Praise for Holub on Patterns:

“The publisher printed this book in hardback signifying their belief that the
book will be relevant for a while. I completely agree—it relates and refines
many years of experience in the object-oriented and pattern communities.”

—TJohn Flinchbaugh, John Flinchbaugh'’s Weblog (www.hjsoft.com/blog)

“Holub on Patterns is a very approachable way to learn a lot about design
patterns. If you already know how much patterns can improve your object-
oriented programming, you'll really enjoy Holub'’s presentation of the topic.
Ifyou don't yet grasp Design Patterns or haven't enjoyed other works on the
subject, you'll just have to trust me: You want this book.”

—James Edward Gray II, Slashdot contributor (www.slashdot.org)

“This is a unique book. The idea is that you learn patterns through exam-
ples in code, as opposed to the architectural level presented in the Gang of
Four book ... The author has strong opinions about how to do patterns right
and this is what I appreciate most about the book. Other standout features
include the a very concise condensation of the GoF patterns at the end of
the book.”

—Jack Herrington, Code Generation Network (www.codegeneration.net)

lvww.allitebooks.cond

http://www.allitebooks.org

Holub on Patterns:
Learning Design Patterns
by Looking at Code

ALLEN HOLUB

APress Media, LLC

lvww.allitebooks.cond

http://www.allitebooks.org

Holub on Patterns: Learning Design Patterns by Looking at Code

Copyright © 2004 by Allen Holub
Originally published by Apress in 2004
Softcover reprint of the hardcover 1st edition 2004

Lead Editor: Gary Cornell

Technical Reviewer: Ken Arnold

Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis,
Jason Gilmore, Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser

Project Manager: Tracy Brown Collins

Copy Edit Manager: Nicole LeClerc

Copy Editor: Kim Wimpsett

Production Manager: Kari Brooks

Production Editor: Janet Vail

Proofreader: Nancy Sixsmith

Compositor and Artist: Diana Van Winkle, Van Winkle Design Group

Indexer: Ann Rogers

Artist: Diana Van Winkle, Van Winkle Design Group

Interior Designer: Diana Van Winkle, Van Winkle Design Group

Cover Designer: Kurt Krames

Manufacturing Manager: Tom Debolski

Library of Congress Cataloging-in-Publication Data:
Holub, Allen1.
Holub on patterns : learning design patterns by looking at code /
Allen Holub.
p.cm.
Includes index.
ISBN 978-1-4302-5361-7 ISBN 978-1-4302-0725-2 (eBook)
DOI 10.1007/978-1-4302-0725-2

1. Software patterns. 2. Object-oriented programming (Computer science) I. Title.
QA76.76.P37H65 2004
005.1—dc22
2004019635

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

The source code for this book is available to readers at http: //www.holub.com/goodies/patterns.

lvww.allitebooks.cond

http://www.allitebooks.org

For Deirdre, Philip, and Amanda

[vww . allitebooks.cond

http://www.allitebooks.org

ADOUE the AULNOT . . . et e e e Xi

About the Technical ReVIEWero e Xiii
ACKNOWIBAGMENTS oo xv
o0 =] - 11 Xvii
CHAPTER 1 Preliminaries: 00 and Design Patterns 101 1
Patternsvs. ldiomso 1

So What Is a Design Pattern, Anyway? 2

So,What's [tAllGood For?.coooiiiii i 5

The Role of PatternsinDesigncooiiiiiiiiiinnin.s. 6

The Tension Between Patterns and Simplicity 6

Classifying Patterns. ...t 7

On Design, Generally.ccoiiiiiiiiiiiiieiieinns, 9

Programming FORTRAN inJava.............................. 10

Programming with Your EyesOpen............................ 12

WhatlsanObject? ...t 12

Balderdash!............ ... 13

An Object Is a Bundle of Capabilities 13

HowDoYouDo KWrong?..........coovininiiiiiiiiinenes, 15

SoHow DoYouDo It “Right?”ccovviiiiii., 17

Cellular Automata ..ottt 20

Getters and SettersAre Evil....................oo i 24
RenderThyself.........coviiniiii 27

JavaBeansand Struts..............., 28

Refactoringcoooiiiiin i 29

Life Without Get/Set.t 30

When Are Accessors and Mutators Okay?...................... 32

Summing Up the Getter/Setter Issues 34

lvww.allitebooks.cond

http://www.allitebooks.org

vi

BCONTENTS

CHAPTER 2

CHAPTER 3

Programming with Interfaces,

and a Few Creational Patterns 37
Whyextends ISEvilcoo i 37
Interfaces vs. Classes.oovieiiiiii i 38
Losing Flexibility. e e et e e et te ettt e et et 39
Coupling.ovve e 40
The Fragile-Base-Class Problem. 41
Multiple Inheritance. ...t 47
Frameworks and the Template-Method and
Factory-Method Patterns.oooiiint.. 48
Summing Up Fragile Base Classes............................ 55
When extends Is Appropriate., 56
Getting Ridofextends ... 58
Factories and Singletons ...l 59
Singleton. ... 61
Threading Issuesin Singleton 62
Double-Checked Locking (Don'tDolt)......................... 64
KillingaSingletoncooiii i 65
Abstract Factory.............. ... 67
PatternStew. ... 70
Dynamic CreationinaFactory........................coi it 73
Commandand Strategycoiiiiiiiiiiia... 75
SUMMINGUD. ..o 80
The GameoflLife.. 81
Getalife.......cooviii 82
Charting the Structure of Lifeooiiil. 83
The Clock Subsystem: Observer...............ccooviivvvinnnnn.n. 86
Implementing Observer: The PublisherClass................... 93
The Clock Subsystem: The Visitor Pattern. 104
The Menuing Subsystem: Composite.............................. 108
The Menuing Subsystem: Facade and Bridge 116
The MenuSite.ot 17
The Core Classes.c.ovvniiii e 139
TheUniverse Classcooviiiiiiiiiiiiinnn, 139
TheCellInterface. ...t 145
TheResidentClassooiviiiiiiiiiiiiie. 148
The Neighborhood Class.cooiii. 151

lvww.allitebooks.cond

http://www.allitebooks.org

CHAPTER 4

ECONTENTS
Mediator ... 161
Composite Revisitedcccooiiiiiii 163
Prototype. ... 166
Composite RedUXcovriiii e 168
Flyweight. 172
Flyweight Pools 176
Memento. ...t 178
LO0OSE ENS. v e 180
SumMmMINg Up. ..o 185
Implementing Embedded SQL............................. 187
The Requirements.ccoiiiiiiiiiii e 187
TheArchitecture ...t 188
The Data-Storage Layer.............c.cooviiiiiiiiiiiiennn. 189
TheTableInterface ..., 192
TheBridge Pattern. ... 197
Creating a Table, Abstract Factory. 198
Creating and Saving a Table: Passive Iterators and Builder 202
PopulatingtheTablec il 213
Examining a Table: The Iterator Pattern....................... 216
Implementing Transactions (Undo) with the Command Pattern. . . 226
Modifying a Table: The Strategy Pattern....................... 231
Selectionand Joins...............oiiiiii 235
Miscellany. ... 241
Variants on the Table: The Decorator Pattern 250
Adding SQLtothe Mixooiii 259
SQL-Engine Structurecovvvriiiiii i 260
Input Tokenization, Flyweight Revisited,
and Chain of Responsibility 262
The Scanner: Chain of Responsibility......................... 269
The ParseFailure Classccooiviiiiinens. 277
The Database Classccooveviiiiiiiiiiii e, 279
Usingthe Database...................cooiiiiiiinininn.s. 280
TheProxyPattern.............ccoviiiiiii i 283
The Token Set and Other Constants.......................... 287
The Interpreter Pattern. ...l "...295
Supported SQL.ot 295
Watching the InterpreterinAction 318
The JDBC Layer. . ..ot 325

lvww.allitebooks.cond

vii

http://www.allitebooks.org

viii

SCONTENTS

SAPPENDIX

The State Pattern and JDBCConnection 332
Statementscooi i 338

The Adapter Pattern (ResultSets)............................ 339
FinishingUptheCode.............ccoooiiiiiiiiiiiat, 344
WhenBridgesFail ... 344
e, L 345
A Design-Pattern Quick Reference 347
Creational Patterns ...t 349
Abstract Factory..............ccooiiiii 350
Builder. ..o 352
FactoryMethodo i 354
Prototype. ... 356
Singleton. ... 358
Structural Patternsc i 361
Adapter 362
Brdge. ... e 364
COMPOSIte . ..o 366
Decorator. v e 368
Facade. ...t 370
Flyweight. ... 372
PIOXY . 374
Behavioral Patterns.coo i 377
Chain of Responsibility ... 378
Command ...t 380
Interpreter. ... 382
Rerator.o 384
Mediator ..o 386
Memento. ... 388
Observer (Publish/Subscribe).....................ccooeeit L. 390
State. 392
Strategy. ... 394
TemplateMethod.................o i 396
ViSItOr. .. 398
... 401

lvww.allitebooks.cond

http://www.allitebooks.org

ZALLEN HOLUB has worked in the computer
industry since 1979. He now works as a consult-
ant, helping companies not squander money
unnecessarily on software. He provides training in
00 Design and Java and also provides design-
process-mentoring and design-review services,
provides technical due diligence, and even writes
programs on occasion.

Allen’s programming experience covers the
gamut from operating systems to compilers and
from application programs to web services. He

was an early adopter of Java, programming in it since its release in 1995. He worked in C++ for
eight years before that and has also worked in C, Perl, Pascal, PL/M, FORTRAN, SQL, and
various assembly languages. He learned design the hard way, by beating his head against
programs that he'd rather not admit that he'd written, and is now a recognized expert in 00
Design, UML, and process. He served as a chief technology officer at NetReliance, Inc., and
sits on the board of advisors for Ascenium Corp. and Ontometrics. He is the security-track
chair for the Software Development Conference.

Allen wrote for JavaWorld from 1998 to 2004 and is now a contributing editor at SD Times.
He has authored nine books (including Holub on Patterns, Taming Java Threads, and
Compiler Design in C) and 100+ magazine articles (for Dr. Dobb’s Journal, Programmers
Journal, Byte, MS], and others). He wrote the popular “O0-Design Process” column for the
IBM developerWorks Component Zone, and he was the technical editor of CMP Media’s Java
Solutions. Allen teaches regularly for the University of California (Berkeley) Extension (OO
Design and Java).

Contact Allen at http://www.holub.com/allen.html.

lvww.allitebooks.cond

http://www.allitebooks.org

This book, of course, owes an enormous amount to the Gang of Four: Gamma, Helm, Johnson,
and Vlissides. Without them, the book wouldn't exist.

Ken Arnold did a spectacular job of reviewing this book. I've never experienced a tech
review as thorough and as thoughtful as Ken’s. His detailed comments improved this book
immensely, and I'm indebted to him.

A small portion of this book appeared originally in my Java Toolbox column on JavaWorld
(http://www.javaworld.com).

[vww . allitebooks.cond

Xi

http://www.allitebooks.org

This is a book about programming in an object-oriented way and about how to use design
patterns to solve commonplace problems in object-oriented systems.

I've based this book on the philosophy that the best way to learn and understand the
design patterns is to see them in action, all jumbled up, just as they occur in the real world.

Consequently, this book presents design patterns to you by looking at computer programs.
My intent is to both clarify and bring down to earth Gamma, Helm, Johnson, and Vlissides’s
seminal work Design Patterns: Elements of Reusable Object-Oriented Software (Addison-Wesley,
1995). (The four authors are often called the Gang of Four [or GoF], and their book is usually
called the Gang-of-Four book.) The current volume puts the GoF book into context, presenting
and teaching design patterns as they occur in the real world. By the time you're done, you'll
have seen all of the Gang-of-Four patterns but in the context of real computer programs.

Don't get me wrong—this book does not pretend to supplant the GoF book but rather
to complement it. Gamma, Helm, Johnson, and Vlissides made an enormous contribution to
the O0O-design community with their work, and this book certainly wouldn't exist without it.
The GoF approach is abstruse and dense to many programmers, however, thus the need for
the current volume.

The current book is atypical—it’s “inside out” when compared to other books on design
patterns. Rather than catalog the design patterns and present unrealistically simple examples
in each section of the catalog, this book describes two computer programs in terms of the
design patterns they use. You see how the patterns appear in real programs and how the pat-
terns interact with one another in complex ways.

The splendid isolation of a catalog-of-design-patterns approach (such as the original
Design Patterns) simply doesn’t permit this real-world understanding. The catalog is great if
you've already worked on code that demonstrates the pattern. If you don't have prior experi-
ence with such code, however, the catalog approach is impenetrable. Also, catalogs can leave
you with a good intellectual understanding of the patterns but with almost no understanding
of how to actually use the patterns to produce real code.

Prerequisites

I'm assuming that you know Java and have written at least a few programs in it. In particular,
I use anonymous inner classes a lot, so you'll have to be solid on that syntax. You also need to
be familiar with the “core” Java packages such as java.io and the basics of the user-interface
subsystems (Swing and AWT). This is all stuff you probably got when you learned the language.
I'm also assuming that you know the basics of object-oriented programming: inheritance,
interfaces, polymorphism, and so on. Later in the book I'll talk about things such as the down-
side of extends, but to make sense of these discussions, you'll have to know what extends
does. I assume that you already know the upside, so I won't bore you with a treatise on what
00-language features such as inheritance are good for. Don't interpret a discussion of the

xiii

xiv

W PREFACE

negative side of an idiom or language feature as indicating that there is no positive side to that
idiom or feature. I'm just assuming that you don’t need to be told something you already know.

Finally, I assume a nodding familiarity with UML, the “Unified” Modeling Language—a
graphical design notation useful for showing, among other things, the static (class) structure
of a program and how the objects that comprise the program interact at runtime.

Should you need to come up to speed before you continue, I've listed references for all
these topics on the web page discussed in the section “Resources and References.” You can
probably muddle through the UML without much formal understanding of the subject.
Without Java, though, you'll be completely lost.

Assumptions

I assume throughout this book that you want to know how to build solid object-oriented solu-
tions, so I don't qualify every statement that I make with that assumption. Often, reasonable
procedural alternatives exist to OO strategies, but I don't discuss these alternatives.

What I mean to accomplish by mentioning this obvious, I hope, point is to head off the
inevitable critics who will complain that the entire book is invalid simply because it doesn’t
explicitly discuss every alternative to every problem, including the hard-core procedural
alternatives.

Examples of topics that I know will set off the banshees include implementation encapsu-
lation (which implies that the most common use of get/set functions should be assiduously
avoided) and the overuse of implementation inheritance (which creates unnecessary coupling
relationships).

Warning! Warning! Will Robinson!

Finally, I also want to warn you about me.

If you haven't figured it out by now, I have opinions and intend to express them, and I
don’t usually qualify my statements with apologies. If you don't like that, buy a different book.

Everyone has opinions, and hiding those opinions under a veneer of impartiality accom-
plishes nothing but obfuscation. You're welcome to disagree with me, but please disagree
because you have a strong argument to support your beliefs. “Nobody does it that way” is
not a strong argument. Neither is its converse: “Everybody does it.”

I'm sometimes accused of being “dogmatic.” If by “dogmatic” you mean that I defend
ideas forcefully when I find that those ideas work well in real code (and conversely disparage
ideas that fail miserably in practice), then I guess I am dogmatic. I think of my attitude as
pragmatic, though, not dogmatic. I'm hard-nosed about following OO principles, because
every time I've violated those principles, I've had to rewrite the code. I just don’'t have time
to do things twice.

My practical bias is reflected in the structure of this book, building it around code rather
than an academic taxonomy. It may annoy you when, in the interest of making something
easy to understand to a programmer, I loosen up the language a bit. This is a book for pro-
grammers, though, not for theoreticians. (I find it odd that I'm also sometimes accused of
being “academic,” as if that’s a pejorative. The real academics usually don't like my work
because it’s not sufficiently formal and relies too heavily on code rather than mathematics.)

¥ PREFACE

I also allow myself occasional digressions into relevant design topics rather than staying
strictly focused on the patterns. I'm assuming that you need to know why I do things, not just
what I'm doing. I'm writing as if we are sitting around a table talking, not as if I'm standing at a
podium giving a formal lecture. If you want formality, I refer you to the Gang-of-Four Design
Patterns book. It's an excellent book that presents this material in a highly structured fashion
that will be more to your taste.

Resources and References

Rather than augment this book with a “Resources” section that will be out-of-date before the
book hits the streets, I've built a Design-patterns resources web page at http://www.holub.com/
goodies/patterns/. You'll find links to all the code in this book on that page, and you’ll also find
things such as reading lists and links to other patterns-related sites on the web.

Further!

So now that you've been warned, it’s time to get to work. Design patterns (and thinking in a
design-patterns way) are wonderful things. They can help you work more effectively, they can
make your code vastly easier to maintain, and they can provide you with a vocabulary that will
make communication with other programmers and designers much more effective. This book
shows you how design patterns really work and how to use them to write excellent code.

Normally a book of this sort would start with a quote from Christopher Alexander, the archi-
tect (of buildings) who came up with the notion of a design pattern. I've found that though
Alexander is a brilliant man who writes wonderful books, his prose can be a bit opaque at
times, so I'll skip the mandatory quote. His ideas launched the entire design-pattern move-
ment, however.

Similarly, the seminal book on design patterns in software is Gamma, Helm, Johnson, and
Vlissides's Design Patterns: Elements of Reusable Object-Oriented Software (Addison-Wesley,
1995). (The four authors are jokingly called the Gang of Four by most working designers.) My
book wouldn't exist if the Gang-of-Four book hadn’t been written, and I (and OO program-
mers in general) owe an enormous debt of gratitude to the authors. Nonetheless, the Gang-
of-Four book is a formal academic presentation of patterns, and most beginners find it too
dense to penetrate. At the risk of losing some academic precision, I'll take a kinder and
gentler approach.

Patterns vs. Idioms

Let’s start exploring the notion of a pattern by discussing simple programming idioms. Many
design patterns are used so commonly that, in many programmers’ minds, they cease to be
patterns at all but are idioms of the language. That is, you don't think of these patterns as
anything special—they’re just “how things are done.” Some people distinguish between
patterns and idioms based on usage (for example, a pattern is represented in a formal way,
and an idiom isn't). I don't see a distinction, however. An idiom is just a pattern, the use of
which has become commonplace.

