
www.allitebooks.com

http://www.allitebooks.org

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5 / FM
Blind folio: i

®

Hudson Continuous
Integration in Practice

Ed Burns and Winston Prakash

New York Chicago San Francisco
Athens London Madrid Mexico City
Milan New Delhi Singapore Sydney Toronto

00-FM.indd 1 13/08/13 2:06 PM

www.allitebooks.com

http://www.allitebooks.org

Copyright © 2014 by McGraw-Hill Education (Publisher). All rights reserved. Printed in the United States of

America. Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced

or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written

permission of Publisher, with the exception that the program listings may be entered, stored, and executed in a

computer system, but they may not be reproduced for publication.

ISBN: 978-0-07-180429-5

MHID: 0-07-180429-3

e-Book conversion by Cenveo® Publisher Services

Version 1.0

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-180428-8,

MHID: 0-07-180428-5.

McGraw-Hill Education eBooks are available at special quantity discounts to use as premiums and sales promotions, or for

use in corporate training programs. To contact a representative please visit the Contact Us pages at www.mhprofessional.com.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence

of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no

intention of infringement of the trademark. Where such designations appear in this book, they have been printed with

initial caps.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. All other trademarks are the property of

their respective owners, and McGraw-Hill Education makes no claim of ownership by the mention of products that

contain these marks.

Screen displays of copyrighted Oracle software programs have been reproduced herein with the permission of Oracle

Corporation and/or its affiliates.

Information has been obtained by Publisher from sources believed to be reliable. However, because of the possibility of

human or mechanical error by our sources, Publisher, or others, Publisher does not guarantee to the accuracy, adequacy,

or completeness of any information included in this work and is not responsible for any errors or omissions or the results

obtained from the use of such information.

Oracle Corporation does not make any representations or warranties as to the accuracy, adequacy, or completeness of

any information contained in this Work, and is not responsible for any errors or omissions.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education (“McGraw-Hill”) and its licensors reserve all rights in and to the

work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store

and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create

derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without

McGraw-Hill’s prior consent. You may use the work for your own noncommercial and personal use; any other use of the

work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR

WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED

FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE

WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions

contained in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither

McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of

cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any

information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any

indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the

work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to

any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

www.allitebooks.com

http://www.allitebooks.org

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5 / FM
Blind folio: iii

To my wife, Amy, whose boundless patience and dedication inspire
me in everything I do.

—Ed Burns

I dedicate this book to my wife, Dora, who never stops encouraging
me to take on new endeavors.

—Winston Prakash

00-FM.indd 3 13/08/13 2:06 PM

www.allitebooks.com

http://www.allitebooks.org

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5 / FM
Blind folio: iv

About the Authors
Ed Burns is currently a consulting engineer at Oracle America, Inc.,
where he leads a team of Web experts from across the industry in
developing JavaServer Faces Technology through the Java Community
Process and in open source. He is the author of three other books for
McGraw-Hill: Secrets of the Rock Star Programmers (2008), JavaServer
Faces: The Complete Reference (coauthored with Chris Schalk, 2006),
and JavaServer Faces 2.0: The Complete Reference (coauthored with
Chris Schalk and Neil Griffin, 2009).

Dr. Winston Prakash is currently an architect at Oracle Corporation.
He has extensive experience in object-oriented design and development
of large-scale applications. At present, his main focus is on developing
data-driven, enterprise Web applications using advanced Java EE
technologies. He leads the open source project, Hudson CI Server, at
Eclipse Foundation.

About the Technical Editors
Steve Christou is a software developer with a focus on Continuous
Integration. His experience with programming started with QBasic in high
school and moved to Java and C++ in college. Steven currently has six
years of progressive computer programming experience. He is now the
lead designer of Cobertura, an open-source code coverage tool for Java,
and continues to provide support for Hudson.

Bob Foster is a Consulting Developer at Oracle and an active Hudson
committer. He designed and led implementation of the CPU/Memory
Profiler in JDeveloper 11g. Prior to joining Oracle, he was an Eclipse
contributor and author of the XMLBuddy XML Editor. He worked on several
Integrated Development Environments (IDEs) for C++ and Java that are no
longer in use, beginning 20 years ago, when he wrote the Classy C++
visual editor, which was purchased by Symantec and released as Visual
Architect for Macintosh.

00-FM.indd 4 13/08/13 2:06 PM

www.allitebooks.com

http://www.allitebooks.org

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5 / FM

Contents

Foreword . xi
Acknowledgments . xiii
Introduction . xv

PART I
Essential Knowledge

 1 Getting Started . 3
Installing Hudson . 4

Trying Hudson with the Easy Installation Method 5
Installing Hudson as a Windows Service . 8
Installing Hudson to Start When a User Logs in to Mac OS X 10
Installing Hudson Within Tomcat . 12
Installing Hudson on GNU/Linux . 15
Basic Hudson Configuration . 18
Your First Job: Back Everything Up . 23

Summary . 24

 2 Hudson Precondition Primer . 25
Hudson in the Software Development Lifecycle . 26

Developer . 27
Tester . 28
Manager . 29
Architect . 29
Release Engineer . 29
Example: Orchestration of Roles Around Hudson 29

Software Development as Marionette Theatre Production 30
Development Platforms . 31
Software Configuration Management . 32
Builders . 32

v

00-FM.indd 5 13/08/13 2:06 PM

www.allitebooks.com

http://www.allitebooks.org

vi Hudson Continuous Integration in Practice

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5 / FM

Integrated Development Environments . 39
Eclipse . 39
Oracle JDeveloper . 43
IntelliJ IDEA . 46
NetBeans . 48

Testing Tools . 50
Soft Correctness Testing Tools . 53

Summary . 54

 3 Basic Concepts . 55
Intermediate Hudson Configuration . 56

Adding Source Code Management (SCM) to Your Jobs 56
Your Second Job: A Simple Java Program . 59
Your Third Job: A Simple Servlet . 65
Using the Plugin Center . 69
Your Fourth Job: Advanced Backup Options 75
Hudson Authentication Security . 77
Adding Quality Assurance Systems . 80

Build Notifiers . 89
Configuring E-mail Server . 89
Configuring the Job to Send Build Status Message 90

Summary . 91

PART II
Applying Hudson

 4 Hudson as a Continuous Integration Server . 95
What Is Continuous Integration? . 96
Setting Up the CI Environment . 97
Sherwood County Library . 98

Sherwood Library Software Components . 99
Source Code Management . 103
Build Automation . 107

Maven as an Automated Build Tool . 107
Speeding Up the Build . 108
Managing the Upstream–Downstream Jobs Complexity 115

Continuous Testing . 118
Types of Tests . 118
Viewing the Unit Test Results . 119
Test Result Trends . 120
Code Metrics and Code Coverage . 122

00-FM.indd 6 13/08/13 2:06 PM

www.allitebooks.com

http://www.allitebooks.org

Contents vii

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5 / FM

Continuous Feedback . 123
Extended E-mail Notification . 124

Continuous Delivery or Deployment . 127
Deploying a Java Application to an Applications Server 128
Uploading Build Artifacts to Another Machine 129
Executing Commands on a Remote Machine 131

Summary . 133

 5 Hudson and Automated Testing . 135
Containing Code and Code Under Test . 136
A Quick Tour of the Maven Build Lifecycle . 138
Quick Code Jumpstart: Simple Servlet Testing . 143
Automated Testing: Shields Up! . 153

The Software Lineup . 154
Who Writes the Tests? . 156
Kinds of Tests . 157
Unit and Component Testing with Arquillian in Hudson 159
Hudson Automated Testing Tips . 164

Summary . 166

 6 Hudson as Part of Your Tool Suite . 167
IDE Integration . 168

Creating a New Hudson Job Directly from a NetBeans Project 171
Eclipse Hudson Integration . 172
IntelliJ IDEA Hudson Integration . 174
JDeveloper Hudson Integration . 175

Hudson Issue Tracker Integration . 178
Atlassian JIRA Integration . 178
Bugzilla Integration . 178
Other Issue Trackers . 179

Browser and Desktop Integration . 179
Browser Integration . 179
Desktop Integration . 181
Mobile Integration . 184

Publishing Build Artifacts from Hudson . 185
Artifact Repository . 186
Deploy to Container . 189
FTP Publisher Plugin . 190

Summary . 191

00-FM.indd 7 13/08/13 2:06 PM

www.allitebooks.com

http://www.allitebooks.org

viii Hudson Continuous Integration in Practice

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5 / FM

 7 Distributed Building Using Hudson . 193
Master-Slave Mode . 194

Hudson Slaves . 195
Types of Slaves . 197
Adding a Slave Node to Hudson . 198
Adding an Unmanaged Slave via JNLP Launcher 202
Adding an SSH-Based Managed Slave . 206
Distributing the Builds . 211
Managing Slaves . 217

Summary . 219

 8 Basic Plugin Development . 221
Writing a HelloWorld Plugin . 222

Creating the Plugin Project . 222
Creating a Service Hook . 223
Building the Plugin . 224
Testing the Plugin . 225

HPI Tool . 227
Creating a Skeleton Plugin Project . 228
Building and Running the Plugin Project . 229
Testing the Skeleton Plugin . 230

Understanding the Hudson Plugin Framework . 231
What Is an Extension Point? . 231
Extending an Extension Point . 232
Examining the Sample Extension . 233
Modifying the Sample Extension . 235

Extension UI Configuration . 238
Configuration File Conventions . 239
Configuration UI Rendering . 241
Interaction Between UI and Model . 242
UI Validation . 244
Global UI Configuration . 246

Summary . 248

PART III
The Hudson Lifestyle

 9 Advanced Plugin Development . 251
Extending Various Aspects of Hudson Dashboards . 252

Creating a Custom Rendered Jobs Status View 252
Using the Custom Rendered View . 259
Adding a Custom Column to the Default View 261

00-FM.indd 8 13/08/13 2:06 PM

www.allitebooks.com

http://www.allitebooks.org

Contents ix

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5 / FM

Adding an Action to the Action Panel of the Main Dashboard 262
Custom Decoration of Hudson Pages . 267

Extending Various Aspects of a Hudson Job . 270
Adding a Custom Notifier to a Job . 271
Adding a Custom Link to a Job Dashboard . 275
Creating a Custom Build Wrapper . 283

Summary . 287

 10 Hudson Best Practices . 289
Manage the Hudson Resources Effectively . 290

Tune Memory . 290
Restrict Job History Depth . 292
Monitor the Disk Space . 296

Put Your Hudson Behind a Web Proxy . 298
Do Not Use Your Hudson as a File Server . 300
Periodically Back Up Your Hudson Contents 301

Set Up a Fail-Safe Mode for Your Hudson . 306
Redundant Hudson Server Setup . 307
Monitoring Hudson Setup . 308
Server Switch on Failure . 309
Redirecting HTTP Traffic to a Redundant Server 310

Scale Up the Security of Your Hudson . 311
Restrict Job Access to Certain Users . 311
Add Roles to the Authorization Matrix . 313

Upgrade Your Hudson Diligently . 315
Understand the Hudson Versioning Scheme 316
Upgrade in a Sandbox First . 317

Summary . 318

PART IV
Appendixes

 A Widely Used Hudson Plugins . 321

 B Personal Hudson Instance . 333
Hudson-as-Valet . 334

Optimal Hudson-as-Valet Setup . 335
Hudson for Work Area Maintenance . 336

The Open-Source Liaison Role . 336
The Committer Role . 340

Hudson as General-Purpose Scheduler . 342
Hudson Plot Plugin . 342

Summary . 344

00-FM.indd 9 13/08/13 2:06 PM

www.allitebooks.com

http://www.allitebooks.org

x Hudson Continuous Integration in Practice

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5 / FM

 C Hudson for Windows Developers . 345
Key Enablers for Using Hudson on Non-Java Platforms 346

Build Step . 347
Collect Results Step . 347

Hudson and the Windows Software Platform . 349
Hudson and Automated Testing on Windows 352

Summary . 352

 Index . 353

00-FM.indd 10 13/08/13 2:06 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5 / FM

Foreword

Years ago, Tim O’Reilly coined the phrase “architecture of participation.” His
insight was that successful open source projects all shared one common
trait: the ability for developers outside of the core team to easily extend the

code to meet their needs. Examples of this successful pattern include the Linux
kernel, the Apache Web server, Firefox extensions, and Eclipse plugins. Hudson
was one of the first open source Continuous Integration tools to embrace this
notion. It provided an extensible platform and, in turn, created an ecosystem of
plugins that allowed it to support a myriad of repository, build, and analysis tools in
many different workflows. Kohsuke Kawaguchi, Hudson’s original author, worked
hard to create a vibrant and engaged community around the Hudson project, and
that has been a big part of its success.

In many ways, Hudson changed the face of software development. By making it
significantly easier to implement Continuous Integration for a development team—or
even an entire software organization—it moved what was considered a best practice to
common practice. By allowing developers to more easily automate their builds, it
helped make software production a repeatable process. By lowering the developer cost
of builds, it helped make Continuous Integration mainstream. It is a rare open source
project that can claim to have advanced the state of the art in software development.

The Eclipse Foundation itself is a great example of a large, distributed organization
that relies on Hudson. At the time of writing, we have over 150 separate open source
projects using Hudson as their Continuous Integration server. Our 2013 simultaneous
release, Eclipse Kepler, consisted of 71 projects and 58 million lines of code. It was
built by 420 Eclipse committers from over 50 companies around the world, as well
as hundreds of individual contributors. And it was entirely built with Hudson. In fact,
it is hard to imagine how we could operate without the automation and Continuous
Integration provided by Hudson.

xi

00-FM.indd 11 13/08/13 2:06 PM

xii Hudson Continuous Integration in Practice

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5 / FM

Winston Prakash is the leader of the Eclipse Hudson project, and is intimately aware
of its internal architecture and implementation. I know that he has worked tenaciously
over the past couple of years to improve the reliability, code quality, and scalability of
Hudson. Ed Burns is the leader of JavaServer Faces, and has used Hudson extensively
in managing the complexity of that project. Together the coauthors bring a wealth of
experience and insight to the topic. I am sure that you will find their book a valuable
resource as you embrace the “Hudson Lifestyle.”

—Mike Milinkovich
Executive Director, Eclipse Foundation

June 2013

00-FM.indd 12 13/08/13 2:06 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5 / FM

Acknowledgments

Hudson is a software tool that can help increase team productivity, but
productivity lives or dies at the hands of the team wielding that tool. The
same can be said for authoring a book. Neither Winston nor I could have

been productive in writing this book without the team from McGraw-Hill Education.
Sponsoring editor Brandi Shailer provided firm and experienced guidance through
all phases of the authoring process. I especially appreciated her understanding as
Winston and I juggled our day jobs with the task of writing this book. Acquisitions
coordinator Amanda Russell weathered several episodes of chapter renumbering
and reallocation and managed to keep track of all the moving parts of this book,
entirely using e-mail attachments. Thanks to the illustrators at Cenveo Publisher
Services for turning the rough art from Winston and me into professional images.
Steve Christou and Bob Foster provided timely, in-depth, and above all, frank
technical editing that served both as an advocate for the reader, and an oversight on
cohesiveness. In a world where more and more information is available only online,
and much of that information is coming from self-published individuals, I continue
to believe that curated information from a traditional publishing team is the best
way to deliver high-quality technical content in a portable and easily digestible way.

My personal support team also deserves a huge thank you. My wife, Amy, has
supported me through four books now. With two small kids growing up, each one
has been a different kind of sacrifice for her to pick up the slack I leave due to the
spare-time nature of my technical book authoring arrangement. Thanks to my sons
Owen and Logan as well, for understanding that it doesn’t really take forever to finish
a book; it just seems that way.

xiii

00-FM.indd 13 13/08/13 2:06 PM

xiv Hudson Continuous Integration in Practice

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5 / FM

Thanks to Dad and Mom, Edward M. and Kathy Burns. Your solid support of my
family has made it much easier to get this book done. Thanks also to my brother,
Brendan Burns; as an avid reader, I appreciate your contribution to the book
publishing ecosystem and, more importantly, I appreciate your personal support.

I’d like to give a special thanks to my long-time friends from Vienna, Austria:
Erich Ruetz and Regina Preslmair, their two sons Christoph and Jakob, and Eric Sr.
and Hedwig Ruetz. I look forward to the annual JSF conference in Vienna that I have
been blessed to attend since 2008, and our traditional visits after that conference.

Finally, and above and under all, I give thanks to my Lord and Savior Jesus
Christ, whose blessings make all things possible, including this book.

—Ed Burns
Florida, U.S.A.

First I want to thank Ed Burns for inviting me to write this book with him and
giving me an opportunity to experience, first hand, writing a book. Writing the
initial manuscripts may be easy, but taking them through the editing process and
making them worthy chapters is an involved process. Many thanks go to Brandi
Shailer and Amanda Russell for making the process easy for us. Special thanks go to
Bob Foster and Steven Christou for taking time from their busy schedule to do a
thorough technical review of the chapters. I also want to thank Jim Clark for the
many helpful brainstorming sessions we had about Hudson. Finally, thanks to my
wife and son for letting me work during weekends, sacrificing fun outdoor activities.

—Winston Prakash
California, U.S.A.

00-FM.indd 14 13/08/13 2:06 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5 / FM

Introduction

In the ever-evolving practice of software development, the only constant is
that complexity keeps increasing. In his work on JavaServer Faces at Oracle,
coauthor Ed Burns has found that Hudson is the single most valuable software

tool to enable keeping a lid on that complexity, though it must be carefully applied,
lest even more complexity is created. This book places the Hudson Continuous
Integration product in the context of the larger software development lifecycle as a
means to achieve higher productivity and contain complexity. The reader will learn
how to install Hudson in a way that suits their particular environment. Hands-on
examples, in Java, will be used to explain the depth and breadth of using Hudson.
This approach will lead the reader from novice, to apprentice, to mastery. The
Hudson plugin ecosystem will be examined in detail, and the software architecture
that enables that ecosystem will be fully explained, with code examples leading
the reader to writing their own plugin. The book closes with a thorough treatment
of how to effectively live the Hudson lifestyle, which can be summed up as
“automate everything.”

This book is divided into four parts and contains ten chapters and three
appendixes.

Part I: Essential Knowledge
Reading Part I will give you everything you need to know to be completely effective
using Hudson for the tasks for which it is most commonly used.

xv

00-FM.indd 15 13/08/13 2:06 PM

xvi Hudson Continuous Integration in Practice

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5 / FM

Chapter 1: Getting Started
This chapter introduces Hudson and its fundamental concept of “job” and defines
the characteristics of a production-ready Hudson server. You’ll learn how to install
Hudson and get it running for the most basic kinds of jobs.

Chapter 2: Hudson Precondition Primer
This chapter acknowledges the unique position of Hudson as a tool of tools. As a
consequence of this fact, mastery of Hudson implies mastery of, or at least solid
familiarity with, all of the tools being managed by Hudson. This chapter introduces
the reader to the main classes of tools that you will encounter as you learn to use
Hudson in practice.

Chapter 3: Basic Concepts
This chapter rounds out the essential knowledge for using Hudson in most enterprise
environments. After reading the first three chapters, you will have everything you need
to know to be effective using Hudson for most common tasks. More importantly, you
will have the foundation for learning more.

This chapter introduces Software Configuration Management (SCM) and shows
how to add it to a job. The reader is walked through the process of creating jobs for
a Java application and Java Servlet. The concept of Hudson plugins is introduced
via the Plugin Center and the JobConfig plugin. The sample Hudson instance is
configured for security. Finally, you are introduced to software quality assurance
tools and the most common build notifiers.

Part II: Applying Hudson
Part II builds on the knowledge from Part I and covers usage appropriate for those
who are committed to moving toward Continuous Delivery as their primary approach
for developing and delivering software.

Chapter 4: Hudson as Continuous Integration Server
Continuous Integration is the main task performed by most Hudson instances.
This chapter defines the term with examples and shows how to achieve practical
continuous integration with Hudson. It also introduces the concept of Continuous
Delivery and how to approach it with Hudson.

Chapter 5: Hudson and Automated Testing
Automated testing is essential to Continuous Integration. This chapter provides an
overview of the kinds of automated testing one can perform with Hudson, with
code examples of current testing technologies such as HtmlUnit and Arquillian.

00-FM.indd 16 13/08/13 2:06 PM

Introduction xvii

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5 / FM

Chapter 6: Hudson as Part of Your Tool Suite
Because Hudson is a tool of tools, it’s important to examine how Hudson fits into the
wider tool suite used by software developers. This chapter surveys IDE integration
and issue tracker integration, and closes with some popular ways to stay informed on
Hudson job status in browsers and on mobile devices.

Chapter 7: Distributed Building Using Hudson
Even though significant value can be achieved using a single Hudson instance, many
production environments need more than what a single instance can provide. This
chapter explains when you would need a distributed Hudson system, and how to set
one up. The Matrix Build feature is explained in detail.

Chapter 8: Basic Plugin Development
You can’t get very far in using Hudson without having to install plugins. Similarly,
you can’t get very far in mastering Hudson without learning how to write your own
Hudson plugin. This chapter is tutorial content on only the essential aspects of
writing Hudson plugins.

Part III: The Hudson Lifestyle
Part III stands alone from the preceding two parts but is essential to maximizing the
benefit of using Hudson in a software development team.

Chapter 9: Advanced Plugin Development
This chapter expands on the knowledge in the previous chapter to cover less
common, but still important, aspects of plugin development such as integrating
with various dashboards, accessing SCM information from your plugin, custom
notifiers, and the Jelly UI technology.

Chapter 10: Hudson Best Practices
System administration tasks are an important aspect of Hudson management. This
chapter treats such topics as memory and disk requirements, JVM options, Web proxy
concerns, server redundancy, and upgrading Hudson.

Part IV: Appendixes
The appendixes supplement content in Part III for important areas that do not warrant
an independent chapter.

Appendix A: Widely Used Hudson Plugins
This appendix gives insight into the process used by Oracle for curating the plugins in
the Hudson Plugin Manager, as well as providing an overview of the most important
plugins available there.

00-FM.indd 17 13/08/13 2:06 PM

xviii Hudson Continuous Integration in Practice

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5 / FM

Appendix B: Personal Hudson Instance
This appendix delivers on the promise of showing how to live the Hudson lifestyle
by examining several approaches to using a personal Hudson instance (Hudson-as-
valet) to achieve higher individual developer productivity.

Appendix C: Hudson for Windows Developers
In a nod to the fact that Hudson is used in non-Java development as well as Java
development, this appendix introduces several plugins that make it possible to use
Hudson effectively for Windows-based software development projects.

Intended Audience
Code quality is something that everyone passionately admits is essential, but when
it comes time to pay the cost to achieve it, the passion often dries up, leaving only
the best efforts of the software developers writing the code. As such, software
quality books tend to be seen as a longer-term investment than books on practical
programming skills. In the face of this business reality, the saving grace of Hudson
is that it admits this tendency of people to skimp on quality. Hudson endeavors to
lower the cost of quality to the point where people will actually pay for it (mostly
in terms of developer effort).

The major audience for this book is anyone working in software development.
The Hudson product is clearly a system administration tool, but it is important to note
that most developers are not sysadmins. In fact, developers often see sysadmin work
as taking time away from their primary responsibility of programming. This book is
aimed squarely at developers who want to spend less time on operations tasks and
more time programming, and maintain higher code quality while doing so.

The secondary audience for this book is system administrators who work closely
with programmers. These highly valued team members are often referred to as
“buildmeisters.” In practice, one of the developers often assumes this role, in addition
to their normal programming responsibilities, but if the team is fortunate enough to
have a dedicated buildmeister, this book is for them too.

Retrieving the Examples
Some of the source files used in this book can be downloaded from the Oracle Press
website at www.OraclePressBooks.com. The files are contained in a ZIP file.

00-FM.indd 18 13/08/13 2:06 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5
Blind folio: 1

PART
I

Essential Knowledge

01-ch01.indd 1 13/08/13 2:09 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5
Blind folio: 2

01-ch01.indd 2 13/08/13 2:09 PM

This page has been intentionally left blank

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5
Blind folio: 3

CHAPTER
1

Getting Started

01-ch01.indd 3 13/08/13 2:09 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

4 Hudson Continuous Integration in Practice

This book will explain what Hudson is, and how to use it to increase the quality
and improve the productivity of your software development team through the
practice of Continuous Integration. Teams that practice Continuous Integration

can move faster, and with consistently higher-quality code, than teams that do not.
This first chapter is a tutorial that takes you through the process of downloading,
installing, and configuring a working, resilient Hudson installation. Such an
installation has the following characteristics.

 ■ It runs on a master machine whose primary purpose is to run Hudson.

 ■ It automatically starts when the master operating system starts up.

 ■ It has at least one job that runs regularly. “Job”1 is the term Hudson uses to
describe a unit of work that Hudson can perform. For example, a Hudson
server could have a job that compiles the code in a project, runs tests on
the compiled code, and produces a report with the results.

 ■ Its configuration is set to back up automatically so that the value provided
by the Hudson installation can quickly be restored in the event of failure of
the host machine.

The ability to create a Hudson installation with these characteristics forms the
basis of the skills necessary to apply the techniques in the rest of this book.

Installing Hudson
Hudson is the kind of software that does most of its work when no one is looking. It
differs from other kinds of software such as word processors, spreadsheets, debuggers,
and diagramming programs. For most of the time that Hudson is running, no one is
sitting in front of a user interface telling it what to do. In fact, in most cases Hudson
is installed on a master machine without a dedicated keyboard, mouse, and monitor.
Such a master machine is colloquially called a “server,” and Hudson is essentially
server software. When using Hudson in practice, it is strongly recommended to have
a dedicated server for the sole purpose of running Hudson. Installation instructions for
server software are very platform-dependent, but Hudson does provide an easy-to-run,
cross-platform installation method whose only precondition is a sufficiently recent
Java Development Kit installation. This installation method is only intended to allow
quick and easy evaluation of Hudson and will be described next. The following
sections will cover the more robust and platform-dependent installation methods.

1 The Hudson user interface is inconsistent in the term it uses for “job.” Sometimes the user interface
refers to this concept as “project.” Other times the term “build” is used. This book will always use the
term “job” to mean the unit of work performed by Hudson.

01-ch01.indd 4 13/08/13 2:09 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 1: Getting Started 5

Trying Hudson with the Easy Installation Method
Hudson is written in Java, and thus you must install a Java Development Kit on the
host operating system that is to run Hudson. It’s important that you get the Java
Development Kit (JDK) and not just the Java Runtime Environment (JRE). The JDK
includes development tools such as the Java compiler and the jar tool, whereas the
JRE does not. The latest JDK downloads for all operating systems may be found at
www.oracle.com/java/. Older releases of the JDK are available at that address as
well, except for JDK 6 and earlier on Mac OS X. For JDK 6 and earlier on Mac Os X,
Apple distributes its own JDK releases and these are available through the Software
Update feature accessible from the Apple menu. The examples in this book require
at least JDK 6 to be installed.

Once the JDK is installed, the easy installation method of running Hudson is to
download the Hudson Web Application Archive (war) file. This kind of file is a JavaEE
Web Application Archive suitable for running in a JavaEE application server or similar
software such as Apache Tomcat or Jetty. The Hudson war file provides a built-in
server, which will be used in this section. The Hudson war file may be downloaded
from http://eclipse.org/hudson/download.php.

The simplest syntax for starting Hudson using the easy installation method is to
invoke java -jar hudson-<version>.war, where <version> is the version number of
the Hudson server you downloaded, such as 3.0.0 or 2.2.1. There is one argument
to the Java executable here, something like -jar hudson-3.0.0.war. This syntax will
start Hudson with default values of 8080 for server port and ~/.hudson for the
Hudson home directory. To avoid conflict with existing ports and directories you
may have on your host, let’s pass two additional command-line arguments to the
Java executable. The ordering of arguments to the Java executable is significant: all
arguments that are intended directly for the Java executable must precede all
arguments that are intended for the Hudson program itself. This example has one
of each kind of argument.

 ■ -DHUDSON_HOME=<fully qualified path to the directory to use as
Hudson home>
This argument is intended for the Java executable and is an example of
a Java “system property.” All such arguments must start with “-D” and be
immediately followed by a string of the format name=value. This string is
case sensitive, there must be no spaces between the -D and name, and the
name itself must have no spaces. Also, if the value has spaces, the entire
value must be in quotes.

Hudson needs to write out lots of configuration information when it runs, and
this is the place where it does so. If this argument is not specified, the easy
installation method will use the value .hudson in the current user’s home
directory as the value. To simplify backing up the Hudson configuration,
specify this option explicitly. If the named directory does not exist, Hudson
will create it and populate it with the configuration information.

01-ch01.indd 5 13/08/13 2:09 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

6 Hudson Continuous Integration in Practice

 ■ --httpPort=<some number, usually between 7000 and 9000>
This argument is intended for the Hudson program itself. If this option is
not specified, Hudson will use 8080. In practice, this port is often occupied,
so for this example, a much less likely number is chosen. While HUDSON_
HOME was an argument to the Java executable, httpPort is an argument to
the Hudson main class itself.

With these additional two arguments, the complete invocation syntax to start
Hudson using the easy installation method is shown here:

F:\>java
-DHUDSON_HOME=F:\HUDSON_HOME
-jar E:\hudson-3.0.0.war
--httpPort=7214

The Java executable should immediately begin producing output similar to the
following:

Running from: E:\hudson-3.0.0.war
/E:/hudson-3.0.0-RC2.war
2012-09-07 14:56:49.062:INFO::Logging to STDERR via org.mortbay.log.
StdErrLog
War - /E:/hudson-3.0.0-RC2.war
2012-09-07 14:56:49.109:INFO::jetty-6.1.26
2012-09-07 14:56:49.203:INFO::Extract file:/E:/hudson-3.0.0-RC2.war to
F:\HUDSON_HOME\war\webapp
2012-09-07 14:57:04.984:INFO::NO JSP Support for /, did not find org.
apache.jasper.servlet.JspServlet
2012-09-07 14:57:05.031:WARN::Unknown realm: default
Sep 7, 2012 2:57:05 PM org.eclipse.hudson.HudsonServletContextListener
contextInitialized
INFO: Home directory: F:\HUDSON_HOME
Sep 7, 2012 2:57:07 PM org.eclipse.hudson.HudsonServletContextListener
contextInitialized
INFO:
================>
Initial setup required. Please go to the Hudson Dashboard and complete
the setup
.
<================

Because Hudson is server software, the most effective way to make the graphical
user interface available is via a Web browser. Therefore, most of the configuration
you must do in Hudson is done by visiting the Hudson server in a Web browser.
Because you started the server with a specific value for httpPort, that value must
be included in the URL. For example, you may type either http://localhost:7214/
or http://127.0.0.1:7214/ into a browser on the same host where the Hudson
command was invoked. If the host where the Hudson command was invoked is

01-ch01.indd 6 13/08/13 2:09 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 1: Getting Started 7

different from the host where the browser is running, the hostname or IP address
of that host must be used, but the port number would stay the same. For example,
http://192.168.2.105:7214/ is the IP address in a local area network.

With Hudson 3.0.0, the first time the Hudson console is visited, you are
presented with a configuration screen that allows you to install some optional
plugins. A subsequent example will illustrate this optional installation step. For
now, just click the Finish button at the bottom of the page. A working connection
to the public Internet is required the first time you start it. After installing some
basic required plugins, Hudson will present the message, “Please wait while
Hudson is getting ready to work.” When the initialization is complete, the Hudson
main dashboard will appear, as shown here.

To conclude this example, we will shut down the Hudson instance correctly.
Click Manage Hudson in the navigation list on the left. This view is the gateway for all
Hudson settings not specific to any one Hudson job. At the bottom of this list is a link
titled Prepare for Shutdown. It is a good idea to get in the habit of always clicking this
link and waiting for any currently running jobs to complete before shutting down
Hudson completely. Clicking this link should show a message similar to “Hudson is

01-ch01.indd 7 13/08/13 2:09 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

8 Hudson Continuous Integration in Practice

preparing to shut down.” In this case, we haven’t created any jobs yet, so we can
proceed immediately to the command line from which the Java executable was
invoked and press ctrl-c. Instead of this command immediately causing Java to exit,
it causes Hudson to shut down gracefully. You should see a message similar to the
following in the command-line window.

2012-12-28 07:27:21.204:INFO:oejsh.ContextHandler:stopped
o.e.j.w.WebAppContext{/,file:/C:/.hudson/war/webapp/},file:/E:/hudson-3.0.0.war
2012-12-28 07:27:21.257:INFO:oejut.ShutdownThread:shutdown already commenced

As a precaution to avoid contaminating future exercises, delete the directory that
was specified as HUDSON_HOME.

Hudson offers numerous command-line options to optimize its performance.
Such settings and more will be covered in Chapter 10.

Installing Hudson as a Windows Service
While the easy installation method described in the previous section is not the best
choice for production use, it is useful as a steppingstone to installing Hudson as a
Windows service. This will automatically start up Hudson when Windows starts,
one of the four properties of a resilient Hudson installation. Windows services are
controlled using the Services dialog. There are several ways to bring up the Services
panel, but one way that works on Windows XP, Vista, and 7 is to run the services.msc
executable from the Windows command prompt. The Windows XP Services panel,
without Hudson installed, is shown here.

01-ch01.indd 8 13/08/13 2:09 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 1: Getting Started 9

 1. Make a fresh directory with an easy path, for example, F:\HUDSON_SERVICE.
Go through the steps to start Hudson with the easy installation method again.

 2. Once Hudson is running, click the Manage Hudson link in the list of links in
the upper left of the main Hudson dashboard.

 3. Click the next-to-last link, titled Install as Windows Service, on the Manage
Hudson page.

 4. In the text field labeled Installation Directory, enter the fully qualified path
to the directory you just created and click Install. You should see a message
stating that installation successfully completed and asking if you want to
start the newly installed Windows service. Click Yes. Eventually the Hudson
instance running on port 7214 will stop and the new, Windows service-based
instance will be started on port 8080 by default.

 5. To verify that the new service is running, open the Windows Services panel
and in the Action menu, choose Refresh.

 6. Click the Name column in the table to sort the services by name and scroll
to the letter H.

 7. You should now see a row with the name hudson, with a lower case h.

 8. The last step is to change the port back to 7214.

Visit the Hudson dashboard, now at http://localhost:8080/, and go through the
initial setup steps as with the easy installation method. Prepare Hudson for shutdown,
as in the previous section. Then, go into the Windows Services panel, click on the
name hudson, and in the Action menu, select Stop. Within the directory you created
at the beginning of this exercise, open the hudson.xml file in a text editor. Locate the
line that starts with <arguments>. This is an XML element that contains the arguments
to pass to the Java VM when starting Hudson. If there is an httpPort option, change its
value to 7214. If not, add one, --httpPort=7281, just before the closing </arguments>
tag. Now, go back into the Services panel, click on the name hudson, and choose
Start in the Action menu. Now Hudson will automatically start when Windows starts.

The final step will be to clean up by uninstalling the Hudson Windows Service.
Prepare Hudson for shutdown and then perform the shutdown using the Windows
Services panel. At a command prompt, type

sc delete Hudson

Refresh the Windows Services panel and the hudson row should disappear.
Finally, delete the directory created at the beginning of this exercise to leave your
machine clean for further exercises.

01-ch01.indd 9 13/08/13 2:09 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

10 Hudson Continuous Integration in Practice

Installing Hudson to Start When
a User Logs in to Mac OS X
This tutorial demonstrates how to make it so Hudson starts up automatically when
a specific user logs in to Mac OS X. The Hudson-specific part of this tutorial is
identical to the preceding section about trying Hudson with the easy installation
method. The Mac OS X–specific part uses the Automator utility built into OS X.
Automator is a powerful utility for getting work done on Mac OS X. Its purpose is
similar to Hudson itself: workflow automation. However, because this is an Apple
program, the creation of the workflows can be done visually in a drag-and-drop
fashion. In the Finder, navigate to Applications and launch Automator. In the pop-
up modal dialog that appears when Automator is launched, select Application and
click the Choose button. Automator opens up in the application creation mode.
The basic Automator user interface is shown here.

01-ch01.indd 10 13/08/13 2:09 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 1: Getting Started 11

The left part of the panel shows all the available actions that can make up a
workflow, or application. The leftmost part of the panel lists the categories of actions.

 1. Select Utilities in this list.

 2. Scroll to the right of this panel to expose the Run Shell Script action.

 3. Drag this action from the panel into the area that says “Drag actions or files
here to build your workflow.” The Run Shell Script action comes prepopulated
to invoke the UNIX program cat to delete this text and replace it with the Java
invocation from the easy installation section. Make sure to use fully qualified
paths for the HUDSON_HOME system property, and the argument to the -jar
option, pointing to the Hudson war file.

 4. Save the application by choosing Save in the File menu. Name it Start Hudson
and save it to Applications.

 5. Since this is a Mac, we need a proper icon. Show the Start Hudson application
in the Finder, right-click it, and choose Get Info.

 6. Open up a Web browser and visit http://eclipse.org/hudson/. Arrange the
windows so that both the browser and the info window for Start Hudson
are showing.

 7. Drag the image of Hudson the butler from the browser onto the small robot
icon at the top of the info window. Close the info window.

 8. The final step is to run the Start Hudson application from the finder and
make it so that it starts at login.

Once the Hudson application has started, verify that it’s running by visiting
http://localhost:7214/ in the browser. If HUDSON_HOME was previously an empty
directory, you have to do the initial install again. Prepare Hudson for shutdown as
before and find the Java icon in the dock that represents the running Hudson instance.
Right-click it and choose Quit. You may have to wait a bit for Hudson to completely
shut down. The running status of Hudson can be queried from the command line
with the command ps -e | grep hudson. If the only output shown is a line containing
grep hudson, you can rest assured that Hudson has stopped. Locate the Start Hudson
application in the Finder and drag it to the dock. Once the script has been dragged
into the dock, its icon will appear as shown here.

01-ch01.indd 11 13/08/13 2:09 PM

www.allitebooks.com

http://www.allitebooks.org

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

12 Hudson Continuous Integration in Practice

Right-click the icon and mouse over the word Options. Select Open at Login in
the pop-up menu. Now Hudson will start whenever this user logs in to Mac OS X.

Installing Hudson Within Tomcat
Application containers are a class of server-side software that provides a platform for
running arbitrary server-side software, including Hudson. Apache Tomcat is a very
popular lightweight Java application container. There are many application containers
to choose from, each with its strengths and weaknesses. Finding the right application
container for the job at hand is beyond the scope of this book, but for most purposes,
Tomcat is perfectly suitable for a departmental Hudson installation. This section
will cover just the basics to get Hudson running in Tomcat. This tutorial will use a
Tomcat 7.0 series release, the single binary for which can be downloaded from http://
tomcat.apache.org/. Download one of the bundles from the Core section and unpack
it into an empty directory. Once you’ve downloaded the bundle, getting Hudson
working in Tomcat is really as easy as one-two-three:

 1. Enable the manager Web app.

 2. Pass the HUDSON_HOME environment variable to Tomcat.

 3. Deploy the war file.

Enable the Manager Web App
The most fundamental skill in using an application container is called deployment.
This process describes the practice of making a unit of server-side software, such as
Hudson, available for use. To provide a base level of security, the ability to deploy
software is disabled by default in Tomcat. Enabling it is a simple matter of editing
the tomcat-users.xml file, located in the conf directory of the Tomcat distribution.

Make it so the following XML elements appear within the <tomcat-users>
element.

<role rolename="tomcat"/>
<user username="tomcat" password="tomcat" roles="tomcat,manager-gui"/>
<role rolename="manager-gui" />

The preceding lines must not be duplicated in the tomcat-users.xml file. After
ensuring that the tomcat-users.xml file is correctly configured, we need to ensure

01-ch01.indd 12 13/08/13 2:09 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 1: Getting Started 13

that HUDSON_HOME is passed to Tomcat as an environment variable. One reliable
way to accomplish this is to set the value in the catalina.sh or catalina.bat file, on
non-Windows and Windows platforms, respectively. These files are located in the
bin directory. To illustrate a tip regarding the use of Windows directory names with
spaces, the following example uses “F:\My Hudson Home” as the HUDSON_HOME
environment variable. At the Windows command prompt, use the dir /x command
to output the special syntax to display an alternate name for a directory with spaces
in the directory name. In this case, the value would be F:\MYHUDS~1. With this
value in hand, edit the catalina.bat file and insert the following lines after the initial
list of lines starting with rem.

...
rem
rem
rem $Id: catalina.bat 1344732 2012-05-31 14:08:02Z kkolinko $
rem ---`----

set HUDSON_HOME=F:\MYHUDS~1

rem Suppress Terminate batch job on CTRL+C
if not ""%1"" == ""run"" goto mainEntry
...

This script should be invoked from the bin directory and the argument start must
be passed to the script, like this.

.\catalina.bat start

The analogous edit for the catalina.sh looks like this.

#
$Id: catalina.sh 1202062 2011-11-15 06:50:02Z mturk $

HUDSON_HOME=/Users/edburns/HUDSON_HOME

OS specific support. $var _must_ be set to either true or false.

By default, tomcat starts on port 8080. After startup, the manager app, which will
be used to deploy Hudson, may be found at this URL, http://localhost:8080/manager.
Visit this URL in your browser and find the Deploy section. Find the WAR file to deploy

01-ch01.indd 13 13/08/13 2:09 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

14 Hudson Continuous Integration in Practice

within the Deploy section. Click Browse and use the file chooser to navigate to the
Hudson WAR file, in this case, hudson-3.0.0.war. The manager app is shown here.

Click the Deploy button and wait for Tomcat to deploy the app. If the deployment
is successful, a new row will appear in the Applications section. Click on the entry
in the Path column in this table. If the browser shows an HTTP Status 404 message,
append a / (slash) to the URL and reload the page. This should show the Hudson
installation screen as in the other examples. Tomcat can be shut down by invoking
the catalina.bat or catalina.sh script and passing stop as the argument.

We will revisit Tomcat in Chapter 10 in the context of proxying Tomcat using
Apache Server for the purpose of better security.

01-ch01.indd 14 13/08/13 2:09 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 1: Getting Started 15

Installing Hudson on GNU/Linux
The last of the big three operating systems on which the installation of Hudson will
be demonstrated is GNU/Linux. To be fair, calling GNU/Linux a single operating
system is an oversimplification, and a complete treatment of all the many variants of
GNU/Linux is beyond the scope of this book. This section will use Oracle Enterprise
Linux, which is a variant of Red Hat Enterprise Linux. All of the steps in this section
apply to any variant of GNU/Linux and most variants of UNIX. Furthermore, because
UNIX is really the best choice for running a dedicated Hudson server, a few other
steps are included as recommendations.

Preparing the Host Operating System
More depth on the topic of preparing the host OS for running Hudson can be found
in Chapter 10, but for now, the most basic preparation is to create a UNIX user and
group under which the Hudson server will run. It will be very important to use the
exact same user (and corresponding UNIX uid and gid) to run Hudson on every server
in the case of a distributed build system. This is also important when using UNIX file
sharing (usually Network File System or NFS) to share files between the servers. For this
reason, it is recommended that you manually specify UNIX id and group information
when creating the UNIX user to run Hudson. By convention, the name of this user
and group is hudson. Each UNIX distribution has its own way of creating users and
groups, but the syntax for Oracle Enterprise Linux is as follows. Open a terminal,
log in as root on the system, and type the following three commands.

groupadd --gid 7213 hudson
useradd --gid 7213 --uid 7214 --create-home --shell /bin/bash Hudson
passwd hudson

These commands enable creating the hudson user and group with an arbitrary
uid and gid.

Alternatively, Hudson is available as a convenient RedHat .rpm file that creates
the hudson userid and a hudson UNIX group, as well as a readymade startup script
in /etc/init.d/hudson upon install. There are many ways to install an .rpm file, but
the GNU/Linux yum installer is the easiest way to install the .rpm for Hudson.
Before installing with this approach, verify that the system does not have a hudson
user or group because the install scripts may not complete successfully if these
exist. Make sure the system is connected to the public Internet and is not behind
any proxy servers.

cd /etc/yum.repos.d
wget http://hudson-ci.org/redhat/hudson.repo
sudo yum check-update
sudo yum install hudson

01-ch01.indd 15 13/08/13 2:09 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

16 Hudson Continuous Integration in Practice

You may be prompted to continue the installation after being shown the size of
the download. In this case, answer y. If the installation proceeds successfully, the
output should look like the following.

Loaded plugins: downloadonly, refresh-packagekit, security
Setting up Install Process
Resolving Dependencies
--> Running transaction check
---> Package hudson.noarch 0:3.0.1.b2-1.1 will be installed
--> Finished Dependency Resolution
…
Downloading Packages:
…
 Installing : hudson-3.0.1.b2-
1.1.noarch 1/1
 Verifying : hudson-3.0.1.b2-
1.1.noarch 1/1
Installed:
 hudson.noarch 0:3.0.1.b2-1.1
Complete!

If the uid and gid numbers for the newly created hudson user and group need
to be changed, the /etc/passwd and /etc/group files can be edited, respectively. This
must be done before running Hudson because any files created before making this
change will become inaccessible afterward. It is best to start with the /etc/group
file. Once again, as root, edit the /etc/group file and find the line that starts with
hudson. Change the number at the end of the line to be the desired group number,
as shown here.

hudson:x:7213:

Next the hudson userid is changed. As root, edit the /etc/passwd file and locate
the line starting with hudson. Make the line look like the following.

hudson:x:7214:7213:Hudson Continuous Build server:/var/lib/hudson:/bin/bash

The first number in this line must be the UNIX uid, in this case 7214. The next
number must be the UNIX gid, in this case 7213. Finally, change the text after the
final “:” to be /bin/bash. The Hudson RPM creates the hudson user so that one cannot
log in as that user. This is desirable for security, but a hindrance for easy configuration.

01-ch01.indd 16 13/08/13 2:09 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 1: Getting Started 17

To complete enabling the hudson userid for login, change the password by running
the following command as root.

passwd hudson

Some UNIX distributions will place restrictions on the quality of the password
before allowing the new password to be created.

Starting Hudson and Configuring Basic Settings
After you’ve installed the RPM package, the next reboot will automatically start Hudson.
Alternatively, Hudson can be manually started and stopped using the script placed by
the installer at /etc/init.d/hudson. Pass the start argument to this script to start Hudson.

The version of the startup script installed by the RPM defers to the /etc/sysconfig/
hudson file for most of the settings that need to be customized at startup time, such
as HUDSON_HOME and HUDSON_PORT. If using a different HUDSON_HOME,
make sure it is owned by the hudson user and group. In UNIX, use the su command
to switch users, as shown here.

su - hudson

A good strategy for creating a new HUDSON_HOME is to create the directory
as root and then change its ownership and group to be hudson as shown here:

mkdir /MyHudsonHome
chown hudson /MyHudsonHome
chgrp hudson /MyHudsonHome

Now the /etc/sysconfig/hudson file can be edited to change the HUDSON_HOME
and HUDSON_PORT values. As root, edit the file and locate the HUDSON_HOME
line. Make it look like this:

HUDSON_HOME= "/MyHudsonHome "

And do the same for the HUDSON_PORT.

HUDSON_PORT= "7214 "

Start Hudson with the command /etc/init.d/hudson start. Visit Hudson in your
browser at the URL http://<hostname>:7214/. Depending on the version of Hudson
installed by the RPM, the initial configuration may still need to be performed.

01-ch01.indd 17 13/08/13 2:09 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

18 Hudson Continuous Integration in Practice

TIP
While using a nonstandard value for HUDSON_
HOME does let you easily back up just the
configuration information for the Hudson server,
important configuration information still “leaks” out
into the UNIX home directory of the user running
Hudson. For example, the hudson userid will have its
own Maven settings file. These and other “dot files,” in
UNIX parlance, crop up in the UNIX home directory.
Therefore, a better strategy is to let HUDSON_HOME
be the same as the UNIX home directory. In this
way, all the settings, including those unknown to
HUDSON, can be backed up.

At this point you have learned how to install Hudson on Windows, Mac OS X,
and GNU/Linux, including how to set an alternate HUDSON_HOME and HUDSON_
PORT and automatic startup capability on each platform. We have also covered how
to install Hudson inside Apache Tomcat. We will build on these capabilities in the
remaining sections on further configuring Hudson and building your first job.

Basic Hudson Configuration
The next chapter will provide more details on each of the technologies touched on
in this section. For now, we just introduce the basics for the purpose of completing
the resilient Hudson installation described at the beginning of this chapter. We’ve
already covered how to achieve the first two points: running Hudson on a dedicated
machine, and making it so Hudson starts up automatically when the host operating
system starts. The remainder of the chapter will cover the minimum practical
Hudson configuration and how to configure your first Hudson job. This job will
simply back up the Hudson configuration to a separate location on the filesystem
available to the host OS running Hudson.

Java Installations Within Hudson
While Hudson 3.0.0 requires Java 6.0 to run, it is important to make a distinction
between the installation of Java used to run Hudson itself and the versions of Java
Hudson uses to execute jobs and build software. This exercise will demonstrate
configuring Hudson with a number of JDK instances so that when the time comes to
create jobs, several choices are available.

 1. Visit the Hudson dashboard in your browser and click on the second link in the
upper left-hand corner of the page. This link is titled Manage Hudson. Clicking
this link will take you to a page where you can access nearly all of the settings

01-ch01.indd 18 13/08/13 2:09 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 1: Getting Started 19

that are not specific to any one Hudson job. Other chapters will cover all of the
links on the Manage Hudson page, but at this point just click on the “Configure
system” link. The System Configurations page is shown here.

 2. Scroll down to the subsection titled JDK.

 3. Click the Add JDK button.

 4. Uncheck the “Install automatically” check box. This will cause Hudson to
change the UI to allow manually entering the JAVA_HOME.

 5. While the automatic installation feature is a nice convenience, in practice it
is best to install the software manually.

 6. In a separate terminal window, become the hudson user.

By way of best practices, all software used by Hudson should be saved to the
Downloads directory of the Hudson user. Another useful convention is to install
software to a common directory, also within the home directory of the hudson user.

01-ch01.indd 19 13/08/13 2:09 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

20 Hudson Continuous Integration in Practice

For this book, we will install such software into the “files” subdirectory of the hudson
home directory. The JDK may be downloaded from www.oracle.com/java/. Make
sure to save the downloaded files so they show up as being owned by the hudson
userid. The process of designating the installation directory for Java varies from
platform to platform, but at the end of the installation you will have a fully qualified
path to the Java installation. This value must be entered into the JAVA_HOME box.
The filled-out values for JDK 1.6.0_35 and JDK 1.7.0_07 are shown here.

After filling in the values for Name and JAVA_HOME for at least two JDK
installations, scroll down to the bottom of the page and click Save. The reason
you must put at least two different JDK installations is that Hudson will only offer
the choice of JDK version in the job configuration if there is more than one JDK
installation to choose from.

Ant
Apache Ant will be introduced in the next chapter, but for now it is sufficient to
know that Ant is a tool for compiling collections of Java source files. As with the
JDK installations, Hudson offers an automatic installation option, but we will also
decline to use it here. Unselecting the “Install automatically” check box gives you
the option to manually enter a value for Name and ANT_HOME. Apache Ant may
be downloaded from http://ant.apache.org/. Download at least two versions of Ant
so that Hudson explicitly provides a choice of which version to use in the Hudson
job configuration screen. A completed Ant configuration is shown next.

01-ch01.indd 20 13/08/13 2:09 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 1: Getting Started 21

Make sure to scroll down to the bottom of the page and click Save before
continuing on to the next step.

Maven
Apache Maven will be introduced in the next chapter, but for now it is sufficient to
know that Maven is a tool that does everything Ant does, but adds a large number of
other features especially useful with Hudson. Hudson 3.0.0 has separate installation
sections on the System Configurations screen for Maven 3 and earlier versions of
Maven, but the procedure for declaring Maven installations is the same as for Java
and Ant. Follow the same procedure as in the preceding sections. The reason for the
two Maven sections is for conceptual backward compatibility with earlier versions
of Hudson. A completed Maven configuration section is shown in the illustration
that follows.

 1. Scroll to the bottom of the page and click Save.

 2. Return to the System Configurations screen and locate the section titled
Maven 3 Builder Defaults.

 3. In the Maven 3 item, select the drop-down and change the value from
(Bundled) to be the version you just manually installed.

 4. Scroll to the bottom of the page and click Save.

01-ch01.indd 21 13/08/13 2:09 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

22 Hudson Continuous Integration in Practice

E-mail Notification
Hudson has many means of sending notifications on the status of jobs, but the most
basic and important means of notification is e-mail. The E-mail Notification section
in the System Configurations screen allows you to configure the e-mail settings.
These settings will always be specific to your particular enterprise, but the following
settings have been tested and are known to work with Google’s gmail service. If you
are going to use gmail to send Hudson notifications, it is strongly advised that you
configure Google’s two-step verification service, as well as create an application-
specific password for Hudson. This process will give you a new password, separate
from your regular gmail password, just for the purpose of Hudson sending e-mails.
Doing this step allows you to easily revoke access should the Hudson security
become compromised. In the absence of doing this step, you can use your regular
gmail password. The following values have been tested and are known to work with
Hudson 3.0.0.

Setting Name Setting Value

SMTP server smtp.gmail.com

Default User E-mail Suffix blank

System Admin E-mail Address Hudson <yourGmail@gmail.com>

01-ch01.indd 22 13/08/13 2:09 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 1: Getting Started 23

Setting Name Setting Value

Hudson URL http://<hostname>:<port> (This value will be
prepended to Hudson job URLs so they will
be clickable from within the e-mail.)

Use SMTP Authentication checked

User Name Your gmail address

Password Your gmail password or application-specific
password.

SMTP Port 465

Charset UTF-8

After filling in values, click Save, then return to the System Configurations page
and click the “Test configuration by sending e-mail to System Admin Address” button.

More advanced e-mail settings will be covered in Chapter 3.

Your First Job: Back Everything Up
In the practice of enterprise software development, the configuration settings one
must define while developing the software are nearly as important as the software
itself. Erroneous or incompletely understood configuration settings can lead to
puzzling problems. For example, a far too common class of problem is where
the software works correctly on one developer’s machine, but not on another’s.
These sorts of problems are nearly always caused by erroneous or incompletely
understood configuration settings. Hudson’s core function is to store a large and
arbitrarily complex collection of configuration settings to enable the reliable and
repeatable production of quality assured software. Because software and settings
grow organically, it’s very important to have everything backed up from the beginning
of the effort. The preceding section generated a large enough number of configuration
settings that having to re-enter them all would be more hassle than the effort involved
in setting up an automated backup. That is the core value proposition of Hudson:
make the cost of automating so low that it’s faster to automate than to re-enter, even
once. In this final section of the chapter, we will complete the minimal configuration
for a resilient Hudson server: having one job that runs regularly and having the system
back itself up every night.

It must be mentioned that there are several Hudson plugins dedicated to the task of
backing up Hudson. The use of those plugins is beyond the scope of this chapter, but
it’s very likely that using one of them would yield a more robust and maintainable
backup solution than the simple approach described here. One such plugin is the
JobConfigHistory plugin, which will be covered in Chapter 3. Nonetheless, this section
is primarily an example, and secondarily a useful job.

01-ch01.indd 23 13/08/13 2:09 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

24 Hudson Continuous Integration in Practice

In a Web browser, return to Hudson’s main page and click on the first link in the
upper-left corner of the page, titled New Job.

In the “Job name” field, type Nightly HUDSON_HOME backup. Click OK. This
takes you to the Job Configurations screen. Most of the configuration will be left with
default values for this job, but rest assured that every field will be touched upon
somewhere in this book.

The first check box is titled Discard Old Builds. Enter the value 1 into the “Max
of builds to keep” field. This field tells Hudson how many builds to save. This value
has no impact on the number of backups that will be saved. It only controls how many
build logs (and other job execution—specific records) to keep.

Find the Build Triggers section. Check the “Build periodically” check box. This
reveals a text area into which a value is entered that tells Hudson to run this job every
so often. Clicking on the “?” icon next to the text area will bring up context-sensitive
help, which is particularly useful in this case. For now, just enter the value @midnight
to indicate that the job should be run every day at midnight.

Locate the Build section. Click the “Add build step” button. For simplicity, we
will choose “Execute shell.” Note that, by definition, what you enter here will be
OS specific. On UNIX, the following commands will work. Assume that the path /
mnt/HudsonBackup is owned by the hudson userid and group and is a directory on
a separate physical hard disk from the one that holds the hudson home directory.
The following commands will back up the hudson home directory to a file in /mnt/
HudsonHome.

export BACKUP_ROOT=/mnt/HudsonBackup
cd ${BACKUP_ROOT}
cp -r ${HUDSON_HOME} HUDSON_HOME-${BUILD_ID}-backup
tar -cf HUDSON_HOME-${BUILD_ID}-backup.tar HUDSON_HOME-${BUILD_ID}-backup
gzip HUDSON_HOME-${BUILD_ID}-backup.tar
rm -rf HUDSON_HOME-${BUILD_ID}-backup
(ls -t|head -n 5;ls)|sort|uniq -u|xargs rm -rf

The last line in the shell input removes all but the last five entries from the
backup directory.2

Summary
This chapter introduced Hudson and its fundamental concept of “job” and defined
the characteristics of a resilient Hudson server. The next chapter will explain the
technologies and concepts introduced in this chapter in greater detail, setting up the
remainder of the first part of the book.

2 Thanks to @thelsdj on Twitter for the script, via StackOverflow.

01-ch01.indd 24 13/08/13 2:09 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5
Blind folio: 25

CHAPTER
2

Hudson Precondition
Primer

02-ch02.indd 25 13/08/13 2:58 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

26 Hudson Continuous Integration in Practice

The previous chapter introduced Hudson and explained the process of setting
up a working Hudson instance and creating a simple job. One thing that is
immediately apparent after completing that first job is the unique nature of

Hudson: it’s a product that is only useful in combination with other products. For
this reason, skill in using Hudson is only valuable when combined with skill in
using the other products with which Hudson integrates. This chapter introduces the
tools most commonly used with Hudson, and introduces the software development
concepts in which Hudson can play a central role. It is beyond the scope of this
book to provide full coverage of all these tools, but references are provided where
full coverage can be found.

Hudson in the Software
Development Lifecycle
It is difficult to understate the importance of software in history and in today’s
economy. Even though software is an extremely recent development in history,
it is only the fifth knowledge storage medium in history. Philip G. Armour, in his
2003 book The Laws of Software Process, identifies five knowledge storage media
in history: DNA, brains, tools, printed media, and software. The pervasiveness of
software and its impact on everyone’s life means that software should be as high
quality as possible. To achieve high-quality software, the processes for creating,
testing, documenting, delivering, and maintaining software should be as good as
possible. This is the purpose of the software development lifecycle.

Though the sole purpose of the software development lifecycle is to make
software, many ways have been devised over the years to partition the required tasks,
with various names such as “waterfall,” “spiral,” and “agile.” Such topics are well
beyond the scope of this book, but all of these approaches are made more successful
when automation can be brought to bear in their execution. This is where Hudson
comes in. Regardless of the process used for software development, or the number
of people involved, Hudson can be used to achieve higher-quality software.

The most basic and common usage of Hudson in the software development
lifecycle looks like what’s shown in Figure 2-1.

In this simple usage example, the only role represented is the developer. Several
developers are simultaneously producing software and using Hudson to verify the
correctness of their work.

Let’s take a look at some of the different roles one finds in a software development
effort and examine how they might use Hudson. There are many other ways of breaking
down the roles, and not all of them are covered here. Only those roles that typically
interact directly with Hudson are discussed. Each role has different tasks to perform
at different times during the lifecycle. Also, it is very common for individuals to take
on different roles at different times depending on the size and nature of the project.

02-ch02.indd 26 13/08/13 2:58 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 2: Hudson Precondition Primer 27

In the smallest possible project, one person can perform all the roles, and in larger
enterprises each role is performed by a different person. Figure 2-2 illustrates some roles
and their shared dependency on Hudson.

Developer
The developer is the most obvious role in the software development lifecycle. The
developers are the ones who write the code and the accompanying tests that prove
its basic correctness. Developers typically work on small chunks of functionality
over small chunks of time, saving their work frequently using a class of tool called

FIGURE 2-1. Basic Hudson usage

SCM

Write code and
tests

Hudson

Reproduce
problem locally

Fix problem
locallyWait for Hudson

to clear

Commit code and
tests

No

No

No

Run tests locally

Yes

Yes

Yes

Done

Developer

Hudson
clear?

My fault?

Hudson still
clear?

02-ch02.indd 27 13/08/13 2:58 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

28 Hudson Continuous Integration in Practice

Software Configuration Management (SCM). SCM helps developers collaborate on
a software project by minimizing the chances that the saved work from multiple
developers will conflict. The act of saving work to SCM is known by various names,
depending on the SCM in use. Common names are “commit,” “push,” “put back,”
“revert,” and “check-in.” It is common practice for a commit to include both the
source code of the product being developed and the unit tests that demonstrate
the correctness of this code. Hudson comes into play by continuously running
the collected automated tests and producing a report of the test results. Developers
must refrain from committing code unless all of the tests are running successfully.

Tester
Although common best practice dictates that the developers write their own tests
at the same time they write production code, the formal role of the tester is still
essential. The tester role produces different kinds of tests than those written by the
developer, but generally, all the tests produced by the tester role are broader in
scope than developer-written tests. Chapter 5 provides more details on the different
kinds of tests in the software development lifecycle. Like the developer, the testers
commit their tests to an SCM, which is similarly used by the Hudson instance.
There may be separate Hudson jobs for developer tests than for tester tests, and in
this case, the testers will pay particular attention to those jobs running their tests,
and the reports generated from their results.

FIGURE 2-2. All of the roles in the software development lifecycle depend on Hudson.

Hudson

Developer Tester Manager Architect Release
Engineer

02-ch02.indd 28 13/08/13 2:58 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 2: Hudson Precondition Primer 29

Manager
Though the manager role doesn’t usually write code or tests, managers still have a
very important function in helping those who do. The manager uses Hudson to keep
track of trends as milestones are approached and achieved. As explained in Chapter 3,
the kinds of reports a manager cares about include the test result trend reports
produced by the developer and tester, and also the higher-level reports regarding
code quality, system performance, and even bug count and resolution rates. The
managers may also create their own Hudson jobs that aggregate reports from the
jobs maintained by the developer and tester, creating a “dashboard” that simplifies
their task of reporting project status to key stakeholders.

Architect
In this context, the architect role is responsible for defining the modules of the
software being produced and how they interact with each other. In projects using
Hudson, the architect applies that responsibility to the stewardship of the Hudson jobs
created and maintained by the developer. The most important ingredient of success
with Continuous Integration is responsiveness: The production of report results from
the Hudson jobs looked at by the developer role must take at most ten minutes. The
architect must ensure that the system is decomposed into modules (buildable units)
and corresponding Hudson jobs to achieve and maintain that ten-minute maximum
goal. The architect is often responsible for knowing the universe of possible Hudson
plugins and how they can best be used to give useful feedback to the developer, tester,
and manager. In this capacity the architect works with the release engineer to make
sure the desired set of plugins is installed and working correctly.

Release Engineer
Traditionally the role of release engineer has the most to gain when the other roles
have bought into the value of Continuous Integration. The release engineer can
be thought of as the gatekeeper who sends the packaged output of the work from
all the other roles out into the larger world. They are often the ones responsible
for the technical aspects of the build system and may help ensure that everyone’s
builds, both individually and on Hudson instances, are running as efficiently as
possible. Release engineers use Hudson to collect artifacts produced by other roles
and bundle them into a larger product. Release engineers usually span multiple
projects and need to be able to cope with process differences between those
projects, including adjusting for varying levels of process maturity and use of
Continuous Delivery tools such as Hudson.

Example: Orchestration of Roles Around Hudson
Figure 2-2 illustrated the fact that all of the roles in the software development lifecycle
may leverage Hudson. The following example illustrates this in greater detail.

02-ch02.indd 29 13/08/13 2:58 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

30 Hudson Continuous Integration in Practice

The Acme Company has an in-house system for ordering office supplies. The system
conforms to the three-tier architecture, with each tier (presentation, business logic, and
persistence) having a three-person developer team. One of the developers on the
business logic team is the architect. A single tester and release engineer are allocated.
All of them report to one manager. This arrangement is shown here.

Tester ManagerArchitect Release
Engineer

Presentation Persistence

Business Logic

Of�ce Supply System Development Team

The architect has decided that three Hudson instances will be used by the team.
The presentation team maintains its own Hudson instance for its developer and
integration tests, with the tester role helping to write the latter. They prefer to have
their own Hudson instance to accommodate the unique testing requirements inherent
in presentation technologies, for example, accommodating different browsers running
on different operating systems. The release engineer helps the presentation team
configure and maintain this Hudson instance. The business logic and persistence
teams share a Hudson instance because their testing requirements overlap in the area
of database requirements. Finally, the release engineer maintains the official Hudson
instance for the whole team, which is carefully watched by the manager, and the
reports displayed on this Hudson instance often find their way into presentations
given by the manager to the larger company.

In addition to the Hudson instance architecture, the architect works with each
team to define module boundaries and the contracts that exist between each module.
This helps the architect achieve the all-important ten-minute responsiveness goal
so that developers can maintain maximum velocity.

Software Development
as Marionette Theatre Production
It is helpful to use the analogy of a marionette theatre to explain the many different
entities one encounters when using Hudson. The software development lifecycle
can be thought of as a theatre production. The roles of developer, tester, architect,
manager, and release engineer can be thought of as marionette manipulators, the

02-ch02.indd 30 13/08/13 2:58 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 2: Hudson Precondition Primer 31

many tools and technologies used in the production as the marionettes, and Hudson
as the stage where it all comes together. Of course, it’s a special kind of stage, where
the manipulators encode the knowledge of how to manipulate their marionettes
so that the show can go on without the manipulators having to do the work every
time the show is performed.

HudsonFind bugs

RCP

Developer

SCM PMDMaven Reports

Java JUnit Selenium

Tester ManagerArchitect
Release
Engineer

Hudson

In this section we introduce the tools you must understand to effectively use
Hudson: the characters in the Hudson show. After introducing the characters, an
example is provided that shows how Hudson uses each in the context of the software
development lifecycle. All of the tools in this section must be installed both on the
developer’s local workstation, and also in the Hudson instance.

Development Platforms
The first choice in many modern software development endeavors is the development
platform. Hudson is primarily used in software development endeavors that use
the Java platform. As such, this book focuses mainly on this usage. However, there
is significant and productive use of Hudson in non-Java platforms, most notably
Windows .NET and Ruby. (Appendix C covers Hudson for Windows Developers.) Of
course, Hudson is very frequently used for non–software development tasks, such as
system administration and monitoring. These usages will be covered in the book. The
choice of platform is sometimes tied to the operating system that will be used as the
runtime for the finished software product. For example, .NET projects most commonly
run only on Windows and Apple AppKit Objective-C projects only ever run on Mac
OS. Hudson can be useful in many different platforms and environments.

02-ch02.indd 31 13/08/13 2:58 PM

www.allitebooks.com

http://www.allitebooks.org

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

32 Hudson Continuous Integration in Practice

One very important usage of Hudson that applies to platforms and operating
systems is the concept of “matrix build.” This is a Hudson feature specifically
designed for software development endeavors whose product needs to work on a
variety of operating systems and runtimes. The matrix build feature lets the product
be tested in a wide variety of environments with a minimum amount of work and
maintenance. This feature is covered in detail in Chapter 7.

Software Configuration Management
Most software professionals are familiar with some form of software configuration
management (SCM), but it wasn’t that long ago when a shared hard disk where
everyone agreed not to edit the same file at the same time was not uncommon.
Thankfully, the pervasiveness of the network has made SCM the norm. In all forms
of SCM, there is the notion of the repository. The repository is the place where the
source files for all aspects of the project are stored. It’s important to note that when
it comes to Continuous Delivery, all source files: configuration, settings, build scripts,
tests, XML, properties files, and, of course, source code—absolutely everything—
must be stored in the SCM system. A good rule of thumb to tell if something should
be maintained in SCM is this: can this file be automatically generated by a tool in
some way? If the answer is no, the file should probably be in SCM. Obviously, this
excludes committing binary files to SCM. The other key notion with SCM is versions.
All the files stored in the SCM system are subject to a lifetime: they are born (initially
committed), they get older (changes are made and committed to the repository), and
sometimes they die (they are removed from the system or renamed to something
else). These two notions, repository and version, are the central ideas of all SCM.

SCM systems can be classified based on how they present the notion of repository.
There are two cases. The basic case is a distributed SCM. In this kind of SCM, there
are actually as many copies of the entire repository as there are individuals using
the instance of the SCM. Changes can be fluidly copied between repositories using
commands such as push and pull. In distributed SCM, one repository is commonly
designated as the most important one, and the individual who manages that repository
is very careful about what changes get pulled in. The two most popular SCM systems
used with Hudson are Git and mercurial. The latter, which is a degenerate case of the
former, is a non-distributed SCM. In this kind of SCM, there is one repository and all
individuals using it must commit and check out their changes from it. This form of SCM
is much older and less agile than distributed SCM, but, due to its age, non-distributed
SCM is currently in more widespread use. The two most popular non-distributed SCM
systems are Subversion and CVS.

Regardless of the type of SCM, most Hudson jobs begin by doing a pull or a
checkout from some repository.

Builders
Once you have some source code, you’re going to want to compile it, and this is
where builders come in. “Builder” is the term Hudson uses for a software tool that

02-ch02.indd 32 13/08/13 2:58 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 2: Hudson Precondition Primer 33

uses other tools, such as dependency managers, compilers, and linkers, to process
multiple source files and create a binary artifact that can be executed in some way.
Some executable artifacts can be executed directly by an operating system, such as
.exe files on Windows. Some executable artifacts require an intermediate tool, itself
running directly on the operating system, such as a .jar or .class file running in a Java
Virtual Machine. There are many different kinds of builders and most of them can
be directly used with Hudson. When the builder is done doing its job, some code
is ready to execute.

The two most common builders in use with Hudson are both open source projects
from the Apache Software Foundation: Maven and Ant. Both of these builders have
built-in support with Hudson, but many other builders, such as Gradle, Rake, Make,
and MSBuild, are available as external plugins. Windows-based builders are covered
in Appendix C.

Apache Ant
Apache Ant was the first widely popular build system for the Java platform, emerging
four years after Java itself, in 2000. The input to Ant is a build script, named build.
xml by default. In most cases, this file consists of <property> and <target> elements.
Within a <target> element, a variety of “tasks” are used to perform actions relating
to the compilation, assembly, and other build-related tasks for Java programs. Ant
does not impose any structure on how you arrange your source files, nor does it
have any built-in mechanism for managing compilation classpaths and intramodule
dependencies, though the Apache Ivy project has grown up to fill this need. Ivy
makes the Internet-accessible software repository feature of Maven available to
Ant build files, automatically adding the requested software to the compilation
classpath. Absent the use of Ivy, developers are on their own to use Ant primitives
to satisfy the requirements of compilation classpaths and intramodule dependencies.

Here is a simple build.xml file that compiles a Java class and produces a jar when
the ant command line is invoked from the same directory that contains the build.xml
file. This jar can be executed by the Java runtime interpreter with the command
java -jar target/helloant.jar, producing the familiar “Hello Ant!” on the command line.

<?xml version='1.0' encoding='UTF-8'?>
 <project name="01_ant" default="main" basedir=".">
 <target name="main">
 <mkdir dir="target/classes" />
 <javac srcdir="src/main/java" destdir="target/classes"
 includeAntRuntime="false"/>
 <jar destfile="target/helloant.jar" basedir="target/classes">
 <manifest>
 <attribute name="Main-Class"
 value="net.hudsonlifestyle.HelloAnt" />
 </manifest>
 </jar>
 </target>

02-ch02.indd 33 13/08/13 2:59 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

34 Hudson Continuous Integration in Practice

 <target name="clean">
 <delete dir="target"/>
 </target>

</project>

The directory structure for this project follows the format of a Maven project,
which will be explained in the next section. Ant does not impose any restrictions
on where files are placed. The directory structure is shown here.

build.xml
src/main/java/net/hudsonlifestyle/HelloAnt.java

To complete the example, here is the Java source file.

package net.hudsonlifestyle;

public class HelloAnt {

 public static void main(String args[]) {
 System.out.println("Hello Ant!");
 }
}

For complete coverage of Ant, see the self-contained and very informative Ant
Manual, at http://ant.apache.org/manual. For complete coverage of Apache Ivy,
start with http://ant.apache.org/ivy/history/latest-milestone/tutorial/start.html.

Apache Maven
For a very long time, Apache Ant was the only game in town for building Java
projects. By 2005, a viable contender had emerged in the form of Apache Maven
2.0. The 1.0 version of Maven, which is largely incompatible with the 2.0 version,
was not very widely adopted and is seen mainly as a steppingstone to the more
enterprise-ready 2.0. Maven is similar to Ant in that they both use XML as the format
for their input files. They also both use an arrangement of elements within those
XML files to perform actions relating to the compilation, assembly, and other build-
related tasks for Java programs. There the similarities end.

