Introducing
Materialize

Anirudh Prabhu
Aravind Shenoy

ApPress’

http://www.allitebooks.org

Introducing
Materialize

Anirudh Prabhu
Aravind Shenoy

Apress®

www.allitebooks.cond

http://www.allitebooks.org

Introducing Materialize

Anirudh Prabhu Aravind Shenoy
Mumbai, India Mumbai, Maharashtra, India
ISBN-13 (pbk): 978-1-4842-2348-2 ISBN-13 (electronic): 978-1-4842-2349-9

DOI10.1007/978-1-4842-2349-9
Library of Congress Control Number: 2016961298
Copyright © 2016 by Anirudh Prabhu and Aravind Shenoy

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Managing Director: Welmoed Spahr

Acquisitions Editor: Louise Corrigan

Technical Reviewer: Phil Nash

Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,
Jonathan Gennick, Todd Green, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal,
James Markham, Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Nancy Chen

Copy Editor: Mary Behr

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global, cover image courtesy of Freepik

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit waw. springer.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit waw.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales-eBook Licensing web page at waw.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text are
available to readers at www.apress. com. For detailed information about how to locate your book’s
source code, go to www.apress.com/source-code/. Readers can also access source code at
SpringerLink in the Supplementary Material section for each chapter.

Printed on acid-free paper

www.allitebooks.cond

orders-ny@springer-sbm.com
www.springer.com
rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.allitebooks.org

I dedicate this to my mother and father for their endless support and
words of encouragement. I also dedicate this to my many friends
who have supported me throughout the process. 1 will always
appreciate all they have done.

—Anirudh Prabhu

vww . allitebooks.con

http://www.allitebooks.org

Contents at a Glance

About the AUthOrS........ccuseemmniiseenmmmiseenmmseas s xi
About the Technical REVIEWETcusseeermmssssnsnmsssssnssmssssssssssssssnsnnnss xiii
Acknowledgments........cccuuussseemmmnmmmmmssssssssssssnnnnnessssssssnnnnnnnnsssssssnnnns Xv
Chapter 1: Introducing Materialize..........cccccusemmmmnsssennnnssssensnnssssnnn 1
Chapter 2: Grid Fundamentals and Helper Classesccuueesninsnss 1
Chapter 3: Beyond Fundamentals...........cccoiunnsnemnmmnsssensnnssssensnnnnns 29
Chapter 4: Materialize JavaScript..........ccccimmssemmmmmsssensmnssssensnnnnns 49
Chapter 5: Materialize Componentscccusseennnnsssessnnssssssssnnsans 87
INA@X.uuiiisssnsnssnnsnsnnnnnns 131
\%

www.allitebooks.cond

http://www.allitebooks.org

Contents

About the AUthOrS.........ccccumsemmmmssmsmsssmsmsssesmsssesisssassssass s sssanns Xi
About the Technical REVIEWETccceumsmmmssmsmsssmsmsssmsmsssmnssssanssssnns xiii
Acknowledgments........cccuuussseemmmnmmmmmssssssssssssnnnnnessssssssnnnnnnnnsssssssnnnns Xv
Chapter 1: Introducing Materialize..........cccccusemmmmnsssennnnssssensnnssssnnn 1
What Is Material DeSign?ccvvvvrrrersnene e ssessessessessesssssesns 1
Material IS ANAIOGYcooveereerererererererererseserererseressesassessesessesessessssesassessenessesassesanas 2

Bold, Graphic, INtentional............ccccoveerrcererrerererere s se e neens 2
Motion Provides MEaniNg.........cccveeervererrererererererersersesessesessessssessssessesessenessessssesanss 2
What Is Materialize CSS? ... 2
Downloading Materialize CSScccoereierererece e sneenens 2
Production-Ready ..o s 3

BT L] 7o) TSN 3
Alternative Downloading Methods..........coeeeeemrernncsnensescse e 4
Setting Up Materializeccoceveverereneresese e sse e ssesaesnens 4
SASS SELUD ..eerreereirerir e 6
GAIIBIY ... s a e n e nenaennenne 7
SUMMANY ..ot s sae s a e saesaesaesaesaesannnees 9
Chapter 2: Grid Fundamentals and Helper Classesucceurunnee 11
Materialize Grid EXplaiNed.........ccccevierveerierreerierrerressessesseesesssssesssesaenns 11
Creating Responsive Layoutscccccererennnsesesensessssesssessessssessesennes 11
LCONTAINET ClASS......covierrerirerrs e 12
vii

www.allitebooks.cond

http://www.allitebooks.org

CONTENTS

12-Column Grid LAYOUL.........ccceerecirere e 14
Columns Incorporated in ROWS.........cccovverisinnnnesinssnsesssesss e sessssessssesnens 15
OFFSBS 1uviririrrrrrrr s ———————— 16
PUSH @NA PUIL......cnee e 16
Adding RESPONSIVENESS.......cccuecerererecerereee e ss s s 17
Responsive Side Navigation Layout..............ccccoeriiencnennnencnennece e 19
HEIPEIS ...t s 22
VErtiCal AlIgN......ccceriereererrse s e sese s s ses s e e s ss s s e sssesssssnssesssssanes 22
TEXt AlIGNMENT.....ccviicceeerre s er e sr s nrnnn e 23
QUICK FIOALSceeercacererereessseseessseseses s e s sse s s s e s s sesessssssssesssssnssessassnsnes 24
Hiding CONTENT ..ot 24
L0 LT L0 26
HOVErabIE........cecciriicctr s 27
31111 4P 7S 28
Chapter 3: Beyond Fundamentals..........cccciunssmmmmmmsssssnmmsssssssnnsssnnns 29
Color Palette..........cormrermiiiiinise e 29
ReSpoNSIiVe IMAQESccccevereerrerrrsrsses s see s sns e e s ses s 31
Rounded IMagesccoeeerrrererrrreesesses s 33
Responsive EMDEASccceveveererrennirsee e s e nnens 34
ReSpONSIVE VIAROS........ccceceeererrereerre e sne s sn s 36
SRAAOWS......ceeieeererire e e 37
TADIES ...covrrisie it ——————————— 38
TYPOGIAPNY ..o 44
BIOCKQUOTES ...ttt s 46
SUMMANY ...t n s r e 48

viii

www.allitebooks.cond

http://www.allitebooks.org

CONTENTS

Chapter 4: Materialize JavaScript..........cccesnssmmnmnssssnnnssssssnnnsssssnns 49
COllApSIDIE.....cceeeeeeeeeeeerece e e 49
TOASES ...t —————————————— 56
L0 (]S 59
DIOPAOWN ...ttt s 61
MOl ...t ——————————— 65
3T (0] T 67
101 (0] 1301 SO SRS 69
B3] o (=] 71
TADS ... 74
L 78
TrANSItIONS ...c.vieecerccre s 79
CarQUSEI ... 81
SUMMAIY ...t r s n e s nn s 85
Chapter 5: Materialize Componentsccouvsemmmmmmrnssssssssssssssnsnns 87
372 Lo 1= 87
BULONS ... el
CANOS ... s 96
0 1] 1RSSR 102
(08]RS 109
010 RN 114
0] 1T 116
INPUL FIBIG.......eecee e s 116
L) LT OO 121
] T TR 122

ix

www.allitebooks.cond

http://www.allitebooks.org

CONTENTS

RAI0...... ettt 125
CRECKDOXEScoveruecereriece et sa e 126
SWITCRES ... 127
D1 (] o T1 (T O 128

1T 1111 S 129
1T - 131

www.allitebooks.cond

http://www.allitebooks.org

About the Authors

Anirudh Prabhu is a UI Developer with more than
seven years of experience. He specializes in HTML, CSS,
JavaScript, jQuery, Sass, LESS, Twitter, and Bootstrap.
Additionally, he has been associated with Packt and
Apress books as a Tech Reviewer for several titles. He is
the author of Beginning CSS Preprocessors: With Sass,
Compass, and Less (Apress, 2015).

He has exposure to CoffeeScript and Angular]S. He’s
also been involved in building training material for HTML,
CSS, and jQuery for twenty19 (www. twenty19. com), which
is a portal for providing training for freshers/interns. In
his free time, he enjoys listening to music and is also an
avid photographer who likes taking unique photos.

Aravind Shenoy A senior technical writer by profession,
Aravind’s core interests are technical writing, content
writing, content development, web design, and business
analysis. Born and raised in Mumbai, he still resides
there. A music buff, he loves listening to rock n’ roll and
rap. An engineering graduate from the Manipal Institute
of Technology and an author of several books, he is a
keen learner and believes that there is a steep learning
curve, as Life is all about learning. In summary, as he
quips, “The most important thing is to be happy.”

xi

vww . allitebooks.con

https://www.twenty19.com/#_blank#www.twenty19.com
http://www.allitebooks.org

About the Technical
Reviewer

Phil Nash is a developer evangelist for Twilio, serving developer communities in London
and all over the world. He is a Ruby, JavaScript, and Swift developer, a Google Developer
Expert, a blogger, a speaker, and occasionally a brewer. He can be found hanging out

at meetups and conferences, playing with new technologies and APIs, or writing open
source code.

xiii

Acknowledgments

I dedicate this book to my aunt Godavari, my uncle Satish Rao, my cousin Ashwin, and
finally my niece Ajnya, who is the light of my life. I miss her a lot. She taught me to take it
easy and to understand the Leonard Cohen quote “There is a crack in everything. That’s
how the light gets in.” I would also like to thank the entire Apress team (and Springer) and
the Reviewer for the effort and time they put into this book. I sincerely appreciate it! This
is my ninth book, but this time as a co-author, so I would like to thank the main author,
Anirudh, who had to tolerate my idiosyncrasies. Finally, as Carrie Hope said, “Happiness
is always there. You just have to choose to see it. There’s no point dwelling in the dark and
ignoring the light of the stars” Thanks to everyone. I really appreciate it.

—Aravind Shenoy

XV

CHAPTER 1

Introducing Materialize

Materialize is an intuitive framework along the lines of Bootstrap and Foundation.
It adheres to the Material Design language launched by Google. Materialize has Ul
components baked in, which are easy to use and implement, and it provides styling
and animations for constructing aesthetic and responsive web sites. It takes into
consideration several aspects such as browser portability and responsiveness, all within a
compact footprint.
This chapter is a quick start guide to help you get to a grip on the concept of Material
Design and an overview of Materialize and how it fits in the paradigm of Material Design.
In this chapter, I will be discussing the following topics:

e What is Material Design?

e What is Materialize CSS?

¢ Downloading Materialize
e Setting up Materialize

e Third party add-ons

e Sass parts

e A showcase of websites

What Is Material Design?

Material Design, created by Google, is a design philosophy that is inspired by real materials
and helps create sleek and interactive web sites. It follows the Google’s device-agnostic
paradigm and stresses the need for web sites to look the same irrespective of the platform;
in other words, uniformity across all devices, such as a tablet or phone or laptop.

Material design competes with other innovative competition such as flat design and
metro design. However, it is a distinct concept that helps create a consistent and unified
experience that gives a real-world look and is aesthetically pleasing.

Electronic supplementary material The online version of this chapter
(doi:10.1007/978-1-4842-2349-9_1) contains supplementary material, which is available
to authorized users.

© Anirudh Prabhu and Aravind Shenoy 2016 1
A. Prabhu and A. Shenoy, Introducing Materialize, DOI 10.1007/978-1-4842-2349-9_1

http://dx.doi.org/10.1007/978-1-4842-2349-9_1

CHAPTER 1 " INTRODUCING MATERIALIZE

Material Is Analogy

Material Design and development is inspired by understanding tactile elements used in
the real world. This innovative concept is grounded in reality and is actually influenced
by paper and ink. It draws and extends from the real world in a selective way, meaning it
takes into account only those elements that will result in an awesome user experience.
In short, it tries to incorporate the way actual materials in the world look and behave,
meaning it doesn’t treat your device as a two-dimensional platform. It results in a
uniform and visually appealing experience for the users.

Bold, Graphic, Intentional

Typography, space, imagery, and scale are prime when it comes to print media design.
Material design is not focused on creating just a visually appealing web site; rather

it provides meaning as well and enhances the focus, resulting in an immersive user
experience wherein the character or functionality becomes clear and explicitly.

Motion Provides Meaning

This paradigm is focused on ensuring that motion should be meaningful and appropriate.
Animation is key to Material Design, which stresses that the transition is effective and
coherent and not for the sake of it. It should work meaningfully and naturally, where you
can perceive the way an object moves akin to a real-world situation. The physicality of
the real world movement must be retained to create a seamless user experience. More
information on Material Design methodology can be found on Google’s Material Design
site at https://material.google.com/.

What Is Materialize CSS?

Materialize is an intuitive framework similar to Bootstrap and
Foundation that offers ample UI components. However, the
function differs because Bootstrap and Foundation are based on

the mobile-first approach whereas Materialize adheres to Google’s
Material Design philosophy.

Downloading Materialize CSS

Materialize is available in two variants: production-ready and Sass (Figure 1-1).

https://material.google.com/

CHAPTER 1 © INTRODUCING MATERIALIZE

Materialize Sass

This is the standard version that comes with boththe This version contains the source SCSS files. By
minified and unminified CSS and JavaScript files choosing this version you have more control over
This option requires little to no setup. Use this if you which components to include. You will need a Sass
are unfamiliar with Sass. compiler if you choose this option

Figure 1-1. Materialize CSS and Sass versions

Production-Ready

The production-ready version is a no-frills one that includes minified as well as un-
minified CSS and JavaScript files. This version requires hardly any setup and can be
included in your document. It doesn’t include Sass and is for those users who are looking
to use the framework and don’t need to build and compile Sass code.

Sass Version

This version contains the SCSS files that are finally compiled to the final CSS files. Using
this method, you can gain more control and decide which components to use. You
can also customize the components as per the requirement. However, you need a Sass
compiler if you use this method.

You can use any variant as per your requirement.

While the previous options (Materialize and Sass versions) required you to
download, extract, and then include them in your web site directory, there is an
alternative in which you can incorporate Materialize without any download. Here
you do not need to download the Materialize locally. All you need to do is incorporate
Materialize in your HTML file using a CDN (Content Delivery Network).

There are several advantages of using a CDN:

e Itremoves the load on your server by serving these scripts and
assets from fast CDN servers that are available across the globe,
dedicated for this task.

e CDN servers have high availability.

e Since the scripts files are on a CDN, which is a different server,
you can achieve concurrency

e TItoffers enhanced control over asset delivery.

Note Using CDN requires an internet connection for the implementation to take place.

You can find the CDN at https://cdnjs.com/libraries/materialize. You can
use Materialize in your design by including the specific link in your HTML document, as
depicted in Listing 1-1.

https://cdnjs.com/libraries/materialize

CHAPTER 1 " INTRODUCING MATERIALIZE

Listing 1-1. Including Materialize Through CDN

<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/1libs/
materialize/0.97.7/css/materialize.min.css">

<script src="https://cdnjs.cloudflare.com/ajax/1libs/materialize/0.97.7/js/
materialize.min.js"></script>

Alternative Downloading Methods

The latest release of Materialize is available for Node.js and can be installed by using
the NPM (Node Package Manager). The Node package comes with the source as well as
the compiled CSS and JavaScript files. This package contains both source and compiled
variants of CSS and JavaScript files. You can install Materialize using Node via the
command prompt using the code in Listing 1-2.

Listing 1-2. Using Materialize via npm

npm install materialize-css

Alternatively, Materialize is also available with Bower, which too contains both the
source files along with the compiled CSS and JavaScript files. Listing 1-3 contains the
code to install Materialize using the Bower package from the command prompt.
Listing 1-3. Using Materialize via Bower
bower install materialize

Apart from Node and Bower, there are third party add-ons such as Ruby Gem,
Meteor Package, and Ember packages that can be used to install Materialize.

Setting Up Materialize

Download the production-ready source files into the directory that houses the web site
files. Extracting the files in your project directory after downloading will look as depicted
in Figure 1-2.

CHAPTER 1 © INTRODUCING MATERIALIZE

Figure 1-2. Directory structure after extracting Materialize

The extracted folder contains folder for css to hold the CSS files, a js folder to hold
the js files, a fonts folder to hold a local copy of roboto and the material icon font. Note
that the directory structure contains the minified and un-minified versions. The min file
means that all the whitespaces and extra characters have been removed or commented.
It reduces the size of the file significantly, thereby increasing the speed resulting in better
performance. The minified version is used for production environment whereas the
un-minified version is used during development as it is more readable and suitable for
debugging.

Materialize’s JavaScript components are created using jQuery, so you also need to
include jQuery library in your code when you plan to use its JavaScript.

Listing 1-4 contains a simple HTML file with Materialize’s basic markup.

Listing 1-4. Code in index.html

<!DOCTYPE html>
<html>
<head>

<!--Import Google Icon Font-->

<link href="http://fonts.googleapis.com/icon?family=Material+Icons"
rel="stylesheet"/>

<!--Import materialize.css-->

<link type="text/css" rel="stylesheet" href="css/materialize.min.css"
media="screen,projection"/>

<!--Let browser know website is optimized for mobile-->
<meta name="viewport" content="width=device-width,
initial-scale=1.0"/>
</head>

CHAPTER 1 " INTRODUCING MATERIALIZE

<body>
<!--Import jQuery before materialize.js-->
<script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.1.min.js"></script>
<script type="text/javascript" src="js/materialize.min.js"></script>
</body>
</html>

Note Including scripts at the bottom ensures that the actual page content is loaded
first; when the scripts are finally downloaded, the content (DOM) will be ready for your
scripts to manipulate.

Note In any web design project, apart from the framework files, when you create the
index.html file, you also create a separate style.css file because presentation (styling)
should be kept separate from markup (HTML). It helps in easy organization and maintenance
and should be located preferably in the css file folder. Another important aspect is the
creation of the images folder, which you need to keep your images separate for better
upkeep and accessibility without clubbing everything together in one file.

SASS Setup

Sass extends the capabilities of CSS with features and constructs that are not available in
normal CSS. It is surely a way to write more maintainable code. With mixins, functions,
and variables, you can customize material components faster than using vanilla CSS.

As the web pages get more complex, stylesheets get larger and harder to maintain. Sass
allows you to modularize your code and improves the workflow significantly.

Finally, if you are using a Sass version of Materialize, you need to deviate from the
no-frills method explained in the preceding paragraphs. The extracted directory contains
many .scss (basically Sass) files, which bring a new dimension to your web designing
projects. The directory structure will be different and is shown in Figure 1-3.

CHAPTER 1 © INTRODUCING MATERIALIZE
v [materialize-src C:\U \Anirudh\Downloads'
» s

v Os

Figure 1-3. Materialize SASS version content

Sass is a pre-compiler language that cannot be directly used in a browser. In order to
make it work in browser, you need to compile it and generate the CSS, which is browser
friendly.

You will learn more about Sass in the later chapters where I will explain the process
of including Sass in your Materialize projects.

Gallery

Figures 1-4 through 1-6 show the web sites of Gaggle Mail, Stamplay, and Jumpr, which were
made using Materialize. You can see how material design principles when applied to these
sites enhance the look and feel, thus providing appealing aesthetics and stunning design.

CHAPTER 1 " INTRODUCING MATERIALIZE

Gaggle al About Blog Logi

Gaggle Mail is the simplest way for any
small group to stay in touch via email

GET STARTED 3%

Figure 1-4. https://qgaggle.email/

stamplay Pricng A | m

what matters mo

START HOW

Figure 1-5. https://stamplay.com/

https://stamplay.com/
https://gaggle.email/

CHAPTER 1 © INTRODUCING MATERIALIZE

&W HowlWerks Features SignUp Feedback

Let's Go
Somewhere

How it Works

IF YOU RIDE IF YOU DRIVE

Figure 1-6. www. jumpr.it/

You can view many more of these web sites at http://materializecss.com/
showcase.html.

Summary

In this chapter, you took a look at an overview of Material Design and the Materialize
framework, which adheres to the Material Design concept. In the following chapters, you
will learn more about the components, grid system, and various other aspects which help
build faster, consistent, and attractive web sites. Meanwhile, apart from web sites, you can
also use Materialize to build hybrid apps with a feel and look that will make them stand
out from the crowd.

http://materializecss.com/showcase.html
http://materializecss.com/showcase.html
http://www.jumpr.it/

CHAPTER 2

Grid Fundamentals and
Helper Classes

In the previous chapter, you took a look at the Material Design methodology and a

basic overview of Materialize, a resourceful framework that adopts the Material Design
concept. In this chapter, you will learn about the basic markup as well as the grid layout
of the Materialize framework. Then you will learn about functions such as offsets, nesting
of columns, and utility classes. You will also explore the responsiveness of the Materialize
framework, which makes it a leading framework for web design and development.

Materialize Grid Explained

Responsiveness is vital, with almost all frameworks adhering to responsive web design
concept. A responsive grid layout is imperative as it divides the screen in a multi-column
structure. The positioning and deciding of the dimensions that a grid layout offers makes
it an essential part of web design.

A grid layout helps achieve good readability, a high degree of flexibility, and page
cohesiveness. Typically, a grid layout is composed of 12 columns that occupy the total screen
width and scale depending on the size of the browser window. Materialize’s 12-column grid
helps create a powerful layout without the bulk or clutter associated with some of the heavy
frameworks out there. It helps you lay out content in a highly organized manner.

With responsiveness baked in, you can use attributes such as nesting within
columns, offsets, the push-and-pull pattern, and centering of grid columns to build
interactive and aesthetically pleasing web sites.