Derivation is a great example of the evolution of pattern to idiom. Back in the early 1980s
when C was king, derivation was a design pattern. You can find several examples of an “extends”
relationship in C. For example, the standard implementation ofmalloc() uses a header (the base
class) that’s extended to create another struct (the derived class), which effectively inherits the
free() method from the base class. "

Abstract functions were also part of the Derivation pattern. It was commonplace in C to
pass around tables of function pointers, initialized differently for different “classes.” This is
exactly how C++ implements both abstract methods and interface inheritance, but back in
the C world, we didn’t have a name for it.

A. Holub, Holub on Patterns: Learning Design Patterns by Looking at Code
© Allen Holub 2004

CHAPTER 1 B PRELIMINARIES: 00 AND DESIGN PATTERNS 101

Derivation wasn't built into C, and most C programmers weren't programming in an
object-oriented way, so Derivation was not a programming idiom—it was a pattern. It was
something you saw in many programs that had to solve similar problems, but it wouldn’t
occur naturally to your average C programmer.

Nowadays, of course, derivation and interfaces are just built into the language; they’ve
become idioms.

So What /s a Design Pattern, Anyway?

Design patterns are, first and foremost, discovered, not invented. When Christopher Alexander
looked at many successful buildings, concentrating on one aspect of that building (such as what
makes a room “pleasant”), certain patterns started to emerge. Successful “pleasant” rooms tend to
solve certain classes of problems (such as lighting) in similar ways. By the same token, when you
look at several programs written by diverse programmers, and when you focus on a particular
implementation problem that those programs must solve (isolating subsystems, for example),
patterns start to emerge there as well. You find that several programmers independently develop
similar techniques to solve similar problems. Once you're sensitive to the technique, you tend to
start seeing patterns everywhere you look. It's not a pattern, though, unless you find it in several
independently developed programs. It’s a sure sign that authors don’t know what they're talking
about when they say, “We've invented a design pattern that....” They may have come up with a
design, but it’s not a pattern unless several people invent it independently. (It's possible, of course,
for an invented “pattern” to become a real pattern if enough people adopt it.)

A design pattern, then, is a general technique used to solve a class of related problems. It isn't
a specific solution to the problem. Probably every architect who came up with an observably
pleasant room brought light into that room in a different way, and probably every programmer
implemented their solution differently. The pattern is the general structure of the solution—a
“metasolution” if you will—not the solution itself.

You can find a good analogy in music. You can think of the notion of “classical music” as a
compositional pattern. You can identify music that fits the “classical music” pattern because it
sounds like classical music. The individual pieces are quite different, however.

Given the broad nature of a pattern, you can’t cut-and-paste a design pattern from one
program to another (though you might be able to reuse a specific solution if the current context
is similar to the original one). This particular issue is an enormous point of confusion amongst
people new to patterns. Judging by the comments I've seen on the web, many programmers
seem to think that if a book doesn’t present the same examples as the Gang-of-Four book, the
author doesn’t understand patterns. This attitude simply shows that the person who wrote the
comment doesn’t understand patterns; they’ve confused the piece of code that demonstrates
the pattern with the pattern itself. For that reason, I'll try to give several different examples for
each of the patterns I discuss so you can see how the pattern relates to disparate concrete
implementations—and I won't use the Gang-of-Four examples unless they’re relevant to real
programming issues (many aren’t).

To make things more complicated, the actual objects and classes that participate in a
pattern almost always participate in other patterns at the same time. Focus on it one way,
and it looks like one thing; change your focus, and it looks like something else. To make things
even more confusing, many pattern implementations share identical static structures. When
you look at the UML static-structure diagrams in the Gang-of-Four book, they all look the

CHAPTER 1 ™ PRELIMINARIES: 00 AND DESIGN PATTERNS 101

same: You'll see an interface, a client class, and an implementation class. The difference
between patterns lies in the dynamic behavior of the system and in the intent of the
programmer, not in the classes and the way they interconnect.

I'll try to illustrate these problems with an example from the architecture of buildings,
focusing on two domains: ventilation and lighting.

In the ventilation domain, I don’t want a room to feel “stuffy.” Looking at several rooms
that indeed are comfortable, a pattern, which I'll call Cross Ventilation, emerges. The rooms that
participate in this pattern have an air source and an air exit directly across from one another at
window height. Air enters at the source, flows across the room, and then leaves from the exit.
Having identified (and named) the pattern, I create a capsule description—called the intent by
the Gang of Four—that summarizes the general problem and the solution addressed by the
pattern. In the case of Cross Ventilation, my intent is to “eliminate stuffiness and make a room
more comfortable by permitting air to move directly across the room horizontally, at midbody
height.” Any architectural mechanism that satisfies this intent is a legitimate reification (I'll
explain that word in a moment) of the pattern. (The Gang of Four’s use of the word intent in this
context is pretty strange. I don’t use it much in this book, preferring words such as purpose.)

Reification is an obscure word, but I've found it pretty handy. It's not commonly used in
the literature, however. Literally, fo reify means “to make real.” A reification of an idea is a
concrete realization of that idea, and a given idea may have millions of possible reifications.

I use reify, rather than some more commonplace word, to emphasize what a pattern isn't.

A pattern is not “instantiated,” for example. Every instantiation of a class is identical (at least
in structure) to every other instantiation. This isn't so with a design pattern. Similarly, a reifica-
tion is not an “implementation” of a pattern—the reification of a pattern is a design, not code,
and a given design has many possible legitimate implementations.

So, what are some of the reifications of Cross Ventilation? You could have a window across
from a window, a window across from a door, two doors across from each other, a window
across from “negative” ventilator that sucked in air, input and output ventilators on opposite
walls, or a huge bellows operated by an erangutan jumping up and down on it across from a
gaping hole in the other wall. In fact, you don’t even need walls: A room with no walls at all on
two opposite sides would fit the pattern. A given pattern has myriad reifications.

Though there’s a lot of flexibility in reifying the pattern, you can’t pick and choose the attrib-
utes you like. For example, simply having air entrances and exits isn’t sufficient if the height and
directly-across-from requirements aren’t met. Putting the entrance and exit in the ceiling, for
example, isn't a legitimate reification of the pattern (as any of us who occupy stuffy big-building
offices with ceiling ventilators can attest).

To summarize, the intent of Cross Ventilation is to “eliminate stuffiness and make a room
more comfortable by permitting air to move directly across the room horizontally, at midbody
height.” The participants in the pattern, be they windows, doors, or orangutans, have the roles
of air entrance and exit.

Moving to the lighting domain: After looking at many rooms I notice that the most pleasant
rooms have windows on two adjacent walls. That's why corner offices are so desirable: The multi-
directional natural-light source makes the room seem more pleasant. Dubbing this pattern Corner
Office, I come up with the following intent: I intend to “make a room more pleasant by locating
two sources of natural light on two adjacent walls.” Again, there are a myriad reifications: windows
on two walls, windows on one wall and French doors on the other, French doors on two walls.

You could argue that windows on one wall and mirrors on an adjacent wall would also fit since
the reflected natural light does serve as a light source. If I were Bill Gates, I could put a window on

CHAPTER 13 PRELIMINARIES: 00 AND DESIGN PATTERNS 101

one wall and a 600-inch plasma display that showed what youd see if the wall wasn't there on the
other, but that's not a legitimate reification because the plasma display isn't “natural light.” You
have, of course, millions of ways to implement the Window and French Door patterns as well.

Now let’s consider a concrete design—the plans for a building. Figure 1-1 shows reifica-
tions of both Cross Ventilation and Corner Office in a single design. I've put both an architec-
tural diagram and the equivalent UML in the figure. Patterns are identified using UML 1.5’
collaboration symbol. The pattern name is put into an oval, with dashed lines extending to the
classes that participate in the patterns. The lines are annotated with the role that that class
plays within the pattern.

a)k\b\p
u’D
N Dooyz
olosi~ ,
D oor s, Window|
Window &E. W idbgw
L] y -
i eut 2"
xit | - ~ llghrnz . .
{‘ -, Sre. 1A DO
/’-‘*""'\, P
cross . -,
{ve'«‘h lation) :’\ ""gz:!(f;;_g »

s —— - — _— e -~

Figure 1-1. Combined reification of Cross Ventilation and Corner Office

The southwest window serves as an air entrance in Cross Ventilation, and the door across
from it serves as an exit. The other two windows don't participate in Cross Ventilation since the
prevailing wind is from the southwest. Refocusing, the southwest and southeast windows partic-
ipate in Corner Office as the two light sources. Neither the door nor the northwest window is a
participant since they aren't significant sources of light. That southwest window is interesting
because it participates in two patterns simultaneously. It has the role of “air source” in Cross
Ventilation and “light source” in Corner Office. The objects and classes that participate in
various patterns often intermesh in this way.

It’s critical to note that there's no way to identify the patterns simply from structure. For
example, the wind may be blocked by another structure, in which case none of the windows
can be an air entrance. By the same token, one of the windows may be two feet away from the
blank wall on the building next door or look onto a hallway, so it wouldn't be a significant light
source (though it could be an air entrance or exit). As you'll see when you start looking at the
actual patterns, you need contextual information—including the intent of the architect—to

CHAPTER 1 ® PRELIMINARIES: 00 AND DESIGN PATTERNS 101

identify a design pattern in a computer program. You can't just look at a UML diagram and
identify all the patterns. You have to know the intended use of the objects or classes. You'll see
many examples of this phenomenon in the examples in subsequent chapters.

Reopening the cut-and-paste issue, I'm hoping you can now see how a pattern can be
reified into a vast number of designs, each of which could be implemented in myriad ways.
To say that you can cut-and-paste a pattern in a design tool is nonsensical. Nonetheless,
many object-oriented CASE tools claim to have “pattern libraries,” from which you can insert
patterns into your designs. In practice, these libraries contain prebuilt UML structure for the
single reification of a given pattern that’s presented in the Gang-of-Four book. Though pasting
one of these structures into your design can be useful at times, don’t confuse this “paste”
operation with actually using a pattern in a design. A good design almost always must use a
custom reification that’s appropriate in context. The mindless cut-and-paste approach is no
more designing than paint-by-numbers is painting.

So, What’s It All Good For?

So, if patterns are so amorphous, what are they good for?

When I first read the Gang-of-Four book, I was unimpressed. It seemed like nothing
but a pedagogic presentation of stuff that most competent designers had already discovered,
usually by beating their heads against brick walls trying to find elegant solutions to the prob-
lems that the patterns addressed. True, had I read the book a few years earlier, my head would
have many fewer bumps on it, but the whole thing seemed to be much ado about nothing.

I thought that way until the first time I needed to discuss a project with another designer.
He pointed at a piece of the design and said, “These interfaces comprise a bridge between these
two subsystems; the bridge itself is implemented with this set of object adapters.” I was struck
with the economy of what just happened. In two sentences, he had eliminated probably half an
hour of elaborate explanation. Maybe there was something to all this pattern stuff after all.

Then I went to a presentation at the first Java One, where all of AWT was described in
terms of patterns. The description was both short and lucid—much shorter and clearer, in
fact, than could possibly have been the case had the speaker not taken a patterns approach.

I went back and reread the book before starting my next design project and then
consciously tried to think of my next design in terms of the patterns. That is, I started asking
myself, “What am I trying to accomplish here, and are there any patterns that address this
problem?” (using the purpose section of the pattern description to see what was relevant).
When the answer was “yes,” I used the pattern right off the bat. I found that taking this
approach noticeably shortened the design time and that the resulting design was better
quality as well. The better I knew the patterns, the faster things went. Moreover, my initial
design needed much less refinement than usual to be acceptable.

I was hooked.

The patterns provide an organizational framework that vastly improves communication,
which in the long run is what design is all about. Conversations that previously took hours
could happen in a few minutes, and everyone could get more real work done in less time. I
went back and read everything about patterns that I could lay my hands on and discovered
that the Gang-of-Four book just scratched the surface. Hundreds of documented patterns
were out there on the web and in the literature, and many of these were applicable to work I
was doing. In practice, I've found that a solid familiarity with the patterns that are relevant to

CHAPTER 1 3 PRELIMINARIES: 00 AND DESIGN PATTERNS 101

my work have made that work go much faster and given me much better results. (By “solid,” I
mean that you know the stuff cold—you don't have to look things up in a book.)

The Role of Patterns in Design

When do patterns come up in the design process, and what role do they play in design? The
answer to this question varies with the methodology you're using—I hope that you do use a
methodology—but design patterns are of interest primarily at the implementation level, so
they start coming up when you start thinking about implementation. The deeper question
then is, when does analysis (which concerns itself with the problem domain) stop and design
(which concerns itself with implementation) begin?

The best analogy that I know is in the design and construction of buildings. The plans of a
building don’t show every construction detail. They show where the walls go, but not how to build
a wall. They show where the plumbing fixtures go, but not how to route pipes. When the building
is constructed, design activities involving wall construction and pipe routing do happen, but the
artifacts are rarely kept since the implementation speaks for itself. A carpenter, for example, may
use a “stud-placement” pattern to build a strong wall. The design shows where the wall goes, but
not how to build the wall.

Moving the analogy to software: In most projects, design activities should stop when
you get the point that a good programmer can implement without difficulty. I would never
consider putting the mechanics of creating a window with Swing into a design. That's just
something that the programmer should know how to do, and if the code is written up to
professional standards (well-chosen names, good formatting, comments where necessary,
and so on), the implementation choices should be self-documenting.

Consequently, design patterns are often not spelled out in detail in the design documents
but, rather, represent decisions that the implementer makes. Patterns applied by an imple-
menter are rarely documented in depth, though the name of the participants (or other
comment) should identify what’s going on. (For example, WidgetFactory reifies Factory).

Of course, exceptions exist to this don't-design-patterns rule. The software equivalent of the
windows used in the Corner Office pattern may well appear in the design documents (which
show you where to place the windows). Similarly, very complex systems, where much more
detail is required in the design (in the same way that the architectural plans for a skyscraper
are more detailed than those of a small house), often document the patterns in depth.

The Tension Between Patterns and Simplicity

Arelated issue is the complexity that patterns tend to introduce into a system. If “foolish
consistency is the hobgoblin of little minds,” unnecessary complexity is the hobgoblin of bad
programmers. Just like Emerson’s “little statesmen and philosophers and divines” who adore
consistency, many “little” programmers and architects think that patterns are good for their
own sake and should be used at every possible opportunity. That mindless approach almost
guarantees a fragile, unmaintainable mess of a program. Every pattern has a downside that
serves as an argument for not using it.

Simple systems are easier to build, easier to maintain, smaller, and faster than complex
ones. A simple system “maximizes the work done,” by increasing “the amount of work not
done.” A program must do exactly what's required by the user. Adding unasked-for function-
ality dramatically increases development time and decreases stability.

CHAPTER 1 B PRELIMINARIES: 00 AND DESIGN PATTERNS 101

Simplicity is often not an easy goal to achieve. Programmers love complexity, so they have
a strong tendency to overcomplicate their work. It’s often easier to quickly build an overly
complex system than it is to spend the time required to make the system simple. Program-
mers who suspect that requirements will be added (or change) over time tend to add support
for requirements that may exist in the future. It’s a bad idea to complicate the code because
you think that something may have to change in the future, however. (Whenever I try to
predict the future, I'm wrong.) Programmers need to write the code in such a way that it's
easy to add new features or modify existing ones, but not add the features now.

The flip side of this problem is oversimplification of an inherently complex problem.

You really want to do “exactly” what's needed; removing required functionality is as bad as
adding unnecessary functionality. One example of oversimplification is an “undo” feature.
Alan Cooper—the inventor of Visual Basic and well-known UI guru—argues that you never
want to ask users if they really want to do something. Of course they do—why else would they
have asked to do it in the first place? How many times have you not deleted a file because that
stupid confirmation dialog pops up? The best solution to the unwanted deletion or similar
problem is to do what the user asks but then provide a way to undo it if the user makes a
mistake. That’s what your editor does, for example. (Imagine an editor that asked, “Do you
really want to delete that character?”) Undo is hard to implement, however, and a tendency
exists to disguise laziness in the garb of simplicity. “A complete undo system adds too much
complexity, so let’s just throw up a confirmation dialog.”

These three requirements—simplicity, completeness, and ease of modification—are
sometimes at odds with one another. The patterns described in this book help considerably
when it comes time to change or add something, but by the same token, the patterns compli-
cate the code. Unfortunately, no hard-and-fast rule describes when using a pattern is a good
idea—it’s a seat-of-the-pants judgment call on the part of the programmer. A sensitive seat
comes from experience that many designer/programmers simply don't have (and, as Ken
Arnold—coauthor of the original book on Java programming—points out, from a sense of
aesthetics that many don't cultivate.) Thus, you end up with bad programs that use design
patterns heavily. Simply using patterns doesn’t guarantee success.

On the other hand, the building blocks of patterns, such as the heavy use of interfaces,
are always worth incorporating into the code, even when a full-blown pattern is inappropriate.
Interfaces don’t add much complexity, and down-the-line refactoring is a lot easier if the inter-
faces are already in place. The cost of doing it now is low, and the potential payoff is high.

Classifying Patterns

It's sometimes useful to classify patterns in order to make it easier to choose appropriate ones.
Table 1-1, taken from the Gang-of-Four book, shows you one way to look at the Gang-of-Four
patterns. But you can also create similar tables of your own that categorize the patterns in
different ways, however.

The Gang of Four broke the patterns into two scopes: Class patterns require implementa-
tion inheritance (extends) to be reified. Object patterns should be implemented using nothing
but interface inheritance (implements). It's not an accident that there are many more Object
than Class patterns. (You'll find more on this issue in the next chapter.)

Within a scope, the patterns are further divided into three categories. The Creational
patterns all concern themselves with object creation. For example, Abstract Factory provides
you with a means of bringing objects into existence without knowing the object’s actual class

CHAPTER 1 PRELIMINARIES: 00 AND DESIGN PATTERNS 101

name. (I'm simplifying here, but I'll explain this notion in depth later in the book.) The Struc-
tural patterns are all static-model patterns, concerned with the structural organization of your
program. For example, Bridge describes a way to separate two subsystems from each other so
that either subsystem can be modified without affecting the other. The Behavioral patterns are
all dynamic-model patterns, addressing the way that various objects will interact at runtime.
Chain of Responsibility, for example, describes an interobject message-passing system that
allows a message to be fielded by the particular object that knows how to deal with it. You
don’t have to know which object that will be at compile time—it’s a runtime decision.

Table 1-1. The Gang-of-Four Design Patterns Classified

I'll cover all these patterns in depth (though not in order), but bear in mind that there are
many other pattern categories than the ones identified by the Gang of Four. Examples include
real-time programming patterns, threading patterns, Java Enterprise JavaBean (E]B) patterns,
and so forth.

