution techniques adopted
by big data query engines and highlight the impact of these techniques on system
performance. We start by presenting a number of query execution research problems.
We then describe how some of these problems are tackled by current proposals.

6.1 Research Problems

We give an overview of some of the research problems involved in the design and
development of query executors in big data query engines.

Memory Management. The efficiency of query executor is largely determined by
its ability to manage memory intelligently. Query processing on big data often leads
to huge intermediate query results that cannot fit in memory. When a query executor
has the ability to process data beyond memory limits, the query engine becomes
much more useful at supporting complex data analytics.

One of the techniques that many executors use to handle data beyond memory
limits is the management of spill files. In this technique, an operator state is allowed
to overflow the available memory by writing data to disk. For example, a hash-join
operator can store part of the hash table to disk files when it does not fit in available
memory.

A crucial challenge in these techniques is how to determine the memory require-
ments of different query operators before query execution starts. The determination
of memory requirements is essential in Hadoop multi-tenant ecosystem where appli-
cations need to reserve resources a priori by communicating with resource manager.
Data statistics, optimizer’s cost estimates, and state of query execution are impor-
tant factors that need to be considered to determine memory requirements. Building
predictive models that determine memory requirements is an important research
problem.

Adaptive Execution. During query execution, the state of available resources
change. For example, the available memory and/or network sources could become
more scarce or abundant based on the current system state.

By designing query execution engine to be adaptive, the query engine becomes
able to adapt its needs according to current system state. For example, a particular
join algorithm might be efficient in the presence of abundant memory, and much less
efficient if intermediate results need to be spilled to disk. In this case, changing the

vww.ebook3000.con)

http://www.ebook3000.org

Big Data Query Engines 209

join algorithm in the midst of query execution could be a solution to work around the
availability of system resources. Designing operators with such algorithmic flexibility
is an interesting research problem.

Handling Different Data Models. Big data imposes the need to handle data follow-
ing different models. While relational data is still the main data model adopted by
many query engines, other data models are increasingly used. For example, nested
data models (e.g., JSON [13]) are increasingly used by web services to exchange
data.

Building a query executor that is able to process data following different models
is crucial for handling the changing environments of big data. While some of the
proposed techniques handle new data models by building transformers that convert
data from one model to another, integrating native support of different data models
within the execution engine is an important research problem.

6.2 Hadoop-Based Execution Engines

Hadoop-based execution engines rely on the distributed file system to achieve scal-
ability and fault-tolerance. The execution engines provide libraries that integrate
with the distributed file system to allow users to formulate analytics as imperative
programs.

The first Hadoop-based query execution engine was the MapReduce frame-
work [5] (cf. Sect.3.1). In this framework, a library provides users with the APIs
required for distributed query execution. Users need to program analytics using the
APIs provided by the MapReduce library. The framework takes care of automatic
distribution of query execution. The invocations of the map function are distributed
across multiple machines by partitioning the input data into a set of splits. Each split
can be processed on a different machine. The invocation of the reduce function are
distributed by hashing the intermediate key space into disjoint partitions.

When a MapReduce program is executed, the following sequence of actions
occurs, as illustrated in Fig. 17:

e A copy of user program is started on each machine used in query execution. A
special copy of the user program is called the master. The rest of the copies are
called workers, which are assigned work by the master. The master initially picks
idle workers and assigns each one a map task or a reduce task.

e When a worker is assigned a map task, it reads the contents of the corresponding
input split, and maps each key/value pair to an intermediate key/value pair buffered
in memory.

e Periodically, the buffered pairs are hashed into partitions stored on local disk. The
locations of these buffered pairs on the local disk are passed back to the master,
which is responsible for forwarding these locations to the reduce workers.

e When the master notifies a reduce worker about the location of a hash partition
of intermediate data, the worker reads the partition by issuing remote procedure

210 M.A. Soliman

User
Program

(1) fork .

(1) foik ¢1) fork
_ e
@ assign
.assign reduce .

LT map ——
output

__(5) remote read file O

split 2 @) read @ (4) local write
- output
split 3 == file 1

Spllt 0 (6) write

split 1

split 4
Input Map Intermediate files Reduce Output
files phase (on local disks) phase files

Fig. 17 Execution overview of MapReduce [5]

calls. The intermediate data are then sorted by the intermediate keys, so that all
occurrences of the same key are grouped together. The sorting is needed because
typically many different keys map to the same reduce task. If the amount of inter-
mediate data is too large to fit in memory, an external sort is used.

e The reduce worker iterates over the sorted intermediate data and for each unique
intermediate key encountered, it passes the key and the corresponding set of
intermediate values to the reduce function. The output of the reduce function
is appended to a final output file for this reduce partition.

e When all map tasks and reduce tasks finish, the master wakes up the user program.
At this point, the MapReduce call in the user program returns back to the user
code.

Hive [12] translates the incoming queries to executable jobs formulated using
the previous MapReduce framework. The translation is performed by the Planner
component (Fig.4), which converts the query tree into an operator tree that repre-
sents the required data processing operations. To allow for parallel query evaluation,
the Planner determines for each operator whether it requires its input records to be
partitioned based on some criteria or not. If an operator requires partitioned inputs,
a ReduceSink operator is inserted before the operator to indicate the need to parti-
tion the input data in a particular way before processing. For example, A GroupBy
operator requires a ReduceSink operator to be inserted in the data pipeline before the
GroupBy to inform the MapReduce execution engine that rows need to be partitioned
based on the grouping key to allow for parallel execution of GroupBy operator.

vww.ebook3000.con)

http://www.ebook3000.org

Big Data Query Engines 211

The Hive operator tree is then passed to the MapReduce task compiler, where oper-
ations are broken to multiple stages represented by executable tasks. The MapReduce
task compiler generates a directed acyclic graph of Map/Reduce tasks assembled in
MapReduce jobs based on an operator tree. In the execution of a Map/Reduce task,
operators inside a task are first initialized and then they process rows fetched by the
MapReduce engine in a pipelined fashion.

6.3 Parallel Databases Execution Engines

We discuss the query execution techniques adopted by a number of parallel database
systems. The main objective of parallel execution is achieving load balance by uti-
lizing available resources in the compute cluster to provide the best possible query
throughput. In these systems, different parts of the query plan can execute in different
processes, both within a single host, and across different hosts. In a shared-nothing
MPP architecture, processes within the same host share a common filesystem, while
processes in different hosts communicate through a network.

Greenplum Database. In Greenplum database [23], the query optimizer produces
parallel query plan by utilizing special query operators, called Motion operators,
which implement the Volcano’s Exchange operator [7]. Each Motion operator acts
as both sender and receiver of data. It also defines the boundaries of what is known
as a ‘slice’ in query execution plan. A query plan slice is a process that runs on a
particular node and exchanges data with other processes running on other nodes.

The goal of Motion operators is to establish a given data distribution. For example,
to establish a hashed distribution on column X, an instance of Redistribute(x) Motion
operator, running on node n, sends tuples on n to other nodes based on the hash value
of x, and also receives tuples from other Redistribute(x) operator instances running, in
parallel, on other nodes. Similarly, a Broadcast Motion and Gather Motion operators
are used to establish replicated and singleton distributions, respectively.

Figure 18 shows how query plan is sliced in Greenplum database for an example
query. In this example, the plan is split into three slices using the Motion nodes as
the slice boundaries. On a given node, three processes are active in parallel. The first
process scans table customer (slice 3), the second process performs the join with
table orders (slice 2), while the third process gathers the final results to the master
node, where query results need to be returned to client (slice 1).

Figure 19 shows the interaction of plan slices during query execution. Slice 3
hashes input data based on the column cust_id, and sends the hashed data to other
nodes based on the computed hash value. Slice 2 receives data from scan processes
running on other nodes, and also sends the join results to slice 1, where the final
query results are gathered.

Vertica Database. The Vertica execution engine [16] executes parallel query plans on
MPP cluster. An example of Vertica query plan is shown in Fig. 20. Query execution
in Vertica is multi-threaded and pipelined. At a given time, multiple operators can be

212 M.A. Soliman

SLICE1

N At
- = "Gather
suce2 |

SELECT c.name, o.price Proiegﬁame,o.price

FROM Customer c, Orders o X

) , HashJoin) .
WHERE o.cust id = c.cust id o-cust_id=c.cust_id
AND c.city = ‘San Francisco’

Customer is distributed randomly o
Orders isdistributed by cust id I

SLICE3

Fig. 18 Sliced query plan in Greenplum database [23]

. SLCE1
b4 Motion S
- - Master Gather N~ o
on. Muth.é. i
ather
sucez | suce2 |
Project X Project .
c.name, o.price I c.name, o.price
H i i
aShJomo.cust_id=c.cust_id HaShJOIno.cust_id:c.cust_id
o Motion o Motion
Scanorders f— -—-.L ScinarueTs -
- ==
Segment 1 1 - T - - I Segmentn

SLICE 3

Segmentn

SLICE3

Segment 1

Fig. 19 Parallel query execution in Greenplum database [23]

running in parallel on different nodes. Within each operator, multiple threads could
also be running in parallel.

The execution engine of Vertica is vectorized, where each block of row is requested
and processed as a unit. This execution model is different from the traditional iter-
ator model, where single rows are requested and processed one by one. Each query
operator can use one of several possible physical implementations. The choice of
which implementation is suitable at each query plan operator is controlled by the
query optimizer.

In a Vertica query plan, the Send and Recv operators are used to move data across
the nodes in the cluster. Send operator redistributes tuples from one node to other
nodes, while Recv operator receives and processes the incoming data. Two types of

vww.ebook3000.con)

http://www.ebook3000.org

Big Data Query Engines 213

Fig. 20 Parallel query
execution in Vertica [16]

ParallelUnion:
(Issue Thread Requests)

Filter:

4 count(*) < 10

v

GroupBy:

L Key: dept_id
— | Aggregate: count(*)

Yy,
=1

StorageUnion:
(Issue Thread Requests)

|| Resegment Key: dept_id

GroupBy:
(Small Hash Prepass)
(No spill)

Key: dept_id
Aggregate: count(*)

Tyy—

Scan:
departments.dept_id

tuple redistribution are supported: broadcast, where tuple is sent to all nodes, and
hashed, where tuple is sent to a node based on some hash expression.

Each Send and Recv pair retains the order of tuples in the input stream. The send
operator hashes its outgoing tuples, such that identical values end up at the same
node in the computing cluster. This allows the operator running on each node to
produce the full results independently of other nodes. Data on the same node can
also be partitioned and processed by multiple threads utilizing separate cores to keep
all cores fully utilized. Figure 20 shows multiple GroupBy operators that are running
in parallel requesting data from the Storage Union operator which repartitions the
data such that the GroupBy is able to produce complete results.

The execution engine of Vertica also leverages sideways information passing
techniques to improve the performance of query execution. In these techniques,
a scan operator is extended with auxiliary filters that are used to improve query
performance. These auxiliary filters early-prune tuples that will not contribute to the

214

root server

client

Il

-
D e

M.A. Soliman

query execution tree

Il

@)

intermediate

Il

I
DHD‘

servers \\\' ll
leaf servers s O O O i
o SRR (R T

I

‘ storage layer (e.g., GFS) ‘

Fig. 21 Multi-level query execution in Dremel [18]

results of later operations like join. This allows avoiding the overhead of scanning
and processing unnecessary data.

Dremel Database. Dremel [18] uses a multi-level serving tree to execute queries.
Figure 21 shows the tree execution model. A root server receives incoming queries,
reads metadata from the tables, and routes the queries to the next level in the serving
tree. The leaf servers communicate with the storage layer or access the data on local
disk.

When the root server receives a query request, it determines all horizontal par-
titions of the tables involved in the query. At the root level of the processing tree,
the query is logically rewritten as a union of queries that operate on table partitions.
Each intermediate level in the processing tree performs a similar rewriting. When
the queries reach the tree leaves, the involved tables are scanned in parallel.

When query results are propagated upward in the processing tree, the intermedi-
ate servers perform parallel aggregation of partial results. This execution model is
suitable for aggregation queries returning small and medium-sized results, which are
a very common class of interactive queries. Other classes of queries, such as joins
or large aggregations, may need to exchange data between servers at the same level
before producing the intermediate results. Other mechanisms in of parallel query
execution need to be leveraged in this case.

6.4 Code Generation

Query execution can largely benefit from reducing the number of CPU instructions
during query evaluation. Code generation is a technique used by query execution
engines [15, 19] to convert some intermediate representation of query plan elements

vww.ebook3000.con)

http://www.ebook3000.org

Big Data Query Engines 215

IntVal my_func(const IntVal& v1, const IntVal& v2) {
return IntVal(vl.val * 7 / v2.val);

} function |
pointer
function f;gﬁﬂg?
pointer .
function functio
ointer ointer
POIme, P‘ (colt +10) * 7/ col2
interpreted codegen’d

Fig. 22 Code generation in Impala [14]

into machine code. Code generation can boost query performance by directly per-
forming low-level operations using native machine code, rather than high level oper-
ations that still need to be compiled into machine instructions. For example, when a
loop contains a function call, the function could be executed a large number of times
(e.g., for every tuple). Optimizing this function by generating code that avoids some
instructions in the function body can have a great impact on query performance.

One of the code generation tools that have been studied in the context of query
engines is LLVM [17]. LLVM is a library and a compiler that allows users to write
applications using a modular design, and have just-in-time (JIT) compilation within
arunning process. LLVM abstracts the details of CPU registers to simplify program-
ming. The generated machine instructions are portable across different architectures.

In impala [14], query specific versions of functions are generated using LLVM
to improve query performance. For example, when the type of an object instance
is known at runtime, code generation can be used to replace virtual function calls
with direct calls to the correct function, which can be inlined. This is useful when
evaluating expression trees, as illustrated in Fig.22. Each expression type is imple-
mented by overriding a virtual function in the expression base class. Many of these
expression functions are quite simple, e.g., adding two numbers. By resolving the
virtual function calls with code generation and then inlining the resulting function
calls, the expression tree can be evaluated directly with no function call overhead.

Presto [3] is written in Java. The Presto engine dynamically compiles certain
portions of the query plan down to byte code which allows the Java virtual machine
to optimize and generate native machine code. Through careful use of memory and
data structures, Presto avoids typical issues of Java code related to memory allocation
and garbage collection.

216 M.A. Soliman

7 Summary

This chapter presents an overview of big data query engines. We discussed the
implications of big data on the design and architecture of current query engines.
We described the system architectures of some examples of MPP query engines,
Hadoop query engines as well as hybrid systems that integrate the technologies of
MPP database systems and Hadoop.

We gave a detailed description of the design of some of the available query engines,
and highlighted their main similarities and differences. We presented a number of
research problems in the areas of query optimizations and query execution, and
discussed how these problems are addressed by current solutions.

References

1. L. Antova, A., El-Helw, M.A., Soliman, Z., Gu, M. Petropoulos, Waas, F. Optimizing queries
over partitioned tables in MPP systems, in Proceedings of the 2014 ACM SIGMOD Interna-
tional Conference on Management of Data (2014)

2. M. Armbrust, R.S. Xin, C. Lian, Y. Huai, D. Liu, J.K. Bradley, X. Meng, T. Kaftan, M.J.
Franklin, A. Ghodsi, M. Zaharia, Spark SQL: relational data processing in spark, in Proceedings
of the 2015 ACM SIGMOD International Conference on Management of Data (2015)

3. L. Chan, Presto: Interacting with petabytes of data at Facebook (2016). http://prestodb.io

4. L. Chang, Z. Wang, T. Ma, L. Jian, L. Ma, A. Goldshuv, L. Lonergan, J. Cohen, C. Welton,
G. Sherry, M. Bhandarkar, Hawq: a massively parallel processing SQL engine in hadoop, in
Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data
(2014)

5. J., Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters, in OSDI
(2004), pp. 10-10

6. A.El-Helw, V. Raghavan, M.A. Soliman, G. Caragea, Z. Gu, M. Petropoulos, Optimization of
common table expressions in MPP database systems, in Proceedings of the VLDB endowment
(2015)

7. G. Graefe, Encapsulation of parallelism in the volcano query processing system, in SIGMOD
(1990)

8. G. Graefe, Query evaluation techniques for large databases. ACM Comput. Surv. 25(2), 73—-169
(1993)

9. G. Graefe, The cascades framework for query optimization. IEEE Data Eng. Bull. 18(3), 19-29
(1995)

10. Z. Gu, M.A. Soliman, F.M. Waas, Testing the accuracy of query optimizers, in DBTest (2012)

11. HBase: Apache HBase (2016). https://hbase.apache.org

12. Huai, Y., Chauhan, A., Gates, A., Hagleitner, G., Hanson, E.N., O?Malley, O., Pandey, J., Yuan,
Y., Lee, R., Zhang, X.: Major technical advancements in apache hive, in SIGMOD (2014)

13. JSON: JSON (2016). http://www.json.org/

14. M. Kornacker, J. Erickson, Cloudera Impala: Real-Time Queries in Apache Hadoop,
for Real (2012). http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/
impala.html

15. K. Kirikellas, S. Viglas, M. Cintra, in /ICDE (2010)

16. A. Lamb, M. Fuller, R. Varadarajan, N. Tran, B. Vandiver, L. Doshi, C. Bear, The vertica
analytic database C-store 7 years later. VLDB Endow 5(12), 1790-1801 (2012)

vww.ebook3000.con)

http://prestodb.io
https://hbase.apache.org
http://www.json.org/
http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html
http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html
http://www.ebook3000.org

Big Data Query Engines 217

17.

18.

19.

20.
21.

22.
23.
24.
25.

26.
27.

28.

29.

30.

31.

32.
33.