The most important difference between Ant and Maven is a philosophical one.
With Ant, the build script tells Ant exactly what to do. Ant won’t do anything
without explicitly being told to do it in a build script. With Maven, the input file,
pom.xml by default, provides hints to Maven so that it can perform any number of
built-in actions. Maven makes extremely heavy use of conventions for all aspects
of its functionality. In order to use Maven effectively, you have to understand these
conventions very well. Failure to fully understand the conventions of Maven can

02-ch02.indd 34 13/08/13 2:59 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 2: Hudson Precondition Primer 35

lead to what feels like fighting with the software to get it to do what you want. The
thing to keep in mind with Maven is this: Maven is going to do what it wants; you
just have to give it hints so that what it wants happens to be the same as what you
want. This philosophy is commonly known as “convention over configuration.”
Rather than the software requiring all configuration to be explicitly declared,
naming conventions are used to reduce or eliminate the configuration entirely.

Mastery of Apache Maven is a topic for a book in itself, and indeed there are
several of those. A very solid introduction is found in the Web site/book “Maven
by Example,” from Sonatype, the company that created Maven and continues to
sponsor its development at Apache. The entire content of the book may be found
at www.sonatype.com/resources/books/maven-by-example/. To round out the
appropriate level of coverage of Maven here, we will simply touch on a few of the
main concepts: the Dependency Management System, the Project Object Model,
and plugins.1

Maven Dependency Management Much of the power in Maven comes from its
built-in dependency management system. This system is built around the concept
of the Java jar file. Every piece of reusable Java code ever written is distributed in
jar files. Maven honors this fact by defining elaborate structure and infrastructure
for identifying, transferring, packaging, and otherwise making jar files available for
use in creating Java programs. The dependency management system in Maven has
the concept of an “artifact repository.” This is simply a Web site where jar files are
available, with the vitally important caveat that the arrangement of the directories
in the Web site conforms exactly to the conventions expected by Maven. This
convention is built around the answers to the two most pressing questions a
build system might have about a piece of reusable software: “What is it called?”
and “what is its version number?” Maven introduces a two-level name to answer
the first question. The first level is the groupId. This usually corresponds to the
name of the organization that creates and maintains the artifact, and sometimes
contains project-specific names as well. By convention a groupId looks like a
Java package name, for example: org.glassfish or net.sourceforge. The second
level is the artifactId. This always corresponds to the concrete name by which the
reusable software is known.

The second question, “what is the version number?” is sensibly answered with
the familiar N.N or N.N.N (major.minor.patch-build) syntax. For example 2.0,
and 1.3.5 are valid version numbers. Maven also allows non-numeric characters
in version numbers, such as 2.2.0-m04. One particular non-numeric sequence
in version numbers is the suffix -SNAPSHOT. If a version number ends with
–SNAPSHOT, Maven treats it specially and always tries to download the latest

1 For further information on Maven, the authors suggest http://www.sonatype.com/Support/Books/Maven-
The-Complete-Reference or http://www.sonatype.com/Support/Books/Maven-By-Example

02-ch02.indd 35 13/08/13 2:59 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

36 Hudson Continuous Integration in Practice

timestamped instance of that artifact it can find. SNAPSHOT builds represent
development in progress. Finally, the 3-tuple of groupId, artifactId, and version are
known as GAV coordinates and expressed like this: javax.faces:javax.faces-api:2.2,
where javax.faces is the groupId, faces-api is the artifactId, and 2.2 is the version.

Project Object Model While Ant imposes no structure on how source files are
arranged in the file system, Maven imposes a very strict and complete structure. It is
true that in most cases Maven provides ways to customize this arrangement, but most
often people just choose to do things the Maven way. While this may sound draconian,
the truth is that conforming to this arrangement has been a huge productivity boost for
the entire community of Java developers using Maven. Once one learns the Maven
Project Object Model, one immediately knows where everything is in any project that
uses Maven. Maven follows the old adage, “Have a place for every thing and keep
every thing in its proper place.” This adage applies to both aspects of the Project Object
Model: the arrangement of files in the file system, and the structure of the Project
Object Model descriptor: the pom.xml file.

Where Ant has the build.xml file, Maven has the pom.xml file. Pom files conform
to an XML schema, and as such you must be very careful to conform exactly to that
schema. A simple pom.xml file analogous to the previous Ant example follows.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.
apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>net.hudsonlifestyle</groupId>
 <artifactId>hellomvn</artifactId>
 <version>1.0</version>
 <packaging>jar</packaging>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <version>2.4</version>
 <configuration>
 <archive>
 <manifest>
 <mainClass>net.hudsonlifestyle.HelloMvn</mainClass>
 </manifest>

02-ch02.indd 36 13/08/13 2:59 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 2: Hudson Precondition Primer 37

 </archive>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

The most important line here is <packaging>jar</packaging>. This tells
Maven that the files for which this pom.xml has responsibility are intended to
add up to a Java jar file. The XML within the <plugin> element for the maven-jar-
plugin gives advice to Maven to ensure that the generated jar file is executable.
Note the groupId, artifactId, and version (GAV) elements within the <plugin>
element. This GAV uniquely identifies the library providing the behavior of
generating the jar file. The Java source code is exactly the same as in the Ant
example except that the class name is HelloMvn and the message printed out is
“Hello Maven!”

It’s also important to note that nowhere in the pom.xml is the location of the Java
source file mentioned. This is because Maven first checks src/main/java as the source
root for source files. If the directory src/test/java existed, it would be assumed to
contain automated tests and these would automatically be invoked at build time. The
command-line invocation to cause Maven to inspect the pom.xml file, compile the
Java source file, and build the executable jar is a simple mvn install. This actually
puts the jar file in two places, the “target” directory and the “local repository.” This
is a special area on your local hard disk where Maven stores artifacts after they are
built, and also after they are downloaded from a remote repository. The resultant jar
can be invoked with java -jar target/hellomvn-1.0.jar. The jar file name is simply the
artifactId, a dash, the version, and “.jar”.

Maven is notorious for producing verbose build output, even without running
the build with the -X argument to mvn, which instructs the system to produce more
verbose output. Two elements of this output are interesting now: the test output and
the build result. The test output section looks like this:

[surefire:test]
No tests to run.
Surefire report directory: E:\02_mvn\target\surefire-reports

 T E S T S

Results :
Tests run: 0, Failures: 0, Errors: 0, Skipped: 0

02-ch02.indd 37 13/08/13 2:59 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

38 Hudson Continuous Integration in Practice

This section of the output is where the output of running the tests located in src/
test/java is first reported. Hudson ultimately culls this data into reports that provide
much of the value-add that motivates people in the manager and architect roles to
want to use Hudson in the first place. Even in the simple “Hello Maven!” example,
Test Driven Development is assumed. This assumption is part of the philosophy of
Maven being a software layer designed to fit the software development lifecycle.
Chapter 5 will cover Test Driven Development in more detail.

The build result section looks like this:

[install:install]
Installing E:\02_mvn\target\hellomvn-1.0.jar to
E:\SHARED_TMP\Documents\JavaEE\workareas\mvnrepository\net\hudsonlifestyle\
hellomvn\1.0\hellomvn-1.0.jar
Installing E:\02_mvn\pom.xml to E:\mvnrepository\net\hudsonlifestyle\hellomvn\
1.0\hellomvn-1.0.pom
--
BUILD SUCCESS
--
Total time: 11.515s
Finished at: Sat Jul 14 09:37:13 EDT 2012
Final Memory: 7M/17M
--

The BUILD SUCCESS message is your quick visual indicator that everything
went as expected. If anything went wrong with the build, including test failures,
the message would be BUILD FAILURE.

Maven Plugins and the Maven Build Lifecycle Absolutely everything of interest
done by Maven is done by a plugin in the context of the Maven build lifecycle. For
example, even though the preceding pom.xml didn’t explicitly state it, the maven-
compiler-plugin was used during the compile lifecycle phase to compile the Java
source files. The command-line arguments to the Maven executable, mvn, are called
“goals.” These provide advice to the build lifecycle to achieve the desired outcome
when invoking Maven. The main reason to explicitly mention a plugin in a pom.xml
is when specific configuration information needs to be provided. In this case, the
maven-jar-plugin must be told what to put as the value of the Main-Class entry in
the MANIFEST.MF file so that the Java interpreter knows what class to run first.
Most of the work in using Maven comes from poring over the documentation for
its many and varied plugins to find out what special incantations to put inside the
<configuration> section. Any Maven plugins that pertain specifically to Hudson will
be explained in the context of their usage with Hudson.

This section introduced some of the characters in the Hudson show. While
an Integrated Development Environment (IDE) is one of the rare tools that is

02-ch02.indd 38 13/08/13 2:59 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 2: Hudson Precondition Primer 39

not invoked by Hudson, it is important to introduce this tool because, in many
ways, it is the interface developers use to interact with many parts of the Software
Development Lifecycle, including managing Hudson.

Integrated Development Environments
Most enterprise software development is now done in specialized programs called
Integrated Development Environments (IDEs). These tools are referred to as such
because they bring together many different, but related, tools under one unified user
interface. All IDEs have some notion of a “project” that groups together source files,
build instructions, and anything else necessary to produce a software module. A
“project” is to an IDE what a document is to a word processor. The IDEs mentioned in
this book each have their own proprietary project formats, but all of them have at least
basic support for Maven. Special attention will be given to using Maven in each
IDE because Maven is a great choice as a common tool between developers who use
IDEs to interact with the code, and the Hudson server, which can only use command-
line tools to interact with the code. It’s very important that nearly everything done to
the code, except actually developing it, be capable of automation, and thus accessible
entirely on the command line.

In addition to a concept of “project,” all IDEs include at least a source code
editor, source-level debugger, and build system, but developers expect much
more than that these days. There have been many different Java IDEs over the
course of that platform’s lifetime, but the most popular ones, in no particular order,
are Eclipse, IntelliJ IDEA, NetBeans, and JDeveloper. Each of these IDEs has various
levels of support for Hudson, and will be treated individually in Chapter 6. For
now, the basics of each IDE will be covered, including references for further study.

Eclipse
The Eclipse brand is much bigger than just the IDE, but for most intents and purposes,
when one says “Eclipse” one means the Eclipse IDE. Other than the IDE, though,
Eclipse is also a rich client platform for building desktop applications, a server
platform for building server applications, and a project foundry that hosts a number
of other open source projects, including Hudson itself. Eclipse is also the foundation
for a number of other products, such as JBoss Developer Studio and SpringSource
Tools Suite. The gateway to the Eclipse ecosystem is www.eclipse.org/.

The most important thing to know about Eclipse is its plugin-heavy nature. It’s
not as bad as Maven in that regard, because there really is a significant amount of
functionality built into the base Eclipse, but, as with Maven, there are literally
thousands of plugins available. In fact, there is even a startup option (–clean) that

02-ch02.indd 39 13/08/13 2:59 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

40 Hudson Continuous Integration in Practice

is recommended to try if the IDE installation becomes corrupted by a particular
collection of plugins. In practice, once people find a core set of plugins that work
for them, they tend to stick with them and upgrade very carefully.

Installing Eclipse
The Eclipse IDE may be downloaded from www.eclipse.org/downloads/. There are
many different download bundles on that page. Most developers will want to grab
the “Eclipse IDE for Java EE Developers” because this one has the most commonly
used tools for enterprise development. This will give you a zip file on your local
system containing an eclipse directory. Within that directory, launch eclipse.exe
(not the eclipcsec.exe) or equivalent application for your operating system.

The first time you start Eclipse, you will be presented with a Workspace Launcher
dialog. Choose a directory on a fast local disk, preferably without spaces in the path.
This dialog is shown here.

Installing the M2E Plugin to Get Maven Support
Because working with Maven is essential for many Hudson projects, we will install
the m2eclipse plugin.

 1. Select the Help menu and choose Install New Software.

 2. Find the “Work with” drop-down menu and click the Add button next to the
drop-down. In the Add Repository dialog, fill in m2e as the Name and http://
download.eclipse.org/m2e/releases as the Location, as shown next.

02-ch02.indd 40 13/08/13 2:59 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 2: Hudson Precondition Primer 41

Make sure the box next to Maven Integration for Eclipse is checked.

 3. Click Next and you will be shown a page that details what is going to be
installed.

 4. Click Next again and accept the terms of the license agreement. Then click
Finish. You will be prompted to restart your IDE, which you must do to
continue.

Building a Simple Maven Project from Eclipse
To conclude the introduction to Eclipse, we will build the Maven project from the
preceding section about Maven. To open a Maven project in Eclipse, you must first
import the project. Once a project is imported into Eclipse, it remains in the Project

02-ch02.indd 41 13/08/13 2:59 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

42 Hudson Continuous Integration in Practice

Explorer until deleted from there. Note that deleting the project from the Project
Explorer does not delete it from the file system, unless the corresponding UI checkbox
is checked.

 1. In the File menu, choose Import.

 2. In the “Select an input source” text field, type maven. This will expand the
Maven folder.

 3. Select Existing Maven Project and click Next.

 4. Click the Browse button next to the select menu next to the Root Directory
label. Navigate to the folder that contains the pom.xml from the preceding
example and click OK.

 5. Click the check box next to the pom.xml and click Finish. After importing
the project, your IDE should look like this.

02-ch02.indd 42 13/08/13 2:59 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 2: Hudson Precondition Primer 43

Before building the project, it is good practice to have the Maven console showing.
To do this:

 1. Select the Window menu and choose Show View | Console.

 2. In the row of icons in the Console tab, which is normally in the lower right-
hand corner of the main IDE window, locate the rightmost icon that has
a downward triangle on it. Click that little triangle and choose the Maven
Console item.

 3. Back in the Project Explorer area, which is normally in the lower-left corner
of the main IDE window, select the hellomvn item.

 4. In the Run menu, choose Run As | maven install. In the Maven Console you
should see a lot of build output scroll by, ending with the ever-so-satisfying
[INFO] BUILD SUCCESS.

The final exercise is to run the project jar:

 1. Click the + icon next to the hellomvn in the Project Explorer, click the + icon
next to the target folder, and select the hellomvn-1.0.jar.

 2. In the Run menu, select Run.

The Java Application console should appear and show the familiar “Hello Maven!”
response.

Oracle JDeveloper
Oracle JDeveloper is a full featured enterprise development environment that is
engineered to maximize developer productivity, especially when used as the front
end to Oracle’s Fusion software stack. This powerful tool will get more coverage in
Chapter 6. In that chapter, the Oracle Team Productivity Center, which is built on
JDeveloper, will also be covered. In this chapter, JDeveloper is introduced and the
simple hellomvn project is built.

Installing JDeveloper
Aware of the need for a quick installation process, Oracle provides two installation
bundles of JDeveloper on the main download page, www.oracle.com/technetwork/
developer-tools/jdev/downloads/. The Generic Release is much smaller than the full-
featured release and is perfect for the purposes of a quick evaluation. Downloading
the Generic Release will result in a zip file on your local disk. Unpacking the zip file

02-ch02.indd 43 13/08/13 2:59 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

44 Hudson Continuous Integration in Practice

reveals a jdeveloper directory,
in which a JDeveloper
executable resides. Launching
this executable may prompt
for a JDK installation. If so,
navigate to the install location
of the Java interpreter, as shown here.

It is also possible to start JDeveloper from the command line, and the script to
do so is located in the jdeveloper/jdev/bin directory and is called jdev for GNU/
Linux and Mac OS and jdev.exe on Windows.

Using JDeveloper with Maven
JDeveloper 11g Release 2 includes built-in support for Maven, with no need to
download an additional plugin. To open a Maven project:

 1. Select the File menu and choose New.

 2. In the New Gallery dialog, expand the General tree item on the left and
select Applications.

 3. Select Maven Application on the right and click OK. This dialog is shown here.

02-ch02.indd 44 13/08/13 2:59 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 2: Hudson Precondition Primer 45

 4. JDeveloper maintains its own project format, even when working with Maven
projects. Enter hellomvn as the value of the Application Name field, leave the
Application Package Prefix blank, and click Next.

 5. On the next page of the wizard, Step 2 of 3, enter hellomvn as the Project
Name.

 6. Click the Browse button next to the Directory field and browse to the parent
directory of the pom.xml from earlier in the chapter. Click Next.

 7. Enter net.hudsonlifestyle as the Group ID, hellomvn as the Artifact ID,
and 1.0 as the version. Make sure the two check boxes at the bottom of
the wizard, labeled Generate Default Application POM If No Application
POM Exists and Modify Normal Project Structure To Match The Default
Maven Structure, are not checked. Click Finish.

At this point, you may work with the project as a JDeveloper application
using the native techniques of that IDE, or you may work with the project using
Maven techniques. For conceptual portability with other IDEs, the latter will be
explained next.

Building and Running Maven Projects from JDeveloper
The Application Navigator pane is how one interacts with open applications in
JDeveloper. Expand the mavenProj node, and the Resources node within it to reveal
the pom.xml.

 1. Right-click on pom.xml and choose Run Maven Goal(s) and then Manage
Goals. This dialog lets you populate the context menu with an arbitrary set
of Maven goals. For this example, a new entry will be added that executes
both the clean and the install Maven goals.

 2. Type clean install into the text field to the left of the Add Goal button and
click that button. Add any other necessary goals from the Available Goals
list on the left by selecting them and clicking the right chevron button.
(This dialog can be called up at any time when using Jdeveloper, so don’t
worry about not making all the necessary choices now.)

 3. Click OK to dismiss the dialog.

 4. Now, right-click on the pom.xml entry again, choose Run Maven Goal(s),
and select the newly added clean install item. This will build the project and
show the familiar BUILD SUCCESSFUL text in the Apache Maven Log pane
in the lower right of the JDeveloper window.

02-ch02.indd 45 13/08/13 2:59 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

46 Hudson Continuous Integration in Practice

To complete the exercise, we will run the executable jar.

 1. In the Run menu, choose “Run mavenProj.jpr”. The first time you take this
action in an application, you must tell the system what to run.

 2. In the Choose Default Run Target dialog, click the Browse button and
navigate to the target directory of the directory that you selected when
opening the project.

NOTE
Maven always places the target directory in the same
directory as the pom.xml file.

 3. Within the target directory, choose the hellomvn-1.0.jar file (not the identically
named folder).

 4. Click OK to dismiss the file chooser, and OK again to dismiss the Choose
Default Run Target dialog.

In the same pane in which you saw the BUILD SUCCESSFUL message, you
should see the “Hello Maven!” message.

IntelliJ IDEA
JetBRAINS is an independent software company whose flagship product is its IntelliJ
IDEA IDE. In addition to IntelliJ IDEA, JetBRAINS has several other useful products
for working in the software development lifecycle, including its own Continuous
Integration product, TeamCity. As such, the support for Hudson is minimal, but still
worth covering. Therefore, this chapter covers the basics of installing IntelliJ IDEA
and running the basic Maven project.

Installing IntelliJ IDEA
JetBRAINS offers two editions of IntelliJ IDEA, called Ultimate and Community, both
of which are available for download from www.jetbrains.com/idea/download/. These
instructions cover the Ultimate edition, which offers a free trial. The Community
edition is similar. The install bundle is very easy to use and has been optimized for
Windows, Mac, and GNU/Linux. On the last page of the installer, please make sure
the Run IntelliJ IDEA box is checked before clicking Finish. When IntelliJ IDEA starts,
you will be prompted for license information.

 1. Select the “Evaluate for free for 30 days” radio button and click OK.

 2. Under Select VCS Integration Plugins, choose the version control systems
to activate. Because this book deals only with Git, Subversion, and CVS,
you may want to only check those boxes. Naturally, these options can be
changed at any time. Leave the defaults and click Next.

02-ch02.indd 46 13/08/13 2:59 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 2: Hudson Precondition Primer 47

 3. Under Select Web/JavaEE Technology Plugins, leave the defaults and click Next.

 4. Under Select HTML/JavaScript Development Plugins, leave the defaults and
click Next.

 5. Under Select Other Plugins, leave the list unchanged and click Finish.

Using IntelliJ IDEA with Maven
IntelliJ IDEA has very good Maven support. Unlike Eclipse and JDeveloper, IntelliJ
IDEA can open Maven projects directly, but like those two IDEs, it does create
additional private settings based on information derived from the Maven project.

 1. In the File menu, choose Open Project.

 2. Browse to the parent directory of the pom.xml file and click OK.

The first time IntelliJ IDEA opens a Maven project, there is some delay while the
IDE inspects the pom.xml and configures its internal data structures.

 3. After opening the project, in the View menu, select Tool Windows, then
Maven Projects.

 4. Expand the hellomvn node and then the Lifecycle node in the tree viewer
within the Maven Projects pane. This shows you the common Maven goals
available for this project. The IDE window is shown here.

02-ch02.indd 47 13/08/13 2:59 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

48 Hudson Continuous Integration in Practice

 5. Double-click the clean goal, and wait for it to complete. Then double-click the
install goal. Look for the BUILD SUCCESSFUL message in the log window.

To run the project we must create a run configuration:

 1. Select the pom.xml node in the upper-left pane of the IDE window.

 2. In the Run menu, choose Edit Configurations. This brings up the Run/Debug
Configurations dialog.

 3. Click the tan-colored plus icon and choose Application in the pop-up menu.
The right side of the dialog now shows a form allowing you to identify the
main class.

 4. At the top, type a name for the configuration, run.

 5. Click on the … button to the right of the Main class field. The system should
automatically discover the HelloMvn class.

 6. Click OK to dismiss the Choose Main Class dialog.

 7. Click OK to dismiss the Run/Debug Configurations dialog.

 8. In the Run menu choose “Run ‘run’”. The log window should show the
familiar “Hello Maven!” output.

NetBeans
The last of the Java IDEs with some level of Hudson support is NetBeans. NetBeans
was the flagship IDE for Sun Microsystems, and since the Oracle acquisition of Sun
in 2009, it has continued to improve, especially in the area of support for open source
technologies. This investment is due to Oracle’s commitment to having NetBeans be
the best IDE for cutting-edge technologies and standards, while JDeveloper is being
positioned as tightly integrated with Oracle’s enterprise products as a rock-solid
platform for corporate development.

Installing NetBeans
As with every other IDE, there are several choices of bundles to download. Visiting
http://netbeans.org/downloads/ allows you to choose from five different varieties.
Downloading either the JavaSE or JavaEE versions is sufficient for most of what one
would do with Hudson. The NetBeans installer is very solid and nearly always
results in a clean install.

02-ch02.indd 48 13/08/13 2:59 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 2: Hudson Precondition Primer 49

Using NetBeans with Maven
NetBeans was an early leader in supporting Maven in all of its distributions. Its support
for Maven is, in the author’s opinion, the most intuitive and closely aligned with using
Maven from the command line. There is no “import” step, as with Eclipse. Simply use
File | Open Project and navigate to the preceding example. The NetBeans IDE with the
Maven project opened is shown here.

In the Run menu, select Clean and Build Project (hellomvn). The familiar
BUILD SUCCESS output soon appears in the Output pane in the lower right of
the NetBeans window.

In the Run menu, select Run Project (hellomvn). Because NetBeans hasn’t yet
been told what the main class is, the Select Main Class for Execution dialog comes
up, with the net.hudsonlifestyle.HelloMvn class helpfully preselected. Your choice
in this dialog may be recorded just for this IDE session, or you may choose to save
it so that when you open this particular Maven project in the future, this choice is
remembered. Choose Remember in Current IDE Session for now and click the
Select Main Class button.

02-ch02.indd 49 13/08/13 2:59 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

50 Hudson Continuous Integration in Practice

In another demonstration of NetBeans’ deep Maven integration, this choice is
actually used to configure the maven-exec-plugin, the execution of which is appended
to the build steps performed by Maven. Because the Run action in NetBeans needs to
ensure that the project is built before it is run, you will see the build output before the
“Hello Maven!” message, again in the Output pane in the lower-right corner of the
NetBeans IDE window.

The previous section introduced some of the characters in the Hudson show.
This section introduced IDEs, which take action behind the scenes. We have covered
the basics of Maven and demonstrated its use in Eclipse, JDeveloper, IntelliJ IDEA,
and NetBeans. The next section will round out the main characters in Hudson by
introducing some of the testing tools one encounters in common practice when
using Hudson.

Testing Tools
Returning to our example of the marionette theatre production, the various testing
tools can be thought of as marionettes that perform a role in the software development
lifecycle. They perform a role alongside the other tools, and their role is every bit as
vital to the show as the compiler and the build tool. While these testing tools will be
covered in greater detail on in Chapter 5, it is useful to introduce the concept in broad
terms now.

Testing tools are all about asserting correctness. They can be classified based on
the kind of correctness they assert. It is useful to define two classes of correctness:
hard and soft. Failures in hard correctness cannot be tolerated; the system cannot
proceed with failures in hard correctness. Compilation failures are the most basic
form of hard correctness failure. Another example is a test case that examines
program output for the presence of a specific string. If that string is not present in
the output, the test fails, usually failing the entire build as a result. On the other
hand, failures in soft correctness are subjective. The architect typically sets the
parameters that determine which soft correctness failures may be safely ignored,
and which cause a failure of equal magnitude to a hard correctness failure. These
failures are discovered through some kind of inspection and analysis of the source
code or how a module performs under load. Examples of soft correctness failures
include a method having too many lines, a class having too many methods, or an
application taking unacceptably long to start up. Soft correctness failures usually
don’t halt the build, and usually are compiled into reports that are viewed and
acted on by someone serving in the architect role. Each kind of correctness assertion
has its own tools, each of which is useful with Hudson. The remainder of the
chapter introduces the most common tools for asserting hard and soft correctness
outside the context of Hudson so that they may be safely treated for use inside
Hudson, as described in Chapter 5.

02-ch02.indd 50 13/08/13 2:59 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 2: Hudson Precondition Primer 51

Hard Correctness Testing Tools
The two most common testing tools for asserting hard correctness in Java are JUnit
and TestNG. Version 3.8.1 of JUnit was the de facto standard testing tool in Java until
TestNG arrived on the scene in 2006. The main advantage TestNG brought over
JUnit was its heavy usage of the Java language annotations introduced in JavaSE 5.
This approach made it unnecessary to subclass JUnit’s TestCase class, which is a
requirement for JUnit 3.8.1. However, JUnit 4.0, released shortly after, also added
annotation-style test cases. At this point in the development of both frameworks,
either one will do a fine job in filling the role of asserting hard correctness. JUnit has
the added legitimacy that several other very popular testing frameworks have been
built on top of it.

This exercise will add a JUnit test case to the HelloMvn example. The most
obvious challenge one faces in writing automated tests is how to interact with the
production code whose correctness is being asserted. The depth of this interaction
depends on the kind of testing being performed. One kind of testing is called “black
box testing” because the code being tested is like an opaque black box as far as
the test is concerned. This exercise shows a black box test: the test case knows that
the string “Hello Maven!” will be written to standard out, but it doesn’t have any
knowledge about the internals of the code being tested. To contrast with the term
“black box testing,” the term “white box testing” is a kind of testing where the test
case does have knowledge about the internals. These and other different kind of tests
will be covered in greater detail in Chapter 5.

Here is the simple JUnit test case. This source file resides in the directory src/test/
java/net/hudsonlifestyle. The practice of putting the test case into the Java package
as the code being tested is very handy for white box tests because the test case can
access package private data. Because this test is a black box test, it need not be in
the same package.

package net.hudsonlifestyle;

import java.io.ByteArrayOutputStream;
import java.io.PrintStream;
import static org.junit.Assert.assertTrue;
import org.junit.Test;

public class TestHelloMvn {
 @Test
 public void testMain() throws Exception {
 ByteArrayOutputStream capture = new ByteArrayOutputStream();
 PrintStream newOut = new PrintStream(capture);
 System.setOut(newOut);
 HelloMvn.main(null);
 assertTrue(capture.toString().contains("Hello Maven!"));
 }
}

02-ch02.indd 51 13/08/13 2:59 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

52 Hudson Continuous Integration in Practice

Note that this class does not extend any special base class, and the only imports
it has from JUnit are the @Test annotation, which is placed on the method to be
treated as a test, and the static import of the method Assert.assertTrue(). One trivial
novelty of the test class is its use of System.setOut() to overwrite what the production
code writes to when it calls System.out().

The point when tests are added to a Maven project is when the “convention-over-
configuration” approach taken by Maven really shines. The only change we need to
make to the pom.xml file is to add a dependency on the JUnit library. Dependencies
are indicated by adding a <dependencies> section to the pom.xml, like this:

<dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.10</version>
 <scope>test</scope>
 </dependency>
</dependencies>

Dependencies are simply an expression of the groupId, artifactId, and version of
the software library whose behavior must be made available to the primary code of the
project, or, in the case of dependencies that indicate <scope>test</scope>, the test.

Depending on the version of maven and JDK being used, the compiler may need
to be configured to use a version of Java that supports annotations. With Maven, this
is done by introducing a <plugin> element, next to the existing entry for maven-jar-
plugin, that alters the default values passed to the Java compiler. This configuration
is shown here.

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>2.4</version>
 <configuration>
 <source>1.5</source>
 <target>1.5</target>
 <showWarnings>true</showWarnings>
 </configuration>
</plugin>

Now, when the Maven build is run, the test section, which formerly stated “No
tests to run,” now states the following.

 T E S T S

Running net.hudsonlifestyle.TestHelloMvn
Tests run: 1, Failures:
0, Errors: 0, Skipped: 0, Time elapsed: 0.453 sec

02-ch02.indd 52 13/08/13 2:59 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 2: Hudson Precondition Primer 53

Soft Correctness Testing Tools
There is a much greater variety of tools for asserting soft correctness than for
asserting hard correctness; this is due to the nature of the problem. For the class
of soft correctness testing tools that rely on static analysis of source code, the bulk
of the work in applying the tool centers on configuring the parameters so that the
desired coding standards are met. Part of this work involves facing up to the reality
that no project consists entirely of perfect code, and exceptions must be made
where necessary.

This section will apply the FindBugs plugin to the HelloMvn class. FindBugs
was the first open-source Java static analysis tool to achieve widespread industry
adoption, and it came out shortly after JUnit started gaining popularity. Because
the HelloMvn class is so trivial, something must be added to cause FindBugs to
complain. An intentionally incorrect implementation of boolean equals(Object)
does the trick.

@Override
public boolean equals(Object obj) {
 return false;
}

Now that there is a correctness violation to assert, all that remains is advising
Maven to run the FindBugs plugin. This is achieved by adding a <reporting> section
to the pom.xml, as shown here.

<reporting>
 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>findbugs-maven-plugin</artifactId>
 <version>2.4.0</version>
 </plugin>
 </plugins>
</reporting>

Maven offers a very rich set of report generation capabilities, all of which are
configured in the <reporting> section. The configuration in this section takes action
when the Maven “site” goal is invoked, like this: mvn clean package site. This excerpt
of the build output shows the report generation, including the FindBugs analysis:

[INFO] [site:site {execution: default-site}]
[WARNING] No URL defined for the project - decoration links will not be resolved
[INFO] artifact org.apache.maven.skins:maven-default-skin: checking for up-
dates from central
[INFO] Generating "Project Team" report.
[INFO] Generating "Issue Tracking" report.
[INFO] Generating "Continuous Integration" report.
[INFO] Generating "Project Plugins" report.
[INFO] Generating "Dependencies" report.

02-ch02.indd 53 13/08/13 2:59 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

54 Hudson Continuous Integration in Practice

[INFO] Generating "Plugin Management" report.
[INFO] Generating "Mailing Lists" report.
[INFO] Generating "Source Repository" report.
[INFO] Generating "Project Summary" report.
[INFO] Generating "FindBugs Report" report.
[WARNING] Deprecated API called - not org.apache.maven.doxia.sink.Sink in-
stance and no SinkFactory available. Please update this plugin.
[INFO] Locale is en
[INFO] Fork Value is true
 [java] Warnings generated: 1
[INFO] Done FindBugs Analysis....
[INFO] Generating "About" report.
[INFO] Generating "Project License" report.
[INFO] --
[INFO] BUILD SUCCESSFUL
[INFO] --
[INFO] Total time: 18 seconds
[INFO] Finished at: Tue Jul 17 09:53:24 EDT 2012
[INFO] Final Memory: 55M/554M
[INFO] --

The FindBugs report ends up in the file target/site/findbugs.html. Viewing this
report in a Web browser shows the following table.

Bug Category Details Line Priority

net.hudsonlifestyle.
HelloMvn.
equals(Object)
always returns false.

CORRECTNESS EQ_ALWAYS_
FALSE

11 High

Summary
This chapter acknowledges the unique position of Hudson as a tool of tools. As
a consequence of this fact, mastery of Hudson implies mastery, or at least solid
familiarity, with all of the tools being managed by Hudson. After reading this
chapter, you have been introduced to the main classes of tools that you will
encounter as you learn to use Hudson in practice. Other chapters in the book
will provide greater depth of coverage on the kinds of tools mentioned here.

02-ch02.indd 54 13/08/13 2:59 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5
Blind folio: 55

CHAPTER
3

Basic Concepts

03-ch03.indd 55 13/08/13 2:13 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

56 Hudson Continuous Integration in Practice

Now that we have introduced Hudson and defined the most foundational
technologies commonly employed in the course of its everyday use, it is
time to round out the fundamentals of Hudson by covering the rest of the

common configuration for an industrial-strength Hudson installation. This chapter
contains tutorial content covering how to configure your jobs for version control,
quality assurance, and build notifiers. There will also be tutorial content covering
installation of new plugins, and adding security to your Hudson server.

Intermediate Hudson Configuration
This section goes beyond the minimal configuration introduced in the first chapter.
After completing this section, your Hudson instance can reasonably be considered an
industrial-strength Hudson instance. One general note about Hudson configuration:
the user interface for configuration seldom, if ever, offers a Cancel button. Instead,
you need to navigate away to a different page, such as by clicking the Back to
Dashboard link, to effectively cancel any changes that have not been saved, and
need not be saved.

Adding Source Code Management
(SCM) to Your Jobs
SCM serves two purposes for Hudson. The first and obvious one is to allow Hudson
to obtain the code to build. The second is to give Hudson a way to tell if the code has
changed so it can decide whether to start a new build or not. A change in the source
code is one way that a build can be “triggered.” Hudson jobs can be configured to
poll the SCM system periodically. If the poll concludes that the code has changed,
the build is triggered. Other build triggers that will be covered later in the chapter
include making the job depend on the completion of other jobs, or when the Maven
dependencies of the job have changed.

True to its form as an integration technology, Hudson has built-in support for the
most popular Source Code Management (SCM) technologies, but the exact manner
of their configuration varies. A job may only have one choice for SCM but may have
several different repositories of that sort from which the job obtains code.

Git
Git has been around since 2005, but the introduction of the GitHub service and
its competitors, such as BitBucket, has built Git into the overwhelming favorite for
source code management for new projects. The design of Git makes it very easy for
distributed teams to collaborate, while minimizing the occurrences of developers
inadvertently interfering with each other’s code. For more information, you can refer
to Version Control with Git, Second Ed. by Jon Loeliger and Matthew McCullough.

03-ch03.indd 56 13/08/13 2:13 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 3: Basic Concepts 57

Adding Git to a Hudson job is easy once the particulars are known. At a minimum,
one needs the username and password under which the code is checked out and the
URL of the repository. Most URLs start with http or http:// or https://, but Git URLs
can also start with ssh:// or even git://. All of these are examples of “protocols,” and
they define how communication between the client and server must proceed. All
Git hosting services offer the full set of choices for accessing the repository;
generally, one can just copy the repository URL from the Git hosting service into the
Hudson UI. Let’s walk through the process with a new job.

From the main Hudson dashboard, click New Job. Leave the default selection of
“Build a free-style software project” in place, and enter a value for the “Job name”
such as git-01. In the Source Code Management section, select Git and observe the
options panel appear. Once you choose a particular SCM for a job, it is possible to
change it, but in practice it is often easier to create a new job instead. Paste the
value from the Git hosting service into the “URL of repository” text field. At this
point, the notion of username and password must be addressed. For open source
projects, it is normally sufficient to allow the Hudson server to check out the source
code anonymously, because there is no reason for the Hudson server to have the
capability to check code in. Git hosting services are optimized for this case. For
projects where a username and password are required to access the source code, it
is necessary to encode that information in the repository URL. This requires putting
the username and password in clear text in the URL. Hudson instances that have
such information must be protected, and this is covered later in the chapter. The
following syntax can be used when username and password must be included so
that Hudson can check out the code.

https://username:password@hostname/repository/path.git

The remainder of the fields can be left blank. There are other techniques for
specifying the username and password, but this one is the simplest and easiest to
configure.

The Advanced button immediately beneath the “URL of repository” text field
allows you to specify less common parameters pertinent to the repository:

 ■ The name of the repository, “origin” by default

 ■ The refspec, an advanced Git concept

 ■ The local subdirectory within the job’s workspace to use for the code being
checked out

Branching and merging are at the heart of the popularity of Git. Hudson makes it
easy to specify which branch to pull with a simple text field where you can enter the
branch specifier. If left blank, this field will default to master.

03-ch03.indd 57 13/08/13 2:13 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

58 Hudson Continuous Integration in Practice

Beneath the branch specifier text field, the Add button allows additional Git
repositories to be specified. If configured for polling, all of the repositories for the
job will be polled and any of them that have a change will cause the build to trigger.

The Advanced panel reveals many additional options specific to configuring Git.
These options generally correspond to options that are passed to the Git executable
when performing the checkout.

Beneath the Advanced button, the Repository browser drop-down menu allows
you to configure what repository browser service will be used in the links to easily
inspect what source code changes triggered the build. These links will appear on the
result pages of the job. It is generally safe to leave this set to (Auto), which will cause
Hudson to inspect the repository URL to determine which service to use. Several
popular services are supported, including GitHub’s browsing service, githubweb.
Other services may require additional configuration so that the service is aware
of your code. This approach essentially adds another client to the source code
repository.

Subversion
Another popular SCM is Subversion, though its use is waning in favor of Git. The non-
distributed nature of Subversion makes it less suitable to distributed teams because
merging is more difficult. When creating a new job, choose Subversion in the Source
Code Management list. Enter the repository URL and save the configuration. This is
necessary to cause Hudson to offer the ability to set the username and password.
From the main page for the job, click the Configure link in the left-hand navigation
panel. You will now see a link named “Update credentials” under the Repository URL
text field. In this panel, you can set the username and password or use several other
authentication options.

The “Local module directory” text field lets you choose a directory within the
job’s workspace that will contain the checked-out code. The remaining options in
the Subversion section correspond to command-line options passed to the
underlying svn executable.

The Check-out Strategy drop-down menu offers several options.

 ■ Use svn update as much as possible. This option will just use the normal
svn update command to get only the changes since the last time the code
was updated. This is faster because there are usually only a small number
of changes in the code in the normal interval that jobs tend to be polling
(daily or hourly).

 ■ Emulate clean checkout by first deleting unversioned/ignored files, then
using svn update. This option will cause all files in the workspace not
known by svn to be deleted, and then svn update is used. This option is
unadvisable because the act of selectively deleting files is best left to the
build system.

03-ch03.indd 58 13/08/13 2:13 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 3: Basic Concepts 59

 ■ Clean workspace and then check out. This option takes more time, but is
safe because it is impossible for the workspace to be in a corrupted state
from build to build. For jobs that run overnight, this is a great choice.

 ■ Use svn update as much as possible, with svn revert before update. This
option is also unadvisable since the Hudson job should never have modified
files in its workspace.

As with Git, there is a Repository browser drop-down menu, but the choices are
specific to Subversion.

CVS
CVS (Concurrent Versioning System) is the old man of SCM. Hudson includes it
because many legacy projects still use it, and these projects could benefit from using
Hudson. The following options are available when configuring a job to use CVS:

 ■ The Cvsroot value is analogous to the Repository URL in Git and Subversion.
As with Git, the username and password can be specified in the Cvsroot. If
the repository requires a password and it is not specified in the Cvsroot text
field, it is taken from the .cvspass file in the home directory of the user that
runs Hudson. The easiest way to generate the .cvspass is to simply check out
the code with CVS from the command line and throw away the checked-out
code.

 ■ Module(s) is a CVS concept that can be used to organize code within a CVS
repository. Multiple modules can be separated by whitespace.

 ■ Branch is a CVS concept that enables isolating related changes to the
repository so that they are only visible within that branch.

 ■ Local directory is the local subdirectory within the job’s workspace to use for
the code being checked out.

The Advanced button reveals options that are passed to the underlying cvs
executable. Interestingly, the Repository browser drop-down menu is hidden within
the Advanced button, whereas with the other SCM choices it is available at the
top level.

Your Second Job: A Simple Java Program
Chapter 1 walked through the simplest possible Hudson job that could actually be
useful, a job that backs up the Hudson configuration itself nightly. This section walks
through a job that builds a simple Java program using Maven: the HelloMvn program
from the preceding chapter.

03-ch03.indd 59 13/08/13 2:13 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

60 Hudson Continuous Integration in Practice

TIP
One particularly vexing class of bug is the case
when an automated test works just fine when run
on the engineer’s workstation, but the same test fails
when run by Hudson. Adding testing to a job will
be covered later in the chapter, but the practice of
minimizing the chance of this kind of bug begins
right now. The best preventative is to have Hudson’s
environment be exactly the same as the engineer’s
workstation. One way to achieve this is to have the
complete development stack be stored in SCM.
There could be a Hudson job that runs daily that
checks out from SCM to update the set of tools used
by the Hudson instance itself. This job could run
once per day, and before any of the other jobs run
by that Hudson instance.

The preceding chapter covered how to build the simple program outside Hudson.
Now we will create a job that builds it inside Hudson. Assuming the source code of
HelloMvn has been committed to a Git repository, follow the steps from the previous
section to create a new job called 01_mvn, and pull the source code from Git. From
the dashboard of the 01_mvn job, click the Build Now link to run the job once to
verify that the source code is successfully pulled.

Configuring the Build Trigger
This job will use SCM polling to trigger the execution of the job. From the dashboard
for the job, choose Configure. This brings up the configuration page for the job.

From the Configure page for the job, locate the Build Triggers section and choose
Poll SCM. This expands a text area into which you can type a compact representation
of when the job should poll SCM to see if there were changes in the code. In this
text area, you can see the remnant of the most basic precursor to Hudson, the UNIX
cron(1M) command. Clicking the ? icon next to the text area will bring up some
help for the text you can enter into this box. Briefly, the text in the Poll SCM text area
must contain five fields, separated by whitespace, which represent the minute of the
hour (0–59), the hour of the day (0–24), the day of the month (1–31), the month of
the year (1–12), and the day of the week (0–7). Interestingly, both 0 and 7 in the last
field represent Sunday. A value of * for any field means that field will take any value.
For example, the value “30 * * * *” means “at 30 minutes after the hour, every hour
of the day, every day of the month, every month of the year, every day of the week.”

03-ch03.indd 60 13/08/13 2:13 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 3: Basic Concepts 61

Configure Links in the Hudson UI
There are two panels, both labeled Configure, within a job, and it’s important
to avoid confusion between them. The first Configure link is on the main
dashboard for the job, as shown in this illustration. This Configure link is the
most important one for the rest of this chapter. Nearly all of the configuration
options for a job are made via this link.

The second Configure link is only shown on the page when viewing a
particular build of a job. This page is reached by clicking on a link in the Build

(Continued)

03-ch03.indd 61 13/08/13 2:13 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

62 Hudson Continuous Integration in Practice

History section of the main dashboard for the job. As the following illustration
shows, the two pages are very similar looking, but the result of clicking the
Configure link is very different.

The only settings that can be configured from this second Configure link
pertain specifically to the execution of this specific job. This can be useful
for adding descriptive notes. In practice, this feature is seldom used. If you
find yourself on this second Configure page, just click on the job name in the
list of links starting with Hudson at the top of the page. This is 01_mvn in the
following illustration. This list of links is known as a breadcrumbs list in user
interface parlance because every element in the list indicates a step in a

03-ch03.indd 62 13/08/13 2:13 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 3: Basic Concepts 63

workflow. In this case, the list looks like Hudson » 01_mvn » #1. If you find
yourself on a Hudson page you don’t want to be on, such as this configuration
page, the breadcrumbs links can get you back to where you want to be. In this
case, clicking on 01_mvn will take you back to the main dashboard.

The text area can accommodate comments, which must be prefixed by the #
character. More advanced configuration options can be provided as documented in
the help box.

Industrial-strength Hudson installations tend to only use the Poll SCM feature
for jobs that trigger other jobs. It is better to set up a cascade of job dependencies
than to maintain a large number of individual job trigger times. However, for this
simple example, you can use the simple @hourly shorthand, which causes the job
to poll every hour on the hour. Click Save at the bottom of the configuration page
to continue.

Adding a Maven Build Step
Return to the configuration page for the job and find the Build section. The “Add
build step” button opens a drop-down menu. From the menu, choose Invoke Maven 3.
This will expand the UI to show the default Maven options. Leaving the default
values will cause Hudson to invoke mvn clean install in the top level of the source
code checked out from SCM. Recall from the preceding chapter that mvn install

03-ch03.indd 63 13/08/13 2:13 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

64 Hudson Continuous Integration in Practice

was used to build the example from the command line. The additional clean step
is necessary because Hudson wants to clear out whatever was left over from the
previous invocation of the job. The clean may not be necessary if the SCM options
elected to clean the entire workspace before checkout. In the common case of using
update from the SCM options, the clean is necessary, however.

Because this particular example will only build the single 01_mvn example
from the Basic Concepts chapter, Hudson must be configured to invoke Maven in
the appropriate directory. Click the Advanced button in the Invoke Maven 3 section.
This brings up a large number of configuration options, most of which correspond
to command-line options to be passed to mvn, and all of which are documented
with help via the ? icon. In this case, the POM File box must be modified to refer
to the path to the 01_mvn pom.xml, as shown in Figure 3-1.

After identifying the pom.xml, save the configuration and choose the Build Now
link from the main dashboard for the job.

Archiving the Artifacts
To round out this simple example, the job will be configured to archive the output
of the build: the hellomvn jar file. From the configuration page, find the “Archive
the artifacts” check box in the Post-build Actions section. Clicking the check box
reveals a text field into which the path of any artifacts that should be archived can
be entered. The helpful Validate button will execute the path expression and show
a warning if the file is not found. In this case, enter BasicConcepts/01_mvn/target/
hellomvn-*.jar into the box. Note that we are not hard-coding the version number,
as this can easily change as the project evolves. In practice, it’s good to find a
balance between specificity and generality with this field because the artifacts
that get archived do consume disk space. The Advanced panel enables exclusions
relative to the files found by the “Files to archive” link. To save disk space, the
“Discard all but the last successful/stable artifact to save disk space” option can be

FIGURE 3-1. Selecting the right pom.xml

03-ch03.indd 64 13/08/13 2:13 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 3: Basic Concepts 65

checked. If this option is checked, Hudson will only save the artifacts from the last
successful build. Click Save and rerun the job. The successful execution of the job is
shown next. Hudson provides a link to the artifact that enables it to be downloaded
directly from Hudson. When using Hudson with Maven, this is usually not
necessary, because the Maven build process always publishes the artifacts to the
local Maven repository and can be configured to publish them to a remote
repository as well.

Your Third Job: A Simple Servlet
Hudson is most commonly used in enterprise software environments, and one
aspect of enterprise software that is common to all environments is the concept
of middleware. Middleware is software that plugs into other enterprise software
environments such as application servers, load balancers, and the like. A very self-
contained example of middleware is a Java servlet. Java servlets have been around
since the late 1990s and are Java’s answer to the Common Gateway Interface (CGI)
concept pioneered by Rob and Mike McCool at the University of Illinois at Urbana-
Champaign in 1994. CGI is a way to let a program that is running on a Web server
interact with the Web browser to provide interactivity beyond simple static Web
pages. Servlets do the same thing, but with a nicer API and in Java. All Java servlets
extend from the Java class javax.servlet.Servlet or (much more commonly) its subclass
javax.servlet.http.HttpServlet. This section creates a Hudson job that builds a simple
servlet to illustrate how Hudson is used with middleware.

The pom.xml
The pom.xml is very similar to the one from the HelloMvn example in the preceding
chapter. The new elements are shown in boldface.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.
apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>net.hudsonlifestyle</groupId>
 <artifactId>simpleservlet</artifactId>
 <version>1.0</version>
 <packaging>war</packaging>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-war-plugin</artifactId>
 <version>2.3</version>

03-ch03.indd 65 13/08/13 2:13 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

66 Hudson Continuous Integration in Practice

 <configuration>
 <failOnMissingWebXml>false</failOnMissingWebXml>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <inherited>true</inherited>
 <configuration>
 <source>1.6</source>
 <target>1.6</target>
 <encoding>${project.build.sourceEncoding}</encoding>
 </configuration>
 </plugin>
 </plugins>
 </build>

 <dependencies>
 <dependency>
 <groupId>javax.servlet</groupId>
 <artifactId>javax.servlet-api</artifactId>
 <version>3.0.1</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>
</project>

This project uses Maven war packaging, as shown in the <packaging>war</
packaging> declaration. This declaration tells Maven that the project should be
assumed to conform to the Maven war project layout and that the final artifact is a
Java Web Application Archive (war) file, rather than a jar file. The war project layout
can be thought of as an extension of the Maven jar project layout shown in the
preceding chapter. In addition to having Java packages in the src/main/java directory,
the Web application root is assumed to be in the directory src/main/webapp. This
directory will hold any Web pages needed to be shown by the servlet. This simple
example has no such need. The src/main/webapp directory also can hold the Web
app deployment descriptor, which must be located in the src/main/webapp/WEB-INF
directory and contained in the file web.xml. Because this servlet uses annotations to
convey the information that would otherwise be in the web.xml file, it doesn’t need
a src/main/webapp/WEB-INF/web.xml file.

Any project that uses war packaging will automatically use the maven-war-plugin.
Due to a historical setting in this plugin, we must provide explicit configuration of the
plugin to enable the project to successfully build, even though there is no web.xml file.
This is the purpose of the <failOnMissingWebXml>false</failOnMissingWebXml>
configuration.

Another historical setting whose default value must be overridden is the
Java version. We use the value of 1.6 in the <source> and <target> elements.

03-ch03.indd 66 13/08/13 2:13 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 3: Basic Concepts 67

The <encoding> element prevents a warning from maven regarding the platform
encoding to be passed to the Java compiler.

The final difference between this pom and the simple example from the preceding
chapter is the dependency on the servlet API. The declaration here states that this
project depends on version 3.0.1 of the servlet API. The <scope>provided</scope>
declaration tells the Maven war plugin to not bundle the servlet API jar into the
completed war file.

The Servlet Class
The servlet class has even fewer lines than the pom.xml, and is arguably simpler
because it is more self-contained. Here is the code listing for the servlet, which is
located in the src/main/java/net/hudsonlifestyle/SimpleServlet01.java file.

package net.hudsonlifestyle;

import java.io.IOException;
import java.io.PrintWriter;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

@WebServlet(name = "SimpleServlet01", urlPatterns = {"/SimpleServlet01"})
public class SimpleServlet01 extends HttpServlet {

 @Override
 protected void service(HttpServletRequest request, HttpServletRe-
sponse response) throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out = response.getWriter();
 try {
 out.println("<html>");
 out.println("<head>");
 out.println("<title>Servlet SimpleServlet01</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<h1>Servlet SimpleServlet01 at " + request.getCon-
textPath () + "</h1>");
 out.println("</body>");
 out.println("</html>");
 } finally {
 out.close();
 }
 }
}

The only method from the superclass that must be overridden is the service()
method. This method is called whenever the application server in which the war

03-ch03.indd 67 13/08/13 2:13 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

68 Hudson Continuous Integration in Practice

file is deployed receives a Web request with a path /SimpleServlet01. For example,
simply deploying the war file to the GlassFish application server makes the URL
http://localhost:8080/simpleservlet-1.0/SimpleServlet01 be handled by the servlet,
resulting in the Web page being served as shown in the code listing.

Creating a Job and Using Views to Organize Jobs
Follow the steps from the preceding section, “Your Second Job,” to create a job to
build the simple servlet. The only differences lie in the location of the POM file,
which is BasicConcepts/02_mvn/pom.xml, and the artifact to archive, which is
captured by the path expression BasicConcepts/02_mvn/target/*.war.

Now that you have three jobs on your Hudson instance, we can demonstrate
the Views feature. Views let you group related jobs together so that complexity can
be better managed as the number of jobs on a server grows. On the main Hudson
dashboard under the words “Jobs Status,” you will see a tab with a “+” sign.
Clicking the “+” sign brings up the New View page. We will create two views:
“Administrative” and “Product.” Enter the value Administrative into the Name field
that appears after clicking the “+” sign, as shown in Figure 3-2.

Choose the jobs to be included in the view by checking the check box next to
the job name. In the Columns section, you can drag and drop the columns to be
displayed in the view, deleting the ones that are not desired. The meaning of the
various columns is described in the following list:

 ■ Status The outcome of the most recent build of this job.

 ■ Weather An indication of the trend of the status of several previous builds
of the job. This is useful to get a quick idea of the stability of the job. If a
job has been having trouble getting a clean build, this will show up as an
icon of a cloud with rain. If the job has been free of failures lately, it will
show up as a sun icon.

 ■ Job The name of the job.

 ■ Last Success The timestamp of the last successful build of the job.

 ■ Last Failure The timestamp of the last failed build of the job.

 ■ Last Duration The time it took for the last build of the job to complete.

 ■ Console A link to view the build console for the most recent build of the job.

 ■ Build button A button that manually starts a build.

The “Add column” drop-down menu lets you re-add any columns that were
deleted. A good list of columns is Status, Weather, Job, Last Success, and Console.

03-ch03.indd 68 13/08/13 2:13 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 3: Basic Concepts 69

Follow the same steps to create the Product view, but include the two Java-related
jobs. Views can be very helpful when the number of jobs on a Hudson instance
becomes too great to show on a single screen.

Using the Plugin Center
The integration software nature of Hudson means that plugins are important. The
Hudson Plugin Center is where you can manage the installation of Hudson’s many
plugins. Similar to an app store for a smart phone, the Plugin Center lets you see
what plugins are currently installed (allowing updating them if necessary) and what
plugins are available to install (allowing installing them if desired).

FIGURE 3-2. View Configurations page

03-ch03.indd 69 13/08/13 2:13 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

70 Hudson Continuous Integration in Practice

The Plugin Center Tab Panel
The Plugin Center can be reached from the main dashboard by clicking Manage
Hudson and then clicking Manage Plugins. Note that the browser URL bar shows
“pluginCenter/” but the label of the panel is “Hudson Plugin Manager.” This panel
will be referred to as the Plugin Center for discussion.

TIP
 Note that the Manage Hudson page also has a
link titled “Manage Plugins using Classic Plugin
Manager.” This feature is provided for compatibility
with versions of Hudson prior to 3.0. All of the
necessary functionality for managing plugins has
been reimplemented in Hudson 3.0 within the
Manage Plugins link. The classic plugin manager
will not be discussed further in this book.

Proxy Concerns (the Advanced Tab) When using Hudson behind an HTTP
firewall, it is necessary to configure the proxy settings so that Hudson itself can
become aware of the available plugins and install them if necessary. This may be
done from the Advanced tab within the Plugin Center. The values entered here must
be exactly the same as whatever values enable you to browse the external Internet.

Updates Tab The Updates tab shows which of the currently installed plugins are not
the most recent versions available for that particular plugin. Only plugins for
which the currently installed version is not the most recent version are shown in this
panel. This panel provides an easy way to keep your plugins up to date. However, it
is advisable to read the release notes for each plugin before conducting an update to
see if the new version introduced any problems with respect to the current version of
Hudson you are running. For this reason, make sure your Hudson backup story is in
good shape so you can easily revert to a previous version in the event a new plugin
causes problems. Figure 3-3 shows the Updates tab with three pending updates.

Available Tab The Available tab is the gateway to all available Hudson plugins that
can be installed using the Plugin Center. Subtabs in this panel include: Featured,
Recommended, Others, and Search. Starting with Featured and moving through to
Search, the plugins are listed in decreasing order of the amount of quality assurance
(QA) that is done by the Hudson development community. Plugins in the Featured tab
are known to be the highest quality and least likely to cause trouble, while those

03-ch03.indd 70 13/08/13 2:13 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 3: Basic Concepts 71

found in the Search tab could be unstable. Each of the tabs, except the Search tab, are
grouped functionally. For ease of browsing, all of the functional groups are open by
default, but they can be collapsed by clicking the “-” box next to the functional group
heading.

The Featured subtab shows only plugins that are designated as featured by the
Hudson project administrators. All of the plugins in this panel are tested and certified
by the Hudson QA team. As such, they have a higher level of quality assurance than
any random Hudson plugin available on the Internet.

Every plugin in the Recommended subtab is looked after by the Hudson project
administrators, but they are not subject to the same QA constraints as those in the
Featured subtab. Generally, it is a safe strategy to limit yourself to the Featured and
Recommended subtabs until you have become comfortable with rebuilding your
Hudson instance from backup; these plugins will meet 99 percent of your needs.

The Others subtab shows only plugins that are known by the Hudson project
administrators, but not given very much scrutiny with respect to quality. Plugins
here should be researched before installing.

The Search subtab allows open text search for any kind of plugin. No guarantee of
quality is made of the plugins found in this manner, though naturally every plugin that
can be found in any of the other subtabs is also available from this tab. Generally, it’s
only a good idea to use the search subtab if the desired plugin cannot be found in
any of the other subtabs.

FIGURE 3-3. Updates tab with three pending updates

03-ch03.indd 71 13/08/13 2:13 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

72 Hudson Continuous Integration in Practice

Installed The Installed tab shows the installed plugins and lets you enable or disable
each one, including plugins fundamental to the operation of Hudson. Therefore,
exercise great care when using this panel. It is best to only take action on plugins that
you have installed yourself.

Updating an Installed Plugin
As shown in Figure 3-3, the Plugin Center allows discovery of the need to update
installed plugins, as well as performing the update. Continuing with the smartphone
analogy, a familiar complaint with smartphone apps is the occasional experience of
losing functionality in an important app as a consequence of updating that app from
the app store. In such instances, one would like to be able to downgrade to the
earlier version. Unfortunately, this is not as easy with smartphones as it could be.
The story is similar for Hudson, though downgrading is not as difficult. This section
will explain how to save aside the current XPath Plugin Provider before using the
Plugin Center to update the plugin. After successfully demonstrating the installation
of the updated plugin, the previously installed version will be reinstalled, restoring
the prior functionality.

Saving Aside the Current Version of the Plugin Note the HUDSON_HOME
directory being used by your Hudson instance. In the command shell, change to that
directory and then to the plugins subdirectory. There you will find files ending in .hpi,
which stands for Hudson Plugin. These are zip files containing the expected file
layout for a Hudson plugin. Alongside each .hpi file you will see a directory that is
the result of unzipping that .hpi file. For this example, there would be an xpath-
provider.hpi file and an xpath-provider directory. To verify that the Hudson instance
is, in fact, running the version of the plugin in the plugins directory, you can compare
the value of the Plugin-Version attribute in the META-INF/MANIFEST.MF file in the
unzipped plugin directory with that shown in the Plugin Center’s Updates tab.
Note this version number so you can verify that the update succeeded. To save aside
the currently installed version, simply copy the .hpi file to another directory outside
of the plugins directory, taking care to note where you saved it.

Performing the Update Before doing any updates, it’s a good idea to wait for any
existing jobs to complete, then put the Hudson instance in shutdown mode. This
prevents any new jobs from executing until Hudson is restarted, which must be done
after installing or updating a plugin. To put Hudson in shutdown mode, visit the
Manage Hudson page from the main dashboard and find the Prepare for Shutdown
link. After you click this link, a red banner containing the text “Hudson is preparing
to shutdown” appears on every Hudson page.

03-ch03.indd 72 13/08/13 2:13 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 3: Basic Concepts 73

Performing the update is a simple matter of checking the check box next to the
plugin to be updated and clicking the Update button. Doing so will cause the Hudson
UI to present a progress notification while the update is being performed. When the
update completes, Hudson must be restarted.

After Hudson restarts, visit the Plugin Center’s Installed Plugins tab and search
for the plugin that you updated. Note that the version number has increased to the
new version.

Performing the Downgrade Using the Downgrade Button Hudson helpfully provides
a Downgrade to N button, where N is the previously installed version of the plugin.
Click the Downgrade to N button and you will be presented with this dialog.

Accept the dialog and shut down Hudson. After restarting Hudson, visit the
Updates tab of the Plugin Center and verify that the downgrade was successful.

Performing the Downgrade Using the Manual Method As an added measure of
security, it is possible to perform the downgrade without using the Downgrade button.
This technique can be useful if there is a specific version of the plugin that was known
to work with your environment, but which is not available via the “Downgrade to N”
button. Ensure that Hudson is shut down and use the command prompt to change to
the plugins directory within the HUDSON_HOME directory. Find the .hpi file and
corresponding directory for the plugin in question. Verify that your saved-aside .hpi
file is valid using a zip utility, such as unzip -t. Delete the .hpi file and corresponding
directory from within the plugins directory, and copy the saved-aside .hpi file into the
plugins directory. When you restart Hudson, the .hpi file is automatically unzipped,
and you should see that the plugin shows up in the Updates tab of the Plugin Center
as being eligible for update.

03-ch03.indd 73 13/08/13 2:13 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

74 Hudson Continuous Integration in Practice

Installing a New Plugin
This section walks through the installation of the JobConfigHistory plugin. This useful
plugin can record any changes to your configuration, both systemwide changes and
per-job changes. The usage of the JobConfigHistory plugin will be further explored
later in the chapter. From the Plugin Center tab panel, click on the Available tab and
then on the Recommended subtab. Use your browser’s “find in page” feature to
locate the text “JobConfigHistory” in the page. Click the check box next to the
plugin, scroll down to the bottom of the page, and click the Install button. Hudson
will display a progress indicator while the plugin is being downloaded. The amount
of time this progress indicator will display depends on your environment. When the
progress indicator disappears, restart Hudson. After the restart, you should see a new
link on the main Hudson dashboard: Job Config History. This is your indication that
the plugin installed successfully.

Disabling and Re-enabling an Installed Plugin
Now that the Job Config History plugin has been successfully installed, we will
describe the act of disabling an installed plugin. Disabling a plugin makes the
plugin effectively disconnected from the system, except for the fact that it can easily
be re-enabled. It is one step short of fully removing the plugin from the system,
which is explained in the next section. To disable an installed plugin, visit the Plugin
Center and the Installed tab within the tab panel. In this case, search for the text
“JobConfigHistory” in the list. Click the Disable button, and you will be presented
with a dialog confirming that you want to disable the plugin. Accept the dialog.
Note that there is no need to click any kind of save button. You must restart Hudson
immediately in order for the changes to take effect. Do not delay in restarting after
making configuration changes that require a restart, so as to minimize the chance of
disrupting the system. After Hudson completes restarting, visit the main dashboard
and note that the Job Config History link is missing. To re-enable the plugin, visit
the Plugin Center’s Installed tab, find the entry for JobConfigHistory, and click the
Enable button. By now, the practice of restarting Hudson should be very familiar.

Removing a Plugin Entirely
The Hudson management console does not offer a way to remove a plugin entirely
from the system, but it can be done from the command line. When removing a
plugin in this way, care must be taken to remove all the files installed by the plugin,
a process which varies from plugin to plugin. Failure to completely remove a plugin
from the system can lead to unpredictable results when reinstalling the same plugin
later. The process has two broad steps, both of which must take place while Hudson
is shut down. First, remove the .hpi file and corresponding directory from the plugins
directory. Second, remove any extra files created by the plugin itself. Restart Hudson
and verify that the plugin has been removed.

03-ch03.indd 74 13/08/13 2:13 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 3: Basic Concepts 75

These skills provide the basis for all manner of plugin management in Hudson.
The next section explores the JobConfigHistory plugin as a means to expand on the
backup job from the Chapter 1.

Your Fourth Job: Advanced Backup Options
As with any enterprise software, maintaining backups of critical infrastructure is
essential for smooth operation of the business. Due to Hudson’s special place in
the software environment and the tendency of Hudson to encapsulate complexity
so that those working in the environment can safely forget about many of the
configuration options once they are built into a working state, it is especially
important to exercise good backup hygiene with Hudson. Recall the “Back
Everything Up” section from Chapter 1. This job runs nightly and saves the last five
runs worth of the HUDSON_HOME directory. Because this would include all of
the jobs on the entire Hudson instance, this might prove to consume too much disk
space. This section explores the JobConfigHistory plugin installed in the preceding
section, and uses that plugin to enable a more fine-grained approach that uses far
less disk space by saving only the job configurations.

Upgrading the JobConfigHistory Plugin
The steps in this section assume version 2.3 or later of the JobConfigHistory plugin.
As of this writing, the version of JobConfigHistory plugin available via the Plugin
Center was only 1.9. The steps in this section will allow you to upgrade to a more
recent version of the JobConfigHistory plugin.

As with all command-line Hudson maintenance, shut down Hudson first. For
those plugins not available in the Plugin Center, but which are known to work
with Hudson, you can download the .hpi file and place it in the plugins directory
in HUDSON_HOME. Make sure to delete the old .hpi and corresponding directory
first before putting the new plugin in place. In this case, the latest version of the
JobConfigHistory plugin can be found at http://dl.aragost.com/hudson/plugins/
jobConfigHistory. Restart Hudson and verify that the version shows up as expected
in the Installed tab in the Plugin Center.

Exploring the JobConfigHistory Plugin
Visit the main Hudson dashboard and click on the Job Config History link. Immediately
after installing the plugin, there is no config history to show. To cause this page to show
some data, we will make a change to an existing job. Visit the configuration page for
an existing job, such as the servlet example earlier in this chapter. Any change made
to the job will be captured by the JobConfigHistory plugin. For this example, simply
change the text in the “Description” text area, such as by adding the text Test the
JobConfigHistory Plugin. Scroll down to the bottom of the configuration page and click
Save. Now visit the main dashboard and click on the Job Config History link. You will
see more data in this page. Now, go back to the job configuration page and make

03-ch03.indd 75 13/08/13 2:13 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

76 Hudson Continuous Integration in Practice

another change to the “Description” text area, saving the change. Return to the main
dashboard and click the Job Config History link. This page displays links that let you
filter the kind of configuration history to display:

 ■ Show system configs only This shows changes to the Hudson configuration
outside of those made to individual jobs.

 ■ Show job configs only This shows changes to individual jobs.

 ■ Show deleted jobs only This shows jobs that have been deleted.

 ■ Show all configs Shows all kinds of configs.

To view the changes just made, click the “Show job configs only” link and click
on the most recently changed job. You can compare the differences between any
two incarnations of the selected job by selecting the appropriate File A and File B
radio buttons and clicking the Show Diffs button.

Saving and Restoring a Previous Job Configuration
The JobConfigHistory plugin automatically starts saving all changes to all jobs as
soon as it is running. Restoring a previous job config can be as easy as clicking a
button or as hard as copying in an XML file to the job’s directory, depending on the
version of the JobHistoryConfig plugin that is running.

The config changes for a job can be viewed from the main Job Config History
link, or from the Job Config History link for an individual job. The latter is more
convenient because it takes you straight to the relevant history without any extra
navigation. When viewing the Job Configuration History for a job, the “Restore
old config” button should automatically reset the current state of the job config to
be equal to that of the saved job config. Unfortunately, this may not work due to
divergence between Hudson and Jenkins. If the button does not work, you can
achieve the same effect by saving aside the RAW link to an XML file and then
overwriting the job’s config.xml file with the saved-aside file. When making such
command-line changes, you must stop Hudson before copying in the file. The jobs
are located in the jobs directory of the HUDSON_HOME directory. For example, if
the Simple Servlet example was 02_mvn, and HUDSON_HOME is /var/lib/hudson,
the file to replace is /var/lib/hudson/jobs/02_mvn/config.xml.

Saving and Restoring System Configuration
Because tracking all system changes can be more resource-consuming, the plugin
comes with this option disabled by default. To enable it, visit the Manage Hudson
link from the main dashboard, then the Configure System link. This takes you to
the System Configurations page. Find the Job Config History section, which only

03-ch03.indd 76 13/08/13 2:13 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 3: Basic Concepts 77

appears if the plugin is installed and enabled. Click the Advanced button. Check
the box next to the text “Save system configuration changes.” If desired, fill in values
for the other fields. In practice, the most useful field is “Max number of history
entries to keep,” which should be set to around 5. After making these changes and
saving them, go back to the System Configurations page and make a change in the
“System Message” text area. Save the change. Return to the main dashboard and
click the “Show system configs only” link. You will see a list with lots of entries for
all the different kinds of system configurations. The entry pertaining to the System
Message change is labeled “config (system).” Click this entry and you will see the
same kind of Diff UI as with the job config, enabling you to inspect the differences
between versions of the system config over time. Unlike the job config, there is no
“restore” button, so you must use the same practice of saving aside the raw XML
and overwriting the appropriate file after shutting down Hudson. In the case of the
System Message change, the appropriate file is config.xml within the HUDSON_
HOME directory. Copying in the saved-aside file and restarting Hudson should
show the system message as it was prior to changing it.

Using a Hudson Job to Save the Output of JobConfigHistory
Find the backup job from the first chapter. We will use this as the basis for this
new job. If you haven’t already created that job, do it now. For discussion, the job
is called “Nightly HUDSON_HOME backup.” Create a new job by clicking on the
New Job link from the main dashboard. Type in a new name, such as Nightly
JobConfig backup. Select the radio button next to the “Copy existing job” option and
fill in Nightly HUDSON_HOME backup in the “Copy from” text field. The system
will auto-complete based on the set of existing jobs. Leave all fields the same except
for the Command text area in the Execute shell entry in the Build section. Replace
the existing text with the following, which is similar to the existing text, but with the
differences shown in bold.

export BACKUP_ROOT=/mnt/JobConfigBackup
cd ${BACKUP_ROOT}
cp -r ${HUDSON_HOME}/config-history JOB_CONFIG-${BUILD_ID}-backup
tar -cf JOB_CONFIG-${BUILD_ID}-backup.tar JOB_CONFIG-${BUILD_ID}-backup
gzip JOB_CONFIG-${BUILD_ID}-backup.tar
rm -rf JOB_CONFIG-${BUILD_ID}-backup
(ls -t|head -n 5;ls)|sort|uniq -u|xargs rm -rf

As before, the last line ensures that only the last five entries are saved. Make sure
the /mnt/JobConfigBackup is writable by the user id under which Hudson is running.

Hudson Authentication Security
This section covers how to configure Hudson using its existing security settings.
A full treatment of Internet security, especially as it applies to securing a host that is

03-ch03.indd 77 13/08/13 2:13 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

78 Hudson Continuous Integration in Practice

running on the open public Internet, is well beyond the scope of this book. If your
Hudson instance is running on the public Internet, you will need to do more than
just what the standard Hudson security settings provide. Much of this configuration
can be done using the administrative features of the container in which you are
running Hudson. Even in a trusted environment such as a corporate intranet, which
is the most common place to run Hudson, enabling the authentication system is
useful because it provides accountability for the person who has the ability to make
changes to the configurations. For example, the JobConfigHistory plugin shows who
made each change to the configuration. If everyone is logged in as the same user,
then this information is lost. We will walk through the most common authentication
and authorization.

Standard Security Configuration
This section will create two accounts, one named Alice, intended to be an
administrator account, and another named Bob, intended to have fewer privileges,
but enough to be productive. Before proceeding, some terms must be established.

Hudson Security Terms Hudson security can be broken down into two aspects:

 ■ Authentication Proving to the system that a user’s identity is authentic.
In other words, “you are who you say you are.” Hudson calls this aspect
“Security Realm” for historical reasons due to Hudson’s origins inside the
Application Server group at Sun Microsystems.

 ■ Authorization Granting access to certain parts of the system based on the
user’s identity. This is sometimes referred to as role-based access control
because each user is associated with one or more roles, and the roles dictate
what actions the user may take. In other words, “we know who you are;
now, what are you allowed to do?”

There are a few steps to take for each aspect.

Authentication From the main Hudson dashboard, choose Manage Hudson and
then Configure Security. Click the Enable Security check box, which is unchecked by
default. This reveals the basic security configuration panel. In the Security Realm
section, choose “Hudson’s own user database” and ensure that the “Allow users to
sign up” and “Notify user of account creation” check boxes are checked. These will
be unchecked later after the two accounts are created. This approach places the
burden on the Hudson administrator for creating accounts. This is more work for the
admin, but it ends up being more secure.

03-ch03.indd 78 13/08/13 2:13 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 3: Basic Concepts 79

In the Authorization section, select the “Logged-in users can do anything” radio
button and click Save. The first time these steps are followed, the act of clicking Save
will effectively introduce a login policy where there was none before. Naturally, this
means you are now effectively logged out, but don’t worry. Because we kept the
“Allow users to sign up” check box checked, and selected the “Logged-in users can
do anything” option, we will now use the Hudson UI to create the accounts for Alice
and Bob and then assign them privileges accordingly.