Creating Responsive Layouts

Before proceeding with the grid layout, here are the terms used in creating responsive
layouts with Materialize:

e Row: A horizontal container that spans the width of the web page
(or the container width, if it is a nested row).

¢ Column: Vertical columns within a row; you can specify their
width using classes.

© Anirudh Prabhu and Aravind Shenoy 2016 11
A. Prabhu and A. Shenoy, Introducing Materialize, DOI 10.1007/978-1-4842-2349-9_2

CHAPTER 2 " GRID FUNDAMENTALS AND HELPER CLASSES

Materialize provides support for various screen sizes, similar to other frameworks
like Bootstrap or foundation by means of class prefixes, which are as follows:

e Small: Classes meant for small screens (screens less than 600px
in width). For example, if you assign a .s7 class to an element, that
element will span across seven virtual columns on your mobile
screen.

e Medium: Classes meant for medium-sized screens such as tablets
(to be precise, for screens more than 600px and less than 992px in
width). If you assign a .m7 class to an element, that element will
span across seven columns on your tablet screen.

e Large: Classes meant for large screens such as desktops and
laptops (to be precise, for screens more than 992px in width). If
you assign a .17 class to an element, that element will span across
seven columns on your desktop or laptop screen.

Small Devices Medium-Sized Large-Screen
<=600px Screen s<=992px Devices >992px
Class Prefix .S .m .1
Container 85% 85% 70%
Number of columns 12 12 12

.container Class

Materialize provides a container class that is not a part of the grid system but plays
an important role for systematic layout of your web site. Think of it as a container in a
real-world way wherein you can systematically store your elements, typically containing
some child elements and enclosing the body content. It is a dummy div wrapper used for
setting backgrounds and padding on another <div>.

The container class takes 70% of total window width and centers the page content, as
depicted n Figure 2-1.

12

CHAPTER 2 © GRID FUNDAMENTALS AND HELPER CLASSES

| esemaer scontanesiimi %

€ e Book] iners | @ |[Q search a9 3+ AS 08

The content area

Figure 2-1. The conatiner class

Compare Figure 2-1 with Figure 2-2 to see the difference with and without the
container class.

€O nenn 6 Coti | @ |[Q search *B 9 s Ae0n =

The content area

Figure 2-2. Without the container class

13

CHAPTER 2 " GRID FUNDAMENTALS AND HELPER CLASSES

To use a container in Materialize, place your content within a <div> tag and assign a
container class to it. For example, refer to the Listing 2-1.

Listing 2-1. Using a Container Class

<body>
<div class="container"»
<!-- Page Content goes here -->
</div>
</body>

Henceforth, in the following examples, you will be using an inline style for padding
within the body tag for more aesthetic screenshots, like

<body style="padding: 25px 25px 25px 25px;">

12-Column Grid Layout

Materialize’s default grid has 12 columns of equal width, as depicted in Figure 2-3.

file:f//E:/Materialize_Bock/ i dex.html ¢ || Q Search TBe 9 4 & /=

Column Column Column
4 7 12

Figure 2-3. A 12-column layout

For the preceding output, refer to the code in Listing 2-2.

Listing 2-2. 12-column layout

<div class="row">
<div class="col s1 teal lighten-2 blocks">Column 1</div>
<div class="col s1 teal lighten-2 blocks">Column 2</div>
<div class="col s1 teal lighten-2 blocks">Column 3</div>
<div class="col s1 teal lighten-2 blocks">Column 4</div>
<div class="col s1 teal lighten-2 blocks">Column 5</div>
<div class="col s1 teal lighten-2 blocks">Column 6</div>
<div class="col s1 teal lighten-2 blocks">Column 7</div>
<div class="col s1 teal lighten-2 blocks">Column 8</div>
<div class="col s1 teal lighten-2 blocks">Column 9</div>
<div class="col s1 teal lighten-2 blocks">Column 10</div>
<div class="col s1 teal lighten-2 blocks">Column 11</div>
<div class="col s1 teal lighten-2 blocks">Column 12</div>

</div>

14

CHAPTER 2 © GRID FUNDAMENTALS AND HELPER CLASSES

Columns Incorporated in Rows

You need to place all columns under a row class while building a layout. In Materialize, if
there are more than 12 columns, the last element will be pushed to the next line.
Listing 2-3 shows the code that explains the concept better.

Listing 2-3. Columns Under a row Class

<div class="row">
<div class="col s12 teal lighten-2 blocks">This div is 12-columns
wide</div>
</div>
<div class="row">
<div class="col s6 teal lighten-2 blocks">This div is 6-columns
wide</div>
<div class="col s6 teal lighten-2 blocks">This div is 6-columns
wide</div>
</div>

In Listing 2-3, you assign the row class to the <div> element. Then you enclose a
<div> and assign the col s12 classto it.

Remember that the Materialize framework is responsive and therefore col s12
stands for 12 columns on a small screen. Then you use the teal class in conjunction
with the col s12 class. Since Material design is based on creating a real-world effect for
web sites, you can lighten the teal color by using the lighten-2 class. In Materialize, you
can darken or lighten the color; there are many immersive color palettes on the official
documentation on their site.

Moving forward, you create another <div> and assign the row class to it. You then
use two <div>s, each of six columns, each using the col s6 class. Then you assign a
teal color with a lightened shade similar to the <div> you created for the first part of the
Listing. Close the <div> for the second row class.

The output will be as shown in Figure 2-4. It shows an example of dividing 12
columns into two sets, each containing 6 columns in a row.

) fles/EMateisine Book/materize/columntml ¢ || O Search A8 O 3+ a0 Q

|

Figure 2-4. 12 columns into two sets

15

CHAPTER 2 " GRID FUNDAMENTALS AND HELPER CLASSES

Offsets

Sometimes, you may need a space between elements which may be equal to certain
number of columns. Materialize provides the ability to offset some elements, eliminating
the need to do so manually. You can move columns to the right, meaning pushing them
for more spacing.

Let’s understand this means by of an example; see Listing 2-4.

Listing 2-4. Offsets

<div class="row">

<div class="col s12 teal lighten-2 blocks">This div is 12-columns
wide on all screen sizes</div>

</div>

<div class="row">
<div class="col s6 offset-s6 teal lighten-2 blocks">6-columns
(offset-by-6) </div>

</div>

In Listing 2-4, you create a 12-column layout in a row and use the light teal color for
the columns. Next, you create another row of 6 columns and assign the same light teal
color to it. However, you use an offset-s6 class along with the col s6 class.

Offsets in Materialize are added using the offset-sn class wherein s is used for small
screen followed by n, which is the number of columns to be offset. In Listing 2-4, you use
offset-s6, which will offset the element by six columns to the right.

The output of the code is shown in Figure 2-5.

‘
‘ 6-columns (offset-by-6)

Figure 2-5. Offsets on screen

i file///E:/Materialize_Book/materialize/offset.htm C || Q seorch b+l =| 4+ i O al=

Push and Pull

Push and Pull can be used to change the order of the columns. Materialize uses the push-
sn class and pull-sn class for pushing and pulling the order of columns. The push-sn
class pushes the element by n columns whereas the pull-sn class pulls the column by n
columns, where s stands for small screens and n is the number of columns the element
will be pushed or pulled depending on the requirement. Refer to Listing 2-5 for an
example.

16

CHAPTER 2 © GRID FUNDAMENTALS AND HELPER CLASSES

Listing 2-5. Push and Pull

<div class="">
<div class="row">
<div class="col s9 push-s3 teal lighten-2 blocks"> PUSH: to the
Right </div>
<div class="col s3 pull-s9 teal lighten-2 blocks"> PULL: to the Left
</div>
</div>
</div>

In Listing 2-5, you push the columns to the right using the push-s3 class and you
pull the columns to the left using the pull-s9 class. The push and pull classes are used in
conjunction with the col class.

The output of the code can be seen in Figure 2-6.

handpulitt | C || Q seorch "E 9+ A Q =

'(

Figure 2-6. Push and pull on screen

i files/fFE ialize_Book/

Adding Responsiveness

In previous examples, you saw the use of col sn (such as col s5, col s6, etc.) wherein s
stands for small screen size. This means that it is a fixed layout wherein the rules will be
propagated upwards. By specifying sn, you define that the columns will occupy n columns
on all screen sizes (small, medium, and large screen sizes). For example, col s6 will
result in six columns on a small screen or any size larger than the small screen. However,
you can explicitly set the responsiveness based on the screen sizes.

Let’s understand this by looking at Listing 2-6.

17

CHAPTER 2 " GRID FUNDAMENTALS AND HELPER CLASSES

Listing 2-6. Adding Responsiveness

<div class="row">
<div class="grid-example col s12 teal lighten-2 blocks">I am full-
width on all screens(col s12)</div>
</div>
<div class="row">
<div class="grid-example col s12 mé teal lighten-2 blocks">I am

full-width on small screens (col s12 m6)</div>
</div>

In Listing 2-6, you create two rows. In the first row, you assign the col s12 class,

which means that it will span across 12 columns on small, medium, and large screen
sizes.

However, in the second row, you use the col s12 m6 class, which means that the
content will span across 12 columns on small-sized screen and only 6 columns on
medium-sized screens.

Refer to Figure 2-7 to see the output on a medium-sized screen.

G file//VE Materislize_Book/materialize/ responsi @ || Q search w A + A S 0 8 =

| am full-width on all sereens(col 512)
| am full-width on small screens (col 512 mb)

Figure 2-7. Responsive design

If you decrease the browser screen size to simulate a small screen or view the
web page on a small screen, the second block, which spanned across 6 columns on a

medium-sized screen, will span across all 12 columns for the small screen, as depicted
in Figure 2-8.

18

CHAPTER 2 © GRID FUNDAMENTALS AND HELPER CLASSES

file:/...html X%

& () filef//E:/Materialize Bool © | »

I am full-width on all screens(col s12)

I am fullwidth on small screens (col s12 mé)

Figure 2-8. Resizing for a smaller screen

Responsive Side Navigation Layout

You can also build immersive layouts that will resize and rearrange the content. In this
section, you will build a responsive side navigation layout, which resizes and rearranges
the content depending on the screen size. See Listing 2-7.

Listing 2-7. Responsive Side Navigation Layout

<!DOCTYPE html>
<html>
<head>
<!--Import Google Icon Font-->
<link href="http://fonts.googleapis.com/icon?family=Material+Icons"
rel="stylesheet">
<!--Import materialize.css-->
<link type="text/css" rel="stylesheet" href="css/materialize.min.
css" media="screen,projection”/>
<!--Let browser know website is optimized for mobile-->

19

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 2 " GRID FUNDAMENTALS AND HELPER CLASSES

<meta name="viewport" content="width=device-width, initial-scale=1.0"/>

<style>
.blocks{

height:50px;

outline: 1px solid #fff;

color:#fff;

.fulllength{

height: 100vh;

}

@media screen and (max-width: 600px){

.fullLength{

height:
}

}
</style>

</head>

auto;

<body style="padding: 25px 25px 25px 25px;">
<!--Import jQuery before materialize.js-->
<script type="text/javascript" src="https://code.jquery.com/jquery-

2.1.1.min.js"></script>

<script type="text/javascript" src="js/materialize.min.js"></script>

<div class="row">

<div class="col

#HEFF">
<a href="#"
18px;">Link
<a href="#"
18px; ">Link
<a href="#"
18px; ">Link

</div>

<div class="col
#ff">

s12 m2 lime accent-4 fulllength" style="color:

style="color: #000;display:block;font-size:
1
style="color: #000;display:block;font-size:
2
style="color: #000;display:block;font-size:
3

512 m10 teal lighten-10 fulllength" style="color:

<p>Far far away, behind the word mountains, far from the
countries Vokalia and Consonantia, there live the blind texts.
Separated they live in Bookmarksgrove right at the coast of
the Semantics, a large language ocean. A small river named

Duden flows
regelialia.

by their place and supplies it with the necessary
It is a paradisematic country, in which roasted

parts of sentences fly into your mouth. Even the all-powerful
Pointing has no control about the blind texts it is an almost
unorthographic life One day however a small line of blind text

by the name

of Lorem Ipsum decided to leave for the far World of

Grammar.s</p>

20

CHAPTER 2 © GRID FUNDAMENTALS AND HELPER CLASSES

</div>
</div>
</body>
</html>

In Listing 2-7, initially you create a <div> element containing three links. The <div>
element spans across 12 columns on the small screen and 2 columns on medium and
large screens. You assign the color 1ime for this <div> and assign the . fulllLength class to
the <div>.

Similarly, you create another <div> that spans across 12 columns on the small
screen and 10 columns on a medium-sized screen. You add content within the second
<div>. You assign the color teal for this <div>. Similar to the first example, you assign the
fulllength class to this <div>.

Both the <div>s are enclosed in a row.

In the <head> section of the preceding code, you assign the height for the
.fulllength class. You define a media query, too.

Upon executing the code, you will see the output shown in Figure 2-9.

& (D file//E:/Materialize_Book/materi & || Q Search w B 4 & © » =

Link 1 Far far away, behind the word mountains, far from the countries Vokalia and
Link 2 Consonantia, there live the blind texts arated they live in Bookmarksgrove right at
Link 3 the coast of the Semantics, a large language ocean. A small river named Duden flows

by their place and supplies it with the necessary regelialia. It is a paradisematic
country, in which roasted parts of sentences fly into your mouth. Even the
allpowerful Pointing has no control about the blind texts it is an almost
unorthographic life One day however a small line of blind text by the name of Lorem

Ipsum decided to leave for the far World of Grammar.s

Figure 2-9. Output

Asyou can see from Figure 2-9, there is a side navigation panel wherein you can see
Link 1, Link 2, and Link 3 hyperlinks. You can also see the content in teal to the right of
the side navigation.

21

CHAPTER 2 " GRID FUNDAMENTALS AND HELPER CLASSES

On a small screen, the links are stacked above the content, as displayed in
Figure 2-10.

| 4= 0 file/f/E:/Material c Q, Search »

Link 1
Link 2
Link 3

Far far away, behind the word mountains, far from the
countries Vokalia and Consonantia, there live the blind
texts. Separated they live in Bookmarksgrove right at the
coast of the Semantics, a large language ocean. A small
river named Duden flows by their place and supplies it with

the necessary regelialia. It is a paradisematic country, in
which roasted parts of sentences fly into your mouth.
Even the allpowerful Pointing has no control about the
blind texts it is an almost unorthographic life One day
however a small line of blind text by the name of Lorem
Ipsum decided to leave for the far World of Grammar.s

Figure 2-10. Links on top

Helpers

Materialize provides helper classes for common Ul requirements. You will learn about
these utility classes by means of several code examples to help you get a grip on the
concepts.

Vertical Align

The vertical align function involves centering the elements within a container. You use
the valign-wrapper class for aligning the content vertically. Let’s understand this by
means of an example. See Listing 2-8.

22

CHAPTER 2 © GRID FUNDAMENTALS AND HELPER CLASSES

Listing 2-8. Vertical Align

<div class="row">
<div class="valign-wrapper grey darken-2 col m6" style="height: 300px;">
<p class="valign teal lighten-2" style="color: #FFF;">Far far away,
behind the word mountains, far from the countries Vokalia and
Consonantia, there live the blind texts. Separated they live in
Bookmarksgrove right at the coast of the Semantics, a large language
ocean. A small river named Duden flows by their place and supplies
it with the necessary regelialia.</p>
</div>
</div>

In Listing 2-8, you create a container using the valign-wrapper property spanning
across six columns on a medium-size screen. You also assign the height of 300 pixels to
itand use the dark grey color. You assign the valign property to the content within the
paragraph <p> tags. You also assign the teal color to the content inside the same <p> tags.

The output of the content is depicted in Figure 2-11.

]

*B8 9 4+ A O (5]

Far far away, behind the word mountains, far from the countries
Vokalia and Consonantia, there live the blind texts. Separated they live

in Bookmarksgrove right at the coast of the Semantics, a large
language ocean. A small river nomed Duden flows by their place and
supplies it with the necessary regelialio.

Figure 2-11. Verical alignment on screen

Text Alignment

Text alignment is a common requirement to position text content on the layout. In
Materialize, you use the left-align, right-align, and center-align classes to align
the content on the left, right, and center of the screen respectively. For an example, see
Listing 2-9.

Listing 2-9. Text Alignment

<div class="row">
<p class="left-align">Left Aligned: To the left</p>
<p class="right-align">Right Aligned: Always Right</p>
<p class="center-align"> In the Center </p>

</div>

23

CHAPTER 2 " GRID FUNDAMENTALS AND HELPER CLASSES
file:///H:/Materialize/materialize, c Q, Sear wBe +$§ & © 9O E @" =

Left Aligned: To the left
Right Aligned: Always Right

In the Center

Figure 2-12. Text alignment on screen

Quick Floats

Floating an element is one of the most common operations. Float classes help you define
the float behavior. Instead of writing floats in CSS for every required element, you can use
the classes provided by Materialize to do so.

A point to keep in mind here is that Materialize uses ! important to avoid any
specificity related issues. See Listing 2-10 and Figure 2-13.

Listing 2-10. Floating Text

<div class="row">

<div class="left grey darken-2" style="color: #FFF;padding: 10px;">Float
to the left</div>

<div class="right teal darken-2" style="color: #fff;padding:

10px; ">Float to the right</div>
</div>

files///H:/Materialize/materialize, c M, Search ﬁ' E 4+ /r © O E @' =

Figure 2-13. Floating text on screen

Hiding Content

Materialize provides an easy way to hide elements on all screens or on specific screen
sizes by providing helper classes for the same. See Table 2-1 for the classes.

24

CHAPTER 2 © GRID FUNDAMENTALS AND HELPER CLASSES

Table 2-1. Hiding Content

Screen Range

hide Hidden for all Devices
.hide-on-small-only Hidden for Mobile Only
.hide-on-med-only Hidden for Tablet Only
hide-on-med-and-down Hidden for Tablet and Below
.hide-on-med-and-up Hidden for Tablet and Above

.hide-on-large-only Hidden for Desktop Only

The .hide-on-small-only class is used when the content needs to be hidden only
on the small screen, meaning you will be able to see the content on medium or large
screens. The .hide-on-med-only class is used when the content needs to be hidden on
medium screens only. Similarly, in Listing 2-11, you use the .hide-on-1large-only class,
which means the content will be hidden on large and extra-large screens.

Listing 2-11. Hiding Content

<div class="row">
<p class="hide-on-med-and-down" style="font-size: 20px;">Web Design</p>
<p class="hide-on-large-only" style="font-size: 20px;">Big Data</p>
</div>

In Listing 2-11, the content Web Design is assigned the hide-on-med-and-down class,
meaning it will be visible on only large screens but will not be visible on the small and
medium screens.

Similarly, the content Big Data is assigned the hide-on-large-only class, meaning
it will be visible on small and medium screens and not on the large screens.

On executing the code, the output shown in Figure 2-14 is generated on medium and
large-sized screens.

Filecf/H Mates..inzehade.btml x|

fie///H/ Matenalze/matenalize/hide.htmi

Web Design

Figure 2-14. Output on medium and large screens

25

CHAPTER 2 " GRID FUNDAMENTALS AND HELPER CLASSES

As defined in the code, Figure 2-14 displays the content “Web Design” on a large
screen. However, when you see the output on a small screen, “Web Design” cannot be
seen. Instead, you can see the content “Big Data” as defined in the code. See Figure 2-15.

file://...ehtml x \ +

i filex///H:/Mateniz c »

Big Data

Figure 2-15. Output on a small screen

Truncation

Materialize provides helpers to handle text truncation. For truncating lengthy text with an
ellipsis, just add the class truncate to the required element. This is demonstrated Listing
2-12 and Figure 2-16.

Listing 2-12. Truncating

<div class="row">
<div class="valign-wrapper grey darken-2 col m6" style="height: 300px;">

<h5 class="valign lime accent-4 truncate" style="padding: 10px">
Far far away, behind the word mountains, far from the countries Vokalia
and Consonantia, there live the blind texts. Separated they live in
Bookmarksgrove right at the coast of the Semantics, a large language ocean.
A small river named Duden flows by their place and supplies it with the
necessary regelialia.

26

CHAPTER 2 © GRID FUNDAMENTALS AND HELPER CLASSES

</h5>
</div>
</div>

In Listing 2-12, you create a row and then you use the valign-wrapper class for
the <div> element inside that row for vertical alignment. You define <h5> tags within
that <div> and place the content within the <h5> tags. You then use the valign class to
vertically align the content, followed by assigning the truncate class to the same <h5> tag
in addition to defining the lime color.

Upon executing the code, the output displays the truncated text instead of the entire
paragraph, as depicted in Figure 2-16.

- “
|/ file///H/Mater. xtruncate el x\q-

G 0 file///H/Materialize/ ialize/texttrur html c

Far far away, behind the word mountains, far from the c...

Figure 2-16. Truncated text on screen

Hoverable

The Hoverable feature provided by Materialize adds an animation for displaying the
box shadows. This is achieved by simple addition of the hoverable class to the desired
element. This is demonstrated with Listing 2-13 and Figure 2-17. In Listing 2-13, you use
the code from previous example and insert the hoverable class into it.

27

CHAPTER 2 " GRID FUNDAMENTALS AND HELPER CLASSES

B localhost:63342/material X

C | @ localhost63342/materialize/hoverable.htm

Figure 2-17. Hoverable on screen

Listing 2-13. Hoverable Code

<div class="valign-wrapper grey lighten-3 hoverable" style="padding:
10px;display: inline-block">

</div>

Summary

In this chapter, you took a look at the grid layout and other grid attributes. You also
reviewed the concepts of visibility and utility classes. You then took a look at positioning
of columns by offsets, push and pull, and so on.