C. Lattner, V. Adve, Llvm: a compilation framework for lifelong program analysis and transfor-
mation, in Proceedings of the International Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization (2004)

S. Melnik, A. Gubarev, J.J. Long, G. Romer, S. Shivakumar, M. Tolton, T. Vassilakis, Dremel:
interactive analysis of web-scale datasets. PVLDB 3(1), 330-339 (2010)

Neumann, T.: Efficiently compiling efficient query plans for modern hardware, in Proceedings
of the VLDB Endow

Orca Open Source (2016). https://github.com/greenplum-db/gporca

A. Pavlo, E. Paulson, A. Rasin, D.J. Abadi, D.J. DeWitt, S. Madden, M. Stonebraker, A com-
parison of approaches to large-scale data analysis, in SIGMOD 2009 (2009)

Pivotal: Apache HAWQ (2016). https://blog.pivotal.io/big-data-pivotal/products/introducing-
the-newly-redesigned-apache-hawq

Pivotal: Greenplum Database (2016). http://greenplum.org/

Pivotal: HAWQ (2016). http://hawq.incubator.apache.org/

PostgreSQL: PostgreSQL (2016). http://www.postgresql.org/

Qubole: Presto as a service (2016). https://www.qubole.com/

M.A. Soliman, L. Antova, V. Raghavan, A. El-Helw, Z. Gu, E. Shen, G.C. Caragea, C. Garcia-
Alvarado, F. Rahman, M. Petropoulos, F. Waas, S., Narayanan, K. Krikellas, R. Baldwin, Orca:
amodular query optimizer architecture for big data, in Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data (2014)

M. Stonebraker, D.J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau, A. Lin, S.
Madden, E.J., O’Neil, P.E., O’Neil, A. Rasin, N. Tran, S.B. Zdonik, C-Store: a column-oriented
DBMS, in VLDB (2005)

Teradata (2013). http://www.teradata.com/

A. Thusoo, J.S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S. Anthony, H. Liu, R. Murthy,
Hive - a petabyte scale data warehouse using hadoop, in /CDE (2010)

R.S. Xin, J. Rosen, M. Zaharia, M.J. Franklin, S. Shenker, I. Stoica, Shark: SQL and rich
analytics at scale, in SIGMOD (2013)

Yarn: Yarn (2016). http://hortonworks.com/hadoop/yarn/

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M.J. Franklin, S. Shenker,
1. Stoica, Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster com-
puting, in NSDI 2012 (2012)

https://github.com/greenplum-db/gporca
https://blog.pivotal.io/big-data-pivotal/products/introducing-the-newly-redesigned-apache-hawq
https://blog.pivotal.io/big-data-pivotal/products/introducing-the-newly-redesigned-apache-hawq
http://greenplum.org/
http://hawq.incubator.apache.org/
http://www.postgresql.org/
https://www.qubole.com/
http://www.teradata.com/
http://hortonworks.com/hadoop/yarn/

Large-Scale Data Stream Processing Systems

Paris Carbone, Gabor E. Gévay, Gabor Hermann, Asterios Katsifodimos,
Juan Soto, Volker Markl and Seif Haridi

Abstract In our data-centric society, online services, decision making, and other
aspects are increasingly becoming heavily dependent on trends and patterns extracted
from data. A broad class of societal-scale data management problems requires sys-
tem support for processing unbounded data with low latency and high throughput.
Large-scale data stream processing systems perceive data as infinite streams and are
designed to satisfy such requirements. They have further evolved substantially both
in terms of expressive programming model support and also efficient and durable
runtime execution on commodity clusters. Expressive programming models offer
convenient ways to declare continuous data properties and applied computations,
while hiding details on how these data streams are physically processed and orches-
trated in a distributed environment. Execution engines provide a runtime for such
models further allowing for scalable yet durable execution of any declared computa-
tion. In this chapter we introduce the major design aspects of large scale data stream
processing systems, covering programming model abstraction levels and runtime
concerns. We then present a detailed case study on stateful stream processing with

P. Carbone (X)) - S. Haridi
KTH Royal Institute of Technology, Stockholm, Sweden
e-mail: parisc@kth.se

S. Haridi
e-mail: haridi @kth.se

G.E. Gévay - G. Hermann - A. Katsifodimos - J. Soto - V. Markl
TU Berlin, Berlin, Germany
e-mail: gevay @tu-berlin.de

G. Hermann
e-mail: mail@gaborhermann.com

A. Katsifodimos
e-mail: asterios.katsifodimos @tu-berlin.de

J. Soto
e-mail: juan.soto @tu-berlin.de

V. Markl
e-mail: volker.markl @tu-berlin.de

© Springer International Publishing AG 2017 219
A.Y. Zomaya and S. Sakr (eds.), Handbook of Big Data Technologies,
DOI 10.1007/978-3-319-49340-4_7

vww.ebook3000.con)

http://www.ebook3000.org

220 P. Carbone et al.

Apache Flink, an open-source stream processor that is used for a wide variety of
processing tasks. Finally, we address the main challenges of disruptive applications
that large-scale data streaming enables from a systemic point of view.

1 Introduction

Today’s modern societies are increasingly employing big data analytics systems
(BDAS) to analyze data and enable sound judgment. Among them are the data
stream processing systems (DSPS). DSPS are specially designed systems that are
able to manage infinite streams of data with low latency and high throughput. They
are widely employed in active database, complex event processing, and publish-
subscribe system applications and rooted in database systems, data warehouses, and
information flow programming systems. Gradually, they have incorporated addi-
tional technological capabilities, including (Map-Reduce-like) scalability, declara-
tivity, and expressivity (akin to relational programming models, such as SQL), and
the efficiency of data warehousing technologies. In this chapter, we analyze the state
of the art of this ecosystem from two distinct perspectives: (i) programming models
for scalable data stream processing, (ii) systems and runtimes that can execute appli-
cations expressed in these models. Furthermore, we will reason behind architectural
choices and semantics, and finally provide an analysis of emerging problems and
solutions within this domain (Fig. 1).

In this section, we first categorize in Sect. 1.1 the main system precursors and
ideas that have influenced the current state of the art in data stream processing. In

DSMS
CEP
Active Databases Kiafka N?';‘d
L(STREAM > Beam/Dataflow
PubSub caLs 06 S) 11 15
. :i Millwheel :
Samos : Cayuga : 13 :
9:2 TelegraphCQ 0_7 H
HiPpac | NiagaracQ 03 : .
88 H 00 : " :
: : H ; Kafka
i i Spark i Streams
: I 16
B Flink
: Au;ora i . =
; Siena 02 Boréalis IBM Streams 1
ERiEs 01 05 09
91 : Large-Scale

Data Stream Processing

Fig. 1 Evolution of data stream processing systems

Large-Scale Data Stream ... 221

Sect. 1.2 we provide a synopsis of the ecosystem of data stream processing, followed
by the distinctive features of these systems from both the programming model and
execution perspectives, in Sect. 1.3. We should highlight that the main focus of this
chapter is systems and programming models, thus, we will omit algorithmic aspects
or domain-specific use cases in data streaming.

1.1 Stream Processing and Its Precursors

Modern data-stream processing systems, which we will call stream processors (or
SPs for short), are rooted in several well established topic areas of data management
such as active databases, complex event processing, publish-subscribe systems, and
data-stream management systems. To put stream processing into the greater context
of data management, next we present a brief description of each of these domains.

Active Database Systems (ADS) are an explicit form of event-based database sys-
tems, implemented originally as extensions to existing DBMSs. HiPac [41], Snoop
[71], and Samos [48] enriched traditional relational query support with event-based
actions, conditionally applied to data upon ingestion time. The usage of ADS (and
the heavy use of database triggers) ranged from basic Extract-Transform-Load oper-
ations (ETL) to more sophisticated event-based detection tasks. The latter category
of queries is also known as standing or continuous queries, and they were typically
queries that were used to monitor database entries for specific conditions. NiagaraCQ
[37] and OpenCQ [65] are two noteworthy examples of systems supporting continu-
ous queries. One of the major downsides of ADS was their limitation to centralized,
non-scalable execution engines, an inherent property of the monolithic DBMSs that
hosted this technology. Furthermore, they were tightly coupled to specific DBMSs,
thus, limiting broader adoption. Another downside of ADS was their limited expres-
sivity when it comes to defining complex patterns for event processing, an ability that
Complex Event Processing (CEP) systems were created to cover. Nevertheless, the
impact of ADS in the development of SPs is undoubtedly noteworthy. We often see
modern, large-scale stream processing systems committing to a similar architecture
such as S-Store [31], an in-memory scalable stream processing system that is built
on top of H-Store [58], a shared-nothing distributed relational database with strong
transactional properties.

Complex Event Processing (CEP) systems [40] are among some of the most related
technologies to modern SPs and are in use throughout several enterprise applica-
tions such as sensor-network monitoring, intrusion detection systems, and high-
performance financial systems. Complex rule-based pattern matching is a first-class
citizen in CEP systems, with a plethora of open-source and proprietary solutions,
each exposing a distinct rich, declarative event-based language. One of the major
contributions of the CEP ecosystem (e.g., Cayuga [24], Esper [20], and STREAMS
[13]) is the introduction of sliding window semantics, among others. Windows are
used to group event sequences into evolving views or sets, upon which aggregations

vww.ebook3000.con)

http://www.ebook3000.org

222 P. Carbone et al.

and patterns can be evaluated. Streaming windows are now an integral part of many
SPs [10, 64, 75]. Despite their rich semantics, the architecture of most CEP sys-
tems remains monolithic and centralized. Thus unnameable for large-scale, highly
available deployments in clusters environments [25].

Publish-subscribe systems were mainly developed and used as distributed messaging
middleware, which routes messages from data producers to data consumers [66] i.e.,
subscribers. In addition to trivial topic-based routing, subscriptions in several publish-
subscribe systems can be expressed through complex rules such as event sequences
and repetitions (e.g., Siena [29]) or even through arbitrarily complex queries [59].
Publish-subscribe systems served as a basis for the development of large-scale event-
processing systems that run continuous queries. Moreover, they heavily influenced
the development of modern messages queues and distributed log systems such as
Apache Kafka [60] which adopt a similar subscription-based pattern for distributed
data stream ingestion.

Data Stream Management Systems (DSMS) introduced many architectural primitives
that reside at the core of many SPs today. Systems such as Aurora* [38], Borealis
[7], and StreamBase [80] allowed for distributed, managed deployments of stream
processing pipelines, consisting of tasks and data dependencies in a dataflow graph
defined by the user through a graphical interface. A scheduler managed the deploy-
ment of parallel tasks which could be later re-optimised for improved latency or
throughput, depending on dynamic properties such as the current workload. At the
same time, other DSMSs focused on expressivity and integration with DBMSs by
enriching SQL with windowing semantics, CQL [15] being a noteworthy example
of such an effort. In general, DSMSs were mainly developed as research prototypes,
yet, they went on to influence the emerging data stream processing field.

1.2 Large-Scale Data Stream Processing
on Commodity Clusters

MapReduce [43] and the development of open source software stacks for distributed
data processing on commodity clusters (e.g., Apache Hadoop [1], Apache Spark
[89]) initially covered a major need for batch or offline data processing. However,
low-latency and high-throughput computing emerged as an open problem. To this
end, a new class of SPs targeting low-latency workloads started to evolve.

Some of the first open source SPs for commodity clusters were Yahoo S4 [74] and
Twitter Storm [5]. S4 and Storm integrated seamlessly with the rest of the open source
ecosystem, such as distributed logs (e.g., Apache Kaftka [60]), message queues, and
distributed file systems (e.g., HDFS). In addition, S4 and Storm offer low-level
distributed dataflow programming models, suitable for engineering arbitrary task
pipelining while hiding basic physical implementation concerns (e.g., distributed
data exchange). More SPs gradually emerged in the same ecosystem and provided

Large-Scale Data Stream ... 223

richer semantics and higher-level programming abstractions for data streams in order
to simplify the writing of data stream analysis applications. Examples of such sys-
tems are Apache Flink [26], Beam [10], Samza [3], Spark Streaming [90], APEX
[82], and more recently Kafka Streams [56]. The development of this latter class of
SPs provided more declarative programming semantics such as custom windowing,
functional programming primitives and stream SQL queries being heavily inspired
by research projects such as Stratosphere [11], Naiad [73], and FlumeJava [32]. At
the same time they provided stronger processing guarantees such as exactly-once
operator state access and high-availability, thus, making them suitable for critical
production deployments.

1.3 Distinctive Features of Data Stream
Processing Systems

In order to facilitate the description and categorization of various stream-processing
systems throughout this chapter, we first list a number of distinctive features that SPs
exhibit.

— Continuous Uninterrupted Execution. The ability of a system to execute a con-
tinuous query or stream topology without inducing additional delays such as queuing,
re-scheduling, halting, etc. This is the norm in shared-nothing stream processors, as
we show later in this chapter.

—Durability. As with every distributed system, process or network failures are bound
to happen, especially often in a long-running operators. These failures need to be
handled transparently to system users. Systems differ in terms of their assumptions
(e.g., repeatable persistent sources) and in the guarantees they can offer to applica-
tions under failures. A plethora of techniques have been studied in the past [9, 17, 27,
73] in order to deal with failures in continuous processing, each of them imposing
additional computational and resource overhead to offer certain properties.

— Low Latency. Data-stream processors have the ability to process data and make
incremental computations at ingestion rate. This drops end-to-end latency by orders
of magnitude compared to batch executions or typical daily database integration
jobs. Low latency processing can serve critical applications where timely and thus
actionable knowledge is paramount. For that reason it serves as a major incentive for
using SPs today. Moreover, low latency or response time is considered as a common
benchmarking measurement [14, 19], used to stress and compare the performance
of different SPs.

— Explicit State Management. State summarizes results of computation that results
ran on a stream processor (e.g. a counter). From a systems perspective, state needs to
be declared and managed explicitly in order to enable fault tolerance and repartition-
ing capabilities in a transparent manner [47]. Alternatively, when state is managed
in the application layer (e.g. when programming in Apache Storm v0.10), there is
a need for custom synchronization with external storage systems. However, a state-

vww.ebook3000.con)

http://www.ebook3000.org

224 P. Carbone et al.

agnostic approach disables prospects for state reconfiguration and efficient native
fault tolerance mechanisms [9, 27, 30].

— Programming Primitives. Systems provide primitives in their APIs that aid pro-
grammers with built-in implementations for common tasks. For example, aggre-
gations [6], like summations could be implemented with low-level dataflow API
by using custom managed state. However, stream processing applications typically
contain parts where values must be aggregated. Thus, some systems provide an
aggregation primitive to aid the development process. There are similar primitives
[90] in many system APIs for other frequent cases, such as filtering or grouping by a
key. Most frameworks also provide windowing primitives [6, 10, 28, 64] that group
data points based on time. Frameworks are introducing more and more higher-level
abstractions in their APIs for advanced expressivity [12].

— Efficient Plan/Topology Execution. As with database queries, executing a contin-
uous stream processing query in a SP as declared by the user could lead to potentially
redundant resource usage and inefficient pipelining of operators. Thus, several SPs
optimize the execution of certain queries in order to eliminate redundancy, increase
the efficiency of resource utilization and throughput, while also reducing latency [55].
As with programming languages, most optimisations are applied transparently upon
query translation to physical dataflow operators or some other intermediate-level
representation of the computation at hand. Typical optimisations that are adopted
in several SPs are: operator fusion (also known as superbox scheduling), operator
reordering, state sharing, and batching [55].

— Elasticity and Dynamic Reconfiguration. A stream processor can potentially
execute a job for weeks or years continuously. The workloads of such long-running
jobs can change considerably over time. Thus, it is handy for such a system to be able
to adapt resource consumption (e.g., workers, memory) dynamically, according to
changing demands. This requires general support for reconfiguration and additional
monitoring of several runtime parameters. Furthermore, physical operators should
allow for partionable state (when that is applicable) in order to scale in or out [30]
according to the workload.

— Sustainable Flow Control. Network channels and in-memory buffers that reside
within stream processors have a finite capacity, which places certain constraints on
the ingestion throughput. In the most general case, data is being pulled at ingestion
points in a pipeline (e.g., stream sources) and pushed throughout different compu-
tation tasks. In order to sustain an overall continuous ingestion, despite throughput
imbalance among operators, an SP can either discard events [6] or trigger a flow
control mechanism such as back-pressure [61]. Back-pressure allows SPs to “keep
up” with processing at sustainable rates. This is a highly important property, which
is missing in several existing stream processing solutions (e.g., Apache Storm [5]).

Large-Scale Data Stream ... 225

1.4 Chapter Overview

In order to provide a clear picture of the current state of the art of open source
SP technology we present a snapshot of the most distinct, and perhaps the most
sophisticated modern stream-processing systems, alongside their core features. In
this analysis, we exclude academic projects (e.g. STREAM [13], Amos II [45],
Aurora [6], TelegraphCQ [34], Cayuga [24], FLUX [77], S-Store [31]) and several
proprietary systems (e.g., IBM SPL [54], Microsoft Trill [33] and FlumeJava [32]),
either due to the lack of sufficient information about their internals or because they
do not operate in a distributed scale-out setting, which is the main interest in our
study. It is important to state that many of these systems have a pioneering role in
establishing the fundamentals of modern data stream processing.

The rest of the chapter is structured as follows: in Sect.2 we introduce the com-
mon denominators of programming primitives used throughout different stream
processing frameworks categorized by their abstraction level (i.e., low-level dataflow
programming primitives and higher-level functional APIs). We further present win-
dowing semantics and their usage, along with different notions of time. In Sect.3
we analyze the characteristics of the most common large-scale stream processing
engines. We further provide a clear description of processing guarantees, flow con-
trol and other important problems that arise in a sustainable execution of stream
computations along with solutions. Next, in Sect.4 we present the Apache Flink
stack, a case study of a fault-tolerant, large-scale stream processing platform, along-
side a detailed overview of its asynchronous snapshotting mechanism. Finally, in
Sect.5 we enumerate several application domains where advances in data stream
processing technology have offered tremendous impact, followed by Sect.6 where
we conclude this chapter with an outlook of the data stream processing field.

2 Programming Models

In this section, we discuss different models for developing data-stream processing
applications. Currently, there is a wealth of frameworks and systems that enable data-
stream processing on commodity clusters, offering various capabilities and program-
ming interfaces. As stated in the introduction (Sect. 1), we do not discuss research
projects or proprietary systems. Instead, we concentrate on large-scale, open-source
stream processing frameworks, namely, Storm [5], Heron [61], APEX [82], Flink
[26], and Spark Streaming [4, 90].