One other issue is the interdependence between patterns. For example, as you'll see
later in the book, Command appears in one form or another in most of the other Behavioral
patterns. The Gang-of-Four book includes a diagram showing these dependency relation-
ships, but frankly, the diagram looks like a mess of spaghetti and is of little practical use. The
main thing to remember is that the various patterns are indeed related to each other, some-
times in significant and intricate ways.

If you have trouble distinguishing one pattern from another, you aren’t alone. Most often
the confusion is caused precisely because of the natural interdependence of patterns. My
advice is to focus on the intent/purpose section of the pattern description—remember, any
reification that satisfies the designer’s intent is legitimate. Looking solely at the structure—
natural for a programmer—often adds confusion instead of clarity. You'll find, for example,
that the patterns in the Structural category have almost identical static structures, but these
structures are used toward profoundly different ends. The patterns are as much about
communication as about software, so don’t focus solely on the software issues.

CHAPTER 1 ™ PRELIMINARIES: 00 AND DESIGN PATTERNS 101

On Design, Generally

The other main preliminary topic I have to discuss before leaping into the patterns themselves
is OO design generally.

First, Object-Oriented Design (OOD) and Object-Oriented Programming (OOP) are very
different things. The design process starts at requirements gathering, involves an orderly
progression through tasks such as use-case analysis, and arrives, eventually, at a design from
which you code. The programming process starts with the design or some portion of the
design, and using concepts such as derivation, encapsulation, and design patterns results in
a computer program—a realization of the design. Many people confuse programming with
design. Simply because you've used Java for six years, understand subclassing, and can write
1,000 lines of debugged code a day doesn’t mean that you know OOD. In fact, the contrary
is more likely: many spectacularly good programmers don't understand the basic principles
of OOD.

A good analog is in the building trades. Buildings are designed by architects, and they’re
built by contractors. In the same way, OO systems are designed by OO designers and imple-
mented by OO programmers. These two roles can be filled the same people, but often aren’t.
Architects have to know how to construct a building, or they couldn’t come up with a workable
design. Contractors, on the other hand, don't have to have much understanding at all of what
architects do. (This isn't to say that there aren’t architects who will happily design buildings that
can't be built or lived in or that there aren’t contractors who can easily identify a bad design
when they see it.) The best programmers are also good architects, and the best architects are
good programmers. This melding of skills is particularly important in the now-fashionable
Agile methodologies, where design and coding go on in parallel. No Agile methodology
supports the notion of a puppet-master architect who pulls all the strings while the program-
mers dance.

That being said, many programmers are experienced craftsmen and craftswomen who
produce beautiful code but don’t understand the design process at all—they’re builders, not
designers. Please don't think that I'm in any way degenerating the considerable skills of a good
builder, but the ad-hoc designs that these programmers come up with are often less than
ideal.

A recent Standish Group report, which looked at thousands of programming projects
over multiple years, determined that roughly 72 percent of software projects were failures.
The lack of up-front design, and everything that entails (requirements gathering, for example),
was pegged the primary cause of this failure. That is, even skilled architects can fail when they
abandon the architectural process.

This book is about OO programming and architecture, not about process. Design patterns
are typically implementation details that are applied by OO programmers when they translate
the initial design to code. You can't arrive at a reasonable design, however, without using a
reasonable process. (The Agile processes are certainly reasonable.) You can't arrive at reason-
able code without the benefit of a reasonable design (which may evolve). Simply applying
design patterns to your code in an ad-hoc way will not make your programs significantly
better and may make them worse. Unnecessary complexity—and many patterns are
complex—never improves anything.

So, please don't confuse the topics discussed elsewhere in this book with the OOD process
as a whole. Patterns are just a small part of the puzzle—and in some ways an insignificant part.
This isn't a book about OOD—it’s a book about moving an OO design toward a concrete imple-
mentation. To really apply design patterns effectively, you need to know how to design. You

10

CHAPTER 1 ® PRELIMINARIES: 00 AND DESIGN PATTERNS 101

need to know the process. I've listed several books on the subject of design on the web page
mentioned in the preface, and I recommend you peruse them.

Programming FORTRAN in Java

Given that this book takes a hard-line attitude toward OO programming, it seems worthwhile
to discuss the differences between OO and procedural approaches at the system (as compared
to structural) level. Procedural approaches to programming can be characterized as “data-
centric.” A procedural program is structured around the flow of data between subroutines that
manipulate or examine that data. The database is central to the design of the program; in fact,
many procedural programs do little beyond exposing database tables via a nice user interface.
Procedural systems tend to be heavily hierarchical, centered on the notion of “global control.”
A global entity (a subroutine toward the top of a hierarchy) performs work on data that it
collects from elsewhere—either from subroutines beneath it in the hierarchy or by harvesting
global data created earlier. The main disadvantage of procedural systems is in debugging and
maintenance. The shared data creates “coupling” relationships (undesirable dependencies)
between subroutines. When you change one subroutine, you affect others. In extreme cases,
the effects of a seemingly trivial change could take months to become clear and to fix.

Object-oriented systems, on the other hand, are networks of intercooperating agents that
communicate by means of some messaging system. The objects are peers—there’s no one object
that’s clearly in charge, issuing directives to the other objects. I'll discuss the characteristics of a
well-done object throughout the remainder of this chapter, but a few broad principles are worth
introducing now. Looking at an object from the outside, you should have no idea how it’s imple-
mented. It should be possible to replace the entire implementation without affecting any of the
client objects (objects that use the one you've just changed). Though objects sometimes pass
other objects to each other, data doesn't flow through the system in a procedural sense. An
object jealously guards its data and performs operations on that data in response to receiving
some message. Objects don't give the data to other objects unless absolutely necessary, and
then, the data is itself encapsulated in another object. These two concepts (implementation
hiding and data abstraction) are key.

One good way to tell the difference between an object-oriented and procedural system is
to note what happens when you change something. In procedural systems, changes tend to
“ripple out” into the rest of the program,; large changes in behavior typically require wide-
spread modification of the code. Object-oriented systems tend to concentrate changes into
one place. A single change in the code tends to make large changes in program behavior. For
example, if you need to change a data format used for persistent storage, procedural systems
often must be changed in several places because each procedure is responsible for parsing the
data. In an OO system, you'd change the object that’s stored persistently, and that's it.

Of course, OO principles such as data abstraction (hiding the way that a bunch of func-
tions work by hiding the data structures from the users of those functions) have been around
for a long time and are the foundation of any quality programming—procedural or otherwise.
The C language file-1/0 system and Ken Arnold’s Curses library are both object oriented, for
example. A procedural system can look object oriented in places. A “pure” OO system is char-
acterized primarily by the consistent and meticulous use of concepts such as data abstraction.

0O systems have other key differences from procedural ones. For example, object-oriented
systems tend to be models of real-world processes. This train of thought gets you into the entire
OOD process, however, and this book is primarily about OO structure, so I won't follow this
avenue further.

CHAPTER 1 ™ PRELIMINARIES: 00 AND DESIGN PATTERNS 101

Unfortunately, many people who grew up in a procedural world think of an OO approach
to a problem as wrong, not different. I'm always flabbergasted by the controversy that my arti-
cles on OO technique seem to engender. When I published (in the online magazine JavaWorld)
early drafts of the sections of this book, I was shocked by the invective that was hurled at me for
discussing far-from-earth-shattering concepts—concepts that have been tossed around in the
literature for 30 years. I was called “incompetent,” “clueless,” “a shyster,” “ a dunderhead,” and
various other epithets that aren't polite to print. My articles are “badly thought out” and “tosh.”
One reader actually threatened physical violence, titling an invective-filled epistle (which the
site removed) with “THIE [sic] AUTHOR SHOULD BE SMACKED AROUND WITH A PIPE!”

Don'’t confuse “familiar” with “correct.” Many programmers assume that the libraries
they use regularly are “right,” and if that library does things in a certain way, then that library
sets a standard. This disease is particularly prevalent with people who learn programming
from how-to books focused on particular tasks. If the only architecture they’ve ever seen is EJB
and Struts, they’ll tend to classify everything that doesn’t look like EJB and Struts as bad. Just
because we've done things historically in a particular way doesn’t mean that that’s the best
way to do things; otherwise, we'd all still be programming in assembly language.

I'had an interesting discussion many years ago with the person who led Microsoft’s C++
and Foundation Class (MFC) efforts. When I brought up that MFC wasn't particularly object
oriented, his response was that he was well aware of that fact, but most of the people who
programmed Microsoft systems didn’t understand OO concepts. It wasn't Microsoft’s job to
teach OO, he said. Consequently, Microsoft deliberately created a procedural system in C++,
because that system would be “easier to understand.” That OO-is-hard-to-understand philos-
ophy is still dominant at Microsoft. The .NET APIs are procedural in structure, for example,
and C# has language features that encourage procedural thinking. So, it's not surprising to
find Microsoft applications that don't follow some of the basic principles of OO systems. Many
Microsoft programmers seem to take violent exception to any OO practice that doesn't jibe
with the way .NET does things, however. They're confusing “familiarity” with “correct.”

Please don't try to apply procedural thinking to OO systems, and don't criticize an OO
technique that I'm describing simply because the approach isn’t procedural. Many common
00 notions simply aren't embodied in a lot of existing code that you may have seen. Saying
that some coding practice isn’t viable in an OO system isn't the same as saying that code that
uses those practices is never viable. I'm not going to bring this point up every time I discuss an
00 approach to a problem, however.

Finally, bear in mind that a “pure” OO solution isn't always required. As is the case with
most design issues, there are always trade-offs and risks. For example, a simple web site
that’s using Servlets to put a thin front end on a database probably doesn't need to be object
oriented. The risk is that, as the small program evolves, it turns into a mass of unmaintainable
spaghetti code. Similarly, many programmers don't understand OO concepts, so if your system
doesn’t have a significant long-term maintainability requirement and if business requirements
are not likely to change, assigning a programmer to it who quickly implements a procedural
solution isn’t necessarily a bad decision. The risk, of course, is that the lifetime of that program
is longer than you expect, or that significant changes to the business rules indeed occur, and it
ends up being less expensive to just toss the original code than it is to try to modify it. Nothing
is inherently wrong with choosing a procedural solution; but you should make that choice
knowing the risks you're taking.

” «, ” «

1

12

CHAPTER 1 ™ PRELIMINARIES: 00 AND DESIGN PATTERNS 101

Programming with Your Eyes Open
So, let’s talk about my general philosophy of design.

Design is a series of informed choices, trade-offs, and risk management. If you don’t
understand both sides of an issue, you can’t make an intelligent choice or manage risk effec-
tively; in fact, if you don’t understand all the ramifications of what you're doing, you're not
designing at all. You're just stumbling in the dark. It’s not an accident that every chapter in the
Gang-of-Four book includes a “Consequences” section that describes when using a pattern is
inappropriate and why.

Moreover, “good” and “bad” aren't absolutes. A “good” decision in one context may be
“bad” in another. Every choice has a good and a bad side and is made in the context of overall
criteria that are defined by necessity. Decisions aren’t binary. You often have shades of good-
ness—consequences associated with your decisions—that can mean that none of the possi-
bilities you're contemplating is “best.” Moreover, a decision that seems good right now may
not seem so good six months from now.

Saying that some language feature or common programming idiom has problems isn’t the
same thing as saying that you should never use that feature or idiom under any circumstances.
By the same token, simply because a feature or idiom is in common use doesn't mean you should
use it. Lots of programs are written by uninformed programmers, and simply being hired by Sun,
Microsoft, or IBM doesn’t magically improve someone’s programming or design abilities. You'll
find a lot of great code in the Java packages. You'll also find a lot of code that, I'm sure, the author
is embarrassed to admit to writing.

To further muddy the waters, some design idioms are pushed for marketing or political
reasons. Sometimes a programmer makes a bad decision, but the company wants to push what
the technology can do, so it deemphasizes the way in which you have to do it. It's making the
best of a bad situation. In this context, adopting any programming practice simply because
“that’s the way you're supposed to do things” is acting irresponsibly. Many failed EJB projects
give proof to this principle. EJB can be a good technology when used appropriately; it can liter-
ally bring down a company when used inappropriately.

The point I'm trying to make is that you shouldn’t be programming blindly. By under-
standing the havoc that a feature or idiom can wreak, you're in a much better position to decide
whether using that feature or idiom is appropriate. Your choices should be both informed and
pragmatic, made from a position of strength. That's why I'm bothering to write this book, so that
you can approach your programming with your eyes open.

What Is an Object?

What does object orientation actually mean?

The patterns discussed in this book are creatures of OO systems. If a system as a whole
isn't really object oriented, you don't get much benefit from using an OO pattern in some
corner of the code. I've found that many programmers, even programmers who have been
working with languages such as C++ or Java for years, don’t have a good grasp of what exactly
constitutes an OO system, however, so I have to make sure we're all clear on this point.

CHAPTER 1 m PRELIMINARIES: 00 AND DESIGN PATTERNS 101

Balderdash!

Bjarne Stroustrup, the creator of C++, once characterized OO programming as “buzzword-
oriented programming,” and certainly one of the most abused (or at least misunderstood)
buzzwords in the pack is object itself. Since the idea of an object is so central, a full discussion
of what exactly an object actually is is essential to understanding OO systems and their needs.

First of all, think of an OO system as a bunch of intelligent animals inside your machine (the
objects) talking to each other by sending messages to one another. Think “object.” Classes are
irrelevant—they're just a convenience provided for the compiler. The animals that comprise this
system can be classified together if they have similar characteristics (if they can handle the same
messages as other objects in the class, for example), but what you have at runtime is a bunch of
objects, not classes. What programmers call classes are really classes of objects. That is, objects
that have the same properties comprise a class of objects. This usage is just English, not techno-
speak, and is really the correct way to think about things. We're doing object-oriented design,
not class-based design.

The most important facet of OO design is data abstraction. This is the CIA, need-to-know
school of program design. All information is hidden. A given object doesn’'t have any idea of
what the innards of other objects look like, any more than you may know what your spouse’s
gallbladder looks like. (In the case of both the object and the gallbladder, you really don't want
to know either.)

You may have read in a book somewhere that an object is a data structure of some sort
combined with a set of functions, called methods, that manipulate that data structure. Balder-
dash! Poppycock!

An Object Is a Bundle of Capabilities

First and foremost, an object is defined by what it can do, not by how it does it. In practical
terms, this means an object is defined by the messages it can receive and send. The “methods”
that handle these messages comprise its sole interface to the outer world. The emphasis must
be on what an object can do—what capabilities it has—not on how those capabilities are
implemented. The “data” is irrelevant. Most OO designers will spend considerable time in
design before they even think about the data component of an object. Of course, most objects
will require some data in order to implement their capabilities, but the makeup of that data
is—or at least should be—irrelevant.

The prime directive of OO systems is as follows:

Never ask an object for information that you need to do something; rather, ask
the object that has the information to do the work for you.

Ken Arnold says, “Ask for help, not for information.”

I'll explain the whys and wherefores in a moment, but this prime directive engenders a
few rules of thumb that you can apply to see if you're really looking at an object-oriented
system (I've presented them in a rather pithy way; details follow):

* Objects are defined by “contract.” They don't violate their contract.

« All data is private. Period. (This rule applies to all implementation details, not just the
data.)

13

14 CHAPTER 1 ® PRELIMINARIES: 00 AND DESIGN PATTERNS 101

e It must be possible to make any change to the way an object is implemented, no matter
how significant that change, by modifying the single class that defines that object.

e “Get” and “set” functions are evil when used blindly (when they’re just elaborate ways
to make the data public). I've a lot more to say on this issue later in the “Getters and
Setters Are Evil” section.

If the system doesn't follow these rules, it’s not object oriented. It’s that simple. That’s
not to say non-0O systems are bad—many perfectly good procedural systems exist in the
world. Nonetheless, not exposing data is a fundamental principle of OO, and if you violate
your principles, then you're nothing. The same goes for OO systems. If they violate OO princi-
ples, they’re not OO by definition; they’re some sort of weird hybrid that you may or may not
ever get to work right. When this hybrid system goes down in flames and takes the company
with it, don’t blame OO. Note, however, that an OO system can be written in a procedural
language (and vice versa). It’s the principles that matter, not the language you're using.

Don't be fooled, by the way, by marketing hype such as “object based” and “there are lots of
ways to define an object.” Translate this sort of sales-speak as follows: “Our product isn't really
0O0O—we know that, but you probably don't, and your manager (who's making the purchase
decision) almost certainly doesn't, so we’ll throw up a smoke screen and hope nobody notices.”
In the case of Microsoft, it has just redefined OO to mean something that fits with its product
line. Historically, VB isn’t in the least bit OO, and even now that VB has transmogrified into an
00 language, most VB programs aren't object oriented because the Microsoft libraries aren’t
object oriented. (How many Microsoft programmers does it take to screw in a light bulb?
None—Ilet’s define darkness as the new industry standard.)

Now for the “whereas” and “heretofores.”

First, the notion of a contract: An object’s contract defines the way in which the object
appears to behave from the outside. The users of the objects assume that this behavior won'’t
change over time. The interfaces that an object implements are part of the contract (so you
can't lightly change method arguments or return values, for example), but other aspects of
the contract can include performance guarantees, size limitations, and so forth. The object’s
implementation isn’t part of the contract. You should be able to change it at will.

The rules in the earlier list are really just ways of enforcing the notion of a contract.
Exposed implementation details would effectively make those details part of the object’s
contract, so the implementation couldn't change (as you discovered bugs or introduced new
business requirements).

Similarly, the nuanced interpretation of the everything-is-private rule is this: If it’s not
private, then it’s part of the contract and can’t be changed. The decision to make a field public
may well be correct in some (rare) situations, but the consequences of making that decision
are significant.

The notion of a contract also comes into play with the third rule I mentioned earlier.
Ideally, the scope of a change is limited to a single class, but interdependencies are sometimes
necessary. For example, the HashMap class expects contained objects to implement hashCode().
This expectation is part of the contained object’s contract.

»

CHAPTER 18 PRELIMINARIES: 00 AND DESIGN PATTERNS 101

How Do You Do It Wrong?

The main reason for following the rules in the previous section is that the code becomes easier
to maintain, because all the changes that typically need to be done to fix a problem or add a
feature tend to be concentrated in one place. By the way, don’t confuse ease of maintenance
with lack of complexity. OO systems are usually more complex than procedural systems but
are easier to maintain. The idea is to organize the inevitable complexity inherent in real
computer programs, not to eliminate it—a goal that an OO designer considers impossible

to meet.