In the next chapter, you will look at some more building blocks of this framework like
color palettes, making images and videos responsive, adding depth to an element, styling
tables, and typography.

28

CHAPTER 3

Beyond Fundamentals

In the previous chapter, you took a look at the Materialize grid system for responsive
design and development. You also looked at the helper classes provided by Materialize
for regular Ul requirements such as floating elements, vertically aligning the elements,
and toggling the visibility of the elements.

In this chapter, you will look at the various CSS utilities such as

Color Palette

Responsive Images and Videos
Shadows

Tables

Typography

Color Palette

Materialize provides a material design based color palette as part of the package. Each
color in the palette comes in dual variations, light or dark, to create an immersive

experience. These variations can be applied by using the lighten-x or darken-x classes
(where x stands for the intensity of the color variation). These palettes are shown in

Figure 3-1.

© Anirudh Prabhu and Aravind Shenoy 2016
A. Prabhu and A. Shenoy, Introducing Materialize, DOI 10.1007/978-1-4842-2349-9_3

29

CHAPTER 3 " BEYOND FUNDAMENTALS

#ffide? yellow lighten-5

#fff9c4 yellow lighten-4

#fff59d yellow lighten-3

#fff176 yellow lighten-2

#ffeeS8 yellow lighten-1

#ffeb3b yellow

#fff8e1 amber lighten-5

#ffech3 amber lighten-4

#ffe082 amber lighten-3

#ffd54f amber lighten-2

#ffca28 amber lighten-1

#ffc107 amber

#fff3e0 orange lighten-5

#ffe0b2 orange lighten-4

#ffcc80 orange lighten-3

#ffb74d orange lighten-2

#ffa726 orange lighten-1

#ffa800 orange

Figure 3-1. Palettes

To apply a color as the background, use the class for the specific color, for example
amber, in conjunction with the light or dark classes, along with the intensity, for example
lighten-2. Listing 3-1 shows the code snippet for the same.

Listing 3-1. Applying a Color to the Background

<div class="card-panel amber lighten-2">This is an element with an amber
background and additional lighten-2 class</div>

In Listing 3-1, you use a card-panel class within a <div> element followed by the
amber color for the card-panel and the 1ighten-2 class to add the texture and intensity,
respectively.

The output of the code on execution is shown in Figure 3-2.

@ | [localhostiza42/marerialia + D@8 E e =

Thig iz an elemant with 2 amber background and addional Bghien-2 class

Figure 3-2. A colored background

30

CHAPTER 3 " BEYOND FUNDAMENTALS

In order to apply color to only the text in the content, append -text to the color class,
such as amber-text. Further on you will use the lighten-2 class on the text to adjust the
lightness and intensity.

Listing 3-2 shows the code for creating a heading 5, <h5>, class and adding content to
it. You use the amber - text class along with the lighten-2 class.

Listing 3-2. Adding Content

<h5 class="amber-text lighten-2">This is an element with an amber background
and additional lighten-2 class</h5>

The output of the code on execution will color the text only, as depicted in Figure 3-3.

@ |13 localhosta3 342 /matesiakize, calor hi D Q@A a

Figure 3-3. Adding content

Responsive Images

Responsive images are an important component of responsive web design (RWD). In the
early days of web design, designers used to develop separate web sites for various devices.
However, with mobiles and tablets of various makes and sizes flooding the market,
building different web sites for different devices has become quite difficult. Responsive
web design adopts a one-site-fits-all approach and is device agnostic. The approach for
responsiveness in images in Materialize is quite simple: just deliver the pixels that the
device can actually use. In Materialize, you need to add the responsive-img class to the
image tag. Adding this class will result in changes to the CSS attributes with the image’s
max-width set to 100% and height to auto. See Listing 3-3 for an example.

Listing 3-3. Responsive Images

As you can see, you add the responsive-img class to the tag. The output of the

code on execution can be seen in the following two images where Figure 3-4 depicts the
output in a normal web browser window and Figure 3-5 on a resized small screen.

31

CHAPTER 3 " BEYOND FUNDAMENTALS

e/ /B Mater.svemageshtml % ||

| e/ E: Materislere_Bocksmateriaise/respensvemages htrnl [O +$ A © 0

Figure 3-4. Normal web browser window

!

§fiIe:///E:/Mater“.sivelmq_ges.html X! '-\'!'

i file:///E:/Materialize_ ¢ || Q Search » =

Figure 3-5. Smaller window

32

CHAPTER 3 " BEYOND FUNDAMENTALS

Rounded Images

With the introduction of border-radius, the Web has gotten a lot less square. To create a
rounded border in Materialize, you apply the circle class to an element.

In Listing 3-4, you create a <div> and enclose an image inside it using the tag.
You use a picture of Miami and add the circle class to it. For the example, use the image
in Figure 3-6, which you name as Miami.

Figure 3-6. Miami

Listing 3-4. Rounding the Edges

<div class="row" style="margin-top: 10px;margin-left: 10px">
<p></p>
</div>

On executing the code, the borders of the image are rounded. Figure 3-7 depicts the
resulting image.

33

CHAPTER 3 " BEYOND FUNDAMENTALS

“/._ —

/ file://..es.html x -.\-!-

file:///E:/Mateniali e »

Figure 3-7. Rounded edges

Responsive Embeds

There are a few HTML elements that do not go hand-in-hand with responsive layouts. An
example of this is the good old IFrame, which is an important aspect, considering that
you can embed content from external sources such as YouTube.

Services such as YouTube and Vimeo provide code that you can copy and paste into
your own web site to embed content. It's recommended that you host video with YouTube
because it will save server space and it will display the video appropriately, irrespective of
the user’s browser or device.

When you embed content from an external source, the code will include an IFrame.
This IFrame enables external content to be displayed on your web site because it includes
a URL that points to the source of the streamed content.

In Materialize, you can add responsiveness to embedded videos by wrapping them
in a <div> with the video-container class. Using this class results in setting the width of
the media to embed 100% and height to auto.

34

CHAPTER 3 " BEYOND FUNDAMENTALS

In Listing 3-5, you add the video-container class to the <div> in conjunction with
the row class. You define an IFrame and allocate a width of 560 and height of 315. You
also assign the allowfullscreen attribute to the same <iframe> tag.

Listing 3-5. Embedding a Video

<div class="row video-container" style="margin-top: 10px;margin-left: 10px">
<iframe width="560" height="315" src="https://www.youtube.com/embed/
u7v5vzHPi8I" frameborder="0" allowfullscreen></iframe>

</div>

The output of the code on a normal desktop screen and small screen can be seen
in Figures 3-8 and Figure 3-9. This defines the responsiveness for embedded videos in
Materialize.

S_ N = “
) filest//EMate. siveEmbed btml % ‘\\-1- . Sy
i filesf VR M lize_Bock lize, Ernbed htm| c Q, Search ﬁ a ‘ ﬁ E

Getting s

Figure 3-8. Responsive embed on a desktop screen

35

CHAPTER 3 " BEYOND FUNDAMENTALS

-
. file://...d.html % \-i-

| = (i) file:///E:/Materia & » p—

‘ Getting started with Materialize...

Figure 3-9. Responsive embed on a small screen

Responsive Videos

Video content is crucial in today’s era wherein the video medium is the most sought by
users worldwide. But it is a challenge to add responsiveness to video content given the
advent of responsive and fluid layouts. Videos can be hosted on your site; alternatively,
you can use HTML5’s <video> tag. In Materialize, all you need to do is add a video-
container class to the parent <div>. Then you add the responsive-video class to the

<video> tag to make your videos responsive. Listing 3-6 shows the way to make videos
responsive.

36

CHAPTER 3 " BEYOND FUNDAMENTALS

Listing 3-6. Responsive Video

<div class="row video-container" style="margin-top: 10px;margin-left: 10px">
<video class="responsive-video" controls>
<source src="movie.mp4" type="video/mp4">
</video>
</div>

You use a parent <div> and assign the video-container class to the <div> element.
Then you use the <video> tag and assign the responsive-video class to it. You include

the location and file format of the <video> in the <source> tag. See Figure 3-10.

P files//E:/Mater..nsiveVideo htmi % \—i-

i file:///E:/Materialize_Book/rr ¢ || Q seorch e ¥ A © Q@ =

Figure 3-10. A screenshot of repsonsive video

Shadows

To create an immersive experience, certain things must be displayed as they would
look in real life. To create shadows for an image or content, you use the z-depth class to
determine how raised or close the element is on the page.

Listing 3-7 contains the code snippet to demonstrate the shadow effect.

37

CHAPTER 3 " BEYOND FUNDAMENTALS

Listing 3-7. The Shadow Effect

<div class="row">
<p class="z-depth-1 amber accent-3 col m2" style="height: 100px">z-
depth-1</p>
<p class="z-depth-2 amber accent-3 col m2" style="height: 100px">z-
depth-2</p>
<p class="z-depth-3 amber accent-3 col m2" style="height: 100px">z-
depth-3</p>
<p class="z-depth-4 amber accent-3 col m2" style="height: 100px">z-
depth-4</p>
<p class="z-depth-5 amber accent-3 col m2" style="height: 100px">z-
depth-5¢</p>

</div>

In Listing 3-7, you use a parent <div> element and enclose content in five <p> tags.
Each <p> element spans across two columns on a medium-size screen and you add the
z-depth class to each one. However, you append a number that determines the intensity
of the shadow to each z-depth class. For example, you used the z-depth-1 class for the
first <p> element, followed by the z-depth-2 class for the second <p> tag, and so on. You
assign the same amber color for each <p> element. See the results in Figure 3-11.

[locahest i iilimateral % B - a 0 9x
« & [localhesta3zaz/ma re/dept 0@ A E v =
edepti-1 oepth2 z-deptivd depthd Tdepth-5

Figure 3-11. Shadows

Tables

A table is an optimal way to organize a huge amount of related data. Materialize provides
a few utility classes that help streamline the appearance of your tables. An important
aspect is the automatic centering of the tables on small screens.

You create a table the same way you use in normal HTML. Listing 3-8 contains the
snippet for the table using HTML tags. Tables in Materialize are borderless by default.

Listing 3-8. A Table

<h1>Catalog</h1>
<table>
<thead>
<tr>
<th data-field="product">Product</th>
<th data-field="availableQuantity">Quantity</th>
<th data-field="price">Price for an unit</th>

38

CHAPTER 3 " BEYOND FUNDAMENTALS

</tr>

</thead>

<tbody>

<tr>
<td>Apples</td>
<td>10</td>
<td>$0.87</td>

</tr>

<tr>
<td>Mango</td>
<td>5</td>
<td>$3.76</td>

</tr>

<tr>
<td>Oranges</td>
<td>3</td>
<td>$7.00</td>

</tr>

</tbody>

</table>

On executing the code, the output will be displayed as depicted in Figure 3-12.

T et

J [flezi/EMate fizeftablel baml % |\ +

“ @ files//E/Materialize_Book/materialize /tablel html e || Q search e +$ A O Q0 =
|

Catalog

Product Quantity Price for an unit
Apples 10 $0.87
Mango 5 $3.76
Oranges 3 §7.00

Figure 3-12. A table

39

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 3 " BEYOND FUNDAMENTALS

As you can see, you have built a simple catalog table. Since tables are borderless
in Materialize, you need to add the bordered class to the table tag to create a bordered
table. The output of the code after adding the bordered class is shown in Figure 3-13.

/E:Materi. html K)l" files//VE:AM

i1 files/fE: Materi, Bock alize/table2 html & || Q Search T B +$ /& O —

Catalog

‘ Product Quantity Price for an unit
Apples 10 $0.87
Mango 5 $3.76

‘ Oranges 3 $7.00

Figure 3-13. A bordered table
Adding the bordered class to the table gives a border below every row. However,

if you replace the bordered class with the striped class, you get a striped table; see
Figure 3-14.

40

CHAPTER 3 " BEYOND FUNDAMENTALS

) fle/f/E/Materi.lize/tabled htmi o+

' fles1/E:Materslize_Bookimaterialize/table3 htem! & |[Q searcn e ¢+ A® Q9 =

Catalog

Product Quantity Price for an unit
I
Apples 10 $0.87
Mango 5 8376
Oranges 3 $7.00

Figure 3-14. A striped table

Highlighting of rows on hover can be established by adding the highlight class to
the table. Let’s replace the striped class with highlight. You will see a borderless table
as per the norm. However, when you hover over any row, that row darkens, akin to getting
highlighted. Figure 3-15 depicts the output when you hover on the first row.

41

CHAPTER 3 " BEYOND FUNDAMENTALS

-
files///E:/Materi.. lize/tabled mtml %

€ Ble/fE Moerinlze B —— e |[Qseonn *“Ee ¥ A O 9 =

Catalog |

Product Quantity Price for an unit

Apples 10 5087

Mango 5 $3.76 !
|

Oranges 3 $7.00 |

Figure 3-15. Hovering and highlighting

If you add only the centered class to the table, the content would adjust in the
middle of the page, as depicted in Figure 3-16.

files///E:/Materi..lize/tableS himl

& D St :_Book/ i htel € || Q Search | B8 +$ # & O

Catalog

Product Quantity Price for an unit
Apples 10 50,87
Mango 5 $3.76
Oranges 3 §7.00

Figure 3-16. Centered content

42

CHAPTER 3 " BEYOND FUNDAMENTALS

Another aspect is the responsiveness of the table. If you add a responsive-table
class to the <table> tag, it will result in a responsive table when the browser is resized.
Let’s see the output on a normal screen, as depicted in Figure 3-17. The output on a
smaller screen is shown in Figure 3-18.

| Fies/E:Matertize e htmi % ‘-_+

D) Fle/EMatusiaize Book/mateialietabes bml ¢ [seors tE A -

Catalog

Product Quantity Price for an unit |
Apples 10 5087
Mango 5 $3.76 |
Oranges 3 §7.00

Figure 3-17. Output on a desktop screen

43

CHAPTER 3 " BEYOND FUNDAMENTALS

r

- o T = S|
ﬂ file:///E:/Mater...lize/table6.html X "\+

i file///E:/Materialize_Book/material c » =

Catalog

Product Apples Mango Oranges
Quantity 10 5 3

Price for an unit $0.87 §3.76 $7.00

= =

Figure 3-18. Output on a smaller screen

Asyou can see from Figures 3-17 and 3-18, the table resizes based on the size of the
browser. There is even a difference in the position of the rows and columns.

Typography

Materialize’s typography delivers pleasing web design and clean coding with minimalist
site structures designed for easy readability. Materalize uses the Roboto font as the
default font. It supports the latest version of the Roboto font with five different variations

and font weights, namely 200, 300, 400, 500, and 600.

You can get a preview of the Roboto font at https://fonts.google.com/specimen/

Roboto and in Figure 3-19.

44

https://fonts.google.com/specimen/Roboto
https://fonts.google.com/specimen/Roboto

CHAPTER 3 " BEYOND FUNDAMENTALS

N - N : ~4+ M.
-/\r‘\lf\ 77 ‘ﬁr"‘\" |) M\
ol b INLT LN N | L o)
) - £omiint T mmu 73 .
/ |‘ -/_) I ./_\'! '.' ;_/r /_J.I /1)
INE JLU L vV IC

Roboto font Preview

Roboto font Preview

Roboto font Preview
Roboto font Preview

Roboto font Preview
Roboto font Preview
Roboto font Preview
Roboto font Preview
Roboto font Preview
Roboto font Preview

Figure 3-19. The Roboto font

You can override the default Roboto font for your web page by changing the font
stack in your CSS stylesheet. The following is an example of overriding those fonts:

html {
font-family: Gill Sans, Calibri, Trebuchet, sans-serif;

}

You can replace the font family as per the requirement by entering the relevant font
family in the preceding code.

45

CHAPTER 3 " BEYOND FUNDAMENTALS

Blockquotes

Blockquotes are used to emphasize, isolate, or highlight portions of text on a web site.
Listing 3-9 shows an example of a blockquote.

Listing 3-9. A blockquote

<div class="row">

<blockquote>

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nam de summo mox,
ut dixi, videbimus et ad id explicandum disputationem omnem conferemus.
At, si voluptas esset bonum, desideraret. Quippe: habes enim a rhetoribus;
Maximus dolor, inquit, brevis est. Istam voluptatem perpetuam quis potest
praestare sapienti? Itaque ad tempus ad Pisonem omnes. Expectoque quid ad
id, quod quaerebam, respondeas. Duo Reges: constructio interrete.
</blockquote>

</div>

Upon executing the code in Listing 3-9, the output will be as displayed in Figure 3-20.

T e el e,
_)" files/f/E:/Mater.. Jockquotes.htm| '\\+

filles///E:/ Materialize_Book/materialize/blockquotes.htn ¢ || Q search wBa ¥+ @ =

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nam de summo mox, ut dixi, videbimus et ad id explicandum
disputationem omnem conferemus. At, si voluptas esset bonum, desideraret. Quippe: habes enim a rhetoribus;
Maximus dolor, inquit, brevis est. Istam voluptatem perpetuam quis potest praestare sapienti? Itaque ad tempus ad
Pisonem omnes. Expectoque quid ad id, quod quaerebam, respondeas. Duo Reges: constructio interrete.

Figure 3-20. A blockquote

Materialize’s batteries-included attributes are not limited to responsive grid
layout but also enhance the feel by changing the font size and line spacing of the content,
resulting in an awesome user experience.

Listing 3-10 shows an example of the flow-text feature. All you need to do is add the
flow-text class to the content, and the font size and line spacing will adjust themselves
based on the viewport.

46

CHAPTER 3 " BEYOND FUNDAMENTALS

Listing 3-10. The flow-text Class

<div class="row">
<p class="flow-text">Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Nam de summo mox, ut dixi, videbimus et ad id
explicandum disputationem omnem conferemus. At, si voluptas esset
bonum, desideraret. Quippe: habes enim a rhetoribus; Maximus dolor,
inquit, brevis est. Istam voluptatem perpetuam quis potest praestare
sapienti? Itaque ad tempus ad Pisonem omnes. Expectoque quid ad id, quod
quaerebam, respondeas. Duo Reges: constructio interrete. </p>

</div>

In Listing 3-10, you use the flow-text class for the <p> tag containing some generic
content. Figure 3-21 shows the result.

9‘ Sl B Mater.. 2o Tlowtet hbmd 3 ':\-F

files/s/EMaterialize_Book/materialize/flowtent.bimi & || G, Search '8 +# # 0 =

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nam de summo mox, ut dixi, videbimus et ad
id explicandum disputationem omnem conferemus. At, si voluptas esset bonum, desideraret. Quippe:
habes enim a rhetoribus; Maximus dolor, inquit, brevis est. Istam voluptatem perpetuam quis potest
praestare sapienti? Itague ad tempus ad Pisonemn omnes. Expectoque quid ad id, quod quaerebam,
respondeas. Duo Reges: constructio interrete.

Figure 3-21. The flow-text class in action
If you reduce the size of the browser window to simulate the content on a small

screen, you will see that the font size and spacing reduces proportionally yet is clear,
thereby resulting in an effective user experience. See Figure 3-22.

47

CHAPTER 3 " BEYOND FUNDAMENTALS

s

’ file:///..exthtml % | 4

O file///E:/Materializ cl » =

-

Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Nam
de summo mox, ut dixi,
videbimus et ad id explicandum
disputationem omnem
conferemus. At, si voluptas
esset bonum, desideraret.
Quippe: habes enim a rhetoribus;
Maximus dolor, inquit, brevis est.
Istam voluptatem perpetuam
quis potest praestare sapienti?
Itaque ad tempus ad Pisonem
omnes. Expectoque quid ad id,
guod quaerebam, respondeas.
Duo Reges: constructio interrete.

m

Figure 3-22. The flow-text class on a smaller screen

Summary

In this chapter, you looked at additional basic components of this framework, like
the color palette, and how to use them. You also looked into how you can add videos
and images using classes provided by Materialize. You also explored the responsive
typography provided by Materialize.

In the next chapter, you will be looking at some JavaScript-based aspects of this
framework.

48

CHAPTER 4

Materialize JavaScript

In the previous chapters, you explored some important building blocks and CSS-based
components in Materialize. In this chapter, you will take a look at JavaScript-powered
components in Materialize and their implementation in a hands-on manner.

You will look at the following topics in this chapter:

e Collapsible

e Toasts and Tooltips

e Dropdowns

e Modal

e ScrollFire and ScrollSpy

e SideNav
e Tabs
° Waves

. Transitions

e Carousel

Collapsible

Accordion helps you encapsulate a large amount of content in a compact area.
Accordions are styled like a stack of collapsible panels and act like a multi-level menu.
Accordion menus are an important solution when you are pressed for space on your web
site. Collapsibles are accordion elements that expand when they are clicked.

Listing 4-1 shows an example of a Collapsible.

