

JSF 1.2 Components

Develop advanced Ajax-enabled JSF applications

Ian Hlavats

 BIRMINGHAM - MUMBAI

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

JSF 1.2 Components

Copyright © 2009 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2009

Production Reference: 1201109

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847197-62-7

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Credits

Author
Ian Hlavats

Reviewers
Cagatay Civici

Ted Goddard

Daniel Hinojosa

Kito D. Mann

Phil Stang

Ghazala Wahid

Acquisition Editor
Rashmi Phadnis

Development Editor
Swapna Verlekar

Technical Editor
Namita Sahni

Indexers
Monica Ajmera

Rekha Nair

Editorial Team Leader
Akshara Aware

Project Team Leader
Priya Mukherji

Project Coordinator
Prasad Rai

Proofreaders
Chris Smith

Lesley Harrison

Andie Scothern

Graphics
Nilesh R. Mohite

Production Coordinator
Dolly Dasilva

Cover Work
Dolly Dasilva

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

About the Author

Ian Hlavats is an experienced Java developer, architect, consultant, and instructor
specializing in JavaServer Faces (JSF). He has successfully designed, implemented,
and released many JSF applications. One of his accomplishments is the creation of
JSFToolbox for Dreamweaver, a suite of JSF UI development tools, which is now
used by Fortune 500 companies and government agencies worldwide.

Ian has been teaching Java programming at the college level and in corporate
training environments for several years. Ian was an invited speaker at the JSFOne
conference in 2008 where he delivered a presentation on building JSF applications
alongside a panel of other JSF industry experts. Ian was also invited to deliver
presentations on hands-on JSF design and development using JSF tools such as
Eclipse, NetBeans, and Adobe Dreamweaver at the JSF Summit conference in
Orlando, Florida in December 2009.

Ian has been working professionally as a Java consultant and Java instructor
since 2003. His first project was an internal audit project tracking system for
the Government of Canada that was implemented using the Struts, Spring, and
Hibernate frameworks, and a MySQL database.

After working extensively with Struts, Ian became very interested in JSF since
it solved many issues that Struts did not address. Ian's involvement in the JSF
community began around 2005 when he was active on JSF mailing lists, providing
feedback and submitting bug reports to the JSF and Facelets development teams.
While Ian was employed in the Government, he was also teaching Java courses at the
Algonquin College in Ottawa.

Ian left his permanent job in the Government in 2006 to work for his own company,
Tarantula Consulting Inc., and pursued Java development contracts with high tech
startups and small businesses in the Ottawa area. He worked extensively with JSF
and in the process he developed a suite of JSF extensions for Adobe Dreamweaver.
JSFToolbox for Dreamweaver was released in 2006 and has since expanded its
support for JSF to include new extensions for Facelets, Apache Tomahawk, Apache
Trinidad, ICEfaces, JBoss Seam, and JBoss RichFaces/Ajax4jsf.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

From 2007 to 2008, Ian worked as a Java instructor delivering Java training to
software architects, engineers, and managers at Cognos/IBM. During this time, he
also won a contract to consult on an enterprise Java application for the Government
of Canada. Ian conducted an architectural assessment of an existing Java EE
application, performed extensive code review, interviewed staff, coordinated with
other consultants, prepared a report, implemented his recommendations to improve
the Java application architecture, and trained Java development staff. Tarantula
Consulting continues to work on JSF projects for high tech startup companies in
Canada and the US.

In his spare time, Ian enjoys playing flamenco guitar and taking road trips on a
Harley-Davidson motorcycle.

Ian is currently working on a second book on writing custom JSF components.

I would like to extend my sincere gratitude to all the technical
reviewers who participated in this project. It means a great deal
to me that so many experts and esteemed colleagues in the JSF
community would take the time to help me improve this book.
I would also like to thank my Java students for all their help over
the past two years on my many Java projects. I would also like to
thank my partner Helene for all her support and for the endless
cups of coffee.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

About the Reviewers

Cagatay Civici is the PMC member of open source JSF implementation Apache
MyFaces and the project leader of popular PrimeFaces framework. In addition
to being a recognized speaker in international conferences such as JSFSummit,
JSFDays and local events, he's an author and technical reviewer of books regarding
web application development with Java and JSF. Cagatay is currently working as a
consultant and instructor in the UK.

Ted Goddard is the Chief Software Architect at ICEsoft Technologies and is the
technical leader for the JavaServer Faces Ajax framework, ICEfaces. Following a PhD
in Mathematics from Emory University that answered open problems in complexity
theory and infinite colorings for ordered sets, he progressed to post-doctoral research
in component and web-based collaborative technologies. He has held positions at
Sun Microsystems, AudeSi Technologies, and Wind River Systems, and currently
participates in the Servlet and JavaServer Faces expert groups.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Daniel ("Danno") Hinojosa is a self-employed consultant from Albuquerque,
New Mexico who specializes in development, teaching, and speaking. Danno has
been developing enterprise solutions for commercial and government entities since
1999. His primary consulting focus is the design of well-tested web and desktop
applications using Java and Groovy. Danno teaches Java, Groovy, Ajax, Automated
Testing, XML, and software testing at the University of New Mexico Continuing
Education. He is also a co-founder of the Albuquerque Java Users Group. Danno
has reviewed a number of books: Seam In Action, Hibernate Search In Action, and
Programming Scala.

Kito D. Mann is editor-in-chief of JSF Central (www.jsfcentral.com) and the
author of JavaServer Faces in Action (Manning). He is a member of several Java
Community Process expert groups (including JSF and Portlets), and Principal
Consultant at Virtua, Inc., specializing in enterprise application architecture,
training, development, mentoring, and JSF product strategy. Kito has consulted with
several Fortune 500 clients, including Prudential Financial and J.P. Morgan Chase &
Company, and was recently the chief architect of an educational application service
provider. He holds a BA in Computer Science from Johns Hopkins University.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Phil Stang has been in software development for more than 20 years and has been
working with Java since Java 1.01 release.

He has developed and led software development teams in the financial, aerospace,
and telecom sectors, as well as federal policing. He has been teaching
Java since 1997. His hobbies include skiing, windsurfing, and flying model
aircrafts competitively.

Ghazala Wahid has more than four years of experience as a Software and Reports
Developer. She is a Sun Certified Java Programmer as well as a Sun Certified Web
Component Developer.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Table of Contents
Preface 1
Chapter 1: Standard JSF Components 7

An introduction to JSF 7
The Model-View-Controller architecture 7
Managed beans 8
The JSF Expression Language (JSF EL) 8
Converters and validators 8

Next steps 8
Getting input from the user 9

Rendering a text field 9
Rendering a text area 13

Form submission 13
Rendering a form 14
Rendering a button 14
Rendering a link 15

Rendering text 16
Rendering localized text 17

Registering a message bundle (JSF 1.1) 17
Registering a message bundle (JSF 1.2) 18

Rendering date/time information 21
Rendering parameterized text 22
Rendering labels 24
Rendering a validation message 25
Rendering all validation messages 26

Making selections 26
Rendering a checkbox 27
Rendering multiple checkboxes 28
Rendering radio buttons 29

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Table of Contents

[ii]

Selecting one or selecting many values 31
Rendering a list of countries 33
Rendering a single-select list of options 35
Rendering a multiple-select list of options 35

Laying out components 36
Rendering a complex layout table 37
Rendering a table column 40

Displaying data 41
Rendering an HTML table 41

Summary 43
Chapter 2: Facelets Components 45

A brief history of Java web development 46
Comparing Facelets and JSP 48
Configuring a JSF application to use Facelets 49

Configuring web.xml 50
Configuring faces-config.xml 52

Getting started with Facelets 52
Hello World Facelets 52

Rendering debug information 53
Iterating data in a Facelets page 58
Removing UI components and markup 59
Including UI components and markup 63

Including a header and footer 63
Creating the header Facelet 63
Creating the footer Facelet 64

Passing parameters from one Facelet to another 65
Rendering a UI composition 67

Including a UI composition 68
Declaring a UI composition 68

Rendering a UI component 69
Including a UI component 70
Declaring a UI component 70

Creating a Facelets UI composition template 72
A simple Facelets template 73

A simple Facelets template client 74
Another simple Facelets template client 75

A more complex Facelets template 76
Decorating the user interface 78

Decorating content on a Facelets page 79
Creating a Facelets decoration 80

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Table of Contents

[iii]

Rendering a UI fragment 82
An advanced Facelets composition template 84
Summary 87

Chapter 3: Apache Tomahawk Components 89
Validating user input 90

Validating e-mail addresses 90
Validating a phone number with a regular expression pattern 91
Validating that two fields have an equal value 93

Managing date and time selection 94
Selecting a date 95
Rendering a simple calendar 97
Rendering an appointment schedule 98

File management 103
Uploading a file 104

Working with trees 106
Creating a tree 106
Creating a tree column 109
Customizing the tree component 111

Navigation menus 114
Creating a navigation menu 116
Creating bookmarkable navigation menus 118
Populating a navigation menu 123
Generating dynamic navigation menus 123
Using the JSCookMenu component 123

User interface security 126
Configuring web.xml 127
Security-enabled components 129
Tomahawk SecurityContext EL extension 132

Displaying data 132
Rendering an unordered list 133
Rendering a definition list 134
Rendering a data table 135

Paginating a data table 137
Rendering a multi-column data table with a newspaper layout 139

Summary 140
Chapter 4: Apache Trinidad Components 141

What is Ajax? 142
Receiving input from the user 142

Rendering a color picker 143
Rendering a calendar 144

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Table of Contents

[iv]

Rendering a number spinbox 146
Rendering a text field 147
Rendering a selectable list of values 148

Client-side conversion and validation 149
Enabling client-side validation in trinidad-config.xml 150
Validating one field at a time 151

Enabling Ajax functionality 152
Partial submit and partial triggers 153
Polling the server 154
Rendering a status indicator 156
Rendering a progress bar 158

Laying out components on the screen 160
Rendering a row layout 160
Rendering a complex table layout 161
Rendering a form layout 162
Rendering a panel group layout 163

Shuttling selections between lists 164
Rendering a multiple selection shuttle 165
Rendering an ordered shuttle 166

Working with tree and tree table components 167
Rendering a tree 167
Rendering a tree table 169

Creating navigation menus 170
Rendering a navigation tree 171
Rendering breadcrumbs 173
Rendering a multistep process (Train) 178
Rendering a process choice bar 180

Skinning and theme selection 182
Creating a new Trinidad skin 182
Implementing the skin's cascading style sheet 183
Rendering an icon 185
Customizing the Trinidad tree component's node icons 186

Implementing dialog windows 187
Declaring dialog navigation rules in faces-config.xml 188
Launching a dialog window 188
Returning a value from a dialog window 189

Summary 192

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Table of Contents

[v]

Chapter 5: ICEfaces Components 193
Receiving input from users 193

Rendering validation messages and text with effects 194
Receiving HTML input from users 196
Handling file uploads with ICEfaces 197
Rendering a calendar component 198

Creating navigation and pop-up menus 199
Creating a horizontal navigation menu with submenus 200
Rendering a vertical navigation menu with submenus 202
Adding menu separator items 202
Using context menus 203

Using tree components 204
Using the default tree node icons 205
Using custom tree node icons 206

Displaying data in tables 208
The ICEfaces data table component 208
Rendering dynamic columns 209
Implementing sortable column headers 211
Supporting resizable columns 217
Data table single row selection mode 218
Data table multiple row selection mode 221
Data table enhanced multiple row selection mode 222
Implementing data set paging 223

Rendering charts 224
Rendering a stacked bar chart 225
Rendering a 3-D pie chart 226
Rendering a bar chart 227

Laying out components with panels 229
Working with a border layout 229
Rearranging elements in a list 231
Rendering a series of components 233
Rendering collapsible panels 235

Creating a tabbed user interface 237
Working with modal dialogs 239

Rendering a simple modal dialog 239
Rendering a draggable dialog box 241

Rendering a draggable modal dialog 242
Summary 243

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Table of Contents

[vi]

Chapter 6: JBoss Seam Components 245
Introducing the JBoss Seam framework 245
Java Enterprise Edition (Java EE) technology 246

Understanding Java SE and Java EE 247
Introducing Enterprise JavaBeans (EJB3) technology 248
Introducing Seam components 252

Introducing REST 252
Next steps 253
Validating user input with the Seam framework 254
Implementing JSF validation with Seam 255

JPA and the Hibernate Validator framework 256
Decorating the UI to improve form validation 260
Adding cutting-edge Ajax technology with Ajax4jsf 264
Displaying success messages in JSF 269
Seam conversation management 270

Temporary conversations 270
ShippingCalculatorBean.java 271
faces-config.xml 272
pages.xml 272
conversation01.jsf 272
conversation02.jsf 276

Starting a long-running conversation 277
Declaring navigation rules in faces-config.xml 278
Defining a long-running conversation in pages.xml 280
Implementing OrderBeanImpl.java 280
The introductory page of the order process 285
The customer registration screen (Step 1) 286
The shipping information screen (Step 2) 287
The order details confirmation screen (Step 3) 288

Concurrent conversations 289
Debugging Seam applications 293
Summary 295

Chapter 7: JBoss RichFaces and Ajax4jsf Components 297
Introducing JBoss RichFaces and Ajax4jsf 297

The JBoss RichFaces component library 297
The Ajax4jsf component library 298

Accepting user input 299
Rendering editable text 299
Rendering an in-place select component 300
Combining in-place input and select components 302
Rendering a slider component 305
Rendering a number spinner component 306

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Table of Contents

[vii]

Rendering a calendar component 306
Rendering a color picker component 307
Rendering a combo box component 308
Rendering a suggestion box component with auto-complete 309
Rendering a pick list component 312
Rendering a rich text editor component 313

Using Ajax effectively 314
Understanding how Ajax4jsf works 315
Ajax-enabled form submission 315
Invoking an Ajax-enabled command link 317
Polling the server asynchronously 318

Panel components 320
Creating a basic panel 320
Rendering a panel bar 321
Rendering a panel menu 323
Rendering groups of menu items 325
Rendering a tabbed user interface 327
Rendering a toggle panel 328

Displaying data 331
Rendering a data table 331
Rendering a data table with a header, footer, and caption 333
Implementing sortable data table column headers 334
Filtering rows in a data table 336
Rendering a data grid 339
Adding a data scroller 340
Customizing the data scroller 342
Rendering an ordered list 343
Customizing an ordered list 345
Rendering a data definition list 346

Using special components 347
Rendering a Google Maps object 347
Rendering a Microsoft Virtual Earth object 354

Summary 356
Appendix: Learning JSF: Next Steps 357

JSF 2.0 357
New JSF annotations added to ease configuration 358
Simplified navigation mapping convention 360

JSF 1.x Navigation Mapping 360
JSF 2.0 Navigation Mapping 360

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Table of Contents

[viii]

A Web resource loading mechanism for images, stylesheets,
JavaScript files, and so on 361
Facelets is now integrated in JSF 2.0 362
The new "composite" JSF tag library for creating
composite components 363
Built-in support for adding Ajax capabilities to UI components
with <f:ajax> 366

The PrimeFaces component library 370
Next steps 370

Index 371

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Preface
Java developers and Web designers today need more powerful tools to deliver the
richer, faster, and smoother web experience that users now demand. JavaServer
Faces is an advanced web application framework that includes hundreds of
powerful, feature-rich, Ajax-enabled UI components that provide all of the
functionality needed to build web applications in a Web 2.0 world.

There has never been a better time to learn JSF. The JSF ecosystem is growing fast
and the abundance of JSF components, development tools, industry conferences, and
job opportunities is impressive. Learning JSF can be a challenge, but this book makes
it easy by showing you the most important JSF technologies and concepts that you
need to know to become a JSF professional.

What this book covers
Chapter 1: Standard JSF Components introduces you to the JavaServer Faces
framework and the key concepts that you need to understand to build simple JSF
applications. You will learn about Model-View-Controller, managed beans, the
JSF expression language, converters, and validators. You will also discover how to
use the standard JSF user interface components (such as text fields, radio buttons,
selection lists, and checkboxes) to receive text, date/time, numeric, and other types
of input from users as well as handle form submission, render messages, lay out
components in a grid, and display a data table.

Chapter 2: Facelets Components introduces the Facelets view definition framework
and compares it to JSP as the view technology for JSF. You will learn about working
with valid XHTML documents and will see examples of how to use the Facelets
framework to create simple and complex composite user interfaces based on Facelets
templates. You will also learn how to use the Facelets component library to display
debugging information, iterate data, include and remove UI components and
markup, pass parameters between Facelets pages, create reusable view elements,
and apply advanced Facelets templating concepts.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Preface

[2]

Chapter 3: Apache Tomahawk Components covers the Apache Tomahawk component
library and looks at how to use Tomahawk components such as calendars, trees, a
file upload component, and navigation menus to solve common web development
tasks. You will learn how to use Tomahawk components to validate user input,
accept date/time input, upload files, render tree components, create navigation
menus, implement user interface security, display sortable data tables, and use
newspaper layouts.

Chapter 4: Apache Trinidad Components discusses the Apache Trinidad framework
and Ajax technology and will introduce you to many of the 100 plus rich user
interface controls in this powerful component library. You will learn how to use color
choosers, pop-up calendars, dynamic trees, data tables, a number spinbox, shuttle
components, navigation menus, layout panels, and more, to implement typical web
development use cases. You will also learn how to use the Apache Trinidad dialog
framework to add dialog windows to your application, how to enable Trinidad's
client-side JavaScript validation, how to create dynamic navigation menus, how to
design custom skins and icons for Trinidad's skinning framework, and how to use
Trinidad's partial page rendering (PPR) Ajax feature to enhance your JSF pages.

Chapter 5: ICEfaces Components introduces the ICEfaces Ajax component library, and
explains many of the important concepts that you need to know in order to develop
JSF applications based on ICEfaces. You will learn how to use many of the more than
50 Ajax-enabled user interface components in the ICEfaces component library,
such as how to add dynamic effects to your pages to enhance input validation,
how to use navigation and context menus, how to work with tree components,
how to render dynamic data tables that support sorting and paging, how to render
pie charts and bar graphs, how to create a tabbed user interface, how to arrange
elements using drag-and-drop, how to lay out components in a grid, and how to
work with modal dialogs.

Chapter 6: JBoss Seam Components covers the JBoss Seam framework and introduces
you to the fundamentals of building JSF applications that use the full Java Enterprise
Edition (Java EE) technology stack. You will learn how to configure Seam, how to
apply Seam annotations to Java classes, and how to use Seam JSF controls to bridge
the gap between Enterprise JavaBeans (EJB3) components, the Java Persistence API
(JPA), and the JSF framework. This chapter will show you how to validate user input
efficiently using Seam, JPA, and the Hibernate Validator framework. You will also
discover how to use the Seam tag library and Java API to display validation and
success messages, render required field decorations, display debugging information,
use Seam's conversation management feature to implement robust JSF workflows,
and how to combine Seam with JBoss RichFaces and Ajax4jsf to build next
generation JSF applications.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Preface

[3]

Chapter 7: JBoss RichFaces and Ajax4jsf Components covers the JBoss RichFaces and
Ajax4jsf component libraries. You will learn how to use many advanced RichFaces
components such as in-place editable text, a calendar, an Ajax-based auto-complete
suggestion box, rich panel and menu components, a Google map component, a
Microsoft Virtual Earth component, dynamic data tables with sorting and paging,
data grids, a color picker, a slider component, a number spinner, a picklist control, a
rich text editor, and more. You will also learn how to add Ajax support to non-Ajax
JSF components with Ajax4jsf, and how to perform advanced Ajax tasks such as
submitting forms asynchronously, submitting one component at a time, polling the
server, and re-rendering parts of the page after an Ajax request.

Appendix: Learning JSF: Next Steps introduces JavaServer Faces 2.0 and provides
a summary of the key features in the next generation of the JSF framework. You
will discover how JSF 2.0 emphasizes convention over configuration by learning
about the new JSF annotations to simplify managed bean configuration and reduce
XML, the new JSF resource loading mechanism, the simplified navigation mapping
convention, the integration of Facelets into the core JSF framework, the new
"composite" JSF tag library for defining composite components, and the significantly
improved support for Ajax that is now built-in to the framework. You will also learn
about PrimeFaces, a promising new JSF component library.

What you need for this book
To run the example applications included with this book, you will need
a Java Servlet/JSP container that supports JSF 1.2 such as Apache Tomcat 6.0
(http://tomcat.apache.org) and a Java EE container such as JBoss Application
Server 4.2 (http://www.jboss.org).

The example applications were developed using Eclipse IDE for Java EE Developers
(Galileo Release) (http://www.eclipse.org), Adobe Dreamweaver CS4
(http://www.adobe.com), and JSFToolbox for Dreamweaver 3.5
(http://www.jsftoolbox.com). You will also need the MySQL 5.1 database
(http://www.mysql.org). The example applications can be downloaded from
the publisher's website (http://www.packtpub.com).

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Preface

[4]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "The following example demonstrates
some of the context parameters that we set in web.xml to enable the Facelets
ViewHandler."

A block of code will be set as follows:

<application>
 <message-bundle>messages</message-bundle>
 <locale-config>
 <default-locale>en</default-locale>
 <supported-locale>fr</supported-locale>
 <supported-locale>es</supported-locale>
 </locale-config>
</application>

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be shown in bold:

 <h:inputText id="emailAddress"
 value="#{customerBean.customer.emailAddress}"
 required="#{true}">
 <t:validateEmail message="The email address you have
 entered is not valid." />
 </h:inputText>

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in our text like this: "First let's
examine the code for the Cancel button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Preface

[5]

Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important
for us to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
and mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send us
a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for the book

Visit http://www.packtpub.com/files/code/7627_Code.zip
to directly download the example code.

Errata
Although we have taken every care to ensure the accuracy of our contents,
mistakes do happen. If you find a mistake in one of our books—maybe a mistake
in text or code—we would be grateful if you would report this to us. By doing so,
you can save other readers from frustration, and help us to improve subsequent
versions of this book. If you find any errata, please report them by visiting
http://www.packtpub.com/support, selecting your book, clicking on the
let us know link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata added to any list
of existing errata. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If
you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Standard JSF Components
The components and examples covered in this chapter have been selected to
introduce a number of important concepts for developing JSF user interfaces. It is
necessary to understand the basic JSF components because they are the building
blocks from which other components and component libraries are derived.

We will begin by looking at a number of common web application development
tasks and how they can be implemented using standard JSF components. In the
process, we will learn how to use other JSF artifacts, such as managed beans,
converters, validators, and more.

An introduction to JSF
While the main focus of this book is learning how to use JSF UI components, and not
to cover the JSF framework in complete detail, a basic understanding of fundamental
JSF concepts is required before we can proceed. Therefore, by way of introduction, let's
look at a few of the building blocks of JSF applications: the Model-View-Controller
architecture, managed beans, EL expressions, converters, and validators.

The Model-View-Controller architecture
JSF is based on the Model-View-Controller (MVC) architecture. The Model in MVC
represents the data of the application, and is typically implemented using Plain Old
Java Objects (POJOs) based on the JavaBeans API. The View in MVC represents
the user interface of the application and is responsible for rendering data and
user interface controls to the user. The Controller in MVC represents an object that
responds to user interface events and deals with querying or modifying the Model.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Standard JSF Components

[8]

Managed beans
Managed beans are the Controllers of a JSF application, handling events in the user
interface and updating the Model in response to user interaction. A managed bean
is simply a Java class with instance variables and methods that are coupled to the
application's domain model and to JSF's event handling API.

The JSF Expression Language (JSF EL)
The JSF Expression Language (JSF EL) is a simple, powerful, object-oriented, and
typesafe scripting language used to bind UI components to managed bean properties
and methods. The following example shows how to display a customized welcome
message that references a backing bean property using the JSF EL:

<h:outputText value="Hello, #{backingBean.username}" />

Converters and validators
JSF includes standard converters for common data types such as numbers, Boolean
values, and dates, and also supports custom converters for handling user-defined
data types. Additionally, JSF includes standard validators for typical input validation
scenarios such as checking required fields and numbers, and also supports custom
validators. We will see a number of both, standard converters and validators and
custom convertors and validators, throughout this book.

Next steps
Now that we have introduced the Model-View-Controller pattern, managed beans,
the JSF Expression Language, and converters and validators, we are ready for a more
in-depth discussion on how to use JSF UI components effectively to perform common
web development tasks. Specifically, we will look at the following use cases:

•	 Getting input from the user
•	 Form submission
•	 Rendering text
•	 Making selections
•	 Laying out components
•	 Displaying tabular data

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 1

[9]

Getting input from the user
Accepting input from a user is one of the most common scenarios for web
application developers. User input is typically character data that represents
different types of information, such as dates, numbers, and text. JSF includes a
number of standard components that represent HTML form elements that can be
used to collect this information from users.

The HtmlInputText component, for example, is a good choice for accepting short
textual input from the user. For use cases that require more text, such as a memo
field or comment box, the HtmlInputTextarea component is a better choice as it can
accommodate multiline text entry more easily.

Rendering a text field
The following example demonstrates how to accept text input from the user:

<f:view>
 <h:form>
 <div>
 <h:outputLabel for="name" value="Enter your name: " />
 <h:inputText id="name" value="#{backingBean.name}" />
 <h:commandButton value="Submit" />
 </div>
 <div>
 <h:outputText value="Hello, #{backingBean.name}"
 rendered="#{backingBean.name ne null and
 backingBean.name ne ''}" />
 </div>
 </h:form>
</f:view>

Notice the value attribute of the <h:inputText> tag. The text field is bound to a
backing bean String property using the JSF Expression Language (JSF EL). When
the form is submitted, the property is set to the value of the text entered by the user.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Standard JSF Components

[10]

This example also demonstrates conditional rendering of JSF components. Most JSF
tags support the rendered attribute. This attribute allows us to control when a JSF
component should be displayed on the page. In this case, the <h:outputText> tag is
conditionally rendered when the backing bean's name property is not null and is not
equal to an empty string.

In the next example we will use a text field to receive a date value from the user. First
we register the standard JSF date time converter on the UI component by nesting
the <f:convertDateTime> tag inside the <h:inputText> tag. This converter will
attempt to convert the text entered by the user to a date by using the conversion
pattern specified in the pattern attribute. Next we register a custom date validator
to make sure that the converted date value represents a valid birth date. The error
message rendered below the text field was produced by our validator class.

<f:view>
<h:form>
 <div>
 <h:outputLabel for="name"
 value="Enter your birthdate (M/d/yyyy): " />
 <h:inputText id="name" value="#{backingBean.date}">
 <f:convertDateTime type="date" pattern="M/d/yyyy" />
 <f:validator validatorId="customDateValidator" />
 </h:inputText>
 <h:commandButton value="Submit" />
 </div>
 <h:message for="name" style="display:block"
 errorStyle="color:red" />
 <div>
 <h:outputText value="You were born on "
 rendered="#{backingBean.date ne null}" />
 <h:outputText value="#{backingBean.date}">
 <f:convertDateTime type="date" dateStyle="full" />
 </h:outputText>
 </div>
</h:form>
</f:view>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 1

[11]

The following screenshots demonstrate a custom date validator class that
determines if a date represents a valid birth date. The error message rendered
below the text field was produced by our validator class.

When the validation is successful, our backing bean property is updated and
the view is rendered again in the browser. This time, our conditionally rendered
message is displayed to the user.

The next example shows how to accept numeric input from the user. JSF includes
built-in converter classes that handle conversions between character data (strings)
and Java data types, such as Integer, Boolean, Float, Long, and so on. In this
example, we specify that the text field component can only accept a whole number
between 20 and 50 by using the <f:validateLongRange> tag to register a standard
validator on the component.

<h:inputText id="number" value="#{backingBean.number}">
 <f:validateLongRange minimum="20" maximum="50" />
</h:inputText>

Note that the error message below the text field was produced by the built-in JSF
NumberConverter class and is the default text for this particular error. We can
override the default JSF conversion and validation error messages by declaring
messages with the same keys in our resource bundle.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Standard JSF Components

[12]

If we enter a non-numeric value, we will receive an appropriate error message:

If the number is not in the specified range, we will also get an error:

JSF validation messages
The JSF framework includes predefined validation messages for different
validation scenarios. These messages are defined in a message bundle
(properties file) including the JSF implementation JAR file. Many of these
messages are parameterized, meaning that as of JSF 1.2, a UI component's
label attribute value can be inserted into these messages; the default JSF
validation messages can be overridden by specifying the same message
bundle keys in the application's message bundle.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 1

[13]

Finally, the value is accepted by the converter and our view is updated, displaying
another conditionally rendered HtmlOutputText component.

Rendering a text area
The HtmlInputTextarea component is identical to the HtmlInputText component,
except that it can specify rows and cols attributes to control the width and height of
the text area.

<h:inputTextarea rows="10" cols="80"
 value="#{backingBean.description}" />

Form submission
When the user clicks on a button or a link with JavaScript enabled, the browser collects
the HTML form data and submits it to the web server for processing. It is important
to note that web pages may contain multiple forms, provided that the forms are not
nested. Also, typically the browser can only submit one form at a time. (We will look
at how to use Ajax to submit multiple forms at the same time, later in this book.)
Therefore, any UI components that should have their values included in the JSF
lifecycle for a particular request should be contained within the same form. In this
section, we will look at common ways to submit an HTML form using JSF components.

The standard JSF HTML component library includes components that can be used
to render and submit an HTML form. Any components within the form are included
in the form submission and will have their user input values sent to the server,
converted, and validated during the JSF request processing lifecycle.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Standard JSF Components

[14]

Rendering a form
To display a form on a JSF page, you can use the <h:form> tag. This tag renders
a UIForm component as an HTML form using the default HTML RenderKit. This
produces an HTML form tag at request time. In JSF, we should always use the
<h:form> tag and not the actual HTML form tag to render a form because the
JSF <h:form> tag renders additional hidden form fields containing important
information about the UI component tree for the current view.

The <h:form> tag component is very common in JSF views, as almost all components
need to be included in a form in order to be functional. A JSF view may contain
several forms, and in general it is a good idea to divide your user interface into
separate forms when it can accept different types of unrelated information from
the user.

A good example is a JSF view that has a page header with a user sign-in form, and a
content area with a user feedback form. The UI components and bindings involved
in authentication have nothing to do with the components and bindings involved
in gathering feedback from the user, so these two groups of components should
be organized into separate forms. In JSF, all the components in a form are updated
when that form is submitted. Therefore, we want to group related controls together
and isolate them from groups of other, unrelated controls.

Before an HTML form can be submitted, the user must click on or invoke a user
interface component that has been designated as a form submission component.
Typically, this is an HTML input element of the type submit or image rendered as
a button or an image in the browser, but using JavaScript it can also be a hyperlink,
checkbox, radio button, select menu, or any other visible or non-visible element on
the page.

To begin with a simple example, let's look at how to submit a form using a button or
a link component. The standard JSF component library includes two components that
are commonly used to submit a form. The HtmlCommandButton component is rendered
as a submit button by the <h:commandButton> tag, and the HtmlCommandLink
component is rendered as a hyperlink by the <h:commandLink> tag.

Rendering a button
The <h:commandButton> tag should have at least a label value. In this example,
the component simply submits the form when it is invoked, and nothing else.

<h:commandButton value="Submit" />

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 1

[15]

The HtmlCommandButton component can also invoke our application logic when it is
pressed. The component in this example now submits the form and, if conversion and
validation are successful, it then calls a method in our backing bean. This is achieved
by specifying a method expression for the button using the JSF EL. We can "wire"
several HtmlCommandButton components to different methods in our backing bean.

<h:commandButton value="Add"
 actionListener="#{backingBean.addWord}" />
<h:commandButton value="Remove"
 actionListener="#{backingBean.removeWord}" />

The Java method in our BackingBean class would be implemented as follows:

 public void removeWord(ActionEvent event) {
 words.remove(word);
 }

In this example, we can add to or remove words from a collection of words that is
stored in our backing bean using a simple JSF user interface.

Rendering a link
The <h:commandLink> tag is similar to the <h:commandButton> tag. The value
attribute also specifies the label, and both the tags have an actionListener
attribute that registers a backing bean method on the component using a JSF EL
method expression.

<h:commandLink value="Add"
 actionListener="#{backingBean.addWord}" />
<h:outputText value=" | " />
<h:commandLink value="Remove"
 actionListener="#{backingBean.removeWord}" />

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Standard JSF Components

[16]

The same screen continues to function in exactly the same way after we replace our
command buttons with command links.

Rendering text
Another common task for web applications is to render text in the browser. The
HTML markup language includes a number of elements that can be used to render
text. JSF includes standard components that represent these HTML elements and
extend their capabilities to include support for internationalization, conditional
rendering, formatted text, validation messages, and more.

Many elements in HTML, such as <p>, <div>, , and <label> for example, can
be used to render text. The JSF <h:outputText> tag renders the HtmlOutputText
component as an arbitrary text value or as a element that contains text if CSS
attributes on the tag are set. The <h:outputText> can be used to render plain text or
HTML that originates from the backing bean.

The value attribute of the tag specifies the text to be rendered. If we are rendering
HTML, we should make sure to set the escape attribute to false so that the HTML
is rendered properly in the browser. The <h:outputText> tag can also be used to
render arbitrary Java objects, such as Date, Integer, Float, and other types. When
the value attribute contains an EL expression that evaluates to a Java type other
than String, the component attempts to render the value as a string. If a converter is
registered on the component, the converter is responsible for converting the object to
a string.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 1

[17]

One of the uses of the HtmlOutputText component is to display localized messages.
Let's look at a few examples of how to use this component to internationalize our JSF
pages. In the process, we will have the opportunity to look at the JSF framework's
internationalization support in more detail.

Rendering localized text
One of the many benefits of the JSF framework is the ability to easily internationalize
our applications. As the format of date and time, numbers, and currency values
can change significantly from one locale to another, JSF conveniently extends Java's
internationalization (I18N) support to our user interface.

For demonstration, our JSF application will support three locales: English (our
default locale), French, and Spanish. Localized messages will be stored in three
message bundles named "messages_en.properties", "messages_fr.properties", and
"messages_es.properties".

Since JSF 1.2, there are two ways to make message bundles available to web pages
in our JSF applications.

Registering a message bundle (JSF 1.1)
Registering a message bundle in JSF 1.1 requires adding the following XML to the
faces-config.xml file:

<application>
 <message-bundle>messages</message-bundle>
 <locale-config>
 <default-locale>en</default-locale>
 <supported-locale>fr</supported-locale>
 <supported-locale>es</supported-locale>
 </locale-config>
</application>

Notice that we specify the name of the message bundle properties file (without
the locale information and without the .properties file extension) for the
<message-bundle> element. Next, we specify the locales supported by our JSF
application in the <locale-config> element, indicating that English (en) is our
default locale. To use our message bundles, we need to declare the <f:loadBundle>
tag in our JSF pages:

<f:view>
 <f:loadBundle var="bundle" basename="messages" />
 <h:outputText value="#{bundle.welcomeMessage}" />
</f:view>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Standard JSF Components

[18]

Registering a message bundle (JSF 1.2)
Since JSF 1.2, there is a more efficient way to use message bundles in our JSF pages.
Instead of loading our message bundle on each page using the <f:loadBundle> tag,
we can simply declare our message bundle once in faces-config.xml and use it
from any page in our JSF application. The following XML must be added to
faces-config.xml to enable this feature:

<application>
 <resource-bundle>
 <base-name>messages</base-name>
 <var>bundle</var>
 </resource-bundle>
</application>

The following example demonstrates how we can render our localized text in a JSF
page using the <h:outputText> tag. In this example, the text is rendered from our
default message bundle for the English locale.

<f:view>
 <f:loadBundle basename="messages" var="bundle" />
 <h:outputText value="#{bundle.welcomeMessage}
 (#{view.locale.displayName})" />
</f:view>

Developer tip: Message bundle keys and the JSF EL
Due to the syntax of the JSF expression language, if we use the "dot"
notation as in the expression #{bundle.welcomeMessage}, then
we must take care to choose valid key names for our message bundle.
This means avoiding periods and spaces and using only letters and
numbers for any message bundle keys we want to use in our JSF
pages. Alternately, we can use the "map" notation as in the expression
#{bundle['another.message.key']} to specify any arbitrary
message bundle key containing any acceptable key characters supported
by the Java properties file format.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 1

[19]

Our message bundle contains the following key/value pair:

welcomeMessage=Welcome!

In the next example, we hardcoded the locale of our view by setting the locale
attribute of the <f:view> tag to the French locale in a separate view, and the JSF
framework loaded the messages from our French message bundle.

<f:view locale="fr">
 <f:loadBundle basename="messages" var="bundle" />
 <h:outputText value="#{bundle.welcomeMessage}
 (#{view.locale.displayName})" />
</f:view>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Standard JSF Components

[20]

We created a third view for the Spanish locale. As we also configured a message
bundle for this locale, JSF was able to render localized messages for this locale.

<f:view locale="es">
 <f:loadBundle basename="messages" var="bundle" />
 <h:outputText value="#{bundle.welcomeMessage}
 (#{view.locale.displayName})" />
</f:view>

Creating separate pages for each locale is one approach to implement
internationalization in JSF. Another approach that we can use is to create a single
view without specifying the locale and let the JSF framework determine the
appropriate message bundle to use, based on the locale sent by the user's browser.
As users can configure their browsers to specify their preferred languages, our JSF
application can rely on this information to identify the user's locale.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 1

[21]

Detecting the browser's locale in a single view can be a more efficient approach, as
we no longer have to maintain a different copy of the view for each supported locale.

If the user's locale is not supported, they will see messages for our application's
default locale.

Another use of the <h:outputText> tag is to render text conditionally. For example,
we may want to display a message to the user only if he/she is currently logged
into our web application. For this purpose, we can use the rendered attribute of the
<h:outputText> tag. This attribute accepts a Boolean value, and we can use an EL
expression to determine if the component should be visible or not.

Rendering date/time information
Web applications often have to display dates, currencies, numbers, and other
types of information to the user in a variety of ways. For example, you may want
to display the date January 1, 2009 in the short format "01/01/09", in the medium
format "Jan 1, 2009", or in the long format (including time information) "Thursday,
January 1, 2006 5:30:15 PM".

Conveniently, the JSF Core tag <f:convertDateTime> can be nested inside an
<h:outputText> tag to control date/time formatting. The following example
demonstrates date/time formatting using the <f:convertDateTime> tag. In this
case, we display the date using the "full" date/time style.

<h:outputText value="You were born on "
 rendered="#{backingBean.date ne null}" />
<h:outputText value="#{backingBean.date}">
 <f:convertDateTime type="date" dateStyle="full" />
</h:outputText>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Standard JSF Components

[22]

The <h:outputText> tag is also locale aware, so it renders the date according to the
formatting conventions of the current locale.

The <h:outputText> tag is a very flexible JSF component that supports a wide range
of text rendering situations.

Rendering parameterized text
Sometimes we want to render formatted text that contains parameters to be specified
later. JSF includes the <h:outputFormat> tag for this purpose. It is able to render
messages that contain special placeholders that can be filled in at runtime. Let's look
at how to render parameterized messages using the HtmlOutputFormat component.

In this example, we render a parameterized string from our message bundle and
replace the parameters with values obtained from the query string, the current
view, and our backing bean. The process of replacing parameters with values in a
parameterized string is called interpolation. This example also demonstrates the
flexibility of the JSF expression language. We are literally able to plug in values from
just about any source of information available to our web page.

<h:outputFormat value="#{bundle.welcomeMessage2}">
 <f:param value="#{param.username}" />
 <f:param value="#{view.locale}" />
 <f:param value="#{backingBean.today}" />
</h:outputFormat>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 1

[23]

The parameterized message is defined in our message bundle. We will have a similar
definition for each locale.

welcomeMessage2=Welcome {0}, your locale is {1}. The current date is
{2}.