Consider a system that needs to get a name from some user. You may be tempted to use
aTextField from which you extract a String, but that just won't work in a robust application.
What if the system needs to run in China? (Unicode—Java’s character set—comes nowhere near
representing all the ideographs that comprise written Chinese.) What if someone wants to enter
aname using a pen (or speech recognition) rather than a keyboard? What if the database you'’re
using to store the name can't store Unicode? What if you need to change the program a year
from now so that both a name and employee ID are required every place that a name is entered
or displayed? In a procedural system, the solutions you may come up with as answers to these
questions usually highlight the enormous maintenance problems inherent in these systems.
There’s just no easy way to solve even the simplest-seeming problem, and a vast effort is often
required to make simple changes.

An OO solution tries to encapsulate those things that are likely to change so that a change
to one part of the program won't impact the rest of the program at all. For example, one OO
solution to the problems I just discussed requires a Name class whose objects know how to both
display themselves and to initialize themselves. You'd display the name by saying, “Display your-
self over there,” passing in a Graphics object or perhaps a Container to which the name could
drop in a JPanel that displayed the name. You would create a UI for a name by asking an empty
Name object to “initialize yourself using this piece of this window.” The Name object may choose to
create a TextField for this purpose, but that’s its business. You, as a programmer, simply don’t
care how the name goes about initializing itself, as long as it gets initialized. (The implementa-
tion may not create a Ul at all—it may get the initial value by getting the required information
from a database or from across a network.)

Getting back to my Visual Basic critique from a few paragraphs back, consider the way
that a Ul generated by VB (or VB-like systems, of which there are legions) is typically struc-
tured: You create a Frame class whose job is to collect messages coming in from “control” or
“widget” objects in response to user actions. The Frame then sends messages into the object
system in response to the user action. Typically, the code takes the following form:

1. “Pull” some value out of a widget using a “get” method.

2. “Push” that value into a “Business” object using a “set” method.

This architecture is known as Model/View/Controller (MVC)—the widgets comprise the
“view,” the Frame is the “controller,” and the underlying system is the “model.”

MVC is okay for implementing little things such as buttons, but it fails miserably as an
application-level architecture because MVC requires the controller to know way too much
about how the model-level objects are implemented. Too much data is flowing around in
the system for the system to be maintainable.

15

16

CHAPTER 1® PRELIMINARIES: 00 AND DESIGN PATTERNS 101

Rather than take my word for it, let’s explore a few of the maintenance problems that arise
when you try to develop a significant program using the MVC architecture I just described.
Taking the simple problem I mentioned earlier of needing to add an employee ID to every
screen that displays an employee, in their VB-style architecture you'll have to modify every
one of these screens by hand, modifying or adding widgets to accommodate the new ID field.
You’ll also have to add facilities to the Employee class to be able to set the ID, and you'll also
have to examine every class that uses an Employee to make sure that the ID hasn’t broken
anything. (For example, comparing two Employee objects for equality must now use the ID,
so you'll have to modify all this code.) If you had encapsulated the identity into a Name class,
none of this work would be necessary. The Name objects would simply display themselves in
the new way. Two Name objects would now compare themselves using the ID information,
but your code that called fred.compareTo(ginger) or fred.equals(ginger) wouldn't have
to change at all.

You can't even automate the update-the-code process, because all that WYSIWYG form
layout touted in the advertisements hides the code-generation process. In any event, if you
automatically modify machine-generated code, your modifications will be blown away the next
time somebody uses the visual tool. Even if you don't use the tool again, modifying machine-
generated code is always risky since most of the VB-style tools are picky about what this code
looks like, and if you do something unexpected in your modifications, the tool is likely to
become so confused that it'll refuse to do anything at all the next time you do need to use it.
Moreover, this machine-generated code is often miserable stuff, created with little thought
given to efficiency, compactness, readability, and other important issues.

The real abomination in MVC architecture is the “data-bound grid control,” a table-like
widget that effectively encapsulates the SQL needed to fill its cells from a database. What
happens when the underlying data dictionary changes? All this embedded SQL breaks. You'll
have to search out every screen in the system that has a data-bound control and change that
screen using a visual tool. Going to a “three-tier” system, where the Ul layer talks to a layer
that encapsulates the SQL, which in turn talks to the database, does nothing but make the
problem worse since the code you have to modify has been distributed into more places. In
any event, if the middle tier is made of machine-generated code (usually the case), then it’s
very existence is of little use from a maintenance point of view.

All this modifying-every-screen-by-hand business is way too much work for me. Any time
savings you may have made in using some tool to produce the initial code is more than lost as
soon as the code hits maintenance.

The appeal of these systems often lies in familiarity. They help you program in an unfamiliar
00 language using a familiar procedural mind-set. This sort of I-can-program-FORTRAN-in-
any-language mindset precludes your leveraging the real maintenance benefits of OO systems,
however. I personally think there’s absolutely no reason to use Java unless you're indeed imple-
menting an OO design. Java is simple only when compared against C++. You're better off just
using some procedural language that really is simple if you want to write procedural systems.

(I don’t agree with many Java proponents who claim that the side benefits of Java such as type
safety, dynamic loading, and so forth, justify writing procedural Java.)

On the other hand, if you are doing an OO design, a language designed to implement OO
systems (such as Java) can make the implementation dramatically easier. Many C programmers
try to program in Java as if they were programming in C, however, implementing procedural
systems in Java rather than OO systems. This practice is really encouraged by the language,
which unfortunately mimics much of C and C++'s syntax, including flaws such as the messed-up

CHAPTER 1 ™ PRELIMINARIES: 00 AND DESIGN PATTERNS 101

d

precedence of the bitwise operators. Java mitigates the situation a bit because it’s more of a “pure’
00 language than C++. It’s harder, though not impossible, to abuse. A determined individual can
write garbage code in any language.

So How Do You Do It “Right?”

Because the OO way of looking at things is both essential and unfamiliar, let’s look at a more
involved example of both the wrong (and right) way to put together a system from the perspec-
tive of an OO designer. I'll use an ATM machine for this example (as do many books), not because
any of us will be implementing ATMs but because an ATM is a good analog for both 00 and
client/server architectures. Look at the central bank computer as a server object and an ATM
as a client object.

Most procedural database programmers would see the server as a repository of data and
the client as a requester of the data. Such a programmer may approach the problem of an
ATM transaction as follows:

1. The user walks up to a machine, inserts the card, and punches in a PIN.

2. The ATM then formulates a query of the form “give me the PIN associated with this
card,” sends the query to the database, and then verifies that the returned value
matches the one provided by the user. The ATM sends the PIN to the server as a
string—as part of the SQL query—but the returned number is stored in a 16-bit int
to make the comparison easier.

3. The user then requests a withdrawal.

4. The ATM formulates another query; this time it’s “give me the account balance.”
It stores the returned balance, scaled appropriately, in a 32-bit int.

5. If the balance is large enough, the machine dispenses the cash and then posts an
“update the balance for this user” to the server.

(By the way, this isn’t how real ATM machines work.)

So what'’s wrong with this picture? Let’s start with the returned balance. What happens
when Bill Gates walks into the bank wanting to open a non-interest-bearing checking account
and put all his money in it? You really don't want to send him away, but last time you looked
he was worth something like 100 gigabucks. Unfortunately, the 32-bit int you're using for the
account balance can represent at most 20 megabucks (4 gigabucks divided by 2 for the sign
bit divided by 100 for the cents). Similarly, the 16-bit int used for the PIN can hold at most 4
decimal digits. And what if Bill wants to use “GATES” (five digits) for his PIN? The final issue
is that the ATM formulates the SQL queries. If the underlying data dictionary changes (if the
name of a field changes, for example), the SQL queries won't work anymore. (Though this
example is obviously nonsensical, consider the before-the-euro lira and the pain of transi-
tioning to the euro.)

The procedural solution to all these problems is to change the ROMs in every ATM in the
world (since there’s no telling which one Bill will use) to use 64-bit doubles instead of 32-bit
ints to hold account balances and to 32-bit longs to hold 5-digit PINs. That’s an enormous
maintenance problem, of course.

lvww.allitebooks.cond

17

http://www.allitebooks.org

18

CHAPTER 1 ® PRELIMINARIES: 00 AND DESIGN PATTERNS 101

Stepping into the real world for a moment, the cost of software deployment is one of the
largest line items on an IT department’s budget. The client/sever equivalent of “swapping all
the ROMs”—deploying new versions of the client-side applications—is a big deal. You can find
similar maintenance problems inside most procedural programs, even those that don’t use
databases. Change definitions of a few central data types or global variables (the program’s
equivalent of the data dictionary), and virtually every subroutine in the program may have to
be rewritten. It’s exactly this sort of maintenance nightmare that OO solves.

To see how an OO point of view can solve these problems, let’s recast the earlier ATM
example in an object-oriented way, by looking at the system as a set of cooperating objects
that have certain capabilities. The first step in any OO design is to formulate a “problem state-
ment” that presents the problem we're trying to solve entirely in what'’s called the “problem
domain.” In the current situation, the problem domain is Banking. A problem statement
describes a problem, not a computer program. I could describe the current problem as
follows:

A customer walks into a bank, gets a withdrawal slip from the teller, and fills it
out. The customer then returns to the teller, identifies himself, and hands him
or her the withdrawal slip. (The teller verifies that the customer is who he says
he is by consulting the bank records). The teller then obtains an authorization
from a bank officer and dispenses the money to the customer.

Armed with this simple problem statement, you can identify a few potential “key
abstractions” (classes) and their associated operations, as shown in Table 1-2. I'll use Ward
Cunningham’s CRC-Card format (discussed in more depth shortly).

Table 1-2. Use-Case Participants Listed in CRC-Card Format

Class Responsibility Collaborates With

Bank Records Creates withdrawal slips. Verifies Teller: Requests empty deposit slip.
that the customers are who they
say they are.

Bank Officer Authorizes withdrawals. Teller: Requests authorization

Withdrawal Slip ~ Records the amount of money Bank Records: Creates it.
requested by the teller. Bank Officer: Authorizes the withdrawal.

Teller: Presents it to customer.

Teller Gets deposit slips from the Bank Bank Records: Creates deposit slips.
Records and routes the deposit Bank Officer: Authorizes transactions.
slip to the Bank Officer
for authorization.

The server, in this model, is really the Bank-Officer object, whose main role is to authorize
transactions. The Bank, which is properly a server-side object as well, creates empty deposit
slips when asked. The client side is represented by the Teller object, whose main role is to get a
deposit slip from the Bank and pass it on. Interestingly, the customer (Bill) is external to the
system so doesn’t show up in the model. (Banks certainly have customers, but the customer
isn't an attribute of the bank any more than the janitorial service is part of the bank. The
customer’s accounts could be attributes, certainly, but not the actual customers. You, for
example, don'’t define yourself as a piece of your bank.) An OO ATM system just models the
earlier problem statement. Here’s the message flow:

CHAPTER 1 m PRELIMINARIES: 00 AND DESIGN PATTERNS 101

1. Bill walks up to an ATM, presents his card and PIN, and requests a withdrawal.

2. The Teller object asks the server-side BankRecords object, “Is the person with this card
and this PIN legitimate?”

3. The BankRecords object comes back with “yes” or “no.”

4. The Teller object asks the BankRecords object for an empty WithdrawalSlip. This
object will be an instance of some class that implements the WithdrawalSlip interface
and will be passed from the BankRecords object to the Teller object by value, using
RMI. That’s important. All that the Teller knows about the object is the interface it
implements—the implementation (the .class file) comes across the wire along with
the object itself, so the Teller has no way of determining how the object will actually
process the messages sent to it. This abstraction is a good thing because it lets you
change the way that the WithdrawalS1ip object works without having to change the
Teller definition.

5. The Teller object tells the WithdrawalS1ip object to display a user interface. (The
object complies by rendering a UI on the ATM screen using AWT.)

6. Bill fills in the withdrawal slip.

7. The Teller object notices that the initialize-yourself operation is complete (perhaps by
monitoring the OK key) and passes the filled-out WithdrawalS1ip object to the server-
side BankOfficer object (again by value, using RMI) as an argument to the message,
“Am I authorized to dispense this much money?”

8. The server-side BankOfficer object comes back with “yes” or “no.”

9. If the answer is “yes,” the ATM dispenses the money. (For the sake of simplicity, I won’t
go into how that happens.)

Of course, this isn't the only (or even the ideal) way to do things, but the example gets the
idea across—bear with me.

The main thing to notice in this second protocol is that all knowledge of how a balance
or PIN is stored, how the server decides whether it’s okay to dispense money, and so forth, is
hidden inside the various objects. This is possible because the server is now an object that
implements the “authorization” capability. Rather than requesting the data that you need to
authorize a transaction, the Teller asks the (server-side) BankOfficer object (which has the
data) to do the work for it. No data (account balance or PIN) is shipped to the ATM, so there’s
no need to change the ATM when the server code changes.

Also note that the Teller object isn’t even aware of how the money is specified. That is,
the requested withdrawal amount is encapsulated entirely within the WithdrawalS1lip object.
Consequently, a server-side change in the way that money is represented is entirely transparent
to the client-side Teller. The bank’'s maintenance manager is happily sleeping it off in the
back office instead of running around changing ROMs.

If only ATMs had been written this way in Europe, translation to the euro would have
been a simple matter of changing the definition of the WithdrawalSlip (or Money) class on the
server side. Subsequent requests for a WithdrawalSlip from an ATM would get a euro-enabled
version in reply.

19

20

CHAPTER 1 ® PRELIMINARIES: 00 AND DESIGN PATTERNS 101

Cellular Automata

Let’s expand our notions of OO to include things such as interfaces with another example that
will pave the way for understanding the Game of Life program used later in the book.

A good case study of a natural OO system is a class of programs called cellular automata.
These programs solve complex problems in a very object-oriented way: A large problem is
solved by a collection of small, identical objects, each of which implements a simple set of
rules, and each talks only to its immediate neighbors. The individual cells don’t actually know
anything about the larger problem, but they communicate with one another in such a way
that the larger problem seems to solve itself.

The classic example of a cellular automaton, a solution for which is way beyond the scope
of this book, is traffic modeling. The problem of predicting traffic flow is extremely difficult;
it’s a classic chaos-theory problem. Nonetheless, you can model traffic flow in such a way
that watching the simulation in action can help you make predictions based on the model’s
behavior. Predicting traffic flow and simulating it are different problems, and cellular
automata are great at simulating chaotic processes.

I'll spend a few pages discussing the traffic-flow problem, not only because it demonstrates
automata, but also because the example illustrates several basic principles of OO design that I
want you to understand before you can look at an OO system such as Game of Life.

Most programs work by implementing an algorithm—a single (though often complex)
formula that has well-defined behavior when presented with a known set of inputs. Any solu-
tion that attempts to model traffic flow in an entire city using a single (complex) algorithm is
just too complicated to implement. As is the case with most chaos problems, you don’t even
know how to write an algorithm to “solve” the traffic-flow problem.

Cellular automata deal with this problem by avoiding it. They don’t use algorithms per se,
but rather they model the behavior of a tractable part of the system. For example, rather than
modeling traffic flow for an entire city, a cellular automaton breaks up the entire street grid
into small chunks of roadway and models only this small chunk. The road chunks can talk to
adjoining road chunks, but the chunks don't know anything about the entire street grid.

You can model the behavior of a small chunk of Roadway pretty easily. The chunk has a
certain capacity based on number of lanes, and so on. There’s a maximum speed based on the
percentage of capacity and speed limits, and there’s a length. That’s it. Cars arrive at one end
of the road and are pushed out the other end sometime later. We'll need two additional objects
to round out the system: a Car, and a Map, both of which also have easy-to-model behavior.
(I'll talk about these other objects in a moment.)

The various objects in this system must communicate across well-defined interfaces.
(Figure 1-2 shows the entire conversation I'm about to discuss.)

The Road interface has two methods.

1. Can you take N cars?
boolean canYouAcceptCars(int n, Road fromThisRoad)
2. Give me N cars.

Car[] giveMeCars(int n)

CHAPTER 1 M PRELIMINARIES: 00 AND DESIGN PATTERNS 101

source destination
‘Road :Road
E J-I canYouAcceptCars(n, source) .
-~ - >
Straight _-- '
Line Operation <« giveMeCars(n)
initiated by clock cars
tieck ! | F-mmmem————— >
hES
— ~
[carfi] S N '
. N
:Map Car \\ _I, |
N
I whichWayWouldYou- |
whichWayShould- LikeToTurn(here) I
Murn(here,there) hl
Intersection __ direction=left__ >
canYouAcceptCars(1, source)
L
I l P giveMeCars(1)
I
carfl]
T
l

Figure 1-2. UML sequence diagram for the traffic model

Road segments communicate using a simple handshake. The current segment decides
that it has to get rid of a couple of cars, so it asks an adjacent segment if it can take them
(Message 1). The adjacent segment accepts the cars by asking for them (Message 2).

You'll see this two-part handshake again in Chapter 3. The initial request has to carry with
it a Road reference that the receiving Road can use to request the cars; otherwise the receiving
segment doesn’'t know which source segment is making the request. A segment in the middle
of the block talks to two neighbors (the two adjacent Road segments), an intersection has four
neighbors, and so forth. (These connections are set up when the street grid is created and
would be implemented as constructor arguments.)

The Road segment has a few rules that it uses internally to decide when to evict cars. For
example, the average effective speed of a Car (the difference in time between when the Car
enters the Road and when it leaves) may be a function of traffic density—the number of Cars
on the segment. Different road types (highway, alley, and so on) may implement these rules
differently. These rules are known only by the Road, however. As is the case in any OO system,
these sort of rules can be changed radically without impacting the surrounding code, because
the interface to a Road segment doesn’t change.

The next object you need is a Car. The Road is primarily a caretaker of Cars. Since the
speed limit and Road-segment length are attributes of the Road, the Road can easily deter-
mine how long to hold onto a particular car without having to interact with the Car at all.

21

CHAPTER 1 ® PRELIMINARIES: 00 AND DESIGN PATTERNS 101

The only difficulty is an intersection. The Road needs to know to which neighbor to route the
Car. Solve this problem with a second simple interface. (The Car implements this one, and
the Road uses it.)

1. You are here; which way would you like to turn?
Direction whichWayWouldYoulLikeToTurn(Location here)

Again, the Road couldn't care less how the Car answers the question, as long as it gets an
answer. When the code is in debugging, the method that handles this message may print a
query on a console and do whatever you type. The real system would need an automated
solution, of course, but you can make the change from manual to automated by changing
the Car class alone. None of the rest of the system is affected.

Notice that the Car doesn’t know exactly where it is (just like the real world that we're
modeling). The Road does know where it is (its Location), however, so the Road passes its
Location into the Car. Since the Location changes, the Car doesn't bother to store it internally.
The Car needs only a single attribute: a destination.