Listing 4-1. Creating a Simple Collapsible Structure

<!DOCTYPE html>

<html>

<head>
<!--Import Google Icon Font-->
<link href="http://fonts.googleapis.com/icon?family=Material+Icons"
rel="stylesheet">

© Anirudh Prabhu and Aravind Shenoy 2016 49
A. Prabhu and A. Shenoy, Introducing Materialize, DOI 10.1007/978-1-4842-2349-9_4

CHAPTER 4 " MATERIALIZE JAVASCRIPT

<!--Import materialize.css-->

<link type="text/css" rel="stylesheet" href="https://cdnjs.
cloudflare.com/ajax/1libs/materialize/0.97.7/css/materialize.min.
css" media="screen,projection"/>

<!--Let browser know website is optimized for mobile-->
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
<style>

</style>
</head>

<body style="padding:25px">
<!--Import jQuery before materialize.js-->
<script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.1.min.js"></script>
<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/1libs/
materialize/0.97.7/js/materialize.min.js"></script>
<div class="row">
<h1 class=" deep-orange-text darken-3">Materialize Training Session</h1>
<h3>17/09/2016</h3>
<ul class="collapsible" data-collapsible="accordion">

<div class="collapsible-header">Event Details</div>
<div class="collapsible-body"><p>Lorem ipsum dolor sit amet,
consectetuer adipiscing elit. Aenean commodo ligula eget
dolor. Aenean massa. Cum sociis natoque penatibus et magnis
dis parturient montes, nascetur ridiculus mus. Donec quam
felis, ultricies nec, pellentesque eu, pretium quis, sem. Nulla
consequat massa quis enim. Donec pede justo, fringilla vel,
aliquet nec, vulputate eget, arcu. In enim justo, rhoncus ut,
imperdiet a, venenatis vitae, justo. Nullam dictum felis eu pede
mollis pretium. Integer tincidunt.</p></div>
</1i>

<div class="collapsible-header">Speakers</div>
<div class="collapsible-body">

<i class="material-icons">speaker_notes</i> Anirudh
Prabhu.</1i>
<i class="material-icons">speaker notes</i> Aravind
Shenoy.</1i>

</div>
</1i>

</div>
</body>
</html>

50

CHAPTER 4 " MATERIALIZE JAVASCRIPT

Upon executing the code, you will see two menus, Event Details and Speakers. When
you click any of the menus, in this case, Event Details, you will reveal the content in that
accordion (see Figure 4-1).

Materialize Training Session
17/09/2016

Event Details

Speakers

Clicking on Event Details will result
in the following output.

Materialize Training Session
17/09/2016

Event Detadls

Lorem ipsum dolor sit amet, consectetuer adipiscing eift. Aonean commado ligula oget dolor, Acnean massa. Cum sociis natoque penatibus et
magnis dis parturient montes, nascetur ridiculus mus. Donec quam felis, ultrickes nec, pellentesque eu, pretium quis, sem. Nulla consequat
massa quis enim. Donec pede justo, fringilla vel, aliquet nec, vulputate eget, arcu. In enim justo, rhoncus vt Imperdict a, venenatis vitae, justo.
Nullam dictum felis eu pede mollis pretium. Integer tincidunt

Speakers

Figure 4-1. Creating simple collapsible structure

Let’s understand how the output is generated by creating an example page for the
Materialize training event.

In the above example, you first create a header using the <h1> tags for the Materialize
Training event. Then, you use the <h3> tag to define the date for the Materialize Training
event.

Next, you create the collapsible content using the list tags (and <11i>). In the first
list item, you assign the collapsible class and added the data-collapsible attribute
to which you assigned the accordion value. Then the title for the collapsible is defined
using the collapsible-header class. The header content acts like a button which,
upon clicking, will unveil the content. Then you define the hidden content using the
collapsible-body class.

51

CHAPTER 4 " MATERIALIZE JAVASCRIPT

Beyond this standard accordion, which simply collapses and expands, Materialize
also provides different variations such as popout class, which will essentially display the
element slightly larger and lifted, giving it a feel as if it is popping out of the flow.

To use the popout effect in your collapsible, add the popout class to the tagin
conjunction with the collapsible class assigned to it, as shown in Listing 4-2.

Listing 4-2. Implementing the Popout Collapsible

<ul class="collapsible popout" data-collapsible="accordion">

When you click on Event Details, you will see the popup effect wherein it seems a bit
lifted and pronounced compared to the normal result; see Figure 4-2.

Materialize Training Session
17/09/2016

Event Details

Lerem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commode ligula eget dolor. Acnean massa. Cum socils natoque penatibus et
magnis dis parturient montes, nascetur ridiculus mus. Donec quam felis, ultricies nec, pellentesque ew, pretium quis, sem. Nulla conseguat
massa quis enim. Denec pede justo, fringilla vel, aliguet nec, vulputate eget, arcu, In enim justo, rhoncus ut, imperdiet a, venenatis vitae, justo,
Nullam dictum felis eu pede mellis pretium. Integer tincidunt.

Speakers

Figure 4-2. Implementing a popout collapsible

It is possible to keep one of the accordions open by using the active class in
conjunction with the collapsible-header class. This will result in the specific accordion
opening when you execute the code. Listing 4-3 contains the line of code where you need
to include the active class. See Figure 4-3 for the results.

Listing 4-3. Active Accordion

<div class="collapsible-header active"> Event Details</div>

52

CHAPTER 4 " MATERIALIZE JAVASCRIPT

Materialize Training Session
17/09/2016

Event Details

Lorem ipsum dolor sit amet, dipi clit. Aenean do ligula eget dolor. Aenean massa. Cum sociis natoque penatibus et
magnis dis parturient montes, nascetur ridiculus mus. Donec quam felis, ultricies nec, pellentesque ew, pretium quis, sem. Nulla consequat
massa quis enim. Donec pede justo, fringilla vel, aliquet nec, vulputate eget, arcu, In enim justo, rhoncus ut, imperdiet a, venenatis vitae, justo.
Nullam dictum felis eu pede mollis pretium. integer tincidunt

Speakers

Figure 4-3. Active accordion

By default, only one panel of collapsible content will be visible at a given point of
time. However, to keep multiple panels open, you can use the expandable value to the
data-collapsible attribute.

Listing 4-4 shows the line of code that contains the expandable value for the data-
collapsible attribute in conjunction with the collapsible class.

Listing 4-4. The expandable Value

<ul class="collapsible" data-collapsible="expandable">

Initially, you get an output that will have the first collapsible content (i.e. Event
Details) open. If you click Speakers, it will show the content, but in this case the accordion
content for both menus will be open, opposed to the default option where expanding one
will result in the closing of the other. See Figure 4-4.

Materialize Training Session
17/09/2016

Event Details

Lorem ipsum dolor sit amet, consecletuer adipiscing elit. Aenean commodo ligula eget dolor. Aenean massa. Cum sociis natogue penatibus

et magnis dis parturient montes, nascetur ridiculus mus. Donec quam felis, ultricies nec, pellentesque eu, pretium quis, sem. Mulla conseguat
massa quis enim. Donec pede justo, fringilla vel, aliquet nec, vulputate eget, arcu. In enim justo, rhoncus ut, imperdiet a, venenatis vitae, justo

Mullam dictum felis eu pede mollis pretium. Integer tincidunt.

Reveal

Speakers

E Anirudh Prabhu.
= Aravind Shenaoy.

Figure 4-4. Multiple panels open at once

53

CHAPTER 4 " MATERIALIZE JAVASCRIPT

The default value for the data-collapsible attribute is accordion.

The collapsible usually doesn’t need any JavaScript initialization. However, if you
need to dynamically modify the elements or the behavior of the collapsible, then you
need to use JavaScript.

To demonstrate this, you can add a link containing the words “Reveal Agenda” This
link will add another collapsible content to the existing sets of collapsible content.
Listing 4-5 shows the code for this example.

Listing 4-5. Using JavaScript

<IDOCTYPE html>

<html>

<head>
<!--Import Google Icon Font-->
<link href="http://fonts.googleapis.com/icon?family=Material+Icons"
rel="stylesheet">
<!--Import materialize.css-->
<link type="text/css" rel="stylesheet" href="https://cdnjs.
cloudflare.com/ajax/libs/materialize/0.97.7/css/materialize.min.

css" media="screen,projection”/>

<!--Let browser know website is optimized for mobile-->
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
<style>

</style>
</head>

<body style="padding:25px">
<!--Import jQuery before materialize.js-->
<script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.1.min.js"></script>
<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/1libs/
materialize/0.97.7/js/materialize.min.js"></script>
<div class="row">
<h1 class=" deep-orange-text darken-3">Materialize Training Session</h1>
<h3>17/09/2016</h3>
<ul class="collapsible" data-collapsible="expandable">

<div class="collapsible-header active">Event Details</div>
<div class="collapsible-body"><p>Lorem ipsum dolor sit amet,
consectetuer adipiscing elit. Aenean commodo ligula eget
dolor. Aenean massa. Cum sociis natoque penatibus et magnis
dis parturient montes, nascetur ridiculus mus. Donec quam
felis, ultricies nec, pellentesque eu, pretium quis, sem.
Nulla consequat massa quis enim. Donec pede justo, fringilla
vel, aliquet nec, vulputate eget, arcu. In enim justo, rhoncus
ut, imperdiet a, venenatis vitae, justo. Nullam dictum felis

54

CHAPTER 4 " MATERIALIZE JAVASCRIPT

eu pede mollis pretium. Integer tincidunt.</p><p><a href="#"
class="addCollapsible">Reveal Agenda</p></div>

</1i>

<1i>

<div class="collapsible-header">Speakers</div>
<div class="collapsible-body">

li><i class="material-icons">speaker notes</i> Anirudh
Prabhu.</1i>
<i class="material-icons">speaker_notes</i> Aravind

Shenoy.</1i>

</div>
</1i>

</div>

<script type="text/javascript">
$(function () {
$(document).on('click',"'.addCollapsible’,function (e) {

1))
1)

</script>
</body>
</html>

e.preventDefault();

$("ul.collapsible").append('<1li><div class="collapsible-
header">Agenda</div><div class="collapsible-body"><p>Lorem ipsum
dolor sit amet, consectetuer adipiscing elit. Aenean commodo
ligula eget dolor. Aenean massa. Cum sociis natoque penatibus et
magnis dis parturient montes, nascetur ridiculus mus. Donec quam
felis, ultricies nec, pellentesque eu, pretium quis, sem. Nulla
consequat massa quis enim. Donec pede justo, fringilla vel,
aliquet nec, vulputate eget, arcu. In enim justo, rhoncus ut,
imperdiet a, venenatis vitae, justo. Nullam dictum felis eu pede
mollis pretium. Integer tincidunt.</p></div></1i>");
$('.collapsible').collapsible();

In Listing 4-5, you use JavaScript to dynamically add content, which contains the
collapsible header and content, by using jQuery’s append method, which basically adds
the new content at the end of a specified target element, which is ul.collapsible in your
case, on clicking the Reveal Agenda link. You then reinitialize the collapsible elements
using the collapsible() method so that all collapsibles behave symmetrically. See

Figure 4-5.

55

CHAPTER 4 " MATERIALIZE JAVASCRIPT

Materialize Training Session
17/09/2016

Event Details

Lorern ipsurm dolor Sit amet, consectetuer adipiscing alit. Aengan comm ligula t dolor. Aenean massd. Cum Sociis natoque penat
tusient montes, nascetur ridicu s, sem. Nulla consequat

ringifla vel, aliquet nec, vulputate eget, arcu. In enim justo, rhoncus ut, imperdiet a, venenatis vitae, justo. Nullam dictum #
Integer tincidunt.

Speakers
enda
Larem ipsum dolor sit amet, consectetuer adipiseing elit. Aenean commeda ligula eget dolor. Aenean massa, Cum sociis natoque penatibus et magnis dis
partusient montes, nascetur rid < quam felis, ultricies n ue eu, pretium quis, sem. Nulla consequal massa qu
justo, fringilla vel, aliquet nec, vulputate eget, arcu. In enim justo, fhoncus ut, imperdiet a, venenatis vitae, justo. Nullam dictum felis eu pede mollis pretium

Integer tincidunt.

Figure 4-5. Dynamically adding content

In Figure 4-5, you can see that clicking the Reveal Agenda link will display the
content in that section, along with the content in the Event Details accordion.

Toasts

Using the Toast property you can provide notifications and alerts to the user. This is
definitely a better alternative to using the default alert provided by the browser. A toast,
when fired, appears and stays on the screen for the amount of milliseconds specified in
the code. See Listing 4-6.

Listing 4-6. Using a Toast

<div class="row">
<h1 class=" deep-orange-text darken-3">Materialize Training Session</h1>
<h3>17/09/2016</h3>
<a class="btn" onclick="Materialize.toast('You have been registered’',
2000)">Attending Event

</div>

In Listing 4-6, you define the content (i.e. Materialize Training Sessions) along with
the date in the heading tags. Then you create a button called Attending Event to which
you include the following code for the onclick attribute (i.e. Materialize.toast).
Then you define the text and the time the notification should stay on the screen. In this
example, you use the content for the notification as “You have been registered” and
specify the time as 2000 milliseconds.

56

CHAPTER 4 " MATERIALIZE JAVASCRIPT

The output of the code is shown in Figure 4-6. Upon clicking the button, you can see
the notification (You have been registered), which will disappear after the stipulated time.

You have been registered

Materialize Training Sessiq
17/09/2016

RTI'EIDME\"BCT

Figure 4-6. A timed notification

Remember that the content passed to the toast can be either standard text or can
be HTML markup. For example, you can enclose the string you passed in the previous
example in a tag, as shown in Listing 4-7.

Listing 4-7. Using a Tag

<div class="row">
<h1 class=" deep-orange-text darken-3">Materialize Training Session</h1>
<h3>17/09/2016</h3>
<a class="btn" onclick="Materialize.toast('You have been
registered', 2000)">Attending Event

</div>

Also, you can use a pass callback function that can be executed once the toast
disappears. You described the same in Listing 4-8; in it you use an alert function that will
display Thank you! once the toast notification disappears.

Listing 4-8. A Thank You Message

<div class="row">
<h1 class=" deep-orange-text darken-3">Materialize Training Session</h1>
<h3>17/09/2016</h3>
<a class="btn" onclick="Materialize.toast('You have been
registered', 2000,"'"',function() {
alert('Thank you!');
})">Attending Event
</div>

Figure 4-7 depicts the alert function that will be displayed after the toast notification
goes off after 2000 milliseconds.

57

CHAPTER 4 " MATERIALIZE JAVASCRIPT

C | O filey//E/Matenialize_Book/materialize/callbacktoast html o

This page says:

Thank you!

Materializ —=1)N

17/09/2016
roomoor |

Figure 4-7. Thank you!

Finally, you can also use the rounded class to the notification so that the notification
can have rounded edges. Implement the rounded class as the third parameter, as shown
in Listing 4-9.

Listing 4-9. The rounded Class

<div class="row">
<h1 class=" deep-orange-text darken-3">Materialize Training Session</h1>
<h3>17/09/2016</h3>
<a class="btn" onclick="Materialize.toast('You have been
registered', 2000, 'rounded')">Attending Event

</div>

You can see the rounded notification in Figure 4-8.

C | @ filey//Em _Book/ J oasthtml 1

Materialize Training Sessi ==

17/09/2016

Figure 4-8. A rounded notification

You can choose another class instead of rounded for any specific result based on the
parameter.

58

CHAPTER 4 " MATERIALIZE JAVASCRIPT

Tooltips

Tooltips are labels that are displayed upon hovering over an element. You can assign a
tooltip to an element to give the end user information about that specific element.
Let’s understand this using a simple example; see Listing 4-10.

Listing 4-10. A Tooltip

<a class="btn tooltipped" data-position="bottom" data-delay="50" data-
tooltip="Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean
commodo ligula eget dolor.">Teaser

In this code, you create a button called Teaser and use the tooltipped class in
conjunction with the btn class. Then you define the position of the tooltip to the bottom
by assigning the bottom value to the data-position attribute and define a delay of 50
milliseconds.

This code produces the results shown in Figure 4-9.

|
| C | @ filey///E/Materialize_Book/materialize/tooltip. htmi o

Materialize Training Session

17/09/2016

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commeodo ligula eget dolor.

Figure 4-9. A tooltip

No explicit JavaScript initialization is required if the tooltip elements have been
present since the page load.

However, if the elements are to be added dynamically to the page, you need to
initialize them for them to be fully functional. In Listing 4-11, you define the following:

e Delay: Amount of time by which the display of the tooltip is
delayed.

e Tooltip: Text to be displayed inside the tooltip. This can be
HTML markup too.

e Position: Direction for placement of the tooltip around the
element.

e Html: A flag that indicates that the content passed is to be treated
as HTML markup.

59

CHAPTER 4 " MATERIALIZE JAVASCRIPT

Listing 4-11. Dynamically Adding Elements

<IDOCTYPE html>

<html>

<head>
<!--Import Google Icon Font-->
<link href="http://fonts.googleapis.com/icon?family=Material+Icons"
rel="stylesheet">
<!--Import materialize.css-->
<link type="text/css" rel="stylesheet" href="https://cdnjs.
cloudflare.com/ajax/1libs/materialize/0.97.7/css/materialize.min.
css" media="screen,projection"/>

<!--Let browser know website is optimized for mobile-->
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
</head>

<body style="padding:25px">
<!--Import jQuery before materialize.js-->
<script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.1.min.js"></script>
<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/1ibs/
materialize/0.97.7/js/materialize.min.js"></script>
<div class="row">
<h1 class=" deep-orange-text darken-3">Materialize Training Session</h1>
<h3>17/09/2016</h3>
<a class="btn" data-position="bottom" data-delay="50" data-
tooltip="Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Aenean commodo ligula eget dolor.">Teaser
</div>
<script type="text/javascript">
$(function () {
$(document).on("click",".btn",function(e){
e.preventDefault()
$(".row").append('<a class="btn tooltipped" data-
position="bottom" data-delay="50" data-tooltip="Lorem ipsum
dolor sit amet, consectetuer adipiscing elit. Aenean commodo
ligula eget dolor.">Socials');
//Re-initialize the tooltip
$('.tooltipped').tooltip();

b
b))

</script>
</body>
</html>

In this example, you add click actions to the teaser button from your previous
example. Upon clicking the button, another button (Socials) will be added to the page
using the jQuery append property. Then you initialize the tooltip.

60

CHAPTER 4 " MATERIALIZE JAVASCRIPT

The output of Listing 4-11 is shown in Figure 4-10.

C | @ filey///E:/Materialize_Book/materialize/dynamicTooltip.html b3

Materialize Training Session

17/09/2016
BN

Loremn ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor.

Figure 4-10. Tooltips

You can also introduce a parameter to the initialization function. For example, a
delay of 50 seconds can be assigned as a parameter to the initialization of the tooltip, as
showed in Listing 4-12.

Listing 4-12. Adding a Delay
$('.tooltipped').tooltip({delay:50});

Dropdown

Dropdowns are a handy utility for displaying information while clicking or hovering over
an element. Listing 4-13 shows an example of the dropdown functionality.

Listing 4-13. Dropdown Functionality

<div class="row">
<h1 class=" deep-orange-text darken-3">Materialize Training Session</h1>
<h3>17/09/2016</h3>
<!-- Dropdown Trigger -->
<a class="dropdown-button btn' href="#' data-
activates="countDropdown'>Number of attendees

<!-- Dropdown Structure -->

<ul id="countDropdown' class="dropdown-content'>
one</1i>
two</1i>
three</1i>
four</1i>

</div>

61

CHAPTER 4 " MATERIALIZE JAVASCRIPT

In Listing 4-13, you add dropdowns for a specific button by using the dropdown-
button class along with the btn class. Next, you use the data-activates attribute and
assign a countDropdown as the value to it wherein the value will be used as an id with the
 list tag. In the tag, you also use the dropdown-content class.

The output of the code will display a button on the screen with the name Number of
attendees as defined in the code. On clicking, the dropdown function is activated and you
can see the four items as defined in the list. This is shown in Figure 4-11.

Materialize Training Session

17/09/2016

Figure 4-11. A dropdown list

You can also add dividers to separate options within the list. This can be done by
defining the divider class to the specific list item defined by the <1i> tag. Let’s look at
Listing 4-14 for an illustration.

Listing 4-14. Adding Dividers

<div class="row">
<h1 class=" deep-orange-text darken-3">Materialize Training Session</h1>
<h3>17/09/2016</h3>
<!-- Dropdown Trigger -->
<a class="dropdown-button btn' href="#"' data-
activates="'countDropdown'>Number of attendees

<!-- Dropdown Structure -->
<ul id='countDropdown' class="dropdown-content'>
one</1i>
two</1i>
three</1i>
four</1i>
<1i class="divider"></1i»

62

CHAPTER 4 " MATERIALIZE JAVASCRIPT

Custom</1i>

</div>

The output is shown in Figure 4-12.

Custom

Materialize Training Session

17/09/20176

Figure 4-12. Adding dividers

In Figure 4-12, you can see that there is a dividing line before the Custom item in

the list.

The following are the different data-attributes that can be used along with the
Dropdown function:

induration: Duration of the animation required for the
dropdown to appear.

outduration: Duration of the animation required for the
dropdown to disappear.

constrainwidth: With this option set to true (default), the width
of the list will be same as the width of activating button.

hover: With this option set to true, the dropdown will open on
hovering over the activating button.

gutter: This defines the spacing from edges.

beloworigin: With this option set to true, the dropdown will
appear below the activating button.

stoppropagation: With this set to true, even bubbling will not
occur on the dropdown activator button.

63

CHAPTER 4 © MATERIALIZE JAVASCRIPT
Some of these options are demonstrated in Listing 4-15.

Listing 4-15. Dropdown Options

<a class="dropdown-button btn' href="#' data-activates="countDropdown' data-
hover="true" data-beloworigin="true">Number of attendees

In Listing 4-15, you use the data-hover attribute and set it to true, meaning hover is
activated. You use the data-beloworigin and set the value to true.