First, we configure our browser to use English as our preferred language.

Next, we set French as our preferred language.

On our third try, we set Spanish as our preferred language.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Standard JSF Components

[24]

Rendering labels
When marking up our JSF pages, we should take care to provide proper labels for
components to give them a clear purpose in our user interface. This way, users will
have an easier time learning how to use our JSF applications.

When rendering labels, it is more appropriate to use the HTML <label> element
than to use a element. For this purpose, we can use the JSF <h:outputLabel>
tag. This tag renders an HtmlOutputLabel component as an HTML <label> element
and has a special for attribute that identifies the input component represented by
the label.

A nice feature about this component is that it improves the usability of forms in
web browsers by providing additional information about the relationship between
text labels and form controls. One enhancement in particular is that users can now
click on a radio button or checkbox label to change the selection state of the control.
This makes a web page more intuitive to the user and also provides accessibility
information for screen readers and assistive devices.

To set the text displayed by an <h:outputLabel> tag, you can specify a string
literal or a JSF EL value expression for the value attribute of the tag. You can also
nest an <h:outputText> tag inside an <h:outputLabel> tag, in which case the text
will be provided by the child component. The <h:outputLabel> tag has the same
internationalization support as the <h:outputText> tag.

This example shows how to use the <h:outputLabel> tag in conjunction with
another JSF tag. The important thing to notice is the use of the for attribute. It
expects the ID of another component on the page and informs the browser that the
label is intended for that particular component.

<h:outputLabel value="Remember Me" for="remember" />
<h:selectBooleanCheckbox id="remember"
 value="#{backingBean.rememberMe}" onclick="submit()" />

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 1

[25]

For our final example of text rendering JSF components, we can examine the
<h:outputFormat> tag. This tag renders an HtmlOutputFormat component as
formatted text within the JSF page. Formatted text can include a localized message
from the application's message bundle for the current locale, or it can include a string
pattern that is evaluated at request time. Interestingly, this string pattern can have
placeholders that are substituted by any nested <f:param> tags.

So for example, if we wanted to render the message "Welcome, username", we could
use an <h:outputFormat> tag that contains a parameter for the user's name. The
value substituted for this parameter would be defined by a child <f:param> tag,
so the actual name of the user could come from a database, an LDAP directory, or
another source. The important point is that this tag simplifies a very common task
for web applications, namely rendering localized, parameterized text messages
conveniently and easily.

Rendering a validation message
The <h:message> tag renders an HtmlMessage component and is useful for
displaying validation messages in a JSF page. It is important to include this tag on
our JSF pages so that users will be informed when a JSF validation message occurs.
Typically, the tag is placed immediately after a JSF component tag to display the
validation messages for the associated component.

In this example, we render an HtmlInputText component and specify through the
<h:inputText> tag's required attribute that the user is expected to enter a value into
to the first name text field. If the user submits the form without entering a value, an
error message will be rendered by the <h:message> tag beside the component. The
for attribute is required and is used to associate the message with a particular UI
component on the page. It expects the ID of the component that the message is for.

<h:inputText id="firstName"
 value="#{customerBean.customer.firstName}"
 required="true" />
<h:message for="firstName" errorClass="error"
 showSummary="true" showDetail="false" />

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Standard JSF Components

[26]

Rendering all validation messages
The <h:messages> tag is similar to the <h:message> tag except that it renders an
HtmlMessages component that displays all validation messages for any components
in the view in an unordered list. This is useful when our user interface requirements
call for presenting all error messages in one place, for example, above any form fields
on the page. The globalOnly attribute is false by default, but if we set it to true, then
the component only displays messages generated by the application that are not
associated with a particular component.

<h:messages errorClass="error" globalOnly="false" />

Making selections
Presenting the user with a choice from a list of available values is a common scenario
for web-based applications. The HTML markup language includes a number of
form elements that can be used to provide users with a list of options from which
a selection can be made. Choosing the right HTML element or set of elements for a
particular form depends on a number of criteria and is a common stumbling block
for developers who are new to HTML. Fortunately, the standard set of JSF HTML
components greatly simplifies the correct use of HTML selection elements. In later
chapters, we will discover how other JSF component libraries introduce a rich and
innovative set of user interface controls that can significantly extend the capabilities
of HTML as a GUI toolkit.

Before we discuss JSF HTML selection components, let's consider the HTML
elements that they represent. The HTML markup language includes a limited set
of selection components such as checkboxes, radio buttons, and select menus. Both
checkboxes and radio buttons are represented by the <input> element with different
type attributes. A checkbox is rendered using the <input> element with the type
attribute set to "checkbox", while a radio button is rendered using the <input>
element with the type attribute set to "radio".

Both checkboxes and radio buttons can be grouped together to present the user
with a range of inclusive or exclusive options. The HTML 4.01 specification explains
that checkboxes are grouped together by users to represent several mutually
inclusive options, while radio buttons are grouped together to represent mutually
exclusive options.

For more details, refer W3C to Forms in
the W3C HTML 4.01 Specification: 13 July 2009
http://www.w3.org/TR/html401/interact/forms.html.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 1

[27]

Checkboxes can also be rendered individually, representing a Boolean choice of true
or false. A radio button should not be rendered individually because to the user that
represents a mutually exclusive choice from a set of only one possible option! In
addition, once the user selects a radio button it can only be deselected by choosing
another radio button in the set, or by using JavaScript to override the default
behavior of this control.

The standard JSF HTML component library includes several components for
rendering radio buttons and checkboxes in our JSF pages. Depending on our needs,
we might use the <h:selectBooleanCheckbox> tag, the <h:selectManyCheckbox>
tag, or the <h:selectOneRadio> tag.

The <h:selectBooleanCheckbox> tag renders a single checkbox and is useful for
presenting a Boolean option, such as a "remember me" checkbox in a login dialog.
The <h:selectManyCheckbox> tag renders a set of checkboxes that can be used to
display multiple of Boolean options to the user, for example, a list of interests for a
newsletter subscription form. The <h:selectOneRadio> tag renders a set of radio
buttons that can be used to present a set of mutually exclusive options such as a level
of satisfaction on a scale from "very unsatisfied" to "very satisfied" in a customer
feedback survey.

Rendering a checkbox
Recall from the <h:outputLabel> example that a label references another
component's ID attribute in the label's for attribute. One of the benefits of the correct
use of this component is that for certain components, browsers will recognize the
label as an extension of the component itself and will allow users to click the label
to toggle the component state. In this example, we use JavaScript to submit the form
when the user clicks the checkbox.

<h:outputLabel value="Remember Me" for="remember" />
<h:selectBooleanCheckbox id="remember"
 value="#{backingBean.rememberMe}" onclick="submit()" />

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Standard JSF Components

[28]

Rendering multiple checkboxes
This example demonstrates how to use the <h:selectManyCheckbox> tag. Notice
that the options are defined using nested <f:selectItem> tags. The itemLabel
attribute is what is displayed to the user, while the itemValue attribute is what is
submitted to the server when the form is posted.

<h:selectManyCheckbox id="interests"
 value="#{customerBean.interests}" layout="lineDirection">
 <f:selectItem itemLabel="Java" itemValue="Java" />
 <f:selectItem itemLabel="Architecture" itemValue="Architecture" />
 <f:selectItem itemLabel="Web Design" itemValue="Web Design" />
 <f:selectItem itemLabel="GUI Development"
 itemValue="GUI Development" />
 <f:selectItem itemLabel="Database" itemValue="Database" />
</h:selectManyCheckbox>

The same example can be rewritten to display the options horizontally instead of
vertically by setting the layout attribute of the <h:selectManyCheckox> tag to
pageDirection as follows:

<h:selectManyCheckbox id="interests"
 value="#{customerBean.interests}" layout="pageDirection">
 <f:selectItem itemLabel="Java" itemValue="Java" />
 <f:selectItem itemLabel="Architecture" itemValue="Architecture" />
 <f:selectItem itemLabel="Web Design" itemValue="Web Design" />

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 1

[29]

 <f:selectItem itemLabel="GUI Development"
 itemValue="GUI Development" />
 <f:selectItem itemLabel="Database" itemValue="Database" />
</h:selectManyCheckbox>

Rendering radio buttons
The following example for the <h:selectOneRadio> tag is interesting because it
demonstrates a useful technique. The <h:selectOneRadio> tag renders a set of
radio buttons in the view. These radio buttons represent mutually exclusive options
within a set of predefined values. The Java enum type is a good choice for a data type
here because it also represents a set of predefined values. JSF also includes a built-in
converter class that specifically handles Java enum types. Therefore, we can define
our enum as follows:

public enum SatisfactionLevel {
VERY_UNSATISFIED, SOMEWHAT_UNSATISFIED, NEUTRAL, SOMEWHAT_SATISFIED,
VERY_SATISFIED
}

Next, in our Customer class we define a new property of type SatisfactionLevel.

public class Customer implements Comparable<Customer>, Serializable {
 ...
 private SatisfactionLevel satisfactionLevel;
 ...
}

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Standard JSF Components

[30]

In our JSF page, we can now declare an <h:selectOneRadio> tag that is bound to
this property. When the user submits the form, the selected value will be converted
automatically to one of our enumerated values and stored in our model class.

<h:selectOneRadio id="survey"
 value="#{customerBean.customer.satisfactionLevel}"
 layout="pageDirection">
 <f:selectItem itemLabel="Very Unsatisfied"
 itemValue="VERY_UNSATISFIED" />
 <f:selectItem itemLabel="Somewhat Unsatisfied"
 itemValue="SOMEWHAT_UNSATISFIED" />
 <f:selectItem itemLabel="Neutral" itemValue="NEUTRAL" />
 <f:selectItem itemLabel="Somewhat Satisfied"
 itemValue="SOMEWHAT_SATISFIED" />
 <f:selectItem itemLabel="Very Satisfied"
 itemValue="VERY_SATISFIED" />
</h:selectOneRadio>

As we used a typesafe enum as our data type, only the values we defined in our Java
code are acceptable. If we entered a new option value for the <h:selectOneRadio>
tag, a conversion error would result when the form is submitted.

<h:selectOneRadio id="survey"
 value="#{customerBean.customer.satisfactionLevel}"
 layout="pageDirection">

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 1

[31]

 <f:selectItem itemLabel="Very Unsatisfied"
 itemValue="VERY_UNSATISFIED" />
 <f:selectItem itemLabel="Somewhat Unsatisfied"
 itemValue="SOMEWHAT_UNSATISFIED" />
 <f:selectItem itemLabel="Indifferent"
 itemValue="INDIFFERENT" />
 <f:selectItem itemLabel="Somewhat Satisfied"
 itemValue="SOMEWHAT_SATISFIED" />
 <f:selectItem itemLabel="Very Satisfied"
 itemValue="VERY_SATISFIED" />
</h:selectOneRadio>

Selecting one or selecting many values
In addition to checkboxes and radio buttons, the HTML markup language includes
another important selection control: the <select> element. The <select> element
is useful because it can produce a number of different selection menus. Depending
on the values of the multiple and size attributes, this element might display
the following:

•	 A single selection menu with only one item visible
•	 A single selection menu with multiple items visible
•	 A multiple selection menu with only one item visible
•	 A multiple selection menu with many items visible

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Standard JSF Components

[32]

The menu items contained by the <select> element are specified by child <option>
elements. The <option> element can have a selected state, and can declare a label
and a value. The label attribute or the body of the <option> element is what is
displayed to the user, while the value attribute is what is sent to the server during
form submission. Multiple options can be grouped together using the <optgroup>
element. The value of the <optgroup> element's label attribute is displayed as a
header above the indented list of options. Grouping options together is an easy way
to enhance the readability and usability of <select> elements in your forms.

JSF includes a number of components that represent the different states of the
<select> element. The <h:selectOneMenu> tag renders the HtmlSelectOneMenu
component as a single selection menu that displays only one item at a time.
The <h:selectManyMenu> tag renders the HtmlSelectManyMenu component
as a multiple selection menu that displays only one item at a time. The
<h:selectOneListbox> tag renders the HtmlSelectOneListbox component
as a single selection menu that displays multiple items at a time. The
<h:selectManyListbox> tag renders the HtmlSelectManyListbox component as a
multiple selection menu that displays multiple items at a time.

When would we use the <h:selectOneMenu> and <h:selectManyMenu> tags? The
<h:selectOneMenu> tag is a good choice for a selection situation where the user
may only choose one item from a long list of items, such as his or her country of
origin. The <h:selectManyMenu> tag is intended for situations where it is preferable
to display only one item at a time in the selection component, but where the user is
allowed to make more than one selection.

Both of these menu components have an inherent size of one, meaning they will only
display one item at a time. Unfortunately, the <h:selectManyMenu> tag produces
a control that is not rendered consistently across browsers. In Internet Explorer, the
component is rendered with a scrollbar allowing the user to scroll through the items
in the list. In Firefox, however, the control is rendered without scrollbars, making it
impossible for the user to make a selection. Therefore, it is not recommended to use
the <h:selectManyMenu> tag at this time.

When should we use the <h:selectOneListbox> and <h:selectManyListbox>
tags? If the user is only allowed to select one item and the list of options is
greater than two but is still relatively short, then it may be preferable to use the
<h:selectOneListbox> tag and to set the size attribute to the number of items in
the list to ensure they will all be displayed without scrolling.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 1

[33]

For example, if we were asking the user how they discovered our website, and the
available options were "Television, Radio, Internet Search, Word of Mouth, Other",
then displaying these options in a fully expanded single selection menu would
actually increase the efficiency of our user interface by saving the user from having
to click twice to make a selection (once to scroll, and once to select an option).

Choosing between the <h:selectOneListbox> and <h:selectManyListbox> tag
is more straightforward than choosing between menu and list box components. It
comes down to whether our application allows the user to select multiple options,
or whether they must select only one option for a particular field. In the previous
example, users may be allowed to select more than one source of information, in
which case replacing the single selection component with its multiple selection
variant is the obvious choice.

On the other hand, the decision to use the menu or list box selection components
is a little more involved and ultimately depends on how well these components
"fit" into our user interface as a whole. If there are several selection menus on the
same screen, and all but one have long lists of items and are therefore rendered
using the <h:selectOneMenu> tag, then it might look awkward to have a single
<h:selectOneListbox> tag on the page. In this case, we may have to trade the user
interface efficiency for consistency and use the <h:selectOneMenu> tag to render a
component that makes our UI more aesthetically pleasing to user.

Rendering a list of countries
This example shows how to use the <h:selectOneMenu> tag to display a list of
Country objects in the form. It obtains the country list from the backing bean and
renders a blank item to prompt the user to make a selection. A custom converter is
also registered on the HtmlSelectOneMenu component. The JSF framework calls our
converter twice: once to convert each Country object to a string when the view is
rendered, and once to convert the selected string back to a Country object when the
form is submitted.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Standard JSF Components

[34]

The following UML class diagram shows the design of our model classes:

Customer

- birthDate : Date
- countryOf Origin : Country
- firstName : String
- lastName : String
- satisfactionLevel : SatisfactionLevel

+ getBirthDate() : Date
+ getCountryOfOrigin() : Country
+ getFirstName() : String
+ getLastName() : String
+ setBirthDate(birthDate : Date)
+ setCountryOfOfigin(country : Country)
+ setSatisfactionLevel(level : SatisfactionLevel)

<<enum>>
SatisfactionLevel

+ VERY_UNSATISFIED
+ SOMEWHAT_UNSATISFIED
+ NEUTRAL
+ SOMEWHAT_SATISFIED
+ VERY SATISFIED

Country

- name : String

+ getName() : String
+ setName(name : String)

Comparable Serializable

In this example, we rely on a custom JSF converter to convert Country objects to
String objects and vice versa. In later chapters, we will see that many popular JSF
component libraries include reusable converters that can eliminate the need for us
to write our own. When the view is rendered, our Country objects are rendered as
strings in an HTML <select> element.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 1

[35]

Rendering a single-select list of options
In this example, we use the <h:selectOneListbox> tag to render a single-selection
list of items to the user.

<h:selectOneListbox id="option"
 value="#{customerBean.informationSource}">
 <f:selectItem itemLabel="Television" itemValue="Television" />
 <f:selectItem itemLabel="Radio" itemValue="Radio" />
 <f:selectItem itemLabel="Internet Search"
 itemValue="Internet Search" />
 <f:selectItem itemLabel="Word of Mouth" itemValue="Word of Mouth" />
 <f:selectItem itemLabel="Other" itemValue="Other" />
</h:selectOneListbox>

Rendering a multiple-select list of options
We can render the same set of options in a multiple selection mode using the
<h:selectManyListbox> tag.

<h:selectManyListbox id="option"
 value="#{customerBean.informationSources}">
 <f:selectItem itemLabel="Television" itemValue="Television" />
 <f:selectItem itemLabel="Radio" itemValue="Radio" />
 <f:selectItem itemLabel="Internet Search"
 itemValue="Internet Search" />

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Standard JSF Components

[36]

 <f:selectItem itemLabel="Word of Mouth" itemValue="Word of Mouth" />
 <f:selectItem itemLabel="Other" itemValue="Other" />
</h:selectManyListbox>

Laying out components
The standard JSF HTML components that we have covered so far represent the basic
building blocks of a JSF user interface. In GUI development terminology, the basic
set of controls supported by HTML represents what can be described as base-level
components, in the sense that buttons, checkboxes, and radio buttons cannot have
other visible components nested inside them.

The organization of elements on the form is an essential step in the development of a
JSF user interface. Determining the optimal arrangement, alignment, and distribution
of user interface controls is an important decision-making process for UI designers
that can have an impact on the usability of our application. Do we place labels to the
left of controls or above them? Do we group components of the same type together
on the screen, or do we group components together on the basis of their relationship
to the data they are collecting?

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 1

[37]

One of the more powerful components in the JSF HTML component library is the
HtmlPanelGrid component. This component is rendered by the <h:panelGrid> tag
as an HTML <table> element. Java GUI programmers will recognize similarities
between the HtmlPanelGrid component and the GridLayout layout manager class
from the Java Swing/AWT toolkit. As the <h:panelGrid> tag renders an HTML
table, let's start by taking a look at how to use a table-based approach to organize the
components in our user interface.

The <h:panelGrid> tag has a columns attribute that specifies how many columns
the component should render while it is laying out components on the screen.
Understanding how to use this component is simple. Any child components that
are nested within this component are arranged from left to right, then from top to
bottom. The HtmlPanelGrid component iterates its children, rendering each one as
a table cell. Once the desired number of columns is reached, the component begins
a new table row and repeats the process until all child components have been
rendered. The result is a grid of components rendered on the screen as an HTML
layout table.

Let's consider an example that uses all the components we have seen so far, to
demonstrate how to lay out components on the screen using the JSF <h:panelGrid>
tag. Suppose we wanted to gather information from the user as part of a customer
registration form. We need to collect the following information: the customer' s first
and last names, date of birth, gender, phone number, e-mail address, country of
origin, and relevant interests.

Rendering a complex layout table
In this example, we use the <h:panelGrid> tag to render a complex layout table that
organizes other components into an attractive grid of controls on the screen.

<h:panelGrid columns="3">
 <h:outputLabel for="firstName" value="#{bundle.firstNameLabel}" />
 <h:inputText id="firstName" value="#{customerBean.customer.
 firstName}" required="true" />
 <h:message for="firstName" errorClass="error" showSummary="true"
 showDetail="false" />
 <h:outputLabel value="#{bundle.lastNameLabel}" for="lastName" />
 <h:inputText id="lastName" value="#{customerBean.customer.lastName}"
 required="true" />
 <h:message for="lastName" errorClass="error" showSummary="true"
 showDetail="false" />
 <h:outputLabel for="dateOfBirth"
 value="#{bundle.dateOfBirthLabel}" />
 <h:inputText id="dateOfBirth" value="#{customerBean.customer.
 birthDate}" required="true">

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Standard JSF Components

[38]

 <f:convertDateTime pattern="M/d/yyyy" />
 <f:validator validatorId="customDateValidator" />
 </h:inputText>
 <h:message for="dateOfBirth" errorClass="error"
 showSummary="true" showDetail="false" />
 <h:outputLabel for="gender" value="#{bundle.genderLabel}" />
 <h:selectOneRadio id="gender" value="#{customerBean.customer.male}"
 required="true">
 <f:selectItem itemLabel="Male" itemValue="true" />
 <f:selectItem itemLabel="Female" itemValue="false" />
 </h:selectOneRadio>
 <h:message for="gender" errorClass="error" showSummary="true"
 showDetail="false" />
 <h:outputLabel for="phoneNumber"
 value="#{bundle.phoneNumberLabel}" />
 <h:inputText id="phoneNumber" value="#{customerBean.customer.
 phoneNumber}" />
 <h:message for="phoneNumber" errorClass="error"
 showSummary="true" showDetail="false" />
 <h:outputLabel for="emailAddress" value="#{bundle.
 emailAddressLabel}" />
 <h:inputText id="emailAddress" value="#{customerBean.customer.
 emailAddress}" required="true" />
 <h:message for="emailAddress" errorClass="error"
 showSummary="true" showDetail="false" />
 <h:outputLabel value="#{bundle.countryLabel}" for="country"
 required="true" />
 <h:selectOneMenu id="country" value="#{customerBean.customer.
 countryOfOrigin}" required="true">
 <f:selectItem itemLabel="Select" itemValue="" />
 <f:selectItems value="#{customerBean.countrySelectItems}" />
 <f:converter converterId="countryConverter" />
 </h:selectOneMenu>
 <h:message for="country" errorClass="error" showSummary="true"
 showDetail="false" />
 <h:outputLabel for="interests" value="#{bundle.interestsLabel}" />
 <h:selectManyCheckbox id="interests" value="#{customerBean.
 interests}" layout="pageDirection">
 <f:selectItem itemLabel="Java" itemValue="Java" />
 <f:selectItem itemLabel="Architecture" itemValue="Architecture" />
 <f:selectItem itemLabel="Web Design" itemValue="Web Design" />
 <f:selectItem itemLabel="GUI Development" itemValue="GUI
 Development" />
 <f:selectItem itemLabel="Database" itemValue="Database" />
 </h:selectManyCheckbox>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 1

[39]

 <h:message for="interests" errorClass="error" showSummary="true"
 showDetail="false" />
</h:panelGrid>

Sometimes, we may want to display more than one component in a particular table
cell within the grid. For example, a common scenario is to render two or more
buttons in a single column. We know the behavior of the HtmlPanelGrid component
is to render each child component in a separate cell, so how do we render more than
one component per column?

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Standard JSF Components

[40]

The standard JSF HTML component library includes the HtmlPanelGroup
component for just this purpose. This component is rendered by the
<h:panelGroup> tag and allows us to group two or more components together.
By grouping components together, we can then treat them as a single component.
Therefore, if we nest two <h:commandButton> tags within an <h:panelGroup> tag,
we can then place the <h:panelGroup> inside the <h:panelGrid> tag and our two
controls will be rendered within a single table cell.

Rendering a table column
This example shows how to use the <h:panelGroup> tag to group two buttons
together in the same column in an <h:panelGrid> tag.

<h:panelGrid columns="3">
 <h:outputLabel for="firstName"
 value="#{bundle.firstNameLabel}" />
 <h:inputText id="firstName"
 value="#{customerBean.customer.firstName}"
 required="true" />
 <h:message for="firstName" errorClass="error"
 showSummary="true" showDetail="false" />
 <h:panelGroup>
 <h:commandButton value="Save"
 actionListener="#{customerBean.saveCustomer}"
 style="margin-right:5px" />
 <h:commandButton type="reset" value="Reset" />
 </h:panelGroup>
</h:panelGrid>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 1

[41]

Displaying data
The JSF framework makes it easy to display tabular data to the user. The
HtmlDataTable component abstracts many of the details involved in rendering a data
set as HTML. For this reason, it is perhaps the most powerful standard JSF component.

As JSF is based on the Model-View-Controller pattern, it mandates a clear separation
of concerns: the data structures and entities of our application are the "Models", the
backing beans of our application are the "Controllers", and the UI components and
JSF pages that constitute our presentation layer are the "Views".

The HtmlDataTable component is a good example of how JSF implements the
MVC pattern. The <h:dataTable> tag renders this component as an HTML table
and provides a nice adapter between the presentation and business tiers of our
application. The JSF expression language in our JSF page is the glue that binds these
two layers together.

The JSF HtmlDataTable component is a very basic data table component. We will see
in later chapters a number of more specialized versions of this component included
in third-party JSF component libraries that provide more full-featured data grid
implementations, enabling advanced features such as column sorting, pagination,
drag-and-drop, and more. For now, let's examine the basic functionality of the
standard JSF HTML data table component.

Rendering an HTML table
The <h:dataTable> tag adopts a column-based approach to define the HTML table
structure. This example shows how to render a list of customers as an HTML table
using the <h:dataTable> tag.

<h:dataTable value="#{customerBean.customerList}"
 var="customer" rowClasses="row-even,row-odd"
 columnClasses="left-aligned,left-aligned,centered,
 left-aligned" border="2" cellpadding="5" cellspacing="2"
 rows="8">
 <h:column>
 <f:facet name="header">
 <h:outputText value="Full Name" />
 </f:facet>
 <h:outputText value="#{customer.fullName}" />
 </h:column>
 <h:column>
 <f:facet name="header">
 <h:outputText value="Birth Date" />
 </f:facet>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Standard JSF Components

[42]

 <h:outputText value="#{customer.birthDate}">
 <f:convertDateTime type="date" dateStyle="medium" />
 </h:outputText>
 </h:column>
 <h:column>
 <f:facet name="header">
 <h:outputText value="Phone Number" />
 </f:facet>
 <h:outputText value="#{customer.phoneNumber}" />
 </h:column>
 <h:column>
 <f:facet name="header">
 <h:outputText value="Country of Origin" />
 </f:facet>
 <h:outputText value="#{customer.countryOfOrigin.name}" />
 </h:column>
</h:dataTable>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 1

[43]

Summary
This chapter provided an introduction to the key concepts of the JavaServer Faces
framework, and demonstrated how a number of common web development tasks
can be implemented using JSF.

We introduced the Model-View-Controller (MVC) architecture that provides the
conceptual framework of a JSF application. We also discussed the role of managed
beans in JSF as event handlers that implement application logic and perform model
updates in response to user gestures. We introduced the JSF Expression Language
(EL) and JSF converters and validators.

Next, we looked at how to implement common web development tasks using JSF
components. We examined a number of standard JSF components, and looked at
several use cases such as gathering input from users using text fields and submitting
HTML forms with buttons and links.

We also looked at how to display localized text and validation messages, and how to
render field labels. We saw examples of how to make selections with menus, radio
buttons, and checkboxes, and we discussed laying out components with panel grids.
Finally, we studied an example of how to render tabular data using the JSF data table
component.

Now that we have introduced JSF and covered standard JSF components, we
can move on to more advanced topics such as Facelets and third-party JSF
component libraries.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Facelets Components
In the previous chapter, we looked at how to use standard JavaServer Faces
components to implement a number of common web development tasks, such as
rendering forms containing simple UI components and accepting and validating
input from users. We also discussed several features and extension points of the JSF
framework, such as the managed beans facility and message bundle support.

Indeed, the JSF framework was designed with extensibility in mind, enabling both
application and framework developers to leverage its infrastructure to build even
more sophisticated technologies on top of an already excellent platform for web
development. One of the most interesting extension points of the JSF framework is
the ViewHandler mechanism.

In this chapter, we will discuss one of the most important technologies in the JSF
ecosystem—the Facelets view definition framework. The Facelets framework
includes a pluggable ViewHandler implementation that provides an alternative to
JavaServer Pages (JSP). Facelets also includes a number of useful JSF tags that can be
used in place of the JavaServer Pages Standard Tag Library (JSTL).

To gain a better appreciation for the role of Facelets in the JSF context, we will begin
with a brief history of Java web development, paying attention to the similarities and
differences between Facelets and JSP. We will also look at how to configure a JSF
application to use Facelets.

The topics we will look at in this chapter include:

•	 Getting started with Facelets
•	 Rendering debug information
•	 Iterating data in a Facelets page
•	 Removing UI components and markup
•	 Including UI components and markup

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Facelets Components

[46]

•	 Passing parameters from one Facelet to another
•	 Rendering a UI composition
•	 Rendering a UI component
•	 Creating a Facelets UI composition template
•	 Decorating the user interface
•	 Rendering a UI fragment

A brief history of Java web development
Before we dive into the details of the Facelets framework, let's review a brief history
of web development on the Java platform to understand how Facelets fits into this
broader context.

Before Model-View-Controller (MVC) web frameworks and templating systems such
as Struts, Tiles, Tapestry, JSF, and Facelets, building web applications on the Java
platform involved writing Java Servlets and JavaServer Pages (JSPs).

JSP technology was introduced in 1999 as a competitor to Microsoft's Active
Server Pages (ASP) and PHP. JSP made it easier for Java developers to separate
programming logic from web page markup, and introduced the concept of custom
tag libraries. Developers could now write custom tag classes that could encapsulate
presentation logic, register them in a Tag Library Descriptor (TLD) file, and use
them declaratively in a JSP page simply by adding an import directive at the top of
the page.

The Struts framework was originally launched in 2000 and made extensive use of the
Servlet API, JSP, and the JSP custom tag mechanism. Struts applied the MVC design
pattern to the Servlet API, and introduced a class named the ActionServlet that
acted as the Front Controller of the framework. The Struts ActionServlet handled
all requests matching a particular URL pattern (usually *.do) by delegating request
processing to a number of application-defined action classes implementing the
Command pattern.

The Struts framework also introduced a number of custom tag libraries, which
provided useful functionality that was common to web development. Some of these
libraries included tags for working with JavaBeans, tags for working with HTML
elements, and tags for implementing presentation logic such as data iteration and
conditional rendering.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 2

[47]

The popularity of the Struts framework in general and of the Struts custom tag
libraries in particular suggested a widespread need in the Java developer community
for tools to simplify the process of implementing Java web applications. This need
was recognized by the Java Community Process, and in 2002 the JSP Standard
Tag Library (JSTL) was released. It introduced standardized tag libraries for
implementing conditional logic, data iteration, date/time and number formatting,
internationalization, and more.

The JSTL also supported the JSP Expression Language (JSP EL), a compact scripting
language with a simple syntax that provided a less verbose and less error-prone
alternative to JSP scriptlets for dynamic rendering.

Due to the similarities between the JSTL and the Struts custom tag libraries, the
Struts documentation encouraged developers to adopt the JSTL over Struts tags,
whenever there was redundancy between the two libraries.

The Struts framework also supported a templating system known as "Tiles". Tiles
was an open source project that integrated into the Struts framework and had
a plug-in to support the definition of user interface screens based on the Composite
View design pattern.

The Composite View design pattern
Implementing web user interfaces often involves creating and reusing
a number of repeating branding and navigational elements, such as
organizational logos, headers, footers, and navigation menus. An effective
strategy for managing these repeating elements is to use the Composite
View design pattern. This pattern helps us to subdivide our user interface
into smaller pieces, and to create new views by "compositing" these pieces
back together in different ways.

As we will see, Facelets performs a role similar to Tiles in the JSF context, but
includes many other features as well.

When JSF 1.0 was released in 2004, it introduced a number of enhancements
over and above what the Struts framework was currently providing, such as
automatic type conversion of strings to and from other Java data types, direct
binding of user interface components to application domain models, and more.
The Struts framework can be described as an action-based MVC framework due to
its emphasis on action classes and the command pattern, while JSF can be described
as an event-driven, component-based MVC framework due to its emphasis on UI
components and the Observer pattern.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Facelets Components

[48]

The Command pattern and the Observer pattern
Two popular software design patterns are the Command pattern and the
Observer pattern. The Command pattern emphasizes the use of objects
as executable actions. An object encapsulates a single action, typically by
implementing a callback interface method such as execute(), and is
invoked by a Controller object.
The Observer pattern is common in GUI programming and emphasizes
events and event handlers. Another name for the Observer pattern is
the Publisher/Subscriber model. A UI component such as a button
or hyperlink publishes an event (such as a mouse click), and an event
handler observes user interaction and processes the event.
The advantage of the Observer pattern is that a single object can manage
state (the Model) more easily and can handle multiple events for a single
user interface screen (the View). Also, a component can have multiple
event handlers registered with it. The Observer pattern is also used in
GUI toolkits such as Swing/AWT.

Like Struts, JSF is a highly extensible framework. JSF has a number of important
extension points, such as managed beans, converters, validators, lifecycle phase
listeners, UI components, render kits, and more. In JSF, even the view technology
itself can be swapped out for an alternative ViewHandler implementation.

Comparing Facelets and JSP
Before we can appreciate the advantages that Facelets brings to a JSF application,
let's consider the role of JSP as the presentation technology for JSF. By default,
the JSF ViewHandler mechanism uses JSP. The ViewHandler is an infrastructural
component of the JSF framework that performs an important role during the request
processing lifecycle, specifically during the Render Response and Restore View
phases. The ViewHandler is responsible for creating, restoring, and rendering the UI
component tree for the current view.

JSP was originally designed to solve the problem of how to include dynamic content
in a static HTML document. JSPs enable dynamic content to be inserted into an
HTML document through the use of scriptlets, expressions, and JSP directives.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 2

[49]

These are typically blocks of Java code interspersed with HTML markup. When the
JSP page is requested by the browser, the Servlet/JSP container generates a Java
servlet from the JSP source code, compiles it, and executes it to produce an HTML
document that is sent to the browser for rendering. This is called the JSP translation
process and depending on the speed of the computer, it can take approximately one
or two seconds to complete. During JSF application development, we often make
many changes to our JSF pages, resulting in frequent recompilation of our JSP pages,
and this compile-time overhead can add up.

Facelets pages are simply XML documents (typically XHTML pages) that are never
compiled to servlets. Instead, Facelets uses a fast SAX-based compilation process
that constructs the UI component tree for our views, which is free from the JSP
translation overhead.

Another issue with JSP as the view technology for JSF applications is the mismatch
between the JSP compilation process and the UI component tree lifecycle. When a
JSP containing JSF tags is rendered for the first time, the page is executed and the
components are constructed and rendered at the same time. The problem is that
some UI components, such as labels, depend on the presence of other UI components
in the tree before they can properly render themselves. The result is that some
UI components may render in a different order from the first JSP page request to
the next.

Fortunately, Facelets was designed with the JSF UI component lifecycle in mind and,
for many developers, it represents a much more intuitive view technology for JSF
application development. All of the examples in this book are based on Facelets, so a
proper introduction is in order. Let's take a look at how to configure a JSF application
to use Facelets as the ViewHandler implementation.

Configuring a JSF application to use
Facelets
Java web applications consist of compiled Java classes, XML configuration files, static
resources, and other artifacts. To enable Facelets in our JSF application, we must
configure our web.xml file with a few context parameters, which are used by the
Facelets framework.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Facelets Components

[50]

Mapping the FacesServlet
The FacesServlet is the front controller of the JSF application.
Incoming requests are mapped to this servlet using different URI
patterns. Although it is possible to map any arbitrary prefix and/or file
extension to the FacesServlet, for simplicity, we have chosen to use
the .jsf file extension for our FacesServlet mapping pattern.

Configuring web.xml
The following example demonstrates some of the context parameters that we set
in web.xml to enable the Facelets ViewHandler. Notice that we set the facelets.
REFRESH_PERIOD parameter to true to enable more verbose output during page
development. This parameter should be set to false in a production environment.

We also set the facelets.REFRESH_PERIOD parameter to 1 second to ensure that
Facelets detects and renders any changes that we make to our pages while the
application is running. Whenever we make a change to a Facelets page, save it, copy
it to our exploded web application deployment, and request it again in the browser;
Facelets will compare the last modified date of the file with the date when the view
was last compiled. If at least one second has elapsed, Facelets will recompile the
view. Otherwise, it will render the previously compiled view.

The refresh behavior of the Facelets framework can be enabled in a development
environment by setting the refresh period to 1 and disabled in a production
environment by setting the refresh period to -1. As frequent changes to pages are not
expected for a live application running on a production server, performance can be
improved by disabling the refresh behavior using the -1 setting.

We also indicate that JSF should look for files with the .jsf extension when
rendering our JSF pages. For simplicity, we chose to use the same file extension for
the FacesServlet mapping pattern and the actual files that constitute our views, so
all our JSF pages have the .jsf file extension.

The default behavior in Facelets is to exclude XML comments from the rendered
response. This has some performance benefits, but can cause problems too. The
facelets.SKIP_COMMENTS parameter when set to false indicates to Facelets that
XML comments should be preserved from the rendered markup. One reason for
preserving comments is to avoid breaking web pages that use legacy techniques such
as wrapping JavaScript code with an HTML comment to hide it from older browsers.
Another reason is simply to preserve HTML comments to improve the human
readability of the rendered markup.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 2

[51]

The following source code listing demonstrates how to configure Facelets in web.xml
for a development environment. This configuration provides a simplified mapping
relationship between JSF pages (*.jsf) and the FacesServlet, detailed error
reporting and a refresh period that enables instant JSF view updates.

 <context-param>
 <param-name>javax.faces.DEFAULT_SUFFIX</param-name>
 <param-value>.jsf</param-value>
 </context-param>
 <context-param>
 <param-name>javax.faces.STATE_SAVING_METHOD</param-name>
 <param-value>client</param-value>
 </context-param>
 <context-param>
 <param-name>facelets.DEVELOPMENT</param-name>
 <param-value>true</param-value>
 </context-param>
 <context-param>
 <param-name>facelets.REFRESH_PERIOD</param-name>
 <param-value>1</param-value>
 </context-param>
 <context-param>
 <param-name>facelets.SKIP_COMMENTS</param-name>
 <param-value>false</param-value>
 </context-param>
 <context-param>
 <param-name>facelets.VIEW_MAPPINGS</param-name>
 <param-value>*.jsf</param-value>
 </context-param>
 <servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>/faces/*</url-pattern>
 <url-pattern>*.jsf</url-pattern>
 </servlet-mapping>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Facelets Components

[52]

Configuring faces-config.xml
The next step in configuring Facelets in our JSF application is to specify the Facelets
ViewHandler in our faces-config.xml file. The following example demonstrates
the XML required to enable Facelets in our JSF application:

<application>
 <message-bundle>messages</message-bundle>
 <view-handler>com.sun.facelets.FaceletViewHandler</view-handler>
 <locale-config>
 <default-locale>en</default-locale>
 <supported-locale>fr</supported-locale>
 <supported-locale>es</supported-locale>
 </locale-config>
</application>

Getting started with Facelets
One of the goals of the Facelets view definition framework is to simplify designing
composite views in a JSF application. The Composite View design pattern is an
approach to user interface development that encourages subdivision and reuse of
view elements, such as headers, footers, navigation menus, and more. Let's examine
how the Facelets framework supports this approach. Facelets includes a number of
useful tags for assembling JSF views from smaller elements.

What is a Facelet?
We can think of a Facelet as a subset of a user interface comprised of
zero or more UI components. In this chapter, we will begin by looking
at some of the basic tags in the Facelets tag library and will progress
towards a more complex composite view implementation based on
advanced Facelets templating concepts.

Hello World Facelets
First, let's begin with a very simple example of a Facelets page to highlight some
key similarities and differences between Facelets and JSP. The following Facelets
example renders a simple welcome message:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xmlns:h="http://java.sun.
com/jsf/html">
<head>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 2

[53]

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Facelets Hello World Example</title>
</head>
<body>
<p>Hello, #{backingBean.username}!</p>
<p><h:outputText value="How are you today?" /></p>
</body>
</html>

There are a few details to note about this example. First, the document is
a well-formed XHTML document and there are no scriptlets or JSP declarations
on the page. Second, the root <html> tag imports the JSF HTML tag library
by declaring an XML namespace with the prefix h and the URL
http://java.sun.com/jsf/html. This is similar to importing a tag library
in a JSP page using the <%@ taglib %> directive. Third, notice the absence
of the <f:view> tag. This tag is not required in a Facelets page. Fourth, notice
that Facelets supports inline JSF EL expressions. This enables page authors
to render EL expressions mixed with plain HTML tags. Since JSP 2.0, inline
EL expressions are also permitted in plain HTML and template text in JSP pages.