Click the Sign up link in the upper-right corner of the screen. This link appeared
when Save was clicked. Hudson will show this UI for creating an account.

Fill in the UI as shown for Alice and click the Sign up button. This will log you
in as that user. Log out of Alice’s account by clicking on the “log out” link at the
top right of the Hudson UI. Follow the same steps to create an account for Bob
(with bob as the username), logging Bob out and logging back in as Alice again.

Authorization Visit Manage Hudson, then Configure Security. In the Security
Realm section, uncheck the “Allow users to sign up” and “Notify user of Hudson
account creation” check boxes. In the Authorization section, choose the “Matrix-
based security” radio button. This reveals a UI for configuring access control lists
(ACLs) for the existing users that have been created using the Hudson UI. It is not
possible to create users from the “Matrix-based security” UI. Creating users is easiest
to do as shown in the preceding section. Type alice into the “User/group to add”
box and click Add. Note that only existing usernames may be typed here. Do the
same for bob. Make sure all of the check boxes are checked for Alice and all but the
Administer check box (in the Overall section) and Slave check box are checked for
Bob. The divisions between the columns in the access control list UI are not very
clear. For reference, the first column in the Job section is “Create.” Figure 3-4 shows
the configured ACL panel.

Click Save and then log out Alice. Log back in as Bob and note that the Manage
Hudson link is simply not present. Logging back in as Alice will reveal this link again.

03-ch03.indd 79 13/08/13 2:13 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

80 Hudson Continuous Integration in Practice

Because Hudson jobs can contain sensitive information such as passwords, it
is best to always apply at least these security steps to any enterprise-level Hudson
instance.

Adding Quality Assurance Systems
Arguably the most valuable function Hudson can perform is to increase the quality
of the world’s software (and therefore the world itself). Software Quality Assurance is
the broad term applied to all such worthy efforts. Obviously, a detailed treatment of
this topic is beyond the scope of this book. This section introduces tools for testing,
inspection, coverage, and reporting. For each of these aspects of software quality
assurance, there are many tools that are able to work well with Hudson. The most
popular of each aspect will be explored in turn. The topic of testing will be examined
in more detail in the chapter on Hudson and automated testing.

Testing
With respect to Hudson, testing refers to the act of including the running of
automated tests in a Hudson job. If any of the tests fail, the job fails just as badly
as if there were a syntax error in the source code. Once your organization is
committed to keeping the Hudson jobs clean (that is, no failures), the simple step
of adding testing as a precondition for job success is the last hurdle to achieving
significant return on the time invested in Hudson thus far.

The exact manner in which testing can be included in your Hudson jobs can
vary greatly depending on what build system is being used and what kind of test
(unit, system, integration, acceptance, and so on) is being executed. In general, it is
best to minimize the amount of configuration relating to testing kept in the job itself.
Rather, strive to keep such configuration entirely in the build configuration, which is
kept under SCM.

The Simplest Test That Could Possibly Work This section adds a unit test to the
HelloMvn example. Maven assumes that the software is composed of loosely coupled
modules, each of which is self-contained and reasonably small. It is challenging to

FIGURE 3-4. The ACL panel

03-ch03.indd 80 13/08/13 2:13 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 3: Basic Concepts 81

keep the software organized in this way over time, but it is very important to keep
disciplined about doing so. One part of “self-contained” means the code and the tests
are kept closely together. At a minimum, this means the unit tests are kept very close
to the code. Other kinds of tests may reasonably be allowed to live in their own
modules, separate from the code.

As shown previously, Maven assumes the source code is kept in subdirectories
of src/main/java. A similar assumption is made about tests: they reside in src/test/java.
Placing your tests in this directory allows Maven to automatically execute them as
part of the build lifecycle. The following listing is src/test/java/net/hudsonlifestyle/
HelloMvnTest.java. This test uses JUnit, but another popular and mostly equivalent
technology is TestNG.

package net.hudsonlifestyle;

import org.junit.Test;
import static org.junit.Assert.*;

public class HelloMvnTest {

 @Test
 public void testHelloMvn() throws Exception {
 assertTrue(false);
 }
}

Note that the package of this class is identical to the HelloMvn class. This trick
allows the test to access package private code. This test imports two things from
JUnit: the Test annotation and the assertion static functions. The former is placed on
every method that is to be called by the Maven plugin that will be running the test.
The latter are used to assert the correctness of the code. These assertions are the way
in which the outcome of the test is determined. A single failed assertion will cause
the test to be considered failed. Consequently, a single failed test will cause the job
to be considered failed. For this reason, assertions are really important. The assertion
in this test: assertTrue(false) will always fail. This is done to illustrate the reporting feature
of Hudson. After running the job with the failed test, it will be corrected and rerun.

Some additional configuration is necessary in the pom.xml. Because JUnit uses
annotations, the compiler plugin must be told to use a version of Java that supports
annotations. This was shown in the preceding example regarding servlets. Because we
are using JUnit, we must include a dependency on it. This goes in the <dependencies>
section.

<dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.11</version>
 <scope>test</scope>
</dependency>

03-ch03.indd 81 13/08/13 2:13 PM

www.allitebooks.com

http://www.allitebooks.org

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

82 Hudson Continuous Integration in Practice

Note the <scope>test</scope>. This is necessary to prevent Maven from adding
the dependency to the classpath on build lifecycle phases other than test. This prevents
accidentally introducing test dependencies in the main code, since such code would
fail to compile.

Rerunning the Hudson job for this code will automatically cause this test to be
executed. As shown in this output, the test will fail.

 T E S T S

Running net.hudsonlifestyle.HelloMvnTest
Tests run: 1, Failures: 1, Errors: 0, Skipped: 0, Time elapsed: 0.047 sec <<< FAILURE!

Results :

Failed tests: testHelloMvn(net.hudsonlifestyle.HelloMvnTest)

Tests run: 1, Failures: 1, Errors: 0, Skipped: 0

[INFO] --
[INFO] BUILD FAILURE
[INFO] --
[INFO] Total time: 2.764s
[INFO] Finished at: Sat Apr 06 03:03:09 EDT 2013
[INFO] Final Memory: 13M/151M
[INFO] --
[INFO] o.h.m.e.h.MavenExecutionResultHandler - Build failed with exception(s)
[INFO] o.h.m.e.h.MavenExecutionResultHandler - [1] org.apache.maven.lifecycle.Lifecy-
cleExecutionException: Failed to execute goal org.apache.maven.plugins:maven-surefire-
plugin:2.10:test (default-test) on project hellomvn: There are test failures.

Please refer to /var/lib/hudson/jobs/03_mvn/workspace/BasicConcepts/03_mvn/target/
surefire-reports for the individual test results.
[DEBUG] Closing connection to remote
[ERROR] Failed to execute goal org.apache.maven.plugins:maven-surefire-
plugin:2.10:test (default-test) on project hellomvn: There are test failures.
[ERROR]
[ERROR] Please refer to /var/lib/hudson/jobs/03_mvn/workspace/BasicConcepts/03_mvn/
target/surefire-reports for the individual test results.
[ERROR] -> [Help 1]
[ERROR]
[ERROR] To see the full stack trace of the errors, re-run Maven with the -e switch.
[ERROR] Re-run Maven using the -X switch to enable full debug logging.
[ERROR]
[ERROR] For more information about the errors and possi-
ble solutions, please read the following articles:
[ERROR] [Help 1] http://cwiki.apache.org/confluence/display/MAVEN/MojoFailureException
[DEBUG] Waiting for process to finish
[DEBUG] Result: 1
Archiving artifacts
Recording test results
[DEBUG] Skipping watched dependency update for build: 03_mvn #7 due to result: FAILURE
Finished: FAILURE

Page generated: Apr 6, 2013 3:04:35 AM Hudson ver. 3.0.0

03-ch03.indd 82 13/08/13 2:13 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 3: Basic Concepts 83

In addition to the test output, the Hudson UI provides numerous cues to indicate
the failure of the job.

Now that the test is being run by Hudson, we must take the additional step of
configuring Hudson to know about the test results. From the main page for the job,
click the Configure link and find the Post-build Actions section. Click the check box
labeled “Publish JUnit test result report.” This will reveal a text field into which you
would enter a file path similar to the one in the “Archiving the Artifacts” exercise
earlier in the chapter. The value in this field is validated against the latest job workspace
when the cursor is moved out of the field. If the value did not match any files, a
helpful error message is displayed. In this case, enter the value BasicConcepts/03_
mvn/surefire-reports/TEST-*.xml (or similar). Rerun the job and you should see
something similar to the following.

Click on the link Latest Test Results. This brings you to a collection of pages that
allow quick discovery of the failed test(s) and, more importantly, start to discover the
cause of the failure(s). Given that the goal is Continuous Delivery and the software
cannot be delivered if there are failing tests, making it as easy as possible to fix
problems is very important. The All Failed Tests section has links to pages that contain
information that may be helpful in determining the cause of the failure. By default
this is the stack trace to the failed assertion. In this case, the stack trace looks like this.

java.lang.AssertionError
 at org.junit.Assert.fail(Assert.java:86)
 at org.junit.Assert.assertTrue(Assert.java:41)
 at org.junit.Assert.assertTrue(Assert.java:52)
 at net.hudsonlifestyle.HelloMvnTest.testHelloMvn(HelloMvnTest.java:12)

03-ch03.indd 83 13/08/13 2:13 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

84 Hudson Continuous Integration in Practice

 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 at sun.reflect.NativeMethodAccessorImpl.
invoke(NativeMethodAccessorImpl.java:57)
 at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAcc
essorImpl.java:43)
 at java.lang.reflect.Method.invoke(Method.java:616)

The remaining frames of the stack trace have been omitted because they pertain
only to the mechanics of Maven invoking the test.

To fix the test, replace the assertion with this code.

HelloMvn.main(null)

This is the only method we have on HelloMvn. In its present form, the main()
method does nothing with the argument String array, but perhaps a future change will
do so. In any case, this test could be considered a “fuzz test”: a test that intentionally
passes invalid input to the code to assert that it behaves correctly even in such cases. In
this case, because the test method declares throws Exception, the expected behavior
is that the null input is silently ignored. Rerun the job and the failed test will start to
pass, allowing the job to pass.

 T E S T S

Running net.hudsonlifestyle.HelloMvnTest
Hello Maven!
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.543 sec

Results :

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

[INFO]
[INFO] --- maven-jar-plugin:2.4:jar (default-jar) @ hellomvn ---
[INFO] Building jar: /var/lib/hudson/jobs/03_mvn/workspace/BasicConcepts/03_mvn/target/
hellomvn-1.0.jar
[INFO]
[INFO] --- maven-install-plugin:2.3.1:install (default-install) @ hellomvn ---
[INFO] Installing /var/lib/hudson/jobs/03_mvn/workspace/BasicConcepts/03_mvn/target/
hellomvn-1.0.jar to /var/lib/hudson/.m2/repository/net/hudsonlifestyle/hellomvn/1.0/
hellomvn-1.0.jar
[INFO] Installing /var/lib/hudson/jobs/03_mvn/workspace/BasicConcepts/03_mvn/pom.
xml to /var/lib/hudson/.m2/repository/net/hudsonlifestyle/hellomvn/1.0/hellomvn-1.0.pom
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 41.403s
[INFO] Finished at: Sat Apr 06 09:38:40 EDT 2013
[INFO] Final Memory: 13M/153M
[INFO] --
[DEBUG] Closing connection to remote
[DEBUG] Waiting for process to finish
[DEBUG] Result: 0

03-ch03.indd 84 13/08/13 2:13 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 3: Basic Concepts 85

Archiving artifacts
Recording test results
[DEBUG] Skipping watched dependency update; build not configured with trigger: 03_mvn #8
Finished: SUCCESS

Adding Inspection or Analysis Another important class of software quality
assurance tool is the inspection or analysis tool. Generally there are two subclasses
of inspection tool, named for the manner in which the inspection is performed.
Static analysis tools look at the source code without running it, comparing it to a set
of best practices for the kind of source code being examined. The two most popular
static analysis tools in use with Hudson are FindBugs and PMD. Dynamic analysis
tools look at the code as it is being run. Dynamic analysis tools are less commonly
used but should at least be considered when taking a holistic look at software
quality. This section adds PMD to the HelloMvn example.

At a high level, there are three steps to introducing any new kind of static analysis
tools to your Hudson instance.

 1. Identify the code to analyze.

 2. Configure the build system to perform the analysis.

 3. Configure Hudson to display the results of the analysis in a usable report.

Because the HelloMvn example is trivial, we must introduce a PMD violation in
the form of an unused import. Adding this line to the class will suffice:

import java.util.List;

Because we have been using Maven, we will need to add a <reporting> top-level
section to the pom.xml, as shown in the boldfaced text.

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.
apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>net.hudsonlifestyle</groupId>
 <artifactId>hellomvn-04</artifactId>
 <version>1.0</version>
 <packaging>jar</packaging>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <version>2.4</version>
 <configuration>
 <archive>

03-ch03.indd 85 13/08/13 2:13 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

86 Hudson Continuous Integration in Practice

 <manifest>
 <mainClass>net.hudsonlifestyle.HelloMvn</mainClass>
 </manifest>
 </archive>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <inherited>true</inherited>
 <configuration>
 <source>1.6</source>
 <target>1.6</target>
 <encoding>${project.build.sourceEncoding}</encoding>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-pmd-plugin</artifactId>
 <version>2.7.1</version>
 <configuration>
 <targetJdk>1.6</targetJdk>
 </configuration>
 <executions>
 <execution>
 <phase>site</phase>
 <goals>
 <goal>pmd</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>

 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.11</version>
 <scope>test</scope>
 </dependency>
 </dependencies>

 <reporting>
 <plugins>
 <plugin>

03-ch03.indd 86 13/08/13 2:13 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 3: Basic Concepts 87

 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jxr-plugin</artifactId>
 <version>2.3</version>
 </plugin>
 </plugins>
 </reporting>

</project>

There is a huge variety of software available to include in the <reporting>
section, ranging from generating a Web site to creating documentation. In fact, the
surefire-reports plugin is already being used by virtue of the JUnit example, but the
default configuration is sufficient for the purposes of this chapter.

The final step is to configure Hudson. Visit the Plugin Center as described
earlier and install the following plugins, all of which are in the Available tab, in
the “recommended” subtab.

 ■ Static Analysis Collector plugin

 ■ Static Analysis utilities

 ■ PMD plugin

These plugins can all be installed together, requiring only one Hudson restart. Be
prepared to wait a while depending on the speed of your environment. Progress can
be watched by tailing the Hudson log file. To verify that the PMD plugin has installed
successfully, look for this message in the Hudson log file:

INFO: Attained Initializing plugin pmd

Restart Hudson and visit the configuration page of the job for HelloMvn. In the
Build section, locate the one and only Invoke Maven 3 section and make the text of
the Goals section be clean package site. Save the configuration and rerun the job.
This will cause Maven to download all the necessary dependencies for producing
the PMD results report. Once the job has completed successfully, return to the
configuration page. In the Post-build Actions section, check the check box next to
“Publish PMD analysis results,” which only appears when the PMD plugin has
successfully been installed. If this check box is not present, try restarting Hudson.
As with the JUnit test results, this check box reveals a text field into which a file path
expression must be typed. The PMD results file is called pmd.xml, and is placed in
the target/site/pmd.xml. Because this job is only building the 04_mvn project, the
full path to the pmd.xml file is “BasicConcepts/04_mvn/target/site/pmd.xml”. Save
the configuration and rerun the job. After the job completes, the job page should
look like Figure 3-5.

03-ch03.indd 87 13/08/13 2:13 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

88 Hudson Continuous Integration in Practice

Because the maven-jxr-plugin was included in the reporting section, HelloMvn.java
shows up as a link in the page on the Details tab. Clicking on this link shows the
exact error in the offending source file. The maven-pmd-plugin has many configuration
options that can be used to cause the build to fail for certain kinds of validations.
These options are very project-specific and are beyond the scope of this chapter.

There are numerous other software quality assurance plugins available with
Hudson. The most common and essential ones will be visited in the chapter on
automated testing.

FIGURE 3-5. Job page with PMD results

03-ch03.indd 88 13/08/13 2:13 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 3: Basic Concepts 89

Build Notifiers
Now that we have a Hudson job that we have seen can pass or fail, the final step
before we can declare that we have a minimally functional Hudson instance is to
configure a means for Hudson to alert others of the status of a build. Such is the task
of the build notifier. As with software quality assurance, there are numerous plugins
to fill the job. Thankfully, the task of build notification is a much smaller topic. This
section will use the built-in e-mail notification feature. The feature can work with any
SMTP e-mail service, such as Google’s gmail. As one would expect, it is necessary
to enter e-mail credentials so that Hudson can send mail using that SMTP server.
This is yet another reason to have Hudson security in place.

Configuring E-mail Server
The E-mail Server is configured on the System Configurations page reached via the
Manage Hudson link. Note that if Hudson security is set, you will need admin
privileges to use this page. The E-mail Notification section displays the configuration
information and fields to modify the configuration as shown in Figure 3-6.

The “SMTP server” field value is either the IP number of the mail server or a fully
qualified name including the domain. In Figure 3-6, a freely available Google SMTP
server is used to send e-mail. The value of the Default User e-mail Suffix is used to
compute the e-mail address of a user. For example, if the user name is jane.doe and
the e-mail suffix is @gmail.com, then Hudson will try to send e-mail to jane.doe@
gmail.com. This is especially useful if Hudson security setup uses an identity
management system like LDAP, all the users have a uniform e-mail domain suffix,

FIGURE 3-6. Gmail settings

03-ch03.indd 89 13/08/13 2:13 PM

90 Hudson Continuous Integration in Practice

and the individual user e-mail address is not set. The System Admin E-mail Address
is used by Hudson for the “from” header of the e-mail. We recommend using a real
e-mail address like notifications@myserver.com. We also recommend filling the
Hudson URL field, for example, http: //hudson.myserver.com.

The generated e-mail will contain a hyperlink to the URL provided in the Hudson
URL field. This URL should be easily resolvable by the intended audience of the
e-mail, though they may need to access VPN to resolve the URL depending on what
e-mail address they use to receive the notification. Hudson provides a very helpful
button, labeled “Test configuration by sending e-mail to System Admin Address.”
Click the button, and verify that the e-mail is received. This may take some time
depending on the environment. Once the e-mail is verified to have been received,
interested parties can sign up to be notified of the status of builds.

On the job configuration page find the text “E-mail Notification.” Fill in the e-mail
addresses of the desired recipients and click Save.

Most of the time, if the SMTP server specified is internal to the company, then
authentication may not be required, but while using an external SMTP server like
Google SMTP server, you may have to provide authentication. If authentication is
needed for your SMTP server, then specify the username and password. Unless
your SMTP server is running in a nondefault port, the port need not be specified.
Hudson assumes the default port as 25 or 465 for SMTP with SSL. To check if all
the configuration information is correct, click the “Test configuration by sending
e-mail to System Admin Address” button. On success, Hudson would display the
message “Email was successfully sent.” Be aware that if the server configuration
(including any authentication information) is correct and only the System Admin
e-mail address is incorrect, Hudson will still display the success message.

Configuring the Job to Send Build Status Message
Once the E-mail Server is successfully configured, the next step is to configure the
job to tell Hudson which recipients it should send e-mail to about the success or
failure of the build. This is done at the Email Notification check box at the Post-build
Actions section of the job configuration. Multiple e-mail addresses can be specified,
separated by whitespace. We recommend using a generic mailing list to which the
team members are subscribed.

When the e-mail notification is configured:

 ■ Every failed build triggers a new e-mail.

 ■ A successful build after a failed (or unstable) build triggers a new e-mail,
indicating that a crisis is over.

 ■ An unstable build after a successful build triggers a new e-mail, indicating
that there's a regression.

 ■ If checked, every unstable build triggers a new e-mail, indicating that regression
is still there.

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 3: Basic Concepts 91

FIGURE 3-7. Email sent by Hudson via gmail

A build is unstable, even though it was built successfully, if one or more of the
post-build actions (especially publishers) are unstable. For example, if the JUnit
publisher is configured and a test fails, then the build will be marked unstable.
Unlike a CI build, for some jobs, for example functional tests only job, the “Send
e-mail for every unstable build” option could be unchecked.

If the “Send separate e-mails to individuals who broke the build” option is
checked, the notification e-mail will be sent to individuals who have committed
changes for the broken build. We recommend checking this for every Commit job.
The committer e-mail address is inferred from the Change Set information of the
SCM configured in the job. Figure 3-7 is a sample failure e-mail sent by Hudson. It
includes a complete failure log.

Summary
This chapter rounds out the essential knowledge for using Hudson in most enterprise
environments. After reading the first three chapters, you have everything you need to
know to be effective when using Hudson for most common tasks. More importantly,
you have the foundation for learning more.

We introduced SCM and showed how to add it to your job. We created jobs for
a simple Java application and servlet. We introduced the plugin manager, and used
the JobConfigHistory plugin to more completely back up the Hudson instance with
a nightly job. We showed how to secure a Hudson instance for use on a corporate
intranet. Finally, we introduced software quality assurance tools and introduced the
common build notifiers.

03-ch03.indd 91 13/08/13 2:13 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5
Blind folio: 92

03-ch03.indd 92 13/08/13 2:13 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5
Blind folio: 93

PART
II

Applying Hudson

04-ch04.indd 93 13/08/13 2:20 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5
Blind folio: 94

04-ch04.indd 94 13/08/13 2:20 PM

This page has been intentionally left blank

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5
Blind folio: 95

CHAPTER
4

Hudson as a Continuous
Integration Server

04-ch04.indd 95 13/08/13 2:20 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

96 Hudson Continuous Integration in Practice

Hudson is a full-fledged execution and scheduling engine. To fully utilize it
as a real Continuous Integration (CI) build server, rather than merely an
execution tool, you must plan and architect the builds to meet the

conditions necessary to achieve CI. This chapter will explore the nuances of CI and
how to set up Hudson as a true CI build server for your agile team.

What Is Continuous Integration?
The term Continuous Integration was originally coined by Kent Beck1 as part of the
Extreme Programming conceptualization in the ’90s. Eventually, the three software
engineering processes—Test-Driven Development,2 Continuous Integration,3 and
Continuous Delivery or Deployment4—became the solid supporting pillars of a
successful agile team. In a Test-Driven Development build pipeline, Continuous
Integration is the first step and Continuous Delivery is the end result.

Martin Fowler, in his landmark article titled “Continuous Integration,”5 described
CI as:

a software development practice where members of a team integrate their work
frequently, usually each person integrates at least daily—leading to multiple
integrations per day. Each integration is verified by an automated build
(including test) to detect integration errors as quickly as possible.

To achieve this goal, Continuous Integration relies on the principles Fowler
considers the “ten commandments” of CI:

 ■ Maintain a single-source repository.

 ■ Automate the build.

 ■ Make your build self-testing.

 ■ Everyone commits to the baseline every day.

 ■ Every commit should build the mainline on an integration machine.

 ■ Keep the build fast.

 ■ Test in a clone of the production environment.

1 Kent Beck, Extreme Programming Explained: Embrace Change. Addison-Wesley Professional, 2000.
2 Kent Beck, Test-Driven Development: By Example. Addison-Wesley Professional, 2002.
3 Paul M. Duvall, Steve Matyas, and Andrew Glover, Continuous Integration: Improving Software Quality

and Reducing Risk. Addison-Wesley Professional, 2007.
4 Jez Humble and David Farley, Continuous Delivery: Reliable Software Releases through Build, Test, and

Deployment Automation. Addison-Wesley Professional, 2010.
5 Martin Fowler, “Continuous Integration.”http://martinfowler.com/articles/continuousIntegration.html

04-ch04.indd 96 13/08/13 2:20 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 4: Hudson as a Continuous Integration Server 97

 ■ Make it easy for everyone to get the latest executable.

 ■ Everyone can see what is happening.

 ■ Automate deployment.

In this chapter, we will explore how to achieve each of these principles using
Hudson CI Server. We assume you already know how to work with Hudson, create
a job, manually run a build, and view the build result. If you are not familiar with
the Hudson environment, we encourage you to read Chapters 1–3 first.

Setting Up the CI Environment
Once you decide to implement CI for your project, your first step is to establish the
following prerequisites:

 ■ Centralized SCM repositories A Source Code Management (SCM) system
is one of the key components of CI. SCM is a repository where a complete
history of every file in a software project is kept. Setting up a single repository
that contains everything needed to build a buildable software unit is the first
step of a good CI process.

 ■ Dedicated build servers If the environment where the CI builds happen
is significantly different from a production environment, there is greater
risk for failures at production time. While it may not be possible to have an
exact replica of the production environment, a scalable version of the actual
production in a virtualized environment will greatly alleviate the risks.
Principally, same versions of runtime environments such as JDK, database,
and operating systems in the build machines will help reduce the risks.

 ■ Continuous Integration software To ensure that the main branch of the
SCM repository remains healthy, the mainline should be built on every
commit to verify that the integration was indeed correct. A common practice
is to use an automated CI tool to do the build on a dedicated integration
machine. Usually, the CI tool monitors the commits in the SCM system and
then automatically runs the build process. Here, we assume you are using
Hudson as the CI tool.

 ■ Unit testing framework A CI build is not only about catching compilation
errors, but also about catching bugs early and efficiently. This is achieved
by including automated unit tests in the build process. Once the code is
compiled, unit tests should run to confirm that it behaves as the developers
expect it to behave or else the build should be marked as a failed build.
Hudson supports several unit-testing frameworks. In this chapter we will
explore the use of JUnit as a unit-testing framework.

04-ch04.indd 97 13/08/13 2:20 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

98 Hudson Continuous Integration in Practice

 ■ Build tool Automating the build using a single command is an important
principle of a CI build. Many build tools—such as Make for the UNIX
world, Ant and Maven for the Java community, and Nant and MSBuild for
the .NET community—exist to automate the build and are frequently used
in CI environments. Automating the build does not mean just compiling
the source, but also running unit tests, executing a test harness, generating
documentation, and finally deploying the freshly built product. While
Hudson supports several popular build tools (including Maven, Gradle, Ivy,
and MsBuild) through plugins, we will be highlighting the use of Maven as
the build tool in this chapter.

 ■ Deployment environment It is easy to incorporate scripts in the build
automation process that execute the built product after a build finishes. It
is possible to extend this and write scripts to deploy the application to a live
test server for the QA team to test periodically or to a semiproduction server
where a subset of the user base has subscribed for early adoption testing.
Wherever possible, incorporating automated deployment is a good practice.
In this chapter, we will use Hudson plugins to automate the deployment of
a Java Web application to a Tomcat server.

 ■ Build dashboard The primary goal of an agile team is to make sure what
they are building is correct. Getting feedback from stakeholders and testers
early on can reduce the amount of rework and ensure that the feature they
are building indeed meets the requirements. To achieve this, anyone involved
with a software project should be able to get the latest build artifacts and test
them. Hudson provides an excellent Web UI for getting the latest executable
of a build, which we will explore in this chapter.

 ■ Communication tool Another important principle of CI is to communicate
the state of the build, especially if it is broken. It should be easy to find out
whether the build is in progress or complete. If the build is in a complete
state, it should be identifiable as successful or broken, and if it’s broken,
changes relevant to the failure should be easily identifiable as well. In this
chapter, we will use customized e-mail to communicate the build status to
the team and beyond.

As mentioned in the preceding list, we will use Git, Maven, and JUnit in this
chapter to explain how to effectively set up Hudson as your CI server. To learn more
about these technologies, refer to Chapter 2.

Sherwood County Library
For the purpose of explaining how Hudson could be used as an agile tool to
implement CI, we have invented a fictitious county called Sherwood. This county
has a public library, Sherwood County Library, which serves hundreds of people

04-ch04.indd 98 13/08/13 2:20 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 4: Hudson as a Continuous Integration Server 99

each day. The library council believes the library will provide better service if it
automates the lending process for county residents. The entire process of automating
the lending process was handed over to a software development team. The team
lead is an energetic, forward-thinking engineer who decided the fastest turnaround
would be possible if the team followed agile methodologies. They decided to do:

 ■ Continuous Integration

 ■ Test-Driven Development

 ■ Continuous Delivery

Because the library is publicly funded, the budget is limited, so the development
team will use freely available goodies to keep the cost at a minimum:

 ■ GitHub for remote repositories

 ■ Git as SCM

 ■ Maven as build tool

 ■ Nexus as artifact repository manager

 ■ MySQL as database

 ■ JUnit and HTMLUnit for test harness

 ■ Hudson as CI Server

Sherwood Library Software Components
The software developed by the Sherwood team has various components (see
Figure 4-1). The team has identified the scope of each component required for
automation as shown in the following table:

Component Scope

Library Web Application Back End
UI

Persistence Library
REST API

Checkout Web Interface
Back End
REST API

Returns Web Interface
Back End
REST API

04-ch04.indd 99 13/08/13 2:20 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

100 Hudson Continuous Integration in Practice

Buildable Units
As we saw earlier, one important CI guideline is building fast and giving feedback
quickly. To achieve this, rather than building the entire source in one single job,
divide the project sources into buildable chunks. Each chunk of software must be
able to build independent of each other. The dependent chunks must be built
separately and stored in an artifact repository manager for other software chunks to
use them as dependencies. Each of the software chunks is a buildable unit and is
built by a single Hudson job.

In the Maven world, each of the buildable units can be represented in terms of
Maven projects. Though it is possible to create a top-level Maven project and keep
the subprojects (for example, Checkout | REST API) as Maven modules, for the sake
of better buildable units, it is better to keep each of them as a separate Maven
project. When we explore various aspects of CI for our system, this becomes clearer.

Hudson Jobs
If you are not familiar with a Hudson job, refer to Chapter 3 to define Hudson jobs,
learn how to create one, and view its build result. Table 4-1 lists the mapping of the
Sherwood software buildable chunks to Hudson jobs.

FIGURE 4-1. Relationship between various components of Sherwood Library software

Books Checkout
Sh

er
w

oo
d

Li
br

ar
y

W
eb

Si
te

REST API Web Interface

Pe
rs

is
te

nc
e

Back End

Books Return

REST API Web InterfaceBack End

Back End Library API

REST APIWeb UI

04-ch04.indd 100 13/08/13 2:20 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 4: Hudson as a Continuous Integration Server 101

NOTE
As a best practice, several software project
teams could share a single Hudson master. Jobs
belonging to a particular software project could
be grouped into a single Job Status view of the
Hudson main dashboard page (refer to Chapter 3
for information on Hudson dashboards and views).
In order to facilitate the grouping, it is advisable
to use certain conventions for job names. For
example, use the project name as prefix. We use
sherwood_checkout_* as the prefix for all jobs
related to the Sherwood Checkout module, so they
can be aggregated into a single view for the team
responsible for that module.

There may be additional jobs for functional and integration tests, such as those
listed in Table 4-2, but they will be built outside the realm of CI builds.

TABLE 4-1. Hudson Jobs for Sherwood Software

Buildable Chunk Hudson Job

1. Sherwood Library Web App sherwood_webapp

2. Sherwood Library Web App | Backend sherwood_webapp_backend

3. Sherwood Library Web App | UI sherwood_webapp_ui

4. Persistence sherwood_persistence

5. Persistence | Library sherwood_persistence_library

6. Persistence Layer | REST API sherwood_persistence_rest

7. Checkout sherwood_checkout

8. Checkout | Web Interface sherwood_checkout_webapp

9. Checkout | Backend sherwood_checkout_backend

10. Checkout | REST API sherwood_checkout_rest

11. Returns sherwood_returns

12. Returns | Web Interface sherwood_returns_webapp

13. Returns | Backend sherwood_returns_backend

14. Returns | REST API sherwood_returns_rest

04-ch04.indd 101 13/08/13 2:20 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

102 Hudson Continuous Integration in Practice

In the preceding setup, when the top-level jobs are built, their modules are also
built. The prefix sherwood in the job name makes it easy to list the jobs corresponding
to the Sherwood software project in a single Jobs Status view, as shown in Figure 4-2.
(If you want to know how to create a custom Jobs Status view for your project, track
back to Chapter 3.)

TABLE 4-2. Additional Hudson Jobs for Sherwood Software

Buildable Chunk Hudson Job

1. Sherwood Library Web App
automated functional tests

sherwood_webapp_func_tests

2. Books Checkout Web App
automated functional tests

sherwood_checkout_webapp_func_test

3. Book Returns Web App automated
functional tests

sherwood_returns_webapp_func_test

4. Sherwood Library automated
integration tests

sherwood_integration_tests

FIGURE 4-2. Sherwood Library software, Hudson Jobs Status view

04-ch04.indd 102 13/08/13 2:20 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 4: Hudson as a Continuous Integration Server 103

Source Code Management
The principle, “maintain a single-source repository,” encourages the project team to
use a centralized Source Configuration Management (SCM) system, also known as
Source Code Management tools, to maintain their source code. The SCM system
must be accessible to all members of the team. As a rule of thumb, all artifacts
required to build the project, including test scripts, properties files, database
schema, and install scripts, should be placed in this repository. The convention is
that the system should be buildable from a fresh checkout and not require additional
dependencies. If you are using more advanced build tools like Maven or Gradle,
then you have the option to keep the build dependencies in external repositories
such as Nexus or Artifactory rather than in the SCM system itself. A common
distinction is that all build artifacts created by the project team are kept in the SCM
system, while dependencies such as open source software or, in large organizations,
built artifacts created by other teams, are kept in repositories. Refer to Chapter 3 to
learn about adding SCM to your Hudson jobs.

Everyone in the project team must commit regularly to the SCM system. By
doing so, a committer can easily find out if there are any conflicting changes with
another developer. Regular integration effectively communicates changes to other
developers in the team and reduces the risk of conflicting with other features
developed by other team members. Committing all changes at least once a day is
considered a best practice. An important prerequisite for a developer committing to
the mainline is that they do a build on their machine after merging with other
integrations. Several SCM systems, such as CVS, SVN, and Git, have gained wide
acceptance in the industry. Though Hudson provides support for several SCM
systems, in this chapter, we will use Git as an SCM system and GitHub as a Remote
Hosted Repository.

Though there are various advanced commands (and every system has its own
nomenclature), the basic operations of an SCM system are:

 ■ checkout This command fetches the latest version of files in a software
project.

 ■ commit This operation allows you to add, modify, or remove files by
checking in your changes.

While performing checkout and commit, the good state of the SCM system is
preserved by merging files modified by other members of the developer team.

The Sherwood Library software development team decided to use the freely
available, centralized, hosted SCM system called GitHub. The primary SCM system
supported by this hosted service is called Git, another freely available tool to do SCM
operations, which was briefly introduced in Chapter 2. Each of the components and
their subcomponents are kept in separate repositories under a single umbrella called

04-ch04.indd 103 13/08/13 2:20 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

104 Hudson Continuous Integration in Practice

“SherwoodLibrary organization.” GitHub organization is a way to group related
repositories. The SherwoodLibrary organization can have various teams with different
access to the repositories of the organization. The Sherwood Library development
team created the repositories as listed in Table 4-3.

The team kept the repository name closely resembling the Hudson job for easy
recognition of the modules as shown in Figure 4-3. Notice that the team could have
created only four repositories, combining the subcomponents into a single repository,
but the decision to have ten repositories instead of four is a good strategic move to
set up a strong CI. This will be further evident when we set up automated builds later
in the chapter.

As we mentioned earlier, Hudson supports a variety of well-known SCM
systems. This support is provided through plugins, which must be installed through
the Plugin Manager. For the exercise in this chapter, we assume you have already
installed the Git plugin. If not, refer to Chapter 2. See Appendix A for a list of
plugins for popular SCMs.

The Hudson job that builds a CI build must first check out the latest revision from
the centralized SCM system. Since each job is associated with a single software
component, the checkout must also include everything needed for the build to
happen. This means not only the source code, but also build scripts, resources, unit
tests, and related resources.

Distributed SCM systems like Git do not support partial checkout, but an entire
copy of the repository is pulled into the build machine. This is one of the reasons
Sherwood Library developers chose to keep each subcomponent in its own repository.
A particular CI build is specific to a subcomponent; they don’t want the rest of the
code to be pulled into the workspace where the subcomponent is being built.

TABLE 4-3. GitHub Repositories

Software Component Git Repository

1. Sherwood Library Web App | Backend sherwood_webapp_backend

2. Sherwood Library Web App | UI sherwood_webapp_ui

3. Persistence | Library sherwood_persistence_library

4. Persistence Layer | REST API sherwood_persistence_rest

5. Checkout | Web Interface sherwood_checkout_webapp

6. Checkout | Backend sherwood_checkout_backend

7. Checkout | REST API sherwood_checkout_rest

8. Returns | Web Interface sherwood_returns_webapp

9. Returns | Backend sherwood_returns_backend

10. Returns | REST API sherwood_returns_rest

04-ch04.indd 104 13/08/13 2:20 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 4: Hudson as a Continuous Integration Server 105

This simplifies checking out the source code (and also automating the build, as
we see in the next section) by each job. With this setup, specifying the URL of the
remote repository from which the sources must be checked out is easy, as shown in
Figure 4-4.

FIGURE 4-3. Sherwood Library GitHub organization

FIGURE 4-4. Git SCM configuration of a job

04-ch04.indd 105 13/08/13 2:20 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

106 Hudson Continuous Integration in Practice

In the preceding example, to build the subcomponent sherwood_returns_backend,
the sources are checked out from the repository git://github.com/SherwoodLibrary/
sherwood_returns_backend.git.

NOTE
Most of the SCM systems provide read-write mode
and read-only mode. Only in read-write mode can a
developer do both checkout and commit. Proper
authentication is required in this mode. As a best
practice, we recommend using a URL corresponding
to read-only mode in the SCM configuration. This
makes the CI build setup more portable, since no
specific authentication setup is required to checkout
sources by the build job. See Chapter 3 for more
details on Git authentication.

Using an SCM branch to implement a specific feature of a software component
is a common practice. Often the build may have to be made on the sources checked
out from that branch. In Git terminology, the default branch is called master (trunk
in some other SCM systems). The Hudson Git plugin configuration provides a UI to
specify the branch if the build needs to be made from a branch other than the
default master branch. The Git plugin also allows you to check out sources from
multiple repositories, but unless absolutely necessary, we recommend to use one
repository per build unit for your CI builds.

 ■ Build your job and see the result. The only build step that happened is the
SCM checkout, as shown in Figure 4-5.

 ■ You can explore the workspace, using Workspace Explorer (see Figure 4-6).

FIGURE 4-5. SCM checkout console output

04-ch04.indd 106 13/08/13 2:20 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 4: Hudson as a Continuous Integration Server 107

In this section, you saw how to chunk your software project into buildable units,
create repositories for those buildable units, create Hudson jobs for the buildable
units, and then specify the repository URL in the job configuration. Next, let us see
how to automate the jobs to do CI builds.

Build Automation
Build automation is not a new notion in the software industry. For years, scripts have
been used to compile a project and automatically produce an executable by linking
with the proper libraries. The tool Make in the UNIX world is a fine example. Tools
like Ant, Maven, and Gradle are gaining popularity in the Java community. By using
these tools, artifacts created from buildable chunks can be stitched together to
produce an integrated product.

In this chapter, we will cover how to use Maven, a popular open-source build
management tool, to automate the build in Hudson. To do this successfully, you
need to do two things first:

 ■ Install Maven on your build machine and configure Hudson to use that
Maven installation. Refer back to Chapter 3 for how to set up your tools
needed for the build.

 ■ Install the Maven 3 plugin from Plugin Center. This plugin adds the Maven
Builder to your job configuration, which you can use to build your software
units. Refer to Chapter 3 for how to use Plugin Center.

Maven as an Automated Build Tool
The fundamental unit of work for the Maven build tool is the pom.xml file. This is
committed along with other sources into the source repository. The previous build
step, SCM checkout, pulled the pom.xml along with other sources from the remote

FIGURE 4-6. Workspace Explorer

04-ch04.indd 107 13/08/13 2:20 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

108 Hudson Continuous Integration in Practice

repository into the workspace (see Figure 4-6). In order for Hudson to build the project
source, the Hudson job needs to be configured to use Maven as a build tool. Hudson
has support for several build tools via plugins. Some of the popular build tools are
listed in Appendix A. Based on the build tool plugins installed, Hudson provides a
drop-down list of builders for you to choose to build your project. Choose Invoke
Maven 3 from the list as shown in Figure 4-7 to use Maven to build your software
unit. This builder knows to find the pom.xml in the workspace where the sources
are checked out and invoke the command mvn to do the build. The Maven 3 builder
has tons of settings to customize. The minimal setting is specifying the Maven goals
to invoke. By default, the goal clean install is invoked. We will learn about more
advanced use of Maven Builder later in this chapter.

Speeding Up the Build
In a CI environment that has been set up successfully, the build needs to complete
rapidly. If there were a problem with integration, it would be quickly identified and
fixed. The basic idea of CI is to provide feedback as soon as possible. If a build takes
hours, then it cannot be deemed a CI build. As a rule of thumb, CI builds should
finish within about 10 minutes. Though 10 minutes is not a hard-and-fast rule, it is
advocated by Extreme Programming (XP) guidelines.

In order to achieve this 10-minute guideline, Martin Fowler and other CI gurus
advocate staged builds (also known as build pipelines). Though it is possible to create
a build environment with any number of stages, a simplified example is a two-stage
build. The first stage would do the compilation and localized unit tests. The unit tests
may be created without any real-time database or server connections, to keep it fast.
In the second stage, the extended builds run different suites of tests, often with
real-time server and database connections. By doing this, the first stage build (commit
build) could finish within 10 minutes so that other developers could confidently pick
up the commits without waiting several hours to get a full-fledged build. However,
any build failure observed during the extended build must be attended to as quickly as
possible. The commit build unit tests should be strengthened to avoid future extended

FIGURE 4-7. Hudson Builders List and Maven Builder

04-ch04.indd 108 13/08/13 2:20 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 4: Hudson as a Continuous Integration Server 109

build failure. Let us see how the Sherwood Library developers achieved fast builds in
their environment using Hudson and staged builds.

Job Chaining Using the Upstream–Downstream Paradigm
Hudson has the concept of upstream and downstream jobs. Upstream jobs are built
before downstream jobs. An upstream job triggers the downstream job. This does
not mean the downstream job cannot be built without building the upstream job.
For example, SCM triggers can start a downstream job. However, if an upstream job
is successfully finished, it always triggers the downstream job. Though it is common
to start the downstream job only when the upstream job finishes successfully, it is
possible to tell Hudson to start the downstream job even if the upstream job fails.
Hudson is smart enough not to schedule a downstream job again if it is already
scheduled by another trigger.

The upstream–downstream job build pipeline can be specified in two ways:

 ■ As part of a build trigger, specified as “Build after other projects are built,”
as shown in Figure 4-8. A comma-separated list of jobs can be specified as
upstream jobs. The current job will be triggered when any of the upstream
jobs finish successfully. This is useful in situations where you want to trigger
a job, which builds an extensive suite of tests when any of the upstream
jobs finish building. The example in Figure 4-8 shows that the downstream
job sherwood_checkout_test_harness is scheduled for build after one of
sherwood_checkout, sherwood_checkout_backend, sherwood_checkout_
rest, or sherwood_checkout_webapp is built successfully.

 ■ As part of post-build action, specified as “Build other projects,” as shown
in Figure 4-9. This is just the opposite of the previous method. In this case,
the current job schedules other jobs once it finishes successfully. A comma-
separated list of jobs can be specified as downstream jobs. The current job

FIGURE 4-8. Build trigger to build the current job after other jobs are built

04-ch04.indd 109 13/08/13 2:20 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

110 Hudson Continuous Integration in Practice

will trigger all the downstream jobs after its successful completion. This is
useful when you want to build all other jobs that have a dependency on
the current job. The example in Figure 4-9 shows that, when the sherwood_
checkout (core module) completes, it schedules sherwood_checkout_
backend, sherwood_checkout_rest, and sherwood_checkout_webapp,
because all three of these modules depend on the core module.

NOTE
Hudson has a nice feature to let you know that
a particular job name you typed may not be the
correct job name in Hudson. Figure 4-9 shows red
text stating that sherwood_checkout_webap may
not be the correct name and suggesting a reasonably
correct name. Hudson does not store the upstream
or downstream job name in the job configuration
file if it does not yet exist. Also, be aware that if you
delete a job that is defined as a downstream or
upstream job in any of the jobs, Hudson does not
warn you that it is a required job, either when you
delete it or when one of the jobs that require it is
built. If you open the configuration for a requiring
job, however, you will see the "No such project"
error and Save will remove it from the configuration.

FIGURE 4-9. Post-build action of a job that schedules other jobs

04-ch04.indd 110 13/08/13 2:20 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 4: Hudson as a Continuous Integration Server 111

The Sherwood Library development team analyzed different approaches to shorten
the commit build time. They concluded that multistage builds, thus a faster commit
build, could be achieved via the upstream–downstream paradigm in two ways. The
first scenario is to split the test suites as multiple Maven modules within a buildable
unit. The module structure in Figure 4-10 shows how this is done. Sherwood_checkout
is the top-level Maven project with a single pom.xml (which itself is a buildable unit)
defining the rest of the buildable subunits as Maven modules. Each of the Maven
modules has extended tests as submodules. If a developer commits to the sherwood_
checkout Git repository, the Poll SCM trigger triggers a build of the sherwood_
checkout job. The purpose of this top-level job is to check out or update the sources

FIGURE 4-10. Extended unit tests as submodules

sherwood_checkout

backend

Sources Extended Tests
Sources

TestsTests

pom.xml

pom.xml

pom.xml

REST

Sources Extended Tests
Sources

TestsTests

pom.xml pom.xml

WebApp

Sources Extended Tests

Buildable Subunits

Sources
TestsTests

pom.xml pom.xml

sherwood_checkout

sherwood_checkout
backend

sherwood_checkout
REST

sherwood_checkout
WebApp

sherwood_checkout
backend

Extended Tests

sherwood_checkout
REST

Extended Tests

sherwood_checkout
WebApp

Extended Tests

04-ch04.indd 111 13/08/13 2:20 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

112 Hudson Continuous Integration in Practice

from SCM and trigger the job corresponding to the module(s) where the actual source
modification happened. Assume that one of the Sherwood developers modifies some
source code in the module sherwood_checkout/backend (yes, the developer is smart
enough to write the corresponding unit test also) and commits the code to the central
repository. This triggers the build of the sherwood_checkout job. This job build does
the following:

 ■ Checks out the commit from the remote repository

 ■ Finds the modules corresponding to the change set (done through a special
plugin as explained in the sidebar, “Custom Plugin”)

 ■ Schedules the jobs corresponding to the modules where code change
happened

In the this case, the sherwood_checkout job would schedule sherwood_checkout_
backend, which in turn would schedule sherwood_checkout_backend_extended_tests
on successful completion.

Custom Plugin
The smart engineers on the Sherwood team realized that there is no built-in
feature to trigger a job based on user commits to a particular module, so they
decided to write their own Hudson plugin. This plugin has two important
features:

 ■ A build wrapper that analyzes the source base for the Maven module
hierarchy using the Maven API6 and identifies the modules. This
wrapper finds the modules corresponding to the ChangeSet obtained
from the SCM system, sets the groupId:artifactId of the modules for
which a job should be scheduled, and sets the value to a predefined
build parameter.

 ■ A post-build action to schedule a job corresponding to the modules
where the code changes happened. This post-build action obtains
the predefined parameter that contains the groupId:artifactId of the
modules and schedules the jobs corresponding to these modules.

They installed the plugin and added the build wrapper to the sherwood_
checkout job. They also added the post-build action to the job.

6 Maven Core API. http://maven.apache.org/ref/3.0.4/maven-core/apidocs/

04-ch04.indd 112 13/08/13 2:20 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 4: Hudson as a Continuous Integration Server 113

The second scenario they arrived at is to keep all the extensive suites of tests as a
single separate Maven module within the buildable unit. As shown in Figure 4-11,
all the extensive unit tests are kept in a single top-level module. Each of the jobs
corresponding to the top module will invoke the extended unit tests module.

Each approach has its own advantage. The former approach builds the extensive
test suite of only the particular module being built. This makes it faster to get the
build results of the extended test suite of each module. However, the dashboards
displaying the test unit results are fragmented across different jobs. On the other

FIGURE 4-11. Extended unit tests as top-level module

sherwood_checkout

backend

Sources

Tests

pom.xml

pom.xml

REST

Sources

Tests

pom.xml

Buildable
Subunits

WebApp

Sources

Tests

pom.xml

Extended Tests

Sources

Tests

pom.xml

sherwood_checkout

sherwood_checkout
backend

sherwood_checkout
REST

sherwood_checkout
WebApp

sherwood_checkout

Extended Tests

04-ch04.indd 113 13/08/13 2:20 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

114 Hudson Continuous Integration in Practice

hand, the second approach keeps the test unit results on one dashboard. However,
the single build may be lengthier, and multiple builds may happen if developers do
multiple commits to different modules. The Sherwood team was smart enough to
experiment with both approaches for various buildable units of their project.

However, in both cases, the XP guideline to keep the commit build within
10 minutes could be achieved if the times to build each of the buildable subunits
are kept to the minimum by introducing more Maven modules. When a subunit
builds and fails, the commit build failure will be communicated within 10 minutes.
Even if the commit build passes, it is possible that the time-consuming extended unit
tests and other dependent modules might fail. So it is important to have enough unit
test coverage in each of the modules for better confidence on the commit build as
well as any build failure in the multistage extended builds and dependency builds
that should be dealt with immediately.

Hudson Job Setting to Build a Specific Maven Module
As shown in Figures 4-10 and 4-11, the Sherwood buildable units comprise a top-
level Maven project with several Maven modules. These modules are also buildable
subunits. Each build unit, along with build subunits, is committed to a single
repository. As an SCM build step, the Git plugin checks out the entire repository
with all subunits. By default, when a Maven build is started from a top-level Maven
project, it builds the entire project including the modules. However, this is not
desirable in the Sherwood build scenario because the team wants to build a specific
module based on commits to the modules to keep the commit build time within
10 minutes. The Maven Builder added to the job configuration can be configured to
build only a specific module (called Maven project) identified by groupId and
artifactId. Figure 4-12 shows a portion of Maven Builder Configuration to set up the
job to build only the specific Maven module. Note that the Recursive property is
unchecked to let the builder know not to build the submodules recursively. It is
checked by default. The value sherwood_checkout:backend_extended_tests for the
Projects property of Maven Builder specifies to build only the particular subunit.

FIGURE 4-12. Portion of Maven Builder configuration to build a Maven module

04-ch04.indd 114 13/08/13 2:20 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 4: Hudson as a Continuous Integration Server 115

Managing the Upstream–Downstream
Jobs Complexity
The upstream–downstream build pipeline soon becomes complicated. Large
software projects may have hundreds of such jobs with complicated upstream–
downstream scenarios. Several free Hudson plugins exist to alleviate this issue.
They can be used to view the build status as graphs of the build chain. Some of
these plugins are listed in Appendix A. Figure 4-13 shows one such graphical
representation of a build pipeline.

Also, several jobs may have redundant properties and maintaining them can
soon become a nightmare. Hudson addresses this issue using Cascading Jobs, as
explained next.

Cascading Jobs
Cascading Jobs, appearing in the Hudson UI under the name Cascading Project, allow
child jobs to inherit configuration properties of a parent job. In an environment set up
for typical agile CI builds, several jobs could share the same configuration properties.
This could be solved by using templates or by copying jobs at the time of job creation,
but what about further down the road when these properties change? The Cascading
Jobs feature allows for the inheritance of properties throughout the life of jobs.

FIGURE 4-13. Graphical representation of a build pipeline

04-ch04.indd 115 13/08/13 2:20 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

116 Hudson Continuous Integration in Practice

Cascading Jobs is not a template; you
can configure a job to inherit
properties from its parent, while
overriding those that need to be
changed or later reverted back to
the parent. Any changes you make to
the properties in a parent will cascade
down through the child jobs that
inherit that property.

Cascading Jobs should not be
confused with Job Chaining. Job
Chaining defines how different jobs
are triggered based on the outcome
of another job.

Look at the example shown in the
illustration. Job3.2 will inherit its
properties from Job3.1, which in
turn inherits from Job3 and so on.
What if you override a property
in Job3, which is inherited from Job1?
That change will cascade down to
Job3.1 and Job3.2. If the same
property is subsequently changed in
Job1, then the change will cascade
down to Job2, but the one overridden in Job3 will stay in place for that job and its
children.

The Sherwood team created top-level jobs for each of the teams. For example,
sherwood_checkout_top_level is the top-level cascading job for all the jobs used by
the team developing the Sherwood Library Books Checkout module. This job primarily
defines three properties:

 ■ Discard Old Builds (days to keep builds:10 and max # builds to keep 10)

 ■ SCM Poll (poll every minute)

 ■ E-mail Notification (specifies an internal mailing list called dev_sherwood_
checkout@sherwood_library.org)

As shown in Figure 4-14, the Job Configurations page is used to select an
existing saved job to inherit from. The job sherwood_checkout_backend will
automatically inherit the three properties (in the preceding list) from the job
sherwood_checkout_top_level.

Job1

Job2 Job3

Job3.1

Job3.2

04-ch04.indd 116 13/08/13 2:20 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 4: Hudson as a Continuous Integration Server 117

Most of the Sherwood Checkout module jobs inherit the properties from
sherwood_checkout_top_level. But the job sherwood_checkout_test_harness has a
slightly different e-mail notification requirement, because the QA team also wanted
to get e-mail notification if this job fails. So the E-mail Notification property is
overridden to include both the mailing lists dev_sherwood_checkout@sherwood_
library.org and qa_sherwood_checkout@sherwood_library.org (see Figure 4-15). This
property is highlighted to show that it has been overridden by this job. You have to
save the configuration and reopen it to see the highlight. A left arrow icon also
appears near the overridden property, which is used to remove the overridden
property and refresh to the value inherited from the parent.

Any job can be used as the parent, but you cannot create a cyclic inheritance.
Most of the job properties are cascadable, and if the parent contains Builders,
Publishers, or Triggers, they will be merged with the child. A few of the most
common examples of job property cascading are e-mail notification lists, project-
based security, reports, published locations, and polling the source repository.

FIGURE 4-14. Specifying a cascading parent

FIGURE 4-15. Overridden cascading property

04-ch04.indd 117 13/08/13 2:20 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

118 Hudson Continuous Integration in Practice

Continuous Testing
As we mentioned earlier, for a CI build, it is not enough to compile the source code
and catch compilation errors. The CI build must be set to catch bugs more quickly and
efficiently. This is achieved by including automated unit tests in the build process.
Running unit tests whenever source code changes in a version control repository on
the CI build machine can help verify problems throughout a development life cycle.
Every CI build must run the unit tests (also known as developer tests) to confirm that it
behaves as the developers expect it to behave; otherwise, the build should be marked
as failed or unstable.

Types of Tests
There are various types of tests you can run to validate each build. It is important to
understand what kind of tests should be included in a commit build. The most
commonly used tests are:

 ■ Unit tests are fast-running tests that typically test individual classes that don’t
have heavy external dependencies like databases. However, their isolated
nature means they only test a portion of the functionality. They must be
included as part of your commit build.

 ■ Component tests are essentially tests that verify more than one class and
may rely on external dependencies such as a database. Component tests
are written in much the same way as unit tests, except instead of mocking
classes for isolation, it might use other frameworks like DbUnit or HtmlUnit
to facilitate working with a database or Servlet Container. As discussed
earlier, these tests may be kept as Extended Unit tests and executed
immediately after the commit build as a downstream job. Care must be
taken to attend immediately to any test failures reported by this build.

 ■ Functional tests are typically used to test the presentation layer, if the
application provides a user interface. Both sherwood_checkout_webapp and
sherwood_returns_webapp provide a browser-based UI to help the librarian
to check out or return the book. So the Sherwood team developed lots of
functional tests to test the functionality. There are several functional testing
frameworks available for functional tests. One of the most popular, and that
used by the Sherwood team, is the Selenium suite of tools. Functional tests
are typically not part of CI builds, thus not built for every commit. They are
typically run as nightly builds.

 ■ Integration tests are run as part of the integration build. Any tests that are not
unit tests, such as performance tests, system tests, and acceptance tests, can
be clustered as integration tests. Integration tests are not part of the CI build.

04-ch04.indd 118 13/08/13 2:20 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 4: Hudson as a Continuous Integration Server 119

Refer to Chapter 5 for more details on
automating various types of tests with
Hudson. Hudson has built-in support for
displaying JUnit test results and displaying
JUnit statistics over various builds. Unless
this function is specified specifically
(using the –skipTests flag), Maven will run
your unit tests automatically. So, if you are
using Maven as a build tool, it is easy to
run your unit tests and view the results using Hudson. For Hudson to build your
sources and then the unit tests using Maven, simply place your sources and test
sources in a folder hierarchy as shown in this illustration.

Viewing the Unit Test Results
Hudson has built-in support to understand the XML format of the JUnit test report.
Hudson also supports various other test frameworks. They are all supported through
plugins (see Appendix A for a list of well-known unit test frameworks supported by
Hudson via plugins). In order for Hudson to load the JUnit test results, Hudson must
know where the JUnit test report XML files are stored during the build. This is done
using the “Publish JUnit test result report” check box in the Post-build Actions
section of the build configuration, as shown in Figure 4-16.

Based on how the build happens, the JUnit test report XML may be placed in
any folder. Maven specifically places the test results under the folder target/surefire-
reports, where the target is the folder where Maven keeps all the build outputs. Each
module and submodule will have its own target folder. If you want Hudson to
aggregate all the test results of the modules and submodules of the build, then you
specify the XML files using the filter pattern **/target/surefire-reports/*.xml.
Hudson will recursively search all the folders in the job workspace and include all
the XML files in subfolders of target/surefire-reports.

FIGURE 4-16. Publishing a JUnit Test Results report using Hudson

Maven Project

src/
main/

Main Sources

Test Sources

java/

java/

resources/

resources/

test/

pom.xml

04-ch04.indd 119 13/08/13 2:20 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

120 Hudson Continuous Integration in Practice

NOTE
When you specify the filter format for the JUnit
Test result XML files, Hudson will immediately try
to validate the existence of files. If the XML files
don’t exist, immediate feedback will be provided by
Hudson with an error message similar to “'**/target/
surefire-reports/*.xml' doesn’t match anything: '**'
exists but not '**/target/surefire-reports/*.xml'.”
If you are creating a new job and specifying the
filter pattern, the XML files may not be available yet
and you must ignore the error message. Even if it
shows an error, the filter will still be retained in the
configuration on Save.

Once the build is complete, it is easy to view the test results. Go to the build
dashboard and find the clipboard icon labeled Test Result (see Figure 4-17) on the
main section of the dashboard. Alternatively, you can reach the Test Result view
page by clicking on the Test Result link on the side panel. If the icon or the action
link is absent in the build dashboard, then either the build does not contain any test
results or the JUnit Test Result Publisher is not configured correctly.

Test Result Trends
Monitoring the Test Result trends helps to understand the productivity of a team.
The main job dashboard displays the Test Result trends on the right-hand side.

FIGURE 4-17. Test Result icon in the build dashboard

04-ch04.indd 120 13/08/13 2:20 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 4: Hudson as a Continuous Integration Server 121

The Test Trend graph displays failing tests as a red curve, unstable tests as a yellow
curve, and passing tests as a blue curve (see bottom graph in Figure 4-18).

This graph should never have yellow or red curves; it should always be blue, as a
developer should never commit a code for which a test fails. The top graph shown in
Figure 4-18 represents a CI build of a responsible team. Another aspect of monitoring
the trend is to increase the number of tests over time. As product development
progresses, the amount of code checked in increases. Since a healthy CI environment
enforces unit tests when the code base grows, the number of unit tests also grows.
Figure 4-18 shows a healthy increase in trend for unit tests.

The bottom graph in Figure 4-18 shows the trend of integration tests. Since
integration tests involve several external entities, such as databases and deployment

FIGURE 4-18. Unit and integration test result trends

140
120
100
80
60
40
20

0
#90 #171 #210 #263 #345

Unit Test Trend

#426 #438 #977

200

150

100

50

0
#9 #10 #13#12#11 #15#14 #17#16 #18 #21

Integration Test Trend

#22 #23 #24

04-ch04.indd 121 13/08/13 2:20 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

122 Hudson Continuous Integration in Practice

servers, it is acceptable to have failed or unstable tests in the initial stage of the
product development. However, the team must strive to reduce the number of test
failures when the product matures, so the integration trend on the bottom of the
figure also shows a healthy trend.

Code Metrics and Code Coverage
Along with test trends, a better way to look at the entire picture is by adding two more
trends for Code Metrics and Code Coverage. One of the Code Metrics is counting the
Line of Code (LOC). One of the free tools available to measure the LOC is called
SLOCCount. For installing and using SLOCCount, see its documentation page.7
Hudson already has a free plugin for SLOCCount, which plots the Line Count trend
over several builds. To get the SLOCCount result, set the plugin configuration and the
build step as follows:

 ■ Add an Execute Shell build step in your Hudson job to compute the code
metrics.

 ■ Add the following shell command:

/usr/bin/sloccount --duplicates --wide --details src >build/sloccount.dat.

 ■ In the Post-build Actions section, select the check box “Publish SLOCCount
analysis results,” and then provide the SLOCCount output file build/
sloccount.dat.

There are several tools available for Code Coverage analysis. One of the free
tools available for code coverage is Cobertura, which is a free Java tool that
calculates the percentage of code accessed by tests.

Figure 4-19 shows the trend charts of Test Results, Code Coverage, and Line
Count. Based on the three trend charts, it is possible to get a broad picture of the
team’s CI effectiveness. Over several builds, the line count of the project increased
from 1000 lines of code to 8000 lines of code. The unit tests also increased from
10 to 140. This is good progress. Looking at the Code Coverage trend, there is very
good coverage of almost 90 percent of the classes, but 28 percent package and
45 percent lines. Depending on the situation of the code base, this could be
improved. It is always a good idea to analyze the trends from various code metrics,
and use Code Coverage tools along with unit Test Result trends to understand the
effectiveness of CI builds.

7 SLOCCount documentation. www.dwheeler.com/sloccount/sloccount.html

04-ch04.indd 122 13/08/13 2:20 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 4: Hudson as a Continuous Integration Server 123

Continuous Feedback
One of the main purposes of CI builds is to produce feedback on a commit build.
The reason for fast builds and fast build failures is to get quick feedback. Once a
commit is done, others need to know as soon as possible if there was a problem
with the latest commit. Also, by receiving this information quickly, the developer

FIGURE 4-19. Combined unit tests, code coverage, and code metric trends

140
120
100
80
60
40
20

0
#90 #171 #210 #263 #345

Tests Result Trend

#426 #438 #977

100

30
40
50%

60
70
80
90

20
10
0
#171 #210 #263 #345

Code Coverage Trend

Classes 45% Conditionals 74% Files 45% Lines 28% Packages 88%

#426 #977#438

Classes ConditionalsFiles Lines Packages

000

000

000

000

0
#171 #210 #263 #345

Line Count Trend

#426 #438

04-ch04.indd 123 13/08/13 2:20 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

124 Hudson Continuous Integration in Practice

can immediately fix any problem that arises. Feedback is necessary to take action
and to know the current status of the CI build. Hudson has built-in support for
feedback via e-mail. There are several free plugins available to support feedback,
including Short Message Service (SMS), Really Simple Syndication (RSS), Internet
Relay Chat (IRC), and Twitter.

Chapter 3 introduced the basic e-mail notification built into Hudson. Let us see
how to set up e-mail feedback using a special plugin called email-ext that enhances
the e-mail–based feedback. See Appendix A to find a list of other feedback mechanisms
supported by Hudson via free plugins.

Extended E-mail Notification
One of the most widely used plugins for Hudson sending enhanced e-mail is the email-
ext plugin. This plugin extends Hudson’s built-in e-mail notification functionality and
gives the Hudson admin and job owner more control to customize the format and
content of the e-mail. Unlike the simple built-in notification mechanism explained
in the previous section, extended e-mail notification allows you to select various
conditions that trigger an e-mail notification. It also allows customizing the subject and
body of the triggered e-mail and specifying who should receive an e-mail for each of
the triggered conditions.

Extended E-mail Global Settings
Before using email-ext to send extended e-mail notification from a project, it has to
be configured for some global settings. This is done via the Hudson Configuration
page under the section titled Extended E-mail Notification, as shown in Figure 4-20.

FIGURE 4-20. Global settings for the extended e-mail notification

04-ch04.indd 124 13/08/13 2:20 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 4: Hudson as a Continuous Integration Server 125

It has a section to override the global mail server settings, but this section is often
not used. The configuration allows specifying the default setting for sending e-mail
as plain text or as HTML. You can also specify the Default Subject line and the
Default Content of the e-mail notification. You can use e-mail tokens (more about
the token later in the chapter) in the subject line and in the body content, which will
be expanded before the message is sent.

Configuring the Job to Send Extended E-mail Notification
For a job to send extended e-mail notification, it must be enabled in the Job
Configurations page by selecting the check box labeled Editable Email Notification
in the Post-build Actions section, as shown in Figure 4-21. The configuration has
two settings sections: Basic and Advanced.

There are four basic settings for configuring the extended e-mail:

 ■ Global Recipient List A comma-separated list of e-mail recipients.

 ■ Content Type Either Plain Text or HTML can be selected.

 ■ Default Subject Subject line of the e-mail. This setting allows you to use
e-mail tokens to easily configure all e-mail Subject lines for the job. This can
be overridden for each e-mail trigger type in the Advanced section. The token
$DEFAULT_SUBJECT inserts the default subject specified in the global settings.

 ■ Default Content The default body content of each of the e-mails sent by
various triggers. The token $DEFAULT_CONTENT inserts the default content
specified in the global settings. Similar to the Subject line, this can be
overridden for each e-mail trigger type in the Advanced section.

FIGURE 4-21. Extended e-mail basic settings in a job

04-ch04.indd 125 13/08/13 2:20 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

126 Hudson Continuous Integration in Practice

By default, the extended e-mail is configured to trigger e-mails for the Failure
condition. E-mail is sent only if the job build fails. However, more conditional triggers
can be configured in the Advanced section, as shown in Figure 4-22. E-mail triggers can
be configured for the conditions Failure, Success, Fixed, Unstable, Still-Failing,
Still-Unstable, and Before-Build. To add more triggers, select one from the drop-down
menu and it will be added to the list. By default, e-mails are sent to recipients
specified in the basic settings. It is possible to send e-mail to different recipients using
More Configuration for each of the triggers, as shown in Figure 4-22. Select the Send
to Committers check box to send the e-mail to anyone who checked in code for the
last build.

Extended E-mail Tokens
The Extended E-mail plugin uses tokens for dynamic insertion of data into an e-mail
subject line or body content. A token is a string that starts with a dollar sign ($) and
is terminated by a whitespace, for example: $PROJECT_NAME, which is replaced
with the name of the job that triggered the e-mail. Also, the value of a token can
contain other tokens; they too will be replaced by actual content. For instance, the

FIGURE 4-22. Extended e-mail advanced settings in a job

04-ch04.indd 126 13/08/13 2:20 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 4: Hudson as a Continuous Integration Server 127

$DEFAULT_SUBJECT token is replaced by the text (and other tokens) that are in the
Default Subject field of the Extended E-mail global settings. When an e-mail is
triggered, all tokens in the subject or content fields will be replaced. To see a list
of all available e-mail tokens and what they display, click the help button next to
Content Token Reference.

Continuous Delivery or Deployment
The terms Continuous Delivery and Continuous Deployment are often used
interchangeably and get confused with one another. Several attempts have been
made to clarify the terms. Here is the one by Jez Humble and David Farley:

Continuous Delivery is about keeping your application in a state where it is
always able to deploy into production. Continuous Deployment is actually
deploying every change into production, every day or more frequently.

Thus, the distinction is roughly internal versus external; Continuous Delivery is
delivery of a production-ready application to internal consumers; Continuous
Deployment is delivery of the build result to external customers.

Requirements for Continuous Delivery8 are

 ■ Your software is releasable throughout its lifecycle.

 ■ Your team prioritizes keeping the software releasable over working on new
features.

 ■ Anyone can get fast, automated feedback on the production readiness of your
systems whenever somebody makes a change to them.

Continuous Integration is the quickest way to detect errors on every commit
through automated build and test. However, in today’s world of complex applications,
practicing just Continuous Integration may not be enough to ensure that the product
will be fully production-ready. The only way to truly ensure that your product is
always production-ready is to deploy it to an environment similar to a production
environment. The practice of automated Continuous Delivery ensures that the latest
checked-in code is deployed, running, and accessible to various roles within an
organization.

So far, we have seen that Hudson is an excellent tool for Continuous Integration.
With plugins, it is also easy to extend Hudson to deliver the build artifacts to various
environments and practice Continuous Delivery or Deployment. Whether it is
deploying the application to a live test server to facilitate the QA engineers to conduct

8 See note 4 earlier in the chapter.

04-ch04.indd 127 13/08/13 2:20 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

128 Hudson Continuous Integration in Practice

additional tests in a production-like environment or to a semiproduction server for
early adopters to test the product, it can be achieved through several free plugins
available for Hudson. A more comprehensive list of widely used plugins is included
in Appendix A, but those most useful to Continuous Delivery are

 ■ Deploy Deploys Java applications to various popular Java Application
Servers

 ■ FTP and SCP Transfers build artifacts from build server to another machine

 ■ SSH Executes commands on another server using the SSH protocol

Deploying a Java Application
to an Applications Server
The Sherwood software team decided to do Continuous Delivery. They wanted the
product to be always in a release state, so that other stakeholders such as the Sherwood
Library Team could actually view the progress in a staging environment. At the end of a
successful build pipeline (Commit Builds, Extended Test Builds, Functional Test Builds,
and Acceptance Test Builds), they deployed their REST APIs (sherwood_checkout_rest
and sherwood_returns_rest) and Web applications (sherwood_checkout_webapp and
sherwood_returns_webapp) to a freely available Tomcat Application Server.

The Tomcat manager application allows remote deployment to an instance of
Tomcat. The Tomcat installation needs to be configured to allow access to the manager
application through the plain-text interface. This is accomplished by assigning the
manager-script role to the credentials that will be performing deployments. Though it
is possible to set up sophisticated authentication realms in the Tomcat server, the
easiest is to add the role to $CATALINA_BASE/conf/tomcat-users.xml.

<tomcat-users>
 <user roles="manager-script" username="admin" password="secret" >
 </user>
</tomcat-users>

The next step is to configure the Deploy plugin settings in the Job Configurations
page to deploy the war file created by the job to the Tomcat server. When the Deploy
plugin is added to Hudson, it adds the Deploy war/ear file to a container check box
in the Post-build Actions section of the Job Configurations page. Select this check box
to fill in the configurations to deploy any war file created by the build to Tomcat as
shown in Figure 4-23. The pattern **/*.war denotes that the deployer should search
and find any war file created in any folder in the hierarchy and deploy those war files
to Tomcat. On success, the application should be deployed and enabled in Tomcat.

04-ch04.indd 128 13/08/13 2:20 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 4: Hudson as a Continuous Integration Server 129

NOTE
Although you can make a job that runs the build and
tests to automatically deploy the war build artifact
directly to Tomcat, often you might want to deploy
via a manual build of a job. For example, assume you
found out that the latest war file that was deployed
failed acceptance tests and you want to roll back to
a previous build. This can be achieved by creating
a job that does nothing but copy a war file from
another job and then just deploys the war file.
Copying the war file from a specific build of a job
can be done using the Copy Artifact plugin.

Uploading Build Artifacts to Another Machine
The Deploy plugin helps to deploy war or ear files to an applications server. As part
of the deployment pipeline, there are often requirements to copy configuration files
or database schemas, test scripts, properties files, install scripts, and so on, that are
part of a build to another machine to facilitate an additional test run. Hudson has
several uploaders to support this. Two of the popular uploaders are the FTP and SCP
plugins. Both plugins provide similar settings to copy files from a build workspace to
another machine. While the FTP plugin uses the FTP protocol to copy files, the SCP
plugin uses the Secured Shell protocol to copy files.

To use the FTP plugin to upload build artifacts, an FTP repository needs to be
established. The FTP repository is a known location on the remote machine where

FIGURE 4-23. Hudson deployment to Tomcat

04-ch04.indd 129 13/08/13 2:20 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

130 Hudson Continuous Integration in Practice

the files will be uploaded. You can add any number of FTP repositories to Hudson
via the FTP Publisher plugin’s Global settings.

 1. Go to the Manage Hudson page, open Configure System, and go to the “FTP
repository hosts” section.

 2. Click the Add button to add FTP repositories and fill in the required fields as
shown in Figure 4-24. Note that the Profile Name is the unique identifier for
the added FTP repository and will be used in the Job Configurations page to
upload the artifacts after the build completes.

The FTP Publisher plugin will try to automatically connect to the FTP site using
the username and password to check if a connection is possible. If the connection
fails, red error text is displayed below the User Name, as shown in Figure 4-24, to
indicate that the connection failed.

Next, configure the job whose build artifacts need to be uploaded to any of the
FTP repositories configured earlier.