The goal of this section is to provide a brief overview of these programming
abstractions, and show how a set of seemingly different programming concepts can
share a set of common fundamentals. The structure of this section is as follows:
first, we describe different levels of programming abstractions for stream processing
(Sect.2.1), then we discuss these levels in more detail (Sects.2.2 and 2.3), finally we
discuss windowing (Sect.2.4), a programming abstraction that we can find in most
stream processing APIs, regardless of how declarative they are.

vww.ebook3000.con)

http://www.ebook3000.org

226 P. Carbone et al.

Fig. 2 Abstraction levels of (-)
streaming applications Declarative language

StreamSQL, CQL

| J

y
Functional API
Spark, Flink, Beam

| J

Dataflow graph
Storm, Heron, Samza, APEX, Flink, Beam

Distributed Single-threaded
program program

2.1 Programming with Streams

There are different abstraction levels that a programmer can use to express streaming
computations. Figure 2 depicts how these abstractions build upon each other. Behind
these abstractions, stream processing frameworks hide execution details from the
programmers, and manage them in the background.

Low-Level Dataflow Programming. Historically, stream-processing engines such
as Aurora [6], implemented the execution model of a dataflow program. In short,
a dataflow program is represented as a directed graph, whose nodes (or, operators)
represent a computation and whose edges represent connections among dataflow
nodes. The programmers can, in principle, construct arbitrarily complex dataflow
programs by implementing operators and by connecting them via dataflow graph
edges. Modern stream-processing systems, such as Storm [5] and APEX [82], provide
a dataflow programming abstraction, where a stream-processing application can be
expressed using a dataflow graph and whose operators are provided by a programmer
in the form of imperative user-defined functions and thus may contain arbitrarily
complex business logic. A stream-processing system distributes a dataflow graph
across multiple machines and is responsible for managing the partitioning of data,
the network communication, as well as program recovery in case of machine failure.

Dataflow programming offers programmers complete freedom to programmers
to implement their business logic, but require them to have good knowledge of the
execution internals. This is because dataflow programming reveals the internals of the
underlying execution engine, which handles the execution of the dataflow graph. Asa
result, programmers need to manually specify execution strategies in their programs
and have to change their implementation whenever data statistics (e.g., distribution
of values or data rate) or the size of the deployment changes (e.g., running the same
program in a larger cluster). Moreover, common use cases, such as aggregation and

Large-Scale Data Stream ... 227

stream-windowing (Sect. 2.4) have to be manually implemented by the programmer.
More details on dataflow programming can be found in Sect.2.2.

Functional APIs. Instead of forcing programmers to manually specify low-level
dataflow graphs, stream-processing frameworks such as Spark [4] or Flink [26] offer
higher-level functional APIs. These APIs are more declarative than low-level dataflow
programming by giving programmers the ability to specify data-stream programs as
transformations on data-streams. In functional APIs, common tasks such as aggre-
gating values (e.g., calculating the sum of numbers in a stream) can be specified very
concisely, relieving programmers from having to write large amounts of boilerplate
code found in low-level dataflow programs.

High-Level Declarative Languages. In the past, several research projects in stream
processing, such as CQL [15] and TelegraphCQ [34] have proposed a declarative
SQL-like language for data stream processing. At the time of writing, there are
ongoing efforts for providing a similar declarative language for large-scale stream
processing systems. Such a declarative language offers less control to programmers
for low-level execution strategies. Declarativity has the disadvantage of limiting the
opportunities for fine-tuning the performance of applications. However, a declarative
language allows for automatic optimization and shifts the responsibility of optimiza-
tion from the programmer to the system. It also allows inexperienced users to write
streaming applications without knowledge of the system’s internals. Since there is
no high-level language implementation on top of the systems we discuss here, we
will omit discussing high-level languages.
In the sequel, we describe dataflow programming and functional APIs.

2.2 Lower-Level Dataflow Programming

Dataflow programming has been used by research projects such as Aurora [6] to
express streaming programs. Later on, it turned out that dataflow programming is
useful for parallelizing and executing programs in a distributed setting [38, 53]. More
recent systems, such as Storm [5, 86], Samza [3], and APEX [82], apply ideas from
past research and provide similar dataflow abstractions. In this section, we show a
logical dataflow programming model (with pseudocode examples) resembling the
APIs of these three frameworks and we explain what details should be specified by
the programmer concerning distributed execution.

Logical Dataflow. A dataflow program is represented as a directed graph of opera-
tors, and a set of edges connecting those operators. The resulting graph is typically
referred to as a dataflow graph. Operators are independent processing units defined
by the programmer, which take input and produce output. The programmer has to
implement an operator by defining a computational routine for each input record.
The dataflow graph that connects the operators represents the data flowing through
the program; edges between operators in the graph represent unidirectional data

vww.ebook3000.con)

http://www.ebook3000.org

228 P. Carbone et al.

Input ﬁeﬁ@d@

) An example of a logical dataflow.

 —N)

the 2
1

"the dog", |

(and,1)
Z (dog,1),
1 (dog,2),
- Q

[QQQN

g“ and,1
ey dog,1
wor
"the lazy", 1 lazy,1
— — —

(b) The physical dataflow associated with the above logical one.

Fig. 3 An example logical dataflow of the word count program (fop) and its physical execution
graph (below)

exchange and define how the outputs of some operators become the inputs of other
operators.

Figure 3a shows a simple example of a logical dataflow program. The task here
is to count the occurrences of words received on the input. This is the widely known
word count example popularized by the paper on MapReduce [43]. Besides the input
and output, there are two operators, namely Split and Count, which are defined by
the programmer. Split takes a text line and splits it into words, and Count counts the
occurrences. The operators are independent: they can only communicate with each
other by their input and output connections.

In Fig.4 we show how the Split operator is written using Java-like pseudocode.
The function onArrivingDataPoint is an event handler. Each input record is
passed to this handler via a distinct invocation, whereas the output of each call is a
collection of records the operator emits. This example splits a string line into words
using a space delimiter and puts the words into an array. Each word in the array is
then emitted, one by one, to the operator’s output via a “Collector” interface. Bear in
mind that the output elements i.e., the words might not be in the return value of the
method. Instead, dataflow-level APIs typically provide a Collector to the event
handler, which can be used to emit output records one by one, via its emi t method.

Physical Dataflow A logical dataflow graph is deployed in a distributed environment,
in the form a physical dataflow graph. Before execution, systems typically create
several parallel instances of the same operator, which we refer to as rasks. A system

Large-Scale Data Stream ... 229

//Input: "the fox jumps”, "lazy dog",
//0Qutput: "the”, "fox", "jumps", "lazy", "dog",

Collector collector;

onArrivingDataPoint (String line) {
String[] words = line.split(” ");
for (String word : words) {
collector.emit(word);
¥
}

Fig. 4 Pseudocode of a dataflow operator that splits its input lines into words

is able to scale out by distributing these tasks across many machines, akin to a
MapReduce execution. In Fig. 3b we can see a physical dataflow of the word count
example. The circles represent task instances of the operators, which may be located
on different machines. We can reason about execution similarly to a logical dataflow:
the data flows through these tasks, every task receives input elements from tasks
corresponding to the previous operator and produces outputs to the tasks forwarding
them to the next operator.

In low-level dataflow programming, the programmers can control the physical
dataflow execution such as the degree of parallelism (e.g. in Fig. 3b, three tasks are
assigned to the Split operator and two to the Count operator).

Stateful Operators. Unlike a simple operator such as Split, certain operators need
to keep mutable state. For instance, in the word counting example, counting the
word occurrences received by an operator, requires storing the words received thus
far along with their respective counts. Thus, the Count operator must keep a state
of the current counts. In contrast, the Split operator is stateless because a line can
be split without any prior knowledge (i.e., independent of any previously received
lines). In Fig.5, we show how the Count operator can be implemented via a special

//Input: the, dog, the, lazy, dog, .
//Qutput: (the,1), (dog,1), (the,2), (lazy,1), (dog,2),

KeyValueState<String, Integer> wordCounts;
Collector collector;

onArrivingDataPoint (String word) {
Integer count = wordCounts.get(word, 0);
count++;
wordCounts.put(word, count);
collector.emit(new Pair(word, count));

Fig. 5 Pseudocode of a stateful dataflow operator that counts occurrences of words

vww.ebook3000.con)

http://www.ebook3000.org

230 P. Carbone et al.

class provided by the framework, KeyValueState, which can store key-value
pairs. The state is read (get method) and updated (put method) in every call of
the onArrivingDataPoint event handler. Explicit mutable state [47] is often a
requirement, thus, several APIs with higher-level abstractions (e.g., Flink and Spark)
provide an interface for that purpose.

Although it is often feasible to specify state without making the system aware of
it, it is not recommended to do so. Since the systems we discuss are built on a JVM
(Java Virtual Machine), operator logic is usually implemented as a custom event
handler that implements a Java interface. This class could have a member variable
for storing the state. For instance, we could store the word counts in a simple Java
HashMap. However, the system would not know that we are maintaining a state in
our operator and this would raise problems. First, if we store a bigger state (e.g.,
a data structure like a Java HashMap), then we have to manually take care of the
situation when this data structure grows too large. If we assume that this will never
happen, but our application becomes more popular than expected, then the system
might run out of memory. Second, checkpointing a large state that the system knows
nothing about can be problematic (see Sect.4.3). Using the state abstractions of the
APIs enables the runtime systems to deal with larger states and take care of making
them fault tolerant.

Partitioning Strategies in Physical Dataflows. Partitioning strategies determine
the allocation of records between the parallel tasks of two connected logical opera-
tors. Thus, they give control over data exchange patterns that fundamentally occur in
physical dataflow. There are several standard strategies [49] tailored to data stream-
ing in particular, each of them offering certain benefits. With random partitioning
each output record of a task is shipped to a uniformly random assigned task of a
receiving operator, distributing the workload evenly among tasks of the same oper-
ator. Broadcast is another typical strategy, which can be used to send records to
every parallel task of the next operator. Furthermore, partitioning by key guarantees
that records with the same key (e.g., declared by the user) are sent to the same par-
allel task of consuming operators, similar to the shuffle phase of the well-known
MapReduce model [43]. We should keep in mind that most system APIs allow for
user-defined partitioning functions as well, which can dynamically select the parti-
tion (e.g., parallel task) for each output record. Custom partitioning functions can be
used to implement application-specific partitioning functions (e.g., geo-partitioning
[57] or machine learning model selection [42]).

Since the operator state is also distributed among parallel stateful tasks and no
global state is maintained or accessed, it is particularly crucial to have control of the
partitioning at stateful operators. An example of this need can be observed in Fig. 3b,
where it is necessary to ship records of the same word to the same task between
the Split and the Count operators. This is necessary to compute the correct state
(e.g., complete count per word). In that case, partitioning by key is the preferred
partitioning strategy, where the key is the word (e.g., first element of each tuple). As
in MapReduce, the same words end up at the same task, hence on the same machine,
so that counting can be done locally.

Large-Scale Data Stream ... 231

Table 1 Dataflow abstraction terminology

Dataflow graph Operator Task
Storm 0.10.x [5] Topology Bolt Task
Samza 0.9.x [3] Dataflow graph Job Task
APEX 3.2.x [82] DAG (Logical) operator Physical operator

Differences Between APIs. Although all systems with a dataflow API discussed here
use this same programming model of a logical dataflow with configurations for the
physical dataflow (like parallelism hints and partitioning) there are slight differences.
Each system has a distinct terminology, so we summarize the naming of the main
concepts in Table 1. Differences also arise in various other aspects apart from the
terminology (e.g., state management interface). However, we omit them here for
practical reasons and leave the discussion of specific features to the documentation
of the respective systems.

2.3 Functional APIs

Several frameworks provide more declarative APIs than the ones discussed in the
previous section. This means that certain details of zow to execute the computations
can be omitted, and programmers need only specify what should be computed.

Collection Abstractions for Streams. In order to make APIs comparable to regular

collection APIs (e.g., List in Java or Scala), some stream-processing frameworks

(e.g., Spark [4], Flink [26], and Trident [85]) introduce a collection type representing

data streams, which supports operations that resemble those of regular collections.
For example, consider the following map operation on a Scala list:

val 1listl = List (1, 2, 3)
val list2 = 1listl.map(x => x + 1)

map applies the given function to each element of the given list, and returns a new list
containing the results. Here, 1ist2 will contain (2, 3, 4).Functions like map,
are higher-order functions: in addition to taking data as their input, they also take
other functions.! Functions that are passed as arguments to higher-order functions
by programmers are called User Defined Functions (or UDFs in short). For example,
the “x => x + 1”is a User Defined Function, which adds 1 to its argument.
The APIs of stream processing frameworks borrowed many higher-order functions
from the standard libraries of functional programming languages. For example, the
flatMap operation takes a UDF that maps each element of the input stream to
a collection of (zero or more) elements per invocation. A typical example is word

!Generally in functional programming, higher-order functions might also produce functions as their
outputs, but this does not appear in stream processing.

vww.ebook3000.con)

http://www.ebook3000.org

232 P. Carbone et al.

// A Context is used to specify the input, and for configuration
SystemContext ctx

// Read text from a TCP connection line by line
DataStream text = ctx.socketTextStream(host, port, ’\n’)

DataStream wordCounts = text
// split the lines to words
.flatMap { line => line.split(” ") }
// add the initial count (1) to every word in a new field
.map { word => (word, 1) }
// group by the word (@th field)
.partitionByKey (@)
// sum up the counts by words (1th field)
.sum (1)

// print the results

wordCounts.print ()

// start the execution of the dataflow graph
ctx.execute

Fig. 6 Word count example in pseudocode using a functional data stream processing API

count (Figs.4 and 5) when the input elements are lines of text, but we want to
process individual words instead. We can see how to implement the same program
in a functional collection API in Fig. 6. The program takes input from a TCP socket
and simply prints the counts to standard output. We use a £1latMap to split lines
and a map to create (word, count) pairs (we later describe how keyBy and sum
work). Note that the word “flat” is meant to say that the output is not a nested structure
(e.g., a stream of collections), but the output collections of the UDF are “flattened”
into a single stream.

The functions map and f£ilter are special cases of flatMap: map always
emits exactly one output element for each input element and £i1ter always emits
either zero or one output element for each input element. This allows making their
UDFs slightly simpler: the output type need not be a collection, but only a single
element in the case of map and a Boolean value in the case of £ilter (indicating
whether the current input element should be “filtered out”).

Notice that in the low-level dataflow model introduced in Sect.2.2, all operators
act like £1latMaps: for every input element, they can emit any number of output
elements.

Aggregations. Aggregations are one of the most common operations on data streams.
For example, we might need to compute a rolling sum or maximum aggregate value
from all the input elements that have arrived so far (or count them like in the word
count example in Sect.2.2). A rolling aggregation means that the current aggregate
is emitted after every input element, thereby creating a stream of intermediate aggre-

Large-Scale Data Stream ... 233

gates. For example, if the input elements are 1, 2, 3,4, ... then a rolling sum emits
1, 3,6, 10, This is in contrast to aggregations that we can see in batch processing,
where the entire input needs to be ingested to produce a final aggregate value.

Stream records often contain a key field upon which users intend perform a rolling
aggregation separately for each distinct key that occurs, similar to an aggregate over
a groupBy in SQL. This type of aggregation is also known as keyed aggregation.
For example, imagine that we are operating some online game, where a player can
play a game at any time and achieve some separate score in each game. We would like
to record the highest score achieved by each of our players separately and produce a
high score table. Let us assume that stream records in that application are (playerID,
achieved score) pairs, referring to occurrences of players with unique IDs playing a
game and achieving a certain score. A rolling max aggregation per player ID would
produce an output stream that has elements of the form (playerID, highest score ever
achieved by this player). Then to produce the high score table, we need a further
(non-keyed) aggregation operation that maintains the top-K input elements, which
is an example of a more complicated application logic occurring as an aggregation
function.

Figure 6 shows a version of the word count application, written in a functional
data stream processing API, which uses a keyed aggregation. Contrary to the low-
level dataflow version of word count presented in Figs.4 and 5, only two higher
level operations are required to achieve the same result, namely declaring the key
used to partition the stateful computation (via partitionByKey) and applying an
aggregation function (sum on the second field).? In contrast, the low-level
dataflow version of the same application requires the programmer to provide manual
task-level behavior and state handling, which can often be avoided by using high
level primitives.

2.4 Stream Windows

Stateless maps, flatMaps, and filters deal with one element at a time, whereas aggre-
gations take the entire stream into account. Thus, none of these options satisfy our
needs if we are interested in hourly, daily, or maybe yearly statistics. This can be
the case, for example, if we are counting the clicks that a certain webpage received:
what we are probably interested in is the number of clicks during some custom time
periods of a certain granularity and not since our data processing application first
started to operate. To satisfy this need, we can use windowing techniques to logi-
cally group records of an infinite stream into finite sets, upon which we can perform
aggregations or other custom operations. Windows are typically declared in terms of
predefined templates (e.g., time and count [15, 90]). However, there are directions

2Mind that sum in this example is a pre-defined aggregation function, however, a UDF can also be
typically provided to declare an incremental computation.

vww.ebook3000.con)

http://www.ebook3000.org

234 P. Carbone et al.

towards more complex compositional window definitions such as delta-based [53],
session [10] and user-defined windows [28], among others [44].

Notions of Time. One of the common ways of specifying windowing is through time
intervals. However, time can often be an ambiguous measure in data stream process-
ing. We first introduce the different notions of time that are typically considered in
streaming applications. The input events of an application are usually created by an
external source prior to their processing. Therefore, the following two notions of
time can be identified [23, 79]:

e Event time: The time corresponding to when an event was generated externally.
It is commonly provided by a timestamp field using the local clock of its source
(e.g., a sensor).

e Processing time: The time corresponding to when a system processes the event
(measured by the system local clock).

Notice that the event time of the records are a property of the input, whereas the
exact processing time of events depends on the actual execution of our application,
which can be affected by arbitrary network delays, system workload changes, and
other factors. It is evident that processing time is not a consistent metric for progress
in distributed stream processing due to an inherent absence of a global synchronized
clock. Thus, event time is typically a preferable choice to specify time-based opera-
tions in an application (e.g., parallel time windows) given that there is a known clock
skew among the sources of the data streams.