So, Facelets pages are very similar to JSP pages except:

•	 A Facelets page must be a well-formed XML document
•	 JSF tag libraries are imported using XML namespaces
•	 The <f:view> tag is not required
•	 No JSP expressions or directives are allowed
•	 Facelets pages are not compiled to generated servlets

Rendering debug information
It is often helpful to have diagnostic information about the pages in our web
application for analyzing and resolving issues. Aside from the usual error
reporting mechanism of our web container, the JSF framework lacks a reliable
means of obtaining detailed and precise error information about the pages in
our JSF application.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Facelets Components

[54]

Fortunately, the Facelets framework provides comprehensive diagnostic information
to simplify debugging our JSF pages. For example, Facelets can provide detailed
information about invalid EL expressions in our views. First, we must set the
facelets.DEVELOPMENT initialization parameter to true in web.xml to enable detailed
error reporting.

The following Facelets page example contains an unbalanced EL expression. When
the page is rendered, a Facelets error page will be displayed indicating the view ID,
line, and column number on which an unbalanced EL expression was declared.

error01.jsf

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xmlns:h="http://java.sun.
com/jsf/html" xmlns:ui="http://java.sun.com/jsf/facelets">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Facelets error page example</title>
</head>
<body>
<h:outputText value="There are #{customerBean.customerCount
customers." />
</body>
</html>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 2

[55]

In addition to reporting errors about EL expressions, Facelets can also provide XML
syntax checking information to help us ensure that our JSF markup is well formed.
Unlike JSP, Facelets is based on pure XML, and therefore requires that all JSF pages
(typically XHTML documents) are valid as per the XML specification. The following
screenshot demonstrates Facelets' XML error reporting feature. In the next example,
our EL expression is syntactically correct, but the <h:outputText> tag is missing an
end tag.

error02.jsf

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ui="http://java.sun.com/jsf/facelets">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Facelets error page example</title>
</head>
<body>
<h:outputText value="There are #{customerBean.customerCount}
 customers.">
</body>
</html>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Facelets Components

[56]

Facelets also includes a tag that can be used to render additional diagnostic
information about our JSF pages even after we have corrected any invalid markup.
The <ui:debug> tag has two important attributes. The rendered attribute supports
conditional rendering of debug information. In the following example, we only
enable this information if Facelets is running in development mode. This ensures that
our application will not incur the overhead of generating debug information for each
view while running in production mode.

The hotkey attribute is also an important attribute for this tag. It defines the key
to use in combination with the control and shift keys to open a pop-up window
that will display the diagnostic information. By default, it is the letter "D". The
following example demonstrates how the Facelets debug page enables us to see the
hierarchical structure of the UI component tree for our view. In this example, we
include the Facelets debug component on our page and we press Ctrl+Shift+D to
launch the debug window. Note that there are no errors on this page. The debug
window is a useful tool for understanding the structure of the JSF UI component tree
for the current view.

debug01.jsf

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xmlns:h="http://java.sun.
com/jsf/html" xmlns:ui="http://java.sun.com/jsf/facelets">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>ui:debug example</title>
</head>
<body>
<h:outputText value="There are #{customerBean.customerCount}
customers." />
<ui:debug hotkey="D"
 rendered="#{initParam['facelets.DEVELOPMENT']}" />
</body>
</html>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 2

[57]

The following screenshot displays the result of pressing Ctrl+Shift+D to launch the
Facelets debug window. Notice that a visualization of the UI component tree for the
previous view is shown. For example, we can see the UIViewRoot component with a
child HtmlOutputText component followed by the UIDebug component. We will use
the Facelets debug window throughout this chapter to examine how Facelets tags
can modify the UI component tree.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Facelets Components

[58]

The Facelets debug page also displays any scoped variables such as request or
session attributes that were used by the current view, as shown in the following
screenshot. Notice the reference to the session-scoped customerBean object.

Iterating data in a Facelets page
The JSTL tag library includes a <c:forEach> tag that supports iterating dynamic
data. While Facelets supports a subset of the JSTL, it provides the <ui:repeat>
tag as an alternative to the JSTL <c:forEach> tag for data iteration. The following
example demonstrates how to render an unordered list of customers using the
Facelets <ui:repeat> tag and plain HTML tags:

repeat01.jsf

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 2

[59]

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ui="http://java.sun.com/jsf/facelets">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>ui:repeat example</title>
</head>
<body>
<h:form>

 <ui:repeat value="#{customerBean.customerList}" var="customer">
 #{customer.fullName}
 </ui:repeat>

</h:form>
</body>
</html>

Removing UI components and markup
Sometimes, it is desirable to remove certain elements from a JSF page during
development without necessarily deleting the markup. As developers we are
accustomed to "commenting out" code, but standard JSF does not provide a simple
way for us to remove markup without deleting it.

We can always set the rendered attribute to false for UI components, but what if the
rendered attribute is already specified based on some EL expression? We can use
HTML comments, but any EL expressions in those comments will still be evaluated,
possibly resulting in runtime errors.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Facelets Components

[60]

Facelets provides a simple solution to this problem: the <ui:remove> tag. Any
markup wrapped by the <ui:remove> tag will literally be removed from the
UI component tree at request time. The following example shows the difference
between a button component that is not rendered, and a button component that is
removed. In the first attempt, we set the button's rendered attribute to false.

remove01.jsf

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ui="http://java.sun.com/jsf/facelets">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>ui:remove example</title>
</head>
<body>
<h:form>
 <h:outputText value="The button below is not rendered." />
 <h:commandButton rendered="false" />
 <ui:debug />
</h:form>
</body>
</html>

Notice that the button component is still included in the UI component tree even
when it is not rendered.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 2

[61]

In the second example, we surround the button component with the <ui:remove>
tag. This is an effective way to remove UI components and markup from a JSF page.

remove02.jsf

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ui="http://java.sun.com/jsf/facelets">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>ui:remove example</title>
</head>
<body>
<h:form>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Facelets Components

[62]

 <h:outputText value="The button below is removed." />
 <ui:remove>
 <h:commandButton />
 </ui:remove>
 <ui:debug />
</h:form>
</body>
</html>

Notice that the button has now been removed from the UI component tree.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 2

[63]

Including UI components and markup
One of the most common techniques for implementing the Composite View design
pattern is the Server Side Include (SSI) technique. JSP supports the <jsp:include>
server-side include element, and Facelets provides similar functionality through
the <ui:include> tag. The tag's src attribute can be used to specify the path of a
Facelets page to be included at request time. This technique enables us to externalize
common view elements such as headers and footers as separate files and to reuse
these by including them in other pages throughout our application.

Including a header and footer
The following example demonstrates how to create a simple composite view using
the SSI approach. The header and footer files are included to create a complete view.

include01.jsf
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ui="http://java.sun.com/jsf/facelets">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>ui:include example</title>
</head>
<body>
<h:form>
 <ui:include src="/WEB-INF/includes/header.jsf" />
 <div>This is the body</div>
 <ui:include src="/WEB-INF/includes/footer.jsf" />
</h:form>
</body>
</html>

Creating the header Facelet
Notice that the following header file is a complete XHTML document, so it can be
edited using any XML editor. But as we are using the Facelets <ui:composition>
tag, only the content inside this tag is included by the Facelets framework at request
time; the content outside the <ui:composition> tag will be trimmed.

The use of the <ui:composition> tag makes it easier for us to edit complete XHTML
documents in our favorite editor, while ensuring that Facelets uses only the content
inside the composition to produce a valid composite view at runtime. If we did not
wrap the header content shown in the following example with a <ui:composition>
tag, the entire document would be included, resulting in invalid markup.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Facelets Components

[64]

HTML editors such as Dreamweaver will ignore the <ui:composition> tag,
enabling web designers to edit the header as if it was a complete document. When
the header.jsf page is included by the include01.jsf page, only the desired
content will be added to the document. We will discuss the <ui:composition> tag
in more detail later on, in this chapter.

header.jsf

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://java.sun.com/jsf/facelets">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Untitled Document</title>
</head>
<body>
<ui:composition>
<h1>Header</h1>
<hr />
</ui:composition>
</body>
</html>

Creating the footer Facelet
The page footer can also be externalized as its own file and reused throughout the
application.

footer.jsf

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://java.sun.com/jsf/facelets">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Untitled Document</title>
</head>
<body>
<ui:composition>
<hr />
<div>Footer</div>
</ui:composition>
</body>
</html>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 2

[65]

Passing parameters from one Facelet to
another
Including static content declared in another document is fine for view elements such
as headers and footers, but what if we wanted to pass an object from one Facelet
to another? The <ui:include> tag is more than a simple SSI tag; it has enhanced
functionality that makes it possible to pass arbitrary data from one page to another.

Facelets supports the ability to pass parameters from one Facelet to another by
nesting the <ui:param> tag inside a <ui:include> tag. Using the <ui:param> tag's
name and value attributes, we can define named content that can be referenced by
the included Facelet.

The next example demonstrates how to pass parameters to an included Facelet by
using the <ui:param> tag within a <ui:include> tag. In this case, we include a
Facelet that renders a customer list twice, and we pass different parameters to each
one. In the first case, we render a list of male customers, and in the second case we
render a list of female customers.

This example demonstrates how we can create a Facelet that renders an unordered
list of Customer objects using the <ui:repeat> tag. Instead of hardcoding the
backing bean EL expression that obtains the list of customers in our <ui:repeat>
tag's value attribute, we can introduce some indirection here by referencing a
parameter named customers that will be defined by the including Facelet.

param01.jsf

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Facelets Components

[66]

 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ui="http://java.sun.com/jsf/facelets">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>ui:param example</title>
<link rel="stylesheet" type="text/css" href="css/style.css" />
</head>
<body>
<h:form>
 <h:panelGrid columns="2">
 <ui:include src="/WEB-INF/includes/customerList.jsf">
 <ui:param name="title" value="Male Customers" />
 <ui:param name="customers"
 value="#{customerBean.maleCustomers}" />
 </ui:include>
 <ui:include src="/WEB-INF/includes/customerList.jsf">
 <ui:param name="title" value="Female Customers" />
 <ui:param name="customers"
 value="#{customerBean.femaleCustomers}" />
 </ui:include>
 </h:panelGrid>
 <ui:debug rendered="true" />
</h:form>
</body>
</html>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 2

[67]

The included customer list is defined in a separate Facelets document. Notice that the
value expression for the <ui:repeat> is not bound to a backing bean directly, but
indirectly using a parameter named customers.

By combining the Facelets <ui:include> tag with the <ui:param> tag, we can create
dynamic, parameterized user interface elements that can be reused by other Facelets
pages. The following example demonstrates how to create a reusable Facelet. Notice
that the HTML <h2> element contains a parameter named title for the page header.
Once again, we use the <ui:composition> tag to surround the content that we wish
to be included. Any markup outside the <ui:composition> tag will be trimmed.

customerList.jsf

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:h="http://java.sun.com/jsf/html">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Untitled Document</title>
</head>
<body>
<ui:composition >
 <h2>#{title}</h2>

 <ui:repeat value="#{customers}" var="customer">
 #{customer.fullName}
 </ui:repeat>

</ui:composition>
</body>
</html>

Rendering a UI composition
In the previous example, we saw that content from one page could be included in
another page by using a combination of the <ui:include> and <ui:composition>
tags. Let's discuss the <ui:composition> tag in more detail.

When Facelets encounters a <ui:composition> tag, it includes the surrounded
content and "trims" the content outside this tag. The surrounded content is included
as is, and unlike the <ui:component> tag, is not wrapped in a UI component.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Facelets Components

[68]

Including a UI composition
The following source code example demonstrates how to include a Facelets UI
composition using the <ui:include> tag. When the markup in the file named
composition.jsf is included, only the content inside the <ui:composition> tag
is rendered.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://java.sun.com/jsf/facelets">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>ui:composition example</title>
</head>
<body>
<ui:include src="/WEB-INF/includes/composition.jsf" />
<ui:debug />
</body>
</html>

Declaring a UI composition
The Facelets UI composition from the previous example is declared here. Notice that
the page is a complete XHTML document, so it can be edited by any XHTML editor,
but as it is designed to be included by another page, the Facelets framework trims
any content outside the <ui:composition> tag at runtime.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ui="http://java.sun.com/jsf/facelets">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>ui:composition example</title>
</head>
<body>
Text before will be removed.
<ui:composition>
 This text will NOT be rendered inside a UI component.
</ui:composition>
Text after will be removed.
</body>
</html>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 2

[69]

The output in the debug window shown in the next screenshot demonstrates that
the included text within the <ui:composition> tag is inserted into the including
Facelets page, but is not wrapped with a UI component.

Rendering a UI component
Sometimes, it is desirable to include content from another view element as a single
UI component. This enables us, for example, to use the rendered attribute on the
included content to support conditionally rendered markup more easily, and is
convenient for situations where a single component is expected (such as inside the
<h:panelGrid> or <f:facet> tag).

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Facelets Components

[70]

The Facelets <ui:component> tag is similar to the <ui:composition> tag. In both
cases, any content outside the tag is trimmed, but in the case of the <ui:component>
tag, the content will be rendered within a UI component. Let's look at some examples
of using the Facelets <ui:component> tag.

Including a UI component
The following example demonstrates that a Facelet containing a <ui:component> tag
can be included just like a Facelet containing a <ui:composition> tag:

component01.jsf

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://java.sun.com/jsf/facelets">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>ui:component example</title>
</head>
<body>
<ui:include src="/WEB-INF/includes/component.jsf" />
<ui:debug />
</body>
</html>

Declaring a UI component
The Facelet containing the <ui:component> tag is a complete XHTML document.
It can be edited using any XHTML editor. The content outside the <ui:component>
tag will be trimmed at runtime. The content inside the <ui:component> tag will be
rendered inside a UIComponent instance.

component.jsf
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ui="http://java.sun.com/jsf/facelets">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>ui:component example</title>
</head>
<body>
Text before will be removed.
<ui:component>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 2

[71]

 This text will be rendered inside a UI component.
</ui:component>
Text after will be removed.
</body>
</html>

The next screenshot demonstrates that the content inside the <ui:component> tag is
inserted into the including Facelets page within a UI component.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Facelets Components

[72]

Creating a Facelets UI composition
template
One of the more advanced features of the Facelets framework is the ability to define
complex templates containing dynamic nested content.

What is a template?
The Merriam-Webster dictionary defines the word "template" as
"a gauge, pattern, or mold (as a thin plate or board) used as a guide to the
form of a piece being made" and as "something that establishes or serves
as a pattern." In the context of user interface design for the Web,
a template can be thought of as an abstraction of a set of pages in the
web application.
A template does not define content, but rather it defines placeholders for
content, and provides the layout, orientation, flow, structure, and logical
organization of the elements on the page. We can also think of templates
as documents with "blanks" that will be filled in with real data and user
interface controls at request time. One of the benefits of templating is the
separation of content from presentation, making the maintenance of the
views in our web application much easier.

The <ui:insert> tag has a name attribute that is used to specify a dynamic
content region that will be inserted by the template client. When Facelets renders
a UI composition template, it attempts to substitute any <ui:insert> tags in
the Facelets template document with corresponding <ui:define> tags from the
Facelets template client document. Conceptually, the Facelets composition template
transformation process can be visualized as follows:

Request

Template client

Transform
(Request Time)

Response

Template

Menu

Footer

Header<define content A>
Hello World

</define content A>

<define content B>
How are you?

</define content B>

<include header>

<insert content A>

<insert content B>

<include footer>

<include menu>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 2

[73]

In this scenario, the browser requests a Facelets template client document in
our JSF application. This document contains two <ui:define> tags that specify
named content elements and references a Facelets template document using the
<ui:composition> tag's template attribute. The Facelets template document
contains two <ui:insert> tags that have the same names as the <ui:define> tags
in the client document, and three <ui:include> tags for the header, footer, and
navigation menu.

This is a good example of the excellent support that Facelets provides for the
Composite View design pattern. Facelets transforms the template client document
by merging any content it defines using <ui:define> tags with the content insertion
points specified in the Facelets template document using the <ui:insert> tag. The
result of merging the Facelets template client document with the Facelets template
document is rendered in the browser as a composite view.

While this concept may seem a bit complicated at first, it is actually a powerful
feature of the Facelets view definition framework that can greatly simplify user
interface templating in a web application. In fact, the Facelets composition template
document can itself be a template client by referencing another composition
template. In this way, a complex hierarchy of templates can be used to construct a
flexible, multi-layered presentation tier for a JSF application.

Without the Facelets templating system, we would have to copy and paste
view elements such as headers, footers, and menus from one page to the next to
achieve a consistent look and feel across our web application. Facelets templating
enables us to define our look and feel in one document and to reuse it across multiple
pages. Therefore, if we decide to change the look and feel, we only have to update
one document and the change is immediately propagated to all the views of the
JSF application.

Let's look at some examples of how to use the Facelets templating feature.

A simple Facelets template
The following is an example of a simple Facelets template. It simply renders a
message within an HTML <h2> element. Facelets will replace the "unnamed"
<ui:insert> tag (without the name attribute) in the template document with the
content of the <ui:composition> tag from the template client document.

template01.jsf
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Facelets Components

[74]

 xmlns:ui="http://java.sun.com/jsf/facelets">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Facelets template example</title>
<link rel="stylesheet" type="text/css" href="/css/style.css" />
</head>
<body>
<h2><ui:insert /></h2>
</body>
</html>

A simple Facelets template client
Let's look at a simple example of Facelets templating. The following page is a Facelets
template client document. (Remember: you can identify a Facelets template client by
looking for the existence of the template attribute on the <ui:composition> tag.)
The <ui:composition> tag simply contains the text Hello World.

templateClient01.jsf

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ui="http://java.sun.com/jsf/facelets">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>ui:composition example</title>
</head>
<body>
<ui:composition template="/WEB-INF/templates/template01.jsf">
 Hello World
</ui:composition>
<ui:debug />
</body>
</html>

The following screenshot displays the result of the Facelets UI composition template
transformation when the browser requests templateClient01.jsf.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 2

[75]

Another simple Facelets template client
The following Facelets template client example demonstrates how a template can be
reused across multiple pages in the JSF application:

templateClient01a.jsf

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ui="http://java.sun.com/jsf/facelets">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>ui:composition example</title>
</head>
<body>
<ui:composition template="/WEB-INF/templates/template01.jsf">
 How are you today?
</ui:composition>
<ui:debug />
</body>
</html>

The following screenshot displays the result of the Facelets UI composition template
transformation when the browser requests templateClient01a.jsf:

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Facelets Components

[76]

A more complex Facelets template
The Facelets template in the previous example is quite simple and does not
demonstrate some of the more advanced capabilities of Facelets templating. In
particular, the template in the previous example only has a single <ui:insert> tag,
with no name attribute specified. The behavior of the unnamed <ui:insert> tag is to
include any content in the referencing template client page.

In more complex templates, multiple <ui:insert> tags can be used to enable
template client documents to define several custom content elements that will be
inserted throughout the template. The following Facelets template document declares
three named <ui:insert> elements. Notice carefully where these tags are located.

template02.jsf

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ui="http://java.sun.com/jsf/facelets">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title><ui:insert name="title" /></title>
<link rel="stylesheet" type="text/css" href="/css/style.css" />
</head>
<body>
<ui:include src="/WEB-INF/includes/header.jsf" />
<h2><ui:insert name="header" /></h2>
<ui:insert name="content" />
<ui:include src="/WEB-INF/includes/footer.jsf" />
</body>
</html>

In the following example, the template client document defines three content
elements named title, header, and content using the <ui:define> tag. Their
position in the client document is not important because the template document
determines where this content will be positioned.

templateClient02.jsf

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ui="http://java.sun.com/jsf/facelets">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>ui:composition example</title>
</head>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 2

[77]

<body>
<ui:composition template="/WEB-INF/templates/template02.jsf">
 <ui:define name="title">Facelet template example</ui:define>
 <ui:define name="header">Hello World</ui:define>
 <ui:define name="content">Page content goes here.</ui:define>
</ui:composition>
<ui:debug />
</body>
</html>

The following screenshot displays the result of a more complex Facelets UI
composition template transformation when the browser requests the page named
templateClient02.jsf.

The next example demonstrates reusing a more advanced Facelets UI composition
template. At this stage, we should have a good understanding of the basic concepts
of Facelets templating and reuse.

templateClient02a.jsf

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ui="http://java.sun.com/jsf/facelets">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>ui:composition example</title>
</head>
<body>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Facelets Components

[78]

<ui:composition template="/WEB-INF/templates/template02.jsf">
 <ui:define name="title">Facelet template example</ui:define>
 <ui:define name="header">Thanks for visiting!</ui:define>
 <ui:define name="content">We hope you enjoyed our site.</ui:define>
</ui:composition>
<ui:debug />
</body>
</html>

The next screenshot displays the result of the Facelets UI composition transformation
when the browser requests templateClient02a.jsf. We can follow this pattern to
make a number of JSF pages reuse the template in this manner to achieve a consistent
look and feel across our web application.

Decorating the user interface
The Facelets framework supports the definition of smaller, reusable view elements
that can be combined at runtime using the Facelets UI tag library. Some of these tags,
such as the <ui:composition> and <ui:component> tags, trim their surrounding
content. This behavior is desirable when including content from one complete
XHTML document within another complete XHTML document.

There are cases, however, when we do not want Facelets to trim the content outside
the Facelets tag, such as when we are decorating content on one page with additional
JSF or HTML markup defined in another page.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 2

[79]

For example, suppose there is a section of content in our XHTML document that
we want to wrap or "decorate" with an HTML <div> element defined in another
Facelets page. In this scenario, we want all the content on the page to be displayed,
and we are simply surrounding part of the content with additional markup
defined in another Facelets template. Facelets provides the <ui:decoration> tag for
this purpose.

Decorating content on a Facelets page
The following example demonstrates how to decorate content on a Facelets
page with markup from another Facelets page using the <ui:decoration>
tag. The <ui:decoration> tag has a template attribute and behaves like the
<ui:composition> tag. Facelets templating typically uses the <ui:composition>. It
references a Facelets template document that contains markup to be included in the
current document. The main difference between the <ui:composition> tag and the
<ui:decoration> tag is that Facelets trims the content outside the <ui:composition>
tag but does not trim the content outside the <ui:decoration> tag.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://java.sun.com/jsf/facelets">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>ui:decorate example</title>
<link rel="stylesheet" type="text/css" href="css/style.css" />
</head>
<body>
 Text before will stay.
 <ui:decorate template="/WEB-INF/templates/box.jsf">
 Information Box
 <p>This is the first line of information.</p>
 <p>This is the second line of information.</p>
 <p>This is the third line of information.</p>
 </ui:decorate>
 Text after will stay.
 <ui:debug />
</body>
</html>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Facelets Components

[80]

Creating a Facelets decoration
Let's examine the Facelets decoration template referenced by the previous example.
The following source code demonstrates how to create a Facelets template to provide
the decoration that will surround the content on another page.

As we are using a <ui:composition> tag, only the content inside this tag will be
used. In this example, we declare an HTML <div> element with the "box" CSS style
class that contains a single Facelets <ui:insert> tag. When Facelets renders the
above Facelets page, it encounters the <ui:decorate> tag that references the
box.jsf page. The <ui:decorate> tag will be merged together with the associated
decoration template and then rendered in the view. In this scenario, Facelets will
insert the child content of the <ui:decorate> tag into the Facelets decoration
template where the <ui:insert> tag is declared.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:c="http://java.sun.com/jstl/core">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Box</title>
</head>
<body>
<ui:composition>
 <div class="box">
 <ui:insert />
 </div>
</ui:composition>
</body>
</html>

The result is that our content is surrounded or "decorated" by the <div> element.
Any text before or after the <ui:decoration> is still rendered on the page, as shown
in the next screenshot:

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 2

[81]

The included decoration is rendered as is, and is not nested inside a UI component as
demonstrated in the following Facelets debug page:

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Facelets Components

[82]

Rendering a UI fragment
Like the <ui:decorate> tag, the <ui:fragment> tag is also a non-trimming tag.
Facelets preserves the markup outside this tag.

One difference between the <ui:decoration> and the <ui:fragment> tags,
however, is that Facelets includes the content of the <ui:fragment> tag inside a
UI component. In this way, the <ui:fragment> and the <ui:component> tag have
similar behavior.

Another difference between the <ui:decorate> and the <ui:fragment> tags is that
the <ui:fragment> tag does not support the template attribute, but instead has a
binding attribute that gives us the ability to bind the tag to a UI component in our
backing bean.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ui="http://java.sun.com/jsf/facelets">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>ui:fragment example</title>
</head>
<body>
<h:form>
 Text before will be rendered.
 <ui:fragment>
 <p>A fragment adds a component to the view but does not trim any
 content.</p>
 </ui:fragment>
 Text after will be rendered.
 <ui:debug />
</h:form>
</body>
</html>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 2

[83]

The non-trimming and UI component-based behavior of the <ui:fragment> tag is
demonstrated in the Facelets debug page shown in the next screenshot.

As Facelets renders the content of the <ui:fragment> tag within a UI component,
we can use this tag whenever we want to group multiple components (and
markup) together as a single UI component, such as within the <h:panelGrid> and
<f:facet> tags.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Facelets Components

[84]

An advanced Facelets composition
template
The following example demonstrates an advanced Facelets composition template
and uses the majority of Facelets tags in a single composite view. In this example, the
template client document specifies a number of named content elements using the
<ui:define> tag and reuses multiple UI elements.

The <ui:define> tag named title specifies the document title. The links element
uses a <ui:include> tag to include the navigation menu that will be inserted into
the links section of the template. The header element simply defines the page
header. The content element defines the paragraph text to be rendered by the
template. Finally, the data element defines the data to be displayed by re-using the
external links.jsf template that renders a parameterized list of customers.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ui="http://java.sun.com/jsf/facelets">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Facelets template example</title>
</head>
<body>
<ui:composition template="/WEB-INF/templates/template03.jsf">
 <ui:define name="title">Facelets template example</ui:define>
 <ui:define name="links">
 <ui:include src="/WEB-INF/includes/links.jsf" />
 </ui:define>
 <ui:define name="header">Customer Listing</ui:define>
 <ui:define name="content">
 <p>Our company has #{customerBean.customerCount} customers.</p>
 <p>They have been separated into two lists shown below.</p>
 </ui:define>
 <ui:define name="data">
 <h:panelGrid columns="2">
 <ui:fragment>
 <ui:include src="/WEB-INF/includes/customerList.jsf">
 <ui:param name="title" value="Male Customers" />
 <ui:param name="customers" value="#{customerBean.
 maleCustomers}" />
 </ui:include>
 </ui:fragment>
 <ui:fragment>
 <ui:include src="/WEB-INF/includes/customerList.jsf">

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 2

[85]

 <ui:param name="title" value="Female Customers" />
 <ui:param name="customers" value="#{customerBean.
 femaleCustomers}" />
 </ui:include>
 </ui:fragment>
 </h:panelGrid>
 </ui:define>
</ui:composition>
</body>
</html>

The corresponding Facelets UI composition template for this example uses
the <ui:include> tag to render a header defined in an external Facelets page.
The main content of the page is rendered using the <h:panelGrid> tag to render
a single-column layout table. (CSS-based layouts are generally preferred to
table-based layouts; this example is for demonstration only.)

The first row of the panel grid renders the links element by using the <ui:insert>
tag named links. Notice that the content is wrapped in a <ui:fragment> tag to
ensure that any included content is wrapped with a single UI component so the
content is rendered in a single column within the panel grid component.

The second row of the panel grid renders a title inside the HTML <h2> element.
The third row of the panel grid renders a box decoration around the named data
element provided by the template client. The page footer is rendered using a
<ui:include> tag.

Finally, we declare the <ui:debug> tag and set the rendered attribute to true based
on the value of the facelets.DEVELOPMENT initialization parameter. This way,
debugging support can be enabled conditionally whenever Facelets error handling is
turned on during the development cycle.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:ui="http://java.sun.com/jsf/facelets">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title><ui:insert name="title" /></title>
<link rel="stylesheet" type="text/css" href="/chapter2/css/style.css"
/>
</head>
<body>
<ui:include src="/WEB-INF/includes/header.jsf" />
<h:panelGrid width="100%">
 <ui:fragment>
 <ui:insert name="links" />

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Facelets Components

[86]

 </ui:fragment>
 <ui:fragment>
 <h2><ui:insert name="header" /></h2>
 <ui:insert name="content" />
 </ui:fragment>
 <ui:fragment>
 <ui:decorate template="/WEB-INF/templates/box.jsf">
 <ui:insert name="data" />
 </ui:decorate>
 </ui:fragment>
</h:panelGrid>
<ui:include src="/WEB-INF/includes/footer.jsf" />
<ui:debug hotkey="D" rendered="#{initParam['facelets.DEVELOPMENT']}"
/>
</body>
</html>

The result of the Facelets UI composition transformation is a complex composite
view arrangement containing multiple reusable UI elements, such as headers,
footers, navigation menus, and box decorations.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 2

[87]

Summary
In this chapter, we explored how the Facelets view definition framework can be used
to enhance presentation tier development in a JSF application.

We looked at a brief history of web development on the Java platform and compared
Facelets with JSP technology to understand the advantages that Facelets offers to the
JSF developer.

Facelets provides a fresh and compelling alternative to JSP as the view technology
for JSF. Designed specifically to support the UI component tree lifecycle, Facelets
is a highly optimized technology that greatly simplifies user interface development
with the JSF framework.

Facelets pages are different from JSP pages because they are not compiled to
generate servlets and they do not contain JSP expressions and directives. JSF tag
libraries can be included in Facelets pages by using XML namespaces. Faceletsand
JSP (since JSP 2.0) both support inline JSF EL expressions.

Our discussion included tips on how to configure a JSF application to use Facelets
by specifying initialization parameters in web.xml and by configuring JSF to use the
Facelets ViewHandler implementation in faces-config.xml. We can enable the
Facelets refresh behavior during development, and disable it in production for
best performance.

We studied examples of how to perform common tasks with the Facelets framework,
such as enabling detailed error reporting with line number and attribute information,
examining the UI component tree at runtime, iterating data in a Facelets page,
including components and markup, removing components and markup, and
decorating content in a Facelets page. We also looked at how to render advanced
UI composition templates using the Facelets framework. Facelets templates can
be reused by multiple client documents, simplifying the task of implementing a
consistent look and feel across all the pages in our JSF application.

Based on the Composite View design pattern, Facelets is a sophisticated framework
that makes it easy to create reusable user interface elements for a JSF application.
Facelets supports a declarative approach to component-based development. As
Facelets is supported by all major JSF component libraries, we will use it extensively
throughout this book.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Tomahawk
Components

In the previous chapter, we learned how to use the Facelets view definition
framework as a templating system for JSF. In this chapter, we will look at how to
implement a number of typical web application development scenarios using the
Apache Tomahawk JSF component library.

What is a component library? The JSF framework is highly extensible, and this
is especially true for UI components. JSF includes a flexible class hierarchy that
developers can extend to create their own custom components. The Apache
Tomahawk component library is an excellent example of the extensibility of JSF as a
UI component framework.

The Tomahawk library contains more than 75 custom JSF components. We will look
at a subset of these components to highlight some of the strengths of this library and
how it can be used to implement common web development use cases, such as:

•	 Validating user input
•	 Accepting time information from the user
•	 Working with files
•	 Using tree components
•	 Creating navigation menus
•	 Securing our user interfaces
•	 Displaying tabular data

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Tomahawk Components

[90]

Validating user input
In Chapter 1, we saw how to use some of the converters and validators included
in the JSF framework, and we saw how to create our own custom converters
and validators.

In one example, we looked at a customer registration form that required the user to
enter their name, contact information, date of birth, country of origin, and relevant
interests. We registered our custom date validator on the date of birth field to
ensure that the date entered by the user was correctly formatted and represented a
legitimate birth date.

What we didn't do, however, was validate the phone number and e-mail address
entered by the user. Let's look at this example again to see how we can validate these
form fields using the Tomahawk validation tags.

The Apache Tomahawk component library includes several validation tags based
on the Jakarta Commons Validator utility class library for Java. Tomahawk
includes built-in validator tags, such as <t:validateCreditCard> for verifying
credit card numbers, <t:validateEmail> for validating e-mail addresses, and
<t:validateRegExpr> for validating arbitrary regular expression patterns.

Tomahawk also includes the <t:validateEqual> tag for comparing one field
with another field within the same form in our user interface. This can be useful
for situations where we need to validate the same user input twice, such as when
accepting a password or an e-mail address from the user.

Validating e-mail addresses
The example from the previous chapter could be improved by using the Apache
Tomahawk e-mail validator tag to ensure that the user's e-mail address is well
formed. In the next code, we will render a form to accept an e-mail address from the
user and validate it. If the e-mail address is correct, we will accept it, else we will
display a customized error message. Note that a localized error message could be
retrieved from a message bundle using an EL expression instead of hardcoding it in
the message attribute.

<h:form>
 <h:panelGrid columns="1">
 <h:panelGroup>
 <h:outputLabel for="emailAddress"
 value="#{bundle.emailAddressLabel}" />
 <h:inputText id="emailAddress"
 value="#{customerBean.customer.emailAddress}"
 required="true">

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 3

[91]

 <t:validateEmail message="The email address you have
 entered is not valid." />
 </h:inputText>
 <h:commandButton value="Submit" />
 </h:panelGroup>
 <h:message for="emailAddress" errorClass="error"
 showSummary="false" showDetail="true" />
 </h:panelGrid>
</h:form>

The next screenshot shows our customized error message that will be displayed if
the user enters an invalid e-mail address:

Validating a phone number with a regular
expression pattern
Similarly, we can make our customer information more robust by using the
Tomahawk regular expression validator tag to verify the customer's phone number.
In this example, we provide a regular expression pattern that expects three digits
followed by a space or a dash, followed by three digits, followed by a space or a
dash, followed by four digits.

Also note that we have replaced the standard JSF HtmlInputText component with
the Tomahawk HtmlInputTextHelp component because this component allows us
to display help text to the user. This text is defined by the helpText attribute of the
<t:inputTextHelp> tag and will be displayed initially in the text field when the form
is rendered in the browser. Once the text field gains focus, the help text will disappear.

<h:form>
 <h:panelGrid columns="1">
 <h:panelGroup>
 <h:outputLabel for="phoneNumber"

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Tomahawk Components

[92]

 value="#{bundle.phoneNumberLabel}" />
 <t:inputTextHelp id="phoneNumber"
 value="#{customerBean.customer.phoneNumber}"
 helpText="XXX-XXX-XXXX">
 <t:validateRegExpr
 message="#{bundle.invalidPhoneNumber}"
 pattern="\d{3}[\-\s]\d{3}[\-\s]\d{4}" />
 </t:inputTextHelp>
 <h:commandButton value="Submit" />
 </h:panelGroup>
 <h:message for="phoneNumber" errorClass="error"
 showSummary="false" showDetail="true" />
 </h:panelGrid>
</h:form>

In the following screenshot, we can see the result of this source code. A text field is
rendered in the browser with an input mask representing a correct phone number.
Once the text field gains focus, the input mask disappears.

If the user enters an invalid phone number, the Tomahawk regular expression
validation fails and the validation message we specified is displayed in the view.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 3

[93]

Validating that two fields have an equal value
It is a good practice to validate certain types of information twice, such as passwords
and e-mail addresses, to ensure that the value entered by the user is what the user
intended. Conveniently, Tomahawk includes a validator for just this purpose. In
this example, we improve the customer information form (from Chapter 1) by
adding a second field for capturing the user's e-mail address. We use the Tomahawk
<t:validateEqual> tag to ensure that the two e-mail addresses entered by the user
are equal.

<h:form>
 <h:panelGrid columns="1">
 <h:panelGroup>
 <h:outputLabel for="emailAddress"
 value="#{bundle.emailAddressLabel}" />
 <h:inputText id="emailAddress"
 value="#{customerBean.customer.emailAddress}"
 required="true">
 <t:validateEmail message="The email address you have
 entered is not valid." />
 </h:inputText>
 </h:panelGroup>
 <h:panelGroup>
 <h:outputLabel for="emailAddressConfirm"
 value="#{bundle.emailAddressConfirmLabel}" />
 <h:inputText id="emailAddressConfirm"
 required="true">
 <t:validateEqual for="emailAddress" message="The email
 addresses you have entered do not match." />
 </h:inputText>
 </h:panelGroup>
 <h:commandButton value="Submit" />
 <h:message for="emailAddress" errorClass="error"
 showSummary="false" showDetail="true" />
 <h:message for="emailAddressConfirm" errorClass="error"
 showSummary="false" showDetail="true" />
 </h:panelGrid>
</h:form>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Tomahawk Components

[94]

As with the previous example, if the user inputs incorrect information (in this
case, an incorrect e-mail address in the confirmation field), the Tomahawk regular
expression validator will fail and the custom validation message we defined for this
component is displayed in the view.

Managing date and time selection
The <h:inputText> tag in the standard JSF HTML tag library, when used with a
nested <f:convertDateTime> tag, can be used to accept arbitrarily formatted date
and time information from the user. Many desktop applications, however, offer users
a richer set of controls for entering date and time information. If we want to make
our web applications more like desktop software, enhancing date/time selection is a
good place to start.

The Apache Tomahawk component library includes several powerful components
that support date and time selection. The HtmlInputDate component offers a
convenient set of text fields that are mapped to the different components in a date,
such as the day, the month, the year, and the time.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 3

[95]

The HtmlInputCalendar component can render an attractive pop-up calendar
that users can interact with to select a date or time in our user interface. Finally,
the Tomahawk HtmlSchedule component offers a full-featured scheduling control
similar to popular calendaring applications for the desktop such as Microsoft
Outlook and Mozilla Sunbird.

Selecting a date
In this example, we use the Tomahawk HtmlInputDate component to render a date
input field in our form. This enables the user to use a more intuitive type of control
for entering date/time information. Notice that we reuse our existing custom date
validator to ensure that the user enters a valid birth date.

<h:form>
 <h:panelGrid columns="1">
 <h:panelGroup>
 <h:outputLabel for="dateOfBirth"
 value="#{bundle.dateOfBirthLabel}" />
 <t:inputDate id="dateOfBirth"
 value="#{customerBean.customer.birthDate}" type="date"
 required="true">
 <f:validator validatorId="customDateValidator" />
 </t:inputDate>
 <h:commandButton value="Submit" />
 </h:panelGroup>
 <h:message for="dateOfBirth" errorClass="error"
 showSummary="false" showDetail="true" />
 <h:panelGroup rendered="#{customerBean.customer.birthDate
 ne null}">
 <h:outputText value="Your birth date is " />
 <h:outputText
 value="#{customerBean.customer.birthDate}">
 <f:convertDateTime dateStyle="full" type="date" />
 </h:outputText>
 </h:panelGroup>
 </h:panelGrid>
</h:form>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Tomahawk Components

[96]

As shown in the following screenshot, the Tomahawk HtmlInputDate component
renders input date fields for the day, month, and year, with restricted possible
values. The date format used (for example, mm/dd/yyyy) is also customizable.

The Tomahawk HtmlInputDate component is quite flexible. We can also use it to
render an attractive pop-up calendar to improve the interactivity of our JSF page by
setting the popupCalendar attribute to true.