The Car needs a way to answer the which-way-do-you-want-to-turn question, so you
need one more object: a Map. The Map needs another one-message interface.

2. Iam here, and I need to go there; which way should I turn?
Direction whichWayShouldITurn(Location here, Location there)

Again, the Car has no idea how the map answers the question, as long as it gets an answer.
(This routing problem is, by far, the hardest part of the system to write, but the problem has
already been solved by every GPS navigator on the market. You may be able to buy the solution.)
Note how the Car is passed its location, which it relays to the Map. This process, called delegation,
is also commonplace in OO systems. A given object solves a problem by delegating to a contained
object, passing that contained object any external information it needs. As the message propa-
gates from delegator to delegate, it tends to pick up additional arguments.

The last piece of the puzzle is figuring out how cars get onto the Road to begin with.

From the perspective of traffic modeling, a house is really a kind of dead-end Road called a
driveway. Similarly, an office building is a kind of Road called a parking lot. The house and
office-building objects implement the Road interface, know the Road segments to which
they'’re connected, and inject cars (or accept them) into the system at certain times of day
using the Road interface—all easy code to implement.

Now let’s add a user interface. It's a classic requirement of OO systems that an object not
expose implementation details. Our goal is maintainability. If all the implementation informa-
tion is a closely guarded secret of the object, then you can change the implementation of that
object without impacting the code that uses the object. That is, the change doesn’t “ripple out”
into the rest of the system. Since all changes are typically concentrated in a single class defini-
tion, OO systems are easy to maintain, but only if they follow this encapsulation rule. (You
may have a good reason to violate the encapsulation occasionally, but do so knowing that
your system will be harder to maintain as a consequence.)

The encapsulation requirement implies that a well-designed object will have at least
some responsibility for creating its own UL That is, a well-done class won't have getter or
setter methods because these methods expose implementation details, introducing down-
the-line maintenance problems as a consequence. If the implementation of the object

CHAPTER 1 ™ PRELIMINARIES: 00 AND DESIGN PATTERNS 101

changes in such a way that the type or range of values returned by a getter method needs
to change, for example, you'll have to modify not only the object that defines the getter but
also all the code that calls the “getter.” I'll talk more about this issue and about how to design
systems without getter and setter methods in a moment.

In the current system, you can build a UI by adding a single method to the Road interface.

3. Draw a representation of yourself along this line:
drawYourself(Graphics g, Point begin, Point end);

The Road UI could indicate the average speed of the traffic (which will vary with traffic
density) by changing the line color. The result would be a map of the city where traffic speed is
shown in color. The Map, of course, needs to know about Roads, so the Map builds a rendition
of itself, delegating drawing requests to Road objects when necessary. Since the Road objects
render themselves, there’s no need for a bunch of getter methods that ask for the information
that some external UI builder needs to do the rendering: methods such as getAverageSpeed()
are unnecessary.

Now that the groundwork is done, you'll set the wheels in motion, so to speak. You hook
up Roads, driveways, and parking lots to each other at compile time. Put some cars in the
system (also at compile time), and set things going. Every time a clock “ticks,” each Road
segment is notified, decides how many cars it needs to get rid of, and passes them along.

Each Road segment automatically updates its piece of the UI as the average speed changes.
Voila! Traffic flow.

Once you've designed the messaging system, you're in a position to capture what you've
learned in a static-model diagram. Associations exist only between classes whose objects
communicate with one another, and only those messages that you need are defined. Figure 1-3
shows the UML. Note that it would have been a waste of time to start with the static model.
You need to understand the message flow before you can understand the relationships
between classes.

Map «singleton»
Street-grid representation
+whichWayShouldITurn(here,there: Location)
)

Car

Destination
+whichWayWouldYouLikeToTum (here:Location): Direction
traffic /\ 0..n

! Road

Maximum Load, Speed Limit
+canYouAcceptCars (n:int, source:Road) : boolean
+giveMeCars(n:int): Car[n]

adjacentRoads | 1..4

Figure 1-3. UML static-model diagram for the traffic model

24

CHAPTER 1 M PRELIMINARIES: 00 AND DESIGN PATTERNS 101

If you want hands-on experience playing with a traffic simulator of this sort, look at Maxis
Software’s SimCity. Having not seen the source code, I don't actually know if SimCity is imple-
mented as an automaton, but I'd be shocked if it wasn’t one. It certainly acts like it on at the
user-interface level, so it will do for our purposes. Maxis has a free online version of SimCity
Classic on its web site (http://www.maxis.com).

Getters and Setters Are Evil

As I mentioned earlier, it's a fundamental precept of OO systems that an object not expose any
of its implementation details. This way, you can change the implementation without needing
to change the code that uses the object. It follows that you should avoid getter and setter func-
tions, which typically do nothing but provide access to implementation details (fields), in OO
systems. Note that neither the ATM nor traffic-flow example used getter or setter methods to
do their work.

This isn’t to say that your functions shouldn'’t return values or that “get” or “set” function-
ality is never appropriate. Objects must sometimes move through the system to get work
done. Nonetheless, get/set functions are often used inappropriately as a means of accessing
otherwise private fields, and it’s that usage that will give you the most trouble. I'll discuss what
I consider to be appropriate uses of get/set methods at the end of this section. Getter and
setter methods (often called accessors and mutators, though the word accessor is commonly
used for both) usually indicate a lack of clear, up-front thinking about the problem you're
solving. Programmers often put them into class definitions because they don’t want to think
about how objects of that class will actually communicate at runtime. The presence of a getter
lets you defer that thinking until you're actually coding. This behavior is plain laziness; it isn’t
“programming for flexibility.”

Consider this trivial example of why “getters” should be avoided: There may be 1,000 calls to
a getX() method in your program, and every one of those calls assumes that the return value is a
particular type. The return value of getX() may be stored in a local variable, for example, and the
variable type must match the return-value type. If you need to change the way that the object is
implemented in such a way that the type of X changes, you're in deep trouble. If X used to be an
int, but now has to be a long, you'll now get 1,000 compile errors. If you fix the problem incor-
rectly by casting the return value to int, the code will compile cleanly but won’t work. (The
return value may be truncated.) You have to modify the code surrounding every one of those
1,000 calls to compensate for the change. I, at least, don’t want to do that much work.

Now consider the case of a Money class. Originally written to handle only U.S. dollars, it
has a getValue() method that returns a double and a setValue() that sets a new value. The
first problem is that you can do nonsensical things with money, illustrated in the following
code:

Money a, b, c;
/R
a.setValue(b.getValue() * c.getValue());

What does it mean to multiply $2 by $5?

The second problem is more significant: You need to internationalize the application to
handle multiple currencies. You go into the class and add a field called currency that’s set
(internally) to values such as US_DOLLAR, YEN, LEU, and HRYVNA. Small change; big problems.

CHAPTER 1 m PRELIMINARIES: 00 AND DESIGN PATTERNS 101 25

In any event, what’s getValue() going to return? It can’t just return a double because that value
no longer tells you anything useful. You need to know the currency, too. It can’t normalize the
return value on U.S. dollars because the exchange rate changes by the minute. What are you
going to do with the value in any case? You can't just print it, because you need the currency
again. You could augment getValue() with getCurrency(), but now all the code that uses the
value must also get the currency and normalize on some standard currency locally. That’s a lot
of work that may need to be duplicated in 1,000 places in the code. You also have to find every
screen in the system where the value of money is displayed and change the display logic to
include currency. This “simple” change is rapidly becoming an incredible mess.

Another example: Think of all the problems that were caused by System. in, System.out, and
System.err when the Reader and Writer classes were introduced to Java. These three fields were
public, which is itself anathema. Simply wrapping them (with a System.getOut () that returned
System.out, for example) doesn't improve the actual problem: System.out and System.err need to
be a (Unicode-based) Writer objects, not (byte-based) PrintStream objects. Ditto for System. in
and Reader. Changing the declared types of the objects that hold System. out isn't, in and of itself,
enough. Writers are used differently than Output streams. They have different semantics and
different methods. You have to change (or at least examine) all the code surrounding the use of
System.out access as a consequence. If your program had been writing Unicode using the old
System.out, for example, it needed two write() calls to write a single glyph. It also needed some
logic to extract the high and low bytes of the glyph to write them separately. All that code has to be
removed with the Writer version.

The problem is compounded by force of habit. When procedural programmers come to
Java, they tend to start out by building code that looks familiar. Procedural languages don’t
have classes, but they do have things such as the C struct (think: a class without methods;
everything’s public). It seems natural, then, to mimic a struct by building class definitions
with virtually no methods and nothing but public fields. These procedural programmers read
somewhere that fields should be private, however, so they make the fields private and supply
public get/set methods. They haven't achieved much other than complicating the public
access, though. They certainly haven’'t made the system object oriented.

Procedural programmers will argue that a public accessor that wraps a private field is
somehow “better” than a public field because it lets you control access. An OO programmer
will respond that all access—controlled or otherwise—leads to potential maintenance prob-
lems. Controlled access may be better than unfettered access, but that doesn’t make the prac-
tice good. The accessor-is-better-than-direct-access argument misses the real point entirely:
The vast majority of your classes don’t need the accessor (or mutator) methods at all. That is, if
the messaging system is designed carefully (I'll talk about how in a moment), then you can
probably dispense with the get/set methods entirely and make your classes more maintain-
able as a consequence.

This isn't to say that return values are bad or that you can eliminate all “get” methods
from your program—you can't. But minimizing the getter/setter functions will make the code
more maintainable.

From a purely practical perspective, heavy use of get/set methods make the code more
complicated and less agile. Consider a typical procedural “god” class, which collects the infor-
mation that it needs to do some piece of work from other objects. The god-class implementa-
tion is littered with “get” calls. What if the object that already has the data does the work,
though? That is, what if you moved the code that does real work from the god class to the
place where the data is stored? The accessor calls disappear, and the code is simplified.

CHAPTER 1 ® PRELIMINARIES: 00 AND DESIGN PATTERNS 101

The get/set methods also make the program inflexible (it can’t accommodate new busi-
ness requirements easily) and hard to maintain. Perhaps the most important principle of OO
systems is data abstraction: The way in which an object goes about implementing a message
handler should be completely hidden from other objects. That’s one of the reasons that all
of your instance variables (the nonconstant fields of a class) should be private. If you make
an instance variable public, then you can't change the field as the class evolves over time,
because you'd break the external code that used the field. You really don’t want to search out
1,000 uses of some class simply because you make a change to that class.

Naive getter and setter methods are dangerous for the same reason that public fields are
dangerous: They provide external access to implementation details. What if you need to change
the type of the accessed field? You also have to change the return type of the accessor. This return
value is used lots of places, though, so you'll have to change all of that code as well. I want the
effects of a change to be limited to a single class definition, however. I don't want them to ripple
out into the entire program.

This principle of implementation hiding leads to a good acid test of the quality of an OO
system: Can you make massive changes to a class definition—even throw out the whole thing
and replace it with a completely different implementation—without impacting any of the
code that uses objects of that class? This sort of modularization makes maintenance much
easier and is central to the notion of object orientation. Without implementation hiding,
there’s little point in using other OO features.

Since accessors violate the principle of encapsulation, you can argue quite reasonably
that a system that makes heavy or inappropriate use of accessors simply isn't object oriented.
More to the point, if you go through a design process, as compared to just coding, you'll find
that there will be hardly any accessors in your program. The process is important.

You'll notice that there are no getter/setter methods in the traffic-modeling example. There’s
no getSpeed() method on a Car or getAverageSpeed() method on a Road segment. You don't need
getlocation() or setLocation() methods on the Car because you're storing location information
in the Road, where it belongs. You don't need a setAverageSpeed() on the Road because it figures
its own speed. You don't need a getAverageSpeed() on the Road because no other object in the
system needs that information. The lack of getter/setter methods doesn’t mean that some data
doesn't flow through the system; the Road passes its location to the Car, for example. Nonetheless,
it'’s best to minimize data movement as much as possible. You can go a long way toward getting it
“right” by observing the following rule: Don't ask for the information that you need to do some
work; ask the object that has the information to do the work for you.

For example, you don't say the following:

Money a, b, c;
//...
a.setValue(a.getValue() + b.getValue());

Rather, you ask the Money object to do the work, as follows:

Money a, b, c;
/e
a.increaseBy(b);

You don'’t say, “Give me this attribute so I can print it.” You say, “Give me a printable
rendering of this attribute” or “print yourself.”

CHAPTER 1 = PRELIMINARIES: 00 AND DESIGN PATTERNS 101

Another way to cast this rule is to think about coarse-grained vs. fine-grained operations.
A coarse-grained operation asks an object to do a lot of work. A fine-grained operation asks
the object to do only a small amount of work. Generally, I prefer coarse-grained methods
because they simplify the code and eliminate the need for most getter and setter methods.

Accessor and mutator methods end up in the model because, without a well-thought-out
dynamic model to work with, you're only guessing how the objects of a class will be used. Conse-
quently, you need to provide as much access as possible, because you can't predict whether you'll
need it. This sort of design-by-guessing strategy is inefficient at best because you end up wasting
time writing methods that aren't used (or adding capabilities to the classes that aren’t needed).
When you follow the static-model-first approach, the best you can hope for is a lot of unneces-
sary work developing these unused or too-flexible methods. At worst, the incorrect static model
creates so much extra work that the project either fails outright, or if you manage to get it built,
the maintenance cost is so high that a complete rewrite is less expensive. Remembering back to
the traffic-flow example, I used the static model to capture relationships that I discovered while
modeling the messaging system. I didn’t design the static model first and then try to make the
dynamic model work within the confines of that static model.

By designing carefully, focusing on what you need to do rather than how you'll do it, you'll
eliminate the vast majority of getter/setter methods in your program.

Render Thyself

Probably the most shocking thing I've done in the traffic-model example is put a drawYourself(...)
method on the Road segment. I've (gasp!) put UI code into the business logic! Consider what
happens when the requirements of the UI change, though. For example, I may want to repre-
sent the Road as a bifurcated line with each direction having its own color. I may want to actu-
ally draw dots on the lines representing the cars, and so on. If the Road draws itself, then these
changes are all localized to the Road class. Moreover, different types of Roads (parking lots, for
example) can draw themselves differently. The downside, of course, is that I've added a small
amount of clutter to the Road class, but that UI clutter is easily concentrated in an inner class
to clean up things.

Also, bear in mind that I haven't actually put any UI code into the business logic. I've
written the Ul layer in terms of AWT or Swing, both of which are abstraction layers. The actual
UI code is in the AWT/Swing implementation. That’s the whole point of an abstraction layer—
to isolate your “business logic” from the mechanics of a subsystem. I can easily port to
another graphical environment without changing the code, so the only problem is a little bit
of clutter. This clutter is easily eliminated by concentrating it into an inner class (or by using
the Facade pattern, which I'll discuss soon).

Note that only the most simple classes can get away with a simplistic drawYourself()
method. Usually, you need finer control. Objects sometimes need to draw themselves in
various ways (HTML, a Swing JLabel, and so on), or you may need to render only a few of
the object’s attributes.

Moreover, an object doesn't need to physically draw itself on the screen to isolate its
implementation from the rest of the program. All you need is some sort of universal (with
respect to the program) representation. An object could pass an XML rendering of itself to
a display subsystem, for example. A helper class along the lines of java.text.NumberFormat
could transform this representation for specific locals. The Money class that I discussed earlier
could return a Unicode String rendering that concatenates the currency symbol and value,
represented in a localized fashion. You could even return a .gif image or a JLabel.

27

CHAPTER 1 ™ PRELIMINARIES: 00 AND DESIGN PATTERNS 101

My main point is that if these attribute representations are handled properly, then you
can still change the internal workings of a class without impacting the code that uses the
representation. (A representation of some object or attribute that’s presented in such a way
that it can be displayed, but not manipulated, is a variant on the Memento pattern, discussed
later in the current chapter.) Also, you can use several design patterns [notably, Builder] to
allow an object to render itself but nonetheless isolate the UI-creation code from the actual
object. I'll discuss this pattern further in Chapter 4.

JavaBeans and Struts

“But,” you may object, “what about JavaBeans, Struts, and other libraries that use accessors
and mutators?” What about them? You have a perfectly good way to build a JavaBean without
getters and setters; the BeanCustomizer, BeanInfo, and BeanDescriptor classes all exist for
exactly this purpose. The designers of the JavaBean specification threw the getter/setter idiom
into the picture because they thought it'd be an easy way to for a junior programmer to create
a bean, something you could do while you were learning how to do it “right.” Unfortunately,
nobody did that.

People often let the “tail wag the dog” when they talk about JavaBeans (or whatever library
they use that has procedural elements). People seem to forget that these libraries started out as
some programmer’s personal attempt at solving a problem. Sometimes the programmers had a
procedural bias; sometimes they had an OO bias. Sometimes the designers deliberately “dumbed
down” an interface because they knew a lot of people just wouldn't “get it” otherwise.

The JavaBeans get/set idiom is an example of this last problem. The accessors were
meant solely as a way to tag certain properties so that they could be identified by a UI-builder
program or equivalent. You weren't supposed to call these methods yourself. They were there
so that an automated tool (such as a UI builder) could use the introspection APIs in the Class
class to infer the existence of certain “properties” by looking at method names. This approach
hasn't worked out well in practice. It has introduced a lot of unnecessary methods to the
classes, and it has made the code vastly too complicated and too procedural. Programmers
who don’t understand data abstraction actually call the tagging methods, and the code is less
maintainable as a consequence. For this reason, a “metadata” feature will be incorporated
into the 1.5 release of Java. Instead of using the following get/set idiom to mark an attribute,
like so:

private int property;
public int getProperty (){ return property; }
public void setProperty (int value){ property = value; }

you'll be able to say something like this:
private @property int property;

The Ul-construction tool or equivalent will be able to use the introspection APIs to find
the properties, rather than having to examine method names and infer the existence of a
property from a name. More to the point, no runtime accessor is damaging your code.

Returning to Struts, this library isn’'t a model of OO architecture and was never intended to
be. The MVC architecture embodied in Struts pretty much forces you to use get/set methods.
You can reasonably argue, that given the generic nature of Struts, it can’t be fully OO, but other

CHAPTER 1 ® PRELIMINARIES: 00 AND DESIGN PATTERNS 101

Ul architectures manage to hide encapsulation better than MVC. (Perhaps the real solution is
to avoid an MVC-based Ul framework altogether. MVC was developed almost 30 years ago,
and we've learned a lot since then.) There’s one compelling reason for using Struts: The library
contains a lot of code that you don’t have to write, and it'’s “good enough” for many purposes.
If “good enough” is good enough, go for it.