Tumbling and Sliding Windows. The simplest type of window is the tumbling time
window, where we can specify the window size in some time units and the stream is
split into non-overlapping, adjacent time intervals that have a given size. We can see
an illustration of 3 second tumbling windows in Fig. 7a.

For example, imagine that we run an e-shop and we would like to know the sum
of the prices of sales and we create a stream processing application to calculate it.
One way to implement this is to use a higher-level API discussed before by applying
an aggregation on a stream of sales containing their price. However, what we need
is probably not the sum of every price since the start of our analytics program: we
would not like to sum prices of items ordered two years ago because that data is not
so important anymore. Instead we might be interested in the sum of the prices of
orders every three hours (or days, weeks, etc.), which we can obtain by specifying a
tumbling window and then applying the sum aggregation on it.

We often want more frequent updates than the window size, in which case we
can use a sliding window: in addition to a window size, we also specify a slide size,
which declares the frequency of our window computation (see Fig.7b). Note that
here the windows might overlap if the slide size is smaller than the window size or
there might be “gaps” between the windows, if it is bigger. In fact, tumbling windows
are a special case of sliding windows, where the slide size is the same as the window
size. These basic types of windows are supported by almost every stream processing
API, even lower-level ones, such as APEX.

Large-Scale Data Stream ... 235

Os 6s
lee | © |leeo | ole o o

(a) Tumbling windows.

0s 36 6s o 126 155
e | o |Jloeeo | ole @ @]
@ @ ® |
| @ e @ |
@ @ o
| XXX

(b) Sliding windows.

Fig. 7 a Tumbling windows. b Sliding windows

3 System Support for Distributed Data Streaming

In the previous section we went through different programming models and unique
high level concepts involved in distributed data stream processing. The focus of this
section is the fundamentals of systems that implement such concepts, which we will
call stream processors or SPs for brevity. The main purpose is to give an anatomy of
existing systems, offer insights, and reason about different design considerations.

Perhaps the main property that differentiates a system architecture tailored for data
streams is its ability for continuous, non-interrupted execution. An inherent benefit
of a system that is built for continuous processing is the ability to subsume all other
known types of computation (e.g., data-intensive batch processing or database query
processing) in a universal way [84]. We will cover some of these concepts in this
chapter, but before that, we describe all components and mechanisms that currently
reside within open source stream processing systems today.

vww.ebook3000.con)

http://www.ebook3000.org

236 P. Carbone et al.

Table 2 A comparison of stream processing execution engines

Execution | Processing | Plan Managed Dynamic Flow
Model Guarantees | Optimiser | State Configura- | Control
tion
Storm stream at least 1 X X X X
0.10.x [5]
Heron [61] | stream at least 1 X X X v
Samza 0.9.x | stream at least 1 X 4 X v
[3]
APEX 3.2.x | stream exactly 1 v v v v
[82]
Flink 1.0 stream exactly 1 v 4 X v
[26]
Spark 1.6.x | micro-batch | exactly 1 v 4 X X
[90]
MillWheel | stream exactly 1 X 4 v v
91

3.1 An Analysis of Large-Scale Stream
Processing Systems

We describe the internals of current state of the art stream processing systems by
discussing the execution model and main features of several open-source large-scale
SPs. As already mentioned in the introduction (Sect. 1), we exclude academic projects
and several proprietary systems from our discussion. In Sect.2 we summarized the
main systems of interest alongside their adoption of distinctive features. We will
cover most of the features illustrated in the table above in the following sections in
greater detail.

The execution model operates at the heart of a stream processor and encapsu-
lates the coordination of any streaming computation. In fact, SPs exhibit alternative
design considerations that enable continuous processing. However, any system can
be categorized under two principal architectures: I) Stream-Dataflow and II) Micro-
batching. In Fig.8 we visualize these two main architectures in an abstract way.
The stream-dataflow approach naturally distributes stream processing among pre-
allocated processes (also known as long-running tasks) throughout a cluster that
typically map to event-handling entities in a respective programming model along
with mutable local state. On the other hand, micro-batching emulates stream process-
ing on top of a batch-centric execution, orchestrated through an infinite sequence of
input batches. Consequently, applications which are executed on a stream-dataflow
architecture can react to every incoming record at the time of its ingestion on a paral-
lel task whereas in the micro-batch model the application will have to react to sets of
events when a batch eventually gets scheduled and processed. Both designs are used
widely for different reasons, which we will analyze in more detail further below.

Large-Scale Data Stream ... 237

Stream-Dataflow Architecture Micro-Batch Architecture
...ﬁ /
000
00 N |
e _..//

Fig. 8 Distributed data stream processing architectures

3.2 Execution Models

The Stream-Dataflow Approach. The stream-dataflow approach provides a more
direct mapping of semantics and execution entities, as already mentioned in Sect.2.1.
According to that architecture, an application is specified and given to the system
for execution in the form of a dataflow graph. A dataflow graph, is in most cases a
Directed Acyclic Graph (DAG), which consists of stateful tasks and data dependen-
cies i.e., between them. Tasks are independent processing entities and dependencies
represent data streams of records. A task encapsulates the logic of a predefined oper-
ator (e.g., filter, map, window, aggregate, join) or a routine with user-specified logic.
A data stream between two operators simply represents an infinite sequence of data
elements/events produced by a task, which are available for further consumption.

Typically, a driver or master node receives a dataflow graph, and schedules tasks
among the available cluster resources, which will be invoked once, and executed
continuously throughout the possibly infinite lifetime of an application. Each task
maintains and accumulates state independently (managed locally or externally) while
processing data records from subscribed streams on-the-fly. This practically means
that encapsulated operators in a physical task are repeatedly invoked for every respec-
tive record that is delivered for consumption. Depending on the dataflow system
design, the dataflow can also contain control events (e.g., synchronization barriers)
that trigger system specific actions, and are thus hidden from the operator logic. Tasks
are the finest grain elements of computation, however, they might also encapsulate
a chain of multiple operators as we describe further in Sect. 3.5.

The stream-dataflow architecture has been adopted by a plethora of systems
throughout the large-scale computing open source ecosystem such as Apache Storm
[5], Samza [3], Flink [26], APEX [82], Heron [61] and proprietary SPs alike, such
as Google’s MillWheel [9] (a precursor of Google Cloud Dataflow [50], the cloud
runner of Apache Beam [10, 83]).

Discussion: There are certain fundamental benefits that the stream-dataflow approach
offers. First and foremost, it supports event-based granularity for any custom process-

vww.ebook3000.con)

http://www.ebook3000.org

238 P. Carbone et al.

ing task. This means that users can define arbitrary processing logic that can be
applied in each individual event of an infinite sequence. This imposes no restriction
(e.g., flexible windowing) whatsoever in the type of operations that can be declared,
thus, it can accommodate a rich ecosystem of applications. Furthermore, the dataflow
architecture is proven to be capable of delivering sub-second processing latencies.
This is mainly because everything is automatically pipelined, without intermediate
scheduling and additional communication between master and worker nodes, as we
have seen in the batch processors designs (e.g., Hadoop [1] master, Spark driver
[4, 89]).

The main arguments against stream-dataflow approaches [90] are their complexity
when it comes to flow control mechanisms and fault tolerance but also the increased
complexity of applying flexible runtime reconfiguration (e.g., auto-scaling or state
sharding), all due to the nature of long-running tasks. Events are delivered and con-
sumed in arbitrary order across parallel tasks, and as a result, there is a lack of a
coarse-grain unit for transactional processing. Initial efforts to provide fault toler-
ance in the stream-dataflow design [17] enforce costly decentralized communication
and state management mechanisms that can impose heavy overhead to the execu-
tion of the stream application, such as active replication [77] or passive backup
with acknowledgments. However, recent advances in this domain circumvent a large
portion of such overhead by lifting assumptions to repeatable, durable data sources
[2, 3] with snapshotting [27] and lightweight transactional processing mechanisms
that can guarantee consistent, yet non-disruptive, processing.

Flow control can also be challenging in the stream-dataflow architecture, due
to the skew between the processing and ingestion rates [61]. This is typically han-
dled via combining network channel and data source back-pressure. Finally, runtime
reconfiguration is pending downside of stream-dataflow systems. First, because a
reconfiguration process can violate important continuous processing and latency con-
straints, and secondly, due to the difficulty of repartitioning local state in operators
at runtime. Several recent approaches in tackling these problems in dataflow-based
SPs are covered further in this chapter (Sects. 3.3 and 4.3).

The Micro-Batch Approach. Micro-batching is a solution that enables process-
ing data streams on batch processing systems. It is a simple concept that became
mainstream through the widespread use of the Apache Spark stack [90]. With micro-
batching we can treat a “stream” computation as a sequence of transformations
on bounded sets by discretizing a distributed data stream into batches, and then
scheduling these batches sequentially in a cluster of worker nodes. Discretization
typically follows a user-specified time-interval [90], which reflects the granularity
at which the input data will be partitioned in terms of processing time. When such
a timeout occurs all input records collected during that interval are replicated (for
durability), and then scheduled together as a single unit (e.g., RDDs on Spark [4])
for batch transformations.

The idea of re-using batch processing apparatus for processing data streams is
very attractive due to the existing ecosystem of batch processing frameworks and
systems, and has been approached before with Comet [52], Hadoop Online [39] and

Large-Scale Data Stream ... 239

CBP [67]. However, Spark’s approach is a noteworthy contribution in fault-tolerant
data streaming, regardless of its limitations.

Discussion: There are several benefits to micro-batching, some of which are not yet
highlighted or tackled by other architectures. First and foremost, it exploits native
fault tolerance in batch computing out-of-the-box and thus eliminates the need for any
additional control apart from data replication at the ingestion phase [90]. Secondly,
it can gracefully handle stragglers, thus, eliminating the need for sophisticated flow
control and simply rely on the ability to execute redundant processing. Straggler
elimination is, again, an ability inherited from the batch-processing runtime (e.g.,
Hadoop [1] and Spark [89]). Finally, micro-batching blends by definition batch and
stream processing, thus, allowing intermediate results from batch applications to be
joined with micro-batch transformations trivially to aid pipelining.

Perhaps the most critical performance-related downside of micro-batching is the
discretization latency. Discretized data ingestion imposes a fixed lower bound on
the processing overhead, which reaches an order of several seconds at a minimum
[90], excluding the additional replication and scheduling times. This makes micro-
batching rather less attractive for use-cases that rely on timely computations. Fur-
thermore, during ingestion across consecutive batches, computational resources are
not actively used, which might result in under-utilization of a certain degree. Finally,
micro-batching restricts the granularity and thus expressibility of programming mod-
els that are built on top, to a batch level in contrast to dataflow systems that allow for
record-level operations.

3.3 Processing Guarantees Upon Failure

The general terms people refer to when talking about processing guarantees and
fault tolerance for different stream processors are at-least-once, at-most-once, and
exactly-once processing. Unfortunately, even these terms lack clarity on what they
actually mean in practice which often results in some general confusion. Since this is
a rather important concept (but not as complicated as it might seem) we will attempt
to elaborate on their actual meaning and hopefully offer some fundamental insights
and reasons behind mainstream state management mechanisms.

First and foremost, processing guarantees refer to the state of an application.
For example, when a system ensures exactly-once processing guarantees, it verifies
that any application it runs will consume its input without record losses whereas
all declared internal states will be updated once per record, even in the presence of
failures. Bear in mind that this does not mean that the output of the application will
be consistent under failures. Output guarantees are beyond the focus of this study and
typically require strict transactional processing and version control between process-
ing and storage systems to eventually be achieved, in addition to other assumptions
such as deterministic processing and idempotency [9].

vww.ebook3000.con)

http://www.ebook3000.org

240 P. Carbone et al.

Fig. 9 Task actions and I: Guaranteed Processing

guarantees 1: process 3: emit
@ -
C_

@ II: Consistent State Updates

2: update

Preliminaries. We approach the general problem from the perspective of a physical
dataflow graph. As mentioned earlier, from a macroscopic point of view an execution
is modeled in the general case as a DAG of tens or hundreds of tasks interconnected
by streams. The main problem here is that any task can fail at any time, thus, the
system should deal with such a failure in order to satisfy the promised guarantees.
Before going further into guarantees, we will first go back to a microscopic level and
observe task behavior.

Asseenin Fig. 9, a physical task is an independent entity (e.g., a process or aJVM
thread) that executes the following steps per input event:

1. Receives an input record,
2. Updates its state,
3. Optionally emits output records.

With those steps in mind, followed by every task managed by an SP, we propose
the composition of processing guarantees simply by using the following two distinct
properties, each task should eventually satisfy:

m Property I: Guaranteed Processing. All records in a task’s input dependencies
should be eventually delivered to the task and fully processed (i.e., steps 1-3)
at-least-once.

m Property II: Consistent State Updates. Each input record should lead to exactly
one state update.

Network Assumptions. Throughout this overview we will make the following
assumptions when it comes to the network links between every two tasks: no dupli-
cate records are delivered, and all events sent are eventually delivered through a
channel in the same order that they were sent. This is typically satisfied by perfect
FIFO links, which network protocols such as TCP can guarantee.

Process and Failure Assumptions. We assume that every task that has not failed
follows a correct behavior, i.e., it executes steps 1-3 described in Fig.9 for every
input record that it receives. Failures can normally happen before record delivery
or upon executing any of these steps. In any of these cases we consider the task as
having failed and the record that triggers the task computation as not having been
fully processed.

Now that we have seen the basic properties let us go deeper into processing
guarantees.

Large-Scale Data Stream ... 241

At-Most-Once Processing. This means that neither property I or II are guaranteed.
A system that is turned off can still guarantee this, since zero records delivered and
processed satisfy at-most-once processing. It is often fine to go with no guarantees.
For example, a system can discard tuples when the input rate is too much to handle
(e.g., an approach adopted by Aurora [6]). This is also the case for any existing
system that runs with state management mechanisms turned off. For example, tasks
in Apache Storm can re-start from scratch with a null state, which is fine in certain use
cases such as approximate streaming. One can argue that this approach eliminates
the reason for using an SP, however, several applications can still operate with no
processing guarantees such as approximate stream analytics and best-effort complex
event processing. The downside of “no guarantees” is countered by crucial benefits
such as low latency and maximum throughput, since no mechanism needs to alter
the execution of the application to enforce “correct” results so data flows through the
system with no disruptions.

At-Least-Once. When a system offers at-least-once processing guarantees it means
that property I is satisfied (no input loss) given the aforementioned network and
process guarantees. Duplicate processing of a task’s input can still occur. This can
be fine in many situations where we are just interested in processing everything
and do not care whether we process a few records (and their productions in the
dataflow graph) more than once such as searching for a specific tweet during the
day or generally executing any idempotent operator. It is also a fine compromise
between high throughput, low latency, and correctness. We have seen at-least-once
guarantees in two different flavors in the existing ecosystem today: relying on a
repeatable logging system or natively through record acknowledgments and source-
level replication. The two approaches work as follows:

Repeatable stream logs. A repeatable stream log, such as Apache Kafka [60], com-
pletely persists distributed streams from its producers and additionally allows for
“repeating” stream consumption from a given offset. Repeatability unlocks the abil-
ity to replay any distributed sequence of records and thus guarantee processing (prop-
erty I). Several systems, such as Apache Samza [3] and Kafka Streams [56] build
natively on-top of a repeatable log to satisty at-least-once processing. This way they
redirect the materialization of every intermediate output stream to the log system. In
the case of a task failure, an input is replayed from a previous offset and potentially
re-process records (so property II is not guaranteed). This approach is modular, ele-
gant but unfortunately incurs heavy overhead in order to persist intermediate streams
or state into a persistent log (that in turn replicates data for durability).

Record Acknowledgments This approach makes no assumptions about persis-
tent logs and thus implements input persistence and execution monitoring natively.
Apache Storm [5] employed this strategy from its very early development stages. The
mechanism of Storm relies on creating a bookkeeping entry per record r seen at the
sources and eventually removing it when r and all its productions (subsequent out-
put consumptions) in the dataflow graph have been completed. A hand-tuned timer,
which is set by the user, alerts the sources in case a record bookkeeping entry takes

vww.ebook3000.con)

http://www.ebook3000.org

242 P. Carbone et al.

-

© Atomic Transaction

00 (000 (o000
[1) (o (e
o0 ())

Fig. 10 Exactly-once processing in micro-batching systems

too much to be using an alarm. That can happen due to failed tasks that “break” the
dataflow graph or often due to heavy load incurred by the application. In any case,
when the alarm triggers for a record it is being resubmitted to the dataflow graph for
execution. The benefit of using record acknowledgments is that upstream backup at
the sources eliminates the need for external dependencies such as a repeatable log.
However, bookkeeping incurs heavy computational and memory overhead while also
enforcing explicit association between input and output records on each task from
the programming model.

Exactly-Once Processing. This brings us to one of the most challenging concepts in
distributed stream processing: exactly-once processing guarantees. To achieve this,
each task has to satisfy both property I (guaranteed processing) and II (consistent
state updates). Before we dig into how stream-dataflow systems can achieve that, we
will recap the approach of micro-batch systems regarding fault tolerance.

Peeking into Guarantees in Micro-batching. Micro-batch stream processing sys-
tems (e.g., D-Streams [90]) provide exactly-once processing guarantees as an inher-
ent property of the host system. To illustrate this, we depict how an execution of
a discretized stream works in Fig. 10. As mentioned earlier, an input data stream
is pre-partitioned into batches. Each batch first gets replicated and then scheduled
for transformation as an atomic transaction that either completes or not. If a worker
fails, then the batch that is currently processed (or most specifically that respected
partition) is rescheduled and eventually the computation completes.

This guarantees exactly-once processing and satisfies the two core properties.
Property I (no loss) is satisfied, since each input batch is durably replicated and
thus no input in a batch is lost. Property II (consistent state updates) is harder to
notice since we have not talked about state in the micro-batch model. In micro-batch
systems such as the case of Apache Spark [90] all state updates are encoded as
immutable transformations between two consecutive batches, thus, they can either
succeed completely or not (in the latter case the full computation is repeated). That
automatically satisfies property II and makes micro-batching inherently capable of
exactly-once processing.