<h:form>
 <h:panelGrid columns="1">
 <h:panelGroup>
 <h:outputLabel for="dateOfBirth"
 value="#{bundle.dateOfBirthLabel}" />
 <t:inputDate id="dateOfBirth"
 value="#{customerBean.customer.birthDate}"
 type="date" required="true"
 popupCalendar="true">
 <f:validator validatorId="customDateValidator" />
 </t:inputDate>
 <h:commandButton value="Submit" />
 </h:panelGroup>
 <h:message for="dateOfBirth" errorClass="error"
 showSummary="false" showDetail="true" />
 <h:panelGroup rendered="#{customerBean.customer.birthDate
 ne null}">
 <h:outputText value="Your birth date is " />
 <h:outputText
 value="#{customerBean.customer.birthDate}">
 <f:convertDateTime dateStyle="full" type="date" />
 </h:outputText>
 </h:panelGroup>
 </h:panelGrid>
</h:form>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 3

[97]

The following screenshot shows the pop-up calendar rendered in the view.
The Tomahawk calendar component provides an interactive user interface for
selecting a date.

Rendering a simple calendar
The HtmlInputCalendar component, rendered by the <t:inputCalendar> tag, is
another useful date/time component in the Apache Tomahawk library. It can render
a date selection control in one of two ways. When the renderAsPopup attribute is
set to true, a text field is rendered with a button that displays a JavaScript calendar
for date selection. When the renderAsPopup attribute is set to false (the default),
a calendar is rendered as an element on the page. This component also supports a
number of CSS properties to enable customization of the appearance of the calendar.

<h:form>
 <h:panelGrid columns="1">
 <h:panelGroup>
 <h:outputLabel for="date" value="Select a Date" />
 <t:inputCalendar id="date" type="date"
 required="true" styleClass="calendar" />
 <h:commandButton value="Submit" />
 </h:panelGroup>
 <h:message for="date" errorClass="error"
 showSummary="false" showDetail="true" />
 </h:panelGrid>
</h:form>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Tomahawk Components

[98]

The <t:inputCalendar> tag renders a calendar component in one of two ways.
It can render a static calendar on the JSF page, or it can render a pop-up calendar
identical to the one produced by the <t:inputDate> tag. The following screenshot
demonstrates rendering a static calendar on the page by omitting the renderAsPopup
attribute or by setting it to false.

Rendering an appointment schedule
The Tomahawk HtmlSchedule component is a powerful and feature-rich date/
time control. In the first example, we use the <t:schedule> tag to render a monthly
appointment calendar using the default theme with tooltips.

<h:form>
 <t:schedule
 value="#{customerBean.monthlyAppointmentsScheduleModel}"
 tooltip="true" />
</h:form>

The value expression for this tag returns a Tomahawk ScheduleModel object
from our backing bean that contains the appointment data to be displayed on the
schedule. This model object is also configured to display the appointments and the
monthly schedule view. The following code example demonstrates how to construct
a monthly schedule model object using the Tomahawk API (see the sample Eclipse
project for this chapter for the complete source code):

ScheduleModel model = new SimpleScheduleModel();
model.setMode(ScheduleModel.MONTH);

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 3

[99]

To populate the schedule model with appointments, we can use the
Tomahawk DefaultScheduleEntry class. In the next example, we create a
DefaultScheduleEntry object, set the appointment information such as start time
and end time, and add it to the schedule model.

DefaultScheduleEntry entry = new DefaultScheduleEntry();
entry.setId(UUID.randomUUID().toString());
entry.setStartTime(start);
entry.setEndTime(end);
entry.setTitle("Meeting with " + customer.getFirstName() + " "
 + customer.getLastName());
entry.setSubtitle("Follow-up appointment");
entry.setDescription("Meeting to discuss project
 opportunity.");
model.addEntry(entry);

The result is a fully populated monthly appointment schedule that displays a tooltip
when the mouse cursor is hovered over a particular appointment. Here we use the
default theme for the schedule.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Tomahawk Components

[100]

In the next example, we use the <t:schedule> tag to render a daily schedule of
appointments using the outlookxp theme with tooltips. We can also control the start
and end time for the workday.

<h:form>
 <t:schedule
 value="#{customerBean.dailyAppointmentsScheduleModel}"
 tooltip="true" workingStartHour="8" workingEndHour="17"
 theme="outlookxp" />
</h:form>

This time when we construct the schedule model, we set the mode to the
ScheduleModel.DAY constant.

ScheduleModel model = new SimpleScheduleModel();
model.setMode(ScheduleModel.DAY);

This component generates a full-featured day planner with clickable, user-defined
events that can span multiple hours and provide rollover tooltip information, as
shown in the following screenshot:

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 3

[101]

Next, we use the <t:schedule> tag to render a weekly schedule of appointments
using the default theme with tooltips.

<h:form>
 <t:schedule
 value="#{customerBean.weeklyAppointmentsScheduleModel}"
 tooltip="true" />
</h:form>

The schedule model is set to the ScheduleModel.WEEK mode.

ScheduleModel model = new SimpleScheduleModel();
model.setMode(ScheduleModel.WEEK);

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Tomahawk Components

[102]

Finally, we use the <t:schedule> tag to render a schedule of appointments for the
workweek using the outlookxp theme with tooltips.

<h:form>
 <t:schedule
 value="#{customerBean.workweekAppointmentsScheduleModel}"
 tooltip="true" theme="outlookxp" />
</h:form>

The schedule model is set to the ScheduleModel.WORKWEEK mode.

ScheduleModel model = new SimpleScheduleModel();
model.setMode(ScheduleModel.WORKWEEK);

The following screenshot shows the Tomahawk schedule component in a workweek
mode using the evolution theme:

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 3

[103]

File management
Working with files is another common scenario for web developers. Many web
applications and content management systems enable users to upload files from their
desktop to a remote server. HTML includes support for file transfer through the use
of a form tag with an enctype attribute set to multipart/form-data. By properly
setting the encoding of our HTML forms, this enables the browser to send file data
to a web server. The JSF HtmlForm component also supports this behavior, and when
combined with the Tomahawk HtmlInputFileUpload component, we can add file
management capabilities to our web application fairly easily.

To enable file upload with the Tomahawk library, we need to declare the MyFaces
Extension Filter in our web application's configuration file (web.xml). The Extension
Filter is an important web-tier component of the Tomahawk library, and is responsible
for inserting the resources needed for rendering Tomahawk UI components (such as
JavaScript files and Cascading Style Sheets) into the HTML document before it is sent
to the browser. We must add the following filter to our web.xml file:

 <filter>
 <filter-name>MyFacesExtensionsFilter</filter-name>
 <filter-class>org.apache.myfaces.webapp.filter.ExtensionsFilter
 </filter-class>
 <init-param>
 <param-name>maxFileSize</param-name>
 <param-value>20m</param-value>
 </init-param>
 </filter>
 <filter-mapping>
 <filter-name>MyFacesExtensionsFilter</filter-name>
 <servlet-name>Faces Servlet</servlet-name>
 </filter-mapping>
 <filter-mapping>
 <filter-name>MyFacesExtensionsFilter</filter-name>
 <url-pattern>/faces/myFacesExtensionResource/*</url-pattern>
 </filter-mapping>
 <filter-mapping>
 <filter-name>MyFacesExtensionsFilter</filter-name>
 <url-pattern>*.jsf</url-pattern>
 </filter-mapping>
 <filter-mapping>
 <filter-name>MyFacesExtensionsFilter</filter-name>
 <url-pattern>/faces/*</url-pattern>
 </filter-mapping>

Notice that we can limit the uploaded file size by setting the maxFileSize
initialization parameter. In this case, we set the maximum size to 20 megabytes.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Tomahawk Components

[104]

Uploading a file
In this example, we use the <t:inputFileUpload> tag to render the file upload
component on our JSF page. The value expression for this tag is bound to a property
in our backing bean of type UploadedFile. When the user clicks on the submit
button labeled Upload, the browser sends the file data to our web application and
the JSF framework invokes our uploadFile backing bean method.

The following markup demonstrates how to use the <t:inputFileUpload> tag in
our JSF page:

<h:form enctype="multipart/form-data">
 <h:panelGrid columns="1">
 <h:panelGroup>
 <t:inputFileUpload value="#{backingBean.uploadedFile}" />
 <h:commandButton value="Upload"
 actionListener="#{backingBean.uploadFile}" />
 </h:panelGroup>
 <h:panelGroup>
 <h:outputText value="Directory listing for:
 #{backingBean.uploadDirectory.name}" />
 <t:dataList value="#{backingBean.uploadedFiles}"
 var="file" layout="unorderedList">
 <h:outputLink value="file:///#{file.path}">
 <h:outputText value="#{file.name}" />
 </h:outputLink>
 </t:dataList>
 </h:panelGroup>
 </h:panelGrid>
</h:form>

The following Java source code demonstrates how to handle the file upload event in
our backing bean:

 public void uploadFile(ActionEvent event) {
 InputStream in = null;
 OutputStream out = null;
 try {
 if (uploadedFile != null) {
 in = uploadedFile.getInputStream();
 File dir = getUploadDirectory();
 if (!dir.exists()) {
 if (!dir.mkdir()) {
 throw new IOException("Unable to
 make directory: " + dir);
 }
 }
 File file = new File(dir, uploadedFile.
 getName());

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 3

[105]

 out = new FileOutputStream(file);
 byte[] buffer = new byte[1024];
 while (in.read(buffer) != -1) {
 out.write(buffer);
 }
 out.flush();
 out.close();
 in.close();
 }
 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 try {
 if (out != null) {
 out.flush();
 out.close();
 }
 if (in != null) {
 in.close();
 }
 } catch (Exception e) {
 }
 }
 }

When the page is rendered again, we iterate all the files contained in the upload
directory as an unordered list as seen in the following screenshot:

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Tomahawk Components

[106]

Working with trees
In desktop software applications, trees represent a convenient and intuitive type of
control that users can interact with to perform a variety of tasks, such as navigating
a file system, managing operating system users and groups, browsing threaded
messages on an Internet newsgroup, exploring an XML document, and working with
other types of hierarchically structured data.

The Apache Tomahawk component library includes a number of components
that can be used to implement tree controls for our JSF applications. Let's look
at some examples of how we can integrate a tree component with our file
management example to enable users to browse the files that they've uploaded
to our web application.

Creating a tree
In this example, the <t:tree> tag is used to render a tree component on our JSF
page. This time, instead of rendering the uploaded files as an ordered list, we render
them as a dynamic tree.

<h:form enctype="multipart/form-data">
 <h:panelGrid columns="1">
 <h:panelGroup>
 <t:inputFileUpload value="#{backingBean.uploadedFile}" />
 <h:commandButton value="Upload"
 actionListener="#{backingBean.uploadFile}" />
 </h:panelGroup>
 <h:panelGroup>
 <h:outputText value="Directory listing for:
 #{backingBean.uploadDirectory.name}" />
 <t:tree value="#{backingBean.uploadedFilesTreeModel}"
 expandRoot="true" />
 </h:panelGroup>
 </h:panelGrid>
</h:form>

The Java code required to provide the model data for the tree component is as
follows. In this case, we get a reference to a java.io.File object representing the file
upload directory. Next, we construct a Tomahawk DefaultMutableTreeNode object
and pass the directory name to the constructor. This constructor argument provides
the string to be rendered as the tree node's label. Next, we set the userObject
property of the tree node, passing in our FileAdapter object wrapped around the
File object. Then, we call the recursive buildTreeModel() method to perform the
tree initialization based on the files contained in the upload directory.

public org.apache.myfaces.custom.tree.model.TreeModel

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 3

[107]

 getUploadedFilesTreeModel() {
 File dir = getUploadDirectory();
 DefaultMutableTreeNode root = new
 DefaultMutableTreeNode(dir.getName());
 root.setUserObject(new FileAdapter(dir));
 buildTreeModel(dir, root);
 org.apache.myfaces.custom.tree.model.TreeModel model = new
 DefaultTreeModel(root);
 return model;
}

The buildTreeModel() method iterates the files in a directory, and creates a
DefaultMutableTreeNode for each file. If a file is a directory, we call the method
recursively to add that directory's files to the current tree node. The result is a
Tomahawk tree model object that represents the uploaded files on the file system.

private void buildTreeModel(File dir, DefaultMutableTreeNode root) {
 File[] files = dir.listFiles();
 if (files != null) {
 for (File file : files) {
 DefaultMutableTreeNode node = new
 DefaultMutableTreeNode(file.getName());
 node.setUserObject(new FileAdapter(file));
 root.insert(node);
 if (file.isDirectory()) {
 buildTreeModel(file, node);
 }
 }
 }
}

Adapter design pattern: There are many software design patterns
that can be used effectively to implement JSF applications. Sometimes,
it is necessary to adapt a class for use in another context that it was not
originally written for. This is similar to the way we can purchase a power
adapter for an electric shaver or hairdryer when we travel overseas.

Here, we use the adapter design pattern to wrap the java.io.File class with
another class that exposes JavaBeans-style properties to our JSF page.

package chapter2.model;

import java.net.URLConnection;
import java.util.Date;

/**
 * This class is a model adapter for the java.io.File class.
 * It makes it easier to render the file's information in the

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Tomahawk Components

[108]

 * view.
 *
 * @author Ian
 *
 */
public class FileAdapter {

 private java.io.File file;

 public FileAdapter(java.io.File file) {
 this.file = file;
 }

 public Date getLastModified() {
 return new Date(file.lastModified());
 }

 public String getName() {
 return file.getName();
 }

 public long getSize() {
 return file.length();
 }

 public String getUrl() {
 String url = null;
 try {
 url = file.toURL().toExternalForm();
 } catch (Exception e) {
 e.printStackTrace();
 }
 return url;
 }

 public String getType() {
 String type = "file";
 if (file.isDirectory()) {
 type = "directory";
 }
 return type;
 }

 public String getContentType() {
 String contentType = null;
 try {
 URLConnection connection =
 file.toURL().openConnection();
 contentType = connection.getContentType();
 } catch (Exception e) {
 e.printStackTrace();
 }
 return contentType;
 }

 public String toString() {
 return file.getName();

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 3

[109]

 };
}

The following is an example of a file system folder hierarchy rendered by the
Tomahawk tree component:

Creating a tree column
The <t:tree> tag also accepts nested <t:treeColumn> and <h:column> tags.
This combination of tags can be used effectively to create a tree table component,
where some of the data is rendered as a dynamic tree and some of it is rendered as
table columns. This is similar to the way file browser windows behave on desktop
operating systems. By using this technique, we can make our JSF application behave
more like a desktop application.

The <t:tree> tag has a value attribute that expects a value expression of type
TreeModel and a var attribute that defines the name of the variable used to iterate
the nodes of the tree model. Inside the tag, we can reference the user object property
of the current tree node by using this variable. In our example, the node variable will
have a reference to a FileAdapter object at request time. We can use this variable to
display specific information about each file, such as the file type, the file size, and the
last modified date.

<h:form enctype="multipart/form-data">
 <h:panelGrid columns="1">
 <h:panelGroup>
 <t:inputFileUpload value="#{backingBean.uploadedFile}" />

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Tomahawk Components

[110]

 <h:commandButton value="Upload"
 actionListener="#{backingBean.uploadFile}" />
 </h:panelGroup>
 <h:panelGroup>
 <h:outputText value="Directory listing for:
 #{backingBean.uploadDirectory.name}" />
 <t:tree
 value="#{backingBean.uploadedFilesTreeModel}"
 var="node" expandRoot="true"
 columnClasses="right-aligned,centered"
 styleClass="treeTable">
 <t:treeColumn>
 <f:facet name="header">
 <h:outputText value="File Name" />
 </f:facet>
 <h:outputText value="#{node.name}" />
 </t:treeColumn>
 <h:column>
 <f:facet name="header">
 <h:outputText value="Size (KB)" />
 </f:facet>
 <h:outputText value="#{node.size}">
 <f:convertNumber type="number"
 maxFractionDigits="2" groupingUsed="true" />
 </h:outputText>
 </h:column>
 <h:column>
 <f:facet name="header">
 <h:outputText value="Last Modified" />
 </f:facet>
 <h:outputText value="#{node.lastModified}">
 <f:convertDateTime dateStyle="full"
 type="both" />
 </h:outputText>
 </h:column>
 </t:tree>
 </h:panelGroup>
 </h:panelGrid>
</h:form>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 3

[111]

The following screenshot shows the rendered Tomahawk <t:tree> tag combined
with <t:treeColumn> tags to produce a dynamic tree table:

Customizing the tree component
The <t:tree2> tag in the Apache Tomahawk component library also renders a tree
component and is more customizable than the <t:tree> tag. It is important to note
that the two tree components in the Tomahawk library have similar but also different
behavior. In this example, we use the <t:tree2> tag to render a tree component with
custom icons for files and folders.

Custom tree node icons can be defined by declaring a named facet for each node
type that we are displaying in the tree. When the component is rendered, the
graphic image in each facet will be rendered for the corresponding tree node. In our
backing bean, we have to construct the tree model in a different way, as shown in the
following markup:

<h:form enctype="multipart/form-data">
 <h:panelGrid columns="1">
 <h:panelGroup>
 <t:inputFileUpload value="#{backingBean.uploadedFile}" />
 <h:commandButton value="Upload"
 actionListener="#{backingBean.uploadFile}" />
 </h:panelGroup>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Tomahawk Components

[112]

 <h:panelGroup>
 <h:outputText value="Directory listing for:
 #{backingBean.uploadDirectory.name}" />
 <t:tree2 value="#{backingBean.uploadedFilesTree2Model}"
 var="node">
 <f:facet name="folder">
 <h:panelGroup>
 <f:facet name="expand">
 <h:graphicImage value="images/yellow-folder-
 open.png" />
 </f:facet>
 <f:facet name="collapse">
 <h:graphicImage value="images/yellow-folder-
 closed.png" />
 </f:facet>
 <h:outputText value="#{node.description}" />
 </h:panelGroup>
 </f:facet>
 <f:facet name="file">
 <h:panelGroup>
 <h:graphicImage value="images/document.png" />
 <h:outputText value="#{node.description}" />
 </h:panelGroup>
 </f:facet>
 </t:tree2>
 </h:panelGroup>
 </h:panelGrid>
</h:form>

The Java code required to produce a tree model for this component is as
follows. Notice that we use recursion to build the tree model for both the tree
component examples.

public TreeNode getUploadedFilesTree2Model() {
 File dir = getUploadDirectory();
 TreeNode root = new TreeNodeBase("folder", dir.getName(),
 false);
 buildTree2Model(dir, root);
 return root;
}

@SuppressWarnings("unchecked")
private void buildTree2Model(File dir, TreeNode root) {
 File[] files = dir.listFiles();
 if (files != null) {
 for (File file : files) {

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 3

[113]

 boolean leaf = false;
 String name = file.getName();
 String type = null;
 if (file.isDirectory()) {
 type = "folder";
 } else {
 type = "file";
 leaf = true;
 }
 TreeNode node = new TreeNodeBase(type, name, leaf);
 root.getChildren().add(node);
 if (file.isDirectory()) {
 buildTree2Model(file, node);
 }
 }
 }
}

The <t:tree2> tag is similar to the <t:tree> tag, but it is easier to customize the
node icons with this tag.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Tomahawk Components

[114]

Navigation menus
The Apache Tomahawk component library includes a number of useful components
for creating navigation menus for our JSF applications. Depending on the
information architecture of the website, and the number of static and dynamic views
within the application, a navigation menu may be simple or complex. It may have a
small set of top-level menu items, or it may have a large number of submenus and
submenu items.

The navigation components in the Tomahawk component library integrate with the
declarative navigation and page flow support provided by the JSF framework. A
typical JSF application will have navigation rules declared in faces-config.xml
that specify the page flow for the use cases supported by the application.

<navigation-rule>
 <display-name>*</display-name>
 <from-view-id>*</from-view-id>
 <navigation-case>
 <from-outcome>products</from-outcome>
 <to-view-id>/products.jsf</to-view-id>
 <redirect />
 </navigation-case>
</navigation-rule>
<navigation-rule>
 <display-name>products.jsf</display-name>
 <from-view-id>/products.jsf</from-view-id>
 <navigation-case>
 <from-outcome>outofstock</from-outcome>
 <to-view-id>/outofstock.jsf</to-view-id>
 <redirect />
 </navigation-case>
</navigation-rule>
<navigation-rule>
 <display-name>products.jsf</display-name>
 <from-view-id>/products.jsf</from-view-id>
 <navigation-case>
 <from-outcome>order</from-outcome>
 <to-view-id>/orderform.jsf</to-view-id>
 <redirect />
 </navigation-case>
</navigation-rule>

The navigation rules declared in faces-config.xml can be visualized using a
graphical page flow tool such as the Eclipse Web Tools Platform (WTP) with JSF
support. In this example, we define a global navigation rule and two navigation rules
to handle two different outcomes related to placing an order for a particular product
from the products page.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 3

[115]

In the first case, we redirect to the product page from any other page in the site
when the outcome of an action is "products". In the second and third cases, if the
user has selected a product and that product is out of stock, we redirect the browser
to a page that displays an appropriate message to the user. If the inventory level for
the selected product is greater than zero, then we redirect the browser to an order
form page.

The following screenshot shows how to design a JSF page flow visually using the
WTP JSF tooling:

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Tomahawk Components

[116]

The previous screenshot demonstrates the Eclipse IDE's visualization of a few simple
navigation rules for our application. These include a global navigation rule from
any page (indicated by the asterisk symbol) to the "products" page, and two specific
outcomes from the products page: one for an "out-of-stock" page and one for an
"order" page. Now that we have some navigation rules declared, we can discuss how
to use the various navigation components within the Tomahawk component library.

Creating a navigation menu
The HtmlPanelNavigation component is rendered by the <t:panelNavigation>
tag as a vertical navigation menu. This component renders its children as rows in
an HTML <table> element. Optionally, a separator can be rendered after each item
by defining the style or styleClass attributes of the <t:panelNavigation> tag. If
<t:commandNavigation> tags are used to render the navigation items, the separator
CSS attributes are ignored and the styles defined by the <t:commandNavigation>
tag are used instead. The HtmlCommandNavigation renders a hyperlink that can
invoke a JSF backing bean action method. The return value of the action method
determines the next view to be displayed in the browser.

<h:form>
 <t:panelNavigation>
 <t:commandNavigation value="Home"
 styleClass="commandNavigation" />
 <t:commandNavigation value="About"
 styleClass="commandNavigation" />
 <t:commandNavigation value="Products"
 action="#{productBean.findAllProducts}"
 styleClass="commandNavigation" />
 <t:commandNavigation value="Services"
 styleClass="commandNavigation" />
 <t:commandNavigation value="Contact Us"
 styleClass="commandNavigation" />
 </t:panelNavigation>
</h:form>

The HtmlPanelNavigation is ideal for cases where the push-style MVC approach
is needed, such as when a list of products must be retrieved from a database and
processed in memory before being displayed in the view.

This component is not recommended for situations where the user is simply
navigating from one view to the next, and where no data processing is required in
between requests. For simple navigation scenarios, the HtmlPanelNavigationMenu
component offers several advantages over the HtmlPanelNavigation component.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 3

[117]

Push-style versus pull-style MVC pattern
The push-style MVC approach is limited because (a) it requires a form
POST submission that cannot be bookmarked easily by users or indexed
by search engines, (b) it requires additional effort to implement the
Post-Redirect-Get pattern to solve the double submit problem, and (c)
it requires that any data prepared by the backing bean is stored in
session scope so that it can survive two HTTP requests, increasing
memory usage on the application server.
In general, the pull-style MVC approach is superior because (a) it
defers data access to the rendering phase of the JSF request processing
lifecycle, (b) it supports RESTful, bookmarkable, and search engine
friendly URLs, (c) it only requires a GET request and so does not suffer
from the double submit problem, and (d) it does not require session
scope as data can be retrieved conveniently in a single HTTP request.

The following screenshot shows the navigation menu produced by the
<t:panelNavigation> tag:

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Tomahawk Components

[118]

Creating bookmarkable navigation menus
The HtmlPanelNavigationMenu component, rendered by the <t:panelNavigation2>
tag, is a powerful navigation control in the Apache Tomahawk component library. It is
compatible with the HtmlCommandNavigationItem component, an enhanced version
of the HtmlCommandNavigation component that supports menu item activation
states, submenus, horizontal and vertical layouts, dynamically generated menu items,
bookmarkable URLs, and more.

For simple navigation links, we can use the externalLink attribute of the
<t:commandNavigation2> tag to render hyperlinks in the navigation menu. These
links will produce GET requests so they can be bookmarked more easily by users.
Additionally, we can use the activeOnViewIds attribute of this tag to indicate which
views in our application should cause the menu items to appear activated.

In this example, we also use the <t:navigationMenuItems> tag to render
a dynamically generated navigation menu from a list of products. This component
can be used to implement both push-style and pull-style MVC patterns. Using a
push-style MVC approach, we would invoke an action method in our backing bean
to select a product before redirecting the user to another view.

<h:form>
 <t:panelNavigation2 layout="list" itemClass="mypage"
 activeItemClass="selected" openItemClass="selected"
 renderAll="true">
 <t:commandNavigation2 externalLink="index.jsf"
 activeOnViewIds="/index.jsf">
 <h:outputText value="Home" />
 </t:commandNavigation2>
 <t:commandNavigation2 externalLink="about.jsf"
 activeOnViewIds="/about.jsf">
 <h:outputText value="About" />
 </t:commandNavigation2>
 <t:navigationMenuItems
 value="#{productBean.productsNavigationMenuItemPull}" />
 <t:commandNavigation2 externalLink="services.jsf"
 activeOnViewIds="/services.jsf">
 <h:outputText value="Services" />
 <t:commandNavigation2 externalLink="integration.jsf"
 activeOnViewIds="/integration.jsf">
 <h:outputText value="Integration" />
 </t:commandNavigation2>
 <t:commandNavigation2 externalLink="training.jsf"
 activeOnViewIds="/training.jsf">
 <h:outputText value="Training" />
 </t:commandNavigation2>
 <t:commandNavigation2 externalLink="support.jsf"
 activeOnViewIds="/support.jsf">

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 3

[119]

 <h:outputText value="Support" />
 </t:commandNavigation2>
 </t:commandNavigation2>
 <t:commandNavigation2 externalLink="contact.jsf"
 activeOnViewIds="/contact.jsf">
 <h:outputText value="Contact Us" />
 </t:commandNavigation2>
</t:panelNavigation2>
</h:form>

The Java code required to render a dynamic navigation menu that supports product
selection is as follows:

public NavigationMenuItem getProductsNavigationMenuItemPush()
 {
 String context =
 FacesContext.getCurrentInstance().getExternalContext().
 getRequestContextPath();
 String view = context + "/products.jsf";
 NavigationMenuItem menu = new NavigationMenuItem();
 menu.setLabel("Products");
 menu.setActiveOnViewIds("/products.jsf");
 menu.setExternalLink(view);
 List<Product> products = getProducts();
 for (Product product : products) {
 NavigationMenuItem item = new NavigationMenuItem();
 item.setAction("products");
 item.setLabel(product.getName());
 item.setActionListener("#{productBean.selectProduct}");
 item.setValue(product);
 menu.add(item);
 }
 return menu;
}

When the user clicks on a product in our navigation menu, the selectProduct
method in our backing bean is invoked. We obtain the value from the component
and assign it to our selectedProduct property before redirecting the user to the
view indicated by the "products" action outcome.

public void selectProduct(ActionEvent event) {
 UIComponent comp = event.getComponent();
 if (comp instanceof UICommand) {
 UICommand command = (UICommand) comp;
 Object value = command.getValue();
 if (value instanceof Product) {
 setSelectedProduct((Product) value);
 }
 }
}

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Tomahawk Components

[120]

Using a pull-style MVC approach, each product hyperlink will be rendered as
a submenu item in the Products navigation menu and will pass a unique identifier
for each product as a form parameter on the query string. This example demonstrates
how to use pull-style MVC to implement a more RESTful approach
to web development.

 <t:navigationMenuItems
 value="#{productBean.productsNavigationMenuItemPull}" />

The Java code required to render bookmarkable product URLs in our navigation
menu is as follows:

public NavigationMenuItem getProductsNavigationMenuItemPull()
 {
 String context =
 FacesContext.getCurrentInstance().getExternalContext().
 getRequestContextPath();
 String view = context + "/products.jsf";
 NavigationMenuItem menu = new NavigationMenuItem();
 menu.setLabel("Products");
 menu.setActiveOnViewIds("/products.jsf");
 menu.setExternalLink(view);
 List<Product> products = getProducts();
 for (Product product : products) {
 NavigationMenuItem item = new NavigationMenuItem();
 item.setAction("products");
 item.setLabel(product.getName());
 item.setExternalLink(view + "?product=" +
 product.getId());
 item.setValue(product);
 menu.add(item);
 }
 return menu;
}

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 3

[121]

When the user clicks on a hyperlink, the browser sends a GET request to our web
application that includes a "product" request parameter, that is, the product ID. The
Java code required to look up the product by ID is as follows. In this example, we
simply look up the product by ID in a hash map, but in a real application we could
also perform a database query to retrieve the data.

public Product getSelectedProduct() {
 FacesContext context = FacesContext.getCurrentInstance();
 ExternalContext external = context.getExternalContext();
 String param =
 external.getRequestParameterMap().get("product");
 if (param != null && !param.equals("")) {
 selectedProduct = productsById.get(param);
 }
 return selectedProduct;
}

After clicking on Products, the user is redirected to the Products page where more
information about the selected product is displayed, as seen in the
next screenshot:

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Tomahawk Components

[122]

Notice the Place Order link on the Products page. This is a standard
<h:commandLink> tag rendering an HtmlCommandLink component that invokes a
JSF action method in our backing bean. Depending on the outcome of the method,
the user may be redirected to one of two pages. If the inventory level for the selected
product is greater than zero, the user will be redirected to an order form page, if the
inventory level is zero, then he/she will be redirected to an "out-of-stock" page.

The HtmlPanelNavigationMenu component rendered by the <t:panelNavigation2>
tag can also display a horizontal menu with the creative use of CSS styling, as shown
in the next screenshot:

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 3

[123]

Populating a navigation menu
The <t:navigationMenuItem> tag adds a NavigationMenuItem object to its parent
component. A NavigationMenuItem is a subclass of the standard JSF SelectItem
class that is used to represent a menu item in a navigation menu tree. This tag can be
used to render a single menu item. For dynamic navigation menus, we can use the
<t:navigationMenuItems> tag and bind it to a property in our backing bean.

Generating dynamic navigation menus
The <t:navigationMenuItems> tag can be used to generate dynamic navigation
menus. The value attribute of this tag accepts a value expression that evaluates to an
HtmlNavigationMenuItem or a collection of HtmlNavigationMenuItem objects.

Using the JSCookMenu component
The JSCookMenu is a popular, open source JavaScript menu system that can be used
to render simple or complex navigation menus for a web application using different
layouts. The Apache Tomahawk component library supports this menu through the
<t:jscookMenu> tag.

In the following example, we render a horizontal navigation menu that includes a
combination of <t:navigationMenuItem> and <t:navigationMenuItems> tags to
produce a navigation menu that has both static and dynamic elements.

For this component to function properly, all navigation menu items
must have corresponding navigation rules in faces-config.xml.

<h:form>
 <t:jscookMenu theme="ThemeOffice" layout="hbr">
 <t:navigationMenuItem itemLabel="Home" action="home" />
 <t:navigationMenuItem itemLabel="About" action="about" />
 <t:navigationMenuItems
 value="#{productBean.productsJsCookMenuItem}" />
 <t:navigationMenuItem itemLabel="Services"
 action="services" />
 <t:navigationMenuItem itemLabel="Contact Us"
 action="contact" />
 </t:jscookMenu>
 <input type="hidden" name="jscook_action" />
</h:form>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Tomahawk Components

[124]

Additionally, the code required to produce a dynamic navigation menu is slightly
different for this example. As the NavigationMenuItem object's value is encoded as
a string in the HTML response sent to the browser, we must provide the appropriate
string representation of our product object using the product's id property.

public NavigationMenuItem getProductsJsCookMenuItem() {
 String context =
 FacesContext.getCurrentInstance().getExternalContext().
 getRequestContextPath();
 String view = context + "/products.jsf";
 NavigationMenuItem menu = new NavigationMenuItem();
 menu.setLabel("Products");
 menu.setActiveOnViewIds("/products.jsf");
 menu.setExternalLink(view);
 List<Product> products = getProducts();
 for (Product product : products) {
 NavigationMenuItem item = new NavigationMenuItem();
 item.setAction("products");
 item.setLabel(product.getName());
 item.setActionListener("#{productBean.selectProduct}");
 item.setValue(product.getId());
 menu.add(item);
 }
 return menu;
}

When the user clicks on the Products link in the navigation menu, our backing bean
method is invoked and the selected product is stored for rendering in the view.

public void selectProduct(ActionEvent event) {
 UIComponent comp = event.getComponent();
 if (comp instanceof UICommand) {
 UICommand command = (UICommand) comp;
 Object value = command.getValue();
 if (value instanceof Product) {
 setSelectedProduct((Product) value);
 } else if (value instanceof String) {
 String id = (String) value;
 Product product = productsById.get(id);
 setSelectedProduct(product);
 }
 }
}

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 3

[125]

The <t:jsCookMenu> tag renders an interactive JavaScript menu system based on
the JSCookMenu library as shown in the following screenshot:

In the next example, we modify the JSCookMenu component to use a different theme
and a vertical orientation by changing the layout attribute from "hbr" (horizontally,
bottom-right) to "vbr" (vertically, bottom-right).

<h:form>
 <t:jscookMenu theme="ThemeOffice" layout="vbr">
 <t:navigationMenuItem itemLabel="Home" action="home" />
 <t:navigationMenuItem itemLabel="About" action="about" />
 <t:navigationMenuItems
 value="#{productBean.productsJsCookMenuItem}" />
 <t:navigationMenuItem itemLabel="Services"
 action="services" />
 <t:navigationMenuItem itemLabel="Contact Us"
 action="contact" />
 </t:jscookMenu>
 <input type="hidden" name="jscook_action" />
</h:form>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Tomahawk Components

[126]

The following screenshot shows the JSCookMenu rendered in a vertical orientation
with the "ThemeOffice" look and feel:

User interface security
Security is an important consideration that should be at the forefront of our minds
when we design our user interfaces. Fortunately, many components in the Apache
Tomahawk component library have built-in security features that help to integrate
our user interfaces with the Java security architecture.

For example, we may want to display certain controls on our screen only for certain
users when they login to our application. An administrative user may be able to
modify other users' accounts while a normal user cannot. How do we ensure that
the UI components associated with higher privileged users and use cases are not
exposed to users with insufficient privileges?

Before we discuss how to implement user interface security using Apache
Tomahawk components, let's examine the underlying security mechanisms of the
Java EE runtime environment.

JSF applications run inside what is known as a web container. A web container is
a standardized Java EE runtime environment for web applications that is capable
of processing HTTP requests from a web browser, invoking Java Servlets and JSP
pages, and serving a response, typically an HTML document, back to the browser.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 3

[127]

One of the most popular open source web containers for Java is the Apache Tomcat
Servlet/JSP engine. We will be using Apache Tomcat to run the examples for several
chapters in this book. In later chapters, we will use the JBoss application server to
demonstrate how to integrate a JSF application with EJB 3 components to access a
relational database.

A Java web container can use a number of mechanisms to implement web
application security. We will look at how to use the Java Authentication and
Authorization Service (JAAS) in an Apache Tomcat environment to implement
role-based access control (RBAC) using Apache Tomahawk components. The first
step is to configure our web application's deployment descriptor, the web.xml file, in
our WEB-INF folder, to define the roles and security constraints required by
our application.

Configuring web.xml
The first step in securing our user interface is to declare some roles and security
constraints in our web application deployment descriptor. On its own, Java EE
declarative security only allows us to implement role-based access control at the page
or resource level of our web application. What if we want a more fine-grained role-
based access control at the UI component level? Apache Tomahawk components allow
us to implement Java EE declarative security at the user interface component level.

To demonstrate, the roles declared in our web.xml file will be enforced at the
page level of our application by applying Java security constraints to resource
collections. At the same time, we will enforce these same role-based permissions
at the level of user interface controls in some of our views using the Tomahawk
HtmlCommandButton and HtmlCommandLink components.

In the following example from our web.xml file, we declare a user role and an
administrator role and we indicate that HTTP basic authentication is required
when the user accesses the /user/* and /admin/* resource collections within
the web application.

<login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>Authentication Required</realm-name>
</login-config>

<security-role>
 <description>The User role.</description>
 <role-name>User</role-name>
</security-role>

<security-role>
 <description>The Administrator role.</description>
 <role-name>Administrator</role-name>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Tomahawk Components

[128]

</security-role>

<security-constraint>
 <display-name>Administrator access only</display-name>
 <web-resource-collection>
 <web-resource-name>The Admin area</web-resource-name>
 <url-pattern>/admin/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <description>Required roles for the Admin
 area.</description>
 <role-name>Administrator</role-name>
 </auth-constraint>
</security-constraint>

<security-constraint>
 <display-name>Authenticated users only</display-name>
 <web-resource-collection>
 <web-resource-name>The User area</web-resource-name>
 <url-pattern>/users/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <description>Required roles for the Admin
 area.</description>
 <role-name>User</role-name>
 </auth-constraint>
</security-constraint>

Next, we enable Tomcat's built-in user database JAAS login module to handle our
authentication attempts. This is achieved by replacing the tomcat-users.xml file
with the following XML:

<tomcat-users>
 <role rolename="User"/>
 <role rolename="Administrator"/>
 <user username="user" password="user" roles="User"/>
 <user username="admin" password="admin"
 roles="User,Administrator"/>
</tomcat-users>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 3

[129]

When we attempt to access the admin area of the website we get the following
authentication dialog in the browser:

Security-enabled components
To demonstrate how the Apache Tomahawk component library extends the
concept of container-managed security to the user interface level, let's look at a
simple example of how to render components conditionally based on the user's
authenticated roles.

Once we have been authenticated as an administrator by Tomcat, our browser
session will be associated with a JAAS subject with two security principles—one
representing our "Administrator" role and the other representing our "User" role.

On the administrator page, we render a form with four controls on it. The first
row in the panel grid contains two buttons, one that is enabled for users with the
"Administrator" role, and one that is enabled for users with the "User" role. The
second row in the grid contains two links, one that is visible for users with the
"Administrator" role, and one that is visible for users with the "User" role. As our
administrator account has both roles, all the controls are enabled and visible on
the screen.

<h:form>
 <h:panelGrid columns="2">
 <t:commandButton enabledOnUserRole="Administrator"
 value="Administrator Button" />
 <t:commandButton enabledOnUserRole="User" value="User
 Button" />
 <t:commandLink value="Administrator Link"
 visibleOnUserRole="Administrator" />
 <t:commandLink value="User Link" visibleOnUserRole="User" />
 </h:panelGrid>
</h:form>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Tomahawk Components

[130]

The following screenshot shows the administrator screen. Note that all the controls
are visible.

Suppose we close and reopen our browser, and then attempt login once again to the
admin area of the application. This time, let's enter the "user" account credentials, as
shown in this screenshot:

The standard web container security mechanism prevents us from accessing the
admin area due to insufficient privileges associated with our account, and we get an
HTTP status 403 error page instead as shown in the next screenshot:

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 3

[131]

Let's navigate to the user's area of the application. The following screenshot displays
the user page. This page contains an exact duplicate of the admin area page. Now we
can see only three controls on the screen: the administrator button is disabled and the
administrator link is no longer visible.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Tomahawk Components

[132]

Tomahawk SecurityContext EL extension
The Tomahawk library includes an extension to the JSF Expression Language
that introduces the #{securityContext} object, which provides access to
container-managed security context information. Unlike the Tomahawk
visibleOnUserRole and enabledOnUserRole attributes, this information is
available to any JSF UI component. For more information, please see the
MyFaces website (http://wiki.apache.org/myfaces/SecurityContext).