Go to the Job Configurations page and select “Publish artifacts to FTP” in the
Post-build Actions section. As shown in Figure 4-25, you can select one of the FTP
repositories from the drop-down list to publish the build artifacts.

Click the Add button to specify the Source and Destination folders.

FIGURE 4-24. FTP repository settings

04-ch04.indd 130 13/08/13 2:20 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 4: Hudson as a Continuous Integration Server 131

Sources are the list of files from any folder relative to the job workspace. You
can include the files using this pattern: <folder>/*.<file extension> (for example,,
target/sql/*.sql). The Destination is a folder on the remote FTP repository where the
files will be uploaded. It will be created automatically if it does not exist. Clicking
the Add button will add multiple Source and Destination folders as shown in
Figure 4-25. After each build, the files as specified in Sources will be uploaded to
the Destination folder.

Executing Commands on a Remote Machine
As part of automating every step in a deployment pipeline, FTP and SCP plugins are
useful to upload the build artifacts to another machine from within a Hudson build
environment. Another requirement may be to be able to execute commands on
that remote machine, such as executing installer builds or running database tests
using the uploaded build artifacts. One of the useful plugins for that purpose is the
SSH plugin. This plugin allows running shell commands on a remote machine via
SSH from the build machine.

Setting up the SSH plugin is similar to setting up the FTP plugin, as explained in
the previous section. First you need to set up one or more remote SSH hosts. Go to
the Manage Hudson page, open Configure System, and scroll down to the “SSH
remote hosts” section. Click the Add button to specify the remote host’s information
and the authentication to connect to the server, as shown in Figure 4-26. The SSH
plugin allows two modes of authentication. If you can authenticate with the remote

FIGURE 4-25. Publishing artifacts using FTP

04-ch04.indd 131 13/08/13 2:20 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

132 Hudson Continuous Integration in Practice

machine using a user name and password, then specify them in the corresponding
fields. Another way to authenticate with a remote machine is using a private-public
key pair. In this case, it is assumed that your public key is already uploaded to the
remote machine. You need to specify the file that contains your private key in the
Keyfile field (for example, ~/.ssh/ id_rsa). If your private key is protected by a
passphrase, then specify it in the Password/Passphrase field. Just like the FTP plugin,
the SSH plugin will try to automatically connect to the server and provide feedback
about any connectivity problem, as shown in Figure 4-26. You can add multiple SSH
remote hosts using this setting.

Once you successfully set SSH remote hosts, you can issue commands to the
remote hosts from any job build. Go to the Job Configurations page and select
“Execute shell script on remote host using ssh” in the Build Environment section. You
can execute shell scripts before and after the build. Figure 4-27 shows an example to

FIGURE 4-26. SSH remote hosts settings

FIGURE 4-27. Executing remote shell commands

04-ch04.indd 132 13/08/13 2:20 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 4: Hudson as a Continuous Integration Server 133

keep the Tomcat running on the remote host clean for the next deployment of the
war created by the current build using the Deploy plugin. The script specified in
the pre-build script shuts down the Tomcat server and removes the war file and the
corresponding folder where the war content is expanded. After the build completes,
a remote command specified via post-build script is executed to start up the Tomcat
server. Now, a clean Tomcat instance is ready to deploy the war created by the build.

Summary
A decade ago, Continuous Integration was little known in the software industry. Now,
more and more software companies are making CI a central part of their software
development process. Hudson is a favorite open source tool for CI. In this chapter,
we effectively used Hudson as a CI tool by learning how to:

 ■ Configure the SCM system

 ■ Automate the build

 ■ Automate the testing, code quality, and code coverage analyses

 ■ Speed up the build for faster feedback

 ■ Automate the feedback mechanism

 ■ Practice Continuous Delivery

04-ch04.indd 133 13/08/13 2:20 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5
Blind folio: 134

04-ch04.indd 134 13/08/13 2:20 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5
Blind folio: 135

CHAPTER
5

Hudson and
Automated Testing

05-ch05.indd 135 13/08/13 2:21 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

136 Hudson Continuous Integration in Practice

Continuing on the theme of applying Hudson, this chapter expands on one
aspect of the preceding chapter about Continuous Integration: automated
testing. Arguably the most significant impact Hudson can have on an

enterprise is reducing the cost and increasing the positive impact of automated
testing. This chapter is an overview of the theory and practice of automated testing
with Hudson.

Containing Code and Code Under Test
Before jumping in, let’s define two simple terms. We will use the term “code under
test” to mean the code that is being exercised by the testing code. Usually this is the
code for which “you” are responsible. This can also be known as “production code”
or “main code.” If there is a defect in the code under test, the developers need to
know about it as quickly as possible, and they need to know the most pertinent
information about how to fix the defect. We use the term “containing code” to mean
the software in which the code under test runs. In fact, the code under test always has
a dependency on the containing code. This fact will be explored later in the chapter
when the concept of the lineup is discussed. There are two kinds of containing code:
in-house and commercial-off-the-shelf (COTS). In-house containing code is created
and maintained within your organization. Examples would be the bespoke billing,
purchasing, or invoicing systems with which your code under test runs. COTS
containing code could be a servlet container, an application server, an Amazon EC2
instance, or even a Google App Engine app. With respect to automated testing, the
focus is on the code under test, but due to the complexity of many testing environments,
the containing code is just as important.

TIP
One of the key tenets of Continuous Delivery is to
accept the fact that errors in configuration for the
containing code can have just as deleterious an effect
on software quality as bugs in the code under test.

After defining code under test and containing code, it is clear that one person’s
containing code is another person’s code under test, as Figure 5-1 shows.

TIP
Hudson jobs tend to be encodings of a particular
arrangement of code under test and containing code.
If possible, make these encodings as clear as possible
when designing your jobs.

05-ch05.indd 136 13/08/13 2:21 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 5: Hudson and Automated Testing 137

Recall the Simple Servlet example from Chapter 3. This section will add a
simple automated test to the Maven build, allowing it to be picked up by Hudson
in the course of its normal job execution. Because Hudson was simply invoking
Maven, up to this point it was sufficient to understand that Maven automatically
runs the tests at the right time during the build. For simple unit tests, the “right
time” is any time after the test is compiled. When there is containing code to be
started before the code under test can be tested, the question of when is the right
time to run the tests becomes more complicated. True to the convention-over-
configuration nature of Maven, it turns out there is a “build lifecycle” that underpins
every Maven execution, and in many cases one need not understand it very deeply.
However, in order to understand how to perform automated testing in Maven (via
Hudson), it is appropriate to examine the full Maven build lifecycle in more detail.

FIGURE 5-1. Diagram illustrating how one person’s code under test is another person’s
containing code

Subsystem

User Application

Web Framework

Servlet Container

Application Server

JDK

Containing code for Application Server
authors

Main code for Application Server authors

Containing code for Servlet Container
authors

Main code for Servlet Container authors

Containing code for Web Framework
authors

Main code for Web Framework authors

Containing code for User Application
authors

Main code for User Application authors

Containing code for Subsystem
authors

Main code for Subsystem authors

05-ch05.indd 137 13/08/13 2:21 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

138 Hudson Continuous Integration in Practice

A Quick Tour of
the Maven Build Lifecycle
Previous examples in the book had Hudson invoking Maven with commands
such as mvn clean install. As we have already seen, much of Maven’s action
happens behind the scenes, so this seemingly simple invocation actually causes
a lot of things to happen. The arguments clean install are actually the names of
Maven lifecycle phases. The mvn command can accept three kinds of arguments
on its command line:

 ■ Options Such as -DskipTests=true or -PsignArtifacts

 ■ Lifecycle phases Such as clean or install

 ■ Plugin:goal pairs Such as help:effective-pom, to indicate invoking the
maven-help-plugin’s effective-pom goal. Plugin goals always imply a specific
lifecycle phase.

The first item in the list is
used to pass options to mvn
itself and occasionally to
supplement information in
the pom.xml. The latter two
items in the list interact
intimately with the build
lifecycle and state the end
phase for the build lifecycle
for this invocation of mvn.
Thus, the combination of
command-line arguments
and the pom.xml are the
inputs to mvn. What comes
out on the other side is
hopefully quality software
(called “build artifacts” in
Maven parlance). The
illustration depicts a
common vision of how
Maven works.

Command-line
arguments

Plugins

Lifecycle phases

Goals

Software

Maven

05-ch05.indd 138 13/08/13 2:21 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 5: Hudson and Automated Testing 139

TIP
Maven is an extreme example of the principle of
“inversion of control.” The key to success with
Maven is to work with it, not against it. This is best
achieved by avoiding trying to change how Maven
does things. Rather, it is best to find out the way
Maven intends to do the sort of thing you want and
then provide input to that process.

All of the action in Maven happens on top of the backbone of the build lifecycle.
All of the work done by Maven during a build is done by plugins executing at
specific phases during the build lifecycle. Each specific thing that a plugin does is
called a “goal.” Plugins typically declare in which lifecycle phases their goals are
designed to execute. There are actually three lifecycles that are used in Maven,
called clean, default, and site. Every invocation of mvn will use at least one of these
three lifecycles. When analyzing its command-line arguments, Maven determines
which of the three lifecycles to run and the end phase for each one, based on the
order in which the arguments are specified. The clean and site lifecycles deal with
running the clean and site goals. Clean resets the project to its nonbuilt state, usually
just deleting the target directory. Site generates reports, such as code coverage and
unit test results. The default lifecycle is the most interesting and is where most of the
work is done by Maven and its many plugins. Hudson jobs that invoke Maven will
usually have cause to use all of these different lifecycles in one way or another.

Each of the three lifecycles consists of several different phases, each with a name
and purpose and executed in sequence by Maven. Maven always executes at least
one of the three lifecycles, and when it does, it always executes them from the start
phase until the user-specified end phase. You can think of the execution of the lifecycle
phases as a journey on a non-express train from the starting station through multiple
stations. When traveling on a such a train from the starting station, you can get off at
any station, but no stations can be skipped. Figure 5-2 shows the three lifecycles
using the non-express train analogy.

Table 5-1 lists the phases of the Maven default lifecycle. Not every build will
cause action to take place for every phase, but every phase until the end phase is
executed. In other words, the build lifecycle itself is invariant, but the subset of
phases to be invoked can vary based on input to Maven.

TIP
When using Maven from the command line, most
of the time install is the end phase. When using
Hudson for Continuous Delivery, only Hudson
should be causing the deploy phase to be executed.

05-ch05.indd 139 13/08/13 2:21 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

140 Hudson Continuous Integration in Practice

TABLE 5-1. The Maven Default Lifecycle

Phase Name Purpose

validate Validate the input and parse the pom.xml.

initialize Given the kind of <packaging>, create directories and initialize
properties.

generate-sources If using code-generation techniques, allow that code generation
to happen.

process-sources Preprocess sources by expanding Maven variables.

generate-resources If generating resources, such as CSS or JavaScript files, allow that
generation to happen.

process-resources Copy and process the resources into the destination directory, such
as CSS and JavaScript files for a war <packaging> project.

compile Run any necessary compilers, such as javac, on the source files of
the project.

process-classes Perform any post-processing on the output of the compilation phase.

generate-test-sources As with source code generation, but for the tests.

process-test-sources As with main sources, but for the tests.

generate-test-resources As with main resources, but for the tests.

process-test-resources As with main resources, but for the tests.

test-compile Compile the tests.

process-test-classes Perform any post-processing on the output of test compilation.

test Run the unit tests.

prepare-package Gather all the necessary parts together in one directory in preparation
for the next phase.

package Package all the parts from the preceding phase into a distribution
unit, such as a jar, war, or ear file.

pre-integration-test Deploy the package to the containing code.

integration-test Run the tests that require the containing code from the preceding
phase.

post-integration-test Perform any cleanup action after the running of the containing code
and tests.

verify Perform any verification on the packaged artifact.

install Install the package into the local repository, usually the $HOME/.m2/
repository.

deploy Copy the package from the local repository to a remote repository,
such as Sonatype Nexus.

05-ch05.indd 140 13/08/13 2:21 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 5: Hudson and Automated Testing 141

FIGURE 5-2. Maven lifecycles as non-express trains

pre-clean

clean

post-clean

Clean Lifecycle Site Lifecycle

pre-site

site

post-site

site-deploy

Default Lifecycle

compile

process-test-sources

generate-test-sources

process-classes

process-resources

test

test-compile

generate-test-resources

process-test-resources

process-test-classes

prepare-package

package

pre-integration-test

integration-test

post-integration-test

verify

install

deploy

generate-resources

process-sources

generate-sources

initialize

validate

As shown in the preceding examples, all use of Maven involves plugins, and
any nontrivial use of Maven involves configuring those plugins in some way. You
can think of a plugin as nothing more than a set of goals that the plugin supports.
For example, the maven-compiler-plugin supports compile, testCompile, and help.

As mentioned at the start of the section, the mvn command line can include
options, lifecycle phases, and plugin:goal pairs. The last in this list always takes the
form of plugin-name:goal-name. By convention, the plugin-name is the middle part
of the Maven artifactId for the plugin between the words maven- and -plugin. For
example, if the maven artifactId is maven-compiler-plugin, the plugin-name would be
compiler. The way to discover the goals supported by a plugin is to look at the Maven

05-ch05.indd 141 13/08/13 2:21 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

142 Hudson Continuous Integration in Practice

Web site, by convention at the URL http://maven.apache.org/plugins/maven-plugin-
name-plugin, or to invoke mvn with the plugin-name:help goal. For example, here is
the help for the compiler plugin:

 The Compiler Plugin is used to compile the sources of your project.
This plugin has 3 goals:
compiler:compile
 Compiles application sources
compiler:help
 Display help information on maven-compiler-plugin.
 Call mvn compiler:help -Ddetail=true -Dgoal=<goal-name> to display parameter
 details.
compiler:testCompile
 Compiles application test sources.

Plugins are intimately related to the build lifecycle through the concept of goals.
The <packaging> specified in the pom.xml is very important because it dictates the
set of plugins that will be used, which goals of those plugins will be invoked, and in
which order they are invoked. For the purpose of Continuous Delivery, the packaging
types supported by Maven are important to understand, because much of Continuous
Delivery revolves around the packaging and publishing of many different kinds
of artifacts. Table 5-2 lists the bindings between phases in the default lifecycle
and the plugin:goal pairs that are used during that phase for the most common
kind of packaging.

Now that we have examined the Maven build lifecycle, we can ask some
important questions when dealing with containing code versus code under test in
Hudson: Who starts the containing code? Who stops the containing code? What
happens to the containing code when the test fails?

TABLE 5-2. Default Lifecycle Bindings for jar, war, ejb, par, and rar

Default Lifecycle Phase Plugin:Goal Pairs

process-resources resources:resources

compile compiler:compile

process-test-resources resources:testResources

test-compile compiler:testCompile

test surefire:test

package jar:jar, war:war, par:par, rar:rar, ejb:ejb, ejb3:ejb3

install install:install

deploy deploy:deploy

05-ch05.indd 142 13/08/13 2:21 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 5: Hudson and Automated Testing 143

TIP
Dealing with containing code when running
automated tests with Hudson is a very environment-
and test-specific matter. In general, the most important
consideration is responsiveness. You want to choose
the finest granularity of starting and stopping the
containing code that will meet your requirements
for having responsive builds. As mentioned in the
preceding chapter, a build should take no more than
ten minutes to run from start to finish. If you find
that starting and stopping your containing code for
every individual test is too slow, consider starting the
containing code once, then executing all the tests that
need that particular arrangement of containing code,
and then shutting it down.

Quick Code Jumpstart:
Simple Servlet Testing
Let’s revisit the Simple Servlet example from Chapter 3 and add an HtmlUnit test to it.
HtmlUnit is a Java library that simulates a Web browser. As such, it is ideal for use by
JUnit or TestNG tests that need to interact with containing code that can be accessed
from Web browsers. The Library Web application from the preceding chapter would
be a fine candidate for testing with HtmlUnit. This example modifies the pom.xml
from the Simple Servlet example from Chapter 3 so that it starts up the Jetty server
during the pre-integration-test build lifecycle phase, runs an HtmlUnit test case during
the integration-test phase, shuts down Jetty during the post-integration-test phase, and
verifies that the test was successful during the verify phase. The complete pom.xml is
shown next, with the changed areas with respect to the example in Chapter 3 shown
in boldface.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.
apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>net.hudsonlifestyle</groupId>
 <artifactId>simpleservlet-htmlunit</artifactId>
 <version>1.0</version>
 <packaging>war</packaging>

05-ch05.indd 143 13/08/13 2:21 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

144 Hudson Continuous Integration in Practice

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-war-plugin</artifactId>
 <version>2.3</version>
 <configuration>
 <failOnMissingWebXml>false</failOnMissingWebXml>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <inherited>true</inherited>
 <configuration>
 <source>1.6</source>
 <target>1.6</target>
 <encoding>${project.build.sourceEncoding}</encoding>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.eclipse.jetty</groupId>
 <artifactId>jetty-maven-plugin</artifactId>
 <version>9.0.1.v20130408</version>
 <configuration>
 <scanIntervalSeconds>10</scanIntervalSeconds>
 <stopKey>foo</stopKey>
 <stopPort>9999</stopPort>
 </configuration>
 <executions>
 <execution>
 <id>start-jetty</id>
 <phase>pre-integration-test</phase>
 <goals>
 <goal>deploy-war</goal>
 </goals>
 <configuration>
 <daemon>true</daemon>
 <reload>manual</reload>
 </configuration>
 </execution>
 <execution>
 <id>stop-jetty</id>
 <phase>post-integration-test</phase>
 <goals>
 <goal>stop</goal>
 </goals>

05-ch05.indd 144 13/08/13 2:21 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 5: Hudson and Automated Testing 145

 </execution>
 </executions>
 </plugin>

 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-failsafe-plugin</artifactId>
 <version>2.12.4</version>
 <executions>
 <execution>
 <goals>
 <goal>integration-test</goal>
 <goal>verify</goal>
 </goals>
 <configuration>
 <systemPropertyVariables>
 <integration.base.url>http://${env.HOSTNAME}:${env.
CONTAINER_PORT}</integration.base.url>
 </systemPropertyVariables>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>

 <dependencies>
 <dependency>
 <groupId>javax.servlet</groupId>
 <artifactId>javax.servlet-api</artifactId>
 <version>3.0.1</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>net.sourceforge.htmlunit</groupId>
 <artifactId>htmlunit</artifactId>
 <version>2.9</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.10</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

05-ch05.indd 145 13/08/13 2:21 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

146 Hudson Continuous Integration in Practice

We changed the artifactId to be different from the example in Chapter 3. Two
new <plugin> sections were added, one for the containing code and one for the
code under test. This will be very typical when using Hudson to run automated
tests from Maven.

This example uses Jetty for the containing code. Jetty is a robust and spec-compliant
implementation of the Servlet and JSP specifications from the JavaEE stack. The amount
of configuration code for Jetty is surprisingly small, but the power it brings is large. First,
note the groupId, artifactId, and version.

 <plugin>
 <groupId>org.eclipse.jetty</groupId>
 <artifactId>jetty-maven-plugin</artifactId>
 <version>9.0.1.v20130408</version>
 </plugin>

TIP
Always specify the full groupId, artifactId, and
version for all Maven plugins and dependencies. This
information must be recorded as part of the lineup,
as explained later in the chapter.

While it’s possible to leave the version out, this is never a good idea for
Continuous Integration because that would put you at the mercy of whenever a new
version of the artifact is released. Following is the <configuration> section common to
all executions of the jetty-maven-plugin. Most plugins will also have an <executions>
section with at least one <execution> section, each of which targets the operation of
the plugin in a specific <phase>. In this case, the pre-integration-test phase invokes
the deploy-war goal and the post-integration-test invokes the stop-jetty goal. The
former has some additional required configuration:

 <configuration>
 <daemon>true</daemon>
 <reload>manual</reload>
 </configuration>

The code under test is represented in the pom by the use of the maven-failsafe-
plugin.

05-ch05.indd 146 13/08/13 2:21 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 5: Hudson and Automated Testing 147

TIP
Previous examples of testing with Maven used
the maven-surefire-plugin. In fact, the maven-
failsafe-plugin is exactly the same thing as the
maven-surefire-plugin, but it does its work in the
integration-test phase instead of the test phase. More
importantly: a test failure during integration-test
will not cause the build to fail, allowing any plugins
configured during the post-integration-test phase
to continue to do their work regardless of the test
outcome. Test failures are instead dealt with in the
verify phase. This very important fact allows the
containing code to be shut down correctly. This is
critically important for Hudson because subsequent
builds need to be able to have exclusive access to
whatever TCP ports and other resources that must
be available before the job starts. Failed tests can
leave these resources in a hung and unavailable state
unless the cleanup is performed.

The maven-failsafe-plugin is configured to run in the integration-test and verify
phases. The <configuration> section passes a system property to the HtmlUnit test
integration.base.url. The value of this property in the pom.xml has parameters
passed in as environment variables from Hudson.

 <systemPropertyVariables>
 <integration.base.url>http://${env.HOSTNAME}:${env.CONTAIN-
ER_PORT}</integration.base.url>
 </systemPropertyVariables>

Any string that is of the form ${env.VARNAME} will be replaced with the value
of the VARNAME environment variable when the Maven build is executed.

This technique shows the importance of extracting changeable configuration
information such as hostnames and port numbers from the build system so they
can be passed in from Hudson using the Parameterized Build feature, which will
be explained later.

Finally, the additional HtmlUnit and JUnit dependencies are added.
Next, the HtmlUnit test case itself is examined. This test case must reside in the

source file src/test/java/net/hudsonlifestyle/SimpleServlet01IT.java.

05-ch05.indd 147 13/08/13 2:21 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

148 Hudson Continuous Integration in Practice

TIP
Any class in any package in src/test/java whose class
name starts with IT, or ends with IT or ITCase, is run
by the maven-failsafe-plugin.

package net.hudsonlifestyle;

import com.gargoylesoftware.htmlunit.WebClient;
import com.gargoylesoftware.htmlunit.html.HtmlPage;
import org.junit.Before;
import org.junit.After;
import org.junit.Test;
import static org.junit.Assert.assertTrue;

public class SimpleServlet01IT {

 private String webUrl;

 private WebClient webClient;

 @Before
 public void setUp() {
 webUrl = System.getProperty("integration.base.url") + "/SimpleServlet01";
 webClient = new WebClient();
 }

 @After
 public void tearDown() {
 webClient.closeAllWindows();
 }

 @Test
 public void testIndexHtml() throws Exception {
 System.out.println("Connecting to: " + webUrl);
 HtmlPage page = webClient.getPage(webUrl);
 assertTrue(page.getBody().asText().indexOf("Servlet SimpleServ-
let01 at") != -1);
 }
}

First note the System.getProperty() call. This is the value passed in from the
environment variable, via the Hudson parameter. While this particular usage is very
simple, the concept could be used for a great variety of complexity in conveying
the specifics of the containing code to the code under test. After getting the URL for
the servlet to test, an instance of the HtmlUnit WebClient class is created. This
class simulates the browser and allows interacting with the Web UI in the same way
that a browser would do. This can be seen in the testIndexHtml() method, which
uses the webClient to load the URL and assert that the resultant page contains the
expected text. The HtmlPage class provides complete access to all the elements of
the Web page, such as clicking buttons, setting values in text fields, and even causing

05-ch05.indd 148 13/08/13 2:21 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 5: Hudson and Automated Testing 149

Ajax transactions to happen, just as a real browser would do. This simple example
asserts that the text Servlet SimpleServlet01 is present in the Web page. Recall from
Chapter 3, that the code under test, SimpleServlet01, contained this code:

out.println("<title>Servlet SimpleServlet01</title>");

This simple example shows the lengths to which one must go to make assertions
about the code under test. Later in the chapter, we examine JBoss Arquillian as a means
to reduce the overhead in making assertions about the code under test.

The last piece is to make the Hudson job that executes this test. Clone the 02_mvn
job from Chapter 3 as 01_HtmlUnit. Modify the existing Invoke Maven 3 “builder”
section, and change the Goals text field to be clean verify. Also you must change the
POM File text field to be the pom.xml file: HudsonAndAutomatedTesting/01_
HtmlUnit/pom.xml. The first time this job is run, Maven will download many
dependencies related to Jetty, HtmlUnit, and Failsafe. At the top of the Job
Configurations page, find the text “This build is parameterized” and click the check
box next to it. In the drop-down menu that appears, select String parameter. Fill in
CONTAINER_PORT as the value of the Name text field, and 8080 as the value of the
Default Value text field.

TIP
The usage of 8080 for CONTAINER_PORT here
illustrates the reason for using the --httpPort
environment variable to instruct Hudson to run on
a less commonly used port.

This value must be the same as the default port used by Jetty, because the value is
passed in to the HtmlUnit test via the environment variable references in pom.xml.
If you wanted to use a different port, you would have to additionally define the
environment variable jetty.port with the same value. Note that the environment
variable HOSTNAME usually comes via the UNIX shell in which Hudson is running.
If your particular environment does not have a HOSTNAME environment variable,
one could manually be set as another String parameter. Set the Archive Artifacts path
relative to the new folder, HudsonAndAutomatedTesting/01_HtmlUnit/target/*.war.
Finally, we will tell Hudson where to find the test results. As in Chapter 3, this is
accomplished by clicking the check box next to the text “Publish JUnit test result
report” and filling in the text field with an expression that finds the TEST-*.xml file,
HudsonAndAutomatedTesting/01_HtmlUnit/target/failsafe-reports/TEST-*.xml.

This version of the Maven Jetty program must be run with Java 7 or higher, or it will
fail with a class version 51 error. If you run the Hudson war directly from the command
line, simply make sure the version of Java is 7 or above; otherwise, configure the server
to run in Java 7. You do not need to change the Maven compiler settings, as the Java 7
compiler is capable of generating Java 6 class files.

05-ch05.indd 149 13/08/13 2:21 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

150 Hudson Continuous Integration in Practice

When the build is run, you will be asked if you want to override the default
value for the CONTAINER_PORT parameter. Click the Build button to accept the
default value. You should see output similar to the following.

Started by user anonymous
Checkout:workspace / /var/lib/hudson/jobs/01_HtmlUnit/workspace - hudson.remot-
ing.LocalChannel@8cb09b6
Using strategy: Default
Last Built Revision: Revision ecd3793fe4eb46dca937553b45cd8afacaf70b27 (origin/
master)
Checkout:workspace / /var/lib/hudson/jobs/01_HtmlUnit/workspace - hudson.remot-
ing.LocalChannel@8cb09b6
Fetching changes from the remote Git repository
Fetching upstream changes from https://hudson_in_practice:hudson@bitbucket.org/
hudson_in_practice/hudson_lifestyle.git
Commencing build of Revision ed34271a8d56da176d70e654ed8dab9c5a77ba7a (origin/
master)
Checking out Revision ed34271a8d56da176d70e654ed8dab9c5a77ba7a (origin/master)
[INFO] Using Maven 3 installation: apache-maven-3.0.4
[INFO] Checking Maven 3 installation environment
[workspace] $ /var/lib/hudson/files/apache-maven-3.0.4/bin/mvn --help
[INFO] Checking Maven 3 installation version
[INFO] Detected Maven 3 installation version: 3.0.4
[workspace] $ /var/lib/hudson/files/apache-maven-3.0.4/bin/mvn clean veri-
fy -V -B -DCONTAINER_PORT=8080 -Dmaven.ext.class.path=/var/lib/hudson/maven/
slavebundle/resources:/var/lib/hudson/maven/slavebundle/lib/maven3-eventspy-
3.0.jar:/var/lib/hudson/war/webapp/WEB-INF/lib/hudson-remoting-3.0.0-M2.
jar -Dhudson.eventspy.port=48231 -f HudsonAndAutomatedTesting/01_HtmlUnit/pom.xml
[DEBUG] Waiting for connection on port: 48231
Apache Maven 3.0.4 (r1232337; 2012-01-17 03:44:56-0500)
Maven home: /var/lib/hudson/files/apache-maven-3.0.4
Java version: 1.7.0_07, vendor: Oracle Corporation
Java home: /var/lib/hudson/files/jdk1.7.0_07/jre
Default locale: en_US, platform encoding: UTF-8
OS name: "linux", version: "2.6.39-200.24.1.el6uek.x86_64", arch: "amd64", fam-
ily: "unix"
[DEBUG] Connected to remote
[INFO] Scanning for projects...
[INFO]
[INFO] --
[INFO] Building simpleservlet_htmlunit 1.0
[INFO] --
[INFO]
[INFO] --- maven-clean-plugin:2.4.1:clean (default-clean) @ simpleservlet_html-
unit ---
[INFO] Deleting /var/lib/hudson/jobs/01_HtmlUnit/workspace/HudsonAndAutomated-
Testing/01_HtmlUnit/target
[INFO]
[INFO] --- maven-resources-plugin:2.5:resources (default-resources) @ simpleserv-
let_htmlunit ---
[debug] execute contextualize
[WARNING] Using platform encoding (UTF-8 actually) to copy filtered resourc-
es, i.e. build is platform dependent!

05-ch05.indd 150 13/08/13 2:21 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 5: Hudson and Automated Testing 151

[INFO] skip non existing resourceDirectory /var/lib/hudson/jobs/01_HtmlUnit/
workspace/HudsonAndAutomatedTesting/01_HtmlUnit/src/main/resources
[INFO]
[INFO] --- maven-compiler-plugin:2.3.2:compile (default-compile) @ simpleservlet_
htmlunit ---
[WARNING] File encoding has not been set, using platform encoding UTF-
8, i.e. build is platform dependent!
[INFO] Compiling 1 source file to /var/lib/hudson/jobs/01_HtmlUnit/workspace/
HudsonAndAutomatedTesting/01_HtmlUnit/target/classes
[INFO]
[INFO] --- maven-resources-plugin:2.5:testResources (default-testResourc-
es) @ simpleservlet_htmlunit ---
[debug] execute contextualize
[WARNING] Using platform encoding (UTF-8 actually) to copy filtered resourc-
es, i.e. build is platform dependent!
[INFO] skip non existing resourceDirectory /var/lib/hudson/jobs/01_HtmlUnit/
workspace/HudsonAndAutomatedTesting/01_HtmlUnit/src/test/resources
[INFO]
[INFO] --- maven-compiler-plugin:2.3.2:testCompile (default-testCompile) @ sim-
pleservlet_htmlunit ---
[WARNING] File encoding has not been set, using platform encoding UTF-
8, i.e. build is platform dependent!
[INFO] Compiling 1 source file to /var/lib/hudson/jobs/01_HtmlUnit/workspace/
HudsonAndAutomatedTesting/01_HtmlUnit/target/test-classes
[INFO]
[INFO] --- maven-surefire-plugin:2.10:test (default-test) @ simpleservlet_html-
unit ---
[INFO] Surefire report directory: /var/lib/hudson/jobs/01_HtmlUnit/workspace/
HudsonAndAutomatedTesting/01_HtmlUnit/target/surefire-reports

 T E S T S

Results :

Tests run: 0, Failures: 0, Errors: 0, Skipped: 0

[INFO]
[INFO] --- maven-war-plugin:2.3:war (default-war) @ simpleservlet_htmlunit ---
[INFO] Packaging webapp
[INFO] Assembling webapp [simpleservlet_htmlunit] in [/var/lib/hudson/jobs/01_Ht-
mlUnit/workspace/HudsonAndAutomatedTesting/01_HtmlUnit/target/simpleservlet_html-
unit-1.0]
[INFO] Processing war project
[INFO] Webapp assembled in [45 msecs]
[INFO] Building war: /var/lib/hudson/jobs/01_HtmlUnit/workspace/HudsonAndAutomat-
edTesting/01_HtmlUnit/target/simpleservlet_htmlunit-1.0.war
[INFO]
[INFO] >>> jetty-maven-plugin:9.0.1.v20130408:deploy-war (start-jetty) @ simple-
servlet_htmlunit >>>
[INFO]
[INFO] <<< jetty-maven-plugin:9.0.1.v20130408:deploy-war (start-jetty) @ simple-
servlet_htmlunit <<<
[INFO]

05-ch05.indd 151 13/08/13 2:21 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

152 Hudson Continuous Integration in Practice

[INFO] --- jetty-maven-plugin:9.0.1.v20130408:deploy-war (start-jetty) @ simple-
servlet_htmlunit ---
[INFO] Configuring Jetty for project: simpleservlet_htmlunit
[INFO] Context path = /
[INFO] Tmp directory = /var/lib/hudson/jobs/01_HtmlUnit/workspace/HudsonAndAuto-
matedTesting/01_HtmlUnit/target/tmp
[INFO] Web defaults = org/eclipse/jetty/webapp/webdefault.xml
[INFO] Web overrides = none
2013-04-14 01:39:00.777:INFO:oejs.Server:main: jetty-9.0.1.v20130408
2013-04-14 01:39:00.992:INFO:oejpw.PlusConfiguration:main: No Transaction man-
ager found - if your webapp requires one, please configure one.
2013-04-14 01:39:02.113:INFO:oejsh.
ContextHandler:main: started o.e.j.m.p.JettyWebAppContext@84db765{/,file:/var/
lib/hudson/jobs/01_HtmlUnit/workspace/HudsonAndAutomatedTesting/01_HtmlUnit/
target/simpleservlet_htmlunit-1.0/,AVAILABLE}{/var/lib/hudson/jobs/01_HtmlUnit/
workspace/HudsonAndAutomatedTesting/01_HtmlUnit/target/simpleservlet_htmlunit-
1.0.war}
2013-04-14 01:39:02.131:INFO:oejmp.MavenServerConnector:main: Started MavenServer
Connector@65ce0806{HTTP/1.1}{0.0.0.0:8080}
[INFO] Started Jetty Server
[WARNING] scanIntervalSeconds is set to 10 but will be IGNORED due to manual re-
loading
[INFO] Console reloading is ENABLED. Hit ENTER on the console to restart the con-
text.
[INFO]
[INFO] --- maven-failsafe-plugin:2.12.4:integration-test (default) @ simpleserv-
let_htmlunit ---
[INFO] Failsafe report directory: /var/lib/hudson/jobs/01_HtmlUnit/workspace/
HudsonAndAutomatedTesting/01_HtmlUnit/target/failsafe-reports

 T E S T S

Running net.hudsonlifestyle.SimpleServlet01IT
Connecting to: http://rhombus3:8080/SimpleServlet01
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 2.004 sec

Results :

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

[WARNING] File encoding has not been set, using platform encoding UTF-
8, i.e. build is platform dependent!
[INFO]
[INFO] --- jetty-maven-plugin:9.0.1.v20130408:stop (stop-jetty) @ simpleservlet_
htmlunit ---
2013-04-14 01:39:04.718:INFO:oejs.Server:ShutdownMonitor: Graceful shutdown org.
eclipse.jetty.maven.plugin.JettyServer@321af6fe by Sun Apr 14 01:39:34 EDT 2013
[INFO]
[INFO] --- maven-failsafe-plugin:2.12.4:verify (default) @ simpleservlet_html-
unit ---
2013-04-14 01:39:04.721:INFO:oejmp.MavenServerConnector:ShutdownMonit
or: Stopped MavenServerConnector@65ce0806{HTTP/1.1}{0.0.0.0:8080}
[INFO] Failsafe report directory: /var/lib/hudson/jobs/01_HtmlUnit/workspace/

05-ch05.indd 152 13/08/13 2:21 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 5: Hudson and Automated Testing 153

HudsonAndAutomatedTesting/01_HtmlUnit/target/failsafe-reports
[WARNING] File encoding has not been set, using platform encoding UTF-
8, i.e. build is platform dependent!
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 9.635s
[INFO] Finished at: Sun Apr 14 01:39:04 EDT 2013
[INFO] Final Memory: 25M/239M
[INFO] --
[DEBUG] Closing connection to remote
[DEBUG] Waiting for process to finish
[DEBUG] Result: 0
Recording test results
[DEBUG] Skipping watched dependency update; build not configured with trig-
ger: 01_HtmlUnit #6
Finished: SUCCESS

Note the boldfaced text in the output. The first test shows that there are no unit
tests in this particular build. To avoid this message, the maven-surefire-plugin can be
disabled by adding this configuration in the <plugins> section:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <configuration>
 <skip>true</skip>
 </configuration>
</plugin>

The maven-failsafe-plugin, which has the test, will continue to run.

TIP
This sort of fine tuning of the build is really
important, and it must be done regularly to keep
builds running fast. Every bit of unnecessary build
logic should be eliminated, because all of it adds to
the time it takes to complete the build.

Automated Testing: Shields Up!
One of the most striking things about enterprise software development is its potent
combination of longevity and complexity. Enterprise software tends to be very
complex and it tends to be in operation for a long time. To make matters worse, it
tends to get more complex over time as features are added and requirements shift
on one side, and the software stack to meet those requirements shifts on the other.
These and other threats make it very desirable to have some sort of shield against
these incoming threats to the stability of your software. Automated testing is one

05-ch05.indd 153 13/08/13 2:21 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

154 Hudson Continuous Integration in Practice

very effective such shield, and you want your testing shield to be as strong as it can
be. Here are some considerations in assessing the strength of your test shield:

 ■ How many tests do you have?

 ■ How susceptible are the tests to spurious errors?

 ■ How many of the tests are ignored or “commented out” from being run
by Hudson?

 ■ In which of the potentially many permutations of your stack are the tests run?

 ■ How frequently are the tests run?

 ■ What percentage of the code under test is exercised by the automated tests?

While providing a shield against threats to stability, the tests also need to be useful
to the developers, as shown in the following considerations:

 ■ How easy is it to add new tests?

 ■ When a test fails, how easy is it to determine the cause of the failure given
the information from the Hudson job?

 ■ How long does it take to run the tests to get a level of assurance that the
software is in a known-good state?

Ideally, you have thousands of automated tests, none of them commented out,
which cover most of your code under test in all of your supported environments. The
tests are run continuously in a cascading manner so that developers only need wait a
maximum of ten minutes before being able to conclude with reasonable certainty that
the code under test is in a known good state. In practice, many factors can conspire to
make the automated testing shield weaker.

The Software Lineup
Reproducibility is the key enabler for Continuous Delivery, and the key enabler for
reproducibility is mastery of the software stack on which the code under test runs.
This is important not just for the code under test when it is being tested, but also in
any other environment in which the code will be run by any of the parties that will
be running it, including the production environment. The complete set of software,
with version and patch numbers and configuration settings for each, that results in
a runnable environment can be thought of as a software lineup. In environments
where specific hardware requirements are important as well, the hardware can be
considered a part of the lineup. This term is taken from the game of baseball, where
it refers to the order in which the players bat. The term is also known as “batting

05-ch05.indd 154 13/08/13 2:21 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 5: Hudson and Automated Testing 155

order,” but that’s much less applicable to Continuous Delivery. In baseball, each
of the nine positions in the lineup has a special role, even though they all are
essentially doing the same thing: trying to hit the ball. It’s the same thing with a
software lineup. In baseball, the manager tweaks his lineup specifically for the
challenge at hand in each game, carefully filling out the lineup card, which is
exchanged with the umpire ceremoniously at the beginning of the game. With
software, it’s important to keep track of the lineup cards as well, but unfortunately
the software tool support for this is not as inclusive as it could be. In the absence
of such a tool, the lineup could be kept in a spreadsheet or a database or even on
a wiki. The important thing is to have a single source of truth for the known
supported lineups and to put that source itself under version control. Table 5-3
shows what could be the software lineup for the production environment of the

TABLE 5-3. Production Lineup Card, Sherwood County Library

Node 1: Library Web Application

Supported Browsers Windows:
IE 7, 8, 9
Firefox 15 ESR, Firefox 16 ESR

Mac:
Safari 6.0.3
Firefox 15 ESR

GNU/Linux:
Firefox 15 ESR

Operating System Solaris 10 x64, Patch Level Generic_144489-05

JVM Oracle 1.6.0_31 for Solaris x64
JVM arguments: -Xms512m -Xmx768m
-XX:MaxPermSize=786m

Application Server Two-node cluster of WebLogic Server 12c (and whatever
patches and configurations necessary there)

Library Web Application 2.1.7

Node 2: Database Server

Operating System AIX V7

Database DB2 Version 9.7 Fix Pack (FP) 1

Database Schema version 2.1.7

Node 3: Checkout and Return System

Operating System Red Hat Linux 9.5

JVM Oracle 1.7_17
JVM arguments: -XX:+UseParallelGC -XX:CMSInitiatingO
ccupancyFraction=70

Checkout and Return System 2.1.7

05-ch05.indd 155 13/08/13 2:21 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

156 Hudson Continuous Integration in Practice

Sherwood County Library. Note that this lineup includes multiple processing nodes
as the system is a distributed system.

When comparing similar lineups, even a small difference should be considered
sufficient grounds for treating the lineups as not identical. Lineups that are not
identical should be treated as entirely different from each other. By keeping firm
track of your entire supported lineups, you can quickly fend off any instability
caused by running the software with an unsupported lineup element. It is also useful
to have several tiers of support. Have at most two “golden stack” lineups for which
a high level of support is provided. The second tier may have a few more different
lineups, with a correspondingly less urgent level of support.

TIP
If possible, have a little piece of software at the
top of your stack that prints out the entire lineup
from top to bottom in a way that can be textually
compared with another instance of the lineup,
say, at a customer site. This makes it easier to
troubleshoot problems that arise from unwelcome
side effects in the containing code, rather than in the
code under test.

How Does Hudson Fit into the Lineup?
Just as there would be a lineup card for every supported lineup in production, there
must be similar ones for testing. Ideally it would be a logical subclass of a production
lineup card with additional test dependencies. In fact, the version of Hudson itself
should be included in the test lineup card. Due to the need to keep Hudson jobs
providing results in less than ten minutes, the granularity of the jobs means that
Hudson runs inside an already provisioned node in the lineup, rather than having
Hudson itself provisioning the lineup as part of its job execution. If there are multiple
complete test lineup cards, the Matrix Build feature of Hudson, described in Chapter 7,
is very useful for managing the execution of all them.

Who Writes the Tests?
Before revisiting the kinds of tests introduced in the previous chapter, it’s important to
ask the question, “Who writes the tests?” In the practice of Test Driven Development
introduced in the preceding chapter and explained in more detail later in the chapter,
the same party who wrote the production code also writes the automated tests for that
code. These can be any kind of tests (unit, system, integration, and so on). Any change
to the production code must also be accompanied by testing code. While this practice
is now widespread, it is important to point out that developer-authored tests are no
substitute for the kind of tests written by skilled test engineers who have experience at

05-ch05.indd 156 13/08/13 2:21 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 5: Hudson and Automated Testing 157

eliciting bugs that are hard to find but very important to fix. Regardless of who writes
the tests, the tests should all be automated and put into integrated Hudson jobs.

TIP
It is tempting to have the developers maintain their
own Hudson jobs that run their own tests, while
the professional testers maintain their own Hudson
jobs that run their tests on the code produced by
the developers. Resist this temptation. Such an
arrangement is entirely counter to the notion of
Continuous Delivery.

Kinds of Tests
The following taxonomy is by no means exhaustive or normative, but it is fairly
commonplace and builds on what was introduced in the preceding chapter. The kinds
of tests are listed from smallest scope to largest. With respect to Hudson, the only
question you need to ask is, “Is it automatable?” If the answer is yes, then the test is a
great candidate for Hudson. Also, with respect to the tools used to author these kinds
of tests, note that there is no hard coupling between the testing technology and the
kind of test. For example, it’s perfectly possible to write an integration test using JUnit
only, just as it is possible to use Selenium to write a unit test. How the test is written,
not the testing APIs used, determines the kind of test.

Unit Tests
The “unit” in unit test is a nod to C programming, where the term “compilation unit”
means a single source file with all its #include macros applied by the preprocessor.
In a looser sense, a unit test should only exercise code within a single class. An
example of a unit test was already provided in the HelloMvn example in Chapter 3.
These tests provide super-fast feedback on simple changes. Most importantly, these
tests require no containing code. Unfortunately, in most enterprise software, the
containing code environment is so complex that unit testing can be challenging.
JBoss Arquillian provides a decent answer to this challenge and will be covered
in the next section.

Component Tests
The “component” in component test means “software component” or “module.”
These kinds of tests exercise multiple related classes, but try to stick within the same
general area. The Java package concept is one way to define a component in this
sense of the word. Testing-wise, these kinds of tests do require containing code such
as a servlet container. Tests that use HtmlUnit, such as shown earlier in the chapter,
can be component tests.

05-ch05.indd 157 13/08/13 2:21 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

158 Hudson Continuous Integration in Practice

Functional Tests
Not to be confused with functional programming, which is a style of computer
programming for high-end computer science types, the “functional” in functional
test means testing the functionality of the code under test. These kinds of tests don’t
take the structure of the code under test into account. Rather, they are written from
the perspective of a user trying to do something practical with the software.

Integration Tests
The scope of such tests is very similar to that of functional tests; however, integration
tests are aware of the underlying design of the software. They seek to exercise the
interfaces between the different software components in the system as a whole.
Cargo is a technology often used in automated integration testing.

Load Tests
There are several subcategories of load tests, but all of them try to simulate putting
the system under high-demand usage. As such, these tests are usually for multiuser
software, but it is conceivable that even a single-user application can have load tests.
The Hudson Performance plugin can be used in conjunction with JMeter to establish
performance criteria and assert that the build meets that criteria, failing the build if
not. This plugin is available in the Others subtab of the Available tab in the Hudson
Plugin Manager.

Pretested Commits (Gated Checkins)
Though it is orthogonal to this list of kinds of tests, it is important to mention
the concept of pretested commits (also known as gated checkins) because the
concept introduces another kind of test: the qualification test. Achieving
pretested commits is heavily dependent on the kind of SCM system being
used; Git and Mercurial are best suited to the task due to their distributed
nature. Code that is ultimately intended to be committed to the main code line
is committed to some sort of staging area (such as a Git branch). A Hudson job
is configured to merge code from the staging area into a work area local to the
Hudson instance, and then run the qualification tests on that work area. There
is no restriction on what kind of test can be called a qualification test, except
for the proviso that qualification tests should run to completion quickly
(certainly in under ten minutes). Only if the tests all pass is the code placed in
a queue for a human reviewer to further scrutinize. Tools such as Gerrit or
Atlassian Crucible can help make this review process run more smoothly.

05-ch05.indd 158 13/08/13 2:21 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 5: Hudson and Automated Testing 159

Unit and Component Testing
with Arquillian in Hudson

The fundamental tenet of unit testing is the absence of containing code. As
mentioned earlier, this is challenging to achieve in enterprise software due to its
highly integrated place in a larger software environment. One approach to unit
testing enterprise software is called “mock objects.” In this approach, any time the
code under test needs to interact with code outside of its unit, the code under test is
handed a “mock object” that has just enough functionality so the test can assert the
correctness of the code under test. Several technologies exist to support this style of
testing, most notably Mockito and EasyMock, and these technologies work just fine
with Hudson. Another approach is to eschew mock objects entirely and make it as
easy as possible to just use a real container so the code under test is running in the
actual JavaEE environment. This is the approach taken by JBoss Arquillian.

The Arquillian project from JBoss is a good example of that company’s commitment
to the enterprise Java development community. During a time when their competitors
were investing primarily in runtime infrastructure, JBoss introduced a project for the
far less lucrative, but far more valuable (from a developer’s perspective) testing
infrastructure. While it is true that Arquillian does serve to get JBoss (and thus RedHat)
technologies into the enterprise software stack, using Arquillian with non-JBoss
containers is possible and well supported. This example uses the shortest path to
success with Arquillian, which is to stick with their stack wherever possible. First, the
Maven pom.xml:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.
w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.
org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>net.hudsonlifestyle</groupId>
 <artifactId>02_Arquillian</artifactId>
 <version>1.0</version>
 <packaging>jar</packaging>
 <name>02_Arquillian</name>
 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 </properties>
 <repositories>
 <repository>
 <id>jboss-public-repository-group</id>
 <name>JBoss Public Repository Group</name>
 <url>http://repository.jboss.org/nexus/content/groups/public/</url>
 <layout>default</layout>
 <releases>

05-ch05.indd 159 13/08/13 2:21 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

160 Hudson Continuous Integration in Practice

 <enabled>true</enabled>
 <updatePolicy>never</updatePolicy>
 </releases>
 <snapshots>
 <enabled>true</enabled>
 <updatePolicy>never</updatePolicy>
 </snapshots>
 </repository>
 </repositories>
 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.jboss.arquillian</groupId>
 <artifactId>arquillian-bom</artifactId>
 <version>1.0.3.Final</version>
 <scope>import</scope>
 <type>pom</type>
 </dependency>
 </dependencies>
 </dependencyManagement>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>2.12.4</version>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>2.3.2</version>
 <configuration>
 <source>1.6</source>
 <target>1.6</target>
 </configuration>
 </plugin>
 </plugins>
 </build>
 <dependencies>
 <dependency>
 <groupId>org.jboss.spec</groupId>
 <artifactId>jboss-javaee-6.0</artifactId>
 <version>1.0.0.Final</version>
 <type>pom</type>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.10</version>
 <scope>test</scope>

05-ch05.indd 160 13/08/13 2:21 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 5: Hudson and Automated Testing 161

 </dependency>
 <dependency>
 <groupId>org.jboss.arquillian.junit</groupId>
 <artifactId>arquillian-junit-container</artifactId>
 <version>1.0.3.Final</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.jboss.arquillian.container</groupId>
 <artifactId>arquillian-weld-ee-embedded-1.1</artifactId>
 <version>1.0.0.CR6</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.jboss.weld</groupId>
 <artifactId>weld-core</artifactId>
 <version>1.1.9.Final</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-simple</artifactId>
 <version>1.6.4</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

This pom introduces two entirely new sections: <repositories> and
<dependencyManagement>. <repositories> instructs Maven to first search for
artifacts using the stated repository before trying the official Maven central
repository, http://repo1.maven.org/maven2/. <dependencyManagement> allows
Maven to pull in the right set of subartifacts to expose the Arquillian API to the
test we will be writing. This allows us include the following import statements
from inside our test.

import org.jboss.arquillian.junit.Arquillian;
import org.jboss.shrinkwrap.api.ShrinkWrap;

The remaining new content in the pom.xml all relates to satisfying the runtime
dependencies that enable Arquillian to provide its unique in-container testing
capability. The arquillian-junit-container dependency hooks into JUnit so that the
Arquillian infrastructure can be started up and shut down at the right time during the
test cycle. The arquillian-weld-ee-embedded-1.1 dependency allows Arquillian to
start up weld-core, which is a CDI container. CDI is a Java EE standard programming
model. The slf4j-simple dependency is for developers for whom the simple logging
provided by JDK 1.4 is not sufficient. With the Maven configuration out of the way,

05-ch05.indd 161 13/08/13 2:21 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

162 Hudson Continuous Integration in Practice

we can move on to the code under test, located at src/main/java/net/hudsonlifestyle/
HelloArquillian.java.

package net.hudsonlifestyle;

import javax.enterprise.context.ApplicationScoped;
import javax.inject.Named;

@Named
@ApplicationScoped
public class HelloArquillian {

 public void setFirstElement(String [] preAllocated) {
 preAllocated[0] = "" + System.currentTimeMillis();
 }

}

This code is an example of a CDI “bean,” a term applied to any code whose
instantiation lifecycle is managed by the containing code. In this case there is one
instance of the HelloArquillian class in the entire container and it is globally scoped.
This code has a method that takes a String array and sets its first element to be the
current time.

Finally, we can look at the test case itself, located at src/test/java/net/hudsonlifestyle/
HelloArquillianTest.java.

package net.hudsonlifestyle;

import javax.inject.Inject;
import org.jboss.arquillian.container.test.api.Deployment;
import org.jboss.arquillian.junit.Arquillian;
import org.jboss.shrinkwrap.api.ShrinkWrap;
import org.jboss.shrinkwrap.api.asset.EmptyAsset;
import org.jboss.shrinkwrap.api.spec.JavaArchive;
import org.junit.Test;
import org.junit.runner.RunWith;
import static org.junit.Assert.assertNotNull;

@RunWith(Arquillian.class)
public class HelloArquillianTest {

 @Deployment
 public static JavaArchive createDeployment() {
 return ShrinkWrap.create(JavaArchive.class)
 .addClass(HelloArquillian.class)
 .addAsManifestResource(EmptyAsset.INSTANCE, "beans.xml");

05-ch05.indd 162 13/08/13 2:21 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 5: Hudson and Automated Testing 163

 }

 @Inject
 HelloArquillian myHello;

 @Test
 public void testPopulateArray() throws Exception {
 String [] oneElement = new String[1];
 myHello.setFirstElement(oneElement);
 assertNotNull(oneElement[0]);

 }
}

It turns out that Arquillian makes use of another JBoss API, called ShrinkWrap,
which is a way to do at runtime what the maven-jar-plugin does at build time,
namely, create jar files. In this case, the createDeployment() method, which could
be called anything but must be annotated with the Deployment annotation, creates
a JavaArchive with a single class, HelloArquillian, and the META-INF/beans.xml
file. Note the @RunWith(Arquillian.class). This is how JUnit asks Arquillian to do
whatever container startup and shutdown is required. Because Arquillian itself uses
CDI, we can cause the test to be given an instance of the @ApplicationScoped bean
HelloArquillian using the @Inject HelloArquillian myHello declaration. Finally, the
testPopulateArray() method is annotated with the JUnit @Test annotation.

To add this to Hudson, clone the previous job and point to the new pom.xml
HudsonAndAutomatedTesting/02_Arquillian/pom.xml. Adjust the Publish JUnit
test result report text field to be HudsonAndAutomatedTesting/02_Arquillian/
target/surefire-reports/TEST*.xml. The artifact of this build is now a jar file at
HudsonAndAutomatedTesting/02_Arquillian/target/*.jar.

Running the job should produce the following among the console output.

 T E S T S

Running net.hudsonlifestyle.HelloArquillianTest
31 [main] INFO org.jboss.weld.Version - WELD-000900 1.1.9 (Final)
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 1.581 sec

Results :

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

05-ch05.indd 163 13/08/13 2:21 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

164 Hudson Continuous Integration in Practice

Hudson Automated Testing Tips
Let’s round out the chapter with some assorted tips for automated testing in Hudson.

Environment Parity
One of the most aggravating circumstances in using Hudson is the scenario in which
an automated test passes on a developer workstation, but the same test fails when
running under Hudson. This is usually due to a lineup difference between the Hudson
server and the developer workstation. There is no easy way to avoid this, but one
approach to minimize the chances of this happening is to have the Hudson server and
the development environment be entirely inside a virtual machine (VM); that way, one
can be assured that the development environment and the Hudson server actually are
the same. One challenge to achieving this in practice is the fact that developers are
most productive when they can customize their environment to their preferences, and
these will likely not be the same as what would be on a plain vanilla Hudson server.

Eager or Lazy Failure
The strict agile programming methodology states that a single test failure is just as
important as a whole host of test failures. When following this methodology, it makes
the most sense to have the build fail on the first failed test. There are occasions when
you want to allow the build to continue running and then survey the results at the
end, perhaps failing the build if a certain percentage of the tests fail. A parameterized
build String parameter can be used to pass in an expected passed test count, and this
number can be compared to the actual number of passed tests to fail the build if a
certain percentage is not met. The following Apache Ant target can be called from a
Hudson Ant builder for this purpose.

The <if> and <math> tags are not part of the default Apache Ant installation.
Rather they are provided by the ant-contrib project, which can be downloaded from
http://ant-contrib.sourceforge.net/.

<target name="assert.expected.passed.test.count">
 <if>
 <isset property="expected.passed.test.count" />
 <then>
<echo>perform the assertion</echo>
 <sequential>
 <property name="test.report.dir"
 value="${impl.dir}/build/test-reports" />
 <loadfile property="report.summary"
 srcFile="${test.report.dir}/html/overview-summary.html" />
 <propertyregex property="actual.passed.test.count"

05-ch05.indd 164 13/08/13 2:21 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 5: Hudson and Automated Testing 165

 input="${report.summary}"
 regexp="(?s)(.*)(href=.all-tests.html.>)([0-9]{1,6})
(.*)"
 select="\3"
 />
 <math result="passed.test.count.difference" datatype="int"
 operation="subtract"
 operand1="${actual.passed.test.count}"
 operand2="${expected.passed.test.count}" />
 <propertyregex property="actual.lessthan.expected"
 input="${passed.test.count.difference}"
 regexp="^-.*"
 replace="actual.lessthan.expected" />
 <fail if="actual.lessthan.expected" status="-1"
 message="
--JOB FAILED!-- Fewer than expected tests passed. Expected: ${expected.
passed.test.count} Actual: ${actual.passed.test.count}"/>
 </sequential>
 </then>
 </if>
</target>

This code loads the overview-summary.html file that is generated by the test
report and scrapes it for the numeric value of the number of passed tests. It then
subtracts the actual from the expected and if the result is negative, it fails the build.

Failure Discoverability
When a test does fail, it is critically important that developers can quickly and
easily discover the identity of the failed test and rerun the test on their workstations,
seeing the exact same failure in their development environment. When your test
suite starts to scale up to thousands of tests, this can be challenging. One remedy is
to continually refactor your tests to be well modularized, having a small number of
tests in each module.

Adding New Tests
Finally, because testing requires discipline, it is really important to keep the cost of
creating new tests as low as possible. Complexity will cause this cost to want to rise
over time, but it is important to invest in keeping it low. The Maven archetype feature
is a good remedy for this. With this feature you can create easy test jumpstart projects
that can reduce the cost of adding a new test to a simple command-line invocation.
Of course, you will have to maintain the archetypes and adapt them as your
containing code requirements change, but the return is well worth the investment.

05-ch05.indd 165 13/08/13 2:21 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

166 Hudson Continuous Integration in Practice

Summary
This chapter defines automated testing as it is commonly practiced using Hudson.
The Maven build lifecycle is examined in detail, and this knowledge is applied in
an example using Servlet technology. The concept of the software lineup is defined
with a view toward Continuous Delivery. A lightweight but useful ontology of testing
types is introduced, which bridges to a discussion about the merits and drawbacks
of using mock objects. The chapter comes down squarely on the side against mock
objects and suggests using JBoss Arquillian instead.

The chapter closes with a brief selection of automated testing tips.

05-ch05.indd 166 13/08/13 2:21 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5
Blind folio: 167

CHAPTER
6

Hudson as Part of
Your Tool Suite

06-ch06.indd 167 13/08/13 2:24 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

168 Hudson Continuous Integration in Practice

While much of the work of configuring Hudson involves plugging stuff
into Hudson, this chapter is about how to plug Hudson into other stuff.
Specifically, this chapter is about how to configure Integrated Development

Environments (IDEs), issue trackers, browsers, and operating system desktop
environments for Hudson.

IDE Integration
IDEs have become so accepted in the world of enterprise Java development that it is
tempting to forget that they actually do integrate many different things into a single
development environment. All IDEs integrate at least a code editor and a debugger,
but all of them actually allow the integration of many other kinds of development
tools. This section examines how NetBeans, Eclipse, IntelliJ IDEA, and JDeveloper
support integration with Hudson. For a primer on NetBeans, please see the section
“NetBeans” in Chapter 2.

NetBeans has built-in support for Hudson with no additional plugin required. To
get started, make sure your Hudson instance is accessible from the workstation that
is running NetBeans. We will use a Hudson instance that has been configured for
security as shown in Chapter 3. In NetBeans, go to Window | Services and find the
Hudson Builders item. Bring up the context menu by right-clicking on the item and
fill in a descriptive name and the Hudson URL. The value for Auto Refresh Every can
be left with its default value.

TIP
A value of zero (0) for the Auto Refresh Every setting
(or unchecking the check box) will cause NetBeans
to only synchronize its display of Hudson data when
you request to do so by right-clicking on the Hudson
builder node and choosing Synchronize.

NetBeans should create a new node under Hudson Builders and quickly populate
it with the jobs from the main dashboard. Interaction with the Hudson instance is via
a tree control. Each node in the tree control offers a context or right-click menu with
features specific to that node. There is a top-level node in the tree for each Hudson
instance connected with NetBeans. Figure 6-1 shows NetBeans configured with one
Hudson instance.

To give full access to the secured Hudson instance, open the context menu on the
newly created Hudson builder, choose Log In, and enter the required credentials. If
the Hudson instance has not been configured for security, this step is not necessary.

06-ch06.indd 168 13/08/13 2:24 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 6: Hudson as Part of Your Tool Suite 169

The context menu for a Hudson builder will look like this:

If Views have been configured, as described in Chapter 3, the context menu for
the builder allows you to only display jobs from a specific view.

New Build is a powerful feature that lets you create a Hudson job from within
the IDE, using information gleaned from the IDE project itself. This feature will be
explained later in the chapter. Synchronize will manually force NetBeans to poll
Hudson and refresh the state of the UI for the builder.

FIGURE 6-1. NetBeans with Hudson

06-ch06.indd 169 13/08/13 2:24 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

170 Hudson Continuous Integration in Practice

Open in Browser will open the Hudson URL in a browser. Delete will remove
the Hudson builder from NetBeans, but no information on the Hudson instance
itself will be lost. Deleted builders can easily be re-added.

Properties allows you to view and edit the information you entered when you
first added the builder.

Each job in the selected view shows up as a child node under the Hudson
builder. The first item in the context menu for a job allows you to start a new build
of the job. The Associate With Project button allows you to associate a currently
opened NetBeans project with this particular Hudson job. If the project is a Maven
project, this will cause text similar to the following to be added to the pom.xml.

 <ciManagement>
 <system>hudson</system>
 <url>http://rhombus3:7214/job/03_mvn/</url>
 </ciManagement>

NetBeans will automatically show the Hudson builder for this job when such a
project is opened. Other jobs on the same Hudson instance will show up as (not
watched). Figure 6-2 shows this arrangement.

The builder will go away when the project is closed. Note that there is the
potential for redundancy of Hudson builders in the IDE with this approach because
the manually added Hudson instance will also show this job. In general, it is best to
use all nonassociated or all associated projects. The associated projects feature is
most useful when creating Hudson jobs from projects. Another benefit is the way

FIGURE 6-2. Not watched jobs

06-ch06.indd 170 13/08/13 2:24 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 6: Hudson as Part of Your Tool Suite 171

output from Hudson static analysis plugins, such as the PMD plugin shown in
Chapter 3, is displayed in the Action Items window in NetBeans, as illustrated here.

Expanding the node for the job shows nodes for the job’s workspace and all of
the builds for that job, allowing you to quickly discern the completion status of
each. Navigating within the job’s workspace from inside NetBeans allows you to
open any of the files in the workspace in a read-only mode. If a job has been
configured to collect artifacts, these artifacts can be found by drilling down to a
specific build within a job, as shown here.

The context menu for each build of a job offers the ability to display the changes
and the console log for that build. If the build is currently running, the console
output gets updated dynamically as long as that tab is opened. Hudson tracks the
former during the SCM interaction of the job by fetching the log messages for each
of the revisions to the SCM since the last time the job was run. The latter is the same
information you would get from the console output link on the job’s dashboard.

Creating a New Hudson Job
Directly from a NetBeans Project
If the SCM system of the project is supported by the NetBeans Hudson integration, it
is possible to create a new Hudson job directly from the opened project in the IDE.
Assuming NetBeans has been connected to a Hudson instance as shown above,

06-ch06.indd 171 13/08/13 2:24 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

172 Hudson Continuous Integration in Practice

choose Team | Create Build Job and select the project in the New Continuous Build
dialog that appears. Clicking the Create button will create a new Hudson job and
open the browser up to that job’s dashboard. Note that you may have to log in
again. Opening up the job configuration will reveal that the job has already been
populated with the SCM information as well as the builder that invokes the top-level
pom.xml. You still must add your own Maven goals. The most useful thing about this
feature is that it establishes a clear correlation between what developers do on their
workstations and what happens on the Hudson server.

However, New Continuous Build creates a legacy Maven 2/3 project, which is
deprecated in Hudson. Build configuration is different than in the free-style jobs you
may be used to; in particular, it does not allow multiple build steps. For this reason,
you may wish to continue creating free-style jobs in Hudson and connecting
NetBeans as described in preceding sections.

Eclipse Hudson Integration
Hudson is integrated with Eclipse via the Mylyn project. This project is the open
source offering from Tasktop, which offers Application Lifecycle Management (ALM)
products built on top of Eclipse and Mylyn. Tasktop is famous for bringing the so-
called “task-focused interface” to the world of enterprise Java development. The key
value Mylyn brings to Eclipse is its task-focused workflow, but Mylyn is also the best
vehicle for accessing Hudson from within Eclipse. ALM and the task-focused
workflow are definitely worth exploring as worthy additions to an enterprise tool
suite, but they are beyond the scope of this book. This section will cover how to
install and use the Build Server portion of Mylyn, which also supports other CI
servers such as Bamboo and Mantis.

Installing Mylyn into Eclipse
Unlike NetBeans, Hudson support is not built into Eclipse; it must be downloaded
and installed separately. Start Eclipse and choose the Install New Software item in
the Help menu. This will bring up the Install dialog. Click the drop-down menu
labeled “Work with.” Select the option that includes Mylyn for Eclipse. If it’s not
present, you can click the Add button and fill in Mylyn and http://download
.eclipse.org/mylyn/releases/latest and click OK. After either selecting the existing
Mylyn option, or filling in your own, the middle area of the dialog should populate
with the available modules from the site listed in the “Work with” drop-down menu.
Use the tree control to expand the Mylyn Integrations item, and check the Mylyn
Builds Connector: Hudson/Jenkins check box. Also expand the Mylyn SDKs and
Frameworks option and select Mylyn Builds. The other options are useful when
using the other features of Mylyn, but they are not pertinent to Hudson integration
and will not be discussed here. The dialog should look similar to Figure 6-3.

06-ch06.indd 172 13/08/13 2:24 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 6: Hudson as Part of Your Tool Suite 173

Click Next and complete the installation process, then click Finish. From the
Window menu, choose Show View and then Other. Aside from the first item in the
Show View dialog, General, the items are ordered alphabetically. Expand the Mylyn
folder and select Builds and click OK. A tab should open that includes the text “No
build servers available. Create a build server.” Click the link in that text to open the
New Repository Select a Wizard dialog. This dialog will take you through the steps
of making Eclipse aware of your Hudson instance. Select “Hudson (supports Jenkins)”
and click Next. In the Server field enter the URL of your Hudson instance. Enter a
descriptive name, such as the Hudson hostname, in the Label field. If the Hudson
instance to which you are connecting is secured, uncheck the Anonymous box and
fill in the User and Password fields. Click the Validate button in the lower-left corner
of the dialog to cause Eclipse to poll the specified Hudson instance. The middle of

FIGURE 6-3. Install Available Software dialog

06-ch06.indd 173 13/08/13 2:24 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

174 Hudson Continuous Integration in Practice

the dialog should show the list of jobs from the Hudson instance, allowing you to
select which ones to monitor. Once configured, the Hudson integration is currently
limited to monitoring and starting builds.

IntelliJ IDEA Hudson Integration
IntelliJ IDEA is a popular IDE with the unique distinction that its development has never
been controlled or sponsored by a large platform vendor such as Sun (NetBeans),
Oracle (JDeveloper), or IBM (Eclipse). As such, it tends to be more inclusive of
technologies from across the industry. Unfortunately for Hudson users, due to IntelliJ’s
focus on its own Continuous Integration product, TeamCity, support for Hudson is
limited to build monitoring. This section will describe how to install the Hudson
integration into IntelliJ IDEA.

Hudson support is provided via a plugin. IntelliJ plugins come in two styles of
distribution: built-in and repository. The former are included with the IDE, but for
performance and complexity management reasons it is common to only enable
the plugins on an as-needed basis. The latter must be downloaded from a plugin
repository. The Hudson Build Monitor is an example of the latter style. To install a
repository plugin, start IntelliJ IDEA and observe the Welcome to IntelliJ IDEA
dialog. (Some versions may not display the welcome dialog.) The right-hand pane of
this dialog is labeled Quick Start. Choose Configure | Plugins to expose the Plugins
dialog. If you restart IntelliJ and no welcome dialog appears, choose IntelliJ IDEA |
Preferences and select the Plugins item in the list. Click Browse Repositories and
change the Category drop-down to select Build. This will cause only plugins related
to build technologies to be displayed. The plugins are sorted alphabetically. Find
the Hudson Build Monitor entry, right-click and select Download and Install. Click
Close. Back in the Plugins dialog, there will now be an entry for Hudson Build
Monitor, again in alphabetical order. Make sure the entry is checked and click OK.
IntelliJ IDEA must be restarted before the plugin can be used.

Unlike with NetBeans and Eclipse, this plugin operates entirely on a per-project
basis; each project may have zero or one Hudson instances associated with it.
Therefore, to configure the Hudson Build Monitor, a project must first be opened.
Chapter 2 explains how to open Maven projects from IntelliJ IDEA, but any kind of
project will do for the purposes of exploring the Hudson Build Monitor plugin.
Once a project has been opened, in the File menu, choose Settings, and in the
Project Settings area on the left, find the Hudson Build Monitor section. Fill out
the values as shown in Figure 6-4. Clicking OK will dismiss the Settings dialog. You
should now see a Hudson Jobs icon in the IntelliJ dock on the left side of the IDE.
Clicking this icon exposes a tree view where builds can be monitored. Most of the
interaction with the jobs is fobbed off to the browser, however.

06-ch06.indd 174 13/08/13 2:24 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 6: Hudson as Part of Your Tool Suite 175

JDeveloper Hudson Integration
Oracle JDeveloper integrates with Oracle Team Productivity Center (TPC), a full-
featured Application Lifecycle Management tool. It is well beyond the scope of this
book to cover Team Productivity Center in detail. This section will cover how Hudson
integrates with Oracle Team Productivity Center to allow test results to appear in the
workflow of JDeveloper. Complete documentation on Team Productivity Center can
be reached from the product home page at www.oracle.com/technetwork/developer-
tools/tpc/overview/.

Installation Concerns
Team Productivity Center runs as a database-backed Java EE Web application, and
as such requires a database and Java EE container. The software is designed to be
agnostic to the type of database and EE container, but Oracle XE Database and Oracle
WebLogic are guaranteed to work. The installation process for TPC also produces a
Hudson plugin, HudsonTpcPlugin.hpi, that allows test results to be collected and
delivered to the TPC server, where they are then available to developers using
JDeveloper. Figure 6-5 shows a possible arrangement of nodes using TPC with
Hudson. TPC has first-class support for software teams, and thus Figure 6-5 shows
multiple JDeveloper workstations connecting to the TPC server.

FIGURE 6-4. IntelliJ IDEA Hudson Build Monitor options

06-ch06.indd 175 13/08/13 2:24 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

176 Hudson Continuous Integration in Practice

During the installation process for TPC, you have the option of specifying where
the Hudson plugin is written. It is simplest to specify the plugins directory of the
Hudson instance. If any other directory was specified, copy the HudsonTpcPlugin.
hpi file that was generated by the TPC installation process into the plugins directory
of the Hudson instance. Ensure that the TPC server has been installed and is running
correctly, and then start or restart Hudson. Configuring the Hudson instance is done
on a per-job basis. Visit the configuration page for the job whose test results will
be accessible to JDeveloper users and look for the text “Publish test results to Oracle
Team Productivity Center.” Checking the check box displays a configuration UI
where the URL of the Oracle TPC server along with the username and password for
publishing results can be provided. The Test Connection button allows verification of
the connection. Make sure the check box for Publish JUnit Test Results is checked.

TIP
Even though the check box says JUnit Test Results,
more than just JUnit test results can be collected
with this technique. Any test technology that
conforms to the JUnit test result format can be used,
for example HtmlUnit.

FIGURE 6-5. System diagram of TPC server

Hudson

JavaEE
Container

JavaEE
Container

TPC
Server

TPC Plugin

SQL

JDev JDev

06-ch06.indd 176 13/08/13 2:24 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 6: Hudson as Part of Your Tool Suite 177

The next run of the job will cause the JUnit test results to be captured and sent
to JDeveloper.

The final step in the installation of TPC is to connect
JDeveloper with the TPC server. In the main JDeveloper
UI, open the View menu. Choose Team | Team Navigator and click on the
Connect to Team Server icon shown here.

This brings up the Connect to Team Server dialog where you fill in similar values
to the ones shown in the Hudson plugin configuration. The only difference might be
in the username/password combination. The typical configuration will provision TPC
user accounts for each team member on the server, as well as one or more TPC user
accounts for Hudson connections. The “Connect when JDeveloper Starts” box can
be checked to cause JDeveloper to automatically establish the connection upon
startup. This might cause a longer startup time for JDeveloper, so this option should
be used with care. Once the connection has been established, the Team Navigator
tab appears. The full capabilities of the Team Navigator are covered in the product
documentation. The remainder of this section will cover how to explore the JUnit
test results collected by the Hudson plugin from within JDeveloper.