As aresult, on hovering, the dropdown is activated and the list is displayed below the
button you hover on. This is shown in Figure 4-13.

Materialize Training Session

17/09/2016

Figure 4-13. Dropdown options

If the dropdown elements have been loaded since page load, you probably don’t
need the JavaScript explicitly. However, while adding the entire dropdown or part of it
dynamically.

The options mentioned with the dropdown can be used in JavaScript initializations;
however, there’s a small change. You need to style the options in Camel case. For
example, induration is used as induration but outduration becomes outDuration. See
Listing 4-16.

Listing 4-16. Dropdown Options

<script type="text/javascript">
$(function () {
setTimeout(function () {

64

CHAPTER 4 " MATERIALIZE JAVASCRIPT

$(".row").append(' <a class="dropdown-button btn"
href="#" data-activates="countDropdown" data-hover="true"
data-beloworigin="true">Number of attendees <ul
id="countDropdown" class="dropdown-content">one</1i>two</1i>threefour</1i><1i
class="divider">Custom</1li>");
$('.dropdown-button").dropdown({

hover: true,

belowOrigin: true

);
},5000);
3

</script>

In Listing 4-16, you use the setTimeout function of JavaScript to add the dropdown
elements 5 seconds after the entire document is loaded. You use jQuery’s append function
to add the dropdown to the page. After appending the dropdown element, you initialize
the dropdown using Materialize’s dropdown function.

The output of the code is similar to the previous example. However, the dropdown
has been added dynamically after the page load.

Modal

Modals help you overlay an element over your web site. A modal is generally used as an
alternative to a conventional pop-up. You can see the information without leaving the
page you are viewing. It also counts for awesome aesthetics and is a resourceful utility
that significantly enhances usability.

In Materialize, to implement the Modal feature, you need a link that contains the id
of the modal container in its href attribute. Unlike other JavaScript components, modals
need to be initialized through JavaScript before they can be used.

Listing 4-17 shows the code snippet for the Modal feature.

Listing 4-17. The Modal Feature

<div class="row">
<h1 class=" deep-orange-text darken-3">Materialize Training Session</h1>
<h3>17/09/2016</h3>
Terms & Condition
<div id="TCModal" class="modal">
<div class="modal-content">
<h4>Terms & Conditions</h4>
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Aenean commodo ligula eget dolor.....
</p>
</div>
<div class="modal-footer">

65

CHAPTER 4 " MATERIALIZE JAVASCRIPT

<a href="#!" class=" modal-action modal-close waves-effect
waves-green btn-flat">Agree
</div>
</div>
</div>
<script type="text/javascript">
$(document) .ready (function(){
$('.TCtrigger').leanModal();
1)

</script>

A modal structure consists of the modal-content and modal-footer classes. A
modal-content is used to contain all the content that you wish to display when the modal
opens. Amodal-footer is a fixed area in the bottom, which is optional. A modal-footer
is useful when you want to add buttons to the modal, as in this example where you have
added the Agree button.

In Listing 4-17, you create a link called Terms & Conditions. Then, you set the value
of the href attribute, which is the id of the following <div> to which you also assign the
modal class. You then define another <div> within the preceding <div> to which you
assign the modal-content class.

You create another <div> where you define the modal-footer class. modal-footer is
needed for placing content in the footer, which stays in a fixed position regardless of the
length of the content in the modal. After creating the necessary elements, you initialize
the modal on the triggering element.

Clicking the Terms & Conditions link will open up a modal that contains the content
for the Terms and Conditions as defined in the code. The output of clicking the Terms &
Conditions link is shown in Figure 4-14.

Terms & Condmons

Locer & Solar it et ing elit. A do Bgula eget dolor, Agnean
massa. Oumsod s nateque penaticus of magnl sdls parturent mentes, nascetus ridiculus m.f
Conec quam fells, uitricies nec, pell ., sem. Nulla

enim. Donec pede juste, fringilla vel, alquel nec, vu‘pm.al.e eget, arcy. n enim justo, thoncus ut,
imperdiet 8, venenatis vitse, justo. Nullam dicturm felis eu pede mollis pretium, Integer tincidunt. Cras.
dapibus. Vi nisi Aenean vulpul leifend tellus. Aenean leo ligula,
porttitor ey, consequat vitae, eleifend ac, enim. Aliquam lorem ante, dapibus in, viverra quis, feugiat a,
tellus. Phasellus viverra nulla ut metus varius laoneet.

Quisque rutrum. Asnean imperdiet. Etiam ultricies nisi vel sugue, Curabitur ullamcerper ultricies nisi
Nam eget dui M v . ellus eget rhencus, sem g

semper libers, sit amet adipiscing sem neque sed ipsum. Nam quam runc, Bandit vel, hectus
puivinar, hendrert id, lorem. Maecenas nec odio ¢f anie tincidunt tempus. Donec vitae sapien ut
libers verenatis faucibus. Nullam quis ante. Etiam sit amet crel eget eros faucibus tincidunt

Figure 4-14. The modal in action

66

CHAPTER 4 " MATERIALIZE JAVASCRIPT

In Materialize, the modal can be customized using the following options:

e dismissible: Controls whether the modal can be closed by
clicking the outer area.

e opacity: Controls the opacity of the modal background.

e in_duration: Controls the amount of time it takes for the modal
to appear.

e out_duration: Controls the amount of time it takes for the modal
to disappear.

e ready: A callback function that will execute the code inside it
when the modal has opened up.

e complete: A callback function that will execute the code inside it
when the modal has closed.

You can initialize a modal with options, as shown in Listing 4-18.

Listing 4-18. Modal Options

$('.TCtrigger').leanModal({
opacity: .3,
in_duration: 100,
out_duration: 50

};

Here you set the opacity to .3, in_duration to 100, and out_duration to 50.

In Materialize, modals cans be invoked programmatically through the code. This
feature is quite handy when you intend to show the modal with some information
without any user interaction. In Materialize, the methods available for this feature are
openModal and closeModal.

Listing 4-19 shows how to use the openModal function. You can do the same with the
closeModal.

Listing 4-19. The openModal Function
$(".TCtrigger').openModal()

ScrollFire

Materialize provides the ability to track how much an end user has scrolled on a

long page and execute the assigned callback functions depending on that length. To
implement this, you need to provide three parameters: an element that will be affected,
the offset after which the specific callback is to be triggered, and the callback itself. You
can pass these parameters for more than one offset. See Listing 4-20.

67

CHAPTER 4 " MATERIALIZE JAVASCRIPT

Listing 4-20. Tracking User Scrolling

<h1 class="currentPosition" style="position: fixed;top:
10px;left: 10px;width: 100%;height:300px">You have crossed:px </h1>
<div class="longDiv" style="height: 2000px;"></div>
<script type="text/javascript">
$(document).ready(function(){
var options = [
{selector: '.longDiv', offset: 500, callback:
function () {
$(".progressCounter').text(500).
css({"background": "#B00"});

}
b
{selector: '.longDiv', offset: 1000, callback:
function() {
$('.progressCounter').text(900).
css({"background": "#0B0"});

}
b
{selector: '.longDiv', offset: 1400, callback:
function() {
$('.progressCounter").text(1400).
css({"background": "#00B"});
}
}
15
Materialize.scrollFire(options);

1);

</script>

A scrollFire configuration consists of three parameters:
1. selector: The element to be monitored for scrolling.

2. offset: The point within the scrollable limit where some
action needs to be triggered.

3. callback: The action to be triggered on reaching a specific
offset.

In Listing 4-20, you create a long <div> with a height of 2000px so that the page is
scrollable.

A ScrollFire monitors the element specified in the selector parameter as to how
much it has been scrolled. You then initialize Materialize’s Scrol1Fire with configuration.
This configuration will tell how Scrol1lFire should behave when you scroll to a specific
length of the page. Scrol1Fire works only in one direction (from top to bottom) and only

68

CHAPTER 4 " MATERIALIZE JAVASCRIPT

one time. These actions won'’t be repeated by scrolling back and forth. Let’s say that you
have one of them monitoring for 900, which means that when the scrolling exceeds 900px
from the top, a callback will be fired. In your example, you select the ProgressCounter span,
change the textual content inside it to 900, and then change its background color to green.
See the results in Figure 4-15 when the scroll offset crosses 900px.

C | @ file:///E:;/Materialize_Book/materialize/scrollfire.html

You have crossed:@880px

Figure 4-15. ScrollFire in action

ScrollSpy

Web design increasingly uses ScrollSpy navigation. It allows the users to scroll to each

section while they are on the same page. The menu is dependent on the scrolling

position, which is highlighted to indicate to the users where they are currently.
Listing 4-21 shows the code for the ScrollSpy feature.

Listing 4-21. The ScrollSpy Feature

<div class="row">
<h1 class=" deep-orange-text darken-3">Materialize Training Session</h1>
<h3>17/09/2016</h3>
<div class="col s12 m9 110">
<div id="eventDetails" class="section scrollspy">
<h3>Event Details</h3>
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Aenean commodo ligula eget dolor...... </p>
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Aenean commodo ligula eget dolor....... </p>
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Aenean commodo ligula eget dolor...... </p>
</div>
<div id="speakers" class="section scrollspy">

<i class="material-icons">speaker_notes</i> Anirudh
Prabhu.</1i>

69

CHAPTER 4 " MATERIALIZE JAVASCRIPT

<1i><i class="material-icons">speaker_notes</i> Aravind
Shenoy.</1i>

</div>
<div id="eventOutline" class="section scrollspy">
<h3>Event Outline</h3>
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

Aenean commodo ligula eget dolor..... </p>
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Aenean commodo ligula eget dolor...... .. </p>
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Aenean commodo ligula eget dolor....... </p>
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Aenean commodo ligula eget dolor....... </p>

</div>

</div>
<div class="col hide-on-small-only m3 12">
<div style="position: fixed">
<ul class="section table-of-contents">
Event Details
Speakers</1i>
Event Outline</1i>

</div>
</div>
</div>
<script type="text/javascript">
$(document) .ready(function(){
$('.scrollspy').scrollSpy();
D;

</script>

In Listing 4-21, you create two sections within the page. You define the col s12
m9 110 class, meaning the content will span across 12 columns on the small screen, 9
columns on a medium screen, and 10 columns on a large screen. You define the content
for Event Details within a <div> and assign an id and the section and scrollspy class to
it. Similarly, you create two more <div>s and assign unique ids and the scrollspy class to
them. After defining the content, you create a <div> where you define the scrollspy links
within the and its <1i> tags. Moving forward, you initialize the scrollspy at the end
using the document.ready function.

The output of the code is shown in Figure 4-16.

70

CHAPTER 4 " MATERIALIZE JAVASCRIPT

Materialize Training Session
17/09/2016

Event Details

Everit Details

Larem ipsum dolar sit armet, consectatuer adipiscing elit, Asnean commodo liguls eget dolor, Aenean massa, Cum socis mnoq e penatibus of magnis dis

parturient montes. nascetur ridiculus mus. Done quam felis, ultricies nec. pellentesque sequat massa quis enim, Dones pede
justo, fringilks vel, aliquet nec. psto. Nultam dictumn felis eu pede moll
Integer tincidunt. Cras dagibu l , consequat vitae. eleifend ac.
cnim. Akquam borem ante, dapibus in, o

Lorem ipsum color Sit amet, consectatuer adi
parturient Montes, nascetur ridiculus

justo, frimgilks vel, aliquet nec, vul
Integer tincidunt. Cras dapibus. Vivan
gnim, Aliquam lorern ante, dapibus in, viverra quis, feugiat a, telivs. Phasellus viv cjramlll,lrlc s varius laoreat. UJHQLC |ru1\

Figure 4-16. ScrollSpy in action

Asyou can see, the links are highlighted while scrolling down the screen based on
the content on the screen.

SideNav

SideNavs are slide-out menus that are usually implemented for navigation or show
controls that need not be visible all the time. Listing 4-22 shows the code for the sideNav
feature.

Listing 4-22. The SideNav Feature

<ul id="slide-out" class="side-nav">
Register</1i>
More info</1i>

<a href="#" data-activates="slide-out" class="button-collapse show-on-
large"><i class="material-icons">menu</i>

<div class="row">
<h1 class=" deep-orange-text darken-3">Materialize Training Session</h1>
<h3>17/09/2016</h3>
<script type="text/javascript">
$(function () {
$(".button-collapse").sideNav();
1)

</script>

In Listing 4-22, you assign the side-nav class to the tag whereas the <1i> tags
within the tags are where you define the links. Then you create an anchor tag which
will act as a trigger to display the sideNav. After the elements are in place, you use the
sideNav() function of Materialize to initialize and make the sideNav functional on the
click of the anchor.

71

CHAPTER 4 " MATERIALIZE JAVASCRIPT

Figure 4-17 depicts the menu, which slides in once the button is triggered.

C | ® filey///E/Materialize_Book/materialize/sidenavhtm|
Register

More info

Figure 4-17. The sideNav menu

The sideNav can be further customized using the following options:

e menuWidth: Specifies the width of the slide-out menu.

e edge: Specifies from which edge of the browser the sideNav will
appear.

e closeOnClick: Specifies whether the sideNav should close when
its internal links are clicked.

An example of initializing with these options is shown in Listing 4-23.

Listing 4-23. SideNav Options

<script type="text/javascript">
$(function () {
$(".button-collapse").sideNav({
menuWidth:200,
edge: 'right',
closeOnClick: true
b;
)

</script>

Materialize also provides methods by which you can open or close sideNav
programmatically using the code.

72

CHAPTER 4 " MATERIALIZE JAVASCRIPT

Listing 4-24 shows the code for the SideNav using the show and hide parameters,
leading to displaying and hiding the SideNav content.

Listing 4-24. SideNav Parameters

// Show sideNav
$('.button-collapse').sideNav('show");
// Hide sideNav
$('.button-collapse').sideNav('hide');

You can also have the SideNav visible by default without using any JavaScript code.
Add a fixed class to the tag in conjunction with the side-nav class

Listing 4-25 shows the line of code that is required to enable the SideNav content to
be visible on code execution.

Listing 4-25. Make SideNav Content Visible

<ul id="slide-out" class="side-nav fixed">

You can also specify the padding for the content area so that the SideNav won't
overlay the content. Add the padding to the row class to enable the padding and define
the style accordingly. Listing 4-26 shows the CSS markup to explain the same.

Listing 4-26. CSS: Adding Padding to the row Class

<style>
.row {
padding-left: 300px;
}

@media only screen and (max-width : 992px) {
.row {
padding-left: o;

}
</style>

The output of the code is displayed in Figure 4-18.

C | @ fley//EMaterialize_Book/materialize/sidenavFized htm!
Register

More info

Materialize Training Session
17/09/2016

Figure 4-18. SideNav Options

73

CHAPTER 4 " MATERIALIZE JAVASCRIPT

Tabs

Tabs are popular in web design to present content in a compact way. They allows you
to keep multiple documents open in a single window. You can use tabs as a navigation
widget to switch between content, resulting in a systematic and clean layout.

Listing 4-27 contains the code for the Tab feature.

Listing 4-27. The Tab Feature

<div class="row">
<h1 class=" deep-orange-text darken-3">Materialize Training Session</h1>
<h3>17/09/2016</h3>
<div class="row">
<div class="col s12">
<ul class="tabs">
<1i class="tab col s3"><a href="#eventDetails"
class="active">Event details</1i>
<1li class="tab col s3">Speakers</1i>
<1i class="tab col s3">Event
Outline</a»></1i>

</div>
<div id="eventDetails" class="col s12">
<h2>Event Details</h2>
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Aenean commodo ligula eget dolor.... </p>

</div>
<div id="speakers" class="col s12">
<h2>Speakers</h2>

<i class="material-icons">speaker notes</i> Anirudh
Prabhu.</1i>
<i class="material-icons">speaker notes</i> Aravind
Shenoy.</1i>

</div>

<div id="eventOutline" class="col s12">
<h2>Event Outline</h2>
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Aenean commodo ligula eget dolor....</p>
</div>
</div>

In Listing 4-27, you create a <div> class to which you assign the row class. Within

that <div>, you create another <div> spanning across 12 columns. You create three tabs
using the tabs class for the tag and tab class for each <1i> tag spanning across three

74

CHAPTER 4 " MATERIALIZE JAVASCRIPT

columns. After that, you close the tag and the <div> tag. You open a new <div> to
host the content for the three tabs. You assign the id to the <div> class for the first tab
wherein the id is the value of the href attribute for the previously defined <1i> class.
Similarly, you create two more <div>s for the remaining two tabs and assign the ids for
them, which are the value of the href attribute for the respective <1i> tags.

The output is shown in Figure 4-19.

G @ filey///E:/Materialize_Book/materialize/tabs. html w @

Materialize Training Session
17/09/2016

Event Details

Lorem ipsum dolor sit amel, consectetuer adipiscing elit. Aenean commede ligula eget dolor. Aenean massa. Cum sociis natoque penatibus
el magnis dis parturient mentes, nascetwr ridiculus mus. Donec quam felis, ultricies nec, pellentesgue ey, pretium quis, sem. Nulla consequat
massa quis enim. Donec pede juste, fringilla vel, aliguet nec, vulputate eget, arcu. In enim justo, rhoncus ul, imperdiel a, venenatis vitae, justo.
Nullam dictum felis eu pede mollis pretium. Integer tincidunt.

Figure 4-19. Tabs in action

Tabs do not require JavaScript initialization unless you add the tabs dynamically.
Meanwhile, you can also disable a tab by adding the disabled class to the tab that you
want to deactivate. Listing 4-28 shows the code for the disabled class and Figure 4-20
shows the results.

Listing 4-28. The disabled Class

<ul class="tabs">
<1li class="tab col s3"><a href="#eventDetails"
class="active">Event details
<li class="tab col s3">Speakers</1i>
<1i class="tab col s3 disabled">Event Outline</1i>

75

CHAPTER 4 " MATERIALIZE JAVASCRIPT

Event Outline is
disabled and doesn't
function

Materialize Training Session
17/09/2016

Speakers

Figure 4-20. The disabled class in action

Also, you can make any tab active by default by adding the active class to the anchor
within the <1i> tag, as shown in Listing 4-28.

The default behavior of the tabs is to ignore the default behavior of the anchors
inside it. However, you can override this behavior. To do so, add an URL to the href
attribute of the anchor and an additional target attribute with a_self or _blank value.
This is demonstrated in Listing 4-29.

Listing 4-29. Overriding Default Behavior

<ul class="tabs">
<1li class="tab col s3"><a href="#eventDetails"
class="active">Event details</1li>
<1li class="tab col s3">Speakers</1i>
<li class="tab col s3"><a href="https://github.com/Dogfalo/
materialize" target="_blank">Event Outline</1li>

Upon executing the code, you will get the output shown in Figure 4-19. However,

when you click the third tab (Event Outline), you will be directed to a different page, in
this case, the Materialize Git Hub page, as depicted in Figure 4-21.

76

CHAPTER 4 " MATERIALIZE JAVASCRIPT

& GitHub, Inc. [US) | https:/igithub.com, Dogfalo/materializ W

o Personal Opensource Business Explore Pricing Blog Support T e oy Signin ‘i-' ign up

Dogfalo / materialize OwWasch 060 S 200 Yok 3060

¥ Code Issues 968 Pull requests 249 rojects 1 Wik s Graphs
Materialize. a C85 Framework based on Material Design http://materializecss.com

1) 2614 commits ¥ 31 branches 0 28 releases AL 173 contributors s MIT
Beanch: mugtes
8 acburst F4D 1o 1ealbar merge Latest commit Sasb6ra 5 cays 350

Figure 4-21. Clicking tabs

Materialize also provides methods by which you can select a tab programmatically.
This can be done by the select_tab method, shown in Listing 4-30.

Listing 4-30. The secect_tab Method
$('ul.tabs').tabs('select tab', 'speakers');

Materialize also provides an option to assign a callback, which will get executed
every time a tab is changed. This is done by assigning a callback function to the onShow
option; see Listing 4-31.

Listing 4-31. The onShow Option

<script type="text/javascript">
$(document) .ready(function(){
$('ul.tabs"').tabs({
onShow: function (tab) {
console.log(tab);
alert("Tab changed")
}
1;
1;

</script>
The output of the code is shown in Figure 4-19. However, when you click the second

or third tab, you will receive an alert stating that the tab is changed, as depicted in
Figure 4-22.

77

CHAPTER 4 " MATERIALIZE JAVASCRIPT

C | © filey//E/Materialize_Bock/materialize/tabsWithOptions.htmi e

This page says:

Tab changed

Materializ =N
17/09/2016

Event Details

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget dolor. Aenean massa. Cum sociis natogue penatibus et

Figure 4-22. The tab changed

Waves

Materialize added an external library as part of its package that allows you to create an ink
effect as part of the material design immersive feature.

To add a wave effect button, you simply need to add waves-effect to the button. If
you want the wave effect to appear light (white), you need two classes: one that enables
the wave effect and another for wave-color. So for a red wave effect, you add the classes
shown in Listing 4-32.

Listing 4-32. Adding a Red Wave Effect

Click me!

You can see the results in Figure 4-23.

< C | @ file:///E:/Materialize_Book/materialize/waves.html#!

|

Figure 4-23. Wave effect

Click the Click Me button in the output and watch the wave effect wherein it creates
aripple effect of a red wave before it turns back to green.