Displaying data
There are many ways to display data to the user with HTML. For example, we can
use an inline series of text values, an unordered list, an ordered list, a definition list,
or a table to present the same information. In the previous chapter, we looked at an
example that used an HTML <table> element rendered by the <h:dataTable> tag.
In this chapter, we will look at several Tomahawk components that support iterating
Java data structures and rendering data to the user in interesting ways.

Let's begin by studying the HTML tags available for presenting lists and collections
of information before we look at the Tomahawk components that utilize these
particular tags during the rendering phase of the JSF request processing lifecycle.

When implementing a web page that displays data to the user, how do we know
which are the right HTML elements to use? The answer to this question depends
on a number of factors, such as the volume and type of information being
presented, and how the presentation of information fits into the overall context of
our application.

On one hand, we may have very clear requirements from our users as to how the
information should be displayed; in which case our job is just implementing what
they want. On the other hand, the user interface requirements of our web application
may not specify exactly how information should be displayed, in which case we
must use our judgment to choose the correct set of HTML elements for a particular
screen. In either case, it helps us to understand the different HTML tags available
and when they should be used.

Let's begin with the list elements. The HTML markup language includes three
list elements:

•	 represents an unordered list
•	 represents an ordered list
•	 <dl> represents a definition list

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 3

[133]

As the name suggests, an unordered list contains a series of items in no particular
order, such as a shopping list. Browsers typically render this element as a bulleted
list, and support customization of the bullet icons through cascading style sheets. An
ordered list contains a series of items arranged in a particular order, such as a set of
instructions for completing a task. A definition list represents a series of terms with
corresponding definitions, such as a technical glossary.

Rendering an unordered list
The HtmlDataList component is ideally suited for rendering different types of
dynamic lists of information. Let's look at three examples of how to use this tag
to render HTML list elements. In the first example, we render a list of files as an
unordered list.

<t:dataList value="#{backingBean.uploadedFiles}" var="file"
 layout="unorderedList">
 <h:outputLink value="file:///#{file.path}">
 <h:outputText value="#{file.name}" />
 </h:outputLink>
</t:dataList>

The <t:dataList> tag is rendered in the browser as an unordered list backed by our
managed bean. We render a hyperlink control for each file in the list that navigates to
the file on the local file system.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Tomahawk Components

[134]

In the second example, we render the same collection of files as an ordered list.

<t:dataList value="#{backingBean.uploadedFiles}" var="file"
 layout="orderedList">
 <h:outputLink value="file:///#{file.path}">
 <h:outputText value="#{file.name}" />
 </h:outputLink>
</t:dataList>

The following screenshot shows that by setting the layout attribute to orderedList,
the behavior of the tag can be changed to render an HTML ordered list for the same
backing bean data.

Rendering a definition list
The Tomahawk <t:dataList> tag does not support rendering definition lists out
of the box, so we will have to use another Tomahawk tag to achieve this result. The
HtmlTag component rendered by the <t:htmlTag> tag is a very flexible and useful
component in the Tomahawk tag library.

It can be used to render any arbitrary HTML tag conditionally, giving us greater
control over HTML rendering than is typically available when using plain HTML.
In this example, we use the HtmlTag component together with the HtmlDataList
component to render a definition list dynamically.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 3

[135]

<t:htmlTag value="dl" rendered="#{not empty
 backingBean.adaptedUploadedFiles}">
 <t:dataList value="#{backingBean.adaptedUploadedFiles}"
 var="file" layout="simple">
 <dt>#{file.name}</dt>
 <dd>
 This #{file.type} has a content type of
 #{file.contentType}. It was last modified on
 #{file.lastModified} and contains #{file.size} bytes
 of data.
 </dd>
 </t:dataList>
</t:htmlTag>

The following screenshot shows a definition list rendered by combining
the <t:dataList> and the <t:htmlTag> Tomahawk tags:

Rendering a data table
Sometimes, the data we are trying to display on a web page is too complex to
display as a list. In HTML, tables are better than lists for rendering certain types
of information. The Apache Tomahawk component library includes several table
components that can be used to render tabular data. Let's begin by looking at the
extended data table.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Tomahawk Components

[136]

The <t:dataTable> tag renders the Tomahawk HtmlDataTable component
as an HTML table that introduces a number of performance and functionality
improvements to the standard JSF HTML data table component.

The Tomahawk HtmlDataTable component includes a more sophisticated state
preservation feature that enables the component to maintain its model state between
HTTP requests. Additionally, this component supports column sort ordering—and
conditional rendering based on user roles.

The following JSF markup demonstrates how to construct an HTML data table
using the Tomahawk <t:dataTable> tag. The approach is similar to the standard
JSF HTML data table component. The <h:column> tag is used to define each
column, the <t:dataTable> tag's value attribute is bound to a backing bean List
or DataModel property, and the var attribute specifies the variable name to use
while rendering the rows. Notice that we have set the sortable attribute to true to
enable column sorting.

<t:dataTable value="#{customerBean.customerList}"
 var="customer" rowClasses="row-even,row-odd"
 columnClasses="left-aligned,left-aligned,centered,left-
 aligned" border="2" cellpadding="5" cellspacing="2" rows="8"
 sortable="true">
 <h:column>
 <f:facet name="header">
 <h:outputText value="Full Name" />
 </f:facet>
 <h:outputText value="#{customer.fullName}" />
 </h:column>
 <h:column>
 <f:facet name="header">
 <h:outputText value="Birth Date" />
 </f:facet>
 <h:outputText value="#{customer.birthDate}">
 <f:convertDateTime type="date" dateStyle="medium" />
 </h:outputText>
 </h:column>
 <h:column>
 <f:facet name="header">
 <h:outputText value="Phone Number" />
 </f:facet>
 <h:outputText value="#{customer.phoneNumber}" />
 </h:column>
 <h:column>
 <f:facet name="header">
 <h:outputText value="Country of Origin" />

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 3

[137]

 </f:facet>
 <h:outputText value="#{customer.countryOfOrigin.name}" />
 </h:column>
</t:dataTable>

This screenshot displays a dynamic data table displaying customer information.
The Tomahawk data table component has built-in support for column sorting.
The headers are clickable links that sort the data in the table by that column.

Paginating a data table
There are also situations where we have more data than we can render at once in
our view. Instead of trying to display hundreds of rows in a data table, a common
approach is to implement a "paging" system that allows users to navigate through a
data set, one screen at a time. Conveniently, data-oriented Tomahawk components can
support paging and data set navigation using the HtmlDataScroller component.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Tomahawk Components

[138]

Notice in the next example that we actually use two HtmlDataScroller components,
one to render pagination numbers, and one to render the current page and page
index information.

<h:panelGrid columns="2" styleClass="dataTable"
 columnClasses="left-aligned,right-aligned">
 <t:dataScroller for="dataTable" paginator="true"
 paginatorMaxPages="10" paginatorActiveColumnStyle="font-
 weight:bold;" immediate="true" />
 <t:dataScroller for="dataTable" paginator="false"
 pageCountVar="pageCount" pageIndexVar="pageIndex">
 <h:outputFormat value="Page {0} of {1}">
 <f:param value="#{pageIndex}" />
 <f:param value="#{pageCount}" />
 </h:outputFormat>
 </t:dataScroller>
</h:panelGrid>

The next screenshot shows the Tomahawk data table component rendered with two
paginator controls—one in the bottom-left corner displaying paging controls, and
one in the bottom-right corner displaying the current page and total page count.
This example also demonstrates the customizability of the <t:dataScroller> tag.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 3

[139]

Rendering a multi-column data table with a
newspaper layout
Another interesting table component within the Apache Tomahawk
component library is the HtmlNewspaperTable component rendered by the
<t:newspaperTable> tag. This component is ideal for situations where we need
to render dynamic data across several columns, similar to the way a newspaper
displays the text for a particular story using several columns of text across the page.

<t:newspaperTable id="dataTable"
 value="#{customerBean.customerList}" newspaperColumns="3"
 var="customer" border="2"
 columnClasses="column-odd,column-even" cellpadding="5"
cellspacing="2"
 rows="9" sortable="true">
 <h:column>
 <h:outputLink value="##{customer.fullName}">
 <h:outputText value="#{customer.fullName}" />
 </h:outputLink>
 <h:outputText value=" was born on " />
 <h:outputText value="#{customer.birthDate}">
 <f:convertDateTime type="date" dateStyle="short" />
 </h:outputText>
 <h:outputText value=" in #{customer.countryOfOrigin}. " />
 <h:outputText value="To reach him, call
 #{customer.phoneNumber}." rendered="#{customer.male}" />
 <h:outputText value="To reach her, call
 #{customer.phoneNumber}." rendered="#{!customer.male}"
 />
 </h:column>
</t:newspaperTable>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Tomahawk Components

[140]

The following screenshot demonstrates the Tomahawk HtmlNewspaperTable
component. The data is rendered column by column, from top to bottom and then
from left to right. Like the previous example, this table is paginated using the
Tomahawk HtmlDataScroller component.

Summary
In this chapter, we examined the Apache Tomahawk JSF component library. We
looked at a number of interesting components in this library and learned how to
implement common web development use cases, such as validating user input,
accepting time information from the user, working with files, using tree components,
creating navigation menus, securing our user interfaces, and displaying tabular data.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Trinidad Components
The Apache Trinidad component library is an exciting set of over 100 rich user
interface controls, including color choosers, calendars, trees, data tables, shuttle
components, navigation menus, panels, and more. Trinidad also includes a number
of powerful converters and validators, a templating framework, a dialog system, and
is compatible with both Facelets and JSP.

In this chapter, we will look at how to build user interfaces for a JSF application
using the Apache Trinidad component library. Some of the web development tasks
we will cover include:

•	 Receiving input from the user
•	 Performing client-side conversion and validation
•	 Enabling Ajax functionality
•	 Laying out components on the screen
•	 Shuttling selections between lists
•	 Working with hierarchical data using tree and tree table components
•	 Creating navigation menus
•	 Skinning and theme selection
•	 Implementing dialog windows for our application

As Apache Trinidad is the first JSF component library introduced in this book that
uses the popular Ajax approach for implementing a Rich Internet Application (RIA),
a short introduction to Ajax is in order.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Trinidad Components

[142]

What is Ajax?
Ajax is an acronym for Asynchronous JavaScript and XML that describes a
web development technique for enhancing user interactivity and client/server
communication in a web application. The term Ajax was first coined in 2005 and
since then it has become one of the dominant approaches today for building Rich
Internet Applications (RIAs). What Ajax does is allow us to create pages that can
update themselves in response to a wide variety of user interactions, creating a more
responsive user interface and richer web experience for our users.

Ajax involves JavaScript code that sends asynchronous HTTP requests to the server
using the XMLHttpRequest object API supported by modern browsers, then it waits
a response from the server, and then it performs changes to the HTML Document
Object Model (DOM) to update the web page in the browser (an approach also
known as Dynamic HTML or DHTML). When the user clicks on a button, for
example, the button invokes a JavaScript function that sends an HTTP request
directly to the server and waits for a response. The response from the server may
include XML, or it may be a plain text response in the JavaScript Object Notation
(JSON) format.

When the JavaScript function that initiated the request receives a response, it can then
update the HTML document however it chooses. For example, it may re-render an
element such as a <div> tag, change some text on the page, or modify CSS attributes
to create interesting visual effects. To the user, this appears almost magical. The
browser has suddenly updated itself in visually appealing ways without the user
having to click on the refresh button.

One of the key value propositions of JSF components is their ability to encapsulate
rich behavior such as Ajax capabilities without requiring the developer to learn an
Ajax API or even write a single line of JavaScript. All this good stuff is provided
"right out of the box". As Ajax is supported by many JSF component libraries, such
as Apache Trinidad, ICEfaces, JBoss RichFaces/Ajax4jsf, and JSF 2.0, we will be
discussing Ajax concepts throughout this book.

Receiving input from the user
The Apache Trinidad framework introduces a rich, innovative, and intuitive set of
UI components for receiving input from users. Trinidad provides components for
receiving color information, date/time values, numeric input, and text from users.
These components can be used to enhance the usability and appeal of an existing
JSF application.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 4

[143]

Rendering a color picker
Handling color selection can be a challenging task for web applications. The
CoreInputColor component simplifies color selection in our user interface by
providing an intuitive control for specifying color information.

The Apache Trinidad framework provides the <tr:inputColor> tag to handle color
selection in a JSF application. The <tr:inputColor> tag can be used in several ways.
We will look at two examples of how to use this tag: one that involves a pop-up color
chooser dialog, and one that renders a color selection palette on the same page.

In the first example, we use the <tr:inputColor> tag to render the CoreInputColor
component as a color selection field in our form. It displays a text field with a color
selection button beside it that launches a color selection window. The field is bound
to a property in our backing bean of type java.awt.Color. The Trinidad framework
handles the conversion of this data type for us automatically.

<tr:form>
 <tr:outputFormatted styleUsage="instruction" value="inputColor" />
 <tr:inputColor id="sic3" label="Enter or select color"
 value="#{customerBean.customer.favoriteColor}">
 <f:facet name="help">
 <tr:outputText value="Use format (#RRGGBB) or (r,g,b)" />
 </f:facet>
 </tr:inputColor>
 <tr:commandButton text="Submit" />
 </tr:form>
<tr:form>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Trinidad Components

[144]

When the <tr:inputColor> tag is combined with the <tr:chooseColor> tag,
Trinidad renders the color selection palette on the same page as the text field,
and so does not require the use of an external window for color selection in this
case. Combining these tags can be useful in situations where we want to limit the
use of external windows in our user interface. The next example demonstrates
this technique. Notice that we associate the <tr:inputColor> tag with the
<tr:colorChooser> tag by specifying its ID in the chooseId attribute. We also set
the compact and simple attributes to true to minimize the appearance of this control
on the screen.

<tr:form>
 <h:panelGrid>
 <tr:outputFormatted styleUsage="instruction" value="Select a
 Color" />
 <tr:inputColor id="inputColor" compact="true" simple="true"
 value="#{customerBean.customer.favoriteColor}"
 chooseId="chooseColor" />
 <tr:colorChooser> id="chooseColor" />
 <tr:commandButton text="Submit" />
 </h:panelGrid>
</tr:form>

Rendering a calendar
Date and time entry is a very common task for web applications. Like the Tomahawk
component library, Apache Trinidad includes a date/time control that facilitates
selecting a valid date by presenting an interactive calendar to the user.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 4

[145]

There are several differences between the date/time components in the Apache
Tomahawk component library and those provided by the Trinidad framework. For
instance, Trinidad includes only one date/time component—the CoreInputDate
component rendered by the <tr:inputDate> tag—while Tomahawk includes
several date/time components provided by tags such as <t:inputDate>,
<t:inputCalendar>, and <t:schedule>.

By itself, Trinidad's <tr:inputDate> tag renders a text field with a button
beside it that pops up a calendar window for the user to interact with. When this
tag is combined with the <tr:chooseDate> tag, the calendar can be rendered
on the same page as the text field without requiring a pop-up window. This is
similar to the way the <tr:inputColor> tag behaves when it is combined with the
<tr:chooseColor> tag.

The following example demonstrates how to render a Trinidad calendar inline on
our JSF page.

 <h:panelGrid columns="1">
 <tr:outputFormatted styleUsage="instruction"
 value="Please enter your birthdate." />
 <h:panelGroup>
 <tr:chooseDate id="chooseDate"
 minValue="#{backingBean.minimumDate}" />
 <tr:inputDate chooseId="chooseDate"
 value="#{customerBean.customer.birthDate}"
 required="#{true}"
 label="#{bundle.dateOfBirthLabel}">
 <tr:validateDateTimeRange
 minimum="#{backingBean.minimumDate}" />
 </tr:inputDate>
 </h:panelGroup>
 <h:commandButton value="Submit" />
 <h:panelGroup rendered="#{customerBean.customer.birthDate ne
 null}">
 <h:outputText value="Your birth date is " />
 <h:outputText value="#{customerBean.customer.birthDate}">
 <f:convertDateTime dateStyle="full" type="date" />
 </h:outputText>
 </h:panelGroup>
 </h:panelGrid>

Another distinguishing feature of the Trinidad <tr:inputDate> tag is its inherent
ability to use Ajax to communicate between the browser and the server more
transparently and less disruptively. This behavior is evident when we attempt to
change years or months in the calendar control.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Trinidad Components

[146]

What is actually happening is that the JavaScript rendered by the component is
initiating an asynchronous HTTP request and processing the result without requiring
a full-page refresh as is normally the case in browser/server communication. In
Apache Trinidad terminology, this behavior is also known as Partial Page Rendering
(PPR). We will be covering this topic in more detail later on in this chapter.

Rendering a number spinbox
Accepting numeric input from users is a very common task that can be implemented
using standard JSF HTML components. There are, however, several limitations
to using a text field for numeric data entry. First, it is difficult to restrict the range
of values entered by the user without submitting a request to the server for form
validation or implementing custom JavaScript to check the value.

Secondly, typing in a number into a text field is not always the most intuitive way
to enter this type of information. Desktop application users have access to a wider
range of numeric UI components such as sliders and spinboxes.

Fortunately, the Trinidad CoreInputNumberSpinbox component solves these
problems gracefully and provides a way for users to enter numeric data within a
specific range. The input can be validated on the client side using an intuitive control
that mimics desktop application component behavior.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 4

[147]

As shown in the following example, the <tr:inputNumberSpinbox> tag renders a
numeric UI component that restricts data entry to a particular range on the client
side and provides an interesting UI component for our JSF applications that extend
beyond the limited set of HTML components supported by the browser.

<tr:form>
 <tr:inputNumberSpinbox label="Enter Number between 1976 and
 2010 " value="2000" minimum="1976" maximum="2010" stepSize="1"
 shortDesc="enter # between 1976 and 2010">
 <f:validateLongRange minimum="1976" maximum="2010" />
 </tr:inputNumberSpinbox>
 <tr:commandButton text="Submit" />
</tr:form>

Rendering a text field
The Trinidad <tr:inputText> tag renders the CoreInputText component as an
HTML <input> element or <textarea> element, depending on the number of rows
specified in the rows attribute. In fact, this component can also be used to render a
password field by setting the secret attribute to true. Therefore, any textual input
required by a JSF application can be implemented using this component.

Additionally, this component can render its own label and message, further
simplifying the task of writing JSF markup to render a properly formatted text
component that displays a validation message. By default, this component will
render its own label and message, but these features can be disabled by setting the
simple attribute to true.

<tr:form>
 <tr:inputText value="#{backingBean.name}" label="Enter Name: " />
 <tr:commandButton text="Submit" />

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Trinidad Components

[148]

 <tr:outputText styleClass="AFInstructionText"
 value="The submitted value was: " />
 <tr:outputText styleClass="AFInstructionText"
 value="#{backingBean.name}" />
</tr:form>

Rendering a selectable list of values
The Apache Trinidad framework also provides innovative components for
rendering selection lists to the user. The <tr:inputListOfValues> tag renders the
CoreInputListOfValues component as an HTML table with radio buttons that can
be displayed in a dialog window to assist in the selection of an item from a list of a
predetermined values.

In this example, we use the <tr:inputListOfValues> tag to render a text field with
a button beside it that launches a new browser window to render a list of predefined
values to the user. This also demonstrates the Apache Trinidad dialog framework
that leverages the JSF navigation rules defined in faces-config.xml. We will cover
this concept in more detail further on in this chapter, so for now let's concentrate
on the list of values rendered in the window rather than how the dialog window
was opened in the first place and how the selected value is passed back to the
original page.

<tr:form partialTriggers="inputListOfValues">
 <tr:inputListOfValues label="Select Product:"
 id="inputListOfValues"
 value="(Empty)" searchDesc="Pick an element" columns="50"
 action="dialog:showProductSelectionDialog" />
 <tr:panelGroupLayout
 rendered="#{productBean.selectedProduct nenull}"
 inlineStyle="display:block">

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 4

[149]

 <tr:outputText value="You Selected: " />
 <tr:outputText value="#{productBean.selectedProduct.name}" />
 </tr:panelGroupLayout>
</tr:form>

Client-side conversion and validation
There are a number of ways by which the Apache Trinidad framework can enhance
the interactivity and improve the performance of a JSF web application. One of those
ways is through the use of client-side form validation. This concept is not new, and
there are many JavaScript examples on the Internet that demonstrate how to convert
and validate form fields in the browser before the form data is submitted to the server.

What is interesting is how easy it is to enable client-side form conversion and
validation for built-in components using the Apache Trinidad framework. Trinidad
also allows us to create our own custom client-side converters and validators
through a set of Java and JavaScript interfaces. Let's look at how to enable client-side
conversion and validation for built-in Trinidad components.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Trinidad Components

[150]

Enabling client-side validation in
trinidad-config.xml
To demonstrate, all we have to do is add a single XML element to our
trinidad-config.xml file. This file is where a number of Trinidad-specific
configuration settings are defined. It should be located in the WEB-INF directory, in
the same location as the faces-config.xml file. By setting the client-validation
element value to ALERT, we turn on client-side form validation for all Trinidad
components. We can disable client-side validation by setting this value to DISABLED.
The default value is INLINE and causes server-side validation messages to appear
inline within the JSF page.

<trinidad-config xmlns="http://myfaces.apache.org/trinidad/config">
 ...
 <client-validation>ALERT</client-validation>
 ...
</trinidad-config>

As shown in the following screenshot, this change results in a JavaScript alert box
being presented to the user when form validation fails. This saves us a trip to the
server when we are validating our form and can improve both the interactivity and
the performance of our application.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 4

[151]

Validating one field at a time
Trinidad also supports event-based client-side validation. For example, sometimes
it is nice to display validation messages to the user immediately after they have
tabbed over or entered a value into a field. For text fields, we can use the onblur
JavaScript event to fire the validation. For menus and other selection components,
we can use the onchange event to fire the validation. Trinidad provides a JavaScript
function named _validateInput(event) that invokes validation for the current
field. To enable partial form validation, we should set the <client-validation>
element to INLINE (the default value). Then, we can markup our Trinidad page
as follows:

 <tr:form>
 <tr:panelFormLayout>
 <tr:outputLabel for="name" value="Please enter your name: " />
 <tr:inputText id="name" required="#{true}" label="Name"
 onblur="_validateInput(event);" />
 <tr:outputLabel for="birthdate" value="Please enter your
 birthday: " />
 <tr:chooseDate id="chooseDate"
 minValue="#{backingBean.minimumDate}" />
 <tr:inputDate chooseId="chooseDate"
 value="#{customerBean.customer.birthDate}"
 required="#{true}" label="Birthday"
 onblur="_validateInput(event);">
 <tr:validateDateTimeRange
 minimum="#{backingBean.minimumDate}" />
 </tr:inputDate>
 <tr:commandButton text="Submit" />
 </tr:panelFormLayout>
</tr:form>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Trinidad Components

[152]

The next screenshot demonstrates the result of calling the _validateInput()
JavaScript function after the first name text field loses focus. When the onblur event
is raised, the Trinidad framework validates the field and renders the inline validation
message. Validating one field at a time is not compatible with the ALERT client-side
validation mode.

Enabling Ajax functionality
One of the most enticing features of the Apache Trinidad component library is its
support for Ajax. Many Trinidad components support Ajax functionality out of the
box, and do not require any JavaScript coding or knowledge of Ajax techniques
on the part of developers. In Trinidad terminology, the Ajax behavior of these
components is known as Partial Page Rendering, or PPR for short.

Implementing Ajax-enabled JSF pages with Trinidad components is a
two-step process. The first step is identifying which components should fire
events asynchronously. The second part of the process is identifying which
components should be updated in response to the events that fired asynchronously.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 4

[153]

In some cases, the Ajax behavior of Trinidad components is built-in and is
automatically enabled, requiring no additional effort from the developer. Some
of these components include table and tree table components, the date chooser
component, the poll component, and the Trinidad dialog framework. Additionally,
all input components support an autoSubmit attribute that, when set to true,
results in Ajax request that automatically updates a backing bean while the user is
interacting with the view.

In other cases, we must decide which components should fire asynchronously and
which components should be updated asynchronously. Let's look at a simple example.

Partial submit and partial triggers
Trinidad components that support partial page rendering have either the
partialSubmit or partialTriggers tag attributes, or both. These attributes
establish a "publisher/subscriber" relationship between one or more components.
(A component can publish and subscribe to its own Ajax events.)

When a component that has the partialSubmit tag attribute set to true is invoked,
any components that have a partialTriggers attribute containing the identifier
of the component will be "refreshed" when the Ajax response is received by the
browser. To see this in action, let's examine the following example.

We have a simple Trinidad command button with the partialSubmit attribute
set to true inside a form that has the button component's identifier listed in its
partialTriggers attribute. (A PPR-enabled component can subscribe to multiple
Ajax event publishers by including their identifiers in a space separated list in the
partialTriggers attribute.)

In our example, we establish a relationship between the button component and the
form component. The button component is now the publisher of an asynchronous
event, and the form is a subscriber to this event.

<tr:form partialTriggers="button">
 <tr:commandButton text="Refresh Date" id="button"
 partialSubmit="#{true}" />
 <tr:outputText value="#{backingBean.today}">
 <tr:convertDateTime type="both" timeStyle="full" />
 </tr:outputText>
</tr:form>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Trinidad Components

[154]

After the button is pressed, the form element's partial page rendering is triggered by
the Ajax response and any components contained by the form will also be refreshed.
This includes the output text component beside the button that is rendering the current
date and time returned from the backing bean. When the user clicks the button, the text
displaying the date is instantly updated with the current date and time.

Polling the server
The Apache Trinidad framework also includes sophisticated components that can
fire Ajax events without user interaction. For example, sometimes we want the page
to be refreshed on a regular basis while we wait for a long-running background
activity to be completed on the server side, or for some other server-side state change
to occur.

The CorePoll component is rendered by the <tr:poll> tag and provides
this functionality out of the box. With this component, we can periodically send
Ajax requests to a JSF application and refresh elements on a JSF page with no
user involvement.

In this example, we set the polling interval to one second (1000 ms), and we indicate
in the <tr:form> tag's partialTriggers attribute that the HTML form and all its
children should be refreshed in response to the poll component's Ajax event.

<tr:form partialTriggers="poll">
 <tr:poll interval="1000"
 pollListener="#{backingBean.pollListener}" id="poll" />
 <tr:outputText value="#{backingBean.message}"
 inlineStyle="display:block" />
 <tr:outputText value="Count: #{backingBean.number}" />
</tr:form>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 4

[155]

We also register a Trinidad poll event listener with the component to handle
the periodic polling requests in our backing bean. The <tr:poll> tag has a
pollListener attribute that expects a method expression bound to a JSF backing
bean method with the appropriate signature (see the following). In this example, we
simply increment an integer variable until the value reaches five and then we start
the count all over again from one.

public void pollListener(PollEvent event) {
 System.out.println("Event received: " + event);
 number++;
 if (number < 5) {
 message = "Processing...";
 } else if (number == 5) {
 message = "Processing complete.";
 } else {
 message = "Processing...";
 number = 1;
 }
 }

The effect of this example is that a text message on the page will be changed every
five requests. This is to simulate a long-running process on the server side, where
our managed bean could be processing data in the background, listening on a JMS
message destination, querying a database, observing the file system for changes, or
calling an external web service.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Trinidad Components

[156]

In other words, we can use the Trinidad poll component to periodically update
our user interface without user intervention, making our JSF application capable of
responding to outside events in a way that exceeds the limitations of conventional
web applications.

Rendering a status indicator
Polling the server periodically using Ajax is great, but what happens if our backing
bean method does not return right away? Let's suppose we perform an intensive
computation when we receive the polling event. What will happen to our user
interface while the bean is working?

On the client side, the JavaScript rendered by the poll component will wait
for the Trinidad request queue to return to a ready state before sending the next
Ajax request. On the server side, the backing bean will continue processing data
until it is finished, at which point the method returns, and HTTP response is sent
back to the browser.

To avoid the appearance of an unresponsive user interface during asynchronous
request processing, Trinidad includes several components that can be used
to provide immediate feedback to users. One of these components is the
CoreStatusIndicator. This component is rendered by the <tr:statusIndicator>
tag as an icon or a text message on the page.

Let's look at how to use the <tr:statusIndicator> tag to provide visual feedback
to users while a long-running Ajax request is being processed. In this example, we
use the <tr:poll> tag to send an Ajax request to the server every second. This time,
we invoke a poll listener method that has been intentionally designed to pause for
three seconds before incrementing the integer variable.

<tr:form partialTriggers="poll">
 <tr:poll interval="1000"
 pollListener="#{backingBean.slowPollListener}"

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 4

[157]

 id="poll" />
 <tr:outputText value="#{backingBean.name}"
 inlineStyle="display:block" />
 <tr:outputText value="Count: #{backingBean.number}"
 inlineStyle="display:block" />
 <tr:statusIndicator>
 <f:facet message="busy">
 <tr:outputText value="Loading, please wait..." />
 </f:facet>
 <f:facet message="ready">
 <tr:outputText value="Ready." />
 </f:facet>
 </tr:statusIndicator>
 </tr:form>

We use the <tr:statusIndicator> tag to display a "busy" message while the
request is being handled, and a "ready" message when the response is received.
Custom messages can be defined using the busy and ready facets.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Trinidad Components

[158]

We can also use the default Trinidad status icon to render the busy and ready states
of the page by omitting the facets of <tr:statusIndicator> tag. We could also
provide our own busy and ready state icons by rendering an image in the busy and
ready facets. Another option is to combine the default status icon with custom text
messages by using two <tr:statusIndicator> tags, as shown in the next example:

<tr:form partialTriggers="poll">
 <tr:poll interval="1000"
 pollListener="#{backingBean.pollListener}"
 id="poll" />
 <tr:statusIndicator inlineStyle="padding-right:5px;" />
 <tr:statusIndicator>
 <f:facet name="busy">
 <tr:outputText value="Processing..." />
 </f:facet>
 <f:facet name="ready">
 <tr:outputText value="Processing complete." />
 </f:facet>
 </tr:statusIndicator>
 <tr:outputText value="Count: #{backingBean.slowNumber}"
 inlineStyle="display:block" />
</tr:form>

Rendering a progress bar
Trinidad also includes a progress indicator component that can be used to render
an incremental progress bar on the screen. This component can optionally invoke an
action or an action method once the progress reaches 100%.

For this component to work properly, we need to define a bounded range model that
represents a finite amount of work and the current status of the work's completion.
This can be accomplished by binding the CoreProgressIndicator component to a
BoundedRangeModel object using the <tr:progressIndicator> tag's value attribute.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 4

[159]

<tr:form partialTriggers="poll">
 <tr:poll interval="1000"
 pollListener="#{backingBean.pollListener}"
 id="poll" />
 <tr:progressIndicator inlineStyle="font-weight:bold"
 value="#{backingBean.progressModel}" />
</tr:form>

In this example, we construct a DefaultBoundedRangeModel instance in our backing
bean and set the maximum value to 10.

public DefaultBoundedRangeModel getProgressModel() {
 if (progressModel == null) {
 progressModel = new DefaultBoundedRangeModel();
 progressModel.setMaximum(10);
 }
 return progressModel;
 }

Next, we write a poll event listener method that increments the model's value by
one each time it is called. This enables us to increment the progress to indicate the
completion of work.

public void progressListener(PollEvent event) {
 DefaultBoundedRangeModel model = getProgressModel();
 long value = model.getValue();
 value++;
 model.setValue(value);
 }

The result is an Ajax-enabled progress bar that updates itself on the screen
asynchronously whenever the Trinidad poll component in the same form fires a
periodic Ajax request.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Trinidad Components

[160]

Laying out components on the screen
The Apache Trinidad framework includes a number of useful tags for laying out
components on the screen. Some of these tags handle more specific tasks such as
laying out a set of controls horizontally, vertically, or in some other arrangement,
while other tags handle more general tasks such as abstracting the "page" concept
and breaking it up into smaller, more manageable sections.

Let's look at how to use Trinidad components to handle some of the more specific
layout situations we may encounter in our web development activities.

Rendering a row layout
The HtmlRowLayout component is rendered as a sequence of HTML <tr> and <td>
elements using the <trh:rowLayout> tag. This tag's layout logic is to render each of
its child tags as a single HTML table cell within a single HTML table row.

<trh:rowLayout styleClass="row-layout">
 <tr:outputText value="Hello" />
 <tr:outputText value="World" />
 <tr:outputText value="How" />
 <tr:outputText value="Are" />
 <tr:outputText value="You?" />
</trh:rowLayout>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 4

[161]

Rendering a complex table layout
If multiple rows are desired, several <trh:rowLayout> tags can be nested inside a
<trh:tableLayout> tag. The HtmlTableLayout component also supports complex
layout table arrangements with column span definitions when combined with the
HtmlCellFormat component. The <trh:tableLayout> tag is more powerful for
table-based layouts than the standard JSF <h:panelGrid> tag, as it enables column
and row spans to be defined. The HtmlCellFormat component is rendered by the
<trh:cellFormat> tag and can be nested inside a <trh:rowLayout> tag to specify
table cell attributes. In the following example, we specify a layout using three rows
where the first two rows have two columns each, and the third row has one column
with a column span of two.

<trh:tableLayout>
 <trh:rowLayout styleClass="row-layout">
 <tr:outputText value="Hello" />
 <tr:outputText value="World" />
 </trh:rowLayout>
 <trh:rowLayout styleClass="row-layout">
 <tr:outputText value="How" />
 <tr:outputText value="Are" />
 </trh:rowLayout>
 <trh:rowLayout styleClass="row-layout">
 <trh:cellFormat columnSpan="2" halign="center">
 <tr:outputText value="You?" />
 </trh:cellFormat>
 </trh:rowLayout>
</trh:tableLayout>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Trinidad Components

[162]

Rendering a form layout
The CorePanelFormLayout component is one of the most interesting layout
components in the Apache Trinidad component library. This component is rendered
by the <tr:panelFormLayout> tag as an HTML table with an arbitrary number of
rows and columns.

The purpose of this component is to simplify the task of laying out form fields, labels,
and validation messages neatly and in an ordered way so that all the elements on the
screen have a consistent alignment and arrangement. The <tr:panelFormLayout>
component is ideally suited for laying out other Trinidad input components in a
form, as it takes advantage of the built-in label and validation message features
rendered by these components. It can, however, be used to render non-Trinidad
input components as well.

In this example, we render a customer information form using Trinidad input
component tags, such as <tr:inputText> and <tr:selectOneChoice>, with
one exception that all the fields are required. This is reflected by the required icon
rendered in these fields. In one case, we use a help facet to display a hint below the
phone number field to suggest the correct input format to the user.

<tr:form id="orderForm">
 <tr:panelFormLayout>
 <tr:inputText id="firstName" label="First Name"
 value="#{productBean.order.customer.firstName}"
 required="#{true}" />
 <tr:inputText id="lastName" label="Last Name"
 value="#{productBean.order.customer.lastName}"
 required="#{true}" />
 <tr:inputText id="phoneNumber" label="Phone Number "
 value="#{productBean.order.customer.phoneNumber}">
 <f:facet name="help">
 <h:outputText value="XXX-XXX-XXXX" />
 </f:facet>
 <tr:validateRegExp pattern="\d{3}[\-\s]\d{3}[\-\s]\d{4}"
 messageDetailNoMatch="The phone number must be 10
 digits long (e.g. 123-555-1234)." />
 </tr:inputText>
 <tr:inputText id="emailAddress" label="Email Address "
 value="#{productBean.order.customer.emailAddress}"
 required="#{true}">
 <t:validateEmail message="The email address you have
 entered is not valid." />
 </tr:inputText>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 4

[163]

 <tr:inputText id="emailAddressConfirm"
 label="Confirm Email "
 required="#{true}">
 <t:validateEqual for="emailAddress"
 message="The email addresses you have entered do not
 match." />
 </tr:inputText>
 <tr:selectOneChoice label="Country" id="country"
 value="#{productBean.order.customer.countryOfOrigin}"
 required="#{true}">
 <f:selectItem itemLabel="Select" itemValue="" />
 <f:selectItems value="#{customerBean.countrySelectItems}" />
 <f:converter converterId="countryConverter" />
 </tr:selectOneChoice>
 <tr:commandButton text="Submit Order"
 action="#{productBean.submitOrder}" />
 </tr:panelFormLayout>
 </tr:form>

Rendering a panel group layout
Another powerful layout component in the Apache Trinidad component library
is the CorePanelGroupLayout component. This component is rendered by the
<tr:panelGroupLayout> tag and employs some straightforward logic when laying
out components.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Trinidad Components

[164]

A single <div> tag is rendered containing each child component rendered
sequentially with a separator <div> after each child (except the last one). The
separator can be customized using the separator facet of this tag. In the following
example, we use the <tr:spacer> tag to render a transparent image with a height of
1 and a width of 150 inside each separator <div> element.

<tr:panelGroupLayout layout="vertical"
 styleClass="panel-group-layout">
 <f:facet name="separator">
 <tr:spacer height="1" width="150" />
 </f:facet>
 <tr:outputText value="Hello" />
 <tr:outputText value="World" />
 <tr:outputText value="How" />
 <tr:outputText value="Are" />
 <tr:outputText value="You?" />
</tr:panelGroupLayout>

Shuttling selections between lists
There are situations where users need to sort and manage items between two
separate lists. For example, an e-commerce application for a computer hardware
vendor might offer customers the ability to customize a system by selecting one or
more components from a list of available hardware upgrades. The Apache Trinidad
framework includes two components that can be used to "shuttle" list items between
two selection list boxes.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 4

[165]

Rendering a multiple selection shuttle
The CoreSelectManyShuttle component is rendered by the
<tr:selectManyShuttle> tag and allows users to move items back and forth
between two lists, one item at a time or multiple items at a time.

<tr:form>
 <tr:selectManyShuttle id="shuttle" label="Selected Values"
 leadingHeader="Available values:"
 trailingHeader="Selected values:"
 value="#{productBean.selectedProducts}">
 <f:selectItems value="#{productBean.productSelectItems}" />
 </tr:selectManyShuttle>
 <tr:commandButton text="Submit"
 actionListener="#{productBean.saveSortedProducts}" />
 <tr:message for="shuttle" />
</tr:form>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Trinidad Components

[166]

Rendering an ordered shuttle
The CoreSelectOrderShuttle component, rendered by the
<tr:selectOrderShuttle> tag, is similar to the CoreSelectManyShuttle
component except that it also allows the user to reorder the items in the list.

<tr:form>
 <tr:selectOrderShuttle id="shuttle" label="Selected Values"
 leadingHeader="Available values:"
 trailingHeader="Selected values:"
 value="#{productBean.sortedProducts}">
 <f:selectItems value="#{productBean.productSelectItems}" />
 </tr:selectOrderShuttle>
 <tr:commandButton text="Submit"
 actionListener="#{productBean.saveSortedProducts}" />
 <tr:message for="shuttle" />
</tr:form>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 4

[167]

Working with tree and tree table
components
A next generation web application component library would not be complete
without at least one tree component, and the Apache Trinidad framework is no
exception in this case. Trinidad includes a powerful tree component that can be used
to model hierarchical data such as a file system or a navigation menu. It also includes
a tree table component that can be used to render detailed information about the
elements in the tree.

Rendering a tree
The CoreTree component is a truly powerful JSF UI component that renders a
rich, customizable tree element on the screen. This component is rendered using
the <tr:tree> tag and has a value attribute that expects a TreeModel object. In
this example, we bind the tree component to a ChildPropertyTreeModel object, a
specialized implementation of the TreeModel interface that uses reflection to define a
graph of objects.