Viewing Test Results in JDeveloper
The top of the Team Navigator tab includes two side-by-side drop-down menus. The
left one shows the teams available for the current team server connection. The right
one offers access to the Build Dashboard tab, which displays the Hudson job test
results. This is shown in Figure 6-6. The Branches drop-down menu shows the Hudson
jobs for which test results are available. After selecting a job, note the numbers in the
left column. These correspond to builds of the currently selected job. Clicking on the

FIGURE 6-6 The JDeveloper TPC Build Dashboard tab

06-ch06.indd 177 13/08/13 2:24 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

178 Hudson Continuous Integration in Practice

build number will open a detail tab for that job, which allows you to further interact
with the test failure. In a properly configured installation, this dialog can radically
decrease the amount of time it takes to find the cause of a test failure, deliver a fix,
and verify the correctness of the fix.

Hudson Issue Tracker Integration
In Chapter 3, we saw that the mvn-jxr-plugin–enabled source code files associated
with failed tests to be displayed correctly in the Hudson build output. The plugins
covered in this section also impact what is shown in the build output. By now it
should be clear that a fully productive Hudson instance is one that is configured to
be well integrated with all the aspects of your software development lifecycle.

Atlassian JIRA Integration
JIRA is a popular commercial Web-based issue-tracking software. Many open source
projects get a gratis license from JIRA because of the liberal marketing policies of its
maker, Atlassian. The Hudson JIRA plugin is available from the Recommended
subtab of the Available tab of the Hudson Plugin Manager. For an introduction to
this key feature of Hudson, see Chapter 3. Once the Hudson JIRA plugin has been
installed and Hudson has restarted, visit the Manage Hudson page from the main
dashboard, then click Configure System. Find the section labeled JIRA and click the
Add button. For the basic level of integration, just fill in the URL of the top-level
JIRA instance. If the integration is successful, JIRA issues mentioned in commit log
messages will show up as hyperlinks to the issue in JIRA, as shown here.

A more complete filling out of the configuration, with username and password,
will enable Hudson to make comments on issues as a result of the completion status
of builds that include a hyperlink to the Hudson job that impacts that issue. This
must be configured as a two-step process. First, the username and password must be
correctly filled out in the Configure System page. Click the Validate button to test the
connection. Second, within each job for which you want this feature activated, find
the Post-build Actions section and check the check box next to the text “Updated
relevant JIRA issues.”

Bugzilla Integration
Bugzilla is another common Web-based issue tracker, which started life alongside
the world’s first Continuous Integration software, Tinderbox. Both Tinderbox and
Bugzilla were pioneering projects in the open source movement from the Mozilla

06-ch06.indd 178 13/08/13 2:24 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 6: Hudson as Part of Your Tool Suite 179

project. Bugzilla–Hudson integration is configured just like the JIRA integration,
but the plugin is located in the Others subtab of the Available tab of the Hudson
Plugin Manager.

Other Issue Trackers
Hudson also offers integration to Mantis, Trac, and Backlog, all of which have a
similar base level of integration with occasionally deeper features as well.

Browser and Desktop Integration
Once Hudson becomes a part of your software development tool suite, it is natural
to want to be able to access it from the tools most used by the collaborators in the
software development process. IDE integration covers the actual software developers,
but there are many other kinds of collaborators in the process of building software,
and many of them never use IDEs. For example, designers and technical writers
might want to be notified of Hudson status in their Web browsers or via a desktop
widget. This section explores some options for browser, desktop, and mobile Hudson
integration. All of them take advantage of Hudson’s usage of RSS.

TIP
Throughout the Hudson UI are so-called “RSS
links.” Rich Site Summary (also known as RDF Site
Summary or Really Simple Syndication), or RSS for
short, is a technology for delivering notifications
using a pull-based model. In a pull-based system,
the party desiring the notification manually asks to
be updated rather than the notification always being
pushed to the party whether they want it or not.

Browser Integration
The Web browser is the least-common-denominator UI software, and as such, people
tend to spend a lot of time using browsers.

Firefox
Firefox plugins are called “add-ons” because they add functionality on to the base
Firefox instance.

There is an add-on for Firefox that monitors Hudson and Jenkins builds. The
plugin started out under the name “Hudson Build Monitor” and has since changed
its name to “Jenkins Build Monitor,” but it still works with Hudson. To install the
add-on, visit https://addons.mozilla.org/ from within Firefox and type Jenkins Build

06-ch06.indd 179 13/08/13 2:24 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

180 Hudson Continuous Integration in Practice

Monitor into the search box. If more than one match appears, make sure to click
the Add to Firefox button next to the one labeled exactly “Jenkins Build Monitor.”
Clicking the button will cause Firefox to display a dialog similar to the one shown
in Figure 6-7.

As with Hudson plugins, Firefox add-ons require restarting the software in/on
which you have plugged/added. After doing so, ensure that the Firefox Add-on bar
is displayed by selecting Add-on Bar in the View | Toolbars menu. Visit the Hudson
instance you wish to monitor in Firefox, and find the job page for the job you wish
to monitor. At the bottom of the Build History section are two links labeled “for all”
and “for failures.”

Open the context menu on the “for all” or “for failures” link. The former is an RSS
feed that contains items for all builds of that job, the latter only for failures. If the
Firefox Jenkins Build Monitor add-on is installed correctly, the Add Link To Jenkins
Build Monitor item should appear. This item is shown in Figure 6-8. Selecting the
item causes the build to be placed in the add-on bar. This will give the status of the
build. Clicking the build in the add-on bar shows the job history. Clicking each link
in the job history creates a new tab with the corresponding job page. The context
menu for the build in the add-on bar offers options for starting new builds, and for
removing this job from the add-on bar. If the Hudson instance is secured, the Firefox
Jenkins Build Monitor may be configured with the credentials by opening the context
menu on the Jenkins icon in the add-on bar, selecting Preferences, and visiting the
Network tab.

FIGURE 6-7. Installing the Jenkins add-on

06-ch06.indd 180 13/08/13 2:24 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 6: Hudson as Part of Your Tool Suite 181

Chrome
Google Chrome plugins are called “extensions” and they can be obtained by visiting
the Chrome Web Store from within the Google Chrome browser. Visit http://chrome.
google.com/webstore/ and type Hudson Monitor into the search box. If multiple hits
are found, the one from Henning Hoefer is the one discussed in this section. Click
the + ADD TO CHROME button and click Add in the dialog that appears. Unlike
Firefox, this does not require a restart. You should immediately see a Hudson icon
appear next to your URL bar. Open the context menu on the Hudson icon and
select Options. This opens a very simple panel where you can fill in the URL of the
Hudson instance, the polling interval, the credentials, and some options relating to
the display of jobs. Clicking on the Hudson icon will pop up a panel with all the
jobs, their status, and a link to each job. Clicking a link will simply open a new tab
and load that job in the tab. Figure 6-9 shows the Hudson Monitor Chrome
Extension from Henning Hoefer.

Desktop Integration
For those who prefer to use the desktop operating system as their notification hub,
there are a few options for Windows, Mac, and GNU/Linux platforms.

FIGURE 6-8. The Add Link To Jenkins Build Monitor context menu option

06-ch06.indd 181 13/08/13 2:24 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

182 Hudson Continuous Integration in Practice

Microsoft Windows
The Hudson development community has provided a Windows Sidebar Gadget that
can be configured to track an arbitrary number of Hudson jobs. Visit http://code
.google.com/p/hudsonmonitor and download the hudson.gadget file. This is an
executable file on Windows Vista and later and should automatically install the
gadget when double-clicked. Click on the Hudson gadget and then click on the
wrench icon to open the settings for the gadget. As of this writing, the authentication
feature did not work with Hudson 3.0.1, so this gadget only works with Hudson
instances for which security has not been enabled.

FIGURE 6-9. Chrome Extension

06-ch06.indd 182 13/08/13 2:24 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 6: Hudson as Part of Your Tool Suite 183

Unlike other notification solutions, the hudsonmonitor gadget requires you to
manually add each Hudson project you want to show in the gadget one at a time.
Only projects added in this way are visible. Fill in the URL to the Hudson instance
and click the Get Projects button. This will populate the Projects drop-down with
the list of projects on the specified Hudson instance. Select the project you wish to
monitor and click Add Project. You can add multiple projects from the same Hudson
instance by selecting each project and clicking Add Project for each. Click OK to
dismiss the configuration dialog. Repeat this step with all the Hudson projects you
wish to monitor, even from those different Hudson instances. Figure 6-10 shows the
configuration dialog for hudsonmonitor.

Mac OS X, GNU/Linux
An alternative to hudsonmonitor is the Java-based hudsonTracker. This cross-platform
solution is distributed as a Mac OS X .dmg file, a Microsoft Windows .exe file, and a
shell script for GNU/Linux. The software may be downloaded from http://hudsontracker
.sourceforge.net/. Once the software has been installed and started, an icon with the
characters “hT” should appear in your system tray (on Windows) or menu bar (on Mac

FIGURE 6-10. Hudsonmonitor Windows gadget

06-ch06.indd 183 13/08/13 2:24 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

184 Hudson Continuous Integration in Practice

OS X and GNU/Linux). Click on the hT icon and select Configure to see the panel
where the Hudson URL can be filled in. The URL can be any Hudson RSS URL.
Unfortunately, hudsonTracker doesn’t seem to work with Hudson 3.0.1 authentication,
so, as with hudson.gadget. it’s necessary to use it with only unauthenticated Hudson
instances. Once hudsonTracker has been configured, clicking the hT icon shows a list
of all the jobs from that Hudson RSS URL.

Mobile Integration
No treatment of Hudson notification schemes would be complete without covering
how to use Hudson from Android and iOS smart phones.

The Google Play Store and iTunes AppStore contain several apps for Hudson, but
the one this section covers is called JenkinsMobi. As the name suggests, it can access
multiple Jenkins and Hudson instances. This full-featured app offers very extensive
coverage of what you can do with an existing Hudson instance once it has been
configured as desired. Install the app from the Play Store or iTunes App Store and open
the app. The app comes preconfigured with access to a Hudson instance associated
with the development of the app itself. Click the Settings button in the lower-left hand
corner of the screen to bring up the Configuration Instances pane. Click the plus icon
to enter the information for a new Hudson instance. Because it is common to use the
app to track multiple Hudson instances, fill in a useful description as the first field. The
value entered here will show up on the first page in the app. Fill in the remainder of
the fields appropriate to each Hudson instance to be monitored. Click on Host and fill
in the hostname of your Hudson instance. Click on “Path suffix” and remove the
existing value. Leave HTTP/S unchecked. Click port and fill in the port value. For
Hudson 3.0.1, leave the XPath box unchecked. Make sure both the Override Hudson
URL and “Use XSLT for xml artifact” check boxes are checked. If the Hudson instance
has authentication, fill in the username and password. Unlike the browser and
desktop-based notification schemes, authentication seems to work with Hudson Mobi
and Hudson 3.0.1. Click the “Test configuration” button to verify the configuration is
correct. If so, you should see a dialog containing the text “Connection test PASSED,
Login test PASSED, Retrieve view test PASSED,” on Android. On iOS, this text is
“Connection: SUCCEEDED, Login: OK, Hudson version: OK, Hudson view: OK.”
Click Back or click Done to leave the configuration screen, making sure to say yes
when prompted to save the configuration. Back on the main screen for JenkinsMobi,
select one Hudson instance. This takes you to the View Detail screen for the selected
Hudson instance. Click on the icon in the upper left of the screen with the nine boxes
to see what the app offers. At press time, this included the following options.

 ■ Views Shows the same information one would see when browsing the
Hudson Views tab, but formatted nicely for display on a mobile device.

 ■ Nodes Shows the information in the Manage Nodes area of Hudson.

 ■ Queue Shows the jobs currently executing on this instance.

06-ch06.indd 184 13/08/13 2:24 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 6: Hudson as Part of Your Tool Suite 185

 ■ Monitor Allows adding one or more specific jobs to monitor. This essentially
gives you the ability to do what a view does with respect to only showing a
subset of the jobs available on a Hudson instance, but does not create any
view-specific information on the server. This can be useful if you don’t have
the administrative permissions necessary to create a view.

 ■ Users Allows browsing information for the set of user accounts known to
the selected Hudson instance.

The main view for the configured Hudson Mobi on Android is shown in
Figure 6-11.

Publishing Build Artifacts from Hudson
Another dimension of using Hudson as part of your tool suite is the ability to publish
build artifacts directly from Hudson to other tools in the tool suite. Hudson offers
plugins that enable publishing build artifacts at several different levels of structure.
At the highest level of structure is the ability to publish artifacts to a proper “artifact
repository.” At the other extreme of structure is the ability to publish artifacts to any
FTP server. The choice of which plugin to use depends entirely on the software
development environment and the tool suite used therein.

FIGURE 6-11. Jenkins Mobi Android

06-ch06.indd 185 13/08/13 2:24 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

186 Hudson Continuous Integration in Practice

Artifact Repository
The rise of the “artifact repository” as an identifiable single tool in the software
development tool suite coincided with the rise of Maven. This is not surprising since
artifact management is arguably the most important feature of Maven. The things
that a Maven build produces are called “artifacts.” Artifacts are stored in an “artifact
repository,” and with Maven there are two kinds of repository: local and remote.
When building software, Maven discovers what other artifacts are needed to build
the current project and downloads them from any number of remote repositories to
the local repository, from whence other tools such as compilers and linkers can use
them. The local repository is really just a special directory on a disk to which Maven
downloads artifacts from remote repositories. You can think of it as Maven’s version
of your browser’s Downloads directory. Of course, Maven has a special subdirectory
layout that it uses for the local repository. In addition to downloading artifacts from
remote repositories, Maven can also upload artifacts. There is a special phase of the
Maven build lifecycle dedicated to this process: deploy. You can read more about
the Maven build lifecycle in Chapter 5.

Where to Encode the Deployment Logic?
The decision of where to describe, in an executable fashion, the process of
deploying to remote repositories is a matter of taste. The most common
approach is to encode this description in the build logic that produces the
artifact itself, for example in the pom.xml. Another approach, explained here,
is to encode the description within a Hudson job. This is another instance of
the “centralized versus distributed” choice for configuration information.
Putting the artifact deployment logic into the build, such as in a pom.xml,
tends toward distributed configuration information, while putting it in the
Hudson job tends toward centralized configuration information. In practice,
the distributed option gives much greater control because the task of
deployment is kept close to the software doing the building (such as Maven)
rather than the software that calls the software that does the building (Hudson).
One compromise is to use the Maven “parent pom” concept to keep the
deployment logic out of the individual leaf nodes of the build, but this level of
competency of Maven can be difficult to achieve and maintain.

At this writing, there are three popular artifact repositories: JFrog Artifactory,
Sonatype Nexus, and Apache Archiva. All three have gratis downloads and all
three are based on open source software in some fashion. The first two also have
commercial offerings with paid support. This section describes JFrog Artifactory
because it is the only one of the three that offers a Hudson plugin. The other two
rely entirely on letting the build system handle the artifact deployment.

06-ch06.indd 186 13/08/13 2:24 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 6: Hudson as Part of Your Tool Suite 187

First, download and install Artifactory from http://jfrog.org/. Follow the
installation instructions for the simple default installation. Artifactory is based on
Tomcat. Artifactory configuration is beyond the scope of this book, but the product
is well documented and there is sufficient Web search content available to answer
most common questions. Make sure Artifactory is running before starting Hudson.

The Artifactory plugin is available in the Recommended subtab of the Available
tab in the Hudson Plugin Center. Please see Chapter 3 for instructions on installing
plugins. Once the Artifactory plugin has been installed, configuration is done in two
phases: Hudson instance level and job level.

Per–Hudson Instance Artifactory Configuration
For the configuration at the Hudson instance level, visit the Manage Hudson page
and then the Configure System page. Find the section with the header Artifactory.
Click the Add button to display a dialog for adding one or more Artifactory
instances. Type into the URL field the same main URL for Artifactory as you would
use to access the Artifactory Web interface. When the cursor leaves the field,
Hudson will attempt to validate the correctness of the Artifactory installation and
should display a message such as “Found Artifactory 3.0.0.” If this message is not
displayed, or an error message is displayed, please ensure that Artifactory is running
and can be accessed from the same host on which Hudson is running.

TIP
Real-world Continuous Deployment environments
span many different host computers. It’s important
to have competence in network administration
because the entire configuration of Hudson requires
hard-coding hostnames and port numbers. It may
be advisable to include DNS configuration as part
of your Continuous Deployment software lineup.

Type in the user name and password of the Artifactory default deployer. By default,
these are admin and password, but these values can be changed in the Artifactory
configuration. The completed Hudson instance configuration is shown in Figure 6-12.

Because it is perfectly reasonable to have one Hudson instance push to multiple
Artifactory servers, it is possible to add additional Artifactory servers using this same
method.

Make sure to save the configuration when done.

Per-Job Artifactory Configuration
Now, for each job that is to publish artifacts to Artifactory, additional configuration
must be done. In the Configure page for the job, search for the text “Artifactory
Integration.” There are several check boxes pertaining to Artifactory. Because this

06-ch06.indd 187 13/08/13 2:24 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

188 Hudson Continuous Integration in Practice

book has focused mainly on Maven, check the one labeled Maven3-Artifactory
Integration. This will display the Artifactory Configuration panel. Choose the desired
Artifactory server that had been configured in the per–Hudson instance configuration.
Leave the “Target releases repository” and “Target snapshots repository” menus with
their default values. These values select which of the many repositories within a
given Artifactory instance should be used to hold the artifacts. Leave the “Override
default deployer credentials” box unchecked. This box allows you to customize the
username and password under which the artifacts are deployed. If these boxes are
unchecked, the values from the per–Hudson instance configuration are used. For
Include Patterns, use the same value as for the “Archive the artifacts” dialog, for any
job that publishes build artifacts as downloadable files from Hudson. The remaining
values can be left at their defaults. The next time this build runs, the result will be
published to Artifactory.

Now, for each job that is to publish artifacts to Artifactory, additional configuration
must be done. In the Configure page for the job, search for the text “Artifactory
Integration.” There are several check boxes pertaining to Artifactory. Check the one
labeled Generic-Artifactory Integration. This will display the Artifactory Configuration
panel. Choose the desired Artifactory server that had been configured in the per–
Hudson instance configuration. Select the Target Repository or leave the default value,
for example, libs-release-local. These values select which of the many repositories
within a given Artifactory instance should be used to hold the artifacts. Leave the
“Override default deployer credentials” box unchecked. This box allows you to
customize the username and password under which the artifacts are deployed.
If unchecked, the values from the per–Hudson instance configuration are used.

FIGURE 6-12. Per–Hudson instance Artifactory configuration

06-ch06.indd 188 13/08/13 2:24 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 6: Hudson as Part of Your Tool Suite 189

For Published Artifacts, use a file path pattern relative to the workspace, for
example, target/*.jar. The remaining values can be left at their defaults. The next time
this build runs, the result will be published to Artifactory. You can verify this by
checking the build Console Output. There will be one or more “Deploying artifact”
messages. In your Artifactory server, click the Artifacts tab and click the arrow beside
the artifact name you configured in Hudson to reveal your deployed artifact.

Deploy to Container
Chapter 5 introduced the distinction between containing code and code under test.
The former is the software in which the latter runs during whatever testing is being
performed. In Chapter 4, the build system was used to install the code under test
into the containing code. The Deploy to Container plugin can accomplish the same
thing for those jobs whose build artifacts are JavaEE war or ear files. The plugin
supports GlassFish, JBoss, and Tomcat servers. For each server, some administrative
action must be taken to ensure that the plugin is able to deploy the artifact. This
example covers the necessary action for Tomcat 7.x. In the conf/tomcat-users.xml
file, ensure that the following XML is present.

<role rolename="manager-script" />
<role rolename="manager-gui" />
<user username="tomcat" password="tomcat" roles="manage-script,manager-gui" />

Obviously, a different value for username and password can be used, and the
user may have additional roles than manage-script. The manage-script role is
necessary for the Deploy to Container plugin to work. The manager-gui role is not
necessary for the Deploy to Container plugin to work, but it is useful to be able to
use the manager GUI to verify that deployment was successful and to obtain the
correct URL for the Hudson plugin configuration. Ensure that Tomcat has started
and visit the manager GUI, by default at http://<hostname>:8080/manager/.

Back in Hudson, the plugin is available from the Recommended subtab of the
Available tab of the Hudson Plugin Center. Once the plugin has been installed and
after Hudson is restarted, visit the configuration page for the job whose artifacts are
to be deployed to the running container. Configuration for this plugin is entirely on
a per-job basis. There is no per–Hudson instance configuration. Search for the text
“Deploy war/ear to a container” and check the check box. In the “WAR/EAR files”
box, identify a single war or ear file. Even though the box is labeled files, the system
can only handle one war/ear file because there is only one “Context path” value. In
the “Context path” box, fill in the context path at which the war/ear file is to be
deployed. Because we have prepared for Tomcat, choose Tomcat 7.x. Fill in the
manager user name, manager password, and, most importantly, the URL for the
manager GUI corresponding to the Tomcat 7.x instance. The “Deploy on failure”
check box controls whether or not a failed build causes the artifact to be deployed.
In most cases, this should be left unchecked.

06-ch06.indd 189 13/08/13 2:24 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

190 Hudson Continuous Integration in Practice

FTP Publisher Plugin
The least structured, but most flexible deployment option is the FTP Publisher Plugin.
This plugin relies on the old but reliable File Transfer Protocol. It does not support
secure FTP. The plugin is available in the Recommended subtab of the Available tab
in the Plugin Center. Once the plugin has been installed and after a Hudson restart,
configuration must be done per–Hudson instance and also per job.

Per–Hudson Instance Configuration
The per–Hudson instance configuration defines one or more FTP servers so that
each job can deploy artifacts to any of them. In the Configure System page, find the
text “FTP repository hosts.” Click the Add button and fill in a name in the Profile
Name text field. This is the value by which this particular FTP site will be made
available in the per-job configuration. Fill in the hostname field with the expected
hostname. The port value must be filled in, and the value 21 is used in most cases.
A timeout value can be supplied that will cause the build to fail once the value has
elapsed without the file transfer completing. The value is specified in milliseconds.

The Root Repository Path value is the directory path relative to the home
directory of the FTP server. This directory path must exist on the server; it will not
be created automatically. Finally, username and password values must be supplied.
Because the entire purpose of this plugin is to upload artifacts, it is highly unusual
for anonymous FTP to be used; therefore, no special provision is made for anonymous
FTP. The “Flatten Files selected by default” check box provides a default value to a
setting that is also configurable in the per-job configuration. Make sure to save the
configuration.

Per-Job Configuration
In the job configuration page, find the text “Publish Artifacts to FTP” and check
the check box. In the FTP site menu, select the desired site configured in the per–
Hudson instance configuration. In the Source text field, fill in a value similar to the
one entered in the “Archive the artifacts” text field; however, it is valid for this value
to refer to a directory or a file. If it refers to a directory, the directory tree is transferred
recursively. The Destination field can be left blank, but can be used if the item to
be transferred should be renamed. Note that both source and destination must refer
to the same kind of item, either both directory or both file. “Use timestamps” will
cause a top-level directory to be created to store the items. The name of the top-
level directory will be a timestamp of the form 2013-05-01_18-43-53. This easily
allows for the same artifact to be published arbitrarily many times without having to
overwrite previous iterations. “Flatten files” will cause any intervening directories in
the Source text file to be omitted, putting the resultant file or leaf directory directly
in the root as specified in the per–Hudson instance configuration. Finally, the “Skip
publishing” check box enables temporarily disabling the publishing step without
altering any of the configuration.

06-ch06.indd 190 13/08/13 2:24 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 6: Hudson as Part of Your Tool Suite 191

Summary
This chapter explains how Hudson can plug into other tools such as IDEs, issue
trackers, and user environments such as desktops and mobile devices. The chapter
closes with a brief treatment of how to publish Hudson build artifacts to other
software systems.

The state of the art of Hudson integration into NetBeans, Eclipse, IntelliJ, and
Oracle JDeveloper is surveyed. Atlassian JIRA and Bugzilla are shown to be capable
of integrating Hudson. Because most of what Hudson does happens asynchronously,
notification of build results is an important feature. Chapter 3 introduced build
notifiers for this purpose. This chapter covers another way to accomplish the same
thing: having Hudson plug into the software that people sit in front of all day, such
as Web browsers, desktops, and mobile devices.

After automated testing, arguably the most important feature of Hudson is what
is done with build artifacts. Three techniques are explored to address this: JFrog
Artifactory, the Deploy to Container plugin, and the FTP Publisher plugin.

06-ch06.indd 191 13/08/13 2:24 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5
Blind folio: 192

06-ch06.indd 192 13/08/13 2:24 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5
Blind folio: 193

CHAPTER
7

Distributed Building
Using Hudson

07-ch07.indd 193 13/08/13 3:01 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

194 Hudson Continuous Integration in Practice

In the previous chapters, we explored how to install, run, and set up Hudson for
CI practice. We also discussed that the best way to achieve build steps from
Continuous Integration to Continuous Delivery is properly setting up the building

of your software units along with different testing environments in a pipeline of builds.
This leads to an increase in number of jobs. Often, the branches in the build pipeline
can be executed in a distributed fashion. Hudson supports distributed building of
multiple software projects, or buildable units of a single software project maintained
by various software teams. In this chapter, we will explore how to set up Hudson for
the master-slave mode of operation for distributed building.

Master-Slave Mode
If you are installing Hudson for the first time and have it configured to run jobs, then
you are most likely running Hudson in a “master only” mode. In this mode, Hudson
builds all of your jobs in the same machine where Hudson is installed. For a small
number of jobs that do not require intensive computer power, this arrangement might
work. However, often this may not be the case. The machine where Hudson is installed
may not scale well to build numerous jobs scheduled based on various Continuous
Integration schemes. To alleviate the problem, Hudson offers another more flexible
mode of operation called the master-slave mode (see the following illustration).

Cloud

Computer

Executor

Network

Slave 2

Master

Label: Mac, Arch64 Label: Win7, Arch64

Slave 1
Slave 3

07-ch07.indd 194 13/08/13 3:01 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 7: Distributed Building Using Hudson 195

When reading this chapter, you will want to be aware of the following
nomenclatures:

 ■ Master A full-fledged Hudson server running on a machine. It can do builds
of its own or request a slave to do the build. Some of the responsibilities of
a master are scheduling job builds, communicating with slaves to execute
job builds based on its capabilities, and monitoring the slaves. It is also
responsible for providing the UI for user interaction and presenting the
build results.

 ■ Slave Agent An agent running on a different machine (or on the same
machine), which builds on behalf of the master. A slave can live anywhere
in the cloud as long as it is accessible to the master via a TCP/IP connection.
A slave cannot do anything by itself. Although technically you can install an
agent on the same machine as the master, we recommend installing it on a
different machine for the sake of better performance of the master.

 ■ Slave A machine running the slave agent.

 ■ Node A generic term to refer a master or a slave.

 ■ Executor A thread that does the actual run of the build. Master or slave
can have multiple executors. Each executor can perform a job build in
parallel to the execution of a build by another executor. As a rule of thumb,
the number of executors is equivalent to the number of CPUs or the number
of cores in each CPU of a machine where the master or slave is running.
If the value is set to 0, then no job will be executed on that node. This is
especially useful if you want to execute all of your jobs only in the slaves
and not in the master.

 ■ Label A space-separated list of strings provided by a slave to advertise its
capabilities, environment, and architecture. It is a powerful mechanism to
strategize the build distribution, as explained later in the chapter.

 ■ Build Grid A Hudson build system, composed of the master and a “farm”
of slaves, set up to do builds of jobs in a grid-like architecture. The build grid
is an effective way to share the load across multiple machines or run builds
of a single job in different environments, which dramatically improves the
capacity of the CI environment.

Hudson Slaves
Slaves are computers (a physical machine or a virtual machine) that are set up to build
jobs for a Hudson master. Slave machines run a separate program called slave agent.

07-ch07.indd 195 13/08/13 3:01 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

196 Hudson Continuous Integration in Practice

The slave agent and Hudson master need to establish a bidirectional byte stream, for
example, a TCP/IP socket, to do business together. For security reasons, the origination
of the slave agent is always from the Hudson master. In order to start communication
between the master and slave, the slave agent requires a key that is unique for every
Hudson master. The origination of the slave agent must be from the same Hudson
master in order for this key to be correct. When the slave agent is started, it tries to
create an HTTP connection to the master by inputting the secret key in the header.
The Hudson master responds with a port number. The slave agent then requests a
secure socket connection using that port number and the secret key as the credentials.
If the connection is accepted, a secure communication channel is established between
master and slave.

The slave agent is automatically installed in the slave home directory, although
the slave agent can be installed into any directory. The slave agent stores all related
data under this directory. While the build steps are being executed in the slave, the
slave agent sends all the log messages, test reports, code, and coverage results to the
Hudson master on the fly, so you can monitor the build process in real time. After
finishing the build, the slave agent sends the build artifacts, such as the installers, jar
files, war files, reports, and log files, based on the job configuration, to the Hudson
master. These will be available at the master for download.

When slave nodes are added to a master, it automatically starts distributing jobs
to slaves. The exact distribution behavior depends on the configuration of each job.
The job may be configured to build on a particular slave or a particular type of
slave. If not specifically configured, Hudson will pick the next available, suitable
slave and build there.

Slave Provisioning
Slave nodes require three levels of provisioning:

 ■ VM or hardware provisioning Create a virtual machine, as in cloud
provisioning, or bring hardware online. Install the operating system
and basic operating software in an OS-dependent manner. Configure
the network and provide a unique network address, and so on.

 ■ Hudson provisioning Install the software necessary to communicate
with the Hudson master. Hudson does this automatically when it
connects to a slave node. Hudson can also automatically install
certain software tools required by the build in most cases.

07-ch07.indd 196 13/08/13 3:01 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 7: Distributed Building Using Hudson 197

Types of Slaves
There are three types of slaves based on how the slave agent is started and managed.
A particular type of slave is used depending on the availability of hardware and
the environment. For example, on a Windows machine, if Hudson does have an
opportunity to manage the slave using SSH, then the slave can be provisioned as an
unmanaged slave and later can be set up to start with the OS via Windows service
technology as explained later in the section.

Managed Slaves
The slave agent of the managed slaves is always under the control of the Hudson
master. The master is responsible for copying the slave agent to the slave machine
and starting it. If the slave agent dies by any chance, Hudson restarts it when its
services are required. Most of the managed slaves are available via plugins such SSH
Slaves and Windows Slaves, to name a few. Later in this chapter, we will explore
the installation and building of a job using SSH-based managed slaves.

 ■ Tools provisioning Install the software tools necessary to run Hudson
jobs on the slave. Which tools must be installed depends on the jobs.
For instance, if a job checks out from the Git repository, Git must be
installed on the slave. If a job builds with Maven, Maven must be
installed. This kind of provisioning must be done from the slave. It is
easy to discover when it is necessary; try to run a job on the slave. If
the slave is not adequately provisioned, the job will fail with an error
message suggesting the problem. For example, “Error performing
command: /usr/local/git/bin/git…” indicates that Hudson did not find
Git where it expected. Either Git is not installed on the slave, or it was
installed by a tool such as apt-get that did not create the path /usr/
local/git/bin/git.

As a counterpart to provisioning, jobs must be configured so that they will
run in the slave environment. For example, build steps cannot run UNIX
commands on Windows slaves, or vice versa. If a slave is behind a firewall,
the job must be configured with correct proxy information to allow HTTP
communications with SCM or archive server software, and so on. Matching
jobs to slave characteristics is a complex, multidimensional problem. This is
one reason Labels (discussed later in this chapter) are so important; they
provide a simple way to restrict jobs to slaves they are able to run on.

07-ch07.indd 197 13/08/13 3:01 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

198 Hudson Continuous Integration in Practice

Unmanaged Slaves
In the case of unmanaged slaves, the slave agent must be started and managed by
the Hudson administrator. Since the Hudson master does not manage it, if it dies,
the administrator must manually restart it. A typical example of unmanaged slaves
is the slave agent launched via JNLP, which we will explore later in this chapter.

Cloud Slaves
By default, Hudson allows you to create regular slaves. Since these regular slaves
are created on passive machines, the slaves are not created in a cloud-like, active
environment. As the name suggests, the slave agent of a cloud slave does live in the
cloud environment, and the cloud slaves are provisioned on demand. These can
also be deleted and provisioned again based on the build demand. The Hudson
master can automatically provision the cloud slaves, similar to the managed slaves.
EC2, VMware, and VirtualBox slaves are all examples of cloud slaves. Hudson can
provision slaves in several cloud software stacks, like Amazon EC2, GoGrid,
Ninefold, vCloud, OpenStack, and Azure through the JCloud API.1

Adding a Slave Node to Hudson
To add any type of slave to Hudson, you must first create a slave node, then
configure it to specify how the slave will be managed. To create a slave node, go to
the Manage Hudson page, and click the Manage Nodes link. This brings up the
Nodes Status page as shown in Figure 7-1.

1 JCloud. http://www.jclouds.org/

FIGURE 7-1. Nodes Status page

07-ch07.indd 198 13/08/13 3:01 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 7: Distributed Building Using Hudson 199

Click the New Node link on the left-hand side of this page, which opens a new
page that allows you to create a slave node, as shown in Figure 7-2. As mentioned
previously, by default, Hudson allows you to create regular passive slaves. Select the
Regular Slave option to create the regular slave and give it a unique name in the
“Node name” field, for example fedora-17-func-test-slave. Click the OK button to
create the slave node.

Upon creating the slave node, Hudson will automatically open the Node
Configurations page, where it can be configured to use JNLP, SSH, or Shell script to
copy and start the slave agent as shown in Figure 7-3.

From here, you can set the following configurations:

 ■ Name A unique name to identify the slave within the Hudson instance.
Though any string can be used to identify the slave, we recommend using
a meaningful name, which reflects the machine hosting the slave and the
purpose of the slave; for example fedora-17-func-test-slave. By providing
each slave with a unique and meaningful name, you will be able to better
identify it later in the drop-down box, while selecting it to tie jobs to as
explained later in the chapter.

 ■ Description A human-readable description of the slave that will be
displayed on the job configuration screen. This is useful to specify its
purpose and capabilities.

 ■ # of Executors A number telling Hudson how many concurrent builds the
slave can perform. The number is typically equivalent to the number of CPUs
or the number of cores in each CPU of the slave machine.

FIGURE 7-2. Create New Slave Node

07-ch07.indd 199 13/08/13 3:01 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

200 Hudson Continuous Integration in Practice

 ■ Remote FS root A dedicated folder used by this slave specified as an
absolute path in the machine hosting the slave, such as /home/hudson/
fedora-17-func-test-slave on a UNIX machine or c:\hudson\fedora-17-func-
test-slave on a Windows machine. This folder mainly stores the workspaces
that contain the sources and resources corresponding to the jobs built
on this slave. All other build information is sent back to the master. In
general, it is not necessary to back up this folder.

 ■ Labels A space-separated list of labels. A label is a unique string used to
advertise the capability of the slave. More on labels later in the chapter.

FIGURE 7-3. Node Configurations page

07-ch07.indd 200 13/08/13 3:01 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 7: Distributed Building Using Hudson 201

 ■ Usage A drop-down list allowing configuration for how intensively
Hudson can schedule a job to this slave. The default value, “Utilize this
slave as much as possible,” tells Hudson to use this slave freely and
schedule jobs whenever it has an executor available to do the build. The
value “Leave this machine for tied jobs only” tells Hudson not to use this
slave freely, but schedule only jobs tied to this slave. We will discuss tying
jobs to a slave in more detail later in this chapter.

 ■ Launch method A drop-down list allowing you to specify how the slave
will launch. Here, you can specify if the slave will be managed by Hudson
or manually managed by you. Without any additional plugins installed to
add capabilities for Hudson to launch and manage slaves, there are two
options for launching unmanaged slaves:

 ■ Launch slave agents via JNLP Starts a slave by launching an agent
program through Java Web Start.2

 ■ Launch slave via execution of command on the Master Starts a slave
by having Hudson execute a command from the master. Use this when
the master is capable of remotely executing a process on a slave, such
as through ssh/rsh. This command attempts to use the tool javaw. If a
headless version of Java (Java runtime only) is installed on the slave,
javaw will not be available and this option won’t work.

 If you install additional plugins like SSH-slave plugin, then you would see
additional options such as

 ■ Launch slave agents on Unix machines via SSH Starts a managed slave
with an SSH command.

Save the configuration to add the slave node to Hudson. After adding the slave
node, it will appear in the Nodes Status page as shown in Figure 7-4. In the next
section, we will set up the unmanaged slave using the JNLP launcher.

NOTE
If the slave node is unable to launch the slave
agent, then the computer icon will be badged with
a red mark to indicate the slave is offline and jobs
cannot be scheduled to that slave. In such a case,
go to the slave node configuration page and make
sure the slave is launched correctly and connected
successfully with Hudson.

2 Java Web Start. http://en.wikipedia.org/wiki/Java_Web_Start

07-ch07.indd 201 13/08/13 3:01 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

202 Hudson Continuous Integration in Practice

Adding an Unmanaged Slave via JNLP Launcher
The Java Network Launch Protocol (JNLP) is used by the Java Web Start technology.
It enables a Java application to launch on a remote machine by using resources
hosted on a remote Web server. Java plugin software in the browser and Java Web
Start software (part of the JDK, so it must be installed in the slave host machine) are
considered JNLP clients because they can launch remotely hosted Java applications
on a remote machine. The slave agent (slave.jar) is the remotely hosted Java application,
and the remote host in the Hudson master.

In the previous section, we saw how to add a slave node to Hudson. To
successfully create a JNLP slave, first log on to the machine that will host the slave
agent. Then, launch a browser and go to the Hudson Web pages. Next, create a new
slave node, fedora-17-jnlp-slave, as explained in the previous section, and go to the
configuration page. The configuration page provides the option to specify the Launch
method. Select the option “Launch slave agents via JNLP” to launch the slave agent
using JNLP as shown in Figure 7-5. Save the configuration page, and add the node to
the Nodes Status page. The red badge in the computer icon indicates the slave agent
is not started, and will need to be manually started.

FIGURE 7-4. Nodes Status page showing newly added slave node

FIGURE 7-5. Configuration option to launch slave agent using JNLP

07-ch07.indd 202 13/08/13 3:01 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 7: Distributed Building Using Hudson 203

The next step is starting the slave agent so it can successfully communicate
with Hudson and make itself available for Hudson to distribute builds. Click on
the slave name, fedora-17-jnlp-slave, which takes you to the slave information page.
This page explains how to start the slave agent using the Java Web Start technology.
The two main ways to manually start the slave agent on the slave machine are shown
in Figure 7-6. One way is to click the Launch button to automatically install slave.jar
on the slave host and the other is to start using one of the command-line suggestions
provided by Hudson as shown in Figure 7-6. Whichever method you use, it must be
done on the machine that will host the slave agent.

NOTE
To correctly install the slave agent, you must first
log in to the machine that will be hosting your slave
agent. If you proceeded without doing so, you have
installed the slave agent on the wrong machine.
Before installing, always make sure you have logged
on to the correct slave machine.

When you use Java Web Start to install the slave agent on the slave machine, a
security warning dialog pops up to warn you about the applications being installed,

FIGURE 7-6. Suggestions provided by Hudson to launch the slave agent using JNLP

07-ch07.indd 203 13/08/13 3:01 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

204 Hudson Continuous Integration in Practice

as shown in Figure 7-7. Since this application, slave.jar, is originating from the
trusted Hudson master instance, click on the “I accept the risk and want to run this
application” check box and click the Run button to install the slave agent. Java Web
Start will download the slave.jar file from the Hudson master instance and install it
on the slave machine.

NOTE
Java Web Start is included in the Java Runtime
Environment (JRE). The JNLP client from this part of
Java Web Start is installed in browsers as a browser
plugin. So, only with JRE, you can click the Launch
button to launch the JNLP slave. However, the
command-line JNLP client (javaws) is not available
in JRE alone. You must install the full JDK and its bin
folder to the PATH environment variable of the OS to
access the tool javaws.

The JNLP file (slave-agent.jnlp) used by the Java Web Start has the instruction to
start the slave agent. After the slave agent is successfully launched, a dialog appears
with the status of the connection. It must display the word “Connected,” as shown in
Figure 7-8, to indicate that the connection between the Hudson master and slave
has been successfully established. If the connection between the master and slave
failed, the word “Terminated” will be displayed in this dialog. Do not close this
dialog, or the slave agent will terminate.

FIGURE 7-7. Security warning dialog from Java Web Start

07-ch07.indd 204 13/08/13 3:01 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 7: Distributed Building Using Hudson 205

In order to make sure the Hudson master is also connected to the slave and
ready to distribute builds to this job, go to the slave dashboard in Hudson and look
at the status after refreshing the page. Now the instruction to set up the slave agent
using JNLP disappears, and the status is displayed as “Connected via JNLP agent” as
shown in Figure 7-9. Also, the red badge in the computer icon in the Nodes Status
page disappears to indicate the slave is now alive for doing business.

Installing JNLP Slave as a Windows Service
If you have set up the unmanaged JNLP slave on a Windows machine and it is up and
running, you then can set it as a Windows Service. This helps to restart it automatically
each time the Windows machine is rebooted. Creating a Windows Service for the
JNLP slave is very easy. Go to the slave agent dialog (see Figure 7-8). You should see a
File menu at the top bar of the dialog. Click on it and select the Install as Windows
Service menu option. This will install the slave agent as a Windows Service, and it will
start automatically every time your Windows machine is rebooted.

FIGURE 7-8. Slave UI indicating connection has been established

FIGURE 7-9. Slave dashboard displaying the connected status of the slave

07-ch07.indd 205 13/08/13 3:01 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

206 Hudson Continuous Integration in Practice

Adding an SSH-Based Managed Slave
If you are working in a UNIX-like environment (for example, Linux, Solaris, or Mac),
then the preferred method to allow Hudson to manage your slave is using SSH,
because most of the UNIX-like environments support SSH out-of-the-box and
Hudson has built-in support to communicate with machines that support the SSH
protocol. In order to create a new managed SSH slave node, you must first install the
ssh-slaves plugin. If the ssh-slaves plugin is not already installed, go to the Hudson
Plugin Manager page and install it from the Featured section of the “Available plugins
to install” tab. This adds the capability to Hudson to manage the slave agent via SSH.
Next, create a new slave node, fedora-17-ssh-slave, as explained earlier in this
chapter and go to the configuration page. You should see the option “Launch slave
agent on Unix machines via SSH” in the “Launch method” drop-down, as shown
in Figure 7-10.

In its simplest form, the slave configuration needs the Host address, either a
fully qualified domain name or the IP address, of the slave machine as shown in
Figure 7-11. In this form, Hudson assumes the user who started the Hudson master
can log in from the master machine to the slave machine via passwordless public-
private key-based authentication. The usernames at both ends of the machines
are same.

Setting Up Public-Private Key-Based Authentication
In order to do public-private key-based authentication, first you need to create
private and public SSH keys and put them in the proper place with the appropriate

FIGURE 7-10. Option to launch slave agent on Unix machine using SSH

FIGURE 7-11. Simplest form of SSH connection

07-ch07.indd 206 13/08/13 3:01 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 7: Distributed Building Using Hudson 207

permissions. In the home directory of the user that started the Hudson master
(assume hudson), create a folder .ssh, if it does not exist already. Next, create the
keys with the command

$ ssh-keygen -t rsa

The ssh-keygen program will ask for a file name to save the key. Press enter to
accept the default file name. Next, it will ask for a passphrase to encrypt the private
key. Press enter or provide a passphrase. (If you choose a passphrase, be sure you
will remember it, or else the private key you create will be useless.) This creates
the keys id_rsa and id_rsa.pub and puts them in the ~/.ssh folder unless specified
elsewhere. For the public-private key authentication to work correctly, the private
key id_rsa must be readable only by the user that started the Hudson master. So
change the permissions of the folder .ssh with the command

$ chmod 700 ~/.ssh
$ chmod 600 ~/.ssh/id_rsa

NOTE
If you provide a passphrase while generating the SSH
keys, then you cannot use the simple form of SSH
slave creation. If the username of the account in the
slave machine is not the same as the username in
the Hudson master, then authentication using simple
form does not work; you must use the Advanced
section of the SSH slaves creation as explained later
in this section.

Next, copy the ~/.ssh/id_rsa.pub file from the Hudson master computer onto
the slave computer. If you have SCP access to the slave machine, you can first copy
the file to the home folder of the user who will run the slave agent on the slave
machine. Suppose the slave computer is named fedora-17.mycompany.com, and the
username of the account there is also hudson, just as in the Hudson master; in that
case, to copy the file to the slave machine, use the following command, including
the “:”at the end of the command

$ scp .~/ssh/id_dsarsa.pub hudson@fedora-17.mycompany.com:

When asked, provide the password for the user hudson on the slave machine.
The file will be copied to the home directory of the user hudson on the slave
machine. The next step is to install the public key on the slave machine. Log in to
the slave machine as the user hudson. In the home directory, you should see the

07-ch07.indd 207 13/08/13 3:01 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

208 Hudson Continuous Integration in Practice

copied id_rsa.pub. Create an .ssh folder if it does not already exist in the home
directory. Then, append the contents of id_rsa.pub to a file in .ssh with the command

$ cat id_rsa.pub >> ~/.ssh/authorized_keys

This will create the file authorized_keys in the folder .ssh if it does not exist, or
append the contents to the end of existing file. The .ssh folder on the slave computer
must have the correct permissions. Set the permission with the command

 $ chmod –R 700 ~/.ssh

Next, check if the passwordless public-private key authentication works. Go back
to the Hudson master machine and from there issue the command

 $ ssh hudson@fedora-17.mycompany.com

This should allow a passwordless SSH connection from the master machine to the
slave machine. If the SSH connection is successful, then the Hudson master is ready
to manage the slave using the SSH protocol. When the connection between master
and slave is established, something like the following will show in the connection
log page

[04/01/13 01:31:53] [SSH] Opening SSH connection to fedora-17.mycompany.com.
[04/01/13 01:31:53] [SSH] Authenticating as hudson with /home/hudson/.ssh/id_rsa.
[04/01/13 01:31:53] [SSH] Authentication successful.
[04/01/13 01:50:00] [SSH] Starting slave process: cd '/home/hudson/hudson-ssh-slave'
&& java -jar slave.jar
<===[HUDSON REMOTING CAPACITY]===>channel started
Slave.jar version: ?
This is a Unix slave
Installing: maven3-slavebundle.zip
done
Slave successfully connected and online

Advanced Settings
In the previous section, we used a simple form of an SSH-managed slave, using
passwordless public-private key authentication. We also mentioned that the
usernames at both the master and slave ends must be the same. However, in real use
cases, either the username may be different or setting up passwordless authentication
may be impractical. In that case, you must use the Advanced section of the SSH slave
connection configuration as shown in Figure 7-12.

Using the Advanced settings, you can specify the following additional
configurations:

 ■ Username Username of the account in the slave machine. If left blank, the
username of the account running the Hudson master will be used.

07-ch07.indd 208 13/08/13 3:01 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 7: Distributed Building Using Hudson 209

 ■ Password Password of the account in the slave machine. This is useful
only if you don’t want to use passwordless public-private key-based
authentication. However, if you are using passwordless public-private key-
based authentication and the private key is encrypted with a passphrase,
then you must use the password text field to specify it.

 ■ Private Key File An absolute path to the private key file on the Hudson
master machine to use for the passwordless public-private key-based
authentication. By default, Hudson would look for the private key (either
id_rsa or id_dsa.) in the .ssh folder in the home directory. However, if the
private key does not exist in the default location, then it can be specified
here.

 ■ Port The port number to use for the SSH connection. The default value is
22. Use this field only if the SSH daemon in the slave machine is running in
a different port.

 ■ JavaPath The path of the Java binary to invoke the slave agent. This is
useful if you want to use a specific version of JDK rather than the default
Java installed in the slave machine.

 ■ JVM Options The JVM options such as memory settings (-Xmx 256m) that
should be passed to the JVM while invoking the slave agent.

FIGURE 7-12. SSH slaves connection Advanced settings

07-ch07.indd 209 13/08/13 3:01 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

210 Hudson Continuous Integration in Practice

Managing the Availability
Finally, for managed SSH slaves there is another useful advanced configuration:
Availability. It is a drop-down list of options to specify the control Hudson can have
to start and stop this slave. The options are

 ■ Keep this slave on-line as much as possible The default mode. Hudson
will try to keep the managed slave online always. It will periodically attempt
to restart the slave if it is not responding. Hudson will never try to take this
slave offline.

 ■ Take this slave on-line and off-line at specific times A mode in which
Hudson will try to keep the managed slave online according to the configured
schedule. It will periodically attempt to start the slave if it is unavailable
during the online window. The slave will be taken offline during an offline
window, if there are no active jobs running on the slave.

 ■ Take this slave on-line when in demand and off-line when idle A mode
that instructs Hudson to launch the managed slave based on demand. It will
periodically attempt to launch the slave when there are unexecuted jobs
that meet the following criteria: the jobs are in the queue for the specified
startup demand period and they can be executed on this slave. The slave
will be taken offline if no active jobs are running on the slave and the slave
has been idle for the specified period of time.

Troubleshooting the SSH Connection
There are a few common errors that can occur while Hudson tries to copy the slave
agent and invoke it with an SSH connection.

 ■ There was a problem while connecting to <Slave Host> This error may
occur if SSH is not enabled in the slave machine. Make sure sshd is enabled
in the slave machine and can accept SSH connection requests from other
machines.

 ■ hudson.AbortException: Authentication failed Make sure that SSH is
installed on the slave, the sshd daemon is running, and the authentication
you provided is correct. Again, from a shell, make sure the user that started
the Hudson master is able to log in from the master machine to the slave
machine using SSH.

 ■ hudson.util.IOException2: Could not copy slave.jar to slave This error
occurs if the user at the slave machine does not have sufficient permissions to
perform the operation. Make sure the folder specified in the Remote FS root
field has sufficient permission. It should have read-write permission. Use the
command chmod 755 <remote-fs-root-folder> to set the correct permission.

07-ch07.indd 210 13/08/13 3:01 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 7: Distributed Building Using Hudson 211

Distributing the Builds
In the previous sections, we have set up both managed and unmanaged slaves.
Once the slaves are connected, then Hudson is ready to distribute builds of the jobs
to the connected slaves. The following illustration depicts a simple scenario of how
a job will be scheduled. In case of managed slaves, if the slaves are offline, then an
attempt will be made to bring it online first.

Schedule Job

Load
Balancer

No Yes

Yes

Yes No

No

Run in
Master

Find
Suitable

Slave

Schedule
in

Slave?

Is
Slave
Alive?

Is Slave
Managed?

Schedule
Job
for

Executor

Restart
Slave
Agent

Hudson employs the following scheduling strategy to find a suitable slave for
the job.

 ■ If a job is configured to stick to one slave, then it is always honored.

 ■ Hudson tries to build a job on the same slave on which it was previously built.

 ■ Hudson tries to move long builds to slaves, because the amount of network
interaction between a master and a slave tends to be logarithmic to the
duration of a build. Even if job A takes twice as long to build as job B, it
won’t require double network transfer, so this strategy reduces the network
overhead.

07-ch07.indd 211 13/08/13 3:01 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

212 Hudson Continuous Integration in Practice

Assigning Labels to Slave
When creating slave nodes, we discussed how to add a label while configuring your
slave. A label is a space-separated list of strings provided by a slave to advertise its
capabilities and architecture. It is a powerful mechanism used by Hudson to strategize
the distribution of builds. It is also a convenient way to specify the characteristics of a
slave node such as operating system, target environment, and database type relevant
to building a job. A common use case is to label a slave in such a way to identify it to
run OS-specific functional tests or label it as a node reserve to execute performance
tests. If you are building on slaves that are geographically distributed, then you can
use the label to express the location of the slave.

As an example, assume you have set up three slaves. The label of the first one is
“Linux,” second is “Linux 64bit,” and the third one is “Linux 64bit Ubuntu.” If a job
is configured to build on a slave labeled “Linux,” then that job will be scheduled on
any of the three slaves. If it is configured to build on a slave labeled “64bit,” then it
will be scheduled to build only on the last two slaves. If it is configured to build on
a slave labeled “Linux Ubuntu,” then it will build only on the third slave.

Restricting Build to Slaves
By default, Hudson would pick the first available suitable slave by applying the
scheduling strategy discussed earlier. Sometimes a job can only be successfully built
on a particular slave or only on the master. In that case, it is possible to restrict in
which node or group of nodes the build should happen by specifying the required
values in the job configuration page, or tying a job to a node. Go to the job
configuration page and select the “Restrict where this job can be run” check box.
This opens up the two options for restricting the nodes on which the builds can
happen, as shown in Figure 7-13.

The first way of tying a job to a particular node or group of nodes is by using the
option “Node and label menu.” Selecting this option provides a drop-down list of
available nodes based on their name, and a combination of possible node name and
labels. Hudson generates this convenient list. If you have set up three slaves, as we
explained earlier in the section, and are building a job that needs a 64-bit Linux
architecture but you do not care to do any OS-specific packaging, then choose the
64bit (group of linux-slave2, linux-slave3) option, as shown in Figure 7-14. However,

FIGURE 7-13. Restricting the nodes where the jobs can build

07-ch07.indd 212 13/08/13 3:01 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 7: Distributed Building Using Hudson 213

if you want to run a job that builds Ubuntu packages, then you want to tie that job
specifically to the label Ubuntu by selecting it from the drop-down list.

For most purposes, Hudson’s drop-down list is good enough to find a suitable
combination to restrict your jobs; however, in rare cases you might want to write your
own expression to tell Hudson how the jobs should be tied to certain slave nodes. You
can do so by selecting the second radio button option, labeled “Advanced Node and
Label expressions,” and inputting the label expression that would be parsed by Hudson
to find the slave node group.

If you want to always run this job on a specific slave, just specify its name in this
field. However, if you want to tie the job to a cluster of slaves so that Hudson could
pick the first available slave from that group, then specify a Boolean expression that
filters the slaves into that group based on Boolean operation on slave names or
label expression. Label names or slave names can be quoted if they contain unsafe
characters. An expression can contain whitespace for better readability; any white
space will simply be ignored. The following operators are supported, in the order of
precedence, and they are left associative.

(expr) parenthesis

!expr negation
Example: !Ubuntu, any slave except with label Ubuntu

expr && expr and
Example: Linux && 64bit, must be a Linux and 64bit slave

expr || expr or
Example: Linux-slave1 || Linux-slave2, either one

a -> b “implies”
Example: Linux->64bit could be thought of as “if run on a Linux slave, that
slave must be 64bit.” It still allows Hudson to run this build on Windows slaves if
they exist, but it need not be 64bit.

a <-> b “if and only if”
Example: Linux<->64bit could be thought of as “if run on a Linux slave, that
slave must be 64bit, but if not on Linux, it must not be 64bit.” Hudson can still
run the job on a Windows machine but it must not be 64bit.

FIGURE 7-14. Selecting a group of nodes to restrict where a job can be built

07-ch07.indd 213 13/08/13 3:01 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

214 Hudson Continuous Integration in Practice

So, for example, based on the slave names and labels we used earlier, if we use the
Boolean expression, (Linux && 64bit) || Ubuntu || Linux-slave2, this
expression will add all the slaves that are hosted on 64bit Linux machines and any
slave that is hosted on a Ubuntu machine and the slave named Linux-slave2 to the
slave group used by Hudson to build that job.

Distributing Build Using Matrix Job
Hudson has a job type called multi-configuration job (or matrix job). This is another
powerful feature in Hudson to distribute the builds of a single job. This is particularly
useful if you have to build the same job but with a different environment such as a
different OS (Linux, Windows, or Mac) or JDK (JDK6 or JDK7). The matrix job is also
useful for tests where the application is built by a single build job, but it has to be
tested under a wide variety of conditions such as different browsers and databases.
Selecting the appropriate option while creating the job, as shown in Figure 7-15,
creates the multi-configuration build job.

A multi-configuration build job is very similar to a free-style job, except that it
has a section to include multiple build configurations, as shown in Figure 7-16. Each
of the new configurations added is called an axis. The same job will be built with
each configuration axis defined in this section. By default, Hudson provides two
types of axes: Slave axis and User-defined axis. Plugins may provide additional axes.

FIGURE 7-15. Creating a matrix job

07-ch07.indd 214 13/08/13 3:01 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 7: Distributed Building Using Hudson 215

Adding a Slave Axis
To add a Slave axis, you select the Slaves option in the “Add axis” drop-down as
shown in Figure 7-16. When you select the Slave axis, a UI is provided to select the
list of slaves on which this job should be executed. Assume that your job is meant to
create executables on a Linux, a Solaris, and a Windows machine; then you would
select the slave labeled with the corresponding capabilities, as shown in Figure 7-17.
Instead of creating a multi-configuration job, you could create three jobs and tie
them to the respective slaves, but a multi-configuration job provides the ability to do
the same with a single job.

Hudson would select the slave or group of slaves to build the job based on the
following criteria:

 ■ If none is selected, Hudson will choose an available, suitable node to
perform a build. This is the same behavior as the free-style job when a job
is not tied to a node. This is useful when the job doesn’t have a dependency
on any particular node, as it allows Hudson to utilize nodes in an optimal
fashion.

FIGURE 7-17. Configuring a Slave axis

FIGURE 7-16. Configuration matrix of a multi-configuration build

07-ch07.indd 215 13/08/13 3:01 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

216 Hudson Continuous Integration in Practice

 ■ If one is selected, Hudson will always run the build on the specified node. If
one is selected from the “Individual nodes” section or one of the nodes that
belongs to the label, if the label is selected from the Labels section. This is
useful when the build is required to run on a specific machine or a subset
of machines.

 ■ If multiple values are selected, the configuration matrix will be expanded
to include all of them, and builds will be performed on all of the selected
nodes or labels. This is particularly useful if the builds need to run tests on
Windows, Linux, and Solaris.

Adding a User-Defined Axis
The second type of axis, User-defined axis, lets you configure the build job based on
an arbitrary name-value pair you define. Assume you have to create builds with the
following combination:

 ■ Beta version of your product with modes release and debug

 ■ Alpha version of your product with modes release and debug

This combination produces four builds of the same job, but each build should get
two environment variables: VERSION=[beta alpha] and MODE=[release debug]. In
order to achieve this combination of matrix builds, you use the User-defined axes
as shown in Figure 7-18. The values are assigned to the name for each build and
exposed as an environment variable. Multiple values are separated by whitespace
or newlines.

If both the Slave axis and the User-defined axes are configured for the multi-
configuration build job, the combination would create 12 builds, as shown in Table 7-1.
The Release and Debug columns indicate the status of the build.

FIGURE 7-18. User-defined axes

07-ch07.indd 216 13/08/13 3:01 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 7: Distributed Building Using Hudson 217

Advanced Multi-Configuration Build Settings
In general, Hudson builds the job in each of the axes in parallel. However, you
can tell Hudson to run each of the axes sequentially by selecting the “Run each
configuration sequentially” option. This can be useful if your job builds needs to
access a shared resource, such as a database.

By default, Hudson builds all the possible combinations of axes exhaustively,
but sometimes this is too many, or may contain combinations that don’t make sense.
In such a situation, you can make the matrix sparse by filtering out combinations
that you don’t want through a Groovy expression that returns true or false. For
example, let’s say you are building on different operating systems for different
compilers. Assume that your slave labels are label=[linux, solaris] and you have
created an axis as compiler=[gcc, cc]. If you want to filter out cc builds on Linux,
then you use the Groovy expression ! (label==“linux”) && (compiler==“cc”). When
you specify a Groovy expression, only the combinations that result in true will be
built. In evaluating the expression, axes are exposed as variables with their values
set to the current combination evaluated.

Managing Slaves
In the previous sections we saw how to set up slaves and initiate the communication
between Hudson and the slave. Also we looked into the details of how Hudson
distributes the builds and how to configure your job to get the build done at the
appropriate slave. Hudson also provides a UI to manage the tools you need for your
builds and to monitor the status of the slaves.

Managing the Tools Location
Hudson must be told where to find the build tools needed to build jobs on a slave.
Some of the common tools include JDK, Maven, Ant, and Gradle. If the build tools

TABLE 7-1. Builds Resulting from Matrix Configuration

Release Debug

alpha Linux success unstable

Solaris success success

Windows failed success

beta Linux success failed

Solaris success success

Windows failed success

07-ch07.indd 217 13/08/13 3:01 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

218 Hudson Continuous Integration in Practice

are configured to install automatically, no additional configuration is required
when setting up the slave; Hudson will download and install the tools as required.
However, if the build tools are already installed locally on the slave machine, you
must specify their location in the slave configuration so Hudson will know where to
find them. To specify the locations of preinstalled tools, select the Tool Locations
check box in the slave configuration page and provide the local paths for each of
the tools needed for the build jobs as shown in Figure 7-19.

Monitoring the Slaves
The master and the slave nodes are monitored from the Nodes Status page, as
shown earlier in Figure 7-2. This page displays several pieces of information:

 ■ Status of the nodes If the slaves are offline, then the computer icon is
badged with a red mark indicating it is offline. You can click on the name of
the slave, go to the slave dashboard to view the reason for being offline, and
restart the slave if needed.

 ■ Node resources details Few resources and information of the nodes, such
as clock difference between the slave and master (which must be in sync
for the SCM polling to work correctly), free disk space, free swap space,
response time, and the architecture of the machine.

 ■ Configuration link This link appears at the sidebar and allows configuring
the node.

 ■ Refresh button Used to refresh the status of the nodes, reflecting any
changes you make.

FIGURE 7-19. Slave tools installation

07-ch07.indd 218 13/08/13 3:01 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 7: Distributed Building Using Hudson 219

Clicking the node name takes you to the node dashboard where you can do
configuration and further operations on a particular node, as shown in Figure 7-20.
This page displays a table of jobs tied to this node and their build statuses. Further
operations that can be performed from this view include:

 ■ Viewing the build history on this node

 ■ Configuring the nodes to specify how the slave agent will be managed and
tuning the properties of the slave node

 ■ Load statistics of the node

 ■ Marking the node temporarily offline, so no builds will be scheduled in the
node until it comes online again

Summary
In this chapter, we saw how to scale up your Hudson to do builds in a distributed
fashion by using slaves. Hudson provides different types of slaves, each available for
unique uses and defined based on how Hudson manages their lifecycle. In this
chapter, we looked at how to set up each different type of slave. We also discussed
that Hudson job builds can be distributed to these slaves by configuring the job. We
concluded the chapter with a discussion on managing the slave environment.

FIGURE 7-20. Node dashboard showing jobs tied to the node

07-ch07.indd 219 13/08/13 3:01 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5
Blind folio: 220

07-ch07.indd 220 13/08/13 3:01 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5
Blind folio: 221

CHAPTER
8

Basic Plugin
Development

08-ch08.indd 221 13/08/13 2:27 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

222 Hudson Continuous Integration in Practice

One of the reasons why Hudson is a popular open-source Continuous
Integration server is the ability to extend Hudson’s functionalities using
plugins. Plugins allow developers to do everything from customizing the

way builds are done, results are displayed and notified, integration with application
life cycle management systems such as SCM, testing, analysis tools, and so on.
There is a vibrant community of developers developing plugins for Hudson. More
than 400 Hudson plugins supporting various aspects of Continuous Integration are
already available for free installation. This chapter covers the basic steps of writing a
Hudson plugin.

Requirements
In order to create and build a Hudson plugin, JDK 6 or higher is needed. See
Chapter 1 for details on installing JDK 6. The developer must have good Java
development experience.

As mentioned in Chapter 2, there are many “builders” Hudson uses to
perform the centrally important task of compiling source code into a binary
form. The most important of these is Maven, which can be downloaded and
installed from the location http://maven.apache.org/download.html. Knowledge
of using Maven as a build tool is desirable to write a Hudson plugin.

Writing a HelloWorld Plugin
Let us start by writing a simple “HelloWorld” plugin and install it in Hudson to see it
in action. This simple plugin will demonstrate how the plugin project folder needs to
be structured to build it using Maven. This exercise also explains how the plugin
makes itself visible to the Hudson instance for use in jobs. In this contrived example,
the plugin code will hook up with one of the Hudson services called builder. This
HelloWorld builder service hook can be chosen as a builder in a Hudson job and
executed. Though we write this plugin by hand for the sake of experience, the section
HPI Tool in the later part of the chapter covers a tool provided by Hudson to generate
sample plugin sources automatically.

Creating the Plugin Project
The first step is to create the plugin project as a Maven project by creating the pom.
xml file, which is an XML file that contains information about the project and
configuration details used by Maven to build the project. Start by creating a folder
named pluginex1 and place the pom.xml at the top level of the folder:

pluginex1/
 pom.xml

08-ch08.indd 222 13/08/13 2:27 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 8: Basic Plugin Development 223

Put the following content into that pom.xml file, which tells Maven that this is a
Hudson plugin project and specifies the name of the plugin as PluginEx1:

<project>
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>org.eclipse.hudson.plugins</groupId>
 <artifactId>hudson-plugin-parent</artifactId>
 <version>3.0.00</version>
 </parent>
 <groupId>net.hudsonlifestyle </groupId>
 <artifactId>pluginex1</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>hpi</packaging>
 <name>PluginEx1</name>
</project>

For details on the meaning of the elements in pom.xml, please see Chapter 2. For now
it is sufficient to know that the parent element tells the locally running Maven instance
to go out to the network and fetch another pom.xml file to provide additional project
information not listed here.

Creating a Service Hook
The next step is to create a hook that hooks in to a Hudson job as a builder and
displays the message “Hello World!” in the console log when we build the job.
The hook is created using a simple Java class. Create a file called HelloWorldBuilder
.java using the package name net.hudsonlifestyle and place the file under the folder
src/main/java/net/hudsonlifestyle:

HelloWorldBuilder.java - Java Class
src/main/java - Location where Mavenfinds the Java classes to compile
net/hudsonlifestyle - Java package name path
pluginex1/
 pom.xml
 src/
 main/
 java/
 net/
 hudsonlifestyle/
 HelloWorldBuilder.java

Put the following Java code into the HelloWorldBuilder.java file:

package net.hudsonlifestyle;
import hudson.Launcher;
import hudson.model.AbstractBuild;
import hudson.model.AbstractProject;
import hudson.model.BuildListener;
import hudson.tasks.Builder;

08-ch08.indd 223 13/08/13 2:27 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

224 Hudson Continuous Integration in Practice

import hudson.Extension;
import hudson.tasks.BuildStepDescriptor;
import org.kohsuke.stapler.DataBoundConstructor;
public class HelloWorldBuilder extends Builder {
 @DataBoundConstructor
 public HelloWorldBuilder(){
 }
 @Override
 public boolean perform(AbstractBuild build, Launcher launcher,
 BuildListener listener) {
 listener.getLogger().println("Hello World!");
 return true;
 }
 @Extension
 public static final class DescriptorImpl extends
 BuildStepDescriptor<Builder> {
 @Override
 public boolean isApplicable(Class<? extends
 AbstractProject> type) {
 return true;
 }
 @Override
 public String getDisplayName() {
 return "Hello World Builder";
 }
 }
}

That is all needed to write our simple HelloWorld plugin. The imports and classes
used by this class will be explained in the section Examining the Sample Extension
in the later part of the chapter. Now let us build and package the plugin so that it
can be installed in Hudson.

Building the Plugin
To build the plugin we use the Maven command line. Open a command-line tool
(Command Prompt on Windows or a shell console on any UNIX-flavored OS). Type
the Maven build and package command at the top level of the folder pluginex1:

pluginex1> mvn package

Thanks to the unseen pom.xml file pulled in by the <parent> element, Maven builds
the Hudson plugin and creates the plugin package pluginex1.hpi, which can be
installed in a Hudson instance. Maven places the package pluginex1.hpi under
the folder:

pluginex1/
 target/
 pluginex1.hpi

08-ch08.indd 224 13/08/13 2:27 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 8: Basic Plugin Development 225

NOTE
Maven downloads numerous libraries required
by Maven itself to build any Maven project and
also libraries required to build the plugin project.
As such, a fast and reliable Internet connection is
essential to using Maven. It is often necessary to
configure Maven to use a proxy when using it behind
a corporate firewall. The libraries downloaded by
Maven are called “Maven artifacts” and are usually
downloaded from a central repository called Maven
Central Repository and placed under a folder, usually
referred as Local Maven Repository. For subsequent
builds, Maven uses the artifacts from this local
repository. The default location of this repository is a
folder by name .m2 located at your home folder on
your operating system.

Testing the Plugin
Open the Manage Plugins page from the Manage Hudson page and go to the
Advanced tab. In the Advanced tab, the newly created plugin can be browsed and
manually uploaded to be installed in Hudson as shown in Figure 8-1.

Once the plugin is uploaded, Hudson must be restarted for the newly uploaded
plugin to take effect. Once Hudson is restarted, the new plugin we just created will
be loaded and ready for us to test.

To test the plugin, let us use New Job from the main Hudson page to create a
free-style job called PluginTest. If our new plugin is successfully loaded, it should
add a new builder called HelloWorldBuilder to the job. Let us configure the job to
do a build with our newly installed builder. Open the configuration page of the
PluginTest job and scroll down to the Build section of the job. Open the drop-down
list of the builders in the Build section. Select Hello World Builder from the drop-
down as shown in Figure 8-2.

FIGURE 8-1. Plugin manual upload

08-ch08.indd 225 13/08/13 2:27 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

226 Hudson Continuous Integration in Practice

Click the Save button on the bottom of the Job Configurations page to save this
change. Hello World Builder will be added as a builder to the job as shown in
Figure 8-3.

Build the job by clicking the Build Now link on the left-hand side of the job
dashboard and wait until the job building is completed. Click on the build link in
Build History and click the Console Output link to open the console output of the
job build to see the result of our build, as shown in Figure 8-4.

The builder provided by our simple plugin has written out a very simple message:
“Hello World!”. Though our simple plugin is a contrived sample, it demonstrates a
very important concept—that you can programmatically extend services provided by
Hudson through your own plugin. The rest of the chapter will dive deep into the

FIGURE 8-2. Drop-down list of builders

FIGURE 8-3. HelloWorldBuilder selected as builder for the job

FIGURE 8-4. HelloWorldBuilder console output

08-ch08.indd 226 13/08/13 2:27 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 8: Basic Plugin Development 227

various concepts of the plugin development framework and how you can take
advantage of those concepts and implement your plugin to provide a rich user
experience to the user.

HPI Tool
Though we wrote our previous sample by hand, the project structure along with
some sample code can be generated using a tool provided by the Hudson plugin
framework called HPI, which is an abbreviation for Hudson Plugin developer
Interface. Since we use Maven for managing and building a Hudson plugin, this tool
is written as a Maven plugin. It helps developers to create, build, run, and debug a
Hudson plugin.

Maven Plugin and Goals
Like Hudson, Maven is also extended via plugins. Maven plugins are developed
and deployed to the Maven Central Repository. Plugins are identified by a
groupId, artifactId, and a version. Maven defines the process of building and
distributing a particular project in terms of a build lifecycle. The build lifecycle
consists of several build phases, which are stages executed sequentially in a
build lifecycle. The build phases are made up of goals. A goal represents a
specific task, which contributes to the building and managing of a project.
A goal of a plugin is executed using the long form of the mvn command:

mvn <plugin-group-id>:<plugin-artifact-id>[:<plugin-
version>]:<goal>

or using the short form:

mvn <plugin-prefix>:<goal>

For the HPI tool, the Maven groupId is com.eclipse.hudson.tools and the artifactId is
maven-hpi-plugin. Usually the version number is skipped and Maven downloads
and uses the latest version of the plugin from the Maven central repository. The HPI
tool defines several goals and participates in various execution phases of the Maven
lifecycle. Widely used goals are

 ■ hpi:create To create a skeleton plugin project

 ■ hpi:hpi To build and package the plugin project as a .hpi archive

 ■ hpi:run To install the plugin to a test application server and start the server
for testing

08-ch08.indd 227 13/08/13 2:27 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

228 Hudson Continuous Integration in Practice

To find more details about various goals defined by the HPI tool, run this command:

mvn help:describe -Dplugin=org.eclipse.hudson.tools:maven-hpi-plugin -Ddetail

The HPI tool is invoked via the command line using the long form:

mvn org.eclipse.hudson.tools:maven-hpi-plugin:create

where org.eclipse.hudson.tools is the groupId of the tool, maven-hpi-plugin is the
artifactId of the tool, and create is the goal. Also it can be invoked using the short form:

mvn hpi:create

where hpi is the Maven plugin prefix of the HPI tool.
The second form is the easiest and recommended. However, Maven needs to

know the groupId it should search to find the prefix of a plugin. The groupId
information is specified in a file named settings.xml located in the Local Maven
Repository (usually the .m2 folder of your home directory) as shown here:

<settings >
 ...
 <pluginGroups>
 <pluginGroup>org.eclipse.hudson.tools</pluginGroup>
 </pluginGroups>
 ...
</settings>

Creating a Skeleton Plugin Project
The simple command to create the plugin skeleton project with sample templates is

mvn hpi:create

This command tells Maven to download all the required libraries to execute the
command and prompts for groupId and artifactId for the plugin as:

Enter the groupId of your plugin: net.hudsonlifestyle
Enter the artifactId of your plugin: sample-plugin

The name of the generated folder depends on the artifactId entered. It will have
the following layout:

pom.xml - Maven POM file which is used to build your plugin
src/main/java - Java source files of the plugin
src/main/resources - Jelly view files of the plugin
src/main/webapp - Static resources of the plugin, such as images and HTML files.