78

CHAPTER 4 " MATERIALIZE JAVASCRIPT

Transitions

Materialize provides two built-in transitions that can be used as standalone features
or along with its ScrollFire plug-in to add some jazz to the application. These two
transitions are

e showStaggeredlList
e fadeInImage

The first transition makes the contents of the list visible one by one, transitioning
from left to right; see Listing 4-33.

Listing 4-33. The showStaggeredList Transition

<h1 class=" deep-orange-text darken-3">Materialize Training Session</h1>
<h3>17/09/2016</h3>
<a href="#!" class="waves-effect waves-light btn" onclick="Materialize.
showStaggeredList('.speakers')">Reveal the speakers
<ul class="speakers">
<li style="opacity: 0"><i class="material-icons">speaker notes</i>
Anirudh Prabhu.</1i>
<1i style="opacity: 0"><i class="material-icons">speaker notes</i>
Aravind Shenoy.</1i>

In Listing 4-33, you use waves-effect for the button (Reveal the Speakers) to
deliver an ink effect. Then you use an onclick action on the button and assign it the
showStaggeredlList function, followed by a list where you assign the speakers class to
the tag. Remember that you use the speakers class in the showStaggeredList to link
it with the list.

The output of the code is shown in Figure 4-24.

Materialize Training Session

17/09/2016

Figure 4-24. The showStaggeredList effect at the start

79

CHAPTER 4 " MATERIALIZE JAVASCRIPT

Remember that for the showStaggeredList to work, the list items need an
opacity of 0.

In Figure 4-24, you click the Reveal the Speakers button to display a waves effect
on the button while displaying the two speakers in conjunction with the material icons
transitioning from left to right. This end result is shown in Figure 4-25.

Materialize Training Session

17/09/2016

E Anirudh Prabhu.
E Aravind Shenoy.

Figure 4-25. The end result

The fadeInImage transition is used to fade in images with a unique animation
of grayscales and brightness. In Listing 4-34, you set the opacity to 0 in order to show
the fade effect. In the anchor link, you use the button displaying the waves effect and
define the onclick property, which will result in a fade-in effect, like you used in the
fadeInImage property. The class surpriseImage is assigned to the tag wherein the
class is the same called by the onclick function.

Listing 4-34. Setting the Opacity to 0

<h1 class=" deep-orange-text darken-3">Materialize Training Session</h1>
<h3>17/09/2016</h3>

<a href="#!" class="waves-effect waves-light btn" onclick="Materialize.
fadeInImage('.surpriseImage')">Reveal the Picture

<img src="images/sample.jpg" style="opacity: 0;display: block;"
class="surpriseImage">

The output of the code is shown in Figure 4-26.

Materialize Training Session

17/09/2016

Figure 4-26. Reveal the picture
80

CHAPTER 4 " MATERIALIZE JAVASCRIPT

When you click on the Reveal the Picture button, there is a waves effect on the button
and below the button. The image displays a fade-in transition effect; see Figure 4-27.

Materialize Training Session
17/09/2016

REVEAL THE PICTURE

Figure 4-27. Ta-da!

Carousel

Materialize provides a versatile carousel component that is fully responsive, scales with
the container box, and offers touch and swipe support. A basic example of a carousel is
demonstrated in Listing 4-35.

Listing 4-35. A Carousel

<h1 class=" deep-orange-text darken-3">Image Gallery</h1>
<div class="carousel">

</div>
<script type="text/javascript">
$(document) .ready(function(){
$('.carousel').carousel();

1

</script>

81

CHAPTER 4 " MATERIALIZE JAVASCRIPT

Initially, you create a <div> with the carousel class. Then you enclose the carousel-
item class to each link for each <a> tag. Then you initialize the JavaScript for the carousel,
which will result in the output in Figure 4-28.

Image Gallery

Figure 4-28. A carousel of images

Materialize allows you to customize the carousel by providing the options listed here:

time_constant: Time taken for the movement of the image.

dist: This is the perspective zoom, which gives a feel of the depth
by varying the size of image.

shift: This sets the spacing for the image in the center.

padding: This sets the padding between the items that are not in
the center.

Full width: This displays the images at their full width.

Indicators: This sets the indicators shown along with the
carousel.

No_wrap: This says that the carousel should not keep looping.

Listing 4-36 shows the use of some of the preceding carousel properties. You add the
carousel-slider class in conjunction with the carousel class for the <div> tag. Then
you define the width of the carousel. Then you initialize the JavaScript for the carousel
and set the full width to true.

Listing 4-36. Carousel Options

<h1 class=" deep-orange-text darken-3">Image Gallery</h1>
<div class="carousel carousel-slider" style="width: 720px;">

82

CHAPTER 4 " MATERIALIZE JAVASCRIPT

</div>
<script type="text/javascript">
$(document) .ready(function(){
$('.carousel.carousel-slider').carousel({full width: true});

};

</script>

The output of the code is shown in Figure 4-29.

Image Gallery

Figure 4-29. Carousel options

Carousel doesn’t restrict itself to images but also supports content. Listing 4-37
contains an example.

Listing 4-37. Carousel Content

<h1 class=" deep-orange-text darken-3">Content Gallery</h1>
<div class="carousel carousel-slider center" data-indicators="true"
style="width: 720px;">
<div class="carousel-item red white-text" href="#one!">
<h2>First Panel</h2>
<p class="white-text">Lorem ipsum dolor sit amet, consectetuer
adipiscing elit. Aenean commodo ligula eget dolor.... .</p>
</div>
<div class="carousel-item amber white-text" href="#two!">

83

CHAPTER 4 " MATERIALIZE JAVASCRIPT

<h2>Second Panel</h2>
<p class="white-text">Sed ut perspiciatis unde omnis iste natus
error sit voluptatem accusantium doloremque laudantium, totam rem
aperiam, eaque ipsa quae ab illo inventore... .</p>

</div>

<div class="carousel-item green white-text" href="#three!">
<h2>Third Panel</h2>
<p class="white-text">The European languages are members of the same
family. Their separate existence is a myth. For science, music,
sport, etc, Europe uses the same vocabulary... </p>

</div>

<div class="carousel-item blue white-text" href="#four!">
<h2>Fourth Panel</h2>
<p class="white-text">Far far away, behind the word mountains, far
from the countries Vokalia and Consonantia, there live the blind
texts. Separated they live in Bookmarksgrove right at the coast of
the Semantics, a large language ocean... </p>

</div>

</div>
<script type="text/javascript">

$(document).ready(function(){
$('.carousel.carousel-slider').carousel({full width: true});

1;

</script>

You used similar code in the earlier carousel code examples. However, here you add
the data-indicators property to the <div> element with the carousel class and set it to
true. Then you define the different carousel content and assign different colors to it, such
as red, amber, green, and blue, in addition to defining the text as white.

Finally, you initialize the JavaScript for the carousel similar to the previous examples.
You set the full width to true. Remember that you defined the carousel container width to
720px in the <div> with the carousel class.

The output of this code is shown in Figure 4-30.

84

CHAPTER 4 " MATERIALIZE JAVASCRIPT

Content Gallery

First Panel

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commeodo ligula eget dolor. Aenean
massa. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Donec
quam felis, ultricies nec, pellentesque eu, pretium quis, sem. Nulla consequat massa quis enim. Donec pede
justo, fringilla vel, aliquet nec, vulputate eget, arcu. In enim justo, rhoncus ut, imperdiet a, venenatis vitae,
justo. Nullam dictum felis eu pede mollis pretium. Integer tincidunt.

Figure 4-30. Carousel Content

Summary

In this chapter, you learned about the JavaScript-powered components of Materialize.
You covered the self-initializing components like collapsible, waves, tooltip, etc. You also
learned about components that require explicit initialization like tabs, carousel, toast, etc.
You saw how to dynamically add content to these functions or how to customize them
with various options.

You also viewed the carousel-based component provided by Materialize, which can
be used for both images and content. You also covered how to add components on the fly
and initialize them.

In next chapter, you will learn about components that are a blend of CSS and
JavaScript, such as badges, cards, collections, etc.

85

CHAPTER 5

Materialize Components)

In the last chapter, you looked at the JavaScript-powered components in Materialize.
In this chapter, you will touch base with the components that are a blend of JavaScript
and CSS.

The very reason for using a CSS framework is to use its built-in user interface
components. With its fantastic grid system and components, it is fairly easy to develop
intricate web sites. In this chapter, you will take a look at various CSS components in
Materialize.

The following are the topics you will learn about in an easy-to-understand manner:

e Badges

e Buttons

e Breadcrumbs
e Cards

e Chips

e Collections

e Footers

. Forms

Badges

A badge is a component used in conjunction with other components to indicate that
there is an update to that component. Badges are most commonly used with components
such as navbars and dropdowns, especially to show a number of unread items.

© Anirudh Prabhu and Aravind Shenoy 2016 87
A. Prabhu and A. Shenoy, Introducing Materialize, DOI 10.1007/978-1-4842-2349-9_5

CHAPTER 5 © MATERIALIZE COMPONENTS
Listing 5-1 shows the usage of badges in Materialize.

Listing 5-1. Badges

<!DOCTYPE html>

<html>

<head>
<!--Import Google Icon Font-->
<link href="http://fonts.googleapis.com/icon?family=Material+Icons"
rel="stylesheet">
<!--Import materialize.css-->
<link type="text/css" rel="stylesheet" href="https://cdnjs.
cloudflare.com/ajax/libs/materialize/0.97.7/css/materialize.min.
css" media="screen,projection"/>

<!--Let browser know website is optimized for mobile-->
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
</head>
<body style="padding:25px">
<!--Import jQuery before materialize.js-->
<script type="text/javascript" src="https://code.jquery.com/jquery-
2.1.1.min.js"></script>
<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/1ibs/
materialize/0.97.7/js/materialize.min.js"></script>
<h1 class=" deep-orange-text darken-3">Materialize Training Session</h1>
<h3>Discussion</h3>
<div class="collection">
How were the
sessions?302
Example files of session4
Reference material for
framework
Photos14</
span>
</div>
</body>
</html>

In Listing 5-1, you create a <div> and assign a class called collection to it. Then
you create a Discussion page. You create four links to list all the discussion topics in the
collections section. You apply the class badge to three of the listed items. You define the
badge class to two of them and a new badge for one of them. The listed items where you
just used the badge class show the badge number next to their discussion topic. However,
to make one of the badges to stand out, you use the new badge class for the “Example files
of session” topic.

The output is depicted in Figure 5-1.

88

CHAPTER 5 ' MATERIALIZE COMPONENTS

Materialize Training Session

Discussion

Figure 5-1. Badges

Badges can also be used in dropdowns. Listing 5-2 demonstrates the code snippet
wherein you create a page for downloading training material that has dropdowns. You
assign the badge class to the first two list items within an inline tag.

You use the dropdown-content class in the tag; the first item has an inline badge
class whereas the second list item is assigned the new badge class. You create a button
wherein you assign the dropdown button to the anchor tag’s data-activates attribute.
You then assign the id of the tag to the data-activates attribute.

Listing 5-2. Badges and Dropdowns

<h1 class=" deep-orange-text darken-3">Materialize Training Session</h1>
<h3>Training Material</h3>
<ul id="dropdown2" class="dropdown-content">
Ebooks3</1i>
Videos15</1i>
Paperback</1i>

<a class="btn dropdown-button" href="#!" data-
activates="dropdown2">Download<i class="mdi-navigation-arrow-drop-down
right"></i>

This code results in a Download button which, upon being clicked, will show a

dropdown menu with the badge for the first item (Ebooks) and new badge for the second
item (Videos); see Figure 5-2.

89

CHAPTER 5 "' MATERIALIZE COMPONENTS

Materialize Training Session|

Discussion

Figure 5-2. Badges and dropdowns

Next, you will use the navbar feature and the dropdown options. Listing 5-3 depicts
the usage of the badges in the Navbar feature.

You create a <nav> tag and assign the transparent black-text class to it. You create a
<div> tag and assign the nav-wrapper class to it, followed by a list wherein you assign the
nav-mobile id to it. You also assign the right class to the class in conjunction with
the hide-on-med-and-down class. The right class will result in aligning your links to the
right whereas the hide-on-med-and-down class will hide the navbar links on a medium
and small screen. In the list items (<11i> items within), you assign the deep-orange-
text darken-3 class to define the color for them. Close the <div> and create the <h1> and
<h3> tags to depict the page headings.

Listing 5-3. Navbar Options

<nav class="transparent black-text" style="box-shadow: initial">
<div class="nav-wrapper">
<ul id="nav-mobile" class="right hide-on-med-and-down">
Ebooks3</1i>
Videos15</1i>
Paperback</
a></1i>

</div>
</nav>
<h1 class="deep-orange-text darken-3">Materialize Training Session</h1>
<h3>Training Material</h3>

The output of the code is depicted in Figure 5-3.

90

vww . allitebooks.con

http://www.allitebooks.org

CHAPTER 5 ' MATERIALIZE COMPONENTS

Materialize Training Session
Training Material

Figure 5-3. Navbar options

Buttons

Buttons are the most standard components used across web pages in web design. The
more popular usage is in submission of forms and invoking actions.
Material design has three types of buttons:

e Standard buttons
e Fixed action button
e Flat buttons

Standard buttons are used commonly across web sites. In Materialize, you can create
a standard button in Materialize using the btn class. You can also use the waves-effect
along with assigning a color to enhance the animation effect.

You can also add icons within a button. Listing 5-4 shows the usage of buttons with
built-in icons.

Listing 5-4. Buttons and Built-In Icons

Standard Button

Standard Button with wave
<i class="material-icons
left">settings</i>Standard Button with icon

<i class="material-icons
right">settings</i>Standard Button with icon

In Listing 5-4, you create four buttons using the .btn class. In the last two buttons,
you also assign the waves effect along with ingrained icons within the buttons. You use
the material-icons class to the last two buttons and add the left and right to the

material-icons class to place the icons to the left and right on the button, respectively.
The output of this listing is shown in Figure 5-4.

STANDARD BUTTON STANDARD BUTTON WITH WAVE £F STANDARD BUTTON WITH ICON STANDARD BUTTON WITH ICON 8%

Figure 5-4. Four buttons

91

CHAPTER 5 "' MATERIALIZE COMPONENTS

In Gmail, you can see a fixed action button at the right bottom corner. This button
floats over content and can appear anywhere on the screen. This button will reveal
additional controls under it when you hover over it.

Listing 5-5 shows the usage of the fixed action button.

Listing 5-5. The Fixed Action Button

<div class="fixed-action-btn" style="bottom: 45px; right: 24px;">

<i class="large material-icons">live_help</i>

<i class="material-icons">email</
i></1i>
<i class="material-
icons">chat</i></1i>
<i class="material-icons">forum</
i></1i>

</div>

In Listing 5-5, you create a <div> class and assigned the fixed-action-btn class.
Then you define the floating button using an anchor link to which you have defined
btn-floating and btn-large red classes. Remember that the main button will always
be used in an anchor tag. Then you create the hidden buttons using the list class (the
 and <1i> tags under it). These hidden buttons are given the red, yellow, and green
colors apart from using the btn-floating class. You also use the ingrained icons in those
buttons such as e-mail, chat, and forums.

This results in a floating red button which, on hover, will display the three hidden
buttons for e-mail, chat, and forums, as shown in Figure 5-5.

Materialize Training Session

Training Material

Figure 5-5. Hidden buttons revealed

92

CHAPTER 5 ' MATERIALIZE COMPONENTS

The fixed action button revealed the hidden buttons vertically in the previous
example. The buttons can also be displayed horizontally with a simple addition of the
horizontal class to the <div> tag with the fixed-action-btn class. Listing 5-6 contains
the code for the horizontal alignment of the controls.

Listing 5-6. Horizontal Alignment

<div class="fixed-action-btn horizontal" style="bottom: 45px; right: 24px;">

<i class="large material-icons">live help</i>

<i class="material-icons">email</
i></1i>
<i class="material-
icons">chat</i></1i>
<i class="material-icons">forum</
i></1i>

</div>

The output of this code will result in the floating button being displayed horizontally
to the left, as depicted in Figure 5-6.

Materialize Training Session

Training Material

= (=, } ‘!i'

Figure 5-6. Buttons are now horizonally aligned

The default behavior of the fixed action button is to reveal the hidden options on
hovering. However, you can change this behavior to a click action by simply adding a
click-to-toggle class to the previous example. Listing 5-7 contains the code.

93

CHAPTER 5 "' MATERIALIZE COMPONENTS

Listing 5-7. A Click Action

<div class="fixed-action-btn horizontal click-to-toggle" style="bottom:
45px; right: 24px;">

<i class="large material-icons">live help</i>

<i class="material-icons">email</
i></1i>
<i class="material-
icons">chat</i></1i>
<i class="material-icons">forum</
i></1i>

</div>

The output of the code will result in a floating button. However, on hover, there is no
response but on clicking, the hidden control buttons are revealed as depicted in Figure 5-7.

Materialize Training Session

Training Material

0000

Hover doesn’t work here;
Need to Click on this button

Figure 5-7. Buttons revealed in a new way

Now let’s look at using flat buttons. Flat buttons do not have the shadows or colors
associated with standard buttons. They are widely used in cards or modal components to
avoid overlapping shadows while designing real-time web sites. The buttons appear like
plain text in the normal state and will change their color on hover without any shadows or
effects. Listing 5-8 shows how to use flat buttons.

94

CHAPTER 5 ' MATERIALIZE COMPONENTS

Listing 5-8. Flat Buttons

Standard Button

<i class="material-icons
left">settings</i>Standard Button with icon

Flat Button

In Listing 5-8, you have three buttons: a standard button, a standard button with an
icon, and a flat button.

This code results in three buttons. The last button is a flat button; when you hover
over it, it changes its color without any shadows or effects, as in Figure 5-8.

STANDARD BUTTON £2 STANDARD BUTTON WITH ICON FLAT BUTTON

| The Flat button on hover will |
change the color without any
shadows or effects

STANDARD BUTTON 3 STANDARD BUTTON WITH ICON FLAT BUTTON

Figure 5-8. Button types

You can also create large buttons in Materialize by adding the btn-large class to
the button.
Listing 5-9 shows the btn-1large class assigned to the first button.

Listing 5-9. A Large Button

Large Button
Normal Button

See the result in Figure 5-9.

LARGE BUTTON NORMAL BUTTON

Figure 5-9. A large button

95

CHAPTER 5 © MATERIALIZE COMPONENTS
You can also disable the button by adding the disabled class to it. See Listing 5-10.

Listing 5-10. Disabling the Button

Large Button
Normal Button

In the code, you have defined the disabled class to the buttons. See Figure 5-10.

Figure 5-10. A disabled button

Cards

Cards are a flexible content container with a header and a footer and a wide range of
content such as photos, text, and links. They are similar to panels from the early days of
CSS web design. Depending on the type and length of the content, the supported actions
in cards may vary accordingly.

See Listing 5-11 for an example of a card.

Listing 5-11. A Card

<div class="row">
<div class="row">
<div class="col s12 m6">
<div class="card teal darken-4">

<div class="card-content white-text">
Basic Card
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing
elit. Aenean commodo ligula eget dolor. Aenean massa.
Cum sociis natoque penatibus et magnis dis parturient
montes, nascetur ridiculus mus. Donec quam felis,
ultricies nec, pellentesque eu, pretium quis, sem. Nulla
consequat massa quis enim.</p>

</div>

<div class="card-action">
Action button

</div>

</div>
</div>
</div>
</div>

96

CHAPTER 5 ' MATERIALIZE COMPONENTS

A card consists of two sections: card content and card-action. A title can be added
to the card using the card-title class. In Listing 5-11, you define a <div> element
wherein you define the card class and add an inline span with the card-title class to it.
Then you create an action button within another <div> using the card-action class.

Figure 5-11 depicts the output of the executed code.

BB localhost63342/material X

C @ localhost:53342

Basic Card

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Aenean commodo ligula eget
dolor. Aenean massa. Cum sociis natoque penatibus et magnis dis parturient montes,

nascetur ridiculus mus. Donec quam felis, ultricies nec, pellentesque eu, pretium quis,
sem. Nulla consequat massa quis enim.

Figure5-11. A card

Images can be used in the card. An image card is similar to a standard card with a
thumbnail image inside it. See Listing 5-12.

Listing 5-12. An Image Card

<div class="row">
<div class="row">
<div class="col s12 m6">
<div class="card teal darken-4">

<div class="card-image">

Basic Card

</div>

<div class="card-content white-text">
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing
elit. Aenean commodo ligula eget dolor. Aenean massa.
Cum sociis natoque penatibus et magnis dis parturient
montes, nascetur ridiculus mus. Donec quam felis,
ultricies nec, pellentesque eu, pretium quis, sem. Nulla
consequat massa quis enim.</p>

</div>

<div class="card-action">

97

CHAPTER 5 "' MATERIALIZE COMPONENTS

Action button
</div>
</div>
</div>
</div>
</div>

All you did was add a <div> with the card-image class above the card-content and
place an image using the tag followed by an inline element along with the
card title.

Figure 5-12 depicts the output of the code for the image card.

Figure 5-12. Animage in a card

You can also place the content of the card horizontally by adding the horizontal
class to the <div> with the card class assigned to it. Listing 5-13 shows the code for this.