To sum up, people have told me that fundamental concepts of object orientation, such
as implementation hiding, are “hogwash,” simply because the libraries that these people use
(JavaBeans, Struts, .NET, and so on) don’'t embody them. That argument is, I think, hogwash.

Refactoring

The other argument I've heard to justify the use of accessors and mutators is that an inte-
grated development environment such as Eclipse or its cousins make it so easy to refactor a
method definition to return a different argument type that there’s no point in worrying about
this stuff. I still worry, though.

Firstly, Eclipse just refactors within the scope of the existing project. If your class is being
reused in many projects, then you have to refactor all of them. A company that properly reuses
class will have many groups of programmers all working on separate projects in parallel, and
these other programmers won't take kindly to your telling them that they have to refactor all
their code because of some specious change you want to make to a shared class.

. Secondly, automated refactoring works great for simple things, but not for major changes.
The ramifications of the change are typically too far-reaching for an automated tool to handle.
You may have to change SQL scripts, for example, and the effects of the change may ripple
indirectly into the methods that are called from the place where the refactoring is made.

Finally, think about the changes to Money and System.out discussed earlier. Simply changing
a few return-value types isn't sufficient to handle the changes I discussed. You have to change
the code that surrounds the getter invocation as well. Though it’s hard to argue that refactoring
the code isn’t a good thing, you can’t do this sort of refactoring with an automated tool.

People who use the automated-refactoring argument also tend not to understand the
most important issue: Overuse of accessors and mutators at the key-abstraction level is an
indication of a poorly designed messaging system. In other words, the code is probably struc-
tured so poorly that maintenance is unnecessarily difficult, whether or not you can refactor
easily. A redesign is required, not a refactor.

Using the earlier System.out example as a characteristic, imagine that you redesigned
Java to print a String on the console as follows:

String s = "hello world";

s.print(String.TO_CONSOLE);

and loaded a String like this:
s.load(String.FROM_CONSOLE);

All the byte-vs.-Unicode problems would disappear into the String class implementation.
Any changes from byte-based to glyph-based I/0 would disappear. Since the whole point of
the Reader and Writer interfaces is to load and store strings, you could dispense with them
entirely. Overloads of print(...) and load(...) could handle file I/O.

CHAPTER 1 ™ PRELIMINARIES: 00 AND DESIGN PATTERNS 101

You can argue with me about whether things should be done in this way. You can also
quibble about whether TO_CONSOLE should be a member of the String or File class. Nonethe-
less, the redesign eliminated the need for System.out and its accessors. Of course, you can
think of a billion things to do with a string and can reasonably argue that all of those things
shouldn’t be part of the String class, but design patterns (Visitor, Strategy, and so on) can
address this problem.

Life Without Get/Set

So, how do you end up with a design without getters and setters in it? That is, how do you
design a messaging system that minimizes the need for accessors and mutators? The solution
is in design, not in coding. There’s no simplistic just-replace-this-code-with-that-code solu-
tion because the problem has to do with the way you think about the interaction of objects.
You can't just refactor the get/set methods out of the code—you have to rebuild the code from
scratch with a fundamentally different structure.

The OO-design process is centered on use cases: stand-alone tasks performed by an end
user that have some useful outcome. “Logging On” isn't a use case because there’s no outcome
that’s useful in the problem domain. “Drawing a Paycheck” is a use case. In the earlier ATM
example, I was flushing out the “Depositing Funds” use case.

An OO system, then, implements the activities needed to play out the various “scenarios”
that comprise a use case. The runtime objects that have roles in the use case act out their roles
by sending messages to one another. Not all messages are equal, however. You haven't accom-
plished much if you've just built a procedural program that uses objects and classes.

Back in 1989, Kent Beck and Ward Cunningham were teaching classes on OO design, and
they were having problems getting programmers to abandon the get/set mentality. They char-
acterized the problem as follows:

The most difficult problem in teaching object-oriented programming is getting the
learner to give up the global knowledge of control that is possible with procedural
programs, and rely on the local knowledge of objects to accomplish their tasks. Novice
designs are littered with regressions to global thinking: gratuitous global variables,
unnecessary pointers, and inappropriate reliance on the implementation of other
objects.

When they talk about “global knowledge of control,” they’re describing the "god" class I
discussed earlier—a class whose objects collect information from elsewhere and then process
that information (rather than allowing the object that has the data to do the processing). That
“inappropriate reliance on the implementation of other objects” is an accessor or mutator call.

Cunningham came up with a teaching methodology that nicely demonstrates the design
process: the CRC card. The basic idea is to make a set of 4x6 index cards that are laid out in the
following three sections:

Class: The name of a class of objects.

Responsibilities: What those objects can do. These responsibilities should be focused on
a single area of expertise.

CHAPTER 1 ™ PRELIMINARIES: 00 AND DESIGN PATTERNS 101

Collaborators: Other classes of objects to which the current class of objects can talk. This
set should be as small as possible.

The initial pass at the CRC card is just guesswork—things will change.

In class, Beck and Cunningham picked a use case and made a best guess at determining
which objects would be required to “act out” the use case. They typically started with two
objects and added others as required as the scenario played out. People from the class were
selected to be those objects and were handed a copy of the associated CRC card. If several
objects of a given class were needed, several people represented those objects. The students
literally acted out the use case. Here are the rules I use when acting out a use case with CRC
cards:

¢ Perform the activities that comprise the use case by talking to one another.

* You can talk only to your collaborators. If you need to talk to someone else, talk to a
collaborator who can talk to the other person. If that turns out not to be possible, add
a collaborator to your CRC card.

* You may not ask for the information you need to do something. Rather, you must ask
the collaborator who has the information to do the work. It’s okay to give your collabo-
rators some bit of information that they need to do the work, but keep this sort of
passing to a minimum.

* If something needs to be done and nobody can do it, create a new class (and CRC card)
or add a responsibility to an existing class (and CRC card).

* Ifa CRC card gets too full, you must create another class (CRC card) to handle some of
the responsibilities. Complexity is limited by what you can fit on a 4x6 index card.

e Stick to the “domain” of the problem (accounting, purchasing, and so on) in both your
vocabulary and your processes. That is, model what would happen if real people who
were domain experts were solving the problem. Pretend computers don’t exist. It's not
very often that two people say “getX” to each other in the course of doing some task, so
in practice, the get/set methods won't even come up.

Once you've worked out a conversation that solves the problem, turn on a tape recorder
or transcribe it. That transcription is the program’s “dynamic model.” The finished set of CRC
cards is the program’s “static model.” With lots of fits and starts, it’s possible to solve just about
any problem in this way.

The process I just described is the OO-design process, albeit simplified for a classroom
environment. Some people design real programs this way, using CRC cards, but the technique
tends not to scale to nontrivial programs. More often than not, designers develop the dynamic
and static models in UML, using some formal process (for example, RUP, Crystal, and even
some flavors of Extreme Programming). The point is that an OO system is a conversation
between objects. If you think about it for a moment, get/set methods just don’t come up
when you're having a conversation. By the same token, get/set methods won’t appear in
your code if you design in this way before you start coding.

The modeling must stay in the “problem domain” as long as possible, as I mentioned
in the last rule. What gets most people in trouble is that they think they’re doing domain

31

CHAPTER 1 ™ PRELIMINARIES: 00 AND DESIGN PATTERNS 101

modeling but are actually modeling at the implementation level. If your messaging system
isn’t using the vocabulary of the problem domain—if it doesn’t make sense to an average end
user of your program—then you're doing implementation-level modeling. Things such as
computers (or worse, the databases or UI-construction kits) have no place at this level of
modeling.

In CRC modeling, for example, you need to keep the conversation in the problem domain
by using the vocabulary and processes that real users would use. This way the messaging
system reflects the domain directly. The database is just an internal thing that some of the
classes use as a persistence mechanism and won't appear in the initial model at all.

If you keep the message structure in the problem domain, then you’ll eliminate the vast
majority of get/set methods, simply because “get” and “set” isn't something your domain
experts do when solving most problems.

When Are Accessors and Mutators Okay?

If you must pass information between objects, encapsulate that information into other
objects. A “get” function that returns an object of class Money is vastly preferable to one that
returns a double.

It's best if a method returns an object in terms of an interface that the object implements
because the interface isolates you from changes to the implementing class. This sort of method
(that returns an interface reference) isn't really a getter in the sense of a method that just provides
access to a field. If you change the internal implementation of the provider, you must change the
definition of the returned object to accommodate the changes, of course. You can even return
an object of different class than you used to return as long as the new object implements the
expected interface. The external code that uses the object through its interface is protected.

In general, though, I try to restrict even this relatively harmless form of accessor to return
only instances of classes that are key abstractions in the system. (If the class or interface name
appears regularly in the English, domain-level description of the problem, then it’s a key
abstraction.)

Generally, messages should carry as little data as possible with them as arguments, but it’s
better to “push” data into an object than to “pull” it out. Put another way; it’s better to delegate
to another object, passing it some bit of information that it doesn’t have, than it is for that
object to call one of your methods to get the information. This isn’t to say that return values
are bad, but insofar as it’s possible, you should return either objects that encapsulate their
implementation or booleans, which give away nothing about implementation. In an ATM
machine, it’s better to ask “am I authorized to give Bill $202” (a Boolean result) than it is to
say “give me Bill’s account balance” and make the decision locally.

One big exception exists to the no-getter-or-setter rule. I think of all OO systems as having
a “procedural boundary layer.” The vast majority of OO programs run on procedural operating
systems and talk to procedural databases, for example. The interfaces to these external proce-
dural subsystems are by their nature generic. The designer of JDBC hasn't a clue about what
you'll be doing with the database, so the class design has to be unfocused and highly flexible.
Ul-builder classes such as Java’s Swing library are another example of a “boundary-layer”
library. The designers of Swing can't have any idea about how their classes will be used; they'’re
too generic. Normally, it would be a bad thing to build lots of flexibility that you didn’t use
because it increases development time. Nonetheless, the extra flexibility is unavoidable in
these boundary APIs, so the boundary-layer classes are loaded with accessor and mutator
methods. The designers really have no choice.

CHAPTER 1 M PRELIMINARIES: 00 AND DESIGN PATTERNS 101

In fact, this not-knowing-how-it-will-be-used problem infuses all of the Java packages. It's
difficult to eliminate all the accessors and mutators if you can't know how objects of the class
are actually used. Given this constraint, the designers of Java did a pretty good job of hiding as
much implementation as they could. This isn't to say that the design decisions that went into
JDBC and its ilk apply to your code. They don't. You do know how the classes are going to be
used, so you don't have to waste time building unnecessary flexibility.

I should also mention constant values, which are often accessed directly as public
members. Here’s my advice:

e Don't do it if you don't have to do it. It's better to have a list scale to fit its contents than
have a MAX_SIZE, for example.

¢ Use the new (JDK 1.5) enum facility whenever possible rather than expressly declared
and initialized static final int values. Alternatively, use the typesafe-enum pattern
described by Joshua Bloch in his book Effective Java Programming Language Guide
(Addison-Wesley, 2001).

The basic notion is to define an enum like this:

private static class Format{ private Format(); }
public static final Format SINGLE_LINE = null;
public static final Format POPUP_DIALOG = new Format();
public static final Format PANEL new Format();

public displayYourselfAs(Format how)

{ // display the current value of calendar in
// the format specified.

}

Since the argument to displayYourselfAs(...) is a Format object, and since only two
instances of (and three references to) format can possibly exist, you can’t pass a bad
value to displayYourselfAs(...). Had you used the following more common int-enum

idiom:

public static final int SINGLE_LINE = 0;
public static final int POPUP_DIALOG = 1;
public static final int PANEL = 2;

public displayYourselfAs(int how)
{ 7//...

}

you could pass an arbitrary nonsense value (say, -1) to the method. Bloch devotes ten
pages to this idiom, and I refer you to his book for more information.

¢ If you do have to expose a constant, make sure that it's really a constant. Java’s final
keyword guarantees that a reference can't be changed to reference something else, but
it doesn't protect the referenced object. If an object is used as a constant, you have to
write the class in such a way that the object can't be modified. (Java calls this kind of
class immutable, but other than declaring all the fields of the class as final, there’s no
language mechanism to guarantee immutability. You just program the class that way.)

33

CHAPTER 1 B PRELIMINARIES: 00 AND DESIGN PATTERNS 101

Consider Java’s Color class. Once the object is created, you can’t change the color, simply
because the color class doesn’t expose any methods that change the color. Consider this code:

public static final Color background = Color.RED;
/...
c.darken();

The call to darken() doesn’t modify the object referenced by background; rather, it returns
anew Color object that's a shade darker than the original. The foregoing code doesn’t do
anything, since the returned Color object isn’t stored anywhere, and you can't say this:

background = c.darken();

because background is final.

Finally, it's sometimes the case that an object is a “caretaker” for other objects. For example,
aJava Collection holds a bunch of objects that were passed into it from outside. Though the
words “get” and “set” are often used in the names of the methods that give an object to a care-
taker and fetch the object back from the caretaker, these methods don't expose any information
about how the caretaker works, so they’re also okay. In general, if you pass something into an
object, it’s reasonable to expect to be able to get that something back out again.

Databases are extreme examples of caretakers of data, though their interfaces are pushed
even further in the direction of get/set methods because a database is a fundamentally proce-
dural thing—a big bag of data; a database is part of the “boundary layer” I discussed earlier.
Consequently, it’s impossible to access a procedural database in an OO way. The get/set methods
are unavoidable. Nonetheless, you can (and should) encapsulate the procedural calls to the data-
base layer into higher-level domain objects and then write your code in terms of the interfaces to
these encapsulating objects. Inside the encapsulating objects, you'll be doing what amounts to
get/set calls on the database. Most of the program won't see this work, however, because they’'ll
be interacting with the higher-level encapsulating object, not the database.

Summing Up the Getter/Setter Issues

So let’s sum up: I'm not saying that return values are bad, that information can't flow through
the system, or that you can eliminate all accessors and mutators from your program. Informa-
tion has to flow, or the program won’t do anything. That information should be properly
encapsulated into objects that hide their implementation, however.

The basic issues are as follows:

 The maintainability of a program is inversely proportional to the amount of data that
flows between objects.

* Exposing implementation harms maintainability. Make sure that the accessor or
mutator really is required before you add it.

¢ Classes that directly model the system at the domain level, sometimes called business
objects, hardly ever need accessors or mutators. You can think of the program as parti-
tioned broadly into generic libraries that have to relax the no-getter/no-setter rule and
domain-specific classes that should fully encapsulate their implementation. Getters
and setters at this level are an indication that you didn’t do enough up-front design
work. In particular, you probably didn’t do enough dynamic modeling.

CHAPTER 1 m PRELIMINARIES: 00 AND DESIGN PATTERNS 101

» By keeping the design process in the problem (“business”) domain as long as possible,
you tend to design messaging systems that don't use getters and setters because state-
ments such as “Get this” or “Set that” don't come up in the problem domain.

* The closer you get to the procedural boundary of an OO system (the database interface,
the Ul-construction classes, and so on), the harder it is to hide implementation. The
judicious use of accessors and mutators has a place in this boundary layer.

» Completely generic libraries and classes also can't hide implementation completely so
will always have accessors and mutators.

* Sometimes it's not worth the trouble to fully encapsulate the implementation. Think
of trivial classes such as Point and Dimension. Similarly, private implementation classes
(aNode class defined as a private inner class of Tree, for example) can often used a
relaxed encapsulation model. On the other hand, think of all the problems that were
caused by System. in, System.out, and System.err when the Reader and Writer classes
were introduced, and what if I want to add units (feet, inches) to a Dimension?

At a JavaOne conference (I think in 1991) James Gosling was asked to give some pithy
piece of programming advice to the multitude. He chose to answer (I'm paraphrasing) that
maintainability was inversely proportional to the amount of data that moves between objects.
The implication is that you can’t get rid of all data movement, particularly in an environment
where several objects have to collaborate to accomplish some task, but you should try to
minimize date flow as much as possible.

When I have to pass information around, I use the following two rules of thumb:

* Pass around objects (ideally in terms of the interfaces they implement) rather than
raw data.

¢ Use a “push” model, not a “pull” model. For example, an object may delegate to a
collaborator, passing the collaborator some piece of information that the collaborator
needs to do its work. The alternative—the collaborator “pulling” the information from
the delegator using a getter method—is less desirable. The Flyweight pattern relies on
this “push” model.

Converting a pull to a push is often just a matter of routing the message differently.

Maintainability is a continuum, not a binary. Personally, I like to err in the direction of
easy maintenance, because maintenance really begins two seconds after you write the code.
Code that’s build with maintenance in mind tends to come together faster and have fewer
bugs.

Nonetheless, you must decide where on that ease-of-maintenance continuum you want
to place your program. The Java libraries are, for the most part, examples of how you need to
compromise maintainability to get generic functionality. The authors of the Java packages hid
as much implementation as they could, given the fact that the libraries were both completely
generic and also on the procedural boundary. The price they paid is that it’s difficult to make
structural changes to libraries such as Swing because too many existing programs depend on
implementation specifics.

CHAPTER 1 ® PRELIMINARIES: 00 AND DESIGN PATTERNS 101

Not all of the Java libraries expose implementation. Think of the Crypto APIs (in javax.crypto)
and the URL/URLConnection classes, which expose hardly any information and are extraordinarily
flexible as a consequence. The Servlet classes are a good example of an encapsulated implemen-
tation that nonetheless supports information movement, though they could go even further by
providing an abstraction layer that you could use to build HTML.

So, when you see methods starting with the “get” or “set,” that's a clue. Ask yourself whether
the data movement is really necessary. Can you change the messaging system to use coarser-
grained messages that will make the data movement unnecessary? Can you pass the information
as a message argument instead of using a separate message? Would an alternative architecture
work better at hiding implementation? If you have no alternative, though, go ahead and use it.

Programming in terms of interfaces is a fundamental concept in OO systems in general and
the Gang-of-Four design patterns in particular. Nonetheless, many Java programmers make
little use of interfaces (and overuse the extends relationship). This chapter explains the prob-
lems with extends and how you can solve some of those problems with interfaces. I also
introduce a few of the Creational patterns that simplify interface-based programming.

Why extends Is Evil

The extends keyword is evil—maybe not at the Charles-Manson/Vlad-the-Impaler level, but
bad enough that reputable designers don’t want to be seen in public with it. The Gang-of-Four
Design Patterns book s, in fact, largely about replacing implementation inheritance (extends)
with interface inheritance (implements). That's why I've devoted this entire chapter to using
interfaces. I'll also introduce a couple of design patterns in this chapter: Template Method,
Abstract Factory, and Singleton.