08-ch08.indd 228 13/08/13 2:27 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 8: Basic Plugin Development 229

The Java files are generated with the package name the same as that of the
groupId entered. In this example it is net.hudsonlifestyle. The complete project
structure looks like this:

sample-plugin/
 pom.xml
 src/
 main/
 java/
 net/
 hudsonlifestyle/
 HelloWorldBuilder.java
 resources/
 net/
 index.jelly
 hudsonlifestyle/
 HelloWorldBuilder/
 config.jelly
 index.jelly
 help-name.html
 webapp/
 help-globalConfig.html

Building and Running the Plugin Project
The skeleton plugin project created is minimal but is a complete Maven project. It
can be built and run without any modification using Maven. The plugin project is
built with the command

mvn package

The package command tells Maven to build the project and create the HPI package
that can be installed directly to a Hudson server.

The skeleton plugin project has a sample extension, which is fully functional. It
is possible to run the project and see the result of the extension added by this
skeleton Hudson plugin. The plugin project is run with the command

mvn hpi:run

The command hpi:run means automatically install the packaged plugin to a
Hudson server and start the Hudson server automatically. Since the plugin project is
a Maven project, the configurations needed for the run of the project are defined in
the pom.xml and its parent POM. The Maven goal hpi:run is responsible for several
of the tasks, including starting the Jetty Server, adding Hudson as a Web application
to that server, and installing the plugin to Hudson. The “work” subfolder in the
plugin project folder is used as Hudson home. The “work/s” folder contains a list of
.hpi files corresponding to various bundled plugins. The only notable difference is a

08-ch08.indd 229 13/08/13 2:27 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

230 Hudson Continuous Integration in Practice

.hpl that corresponds to the currently built plugin project. It is a simple text file,
which contains metadata describing all the files (classes, jars, and resources)
associated with the currently built Hudson plugin. This file is generated by the HPI
tool every time the plugin project is run using hpi:run. Hudson knows how to
interpret this file and load the entire plugin without packaging the plugin to a .hpi
package. This makes it easy to debug during development time.

Once the plugin project runs successfully, and the Jetty Server is fully started,
the Hudson main dashboard page can be viewed using a browser and typing the
following in the address bar of the browser: http://localhost:8080.

Since this is the default URL for Hudson, it is important that no other copy of
Hudson is running at the time. The first time you start Hudson with hpi:run, you will
see the Hudson CI Server Initial Setup page. Simply click the Finish button to proceed
to Hudson.

Testing the Skeleton Plugin
Hudson provides a series of extension points that allow developers to extend
Hudson’s functionality.

As described in the previous section, the hpi:run command installs the currently
developed plugin to Hudson, which is added to the Jetty Server as a Web application.
This plugin

 ■ Adds an extension to the Hudson builder interface. This sample custom
builder, called HelloWorldBuilder, does not do anything fancy, but simply
prints out the text Hello <name> in the build console log.

 ■ Provides a UI to configure the HelloWorldBuilder extension. <name> is any
name typed in the UI provided to configure the extension.

It is easy to see the HelloWorldBuilder in action by creating a simple Hudson
job, say TestJob, and configuring it. Select “Say hello world,” the display name of
the HelloWorldBuilder, from the drop-down menu. Once it is set as the builder
for the project, the Build section displays “Say hello world” as one of the builders.
Input a name in the Name field as shown in Figure 8-5 and click Save to save your
configuration changes.

Since HelloWorldBuilder is set as the only builder of the TestJob, when a build is
started it will be asked to perform its task. The only task of the HelloWorldBuilder is

FIGURE 8-5. HelloWorldBuilder build step

08-ch08.indd 230 13/08/13 2:27 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 8: Basic Plugin Development 231

to print out the message Hello <name>! to the console log. Once a build of the
TestJob is completed, the result of HelloWorldBuilder can be viewed in the build
console output as shown in Figure 8-6.

Understanding the Hudson
Plugin Framework
Hudson defines several interfaces or abstract classes that model an aspect of a build
system. These model objects are building blocks of the Hudson platform. They hold
the data and state of a job. The service objects are model objects that are runnable.
The Hudson executor runs these services to complete an execution.

Among various services provided by Hudson, the foremost is building a job.
A job, which is a buildable entity, consists of several configurable areas and build
steps. Some of the build steps, listed in order of their execution in time, are:

 ■ SCM checkout Based on SCM type, source code is checked out.

 ■ Pre-build Invoked to indicate that the build is starting.

 ■ Build wrapper Prepare an environment for the build.

 ■ Builder runs Actual building happens, like calling Ant, Make, and so on.

 ■ Recording Record the output from the build, such as test results.

 ■ Notification Send out notifications based on the results determined so far.

What Is an Extension Point?
Hudson provides the concept of extension points and extensions to facilitate
contribution of functionalities to the core platform by plugins. Extension points
are interfaces that encapsulate entry points to extend certain services or the
functionality of a service provided by the core platform.

FIGURE 8-6. TestJob console output

08-ch08.indd 231 13/08/13 2:27 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

232 Hudson Continuous Integration in Practice

The extension points define contracts that need to be implemented, and Hudson
allows plugins to contribute those implementations. Plugins hook into the model and
service objects via extension points. As an example, Hudson provides an SCM extension
point. SCM plugins extend this extension point to provide SCM services such as SVN,
Git, CVS, and so on. When an SCM plugin is installed in Hudson, the job configuration
provides an opportunity to configure the SCM to checkout sources for the job build.

A service advertises itself as an extendable service by implementing the marker
interface called ExtensionPoint:

Public abstract class HudsonService implements ExtensionPoint{
 abstract void serviceMethod();
}

The abstract method, serviceMethod(), needs to be implemented by the Extension
provider (namely the plugin).

Model Objects

Hudson Platform

Extension
PointsExtensions

Plugins Jobs
Test

Results
User

SCM Builder
Build

Wrapper

Noti�er Trigger Reporter

Services

Extending an Extension Point
An extension is an implementation of an interface or abstract classes that marks itself
as an extension point, as explained previously. To create an extension component to a
service, simply extend the service and annotate your class as an extension:

@Extension
public class MyServiceExtension extends HudsonService{
 public void serviceMethod(){
 //Your Implementation goes here
 }
}

The annotation @Extension tells Hudson that those annotated classes in the plugin
are extension components.

08-ch08.indd 232 13/08/13 2:27 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 8: Basic Plugin Development 233

Let us look into some of the code in the sample HelloWorldBuilder.java that
extends the Builder extension point to understand

 ■ How to extend an extension point

 ■ How to implement the methods to extend the functionality encapsulated by the
extension point

Builders are responsible for building the job. The extension point provided by
Hudson to contribute to this builder run step is aptly called Builder. Hudson comes
bundled with two of the most popular builders—Ant and Maven. They are in fact
extensions to the Builder extension point. So it is possible for any plugin to provide its
own builder extension as one of the builders of the job. Several external plugins exist for
other popular builders such as Make, Gradle, Rake, and so on. HelloWorldBuilder, our
example builder extension, is a contrived example to understand how extensions are
built. Far more sophisticated builder extensions are possible using the builder extension
point. Let us examine the source to understand how the extension mechanism works.

Examining the Sample Extension
To reiterate, in order for Hudson to understand a class as an extension, it must

 ■ Extend a class that advertises itself as an extension point

 ■ Implement the required abstract methods to extend the functionality

 ■ Tell Hudson that the particular class is an extension

The following illustration shows the UML diagram of the classes the HelloWorldBuilder
extends. In this section of the chapter we will examine the model aspect of the
extension. The UI part is explained in the next section.

Build Step

abstract perform()

Hudson Platform

Builder
abstract perform()

BuilderDescriptor
getDisplayName()

HelloWoldBuilder.Descriptormpl
con�gure()
checkName()
getDisplayName()

HelloWorldBuilder

Model

UI

Plugin

perform()

Extension Point

Describable

Descriptor

08-ch08.indd 233 13/08/13 2:27 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

234 Hudson Continuous Integration in Practice

Looking at the source HelloWorldBuilder.java, you’ll notice that the class
HelloWorldBuilder extends the abstract class Builder, which is the extension point
for the builder interface.

import hudson.tasks.Builder;
public class HelloWorldBuilder extends Builder {

The Builder class itself is a subclass of BuildStep, which defines the abstract
method that needs to be implemented by the extensions to contribute to the builder
interface. The abstract method needed to be implemented by any builder extension is:

import hudson.model.AbstractBuild;
import hudson.model.AbstractProject;
import hudson.model.BuildListener;
public boolean perform(AbstractBuil<?> ab, Launcher launcher,
 BuildListener bl) throws InterruptedException, IOException;

The method BuildStep.perform(..), which is overridden by the HelloWorldBuilder
Class, will be invoked by Hudson at runtime to include the build step functionality
extended by the HelloWorldBuilder extension.

Finally, to tell Hudson that the class is an extension to some extension point, it
must be annotated with the annotation @Extension. The annotation @Extension at
the inner class DescriptorImpl tells Hudson that the class is an extension.

import hudson.Extension;
import hudson.tasks.BuildStepDescriptor;

@Extension
public static final class DescriptorImpl extends
 BuildStepDescriptor <Builder>{

The overridden BuildStep.perform(..) abstract method gives access to three objects:

 ■ Build Object representing the build of the job being performed. The build
in turn gives access to important model objects like:

 ■ Project—The buildable job

 ■ Workspace—The folder where the build happens

 ■ Result—Result of the build until this build step

 ■ Launcher Launcher that is used to launch the build of this job

 ■ BuildListener An interface to communicate the status of the build steps
being performed in this builder and send any console message from this
build step to Hudson

08-ch08.indd 234 13/08/13 2:27 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 8: Basic Plugin Development 235

HelloWorldBuilder uses the BuildListener model object to print the Hello message
to the console in the code:

HelloWorldBuilder.perform()
@Override
public boolean perform(AbstractBuild build, Launcher launcher, BuildListener
listener) {
 if(getDescriptor().useFrench())
 listener.getLogger().println("Bonjour, "+name+"!");
 else
 listener.getLogger().println("Hello, "+name+"!");
 return true;
}

The Build Listener is a holder of an object Logger that is responsible for outputting
any message written to it to the job console. The Logger object is obtained via the
method listener.getLogger(). The code simply prints the message Hello <name>! via
the logger.

Modifying the Sample Extension
Hudson provides functionalities via a service called Launcher. As we have seen
previously, the BuildStep.perform(..) method gives access to this launcher object.
A plugin could

 ■ Use the launcher to execute an external executable

 ■ Send the result of execution to the console

Let us invoke a simple command to list the contents of a folder and send its
output to the job console. This is done by adding the following code to the
BuildStep.perform(..) method:

 List<Cause> buildStepCause = new ArrayList();
 buildStepCause.add(new Cause() {
 public String getShortDescription() {
 return "Build Step started by Hello Builder";
 }
 });
 listener.started(buildStepCause);

 ArgumentListBuilder args = new ArgumentListBuilder();
 if (launcher.isUnix()) {
 args.add("/bin/ls");
 args.add("-la");
 } else {
 args.add("dir"); //Windows
 }

08-ch08.indd 235 13/08/13 2:27 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

236 Hudson Continuous Integration in Practice

 String homeDir = System.getProperty("user.home");
 args.add(homeDir);
 try {
 int r;
 r = launcher.launch().cmds(args).stdout(listener).join();
 if (r != 0) {
 listener.finished(Result.FAILURE);
 return false;
 }
 } catch (IOException ioe) {
 ioe.printStackTrace(listener.fatalError("Execution" + args + "failed"));
 listener.finished(Result.FAILURE);
 return false;
 } catch (InterruptedException ie) {
 ie.printStackTrace(listener.fatalError("Execution" + args + "failed"));
 listener.finished(Result.FAILURE);
 return false;
 }

 listener.finished(Result.SUCCESS);
 return true;

This will require adding the following imports:

import hudson.model.Cause;
import hudson.model.Result;
import hudson.util.ArgumentListBuilder;
import java.util.ArrayList;
import java.util.List;

If you are using a Maven-aware IDE like NetBeans or Eclipse, you can simply use
the Fix Imports or Organize Imports command after entering the code.

NOTE
If any of the plugin Java code is modified and the
plugin is built again, then it is important to shut
down the Jetty Server and restart using the hpi:run
command. However, if a resource file such as CSS,
image, or Jelly is changed, then it is not necessary
to start the Jetty Server again. Simply refresh your
browser window.

Running the plugin project again shows the console output as:

Started by user anonymous
Hello, winston!
Build Step started by Hello Builder

08-ch08.indd 236 13/08/13 2:27 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 8: Basic Plugin Development 237

$ /bin/ls -la /Users/winstonp
total 320
drwxr-xr-x 16 winstonp staff 544 Nov 10 2010 Adobe MAX
drwx------+ 31 winstonp staff 1054 Aug 31 14:54 Desktop
..
Finished: SUCCESS

If there is an error, the exception corresponding to the error is displayed in the
job console as

Started by user anonymous
Hello, winston!
Build Step started by Hello Builder
$ "/bin/ls -la" /Users/winstonp
FATAL: Execution[/bin/ls -la, /Users/winstonp]failed
java.io.IOException: Cannot run program "/bin/ls -la": error=2, No such file or
directory
at java.lang.ProcessBuilder.start(ProcessBuilder.java:460)
at hudson.Proc$LocalProc.<init>(Proc.java:192)
at hudson.Proc$LocalProc.<init>(Proc.java:164)
...
Finished: FAILURE

The code added to BuildStep perform(..) is contrived, but explains some of the
important concepts. When a build step is started or stopped, let Hudson know about
it. This is done via the Job Build Listener interface.

listener.started(buildStepCause);
..
..
listener.finished(Result.SUCCESS);

This is important for two reasons:

 ■ Hudson heuristically shows the progress of the overall build of the job.

 ■ When a build step fails, Hudson must stop the overall progress of the build
and mark the build as FAILED. This is done by sending a message to Hudson
about the status of the build via BuildListener.

Use the launcher interface to launch your external executable. Send the console
outputs of your execution to Hudson:

int r;
r = launcher.launch().cmds(args).stdout(listener).join();
if (r != 0) {
 listener.finished(Result.FAILURE);
 return false;
}

08-ch08.indd 237 13/08/13 2:27 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

238 Hudson Continuous Integration in Practice

Launcher correctly launches the application in the Master or Slave node where
the job is running. Always use the return status of the launcher to find out if
the execution was successful. The standard output of the launcher is hooked to the
listener. This sends the output of the execution to the job build console. This is how
the output of the command to list the user directory is displayed in the build console.

Notify Hudson of any failure of the build step using the following code:

} catch (IOException ioe) {
 ioe.printStackTrace(listener.fatalError("Execution" + args + "failed"));
 listener.finished(Result.FAILURE);
 return false;
}

The stack trace of the exception is sent to the job build console as follows:

Exception.printStackTrace(lister.fatalError(..)).

Extension UI Configuration
While you’re testing the HelloWorldBuilder extension, the Job Configurations page
provides a text field to type in some text. Though it is part of the Job Configurations
page, the actual UI is provided by the plugin as a configuration for the
HelloWorldBuilder extension. There are two ways to configure an extension. One
is local to the area of the functionality the plugin extends, typically inside a job
configuration page, and the other via the Hudson-wide global configuration page.
In this part of the chapter let us see how to configure the extension in the project
configuration page and learn

 ■ How to add a UI to get input from user

 ■ How to give feedback to the user on their input

 ■ How to configure the extension with the user input

Hudson has the concept of configurable extension points. Configurable extensions
provide a UI for user input. Hudson defines the paradigms Describable and Descriptor
to mark an extension as a configurable extension. When an extensible model object is
configurable, Hudson marks it with a marker interface called Describable:

Public abstract class HudsonService implements Describable, ExtensionPoint {
 abstract void serviceMethod();
}

If a plugin extends a Describable object, then it must define a Descriptor object,
which is responsible for the interaction between the UI and the model object.

08-ch08.indd 238 13/08/13 2:27 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 8: Basic Plugin Development 239

When an extension extends a configurable extension point, it must also implement
the corresponding descriptor as an inner class:

public class MyServiceExtension extends HudsonService {
 public void serviceMethod(){
 //Your Implementation goes here
 }
 @Extension
 public static class DescriptorImpl extends Descriptor {
 public String getDisplayName() {
 return "Say hello world";
 }
 }
}

The methods needed for interaction between the UI and the model object will
be defined in the Descriptor inner class. The section Interaction Between UI and
Model in the later part of the chapter will cover this concept in detail.

Configuration File Conventions
Hudson uses a UI technology called Jelly. The Jelly UI technology is a server-side
technology that uses a rendering engine to convert XML-based Jelly definitions (tags)
to client-side code: HTML, JavaScript, and Ajax. Hudson provides a number of
Jelly tags for your convenience.

The model objects are bound to these tag attributes via an Expression Language
called Jexl.

Expression Language and Jexl
An Expression Language (EL), originally introduced in Java Server Pages (JSP),
makes it possible to easily access application data stored in JavaBeans
components from pages rendered by server-side UI technology such as Java
Server Faces (JSF) and Jelly. Jexl is an extension of EL used by Jelly. For example,
the Jexl allows a page author to access a bean using simple syntax such as

${extension.method}

where extension is the extension model object.

When the tags are rendered into HTML and JavaScript, the rendered code
includes information from the model objects to which their attributes are bound.
This makes it very powerful to express your view with simple Jelly tags, rather than
writing lots of HTML, JavaScript, or Ajax.

08-ch08.indd 239 13/08/13 2:27 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

240 Hudson Continuous Integration in Practice

The Jelly files you use to render the UI reside in the resources directory of the
plugin. Hudson uses a heuristic convention to find these Jelly files. The folder under
which these Jelly files must reside should have a path hierarchy similar to the package
name of the model class, plus the name of the model class itself.

Hudson uses the same namespace of the Class package as the folder hierarchy
plus the model name. In the example plugin, the HelloWorldBuilder model class
has the package name net.hudsonlifestyle. So the configuration file must reside
under the following folder:

src/main/resources/net/hudsonlifestyle/HelloWorldBuilder

Hudson uses another convention to tell if the configuration file is meant for local
configuration or global configuration. If the configuration is named as config.jelly, it
is used as a local configuration file and its content is included in the configuration
of the functionality that this extension extends. Since HelloWorldBuilder extends the
builder build step of a Hudson job, any Jelly content put in the configuration file

src/main/resources/net/hudsonlifestyle/HelloWorldBuilder/config.jelly

will be included in the job configuration page to configure the HelloWorldBuilder
extension in the builder section of the job configuration.

As explained earlier in the chapter, HelloWorldBuilder extension provides a
UI for the user to configure. The UI provided by this extension is a simple TextBox
for the user to input their name. The content of the file is very simple. It is a pure
XML file with Jelly syntax:

<j:jelly xmlns:j="jelly:core" xmlns:st="jelly:stapler"
xmlns:d="jelly:define"
xmlns:l="/lib/layout" xmlns:t="/lib/hudson" xmlns:f="/lib/form">
 <!--
 Creates a text field that shows the value of the "name" property.
 When submitted, it will be passed to the corresponding constructor
 parameter.
 -->
 <f:entry title="Name" field="name">
 <f:textbox />
 </f:entry>
</j:jelly>

There are two main tags playing the role of user interaction:

 ■ entry Tells Hudson the enclosing tags are considered as user interaction
elements and submitted via HTML form

 ■ textbox Renders a simple HTML text field whose value will be sent back to
the server

08-ch08.indd 240 13/08/13 2:27 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 8: Basic Plugin Development 241

Configuration UI Rendering
Let us take a closer look at UI rendering from the Jelly file. If you open the TestJob
configuration page and scroll down to the build section and view the Say Hello
World builder and its configuration, you will see a Question icon on the right-hand
side of the TextField. It displays some help text. Where does this help text come
from? If you look at the content of config.jelly, you’ll notice there is no such help
text. However, Hudson still displays some help. Once again, convention comes into
play. In the same folder where your configuration exists, there is a file named help-
name.html. Examining the contents of this file, you will see the same help text,
which is displayed when you click the help button. How does Hudson know to get
the content from this file and display it as help content for the field? The trick is in
the name of the file. By convention Hudson looks for a particular file name in the
same folder as the config.jelly file. The name of the file should be

help-{fieldName}.html

In the config.xml file we have

<f:entry title="Name" field="name">
 <f:textbox />
</f:entry>

field=“name” indicates the TextBox should be used as an entry field with the name
“name.” So based on convention, the help text for that field should exist in a file
with name help-name.html.

The content of the file help-name.html is pure HTML. You can include image,
text, and hyperlinks in the content to emphasize and enhance your help text. As
mentioned in the help text, if you want to use information from Hudson model
objects, then you should have Jelly content in the field Help file and the extension
of the file name should be .jelly instead of .html. To see this in action, delete the
help-name.html file and create the file help-name.jelly. Add the following content
to the file:

<j:jelly xmlns:j="jelly:core" xmlns:st="jelly:stapler"
xmlns:d="jelly:define">
 <div>
 Welcome to ${app.displayName}. Enter your name in the Field.
 </div>
</j:jelly>

Since we have changed only a resource file, the Jetty Server does not need to
be restarted again. Simply refresh the Web page. Go to the build section of the page
configuration page and click on the Help button on the right side of the text box.
You should see in the help text that ${app.displayName} is replaced with “Hudson”,
which is the name of the application, and the test message is displayed as shown
in Figure 8-7.

08-ch08.indd 241 13/08/13 2:27 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

242 Hudson Continuous Integration in Practice

Interaction Between UI and Model
This part of the chapter will explain how the UI interacts with the Hudson model
objects. HelloWorldBuilder is a Hudson model object. It encapsulates data. The UI
can interact with this model to get and display its data or get information from the user
via fields in the UI and update the model data. Let us examine how this happens.

You created the help file help-name.jelly and included a Jexl expression ${app
.displayName} in the content. When the server side of the Hudson application
received the request for a job configuration page, it included the HelloWorldBuilder
configuration snippet in the job configuration page. Since the help itself is a jelly file,
it was given to the Jelly renderer to render it to client-side code. The Jelly renderer is
responsible for substituting the corresponding value for the Jexl expression after
evaluating it. The first part of the expression evaluates to the model object, then to
the method name of the model object.

By default, Hudson registers three identifiers for the model objects to the Jexl
expression evaluator:

 ■ app The Hudson application itself. For example, ${app.displayName}
evaluates to Hudson.getDisplayName().

 ■ it The model object to which the Jelly UI belongs. For example, ${it.name}
evaluates to HelloWorldBuilder.getName().

 ■ h A global utility function (called Functions), which provides static
utility methods. For example, ${h.clientLocale} evaluates to Functions
.getClientLocale().

Since the expression ${app.displayName} evaluates to “Hudson,” the name of the
Hudson application, that is what you see in the field help text.

While the UI displays the data of a model, the input of the user in the UI must
update the model data when the configuration page is submitted. In this case, the
value of the name the user enters in the UI must be updated in the model.

FIGURE 8-7. Help text for an extension UI element

08-ch08.indd 242 13/08/13 2:27 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 8: Basic Plugin Development 243

When the UI is submitted, Hudson re-creates the model by passing the
corresponding value via the constructor. Hence the constructor of the model object
must have a parameter whose name matches the name of the field. In the configuration
you have

<f:entry title="Name" field="name">

So the constructor of your HelloWorldBuilder must have a parameter with name
“name.” If you look at the constructor of the class HelloWorldBuilder, it does indeed
have a parameter “name”:

import org.kohsuke.stapler.DataBoundConstructor;
@DataBoundConstructor
public HelloWorldBuilder(String name) {
 this.name = name;
}

The annotation @DataBoundConstructor hints to Hudson that this extension is
bound to a field, and on UI submission it must be reconstructed using the value
of the fields submitted.

Also it must have a getter with the name of the field for the config.xml to get the
data for the second time around when the project is configured again.

public String getName() {
 return name;
}

This information is persisted along with the project configuration. Look at the
project configuration and note that the value of the Name field is saved as a
HelloWorldBuilder configuration.

<xml version='1.0' encoding='UTF-8'?>
<project>
 <actions/>
 <description></description>
 <keepDependencies>false</keepDependencies>
 <creationTime>1314407794225</creationTime>
 <properties>
 <watched-dependencies-property/>
 </properties>
 <scm class="hudson.scm.NullSCM"/>
 <advancedAffinityChooser>false</advancedAffinityChooser>
 <canRoam>true</canRoam>
 <disable>false</disabled>
 <blockBuildWhenDownstreamBuilding>false</blockBuildWhenDownstreamBuilding>
 <blockBuildWhenUpstreamBuilding>false</blockBuildWhenUpstreamBuilding>
 <triggers class="vector">

08-ch08.indd 243 13/08/13 2:27 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

244 Hudson Continuous Integration in Practice

 <concurrentBuild>false</concurrentBuild>
 <cleanWorkspaceRequired>false</cleanWorkspaceRequired>
 <builders>
 <org.sample.hudson.HelloWorldBuilder>
 <name>Winston</name>
 </org.sample.hudson.HelloWorldBuilder>
 </builders>
 <publishers/>
 <buildWrappers/>;
</project>

UI Validation
In the Job Configurations page, go to the Build section | HelloWorldBuilder UI and
remove the name in the text field. Then click elsewhere on the page. You will see an
error message as shown in Figure 8-8.

CAUTION
Do not press the enter or return key. This will submit
the configuration page.

Now enter a two-letter word (say “xy”) for Name and click somewhere else on
the page. You will see an information message as shown in Figure 8-9.

Where does this error message or info come from? If you examine your config.
xml or any of the corresponding Field Help files, no such message exists. The
magic is in the Jelly file rendering. Some Ajax code is rendered, which contacts
the Hudson server behind the scenes and asks what message it should display. You
can easily observe these Ajax requests using Firefox and Firebug. When config.
jelly was rendered by Hudson, while rendering the jelly tag <f:textbox />, the Ajax

FIGURE 8-8. UI validation error message

08-ch08.indd 244 13/08/13 2:27 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 8: Basic Plugin Development 245

code required to do the checking was also rendered. An Ajax request is sent to the
Hudson server as

GET /job/TestJob/descriptorByName/org.sample.hudson.HelloWorldBuilder/
checkName?value=xy HTTP/1.1
Host: localhost:8080
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.6; rv:6.0.1)
Gecko/20100101
Firefox/6.0.1
Accept: text/javascript, text/html, application/xml, text/xml, */*

NOTE
If you are using the Firefox browser and Firebug add-
on to display the Net activity, then you can observe
the Ajax request info easily.

Hudson evaluates this request, finds the extension HelloWorldBuilder, then
executes the method doCheckName() and returns the result. Again Hudson uses
the convention check + {nameOfTheField} as part of the Ajax URL.

NOTE
By default, for every f:textbox tag in the Jelly
config file, Hudson will render the Ajax check.
However, if your extension class does not
include the corresponding method (in this case
doCheckName()), then Hudson will silently ignore
the check request.

The doCheckName() method is straightforward. The Ajax request specifies
the checkName method with the parameter value as {..}/checkName?value=“xy”.
For Hudson to pass the correct value to the parameter value of doCheckName, it must

FIGURE 8-9. UI validation information message

08-ch08.indd 245 13/08/13 2:27 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

246 Hudson Continuous Integration in Practice

be annotated with @QueryParameter. Also the method must return a FormValidation
object, which determines the outcome of the check:

public FormValidation doCheckName(@QueryParameter String value)
 throws IOException, ServletException {
 if (value.length() == 0) {
 return FormValidation.error("Please set a name");
 }
 if (value.length() < 4) {
 return FormValidation.warning("Isn't the name too short?");
 }
 return FormValidation.ok();
}

The doCheckName() method returns FormValidation.error(..) if the parameter
value has no text. If the length of the value is less than 4, then the FormValidation
.warning() is returned.

Hudson defines a few convenient methods in the FormValidation object:

 ■ ok This sends the HTTP code 200.

 ■ error The HTML sent back to the browser displays a red text with an error
icon.

 ■ warning The HTML sent back to the browser displays golden yellow text
with a warning icon.

Global UI Configuration
In the previous section you learned how to configure the extension on a per-job
basis. You may be able to configure the extension (in this case HelloWorldBuilder)
of each job to do different things. However, some of the configuration extension
could be global. For example, if you use Git as your SCM system in a project, you
might want to configure two different jobs to ask Git to check out from a different
repository. So in both the projects, the Git SCM extension must be configured to
use two different repository URLs.

If the Git SCM extension needs to know the Git native binaries, then having
the UI configure the Git binary location in the job makes little sense, because it
doesn’t vary job to job. It makes sense to put such a configuration in Hudson’s
global configuration page.

Our simple HelloWorldBuilder sample extension can be configured to say “hello”
either in French or English. The configuration of the language to use is done globally.
Once the configuration is set, all the builds of various jobs that use HelloWorldBuilder
would either say hello in French or English based on this global configuration.

To configure this global configuration, open the Manage Hudson | Configure
System page and scroll down to the HelloWorldBuilder configuration section.

08-ch08.indd 246 13/08/13 2:27 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 8: Basic Plugin Development 247

Here the global configuration can be set to use French as the language for hello, as
shown in Figure 8-10.

For Hudson to include the global configuration of an extension in its global
configuration page, it must be placed in a file called global.jelly. The namespace
convention for this file is similar to the local configuration file. For the
HelloWorldBuilder the global configuration file is

net/hudsonlifestyle/HelloWorldBuilder/global.jelly

In the HelloWorldBuilder.perform(..) method we have

if (getDescriptor().useFrench()) {
 listener.getLogger().println("Bonjour, " + name + "!");
} else {
 listener.getLogger().println("Hello, " + name + "!");
}

The global configuration UI of the extension we saw in the Hudson global
configuration page is defined in the global.jelly file as

<f:section title="Hello World Builder">
 <f:entry title="French" description="Check if we should say hello in French"
 help="/plugin/javaone-sample/help-globalConfig.html">
 <f:checkbox name="hello_world.useFrench" checked="${descriptor.useFrench()}" />
 </f:entry>
</f:section>

The decision whether this check box should be checked or not comes from
the extension itself. The Jexl expression ${descriptor.useFrench()} would resolve to
HelloWorldBuilder.DescriptorImpl.useFrench(), which is defined as

public boolean useFrench() {
 return useFrench;
}

useFrench is a field in HelloWorldBuilder. This field should be set to true if the
user checks the check box. Once the global configuration is submitted, by convention
Hudson calls a method called configure() in the descriptor of HelloWorldBuilder and
passes a JSON object. The JSON object is constructed as a name-value pair of all the
fields in the submitted form of the configuration page. It is up to the extension to find

FIGURE 8-10. Global configuration of HelloWorldBuilder

08-ch08.indd 247 13/08/13 2:27 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

248 Hudson Continuous Integration in Practice

the value of its own fields from its config.xml embedded in the JSON object and use
it. HelloWorldBuilder defines this method as

@Override
public boolean configure(StaplerRequest req, JSONObject formData) throws
FormException {
 useFrench = formData.getBoolean("useFrench");
 save();
 return super.configure(req, formData);
}

The config.xml defined a check box with name “useFrench.” So the configure()
method needs to find the Boolean value corresponding to the field useFrench and set the
value to the field HelloWorldBuilder.useFrench. The next time HelloWorldBuilder.
perform() is called during the build of the job, HelloWorldBuilder.useFrench is consulted,
and based on its value, the hello message would be either in French or English.

The custom extension is also responsible for persisting and loading the global
configuration values. The saving is done by calling the method

save();

Typically the saving is done in the configure method. Once the form data received
as a JSON object is processed, the save() method is called, which in turn persists the
values in an XML file in the Hudson home directory.

To load the global configuration, the Descriptor must include a call to the method

load();

The best place to have the load() method is in the constructor of the Descriptor.
The load() method instructs Hudson to load the saved global configuration and
populate the current descriptor when it is constructed.

TIP
For the saving and loading of global properties to
work correctly, each property should have proper
getter and setter methods.

Summary
Hudson Continuous Integration Server is a popular open source project and recently
became a technology project at Eclipse Foundation. It has an ecosystem of plugin
developers developing plugins for various aspects of this Continuous Integration
system. The Hudson plugin development environment provides a rich set of extension
points for plugin developers to develop their custom plugins. This chapter explored
the fundamentals of the plugin development framework, explaining various steps
involved in developing a simple plugin using the Hudson HPI tool. More advanced
topics are covered in Chapter 9.

08-ch08.indd 248 13/08/13 2:27 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5
Blind folio: 249

PART
III

The Hudson Lifestyle

09-ch09.indd 249 13/08/13 2:28 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5
Blind folio: 250

09-ch09.indd 250 13/08/13 2:29 PM

This page has been intentionally left blank

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5
Blind folio: 251

CHAPTER
9

Advanced Plugin
Development

09-ch09.indd 251 13/08/13 2:29 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

252 Hudson Continuous Integration in Practice

In Chapter 8, we learned how to develop a simple Hudson plugin. In this
chapter we will look into subjects beyond the basic and explore the deeper
realm of plugin development. There are several areas plugin developers can

extend to participate in the functionalities provided by Hudson. Two major areas
that are interesting to many plugin developers are:

 ■ Extending various aspects of Hudson dashboards

 ■ Extending various aspects of Hudson jobs

Once you understand the basic nuances of Hudson plugin development, adding
further functionality is more about understanding the Extension Point API and
creating the custom extensions and then implementing the appropriate abstract
methods.

NOTE
The Hudson Extension Point API is well documented.
The JavaDocs for the latest version of the Hudson
Extension Point API are available at http://wiki
.hudson-ci.org/display/HUDSON/Extension+points.

Extending Various Aspects of
Hudson Dashboards
Hudson has three primary dashboards:

 ■ The Main dashboard, which is the primary Hudson portal

 ■ The Job dashboard view, which displays information about the job

 ■ The Build dashboard, which displays information about a particular build of
a job

Hudson provides numerous extension points to extend various aspects of these
dashboards. Let us look at how we can add some functionality to the main
dashboard.

Creating a Custom Rendered Jobs Status View
The main dashboard displays the status of all the jobs. The status of jobs in Hudson
is displayed on the Jobs Status page in tabbed sections, and each tab is called a
view. By default the job status is displayed as a table in the view from a model class

09-ch09.indd 252 13/08/13 2:29 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 9: Advanced Plugin Development 253

named ListView. The model for each table column is a ListViewColumn. The table
column displays some status information of a job or some action related to a job.
Additional view tabs can be created and configured to display certain jobs filtered
by certain criteria. Hudson provides a view configuration page, which can be
invoked from the sidebar by clicking the link Edit View to filter jobs based on
criteria. Figure 9-1 shows a default view tab that displays only the jobs that have
status success.

Though the view created by the default ListView model displays the job status
information in table columns, Hudson provides an extension point to create a
custom rendered view. In this section let us see how to create a custom rendered
view that displays a selected set of jobs based on their build status. This view will
display the jobs as a colored graphical representation of the status of the jobs.

Let us start by creating a plugin named sample-view-plugin, place the custom
rendered view in that plugin, and call it Sample View. After we finish developing the
plugin and install it in Hudson, the Sample View will be available to create a custom
rendered view. Here we assume that you have already read Chapter 8 and understand
the basic nuances of creating, developing, and deploying a Hudson plugin.

NOTE
You can download the complete sources
for the sample plugins in this chapter from
www.oraclepressbooks.com.

FIGURE 9-1. Default ListView showing only the builds with status success

09-ch09.indd 253 13/08/13 2:29 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

254 Hudson Continuous Integration in Practice

Custom Rendered View Model
Every UI in Hudson is associated with a model. The model SampleView, for the
Sample View UI, is in the file SampleView.java. The SampleView model extends the
ListView model (hudson.model.ListView), which in turn implements the extension
point View (hudson.model.View).

The model SampleView has a static class, SampleViewDescriptor, which is
annotated with @Extension to indicate that it is an Extension class. Since the
superclass of SampleView is View, while loading the plugin, Hudson knows to add
SampleView as an extension to the extension point View. Thus SampleView will be
available to users to create a view with the custom rendering. Also since SampleView
is marked as an @Extension via a Descriptor (Hudson.model.Descriptor), Hudson
also knows it has an associated UI. The SampleView model delegates the rendering
information of the job itself to another model called JobEntry, which provides the
rendering information such as the color used by the UI based on status of the job.

Code Listing SampleView.java

public class SampleView extends ListView {
 private boolean stable, unstable, failed, aborted, running;
 @DataBoundConstructor
 public SampleView(String name) {
 super(name);
 }
 public boolean isStable() {
 return stable;
 }
 public boolean isUnstable() {
 return unstable;
 }
 public boolean isFailed() {
 return failed;
 }
 public boolean isAborted() {
 return aborted;
 }
 public boolean isRunning() {
 return running;
 }
 @Override
 public synchronized List<TopLevelItem> getItems() {
 List<TopLevelItem> base = super.getItems();
 List<TopLevelItem> result = new ArrayList<TopLevelItem>(base.size());
 for (TopLevelItem item : base) {
 if (item instanceof Job) {
 if (running && !((Job) item).isBuilding()) {
 continue;
 }
 Run lastBuild = ((Job) item).getLastCompletedBuild();
 Result status = lastBuild != null ? lastBuild.getResult() : null;

09-ch09.indd 254 13/08/13 2:29 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 9: Advanced Plugin Development 255

 if ((stable && status == Result.SUCCESS)
 || (unstable && status == Result.UNSTABLE)
 || (failed && status == Result.FAILURE)
 || (aborted && status == Result.ABORTED)
 || (running && status == null) /* Show running job if it has
no completed builds */) {
 result.add(item);
 }
 }
 }
 return result;
 }
 public synchronized List<JobEntry> getJobs() {
 List<JobEntry> jobs = new ArrayList<JobEntry>();
 for (TopLevelItem item : getItems()) {
 jobs.add(new JobEntry((Job) item));
 }
 return jobs;
 }
 @Override
 protected void submit(StaplerRequest req) throws ServletException, Descriptor.
FormException, IOException {
 stable = req.hasParameter("sample_view.stable");
 unstable = req.hasParameter("sample_view.unstable");
 failed = req.hasParameter("sample_view.failed");
 aborted = req.hasParameter("sample_view.aborted");
 running = req.hasParameter("sample_view.running");
 super.submit(req);
 }
 @Extension
 public static final class SampleViewDescriptor extends ViewDescriptor {
 @Override
 public String getDisplayName() {
 return "Sample View";
 }
 }
}

Code Listing JobEntry.java

public class JobEntry {
 private Job job;
 private String backgroundColor;
 private String color;
 public JobEntry(Job job) {
 this.job = job;
 switch (this.job.getIconColor()) {
 case GREEN:
 this.backgroundColor = "#99FF99";
 this.color = "#339933";
 break;
 case BLUE:

09-ch09.indd 255 13/08/13 2:29 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

256 Hudson Continuous Integration in Practice

 this.backgroundColor = "#99FFCC";
 this.color = "#339966";
 break;
 case YELLOW:
 this.backgroundColor = "#FFC130";
 this.color = "#AAFFFF";
 break;
 case RED:
 this.backgroundColor = "#FF9999";
 this.color = "#993333";
 break;
 default:
 this.backgroundColor = "#AAAAAA";
 this.color = "555555";
 }
 }
 public String getName() {
 return job.getName();
 }
 public String getUrl() {
 return this.job.getUrl() + "lastBuild";
 }
 public Job getJob() {
 return job;
 }
 public String getBackgroundColor() {
 return backgroundColor;
 }
 public String getColor() {
 return color;
 }
}

Custom Rendered View UI
Figure 9-2 illustrates the model–view relationship. The UI for Sample View has two
parts: the UI that displays the view status of the jobs and the UI for configuring the
custom view. The Jobs Status view is displayed via the UI definitions in a Jelly file
called index.jelly. Hudson knows how to find the Jelly files corresponding to a
model based on convention, as discussed in detail in Chapter 4. Thus, the Jelly
files for this project will be located in src/main/resources/net/hudsonlifestyle/
SampleView/.

The model SampleView can define its own index.jelly. However, in this
sample plugin we will not create one, but rather let Hudson use the index.jelly
provided by the superclass ListView. This file includes two other Jelly files named
main.jelly, which is responsible for rendering a custom view, and noJob.jelly, used
for displaying a helpful message when there are no jobs associated with this view.

09-ch09.indd 256 13/08/13 2:29 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 9: Advanced Plugin Development 257

The job.jelly, which is associated with the model JobEntry, is responsible for
rendering the UI for each job status. The jelly file main.jelly uses job.jelly to
render the status of all jobs it knows via the model ViewModel.

Code Listing main.jelly

<j:jelly xmlns:j="jelly:core" xmlns:st="jelly:stapler" xmlns:d="jelly:define"
 xmlns:l="/lib/layout" xmlns:t="/lib/hudson" xmlns:f="/lib/form"
 xmlns:i="jelly:fmt">
 <meta http-equiv="refresh" content="${from.refresh}" />
 <j:choose>
 <j:when test="${empty(items)}">
 <st:include page="noJob.jelly" />
 </j:when>
 <j:otherwise>
 <div style="border-top: 1px solid; border-bottom: 1px solid; padding:
10px;">
 <j:forEach var="job" items="${it.jobs}">
 <st:include page="job.jelly" />
 </j:forEach>
 <br style="clear:both"/>
 </div>
 </j:otherwise>
 </j:choose>
</j:jelly>

Code Listing job.jelly

<j:jelly xmlns:j="jelly:core" >
 <j:set var="height" value="75px" />
 <j:set var="jobFont" value="40px" />

FIGURE 9-2. Model-View relationship of the custom rendered view

Model

View index.jelly

main.jelly

job.jelly

nojob.jelly

con�gure.jelly

con�gure-entries.jelly

ListView

SampleView

JobEntry

UI

09-ch09.indd 257 13/08/13 2:29 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

258 Hudson Continuous Integration in Practice

 <table align="center" style="margin: 5px; padding: 5px; background-color:${job.
backgroundColor}; border-radius:10px; width:${width}; height:${height}; float: left"
tooltip="${job.name}">
 <tr>
 <td>
 <a
 style="white-space: nowrap; color: ${job.color}; font-size:
${jobFont};"
 href="${job.url}">${job.name}

 </td>
 </tr>
 </table>
</j:jelly>

The job.jelly file tells how to format individual job entries. In this case, it will be
a rounded rectangle with job.name, job.backgroundColor, and job.color supplied
by the JobEntry object for the job via the methods getName, getBackgroundColor,
and getColor, respectively.

A user can configure a view via a configuration UI that provides filtering of jobs
and can apply other customizations. The Jelly file for the configuration UI is
configure.jelly. The subclasses can provide their own specific customization through
another Jelly file, configure-entries.jelly, which will be included by configure.jelly.
Since the model SampleView is marked as a describable extension, Hudson would
find configure.jelly to display the configuration UI. When the user submits the
configurations, Hudson injects the changes back into the SampleView model via
the method submit(StaplerRequest req).

Code Listing configure-entries.jelly

<j:jelly xmlns:j="jelly:core" xmlns:f="/lib/form">
 <f:section title="${%Job Filters}">
 <f:entry title="Build Status" help="/plugin/sample-view-plugin/help-status.
html">
 <f:checkbox name="sample_view.stable" checked="${it.stable}"/> ${%Stable}
 <f:checkbox name="sample_view.unstable" checked="${it.unstable}"/>
${%Unstable}
 <f:checkbox name="sample_view.failed" checked="${it.failed}"/> ${%Failed}
 <f:checkbox name="sample_view.aborted" checked="${it.aborted}"/>
${%Aborted}
 </f:entry>
 <f:entry title="${%Jobs}">
 <j:forEach var="job" items="${app.items}">
 <f:checkbox name="${job.name}" checked="${it.contains(job)}"
title="${job.name}" />

 </j:forEach>
 </f:entry>
 </f:section>
</j:jelly>

09-ch09.indd 258 13/08/13 2:29 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 9: Advanced Plugin Development 259

There is one other jelly file, newViewDetail.jelly. It is a trivial HTML fragment that
contains the detail text to be shown in the New View page.

Code Listing newViewDetail.jelly

<div>
 <i>Sample View</i> to illustrate how to create a custom view in a plugin.
</div>

Using the Custom Rendered View
Once the sample-view-plugin is created, compiled, and packaged successfully, the
next step is to examine the Sample View we created in the plugin. Run the plugin
from the command line using mvn hpi:run and then open a browser and view the
Hudson main dashboard. If the plugin is successfully loaded, when you’re creating a
new view by clicking on the “+” sign in the View tab, it should list the Sample View
in the selected view types as shown in Figure 9-3. Create a view with the name
Sample View – Custom.

Once the Sample View is selected as a custom rendered view for displaying the
status of your jobs, Hudson will offer the configuration UI as shown in Figure 9-4.
This configuration has settings to filter the jobs it should show in the custom rendered
view. It can be customized to show jobs with one or more statuses such as Stable,
Unstable, Failed, or Aborted. Also, it lists a check box array of jobs to be displayed
in this view.

FIGURE 9-3. Selecting the custom rendered view

09-ch09.indd 259 13/08/13 2:29 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

260 Hudson Continuous Integration in Practice

After you’ve configured and saved the Sample View, it will be ready to display
the jobs status based on your filtering. When you go back to the main dashboard,
you should see a new tab named Sample View – Custom as shown in Figure 9-5.
This tab displays the job status differently than the default model ListView.

FIGURE 9-4. Configuring the custom rendered view

FIGURE 9-5. Jobs status displayed using a custom rendered view

09-ch09.indd 260 13/08/13 2:29 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 9: Advanced Plugin Development 261

The failed builds are displayed as red rectangles and successful builds as green
rectangles. The information to display in green or red color is obtained from the
model JobEntry. The list of jobs to display in this view is obtained from the model
SampleView. Though this is a very simple sample of how a custom rendering of a
view could be created, a creative user can create a much more sophisticated view
based on the job information available for that custom view.

Adding a Custom Column to the Default View
In the previous section we saw how to add a custom rendered view. Hudson also
allows one to add a custom column to the default model ListView. The extension
point to use for this purpose is ListViewColumn. In our plugin, sample-column-
view-plugin, we create a class called ScmTypeColumn and extend it with
ListViewColumn. This class is a describable extension, so we must provide a
Descriptor. We have an inner static class, CustomColumnDescriptor, which is
annotated as @Extension.

Code Listing ScmTypeColumn.java

 public class ScmTypeColumn extends ListViewColumn {
 public String getScmType(Job job) {
 AbstractProject project = (AbstractProject) job;
 return project.getScm().getDescriptor().getDisplayName();
 }
 @Extension
 public static class CustomColumnDescriptor extends ListViewColumnDescriptor {
 @Override
 public boolean shownByDefault() {
 return true;
 }
 @Override
 public String getDisplayName() {
 return "Custom Column";
 }
 @Override
 public ListViewColumn newInstance(final StaplerRequest request,
 final JSONObject formData) throws FormException {
 return new ScmTypeColumn();
 }
 }
}

Custom View Column UI
The UI displayed by the ViewColumn has two sections, the column header and the
column data in each of the rows. The column header UI is defined via the jelly
file columnHeader.jelly. The column data for each row is defined via the jelly file
column.jelly. Hudson passes the job object corresponding to each row in the view
to the column.jelly as variable “job”. In our sample the SCM information in the jobs

09-ch09.indd 261 13/08/13 2:29 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

262 Hudson Continuous Integration in Practice

is extracted from this object and its name is displayed in each of the rows as shown
in Figure 9-6.

Note the ${resURL}-relative path in the column.jelly file shown in the next
Code Listing. In the project, the image is located at src/main/webapp/icons/scm.png.

Code Listing column.jelly

<j:jelly xmlns:j="jelly:core">
 <j:set var="job" value="${job}"/>
 <td>

 ${it.getScmType(job)}
 </td>
</j:jelly>

Code Listing columnHeader.jelly

<j:jelly xmlns:j="jelly:core">
 <th tooltip="Custom Column">
 SCM Type
 </th>
</j:jelly>

Adding an Action to the Action Panel
of the Main Dashboard
Hudson provides a list of action links on the left-hand side of the main dashboard.
This section of the dashboard is called the Action Panel. These action links can be
used to display additional information that is currently not displayed in any of the
default dashboards. For example, let us say you want to do some auditing of disk
space used by various jobs in Hudson. For that you want to add a link to the Action
Panel called Show Disk Usage, as shown in Figure 9-7. When you click that link,

FIGURE 9-6. Custom SCM type view column

09-ch09.indd 262 13/08/13 2:29 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 9: Advanced Plugin Development 263

you want to display a new page that lists all the jobs in Hudson along with
information about the number of builds each job is storing and the total disk space
occupied by each job in a table. Let us see how to do this.

RootAction Extension
Hudson provides an extension point, RootAction (hudson.model.RootAction), for
this purpose. Let us create a plugin named sample-root-action-plugin and create an
extension to extend RootAction and place it in the class DiskUsageAction as shown
in the upcoming code listing. This class is annotated with @Extension to let Hudson
know that this class should be considered as an extension when the plugin loads.
Since this action extends RootAction, Hudson will use the information in this class
to create a link and add it to the Action Panel of the main dashboard. As you can see
in Figure 9-7, this action needs to specify:

 ■ An icon, which is specified using the method getIconFileName. In this plugin
the icons are kept under the folder webapp/icons. In the built plugin, webapp
will become the WEB_INF folder, the root of all Web resources, for this
plugin. But we need to tell Hudson in which plugin this folder resides. This
done by prefixing the icon path with /plugin/sample-root-action-plugin.

 ■ A URL to create a link from this action to a page which displays the relevant
information. Hudson uses the method getUrlName.

Code Listing DiskUsageAction.java

@Extension
public class DiskUsageAction implements RootAction {
 public String getIconFileName() {
 return "/plugin/sample-root-action-plugin/icons/diskusage16.png";
 }

FIGURE 9-7. Show Disk Usage action link

09-ch09.indd 263 13/08/13 2:29 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

264 Hudson Continuous Integration in Practice

 public String getDisplayName() {
 return "Show Disk Usage";
 }
 public String getUrlName() {
 return Hudson.getInstance().getRootUrl() + "plugin/sample-root-action-plugin/
diskUsage";
 }
}

Model Object for the Disk Usage Page
As we have seen in Chapter 8, when Hudson receives a request to serve a URL, it
will first try to resolve a model corresponding to the URL path. By default, it will
start with the “grandfather” object hudson.model.Hudson and search through the
containing tree of objects until an object matches the URL path. However, it is
possible to tell Hudson to start with a different grandfather object inside a plugin. By
specifying the prefix of the URL name with “plugin/sample-root-action-plugin,” we
are telling Hudson to find the grandfather object in the plugin sample-root-action-
plugin. The grandfather object of a plugin is always a class that extends the interface
plugin (hudson.plugin). In our plugins this class is DiskUsagePlugin. It has only one
method, getDiskUsage, which returns the object DiskUsage, the model for our disk
usage information page. DiskUsage uses a helper model, JobDiskUsage, to display
specific information about each job.

Code Listing DiskUsagePlugin.java

public class DiskUsagePlugin extends Plugin{
 private DiskUsage diskUsage = new DiskUsage();
 public DiskUsage getDiskUsage() {
 return diskUsage;
 }
}

Code Listing DiskUsage.java

public class DiskUsage {
 public List<JobDiskUsage> getJobDiskUsages() throws IOException {
 List<JobDiskUsage> jobDiskUsages = new ArrayList<JobDiskUsage>();
 File hudsonHome = Hudson.getInstance().getRootDir();
 File jobsFolder = new File(hudsonHome, "jobs");
 List<TopLevelItem> items = Hudson.getInstance().getItems();
 for (TopLevelItem item : items) {
 if (item instanceof AbstractProject) {
 AbstractProject job = (AbstractProject) item;
 jobDiskUsages.add(new JobDiskUsage(job, jobsFolder));

09-ch09.indd 264 13/08/13 2:29 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 9: Advanced Plugin Development 265

 }
 }
 return jobDiskUsages;
 }
}

Code Listing JobDiskUsage.java

public class JobDiskUsage {
 private String name;
 private long sizeInDisk;
 private int numBuilds;
 public JobDiskUsage(AbstractProject job, File jobsFolder) throws IOException {
 name = job.getName();
 File jobFolder = new File(jobsFolder, name);
 sizeInDisk = getFileSize(jobFolder);
 numBuilds = job.getBuilds().size();
 }
 public String getName() {
 return name;
 }
 public long getSizeInDisk() {
 return sizeInDisk;
 }
 public int getNumBuilds() {
 return numBuilds;
 }
 public long getFileSize(File file) throws IOException {
 long size = 0;
 if (file.isDirectory() && !Util.isSymlink(file)) {
 File[] fileList = file.listFiles();
 if (fileList != null) {
 for (File child : fileList) {
 size += getFileSize(child);
 }
 }
 }
 return size + file.length();
 }
}

Disk Usage Page UI
As we have seen before, if a model object has an associated jelly UI definition page,
index.jelly, then Hudson will render that page and send it as an HTTP response.
Since our plugin has index.jelly at the correct namespace defined by the Hudson
convention, it will be rendered by Hudson to display the disk usage information in
a table as shown in Figure 9-8. Though this figure just shows the disk usage table,
if you installed the plugin and clicked on the Show Disk Usage link in the Action
Panel, the page would show the header and footer as shown in other Hudson

09-ch09.indd 265 13/08/13 2:29 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

266 Hudson Continuous Integration in Practice

dashboard pages. The correct layout of a dashboard is included in our disk usage
page using the jelly tags <l:layout>, <l:side-panel>, and <l:main-panel> as shown in
the next code listing. The jelly expression ${it.getJobDiskUsages()} is used to get the
PageDiskUsage objects from the model DiskUsage and display the information
obtained from it as table columns.

Code Listing index.jelly

<j:jelly xmlns:j="jelly:core" xmlns:l="/lib/layout" >
 <l:layout title="${%Disk Usage}" secured="true">
 <l:side-panel>
 <l:tasks>
 <l:task icon="images/24x24/up.gif" href="${rootURL}/" title="${%Back
to Dashboard}" />
 </l:tasks>
 </l:side-panel>
 <l:main-panel>
 <h1>
 <img src="${resURL}/plugin/sample-root-action-plugin/icons/diskus-
age48.png" /> ${%Disk usage}
 </h1>
 <table style="text-align:center" class="sortable pane bigtable">
 <tr>
 <th>${%Job name}</th>
 <th>${%Number of Builds}</th>
 <th>${%DiskUsage}</th>
 </tr>
 <j:forEach var="p" items="${it.getJobDiskUsages()}">
 <tr>
 <td>
 ${p.name}
 </td>
 <td> ${p.numBuilds}</td>
 <td>${p.sizeInDisk}</td>
 </tr>
 </j:forEach>
 </table>
 </l:main-panel>
 </l:layout>
</j:jelly>

FIGURE 9-8. Disk usage table entries

09-ch09.indd 266 13/08/13 2:29 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 9: Advanced Plugin Development 267

NOTE
Hudson defines some other actions that can be used
similar to RootAction to add links:
BuildBadgeAction: This action puts a little icon (or
icons) next to the build in the build history.
ManagementLink: This action adds an icon and link
to the Hudson management page.
ProminentProjectAction: This action adds a
prominent action link with icon at the top of each
job page.
TransientProjectActionFactory: Factory to create
nonpersisting actions that are displayed in the Action
Panel of a job dashboard.

Custom Decoration of Hudson Pages
In the previous sections we saw how to add some functionality to certain aspects of
the Hudson dashboard via a plugin. However, there may be requirements to
uniformly change every page. Hudson provides a way to do this using an extension
point called PageDecorator. It allows the plugin developer to inject an HTML header
element into every page and add additional footer information. By inserting a
custom CSS stylesheet header element, you may be able to modify some of the
styling of the Hudson pages. A JavaScript header element would allow you to do
some client-side execution when the page loads. One good example is adding
Google Analytics stats on each page through JavaScript injection.

In this section let us see how to add a footer that displays information about
copyright info and administrator contact information. Our sample plugin, sample-
page-decorator-plugin, includes a Java class SamplePageDecorator that is an
extension for PageDecorator. It is annotated with @Extension to let Hudson know to
load it as an extension for PageDecorator when the plugin is loaded. It also acts as a
model to hold the name and e-mail address of the system administrator. As you see
in the code listing, the name and e-mail address are not hard-coded. This is mainly
for the Hudson admin to configure the name and e-mail address at run time.

Code Listing SamplePageDecorator.java

@Extension
public class SamplePageDecorator extends PageDecorator {
 private String adminName = "";
 private String adminEmail= "";
 public SamplePageDecorator() {
 super(SamplePageDecorator.class);
 load();
 }

09-ch09.indd 267 13/08/13 2:29 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

268 Hudson Continuous Integration in Practice

 @Override
 public boolean configure(StaplerRequest req, JSONObject json) throws FormException {
 adminName = json.getString("adminName");
 adminEmail = json.getString("adminEmail");
 save();
 return true;
 }
 public String getAdminName() {
 return adminName;
 }
 public String getAdminEmail() {
 return adminEmail;
 }
}

Custom Page Decorator Global Configuration
As mentioned previously, we want to save the name and e-mail address as a global
configuration so that it can be changed at run time via a UI as shown in Figure 9-9.
As per Hudson convention, any extension that needs global configuration must keep
the configuration UI definition in a Jelly file named global.jelly. In our plugin we
have the file at the appropriate location as needed by Hudson convention. This file
defines two fields: adminName, to get the admin name, and adminEmail, to get the
admin e-mail address. This UI becomes part of the global configuration page. Upon
submission of the global configuration page, by convention, Hudson will call the
method, configure, in our SamplePageDecorator class and pass in a JSON array
that would contain the values of adminName and adminEmail. This method is
responsible for extracting the values of these fields and saving them for future use.

Code Listing global.jelly

<j:jelly xmlns:j="jelly:core" xmlns:f="/lib/form">
 <f:section title="Sample page decorator">
 <f:entry title="Admin Name">
 <f:textbox field="adminName"/>
 </f:entry>
 <f:entry title="Admin E-mail">
 <f:textbox field="adminEmail"/>
 </f:entry>
 </f:section>
</j:jelly>

Custom Page Decorator UI
Now that the name and e-mail of the system administrator can be configured via
global configuration and available at run time, the next step is to get these values

09-ch09.indd 268 13/08/13 2:29 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 9: Advanced Plugin Development 269

and display them in the footer as shown in Figure 9-10. By convention, Hudson
expects two jelly files to specify the UI configuration of a PageDecorator. These jelly
files are:

 ■ footer.jelly The rendered content of this page is added right before the
</body> tag of each page. It is a convenient place for adding items such as
tracking beacons, copyright info, and so on.

 ■ header.jelly The rendered content of this page is added right before the
</head> tag of each page. A convenient place for additional CSS stylesheets,
JavaScript, <meta> tags, and so on.

Although it’s not necessary, for the purpose of understanding how it works,
we have both the files in our plugin. The header.jelly simply adds a custom CSS
stylesheet to the HTML page header. The footer.jelly has the UI definitions to
display the copyright information and the name and e-mail information of the
System admin. The mail program might open in the browser and it is not a Hudson
page, so we use target="_blank" to ensure that it opens in a new tab or window.
The SamplePageDecorator is passed as the “it” object, so that the model values
such as adminName and adminEmail can be extracted using a Jelly expression;
for example, ${it.adminName}.

FIGURE 9-9. Custom page decorator global configuration

FIGURE 9-10. Copyright information added by custom page decorator

09-ch09.indd 269 13/08/13 2:29 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

270 Hudson Continuous Integration in Practice

Code Listing header.jelly

<j:jelly xmlns:j="jelly:core">
 <link href="/plugin/sample-page-decorator-plugin/css/style.css"
type="text/css" rel="stylesheet"/>
</j:jelly>

Code Listing footer.jelly

<j:jelly xmlns:j="jelly:core">
 <h4 class="acmeCopyright">
 Copyright 2013 Acme Corporation.

 Contact Administrator: ${it.adminName}

 </h4>
</j:jelly>

Code Listing style.css

h4.acmeCopyright {
 padding-left:10px;
 color: blue;
 font-style: italic;
}

Extending Various Aspects
of a Hudson Job
A single Hudson job consists of one or more of the entities listed next. These job
entities can be configured (added, deleted, or modified) via the Job Configurations
page.

 ■ Job Properties Values used by Hudson to take certain actions on the job.
Build steps or other services within Hudson can use them.

 ■ Advanced Options Similar to job properties, but to be used by advanced
users.

 ■ Triggers Schedule a build on a certain condition.

 ■ SCM Check out sources from a remote repository.

 ■ Build Wrappers Performs pre/post-actions for the build process.

09-ch09.indd 270 13/08/13 2:29 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 9: Advanced Plugin Development 271

 ■ Build Steps Hudson invokes these build steps in sequence when the build
happens.

 ■ Builders A build step that performs the actual build of the job

 ■ Publishers A build step that runs after the build is completed

 ■ Recorders Special kind of publisher for collecting stats and
publishing reports generated by builders; can mark builds as
unstable/failure

 ■ Notifiers A kind of publisher that sends the outcome of the builds
to other systems and humans

Hudson provides extension points to extend each of the job entities in the
preceding list, except the Advanced Options. In this section we will explore how to
extend some of these job entities and add our own custom extension via a plugin.

Adding a Custom Notifier to a Job
Build status notification is one of the important aspects of Continuous Integration.
There are so many ingenious ways to notify build status such as Lava Lamp, Extreme
Feedback Panel, and even starting a siren when the build breaks. Interestingly, Hudson
does have plugins to support these types of extreme notifications. In this section let
us explore how to write a plugin, sample-notifier-plugin, that would add a custom
Notifier to Hudson. For the purpose of this exercise, we have assumed that you have
installed a messaging server that is capable of sending SMS messages, sending a
message to an IRC channel, or sending the build status message as a tweet to Twitter.
In fact, it is very easy to build such a server, given that enough open source libraries
are available to achieve this task. Also, we assume the messaging server provides a
REST API for our sample Notifier to POST the build status as JSON. Once the
messaging server receives the JSON, it would send the build information to any of the
devices based on its configuration. Our extension to Notifier is placed in a file called
SampleNotifier.java.

Code Listing SampleNotifier.java

public class SampleNotifier extends Notifier {

 private String msgServerUrl;
 private static ObjectMapper jsonObjectMapper = new ObjectMapper();
 @DataBoundConstructor
 public SampleNotifier(final String url) {
 msgServerUrl = url;
 }
 @Override
 public boolean perform(AbstractBuild<?, ?> build, Launcher launcher, BuildListener

09-ch09.indd 271 13/08/13 2:29 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

272 Hudson Continuous Integration in Practice

listener) throws InterruptedException, IOException {
 BuildInfo buildInfo = new BuildInfo();
 buildInfo.setNumber(build.getNumber());
 buildInfo.setUrl(build.getUrl());
 buildInfo.setStatus(build.getResult().toString());
 AbstractProject job = build.getProject();
 JobInfo jobInfo = new JobInfo();
 jobInfo.setBuild(buildInfo);
 jobInfo.setName(job.getName());
 jobInfo.setUrl(job.getUrl());
 Writer writer = new StringWriter();
 jsonObjectMapper.writeValue(writer, jobInfo);
 String jsonString = writer.toString();
 System.out.println(jsonString);
 try {
 WebRequest webRequest = new WebRequest(msgServerUrl);
 webRequest.post(jsonString);
 } catch (URISyntaxException ex) {
 listener.error("Failed to send notification. " +
ex.getLocalizedMessage());
 }
 return true;
 }
 public BuildStepMonitor getRequiredMonitorService() {
 return BuildStepMonitor.BUILD;
 }
 public String getUrl() {
 return msgServerUrl;
 }
 @Extension
 public final static class SampleNotifierDescriptor extends
BuildStepDescriptor<Publisher> {
 @Override
 public boolean isApplicable(Class<? extends AbstractProject> type) {
 return true;
 }
 @Override
 public String getDisplayName() {
 return "Sample Notifier";
 }
 public FormValidation doCheckUrl(@QueryParameter final String value)
 throws IOException, ServletException {
 return new FormValidation.URLCheck() {
 @Override
 protected FormValidation check() throws IOException,
 ServletException {
 String msgServerUrl = Util.fixEmpty(value);
 if (msgServerUrl == null) { // nothing entered yet
 return FormValidation.ok();
 }
 FormValidation result = FormValidation.ok();
 try {

09-ch09.indd 272 13/08/13 2:29 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 9: Advanced Plugin Development 273

 if (findText(open(new URL(msgServerUrl)), "Messaging Server"))
{
 result = FormValidation.ok();
 } else {
 result = FormValidation.error(//
 "Could not connect to messaging server");
 }
 } catch (IOException exc) {
 result = handleIOException(value, exc);
 }
 return result;
 }
 }.check();
 }
 public FormValidation doTestConnection(@QueryParameter final String url)
throws IOException {
 try {
 WebRequest webRequest = new WebRequest(url);
 WebResponse webResponse = webRequest.post("{\"test\": \"123\"}");
 if (webResponse.getResponseCode() > 201) {
 return FormValidation.error("Connection failed");
 } else {
 return FormValidation.ok("Connection established");
 }
 } catch (Exception exc) {
 return FormValidation.error(exc.getMessage());
 }
 }
 }
}

The extension SampleNotifier is a configurable object, so it defines a Descriptor
called SampleNotifierDescriptor and annotates it with @Extension to mark it as an
extension. When the plugin is loaded, Hudson adds SampleNotifier to the Notifiers
list and it becomes available to be added as a Notifier to any job. Hudson uses any
Notifier to notify only the status of a build completion or completion of every build
step. SampleNotifier specifies its intention to notify only the completion status of
the build by returning the object BuildStepMonitor.BUILD via the method
getRequiredMonitorService. When Hudson is ready to notify the status of the build
through a Notifier, it calls the method perform, which the notifier implements. In
our implementation, we obtain the job and the corresponding Build object and
retrieve the status information. We use two data models, JobInfo and BuildInfo, to
hold the extracted job and build status information. Also, SampleNotifier uses the
Jackson Library1 to convert these models into a JSON string. Finally the JSON is
sent as HTML POST to the messaging server REST API. For the sake of brevity we
have not listed all the code from the sample-notifier-plugin here. The JSON sent to
the messaging server looks similar to the following:

1 Jackson Java JSON processor. http://jackson.codehaus.org/

09-ch09.indd 273 13/08/13 2:29 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

274 Hudson Continuous Integration in Practice

Code Listing Build status JSON

{
 "name":"Test",
 "url":"job/Test/"
 "build":{
 "number":11,
 "status":"SUCCESS",
 "url":"job/Test/11/"
 }
}

NOTE
The sample code for this chapter contains a very
simple json-server project. After building it with mvn
clean install, you can run it with, for example,
java -jar target/json-server.jar -port 8081.
Then you can use http://localhost:8081 to test the
plugin.

Custom Notifier Configuration UI
All Notifier Extensions are available as selectable check boxes in the Post-build
Actions section of the configuration page. The job owner can choose one or more of
them. If SampleNotifier is selected as a Notifier, then it must provide a UI for the
user to configure the messaging server URL, as shown in Figure 9-11. By Hudson
convention, the Jelly definition for the configuration has to be placed in a file called
config.jelly. This configuration UI provides two features. The first is automatic
validation of the messaging server URL typed in the Message Server field. The
second one is a Test Connection button to test if Hudson can connect to the REST
API. We have two methods in the SampleNotifier to do the validation and testing.
The method SampleNotifierDescriptor.doCheckUrl does the validation of the URL
and the SampleNotifierDescriptor.doTestConnection method does the connection
testing when the button is clicked.

FIGURE 9-11. Custom notifier configuration UI

09-ch09.indd 274 13/08/13 2:29 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 9: Advanced Plugin Development 275

Code Listing config.jelly

<j:jelly xmlns:j="jelly:core" xmlns:f="/lib/form">
 <f:entry title="${%Message Server}" field="url"
 description="${%Messaging server URL must be provided}">
 <f:textbox
checkUrl="'descriptorByName/SampleNotifier/checkUrl?value='+escape(this.value)" />
 </f:entry>
 <f:validateButton
 title="${%Test Connection}" progress="${%Testing...}"
 method="testConnection" with="url" />
</j:jelly>

The textbox tag in config.jelly defines the value of the attribute checkUrl as
'descriptorByName/SampleNotifier/checkUrl?value='+escape(this.value). This tells
Hudson to find the Descriptor SampleNotifierDescriptor and invoke the method
doCheckUrl to perform the validation. Similarly, the validateButton tag has the
attribute method="testConnection". This tells Hudson to generate JavaScript to call the
method SampleNotifierDescriptor.doTestConnection via AJAX to do the connection
test. Figure 9-11 shows how the “Connection Established” message appears after
clicking the Test Connection button with a valid URL.

Adding a Custom Link to a Job Dashboard
When you create a Hudson job and visit the dashboard, you see a bunch of links
such as Workspace and Recent Changes, to name a few, on the left-hand side of the
dashboard. These links are useful to display some of the data associated with the
job. A need may arise for you to add a custom link to display some data collected
by one of the custom publishers you created. In this section we will explore how to
add a custom link, Sample Publisher, to the Action Panel of the job dashboard, as
shown in Figure 9-12. The same link can be added to the main panel of the job
dashboard, as shown in Figure 9-13.

FIGURE 9-12. Custom link added to the action panel of the job dashboard

09-ch09.indd 275 13/08/13 2:29 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

276 Hudson Continuous Integration in Practice

Transient Job Action
The concept of “action” in Hudson has different meanings in different contexts. One
purpose of an action, like RootAction, as we saw in the earlier part of the chapter, is to
add a link to the job dashboard. Though actions can be used to contribute additional
information and behavior to the job, here we are using an action to add the action
link UI to the job. By specifying it as a transient action, we are making sure it appears
on the job dashboard in a specific context. We are going to associate it with the
model SamplePublisher to display some data. So this transient action should appear in
the dashboard only if the SamplePublisher is selected in the post-build actions of the
job. This is achieved by creating an extension to the TransientProjectActionFactory.
In our plugin, sample-job-action-plugin, the extension is SampleJobActionFactory
class and marked with the annotation @Extension. The method createFor is used to
associate the SampleJobAction with the SamplePublisher. In this example, the
SamplePublisher is a dummy one. It does not collect any data in the job build. We
will see a real publisher in the next section, which will collect some real data.

Code Listing SampleJobActionFactory.java

@Extension
public class SampleJobActionFactory extends TransientProjectActionFactory {
 @Override
 public Collection<? extends Action> createFor(final AbstractProject job) {
 assert job!= null;
 Map<Descriptor<Publisher>, Publisher> map = job.getPublishersList().toMap();
 for (Publisher publisher : map.values()) {
 if (publisher instanceof SamplePublisher) {
 return Collections.singleton(new SampleJobAction(job));

FIGURE 9-13. Custom link added to the main panel of the job dashboard

09-ch09.indd 276 13/08/13 2:29 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 9: Advanced Plugin Development 277

 }
 }
 return Collections.emptySet();
 }
}

Code Listing SampleJobAction.java

public class SampleJobAction implements Action, StaplerProxy{
 private AbstractProject job;
 public SampleJobAction(AbstractProject job){
 this.job = job;
 }
 public String getIconFileName() {
 return "/plugin/sample-job-action-plugin/icons/action.png";
 }
 public String getDisplayName() {
 return "Sample Publisher";
 }
 public String getUrlName() {
 return "samplePublisher";
 }
 public SamplePublisherData getTarget() {
 return new SamplePublisherData(job);
 }
}

Every time the job configuration is modified, the SampleJobActionFactory is
consulted to see if any transient actions need to be added to the job. Transient
actions are not saved to the disk along with other job configurations. The method
SampleJobActionFactory.createFor makes sure that the SampleJobAction is added to
the job only when the job configuration includes the SamplePublisher as a post-
build action. This is important, because the only purpose of the SampleJobAction is
to add a link UI to the job dashboard, which when clicked displays the data
recorded by SamplePublisher. So if SamplePublisher is not in the job configuration
and recording any data, then this link has no meaning in the job dashboard.

Sample Job Action UI
The purpose of SampleJobAction is to add two links. The first link is added to the job
dashboard actions panel and the second link is added to the main panel of the job
dashboard. The information to create this link is used from the icon, displayName,
and urlName properties of the SampleJobAction itself. This is straightforward, but for
creating the link in the job dashboard, Hudson uses a somewhat cryptic name for
the Jelly definition file called jobMain.jelly.