Listing 5-13. Horizontal Card Layout

<div class="row">
<div class="row">
<div class="col s12 m6">
<div class="card horizontal teal darken-4">
<div class="card-image">

</div>
<div class="card-stacked">
<div class="card-content white-text">

98

CHAPTER 5 ' MATERIALIZE COMPONENTS

Basic Card

<p>Lorem ipsum dolor sit amet, consectetuer adipiscing
elit. Aenean commodo ligula eget dolor. Aenean massa.
Cum sociis natoque penatibus et magnis dis parturient
montes, nascetur ridiculus mus. Donec quam felis,
ultricies nec, pellentesque eu, pretium quis, sem. Nulla
consequat massa quis enim.</p>

<div class="card-action">
Action button

In this code, you assign the horizontal class to the <div> with the card class. Also,
you wrap the <div> containing the card-content class and the other <div> containing
the card-action class within a parent <div> to which you assign the card-stacked class.

See Figure 5-13 for the result.

Figure 5-13. Another card layout

Basic Card

Lorem ipsum dolor sit amet,
consectetuer adipiscing elit.
Aenean commodo ligula eget
dolor. Aenean massa. Cum
sociis natoque penatibus et
magnis dis parturient
montes, nascetur ridiculus
mus. Donec quam felis,

ultricies nec, pellentesque eu,
pretium quis, sem. Nulla
consequat massa quis enim.

99

CHAPTER 5 "' MATERIALIZE COMPONENTS

Until now, you have seen cards where the information is displayed at once. Another
variant is where you show the information upon user activation. All you need to do is add
another <div> with the classes card-reveal and activator to the element that will reveal
the hidden content.

Listing 5-14 depicts an example of a card wherein the information is displayed on
user action.

Listing 5-14. User Action

<div class="row">
<div class="row">
<div class="col s12 m6">
<div class="card teal darken-4 sticky-action">

<div class="card-image">

<span class="card-title activator" style="width:
100%">Basic Card<i class="material-icons right">more_
vert</i>

</div>

<div class="card-content white-text">
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing
elit. Aenean commodo ligula eget dolor. Aenean massa.
Cum sociis natoque penatibus et magnis dis parturient
montes, nascetur ridiculus mus. Donec quam felis,
ultricies nec, pellentesque eu, pretium quis, sem. Nulla
consequat massa quis enim.</p>

</div>

<div class="card-reveal">
<span class="card-title grey-text text-darken-
4">Detailed information<i class="material-icons
right">close</i>
<p>Here is some more information about this product that
is revealed once clicked on.</p>

</div>

<div class="card-action">
Action button

</div>

</div>

</div>
</div>
</div>

In this code snippet, you add the activator class to the tag alongside the
card-title class. You then add the card-reveal class to a <div> element where you
define the content that is revealed upon clicking the activator material icon.

The output of the code is shown in Figure 5-14.

100

CHAPTER 5 ' MATERIALIZE COMPONENTS

Detailed information X

Here is some more information about this product
that is only revealed once clicked on

Basic Card

Lorem ipsum dolor ¢ adipiscing

Figure 5-14. User Actions

From Figure 5-14, you can see that clicking the icon in the Basic Card image reveals
the Detailed information section. Also, you can also see that you can close and run
the action again and again. That is because you used the sticky-action to the <div>
containing the card class. The sticky-action class makes the card action visible when it
is added to the complete card. This is useful when you don’t use the sticky-action class;
it covers the card when the information is revealed.

Finally, if you need the card to only display information, you can always go old
school by using the card-panel class. This results in an output without actions or titles.
See Listing 5-15 contains the code snippet for the card panel feature.

Listing 5-15. The Card Panel

<div class="row">
<div class="col s12 m6">
<div class="card-panel teal">

Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
Aenean commodo ligula eget dolor. Aenean massa. Cum sociis
natoque penatibus et magnis dis parturient montes, nascetur
ridiculus mus. Donec quam felis, ultricies nec, pellentesque
eu, pretium quis, sem. Nulla consequat massa quis enim

</div>
</div>

101

CHAPTER 5 "' MATERIALIZE COMPONENTS

In Listing 5-15, the structure looks quite simple: all you do is assign the card-panel
class to the <div> within which the content using the inline tag. See Figure 5-15.

Lorem ipsum doler sit amet, consectetuer adipiscing
elit. Aenean commaoado ligula eget dolor. Aenean
massa. Cum sociis natoque penatibus et magnis dis

parturient montes, nascetur ridiculus mus. Donec
quam felis, ultricies nec, pellentesque eu, pretium quis,
sem. Nulla consequat massa quis enim

Figure 5-15. The card panel

Chips

A chip is an excellent utility wherein the capsule-based structure can be used for little bits
of information. It is quite handy in mobile applications where you need to display tags.
You must have seen the contacts that are capsule-shaped when you add contacts to the
“To” field in e-mails.

Chips can be used with or without JavaScript. Listing 5-16 demonstrates the Chips
utility without JavaScript.

Listing 5-16. The Chips Utility without JavaScript

<div class="row" style="margin-top: 10px;margin-left: 10px">
 Jim Morrison
 Jimi Hendrix
 Freddie Mercury
</div>

In this code, you used the <div> element and added the row class. Within the parent
<div>, you use three inline tags and define the images of the rockstars (namely

Jim Morrison, Jimi Hendrix, and Freddie Mercury) inside it.
Figure 5-16 depicts the capsules created due to the Chips feature.

@ Jim Morrison e Jimi Hendrix % Freddie Mercury

Figure 5-16. Rockstar capsules

102

CHAPTER 5 ' MATERIALIZE COMPONENTS

You can also allocate a close icon for each chip to enable users to remove the created
chip. You add a a close class using the built-in material icons for each span element
inside the <div> element. See Listing 5-17.

Listing 5-17. The Close Icon and Class

<div class="row" style="margin-top: 10px;margin-left: 10px">
 Jim Morrison <i
class="close material-icons">close</i>
 Jimi Hendrix <i
class="close material-icons">close</i>
 Freddie Mercury <i
class="close material-icons">close</i>
</div>

Figure 5-17 depicts the output of the code.

@ Jim Morrison X e Jimi Hendrix X ‘@: Freddie Mercury X

Figure 5-17. Adding close buttons

Materialize provides JavaScript functions to create chips. To use them, you need a
target element where you wish to store all the created chips. See Listing 5-18.

Listing 5-18. A Target Element

<div class="row" style="margin-top: 10px;margin-left: 10px">
<h1 class=" deep-orange-text darken-3">Materialize Training Session</h1>
<h3>17/09/2016</h3>
<div class="tags"></div>
</div>
<script type="text/javascript">
$(function () {
$('.tags").material _chip({

data: [{
tag: 'css',
b A
tag: 'framework',
b A
tag: 'javascript',
b
tag: 'material design’,
1
D;
1)
</script>

103

CHAPTER 5 "' MATERIALIZE COMPONENTS

In Listing 5-18, you create a <div> tag and assign the tags class to it. The tags are
associated with the page (about the Materialize training session, in your example). You
use the material_chip function provided by Materialize to create chips using JavaScript.
You pass the data to this function using the data property, which in turn contains a list of
tags that should be displayed.

The output of the code is depicted in Figure 5-18.

Materialize Training Session
17/09/2016

€8s X framework X javaseript X material design X

Figure 5-18. Tags

In the following sections, you will look into options that this function can accept and
the format of the data.
The data provided to the material chip function can contain three parameters:

e Tag: The content of the chip

e Image: The path of the image in order to include the image inside
the chip

e Id:To assign an unique id to the chip

Listing 5-19 shows the typical structure of a single chip.

Listing 5-19. Typical Chip Structure

{
tag: 'css',
image: 'images/imgl.jpg",
id:10

}

The chip plug-in provides the options for customizing the experience with chips:
e data: Initialize Material’s chip plug-in with an initial set of data.

e placeholder: The placeholder text that appears if there are chips
present after initialization.

e secondaryPlaceHolder: The placeholder text that will appear if
no chips are present after initialization.

To demonstrate the customization options, see Listing 5-20.

104

CHAPTER 5 ' MATERIALIZE COMPONENTS

Listing 5-20. Chip Customization

<div class="row" style="margin-top: 10px;margin-left: 10px">
<h1 class=" deep-orange-text darken-3">Materialize Training Session</h1>
<h3>17/09/2016</h3>
<div class="tags"></div>
</div>
<script type="text/javascript">
$(function () {
$('.tags').material _chip({

data: [{
tag: 'css',
1 A
tag: 'framework',
b A
tag: 'javascript',
1
tag: 'material design’,
1,

secondaryPlaceholder:"No chips added. :(",
placeholder:"Add more chips?"

};
)

</script>

In Listing 5-20, you initialize the material_chip function with the initial data set
containing four tags and text for the default placeholder and secondary placeholder.
Initializing chips using JavaScript also provides the option to add and remove chips.
See Figure 5-19 for the results.

Materialize Training Session
17/09/2016

css X framework X javascript X material design X

Figure 5-19. Chip customication

In Figure 5-19, you can see the Add more chips icon next to the material design chip
as defined in the code. If you click the close icon on the css, framework, javascript, and
material design chips, the No chips added text can be seen as defined in the code when no
chips are present; see Figure 5-20.

105

CHAPTER 5 "' MATERIALIZE COMPONENTS

Materialize Training Session
17/09/2016

Figure 5-20. No chips added

In the above code you initialize the material chip function with initial data set
consisting of four tags and text for default placeholder and secondary placeholder.
Initializing chips using JavaScript also gives you the option to add and remove chips.
The output of Listing 5-22 is shown in Figures 5-22 and 5-23, where one image shows the
output when some chips are present and the other figure shows output when no chip are
present.

Materialize’s chip plug-in exposes events related to these chips which help keep
track of which chip is selected, added, or removed. To demonstrate the events, take the
preceding code and add the relevant code to it that will respond to chip events.

Materialize provides three events for the chips:

e chip.add: This event is triggered when a new chip is added.
e chip.delete: This event is triggered when a chip is removed.

e chip.select: This event is triggered when a user selects a chip by
clicking on it.

Listing 5-21 contains an example of using the events.

Listing 5-21. Using Chip Events

<script type="text/javascript">
$(function () {
$('.tags"').material chip({

data: [{
tag: 'css',
boA
tag: 'framework’,
bAoA
tag: 'javascript',
b
tag: 'material design’,
s

secondaryPlaceholder:"No chips added. :(",
placeholder:"Add more chips?"”

1)

106

CHAPTER 5 ' MATERIALIZE COMPONENTS

//Add event handler

$('.tags').on('chip.add', function(e, chip){
alert("A chip was added");

b;

$('.tags').on('chip.delete’, function(e, chip){
alert("A chip was removed")

};

$('.tags"').on('chip.select’, function(e, chip){
alert("A chip was selected")

};
i)

</script>

In Listing 5-21, you use jQuery’s on method. An alert will be displayed whenever one
of the events occurs. The message will specify which event occurred. In the code, you can
see the chip.add, chip.delete, and chip.select functions.

The output of the code will result in the four chips being displayed.

If you try to remove the last chip (i.e. material design chip), you will receive a prompt
stating that a chip has been removed as defined in the code.

Refer to Figure 5-21 to understand it better.

A chip was removed

Figure 5-21. A chip was removed

Materialize also provides the facility to extract chip data when all the chips are
present. For that, you call thematerial chip function with a single parameter called
data, as shown in the following line of code:

$('.tags"').material chip('data');
This returns an array of chip data.
Listing 5-22 shows an example of extracting chip data. You take the code from the

preceding code example and use alerts to display the total number of chips on add and
delete events.

107

CHAPTER 5 "' MATERIALIZE COMPONENTS

Listing 5-22. Extracting Chip Data

<script type="text/javascript">
$(function () {

$('.

1;

tags').material chip({

data: [{
tag: 'css',
bAoA
tag: 'framework',
b oA
tag: 'javascript',
b
tag: 'material design',
s

secondaryPlaceholder:"No chips added. :(",
placeholder:"Add more chips?"

//Add event handler

$(.

1);
$(

1;

$('

s
)

</script>

tags').on('chip.add', function(e, chip){

var chipList = $('.tags').material chip('data');

alert("A chip was added. Total number of chips is: "+chiplist.
length);

.tags').on('chip.delete', function(e, chip){

var chiplist = $('.tags').material_chip('data');
alert("A chip was Total number of chips is: "+chipList.length)

.tags').on('chip.select’, function(e, chip){

alert("A chip was selected")

In this code snippet, the chip data is stored using a variable called chipList. Since
the data is in an array format, you use the length property to get the total count of the
chips after the event has occurred. In this example, you add a new chip by typing the
name of the chip, followed by pressing the Enter key. This will trigger the add event and
show an alert with the updated count.

Similarly, if you remove a chip, it will display that a chip was removed and will
state the total count is 3 because one chip was removed from the 4 chips, as depicted in

Figure 5-22.

108

CHAPTER 5 ' MATERIALIZE COMPONENTS

A chip was deleted. Total number of chips is: 3

(W—T—

Figure 5-22. A chip was deleted

Collection

Materialize provides an innovative way of representing a list: the collection feature. When
the list is represented using the collection property, each item appears in a container
with a nice padding added around it, making it appear like rectangular blocks.

Listing 5-23 contains the code for the collection attribute.

Listing 5-23. The Collection Attribute

<div class="row" style="margin-top: 10px;margin-left: 10px">
<div class="col m8">
<h1 class=" deep-orange-text darken-3">Materialize Training Session</h1>
<h3>17/09/2016</h3>
<h4>Related topics</h4>
<ul class="collection">
<1i class="collection-item">HTML</1i>
<1i class="collection-item">CSS</1i>
<1li class="collection-item">JS</1i>
<li class="collection-item">Material Design

</div>
</div>

In the preceding code, you create an unordered list that contains the name of the
related topics. A list can be changed into a collection simply by adding a collection class
to the tag and the collection-itemto the individual list items. In the code, you have
done just that by creating four topics: HTML, CSS, JS, and Material Design. Figure 5-23
shows the output.

109

CHAPTER 5 "' MATERIALIZE COMPONENTS

Materialize Training Session
17/09/2016

Related topics
HTML
Css
Js

Material Design

Figure 5-23. Four topics

Instead of an unordered list, you can create a collection using anchors in <div>
elements. Listing 5-24 contains the code snippet where you replace the <11i> tags with
anchor tags (<a>) and enclose them inside the <div> with the collection class.

Listing 5-24. A Colleciton with Anchors

<div class="row" style="margin-top: 10px;margin-left: 10px">
<div class="col m8">
<h1 class=" deep-orange-text darken-3">Materialize Training Session</h1>
<h3>17/09/2016</h3>
<h4>Related topics</h4>
<div class="collection">
HTML
CSS
JS
Material Design
</div>
</div>
</div>

Here you create a collection using anchors, as mentioned. You create four topics and
you assign the active class to the last item in the collection (Material Design). The active
anchor (Material Design) will be teal-colored due to the active class assigned to it, as
depicted in Figure 5-24.

110

CHAPTER 5 ' MATERIALIZE COMPONENTS

Materialize Training Session

17/09/2016
Related topics

HTML
Css

JS

Figure 5-24. Active class

You can also enclose titles for the collection within the collection structure by simply
placing the desired header inside the <div> with the collection class and assign the
collection-header class to it. This indicates that the header is part of the collection
structure. Then you need to add a with-header class to the parent <div>, which is defined
by the collection class. Listing 5-25 shows the code.

Listing 5-25. Enclosing Titles

<div class="col m8">
<h1 class=" deep-orange-text darken-3">Materialize Training Session</h1>
<h3>17/09/2016</h3>
<ul class="collection with-header">
<1i class="collection-header"><h4>Related topics</h4></1i>
<1li class="collection-item">HTML</1i>
<li class="collection-item">CSS</1i>
<li class="collection-item">JS</1i>
<li class="collection-item">Material Design</1li>

</div>

The output of this listing is shown in Figure 5-25.

111

CHAPTER 5 "' MATERIALIZE COMPONENTS

Materialize Training Session
17/09/2016

Related topics

HTML
css
JS

Material Design

Figure 5-25. Enclosing titles

At times, you may have to create a list with additional content such as badges and
icons to make it more relevant and visually appealing. Suppose you want to show the
number of people attending versus the number of people not attending the training
sessions. You have two elements, Attending and Not Attending, with the numbers on the
right side of the list item. You can actually add the content to the right side of the list items
by adding a secondary-content class to it as depicted in Listing 5-26.

Listing 5-26. Adding Badges and Icons

<div class="col m8">
<h1 class=" deep-orange-text darken-3">Materialize Training Session</h1>
<h3>17/09/2016</h3>
<ul class="collection with-header">
<li class="collection-header"><h4>RSVP</h4></1i>
<1i class="collection-item">Attending <span class="secondary-
content">200 </1i>
<1li class="collection-item">Not Attending <span class="secondary-
content">50</1i>

</div>

In Listing 5-26, you create a collection of two list items and assign a title to the

collection. Then in the <1i> tag, you add the secondary content in form of the
element with the secondary-content class to it. See Figure 5-26.

112

CHAPTER 5 ' MATERIALIZE COMPONENTS

Materialize Training Session
17/09/2016

RSVP

Attending 200

Mot Attending

Figure 5-26. A collection of two list items

You can also build a list similar to a contact list using the collection feature. You
assign the avatar class, and use a name and contact information in a contact list. In the
following example of event organizers, you use the code snippet shown in Listing 5-27.

Listing 5-27. Event Organizers

<div class="row" style="margin-top: 10px;margin-left: 10px">
<div class="col m8">
<h1 class=" deep-orange-text darken-3">Materialize Training Session</h1>
<h3>17/09/2016</h3>
<ul class="collection with-header">
<1i class="collection-header"><h4>0rganizers</h4></1i>
<li class="collection-item avatar"><img src="images/img1.jpg"
class="circle"/>
Jim Morrison
<p>Event Organizer</p>
JimMorrison@hoteleventabc.com</
span>
</1i>
<1li class="collection-item avatar"><img src="images/img2.png"
class="circle"/>
Jimi Hendrix
JimiHendrix@concertevent77.com</

span>
</1i>

</div>
</div>

113

CHAPTER 5 "' MATERIALIZE COMPONENTS

In Listing 5-27, you use the collection with the concept of an avatar. To create
a collection with avatar, you need to add an avatar class to each <div> with the
collection-item class. You can add the avatar to the collection by adding an image
element as depicted in the preceding code. You use the circle class so that the image will
fit properly in the collection area with rounded corners. You then add an inline
element with the title class that will be the title of the collection. In this example, you
add the name of the organizers; you move on to add content beyond the title to collection
by including a paragraph below as shown for the first organizer. You can also add the
secondary-content class to add additional info. See Figure 5-27.

Materialize Training Session
17/09/2016

Organizers

e Jim Morrison JimMorrison@hoteleventabe.com
Event Organizer
e Jimi Hendrix JimiHendrix@concertevent77.corm

Figure 5-27. Adding content

To add to it, you can also incorporate a feature for the collection attribute that is
touch enabled. The dismissible class is useful when you want to swipe the content from
left to right to remove it from the list. It’s typically handy while checking notifications
when you want to remove the notification once it has been read.

Check the code bundle along with the book for the code on the dismissible feature.

Footer

A footer is an imperative component of a web page structure as it appears on the end of
the page wherein it displays essential navigation information. It saves the user the time
and effort by eliminating the need to scroll back to the top of the page to access core
navigation. You can also include important information such as copyright and contact
sections in the footer.

Take the preceding code for the organizers and add a footer to it, as shown in
Listing 5-28.

114

CHAPTER 5 ' MATERIALIZE COMPONENTS

Listing 5-28. Adding a Footer

<footer class="page-footer">
<div class="container">
<div class="row">
<div class="col 16 s12">
<h5 class="white-text">Materialize Training</h5>
<p class="grey-text text-lighten-4">An introduction to
framework by which you can leverage material design in your
web application.</p>
</div>
<div class="col 14 offset-12 s12">
<h5 class="white-text">Links</h5>

<a class="grey-text text-lighten-3"
href="#!">Event</1i>
<a class="grey-text text-lighten-3"
href="#!">Speakers</1i>
<a class="grey-text text-lighten-3"
href="#!">0rganizers</1i>
RSVP</
a></1i>

</div>
</div>
</div>
<div class="footer-copyright">
<div class="container">
© 2016 Copyright Materializecss
</div>
</div>
</footer>

In Listing 5-28, you use the <footer> tag and add the page-footer class. You then
create the container for the footer and define the content and links to be placed in the
footer by using simple HTML code. Finally, you create a <div> element to define the
footer-copyright class and design a container for the copyright information. Then you
wrap up the footer feature by using an </footer> tag.

Refer to the code bundle for the entire code. Figure 5-28 shows the output of the code
wherein you can scroll down for the footer section.

115

CHAPTER 5 "' MATERIALIZE COMPONENTS

Materialize Training Session
17/09/2016

Organizers

Jim Mormrison JimMorrison@hoteleventabe.com
Event Organizer

e Jimi Hendrix JimiHendrix@concertevent77.com

Materialize Training Links

An introduction to framework by which you can leverage material Event

design in your web application. Speakers
Organizers
RSVP

Figure 5-28. The footer

Forms

Forms are a useful resource to allow users to enter data and to enable this collected
data to be sent to servers for processing purposes. Materialize’s Forms components are
versatile and easy to code. In Materialize, you can add transitions and smoothness to
make it an immersive experience.

Input Field

Input fields are the most basic form element; they accept inputs from a user. In
Materialize, you must wrap your input field and its associated label in a <div> element
with the input-field class. By wrapping the elements this way, you can easily animate
the labels using a bit of jQuery. This wrapping has to be performed for input fields and
text areas only.

Listing 5-29 show the code snippet for creating the initial input fields in Forms.