Among the major benefits of fault-tolerance with micro-batching we should high-
light that the processing rate of every batch is constant and periodic, thus, durability
mechanisms yield a constant overhead in the overall execution. On top of this, recov-

Large-Scale Data Stream ... 243

 revert input stream

atomic

write

snapshot snapshot
t1
(a) Active Replication (b) Atomic Transaction per (c) Consistent Dataflow Graph
Record Snapshots

Fig. 11 Exactly-once processing for distributed dataflows

ery can be executed in parallel in a cluster environment since all worker tasks are
stateless and available resources can be harnessed maximally.

Exactly-once Stream-Dataflow Systems

In the area of stream-dataflow systems, exactly-once processing techniques have
evolved from very strict transactional-processing approaches [17] such as two-phase
commit alternatives (e.g., in FLUX [78]) to lightweight snapshots [27].

Active Replication

Active replication [17] is a costly approach of handling failures in distributed dataflow
processing, with heavy resource utilization and associated protocol complexity. This
technique was incorporated by FLUX [77], the DPC Borealis protocol [16], and
other approaches [25] where non-interruptive, highly available execution is the main
concern.

As illustrated in Fig. 11a the basic idea is that all computation is duplicated into
pairs of identical tasks. This yields a fault tolerant execution where at least one
replica of each task is considered to be running at any time. Along with twice the
computational resources, network traffic can even reach up to quadruple amounts of
records in transit [25]. Furthermore, the need for message-intensive two-phase com-
mit protocols and acknowledgments during the execution (for state synchronization)
can negatively impact throughput [90].

With active replication, property I is satisfied, since all input is buffered and even-
tually processed on at least one of the replicas (garbage collection handles unneeded
input records). Property II is also granted since at least one replica processes all
inputs streams (exactly-once) and updates its state at any given time.

The main benefit of this approach is that recovery is trivial and high availability
is guaranteed from the fact that at least one replica is running at a time among each
task pair. Finally, tolerance on the number of failed tasks can be further increased by
increasing the number of active replicas accordingly.

vww.ebook3000.con)

http://www.ebook3000.org

244 P. Carbone et al.

Atomic Transactions

This approach strives to achieve, at the task granularity, properties I and II in the most
direct way possible as illustrated in Fig. 1 1b. The single assumption is the availability
of an external persistent, high throughput, key-value store (e.g., Cassandra [63] or
BigTable [36]). It is employed by Google’s MillWheel [9] and Trident [85] (an
experimental processing layer on Storm). The main concept is simple. Everything
is logged in a key-value store or rather every record consumption and state change
on every task is logged in an atomic commit at the store. This guarantees property 1
(no input loss) but not II since duplicate records can be emitted upon task recovery
and processed by consumers in the dataflow graph. Duplicate processing leads to
inconsistent state updates which violates property II. There are several ways of
dealing with duplicate elimination and thus, satisfy exactly-once processing. For
example, as we have seen in Google’s MillWheel system, bloom filters can be used
to mark duplicate input records effectively.

Furthermore, several optimisations are still possible with atomic transactions such
as batching updates together in a single transaction, acknowledging record senders
for garbage collection and better flow control and using sophisticated key value
stores such as BigTable [36] with blind write support and high append-throughput
[9]. This technique also allows for task-level recovery which is considerably more
efficient than restarting for example the whole dataflow graph, especially when the
number of tasks is too large to reconfigure. However, this approach is often rather
complicated and hard to achieve in an average setup using lower-end commodity
cluster infrastructure with limited memory and storage capacity for all required logs
alongside a high-throughput transactional key-value store.

Consistent Snapshots

The concept of distributed snapshots is not a new one. Chandy and Lamport [35]
originally conceived the idea of encapsulating the complete “picture” of a distrib-
uted system and be able to use it in order to potentially re-execute it from there or
simply use it to find out more about its previous execution (i.e., safety and liveness
properties). Snapshots in distributed systems can be used to revert the whole state of
an arbitrary execution back to a savepoint and that is typically enough to guarantee
exactly-once semantics. As illustrated in Fig. 1 1¢, imagine taking periodic snapshots
of a distributed dataflow graph (think of auto-saving in video games). For any task
failure that can possibly happen we can eagerly roll back the whole dataflow graph
to the last saved savepoint by resetting task states back to their saved values. Addi-
tionally, it is also required to be able to replay the input stream from the snapshot
upon recovery, which is trivial given a durable repeatable log such as Apache Kafka
[2, 60].

One of the recently adopted approaches in the domain of stream processors is
to asynchronously execute a snapshott phase during the regular operation of the
system and thus avoid disrupting continuous processing. We provide acomprehensive
analysis of the original algorithm (ABS) [27] that was implemented in Apache Flink
(morein Sect. 4.3). Apache Storm’s v.1.0 is planned to incorporate ABS, thus, making
it the most popular technique for exactly once processing. Additionally, the Apache

Large-Scale Data Stream ... 245

APEX system [82] takes a very similar route when it comes to snapshots, however, it
uses the same mechanism to draw snapshots and apply windowing and thus enforces a
batch-like execution that could otherwise be avoided. The main known downside for
employing dataflow graph snapshots as a fault tolerance mechanism is the recovery
granularity. That is because the whole dataflow graph has to reset back to a savepoint,
however, partial recovery is still possible and considered as an improvement [27].

3.4 Flow Control

Any system has limits in the data rates that it can sustain, and stream processors are
no exceptions. Thus, it is often required to regulate the data ingestion rate due to the
imbalance between the data source rate and the processing rate that the system can
handle at any time. Unfortunately, this is a highly dynamic problem, since both input
and processing rates might vary considerably during a live execution.

Data spikes are common for several data sources such as mobile devices that
suddenly get access to a wireless network and transmit events that they have buffered
during the day. The same applies to logging systems in big data centers that transmit
historical logs periodically in spikes when their cache is full or a file has finished.

Stream processors can also exhibit variable processing capacities during their exe-
cution. For example, heavy-load routines such as garbage collection or snapshotting
to disk can introduce staleness periods, which can in turn affect continuous process-
ing. Finally, workload imbalance across different tasks within a dataflow execution
itself makes flow control mechanisms crucial for sustainable processing in order to
avoid situations where network buffers are overflown.

There are two main strategies for enforcing flow control in such situations [61]:
dropping data or employing back-pressure.

Dropping records. This is a common and effective strategy used by several systems
that do not have strong processing guarantees such as Apache Storm. Simply put,
when an input network buffer in a task gets full (no available resources to deserialize
incoming records from the network) the task discards new records that might arrive.
The discarded records either get lost forever (which works for at-most-once guaran-
tees) or resent (combined with record acknowledgments and upstream backup in an
at-least-once approach). As expected, this strategy does not work with exactly-once
processing guarantees.

Backpressure Mechanisms. There are several types of backpressure used in pro-
duction systems today, often employed in combination. An evident approach is to
utilize TCP backpressure which was used in Twitter’s Heron [61] among others. With
TCP windowing, sender and receiver nodes adjust their processing rates depending
on the size of the send/receive network buffers. Gradually, backpressure is realized
from the congestion point back to the sources of the dataflow graph and the overall
execution graph rate is calibrated. In practice, this mechanism can be too aggres-
sive and potentially slow down additional tasks in the topology than the ones that

vww.ebook3000.con)

http://www.ebook3000.org

246 P. Carbone et al.

are actually needed such as the successors of the congested tasks in the dataflow
graph [61]. This is mainly due to the fact that network buffers are multiplexed and
shared among arbitrary tasks in the topology. Thus, the flow control in this case is
non-selective and is applied collectively with potentially high impact in the general
throughput.

Another strategy that has proven to be more effective is source backpressure. The
main idea is that we selectively inform the dataflow sources to go into “backpressure
mode”. In this mode the sources are halted and thus data injection stops until back-
pressure is off. The cost of this approach is the introduction of additional control
messages and protocols which is generally not recommended. However, this is a
more direct way and happens to work well in harmony with repeatable and durable
logging systems such as Apache Kafka. An alternative approach involves the iden-
tification of different stages in an execution graph and employ this strategy at the
beginning of each stage.

Discussion: Backpressure mechanisms are crucial in data stream processing. A gen-
erally good practice is to use a combination of TCP and source-based backpressure
to have a well regulated and adaptive traffic flow in the system [61].

When it comes to micro-batch systems, the problem resides solely at the driver
node that discretizes a stream. Under time periods with high input spikes, the system
might be out of resource capacity to replicate batches and then schedule them for
further processing in the same constant rate. However, a form of source backpressure
strategy can be possibly employed at the ingestion point of the input stream and
coordinated through the driver that configures the execution.

3.5 Execution Plan Optimisations

There is a long list of possible optimisations that can be employed by SPs [55]. Most
of such optimisations occur during an intermediate compilation phase from a logical
to a physical plan. Many types of such optimisations require explicit declaration of
the data types and processing logic that is being executed in each step. However,
there are certain optimization strategies that can be applied without any semantical
knowledge. In the context of general dataflow graphs, operators can be collocated,
when applicable, in order to utilize less resources while achieving better throughput.
This class of optimisations is used in several dataflow processing systems such as
Apache Flink and Apache APEX and is known as “operator fusion”.

Operator Fusion. Fusion, also known as chaining is inspired by “Loop Fusion”, a
well known compiler optimisation technique that replaces multiple loops that iterate
over the same sequence with a single loop and thus potentially improve runtime
performance due to data locality [72]. In the context of distributed dataflow graphs,
this translates into merging multiple operators into a single execution task instead
of allocating several parallel tasks. In addition to resource savings this has proven
to improve performance considerably mainly due to reusing input data and avoiding
network channels. In addition to open source system adaptation, Google’s managed

Large-Scale Data Stream ... 247

Producer-Consumer Fusion Sibling Fusion

~
N
’
.
N
Y
’
.
~
(N
\
1
’
.,

-

Qe
- —————’
(2)()
~______——’

S~

-
-

~J-
-

S <

-

.
’
1
.
~
.
’
1
.
~
.
.
1
v
.
~

Fig. 12 Examples of fusion in dataflow execution graphs

cloud executor system for the Dataflow Model [50] is utilizing operator fusion. This
is an inherent optimisation technique adopted from Google’s FlumeJava [32], an
internal dataflow pipeline processing system and a precursor of the Dataflow model.
This has proven to result in cost savings for the users of the service while increasing
throughput.

In brief, there are two common scenarios where operator fusion can be applied
de facto [32] during a physical plan translation: producer-consumer and sibling
fusion. We depict both of these optimisation strategies in Fig.12. As illustrated,
producer-consumer fusion is applicable when there is a one-to-one parallelism and
data dependency between two subsequent tasks in the execution graph, for example
f and g. In that case, only a single fused task f o g is created instead. This way,
in practice, we avoid redundant record serializations, deserializations and network
latencies that we would otherwise have between tasks f and g. In the case of sibling
fusion, we can merge two or more tasks, for example g and %, into a composite
task, since g and & are consumers of the same data. Again, this way we transmit and
serialize records once for each partition, which gives a significant benefit to execution
efficiency.

4 Case Study: Stream Processing with Apache Flink

The domain of big data processing is undergoing disruptive paradigm shifts and
trends. We have witnessed an unavoidable shift from an era where database man-
agement systems were the dominant means of storing and analyzing data at small
scale to the MapReduce paradigm, where large scale processing replaced centrally
indexed data with a partitioned view.

Distributed file systems such as the Hadoop Distributed File System (HDFS)
became the norm for storing data in a scalable manner and a proliferation of sev-
eral batch-based data processing frameworks, such as Apache Spark [89] served as
dedicated endpoints to distributed data management and analysis. The recent adop-

vww.ebook3000.con)

http://www.ebook3000.org

248 P. Carbone et al.

tion of resilient, scalable logging systems, such as Apache Kafka [2] increased the
awareness and need for continuous and incremental processing of data, with several
dedicated stream processors such as Apache Storm [5], Samza [3] and Flink [26]
entering the big picture. This eventually led to a “split-brain” problem in hundreds of
data centers, where people had to manage and maintain data in both static and stream-
centric manner. Several design patterns had been put forward towards managing these
fundamentally different workloads under a structurally coherent architecture, with
the most popular being the “Lambda Architecture” [70]. Concepts such as batch,
speed and serving layer were used to categorize the overly increasing ecosystem of
data processing platforms primarily based on timely needs. However, the complexity
of using different batch and streaming runtime architectures together increased the
complexity of writing and maintaining data management pipelines.

The Kappa architectural pattern proposal [84] strived to provide an answer to
this problem by fusing the “batch” and “stream” layers together and using streams
as a first class citizen. The basic idea is that streams can be used to generate sets,
tables or other static data representations and subsume batch processing by pipelining
computation seamlessly.

Apache Flink [26] is a general unified data processing framework and a materi-
alization of the ideas behind the Kappa architecture. In this section we offer a brief
overview of the Apache Flink stack, the main entities that implement the core sys-
tem properties and some further insights behind its lightweight snapshot-based fault
tolerance mechanism.

4.1 The Apache Flink Stack

The Apache Flink system [26] offers a complete software stack of libraries for pro-
gramming and executing distributed dataflow applications as depicted in Fig. 13a.
At the core of the programming model, there are two main building blocks, exposed
as abstract data types, one for streams (DataStream API) and one for finite sets

I - o Optimisation
(ﬂnj 8 8 o Dataflow graph Client « Backpressure
e [[2 2 -
98| e ® .
O ||s Q<
31°|8 =
= = stream.map(..)...window(..)...—» @ Task " .§"5P5h0's
Q| L Manager
SH DataStream J { DataSet } — o -]
i [0_0 ceper I Dataflow Tasks ’:;n'PIuggable
2 Distributed “ ! store
5 Dataflow Runtime p——
ol (" o Passive Failover + Scheduling Task
(Local | [Cluster | [Cloud | | *© WMetastorefor « Monitoring Manager
and State
Managed Memory
(a) The Apache Flink Stack (b) The Apache Flink System Architecture

Fig. 13 An overview of the Apache Flink stack and architecture

Large-Scale Data Stream ... 249

(DataSet API). In Sect.2, we offered a brief overview of the capabilities of func-
tional APIs like the DataStream API, alongside other known programming models;
whereas here we will focus on the big picture first and then explain how such a system
is architectured by analyzing in more detail its snapshotting capabilities.

The users of Apache Flink can either specify data transformations using the core
APIs or declare computation logic using one of the higher level libraries. The high
level programming libraries of Flink are an example of the capabilities of a dataflow
processing system, by exposing data representations such as relational, graph, event-
based (complex event processing) and machine learning constructs over a single run-
time. Programs written in any of these domain specific libraries translate into stream
or set transformations. From there, all transformations are analyzed and translated
further into logical dataflow operators and finally into an optimized, physical graph
of tasks.

4.2 The Apache Flink System Architecture

There are three main runtime components involved in the compilation and execution
of a dataflow graph, as sdepicted in Fig. 13b. The general architecture resembles
characteristics from other principal system designs such assssss Hadoop [1]. First, a
client component is responsible for compiling and optimizing operators (e.g., map,
reduce, window) into dataflow tasks and then submitting an execution graph for exe-
cution at the Job Manager. The Job Manager has the role of the master node, as in
most typical distributed computing systems and handles job execution and monitor-
ing. It schedules individual tasks to Task Managers and collects meta-information
about the execution. The Task Managers are the workers and are responsible for
managing local resources such as slots and memory allocation throughout the con-
tinuous execution of a dataflow job. Tasks can snapshot their internal state as we
will see next in Sect. 4.3, and Flink provides a modular pluggable interface for many
types of storage back-ends that can be used for that purpose (e.g., Native RocksDB,
HDFS, in-memory). Finally, Flink guarantees high availability at the Job Manager
level (which suffices for maintaining a continuous uninterrupted execution). That
means that the Job Manager is not a single point of failure, and standby processes
can take over its role at any time whenever it fails. The distributed coordination and
crucial state needed for recovering all job executions are both handled by Zookeeper,
a distributed open-source system that is used for coordinating distributed operations
that involve locking and leader election.

4.3 Lightweight Asynchronous Snapshots

As wehave seen in Sect. 3, there are different solutions for fault tolerance in streaming
dataflow systems. As a fault tolerance example, we show how state snapshotting

vww.ebook3000.con)

http://www.ebook3000.org

250 P. Carbone et al.

Consistent Cut Inconsistent Cut
p1 send r pt \ send r
p2 p2 '
p3 4 p3
p4 4 09 4 p4
p5 « Y _ p5 «
receive r receive r

Fig. 14 Distributed snapshots as cuts

works in Flink. We briefly describe preliminary concepts (e.g., snapshots, cuts and
halting snapshots), then the asynchronous snapshotting algorithm (ABS) applied by
Flink.

Snapshets as Cuts. Chandy and Lamport first defined distributed snapshots [35] in
the most general case as cuts in the timeline of events exchanged between independent
processes. We depict some example cuts in Fig. 14. Each line depicts the timeline of
a process, and arrows represent messages sent and delivered across processes. A cut
can, therefore, be depicted as a line that crosses all process timelines. The content
of a snapshot is the current internal state of each process at the point in its timeline
that the cut crosses.

If a distributed snapshot is taken “correctly,” one can simply reset a full distributed
system from that exact snapshot seamlessly. A correct snapshot, however, needs a
more precise definition. Intuitively, the state we persist within a cut should reflect
a valid execution for a correct snapshot. According to Chandy and Lamport [35]
that can be only true when all prior actions that resolve into a process state are also
reflected in the cut. These prior actions are also known as “causal dependencies.”
Figure 14 illustrates what a consistent cut is, in a simplistic way. The first (green)
cut in Fig. 14 is correct, since all causal dependencies are reflected in the state, i.e.,s
every event that was received had also been sent according to that cut. The second
cut is incorrect, since the snapshotted state of process p5 depends on receiving an
event that was never sent by p1 according to the same cut.

Halting Snapshots. This notion of distributed snapshots is fundamentally suitable
for dataflow graphs. Microsoft’s Naiad [73] was one of the first known distributed
dataflow systems that applied snapshotting to implement fault tolerance. The idea
was to halt the whole graph execution, then persist all process states and events
in transit, and finally continue back to normal execution. The problem with that
approach is, evidently, that it violates the most important property of streaming
systems: continuous, uninterrupted processing.