Before launching into the discussion of extends, I want to head off a few misconceptions.

First, the next few sections talk in depth about how extends can get you into trouble. Since
I'm focusing on the downside with such intensity, you may come to the conclusion that I think
you should never use extends. That’s not the case. I'm assuming you already are familiar with
the upside of extends and its importance in OO systems, so I don’t talk about that upside at all.
I don’t want to qualify every statement I make with an “on the other hand,” so please excuse
me if I give the wrong impression at times. Implementation inheritance is certainly a valuable
tool when used appropriately.

Second, an important issue is the language itself. Simply because a language provides
some mechanism doesn’t mean that that mechanism should be used heavily or thoughtlessly.
Adele Goldberg—a pioneer of object orientation—once quipped,

Many people tell the story of the CEO of a software company who claimed that his
product would be object oriented because it was written in C++. Some tell the story
without knowing that it is a joke.

A. Holub, Holub on Patterns: Learning Design Patterns by Looking ar Code

© Allen Holub 2004 -
www.allitebooks.con]

http://www.allitebooks.org

CHAPTER 2 PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS

Java programmers sometimes confuse language features, such as extends, with object
orientation itself. They will equate a statement such as “extends has problems” with “don’t do
things in an OO way.” Don’t make this mistake. Inheritance is certainly central to OO, but you
can put inheritance into your program in lots of ways, and extends is just one of these ways.

Language features such as extends certainly make it easier to implement OO systems, but
simply using derivation does not make a system object oriented. (Polymorphism—the ability
to have multiple implementations of the same type—is central to object-oriented thinking.
Since the notion of polymorphism is unique to OO, you could reasonably argue that a system
that doesn’t use polymorphism isn't object oriented. Nonetheless, polymorphism is best
achieved through interfaces, not extends relationships.)

To my mind, data abstraction—the encapsulation of implementation details within the
object—is just as central to OO thinking as polymorphism. Of course, procedural systems can
use data abstraction, but they don’t have to do so. Hard-core data abstraction is not optional
in an OO system, however.

As I discussed in the preface, using a language feature mindlessly, without regard to the
negative consequences of using the feature, is a great way to create bad programs. Implemen-
tation inheritance (extends) is valuable in certain situations, but it also can cause a lot of grief
when used incorrectly. Polymorphism (redefining base-class behavior with a derived-class
override) is central to object orientation, and you need some form of inheritance to get poly-
morphism. Both extends and implements are forms of inheritance, though. The class that
implements an interface is just as much a derived class as one that extends another class.!

The similarity between extends and implements is quite clear in a language such as C++,
simply because C++ doesn't distinguish between the two syntactically. For you C++ program-
mers, a C++ interface is a virtual base class containing nothing but “pure” virtual functions.
The lack of syntactic sugar to support interface-based programming doesn’t mean that C++
doesn’t support interfaces. It's just that it doesn’t have an interface keyword.

Interfaces vs. Classes

I once attended a Java User’s Group meeting where James Gosling (Java’s inventor) spoke
about some eminently forgettable topic. Afterward, in a memorable Q&A session, someone
asked him, “If you could do Java over again, what would you change?” His reply was, “I'd leave
out classes.” After the laughter died down, he explained that the real problem wasn't classes
per se but rather implementation inheritance (the extends relationship). Interface inheritance
(the implements relationship) is much preferred. Avoid implementation inheritance whenever
possible.

1. Pedagogically, an interface defines a type, not a class, so is not properly called a base class.
That is, when you say class, you really mean a “class of objects that share certain characteristics.”
Since interfaces can't be instantiated, they aren't really “classes of objects,” so some people use the
word type to distinguish interfaces from classes. I think the argument is pedantic, but feel free to use
whatever semantics you want.

CHAPTER 2 M PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS

Losing Flexibility
So, why? The first problem is that explicit use of a concrete-class name locks you into a specific
implementation, making down-the-line changes unnecessarily difficult.

At the core of the contemporary “agile” development methodologies is the concept of
parallel design and development. You start programming before you have fully specified the
program. This way of working flies in the face of traditional wisdom—that a design should be
complete before programming starts—but many successful projects have proven that you can
use the technique to develop good-quality code even more rapidly (and cost effectively) than
with the traditional pipelined approach. Agile development isn’t a good fit for every project,
but it works nicely on small projects whose requirements change during development.

At the core of Agile parallel development is the notion of flexibility. You have to write your
code in such a way that you can incorporate newly discovered requirements into the existing
code as painlessly as possible. Rather than implementing features you may need, you imple-
ment only the features you do need, but in a way that accommodates change. Without flexi-
bility, parallel development simply isn’t possible. Programming to interfaces is at the core of
flexible structure. To see why, let’s look at what happens when you don’t use them. Consider
the following code:

void f()
{ LinkedlList list = new LinkedList();
/...
modify(list);
}
void modify(LinkedList list)
{
list.add(...);
doSomethingWith(list);
}

Suppose that a new requirement for fast lookup has now emerged, so the LinkedList isn’t
working. You need to replace it with a HashSet. In the existing code, that change is not local-
ized since you’ll have to modify not only the initial definition (in f ()), but also the modify()
definition (which takes a LinkedList argument). You'll also have to modify the definition of
doSomethingWith(), and so on, down the line.

So, let’s rewrite the code as follows so that modify() takes a Collection rather than a
LinkedList argument:

void f()
{ Collection list = new LinkedList();
/..

modify(list);
}

void modify(Collection list)

{ list.add(...);
doSomethingWith(list);

}

CHAPTER 2 ™ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS

Let’s also presuppose that you make that change—from LinkedList to Collection every-
where else the concrete-class name appears in your code. This change makes it possible to
turn the linked list into a hash table simply by replacing the new LinkedList() with a new
HashSet () in the original definition (in f()). That's it. No other changes are necessary.

As another example, compare the following code, in which a method just needs to look
at all the members of some collection:

()
{

Collection ¢ = new HashSet();
//...
examine(c);

}

void examine(Collection c)
{ for(Iterator i = c.iterator(); i.hasNext() ;)
/...

}

to this more-generalized version:

void f()

{
Collection ¢ = new HashSet();
/...
examine(c.iterator());

}

void examine(Iterator i)
{ for(; i.hasNext() ; i.next())
//...

}

Since examine() now takes an Iterator argument rather than a Collection, it can traverse
not only Collection derivatives but also the key and value lists that you can get from a Map. In
fact, you can write iterators that generate data instead of traversing a collection. You can write
iterators that feed information from a test scaffold or a file to the program. g2() can accom-
modate all these changes without modification. It has enormous flexibility.

Coupling

A more important problem with implementation inheritance is coupling, the undesirable
reliance of one part of a program on another part. Global variables are the classic example

of why strong coupling is bad. If you change the type of a global variable, for example, all the
code that uses that variable—that is coupled to the variable—can be affected, so all this code
must be examined, modified, and retested. Moreover, all the methods that use the variable
are coupled to each other through the variable. That is, one method may incorrectly affect the
behavior of another method simply by changing the variable’s value at an awkward time. This
problem is particularly hideous in multithreaded programs.

CHAPTER 2 m PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS

You should strive to minimize coupling relationships. You can't eliminate coupling alto-
gether, because a method call from an object of one class to an object of another is a form of
coupling. Without some coupling, you'd have no program. Nonetheless, you can minimize
coupling considerably by diligently following OO precepts, the most important being that the
implementation of an object should be completely hidden from the objects that use it. For
example, any fields that aren’t constant should always be private. Period. No exceptions. Ever.
I meanit. (You can occasionally use protected methods to good effect, but protected instance
variables are an abomination; protected is just another way to say public.)

AsIdiscussed in depth in Chapter One, you should never use accessors and mutators
(get/set functions that just provide access to a field) for the same reason—they’re just overly
complicated ways to make a field public. Methods that return full-blown objects rather than
a basic-type value are reasonable in situations where the class of the returned object is a key
abstraction in the design. Similarly, a function called getSomething() can be reasonable if
it'’s a fundamental activity of the object to be a provider of information. (A getTemperature()
on a Thermometer object makes sense, provided that this method returns a Temperature.) If
the easiest way to implement some method is simply to return a field, that’s fine. It’s not
fine to look at things the other way around (“I have this field, so I need to provide access”).

I'm not being pedantic here. I've found a direct correlation in my own work between the
“strictness” of my OO approach, how fast the code comes together, and how easy it is to main-
tain the code. Whenever I violate a central OO principle such as implementation hiding, I find
myself rewriting that code (usually because the code is impossible to debug). I don’t have time
to write programs twice, so I'm really good about following the rules. I have no interest in
purity for the sake of purity—my concern is entirely practical.

The Fragile-Base-Class Problem

Now let’s apply the concept of coupling to inheritance. In an implementation-inheritance
system (one that uses extends), the derived classes are tightly coupled to the base classes, and
this close connection is undesirable. Designers have applied the moniker “the fragile-base-class
problem” to describe this behavior. Base classes are considered “fragile” because you can
modify a base class in a seemingly safe way, but this new behavior, when inherited by the
derived classes, may cause the derived classes to malfunction. You just can't tell whether a
base-class change is safe simply by examining the methods of the base class in isolation; you
have to look at (and test) all derived classes as well. Moreover, you have to check all code that
uses both base-class and derived-class objects, since the new behavior may also break this
code. A simple change to a key base class can render an entire program inoperable.

Let’s look at the fragile-base-class and base-class-coupling problems together. The
following class extends Java's ArrayList class to make it behave like a stack (a bad idea, as
you'll see in a moment):

class Stack extends Arraylist
{ private int topOfStack = 0;

public void push(Object article)
{ add(topOfStack++, article);

}

public Object pop()

41

42 CHAPTER 2 PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS

{ return remove(--topOfStack);
}

public void pushMany(Object[] articles)

{ for(int i =o0; i < articles.length; ++i)
push(articles[i]);

}

Even a class as simple as this one has problems. Consider what happens when a user
leverages inheritance and uses the ArraylList’s clear() method to pop everything off the
stack, like so:

Stack aStack = new Stack();
aStack.push("1");
aStack.push("2");
aStack.clear();

The code compiles just fine, but since the base class doesn't know anything about the
index of the item at the top of the stack (top0fStack), the Stack object is now in an undefined
state. The next call to push() puts the new item at index 2 (the current value of the top0fStack),
so the stack effectively has three elements on it, the bottom two of which are garbage.

One (hideously bad) solution to the inheriting-undesirable-methods problem is for Stack
to override all the methods of ArrayList that can modify the state of the array to manipulate
the stack pointer. This is a lot of work, though, and doesn’t handle problems such as adding a
method like clear() to the base class after you've written the derived class.

You could try to fix the clear() problem by providing an override that threw an exception,
but that's a really bad idea from a maintenance perspective. The ArraylList contract says
nothing about throwing exceptions if a derived class doesn’t want some base-class method
to work properly. This behavior will be completely unexpected. Since a Stack is an Arraylist,
you can pass a Stack to an existing method that uses clear (), and this client method will
certainly not be expecting an exception to be thrown on a clear () call. It's impossible to write
code in a polymorphic environment if derived-class objects violate the base-class contract at
all, much less this severely.

The throw-an-exception strategy also moves what would be a compile-time error into
runtime. If the method simply isn't declared, the compiler kicks out a method-not-found
error. If the method is there but throws an exception, you won't find out about the call until
the program is actually running. Not good.

You would not be wrong if you said that extending Arraylist to define a Stack is bad
design from a conceptual level as well. A Stack simply doesn't need most of the methods that
ArraylList provides, and providing access to those methods through inheritance is not a good
plan. That is, many ArraylList operations are nonsensical in a Stack.

As an aside, Java’s Stack class doesn’t have the clear() problem because it uses the base-
class size() method in lieu of a top-of-stack index, but you could still argue that java.util.Stack
should not extend java.util.Vector. The removeRange() and insertElementAt () methods inher-
ited from Vector have no meaning to a stack, for example. There's nothing to stop someone from
calling these methods on a Stack object, however.

CHAPTER 2 PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS

A better design of the Stack class uses encapsulation instead of derivation. That way, no

inherited methods exist at all. The following new-and-improved version of Stack contains an
Arraylist object rather than deriving from ArrayList:

class Stack

{

private int topOfStack
private ArraylList theData

0;
new ArraylList();

public void push(Object article)
{ theData.add(topOfStack++, article);
}

public Object pop()
{ return theData.remove(--topOfStack);
}

public void pushMany(Object[] articles)

{ for(int i = 0; i < articles.length; ++i)
push(articles[i]);

}

public int size() // current stack size.
{ return theData.size();

}

The coupling relationship between Stack and ArraylList is a lot looser than it was in the

first version. You don't have to worry about inheriting methods you don’t want. If changes are
made to ArraylList that break the Stack class, you would have to rewrite Stack to compensate
for those changes, but you wouldn't have to rewrite any of the code that used Stack objects.

I do have to provide a size() method, since Stack no longer inherits size() from ArrayList.

So far so good, but now let’s consider the fragile-base-class issue. Let’s say you want to

create a variant of Stack that keeps track of the maximum and minimum stack sizes over a
period of time. The following implementation maintains resettable “high-water” and “low-
water” marks:

class MonitorableStack extends Stack

{

private int highWaterMark
private int lowWaterMark

0;
0;

public void push(Object o)
{ push(o); '
if(size() > highWaterMark)
highwaterMark = size();

}

public Object pop()

4 CHAPTER 2m PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS

{ Object poppedItem = pop();
if(size() < lowWaterMark)
lowWaterMark = size();

return poppedItem;

}

public int maximumSize() { return highWaterMark; }
public int minimumSize() { return lowWaterMark; }

public void resetMarks () { highWaterMark = lowWaterMark = size(); }

This new class works fine, at least for a while. Unfortunately, the programmer chose to
inherit the base-class pushMany () method, exploiting the fact that pushMany() does its work by
calling push(). This detail doesn’t seem, at first, to be a bad choice. The whole point of using

extends is to be able to leverage base-class methods.

One fine day, however, somebody runs a profiler and notices the Stack is a significant
bottleneck in the actual execution time of the code. Our intrepid maintenance programmer
improves the performance of the Stack by rewriting it not to use an ArraylList at all. Here’s the

new lean-and-mean version:

class Stack

{

private int topOfStack
private Object[] theData

-1;
new Object[1000];

public void push(Object article)
{ theData[++topOfStack] = article;

}

public Object pop()

{ Object popped = theData[topOfStack--];
theData[topOfStack] = null; // prevent memory leak
return popped;

}

public void pushMany(Object[] articles)
{ assert (topOfStack + articles.length) < theData.length;
System.arraycopy(articles, 0, theData, topOfStack+1,
articles.length);
topOfStack += articles.length;
}

public int size() // current stack size.
{ return topOfStack + 1;
}

CHAPTER 2 ™ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS

Notice that pushMany () no longer calls push() multiple times—it just does a block transfer.

The new version of Stack works just fine; in fact, it’s better (or at least, faster) than the
previous version. Unfortunately, the MonitorableStack derived class doesn’t work any more,
since it won't correctly track stack usage if pushMany() is called. The derived-class version of
push() is no longer called by the inherited pushMany() method, so the highWaterMark is no
longer updated by pushMany (). Stack is a fragile base class.

Let’s imagine you can fix this problem by providing the following pushMany() implementa-
tion in MonitorableStack:

public void pushMany(Object[] articles)

{ for(int i = 0; i < articles.length; ++i)
push(articles[i]);

}

This version explicitly calls the local push() override, so you've “fixed” the problem, but
note that similar problems may exist in all the other overrides of Stack, so you'll have to
examine all of them to make sure they still work.

Now let’s imagine that a new requirement emerges—you need to empty a stack without
explicitly popping the items. You go back into the Stack declaration and add the following:

public void discardAll()

{ stack = new Object[1000];
topOfStack = -1;

}

Again, adding a method seems both safe and reasonable. You wouldn't expect derived-class
(or any other) code to break if you simply add a base-class method, since no derived class could
possibly leverage the previously nonexistent addition. Unfortunately, this reasonable-seeming
modification to the base-class definition has broken the derived classes yet again. Since
discardAll() doesn' call pop(), the high- and low-water marks in MonitorableStack are not
updated if the entire stack is discarded.

So how can you structure the code so fragile base classes are less likely to exist? You'll find
a clue in the work you had to do. Every time you modified the base class, you had to override
all the base-class methods in the derived classes and provide derived-class versions. If you
find yourself overriding everything, you should really be implementing an interface, not
extending a base class.

Under interface inheritance, there’s no inherited functionality to go bad on you. If Stack
were an interface, implemented by both a SimpleStack and a MonitorableStack, then the code
would be much more robust.

Listing 2-1 provides an interface-based solution. This solution has the same flexibility
as the implementation-inheritance solution: You can write your code in terms of the Stack
abstraction without having to worry about what kind of concrete stack you're actually manip-
ulating. You can also use an interface reference to access objects of various classes polymor-
phically. Since the two implementations must provide versions of everything in the public
interface, however, it's much more difficult to get things wrong.

Note that I'm not saying that implementation inheritance is “bad,” but rather that it'’s a
potential maintenance problem. Implementation inheritance is fundamental to OO systems,

CHAPTER 2 PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS

and you can't (in fact, don't want to) eliminate it altogether. I am saying that implementation
inheritance is risky, and you have to consider the consequences before using it.

Generally, it’s safer to implement an interface using a delegation model as I've done with
the MonitorableStack in Listing 2.1. (You delegate interface operations to a contained object
of what would otherwise be the base class.) Both of these strategies are viable ways to incor-
porate inheritance into your system.

But, as with any design decision, you are making a trade-off by using a delegation model.
The delegation model is harder to do. You're giving up implementation convenience to eliminate
a potential fragile-base-class bug. On the other hand, being able to use inherited functionality
is a real time-saver, and these small “pass-through” methods increase the code size and impact
maintainability. It’s your decision whether you're willing to take the risk of a difficult-to-find bug
emerging down the line in order to save you a few lines of code now. Sometimes it's worth the
risk—the base class may have 200 methods, and you'd have to implement all of them in the
delegation model. That's a lot of work to do.