09-ch09.indd 277 13/08/13 2:29 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

278 Hudson Continuous Integration in Practice

Code Listing jobMain.jelly

<j:jelly xmlns:j="jelly:core" xmlns:f="/lib/form" xmlns:t="/lib/hudson">
 <table style="margin-top: 1em; margin-left:1em;">
 <t:summary icon="/plugin/sample-job-action-plugin/icons/action.png"
href="samplePublisher">
 Sample Publisher Data
 </t:summary>
 </table>
</j:jelly>

The purpose of this Jelly file is to provide additional information such as the
summary of the data to be displayed in the main panel of the job dashboard. Once the
plugin is installed and SamplePublisher is selected in the job configuration, the links
should automatically appear in the job dashboard as we saw earlier in Figures 9-12
and 9-13. When the link is clicked, the data collected by the SamplePublisher will be
displayed. In this example SamplePublisher does not collect any data, so it simply
displays a dummy message as shown in Figure 9-14. In the next section we will create
a real Recorder, a kind of publisher that records JUnit test trends and displays the data
in a table when the user clicks on the links. We will also see how the link knows to
forward to the display page.

Custom Recorder to Display Build Result Trend
The sample plugin, sample-recorder-plugin, is an extension of the plugin we created
earlier to add custom links to the job dashboard. In this section let us look at how to
make our SampleRecorder record JUnit test result information after each build
finishes. Later we add a page that displays the trend of JUnit test results across
various builds of a job in a table. The custom link we added to the job in our
previous section will forward to this page when clicked. Recorder is very similar to
Notifier in terms of implementation. Though both are Publishers, they are meant for
two different purposes. A Notifier is meant to notify the results of a build to other
systems and humans. But a Recorder collects the data resulted during a build and
records them. Later this collected data can be displayed in the Hudson Web page.
Notifier is the last step in the build process, but a Recorder is performed before the
notification takes place. So a Recorder can mark the build as failed or unstable,
whereas the Notifier should not. Our SampleRecorder is an extension and

FIGURE 9-14. Sample Publisher dummy message

09-ch09.indd 278 13/08/13 2:29 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 9: Advanced Plugin Development 279

implements the Recorder interface as shown in the code listing. Being a describable
object, it marks the static inner class SampleRecorderDescriptor with annotation
@Extension, so that at plugin load time it can be found and added to the Publisher list.

Code Listing SampleRecorder.java

public class SampleRecorder extends Recorder {
 private static ObjectMapper jsonObjectMapper = new ObjectMapper();
 @DataBoundConstructor
 public SampleRecorder() {
 }
 @Override
 public boolean perform(AbstractBuild<?, ?> build, Launcher launcher, BuildListener
listener) throws InterruptedException, IOException {
 TestResultAction testResultAction = build.getAction(TestResultAction.class);
 if (testResultAction == null) {
 listener.getLogger().println("There are no test results to import!");
 } else {
 TestResult testResult = testResultAction.getResult();
 if (testResult == null) {
 listener.getLogger().println("There are no test results to import!");
 return true;
 }
 TestResultData testResultData = new TestResultData();
 int failures = testResult.getFailCount();
 int executed = testResult.getTotalCount();
 int skipped = testResult.getSkipCount();
 int passed = testResult.getPassCount();
 int errors = executed - failures - passed - skipped;
 float percentPassed = (executed == 0) ? 0 : (passed + skipped) / executed
* 100;
 testResultData.setBuildNumber(build.getNumber());
 testResultData.setFailed(failures);
 testResultData.setTotal(executed);
 testResultData.setSkipped(skipped);
 testResultData.setPassed(passed);
 testResultData.setErrors(errors);
 testResultData.setPercentPassed(percentPassed);
 Writer writer = new StringWriter();
 jsonObjectMapper.writeValue(writer, testResultData);
 String jsonString = writer.toString();
 File trendFile = new File(build.getProject().getRootDir(), "test-trends.
json");
 PrintWriter out = new PrintWriter(new BufferedWriter(new
FileWriter(trendFile, true)));
 out.println(jsonString);
 out.close();
 }
 return true;
 }
 public BuildStepMonitor getRequiredMonitorService() {
 return BuildStepMonitor.BUILD;
 }
 @Extension

09-ch09.indd 279 13/08/13 2:29 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

280 Hudson Continuous Integration in Practice

 public final static class SampleRecorderDescriptor extends
BuildStepDescriptor<Publisher> {
 @Override
 public boolean isApplicable(Class<? extends AbstractProject> type) {
 return true;
 }
 @Override
 public String getDisplayName() {
 return "Sample Recorder";
 }
 }
}

During the build process, Hudson fetches all the Recorders configured by the
user and invokes the perform method implemented by each of them. In our
implementation of the SampleRecorder.perform method, the JUnit TestResult object
is fetched and the information regarding total test counts, number of tests passed,
number of tests failed, number of errors occurring during test execution, and the
percentage of tests passed is extracted and kept in a model called TestResultData.
This data model is then persisted to a JSON file using the Jackson library.2 The file
we use to record the data is test-trends.json, and it is persisted in the root directory
of the job. During every build, SampleRecorder is called and the JUnit test result
information is appended to the JSON file with the following format:

Code Listing JUnit Test Result trend JSON

{"total":10,"errors":0,"buildNumber":18,"failed":0,"skipped":0,"passed"
:5,"percentPassed":100.0}
{"total":27,"errors":0,"buildNumber":19,"failed":12,"skipped":0,"passed
":15,"percentPassed":55.5}
{"total":27,"errors":0,"buildNumber":20,"failed":5,"skipped":0,"passed"
:22,"percentPassed":81.4}

Custom Recorder UI
Our SampleRecorder does not have any configuration UI, because it cleverly uses the
JUnit information recorded by the Publish JUnit test result report Recorder. So in order
for the SampleRecorder to work, the Publish JUnit test result report Recorder must be
selected in the post-build sections, as shown in Figure 9-15. When this is done in a
job, during each build of the job, SampleRecorder would record the JUnit info in the
test-trends.json file.

After the JUnit information data is saved in the file, the JUnit test result trend
must be displayed in a format that can be interpreted easily. For this, our sample
plugin provides a UI that displays the trend in a table format. The table rows are

2 Jackson Java JSON-processor. http://jackson.codehaus.org/

09-ch09.indd 280 13/08/13 2:29 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 9: Advanced Plugin Development 281

colored to delineate the builds with successful JUnit test results versus builds with
failed JUnit tests, as shown in Figure 9-16.

As we know, every UI must be associated with a model to get the data and
display it. In our plugin we created a simple model class called SampleRecorderData.
It is a container for a collection of TestResultData, the very same model we used
earlier to hold and persist the JUnit test result information. Also we use the same
Jackson library to read back the JSON data from the storage test-trends.json into this
collection. The Jelly UI corresponding to this model is declared in index.jelly. Now
that we have a real Recorder to record the JUnit tests information and a UI to
display the data collected by the SampleRecorder, clicking the link added by our
SampleJobAction, as shown earlier in Figures 9-12 and 9-13, will display the JUnit
test results trend as shown in Figure 9-16.

FIGURE 9-15. Sample Recorder and Publish JUnit test result report

FIGURE 9-16. JUnit test result trend

09-ch09.indd 281 13/08/13 2:29 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

282 Hudson Continuous Integration in Practice

Code Listing SampleRecorderData

public class SampleRecorderData {
 private static ObjectMapper jsonObjectMapper = new ObjectMapper();
 private AbstractProject job;
 public SampleRecorderData(AbstractProject job) {
 this.job = job;
 }
 public AbstractProject getJob() {
 return job;
 }
 public List<TestResultData> getData() throws FileNotFoundException, IOException {
 List<TestResultData> testResultDataList = new ArrayList<TestResultData>();
 File trendFile = new File(job.getRootDir(), "test-trends.json");
 BufferedReader in = new BufferedReader(new FileReader(trendFile));
 String jsonString;
 while ((jsonString = in.readLine()) != null) {
 testResultDataList.add(jsonObjectMapper.readValue(jsonString,
TestResultData.class));
 }
 return testResultDataList;
 }
}

Code Listing index.jelly

<j:jelly xmlns:j="jelly:core" xmlns:l="/lib/layout">
 <l:layout title="${%Sample Publisher Data}" secured="true">
 <l:side-panel>
 <l:tasks>
 <l:task icon="images/24x24/up.gif" href="${rootURL}/job/${it.job.
name}" title="${%Back to Job}" />
 </l:tasks>
 </l:side-panel>
 <l:main-panel>
 <h1>

${%Sample Recorder Data}
 </h1>
 <h2>
 Test Results for job <i style="color:green"> ${it.job.name} </i>
 </h2>
 <table style="text-align:center" class="sortable pane bigtable">
 <tr>
 <th>Build No.</th>
 <th>Total</th>
 <th>Passed</th>
 <th>Failed</th>
 <th>skipped</th>
 <th>errors</th>
 <th>% Passed</th>
 </tr>
 <j:forEach var="testResult" items="${it.data}">
 <j:if test="${testResult.percentPassed != 100}">
 <j:set var="style" value="background-color:#ffe4e1"/>

09-ch09.indd 282 13/08/13 2:29 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 9: Advanced Plugin Development 283

 </j:if>
 <j:if test="${testResult.percentPassed == 100}">
 <j:set var="style" value="background-color:#DBEADC"/>
 </j:if>
 <tr style="${style}">
 <td>
 ${testResult.buildNumber}
 </td>
 <td>${testResult.total}</td>
 <td>${testResult.passed}</td>
 <td>${testResult.failed}</td>
 <td>${testResult.skipped}</td>
 <td>${testResult.errors}</td>
 <td>${testResult.percentPassed}</td>
 </tr>
 </j:forEach>
 </table>
 </l:main-panel>
 </l:layout>
</j:jelly>

An attentive reader will have noticed that SampleJobAction provides the link
action. However, the UI is associated with the model SampleRecorderData. So where
is the connection? This is using another convention; that is, a particular class can
proxy a UI to another model. This class must implement the marker class StaplerProxy,
in order for Hudson to know it delegates the UI to another model. This marker
interface defines a single method, getTarget, which returns the delegated model.
SampleJobAction implements the StaplerProxy interface, and in its implementation of
the method getTarget, it returns the delegated model SampleRecorderData. That is
how the action link of SampleJobAction displays the UI associated with the model
SampleRecorderData.

Creating a Custom Build Wrapper
The heart of building a job is the Builder, which does the real building of the job by
executing build tools like Ant, Maven, or MSBuild. In Chapter 8, we have seen how
to create a custom builder and configure it. There are plenty of free plugins available
supporting a variety of build tools. But often, preparing your sources for these build
tools to do the build may be very specific for your build system. You might want to
do a setup database for your tests or invoke a virtual machine for certain services
required by your build. For this purpose, Hudson provides an extension point called
BuildWrapper. The main purpose of BuildWrapper is to prepare your build, so it has
hooks that are called before the build starts for setup and after the build for cleanup
or teardown. Though it is possible to do sophisticated operations during the setup
and teardown phase of the BuildWrapper, in our sample plugin, sample-build-
wrapper, we are going to do a very simple action.

Our SampleBuildWrapper, which is an extension to BuildWrapper, would set an
environment variable that will be used by the builder. Assume that the builder is set to

09-ch09.indd 283 13/08/13 2:29 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

284 Hudson Continuous Integration in Practice

build certain sources based on the environment variable JDK. SampleBuildWrapper
would provide a configuration UI to set such an environment variable as a key-value
pair, for example, JDK=7.0. Since SampleBuildWrapper provides a UI, it has to define
a Descriptor and annotate it with @Extension. When our sample-build-wrapper-plugin
is loaded, the extension SampleBuildWrapper will be added to the BuildWrapper
list, and will subsequently be available in the Build Environment section of the job
configuration, as shown in Figure 9-17. The method setup is called during the setup
phase of the Build Wrapper. In this method we parse the key-value pair added to this
Build Wrapper from the job configuration page, set it to an Environment Object, and
return it as a method return value. Hudson makes sure values set to these Environment
objects are sent to the Builder object and build variables, which are in turn available
to the build tools as system-level environment variables. The Environment object
defines a method teardown, which will be called after the build completes. Any
build-related cleanup can be done in this method. In our sample, we simply get the
job-wide environment variables and search and make sure the environment variable
set by us is one of them. This is very contrived, but effectively explains the concept.

Code Listing SampleBuildWrapper.java

public class SampleBuildWrapper extends BuildWrapper {
 private String customEnvVariables;
 @DataBoundConstructor
 public SampleBuildWrapper(String customEnvVariables) {
 this.customEnvVariables = customEnvVariables;

FIGURE 9-17. Configuring the custom build wrapper

09-ch09.indd 284 13/08/13 2:29 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 9: Advanced Plugin Development 285

 }
 public String getCustomEnvVariables() {
 return customEnvVariables;
 }
 @Override
 public Environment setUp(AbstractBuild build, final Launcher launcher, final
BuildListener listener) {
 final Map<String, String> customEnvMap = new HashMap<String, String>();
 StringTokenizer tokenizer = new StringTokenizer(customEnvVariables);
 while (tokenizer.hasMoreTokens()) {
 String envVar = tokenizer.nextToken();
 if (envVar.contains("=")) {
 String keyValue[] = envVar.split("=");
 customEnvMap.put(keyValue[0], keyValue[1]);
 }
 }
 return new Environment() {
 @Override
 public void buildEnvVars(Map<String, String> env) {
 env.putAll(customEnvMap);
 }

 @Override
 public boolean tearDown(AbstractBuild build, BuildListener listener)
throws IOException, InterruptedException {
 listener.getLogger().println("\nSearching build environment ...");
 Map<String, String> buildEnvs = build.getEnvironment(listener);
 for (String key : buildEnvs.keySet()) {
 if (customEnvMap.containsKey(key)) {
 listener.getLogger().println("\nCustom key " + key + " = " +
buildEnvs.get(key) + " found.\n");
 }
 }
 return true;
 }
 };
 }
 @Extension
 public static final class SampleBuildWrapperDescriptor extends BuildWrapperDe-
scriptor {
 @Override
 public boolean isApplicable(AbstractProject<?, ?> ap) {
 return true;
 }
 @Override
 public String getDisplayName() {
 return "Sample build wrapper to set custom environment variables";
 }
 }
}

Custom Build Wrapper UI
As mentioned previously, the SampleBuildWrapper needs to provide a UI for the user
to set the environment variable as a key-value pair. As per Hudson convention, the UI
definition Jelly file needs to be config.jelly. In this UI, we define a single text area in

09-ch09.indd 285 13/08/13 2:29 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

286 Hudson Continuous Integration in Practice

which the user can set multiple environment values as whitespace-separated key-value
pairs. Upon submitting the job configuration page, Hudson would get the value from
the text area with name customEnvVariables and set it to our CustomBuildWrapper
via the constructor that is annotated with @DataBoundConstructor. After installing
the plugin to Hudson, the job configuration would display a new selectable
SampleBuildWrapper in the build environment. Upon selecting it, a text area will be
presented to the user to enter the environment variable as a key-value pair as shown.
Making sure the key-value pair the user enters is available as an environment variable
to the builders is easy. As shown in Figure 9-17, add a simple builder that executes a
shell command. In the command text area, type echo JDK=${JDK}, do a build, and
examine the console output. The output would be similar to Figure 9-18, if you set the
value of the environment variable JDK as 7.0.

Code Listing config.jelly

<j:jelly xmlns:j="jelly:core" xmlns:f="/lib/form" xmlns:t="/lib/hudson">
 <f:entry title="${%Environment Variables}"
 description="These environment variables (key=value) are set before each
build.">
 <f:textarea name="customEnvVariables"
 value="${instance.getCustomEnvVariables()}" />
 </f:entry>
</j:jelly>

FIGURE 9-18. Job with custom build wrapper console output

09-ch09.indd 286 13/08/13 2:29 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 9: Advanced Plugin Development 287

Summary
In this chapter we have seen how to extend Hudson by writing custom extensions to
various extension points. Hudson provides several well-documented extension
points to extend various parts of Hudson. There are two areas in Hudson that are
commonly extended by plugin developers. One of them is to customize the
dashboard that displays the job status information. The other common extensions
are for customizing the job and its build. In this chapter we have provided a few
examples to show how to extend these areas in Hudson. We believe this chapter
provides enough knowledge for you to read the documentation of the rest of the
extension points and build your own plugin.

09-ch09.indd 287 13/08/13 2:29 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5
Blind folio: 288

09-ch09.indd 288 13/08/13 2:29 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5
Blind folio: 289

CHAPTER
10

Hudson Best Practices

10-ch10.indd 289 13/08/13 2:30 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

290 Hudson Continuous Integration in Practice

In the previous chapters, we have seen how to set up and effectively use
Hudson for your day-to-day work. However, it is important to keep Hudson
running smoothly in your environment for better Continuous Integration

experience. Based on our real-world experience, we have gathered a few best
practices, which we have outlined in this chapter.

Manage the Hudson Resources Effectively
Nothing is infinite, including resources available in your Hudson. So the resources
need to be used effectively. In this section let us see how you can monitor and
control the usage of those precious resources.

Tune Memory
As per Oracle Java memory-tuning documentation, unless set on the command line,
the initial and maximum heap sizes are calculated based on the amount of memory
available on the machine. The proportion of memory used for the heap is controlled by
the command-line options DefaultInitialRAMFlraction and DefaultMaxRAMFraction.
Table 10-1 shows the formula to calculate the heap size and the default value.

If the machine has less than 4GB, then the maximum heap size of the Hudson
installation will be less than 1GB of system memory; if more than 4GB, then the
maximum heap size will be 1GB. While this memory setting may be good enough
to start with, it may not be high enough when the jobs in Hudson grow or if the
builds are larger. If the applications built are memory-intensive, you will probably
start seeing the build failures with Hudson complaining about heap space and
printing the following dreaded exception on the log file:

FATAL: Java heap space
java.lang.OutOfMemoryError: Java heap space

TABLE 10-1. Java Default Memory Settings

Heap Value Formula Default

Initial heap size memory /
DefaultInitialRAMFraction

memory / 64

Maximum heap size MIN(memory /
DefaultMaxRAMFraction, 1GB)

MIN(memory / 4,
1GB)

10-ch10.indd 290 13/08/13 2:30 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 10: Hudson Best Practices 291

The default maximum heap size depends on many factors. So it is better to find
out how much maximum heap is allocated to your Hudson installation, whether it is
a standalone or deployed to a container like Tomcat or JBoss. JDK comes with a neat
tool called JConsole to monitor memory. Type the command jconsole in the OS
command window and start the JConsole UI. It will automatically find all local
JVMs running processes and ask you to pick the correct one for Hudson. When you
select the process corresponding to your Hudson installation, it will display vital
resource information. Click on the VM summary panel to find out about the amount
of maximum heap size allocated and memory currently used by Hudson, as shown
in Figure 10-1.

If the machine running Hudson has enough memory and you noticed that
maximum heap allocated to Hudson is low, you can set the maximum heap size to
a higher value when you restart Hudson. Setting the memory heap values depends

FIGURE 10-1. JConsole UI showing memory usage by Hudson

10-ch10.indd 291 13/08/13 2:30 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

292 Hudson Continuous Integration in Practice

on how you run Hudson. If you are running it as a standalone, then you can set the
heap using a command like

java –jar hudson.war –Xms64m –Xmx2048m -XX:MaxPermSize=256m

If you are running Hudson as a Web application in an application server, then
the appropriate configuration file needs to be modified to include the heap settings.
For Tomcat, edit the file ${TOMCAT_HOME}/bin/setenv.sh (create it, if does not
exist) and add the following:

export JAVA_OPTS=" –Xms64m –Xmx2048m -XX:MaxPermSize=256m "

On Windows, the file is setenv.bat and the line is

set JAVA_OPTS=" –Xms64m –Xmx2048m -XX:MaxPermSize=256m "

Restrict Job History Depth
In order to improve Hudson startup time and reduce memory usage, you should
limit the stored number of builds per job. Keeping build records under control is
the best way to manage the disk usage by jobs. If possible, it’s best to discard all
unnecessary build records. In the job dashboard on the left-hand side, the build
history is displayed as shown in Figure 10-2. By default, Hudson keeps the history of
all the builds unless they are explicitly deleted. This may not be desirable if you are

FIGURE 10-2. Job build history

10-ch10.indd 292 13/08/13 2:30 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 10: Hudson Best Practices 293

practicing Continuous Integration, because builds are scheduled and created on
every commit. You should restrict the number of builds to keep per job and discard
the old jobs.

To discard the old jobs, in the Job Configurations page select the option Discard
Old Builds. This option tells Hudson how long you would like to keep records of
the builds such as console output and build artifacts created and stored by Hudson.
Hudson offers two criteria as shown in Figure 10-3:

 ■ A criterion based on age. You can instruct Hudson to delete a build if it
reaches a certain age.

 ■ A criterion based on just a number. You can instruct Hudson to make sure
that it only maintains up to a specified number of build records. If a new
build is started after that number is reached, the oldest build record will be
removed.

If you click the Advanced button, it allows you to add two more advanced
options:

 ■ The option “Days to keep artifacts” allows specifying how many days the
artifacts of a build need to be retained before they are deleted. Note that
with this option, only the archived artifacts of a build are deleted. Other
items such as the logs, history, and reports are still retained.

 ■ The option “Max # of builds to keep with artifacts” is a hint; how many
builds are allowed to keep their build artifacts?

While the basic options are for cleaning up the builds, the Advanced option is
related to cleaning up the artifacts archived in each build. The number in the

FIGURE 10-3. Criteria set to discard old build

10-ch10.indd 293 13/08/13 2:30 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

294 Hudson Continuous Integration in Practice

Advanced section must be lower than the numbers in the basic section to have any
meaning.

Assume you have 25 builds and you have set max # to keep as 10 and days to
keep as 7. First, the last 10 builds are preserved and the older 15 builds are marked
for deletion. However, if any of those 15 builds are built within seven days (days to
keep), then it is not deleted. Also, if one of those 15 builds is the last successful
build, then also it is not deleted. So if 4 of those builds are within seven days, then
net retained builds will be 10 + 4 = 14.

Hudson also allows you to mark an individual build as “Keep this forever,”
using a button in the Build dashboard to exclude certain important builds from
being discarded automatically. The last stable build and the last successful build are
always preserved.

Promote Your Good Builds and Discard Bad Builds
If you have a good build of your job, you may want to store it forever and mark it as
a “promoted” build so that others in the team can pick it up. The promoted-builds
plugin is a good candidate to do this action for you. This plugin introduces a notion
called “promotion” to distinguish good builds from bad builds. Assume you have
set up a CI build job along with comprehensive test jobs as downstream jobs. After
the CI build is successful, the downstream builds will be scheduled. If the CI build
and the corresponding tests builds are successful, then the CI build itself can be
considered a good build. With this plugin, you can configure the CI job to be marked
as “promoted” when all the downstream test jobs have passed successfully, as
shown in Figure 10-4. This is a good way to set up the CI build to complete quickly,
but have an ability to still distinguish the good builds from bad builds that compiled
fine in the CI build but failed long-running extensive tests in the downstream builds.

This plugin also allows multiple levels of promotions. This is useful in case
multiple levels of staged testing are required before a build can be promoted as
production-ready. Once a build is promoted, it will get a star in the build history view,
denoting that other teams can pick it up and use it for another purpose such as
deploying to the staging area. Providing an appropriate colored icon (see Figure 10-5),
which is used as a promotion star, is very useful. It would give an idea about what
stage of promotion the particular software project is in. For example, a blue color
star could represent integration test promotion. A purple star could be used
for performance test promotion, and a gold star for User Acceptance Test (UAT)
test promotion. When the gold star promotion happens, the build can be declared
production-ready. Automating this complex scenario leads to an excellent way to
practice Continuous Delivery.

Though the automated software project builds have reached a gold level of
promotion, often it may be required that someone go to the Hudson Web UI and
click the “Approve promotion” button. This is useful when the promotion process
requires a human “sign-off” within the build, something like a QA hand-off to

10-ch10.indd 294 13/08/13 2:30 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 10: Hudson Best Practices 295

FIGURE 10-4. Build promotion when downstream jobs are successful

FIGURE 10-5. Multiple levels of promotion

10-ch10.indd 295 13/08/13 2:30 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

296 Hudson Continuous Integration in Practice

production. This is possible by adding the criterion “Only when manually approved”
as shown in Figure 10-6. In this field you can list user names or groups that are
allowed to approve the promotion. The approvers go to the Build dashboard and
click the Promotion Status link in the left panel to go to the promotion status page
to do the approval.

Finally, as part of reducing disk space usage, you can use the promoted-builds
plugin to do artifact storage effectively. Usually the artifacts of a build are stored on
each build. It may be desirable to store the artifacts only when a good build happens.
With build promotions, you can push only when an artifact meets certain criteria. For
example, you might want to push it only after an integration promotion happened in
an upstream job. Select the criteria you want to use for the promotion to happen and
then add a post-build action, “Archive the artifacts,” as shown in Figure 10-7. The
post-build action will be executed only if all of the selected criteria are met.

Monitor the Disk Space
In a CI environment, builds are done continuously on every commit. Each build
takes up space in the disk. Depending on the size of each build, the disk may soon
fill up and Hudson will stop building. It is advisable to reduce the number of builds

FIGURE 10-6. Manual promotion

10-ch10.indd 296 13/08/13 2:30 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 10: Hudson Best Practices 297

stored by each job, as we discussed earlier. It is equally advisable for the Hudson
admin to monitor the disk space and raise a red flag when a particular job consumes
too much space. The Hudson disk-usage plugin is very handy for this job.

After installing this plugin, a new entry appears on the left-hand side panel
called Disk Usage. When you click it, it takes you to a page where jobs along with
the disk space used by each job are displayed, as shown in Figure 10-8. Identifying
the jobs consuming an unreasonable amount of disk space and warning the job

FIGURE 10-7. Archiving artifacts when given criteria are met

FIGURE 10-8. Disk usage by jobs

10-ch10.indd 297 13/08/13 2:30 PM

298 Hudson Continuous Integration in Practice

owner to clean up the unwanted builds is a good practice. The disk-usage plugin
scans the jobs in the Hudson Home folder every 60 minutes to calculate the disk
usage. You can click the Record Disk Usage button on the page to force a scan.

As a job owner, it is your responsibility to monitor the disk space used by the
builds of your job and delete the unwanted builds stored. By default, the disk-usage
plugin only shows the total disk usage on the Job page. If the “Show disk usage
trend graph on the project page” option is checked in the System Configurations
page, the disk-usage plugin adds a disk usage trend graph on the right-hand side of
the job dashboard, as shown in Figure 10-9. The disk-usage plugin also displays the
disk usage for each build in the Build History. Use that information to identify builds
occupying lots of space and delete them if not required.

Put Your Hudson Behind a Web Proxy
In general, HTTP or Web servers are configured to run on port 80. On UNIX
machines, generally the Apache Server is installed and used. On Windows, one
can install and use the freely available Nginx Server. URLs that access HTTP
servers on port 80 need not explicitly specify the port number. The URL http: //
myserver.mycompany.com/ is equivalent to http: //myserver.mycompany.com:80/.
By default, when you run Hudson in a standalone mode, the port used is 8080. In
order to access the Hudson server, you need to specify the URL as http: //myserver
.mycompany.com:8080/. Even if you deploy Hudson to an application server like
Tomcat or JBoss, with context “hudson,” these application servers still may be
using a port other than 80 and must be accessed using a fully qualified URL,

FIGURE 10-9. Disk usage trend per job

Chapter 10: Hudson Best Practices 299

something like http: //myserver.mycompany.com:8081/hudson. Often you may
want to completely hide the Hudson server (standalone or deployed to an
application server) behind the HTTP server (shown in the following illustration)
for a few reasons:

Web Server Front
(Apache, Ningx)

Reverse
HTTP Proxy

Hudson Artifact
Archiver

Build
Artifacts

Static
Resources

 ■ Ability to access Hudson with a more readable URL, such as http: //myserver
.mycompany.com/hudson

 ■ Only port 80 may be open in the machine where Hudson is installed

 ■ For maximum performance, stability, and scalability

 ■ Make static contents available through HTTP server

In order to front the standalone Hudson with the Apache Server, first Hudson
must be run with a proper context path, say hudson. For that, use the following
command line to run Hudson:

$ java -jar hudson.war --prefix=hudson

Similarly, when Hudson is deployed as a Web application to Tomcat, make sure
it has the correct context path, say hudson. The context path is used when you
modify the Apache Server configuration to do the proxy pass.

Next, modify the Apache Server configuration file to do the proxy pass. The
place where the Apache Server configuration file is stored depends on the OS. On
most Linux and Mac UNIX machines, it is /etc/apache2/httpd.conf. You can edit this
file and include the appropriate configuration.

300 Hudson Continuous Integration in Practice

NOTE
On some recent UNIX versions, another method is
supported rather than editing the httpd.conf file. Any
.conf file created in the folder /etc/apache2/other
will be included in the master configuration httpd
.conf. For example, if you create /etc/apache2/other/
proxy.conf and put the proxy information there, at
run time it will be included in the httpd.conf.

With the context path set up as shown, include the following content in the
configuration file.

ProxyRequests Off
ProxyPass /hudson http://localhost:8081/hudson
ProxyPassReverse /hudson http://localhost:8081/hudson

Once the Apache configuration file is modified, restart the Apache Server for the
proxy pass to take effect.

$ sudo /etc/init.d/httpd –k restart
Stopping httpd: [OK]
Starting httpd: [OK]

Now Hudson can be accessed with the simpler URL http: //myserver.mycompany.
com/hudson.

The specific paths in the preceding examples may vary depending on platform and
installer. Variables include the location and name of the Apache Server binary, the
location of the httpd.conf file, and the location of additional .conf files included by
the httpd.conf file. Consult your platform-specific Apache documentation for details.

Do Not Use Your Hudson as a File Server
It is true that Hudson acts as a file server. The build artifacts and source files checked
out at the job workspace can be downloaded from Hudson. However, for better
performance and stability, it is better to keep Hudson executing the builds rather
than serving build artifacts. We have come across issues where Hudson has dropped
to its knees and crawled while someone in the team decided to download several
large files (as large as 2GB) that were stored as build artifacts. The whole CI setup
would work great if those huge files were served through far superior content servers
such as Apache Server rather than Hudson.

To use Apache HTTP Server to serve the files, first copy the files from Hudson
builds to the desired location on the machine where the server is located, say /var/
hudson/artifacts. Several free plugins are available to do the copying or uploading:

Chapter 10: Hudson Best Practices 301

 ■ If both Hudson and Apache Server are on the same machine, then use the
copyarchiver plugin. This plugin allows aggregating archived artifacts from
several jobs into a shared location. Only the archived artifacts of the last
successful build will be copied.

 ■ If Apache HTTP Server is not in the same machine as Hudson Server, then
the ftppublisher plugin can be used (refer to the section “Uploading Build
Artifacts to Another Machine” in Chapter 4), which allows copying files
from a particular build to another machine via the FTP protocol. Similarly,
if you have SSH access between the two machines, then the SCP plugin
can be used.

Once the files are available in the machine where Apache HTTP Server is
running, then it is easy to configure it to serve the files. Let’s say you want the users
to download the build artifacts from http: //myserver.mycompany.com/hudson-files;
then modify the Apache configuration file and include the following:

Alias /hudson-files /var/hudson/artifacts
<Directory "/var/hudson/artifacts">
 Options Indexes FollowSymLinks
 Order allow,deny
 Allow from all
</Directory>

As long as the /var/hudson/artifacts folder doesn’t contain any Web pages, it
will be displayed as a list of files that can be downloaded and folders that can be
navigated. You can also use a .htaccess file to control how the directory is displayed.

Periodically Back Up Your Hudson Contents
Hudson configuration files, job configurations, and some build artifacts should be
periodically backed up. Since the workspace is a transitional item, it may not be
required to back up its contents. There are a few plugins in Hudson to do backup
and restore. Two plugins that are useful are

 ■ Backup This plugin allows you to back up the Hudson home. Since it
backs up the entire Hudson home along with all contents, the backup is
triggered manually via UI in the Hudson dashboard.

 ■ ThinBackup This plugin is slightly different than the Backup plugin;
it backs up only the vital configuration files. It can be scheduled to do
periodic backup.

The Backup plugin provides a Backup Manager, which is responsible for
performing the backup operations. The Backup Manager is started from the Manage

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

302 Hudson Continuous Integration in Practice

Hudson page by clicking the link “Backup manager.” The Backup manager page, as
shown in Figure 10-10, contains links to

 ■ Configure backup settings (using the Setup link)

 ■ Back up Hudson’s configuration (using the “Backup Hudson configuration”
link)

 ■ Restore Hudson’s configuration from a previous backup (using the “Restore
Hudson configuration” link)

The Setup link opens the configuration page of settings used by the backup
manager when it performs the backup, as shown in Figure 10-11. The main properties
that can be configured in this page are

 ■ Backup directory (the directory where the backup files should be kept).

 ■ Whether to back up only the XML configuration files.

 ■ Format of the backup, such as zip, tar.gz, or tar.bz2.

 ■ Template for the backup file name. The default is backup_@date@
.@extension@. The token @date@ is replaced by the date and time using
YYYYDDMM_hhmm format. The @extension@ token is replaced by the
chosen compression format.

 ■ Contents to back up such as workspace, builds history, Maven artifacts, and
fingerprints.

FIGURE 10-10. Backup manager page

10-ch10.indd 302 13/08/13 2:30 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 10: Hudson Best Practices 303

The Backup plugin allows backing up the contents manually. You have to go to the
Backup manager page and click on the “Backup Hudson configuration” link to start
the backup. When backup starts, the Backup manager tries to send a shutdown signal
and wait for all jobs to finish building. But it does not actually shut down Hudson; it
just keeps it in a quiet mode, so no jobs will run during the backup period. This is
done mainly to make sure no files are written to the folder being backed up when
the backup happens. This behavior can be changed by checking “No shutdown” in
Backup Setup to not send the shutdown signal and start the backup immediately even
though some jobs may be building. This is not recommended. The log output of the
backup looks something like the following:

[INFO] Backup started at [04/03/13 20:31:30]
[INFO] Setting hudson in shutdown mode to avoid files corruptions.

FIGURE 10-11. Backup manager setup

10-ch10.indd 303 13/08/13 2:30 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

304 Hudson Continuous Integration in Practice

[INFO] Waiting all jobs end...
[INFO] Number of running jobs detected : 0
[INFO] All jobs finished.
[INFO] Full backup file name : /Users/wjprakash/Hudson/backup/backup_20130403_2031.tar.gz
[INFO] Saved files : 1286
[INFO] Number of errors : 0
[INFO] Cancel hudson shutdown mode
[INFO] Backup end at [04/03/13 20:32:31]
[INFO] [60.994s]

To restore from the backup, go to the Backup manager page and click on the
“Restore Hudson configuration” link. This brings up the Backup Manager Restore page
and lists the available backups available as shown in Figure 10-12. Select the backup
you want to restore and click the Launch Restore button to start the restore. All the
files will be extracted to the restore folder, which can be used to replace the contents
at Hudson Home. The log output would look something like the following:

[INFO] Restore started at [04/03/13 20:48:54]
[INFO] Working into /Users/wjprakash/Hudson_Home/Hudson_Home_restore directory
[INFO] Uncompressing archive file...
[INFO] Copying temporary directory to the hudson home...
[INFO] ***
[INFO] Reloading hudson configuration from disk.
[INFO] ***
[INFO] Backup end at [04/03/13 20:49:26]
[INFO] [32.598s]

Setting up the thinBackup plugin is very similar to Backup. Unlike the Backup
plugin, it can perform backup on a scheduled time. It is also possible to set up a
differential backup between full backups. The thinBackup manager also has a page
with links to do setup (Settings), manual full backup (Backup Now), and restore from

FIGURE 10-12. Backup Manager Restore page

10-ch10.indd 304 13/08/13 2:30 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 10: Hudson Best Practices 305

backup (Restore). The thinBackup Configuration page has a few additional settings
(see Figure 10-13):

 ■ Backup schedule for full backups – to specify the execution schedule in a
cron-like notation when a full backup should be done. (For example: The
value 0 12 * * 1-5 executes at 12:00 noon every weekday; Monday
to Friday).

 ■ Backup schedule for differential backups – the schedule is specified the
same as full backup. A differential backup stores only complete files whose
modification is done after the last full backup. For a differential backup to
happen, there should be at least one full backup. So a full backup always
happens first.

FIGURE 10-13. ThinBackup settings

10-ch10.indd 305 13/08/13 2:30 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

306 Hudson Continuous Integration in Practice

 ■ To save disk space you can specify the maximum number of backup sets to
keep. A backup set is defined as a full backup together with its referencing
differential backups.

 ■ An option to clean up the differential backup when full backup happens.

 ■ Options to specify contents to include in the backup such as build results,
build archives, builds marked to keep, “userContent” folder, and next build
number file.

A restore operation is slightly different in the thinBackup plugin compared to the
Backup plugin. The thinBackup restore operation provides the date and time of the
backup rather than the actual backup filename. Also it provides an option to restore
the plugins and the next build number file, as shown in Figure 10-14. ThinBackup
automatically restores the contents directly into the Hudson home folder. For safe
restoration of files, the thinBackup manager sends the shutdown signal to keep
Hudson from scheduling any job while a restore happens.

Set Up a Fail-Safe Mode for Your Hudson
Assume that you have set up Hudson to do Continuous Integration and Continuous
Delivery, and it is mission critical to keep it online all the time. This is often the case
with large enterprises where multiple teams and hundreds of developers depend on
the smooth running of Hudson. To meet this need, set up Hudson in a fail-safe mode.

FIGURE 10-14. ThinBackup restore operation

10-ch10.indd 306 13/08/13 2:30 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 10: Hudson Best Practices 307

The schematic shown in the following illustration is based on our experience in
setting up a fail-safe Hudson at our organization.

Hudson Home
(NAS)

Main Hudson Server Passive Hudson ServerMonitoring
Hudson

Load Balancer

User User

Redundant Hudson Server Setup
The basic idea behind this setup is that there are three Hudson instances available. The
first two act as the main master and its redundant server, which is in a Passive mode
(not running, but can be invoked at a moment’s notice). The third is used for monitoring
the main master. If the master stops working for some reason, the redundant server will
be booted up to take over the tasks of master until the master’s issues are fixed and it
can be brought back online. In order to set up this fail-safe mode, some important
points need to be considered.

The first important point is that the Hudson home needs to be network-
accessible to both the master and redundant Hudson instances. When the master
fails, the redundant server boots using the same Hudson home and loads the exact
same configuration as the main master. There may be an issue with jobs that were
executing at the time of failure. They might not have completed and may need to
be manually restarted again. Though Hudson by itself is not smart enough to start
those interrupted jobs, there are free plugins available to check and restart
interrupted jobs after a fresh reboot.

10-ch10.indd 307 13/08/13 2:30 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

308 Hudson Continuous Integration in Practice

Another point to consider is that all three Hudson instances should run on
separate machines. Here we are taking into consideration two forms of failure:
OS-level failure (including hardware-related) and Hudson software-level failure.
If both the master and redundant Hudson servers are running on the same machine,
and if the failure is only due to no response from the Hudson master because
of Hudson software failure, then the redundant server can be easily booted up.
On the other hand, if there is an OS-level failure on the machine where the two
servers are running, then the redundant server also will be unreachable. The most
fail-safe configuration is to have all three Hudson instances running on three
different servers.

Monitoring Hudson Setup
The sole task of the Monitoring Hudson is just to make sure the master Hudson is
up and running. It runs periodically and checks if the main Hudson server is alive.
If not, boot up the redundant Hudson server and notify the operation team about
the failure. Setting up such a job is easy. Create a job, add the builder Execute shell,
and add the command

curl http://hudson-master.mycompany.com/rest/status

In order for this command to work correctly, the REST plugin must be installed
in the master Hudson. The command returns the following XML:

<ns2:status>
 <url>hudson-master.mycompany.com</url>
 <version>3.0.1</version>
 <initLevel>COMPLETED</initLevel>
 <quietingDown>false</quietingDown>
 <terminating>false</terminating>
 …
</ns2:status>

The next setup adds a build trigger to schedule job execution periodically. Select
the build trigger “Build periodically” and provide a value. The value provided needs
to follow the UNIX-style cron syntax; for example, @hourly to run it every hour or
*/15 * * * * to run it every 15 minutes. When the job is able to successfully fetch the
XML, then we know the master is responding. But this response does not mean the
master is working flawlessly and able to execute all the jobs. In the monitoring job,
it is possible to do much more than the simple curl call we explained previously. In
our setup we have developed a much more sophisticated way of querying Hudson
using Hudson’s REST API and reacting to the results we obtain.

When the monitoring job is unable to communicate with the Hudson master,
we know something is wrong with the master. The first thing the monitoring job does

10-ch10.indd 308 13/08/13 2:30 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 10: Hudson Best Practices 309

is to notify the operation team via e-mail. In our setup, we have used the email-ext
plugin to send advanced messages rather than the default one supported by the
built-in Hudson e-mail mechanism.

Server Switch on Failure
The next step is to set up the Monitoring Hudson to boot the redundant server when
the master fails. This is done through another job. This job uses the SSH plugin to run
the command on the remote server. To know how to configure the SSH plugin to do
remote execution, refer to the section “Executing Commands on Remote Machine” in
Chapter 4. When the SSH plugin is added to Hudson, it adds a builder called “Execute
shell script on remote host using ssh.” This builder is used to run the command to boot
the redundant Hudson server, as shown in Figure 10-15.

For this setup to work correctly, the user running the Monitoring Hudson must
have SSH access to the machine running the redundant server. In our setup we have
configured password-less SSH access as explained in the section “Setting Up Public-
Private Key-Based Authentication” in Chapter 7.

Once the job for booting the redundant server is ready, it must be set up to execute
when the job to monitor the Hudson master fails. This can be accomplished by using
the parameterized-trigger plugin. This versatile plugin allows triggering another build
of another job from the build of the current job under various conditions. One of the
conditions is only when the current build fails. This is very handy to trigger the build of
the job booting the redundant server from the job monitoring the master Hudson when
it fails, as shown in Figure 10-16.

FIGURE 10-15. SSH command to boot redundant server

10-ch10.indd 309 13/08/13 2:30 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

310 Hudson Continuous Integration in Practice

Redirecting HTTP Traffic to a Redundant Server
The final step is redirecting the HTTP traffic going to the Hudson master to the
redundant Hudson server. In our setup we have a load-balancer that directs the
traffic to the Hudson master. So it is easy to redirect the traffic to the redundant
server in the load balancer. If you don’t have a load balancer, there is an easier way
to accomplish this. For this, the Apache HTTP server must front your Hudson, as we
explained in the section “Put Your Hudson Behind a Web Proxy.” Also you should
have proper access to start and stop the Apache Server via SSH. Create two proxy
configuration files; say proxy.conf.redundant, in the same folder as proxy.conf.
master. Their contents are:

proxy.conf.master
ProxyRequests Off
ProxyPass /hudson http://hudson-master.mycompany.com:8080/hudson
ProxyPassReverse /hudson http://hudson-master.mycompany.com:8080/hudson

proxy.conf.redundant
ProxyRequests Off
ProxyPass /hudson http://hudson-redundant.mycompany.com:8080/hudson
ProxyPassReverse /hudson http://hudson-redundant.mycompany.com:8080/hudson

Originally when the Hudson master is up and running, the contents of proxy.
conf.master will be copied to /etc/apache2/conf/other/proxy.conf. When the
redundant server is booted by the job via SSH, the same job could restart the
Apache HTTP server after copying the content of proxy.conf.redundant to /etc/
apache2/conf/other/proxy.conf. This will make sure the behind-the-scenes switching
of Hudson master and redundant server is transparent to the end user.

FIGURE 10-16. Triggering job to boot redundant server from monitoring job

10-ch10.indd 310 13/08/13 2:30 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 10: Hudson Best Practices 311

One additional thing that can be set up is letting the Monitoring Hudson continue
to monitor the main Hudson server when it is down. When the master is successfully
booted, the second job could shut down the redundant server and route the traffic
back to the Hudson master server, by copying the file proxy.conf.master to /etc/
apache2/conf/other/proxy.conf and restarting the Apache Server.

The preceding path is just an example. The folder of other .conf files Apache will
include when it starts up may be different depending on platform, installer, Apache
version, and so on. If you can’t find one, you can always create one and add an
Include other/*.conf directive to the main .conf file.

Scale Up the Security of Your Hudson
In order to support multiple teams in a single Hudson instance, it must be properly
secured so that the privileges to various functionalities can be restricted to certain
members of the team. Out of the box, Hudson is open. In Chapter 3, we discussed
how to secure your Hudson with simple authentication based on Hudson’s own user
database mechanism. Also we discussed how to set up authorization using the
matrix-based security mechanism. In this chapter let us see how to restrict job
configuration access to certain users in Hudson and how to restrict the authorizations
based on roles.

Restrict Job Access to Certain Users
The Matrix Authorization Strategy we saw in Chapter 3 either allows certain access
(like create, delete, configure, or read) to all jobs or denies the access to all jobs.
However, if different teams share Hudson, then you want to give job access only to
certain users. In order to restrict user access to certain jobs, you must enable the
Job-based Matrix Authorization Strategy by using the Configure Security link in the
Manage Hudson page. This mode is an extension to matrix-based security. Specifying
the global authorizations is exactly same as the regular Matrix Authorization Strategy
we saw in Chapter 3. However, with job-based matrix authorization enabled, the job
configuration page gets a new authorization entry, as shown in Figure 10-17. This is
where you restrict the access to that job.

FIGURE 10-17. Restricting job access authorization

10-ch10.indd 311 13/08/13 2:30 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

312 Hudson Continuous Integration in Practice

In order for this to work properly, you should set the global authorizations for
anonymous as overall read permission and jobs read permission. Only the admin
users have all the permissions, including creating the job. Now you want to have a
way for users to request the creation of jobs. Figure 10-18 shows an example of how
the end user of Hudson can request a job using the Hudson instance.

This screenshot is from an Eclipse Hudson instance. Adding HTML to the System
Messages field in the Configure System page adds the links shown in Figure 10-18.
On the right-hand side, there is a link Request a New Job. Clicking this link takes you
to a wiki page that explains how to request a new job. Basically any Eclipse committer
who is active in a project can request a new job. As explained in the wiki page, the
new job request is done by creating a new bug in the Eclipse Bugzilla, under the
component Community and subcomponent Hudson. This Bugzilla component is
actively monitored by the Hudson admins. Once they create the new job, the bug is
closed and the committer gets notification about the creation. Only the requesting
committer gets access to configure the job. This is because, when the job is created,
the admin sets the authorization in the job configuration page, as shown earlier in
Figure 10-17.

FIGURE 10-18. Request to create a job at the Eclipse Hudson instance

10-ch10.indd 312 13/08/13 2:30 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 10: Hudson Best Practices 313

NOTE
Since the user has configure access to the newly
created job, the user has permission to add other
users or groups to access the job by adding them
to the job authorization matrix. If by mistake the
users who have job configuration permission click
the red button and delete themselves from the job
authorization matrix, they lose the access to the job
and they have to rely on the Hudson admin or other
users who still have configuration access to the job
to add them back in the authorization matrix.

Add Roles to the Authorization Matrix
By default, Hudson does not have the concept of Roles. Either an individual user or
group of users can be added to the authorization matrix. The Role-based Authorization
Strategy plugin fills this gap. The basic concepts of this plugin are creating roles, setting
authorizations for these roles, and then assigning roles to users or groups of users.

In order to use role-based authorization, you must go to the Configure Security
page and select Role-based Strategy in the Authorization section. Once this setting has
been saved, a new link called Manage and Assign Roles appears in the Manage
Hudson page. Clicking the link takes you to the corresponding page where you see two
links for Manage Roles and Assign Roles. The creation of roles and setting authorizations
is done in the Manage and Assign Roles page, as shown in Figure 10-19.

In this page, you can create your own roles and assign authorizations to roles.
There are two types of roles:

 ■ Global roles, such as admin, job-admin, job-creator, and so on, that are
allowed to authorize Overall, Slave, Job, Run, View, and SCM authorizations
on a global basis.

 ■ Job roles for assigning certain Job-, Run-, and SCM-level authorizations
only to certain jobs. The set of jobs to which this role applies is specified
in the pattern field as a regular expression. For example, if you set the
field to sherwood-.*, then the role will match all jobs names that start
with sherwood-. Note that the pattern is case-sensitive. To perform a case-
insensitive match, use (?i) notation, for example, upper, Sherwood-.* versus
lower, sherwood-.* versus case-insensitive, (?i)sherwood-.*.

10-ch10.indd 313 13/08/13 2:30 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

314 Hudson Continuous Integration in Practice

Once the roles are created, the next step is assigning roles to users or a group of
users. The users and group of users must exist in the Security Realm as explained in
Chapter 3. Clicking the Assign Roles link in the Manage and Assign Roles page takes
you to the page where a single user or group of users can be assigned roles created as
explained earlier, as shown in Figure 10-20. As you can see, the newly created roles
appear in the roles assignment matrix. Once the roles are assigned to a user or group
of users, when the particular user logs in, the user will only have authorizations
assigned to that role.

FIGURE 10-19. Creating roles and assigning authorizations

10-ch10.indd 314 13/08/13 2:30 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 10: Hudson Best Practices 315

Upgrade Your Hudson Diligently
Upgrading Hudson is always a matter of discussion. We have often heard the story:
my Hudson is broken after upgrading to the latest version. As with upgrading any
enterprise software, it is of the utmost importance to take every precaution while
upgrading Hudson. Sure, it is very easy to upgrade Hudson. If you are using
standalone Hudson, it is just a matter of downloading the new war, shutting down
the older version, replacing it with the newer version, and running the latter with the
command as explained in Chapter 1. If Hudson is deployed as a Web application,
then it is as simple as undeploying the older version and deploying the newer
version. However, it is your responsibility to make sure the upgraded Hudson works
well with the existing Hudson home and its content.

FIGURE 10-20. Assigning roles to a user or group of users

10-ch10.indd 315 13/08/13 2:30 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

316 Hudson Continuous Integration in Practice

The Hudson team works hard to make sure backward compatibility is maintained.
However, each Hudson installation is different and the configurations and build
artifacts differ vastly from one installation to another, making it impossible to
predict whether every Hudson upgrade will be 100 percent successful and
backward compatible. So, it is up to the Hudson admin to make sure that upgrading
to a newer version does not break the current build environment. This section
discusses some basic principles to follow while upgrading Hudson and its plugins.

Understand the Hudson Versioning Scheme
First and foremost, it is important to understand the Hudson versioning scheme and
the release schedule for the core component. From version 2.0 onward, the Hudson
team has adopted the sequence-based software versioning scheme. Each release is
assigned a unique identifier that consists of one or more sequences of numbers or
letters: major.minor.maintenance. For example: 3.0.0 is a major release, 3.1.0 is a
minor release, and 3.0.1 is a maintenance release.

When upgrading your Hudson to a maintenance release, you can usually let
your guard down and upgrade without much fuss. If the version of your current
Hudson is 3.0.0 and if a newer version, 3.0.1, is available, then it may be okay to
upgrade without exhaustive testing of the new version. We recommend upgrading
to this maintenance version as soon as it is available. The Hudson team releases
such maintenance versions periodically, usually every month after a major release.
A maintenance release includes only bug fixes and is guaranteed not to include any
new feature or API changes.

New features are always in demand. The Hudson team implements such features
based on popular demand. When new features are added to Hudson, it is released
as a minor release. Minor releases usually happen every three to four months. If a
newer version of the minor release, 3.1.0, is available, then you should upgrade
with some caution. With the minor release, some of the bundled external libraries
and plugins may get upgraded to support the new feature. There is a minor risk of
core platform changes associated with new feature implementation. A new UI may
be added, but it is guaranteed that there will not be any API changes. Still, there is a
minor risk of breaking some plugins.

Finally, a major release of Hudson provides no guarantee of backward
compatibility of bundled external libraries and may include API changes. Major
releases are a next step in Hudson development. To take this bold step, the Hudson
team may have to sacrifice backward compatibility for better future operation. There
is a major risk involved in upgrading to a major release. You must take every caution
when upgrading to this release. Even in a major release, the Hudson team tries hard
to keep backward compatibility. If backward compatibility is broken, then they take
care to document the changes and to provide an upgrade path to migrate existing
configuration and build artifacts to the next major version.

10-ch10.indd 316 13/08/13 2:30 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Chapter 10: Hudson Best Practices 317

Upgrade in a Sandbox First
This principle is highly recommended when upgrading your Hudson to a major
release, and we also recommend following it for minor and maintenance releases.
It is seldom wise to directly upgrade your production Hudson; never if it is a major
release. To upgrade safely, we recommend creating a sandbox instance of your
Hudson installation. A sandbox instance is nothing but another instance of Hudson
that is set up to use a different Hudson home and different port (if running on the
same machine) than the production Hudson. You could even run it on a different
machine than the production Hudson. Some important points to remember while
setting up the sandbox Hudson:

 ■ Before upgrading, plugins in both production and sandbox must have the
exact same versions.

 ■ The sandbox should have a good representation of jobs (preferably all jobs)
that exist in the production version.

 ■ The configuration of jobs in the sandbox must be exactly same as that of the
jobs in the production version.

 ■ The sandbox Hudson should also be set up to build on the same slave
machines that are used by the production Hudson. However, be careful
not to use the same Slave home used by the production slaves.

 ■ If the production Hudson is behind an HTTP proxy server, also put the
sandbox Hudson behind the proxy server, giving meaningful URLs. For
example, the Eclipse Foundation uses http://hudson.eclipse.org/hudson
for the production Hudson and http://hudson.eclipse.org/sandbox for the
sandbox Hudson.

 ■ If the production server exports artifacts to a production repository or an
external location meant for the production use, make sure to redirect the
artifacts produced in the sandbox instance to a nonproduction repository
or location.

Keep this sandbox Hudson always ready for future upgrades. When upgrading,
first upgrade Hudson in this sandbox. Let it run for several days, even weeks, to
make sure builds happen fine in the sandbox environment. If you are upgrading and
find any issues, work with the Hudson team via the Eclipse Hudson forum and
Eclipse Bugzilla to resolve the problems. Make sure all the plugins work properly,
and upgrade to newer versions if necessary. If you file bug reports about any issues
you found while upgrading to a major release, wait until the next maintenance
release and upgrade the sandbox to the maintenance release to make sure the bugs
have been fixed. When you are fully satisfied with the results in the sandbox, go

10-ch10.indd 317 13/08/13 2:30 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

318 Hudson Continuous Integration in Practice

ahead and upgrade your production environment. After upgrading the production
environment, be careful to keep the sandbox environment identical. At this point
your sandbox environment will be ready for the next upgrade.

Upgrading plugins also must be considered similar to upgrading the core Hudson.
Unless you are sure from the release notes of the plugin, you should first use the
sandbox Hudson to make sure the plugin upgrade will not break your production
environment. Though plugins can be easily installed and rolled back if broken, it is a
best practice to use the sandbox instance to verify the upgrade first in order to maintain
a stable production environment.

Summary
In this chapter we have seen some best practices one can follow to keep a Hudson
installation running smoothly. We saw that fine-tuning the memory used by Hudson,
cleaning up unwanted builds, and monitoring the disk space used by builds is the
best way to manage the finite resources available to Hudson. Putting Hudson behind
a Web proxy and not using Hudson as a file server are the best ways to ensure a
better-performing Hudson. We also saw how to create a fail-safe mode for Hudson.
Notwithstanding all these precautions, a low percentage possibility of Hudson failing
can never be eliminated. So we saw that it is always advisable to back up build data
using a backup manager. We discussed how to augment Hudson security using job-
based and role-based authorization. We finished by explaining the principles one
must follow to upgrade Hudson smoothly.

10-ch10.indd 318 13/08/13 2:30 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5
Blind folio: 319

PART
IV

Appendixes

11-AppA.indd 319 13/08/13 2:30 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5
Blind folio: 320

11-AppA.indd 320 13/08/13 2:30 PM

This page has been intentionally left blank

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5
Blind folio: 321

APPENDIX
A

Widely Used
Hudson Plugins

321

11-AppA.indd 321 13/08/13 2:30 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

322 Hudson Continuous Integration in Practice

As we have seen in Chapter 4, the three main concepts of Continuous
Integration, Test-Driven Development, and Continuous Delivery or
Deployment are the solid supporting pillars of a successful agile team.

Hudson CI Server is one of the best tools to practice the three concepts
successfully. The plain stock Hudson Server may not be fully suitable to achieve
these goals. It has to be augmented with some of the hundreds of freely available
plugins, based on the specific needs. However, choosing the right plugin is a
tedious task. To help in choosing the right kind of plugin, in this appendix we have
listed the popular plugins by category, based on wide usage by Hudson users.

The popularity of the plugins is determined by two criteria. The first is the number
of installs. If configured to send Usage Stats, Hudson sends the stats to the Hudson
Community infrastructure. The Hudson team analyzes these statistics and determines
the most widely used plugins. The second is the community activity around the plugins
in terms of forum postings or issues or enhancement requests using Eclipse Bugzilla.

We have grouped the plugins based on some of the CI guidelines we
discussed in Chapter 4, as listed here:

 ■ Maintain a single-source repository

 ■ Automate the build

 ■ Every commit should build the mainline on an integration machine

 ■ Make your build self-testing

 ■ Make it easy for everyone to get the latest executable

 ■ Everyone can see what is happening

 ■ Test in a clone of the production environment

 ■ Automate deployment

Maintain a Single-Source Repository
This guideline encourages the project team to use a centralized SCM system to
maintain their source code. Hudson supports various SCM systems via plugins.
The popularly used SCM plugins are listed here. Hudson additionally supports 20
more SCM vendors.

Plugin Description Documentation URL

Git Provides support to use Git, a
free and open-source distributed
version control system in Hudson.

http://wiki.hudson-ci
.org/display/HUDSON/
Git+Plugin

11-AppA.indd 322 13/08/13 2:30 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Appendix A: Widely Used Hudson Plugins 323

Plugin Description Documentation URL

CVS This plugin integrates Hudson
with the Concurrent Versioning
System (CVS) SCM.

http://wiki.hudson-ci
.org/display/HUDSON/
Cvs+Plugin

SVN This plugin adds support for the
Subversion SCM, an open source
project at Apache Foundation.

http://wiki.hudson-ci
.org/display/HUDSON/
Subversion+Plugin

Perforce With this plugin you can use a
Perforce Client spec that will
synchronize files to the Hudson
workspace.

http://wiki.hudson-ci
.org/display/HUDSON/
Perforce+Plugin

ClearCase With this plugin you can use
either base ClearCase or UCM
ClearCase as the SCM for Hudson
projects.

http://wiki.hudson-ci
.org/display/HUDSON/
ClearCase+Plugin

Mercurial With this plugin, you can use
a Mercurial repository as SCM.
Every build will run hg pull -u
to bring the tip of the branch
repository.

http://wiki.hudson-ci
.org/display/HUDSON/
Mercurial+Plugin

Automate the Build
Automating the build using a single command is an important principle of a CI
build. Hudson supports various build tools via plugins, and popular ones are listed
next. Hudson additionally supports more than 40 build tools.

Plugin Description Documentation URL

Ant Ant support is integrated into
the Hudson platform.

http://wiki.eclipse.org/
Using_Hudson

Maven This plugin adds the Maven
3 build step to a Hudson
free-style job.

http://wiki.hudson-ci
.org/display/HUDSON/
Maven+3+Build+Plugin

Gradle This plugin makes it possible to
invoke a Gradle build script as
the main build step.

http://wiki.hudson-ci
.org/display/HUDSON/
Gradle+Plugin

MsBuild This plugin allows you to use
MSBuild to build .NET projects.

http://wiki.hudson-ci
.org/display/HUDSON/
MSBuild+Plugin

11-AppA.indd 323 13/08/13 2:30 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

324 Hudson Continuous Integration in Practice

Plugin Description Documentation URL

Nant This plugin allows for the
execution of a Nant build as a
Hudson build step.

http://wiki.hudson-ci.org/
display/HUDSON/NAnt+Plugin

Rake This plugin allows Hudson to
invoke Rake tasks as build steps.

http://wiki.hudson-ci.org/
display/HUDSON/Rake+plugin

Before the build starts, it must be prepared for proper build. Hudson supports
various build wrappers by using plugins. They can be used to preprocess the build
environment. Build wrappers are usually very specific to the software project. The
following are widely used, and Hudson supports an additional 25 build wrappers.

Plugin Description Documentation URL

Locks &
Latches

This plugin allows
controlling the parallel
execution of jobs.

http://wiki.hudson-ci
.org/display/HUDSON/
Locks+and+Latches+plugin

Setenv This plugin sets up
environment variables for
a project to be referenced
during build steps.

http://wiki.hudson-ci.org/display/
HUDSON/Setenv+Plugin

Copy
Artifact

Adds a build step to copy
artifacts from another
project.

http://wiki.hudson-ci.org/display/
HUDSON/Copy+Artifact+Plugin

SSH This plugin can be used to
run shell commands on a
remote machine via SSH,
before or after a build.

http://wiki.hudson-ci.org/display/
HUDSON/SSH+plugin

Every Commit Should Build the Mainline on an Integration Machine
Automating the build based on user commit is part of CI. Hudson supports various
build triggers via plugins. Apart from the following popular plugins, Hudson
additionally supports more than 15 other build triggers.

Plugin Description Documentation URL

SCM Trigger This support is integrated
into the Hudson platform
and implemented by all SCM
plugins.

http://wiki.eclipse.org/Using_
Hudson

11-AppA.indd 324 13/08/13 2:30 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Appendix A: Widely Used Hudson Plugins 325

Plugin Description Documentation URL

Gerrit Trigger This plugin integrates Hudson
to Gerrit code review for
triggering builds when a
“patch set” is created.

http://wiki.hudson-ci
.org/display/HUDSON/
Gerrit+Trigger

Parameterized
Trigger

This plugin allows triggering
new builds when a build
completes, with various ways
of specifying parameters for
the new build.

http://wiki.hudson-ci
.org/display/HUDSON/
Parameterized+Trigger+Plugin

URL Change
Trigger

The URL Change Trigger
plugin allows you to trigger
a Hudson build when the
content of a URL changes.

http://wiki.hudson-ci
.org/display/HUDSON/
URL+Change+Trigger

Downstream
Ext Trigger

This plugin supports
extended configuration for
triggering downstream builds.

http://wiki.hudson-ci
.org/display/HUDSON/
Downstream-Ext+Plugin

Make Your Build Self-Testing
CI build is not just about catching compilation errors but also catching bugs more
quickly and efficiently. Hudson supports various unit-testing frameworks via plugins,
and the following are popularly used. Hudson supports more than 10 additional
unit-testing frameworks via plugins.

Plugin Description Documentation URL

JUnit The support for JUnit is integrated
into the Hudson platform.

http://wiki.eclipse.org/
Using_Hudson

NUnit This plugin makes it possible to
import NUnit reports from each
build into Hudson and display
the results.

http://wiki.hudson-ci
.org/display/HUDSON/
NUnit+Plugin

Selenium This plugin turns your Hudson
cluster into a Selenium cluster to
carry out Selenium tests.

http://wiki.hudson-ci
.org/display/HUDSON/
Selenium+Plugin

CppUnit This plugin enables you to
publish CppUnit test results in
Hudson.

http://wiki.hudson-ci
.org/display/HUDSON/
CppUnit+Plugin

TestNg This plugin allows you to import
TestNg results into Hudson and
display the results.

http://wiki.hudson-ci.org/
display/HUDSON/testng-
plugin

11-AppA.indd 325 13/08/13 2:30 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

326 Hudson Continuous Integration in Practice

Plugin Description Documentation URL

xUnit This plugin allows Hudson to
transform test result reports
produced by different testing
tools into JUnit test results.

http://wiki.hudson-ci
.org/display/HUDSON/
xUnit+Plugin

Self-testing is best achieved if there is uniform code coverage. Hudson supports
various code coverage tools via plugins. The following are popular plugins.

Plugin Description Documentation URL

Clover This plugin allows you to capture code
coverage reports from Clover.

http://wiki.hudson-ci
.org/display/HUDSON/
Clover+Plugin

Cobertura This plugin allows you to capture code
coverage reports from Cobertura.

http://wiki.hudson-ci
.org/display/HUDSON/
Cobertura+Plugin

Emma This plugin allows you to capture code
coverage reports from Emma.

http://wiki.hudson-ci
.org/display/HUDSON/
Emma+Plugin

Serenity This plugin adds support to publish
results of Serenity, a Java code
coverage, and complexity and
dependency analysis tool.

http://wiki.hudson-ci
.org/display/HUDSON/
Serenity+Plugin

Sonar This plugin adds support for Sonar,
an open-source Code Quality
Management platform.

http://wiki.hudson-ci
.org/display/HUDSON/
Sonar+plugin

NCover Archive and publish .NET code
coverage HTML reports from NCover.

http://wiki.hudson-ci
.org/display/HUDSON/
NCover+Plugin

Static Analysis improves the confidence of self-testing. Hudson supports various
Static Code Analysis tools via plugins, and the popular ones are listed in the
following table.

Plugin Description Documentation URL

Checkstyle This plugin scans for checkstyle-
result.xml files in the build
workspace and reports the
number of warnings found.

http://wiki.hudson-ci
.org/display/HUDSON/
Checkstyle+Plugin

11-AppA.indd 326 13/08/13 2:30 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Appendix A: Widely Used Hudson Plugins 327

Plugin Description Documentation URL

PMD This plugin scans for pmd.xml
files in the build workspace and
reports the number of warnings
found.

http://wiki.hudson-ci
.org/display/HUDSON/
PMD+Plugin

Dry This plugin shows the results of
duplicate code checker tools.

http://wiki.hudson-ci
.org/display/HUDSON/
DRY+Plugin

Findbugs This plugin scans for findbugs.
xml files in the build workspace
and reports the number of
warnings found.

http://wiki.hudson-ci
.org/display/HUDSON/
FindBugs+Plugin

Crap4J This plugin reads the “crappy
methods” report from Crap4J and
displays the results in Hudson.

http://wiki.hudson-ci
.org//display/HUDSON/
Crap4J+Plugin

Warnings This plugin generates the trend
report for compiler warnings in
the console log or in log files.

http://wiki.hudson-ci
.org/display/HUDSON/
Warnings+Plugin

CCM This plugin generates reports on
cyclomatic complexity for .NET
code.

http://wiki.hudson-ci
.org/display/HUDSON/
CCM+Plugin

Violations This plugin generates reports for
static code violation detectors
such as checkstyle, pmd, cpd,
findbugs, fxcop, stylecop, and
simian.

http://wiki.hudson-ci
.org/display/HUDSON/
Violations

Make It Easy for Everyone to Get the Latest Executable
Making the build artifacts available to stakeholders is important in CI. Hudson
supports various artifact uploaders via plugins. Some popular plugins are listed here.
Hudson supports more than 10 additional artifact uploaders.

Plugin Description Documentation URL

Maven
Release

This plugin allows you to perform a
Maven release from a Hudson build.

http://wiki.hudson-ci
.org/display/HUDSON/
M2+Release+Plugin

SCP
Publisher

This plugin uploads build artifacts to
repository sites using the SCP (SSH)
protocol.

http://wiki.hudson-ci
.org/display/HUDSON/
SCP+plugin

11-AppA.indd 327 13/08/13 2:30 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

328 Hudson Continuous Integration in Practice

Plugin Description Documentation URL

FTP
Publisher

This plugin can be used to upload
project artifacts and whole
directories to an FTP server.

http://wiki.hudson-ci
.org/display/HUDSON/
FTP-Publisher+Plugin

Artifactory This plugin helps Hudson job builds
to deploy artifacts automatically to
the Artifactory server.

http://wiki.hudson-ci
.org/display/HUDSON/
Artifactory+Plugin

Everyone Can See What Is Happening
Communicate the state of the build, especially if it is broken. Hudson supports
various build notifiers via plugins. Popular ones are listed here, but Hudson supports
20 more such plugins.

Plugin Description Documentation URL

Email E-mail support is part of the Hudson
core platform.

http://wiki.eclipse.org/
Using_Hudson

Email-
ext

This plugin allows you to customize
when an e-mail is sent, who should
receive it, what the e-mail says, and
so on.

http://wiki.hudson-ci.org/
display/HUDSON/Email-
ext+plugin

IRC This plugin installs a Hudson IRC bot
for your choice of IRC channels.

http://wiki.hudson-ci
.org/display/HUDSON/
IRC+Plugin

Jabber This plugin integrates Hudson
with the Jabber instant messaging
protocol.

http://wiki.hudson-ci
.org/display/HUDSON/
Jabber+Plugin

Test in a Clone of the Production Environment
The build must happen in various slaves that clone the production environment.
Hudson supports various kinds of slave management via plugins so builds can
happen in clones of the production environment. The popular ones are listed in the
following table.

Plugin Description Documentation URL

SSH Slaves This plugin allows you to
manage slaves running on UNIX
machines over SSH.

http://wiki.hudson-ci
.org/display/HUDSON/
SSH+Slaves+plugin

11-AppA.indd 328 13/08/13 2:30 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Appendix A: Widely Used Hudson Plugins 329

Plugin Description Documentation URL

Windows
Slaves

This supports installing a
Hudson plugin as a Windows
service.

http://wiki.hudson-ci.org/
display/HUDSON/Installi
ng+Hudson+as+a+Wind
ows+service

Slave Status This plugin is for monitoring
a slave’s running status and its
resources.

http://wiki.hudson-ci.org/
display/HUDSON/slave-
status

EC2 This plugin allows Hudson to
start slaves on EC2 or Ubuntu
Enterprise Cloud (Eucalyptus) on
demand.

http://wiki.hudson-ci
.org/display/HUDSON/
Amazon+EC2+Plugin

VirtualBox This plugin integrates Hudson
with VirtualBox virtual machine.

http://wiki.hudson-ci
.org/display/HUDSON/
VirtualBox+Plugin

JClouds This plugin provides an option
to launch Hudson slaves on any
cloud provider supported by
JClouds.

http://wiki.hudson-ci
.org/display/HUDSON/
JClouds+Plugin

Build Pipeline
Plugin

This plugin creates a pipeline of
Hudson jobs and gives a view
so that you can visualize it from
integration to deployment.

http://wiki.hudson-ci
.org/display/HUDSON/
Build+Pipeline+Plugin

Automate Deployment
One of the CI best practices is to automate the deployment if possible. Hudson
supports various type of deployment or external tool integration via plugins.

Plugin Description Documentation URL

Deploy This plugin provides support
to deploy to popular open-
source application servers such
as Tomcat, JBoss, Glassfish,
and so on.

http://wiki.hudson-ci
.org/display/HUDSON/
Deploy+Plugin

WebLogic This plugin deploys artifacts
built on Hudson to a WebLogic-
managed server or cluster.

http://wiki.hudson-ci
.org/display/HUDSON/
WebLogic+Deployer+Plugin

11-AppA.indd 329 13/08/13 2:30 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

330 Hudson Continuous Integration in Practice

Plugin Description Documentation URL

WebSphere This plugin takes a war/ear file
and deploys that to a running
remote WebSphere Application
Server at the end of a build.

http://wiki.hudson-ci
.org/display/HUDSON/
Deploy+WebSphere+Plugin

Promoted
Builds

This plugin allows you to
distinguish good builds from bad
builds by introducing the notion
of “promotion.”

http://wiki.hudson-ci
.org/display/HUDSON/
Promoted+Builds+Plugin

Hudson UI Configuration
Finally, there are plenty of plugins available to configure various parts of the Hudson
UI. Popular ones are listed here, but there are 50 more plugins that can be used.

Plugin Description Documentation URL

Disk Usage This plugin records the
disk usage by various
jobs both in the master
and in the slaves.

http://wiki.hudson-ci.org/display/
HUDSON/Disk+Usage+Plugin

Plot This plugin provides
generic plotting (or
graphing) capabilities in
Hudson.

http://wiki.hudson-ci.org/display/
HUDSON/Plot+Plugin

Radiator
View

Provides a job view
displaying project
status in a highly visible
manner.

http://wiki.hudson-ci.org/display/
HUDSON/Radiator+View+Plugin

eXtreme
Feedback
Panel

This plugin provides
an eXtreme Feedback
Panel that can be used
to expose the status of a
selected number of jobs.

http://wiki.hudson-ci
.org/display/HUDSON/
eXtreme+Feedback+Panel+Plugin

Nested View This plugin adds a view
type to allow grouping
job views into multiple
levels instead of one big
list of tabs.

http://wiki.hudson-ci.org/display/
HUDSON/Nested+View+Plugin

11-AppA.indd 330 13/08/13 2:30 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Appendix A: Widely Used Hudson Plugins 331

Plugin Description Documentation URL

Downstream
Build View

This plugin allows you to
view the full status of all
the downstream builds so
that one can graphically
see that everything for
this build has been
completed successfully.

http://wiki.hudson-ci
.org/display/HUDSON/
Downstream+buildview+plugin

Dashboard
View

This plugin contributes
a new view
implementation that
provides a dashboard/
portal-like view for your
Hudson.

http://wiki.hudson-ci.org/display/
HUDSON/Dashboard+View

11-AppA.indd 331 13/08/13 2:30 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5
Blind folio: 332

11-AppA.indd 332 13/08/13 2:30 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5
Blind folio: 333

APPENDIX
B

Personal Hudson Instance

12-AppB.indd 333 13/08/13 2:32 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

334 Hudson Continuous Integration in Practice

Every other chapter in this book assumes that the Hudson instance is running on a
dedicated host in a special-purpose user account and that the jobs executed by
that Hudson instance provide benefit to a team rather than to just one individual.