Asynchronous Snapshots. The problem of execution halting motivated the idea of
Asynchronous Barrier Snapshotting (ABS) [27], the algorithm behind Apache Flink’s
fault tolerance mechanism. As the name implies, the goal is to take a consistent
snapshot asynchronously, without halting the system execution. To do this under
regular data ingestion, one has to superimpose the snapshotting process while tasks

Large-Scale Data Stream ... 251

Halting Snapshot (Naiad) Asynchronous Snapshot (ABS-Flink)
srcl
o
£ src2
3
3 -
= p4 4
c
7

Fig. 15 Halting versus asynchronous snapshots

consume and process records. The ABS algorithm achieves that while minimizing
the size of the required state. The basic idea is to intermix data records with barriers
that are injected at the sources of the dataflow graph, and then subsequently visit
the rest of the tasks in topological order while triggering state writes to external
persistent storage.

The difference between Naiad’s halting approach and the ABS approach can be
seen in Fig. 15. One important property visualized in the figure is that no records
in transit are part of the cut, i.e. no arrow is being overwritten by the cut line. That
is a pleasant side effect of the ABS algorithm, and occurs because the snapshotting
process is pipelined topologically, thus there is no need for buffering pending records
while waiting for any termination condition (see Chandy and Lamport’s approach
[35D.

The asynchronous snapshotting algorithm was first implemented on Apache Flink
and is managed by the Job Manager node. Periodically, the Job Manager initiates
a snapshot phase for each running execution graph. The special barriers mentioned
before are injected into each respective partitioned data stream starting from the
sources and all tasks independently snapshot their state and acknowledge the com-
pletion of their local snapshot to the Job Manager, along with a reference to their
replicated state (which can be datastore specific). Once all tasks have acknowledged
their success, the Job Manager marks the snapshot as complete, and can consider it
as a valid savepoint for recovery.

We depict the whole snapshotting process in detail in Fig. 16. In that figure we
visualize all steps and state that is involved during checkpointing. On the left we
can see a distributed data stream of records enriched with checkpoint barriers (in
that case the barriers of the n + 1 snapshot). The current tasks in the DAG that have
already checkpointed their internal state in the current snapshot (n) have a red color
while the pending tasks are yellow.

One important detail in the algorithm is its aligning phase. When tasks have
multiple inputs, they “align” their input consumption, by blocking channels where
they have already received barriers. This way they ensure that all causal dependencies
are consumed before proceeding to snapshotting and propagating the barriers further.
In the example of Fig. 16 the two last tasks of the DAG (known as sinks) have entered
their aligning phase. When a global snapshot is complete it is being persisted and
available at the system runtime’s disposal in case a rollback is needed. On the right

vww.ebook3000.con)

http://www.ebook3000.org

252 P. Carbone et al.

Execution DAG Snapshots (Job Manager)

shap n (in progress)

< g
Z snap n-1 (co‘“p‘ete)

o5

barriets

' 3\
nﬂ?ooooé‘&gu \

______________ R LGN —' N

snapshotting

shap n-2 (complete)

snap n-3 (complete)

Fig. 16 An illustration of the ABS algorithm in Apache Flink

side of Fig. 16 we can observe a number of global snapshots that are being maintained
at the Job Manager (in the form of metadata).

Recovering from Snapshots The recovery process from a snapshot is straightfor-
ward. The Job Manager first selects the latest, complete snapshot and then injects the
state handles to the newly scheduled tasks. Every task retrieves its old state before
starting its regular execution, which it sets as its initial state. Finally, all dataflow
sources have to start generating records from where they were left during their snap-
shot. A typical approach to solve this problem is to use a persistent log such as Kafka
and store the current offset read so far to the task state.

For example, consider again Fig. 16. If a task failure occurs while executing snap-
shot n, the system will instantly restart the execution graph from the states pinpointed
by snapshotn — 1, since it is the last complete savepoint the system has at that point in
time. In addition, it is required by the sources of the execution graph to rollback their
ingestion to the input stream offset that they once had saved upon persisting snapshot
n — 1. Background tasks of the system execute any appropriate garbage collection
by removing older snapshots while also asynchronously persisting in Zookeeper all
the meta-information required to fully recover the Apache Flink master with a valid
view of the pipelines executed.

S Applications, Trends and Open Challenges

Data stream processing is still a rapidly evolving domain in data management. At
one hand, systems incorporate new abilities that enable new types of applications
and services to build on top. On the other hand, new types of applications and needs
inspire the development of more sophisticated features both related to programming
models and system abilities and guarantees.

Large-Scale Data Stream ... 253

Perhaps the most well-known trends in data stream processing systems are the
unification of batch and stream processors, efficient pipelining, and stream state expo-
sure. However, in this section, we will focus on a few unconventional, yet emergent
challenges in data stream processing hidden behind the spotlight, and offer further
insights and directions on how to achieve them.

5.1 Graph Stream Processing

The domain of graph analytics efforts are currently split between dynamic graph
database management systems (e.g., Neo4j [87]) and static graph processing frame-
works (e.g., GraphX [88], Pregel [69] and GraphChi [62]). The most significant
downside of the current state of the art is the focus on static graph snapshots, disre-
garding the fundamentally dynamic nature of graph-structured data. One can easily
spot the potential for a direct, continuous ingestion of a graph (e.g., as a stream
of edges)ssssss. Users in social networks relate to other users via actions such as
likes, reposts, tweet mentions, friend requests etc. Such actions can be processed and
pipelined within a composite and complex graph processing task.

The idea of processing graph data in a streaming fashion has been studied exten-
sively in the past under different contexts, the semi-streaming model [18, 46, 81]
being one of the most studied ones. According to that model, several common graph
properties can be derived in a single pass. Some examples of common properties
and aggregations where this applies are: bipartiteness checks, shortest paths estima-
tion, degrees, triangle and triangle counts, among others. The best-effort, low-latency
computation of such complex properties can offer many benefits in the future. For
example, we can achieve efficient adaptive routing in software defined networks
(SDNs), hotspot and fraud detection in network security, and influence or epidemics
estimation in very large networks of human-generated data.

This paradigm shift in graph analytics can be achieved through two main direc-
tions: efficient summary data structures for graph data, and effective integration
and support in existing data stream processing systems. For summaries and data
structures, there is a plethora of existing approaches to be leveraged and extended,
each targeting different graph approximations such as spanners and sparsifiers
[8, 76]. The general idea is that by using such internal representations we can compact
and continuously update compressed graph state while also maintaining some spe-
cific properties. For example, graph spanners [76] are sparse subgraphs that preserve
approximate distance information between each pair of vertices that have appeared
in the graph thus far.

As always, for implementing and extending such novel graph processing tech-
niques, there should be proper system support. Current stream processors lack even a
basic programming model for incorporating graph stream semantics. Existing graph-
centered programming models and libraries such as Pregel [69] and GraphX [88] are
architected around iteratively processing finite sets of data such as adjacency lists,
which makes the adaptation of a stream-centered model hard to achieve. A few initial

vww.ebook3000.con)

http://www.ebook3000.org

254 P. Carbone et al.

approaches such as CelllQ [57] and Chronos [51] present an intermediate step for
incremental graph processing, that is based on continuous snapshots under coarse
window processing constraints. Nevertheless, there is as of yet no programming
model that operates at the granularity of individual events that allows for flexible
graph state representations and aggregations. We strongly believe that such a direc-
tion can impact the graph processing domain and change the way we think about
complex data.

5.2 Online Learning

Machine learning (ML) techniques are becoming increasingly mainstream and an
integral part of modern analytics pipelines. The streaming execution poses several
attractive benefits in ML such as low latency in model building, however, it also
brings new challenges. First and foremost, the majority of existing ML techniques
that originally operate on static data sets are inapplicable. That is mainly due to their
bounded data assumptions (e.g., ss knowing all possible data points for clustering,
or the inability to incorporate concept drift adaptation when dynamic changes occur
in the data)sss.

Among systems for online learning, Weka Online, MOA [22] and Apache
SAMOA [42] serve as specialized programming libraries and offer a collection
of known algorithm implementations such as Vertical Hoeffding Trees and stream
clustering. Unfortunately, despite their unique features, the limited scope of these
frameworks, combined with exposure of non-declarative low-level system constructs
make their general adoption and integration with wider analytical pipelines a chal-
lenging task. Apache SAMOA is the only system currently that achieves large scale
deployments for online ML, and it does so by using known dataflow-based stream
processors as runners (e.g.,s Apache Storm, Flink and Samza).

Finally, upcoming programming models for online ML should incorporate con-
cept drift as a first class citizen, that is, the gradual change in the distribution of
values exhibited as a stream. That is a vital property for ML system pipelines that
can potentially operate continuously. Many classes of online learning algorithms
would need to be revisited and designed with that concept in mind. There are a few
noteworthy examples towards that direction such as adaptive stream windows [21],
which consider concept drift in discretizing evolving streams based on data trends.

5.3 Complex Event Processing

To derive useful information from data streams, we often have to detect patterns in
events. A mobile phone network operator can benefit from building a custom stream
processing application that analyzes the operation of its systems. Cellular networks

Large-Scale Data Stream ... 255

consist of lots of different types of network nodes, which all produce network logs in
different formats. Manually making sense of all of that information when debugging
a problem can be hard.

Complex event processing (CEP) aids the development of such applications [68]. It
focuses on identifying important events, such as failures and business opportunities,
and reacting to them as soon as possible. At a network operator, for instance, it
could be important to detect the situation when there are lots of call drops in a
certain geographical area. A CEP application might generate an alert to the engineers
working in the network operations center, and it can even supply them with additional
information. For example, it can take all log entries that contain information about
call drops, group them by a reason code field, and perform a counting aggregation
to help with identifying the root cause of the problem.

Distributed data stream processing systems could help managing a large amount
of such event data. Future work in this area includes providing a rich set of features
for CEP for the open source systems discussed here. However, there are efforts in that
direction. For example, Apache Flink now provides a CEP API in their 1.0 version.

6 Conclusions and Outlook

In this chapter we focused on data stream processing, an increasingly popular para-
digm in the general field of data management. The applications of stream processing
are vast and vary from computing rolling aggregations to building extremely complex
data pipelines consisting of asynchronous microservices. The emergence of distrib-
uted, durable logs and their universal adoption in modern data processing backends
inspired the creation of sophisticated stream processors with strong processing guar-
antees and rich programming models. Modern stream processing systems are able
to manage application state fault tolerance as well as efficient partitioning transpar-
ently without human intervention. Furthermore, many data stream processing sys-
tems today can support different notions of time and serialize operations consistently
under such time assumptions.

We have shown programming abstractions for implementing distributed stream
processing applications: a programming model for lower-level dataflows, a model
for higher-level functional APIs, and windowing abstractions, which help processing
infinite datasets by partitioning them into finite subsets.

We have also seen in detail a universal execution model for data stream processing,
the dataflow graph, which models stateful operators and data dependencies between
them. However, we have seen that continuous processing can also be emulated on
widespread batch processing systems using time-discretized micro-batching tech-
niques. Existing runtime engines for data stream processing can effectively deal
with the need for flow control using backpressure mechanisms and often can opti-
mize the physical execution of dataflow graph by applying several optimisations such
as operator sharing and task fusion.

vww.ebook3000.con)

http://www.ebook3000.org

256 P. Carbone et al.

We made a deep dive into Apache Flink, one of the most popular stream processing
systems today, and reasoned about its architecture. Flink is an example of using a
stream processing architecture as the basis for any distributed computation, including
the execution of batch processing tasks efficiently. We further motivated the need for
lightweight state management mechanisms and offered some deep intuition behind
ABS, Apache Flink’s snapshotting mechanism. The combination of durable logs with
repeatable computations in stream processing systems suffices to achieve exactly
once processing guarantees. Recovery from distributed state snapshots achieves that
in a lightweight way.

Finally, we went through different future directions in the field and analyzed a
few special cases with eminent challenges. We envisioned on-line graph process-
ing capabilities that can currently be implemented in several modern systems for
stream processing. A combination of efficient approximate data structures for graph
processing with rich expressive capabilities for streaming computation by modern
stream processors can offer disruptive solutions in the field of graph and complex
data analytics. Online machine learning (ML) and stream mining can also benefit
from several recent developments in the field. A need for declarative ML models and
proper integration with high level stream processing semantics are needed in order
to achieve a broader integration with analytical pipelines. Furthermore, concept drift
is a crucial aspect of stream mining that needs to be an integral part in new potential
programming model.

The evolution of stream processors is far from done. In the following years we
are going to see more standardization and broader integration of such systems for
general use in analytics pipelines. Furthermore, dedicated programming libraries for
graph processing, complex event processing and other domain-specific usages will
proliferate, thus, shifting many processing tasks from bulk to low latency streaming.
We foresee a great interdisciplinary benefit of adopting stream processors in the
industry. We also expect a potential, yet gradual replacement of database and batch
processing technologies with unified data stream processing systems. The generality
and simplicity of distributed dataflow systems can be a main driver for adoption
and a good solution to the highly diverse and complex data processing ecosystem
nowadays.

References

Apache Hadoop project, https://hadoop.apache.org/

Apache Kafka project, http://kafka.apache.org/

Apache Samza project, http://samza.apache.org/

Apache Spark project, http://spark.apache.org/

Apache Storm project, http://storm.apache.org/

D.J. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, M. Stonebraker,
N. Tatbul, S. Zdonik, Aurora: a new model and architecture for data stream management, in
VLDBJ (2003)

R LN =

https://hadoop.apache.org/
http://kafka.apache.org/
http://samza.apache.org/
http://spark.apache.org/
http://storm.apache.org/

Large-Scale Data Stream ... 257

7.

10.

11.

12.

13.

15.

16.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

D.J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J.H. Hwang, W. Lindner,
A. Maskey, A. Rasin, E. Ryvkina et al., The design of the Borealis stream processing engine,
in CIDR (2005)

. KJ. Ahn, S. Guha, A. McGregor, Graph sketches: sparsification, spanners, and subgraphs, in

Proceedings of the 31st symposium on Principles of Database Systems. ACM (2012), pp. 5-14

. T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak, J. Haberman, R. Lax, S. McVeety, D. Mills,

P. Nordstrom, S. Whittle, MillWheel: Fault-tolerant stream processing at internet scale, in
VLDB (2013)

T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R.J. Ferndndez-Moctezuma, R. Lax,
S. McVeety, D. Mills, F. Perry, E. Schmidt et al, The dataflow model: a practical approach
to balancing correctness, latency, and cost in massive-scale, unbounded, out-of-order data
processing, in VLDB (2015)

A. Alexandrov, R. Bergmann, S. Ewen, J.C. Freytag, F. Hueske, A. Heise, O. Kao, M. Leich,
U. Leser, V. Markl et al., The Stratosphere platform for big data analytics. VLDB J. - Int. J.
Very Large Data Bases 23(6), 939-964 (2014)

A. Alexandrov, A. Kunft, A. Katsifodimos, F. Schiiler, L. Thamsen, O. Kao, T. Herb, V. Markl,
Implicit parallelism through deep language embedding, in ACM SIGMOD (2015), pp. 47-61
A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito, R. Motwani, U. Srivastava, J.
Widom, Stream: The stanford data stream management system, Book chapter (2004)

. A. Arasu, M. Cherniack, E. Galvez, D. Maier, A.S. Maskey, E. Ryvkina, M. Stonebraker, R.

Tibbetts, Linear road: a stream data management benchmark. in Proceedings of the Thirtieth
International Conference on Very Large Data Bases, VLDB Endowment, vol. 30 (2004), pp.
480-491

A. Arasu, S. Babu, J. Widom, The CQL continuous query language: semantic foundations and
query execution, in VLDBJ (2006)

M. Balazinska, H. Balakrishnan, S.R. Madden, M. Stonebraker, Fault-tolerance in the Borealis
distributed stream processing system. ACM Trans. Database Syst. (TODS) 33(1), 3 (2008)

. M. Balazinska, J.H. Hwang, M.A. Shah, Fault-tolerance and high availability in data stream

management systems., in Encyclopedia of Database Systems (Springer, 2009), pp. 1109-1115
L. Becchetti, P. Boldi, C. Castillo, A. Gionis, Efficient semi-streaming algorithms for local
triangle counting in massive graphs, in Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (ACM, 2008), pp. 16-24
Benchmarking streaming computation engines at Yahoo! https://yahooeng.tumblr.com/post/
135321837876/benchmarking-streaming-computation-engines-at

T. Bernhardt, A. Vasseur, Esper: Event Stream Processing and Correlation. ON-Java (O’Reilly,
Springfield, 2007)

A. Bifet, R. Gavalda, Adaptive learning from evolving data streams, in Advances in Intelligent
Data Analysis VIII (Springer, Berlin, 2009), pp. 249-260

A. Bifet, G. Holmes, R. Kirkby, B. Pfahringer, Moa: Massive online analysis. J. Mach. Learn.
Res. 11, 1601-1604 (2010)

I. Botan, R. Derakhshan, N. Dindar, L. Haas, R.J. Miller, N. Tatbul, Secret: A model for analysis
of the execution semantics of stream processing systems, in VLDB (2010)

L. Brenna, A. Demers, J. Gehrke, M. Hong, J. Ossher, B. Panda, M. Riedewald, M. Thatte, W.
White, Cayuga: a high-performance event processing engine, in Proceedings of the 2007 ACM
SIGMOD International Conference on Management of Data (ACM, 2007), pp. 1100-1102

P. Carbone, K. Vandikas, F. Zaloshnja, Towards highly available complex event processing
deployments in the cloud, in Seventh International Conference on Next Generation Mobile
Apps, Services and Technologies (NGMAST) (IEEE, 2013), pp. 153-158

P. Carbone, S. Ewen, S. Haridi, A. Katsifodimos, V. Markl, K. Tzoumas, Apache Flink: Stream
and batch processing in a single engine. IEEE Data Engineering Bulletin (2015)

P. Carbone, G. Féra, S. Ewen, S. Haridi, K. Tzoumas, Lightweight asynchronous snapshots for
distributed dataflows (2015). arXiv preprint arXiv:1506.08603

P. Carbone, J. Traub, A. Katsifodimos, S. Haridi, V. Markl, Cutty: Aggregate sharing for user-
defined windows, in Proceedings of the 25th ACM International on Conference on Information
and Knowledge Management (ACM, 2016)

vww.ebook3000.con)

https://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at
https://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at
http://arxiv.org/abs/1506.08603
http://www.ebook3000.org

258

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.
46.