<tr:tree var="node"
 value="#{backingBean.uploadedFilesTrinidadTreeModel}">
 <f:facet name="nodeStamp">
 <tr:outputText value="#{node.name}" />
 </f:facet>
</tr:tree>

This example demonstrates the power of the Trinidad tree component. With only
a few lines of code, we can construct a model object that Trinidad can render as a
complex tree component.

public org.apache.myfaces.trinidad.model.TreeModel
getUploadedFilesTrinidadTreeModel() {
 org.apache.myfaces.trinidad.model.TreeModel model = null;
 File dir = getUploadDirectory();
 FileAdapter adapter = new FileAdapter(dir);
 model = new ChildPropertyTreeModel(adapter, "files");
 return model;
 }

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Trinidad Components

[168]

Our custom FileAdapter class plays an important role in this example. It provides a
JavaBeans API compatible wrapper for the java.io.File class and it also provides
the hierarchical object model needed by the tree component. The first argument to
the ChildPropertyTreeModel constructor is a reference to a FileAdapter object
that essentially wraps the root file upload directory. The second argument is a string
representing the name of the property that provides child objects to be iterated when
rendering the tree.

java.io.File

FileAdapter

- file : java.io.File
- contentType : String
- files : List<FileAdapter>
- lastModified : Date
- size : long
- type : String
- url : String

+ getContentType() : String
+ getFiles() : List<FileAdapter>
+ getLastModified() : Date
+ getName() : String
+ getSeze() :Long
+ getType() : String
+ getUrl() : String

The files property has a getter method that constructs a list of FileAdapter
objects for each of the files contained in the root directory.

public List<FileAdapter> getFiles() {
 List<FileAdapter> list = null;
 File[] files = file.listFiles();
 if (files != null && files.length > 0) {
 list = new ArrayList<FileAdapter>();
 for (File file : files) {
 list.add(new FileAdapter(file));
 }
 }
 return list;
 }

When the Trinidad tree component's renderer is processing the tree data, this
method is invoked for each file in the root directory and for any subdirectories until
there are no more files left to render. We can use this pattern whenever we need to
model hierarchical data for the Trinidad tree and tree table components.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 4

[169]

We will see an example of how to customize the Trinidad tree component's node
icons later in this chapter.

Rendering a tree table
The Trinidad CoreTreeTable component is an equally powerful control to use when
working with hierarchical data. This component is rendered by the <tr:treeTable>
tag. One of the main advantages of this component over the CoreTree component
is that it also supports rendering columns that can display arbitrary data about the
elements in the tree.

In this example, we use the same TreeModel object used in the last example to render
a tree table view of our uploaded files directory. Note that we declare additional
<tr:column> tags for each column we wish to display in our table. We also set the
row banding interval to one so that the rows are rendered with alternating shades of
white and gray.

<tr:form>
 <tr:treeTable width="500px" var="file"
 value="#{backingBean.uploadedFilesTrinidadTreeModel}"
 rendered="true" summary="File Information"
 rowBandingInterval="1">
 <f:facet name="nodeStamp">
 <tr:column>
 <f:facet name="header">
 <tr:outputText value="File Name" />
 </f:facet>
 <tr:outputText value="#{file.name}" />
 </tr:column>
 </f:facet>
 <tr:column inlineStyle="text-align:right">
 <f:facet name="header">

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Trinidad Components

[170]

 <tr:outputText value="File Size" />
 </f:facet>
 <tr:outputText value="#{file.size}">
 <tr:convertNumber type="number" />
 </tr:outputText>
 </tr:column>
 <tr:column inlineStyle="text-align:right">
 <f:facet name="header">
 <tr:outputText value="Last Modified" />
 </f:facet>
 <tr:outputText value="#{file.lastModified}">
 <tr:convertDateTime type="both" timeStyle="short" />
 </tr:outputText>
 </tr:column>
 </tr:treeTable>
</tr:form>

Creating navigation menus
One of the strengths of the Apache Trinidad framework is the ease with which it
enables us to implement complex navigation menus. Trinidad includes a number of
useful components designed for this purpose.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 4

[171]

Rendering a navigation tree
The CoreNavigationTree component is rendered by the <tr:navigationTree>
tag and provides a hierarchical navigation menu that can be bound to a model
object provided by a backing bean or to an XML file containing metadata about the
navigation structure of the application.

Like the CoreTree component, this component can be bound to a model representing
hierarchical data, however the CoreNavigationTree component expects a model of
type MenuModel. The MenuModel interface extends the TreeModel interface and adds
the ability to associate a view with an element in the tree structure.

This enables the navigation tree component to be aware of the various views in the
application and to highlight, enable, disable, and otherwise manipulate the appearance
of nodes in the tree according to the user's current location and browsing history
within the network of views that make up the navigational structure of the site.

In this example, we bind the <tr:navigationTree> tag to a Trinidad
ProcessMenuModel object that represents a categorized, hierarchical model of
product information.

<tr:navigationTree inlineStyle="width:300px;"
 value="#{productBean.productCategoryModel}" var="node">
 <f:facet name="nodeStamp">
 <tr:commandNavigationItem text="#{node.label}"
 destination="#{node.viewId}" />
 </f:facet>
</tr:navigationTree>

Each product has a category, and categories can belong to other categories, so our
model provides hierarchical data that can be visualized by this component. The Java
code required to construct the MenuModel that provides a navigational representation
of our product catalog is a bit more intricate than our previous example. This is due
to the fact that we have to determine the view ID for each product and category so
that they can be navigated by the user, and because our product model is a bit more
complex than our file example.

public MenuModel getProductCategoryModel() {
 try {
 if (productCategoryModel == null) {
 String view = FacesContext.getCurrentInstance().
 getViewRoot().getViewId();
 NavigationItem rootItem = new NavigationItem("Products",
 view);
 List<ProductCategory> categories = getProductCategories();
 Collections.sort(categories);

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Trinidad Components

[172]

 for (ProductCategory category : categories) {
 // include top-level categories only
 if (category.getParentCategory() != null) {
 continue;
 }
 String categoryViewId = view + "?category=" +
 URLEncoder.encode(category.getName(), "UTF-8");
 NavigationItem categoryItem = new
 NavigationItem(category.getName(), categoryViewId);
 rootItem.getChildren().add(categoryItem);
 for (ProductCategory subcategory : category.
 getSubcategories()) {
 String subcategoryViewId = categoryViewId +
 "&subcategory=" + URLEncoder.encode(subcategory.
 getName(), "UTF-8");
 NavigationItem subcategoryItem = new
 NavigationItem(subcategory.getName(),
 subcategoryViewId);
 categoryItem.getChildren().add(subcategoryItem);
 List<Product> products = new
 ArrayList<Product>(subcategory.getProducts());
 Collections.sort(products);
 for (Product product : products) {
 String productViewId = view + "?product=" +
 product.getId();
 NavigationItem productItem = new
 NavigationItem(product.getName(), productViewId);
 subcategoryItem.getChildren().add(productItem);
 }
 }
 }
 ChildPropertyTreeModel treeModel = new
 ChildPropertyTreeModel(rootItem, "children");
 productCategoryModel = new ProcessMenuModel(treeModel,
 "viewId");
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 return productCategoryModel;
 }

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 4

[173]

Once the tree is rendered, we have an attractive navigation element that provides a
bookmarkable, search engine-friendly link structure for our product information.

Rendering breadcrumbs
Implementing a breadcrumb-style navigation system for web applications is
another common task that is easily solved with the Trinidad framework. To clarify,
a breadcrumb navigation system is the one that provides users with a visual and
informational cue about their current location within a site's information architecture.

As the name suggests, breadcrumbs can be used to retrace a user's steps back to
the previous "landmark" within the information they are exploring. The Trinidad
CoreBreadCrumbs component rendered by the <tr:breadCrumbs> tag provides
a powerful and easy-to-use control for modeling a website's navigation structure
and for tracking the user's current location within that structure.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Trinidad Components

[174]

In this example, we render a set of breadcrumbs horizontally using
nested CoreCommanNavigationItem components rendered by the
<tr:commandNavigationItem> tag. By using the destination attribute, we are
able to render any standard hyperlink element on the page, that's improving our
site's usability, bookmarkability, and navigability by using GET instead of POST. In
other words, we are using Trinidad components here to implement the "pull-style"
MVC pattern.

If we wanted to use the built-in JSF navigation system instead, we could simply
use the action attribute of the <tr:commandNavigationItem> with an action
method expression or a navigation outcome from faces-config.xml. Using the JSF
navigation system for simple navigation use cases, however, is not recommended
because it requires "push-style" MVC and therefore sends a POST instead of a GET
request to the server when navigating from one view to the next.

Using POST for navigating between pages is not bookmarkable, suffers from the
double-submit problem (unless using the Post-Redirect-Get pattern), and is not
search engine friendly (search engine spiders do not typically POST). Therefore,
although the JSF navigation system is convenient for transitioning between views
that involve some kind of server-side state change, such as an order processing page
flow, it is not always the best choice for implementing site navigation features such
as menus and breadcrumbs.

<tr:breadCrumbs orientation="horizontal">
 <tr:commandNavigationItem text="Home"
 destination="/index.jsf" />
 <tr:commandNavigationItem text="About"
 destination="/about.jsf" />
 <tr:commandNavigationItem text="Company Information"
 destination="/company/index.jsf" />
 <tr:commandNavigationItem text="Investor Relations" />
</tr:breadCrumbs>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 4

[175]

The <tr:breadCrumbs> tag can be used to create a navigation menu by declaring
each of the menu items as a child element, or it or it can also be used to render
navigation menu from a navigation structure declared in an external XML file. By
externalizing the navigation structure from the view, we are also implementing best
practices according to the MVC paradigm, which suggests that we should separate
the model (our navigation structure) from its presentation.

Our first step in implementing this approach, is to declare a managed bean of type
XMLMenuModel. The XMLMenuModel implements the MenuModel interface and so can
be used wherever this type is expected. It also has a source property that defines the
location of an XML file containing navigation metadata relative to the context root of
the web application.

 <managed-bean>
 <description>The XML menu model for a navigation menu.
 </description>
 <managed-bean-name>navigationMenuModel</managed-bean-name>
 <managed-bean-class>org.apache.myfaces.trinidad.model.
 XMLMenuModel</managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 <managed-property>
 <property-name>source</property-name>
 <property-class>java.lang.String</property-class>
 <value>/WEB-INF/menu-metadata.xml</value>
 </managed-property>
 </managed-bean>

In this example, we create a file named /WEB-INF/menu-metadata.xml that contains
an XML representation of our navigation structure. This file is made up of a menu
root element that contains a number of arbitrarily nested itemNode child elements.
Each itemNode represents a single element in our navigation tree, and has a number
of attributes that correspond to the attributes of the <tr:commandNavigationItem>
tag. We can also use EL expressions in this file to indicate dynamic values, such as
the disabled attribute of the admin node in our navigation structure.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Trinidad Components

[176]

An important note about JSF View IDs
Notice in the following markup that the focusViewId attribute
references the JSF page that the navigation menu node represents.
For example, the Company Information node has a focusViewId of
/company/index.jsf. We are following a convention throughout
this book where the JSF FacesServlet is mapped to *.jsf and our
Facelets XHTML pages are also named with .jsf suffix. This approach
is primarily to make it easier to work with Facelets technology in
Dreamweaver. The JSF specification reserves the .jsf file extension, but
accepts that authoring tools may use this extension.
All the Facelets XHTML pages for the example applications
discussed in this book were authored with Adobe Dreamweaver
(http://www.adobe.com/dreamweaver) and JSFToolbox for
Dreamweaver (http://www.jsftoolbox.com), therefore all
the pages have a .jsf file extension (the same extension as the
FacesServlet mapping). If we were using JSP pages as our view
technology, our pages would have the .jsp file extension and we
would reference the files using this extension in menu-metadata.
xml and faces-config.xml. We would still use the *.jsf mapping
when requesting the pages in the browser.

The following listing is from our menu-metadata.xml file. It declares the metadata
used by the <tr:breadCrumbs> tag in this example:

<?xml version="1.0" encoding="iso-8859-1"?>
<menu xmlns="http://myfaces.apache.org/trinidad/menu">
 <itemNode id="home" label="Home" destination="/index.jsf"
 icon="/images/home.png" focusViewId="/index.jsf" />
 <itemNode id="about" label="About" destination="/about.jsf"
 focusViewId="/about.jsf" icon="/images/about.png">
 <itemNode id="company" label="Company Information"
 destination="/company/index.jsf"
 focusViewId="/company/index.jsf"
 icon="/images/company.png">
 <itemNode id="investors" label="Investor Relations"
 destination="/company/investors/index.jsf"
 focusViewId="/company/investors/index.jsf"
 icon="/images/investors.png" />
 </itemNode>
 </itemNode>
 <itemNode id="products" label="Products"
 destination="/products.jsf"
 focusViewId="/products.jsf" icon="/images/products.png" />
 <itemNode id="services" label="Services"
 destination="/services.jsf"
 focusViewId="/services.jsf" icon="/images/services.png" />

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 4

[177]

 <itemNode id="contact" label="Contact Us"
 icon="/images/contact.png"
 destination="contact.jsf" focusViewId="/contact.jsf" />
 <itemNode id="admin" label="Admin" icon="/images/admin.png"
 destination="admin.jsf" focusViewId="/admin.jsf"
 disabled="#{!backingBean.administrator}" />
</menu>

In our JSF page, we declare the <tr:breadCrumbs> tag and specify its value using
an EL expression for the menu model expressed in menu-metadata.xml. The
navigationMenuModel managed bean is a request-scoped XMLMenuModel instance.

<tr:breadCrumbs inlineStyle="margin-top:10px; height:100px"
 orientation="horizontal" value="#{navigationMenuModel}"
 var="node">
 <f:facet name="nodeStamp">
 <tr:commandNavigationItem text="#{node.label}"
 destination="#{node.destination}" />
 </f:facet>
</tr:breadCrumbs>

Notice in the next screenshot that the current node in the breadcrumb navigation
element is not hyperlinked. This behavior is built into the component; it "knows" that
we are on the Investor Relations page and that the node should be rendered as text
and not as a hyperlink. Also, we are able to specify icons to be rendered beside each
navigation element.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Trinidad Components

[178]

Rendering a multistep process (Train)
The Apache Tomahawk CoreTrain component rendered by the <tr:train> tag is
another useful component for implementing different navigation scenarios in our
web applications. This particular component can be used whenever a multistep
process is required. For example, we may have an insurance quote generator
application that requires customer information to be entered over several screens
before the form can be submitted.

To use this component effectively, we first need to create each of the screens that
make up our page flow.

<tr:train styleClass="train" var="item"
 value="#{backingBean.trainModel}">
 <f:facet name="nodeStamp">
 <tr:commandNavigationItem text="#{item.label}"
 action="#{item.action}" />
 </f:facet>
</tr:train>

In this example, we construct a ProcessMenuModel from a list of NavigationItem
objects. A NavigationItem is a custom class that we created to simplify the task of
modeling navigation information for our train component. Each navigation item has
a label, an outcome, and a view ID. Additionally, specific navigation rules have been
created for this example in our faces-config.xml file.

public ProcessMenuModel getTrainModel() {
 if (trainModel == null) {
 trainModel = new ProcessMenuModel();
 List<NavigationItem> list = new ArrayList<NavigationItem>();
 list.add(new NavigationItem("Step 1", "/train01_1.jsf",
 "train_1"));
 list.add(new NavigationItem("Step 2", "/train02_1.jsf",
 "train_2"));
 list.add(new NavigationItem("Step 3", "/train03_1.jsf",
 "train_3"));
 list.add(new NavigationItem("Step 4", "/train04_1.jsf",
 "train_4"));
 list.add(new NavigationItem("Step 5", "/train05_1.jsf",
 "train_5"));
 trainModel.setViewIdProperty("viewId");
 trainModel.setWrappedData(list);
 }
 return trainModel;
 }

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 4

[179]

The navigation rules that were added to faces-config.xml to support this
navigation menu can be seen in the following XML fragment:

 <navigation-rule>
 <display-name>*</display-name>
 <from-view-id>*</from-view-id>
 <navigation-case>
 <from-outcome>train_1</from-outcome>
 <to-view-id>/train01_1.jsf</to-view-id>
 <redirect />
 </navigation-case>
 <navigation-case>
 <from-outcome>train_2</from-outcome>
 <to-view-id>/train01_2.jsf</to-view-id>
 <redirect />
 </navigation-case>
 <navigation-case>
 <from-outcome>train_3</from-outcome>
 <to-view-id>/train01_3.jsf</to-view-id>
 <redirect />
 </navigation-case>
 <navigation-case>
 <from-outcome>train_4</from-outcome>
 <to-view-id>/train01_4.jsf</to-view-id>
 <redirect />
 </navigation-case>
 <navigation-case>
 <from-outcome>train_5</from-outcome>
 <to-view-id>/train01_5.jsf</to-view-id>
 <redirect />
 </navigation-case>
 </navigation-rule>

When the component is rendered, it takes care of the details of navigating and
highlighting the various steps in our navigation train.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Trinidad Components

[180]

Rendering a process choice bar
The Trinidad CoreProcessChoiceBar component is rendered by the
<tr:processChoiceBar> tag and provides another useful navigational control.
In this example, we bind this component to a ProcessMenuModel instance in our
backing bean that defines the navigational data structure for the component.

<tr:processChoiceBar var="node"
 value="#{backingBean.processMenuModel}" shortDesc="Select step">
 <f:facet name="nodeStamp">
 <tr:commandNavigationItem text="#{node.label}"
 action="#{node.outcome}" />
 </f:facet>
</tr:processChoiceBar>

The ProcessMenuModel object is also assembled from a list of NavigationItem
objects representing the different steps in the process.

 public ProcessMenuModel getProcessMenuModel() {
 if (processMenuModel == null) {
 processMenuModel = new ProcessMenuModel();
 List<NavigationItem> list = new ArrayList<NavigationItem>();
 list.add(new NavigationItem("Step 1", "/processChoiceBar01_1.
 jsf", "processChoiceBar01"));
 list.add(new NavigationItem("Step 2", "/processChoiceBar01_2.
 jsf", "processChoiceBar02"));
 list.add(new NavigationItem("Step 3", "/processChoiceBar01_3.
 jsf", "processChoiceBar03"));
 list.add(new NavigationItem("Step 4", "/processChoiceBar01_4.
 jsf", "processChoiceBar04"));
 list.add(new NavigationItem("Step 5", "/processChoiceBar01_5.
 jsf", "processChoiceBar05"));
 processMenuModel.setViewIdProperty("viewId");
 processMenuModel.setWrappedData(list);
 }
 return processMenuModel;
 }

Note that in this example too, specific navigation rules have been added to
faces-config.xml:

<navigation-rule>
 <display-name>*</display-name>
 <from-view-id>*</from-view-id>
 <navigation-case>
 <from-outcome>processChoiceBar01</from-outcome>
 <to-view-id>/processChoiceBar01_1.jsf</to-view-id>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 4

[181]

 <redirect />
 </navigation-case>
 <navigation-case>
 <from-outcome>processChoiceBar02</from-outcome>
 <to-view-id>/processChoiceBar01_2.jsf</to-view-id>
 <redirect />
 </navigation-case>
 <navigation-case>
 <from-outcome>processChoiceBar03</from-outcome>
 <to-view-id>/processChoiceBar01_3.jsf</to-view-id>
 <redirect />
 </navigation-case>
 <navigation-case>
 <from-outcome>processChoiceBar04</from-outcome>
 <to-view-id>/processChoiceBar01_4.jsf</to-view-id>
 <redirect />
 </navigation-case>
 <navigation-case>
 <from-outcome>processChoiceBar05</from-outcome>
 <to-view-id>/processChoiceBar01_5.jsf</to-view-id>
 <redirect />
 </navigation-case>
 </navigation-rule>

The <tr:processChoiceBar> tag renders a control similar in behavior but different
in appearance to the component rendered by the <tr:train> tag.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Trinidad Components

[182]

Skinning and theme selection
One of the most powerful and interesting features of the Apache Trinidad
framework is its support for customizing the appearance of a wide range of user
interface elements through the use of a coordinated set of cascading style sheets,
images, and other presentational resources.

Different themes can be created and declared as "skins" for the application in a
centralized XML file named /WEB-INF/trinidad-skins.xml. The current skin for
the application can be hardcoded in the /WEB-INF/trinidad-config.xml file,
or it can be determined at runtime based on stored user preferences, a predefined
schedule, or any other criteria.

In our demonstration, we declare the skin family as an EL expression bound
to a sessionScope variable named skinFamily. (This session variable has no
special meaning in Trinidad and is not created by default; it is simply used here
to demonstrate how to enable dynamic skin selection in a Trinidad application.)
The skin-family value can be hardcoded or it can be obtained dynamically using
an arbitrary EL expression. If the skin-family value is not specified, then the
application will use Trinidad's default skin.

/WEB-INF/trinidad-config.xml

<?xml version="1.0"?>
<trinidad-config xmlns="http://myfaces.apache.org/trinidad/config">
 ...
 <skin-family>#{sessionScope.skinFamily}</skin-family>
 ...
</trinidad-config>

Creating a new Trinidad skin
The first step in creating a new Trinidad skin is to declare it in trinidad-skins.xml.
In this example, we create a <skin> element for our "custom" skin and indicate that it
supports the Trinidad desktop RenderKit. Trinidad also supports a PDA RenderKit;
if we were implementing a skin for a PDA device, we would use the .pda suffix for
our skin ID.

A common technique when implementing a new Trinidad skin is to extend the
built-in "simple" skin and to customize it as desired. This is the approach we are
demonstrating here using the <extends> element to indicate that our custom skin
extends simple skin.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 4

[183]

The last important detail here is the path to our skin's stylesheet. We will create this
file next, in a subdirectory within our web application.

<skins xmlns="http://myfaces.apache.org/trinidad/skin">
 <!-- Custom skin example -->
 <skin>
 <id>custom.desktop</id>
 <family>custom</family>
 <extends>
 simple.desktop
 </extends>
 <render-kit-id>
 org.apache.myfaces.trinidad.desktop</render-kit-id>
 <style-sheet-name>
 skins/custom/custom.css
 </style-sheet-name>
 </skin>
</skins>

Implementing the skin's cascading style sheet
The next step in implementing our custom skin is to create the cascading style sheet
that we declared in the previous step. In this example, we will simply customize
the appearance of the built-in Trinidad icons using our own custom images. This
includes four built-in icons rendered by the <tr:icon> tag: the required icon, the
warning icon, the error icon, and the information icon.

Additionally, we will introduce three new icons that can also be rendered with the
<tr:icon> tag: an open folder icon, a closed folder icon, and a file icon. The naming
convention for style selectors is important. For icons, the text after the .AF classname
prefix and the Icon classname suffix, once the first letter has been converted to
lowercase, is what defines the logical name of our icon. Once we understand this
naming convention, it becomes easier to customize built-in icons as well as to
introduce new ones.

.AFFolderOpenIcon:alias {
 content: url(/skins/custom/images/yellow-folder-open.png);
}
.AFFolderClosedIcon:alias {
 content: url(/skins/custom/images/yellow-folder-closed.png);
}
.AFFileIcon:alias {
 content: url(/skins/custom/images/document.png);
}

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Trinidad Components

[184]

.AFInfoIcon:alias {
 content: url(/skins/custom/images/info.png);
}
.AFErrorIcon:alias {
 content: url(/skins/custom/images/error.png);
}
.AFWarningIcon:alias {
 content: url(/skins/custom/images/warning.png);
}
.AFRequiredIcon:alias {
 content: url(/skins/custom/images/required.png);
}

Now that we have customized and extended Trinidad's "simple" skin, let's look at
an example of how we can apply this skin to our JSF pages at runtime. We created a
page that allows the user to set a session-scoped variable with the name of the skin
family they wish to use.

<tr:panelGroupLayout>
 <tr:selectOneChoice label="Choose a Skin:"
 value="#{sessionScope.skinFamily}" onchange="submit()">
 <tr:selectItem label="simple" value="simple" />
 <tr:selectItem label="minimal" value="minimal" />
 <tr:selectItem label="purple" value="purple" />
 <tr:selectItem label="purpleBigFont"
 value="purpleBigFont" />
 <tr:selectItem label="beach" value="beach" />
 <tr:selectItem label="custom" value="custom" />
 </tr:selectOneChoice>
</tr:panelGroupLayout>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 4

[185]

Rendering an icon
To see Trinidad skinning in action, let's examine a page that displays the standard
set of icons in addition to the new icons if used by our custom skin. The CoreIcon
component rendered by the <tr:icon> tag allows us to display an icon element
on the screen as either an image or text. These icons typically appear beside input
elements to indicate required fields or error messages, but they can also appear in
other locations as well.

<trh:tableLayout width="20%" borderWidth="0" cellSpacing="5">
 <trh:rowLayout>
 <tr:icon name="required" />
 <tr:outputText value="Required" />
 </trh:rowLayout>
 <trh:rowLayout>
 <tr:icon name="info" />
 <tr:outputText value="Info" />
 </trh:rowLayout>
 <trh:rowLayout>
 <tr:icon name="warning" />
 <tr:outputText value="Warning" />
 </trh:rowLayout>
 <trh:rowLayout>
 <tr:icon name="error" />
 <tr:outputText value="Error" />
 </trh:rowLayout>
</trh:tableLayout>

Once we select our custom skin, the appearance of the icons changes to display the
images that we specified in our stylesheet.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Trinidad Components

[186]

This also gives us access to our new custom icons which we can render by specifying
the icon name in the name attribute of the <tr:icon> tag.

<trh:tableLayout width="20%" borderWidth="0" cellSpacing="5">
 <trh:rowLayout>
 <tr:icon name="file" />
 <tr:outputText value="File" />
 </trh:rowLayout>
 <trh:rowLayout>
 <tr:icon name="folderOpen" />
 <tr:outputText value="Folder Open" />
 </trh:rowLayout>
 <trh:rowLayout>
 <tr:icon name="folderClosed" />
 <tr:outputText value="Folder Closed" />
 </trh:rowLayout>
</trh:tableLayout>

Customizing the Trinidad tree component's
node icons
Earlier in this chapter we saw how to use the Trinidad tree component. We can
customize the tree component's node icons in our custom skin by adding the following
CSS pseudo-selectors to our custom skin's cascading style sheet (custom.css):

af|tree::node-icon:folder-expanded { content: url(/skins/custom/
images/yellow-folder-open.png); }
af|tree::node-icon:folder-collapsed { content: url(/skins/custom/
images/yellow-folder-closed.png); }
af|tree::node-icon:document { content: url(/skins/custom/images/
document.png); }

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 4

[187]

We also need to add a method to our FileAdapter class to support custom Trinidad
tree node icons:

public String getNodeType() {
 return file.isDirectory() ? "folder" : "document";
}

The getNodeType() method is called by the Trinidad tree component's renderer to
determine which icon to display. When we select our custom theme, the Trinidad
skinning frame will display the icons declared in our stylesheet for the expanded,
collapsed folder and document tree node states. The following screenshot
demonstrates the result of customizing the Trinidad tree component's node icons
in our custom Trinidad skin.

Implementing dialog windows
Traditional desktop applications have access to a richer set of dialog windows than
available to typical web browsers. While alert and confirm dialogs can be launched
using JavaScript, it is impossible to render a more complex dialog box; for example,
a color chooser dialog, using these built-in windows.

A common solution to this problem is to implement dialogs using floating windows.
The Apache Trinidad framework includes built-in support for creating custom
dialog windows using this technique. These dialogs are Ajax enabled, and support
convenient features such as the ability to pass the selected value back to the page that
originally launched the dialog.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Trinidad Components

[188]

Declaring dialog navigation rules in
faces-config.xml
To understand how to use Trinidad dialog windows, let's look at an example. First,
we must configure our faces-config.xml file to include some special navigation
rules that integrate with the Trinidad dialog framework. These rules have outcomes
that are qualified using the dialog: prefix. The special prefix indicates to Trinidad
that the action should display the view specified in the <to-view-id> element as a
dialog window.

<navigation-rule>
 <display-name>*</display-name>
 <from-view-id>*</from-view-id>
 <navigation-case>
 <from-outcome>dialog:showProductSelectionDialog</from-outcome>
 <to-view-id>/inputListOfValues01_dialog.jsf</to-view-id>
 </navigation-case>
</navigation-rule>

Launching a dialog window
To launch a dialog window from another page, we need to specify the action of the
dialog's navigation rule in the action attribute of the component that should launch
the dialog.

<tr:form partialTriggers="inputListOfValues">
 <tr:inputListOfValues label="Select Product:"
 id="inputListOfValues"
 value="(Empty)" searchDesc="Pick an element" columns="50"
 action="dialog:showProductSelectionDialog" />
 <tr:panelGroupLayout rendered="#{productBean.selectedProduct ne
 null}"
 inlineStyle="display:block">
 <tr:outputText value="You Selected: " />
 <tr:outputText value="#{productBean.selectedProduct.name}" />
 </tr:panelGroupLayout>
</tr:form>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 4

[189]

Returning a value from a dialog window
To return a value from the dialog window back to the page that launched it, we need
to specify some method bindings in our dialog page markup. Notice that the OK
and Cancel buttons both have actionListener attributes bound to methods in our
ProductBean class.

Also notice that the <tr:table> tag used to render the list of products in this
example specifies the binding attribute, which refers to an instance variable of type
UIXTable in our backing bean. This is to facilitate extracting the selected value from
the UI component when the user makes a selection our dialog window.

<tr:form>
 <tr:table summary="Product Table"
 value="#{productBean.products}"
 binding="#{productBean.productsTable}" var="product"
 rows="10" rowSelection="single">
 <f:facet name="footer">
 <h:panelGroup>
 <tr:commandButton text="OK"
 actionListener="#{productBean.closeProductDialog}">
 <f:param id="selectedProduct"
 name="selectedProduct"
 value="#{product}" />
 </tr:commandButton>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Trinidad Components

[190]

 <tr:commandButton text="Cancel"
 actionListener="#{productBean.cancelDialog}" />
 </h:panelGroup>
 </f:facet>
 <tr:column>
 <f:facet name="header">
 <tr:outputText value="Products" />
 </f:facet>
 <tr:outputText value="#{product.name}" />
 <tr:outputText value="test1" />
 </tr:column>
 </tr:table>
</tr:form>

If we study the code in those methods, we can see the technique used to pass data
between application windows. First, let's examine the code for the Cancel button.
Here, we make a call to the Trinidad RequestContext API to indicate that a null
value, specified as the first argument in the returnFromDialog method, should be
returned back to the component that launched the dialog.

public void cancelDialog(ActionEvent event) {
 RequestContext.getCurrentInstance().returnFromDialog(null, null);
 }

When the user clicks OK, the closeProductDialog method is called. In this method,
we extract the row key representing the selected rows in the products table. This
technique can be used when there is more than one row selected in the table.

Next, we obtain a reference to the selected product from the UIParameter object
associated with the UIComponent that fired the event. We then pass the Product
object to the Trinidad RequestContext API as the return value of the dialog that will
be sent to the page that invoked it. When the dialog closes, the calling page is
re-rendered and our product selection is displayed in the text field as well as
the text message below it.

public void closeProductDialog(ActionEvent event) {
 Iterator<Object> iterator = productsTable.getSelectedRowKeys().
 iterator();
 Object rowKey = iterator.next();
 Object oldRowKey = productsTable.getRowKey();

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 4

[191]

 productsTable.setRowKey(rowKey);
 Product product = null;
 UIComponent component = event.getComponent();
 UIParameter param = (UIParameter) component.
 findComponent("selectedProduct");
 if (param != null) {
 product = (Product) param.getValue();
 }
 if (param != null) {
 setSelectedProduct(product);
 RequestContext.getCurrentInstance().
 returnFromDialog(product.getName(), null);
 }
 productsTable.setRowKey(oldRowKey);
 }

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Apache Trinidad Components

[192]

Summary
The Apache Trinidad framework and component library represents a significant
step forward in the evolution of rich user interface development on the JSF platform.
With over 100 powerful UI components, Trinidad simplifies a wide range of
challenging tasks faced by web application developers today.

Trinidad supports Ajax, or partial page rendering (PPR), and includes rich UI
components with built-in Ajax capabilities that developers can use without having
to learn Ajax APIs or write JavaScript code. Many Trinidad components support
the partialSubmit and partialTriggers attributes to control which components
submit an Ajax request and which components are updated after the Ajax request.
Trinidad includes Ajax-enabled components to poll the server periodically, to render
a customizable status indicator, to display a progress bar, and more.

Trinidad supports accepting color, number, date/time, and predefined lists of
values from the user. Trinidad also support client-side validation in Trinidad using
JavaScript alert messages and onblur/onchange event-based field validation. The
Trinidad framework also includes powerful layout tags for rendering components
individually as rows in a single-column table, in a complex layout table that defines
row and column spans, in a form layout that includes labels and messages, and as
<div> elements in a panel layout, for example.

Trinidad's shuttle controls can be used to render multiple selection lists that
support shuttling items between two lists and arranging items in an arbitrary
order. Trinidad also supports rendering hierarchical data using the tree and tree
table components, and enables developers to create bookmarkable and search
engine-friendly dynamic navigation menus and breadcrumb navigation systems.
Trinidad provides components for implementing multistep processes using the
<tr:train> and <tr:processChoiceBar> tags.

Trinidad includes a skinning framework to simplify the customization of the
look and feel of a JSF application. Trinidad supports dynamic skin selection by
binding the <skin-family> element in /WEB-INF/trinidad-config.xml to a
session-scoped EL variable. Trinidad also supports creating custom skins that
can extend its simple desktop theme. Custom skins can define new icons and
developers can render these icons using the <tr:icon> tag.

The Trinidad dialog framework extends the JSF navigation system to support
opening new JSF pages in a pop-up dialog window. Navigation rules for dialog
windows have outcomes that are prefixed with dialog: and are referenced in the
action attributes of components to launch a new dialog window. To return a value
to the calling page and to close the dialog window, managed beans can call the
Trinidad RequestContext API method returnFromDialog().

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

ICEfaces Components
The ICEfaces component library is a robust and feature-rich Ajax component library
for the JSF framework. ICEfaces boasts a collection of over 50 truly impressive JSF
components that are fully Ajax enabled, giving developers all the advantages of
asynchronous UI behavior with none of the overhead of writing cross-browser
compatible JavaScript.

In this chapter, we will examine a number of common use cases in web application
development and how to implement them using the ICEfaces component library.
The topics we will cover include:

•	 Receiving input from users
•	 Creating navigation and pop-up menus
•	 Using tree components
•	 Displaying data in tables
•	 Rendering charts
•	 Laying out components with panels
•	 Creating a tabbed user interface
•	 Working with modal dialogs

Receiving input from users
The ICEfaces component library includes Ajax-enabled versions of the standard
JSF HTML components. These components exhibit more sophisticated rendering
behavior, allowing developers to implement more advanced and more responsive
user interfaces.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

ICEfaces Components

[194]

ICEfaces includes a text input component as well as specialized components for
receiving date selections, files, and rich text from users. ICEfaces components also
support a rich variety of rendering effects to make the user interface more interesting
and more informative for users by providing visual feedback in response to different
events, such as validation, selections, and form submissions.

Rendering validation messages and text
with effects
Let's look at a simple example of capturing text input from the user. In this example,
we will ask for the user's name and will render a validation message with an effect
as soon as the user clicks on the submit button.

This is accomplished by setting the effect attribute of the <ice:message> tag to a
value expression that evaluates an Effect object returned by the backing bean. This
effect will be rendered when the validation message is displayed beside the text field,
whenever input validation fails.

<ice:form>
 <ice:outputLabel for="name" value="Enter your name: " />
 <ice:inputText id="name" value="#{backingBeanname}"
 required="#{true}" />
 <ice:commandButton value="Submit" />
 <ice:message effect="#{backingBean.valueChangeEffect}"
 showDetail="#{true}" for="name" />
 <ice:panelGroup rendered="#{backingBean.name ne null}">
 <ice:outputText value="Hello, #{backingBean.name}"
 effect="#{backingBean.valueChangeEffect}" />
 </ice:panelGroup>
</ice:form>

In our backing bean's constructor, we create a new Highlight object and initialize it
with a hexadecimal color code.

public BackingBean() {
 valueChangeEffect = new Highlight("#fda505");
 }

When the form is rendered on the screen, the JSF framework calls our backing
bean property accessor method, which resets the fired state of the Effect
object. When the fired state of the object is set to false, ICEfaces renders a dynamic
HTML effect in the browser. Once the fired state is set to true, the effect will no
longer be rendered.

public Effect getValueChangeEffect() {
 return valueChangeEffect;

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 5

[195]

}

public String getName() {
 valueChangeEffect.setFired(false);
 return name;
 }

Therefore, we reset it in the getter method of our bean property during each
request, causing the validation message to reappear whenever the validation
message has to be shown.

The same effect can also be applied to output text components. The same principle
applies; the Effect object's fired state must be reset for the effect to be rendered.
In this case, the message entered by the user is rendered dynamically below the text
field once the button is clicked. This produces a very smooth effect in the browser
since the page was updated incrementally using Ajax, avoiding the somewhat
disorienting effect of a full-page refresh.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

ICEfaces Components

[196]

Receiving HTML input from users
Sometimes, it is desirable to enable users to enter rich text in the browser to
simulate a word processor-like experience while entering descriptive text. This
can be achieved using the ICEfaces InputRichText component, rendered by the
<ice:inputRichText> tag. This tag provides a JSF component for the popular
FCKeditor—a browser-based text editor. This component enables us to bind the
editor to a String property in our backing bean while giving users a powerful and
flexible interface for text entry. This tag also supports flexible parameters for width,
height, skinning, and toolbar customization.

<ice:inputRichText id="iceInpRchTxt" height="200" width="600"
toolbar="#{inputRichText.toolbarMode}" value="#{inputRichText.value}"
language="en" skin="silver" />

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 5

[197]

Handling file uploads with ICEfaces
ICEfaces also includes a useful component for handling file uploads. The InputFile
component is rendered by the <ice:inputFile> tag as an HTML input element of
type file. It can be combined with a progress bar component to provide continuous
feedback to the user about the status of the file upload.

<ice:form>
 <ice:inputFile id="inputFileName" width="600"
 progressListener="#{backingBean.fileUploadProgress}"
 actionListener="#{backingBean.uploadFile}" />
 <ice:outputProgress value="#{backingBean.fileProgress}"
styleClass="uploadProgressBar" />
</ice:form>

The backing bean code required to process the file upload is as follows. We check the
status property of the FileInfo to determine if the file has been saved or not.

public void uploadFile(ActionEvent event) {
 InputFile inputFile = (InputFile) event.getSource();
 FileInfo fileInfo = inputFile.getFileInfo();
 if (fileInfo.getStatus() == FileInfo.SAVED) {
 System.out.println("Saved file: " + fileInfo.getFile().
 getPath());
 currentFile = new InputFileData(fileInfo);
 synchronized (fileList) {
 fileList.add(currentFile);
 }
 }
 }

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

ICEfaces Components

[198]

Rendering a calendar component
ICEfaces also includes an attractive calendar component that can be used to handle
date selections by the user. The SelectInputDate component is rendered by the
<ice:selectInputDate> tag as an interactive calendar with a customizable look
and feel. The calendar supports a number of options, such as rendering the month
and year as drop-down lists, the format of the selected date, and whether to render
the calendar as a pop up or not.

...

<head>
<ice:outputStyle href="/xmlhttp/css/xp/xp.css" />
</head>

...