This appendix explores some of the ways to benefit from running a personal Hudson
instance on an individual workstation. This Hudson instance runs with the user’s
personal credentials and executes jobs entirely for the benefit of that individual user. If
the usage of Hudson covered elsewhere in the book puts Hudson in the role of a butler
overseeing an entire domestic staff, this chapter puts Hudson in the role of a valet.

Hudson-as-Valet
According to the blog Jane Austen’s World (http://janeaustensworld.wordpress.com/),
a valet (rhymes with pallet) is “a personal manservant who tends to his master’s every
need, from a clean room to seeing to his clothes, to making sure that his entire day
goes smoothly from the moment he rises to the time he goes to bed.” There is no
reason why Hudson cannot serve as the software developer’s equivalent, with the
obvious difference that Hudson must be taught everything whereas a valet is supposed
to anticipate the needs of his man before he knows he has them.

This usage of Hudson, called Hudson-as-valet for discussion, is actually one of
the initial inspirations for its initial creation. In a 2008 interview for the book Secrets
of the Rockstar Programmers, Kohsuke Kawaguchi, the initial creator of Hudson, had
this to say about optimizing your work environment:

It’s a good thing to keep investing some of your time to attack your repetitive work.
Because when you remove one problem, you see another that you didn’t realize,
so this laziness is infinite. You see other things that you didn’t realize. The keyboard
macro might be one example. If you write keyboard macros enough, at a certain
point it occurs to you that writing keyboard macros is a waste of time, and you find
another way to meta-automate some of it. That’s been true with me, I guess. There
is no way to jump to this higher state; you have to explore it step by step.

Kohsuke created Hudson as a way to make it easier for developers to jump to
this higher state. In this higher state, using Hudson to get things done becomes a
habit, not just something that runs the Continuous Integration jobs.

There are many other ways to achieve the same result as a Hudson-as-valet setup,
such as Apple Automator or Windows AutoHotKey. Getting into the habit of baking
your optimizations into a Hudson-as-valet instance has a few advantages over these
approaches:

 ■ It is cross-platform. The same kind of setup can be deployed regardless of
the host OS.

 ■ It is self-contained. The setup can be migrated from workstation to workstation
easily.

 ■ It is easy to back up, as described in Chapters 1 and 3.

12-AppB.indd 334 13/08/13 2:32 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Appendix B: Personal Hudson Instance 335

But the approach also has some downsides:

 ■ The automation cannot manipulate GUI elements in the desktop, as is
possible with Apple Automator and Windows AutoHotKey.

 ■ Care must be taken to minimize the performance impact the Hudson-as-
valet instance has on the development workstation.

 ■ As with any piece of complexity, it must be maintained to ensure it doesn’t
grow unwieldy over time.

Optimal Hudson-as-Valet Setup
Chapter 1 includes instructions for causing Hudson to start when a workstation starts
up or the user logs in. This technique is well suited to Hudson-as-valet usage. The
startup instructions in Chapter 1 use the built-in server instance inside the Hudson
war, or the lightweight Apache Tomcat server. With Hudson-as-valet, resource
consumption needs to be minimized so that the Hudson instance doesn’t get in the
way of the productivity of the workstation on which it is running. For this reason,
using a full-fledged application server or a multinode Hudson setup is not
appropriate for Hudson-as-valet usage.

TIP
One way to get around this problem is to have a
spare old computer running alongside the primary
workstation to run Hudson-as-valet. This need not be
a high-performance computer because many of the
Hudson-as-valet type jobs can be scheduled to run
a few hours before the workday starts. It works well
to have the hard disks of the primary workstation
exported so they can be mounted by the Hudson-as-
valet machine. Make sure to have exactly the same
user permissions on the Hudson-as-valet machine as
on the primary workstation, so that when Hudson
creates files, they are created with exactly the same
permissions as if you had created them manually
yourself. For energy savings, the OS facilities for
scheduled automatic startup can be used on both the
main workstation and on the Hudson-as-valet machine.
This should be done so that the main workstation starts
ten minutes before the Hudson-as-valet machine. This
allows the Hudson-as-valet machine to mount the file
systems from the main workstation and start to execute
jobs that write to that file system. For added portability,
the Hudson-as-valet instance can be installed in a VM
running on the spare old computer.

12-AppB.indd 335 13/08/13 2:32 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

336 Hudson Continuous Integration in Practice

Another important point is to ensure Hudson-as-valet is running on an uncommon
port. The port 7214 used in Chapter 1 is such a port. Finally, make Hudson aware of
all the development tools on the workstation, or if the Hudson-as-valet is running on a
different machine, make sure to install exactly the same versions of development
tools. This means basically all the tools in the Configure System page of Hudson: JDK,
Git, Ant, and Maven.

Hudson for Work Area Maintenance
By this point in the book it has become clear that the practice of maintaining a software
project that builds cleanly and reliably, correctly resolving dependencies, and running
tests is challenging over time. As the software project evolves, dependencies and
requirements can change, and this causes continual maintenance over time. If you’ve
ever tried to check out and build an open source project for which such maintenance
has long since ceased, you’ll know the importance of this maintenance to the vitality of
a software project. Such an effort often leads to a lot of hacking, manually downloading
back-level dependencies, as well as probably a few shell scripts to fill in the gaps of the
build process that simply no longer works. Hudson can help prevent getting into this
situation in the first place by always ensuring that the software of interest is kept in a
buildable, and therefore easily maintained, state.

The Open-Source Liaison Role
Let’s take the case of tracking development of open source software. With the rising
and ever-increasing importance of open source software (OSS) in enterprise
development, it’s not uncommon for projects that rely on open source software to
need to keep close tabs on its development so they may quickly incorporate new
releases, while ensuring that changes to the stack do not disrupt existing functionality.
A workflow could be described in which one member of the team might be
responsible for keeping tabs on the OSS projects on which the wider team depends.
This team member could be thought of as the OSS liaison, and in this capacity they
would stay current on the mailing lists for the OSS projects of interest and be able to
check out and build the code, producing customized builds incorporating local fixes if
necessary. Hudson can be an essential part of making this easier. This section gives a
few tips for using Hudson in this way. There is an enormous amount of OSS out there,
and much of it is written in Java. This is the sort that is easiest to build with Hudson
and what will be covered in this section. However, the authors acknowledge that
when measuring by lines of code available, more OSS is not written in Java than is.
Even though Hudson is written in Java, it is perfectly capable of building software
written for any other programming platform. Doing so is left as an exercise for the
reader. This section will walk through the steps of building Apache Tomcat and Google
Guava with a view toward filling the open-source liaison role on those projects.

12-AppB.indd 336 13/08/13 2:32 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Appendix B: Personal Hudson Instance 337

Apache Tomcat
Many of the examples in this book use Apache Tomcat, but this section shows how to
set up your Hudson-as-valet to build it from source. The process is surprisingly simple
considering how widely used Tomcat is. Create a new job on your Hudson-as-valet
instance that reflects the project and the source code line for that project, such as
tomcat-trunk. When using Hudson-as-valet, one must decide where to store the jobs.
As mentioned earlier, it’s very convenient to have the Hudson instance write its files
directly into your main workstation’s work area. This approach requires clicking the
Advanced button in the Advanced Job Options section, then clicking the “Use a
custom workspace” check box, and filling in the fully qualified directory for Hudson
to use as its workspace. This must be done for each job on the Hudson-as-valet
instance. Another approach is to simply use the default and get comfortable using the
change directory (cd) command to get to the Hudson workspace from outside of
Hudson. We will bootstrap the tomcat-trunk job using Hudson itself. First, create the
job with just the svn URL http://svn.apache.org/repos/asf/tomcat/trunk. If you will
be checking out a specific branch of Tomcat, use that svn URL instead, but use a
different job name to reflect the different source code line. For example, the Hudson
job tomcat-55x could be using the svn URL http://svn.apache.org/repos/asf/tomcat/
archive/tc5.5.x/trunk/. Run the job once to cause the source code to be checked out.

TIP
One thing to watch out for with this approach is the
impact of using different versions of the same SCM
system inside and outside of Hudson. If the Hudson
instance is using a newer version of the same SCM
system than you are using from the command line
in the course of normal development, a situation
could arise where Hudson effectively corrupts the
work space due to incompatibilities between the
versions of SCM. For example, Subversion 1.6 and
1.7 introduced some incompatibilities between the
local workspace representation. Another way to
get around this is to use an Execute shell builder at
the top of the job that manually invokes the SCM
commands to update the workspace, for example,
svn checkout URL. With this technique, you can
guarantee that the exact same SCM executable
is used by the Hudson job and by the developer
outside of Hudson. One downside of this approach
is that Hudson loses the ability to poll SCM to trigger
jobs or view changes since last build.

12-AppB.indd 337 13/08/13 2:32 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

338 Hudson Continuous Integration in Practice

Once the job has successfully checked out the source code, change the directory
to the place where the source was checked out and find the top-level directory
containing the main build.xml file. Tomcat still uses Ant as its build system, and has
a home-grown dependency management solution that must be told where to put
downloaded dependencies. This is done by placing a build.properties file in the same
directory as the build.xml file. This pattern was commonplace before the emergence
of Maven and can be used to customize many aspects of Ant-based builds. In this
case the only customization is to indicate where dependencies must be stored and
fetched. This is done by including the following line in build.properties for UNIX-
based systems:

base.path=/fully/qualified/path/to/a/writable/empty/directory

Windows-based systems must use something like this:

base.path=c:\\DOCUME~1\\username\\path\\to\\a\\writable\\empty\\directory

Note that backslashes must be escaped and that directory names containing spaces
must be avoided. To find the space-free name for a directory with spaces in Windows,
use the command dir /x in the parent directory of the directory with spaces.

Now that the source has been checked out and the work area has been
configured with instructions on where to put downloaded dependencies, return to
the Hudson job configuration, change your svn checkout command to svn update,
and add an Invoke Ant build step. Fill in deploy in the Targets field. If the build.xml
file is not at the top level of the workspace, click Advanced and specify the location
of the Build File, for example, trunk/build.xml. The version of Ant used when writing
this text was 1.9.0 on JDK 1.7.0_21. If Java 7 is not the default on your system, click
“This build is parameterized” and add a String property with the name JAVA_HOME
and the value of the full path to a JDK 7 instance on your system. Set the job to run
with the desired frequency by checking the “Build periodically” box in the Build
Triggers section. In the open-source liaison role, it is important to use Hudson-as-
valet to stay current on the projects you track. Therefore, it is best to set some kind of
periodic build policy for tracked projects so that you can quickly become aware of
any build failures that may be introduced as the project evolves.

Google Guava
Google Guava is a popular set of Java utilities that happened to appear at Google not
long after Joshua Bloch joined Google from Sun. Guava is hosted in Google code
under Git and uses Maven to build. The Git repository URL is https://code.google
.com/p/guava-libraries/. The same iterative process as with Tomcat can be used
here. Create the guava-trunk job and use Git as the SCM, using the preceding URL.
Run the build once to check out the code, then change the directory to the workspace
to perform an additional modification. Let’s assume that we ran into trouble building
Guava from source: the guava-gwt module doesn’t build correctly. Perhaps the problem

12-AppB.indd 338 13/08/13 2:32 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Appendix B: Personal Hudson Instance 339

is due to the headless nature of the host on which Hudson is running. In any case, this
illustrates a technique that can be useful when fulfilling the role of open source liaison:
applying local changes to the open source project when building for internal use.

Let’s assume that our usage of Guava does not include its GWT integration, and
therefore we can disregard any changes in that part of the software. A brute-force,
but effective, way to ensure that changes in this part of the software do not interfere
with our work is to simply comment out the build from traversing into the guava-gwt
module. Open the top-level pom.xml in a text editor, find the line <module>guava-
gwt</module>, and comment it out, as follows.

<!-- Not interested in guava-gwt integration, and the build failed there anyway
<module>guava-gwt</module>
-->

After saving this edit, execute this git command to cause the local changes to be
stored in the Git “stash”:

git stash

The stash is an anonymous branch that stores changes that can subsequently be
applied with other Git commands. This is necessary because Hudson will overwrite
any local changes when it updates the workspace using Git. The checkout strategy
can be configured to not clean up the workspace if local modifications are made.
This is not necessary when the SCM is Subversion. Back in the job configuration, an
additional build step must be added, before the Maven 3 build step, that applies the
stash before building the code. In the Build section, click the “Add build step” drop-
down and choose “Execute shell.” In the text area that appears, type:

git stash apply --list

This will apply the changes from the stash on top of the freshly checked-out
branch, in this case, commenting out the guava-gwt module.

Click the “Add build step” button once again and choose Invoke Maven 3. The
goals should be clean install and in the properties section, add maven.test.skip=true.
Ideally, this step should not be needed, but in practice, with many open source
projects, the tests are not always maintained in a 100 percent runnable state. If you
are not making any substantive changes to the project locally anyway, it may not be
necessary to run the tests. If you want to make sure the tests run cleanly, simply omit
adding this property. This will cause the build to fail if the unit tests fail, which may
be the desired behavior after all. If desired, add a “Build periodically” Build Trigger
as with Tomcat in the preceding section, obviously choosing a different time.
Alternatively, you could configure all your OSS builds to happen one after the other
using interjob dependencies, as mentioned in Chapter 3.

There is a lot more to filling the open-source liaison role than just building the
software, but as far as Hudson is concerned, this section has shown the basics.

12-AppB.indd 339 13/08/13 2:32 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

340 Hudson Continuous Integration in Practice

The Committer Role
In the open-source liaison role described in the preceding section, the person filling
the role may or may not have commit access to the OSS projects he or she is tracking.
Usually such a role is not a full-time job, and the same individual will be a committer
on one or more other projects.

TIP
In projects using Git, this task is made considerably
easier thanks to the strong support in that SCM for
branching and merging.

This section covers a potential Hudson-as-valet use case for the committer role. In
many organizations, each developer is only working on a small handful of different
projects at any given time, perhaps even only one. Within the scope of that handful of
projects, it is common to be working on several kinds of programming tasks on any
given day. For example, part of the day could be spent on developing new features,
while another part of the day could be spent fixing bugs, reviewing code, or writing
documentation. In such an arrangement, one would need to have several copies of
the workspace for that project checked out on their workstation, each with its own set
of changes in progress. Because other team members are also likely working on the
same project, it becomes necessary to maintain several copies of the workspace so
that any changes made by other developers are cleanly merged in. This helps to avoid
a potentially difficult merge in the case when a developer must go for a longer period
of time between commits, as is sometimes inevitably necessary.

Let’s take an analogy from the real world. Imagine an automotive garage with
several service bays as shown here:

12-AppB.indd 340 13/08/13 2:33 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Appendix B: Personal Hudson Instance 341

Each service bay can have at most one car at a time. The length of time each
service bay is occupied with a car depends on the difficulty of the fix. During the
length of time a car is in a service bay being fixed, tools are being used and placed
aside, the car is in a state of partial disassembly, and things can get in a state of
general messiness unless care is taken during the fix to keep things organized.

The service bays in the automotive garage can be likened to the several copies
of the same workspace on a developer’s workstation. Hudson-as-valet can be
employed to keep each workspace organized and easy to work in, using the same
techniques as described in the open source liaison role. A simple expansion of the
naming convention for Hudson jobs can be employed to keep things organized.
Let’s say the project in question is called payroll and you have four copies of the
workspace locally, each with its own fix-in-progress. The payroll project has two
source lines: 1.0 and trunk. A potential arrangement of work spaces could be:

 ■ payroll-1-trunk

 ■ payroll-2-trunk

 ■ payroll-1-1_0

 ■ payroll-2-1_0

The first two work on fixes going into the trunk code line, and the second two
into the 1.0 branch. The Hudson-as-valet instance would be sure to check out,
build, and run the tests on each of these local workspaces so that any local changes
that are not yet ready for commit can be kept up to date as other changes to the
source code are made. Agile best practices recommend committing early and often,
so it is best to avoid having changes sit out in such workspaces outside of SCM for
any longer than necessary.

TIP
On UNIX systems, filesystem soft links can be used
to indicate the issue number being worked on in
each workspace, for example: ln -s payroll-1-trunk
issue-2817. This makes it easy to keep straight
which fixes correspond to which workspace. Note
that Application Lifecycle Management tools such
as Eclipse Mylyn and JDeveloper Team Productivity
Center may have better ways to organize such a
workflow, but this lightweight approach can be
handy in less formal environments.

12-AppB.indd 341 13/08/13 2:33 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

342 Hudson Continuous Integration in Practice

Hudson as General-Purpose Scheduler
In another insight from Kohsuke Kawaguchi’s interview in Secrets of the Rockstar
Programmers, he mentions that the first version of Hudson was really just a wrapper
around the UNIX cron(8) command. In general, once you have Hudson, you have
no more need for cron. Therefore, if you were using cron for sysadmin work, stop
doing so and move those cron jobs into Hudson.

Hudson Plot Plugin
The Hudson Plot plugin can be downloaded from the Others subtab of the Available
tab of the Hudson Plugin Center. The Plot plugin is designed to capture one or more
single value data points each time a job is executed. Each data point contributes to
a data series such that over time, with enough data points, a meaningful plot graph
can be produced, providing a graphical representation of arbitrary data. For example,
a Hudson job could execute a script that polls the hosts in a server farm to quantify
the number of servers that are up at the time the job executes. This data could be
captured to a CSV file located in the top level of the workspace for the job. Note
that only a single point can be plotted per job execution.

Once the plugin is installed and Hudson restarted, configuration is done on a
per-job basis. Find the text “Plot build data” in the Post-build Actions section and
check the corresponding check box. Each plot can have an arbitrary number of
data series, but keep in mind that each data series can have only one value per job
execution. If you have a data file that has multiple values, there is no way to have
them all displayed by this plugin in one go. Figure B-1 shows the configuration
section for the “Available Hosts” example.

The plugin supports .properties, .csv, and .xml file formats, but because only
one data value is plotted per job execution, .csv is the easiest. The data.csv file,
which would be written out by the script that does the polling, is shown here:

"Available Hosts"
12

Now when the job executes, a Plots button appears on the job dashboard.
Figure B-2 shows the output of the Available Hosts plot.

Even though the “one value per job execution” limitation may seem daunting,
if you keep in mind that the purpose of this plugin is to allow displaying of data
sampled over time, there are many potential uses, particularly for the creative
sysadmin.

12-AppB.indd 342 13/08/13 2:33 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Appendix B: Personal Hudson Instance 343

FIGURE B-1. Plot Plugin configuration

FIGURE B-2. Available Hosts plot

Available Hosts

#2
 (M

ay
 5

)

#3
 (M

ay
 5

)

#4
 (M

ay
 5

)

Build

#5
 (M

ay
 5

)

#6
 (M

ay
 5

)
20.0

17.5

15.0

12.5

10.0

7.5

N
um

be
r

of
 H

os
ts

 O
nl

in
e

5.0

2.5

0.0
Available Hosts

12-AppB.indd 343 13/08/13 2:33 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

344 Hudson Continuous Integration in Practice

Summary
This appendix explores how to get back to Hudson’s roots as a personal assistant,
rather than just as a team enabling tool. Because this usage of Hudson is wide open
and limited only by a user’s own intentions, only two techniques are explored with
a view toward how other usages may be accomplished in a similar fashion:

 ■ Hudson for Work Area Maintenance

 ■ Hudson as General-Purpose Scheduler

12-AppB.indd 344 13/08/13 2:33 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5
Blind folio: 345

APPENDIX
C

Hudson for
Windows Developers

13-AppC.indd 345 13/08/13 2:33 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

346 Hudson Continuous Integration in Practice

While the bulk of developers using Hudson are doing so to develop
software for the Java platform, there is nothing inherent in the design
of Hudson to prevent its being used to develop software for non-Java

platforms. This chapter surveys a few of the non-Java platforms where Hudson is
used in practice. Before taking some concrete examples, let’s examine the usage
at a higher level.

Key Enablers for Using Hudson
on Non-Java Platforms
Let’s review the basic Hudson workflow, shown in Figure C-1.

The Build and Collect Results boxes are the places with the most sensitivity to
the target software platform. Let’s take a look at the non-Java aspects for each of
those steps.

FIGURE C-1. Hudson workflow

More Build
Steps?

Successful?Successful?

Successful?

Successful?

Build
Triggered

Build
Failed

Build
Succeeded

Build

Collect
Results

Manage
Artifacts

SCM
Checkout

No

No No

No

Yes

Yes

No

Yes

Yes

13-AppC.indd 346 13/08/13 2:33 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Appendix C: Hudson for Windows Developers 347

Build Step
The Hudson concept of builder is defined in Chapter 2. A builder is anything Hudson
can call to perform the action of the Build box in Figure C-1. A job can have zero or
more builders, and each one can either fail or succeed. Usually a failure means there
was an issue with the build, but the system can be configured to proceed in spite of
a failed builder. It is helpful to think of builders as falling into one of two categories:
integrated with Hudson and separate from Hudson.

Builders that are integrated with Hudson are known by Hudson and have more
complete access to the rest of the Hudson build lifecycle. Hudson “knows” about
integrated builders. Hudson comes pre-configured with plugins that provide builders
with first-class support for Maven and Ant. There are also a wide variety of plugins
available, but most of them are for developing for the Java software platform. Later
in this appendix three non-Java builders will be covered, for the Microsoft .NET
platform, for the Ruby platform, and for the PHP platform.

There is only one builder in the “separate from Hudson” category, and it is
represented by the Execute Shell builder. On all platforms where Hudson can run,
the Execute Shell build step is a very serviceable fallback to call into whatever native
build system is appropriate for the target software platform. In practice, the biggest
drawback to using Execute Shell instead of a integrated builder is brittleness. When
invoking the shell, the only way Hudson knows if the build step succeeded or failed
is the return code from the shell. Such return codes can be error prone to maintain in
a cross-platform environment.

Collect Results Step
Hudson performs this step by means of one or more post-build actions. As shown in
Chapter 5, the set of available post-build actions depends on what plugins are installed.

TIP
While Hudson allows for an ordered flow of zero
or more builders, the post-build actions are not
organized that way. Once a decision has been
made to make use of an Execute Shell build step,
the distinction of what is “build” and what is “post-
build” can become arbitrary. This can lead to using
Hudson to simply trigger builds that are collections
of Execute Shell builders, some of which build
software and others of which collect results. This
is certainly an acceptable use of Hudson because
the build triggering and artifact distribution features
(as described in Chapter 6) of Hudson can be used
without regard to the target software platform.

13-AppC.indd 347 13/08/13 2:33 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

348 Hudson Continuous Integration in Practice

There is no analogous distinction between integrated and separate collect results
steps as there is with builders. As such, the non-Java platform offerings for this step
are limited to what plugins are available for the specific non-Java software platform
in question. These plugins are all in the Others subtab of the Available tab of the
Hudson Plugin Center. As such, they are not officially supported by the Hudson
Project, so their quality is not guaranteed. The following table lists some details of
selected plugins that perform the Collect Results step for non-Java software platforms.

Plugin Name: CCCC

Description A SourceForge project created by someone
for their master’s degree. The project is a code
counter for C and C++. Its most recent update
was on 22 April 2013.

Version Reported in
Plugin Center

0.6

Release Date Reported on
Plugin Homepage

24 November 2011

Plugin Name: CCM

Description Calls out to the CCM tool for analyzing
cyclomatic code complexity in C, C++, C#,
JavaScript, and TypeScript. Last updated in
October 2012.

Version Reported in
Plugin Center

2.5

Release Date Reported on
Plugin Homepage

21 December 2010.

Plugin Name: cppcheck

Description Another SourceForge project to perform static
analysis of C and C++ code. Last updated on
30 April 2013.

Version Reported in
Plugin Center

1.14-h-1

Release Date Reported on
Plugin Homepage

29 January 2013

Plugin Name: cppncss

Description A SourceForge project to perform static
analysis of C++ code. Last updated on
3 August 2007.

13-AppC.indd 348 13/08/13 2:33 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Appendix C: Hudson for Windows Developers 349

Version Reported in
Plugin Center

1.0

Release Date Reported on
Plugin Homepage

3 June 2010

Plugin Name: MSTest

Description Runs the MSTest tool distributed with
Microsoft Visual Studio to run automated tests
on that platform. Converts the test results into
JUnit XML format.

Version Reported in
Plugin Center

0.6

Release Date Reported on
Plugin Homepage

11 February 2010

Plugin Name: Ruby Metrics

Description Use the Rcov tool to collect metrics from Ruby
code and collect the results for display on a
Hudson trend graph. Last updated May 2012.

Version Reported in
Plugin Center

1.4.6

Release Date Reported on
Plugin Homepage

27 November 2010

Hudson and the
Windows Software Platform
The MSBuild plugin, available in the Others subtab of the Available tab of the Hudson
Plugin Center, is a solid and simple builder to invoke the MSBuild.exe executable
that comes with Microsoft Visual Studio. Once the plugin has been installed and
Hudson has been restarted, visit the Configure System page of the Manage Hudson
page and find the text “MSBuild installations.” One or more MSBuild installations
can be identified in this section. The rationale for allowing multiple distinct MSBuild
installations is the same as for allowing multiple versions of other types of builders,
such as Ant or Maven: the version lineup is explained in Chapter 5.

Figure C-2 shows the completed values for Microsoft Visual Studio Express 2012
for Windows Desktop. The key value is the fully qualified path to the MSBuild.exe
file. Note that backslash characters need not be escaped. Save the configuration
after filling in the values.

13-AppC.indd 349 13/08/13 2:33 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

350 Hudson Continuous Integration in Practice

After identifying the MSBuild installation to the Hudson system, a new type of
entry shows up in the “Add build” step: Build a Visual Studio project or solution using
MSBuild. The MSBuild plugin relies on the fact that MSBuild is capable of building a
.sln or .proj project file previously produced by Visual Studio. The build output
produced by such a file is entirely determined by the individual composition of the
Visual Studio project file. As with any Hudson builder, there can be as many build
steps as necessary; and the post-build artifact collection is also identical, as with any
other Hudson job.

TIP
Some versions of Microsoft Windows have a
relatively small limit for the maximum allowable
path length: 260 characters.

Figure C-3 shows a filled-in MSBuild build step. The command-line arguments to
MSBuild provide considerable flexibility in building the project from the command
line. In particular the /target: attribute (abbreviated /t:) takes a semicolon-separated

FIGURE C-2. Visual Studio MSBuild installation

FIGURE C-3. MSBuild Build step

13-AppC.indd 350 13/08/13 2:33 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

Appendix C: Hudson for Windows Developers 351

list of build targets. As with Ant and Maven builders, the decision to use multiple
MSBuild build steps versus one MSBuild build step with multiple targets is a matter
of taste.

Once configured, the build will run as a regular Hudson build. The following
build output illustrates a successful invocation of MSBuild.

Started by user anonymous
Checkout:workspace / C:\HUDSON_HOME\jobs\01_msbuild\workspace - hudson.
remoting.LocalChannel@5c4ec4c4
Using strategy: Default
Last Built Revision: Revision e746b965f50d4f9aeb8300f6f-
4b79ccca936f43b (origin/master)
Checkout:workspace / C:\HUDSON_HOME\jobs\01_msbuild\workspace - hudson.
remoting.LocalChannel@5c4ec4c4
Fetching changes from the remote Git repository
Fetching upstream changes from https://hudson_in_practice@bitbucket.
org/hudson_in_practice/hudson_lifestyle.git
Commencing build of Revision e746b965f50d4f9aeb8300f6f-
4b79ccca936f43b (origin/master)
Checking out Revision e746b965f50d4f9aeb8300f6f4b79ccca936f43b (origin/
master)
Path To MSBuild.exe: C:\Windows\Microsoft.NET\Framework\v4.0.30319\MS-
Build.exe
Executing the command cmd.exe /C C:\Windows\Microsoft.NET\Framework\
v4.0.30319\MSBuild.exe HudsonForNonJavaDevelopers\\01_msbuild\\Console-
Application1\\ConsoleApplication1.sln && exit %%ERRORLEVEL%% from C:\
HUDSON_HOME\jobs\01_msbuild\workspace
[workspace] $ cmd.exe /C C:\Windows\Microsoft.NET\Framework\v4.0.30319\
MSBuild.exe HudsonForNonJavaDevelopers\\01_msbuild\\ConsoleApplica-
tion1\\ConsoleApplication1.sln && exit %%ERRORLEVEL%%
Microsoft (R) Build Engine version 4.0.30319.17929
[Microsoft .NET Framework, version 4.0.30319.17929]
Copyright (C) Microsoft Corporation. All rights reserved.

Building the projects in this solution one at a time. To enable paral-
lel build, please add the "/m" switch.
Build started 5/13/2013 10:57:01 PM.
Project "C:\HUDSON_HOME\jobs\01_msbuild\workspace\HudsonForNonJa-
vaDevelopers\01_msbuild\ConsoleApplication1\ConsoleApplication1.
sln" on node 1 (default targets).
ValidateSolutionConfiguration:
 Building solution configuration "Debug|Any CPU".
Project "C:\HUDSON_HOME\jobs\01_msbuild\workspace\HudsonForNonJa-
vaDevelopers\01_msbuild\ConsoleApplication1\ConsoleApplication1.
sln" (1) is building "C:\HUDSON_HOME\jobs\01_msbuild\workspace\Hudson-
ForNonJavaDevelopers\01_msbuild\ConsoleApplication1\ConsoleApplica-
tion1\ConsoleApplication1.csproj" (2) on node 1 (default targets).

13-AppC.indd 351 13/08/13 2:33 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5

352 Hudson Continuous Integration in Practice

GenerateTargetFrameworkMonikerAttribute:
Skipping target "GenerateTargetFrameworkMonikerAttribute" be-
cause all output files are up-to-date with respect to the input files.
CoreCompile:
 Copying file from "obj\Debug\ConsoleApplication1.exe" to "bin\Debug\
ConsoleApplication1.exe".
 ConsoleApplication1 -> C:\HUDSON_HOME\jobs\01_msbuild\workspace\Hud-
sonForNonJavaDevelopers\01_msbuild\ConsoleApplication1\ConsoleApplica-
tion1\bin\Debug\ConsoleApplication1.exe
 Copying file from "obj\Debug\ConsoleApplication1.pdb" to "bin\Debug\
ConsoleApplication1.pdb".
Done Building Project "C:\HUDSON_HOME\jobs\01_msbuild\workspace\Hud-
sonForNonJavaDevelopers\01_msbuild\ConsoleApplication1\ConsoleApplica-
tion1\ConsoleApplication1.csproj" (default targets).
Done Building Project "C:\HUDSON_HOME\jobs\01_msbuild\workspace\Hud-
sonForNonJavaDevelopers\01_msbuild\ConsoleApplication1\ConsoleApplica-
tion1.sln" (default targets).

Build succeeded.

 0 Warning(s)
 0 Error(s)

Time Elapsed 00:00:01.43
Finished: SUCCESS

Hudson and Automated Testing on Windows
As with automated testing on the Java platform, automated testing on the Windows
platform is a deep topic. Thankfully, the project file input to MSBuild can be
configured to run automated tests. The only trick then is to convert the output into
a form more readily understandable by Hudson. Thankfully, the MSTest plugin
converts the TRX output format into the JUnit XML format readily understood by
Hudson. After installation and restart, a “Publish MSTest test result report” check
box appears in the Post-build Actions section. Checking the box allows specifying
a workspace relative path to a single TRX file. Multiple TRX files are not currently
supported.

Summary
This appendix demonstrates that Hudson is perfectly useful in non-Java-based
projects, specifically Windows-based projects. The basic Hudson workflow is
reviewed, and two plugins that allow Windows development to proceed along
that workflow are explored: MSBuild and MSTest.

13-AppC.indd 352 13/08/13 2:33 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5 / Index

A

access control lists (ACLs), 79–80
actions, adding to dashboard, 262–267
Advanced settings

archiving artifacts, 64
backups, 75–77
CVS, 59
e-mail notifications, 126
Git repositories, 57–58
job history depth, 293–294
job storage, 337–338
jobs, 270–271
multi-configuration builds, 217
nodes, 213
plugins, 70, 225
SSH authentication, 208–209

Allow users to sign up option, 78
ALM (Application Lifecycle Management), 172
analysis tools, 85–87
Apache Ant tool

configuration, 20–21
description, 323
overview, 33–34

Apache Archiva repository, 186
Apache Ivy project, 33
Apache Maven. See Maven
Apache Server configuration, 299–301
Apache Software Foundation, 33
Apache Tomcat

deploying Java applications, 128–129
installing Hudson within, 12–14
work area maintenance, 337–338

app identifier in Jexl, 242
Apple Automator, 334–335
Application Lifecycle Management (ALM), 172
application servers, deploying Java applications to,

128–129

@ApplicationScoped annotation, 163
architects in software development lifecycle, 29
Archiva repository, 186
archiving artifacts, 64–65
Armour, Philip G., 26
Arquillian project, 159–163
artifactId element, 37
Artifactory plugin, 328
Artifactory repository, 186–187
artifacts

archiving, 64–65
build. See build artifacts
Maven, 225
repositories, 35, 186–187
uploading to other machines, 129–131

assertTrue method, 52
Associate With Project option, 170
Atlassian JIRA integration, 178
authentication

configuring, 78–80
overview, 77–78
public-private key-based, 206–209

authorization
defined, 78
matrix roles, 313–315
overview, 79–80

Auto Refresh Every setting, 168
AutoHotKey, 334–335
automated builds

Maven for, 107–108
plugins, 323–324
speeding up, 108–114

automated deployment plugins, 329–330
automated testing, 136

containing code and code under test, 136–137
kinds, 157–158
Maven build lifecycle, 138–143
servlets, 143–153

Index

353

14-Index.indd 353 13/08/13 2:34 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5 / Index

354 Hudson Continuous Integration in Practice

automated testing (cont.)
shields, 153–156
tips, 164–165
unit and component, 159–163
on Windows, 352
writers, 156–157

Automator utility, 10
availability

plugins, 70–71
SSH-based managed slaves, 210

Available Hosts plots, 342–343
Available tab, 70–71
axes in build distributions, 215–217

B

Backup manager, 301–304
Backup plugin, 301, 303
backups

advanced options, 75–77
for installation, 23–24
overview, 301–306
plugins, 323–324

bad builds, 294–296
batting order in Continuous Delivery,

154–155
beans, 162
Beck, Kent, 96
black box testing, 51
Bloch, Joshua, 338
branches

CVS, 59
Git, 106

browser integration, 179–181
Bugzilla component

integration, 178–179
monitoring, 312

build artifacts, 185
configurations, 187–189
FTP Publisher Plugin, 190
repositories, 186–187
uploading to other machines, 129–131

build automation, 107
Maven for, 107–108
plugins, 323–324
speeding up, 108–114

Build button for job views, 68
Build Grid, 195
Build History option, 226
build notifiers

e-mail servers, 89–90
status messages, 90–91, 271–274

Build Object extensions, 234
Build Pipeline Plugin, 329
build steps

extending, 271
Maven, 63–64
non-Java platforms, 347

build wrappers
custom, 283–286
extending, 270
UI, 285–286

build.xml file, 33, 338
buildable units, 100
BuildBadgeAction action, 267
Builder extension point, 233
builders, 32–33

Ant, 33–34
Maven, 34–39

BuildInfo data model, 273
BuildListener interface, 234–235
builds

CI tools and dashboard, 98
distributed. See master-slave mode
with Eclipse, 41–43
with JDeveloper, 45–46
Maven lifecycle, 38–39, 138–143
plugin skeleton, 229–230
self-testing plugins, 325–327
speeding up, 108–114
triggers, 60–63

C

cascading jobs, 115–117
catalina.bat file, 13
catalina.sh file, 13
CCCC plugin, 348
CCM plugin, 327, 348
centralized SCM repositories, 97
Check-out Strategy options, 58
checkout command, 103
Checkstyle plugin, 326
Choose Main Class dialog, 48
Chrome integration, 181
CI. See Continuous Integration (CI)
Class package, 240
clean phase in Maven, 139
ClearCase plugin, 323
cloud slaves, 198
Clover plugin, 326
Cobertura plugin, 326
code metrics and code coverage, 122–123
code under test, 136–137
collect results step in non-Java platforms,

347–349
column.jelly file, 262
columnHeader.jelly file, 262
commercial-off-the-shelf (COTS) code, 136
commit command, 103
committer role, 340–341
communication tool in CI environment, 98
Community IntelliJ IDEA version, 46
component tests

with Arquillian, 159–163
description, 118, 157

14-Index.indd 354 13/08/13 2:34 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5 / Index

Index 355

Concurrent Versioning System (CVS), 59
config.jelly file, 275, 286
config.xml file, 248
configuration, 56

Ant, 20–21
Apache Server, 299–300
build triggers, 60–63
e-mail notification, 22–23
e-mail server, 89–90
file conventions, 239–240
FTP Publisher Plugin, 190
HelloMvn program, 59–65
instance, 187, 190
Java installations, 18–20
location information, 5
Maven, 21–22
per-job, 187–189
previous jobs, 76
SCM for jobs, 56–59
UI. See UI and UI configuration

configure-entries.jelly file, 258
Configure Security page, 313
Configure System page

FTP Publisher Plugin, 190
global UI, 246
instances, 187
JIRA, 178
job requests, 312
MSBuild, 349
roles, 313

Connect to Team Server dialog, 177
Console column in job views, 68
CONTAINER_PORT parameter, 149
containers, deployment to, 189
containing code, 136–137
Content Type setting, 125
Continuous Delivery and Continuous

Deployment, 127–133
continuous feedback, 123–127
Continuous Integration (CI), 96

build automation, 107–114
code metrics and code coverage, 122–123
Continuous Delivery and Continuous

Deployment, 127–133
continuous feedback, 123–127
continuous testing, 118–122
description, 96–97
Maven modules, 114
SCM, 103–107
setting up, 97–98
Sherwood County Library example,

98–102
Test Result trend, 120–122
upstream-downstream jobs, 115–117

continuous testing, 118–122
convention-over-configuration approach, 52
Copy Artifact plugin, 129, 324
copyarchiver plugin, 301
COTS (commercial-off-the-shelf) code, 136

cppcheck plugin, 348
cppncss plugin, 348–349
CppUnit plugin, 325
Crap4J plugin, 327
createDeployment method, 163
custom build wrappers, 283–286
custom columns in default views, 261–262
custom links to Job dashboard, 275–283
custom notifiers

jobs, 271–274
UI configuration, 274–275

custom page decoration, 267
global configuration, 268
UI, 268–270

custom plugins, 112
custom recorders

build result trend displays, 278–283
UI, 280–283

custom rendered views
jobs status, 252–259
working with, 259–261

custom view column UI, 261
CustomColumnDescriptor class, 261
CVS (Concurrent Versioning System), 59
CVS plugin, 323
Cvsroot value, 59

D

Dashboard View plugin, 331
dashboards, 9

actions on, 262–267
CI environment, 98
custom links to, 275–283
extending, 252–259

@DataBoundConstructor annotation, 243, 286
Days to keep artifacts setting, 293
decoration of pages, 267–270
dedicated build servers, 97
Default Content setting, 125
default maximum heap size, 291
default site phase in Maven, 139
Default Subject setting, 125
default views in custom columns, 261–262
DefaultInitialRAMFraction option, 290
DefaultMaxRAMFraction option, 290
deleted builders, 170
dependencies

Arquillian, 161
Maven, 35–36
tests, 52, 81–82

Deploy plugin, 129, 329
Deploy to Container plugin, 189
deployment

CI environment, 98
to containers, 189
Continuous Deployment, 127–133
Java applications to servers, 128–129

14-Index.indd 355 13/08/13 2:34 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5 / Index

356 Hudson Continuous Integration in Practice

deployment (cont.)
logic encoding, 186
overview, 12–14
plugins, 329–330

Describable paradigm, 238
descriptions for slaves, 199
Descriptor paradigm, 238
DescriptorImpl class, 224
desktop integration, 181–184
developers in software development lifecycle,

27–28
development platforms, 31–32
-DHUDSON_HOME argument, 5–6
differential backups, 305
disabling installed plugins, 74
Discard all but the last successful/stable artifact

to save disk space option, 64
Discard Old Builds option, 293
discarding

bad builds, 294–296
jobs, 293

discoverability of failures, 165
disk space management, 296–298
Disk Usage page

model object, 264–265
UI, 265–267

Disk Usage plugin, 297–298, 330
DiskUsage.java file, 264–265
DiskUsageAction.java file, 263–264
DiskUsagePlugin.java file, 264
distributed building. See master-slave mode
distributed SCM, 32
doCheckName method, 245–246
doCheckUrl method, 272–274
doTestConnection method, 273
downgrades for plugins, 73
Downstream Build View plugin, 331
Downstream Ext Trigger plugin, 325
Dry plugin, 327
dynamic analysis tools, 85

E

E-mail Notification property, 90, 117
e-mail notifications

configuration, 22–23
extended, 124–127

e-mail server configuration, 89–90
e-mail tokens, 126–127
eager failures, 164–165
EasyMock technology, 159
EC2 plugin, 329
Eclipse IDE

integration, 172–174
overview, 39–43

Editable Email Notification option, 125
EL (Expression Language), 239
Email plugin, 328

Email-ext plugin, 328
Emma plugin, 326
<encoding> element, 67
environment parity, 164
/etc/apache2/httpd.conf file, 299
/etc/apache2/conf/other/proxy.conf file,

310–311
/etc/group file, 16
/etc/init.d/hudson file, 15, 17
/etc/passwd file, 16
/etc/sysconfig/hudson file, 17
Execute shell script on remote host using ssh

builder, 309
executing commands on remote machines,

131–133
executors

defined, 195
slaves, 199

exploring JobConfigHistory plugin, 75–76
Expression Language (EL), 239
extended e-mail notifications, 124–127
Extended E-mail plugin, 126
@Extension annotation, 232, 234, 254, 261
extensions and extension points

dashboards, 252–259
extending extension points, 232–233
job aspects, 270–271
overview, 231–232
sample, 233–238
UI configuration, 238–239

external repositories, 103
eXtreme Feedback Panel plugin, 330
Extreme Programming, 96

F

fail-safe mode, 306–307
monitoring setup, 308–309
redirecting HTTP traffic to redundant

servers, 310–311
redundant server setup, 307–308
server switch on failure, 309–310

failures
discoverability, 165
eager and lazy, 164–165

Featured subtab, 71
feedback in CI, 123–127
file conventions, 239–240
file server, Hudson as, 300–301
File Transfer Protocol, 129–131, 190
FindBugs plugin, 53–54, 85, 327
Firefox integration, 179–181
footer.jelly file, 269–270
FormValidation object, 246
Fowler, Martin, 96, 108
FTP Publisher plugin, 129–131, 190, 301, 328
full backups, 305
functional tests, 118, 158

14-Index.indd 356 13/08/13 2:34 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5 / Index

Index 357

G

gated checkins, 158
GAV co-ordinates, 36–37
general-purpose schedulers, 342–343
Generic Release in JDeveloper, 43
Gerrit Trigger plugin, 325
getAdminEmail method, 268
getAdminName method, 268
getBackgroundColor method, 258
getColor method, 258
getDisplayName method, 224, 239, 264
getFileSize method, 265
getIconFileName method, 263–264
getLogger method, 235
getName method, 258, 265
getNumBuilds method, 265
getProperty method, 148
getRequiredMonitorService method, 272–273
getSizeInDisk method, 265
getTarget method, 283
getUrlName method, 263–264
Git

extensions, 246
library example, 103–106
overview, 56–58

Git plugin, 322
global configuration, 240

custom page decorator, 268
extended e-mail, 124–125
UI, 246–248

global.jelly file, 268
Global Recipient List setting, 125
global UI configuration, 246–248
gmail service, 22
GNU/Linux

installation on, 15–18
integration, 183–184

goals, Maven
adding, 45
in lifecycle, 38, 142
plugins, 227

good builds, promoting, 294–296
Google Chrome integration, 181
Google Guava utilities, 338–339
Google Play Store, 184
Gradle plugin, 323
groupId element, 35, 37
groups, assigning roles to, 314–315
Guava utilities, 338–339

H

h identifier in Jexl, 242
hard correctness testing tools, 51–52
hardware provisioning for slaves, 196
header.jelly file, 269–270
heap size, 290–292

HelloArquillianTest class, 162–163
HelloMvn program, 36–38, 59–60

archiving artifacts, 64–65
build triggers, 60–63
FindBugs in, 53–54
Maven build step, 63–64
testing, 80–88

HelloMvnTest class, 81
HelloWorld plugin, 222

building, 224–225
extension configuration, 238–240
extension points, 234–238
HPI tool. See HPI tool for plugins
project creation, 222–223
service hooks, 223–224
testing, 225–227

HelloWorldBuilder class, 234
HelloWorldBuilder.java file, 223–224
help-name.html file, 241
host operating system for GNU/Linux, 15–17
HOSTNAME variable, 149
.hpi files, 74
HPI tool for plugins

building and running, 229–230
creating, 228–229
overview, 227–228
testing, 230–231

HtmlPage class, 148
HtmlUnit library, 143
HtmlUnit test case, 147
HTTP traffic, redirecting, 310–311
--httpPort argument, 6
Hudson-as-valet usage, 334–336
Hudson dashboard, 9
HUDSON_HOME variable, 13, 17–18
Hudson Plot plugin, 342–343
HUDSON_PORT variable, 17–18
HudsonService class, 232
HudsonTpcPlugin.hpi file, 175–176

I

IDEs. See Integrated Development Environments
(IDEs)

in-house containing code, 136
index.jelly file, 265–267, 282–283
@InjectHelloArquillian annotation, 163
inspection tools, 85–87
Install Available Software dialog, 173
installed plugins

disabling and re-enabling, 74
Plugin Center, 72–73

Installed tab, 72
installing

Eclipse, 40–41
Hudson. See installing Hudson
IntelliJ IDEA, 46–47
JDeveloper, 43–44, 175–177

14-Index.indd 357 13/08/13 2:34 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5 / Index

358 Hudson Continuous Integration in Practice

installing (cont.)
JNLP slaves as Windows Services, 205
Mylyn into Eclipse, 172–174
NetBeans, 48
plugins, 74

installing Hudson, 4
backups, 23–24
easy method, 5–8
on GNU/Linux, 15–18
to start on Mac OS X login, 10–12
within Tomcat, 12–14
as Windows service, 8–9

instances, 334
committer role, 340–341
configuration, 187, 190
general-purpose scheduler, 342–343
Hudson-as-valet, 334–336
work area maintenance, 336–339

Integrated Development Environments (IDEs),
39, 169

Eclipse integration, 39–43
Eclipse overview, 172–174
IntelliJ IDEA integration, 46–48
IntelliJ IDEA overview, 174–175
JDeveloper integration, 43–46
JDeveloper overview, 175–178
NetBeans integration, 48–50
NetBeans overview, 168–172
overview, 39

integration tests, 118, 121, 158
IntelliJ IDEA IDE

integration, 174–175
overview, 46–48

Internet Relay Chat (IRC) plugin, 124
inversion of control, 139
IP addresses, 7
IRC (Internet Relay Chat) plugin, 124, 328
isApplicable method, 224
issue tracker integration, 178

Bugzilla, 178–179
JIRA, 178

it identifier in Jexl, 242
iTunes AppStore, 184
Ivy project, 33

J

Jabber plugin, 328
Jackson Library, 273, 280
Jane Austen’s World blog, 334
Java

configuration, 18–20
deploying applications to servers,

128–129
Java Development Kit (JDK), 5
JAVA_HOME variable, 20
Java Network Launch Protocol (JNLP), 201–205
Java Runtime Environment (JRE), 5

Java Server Faces (JSF), 239
Java Server Pages (JSP), 239
Java Web Start, 203–204
JavaPath in SSH authentication, 209
javax.servlet.Servlet class, 65
JBoss projects, 159
JClouds plugin, 329
JConsole tool, 291
JDeveloper IDE

integration, 175–178
overview, 43–46

JDK (Java Development Kit), 5
Jelly

custom rendered views, 256–259
job actions, 278
UI technology, 239–240

Jenkins Build Monitor, 179–180
JenkinsMobi app, 184–185
JetBRAINS company, 46
Jetty program, 146, 149
Jexl expression evaluator, 239, 242
JFrog Artifactory repository, 186–187
JIRA integration, 178
JNLP (Java Network Launch Protocol), 201–205
Job Configurations page

discarding old jobs, 293
extensions UI, 238
HelloWorld plugin, 226
Java application deployment, 128–130
UI validation, 244
upstream-downstream jobs, 116

job.jelly file, 257–258
JobConfigHistory plugin, 23

exploring, 75–76
installing, 74
output saving, 77
upgrading, 75

JobDiskUsage.java file, 265
JobEntry.java file, 255–256
JobInfo data model, 273
jobMain.jelly file, 278
jobs

access restrictions, 311–313
cascading, 115–117
chaining, 109–114
CI environment, 100–102
creating, 68–69
dashboard links, 275–283
discarding, 293
extending, 270–271
history depth, 292–294
Maven module builds, 114
from NetBeans projects, 171–172
notifiers, 271–274
organizing, 68–69
properties extending, 270
rendered status views, 252–259
transient actions, 276–277
upstream-downstream, 115–117

14-Index.indd 358 13/08/13 2:34 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5 / Index

Index 359

Jobs Status page, 252–259
JRE (Java Runtime Environment), 5
JSF (Java Server Faces), 239
JSP (Java Server Pages), 239
JUnit plugin

description, 325
hard correctness tests, 51–52
test reports, 119–120
test result trends, 280

JVM options in SSH authentication, 209

K

Kawaguchi, Kohsuke, 334, 342
Keep this slave on-line as much as possible

option, 210

L

labels
defined, 195
slaves, 200, 212

Last Duration column in job views, 68
Last Failure column in job views, 68
Last Success column in job views, 68
launch methods for slaves, 201
Launch slave agents via JNLP option, 202
Launcher object extensions, 234
Laws of Software Process, 26
lazy failures, 164–165
levels of promotions, 294–296
Line of Code (LOC) metric, 122
ListView model, 253
load method, 248
load tests, 158
LOC (Line of Code) metric, 122
local configuration, 240
local repositories, 186
Locks & Latches plugin, 324
Loeliger, Jon, 56
Logged-in users can do anything option, 79
Logger object extensions, 235

M

m2eclipse plugin, 40–41
Mac OS X

Hudson startup with, 10–12
integration, 183–184

Main dashboard, 7
adding actions to, 262–267
job status display, 252–253
with plugins, 230

main.jelly file, 257
major releases, 316

Make tool, 107
Manage and Assign Roles page, 313–314
Manage Goals dialog, 45
Manage Hudson page, 9, 18–19, 70, 301–302, 349
Manage Plugins page, 225
managed slaves

description, 197
SSH-based, 206–210

ManagementLink action, 267
Manager Web app, 12–14
managers in software development lifecycle,

29–30
MANIFEST.MF file, 38
marionette theatre analogy, 30–31
master branches in Git, 106
master-only mode, 194
master-slave mode

distributing builds, 211–217
overview, 194–195
restricting builds to slaves, 212–214
slave axes, 215–216
slave labels, 212
slave management tools, 217–218
slave monitoring, 218–219
slave node additions, 198–202
slave overview, 195–196
slave provisioning, 196–197
slave types, 197–198
SSH-based managed slaves, 206–210
unmanaged slaves via JNLP Launcher,

202–205
masters, defined, 195
Matrix Authorization Strategy, 311
matrix-based security option, 79
matrix builds, 32, 214–217
Maven, 35–36

artifacts, 225
as automated build tool, 107–108
build lifecycle, 38–39, 138–143
build step, 63–64
configuration, 21–22
dependency management, 35–36
goals, 38, 45, 142, 227
IntelliJ IDEA with, 47–48
JDeveloper with, 44–45
module builds job settings, 114
NetBeans with, 49–50
overview, 34–35
plugins, 38–39, 227
Project Object Model, 36–38

maven-failsafe-plugin, 146–147
maven-hpi-plugin tool, 228
Maven plugin, 323
Maven Release plugin, 327
maven-surefire-plugin, 147
Max # of builds to keep with artifacts setting,

293–294
McCool, Rob and Mike, 65
McCullough, Matthew, 56

14-Index.indd 359 13/08/13 2:34 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5 / Index

360 Hudson Continuous Integration in Practice

memory management, 290–292
Mercurial plugin, 323
Microsoft Windows integration, 182–183
middleware, 65
minor releases, 316
mobile integration, 184–185
mock objects, 159
Mockito technology, 159
model-view relationship, 256–259
modules

build settings, 114
CVS, 59
self-contained, 80–81

monitoring
setup, 308–309
slaves, 218–219

MsBuild plugin, 323, 349–351
MSTest plugin, 349
multi-configuration jobs, 214–215
mvn command

arguments, 38, 138
clean install, 63, 138
install, 37, 63–64
lifecycles, 139, 141
plugins, 227

Mylyn integration, 172–174

N

names of slaves, 199
Nant plugin, 324
NCover plugin, 326
Nested View plugin, 330
.NET projects, 31
NetBeans IDE

integration, 168–172
overview, 48–50

New Build feature, 169
New Continuous Build dialog, 172
New Gallery dialog, 44
New Repository Select a Wizard dialog, 173
New View page, 68
newViewDetail.jelly file, 259
Nginx Server, 298
No Shutdown option, 303
Node Configurations page, 199–200
nodes

defined, 195
master-slave mode. See master-slave mode

Nodes Status page, 198, 201–202, 218
non-distributed SCM, 32
non-Java platforms, 346

build step, 347
collect results step, 347–349

notifications and notifiers
build, 89–91
e-mail, 22–23, 89–90, 124–127
extending, 271

jobs, 271–274
status messages, 90–91, 271–274
UI configuration, 274–275

Notify user of account creation option, 78
NUnit plugin, 325

O

open source software (OSS), 336–339
Oracle JDeveloper IDE

integration, 175–178
overview, 43–46

OS-level failures, 308
OSS (open source software), 336–339
Others subtab, 71

P

package command, 229
<packaging> element, 37, 66
page decoration, 267–270
PageDecorator extension point, 267
Parameterized Trigger plugin, 325
parity, environment, 164
passwd file, 17
passwords

Git, 57
gmail, 22
SSH authentication, 207–209

per-job configuration, 187–189
Perforce plugin, 323
perform method, 235, 237
phases in Maven, 139–140, 227
pipelines, build, 108
Play Store, 184
Plot plugin, 330
Plugin Center, 69–75
<plugin> entry, 37
plugins, 7, 222, 231

building, 224–225
builds automation, 323–324
builds self-testing, 325–327
custom, 112
deployment automation, 329–330
disabling and re-enabling, 74
downgrades, 73
extension points extensions, 232–233
extension points overview, 231–232
extension sample, 233–238
HPI tool, 227–231
installing, 74
Maven, 38–39, 141–142
project creation, 222–223
removing, 74–75
requirements, 222
service hooks, 223–224
single-source repositories, 322–323

14-Index.indd 360 13/08/13 2:34 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5 / Index

Index 361

testing, 225–227
UI configuration, 330–331
updates, 72–73
upgrading, 75

PMD plugin, 85–88, 327
pmd.xml file, 87
Poll SCM trigger, 60, 63, 111
pom.xml file

building and running projects, 45–46
example, 36–37
HelloWorld plugin, 224
plugins in, 38
purpose, 34
servlet, 65–67

ports
Hudson-as-valet, 336
SSH authentication, 209

pretested commits, 158
previous job configurations, 76
private key files in SSH authentication, 209
Project Object Model in Maven, 36–38
projects in IDEs, 39
ProminentProjectAction action, 267
promoted builds, 294–296
Promoted Builds plugin, 330
protocols in Git, 57
provisioning slaves, 196–197
proxies, Web, 298–300
Proxy Concerns tab, 70
Public JUnit test result, 280–281
public-private key-based authentication, 206–209
Publish JUnit test result option, 83, 119, 176
Publish MSTest test result report option, 352
Publish PMD analysis results option, 87
Publish SLOCCount analysis results option, 122
publishers, extending, 271
publishing build artifacts, 185

deployment to container, 189
FTP Publisher Plugin, 190
repositories, 186–189

Q

quality assurance systems, 80–88
@QueryParameter annotation, 246

R

Radiator View plugin, 330
Rake plugin, 324
re-enabling installed plugins, 74
Really Simple Syndication (RSS) plugin, 124, 179
Recommended subtab, 71
recorders

build result trend displays, 278–283
extending, 271

redirecting HTTP traffic, 310–311
redundant servers

redirecting HTTP traffic to, 310–311
setup, 307–308

release engineers in software development
lifecycle, 29

remote FS roots, 200
remote machines, command execution on,

131–133
remote repositories, 186
removing plugins, 74–75
rendering configuration UI, 241–242
repositories

Arquillian, 161
artifacts, 35, 186–187
CI environment, 97
Git, 57–58
Maven, 35, 37
plugins, 322–323
SCM, 32, 103

reproducibility in Continuous Delivery, 154
resource management, 290

disk space, 296–298
good builds and bad builds, 294–296
job history depth, 292–294
memory, 290–292

responsiveness, 29
Restore page, 304
restores

previous job configurations, 76
system configurations, 76–77
ThinBackup, 306

Restrict where this job can be run option, 212
restricting job access, 311–313
result trends

CI, 120–122
custom recorders for, 278–283

role-based access control, 78
Role-based Authorization Strategy plugin, 313
roles

authorization matrix, 313–315
software development cycle, 26–30

Root Repository Path setting, 190
RootAction extension, 263–264
.rpm files, 15
RSS (Really Simple Syndication) plugin, 124, 179
Ruby Metrics plugin, 349
Ruby projects, 31
Run/Debug Configurations dialog, 48
Run Shell Script action, 11
running plugin projects, 229–230
@RunWith annotation, 163

S

SampleBuildWrapper.java file, 284–285
SampleJobAction.java file, 277–278
SampleJobActionFactory.java file, 276–277

14-Index.indd 361 13/08/13 2:34 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5 / Index

362 Hudson Continuous Integration in Practice

SampleNotifier.java file, 271–274
SamplePageDecorator.java file, 267–268
SampleRecorderData class, 282
SampleView.java file, 254–255
sandbox in upgrades, 317–318
save method, 248
saving

JobConfigHistory output, 77
previous job configurations, 76
system configurations, 76–77

scheduler, Hudson as, 342–343
schedules, backups, 305
SCM. See software configuration management

(SCM)
SCM Trigger plugin, 324
ScmTypeColumn.java file, 261
<scope> element, 67
scope of tests, 82
SCP Publisher plugin, 129, 327
Search tab, 71
Secrets of the Rockstar Programmers, 334, 342
security, 311

authentication, 77–80, 206–209
authorization matrix roles, 313–315
job access, 311–313

Select Main Class for Execution dialog, 49
Selenium plugin, 325
self-contained modules, 80–81
Send e-mail for every unstable build option, 91
Send separate e-mails to individuals who broke

the build option, 91
sending

build status messages, 90–91
extended e-mail notifications, 125–127

Serenity plugin, 326
server switch on failure, 309–310
service hooks for plugins, 223–224
service method, 67–68
serviceMethod method, 232, 239
Services dialog, 8
servlet project, 65

jobs, 68–69
pom.xml file, 65–67
servlet class, 67–68
testing, 143–153

Setenv plugin, 324
setOut method, 52
setting up CI environment, 97–98
setup for fail-safe mode, 307–309
Sherwood County Library example

automated testing servlets, 143–153
build speed, 111–114
CI environment, 98–102
Java applications deployment to servers,

128–129
Maven module builds, 114
source code management, 103–107
upstream-downstream jobs, 115–117

shields in automated testing, 153–156
Short Message Service (SMS) plugin, 124
Show Disk Usage link, 262–263
Show disk usage trend graph on the project page

option, 298
Show View dialog, 173
ShrinkWrap API, 163
SimpleServer01IT class, 148
single-source repositories, 322–323
site phase in Maven, 139
skeleton plugins

building and running, 229–230
creating, 228–229
testing, 230–231

slave agents, 195
Slave Status plugin, 329
slaves. See master-slave mode
SLOCCount tool, 122
SMS (Short Message Service) plugin, 124
SMTP server setting, 89
soft correctness testing tools, 53–54
software components in CI environment, 99–100
software configuration management (SCM)

adding to projects, 56–59
CI environment, 103–107
for developers, 28
extending, 270
extension points, 232
Git extensions, 246
overview, 32
repositories, 32, 97, 103
work area maintenance, 337

software development as marionette theatre
production, 30–31

software development lifecycle, 26–27
architects, 29
developers, 27–28
examples, 29–30
managers, 29
release engineers, 29
testers, 28

software-level failures, 308
Sonar plugin, 326
Sonatype Nexus repository, 186
Source Code Management. See software

configuration management (SCM)
speeding up builds, 108–114
src/main/java directory, 37
src/main/webapp directory, 66, 81
src/test/java directory, 37–38, 51, 81
SSH for slaves, 201

managed, 206–210
SSH Slaves plugin, 197, 328

ssh-keygen program, 207
SSH plugin, 131–132, 309, 324
staged builds, 108
Start Hudson application, 11
static analysis tools, 85

14-Index.indd 362 13/08/13 2:34 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5 / Index

Index 363

Status column for job views, 68
status messages, sending, 90–91
status of slave nodes, 218
style.css file, 270
Subversion SCM, 58–59
svn command

checkout, 337–338
revert, 59
update, 58–59, 338

SVN plugin, 323
System Configurations page

disk usage, 298
e-mail notification, 22–23
Java installations, 19
Maven, 21
saving and restoring system

configurations, 76–77
system properties, 5

T

Tab panel in Plugin Center, 70–72
Take this slave on-line and off-line at specific

times option, 210
Take this slave on-line when in demand and off-

line when idle option, 210
Team Productivity Center (TPC), 175–177
teardown method, 148
Test Result trend, 120–122
test results in JDeveloper, 177–178
testers in software development lifecycle, 28
testIndexHtml method, 148
TestNg plugin, 51–52, 325
testPopulateArray method, 163
tests and testing

adding, 165
automated. See automated testing
continuous, 118–122
hard correctness tools, 51–52
kinds of, 157–158
plugins, 225–227
quality assurance systems, 80–88
servlet, 143–153
skeleton plugins, 230–231
soft correctness tools, 53–54
tools overview, 50
types, 118–119
on Windows, 352

thinBackup Configuration page, 304–305
ThinBackup plugin, 301

restore operation, 306
settings, 304–306

tokens, e-mail, 126–127
Tomcat manager

deploying Java applications, 128–129
installing Hudson within, 12–14
work area maintenance, 337–338

tomcat-users.xml file, 12–13
tools provisioning for slaves, 197
TPC (Team Productivity Center),

175–177
transient job actions, 276–277
TransientProjectActionFactory action, 267
trend charts, 122
triggers

configuring, 60–63
extending, 270
Sherwood County Library example,

111–112
troubleshooting SSH connections, 210
trunk branches in Git, 106
TRX output, 352
Twitter plugin, 124

U

UI and UI configuration
build wrappers, 285–286
Disk Usage page, 265–267
extensions, 238–239
global, 246–248
interaction with model, 242–244
notifiers, 274–275
page decorators, 268–270
plugins, 330–331
recorders, 280–283
rendered views, 256–259
sample job action, 277–278
validation, 244–246
view columns, 261

Ultimate IntelliJ IDEA version, 46
unit tests

with Arquillian, 159–163
CI environment, 97
description, 118, 157
results viewing, 119–120

unmanaged slaves
description, 198
JNLP Launcher, 202–205

updates for plugins, 72–73
Updates tab, 70–71
upgrades, 315–316

JobConfigHistory plugin, 75
sandbox, 317–318
versioning scheme, 316

uploading build artifacts to other machines,
129–131

upstream-downstream jobs
chaining, 109–114
managing, 115–117

URL Change Trigger plugin, 325
Usage setting for slaves, 201
Use XSLT for xml artifact option, 184

14-Index.indd 363 13/08/13 2:34 PM

Oracle-Regular / Hudson Continuous Integration in Practice / Burns & Prakash / 428-5 / Index

364 Hudson Continuous Integration in Practice

user-defined axes in build distributions, 216–217
usernames

Git, 57
SSH authentication, 208

users, assigning roles to, 314–315

V

validation, UI, 244–246
Version Control with Git, 56
versioning scheme, 316
versions

Maven, 35, 37
SCM, 32

View Configurations page, 68–69
View Detail screen, 184
viewing

jobs, 68–69
test results in JDeveloper, 177–178
unit test results, 119–120

Views feature, 68–69
Violations plugin, 327
VirtualBox plugin, 329
VM provisioning for slaves, 196

W

Warnings plugin, 327
Weather column for job views, 68

Web Application Archive (war) files, 5, 66
Web proxies, 298–300
WebLogic plugin, 329
WebSphere plugin, 330
Welcome to IntelliJ IDEA dialog, 174
white box testing, 51
Windows AutoHotKey, 334–335
Windows developers

non-Java platforms, 346–349
Windows software platform, 349–352

Windows integration, 182–183
Windows service

installing Hudson as, 8–9
JNLP slaves as, 205

Windows Services panel, 9
Windows Sidebar Gadget, 182
Windows Slaves plugin, 197, 329
Windows software platform, 349–352
work area maintenance, 336–339
Workspace Explorer, 106–107
Workspace Launcher dialog, 40
wrappers, 283–286

X

xUnit plugin, 326

14-Index.indd 364 13/08/13 2:34 PM

Oracle-Regular / Oracle Cloud Storage Management / Burns & Prakash / 428-5 / Index
Blind folio: 365

14-Index.indd 365 13/08/13 2:34 PM

Oracle-Regular / Oracle Cloud Storage Management / Burns & Prakash / 428-5 / Index
Blind folio: 366

14-Index.indd 366 13/08/13 2:34 PM

Join the Oracle Press Community at

OraclePressBooks.com
Find the latest information on Oracle products and
technologies. Get exclusive discounts on Oracle
Press books. Interact with expert Oracle Press
authors and other Oracle Press Community members.
Read blog posts, download content and multimedia,
and so much more. Join today!

Join the Oracle Press Community today

and get these benefits:

• Exclusive members-only discounts and offers

• Full access to all the features on the site: sample

chapters, free code and downloads, author blogs,

podcasts, videos, and more

• Interact with authors and Oracle enthusiasts

• Follow your favorite authors and topics and

receive updates

• Newsletter packed with exclusive offers and

discounts, sneak previews, and author podcasts

and interviews

@OraclePress

D
ow

nloaded by [H
acettepe U

niversity 85.240.126.137] at [05/05/16]. C
opyright ©

 M
cG

raw
-H

ill G
lobal E

ducation H
oldings, L

L
C

. N
ot to be redistributed or m

odified in any w
ay w

ithout perm
ission.

	Cover
	Title Page
	Copyright Page
	About the Authors
	Contents
	Foreword
	Acknowledgments
	Introduction
	Part I: Essential Knowledge
	Chapter 1: Getting Started
	Installing Hudson
	Trying Hudson with the Easy Installation Method
	Installing Hudson as a Windows Service
	Installing Hudson to Start When a User Logs in to Mac OS X
	Installing Hudson Within Tomcat
	Installing Hudson on GNU/Linux
	Basic Hudson Configuration
	Your First Job: Back Everything Up

	Summary

	Chapter 2: Hudson Precondition Primer
	Hudson in the Software Development Lifecycle
	Developer
	Tester
	Manager
	Architect
	Release Engineer
	Example: Orchestration of Roles Around Hudson

	Software Development as Marionette Theatre Production
	Development Platforms
	Software Configuration Management
	Builders

	Integrated Development Environments
	Eclipse
	Oracle JDeveloper
	IntelliJ IDEA
	NetBeans

	Testing Tools
	Soft Correctness Testing Tools

	Summary

	Chapter 3: Basic Concepts
	Intermediate Hudson Configuration
	Adding Source Code Management (SCM) to Your Jobs
	Your Second Job: A Simple Java Program
	Your Third Job: A Simple Servlet
	Using the Plugin Center
	Your Fourth Job: Advanced Backup Options
	Hudson Authentication Security
	Adding Quality Assurance Systems

	Build Notifiers
	Configuring E-mail Server
	Configuring the Job to Send Build Status Message

	Summary

	Part II: Applying Hudson
	Chapter 4: Hudson as a Continuous Integration Server
	What Is Continuous Integration?
	Setting Up the CI Environment
	Sherwood County Library
	Sherwood Library Software Components

	Source Code Management
	Build Automation
	Maven as an Automated Build Tool
	Speeding Up the Build
	Managing the Upstream–Downstream Jobs Complexity

	Continuous Testing
	Types of Tests
	Viewing the Unit Test Results
	Test Result Trends
	Code Metrics and Code Coverage

	Continuous Feedback
	Extended E-mail Notification

	Continuous Delivery or Deployment
	Deploying a Java Application to an Applications Server
	Uploading Build Artifacts to Another Machine
	Executing Commands on a Remote Machine

	Summary

	Chapter 5: Hudson and Automated Testing
	Containing Code and Code Under Test
	A Quick Tour of the Maven Build Lifecycle
	Quick Code Jumpstart: Simple Servlet Testing
	Automated Testing: Shields Up!
	The Software Lineup
	Who Writes the Tests?
	Kinds of Tests
	Unit and Component Testing with Arquillian in Hudson
	Hudson Automated Testing Tips

	Summary

	Chapter 6: Hudson as Part of Your Tool Suite
	IDE Integration
	Creating a New Hudson Job Directly from a NetBeans Project
	Eclipse Hudson Integration
	IntelliJ IDEA Hudson Integration
	JDeveloper Hudson Integration

	Hudson Issue Tracker Integration
	Atlassian JIRA Integration
	Bugzilla Integration
	Other Issue Trackers

	Browser and Desktop Integration
	Browser Integration
	Desktop Integration
	Mobile Integration

	Publishing Build Artifacts from Hudson
	Artifact Repository
	Deploy to Container
	FTP Publisher Plugin

	Summary

	Chapter 7: Distributed Building Using Hudson
	Master-Slave Mode
	Hudson Slaves
	Types of Slaves
	Adding a Slave Node to Hudson
	Adding an Unmanaged Slave via JNLP Launcher
	Adding an SSH-Based Managed Slave
	Distributing the Builds
	Managing Slaves

	Summary

	Chapter 8: Basic Plugin Development
	Writing a HelloWorld Plugin
	Creating the Plugin Project
	Creating a Service Hook
	Building the Plugin
	Testing the Plugin

	HPI Tool
	Creating a Skeleton Plugin Project
	Building and Running the Plugin Project
	Testing the Skeleton Plugin

	Understanding the Hudson Plugin Framework
	What Is an Extension Point?
	Extending an Extension Point
	Examining the Sample Extension
	Modifying the Sample Extension

	Extension UI Configuration
	Configuration File Conventions
	Configuration UI Rendering
	Interaction Between UI and Model
	UI Validation
	Global UI Configuration

	Summary

	Part III: The Hudson Lifestyle
	Chapter 9: Advanced Plugin Development
	Extending Various Aspects of Hudson Dashboards
	Creating a Custom Rendered Jobs Status View
	Using the Custom Rendered View
	Adding a Custom Column to the Default View
	Adding an Action to the Action Panel of the Main Dashboard
	Custom Decoration of Hudson Pages

	Extending Various Aspects of a Hudson Job
	Adding a Custom Notifier to a Job
	Adding a Custom Link to a Job Dashboard
	Creating a Custom Build Wrapper

	Summary

	Chapter 10: Hudson Best Practices
	Manage the Hudson Resources Effectively
	Tune Memory
	Restrict Job History Depth
	Monitor the Disk Space

	Put Your Hudson Behind a Web Proxy
	Do Not Use Your Hudson as a File Server
	Periodically Back Up Your Hudson Contents

	Set Up a Fail-Safe Mode for Your Hudson
	Redundant Hudson Server Setup
	Monitoring Hudson Setup
	Server Switch on Failure
	Redirecting HTTP Traffic to a Redundant Server

	Scale Up the Security of Your Hudson
	Restrict Job Access to Certain Users
	Add Roles to the Authorization Matrix

	Upgrade Your Hudson Diligently
	Understand the Hudson Versioning Scheme
	Upgrade in a Sandbox First

	Summary

	Part IV: Appendixes
	Appendix A: Widely Used Hudson Plugins
	Appendix B: Personal Hudson Instance
	Hudson-as-Valet
	Optimal Hudson-as-Valet Setup

	Hudson for Work Area Maintenance
	The Open-Source Liaison Role
	The Committer Role

	Hudson as General-Purpose Scheduler
	Hudson Plot Plugin

	Summary

	Appendix C: Hudson for Windows Developers
	Key Enablers for Using Hudson on Non-Java Platforms
	Build Step
	Collect Results Step

	Hudson and the Windows Software Platform
	Hudson and Automated Testing on Windows

	Summary

	Index