47.

48.

49.

50.
51.

P. Carbone et al.

A. Carzaniga, D.S. Rosenblum, A.L. Wolf, Design and evaluation of a wide-area event notifi-
cation service. ACM Trans. Comput. Syst. (TOCS) 19(3), 332-383 (2001)

R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, P. Pietzuch, Integrating scale out and
fault tolerance in stream processing using operator state management, in Proceedings of the
2013 ACM SIGMOD international conference on Management of data (ACM, 2013), pp. 725—
736

U. Cetintemel, J. Du, T. Kraska, S. Madden, D. Maier, J. Meehan, A. Pavlo, M. Stonebraker, E.
Sutherland, N. Tatbul et al., S-store: A streaming newSQL system for big velocity applications.
Proc. VLDB Endow. 7(13), 1633-1636 (2014)

C. Chambers, A. Raniwala, F. Perry, S. Adams, R.R. Henry, R. Bradshaw, N. Weizenbaum,
FlumelJava: easy, efficient data-parallel pipelines, in ACM Sigplan Notices, vol. 45 (ACM,
2010), pp. 363-375

B. Chandramouli, J. Goldstein, M. Barnett, R. DeLine, D. Fisher, J.C. Platt, J.F. Terwilliger, J.
Wernsing, Trill: A high-performance incremental query processor for diverse analytics. Proc.
VLDB Endow. 8(4), 401-412 (2014)

S. Chandrasekaran, O. Cooper, A. Deshpande, M.J. Franklin, J.M. Hellerstein, W. Hong, S.
Krishnamurthy, S.R. Madden, F. Reiss, M.A. Shah, TelegraphCQ: continuous dataflow process-
ing, in Proceedings of the 2003 ACM SIGMOD International Conference on Management of
Data (ACM, 2003), pp. 668—668

K.M. Chandy, L. Lamport, Distributed snapshots: determining global states of distributed
systems. ACM Trans. Comput. Syst. (TOCS) 3(1), 63-75 (1985)

F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, M. Burrows, T. Chandra, A. Fikes,
R.E. Gruber, Bigtable: A distributed storage system for structured data. ACM Trans. Comput.
Syst. (TOCS) 26(2), 4 (2008)

J. Chen, D.J. DeWitt, F. Tian, Y. Wang, Niagaracq: A scalable continuous query system for
internet databases, in SIGMOD Record (ACM, 2000)

M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Cetintemel, Y. Xing, S.B. Zdonik,
Scalable distributed stream processing. CIDR. 3, 257-268 (2003)

T. Condie, N. Conway, P. Alvaro, J.M. Hellerstein, K. Elmeleegy, R. Sears, Mapreduce online.
NSDI. 10, 20 (2010)

G. Cugola, A. Margara, Processing flows of information: From data stream to complex event
processing. ACM Comput. Surv. (CSUR) 44(3), 15 (2012)

U. Dayal, B. Blaustein, A. Buchmann, U. Chakravarthy, M. Hsu, R. Ledin, D. McCarthy, A.
Rosenthal, S. Sarin, M.J. Carey et al., The HiPAC project: Combining active databases and
timing constraints. ACM Sigmod Rec. 17(1), 51-70 (1988)

G. De Francisci Morales, A. Bifet, Samoa: Scalable advanced massive online analysis. J. Mach.
Learn. Res. 16(1), 149-153 (2015)

J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large clusters. Commun.
ACM 51(1), 107-113 (2008)

N. Dindar, N. Tatbul, R.J. Miller, L.M. Haas, I. Botan, Modeling the execution semantics of
stream processing engines with secret. VLDB J. 22(4), 421-446 (2013)

D. Elin, T. Risch, Amos II java interfaces. Uppsala University report (2000)

J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, J. Zhang, On graph problems in a semi-
streaming model. Theor. Comput. Sci. 348(2), 207-216 (2005)

R.C. Fernandez, M. Migliavacca, E. Kalyvianaki, P. Pietzuch, Making state explicit for imper-
ative big data processing, in Proceedings of the 2014 USENIX Annual Technical Conference
(USENIX ATC 14) (2014), pp. 49-60

S. Gatziu, K.R. Dittrich, Samos: An active object-oriented database system. IEEE Data Eng.
Bull. 15(1-4), 23-26 (1992)

B. Gedik, Partitioning functions for stateful data parallelism in stream processing. VLDB J.
23(4), 517-539 (2014)

Google Cloud Dataflow, https://cloud.google.com/dataflow/

W. Han, Y. Miao, K. Li, M. Wu, F. Yang, L. Zhou, V. Prabhakaran, W. Chen, E. Chen, Chronos:
a graph engine for temporal graph analysis, in Proceedings of the Ninth European Conference
on Computer Systems (ACM, 2014), p. 1

https://cloud.google.com/dataflow/

Large-Scale Data Stream ... 259

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

B. He, M. Yang, Z. Guo, R. Chen, B. Su, W. Lin, L. Zhou, Comet: batched stream processing
for data intensive distributed computing, in Proceedings of the 1st ACM Symposium on Cloud
Computing (ACM, 2010), pp. 63-74

M. Hirzel, H. Andrade, B. Gedik, V. Kumar, G. Losa, M. Nasgaard, R. Soule, K. Wu, SPL stream
processing language specification. New York: IBMResearchDivisionTJ. WatsonResearchCen-
ter, IBM ResearchReport: RC24897 (W0911-044) (2009)

M. Hirzel, H. Andrade, B. Gedik, G. Jacques-Silva, R. Khandekar, V. Kumar, M. Mendell, H.
Nasgaard, S. Schneider, R. Soulé et al., IBM streams processing language: analyzing big data
in motion. IBM J. Res. Develop. 57(3/4), 7-1 (2013)

M. Hirzel, R. Soulé, S. Schneider, B. Gedik, R. Grimm, A catalog of stream processing opti-
mizations. ACM Comput. Surv. (CSUR) 46(4), 46 (2014)

Introduction to Kafka Streams, http://www.confluent.io/blog/introducing-kafka-streams-
stream- processing-made-simple

A.lyer, L.E. Lj, I Stoica, CelllQ: real-time cellular network analytics at scale, in 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 15) (2015), pp. 309-322
R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik, E.P. Jones, S. Madden, M.
Stonebraker, Y. Zhang et al., H-store: a high-performance, distributed main memory transaction
processing system. Proc. VLDB Endow. 1(2), 1496—1499 (2008)

K. Karanasos, A. Katsifodimos, I. Manolescu, Delta: Scalable data dissemination under capac-
ity constraints. Proc. VLDB Endow. 7(4), 217-228 (2013)

J. Kreps, N. Narkhede, J. Rao et al, Kafka: A distributed messaging system for log processing.
NetDB (2011)

S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal, J.M. Patel, K. Ramasamy,
S. Taneja, Twitter Heron: Stream processing at scale, in ACM SIGMOD (2015)

A. Kyrola, G. Blelloch, C. Guestrin, Graphchi: Large-scale graph computation on just a pc, in
Presented as part of the 10th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 12) (2012), pp. 31-46

A. Lakshman, P. Malik, Cassandra: a decentralized structured storage system. ACM SIGOPS
Oper. Syst. Rev. 44(2), 35-40 (2010)

J. Li, D. Maier, K. Tufte, V. Papadimos, P.A. Tucker, Semantics and evaluation techniques for
window aggregates in data streams, in ACM SIGMOD (2005)

L. Liu, C. Pu, W. Tang, Continual queries for internet scale event-driven information delivery.
IEEE Trans. Knowl. Data Eng. 11(4), 610-628 (1999)

Y. Liu, B. Plale et al., Survey of publish subscribe event systems. Computer Science Dept,
Indian University 16 (2003)

D. Logothetis, C. Olston, B. Reed, K.C. Webb, K. Yocum, Stateful bulk processing for incre-
mental analytics, in Proceedings of the 1st ACM Symposium on Cloud Computing (ACM,
2010), pp. 51-62

D. Luckham, The power of events, vol. 204 (Addison-Wesley Reading, Boston, 2002)

G. Malewicz, M.H. Austern, A.J. Bik, J.C. Dehnert, I. Horn, N. Leiser, G. Czajkowski, Pregel:
a system for large-scale graph processing, in Proceedings of the 2010 ACM SIGMOD Interna-
tional Conference on Management of Data (ACM, 2010), pp. 135-146

N. Marz, J. Warren, Big Data: Principles and Best Practices of Scalable Realtime Data Systems
(Manning Publications Co., Greenwich, 2015)

D. Mishra, SNOOP: an event specification language for active database systems. Ph.D. thesis,
University of Florida (1991)

S.S. Muchnick, Advanced Compiler Design Implementation (Morgan Kaufmann, Burlington,
1997)

D.G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, M. Abadi, Naiad: a timely dataflow
system, in ACM SOSP (2013)

L. Neumeyer, B. Robbins, A. Nair, A. Kesari, S4: Distributed stream computing platform, in
Proceedings of the 2010 IEEE International Conference on Data Mining Workshops (IEEE,
2010), pp. 170-177

vww.ebook3000.con)

http://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple
http://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple
http://www.ebook3000.org

260

75.

76.

71.

78.

79.

80.
81.
82.
83.
84.
85.

86.

87.

88.

89.

90.

P. Carbone et al.

K. Patroumpas, T. Sellis, Window specification over data streams, in Current Trends in Data-
base Technology—EDBT 2006 (Springer, Berlin, 2006), pp. 445-464

D. Peleg, A.A. Schiffer, Graph spanners. J. Graph Theory 13(1), 99-116 (1989)

M.A. Shah, J.M. Hellerstein, S. Chandrasekaran, M.J. Franklin, Flux: An adaptive partitioning
operator for continuous query systems, in Proceedings of the 19th International Conference
on Data Engineering (IEEE, 2003), pp. 25-36

M.A. Shah, J.M. Hellerstein, E. Brewer, Highly available, fault-tolerant, parallel dataflows, in
Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data
(ACM, 2004), pp. 827-838

U. Srivastava, J. Widom, Flexible time management in data stream systems. in Proceedings
of the Twenty-Third ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems (ACM, 2004), pp. 263-274

StreamBase I: Streambase: Real-time, low latency data processing with a stream processing
engine (2006)

J. Thaler, Semi-streaming algorithms for annotated graph streams (2014). arXiv preprint
arXiv:1407.3462

The Apache APEX project, https://www.datatorrent.com/apex/

The Apache Beam System, https://wiki.apache.org/incubator/BeamProposal

The Kappa Architecture by Jay Kreps, http://milinda.pathirage.org/kappa-architecture.com/
The Trident Stream Processing Programming Model, http://storm.apache.org/releases/0.10.0/
Trident-tutorial.html

A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J.M. Patel, S. Kulkarni, J. Jackson, K.
Gade, M. Fu, J. Donham et al, Storm @ Twitter, in Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data (ACM, 2014), pp. 147-156

J. Webber, A programmatic introduction to Neo4j, in Proceedings of the 3rd Annual Conference
on Systems, Programming, and Applications: Software For Humanity (ACM, 2012), pp. 217-
218

R.S. Xin, J.E. Gonzalez, M.J. Franklin, I. Stoica, GraphX: A resilient distributed graph sys-
tem on Spark, in First International Workshop on Graph Data Management Experiences and
Systems (ACM, 2013), p. 2

M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, I. Stoica, Spark: Cluster computing
with working sets. HotCloud 10, 10-10 (2010)

M. Zaharia, T. Das, H. Li, S. Shenker, I. Stoica, Discretized streams: an efficient and fault-
tolerant model for stream processing on large clusters, in Proceedings of the 4th USENIX
Conference on Hot Topics in Cloud Ccomputing (USENIX Association, 2012), pp. 10-10

http://arxiv.org/abs/1407.3462
https://www.datatorrent.com/apex/
https://wiki.apache.org/incubator/BeamProposal
http://milinda.pathirage.org/kappa-architecture.com/
http://storm.apache.org/releases/0.10.0/Trident-tutorial.html
http://storm.apache.org/releases/0.10.0/Trident-tutorial.html

Part 11
Semantic Big Data Management

vww.ebook3000.con)

http://www.ebook3000.org

Semantic Data Integration

Michelle Cheatham and Catia Pesquita

Abstract The growing volume, variety and complexity of data being collected for
scientific purposes presents challenges for data integration. For data to be truly useful,
scientists need not only to be able to access it, but also be able to interpret and
use it. Doing this requires semantic context. Semantic Data Integration is an active
field of research, and this chapter describes the current challenges and how existing
approaches are addressing them. The chapter then provides an overview of several
active research areas within the semantic data integration field, including interactive
and collaborative schema matching, integration of geospatial and biomedical data,
and visualization of the data integration process. Finally, the need to move beyond the
discovery of simple 1-to-1 equivalence matches to the identification of more complex
relationships across datasets is presented and possible first steps in this direction are
discussed.

1 An Important Challenge

The world around us is an incredibly complex and interconnected system — one
filled with phenomena that cannot be understood in isolation. At the same time, the
volume and complexity of the data, theory, and models established to explain these
phenomena have led scientists to specialize further and further, to the point where
many researchers now spend their entire careers on extremely narrow topics, such as
the characteristics of one particular class of star, or the habits of a single species of fish.
While such specialization is important to increase humanity’s depth of knowledge
about many subjects, some of the greatest leaps forward in our understanding come
at the intersection of traditional scientific disciplines. These advances require the

M. Cheatham (<)
DaSe Laboratory, Wright State University, Dayton, OH, USA
e-mail: michelle.cheatham @wright.edu

C. Pesquita
Universidade de Lisboa, Lisbon, Portugal
e-mail: cpesquita@di.fc.ul.pt

© Springer International Publishing AG 2017 263
A.Y. Zomaya and S. Sakr (eds.), Handbook of Big Data Technologies,
DOI 10.1007/978-3-319-49340-4_8

264 M. Cheatham and C. Pesquita

integration of data from many different scientific domains, and this integration must
be done in a way that preserves the detail, uncertainty, and above all the context of
the data involved.

Preserving these properties can be achieved through semantic data integration,
a process through which semantically heterogeneous data can be integrated with
minimal loss of information. This type of data integration is particularly relevant
in domains where data models are diverse and entity properties are heterogeneous.
For instance, health information systems, and in particular medical records employ a
diversity of vocabularies to describe relevant entities. Health care facilities routinely
use different software providers for different aspects of their functioning (outpatient,
emergency, surgery, laboratory, billing, etc), each with their own set of vocabularies
that many times employ different labels and assign different properties to the same
entities. Moreover, the controlled vocabularies many times lack the information nec-
essary to understand the data they describe. For instance, if during an emergency
room visit the patient is assigned a primary diagnostic of “Acute upper respiratory
infection” using ICD-10, how can we understand that the results of the lab test “Virus
identified in Nose by Culture” coded using LOINC, are relevant for the diagnosis?
Semantic data integration can provide the means to achieve the meaningful integra-
tion of data necessary to support more complex analysis and conclusions.

Unfortunately, semantic data integration is a challenging proposition, particularly
for scientific data. Many obstacles stand in the way of synthesizing all of the data
about an entity. One of the most obvious of these is accessing the data in the first place.
Much of the data underpinning past and present scientific publications is not readily
accessible — it exists only in isolated databases, as files on a grad student’s computer,
or in tables within PDF documents. Moreover, there can be various obstacles to
retrieving this data, particularly due to a lack of consistency. For instance, some
repositories might be accessible via websites or structured query mechanisms while
others require a login and use of secure file transfer or copy protocols. Financial and
legal concerns also inhibit data integration. Some data might be stored in proprietary
databases or file formats that require expensive software licenses to read, and licenses
indicating what users are allowed to do with the data can be missing or restrictive,
resulting in legal uncertainty. These types of concerns led to a push towards Linked
Open Data, which is described in the next section.

Of course, accessibility is only the first step to semantic data integration. For data
to be truly useful, scientists need to be able to interpret and use it after they acquire
it. Doing this requires semantic context. By semantic context, we mean the situation
in which a term or entity appears. As a simple example, ‘chair’ would be considered
a piece of furniture if it was seen in close proximity to ‘couch’ and ‘table’, but as a
person if used in conjunction with ‘dean’ and ‘provost’. Similarly, if temperature is
included in a dataset that contains entirely Imperial units, it might be assumed to be
in Fahrenheit rather than Celsius, particularly if the values correspond to what might
be expected (e.g. values near 98° for body temperatures). In relational databases and
spreadsheets, semantic context is sometimes lacking because important information
about what the various data fields mean and how they relate to one another is often
implicit in the names of database tables and column headers, some of which are

vww.ebook3000.con)

http://www.ebook3000.org

Semantic Data Integration 265

incomprehensible to anyone other than the dataset’s creator. What is needed is a way
to express the semantic connections between different pieces of data in a way that is
expressive enough to capture nuanced relationships while at the same time formalized
and restrictive enough to allow software as well as humans to make inferences based
on the links. Ontologies, described in Sect. 1.2, have been proposed for this purpose.

Even when data is made accessible by following the Linked Open Data prin-
ciples and is organized according to a machine-readable ontology, challenges still
remain. An ontology imposes order on a domain of interest, but order is in the eye
of the beholder: if five different publishers of the same type of data were tasked to
develop an ontology with which to structure their data, the result would very likely
be five different ontologies. One obvious approach is to try to get all data publishers
from a domain to agree on a single ontology. This tends to be unfeasible in many
instances, for example due to a provider’s data causing a logical inconsistency when
it is shoe-horned into the agreed upon ontology. A “one ontology to structure them
all” approach also conflicts with the inherently distributed paradigm championed by
the Semantic Web. An alternative to this strategy is to allow data providers to create
or choose whatever ontology best suits their data, and then to establish links that
encode how elements of this ontology relate to those within other ontologies.