<ice:form>
 <ice:outputLabel for="calendar1"
 value="Enter your birth date: " />
 <ice:selectInputDate id="calendar1" renderMonthAsDropdown="true"
 renderYearAsDropdown="true"
 popupDateFormat="EEE, MMM d, yyyy"
 value="#{backingBean.date}"
 rendered="#{backingBean.pattern eq 'date'}"
 renderAsPopup="true"
 valueChangeListener="#{dateSelect.effect2ChangeListener}" />
 <h:message style="color: red" for="calendar1" />
 <ice:outputText value="Your birth date is: #{backingBean.date}"
 rendered="#{backingBean.date ne null}" />
</ice:form>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 5

[199]

In the next example, we render a similar calendar using the built-in Rime theme
for ICEfaces. By simply changing the stylesheet attached to the document, we can
completely redefine the appearance of the calendar component. Also notice in this
example that we do not render the month and year as a drop down, but rather with
navigable arrow buttons.

<ice:outputStyle href="/xmlhttp/css/rime/rime.css" />

Creating navigation and pop-up menus
In Human Machine Interface (HMI) design, navigation menus present a useful
"affordance" by which users can interact with a system, much like door handles
allow access to rooms in a building in the real world.

ICEfaces includes a useful set of navigation menu components that can be combined
to create simple but effective navigation menus, both statically and dynamically. In
our first example, we will look at how to create a navigation menu with submenus in
our JSF page.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

ICEfaces Components

[200]

Creating a horizontal navigation menu with
submenus
The ICEfaces menu components support both a horizontal and a vertical orientation.
Menus can be nested to create submenus, and menu items can be statically declared
or dynamically bound to a backing bean property. In the following example, the
product's menu item and its submenus are dynamically bound to a collection in our
backing bean.

<ice:menuBar orientation="horizontal">
 <ice:menuItem value="Home" />
 <ice:menuItem value="About">
 <ice:menuItem value="Company Information" />
 <ice:menuItem value="Investor Relations" />
 </ice:menuItem>
 <ice:menuItem value="Products">
 <ice:menuItems value="#{productBean.productMenuItems}" />
 </ice:menuItem>
 <ice:menuItem value="Services" />
 <ice:menuItem value="Contact" />
</ice:menuBar>

To create the navigation menu programmatically, we construct a List of MenuItem
objects as shown in the following code example:

public List<MenuItem> getProductMenuItems() {
 List<MenuItem> model = null;
 try {
 model = new ArrayList<MenuItem>();
 List<ProductCategory> categories = getProductCategories();
 String view = FacesContext.getCurrentInstance().
 getViewRoot().getViewId();
 String context = FacesContext.getCurrentInstance().
 getExternalContext().getRequestContextPath();
 if (!context.equals("/")) {
 view = context + view;
 }
 Collections.sort(categories);
 for (ProductCategory category : categories) {
 MenuItem categoryItem = new MenuItem();
 String categoryViewId = view + "?category=" + URLEncoder.
 encode(category.getName(),
 "UTF-8");
 categoryItem.setLink(categoryViewId);
 categoryItem.setValue(category.getName());
 categoryItem.setId("item" + category.getId());
 model.add(categoryItem);

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 5

[201]

 for (ProductCategory subcategory :
 category.getSubcategories()) {
 String subcategoryViewId = categoryViewId +
 "&subcategory=" + URLEncoder.encode(subcategory.
 getName(), "UTF-8");
 MenuItem subcategoryItem = new MenuItem();
 subcategoryItem.setLink(subcategoryViewId);
 subcategoryItem.setValue(subcategory.getName());
 subcategoryItem.setId("item" + subcategory.getId());

 categoryItem.getChildren().add(subcategoryItem);
 List<Product> products = new
 ArrayList<Product>(subcategory.getProducts());
 Collections.sort(products);
 for (Product product : products) {
 String productViewId = view + "?product=" + product.
 getId();
 MenuItem productItem = new MenuItem();
 productItem.setLink(productViewId);
 productItem.setValue(product.getName());
 productItem.setId("item" + product.getId());

 subcategoryItem.getChildren().add(productItem);
 }
 }
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 return model;
 }

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

ICEfaces Components

[202]

Rendering a vertical navigation menu with
submenus
The same menu can be rendered vertically by changing the orientation attribute
from horizontal to vertical.

<ice:menuBar orientation="vertical">
 <ice:menuItem value="Home" />
 <ice:menuItem value="About">
 <ice:menuItem value="Company Information" />
 <ice:menuItem value="Investor Relations" />
 </ice:menuItem>
 <ice:menuItem value="Products">
 <ice:menuItems value="#{productBean.productMenuItems}" />
 </ice:menuItem>
 <ice:menuItem value="Services" />
 <ice:menuItem value="Contact" />
</ice:menuBar>

Adding menu separator items
Sometimes, it is desirable to add a separator between items in the menu. This can
be accomplished using the <ice:menuItemSeparator> tag as shown in the
following example:

<ice:menuBar orientation="horizontal">
 <ice:menuItem value="File">
 <ice:menuItem value="New" />
 <ice:menuItem value="Open" />
 <ice:menuItem value="Save" />
 <ice:menuItemSeparator />
 <ice:menuItem value="Exit" />

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 5

[203]

 </ice:menuItem>
 <ice:menuItem value="Edit" />
 <ice:menuItem value="View" />
 <ice:menuItem value="Help" />
</ice:menuBar>

Using context menus
Desktop applications often provide context menus for users to make selections from
a pop-up menu that presents options relevant to the task at hand. ICEfaces includes a
contextual menu component rendered by the <ice:menuPopup> tag that can also be
used to produce this type of menu. It also takes <ice:menuItem> tags as its children,
and therefore supports submenus as well.

The context menu rendered by the <ice:MenuPopup> tag can be reused by other
components in the view. The <ice:panelGroup> tag has a menuPopup attribute
that specifies the ID of a MenuPopup component to support sharing a pop-up menu
between multiple parts of the page.

<ice:panelGroup styleClass="componentBox">
 <ice:panelGroup styleClass="exampleBox
 menuPopupContainer menuPopupContainer"
 style="width:362px;height:122px;">
 <ice:panelGroup style="padding:5px;" id="menuBarImage"
 menuPopup="menuPopupEffects">
 <ice:graphicImage value="/images/Toco Toucan.jpg"
 width="200" height="110" />
 </ice:panelGroup>
 </ice:panelGroup>
 <ice:menuPopup id="menuPopupEffects" imageDir="/images">

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

ICEfaces Components

[204]

 <ice:menuItem id="effects" onclick="return false;"
 value="Effects">
 <ice:menuItem id="shake" value="Shake"
 actionListener="#{menuPopupBean.executeMenuEffect}">
 <f:param name="effectType" value="shake" />
 </ice:menuItem>
 <ice:menuItem id="highlight" value="Highlight"
 actionListener="#{menuPopupBean.executeMenuEffect}">
 <f:param name="effectType" value="hightlight" />
 </ice:menuItem>
 <ice:menuItem id="pulsate" value="Pulsate"
 actionListener="#{menuPopupBean.executeMenuEffect}">
 <f:param name="effectType" value="pulsate" />
 </ice:menuItem>
 </ice:menuItem>
 </ice:menuPopup>
</ice:panelGroup>

Using tree components
The ICEfaces component library provides a robust tree component that can be used
to render hierarchical data. By default, the <ice:tree> tag renders a tree component
without any node icons, however, custom node icons can also be defined.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 5

[205]

Using the default tree node icons
In this example, we bind the ICEfaces tree component to a model property in our
backing bean that represents a set of files and folders on the file system.

<ice:form>
 <ice:tree value="#{backingBean.treeModel}" var="item"
 hideRootNode="#{false}" hideNavigation="#{false}">
 <ice:treeNode>
 <f:facet name="content">
 <ice:panelGroup style="display: inline">
 <ice:outputText value="#{item.userObject.text}" />
 </ice:panelGroup>
 </f:facet>
 </ice:treeNode>
 </ice:tree>
</ice:form>

The ICEfaces tree component expects the same javax.swing.tree.TreeModel
interface as the Swing tree component. The nodes of the tree model must be
DefaultMutableTreeNode instances, and the user object property of each node must
be an IceUserObject instance.

public TreeModel getTreeModel() {
 if (treeModel == null) {
 File dir = getUploadDirectory();
 DefaultMutableTreeNode rootTreeNode = new
 DefaultMutableTreeNode();
 buildTreeModel(dir, rootTreeNode);
 ((IceUserObject) rootTreeNode.getUserObject()).
 setExpanded(true);
 treeModel = new DefaultTreeModel(rootTreeNode);
 }
 return treeModel;
 }

To construct the TreeModel, we use a recursive method that takes a File and a
DefaultMutableTreeNode object.

private void buildTreeModel(File file, DefaultMutableTreeNode node) {
 IceUserObject object = new IceUserObject(node);
 object.setText(file.getName());
 object.setLeaf(!file.isDirectory());
 node.setAllowsChildren(file.isDirectory());
 node.setUserObject(object);
 File[] files = file.listFiles();

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

ICEfaces Components

[206]

 if (files != null) {
 for (File f : files) {
 DefaultMutableTreeNode child = new
 DefaultMutableTreeNode();
 node.add(child);
 buildTreeModel(f, child);
 }
 }
 }

Using custom tree node icons
The ICEfaces tree component has the ability to display customized tree node icons.
This is accomplished by using the icon facet of the tag. In this example, we use an
<ice:graphicImage> tag to render an icon appropriate to each node in the tree. The
IceUserObject class has an icon property that allows us to specify a filename to be
used as the icon for that node.

<ice:form>
 <ice:tree value="#{backingBean.treeModel2}" var="item"
 hideRootNode="#{false}" hideNavigation="#{false}">
 <ice:treeNode>
 <f:facet name="icon">
 <ice:graphicImage value="/images/#{item.userObject.icon}"/>
 </f:facet>
 <f:facet name="content">
 <ice:panelGroup style="display: inline">
 <ice:outputText value="#{item.userObject.text}" />

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 5

[207]

 </ice:panelGroup>
 </f:facet>
 </ice:treeNode>
 </ice:tree>
 </ice:form>

To support custom tree node icons, we use a similar recursive method that also
sets the icons of the user object while it is constructing the tree model. Each
IceUserObject instance contains information about the icons to render for
expanded, contracted, and leaf icons in the tree.

private void buildTreeModelWithIcons(File file,
 DefaultMutableTreeNode node)
 {
 IceUserObject object = new IceUserObject(node);
 object.setText(file.getName());
 object.setLeaf(!file.isDirectory());
 object.setLeafIcon("document.png");
 object.setBranchContractedIcon("yellow-folder-closed.png");
 object.setBranchExpandedIcon("yellow-folder-open.png");
 node.setAllowsChildren(file.isDirectory());
 node.setUserObject(object);
 File[] files = file.listFiles();
 if (files != null) {
 for (File f : files) {
 DefaultMutableTreeNode child = new
 DefaultMutableTreeNode();
 node.add(child);
 buildTreeModelWithIcons(f, child);
 }
 }
 }

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

ICEfaces Components

[208]

Displaying data in tables
ICEfaces includes a powerful data table component that provides many advanced
features out of the box without requiring much additional coding. This component
supports sorting by clicking on column headers, dragging to resize column headers,
row selection, pagination, and more.

The ICEfaces data table component
To construct an ICEfaces data table, we use the <ice:dataTable> tag in combination
with the <ice:column> tag, similar to the way the standard JSF HTML data tables
are assembled. Each column can have a header facet, and the table supports row
banding as well.

<ice:dataTable value="#{customerBean.customerList}" var="customer"
rows="5">
 <ice:column>
 <f:facet name="header">
 <ice:outputText value="Full Name" />
 </f:facet>
 <ice:outputText value="#{customer.fullName}" />
 </ice:column>
 <ice:column>
 <f:facet name="header">
 <ice:outputText value="Birth Date" />
 </f:facet>
 <ice:outputText value="#{customer.birthDate}">
 <f:convertDateTime type="date" dateStyle="medium" />
 </ice:outputText>
 </ice:column>
 <ice:column>
 <f:facet name="header">
 <ice:outputText value="Phone Number" />
 </f:facet>
 <ice:outputText value="#{customer.phoneNumber}" />
 </ice:column>
 <ice:column>
 <f:facet name="header">
 <ice:outputText value="Country of Origin" />
 </f:facet>
 <ice:outputText value="#{customer.countryOfOrigin.name}" />
 </ice:column>
</ice:dataTable>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 5

[209]

Rendering dynamic columns
The ICEfaces component library also includes a dynamic columns component that
allows us to render columns as well as rows from a data model. We provide two data
models in this example, one for the rows and one for the columns.

 <ice:dataTable var="customer" value="#{customerBean.rowDataModel}"
 rows="5" columnClasses="column-odd,column-even">
 <ice:columns value="#{customerBean.columnDataModel}"
 var="column">
 <f:facet name="header">
 <ice:panelGroup>
 <ice:outputText value="#{column}" />
 </ice:panelGroup>
 </f:facet>
 <ice:outputText value="#{customerBean.cellValue}" />
 </ice:columns>
 </ice:dataTable>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

ICEfaces Components

[210]

In our backing bean, we implement a method named getCellValue() that
determines which object should be rendered for a particular cell by examining the
intersection of the two data models. In this example, the column model is simply a
series of numbers, so we obtain the current column number and we use that as an
index to look up the cell value in the row data model.

 @SuppressWarnings("unchecked")
 public Object getCellValue() {
 Object value = null;
 DataModel rowDataModel = getRowDataModel();
 if (rowDataModel.isRowAvailable()) {
 List<Object> rowData = (List<Object>) rowDataModel.
 getRowData();
 DataModel columnDataModel = getColumnDataModel();
 if (columnDataModel.isRowAvailable()) {
 Object columnData = columnDataModel.getRowData();
 int column = Integer.parseInt(columnData.toString());
 value = rowData.get(column - 1);
 }
 }
 return value;
 }

The row data model contains heterogeneous lists of objects representing different
properties of the customer object. Each row has a list of objects that represent a
particular customer.

public DataModel getRowDataModel() {
 if (rowDataModel == null) {
 List<List<Object>> rowData = new ArrayList<List<Object>>();
 List<Customer> customers = getCustomerList();
 List<Object> customerData = null;
 for (Customer customer : customers) {
 customerData = new ArrayList<Object>();
 customerData.add(customer.getFullName());
 customerData.add(customer.getBirthDate());
 customerData.add(customer.getPhoneNumber());
 customerData.add(customer.getCountryOfOrigin());
 rowData.add(customerData);
 }
 rowDataModel = new ListDataModel(rowData);
 }
 return rowDataModel;
 }

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 5

[211]

Implementing sortable column headers
The ICEfaces data table also supports sortable column headers. To implement sorting
in our data table, first we need to set the sortAscending and sortColumn attributes.
The sortAscending attribute refers to a Boolean property in our backing bean
that indicates whether to sort in ascending or descending order. The sortColumn
attribute refers to a String property in our backing bean that keeps track of which
column is currently being sorted.

<ice:dataTable value="#{customerBean.sortableCustomerModel.list}"
 var="customer" id="cs" rows="5"
 sortAscending="#{customerBean.sortableCustomerModel.ascending}"
 sortColumn="#{customerBean.sortableCustomerModel.columnName}">
 <ice:column>
 <f:facet name="header">
 <ice:commandSortHeader id="nameHeader"
 columnName="fullName">
 <ice:outputText value="Full Name" />
 </ice:commandSortHeader>
 </f:facet>
 <ice:outputText value="#{customer.fullName}" />
 </ice:column>
 <ice:column>
 <f:facet name="header">
 <ice:commandSortHeader id="birthDateHeader"
 columnName="birthDate">

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

ICEfaces Components

[212]

 <ice:outputText value="Birth Date" />
 </ice:commandSortHeader>
 </f:facet>
 <ice:commandSortHeader id="birthDateHeader"
 columnName="birthDate">
 <ice:outputText value="#{customer.birthDate}">
 <f:convertDateTime type="date" dateStyle="medium" />
 </ice:outputText>
 </ice:commandSortHeader>
 </ice:column>
 <ice:column>
 <f:facet name="header">
 <ice:commandSortHeader id="phoneNumberHeader"
 columnName="phoneNumber">
 <ice:outputText value="Phone Number" />
 </ice:commandSortHeader>
 </f:facet>
 <ice:outputText value="#{customer.phoneNumber}" />
 </ice:column>
 <ice:column>
 <f:facet name="header">
 <ice:commandSortHeader id="countryHeader"
 columnName="countryOfOrigin">
 <ice:outputText value="Country of Origin" />
 </ice:commandSortHeader>
 </f:facet>
 <ice:outputText value="#{customer.countryOfOrigin.name}" />
 </ice:column>
</ice:dataTable>

To implement sorting in our backing bean requires a bit more work. First, we
provide a special model class named SortableDataModel to handle sorting of the
customer objects when the user clicks on a column. This class also has additional
responsibilities, such as handling row selection. These will be covered later. For now,
let's examine how the SortableDataModel class manages column sort ordering for
our data table.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 5

[213]

When the ICEfaces data table is rendered, the data is displayed in a default sort
order. In our implementation, we initially sort the data by the customer's name.

public SortableDataModel<Customer> getSortableCustomerModel() {
 if (sortableCustomerModel == null) {
 List<Customer> customers = getCustomerList();
 sortableCustomerModel = new
 SortableDataModel<Customer>(customers, "fullName");
 sortableCustomerModel.setColumnName("fullName");
 }
 return sortableCustomerModel;
 }

The constructor of our SortableDataModel class takes a List of Selectable objects
and a string identifying the property name to sort by. It stores these arguments in
instance variables, and then calls the checkState() method to initially sort the list.

public SortableDataModel(List<T> list, String initialSortColumn) {
 this.list = list;
 this.columnName = initialSortColumn;
 checkState();
 }

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

ICEfaces Components

[214]

When the user clicks on a column, the selected column name and the
ascending or descending direction of the column are stored in properties of our
SortableDataModel object. The ICEfaces data table component does not sort the
data model for us, it simply passes the user's column selection to our backing bean.

Therefore, we have to make sure that the data model is properly sorted before the
view is rendered. This can be accomplished using a JSF PhaseListener class that is
invoked just before the RENDER_RESPONSE phase of the request processing lifecycle.

In this example, we write a new class named CustomerSortListener that
implements the PhaseListener interface. It obtains a reference to our
SortableDataModel object and invokes the checkState() method before the view
is rendered.

public class CustomerSortListener implements PhaseListener {

 private static final long serialVersionUID = 1L;

 public void afterPhase(PhaseEvent arg0) {
 }

 public void beforePhase(PhaseEvent arg0) {
 FacesContext context = arg0.getFacesContext();
 ELContext el = context.getELContext();
 ExpressionFactory factory = context.getApplication().
 getExpressionFactory();
 ValueExpression expr =
 factory.createValueExpression(el,
 "#{customerBean.sortableCustomerModel}",
 SortableDataModel.class);
 SortableDataModel<?> model = (SortableDataModel<?>) expr.
 getValue(el);
 model.checkState();
 }

 public PhaseId getPhaseId() {
 return PhaseId.RENDER_RESPONSE;
 }

}

Next, we must register this PhaseListener class in the faces-config.xml file.

<lifecycle>
 <phase-listener>chapter4.phase.CustomerSortListener
 </phase-listener>
</lifecycle>

Now, when the user clicks on a column in our data table, ICEfaces sends an Ajax
request to our backing bean and stores the sort column name and direction in our
SortableDataModel object. Just before the response is sent back to the browser, our
PhaseListener is invoked and the table data is sorted accordingly.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 5

[215]

A more efficient alternative to implementing a sortable data table with ICEfaces is
to set the actionListener attribute in the <ice:commandSortHeader> tag. This
attribute expects a method expression that is responsible for sorting the data by a
particular column. The following example demonstrates this approach:

<h:form>
 <ice:dataTable
 value="#{customerBean.sortableCustomerModel.list}"
 var="customer" id="cs" rows="5"
 sortAscending="#{customerBean.sortableCustomerModel.
 ascending}"

 sortColumn="#{customerBean.sortableCustomerModel.
 columnName}" resizable="true">
 <ice:column>
 <f:facet name="header">
 <ice:commandSortHeader id="nameHeader"
 columnName="fullName"
 actionListener="#{customerBean.
 sortCustomersByName}">
 <ice:outputText value="Full Name" />
 </ice:commandSortHeader>
 </f:facet>
 <ice:outputText value="#{customer.fullName}" />
 </ice:column>
 <ice:column>
 <f:facet name="header">
 <ice:commandSortHeader id="birthDateHeader"
 columnName="birthDate"
 actionListener="#{customerBean.
 sortCustomersByBirthDate}">

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

ICEfaces Components

[216]

 <ice:outputText value="Birth Date" />
 </ice:commandSortHeader>
 </f:facet>
 <ice:commandSortHeader id="birthDateHeader"
 columnName="birthDate">
 <ice:outputText value="#{customer.birthDate}">
 <f:convertDateTime type="date" dateStyle="medium" />
 </ice:outputText>
 </ice:commandSortHeader>
 </ice:column>
 <ice:column>
 <f:facet name="header">
 <ice:commandSortHeader id="phoneNumberHeader"
 columnName="phoneNumber"
 actionListener="#{customerBean.
 sortCustomersByPhoneNumber}">
 <ice:outputText value="Phone Number" />
 </ice:commandSortHeader>
 </f:facet>
 <ice:outputText value="#{customer.phoneNumber}" />
 </ice:column>
 <ice:column>
 <f:facet name="header">
 <ice:commandSortHeader id="countryHeader"
 columnName="countryOfOrigin"
 actionListener="#{customerBean.
 sortCustomersByCountry}">
 <ice:outputText value="Country of Origin" />
 </ice:commandSortHeader>
 </f:facet>
 <ice:outputText value="#{customer.countryOfOrigin.name}"
 />
 </ice:column>
 </ice:dataTable>
 </h:form>

The backing bean methods needed to support this behavior are listed below:

public void sortCustomersByBirthDate(ActionEvent event) {
 sortableCustomerModel.setColumnName("birthDate");
 sortableCustomerModel.checkState();
 }

 public void sortCustomersByCountry(ActionEvent event) {
 sortableCustomerModel.setColumnName("countryOfOrigin");
 sortableCustomerModel.checkState();
 }

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 5

[217]

 public void sortCustomersByName(ActionEvent event) {
 sortableCustomerModel.setColumnName("fullName");
 sortableCustomerModel.checkState();
 }

 public void sortCustomersByPhoneNumber(ActionEvent event) {
 sortableCustomerModel.setColumnName("phoneNumber");
 sortableCustomerModel.checkState();
 }

Supporting resizable columns
One of the nice features about the ICEfaces data table is that it supports resizable
columns simply by setting the resizable attribute to true. This enables users
to resize columns by clicking and dragging the edges of the column headers in
our table.

<ice:dataTable value="#{customerBean.sortableCustomerModel.list}"
 var="customer" id="cs" rows="5"
 sortAscending="#{customerBean.sortableCustomerModel.ascending}"
 sortColumn="#{customerBean.sortableCustomerModel.columnName}"
 resizable="true">
 <ice:column>
 <f:facet name="header">
 <ice:commandSortHeader id="nameHeader"
 columnName="fullName">
 <ice:outputText value="Full Name" />
 </ice:commandSortHeader>
 </f:facet>
 <ice:outputText value="#{customer.fullName}" />
 </ice:column>
 <ice:column>
 <f:facet name="header">
 <ice:commandSortHeader id="birthDateHeader"
 columnName="birthDate">
 <ice:outputText value="Birth Date" />
 </ice:commandSortHeader>
 </f:facet>
 <ice:commandSortHeader id="birthDateHeader"
 columnName="birthDate">
 <ice:outputText value="#{customer.birthDate}">
 <f:convertDateTime type="date" dateStyle="medium" />
 </ice:outputText>
 </ice:commandSortHeader>
 </ice:column>
 <ice:column>
 <f:facet name="header">

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

ICEfaces Components

[218]

 <ice:commandSortHeader id="phoneNumberHeader"
 columnName="phoneNumber">
 <ice:outputText value="Phone Number" />
 </ice:commandSortHeader>
 </f:facet>
 <ice:outputText value="#{customer.phoneNumber}" />
 </ice:column>
 <ice:column>
 <f:facet name="header">
 <ice:commandSortHeader id="countryHeader"
 columnName="countryOfOrigin">
 <ice:outputText value="Country of Origin" />
 </ice:commandSortHeader>
 </f:facet>
 <ice:outputText value="#{customer.countryOfOrigin.name}"
 />
 </ice:column>
</ice:dataTable>

Data table single row selection mode
One of the more advanced features of the ICEfaces data table component is the
ability for users to select rows in the table. This is accomplished by nesting the
<ice:rowSelector> tag inside the first <ice:column> tag within the data table.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 5

[219]

This tag is bound to the Boolean selected property of each customer object being
rendered in the table. Therefore, when the user selects rows, they are effectively
setting the selected property to true in the customer object represented by that
row. After the customer model object is updated, a selection event is sent to the
rowSelectionListener method in our SortableDataModel object.

The multiple and enhancedMultiple attributes of the <ice:rowSelector> tag
support three possible selection modes. By default, the row selector supports a single
row selection mode. In this mode, the user can click on a row to select it.

<ice:selectOneRadio value="#{customerBean.sortableCustomerModel.mode}"
 onchange="submit()" immediate="#{true}">
 <f:selectItem itemLabel="Single" itemValue="single" />
 <f:selectItem itemLabel="Multiple" itemValue="multiple" />
 <f:selectItem itemLabel="Enhanced Multiple"
 itemValue="enhanced" />
</ice:selectOneRadio>
 <ice:panelGrid columns="2">
 <ice:panelGroup style="text-align:left; vertical-align:top;">
 <ice:outputText value="Customer Table" />
 <ice:dataTable
 value="#{customerBean.sortableCustomerModel.list}"
 var="customer" id="cs" rows="5" resizable="#{true}"
 sortAscending="#{customerBean.sortableCustomerModel.
 ascending}"
 sortColumn="#{customerBean.sortableCustomerModel.
 columnName}">
 <ice:column>
 <ice:rowSelector id="selected"
 value="#{customer.selected}"
 multiple="#{customerBean.sortableCustomerModel.
 multiple}"
 enhancedMultiple="#{customerBean.
 sortableCustomerModel.enhancedMultiple}"
 selectionListener="#{customerBean.
 sortableCustomerModel.rowSelectionListener}"
 preStyleOnSelection="#{true}" />
 <f:facet name="header">
 <ice:commandSortHeader id="nameHeader"
 columnName="fullName">
 <ice:outputText value="Full Name" />
 </ice:commandSortHeader>
 </f:facet>
 <ice:outputText value="#{customer.fullName}" />
 </ice:column>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

ICEfaces Components

[220]

 <ice:column>
 <f:facet name="header">
 <ice:commandSortHeader id="phoneNumberHeader"
 columnName="phoneNumber">
 <ice:outputText value="Phone Number" />
 </ice:commandSortHeader>
 </f:facet>
 <ice:outputText value="#{customer.phoneNumber}" />
 </ice:column>
 <ice:column>
 <f:facet name="header">
 <ice:commandSortHeader id="countryHeader"
 columnName="countryOfOrigin">
 <ice:outputText value="Country of Origin" />
 </ice:commandSortHeader>
 </f:facet>
 <ice:outputText
 value="#{customer.countryOfOrigin.name}" />
 </ice:column>
 </ice:dataTable>
 </ice:panelGroup>
 <ice:panelGroup style="text-align:left; vertical-align:top;">
 <ice:outputText value="Selected Customers" />
 <ice:dataTable
 value="#{customerBean.sortableCustomerModel.
 selectedValues}"
 var="customer">
 <ice:column>
 <f:facet name="header">
 <ice:outputText value="Customer Name" />
 </f:facet>
 <ice:outputText value="#{customer.fullName}" />
 </ice:column>
 </ice:dataTable>
 </ice:panelGroup>
 </ice:panelGrid>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 5

[221]

Data table multiple row selection mode
When the multiple attribute is set to true, it allows multiple row selections. This
mode allows the user to click on rows in sequence to make a multiple row selection.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

ICEfaces Components

[222]

Data table enhanced multiple row selection
mode
When the enhancedMultiple attribute is set to true, the table supports a more
advanced selection mode where:

•	 Clicking selects a row and deselects other rows.
•	 Pressing the Ctrl key while clicking toggles a row while preserving other

selected rows.
•	 Pressing the Shift key while clicking selects all contiguous rows from

the previous selected row to the current row, and deselects all other
selected rows.

•	 Pressing the Ctrl+Shift keys while clicking selects all contiguous rows
from the previous selected row to the current row, while preserving
other selected rows.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 5

[223]

Implementing data set paging
The ICEfaces data table component also supports data set paging. This is
implemented using the <ice:dataPaginator> tag. This tag has a for attribute
that specifies the identifier of the data table for which it is providing pagination.
The <ice:dataPaginator> tag is very easy to use and renders an attractive and
customizable data set pagination control that allows the user to navigate between
pages in the data set.

<ice:dataTable value="#{customerBean.customerList}" var="customer"
 id="customerTable" rows="5">
 <ice:column>
 <f:facet name="header">
 <ice:outputText value="Full Name" />
 </f:facet>
 <ice:outputText value="#{customer.fullName}" />
 </ice:column>
 <ice:column>
 <f:facet name="header">
 <ice:outputText value="Birth Date" />
 </f:facet>
 <ice:outputText value="#{customer.birthDate}">
 <f:convertDateTime type="date" dateStyle="medium" />
 </ice:outputText>
 </ice:column>
 <ice:column>
 <f:facet name="header">
 <ice:outputText value="Phone Number" />
 </f:facet>
 <ice:outputText value="#{customer.phoneNumber}" />
 </ice:column>
 <ice:column>
 <f:facet name="header">
 <ice:outputText value="Country of Origin" />
 </f:facet>
 <ice:outputText value="#{customer.countryOfOrigin.name}"
 />
 </ice:column>
</ice:dataTable>
 <ice:dataPaginator for="customerTable" paginatorMaxPages="10"
 id="scroll" vertical="#{false}" paginator="#{true}"
 styleClass="carNumber">
 <f:facet name="first">
 <ice:outputText value="First" />
 </f:facet>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

ICEfaces Components

[224]

 <f:facet name="last">
 <ice:outputText value="Last" />
 </f:facet>
 <f:facet name="previous">
 <ice:outputText value="Previous" />
 </f:facet>
 <f:facet name="next">
 <ice:outputText value="Next" />
 </f:facet>
 </ice:dataPaginator>

Rendering charts
The ICEfaces component library includes support for the open source jCharts
project. This project provides a wide variety of chart objects that are rendered as
JPEG images in the browser. We will look at how to render some of these charts
using the ICEfaces <ice:outputChart> tag.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 5

[225]

Rendering a stacked bar chart
Our first example demonstrates how to render a stacked bar chart using a static data
set declared in our JSF page. This example renders a chart that displays unit test
results for a series of test suites. The data is hardcoded in the data attribute of the
tag. The values in a series are separated by commas, while the series themselves are
separated by a colon. It is important that the number of labels and the number of
series are equal.

<ice:outputChart type="barstacked" chartTitle="Unit Test Results"
xaxisLabels="Suite 1, Suite 2, Suite 3" yaxisTitle="Test Methods"
xaxisTitle="Test Suites" labels="pass, fail" data="70, 30, 10 : 10,
50, 70" colors="green, red" />

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

ICEfaces Components

[226]

Rendering a 3-D pie chart
In our next example, we will see how to render a three-dimensional pie chart
dynamically using data provided by our backing bean. This time, instead of using
hardcoded values in the data attribute, we bind it to a List of Double objects
representing the distribution of male and female customers. Once again, it is
important that the number of labels and the number of series are equal. We have
two labels, one for male and one for female, so our list has two double values: the
number of men and the number of women.

<ice:outputChart type="pie3D" chartTitle="Customer Gender"
 height="400" labels="male,female"
 data="#{customerBean.customerGenderData}" colors="blue, green" />

The Java code in our CustomerBean class is as follows:

public List<Double> getCustomerGenderData() {
 if (customerGenderData == null) {
 customerGenderData = new ArrayList<Double>();
 List<Customer> customers = getCustomerList();
 double male = 0;
 double female = 0;
 for (Customer customer : customers) {
 if (customer.getMale() != null && customer.getMale()) {
 male++;
 } else {
 female++;
 }
 }
 customerGenderData.add(male);
 customerGenderData.add(female);
 }
 return customerGenderData;
 }

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 5

[227]

Rendering a bar chart
Let's look at how to render a bar chart that displays more customer demographic
information. In this case, our chart displays the number of customers in different
age groups. Once again, the data attribute of the tag is bound to the backing bean
property, but in this case we use a two-dimensional array of double values instead
of a list.

<ice:outputChart type="bar" labels="Customers" chartTitle="Customer
Demographics" xaxisLabels="#{customerBean.ageGroupLabels}"
data="#{customerBean.customerAgeBarChartData}" xaxisTitle="Age Groups"
yaxisTitle="Number of Customers" />

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

ICEfaces Components

[228]

The Java code required to construct the data for this chart is a bit more complicated.
The first dimension in our array of doubles has a size of one, indicating that we have
only one series of values to display the chart (we only have one group of customers).
The second dimension in our array of doubles has a size of six, one element for each
age group.

To construct the data, first we iterate an array of AgeGroup enums. For each age
group, we iterate our collection of Customer objects and increment a counter for each
customer within that age group.

public double[][] getCustomerAgeBarChartData() {
 if (customerAgeBarChartData == null) {
 customerAgeBarChartData = new double[1][6];
 List<Customer> customers = getCustomerList();
 int customerCount = customers.size();
 AgeGroup[] ageGroups = AgeGroup.values();
 for (int i = 0; i < ageGroups.length; i++) {
 customerAgeBarChartData[0][i] = 0;
 AgeGroup ageGroup = ageGroups[i];
 for (int j = 0; j < customerCount; j++) {
 Customer customer = customers.get(j);
 int age = customer.getAge();
 int[] range = ageGroup.getRange();
 int min = range[0];
 int max = range[1];
 if (age < max && age >= min) {
 customerAgeBarChartData[0][i]++;
 }
 }
 }
 }
 return customerAgeBarChartData;
 }

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 5

[229]

Laying out components with panels
The ICEfaces component library also includes a set of panels that support a wide
range of user interface layouts. Let's look at a few of these panel components to gain
a better appreciation of the power of ICEfaces' layout capabilities.

Working with a border layout
Swing/AWT programmers will be familiar with the BorderLayout class. This class
provides an interesting layout manager for the Java GUI toolkit that subdivides a
panel into five distinct regions. These regions are known as the North, South, East,
West, and Center regions.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

ICEfaces Components

[230]

The <ice:panelBorder> tag supports the BorderLayout layout algorithm within a
JSF application. Each region is represented by a facet with the same name as shown
in the following example.

<ice:panelBorder cellspacing="2" cellpadding="2" align="center"
 height="200px" width="400px">
 <f:facet name="north">
 <ice:outputText value="North" />
 </f:facet>
 <f:facet name="west">
 <ice:outputText value="West" />
 </f:facet>
 <f:facet name="center">
 <ice:outputText value="Center" />
 </f:facet>
 <f:facet name="east">
 <ice:outputText value="East" />
 </f:facet>
 <f:facet name="south">
 <ice:outputText value="South" />
 </f:facet>
</ice:panelBorder>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 5

[231]

Rearranging elements in a list
Sometimes, it is desirable to enable users to rearrange elements in a list. The ICEfaces
<ice:panelPositioned> tag is an excellent choice for this use case. In the following
example, we use the <ice:panelPositioned> tag to render a list of products that
can be re-positioned by the user by dragging and dropping elements in the list.

<ice:form>
 <ice:panelGrid columns="2" cellpadding="10">
 <ice:panelGroup>
 <ice:outputText value="Modifiable Product List"
 style="font-weight:bold; padding:5px" />
 <ice:panelPositioned id="products" var="product"
 value="#{productBean.rankedProducts}" styleClass="
 positionPanelContainer"
 listener="#{productBean.rankChanged}"
 constraint="vertical">
 <ice:panelGroup style="cursor:move;" styleClass="container">
 <ice:panelGroup styleClass="moveLabel"
 style="border: 4px red">
 <ice:graphicImage url="/images/#{product.icon}"
 width="16px" style="vertical-align:middle;
 padding-right:5px" />
 <ice:outputText id="name" value="#{product.name}" />
 </ice:panelGroup>
 </ice:panelGroup>
 </ice:panelPositioned>
 </ice:panelGroup>
 <ice:panelGroup>
 <ice:outputText value="Ranked Products"
 style="font-weight:bold; padding:5px" />
 <ice:panelSeries id="rankedProducts" var="product"
 styleClass="rankPanelContainer"
 value="#{productBean.rankedProducts}">
 <ice:panelGroup effect="#{product.effect}"
 styleClass="container">
 <ice:outputText id="nameWithRank"
 value="#{product.nameWithRank}" />
 </ice:panelGroup>
 </ice:panelSeries>
 </ice:panelGroup>
 </ice:panelGrid>
</ice:form>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

ICEfaces Components

[232]

The following screenshot demonstrates the <ice:panelPositioned> component
in action. The product items shown in the list on the left are draggable. The selected
item is currently being dragged and dropped to another position in the list.

Once the mouse button is released, the drop operation is completed and the rank
of the positioned item is reflected in the list on the right. A highlight effect briefly
flashes on the page to indicate the change in position before fading out.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 5

[233]

Rendering a series of components
The ICEfaces component library includes a number of components that support
data iteration. The PanelSeries component is a simple but powerful component
for iterating dynamic data from a backing bean. This component renders its
data using any arbitrary set of child components. In this example, we bind the
<ice:panelSeries> tag's value attribute to a collection of products from our
backing bean as a series of floating <div> elements. The var attribute specifies the
name of the iterator variable to use, similar to the dataTable tag.

<ice:panelSeries value="#{productBean.randomProducts}" var="product"
 rows="9">
 <ice:panelGroup styleClass="productBox">
 <ice:graphicImage url="/images/#{product.icon}" />
 <ice:panelGroup styleClass="iceDatTblColHdr">
 <ice:outputText value="#{product.name}"
 style="font-weight:bold;" />
 </ice:panelGroup>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

ICEfaces Components

[234]

 <ice:panelGroup style="padding:10px;">
 <ice:outputText value="Category: "
 style="font-weight:bold;" />
 <ice:outputText value="#{product.productCategory.
 name}" />

 <ice:outputText value="Price: "
 style="font-weight:bold;" />
 <ice:outputText value="#{product.price}">
 <f:convertNumber type="currency"
 currencySymbol="$" maxFractionDigits="0" />
 </ice:outputText>

 <ice:outputText value="In Stock: "
 style="font-weight:bold;" />
 <ice:outputText value="#{product.quantityInStock}"
 />
 </ice:panelGroup>
 </ice:panelGroup>
</ice:panelSeries>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 5

[235]

Rendering collapsible panels
Another interesting layout component in the ICEfaces component library
is PanelCollapsible component. This component is rendered by the
<ice:panelCollapsible> tag as a <div> element that responds to mouse click
events by expanding and collapsing to reveal or hide its child content. Other
components such as forms, images, and text can be nested inside this component.
In this example, we combine the <ice:panelCollapsible> tag with the
<ice:panelSeries> tag to produce a series of panels to display groups of products.