Listing 2-1. Eliminating Fragile Base Classes Using Interfaces

1 import java.util.*;

2

3 interface Stack

4 {

5 void push(Object o);

6 Object pop();

7 void pushMany(Object[] articles);

8 int size();

9 1}

10
11 class SimpleStack implements Stack

12 {

13 private int topOfStack = o;

14 private ArraylList theData = new ArraylList();
15

16 public void push(Object article)
17 { theData.add(topOfStack++, article);
18 }

19

20 public Object pop()

21 { return theData.remove(--topOfStack);
22 }

23

24 public void pushMany(Object[] articles)
25 { for(int i = 0; i < articles.length; ++i)
26 push(articles[i]);

27 }
28

29 public int size() // current stack size.
30 { return theData.size();

31 }

CHAPTER 2 ® PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS

32 }

33

34 class MonitorableStack implements Stack

35

36 private int highWaterMark = 0;

37 private int lowWaterMark = 0;

38

39 SimpleStack stack = new SimpleStack();

40

41 public void push(Object o)

42 { stack.push(o);

43

44 if(stack.size() > highWaterMark)

45 highWaterMark = stack.size();

46 }

47

48 public Object pop()

49 {

50 Object returnvalue = stack.pop();

51 if(stack.size() < lowWaterMark)

52 lowWaterMark = stack.size();

53 return returnvalue;

54 }

55

56 public void pushMany(Object[] articles)

57 { for(int i = 0; i < articles.length; ++i)

58 push(articles[i]);

59

60 if(stack.size() > highWaterMark)

61 highWaterMark = stack.size();

62 }

63

64 public int maximumSize() { return highWaterMark; }
65 public int minimumSize() { return lowWaterMark; }
66 public void resetMarks () { highWaterMark = lowWaterMark = size(); }
67 public int size() { return stack.size(); }
68 }
Multiple Inheritance

Languages that support multiple inheritance let you have the equivalent of multiple extends
relationships in a class definition. If extends is “bad,” surely multiple extends relationships are
worse, but occasionally the moral equivalent of multiple inheritance is legitimately useful. For
example, in the next chapter I'll introduce the concept of a “menu site’—a frame window that
has a menu bar. The main window of my application is both a frame window (a JFrame) and a
MenuSite. A frame that acts as a menu site has all the properties of both base classes, so multiple
inheritance seems reasonable in this context.

47

CHAPTER 2 ™ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS

I've implemented this feature using interfaces and the delegation model I discussed in
the previous section. (My class extends JFrame and implements the MenuSite interface, dele-
gating all MenuSite operations to a default implementation object.) Conceptually, this solution
accomplishes the same thing as multiple inheritance. Since this delegation-based solution is
in common use, you could call this architecture the Multiple Inheritance design pattern.

Here’s the general form of the pattern:

interface Base
{ wvoid f();

static class Implementation implements Base
{ public void f(){/*...*/}
}

}

// Effectively extend both Something and Base.Implementation:

class Derived extends Something implements Base
{ Base delegate = new Base.Implementation();
public void ()
{ delegate.f();

}

The implement/delegate idiom, like inheritance, has the benefit of not having to write
the base-class code more than once. I'm using encapsulation of a default version rather than
derivation from that default version to achieve that end. On the downside, I have to access the
default implementation through a trivial accessor method in the encapsulating class, such as
the one on the first line in (), above. Similarly, the MonitorableStack.push(...) method (on
line 41 of Listing 2-1) has to call the equivalent method in SimpleStack. Programmers grumble
about having to write these one-liners, but writing an extra line of code is a trivial price to pay
for eliminating a fragile base class. C++ programmers will also note that the implement/dele-
gate idiom eliminates all of C++'s multiple-inheritance-related problems (such as implemen-
tation ambiguity).

Frameworks

A discussion of fragile base classes wouldn't be complete without a mention of framework-
based programming. Frameworks such as Microsoft’s Foundation Class (MFC) library have
become a popular way of building class libraries. Though MFC itself is mercifully fading away,
the structure of MFC has been entombed in countless Microsoft shops where the program-
mers assume that if Microsoft does it that way, it must be good.

A framework typically starts out with a library of half-baked classes that don't do everything
they need to do; but, rather, they rely on a derived class to provide key functionality that’s
needed for the base class to operate properly. A good example in Java is the paint() method of
the AWT Component class, which represents a rectangular area of the screen. Component defines
paint(), but you're expected to override paint() in the derived class to actually draw something
on the screen. The paint () method is effectively a placeholder for the rendering code, and the

CHAPTER 2 m PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS

real version of paint () must be provided by a derived class. Most frameworks are comprised
almost entirely of these partially implemented base classes.

This derivation-based architecture is unpleasant for several reasons. The fragile-base-
class issue I've been discussing is one of these. The proliferation of classes required to get the
framework to work is an even more compelling problem. Since you have to override paint()
to draw a window, each different window requires a derived class that overrides paint() to
draw that window. You must derive a unique class from Component for every window that has
to paint itself in some unique way. A program with 15 different windows may require 15
different Component derivatives.

One of my rules of thumb in OO estimation is that a class takes, on average, two to three
weeks to fully implement in Java (including documentation and debugging) and longer in C++.
The more classes you have, the longer it takes to write your program.

Here’s another perspective on the proliferation-of-classes problem: The customization-via-
derivation strategy just doesn’t work if the hierarchy is at all deep. Consider the class hierarchy in
Figure 2-1. The Editor class handles basic text manipulation. It accepts keystrokes and modifies
an internal buffer in response to those keystrokes. The actual buffer update is performed by
the (protected) updateBuffer() method, which is passed keystrokes and updates the buffer
appropriately. In theory, you can change the way that particular keystrokes are interpreted by
overriding this method (Custom Editor in gray in Figure 2-1).

Figure 2-1. A failure of Template Method

Unfortunately, the new behavior is available to only those classes that extend Custom
Editor, not to any existing classes that extend Editor itself. You'll have to derive classes from
Editor, EditableTextControl, and Standalone Editor to get the new key mappings to be
universally supported. You've doubled the size of this part of the class hierarchy. It would be
nice to inject a class between Editor and its derivatives, but you'd have to change the source
code to do that, and you may not have the source code. Design patterns such as Strategy,
which I'll discuss later in this chapter and in Chapter 4, can solve this problem nicely, but a
pure derivation-based approach to customization won't often work.

The Template-Method and Factory-Method Patterns

The updateBuffer() in Figure 2-1 is an example of the Template-Method pattern. In Template
Method, base-class code calls an overridable placeholder method, the real implementation of
which is supplied by the derived class. The base-class version may be abstract, or it may actu-
ally implement a reasonable default operation that the derived class will customize.

Template Method is best used in moderation; an entire class “framework” that depends
on derivation-based customization is brittle in the extreme. The base classes are just too
fragile. When I was programming in MFC, I had to rewrite all my applications every time

CHAPTER 2 m PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS

Microsoft released a new version. Often the code compiled just fine but didn't work anymore
because some base-class method had changed. Template Method is not used in any of the
code I supply in this book.

It’s a telling condemnation of Template Method that most of the Java-library code works
pretty well “out of the box” and that the Java libraries are more useful than MFC ever was. You
can extend the Java classes if you need to customize them for an off-the-wall application, but
they work just fine without modification for the vast majority of applications. This sort of it-
works-out-of-the-box structure is just better than a derivation-based framework. It's easier
to maintain, it’s easier to use, and it doesn’t put your code at risk if a vendor-supplied class
changes its implementation.

Template Method is also an example of how fine the line between “idiom” and “pattern”
can sometimes be. You can easily argue that the Template Method is just a trivial use of poly-
morphism and shouldn't be glorified by the exalted title of pattern.

One reason for discussing Template Method in the current chapter is that you can use a
trivial variant of Template Method to create objects that instantiate an unknown concrete class.
The Factory-Method pattern describes nothing more than a Template Method that creates an
object whose concrete class isn't known to the base class. The declared return value of the Factory
Method is some interface that the created object implements. Factory Method describes another
way to hide concrete-class names from base-class code. (Factory Method is an unfortunate
choice of name. People have a natural tendency to call any method that creates an object a
factory method, but these creational methods are not the Factory-Method pattern.)

Swing’s JEditorPane class provides an example of Factory Method that demonstrates both
what’s right and what’s wrong with Swing. JEditorPane implements a text-control widget that
can display HTML and, as such, is incredibly useful. For example, the following code pops up
a frame that displays some simple HTML text:

new JFrame();
new JEditorPane();

JFrame mainFrame
JEditorPane pane

pane.setContentType ("text/html");
pane.setEditable (false);
pane.setText
(
"<html>" +
"<head>" +
"</head>" +
"<body>" +
"<center>Hello <i>World</i></center>" +
"</body>" +
"</html>"
)s
mainFrame.setContentPane(pane);
mainFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
mainFrame.pack();
mainFrame.show();

CHAPTER 2 m PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS

Allyou need do is set the content type to "text/html" to get the JEditorPane to interpret
the tags for you.

The flip side of JEditorPane is that its underlying design is so complex that it’s excruci-
ating to change its behavior in even trivial ways. The problem I wanted to solve was client-
side-UI layout. Swing’s layout-manager mechanism can be difficult to use for laying out
nontrivial Uls. Looking at Java's JavaServer Pages (JSP) system, I thought, “how nice it would
be to do most of my layout in HTML but have a simple mechanism (such as JSP custom tags)
to call in custom controls where I needed them.” Essentially, I wanted a Panel whose layout
could be specified in HTML (with custom tags). I called this class MarkupPanel because its
layout could be specified with a markup language (HTML + custom tags).

Ilooked, first, at solving this problem by creating a custom LayoutManager, but I abandoned
this approach for two reasons: I didn’t want to build an HTML parser, and it was difficult to asso-
ciate the Component objects that I dropped into the Container with specific locations in the HTML
that specified the layout. I decided to create my panel by modifying the JEditorPane, which did
most of what I wanted already, to support custom tags. Listing 2-2 shows a stripped-down version
of the real MarkupPanel class. I've added support for a <today> tag, which displays today’s date on
the output screen, rather than implementing the generic mechanism I actually use. Even in its
stripped-down form, you get a feel for the work involved in modifying the class to accept custom
tags. It's not a pretty picture.

HTML parsing is done by something called an EditorKit that’s used internally by the
JEditorPane. To recognize a custom tag, you have to provide your own EditorKit. You do this by
passing the JEditorPane object a setEditorKit(myCustomKit) message, and the most convenient
way to do that is to extend JEditorKit and set things up in the constructor (Listing 2-2, line 15).
By default the JEditorKit uses an EditorKit extension called HTMLEditorKit, which does almost
all the necessary work.

The main thing you have to change is something called a ViewFactory, which the JEditorKit
uses to build the visible representation of the HTML page. I've created an HTMLEditorKit deriva-
tive called MarkupPanelEditorKit that returns my custom view factory to the JEditorPane
(Listing 2-2, line 21).

The CustomViewFactory (Listing 2-2, line 29) overrides a single method, create(). Every
time the JEditorPane recognizes a new HTML element in the input, it calls create(), passing
it an Element object that represents the element actually found. The create() method extracts
the tag name from the Element. If the tag is a <today> tag (recognized on line 40), create()
returns an instance of yet another class: a View, whose createComponent () method returns
the Component that’s actually displayed on the screen in place of the <today> tag.

Whew! As I said, Swing is not an example of simplicity and clarity in program design. This
is an awful lot of complexity for an obvious modification. Swing’s architecture is, I think, way
too complex for what it does. One of the reasons for this overcomplexity is that someone went
crazy with patterns without considering whether the resulting system was usable. I wouldn't
disagree if you argued that Factory Method was not the best choice of patterns in the previous
code.

Be that as it may, this code demonstrates an abundance of Factory Method reifications—
the pattern is used thee times in an overlapping fashion.

Figure 2-2 shows the structure of the system. The design patterns are indicated using the
collaboration symbol: a dashed oval labeled with the pattern name. The lines that connect to
the oval indicate the classes that participate in the pattern, each of which is said to fill some
role. The role names are standardized—they're part of the formal pattern description in the

51

52

CHAPTER 2 MPROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS

Gang-of-Four book, for example. The roles taken on by some class are identified in UML by
putting the names at the end of the line that comes out of the collaboration symbol.

Look at the first of the Factory Method reifications: By default, an HTMLEditorKit creates
an HTMLEditorKit.HTMLFactory by calling getViewFactory() (the Factory Method). Markup-
PanelEditorkKit extends HTMLEditorKit and overrides the Factory Method (getViewFactory())
to return an extension of the default HTMLEditorKit.HTMLFactory class.

In this reification, HTMLEditorKit has the role of Creator. HTMLEditorKit.HTMLFactory has
the role of Product, and the two derived classes, MarkupPanelEditorKit and CustomViewFactory,
have the roles of Concrete Creator and Concrete Product.

Now shift focus and look at the classes and patterns from a slightly different perspective. In
the second reification of Factory Method, HTMLEditorKit.HTMLFactory and ComponentView have
the roles of Creator and Product. The Factory Method is creaté(). I extend HTMLEditorKit.HTML-
Factory to create the Concrete Creator, CustomViewFactory, whose override of create() manu-
factures the Concrete Product: the anonymous inner class that extends ComponentView.

Now refocus again. In the third reification, ComponentView and the anonymous inner class
have the roles of Creator and Product. The Factory Method is createComponent (). I extend
ComponentView to create the Concrete Creator, the anonymous inner class, whose override
of createComponent () manufactures the Concrete Product: a JLabel.

So, depending on how you look at it, HTMLEditorKit.HTMLFactory is either a Product or a
Creator, and CustomViewFactory is either a Concrete Product or a Concrete Creator. By the
same token, ComponentView is itself either a Creator or a Product, and so on.

Listing 2-2. Using the Factory Method

import java.awt.*;

import javax.swing.*;

import javax.swing.text.*;
import javax.swing.text.html.*;
import java.util.Date;

import java.text.DateFormat;

public class MarkupPanel extends JEditorPane

{

W oo ~N OV B W IN R

[y
o

public MarkupPanel()
{ registerEditorKitForContentType("text/html",
"com.holub.ui.MarkupPanel$MarkupPanelEditorKit");
setEditorKitForContentType(
"text/html",new MarkupPanelEditorKit());
setEditorKit(new MarkupPanelEditorKit());

[S
AUV A WN R

setContentType ("text/html");
setEditable (false);

Y
W 0N

}

NN
= O

public class MarkupPanelEditorKit extends HTMLEditorKit
{

NN
w N

public ViewFactory getViewFactory()

CHAPTER 2 ™ PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS

24 { return new CustomviewFactory();

25 }

26 //...

27 }

28

29 private final class CustomViewFactory extends HTMLEditorKit.HTMLFactory
30 {

31 public View create(Element element)

32 { HTML.Tag kind = (HTML.Tag)(

33 element.getAttributes().getAttribute(

34 javax.swing.text.StyleConstants.NameAttribute));
35

36 if(kind instanceof HTML.UnknownTag

37 8& element.getAttributes().getAttribute(HTML.Attribute.ENDTAG)
38 ==null)
39 { 7/ <today> tag

40 if(element.getName().equals("today"))

41 { return new ComponentView(element)

42 { protected Component createComponent()

43 { DateFormat formatter = DateFormat.

44 getDateInstance(DateFormat.MEDIUM);

45 return new JlLabel(formatter.format(;

46 new Date()));

47 }

48 b

49 }

50 }

51 return super.create(element);

52 }

53 }

54 }

If you're appalled by the complexity of this system, you're not alone. Factory Method is
just a bad choice of architecture. It takes way too much work to add a custom tag, an obvious
modification to any HTML parser. You'll see many other design patterns in subsequent chap-
ters (such as Strategy) that would have been better choices.

If you're mystified by why things are so complex, consider that the Swing text packages
are extraordinarily flexible. In fact, they’re way more flexible than they need to be for any
applications I've ever written. (I've been told there are actually requirements for this level of
complexity in real programs, but I haven't seen it.) Many designers fall into the trap of making
up requirements because something may have to work in a certain way (as compared to
requirements actually demanded by real users). This trap leads to code that’s more complex
than it needs to be, and this complexity dramatically impacts the system’s maintainability and
ease of use.

In my experience, the degree of flexibility built into Swing is a bogus requirement—a
“feature” that nobody actually asked for or needed. Though some systems indeed need to be
this complex, I have a hard time even imagining why I would need the level of flexibility that

53

CHAPTER 2 ® PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS

Swing provides, and the complexity increases development time with no obvious payback.

In strong support of my claim that nobody needs to customize Swing to this degree is that
nobody (who I know, at least) actually does it. Though you can argue that nobody can figure
out how to do it, you can also argue that nobody has been lobbying for making customization
easier.

I'll finish up with Factory Method by noting that the pattern forces you to use implemen-
tation inheritance just to get control over object creation. This is really a bogus use of extends
because the derived class doesn't really extend the base class; it adds no new functionality, for
example. This inappropriate use of the extends relationship leads to the fragile-base-class
problem I discussed eatlier.

Figure 2-2. Overlapping uses of Factory Method in MarkupPanel

CHAPTER 2 m PROGRAMMING WITH INTERFACES, AND A FEW CREATIONAL PATTERNS

Summing Up Fragile Base Classes

I published an early version of parts of this chapter on JavaWorld, and I know from the
responses there that many JavaWorld readers have discounted at least some of what I've just
said because they’'ve come up with workarounds for the problem. That is, you have a “solu-
tion” to the problem, so the issue is somehow invalid.

If that’s the case, you're missing the point.

You should write your code so you don’t need to even think about these sorts of “solu-
tions.” The problem with fragile base classes is that you are forced to worry about these sorts
of “solutions” all the time, even after you think you have a debugged, functional class. No
“solution” is permanent, since someone can come along and add a method to the base class
that breaks all the derived classes. (Again, imagine that clear() wasn't part of the original
Arraylist class but was added after you wrote the Stack class. The addition seemed harmless,
but it broke your Stack implementation.) The only real solution to the adding-a-malicious-
method problem is encapsulation.

If you've come up with a solution that works, great. My point is that that’s what you
should have done to begin with, and that many of the design patterns discussed later in this
book are elegant solutions to the fragile-base-class problem. All the Gang-of-Four-design-
pattern solutions depend on encapsulation and interfaces, however.

In general, it’s best to avoid concrete base classes and extends relationships. My rule of
thumb is that 80 percent of my code at minimum should be written in terms of interfaces. I
never use a reference to a HashMap, for example; I use references to the Map interface. (I'm using
the word interface loosely here. An InputStreamis effectively an interface when you look at
how it’s used, even though it’s implemented as an abstract class.)

The more abstraction you add, the greater the flexibility. In today’s business environment,
where requirements change regularly as the program is under development, this flexibility
is essential. Moreover, most of the “agile” development methodologies (such as Crystal and
Extreme Programming) simply won’t work unless the code is written in the abstract. On the
other hand, flexibility typically comes at a cost: more complexity. Swing, I think, can be
improved by making it less flexible, which would make it<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>