Establishing semantic links between ontologies and the data sets that they organize
can be very difficult, particularly if the datasets are large and complex, as is routinely
the case in scientific domains. The fields of ontology alignment and co-reference
resolution seek to develop tools and techniques to facilitate the identification of links
between datasets. Scientific datasets are particularly challenging to align for several
reasons. Perhaps most obviously, such datasets can be extremely large, often over a
petabyte of data, which is more than enough to swamp most existing data integration
techniques. Additionally, scientific datasets generally have a spatiotemporal aspect,
but current alignment algorithms struggle with finding relationships across this type
of data because of the variety of ways to express it. For example, spatial regions
can be represented by geopolitical entities (whose borders change over time), by
the names of nearby points of interest, or by polygons whose points are given via
latitude and longitude. Similarly, issues pertaining to measurement resolution, time
zones, the international dateline, etc. can confuse the comparison of timestamps
of data observations. Furthermore, scientific datasets frequently involve data of very
different modalities, from audio recordings of dolphin calls to radar images of storms,
to spectroscopy of cellular organisms. Such data is also collected at widely differing
scales, from micrometers to kilometers. And oftentimes the data that needs to be
integrated is from domains with only a small degree of semantic overlap, as is the
case with, for example, one dataset containing information about NSF project awards
and another with the salinity values for ocean water collected during oceanography
cruises, several of which were funded by NSF.

We have identified a number of challenges in semantic data integration, namely:
the accessibility of the data; providing data with semantic context to support its inter-
pretation; and the establishment of meaningful links between data. These challenges

266 M. Cheatham and C. Pesquita

are expanded in the following subsections. Section2 addresses several state of the
art topics in semantic data integration, while Sect. 3 lays out the path forwards in this
area.

1.1 Linked Data

Tim Berners-Lee originally envisioned a world wide web that is equally accessible to
both humans and computers [5]. Unfortunately, even after several decades we have
yet to make this vision a reality. When we look at a webpage today, say, one that
presents data about the publications of a group of researchers, we are likely to find that
data within an HTML table with columns containing headers such as “Researcher”,
“Title”, “Journal”, “Publication Year”, etc. If we additionally want to know which
researchers are publishing in journals with a high impact factor, we would need to look
for the journal’s title in the appropriate column of the table, search for the journal’s
website using a search engine, and find the impact factor on the journal’s website by
looking for it (hopefully) on the journal’s homepage. This is tedious for humans, but
extremely difficult for computers. For example, recognizing that the table contains
information about researchers’ publications and identifying the meaning of each of
the columns requires background knowledge and natural language processing, as
does realizing that a journal’s impact factor is not in the table. Pulling the journal’s
title out of the HTML table and submitting it to a search engine requires writing code
that depends on the format of the table and the API of the search engine, both of
which are likely to break if the website or search engine provider makes any changes
to those resources. After the query has been made, determining if a particular query
result actually contains the impact factor for the journal in question again requires
natural language processing. Furthermore, the provider of the data concerning these
researchers’ publications may not consent to its use for the type of analysis we seek
to perform.

Publishing information as linked data alleviates many of these challenges. Linked
data builds upon existing web standards such as HTTP, RDF, and URIs to create web
pages that are machine-readable and, ideally, machine-understandable. According to
Berners-Lee,! the four rules of linked data are:

1. Use URISs to denote things.

2. Use HTTP URIs so that these things can be referred to and looked up (“derefer-
enced”) by people and user agents.

3. Provide useful information about the thing when its URI is dereferenced, lever-
aging standards such as RDF and SPARQL.

4. Include links to other related things (using their URIs) when publishing data on
the Web.

Thitp://www.w3.org/DesignIssues/LinkedData.html.

vww.ebook3000.con)

http://www.w3.org/DesignIssues/LinkedData.html
http://www.ebook3000.org

Semantic Data Integration 267

Linked data is generally published as RDF subject-predicate-object triples.
For instance, the following triple indicates an article with the URI cspublica-
tions.org/TheSemanticWeb was written by Tim Berners-Lee.

<www.w3 .org/People/Berners-Lee>
swrc:author
<cspublications.org/TheSemanticWeb>

Similarly, the triples below specify that the article is titled “The Semantic Web”,
that it was published in 2001, and that the journal it was published in has the URI
cspublications.org/ScientificAmerican.

<cspublications.org/TheSemanticWeb>
swrc:title
"The Semantic Web"@en .

<cspublications.org/TheSemanticWeb>
swrc:year
"2001"""xsd:date .

<cspublications.org/TheSemanticWeb>
swrc:journal

<scientificamerican.com>

The expectation is that following the URI scientificamerican.com allows us to
learn more information about the journal in which this article was published even if
that information comes from an entirely different data source.

Publishing data as RDF rather than HTML separates information about data’s
meaning and context from information about how to format it for presentation. This
enables software applications to easily access the data. Additionally, it is possible to
express the terms of use for a data set as linked data as well, thus allowing software
agents to read and respect these constraints. While this detail is often overlooked,
legal issues are often as big of a hindrance to data re-use as technical concerns.
Fortunately, addressing this issue is not difficult. Many commonly used licenses have
already been encoded in RDF, and datasets can simply add the appropriate triple to
refer to them. For example, the triple below indicates that this dataset is available
according to the conditions of version 3.0 of the Creative Commons “Share-Alike”
license.

<cspublications.org/publications.rdf>
cc:license

<http://creativecommons.org/licenses/by-sa/3.0/>

A very large amount of data has already been published as linked open data:
according to the most recent survey, there are hundreds of linked datasets, which

268 M. Cheatham and C. Pesquita

contain billions of facts about a wide variety of subjects, from music, to biology,
to social networks [93]. The website www.linkeddata.org contains pointers to many
such datasets. As the linked open data cloud continues to grow, the ability of data
providers to contextualize their data by linking it to already-existing data will encour-
age the creation of more linked data, creating a virtuous feedback loop.

Keeping with our example of medical records, recent work has transformed a
clinical datawarehouse into a semantic clinical datawarehouse by applying the Linked
Dataprinciples [78]. This enabled clinical data to be integrated with publicly available
biomedical repositories, enabling for instance the identification of disease genes.

1.2 Ontologies

Tom Gruber, one of the early voices on knowledge representation (and the creator of
Siri), defines an ontology as a “specification of a conceptualization.” He elaborates
that an ontology defines the concepts and relationships within a domain [35]. Figure 1
shows a snippet of the Semantic Web for Research Communities (SWRC) ontology
[105]. The subset of entities shown represent key concepts within the publication
domain. The entities shown in ovals, such as Person and Publication are called
classes. A class represents a grouping of objects with similar characteristics. Classes
are often arranged in a hierarchy using subclass relationships. For instance, in our

cites

string date

title year

Publication

subClassOf subClassOf

’ Proceedings
series
isAbout) ~
author editor]
string
‘ WorksAt\‘
hasName

hasEmall

string string

Fig. 1 A snippet from the Semantic Web for resource community ontology

vww.ebook3000.con)

http://www.ebook3000.org

Semantic Data Integration 269

example Article and Proceedings are both subclasses of Publication (i.e. every Article
is a Publication but not every Publication is an Article). An instance (also sometimes
called an individual) is a particular object. An instance has a type that is some class
within the ontology. For example, an instance of type Article may be Weaving the
Semantic Web and an instance of type Person may be Tim Berners-Lee. This is
somewhat analogous to classes and instances of those classes in object-oriented
programming languages. Relationships between instances, such as hasName and
author, are called properties. All properties are directed binary relations that map an
instance with a type from the domain to something in the range. These are represented
as labeled arrows in Fig. 1, with the arrow pointing from the domain to the range.
Properties that map an instance to another instance (e.g. editor, which maps an
instance of type Person to an instance of type Proceedings) are object properties,
whereas properties that map an instance to a literal value (e.g. year, which maps an
instance of type Publication to a date value) are datatype properties. Common data
types include integers, doubles, strings, and dates. Both object properties and data
properties must involve an instance. A third type of property, called an annotation
property, can be used to describe relationships between any types of entities (e.g.
instances, classes or other properties).

Critically, an ontology should not require an agent, either human or computer, to
understand the entity labels in order to leverage the ontology for data publication or
consumption. Labels are human-centric, and the underlying goal of the Semantic Web
is to put humans and machines on equal footing. Instead of relying on labels to convey
meaning, the ontology designer should constrain the possible interpretation of entity
labels through judicious use of logical axioms. For example, DBPedia, the linked data
version of Wikipedia, contains a property called hasGender. The vast majority of
uses of this property are to express a person’s gender. However, because the domain
and range of this property are very vague (i.e. any Thing can have a gender), some
of the uses of hasGender are very different. For instance, DBPedia asserts that the
name “Alexander” hasGender “Alexandria” and that a secondary school in England
hasGender “unisex education.” This can cause difficulty for software applications
that are attempting to use the hasGender property. Misunderstandings can be avoided
if the axioms are added to the ontology to constrain the possible meaning of the terms
it uses. In this case, the domain of hasGender could be changed to be something like
LivingThing, as shown below.

dbpedia:hasGender rdfs:domain dbpedia:LivingThing .

Constraints on ontology entities expressed through axioms, together with instance
data published relative to those entities, enables a piece of software called a reasoner
to infer additional facts that are not actually in the data. For example, if the dataset
contained the fact that Tim Berners-Lee wrote “The Semantic Web”” and the knowl-
edge base contained an axiom stating that the domain of the property wrote is Person,
areasoner would be able to infer that Berners-Lee is a person, even if that fact was not
explicitly in the knowledge base. A query to return all of the Persons in the knowl-
edge base would then correctly include Tim Berners-Lee among the results. This is

270 M. Cheatham and C. Pesquita

accomplished without any natural language processing, which can be error-prone in
many situations.

Because constraints make the meaning of entity names and relationships more
precise, they hold great potential to facilitate accurate data integration. Unfortunately,
many existing ontologies do not contain significant numbers of axioms. However, as
we will see in the next section, many existing data and schema integration systems
are already capable of leveraging such axioms when they do exist.

There is a balance to be struck here: too few axioms can lead to many differ-
ent interpretations of entities, making the ontology less useful; however, too many
axioms can constrain the ontology so much that is only applicable in a narrow set
of circumstances. For instance, it may seem reasonable to create an axiom that man-
dates that a Living Thing has exactly one gender, this is not the case for some beings.
Ontologies are often encoded in the Web Ontology Language (OWL) [69]. Besides
property domain and range and cardinality constraints, OWL allows one to state
that two entities are equivalent or disjoint, that a property is reflexive, symmetric,
transitive, or functional, or that one property is the inverse of another. All of this infor-
mation: classes, properties, and axioms that restrict their interpretation, is called the
schema, or T-box (for terminology), of the ontology. Conversely, the instance data,
or A-box (for assertions), contains assertions about individuals using data from the
T-box.

A more formal and extensive treatment of ontology design and representation can
be found in [41]. Many ontologies exist today. Some of these, such as the Suggested
Upper Merged Ontology (SUMO) [82] and the Descriptive Ontology for Linguistic
and Cognitive Engineering (DOLCE) [32] begin modelling the world at the high-
est level of abstraction and working towards more detail. The top-level entities in
DOLCE, for instance, are Entity, Endurant, Perdurant, and Abstract. There are also
numerous domain-specific ontologies, such as the Gene Ontology, which models
the structure and molecular processes of eukaryotic cells [2], and NASA’s Seman-
tic Web for Earth and Environmental Terminology (SWEET) ontology [86]. In the
clinical domain, many providers have begun migrating from simple terminologies
(such as ICD-10) to more complex ones that have an ontological foundation (such
as SNOMED-CT) [14]. Lately many researchers have also begun to publish ontol-
ogy “snippets,” sometimes referred to as ontology design patterns, that model much
more constrained topic areas. The website ontologydesignpatterns.org currently has
dozens of ontology snippets, including models of a Hazardous Situation, a Species
Habitat, and a Chess Game.

1.3 Ontology and Data Alignment

While the amount of linked data available on the Semantic Web has grown continually
for more than a decade, the links between different datasets have not gown at the
same rate. These links provide the context that makes the data more useful. The
fields of ontology and data alignment attempt to discover links between datasets in

vww.ebook3000.con)

http://www.ebook3000.org

Semantic Data Integration 271

an automatic or semi-automatic way. Ontology alignment systems tend to focus on
finding relationships between schema-level entities, while co-reference resolution
systems attempt to identify cases in which the same individual is referred to via
different URIs.

1.3.1 Ontology Alignment

Engineering new ontologies is not a deterministic process — many design decisions
must be made, and the designers’ backgrounds and the application they are targeting
will influence their decisions in different ways. The end result is that even two
ontologies that represent the same domain will not be the same. They may use
synonyms for the same concept or the same word for different concepts, they may be
at different levels of abstraction, they may not include all of the same concepts, and
they may not even be in the same language. And this is in the best case. In real-world
datasets there are often problems with missing information, inconsistent use of the
T-box when describing individuals, and logically inconsistent axioms. The goal of
ontology alignment is to determine when an entity in one ontology is semantically
related to an entity in another ontology (for a comprehensive discussion of ontology
alignment, including a formal definition, see [23]).

An alignment algorithm takes as input two ontologies and produces a set of
matches consisting of a URI specifying one entity from each ontology, a relationship,
and an optional confidence value that is generally in the range of 0-1, inclusive. For
example, Fig.2 shows a second ontology describing publications. This ontology was

references/
isReferencedBy

describesProject
Publication
isWrittenBy

~N

hasTopic ;
P isRelatedTo isAuthorOf
hasTopic ‘ isChairAt
isOrganizerOf

employs

Fig. 2 A subset of the scientific publications ontology from the MAPEKUS project

272 M. Cheatham and C. Pesquita

Ontology Ontology

Alignment System

Filtering / Hashing |

Entity Similarity Comparison

| Syntactic || Semantic || Structural |

| Match Generation i

| Inconsistency Checking and Repair |

Alignment

Fig. 3 General structure of an ontology alignment system

created as part of the MAPEKUS project.? An alignment system given the ontologies
in Figs. I and 2 might produce matches including:

mapekus:Person, swrc:Person, =, 1.0
mapekus:Publication, swrc:Publication, =, 0.9
mapekus:references, swrc:cites, =, 0.8

mapekus: IndexTerm, swrc:Topic, <, 0.6

Note that matches can relate any type of entities, including classes (e.g. Person)
and properties (e.g. references, cites). Additionally, a match can indicate a vari-
ety of relationships. The most common are to state that two things are equivalent
(e.g. all mapekus:Publications are swrc:Publications and all swrc:Publications are
mapekus:Publications) or that one subsumes the other (e.g. all mapekus:IndexTerms
are swrc: Topics but all swrc: Topics are not mapekus:IndexTerms). Though not neces-
sary, in practice alignments are often interpreted under the closed world assumption,
in the sense that any entity pairs not mentioned in an alignment are assumed to have
no relationship.

Many alignment systems share a common general organization, shown in Fig. 3.
Because ontologies can contain millions of entities, it is often infeasible to compare

Zhttp://mapekus. fiit.stuba.sk.

vww.ebook3000.con)

http://mapekus.fiit.stuba.sk
http://www.ebook3000.org

Semantic Data Integration 273

every entity in one ontology to every entity in the other. Therefore, alignment sys-
tems sometimes employ a filtering or hashing step to determine which entities to
compare [20, 40]. Alignment systems typically use a combination of three different
approaches to evaluate entity similarity: syntactic, semantic, and structural similarity
metrics. Entity similarity is related to how much two entities have in common; it can
be thought of as a measure of the degree one class, property, or individual could
be used in place of another. Syntactic metrics compare entities from each of the
ontologies to be aligned based on strings associated with the entities. The strings are
generally the entity label, but can also include comments or other annotations of the
entity. Semantic similarity metrics attempt to use the meanings of entity labels rather
than their spellings. External resources such as thesauri, dictionaries, encyclopedias,
and web search engines are often used to calculate semantic similarity [46, 107].
Structural techniques consider the neighborhoods of two entities when determining
their similarity. For instance, two entities with the same superclass that share some
common instances are considered more similar than entities that do not have these
things in common. Graph matching techniques are often used for this [18, 31]. An
alignment system may use zero or more of each type of similarity metric. The values
from multiple approaches may be combined to form a single measure of similarity, or
they may be used in a serial fashion to filter potential matches down to the most likely
candidates. At some point, a final list of related entities is generated, frequently by
including any matches with a confidence (similarity) value higher than some thresh-
old. Additionally, alignment systems may use some form of inconsistency checking
and repair after the matching process in order to ensure a merged ontology produced
using the alignment is logically consistent [62, 83, 90].

Each year since 2005, the Ontology Alignment Evaluation Initiative has invited
researchers to compare the performance of their alignment systems on a set of bench-
mark tasks. Current alignment systems have become very proficient at finding 1-to-1
equivalence relationships between classes and instances (the type of matches con-
tained within the benchmarks). In fact, the top-performing systems now attain a 0.75
f-measure on one of the OAFEI test sets that is designed to reflect real-world matching
tasks [13]. This is nearing the level of consensus that humans familiar with ontology
design have for alignment tasks involving this test set [11]. Unfortunately, the per-
formance on finding relationships between properties is not nearly as good as that
for classes and instances [12]. Additionally, there is some evidence that most of the
accuracy of existing alignment systems is due to basic string similarity measures
[10], which raises some concern that further gains may be more difficult to achieve.

1.3.2 Coreference Resolution

Coreference resolution algorithms attempt to determine when the same instance (i.e.
individual) is referred to using different URIs. Note that because the term “ontology
alignment” can either refer to aligning an entire ontology (the T-box and the A-box)
or just the T-box, this section uses the term “schema alignment system” to refer to
something that attempts to map only the T-box of an ontology.

274 M. Cheatham and C. Pesquita

Coreference resolution differs from schema alignment in several ways. One key
difference is that the relationships sought by coreference resolution algorithms are
only 1-to-1 equivalences: two individuals are either the same or distinct, whereas
schema elements involve sets of individuals and can therefore have all of the tra-
ditional relationships that exist between sets, including subsumption, disjointness,
and partial overlap. Another important contrast between coreference resolution and
schema alignment is that the A-box of an ontology is often an order of magnitude
larg