Listing 5-29. Input Fields

<div class="container">

<div class="row" style="margin-top: 10px;margin-left: 10px">
<h1 class=" deep-orange-text darken-3">Materialize Training Session</h1>
<h3>17/09/2016</h3>
<h5>Visitor registration</hs5>

116

CHAPTER 5 ' MATERIALIZE COMPONENTS

<div class="row">

<div class="col m6 input-field">

<label for="firstName">First Name</label>
<input type="text" name="firstName" id="firstName"
placeholder="Please enter a Firstname"/>

</div>

<div class="col m6 input-field">
<label for="lastName">Last Name</label>
<input type="text" name="lastName" id="lastName"
placeholder="Please enter a Lastname"/>

</div>

</div>

</div>
</div>

In this code, you build a registration form for the training event. You start with
adding input fields for the first and last name of the person. Since you need the fields next
to each other, you place these fields in two <div>s, each having a col m6 class denoting
that it will consume half the space of the total area. Next, you add the input-field class
to them, thus creating a wrapper for your input fields and their associated labels. Then
you add the necessary input fields to these <div>s. Figure 5-29 depicts the output of the
code so far.

Materialize Training Session
17/09/2016

Visitor registration

Figure 5-29. Fields

If there is no explicit placeholder, the label will act as a placeholder. If you specify the
placeholder, then it will reflect in the field, as depicted in Listing 5-30.

Listing 5-30. A Placeholder

<div class="container">
<div class="row" style="margin-top: 10px;margin-left: 10px">
<h1 class=" deep-orange-text darken-3">Materialize Training Session</h1>
<h3>17/09/2016</h3>
<h5>Visitor registration</hs5>
<div class="row">

117

CHAPTER 5 "' MATERIALIZE COMPONENTS

<div class="col m6 input-field">

<label for="firstName">First Name</label>
<input type="text" name="firstName" id="firstName"
placeholder="Enter First Name"/>

</div>

<div class="col m6 input-field">
<label for="lastName">Last Name</label>
<input type="text" name="lastName" id="lastName"
placeholder="Enter Last Name"/>

</div>

</div>

</div>
</div>

In this code, you add the Enter First Name and Enter Last Name placeholders, which
will result in the output in Figure 5-30.

Materialize Training Session
17/09/2016

Visitor registration

Figure 5-30. Placeholders in action

Materialize makes the best use of HTML5 validation and displays properly validated
or erroneous fields with green and red validation states, respectively. You need to add
avalidate class to the target input field. Create an input field of type “email” which
supports HTML5 validation. You will show the validation effect when a valid or invalid
value has been entered. See Listing 5-31 for the code.

Listing 5-31. Vaildation

<div class="container">
<div class="row" style="margin-top: 10px;margin-left: 10px">
<h1 class=" deep-orange-text darken-3">Materialize Training Session</h1>
<h3>17/09/2016</h3>
<h5>Visitor registration</hs5>
<div class="row">
<div class="col mé6 input-field">
<label for="firstName">First Name</label>

118

CHAPTER 5 ' MATERIALIZE COMPONENTS

<input type="text" name="firstName" id="firstName"
placeholder="Please enter a Firstname"/>
</div>
<div class="col mé input-field">
<label for="lastName">First Name</label>
<input type="text" name="lastName" id="lastName"
placeholder="Please enter a Firstname"/>
</div>
</div>
<div class="row">
<div class="input-field col m12">
<input id="email" type="email" class="validate">
<label for="email">Email</label>
</div>
</div>
</div>
</div>

Figure 5-31 depicts the green line below the Email field when you enter a valid email
address.

Materialize Training Session
17/09/2016

Visitor registration

test@gmail.com

Figure 5-31. Valid email address

Figure 5-32 depicts the red line which indicates that there is an invalid email address.

119

CHAPTER 5 "' MATERIALIZE COMPONENTS

Materialize Training Session
17/09/2016

Visitor registration

material,magazine,raven

Figure 5-32. Invalid email address
You can add an icon before the email field by using the code in Listing 5-32.

Listing 5-32. Adding the Icon

<div class="row">
<div class="input-field col m12">
<i class="material-icons prefix">email</i>
<input id="email" type="email" class="validate">
<label for="email">Email</label>
</div>
</div>

Validation in HTMLS5 is well ingrained by showing fields in error or valid states. You
can further add custom messages that will be shown in case of an error or successful
validation. Listing 5-33 depicts the use of data-error and data-success attributes to add
messages for the label.

Listing 5-33. Adding Messages

<div class="row">

<div class="input-field col m12">
<i class="material-icons prefix">email</i>
<input id="email" type="email" class="validate">
<label for="email" data-error="invalid email address" data-
success="Thank you!">Email</label>

</div>

</div>

120

CHAPTER 5 ' MATERIALIZE COMPONENTS

The output of the code will show the message if you do not enter the valid email type.
At the same time, you can also see the Email icon next to the Email field, as depicted in
Figure 5-33.

Materialize Training Session
17/09/2016

Visitor registration

~
- material.design.asdfe.romeoc breaker

Figure 5-33. Icons

Textarea

Textarea is similar to the input field. You need to create a textarea element followed by
adding the materialize-textarea class. Listing 5-34 shows the code snippet.

Listing 5-34. Textarea

<div class="row">
<div class="input-field col m12">
<textarea id="message" class="message materialize-textarea"
name="message"></textarea>
<label for="message">Message</label>
</div>
</div>

The output of the code will result in a text area for the Message field, as depicted in
Figure 5-34.

121

CHAPTER 5 "' MATERIALIZE COMPONENTS

Materialize Training Session
17/09/2016

Visitor registration

Figure 5-34. Textarea

Select

The Select feature allows the user to select from multiple options. To create a simple
select element, create a select with some options in it. Enclose it into the input-field.
Then initialize the select element using JavaScript. By default, the select allows selection
of single option. You can change this to multiple select options by simply adding an
attribute named multiple to the select property. You also create another select element
that asks about technology awareness.

The entire code snippet is shown in in Listing 5-35.

Listing 5-35. The Select Feature

<div class="container">
<div class="row" style="margin-top: 10px;margin-left: 10px">
<h1 class=" deep-orange-text darken-3">Materialize Training
Session</h1>
<h3>17/09/2016</h3>
<h5>Visitor registration</hs>
<div class="row">
<div class="col m6 input-field">
<label for="firstName">First Name</label>
<input type="text" name="firstName" id="firstName"
placeholder="Enter a Firstname"/>
</div>
<div class="col m6 input-field">
<label for="lastName">Last Name</label>
<input type="text" name="lastName" id="lastName"
placeholder="Enter a Lastname"/>
</div>

122

CHAPTER 5 ' MATERIALIZE COMPONENTS

</div>
<div class="row">
<div class="input-field col m6">
<input id="email" type="email" class="validate">
<label for="email" data-error="invalid email address" data-
success="Thank you!">Email</label>
</div>
<div class="input-field col s6">
<select id="gender">
<option value="" disabled selected>Choose an option</
option>
<option value="male">Male</option>
<option value="female">Female</option>
</select>
<label>Gender</label>
</div>
</div>
<div class="row">
<div class="input-field col s12">
<select id="techaware" multiple>
<option value="" disabled selected>Choose an option</
option>
<option value="html">HTML</option>
<option value="css">CSS</option>
<option value="js">JavaScript</option>
<option value="jquery">jQuery</option>
<option value="android">Android</option>
</select>
<label>Technology awareness</label>
</div>
</div>
<div class="row">
<div class="input-field col m12">
<textarea id="message" class="message materialize-textarea"
name="message"></textarea>
<label for="message">Message</label>
</div>
</div>
</div>
</div>
<script type="text/javascript">
$(document).ready(function() {
$('select').material select();
1;

</script>

123

CHAPTER 5 "' MATERIALIZE COMPONENTS

In this code, you create two options: Male and Female for the Gender field. Next,
you created a Technology Awareness field to see the multiple options. You initialize
the select function on all select elements to give it an appropriate look and feel. The
function must be initialized compulsorily for the select functionality to work correctly. If
you click the Technology Awareness field, you can see the multiple options in Figure 5-35.

Materialize Training Session
17/09/2016

O HrML
Ocss

O JavaSeript
O iouery

~ Android

Figure 5-35. Many options

Images can be added to the options within the select element using the data-icon
attribute; see Listing 5-36.

Listing 5-36. Adding Images

<div class="input-field col s6">

<select id="invitationby">
<option value="" disabled selected>Choose an option</
option>
<option value="html" data-icon="images/img1.jpg"
class="circle">Jim Morrison</option>
<option value="css" data-icon="images/img2.png"
class="circle">Jimi Hendrix</option>

</select>

<label>Invited By</label>

</div>

124

CHAPTER 5 ' MATERIALIZE COMPONENTS

In Listing 5-36, you create an input field with the Invited by text. Next, you create a
select with three options. First you add the disabled class to the first option, which is
actually accompanied by the text “Choose an option” Remember that Choose an option
is just for informing the user to select the following two options, which you are going to
define next. Hence, you have added a disabled class to the Choose an option text.

You add two images and the circle class to the next two options, for Jim Morrison
and Jimi Hendrix.

Figure 5-36 depicts the output of the code when you click on the Choose an Option
input field in the Invited By field.

E Choose an option v

Choose an option v

Figure 5-36. Choosing an option

Radio

Radio selections are applicable when users have to select only one of the options from the
provided list. To demonstrate this, you add an Additional Members text under which you
define the various radio options; see Listing 5-37.

Listing 5-37. Radio Buttons

<div class="row">

<h5>Additional members</hs5>

<p>
<input name="members" type="radio" id="one" />
<label for="one">+1 member</label>

</p>

<p>
<input name="members" type="radio" id="two" />
<label for="two">+2 member</label>

</p>

<p>
<input name="members" type="radio" id="three" />
<label for="three">+3 members</label>

</p>

<p>

125

CHAPTER 5 "' MATERIALIZE COMPONENTS

<input name="members" type="radio" id="many"
disabled="disabled" />
<label for="many">More than 4</label>
</p>
</div>

In this code, you create a set of radio buttons that are assigned the members input
name followed by the radio type. You deactivate the final radio option (More than 4) by
assigning the disabled class to it.

Figure 5-37 depicts the radio buttons where you can select only one option (with the
last option disabled). The +3 members option has been clicked to demonstrate that only
one option can be selected at a time.

Additional members
O
O
&

Figure 5-37. Radio buttons

Checkboxes

Checkboxes are used to answer various options in a Yes or No format. In Listing 5-38, you
add a section called Terms and Conditions in the same form where you need to accept
the terms and conditions to proceed.

Listing 5-38. Adding a Section

<div class="row">
<p>
<input type="checkbox" id="acceptTC" />
<label for="acceptTC">Accept Terms and Conditions</label>
</p>
</div>

126

CHAPTER 5 ' MATERIALIZE COMPONENTS

You have assigned the checkbox type to the input and used an id which is assigned to
the for attribute for the label with the Accept Terms and Conditions text.

When you execute the code, you will see a checkbox with the Accept Terms and
Conditions text. Upon clicking the checkbox, the output will show the checked sign.

Refer to Figure 5-38 to see the output when the code is executed and later when it is
checked.

O

Clicking on the checkbox will
result in a checked sign for
the Terms and Conditions

\/ " _—

Figure 5-38. Checkboxes

Switches

Switches are a variant of the checkboxes with better aesthetics and feel. To create an
immersive experience, it is a handy alternative to the checkbox. These switches look like
real-world switches and are common in Android and IOS systems.

Listing 5-39 shows an example of the switches functionality.

Listing 5-39. Switches

<div class="row">
<p class="col m3">Accept Terms and Conditions</p>
<div class="col m3">
<div class="switch" style="margin: 15px 0;">
<label>
No
<input type="checkbox" id="acceptTC">

Yes
</label>
</div>
</div>
</div>

127

CHAPTER 5 "' MATERIALIZE COMPONENTS

In Listing 5-39, you replace the checkbox with a switch. You create a <div> with the
class switch and use the input type within it as checkbox and introduce an inline
element with the lever class assigned to it. See Figure 5-39.

Accept Terms and Conditions »

Figure 5-39. A switch

DatePicker

A DatePicker is a very common component in forms. In Materialize you can create a
DatePicker wherein the user can easily fill in the specific date without worrying about the
format. See Listing 5-40.

Listing 5-40. DatePicker

<div class="col m6">
<label for="dob">Date of Birth</label>
<input type="date" class="dob" id="dob" placeholder="Enter
Date of Birth"»>
</div>

In Listing 5-40, you create a <div> and create a label. Then you define the input type
and assign the date type to it and assign a class dob to it. Incidentally, the value of the
class is the value of the label’s for attribute. You enter a placeholder for the same. Then
you initialize the JavaScript for Materialize to bind the DatePicker functionality to this
new field.

Listing 5-41 shows the code for the JavaScript functionality.

Listing 5-41. JavaScript

$('.dob").pickadate({
selectMonths: true,
selectYears: 35

1;

In Listing 5-41, you initialize the DatePicker with two options: one that allows the
user to choose the month or the other which states the years from the past. In your
example, you have set the same to 35.

Figure 5-40 depicts the output of the code when you click on the Date of Birth field.

128

CHAPTER 5 ' MATERIALIZE COMPONENTS

< october [+] 2016 [-] P

16 17 18 19 20 21 22

23 24 25 26 27 28 29

30 3

Figure 5-40. DatePicker

Summary

In this chapter, you looked at several components such as badges, buttons, cards, chips,
and forms to name a few. You looked at how the badges can be used to visually indicate
the updates in the count. Further, you looked at the buttons and various customizations
associated with it. Next, you saw how we utilized components such as cards and chips
along with their implementation like you would use in a real-time scenario in Android
Phones and tablets. Finally, we wound up with forms and utilities such as DatePicker and
Switches which enhance the way forms are used actually.

After going through all the chapters in this book, you most likely have come to grips
with the concepts in Materialize at an introductory level and will want to delve deep into
the framework to utilize it in your web projects or pursue it further to create interactive
websites.

129

CHAPTER 5 "' MATERIALIZE COMPONENTS

Material Design helps impart continuity, and enables a powerful and consistent
experience across your websites. It helps create uniformity in a concise way without
much ambiguity. With responsiveness baked in, it enhances the user experience to a
large extent. Natural motions, animations, and transitions are streamlined significantly
to create a responsive, immersive experience. With HTML, CSS, and JavaScript as its
building blocks, it helps designers get started in seconds and match good design in an
innovative manner.

For our readers, we have created a sample product page for Apple iPhone 6 to
illustrate how simple it is to create webpages using this powerful framework. Go to
http://www.apress.com/us/book/9781484223482 to download the bonus chapter and
all accompanying source code.

As with everything, the learning curve is really steep in Materialize and with the
web evolving faster than expected, there will be additions and updates to this awesome
framework. Still, with its effective methodologies, Materialize is the go-to framework to
create Material Design-based intuitive websites for a seamless user experience.

130

Index

A B
Badges component
dropdowns, 89
navbar option, 90
output, 88
source code, 87-88
Buttons
built-in icons, 91
disabled button, 96
fixed action, 92
flat buttons, 95
floating button, 94
hidden buttons, 92
horizontal alignment, 93
large button, 95
output, 91
source code, 93

types, 91

C

Cards, 96
horizontal layout, 98-99
image card, 97-98
output, 97
panel feature, 101-102
source code, 96
user action, 100-101
Checkboxes, 126
Chips, 102
close icon and class, 103
customization, 105
data extraction, 108
delete, 108-109
events, 106
material_chip function, 104
no chips, 106

© Anirudh Prabhu and Aravind Shenoy 2016

output, 107

plug-in options, 104
rockstar capsules, 102
structure, 104

tags, 104

target element, 103
utility, 102

Collapsible

active accordion, 52-53
content adding, 55-56
expandable value, 53
JavaScript code, 54
multiple panels, 53

output, 50-51

popout implementation, 52
structure creation, 49-50

Collection

active class, 111
anchors class, 110
attributes, 109

badges and icons, 112
content, 114

enclosing titles, 111-112
event organizers, 113
list items, 113

output, 109

Color palettes, 29-31
Container class

column layout, 14
container class, 12-13
offsets, 16
push and pull, 16
responsiveness, 17-19
responsive side navigation layout
links, 22
output, 21
source code, 19-21
row class, 15

A. Prabhu and A. Shenoy, Introducing Materialize, DOI 10.1007/978-1-4842-2349-9

INDEX

Content Delivery Network (CDN)
advantages, 3
materialize, 4

D, E
DatePicker, 128-129
Dropdowns

dividers, 62-63

dropdown list, 62

functionalities, 61

options, 64-65

F

fadeInImage transition, 80
Footer, 114, 116
Forms
checkboxes, 126
DatePicker, 128-129
input fields
email address, 119-120
icons, 120, 121
messages, 120
output, 117
placeholder, 117
source code, 116-117
validation, 118
radio buttons, 125-126
select
feature, 122-123
images, 124
options, 124, 125
switches, 127
textarea, 121-122

G

Gaggle mail, 7, 8

Grid fundamentals
.container class (see Container class)
layout, 11
responsive layouts creation, 11-12

H, I

Helper classes
floating text, 24
hiding content, 24-26
hoverable, 27-28

132

text alignment, 23

truncation, 26-27

vertical align function, 22-23
Hoverable, 27-28

J, K, L

JavaScript
carousel component, 81
content result, 83
images, 82
options, 82-83
output, 84
collapsible (see Collapsible)
dropdowns
dividers, 62-63
dropdown list, 62
functionalities, 61, 63
options, 64-65
modals
feature, 65
options, 67
structure, 66
terms & conditions link, 66
ScrollFire, 67
configuration, 68
results, 69
tracking user scrolling, 68
ScrollSpy
feature, 69-70
output, 71
SideNav
content visible, 73
feature, 71
menu option, 72
options, 72-73
parameters, 73
tabs
disabled class, 75
feature, 74
onShow option, 77
output, 75-77
overriding default
behavior, 76
toasts, 56
alert function, 57
messages, 57
rounded class, 58
 tag, 57
timed notification, 57

tooltips
elements, 59-60
output screen, 61
results, 59
source code, 59

transitions
fadeInImage

transition, 80

output, 80-81
result, 80
showStaggeredList, 79
Ta-da, 81
types, 79

waves effects, 78

Jumpr, 7,9

M,N,O,FQ

Material design
animation, 2
description, 1
and development, 2
functionality, 2
motion, 2
user experience, 2

Materialize CSS
CDN (see Content Delivery

Network (CDN))
Gaggle Mail, 7-8
jumpr, 7,9
node package, 4
production-ready version, 3
Sass setup, 6-7
Sass version, 3
setting up, 4-6
stamplay, 7-8
variants, 2-3
via Bower, 4
via npm, 4

R

Responsive web design (RWD)
embeds, 34-36
responsive images, 31-32
rounded images, 33-34
videos, 36-37

INDEX

S

Sass, 2-3, 6-7
ScrollFire, 67
configuration, 68
results, 69
tracking user scrolling, 68
ScrollSpy
feature, 69-70
output, 71
Shadows, 37-38
showStaggeredList transition, 79
SideNav
content visible, 73
feature, 71
menu option, 72
options, 72-73
parameters, 73
Stamplay, 7-8
Switches, 127

TUYV

Tables
bordered table, 40
centered content, 42
hovering and highlighting, 42
HTML tags, 38-39
output, 39, 43-44
striped table, 41
Tabs
disabled class, 75
feature, 74
onShow option, 77
output, 75-77
overriding default behavior, 76
Text alignment, 23
Textarea, 121-122
Toasts, 56
alert function, 57
message, 57
rounded class, 58
 tag, 57
timed notification, 57
Tooltips
elements, 59-60
output screen, 61

133

IN

DEX

Tooltips (cont.)

results, 59
source code, 59

Transitions

134

fadeInImage transition, 80
output, 80-81

result, 80

showStaggeredList transition, 79
Ta-da, 81

types, 79

Truncation, 26-27

Typography
blockquotes, 46-48
Roboto font, 44-45

W XYZ

Waves effects, 78

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Introducing Materialize
	What Is Material Design?
	Material Is Analogy
	Bold, Graphic, Intentional
	Motion Provides Meaning

	What Is Materialize CSS?
	Downloading Materialize CSS
	Production-Ready
	Sass Version
	Alternative Downloading Methods

	Setting Up Materialize
	SASS Setup
	Gallery
	Summary

	Chapter 2: Grid Fundamentals and Helper Classes
	Materialize Grid Explained
	Creating Responsive Layouts
	.container Class
	12-Column Grid Layout
	Columns Incorporated in Rows
	Offsets
	Push and Pull
	Adding Responsiveness
	Responsive Side Navigation Layout

	Helpers
	Vertical Align
	Text Alignment
	Quick Floats
	Hiding Content
	Truncation
	Hoverable

	Summary

	Chapter 3: Beyond Fundamentals
	Color Palette
	Responsive Images
	Rounded Images
	Responsive Embeds
	Responsive Videos
	Shadows
	Tables
	Typography
	Blockquotes

	Summary

	Chapter 4: Materialize JavaScript
	Collapsible
	Toasts
	Tooltips
	Dropdown
	Modal
	ScrollFire
	ScrollSpy
	SideNav
	Tabs
	Waves
	Transitions
	Carousel
	Summary

	Chapter 5: Materialize Components
	Badges
	Buttons
	Cards
	Chips
	Collection
	Footer
	Forms
	Input Field
	Textarea
	Select
	Radio
	Checkboxes
	Switches
	DatePicker

	Summary

	Index