<ice:panelCollapsible expanded="true">
 <f:facet name="header">
 <ice:panelGroup>
 <ice:outputText value="Recommended" />
 </ice:panelGroup>
 </f:facet>
 <ice:panelGrid width="100%">
 <ice:panelSeries value="#{productBean.randomProducts}"
 var="product" rows="3">
 <ice:panelGroup styleClass="productBox">
 <ice:graphicImage url="/images/#{product.icon}"
 />
 <ice:panelGroup styleClass="iceDatTblColHdr">
 <ice:outputText value="#{product.name}"
 style="font-weight:bold;" />
 </ice:panelGroup>
 <ice:panelGroup style="padding:10px;">
 <ice:outputText value="Category: "
 style="font-weight:bold;" />
 <ice:outputText value="#{product.
 productCategory.name}" />

 <ice:outputText value="Price: "
 style="font-weight:bold;" />
 <ice:outputText value="#{product.price}">
 <f:convertNumber type="currency"
 currencySymbol="$"
 maxFractionDigits="0" />
 </ice:outputText>

 <ice:outputText value="In Stock: "
 style="font-weight:bold;" />
 <ice:outputText value="#{product.
 quantityInStock}" />

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

ICEfaces Components

[236]

 </ice:panelGroup>
 </ice:panelGroup>
 </ice:panelSeries>
 </ice:panelGrid>
</ice:panelCollapsible>

<ice:panelTabSet tabPlacement="top">
 <ice:panelTab label="Recommended">
 <ice:panelSeries value="#{productBean.randomProducts}"
 var="product" rows="6">
 <ice:panelGroup styleClass="productBox">
 <ice:graphicImage url="/images/#{product.icon}" />
 <ice:panelGroup styleClass="iceDatTblColHdr">
 <ice:outputText value="#{product.name}"
 style="font-weight:bold;" />
 </ice:panelGroup>
 <ice:panelGroup style="padding:10px;">
 <ice:outputText value="Category: "
 style="font-weight:bold;" />
 <ice:outputText value="#{product.productCategory.
 name}" />

 <ice:outputText value="Price: "
 style="font-weight:bold;" />
 <ice:outputText value="#{product.price}">

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 5

[237]

 <f:convertNumber type="currency"
 currencySymbol="$"
 maxFractionDigits="0" />
 </ice:outputText>

 <ice:outputText value="In Stock: "
 style="font-weight:bold;" />
 <ice:outputText value="#{product.quantityInStock}" />
 </ice:panelGroup>
 </ice:panelGroup>
 </ice:panelSeries>
 </ice:panelTab>
 <ice:panelTab label="Most Popular">
 </ice:panelTab>
 <ice:panelTab label="Favorites">
 </ice:panelTab>
 <ice:panelTab label="Purchases" disabled="#{true}">
 </ice:panelTab>
</ice:panelTabSet>

Creating a tabbed user interface
ICEfaces also includes a panel component that supports tabbed user interface
layouts. The <ice:panelTabSet> tag renders a set of child <ice:panelTab> tags
in a series of tabs that the user can interact with to display the contents of the
series of panels on the screen. The following example demonstrates how to use the
<ice:panelTab> tag. Only the first tab has been implemented; the remaining three
tabs are simply included for illustration purposes.

<ice:form>
 <ice:panelTabSet tabPlacement="top">
 <ice:panelTab label="Recommended">
 <ice:panelSeries value="#{productBean.randomProducts}"
 var="product" rows="6">
 <ice:panelGroup styleClass="productBox">
 <ice:graphicImage url="/images/#{product.icon}" />
 <ice:panelGroup styleClass="iceDatTblColHdr">
 <ice:outputText value="#{product.name}"
 style="font-weight:bold;" />
 </ice:panelGroup>
 <ice:panelGroup style="padding:10px;">
 <ice:outputText value="Category: "
 style="font-weight:bold;" />
 <ice:outputText value="#{product.productCategory.
 name}" />

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

ICEfaces Components

[238]

 <ice:outputText value="Price: "
 style="font-weight:bold;" />
 <ice:outputText value="#{product.price}">
 <f:convertNumber type="currency"
 currencySymbol="$"
 maxFractionDigits="0" />
 </ice:outputText>

 <ice:outputText value="In Stock: "
 style="font-weight:bold;" />
 <ice:outputText value="#{product.quantityInStock}" />
 </ice:panelGroup>
 </ice:panelGroup>
 </ice:panelSeries>
 </ice:panelTab>
 <ice:panelTab label="Most Popular">
 </ice:panelTab>
 <ice:panelTab label="Favorites">
 </ice:panelTab>
 <ice:panelTab label="Purchases" disabled="#{true}">
 </ice:panelTab>
 </ice:panelTabSet>
</ice:form>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 5

[239]

Working with modal dialogs
Web browser support for modal dialogs is quite limited. To date, there is no standard
browser support for rendering a complex modal dialog window. Fortunately, the
ICEfaces library includes such a component.

Rendering a simple modal dialog
To render a simple modal dialog with ICEfaces, we can use the <ice:panelPopup>
tag. This tag has a "header" and "body" facet to render the dialog title and message
content, respectively.

The modal attribute of the tag expects a Boolean value that determines whether
the dialog is modal or not. When this attribute is set to true, the dialog appears
centered over a transparent gray background that covers the entire screen. When this
attribute is set to false, the dialog is displayed next to the button and the background
is not modified.

<ice:panelGroup style="height: 75px;">
 <ice:panelGroup style="float:left">
 <ice:outputLabel value="Modal Popup Message"
 for="modalMessageInput" />
 </ice:panelGroup>
 <ice:panelGroup styleClass="clearer" />
 <ice:panelGroup style="float:left">
 <ice:inputText id="modalMessageInput"
 value="#{popup.modalMessage}"
 disabled="#{popup.modalRendered}" size="30"
 maxlength="90" style="font-size:12px" />
 <ice:commandButton id="toggleModal"
 value="#{popup.determineModalButtonText}"
 disabled="#{popup.modalRendered}"
 style="margin-right: 2px;font-size:12px"
 actionListener="#{popup.toggleModal}" />
 </ice:panelGroup>
</ice:panelGroup>
 <ice:panelPopup id="modalPnlPop" draggable="false"
 modal="true" visible="#{popup.modalRendered}"
 autoCentre="#{popup.autoCentre}" styleClass="corePopup">
 <f:facet name="header">
 <ice:panelGroup styleClass="popupHeaderWrapper">
 <ice:outputText value="Modal Popup Dialog"
 styleClass="popupHeaderText" />
 <ice:commandButton id="modalPnlCloseBtn"
 type="button" image="/images/close.gif"
 actionListener="#{popup.toggleModal}"
 styleClass="popupHeaderImage"
 title="Close Popup" alt="Close" />

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

ICEfaces Components

[240]

 </ice:panelGroup>
 </f:facet>
 <f:facet name="body">
 <ice:panelGroup styleClass="popupBody">
 <ice:outputText value="#{popup.modalMessage}" />

 <ice:commandButton id="modalPnlCloseButton"
 type="submit" value="Close"
 actionListener="#{popup.toggleModal}" />
 </ice:panelGroup>
 </f:facet>
 </ice:panelPopup>

The following screenshot demonstrates the <ice:panelPopup> tag in action. First,
we render a text input field and a button on the screen.

When the user clicks on the Show button, our modal dialog is displayed in the
foreground and a semi-transparent layer is rendered over the background. The
dialog can be closed by clicking the Close button, or by clicking our custom close
icon in the top-right corner.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 5

[241]

Rendering a draggable dialog box
The <ice:panelPopup> tag also has a draggable attribute. This attribute controls
whether or not the user can drag the modal dialog box around on the screen. When
the autoCenter attribute is set to true, the dialog will automatically return to the
center of the screen when the drag operation is completed.

<ice:panelGroup styleClass="exampleBox panelPopupExampleContainer"
 style="height: 75px;">
 <ice:panelGroup style="float:left">
 <ice:outputLabel value="Draggable Popup Message"
 for="draggableMessageInput" />
 </ice:panelGroup>

 <ice:panelGroup styleClass="clearer" />
 <ice:panelGroup style="float:left">
 <ice:inputText id="draggableMessageInput"
 value="#{popup.draggableMessage}"
 disabled="#{popup.draggableRendered}" size="30"
 maxlength="90"
 style="font-size:12px" />
 <ice:commandButton id="toggleDraggable"
 value="#{popup.determineDraggableButtonText}"
 disabled="#{popup.draggableRendered}"
 style="font-size:12px"
 actionListener="#{popup.toggleDraggable}" />
 </ice:panelGroup>
 <ice:panelGroup styleClass="clearer" />
 <ice:panelGrid style="float:left" columns="2"
 cellspacing="2"
 cellpadding="3">
 <ice:outputLabel value="Auto Center"
 for="autoCentreCheck" />
 <ice:selectBooleanCheckbox id="autoCentreCheck"
 value="#{popup.autoCentre}"
 disabled="#{popup.draggableRendered or popup.
 modalRendered}" />
 </ice:panelGrid>
</ice:panelGroup>

 <!-- Draggable Panel Popup -->
 <ice:panelPopup id="draggablePnlPop" draggable="true"
 modal="false"
 rendered="#{popup.draggableRendered}"
 visible="#{popup.draggableRendered}"
 autoCentre="#{popup.autoCentre}" styleClass="corePopup">
 <f:facet name="header">
 <ice:panelGroup styleClass="popupHeaderWrapper">
 <ice:outputText value="Draggable Popup Dialog"
 styleClass="popupHeaderText" />

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

ICEfaces Components

[242]

 <ice:commandButton id="draggablePnlCloseBtn"
 type="button"
 image="/images/close.gif"
 actionListener="#{popup.toggleDraggable}"
 styleClass="popupHeaderImage" title="Close Popup"
 alt="Close" />
 </ice:panelGroup>
 </f:facet>
 <f:facet name="body">
 <ice:panelGroup styleClass="popupBody">
 <ice:outputText value="#{popup.draggableMessage}" />

 <ice:commandButton id="draggablePnlCloseButton"
 type="submit" value="Close"
 actionListener="#{popup.toggleDraggable}" />
 </ice:panelGroup>
 </f:facet>
 </ice:panelPopup>

Rendering a draggable modal dialog
The following screenshot demonstrates two more features of the <ice:panelPopup>
tag: draggable and auto-centering modal dialogs. In this example, we render
a checkbox to enable the "auto-center" behavior of the ICEfaces modal dialog
component. When it is checked, the modal dialog will always be displayed in the
center of the screen.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 5

[243]

When the user clicks the Show button, a draggable modal dialog box is displayed.
The user can drag the title bar of the dialog to re-position it on the screen. If the Auto
Center checkbox is checked, the dialog will return to a centered position.

Summary
In this chapter, we looked at a number of common use cases for web developers
and how these could be implemented using the ICEfaces component library. In
particular, we looked at how to receive input from users, how to create navigation
pop-up menus, working with tree components, displaying tabular data, rendering
charts, laying out components on the screen with panels, creating tabbed user
interfaces, and using modal dialogs.

ICEfaces is a truly impressive Ajax component library for the JSF framework. With
over 50 powerful and feature-rich UI components, ICEfaces enables JSF developers
to quickly and easily develop advanced user interfaces that significantly improve the
Web user experience.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss Seam Components
In this chapter, we will explore the JBoss Seam framework and the Seam JSF
component library. Seam is one of the most exciting technologies available today for
JSF developers. This powerful framework significantly enhances web development
on the Java EE platform, and provides a much needed bridge between many
important and complementary technologies. In addition to discussing the Seam
framework, we will also set the stage for a more in-depth discussion of two other
important JBoss technologies covered in the next chapter: the JBoss RichFaces and
Ajax4jsf component libraries.

Introducing the JBoss Seam framework
The JBoss Seam framework sets out to bridge the gap between JSF managed beans
and EJB3 components. It introduces a flexible set of Java annotations that provide a
nice alternative to XML for JSF managed bean configuration and that significantly
enhances the Dependency Injection (DI) capabilities of the JSF framework.

Additionally, Seam introduces a new conversation scope to the JSF environment,
enabling developers to support more fine-grained interaction between users and
components in the Java Web tier. Seam conversations solve a number of common
issues for Java web applications, gracefully handling the "back button" problem
and allowing users to interact with the same JSF page concurrently in multiple tabs
without any side effects.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss Seam Components

[246]

The Seam framework also includes a powerful set of JSF controls that greatly
simplify JSF application development. With the Seam JSF tag library, developers
can implement sophisticated validation schemes with minimal coding effort.
In particular, the <s:validateAll> tag delegates JSF validation duties to the
Hibernate Validator framework, enabling developers to apply a rich set of
annotations to JPA domain model classes to declare validation constraints that
can be verified automatically during the JSF request processing lifecycle. By
providing tight integration with the Java Persistence API and support for the
Hibernate Validator framework, Seam encourages developers to follow the "DRY"
principle ("Don't Repeat Yourself") when implementing domain model validation.

Seam also provides a convenient JSF tag for automatically converting lists of JPA
entities to lists of JSF SelectItem objects, saving the developer, the extra work of
preparing JSF-specific data structures for selection-oriented UI components. When
combined with the <s:convertEntity> tag, the Seam framework can also perform
automatic type conversion for JSF of any JPA domain model object. This also saves
the developer a lot of work in implementing custom converters for different domain
model classes.

Our examples will highlight key features of the JBoss Seam framework and will
feature Java source code, JSF markup, and configuration files to demonstrate how to
leverage the power of Java EE in a Seam-enabled JSF application.

Java Enterprise Edition (Java EE)
technology
Let's consider some of the benefits of using the full Java EE technology stack in our
JSF applications. Since you are reading this book, it's a safe bet that you have an
interest in Java Web frameworks, you most likely have some experience working
with both Java Standard Edition (Java SE) and Java Enterprise Edition (Java EE)
middleware APIs such as JDBC and Servlets/JSP, and you are probably familiar with
the JavaBeans programming model. (If you do not have experience with these APIs,
you may want to pick up a book or two on the subject. The more familiar you are
with these and other enterprise Java technologies, the easier it will be to understand
how they can be integrated together in the context of a JSF application and the more
you will appreciate their value from a development point of view.)

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 6

[247]

Over the past few years there has been a growing trend in the Enterprise Java
community towards simpler, lighter, and more elegant programming paradigms
and design patterns, such as Model-View-Controller, Dependency Injection, and
annotation-based configuration. The surging success of open source frameworks
such as Spring, Hibernate, and Struts were like catalysts that help to refine
dramatically the Java EE architecture in general and the Enterprise JavaBeans™ (EJB)
component model in particular.

Before MVC Web frameworks such as JSF, typical n-tier Java web applications
consisted of Java Servlets and JSP pages that communicated with a database using
JDBC directly or via references to local or remote EJB session beans obtained from
the Java Naming and Directory Interface (JNDI). With the emergence of the Struts
framework (the predecessor to JavaServer Faces) in the year 2000, Java developers
had new tools for building web applications. The success of Struts and its custom tag
libraries led to the emergence of the Java Standard Tag Library (JSTL), a set of JSP
tags that provided common functionality needed by many web applications, such as
conditional logic and iteration.

With the release of Java EE 5, developers now have a much simpler programming
model to deal with when implementing an EJB-based business tier for a Java web
application. If you are unfamiliar with the benefits of EJB, please read on. If you are
already a seasoned Java EE developer with significant EJB programming experience,
you may want to skip ahead to the next section.

Understanding Java SE and Java EE
Under the stewardship of Sun Microsystems, the Java platform evolved into two
separate editions: Java Standard Edition (Java SE) and Java Enterprise Edition (Java
EE). Java SE defines a set of standardized application program interfaces (APIs) for
everyday development, such as file handling, multithreading, networking, database
programming, GUI development, Remote Method Invocation (RMI), and more.

Real-world enterprise applications have to deal with a much broader set of concerns
than addressed by Java SE. Therefore, the Java EE specification was designed to
address these concerns. It defines APIs for a wide range of enterprise programming
tasks, such as developing web applications with Servlets and JSPs, writing
XML-based web services, building transactional business-tier components using
EJBs, Object/Relational Mapping (ORM) with the Java Persistence API (JPA),
container-managed security with the Java Authentication and Authorization Service
(JAAS), container-managed transactions with the Java Transaction API (JTA),
asynchronous messaging with the Java Message Service (JMS), and much more.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss Seam Components

[248]

Introducing Enterprise JavaBeans (EJB3)
technology
One of the most compelling reasons for using the JBoss Seam framework is how
easy it makes to use EJB3 components in our JSF applications. EJB components are
transactional by default, which means that any public method calls on our EJBs are
automatically wrapped in a database transaction that is managed by the Java EE
application server. Additionally, the application server's EJB container provides
a number of key services to improve the performance and scalability of our EJB
objects, such as passivation and activation, object pooling, asynchronous messaging,
and much more.

The Java EE 5 specification defines four types of EJB components: session beans,
message-driven beans (MDBs), timer beans, and entity beans. Session beans come in
two varieties: Stateful Session Beans (SFSBs) and Stateless Session Beans (SLSBs).
Stateful session beans make excellent controllers for JSF views, as by design they are
able to store per-client conversational state between requests.

Stateless session beans are useful for implementing application services that do not
manage conversational state. Message-driven beans (MDBs) can also be used as
infrastructural components because they can run asynchronously and support a
loosely-coupled architecture where communication between objects does not require
direct references. Timer beans can also be useful infrastructural components as they
can be scheduled to perform recurring background tasks.

Introducing the Java Persistence API (JPA)
The Java Persistence API (JPA) is the standard persistence technology for the Java
platform. Although JPA is a subset of the EJB3 specification, it can be used in both
Java SE and Java EE environments. JPA entity beans support object/relational
mapping and can have their state persisted to and restored from a relational
database. As such they are excellent candidates for implementing an application
domain model and can also be used as Data Transfer Objects (DTOs) to transfer
data between the different tiers of the application.

JPA entities can also be annotated to express an application's validation constraints in
an efficient way. For example, JPA supports a basic set of object/relational mapping
annotations such as @Table, @Column, @JoinColumn, @ManyToOne, and @OneToMany
to map our domain model to a relational database schema. JPA also includes more
advanced annotations such as @Inheritance and @MappedSuperclass that enable
us to apply Object-Oriented Programming (OOP) concepts to our persistence layer.
For example, we can map a class hierarchy to one or more tables using different
inheritance mapping strategies.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 6

[249]

The @Transient annotation in JPA enables us to add transient (non-persistent)
properties to our entity classes. Transient in this sense is not the same as the
"transient" keyword in the Java language that excludes fields during object
serialization; rather, transient in the JPA context generally means "state which is not
saved to the database".

What is a property?
A "property" is another name for an object attribute, more specifically
an instance variable with a getter and a setter method. Getter methods
are also known as "accessor" methods, as they provide access to the
instance variable. Setter methods are also called "mutators" because
they enable callers to modify (mutate) the value of the instance variable.
A property can be read-write (getter and setter), read-only (getter only),
and write-only (setter only). Properties do not need an instance variable,
but their signatures must conform to the JavaBeans programming
guidelines to be recognized properly using the Java Reflection API.

For example, our Customer class has a transient getAge() method that simply
calculates the customer's current age in years:

 @Transient
 public int getAge() {
 Date today = new Date();
 double millis = today.getTime() - birthDate.getTime();
 double seconds = millis / 1000d;
 double minutes = seconds / 60d;
 double hours = minutes / 60d;
 double days = hours / 24d;
 double years = days / 365d;
 int age = new Double(Math.floor(years)).intValue();
 return age;
 }

This is a good example of a transient property because storing volatile data such
as a customer's age in the database would not be efficient. There are many possible
examples of good candidates for transient properties, such as a getTotal() method
in an Invoice class that calculates the current value of the invoice (plus sales tax,
minus discounts).

Implementing transient properties in a JPA domain model is an excellent practice
because it encapsulates business logic and data in a portable way. Applications that
use JPA but do not take advantage of transient properties are at risk of falling into
the Anemic Domain Model anti-pattern (http://martinfowler.com/bliki/
AnemicDomainModel.html).

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss Seam Components

[250]

We will see a number of examples of how to use JPA entities in Seam-enabled JSF
applications throughout this chapter.

Container Managed Transactions (CMT)
The Java EE specification requires that EJB containers support Container Managed
Transactions (CMT). EJB components are transactional by default, so any public
methods invoked on an EJB instance are automatically executed in a database
transaction. EJB components support transaction propagation and declarative
transaction demarcation. By default, any method called by the original method is
also executed in the same transaction, unless the other method specifies a different
transaction attribute type. Container managed transactions are one of the most
compelling reasons to use EJB technology.

Activation and passivation for Stateful Session Beans
(SFSBs)
EJB technology is designed to handle the high performance requirements of
enterprise Java applications, so it provides some useful features to improve
application efficiency. As stateful session beans are more memory-intensive
than stateless session beans, the EJB container supports a sophisticated memory
management feature that is similar to virtual memory in a modern operating system.

When our computer's physical memory (RAM) has been used up by running
processes, the operating system attempts to make more memory available by
"swapping" data for inactivate programs out of physical memory and onto the hard
disk. When an inactive program becomes active again, the operating system swaps the
application's data back into physical memory from the hard disk, possibly swapping
another inactive program's data to the hard disk to make more RAM available.

The EJB container manages the memory available to a Java EE application in a
similar way. When a stateful session bean becomes inactive (that is, its methods have
not been invoked for a certain period of time), the EJB container can make more
physical memory available by "passivating" (serializing) the stateful session bean
instance to disk and releasing any object references. If the bean's client attempts to
invoke one of the bean methods, the EJB container will "activate" (deserialize) the
bean back into memory from the hard disk.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 6

[251]

Object pooling for Stateless Session Beans (SLSBs)
Similarly, the EJB container provides some performance optimizations for stateless
session beans. Stateless session beans do not hold per-client conversational state in
their instance variables like stateful session beans do. As a consequence, stateless
session beans consume less memory than stateful session beans; however the
creation of a stateless session bean can still be expensive.

A stateless session bean may depend on external resources such as a JPA persistence
context, a JMS destination, or other stateless session beans, so creating and injecting
these dependencies is an expensive task for the EJB container. Furthermore, as
stateless session beans are stateless by definition, one instance is interchangeable
with another. This means the EJB container can manage a pool of stateless session
beans from which clients (servlets, JSF managed beans, other session beans, and so
on) can obtain "method ready" references that have already been initialized.

Integrating EJB3 and JSF with Seam
The Seam framework includes Java annotations that enable EJB components to be
integrated easily into a JSF application. We will see the use of the Seam framework's
@In, @Name, and @Scope annotations in this chapter to annotate an EJB stateful
session bean class so that it can be used "seamlessly" as a JSF managed bean.

Throughout this chapter, we will see examples of key Java EE middleware APIs
in action. The example application for this chapter is a full featured Enterprise
Application that is deployed to a Java EE 5 compatible application server as an
Enterprise ARchive or EAR file for short. This EAR file consists of one EJB JAR file
that contains the EJB components for our JSF application, as well as our JPA domain
model implementation. The EAR file also consists of a Web Application Archive or
WAR file that contains a set of managed beans, Facelets pages, and configuration
files for our web application. The web application module is a "client" of the EJB
session bean components in the EJB module, and both the Web and EJB modules
share a common set of Java library dependencies that are packaged and deployed
within the EAR file.

To run the examples in this chapter, you will also need to install the sample database
included with the application. The simplest way to get started is to download and
install the open source MySQL database and run the SQL script provided with the
application. This script will create the necessary database and populate it with the
sample data shown in the screenshots throughout this book. A preconfigured JBoss
Application Server (version 4.2.3) is also available for download from the publisher's
website that includes the necessary data source and database driver JAR to run the
example application for this chapter. Please refer to the instructions included with
the application for more detailed information.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss Seam Components

[252]

In this chapter, we will examine how to solve a number of common web application
development problems using the JBoss Seam framework in combination with the
JBoss RichFaces and Ajax4jsf component libraries. We will look at several examples
of how to develop next generation web user interfaces using RichFaces, Ajax4jsf,
Seam, EJB3 components, and JPA persistence. Our example application will be a full
featured Java EE 5 application that is deployed to the JBoss Application Server. This
example application can be used as a prototype or starting point for real-world JSF
applications based on JBoss Seam, EJB3 and JPA technogies.

A powerful trio: JBoss Seam, RichFaces, and Ajax4jsf
The combination of the JBoss RichFaces library, the JBoss Seam
framework, and the Ajax4jsf library enables us to build rich,
compelling, and powerful user interfaces for our JSF application.
JBoss RichFaces provides a very useful set of input components, while
Ajax4jsf adds the Ajax capabilities, and the Seam framework provides
the glue that bridges JSF and EJB and simplifies a number of common
JSF development tasks.
The examples in this chapter include components from the Seam,
RichFaces, and Ajax4jsf libraries, but the focus of this chapter is
primarily on the Seam framework itself. JBoss RichFaces and Ajax4jsf
will be covered in more detail in the next chapter. Therefore, when
studying the example code, try to concentrate on the Seam markup
and remember the overall goal of the chapter.

Introducing Seam components
The JBoss Seam framework is one of the most powerful tools available for JSF
developers today. Not surprisingly, this power comes with some complexity. While
Seam includes a small set of JSF UI components, its main value proposition is as
a technology integration framework and Dependency Injection (DI) container.
Therefore, the term "component" is overloaded in Seam, as the framework includes
a number of infrastructural components as well. Many of these framework-level
components are exposed to JSF applications as managed beans and configured
through properties files and XML files such as seam.properties and
META-INF/components.xml.

Introducing REST
The Seam framework supports building RESTful Web Services using the JBoss
RESTEasy implementation of the Java API for RESTful Web Services (JAX-RS).
JAX-RS is a popular Java specification (JSR-311) for building RESTful Web Services
on the Java platform.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 6

[253]

REST is an architectural approach to build distributed applications and web services
articulated by Roy Fielding in 2000. REST is an acronym for Representational State
Transfer and emphasizes "nouns" (resources) over "verbs" (service methods) when
building web services.

In fact, REST is based on the concept of the "uniform interface" in which all
service methods are specified in advanced, and clients and services exchange
"representations" of resources across the network. In practice, RESTful Web Services
and their clients are HTTP based and use HTTP methods to communicate (GET, PUT,
POST, DELETE, and HEAD). The Seam framework supports injecting Seam-managed
components into JAX-RS resources and providers, making it easier to build RESTful
Web Services based on EJB3 technology.

Next steps
Now that we have introduced some important Java EE concepts such as EJB3, JPA,
and JAX-RS, we can begin to discuss the JBoss Seam framework in more detail.

The topics we will cover in this chapter include:

•	 Validating user input with the Seam framework
•	 Implementing JSF validation with Seam
•	 JPA and the Hibernate Validator framework
•	 Decorating the UI to improve form validation
•	 Seam validation messages
•	 Adding cutting-edge Ajax technology with Ajax4jsf
•	 Displaying success messages in JSF
•	 Seam conversation management
•	 Temporary conversations
•	 Starting a long-running conversation
•	 Concurrent conversations

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss Seam Components

[254]

Validating user input with the Seam
framework
In many ways, the JSF validation framework follows the example of previous
MVC frameworks, such as Struts. The Struts framework introduced an XML-based
validation layer that enabled developers to declare validation rules in an XML
file, which the framework would then apply to form bean properties during form
submission. Struts includes a number of built-in validators to support common
scenarios, such as checking for required fields, verifying a numeric value, and
validating a credit card number format.

The JSF validation framework also includes a number of built-in validators that
can be registered on components in the view, such as the <f:validateLongRange>
and <f:validateLength> tags. It is important to note that JSF validators are
not components themselves, but rather they are classes that implement the
javax.faces.validator.Validator interface that are invoked during the
conversion/validation phase of the JSF request processing lifecycle. UI components
that subclass javax.faces.component.UIInput also inherit a required property,
reflected in the fact that so many JSF tags have a required attribute. Therefore,
many JSF components have built-in support for required field validation.

As we saw in previous chapters, JSF component libraries sometimes include custom
validators, such as the <t:validateEqual> tag in the Apache Tomahawk library.
We can always write our own custom validators simply by implementing the
javax.faces.validator.Validator interface, declaring our custom validator in
faces-config.xml, and registering it on a UI component in our view using the
<f:validator> tag.

All of these approaches are perfectly acceptable ways to implement form validation.
However, they all have the same limitation: the validation constraints are limited
to our presentation layer. For simple web applications, the downside of this reality
may not be immediately apparent, but for more complex n-tier applications that
have multiple interfaces, duplicating validation constraints both vertically and
horizontally becomes a problem.

Take for example a Java EE application with a presentation layer based on JSF, a
business tier implemented using EJB3 components, and a data access layer based on
the Java Persistence API and a relational database. It is good practice to ensure that
validation constraints are enforced at each tier in the application architecture. For
example, in our presentation layer we should ensure that the user cannot submit a
form without completing all required fields.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 6

[255]

In our business tier, we should ensure that a Customer object has a valid Address
object before attempting to save the Customer in our database. In our data access
tier, we should ensure that the address record actually exists in the address
table before inserting or updating a row in the customer table using foreign key
constraints. Validation rules should be consistent from the top tier to the bottom tier
of our application.

Now to complicate things a bit, let's consider that our Java EE application also
provides a RESTful Web Service API based on the Java API for RESTful Web Services
(JAX-RS). If we implemented validation only in our JSF presentation layer, we would
not be able to reuse the validation logic for REST clients accessing our application
over HTTP. So the challenge of implementing validation in our application now
includes a horizontal axis as well as a vertical one.

By defining our validation constraints in our domain model, we can reuse this code
more effectively as the Model of an MVC application is separate from a particular
View, or presentation layer. Therefore, a JSF application could use the validation
logic expressed in the domain model at the same time that a RESTful Web Service
reuses the same logic by sharing the domain model. Ideally, we should be able to
declare our validation constraints in one place, and to reuse them across all the
tiers and interfaces of our application. This is where the JBoss Seam framework can
greatly simplify our jobs as developers.

Implementing JSF validation with Seam
The Seam framework can simplify the process of implementing JSF validation.
Firstly, Seam encourages us to follow the "DRY" principle ("Don't Repeat Yourself")
popularized in The Pragmatic Programmer and advises us to try to avoid repetition
when writing code. We can apply the DRY principle to JSF by declaring our
validation constraints once and only once in our domain model. This can be
accomplished using Seam's built-in support for the Hibernate Validator framework.

Secondly, Seam removes the need to declare additional validators in our user
interface. Registering validators such as the <f:validateLongRange> or
<t:validateEmail> with our components and declaring custom validators in
faces-config.xml becomes a thing of the past. As an additional benefit, Seam JSF
validation includes enhancements such as highlighting invalid input fields that are
not possible using basic JSF validation mechanisms.

In short, JSF validation is a significant improvement over previous frameworks, but
still provides only a subset of the functionality needed to fully implement validation
constraints in a Java EE application. Fortunately, the JBoss Seam framework greatly
reduces the burden of implementing validation across the tiers of our application and
provides excellent support for using cutting-edge Ajax technologies in our views.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss Seam Components

[256]

JPA and the Hibernate Validator framework
Hibernate Validator is an annotation-based validation framework that provides a
set of annotations that implement a number of common validation scenarios, such
as checking for nulls, verifying that a date is in the past or in the future, ensuring
that a number is greater than or less than a particular value, checking that an e-mail
address is well formed, and so on. Hibernate Validator annotations are used in the
domain model, and the Hibernate Validator framework is activated in the view by
surrounding form fields with the Seam <s:validateAll> tag.

The Hibernate Validator framework also supports custom validation annotations,
enabling developers to express validation constraints that may be unique to an
application or that are not supported by the framework.

Once we have added the necessary Hibernate Validator annotations to our domain
model, we will use a Seam JSF control in our view to automatically validate user
input according to the validation constraints we defined.

Let's review the updated Customer class to see what refinements have been made
to support this approach. First, we added the @Entity JPA annotation at the class
level to indicate that our Customer class is a JPA entity. JPA enables us to store and
retrieve the state of a Customer object in a relational database.

We also added the @Table annotation to indicate to the JPA implementation that
our class is mapped to a table in a particular database schema. Next, we add the
necessary JPA annotations such as @ManyToOne, @JoinColumn, and @Transient
to the getter methods of our Customer class. Additionally, Hibernate Validator
annotations have been added to the getters to indicate validation constraints
(highlighted in the following example).

@Entity
@Table(catalog = "jsfbook")
public class Customer extends AbstractEntity implements
Comparable<Customer>, Serializable {

 private static final long serialVersionUID = 1L;
 private Date birthDate;
 private Country countryOfOrigin;
 private String emailAddress;
 private String firstName;
 private Color favoriteColor;
 private Set<String> interests = new HashSet<String>(0);
 private String lastName;
 private Boolean male;
 private String phoneNumber;
 private SatisfactionLevel satisfactionLevel;

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 6

[257]

public int compareTo(Customer o) {
 String lastFirst1 = getFullName();
 String lastFirst2 = o.getFullName();
 return lastFirst1.compareTo(lastFirst2);
 }

 @Past
 public Date getBirthDate() {
 return birthDate;
 }

 @ManyToOne(cascade = {}, fetch = FetchType.LAZY, optional = true)
 @JoinColumn(name = "country_id", insertable = true,
 updatable = true, nullable = true)
 public Country getCountryOfOrigin() {
 return countryOfOrigin;
 }

 @Email
 public String getEmailAddress() {
 return emailAddress;
 }

 @NotNull
 public String getFirstName() {
 return firstName;
 }

 @Transient
 public String getFullName() {
 return this.lastName + ", " + this.firstName;
 }

 @Transient
 public Set<String> getInterests() {
 return interests;
 }

 @NotNull
 public String getLastName() {
 return lastName;
 }

 public Boolean getMale() {
 return male;
 }

 public String getPhoneNumber() {
 return phoneNumber;
 }

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss Seam Components

[258]

 public Color getFavoriteColor() {
 return favoriteColor;
 }

 public void setFavoriteColor(Color favoriteColor) {
 this.favoriteColor = favoriteColor;
 }

 @Transient
 public SatisfactionLevel getSatisfactionLevel() {
 return satisfactionLevel;
 }

 public void setBirthDate(Date birthDate) {
 this.birthDate = birthDate;
 }

 public void setCountryOfOrigin(Country countryOfOrigin) {
 this.countryOfOrigin = countryOfOrigin;
 }

 public void setEmailAddress(String emailAddress) {
 this.emailAddress = emailAddress;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public void setInterests(Set<String> interests) {
 this.interests = interests;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public void setMale(Boolean male) {
 this.male = male;
 }

 public void setPhoneNumber(String phoneNumber) {
 this.phoneNumber = phoneNumber;
 }

 public void setSatisfactionLevel(SatisfactionLevel
 satisfactionLevel) {
 this.satisfactionLevel = satisfactionLevel;
 }

 @Transient
 public int getAge() {
 Date today = new Date();
 double millis = today.getTime() - birthDate.getTime();
 double seconds = millis / 1000d;

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 6

[259]

 double minutes = seconds / 60d;
 double hours = minutes / 60d;
 double days = hours / 24d;
 double years = days / 365d;
 int age = new Double(Math.floor(years)).intValue();
 return age;
 }

}

Now that the Customer class in our domain model is properly configured with
JPA and Hibernate Validator annotations, we can implement our JSF form to take
advantage of Seam's validation support.

First, we define some facets inside our form that will be picked up by Seam's
<s:validateAll> tag. These facets can be declared on any parent component of the
Seam validation control. In particular, in the beforeInvalidField facet we declare
an <h:graphicImage> tag to render an error icon before the invalid field when a
validation error occurs.

We define the afterInvalidField facet to render the <s:message> tag with the
error CSS class applied to it. This tag will render the Hibernate Validator error
message associated with each invalid field.

JSF required="true" and Hibernate Validator @NotNull
Although we have annotated the properties in our model class with
the Hibernate Validator @NotNull annotation, we still have to use the
JSF required="true" attribute on any required fields, otherwise JSF
validation will not detect invalid input if the user does not provide input
for those fields.

In our example, as we have overridden some JSF validation messages in our
message bundle, a customized "required field" message will be rendered beside any
incomplete fields.

The aroundInvalidField facet will be used to define the decoration that is applied
to the input component for any invalid fields. We will wrap any invalid fields with
Seam's <s:span> tag to render a span with the invalid CSS class applied to it. This
will surround the field with a yellow box containing the error message.

<a4j:form id="customerForm" styleClass="customer-form">
 <f:facet name="beforeInvalidField">
 <h:graphicImage src="images/error.gif" />

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss Seam Components

[260]

 </f:facet>
 <f:facet name="afterInvalidField">
 <s:message errorClass="error" showSummary="#{true}"
 showDetail="#{false}" />
 </f:facet>
 <f:facet name="aroundInvalidField">
 <s:span styleClass="invalid" />
 </f:facet>

The next step in implementing our JSF form is to surround all the input components
with the Seam framework's <s:validateAll> tag. This will instruct Seam to validate
all the nested components using the Hibernate Validator annotations we have
applied to our domain model. Note that we wrap each input component with Seam's
<s:decorate> tag so that Seam can apply the facets we defined earlier to each
invalid field.

Decorating the UI to improve form
validation
The Seam framework, as the name suggests, is an excellent tool for integrating
different technologies together. One of the technologies that Seam supports very
well is Facelets. We saw how to use the Facelets <ui:decorate> tag to markup a
section of our JSF page to be "decorated" by a template defined in another page. For
example, we can define a simple template that surrounds our content with an HTML
<div> element that has a particular style applied to it. The benefit of this approach is
that common UI structures can be defined in one place and reused more easily.

Seam provides the <s:decorate> tag to surround user interface fields for validation
purposes in the same way. In fact, the <s:decorate> tag also supports the template
attribute, so an external Facelets template can be used to provide the markup for
styling the form fields during validation.

For example, the following file could define a Facelets decoration template for
validation. Notice in the following example that we combine several Seam tags
with Facelets tags. The <s:label> tag renders an HTML <label> element with the
appropriate CSS class applied to it.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 6

[261]

Seam provides two Boolean variables named invalid and required within the
scope of the <s:decorate> tag that can be used in EL expressions to determine if the
field was validated successfully and whether or not it was required. The following
example demonstrates the use of the invalid variable in a ternary EL expression to
determine which CSS style class to apply to the label. This way, we can give the label
a different appearance (such as making it red) when the user enters an invalid value.
Additionally, an asterisk will be rendered beside the label if the field was required,
demonstrating the use of the required variable in the scope of the <s:decorate> tag.

Notice that we are using the Facelets <ui:insert> tag to specify where to
insert both the label and the UI component when the validation result is rendered.
This approach combines the power of Facelets templating with Seam's UI
validation capabilities.

validation.jsf

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:s="http://jboss.com/products/seam/taglib"
 xmlns:ui="http://java.sun.com/jsf/facelets">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>s:decorate example</title>
</head>
<body>
<ui:composition>
 <div>
 <s:label styleClass="#{invalid ? 'error' : ''}">
 <ui:insert name="label" />
 <s:span styleClass="required" rendered="#{required}">*</s:span>
 </s:label>

 <h:graphicImage value="/images/error.gif"
 rendered="#{invalid}" />
 <s:validateAll>
 <ui:insert />
 </s:validateAll>

 <s:message styleClass="error" />
 </div>
</ui:composition>
</body>
</html>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss Seam Components

[262]

A JSF form with input fields could be decorated as follows. Notice that both the first
name and last name fields are surrounded with Seam's <s:decorate> tag and our
validation template is referenced using the template attribute. This makes it possible
to reuse the validation markup and to pass the field label directly to the template so
that it appears in the right place when the form is validated.

Seam validation messages
Seam provides a built-in JSF managed bean named "messages" that
extends JSF's internationalization support. Notice in the following
example that we are using the Seam message bundle component named
"messages" in our EL expressions to obtain field labels.
This component loads a message bundle named "messages.properties"
from the class path, following the usual naming convention for Java
internationalization support. The benefit of this component is that we
no longer have to register our message bundles in faces-config.xml
(and load them on a page-by-page basis with the <f:loadBundle> tag
if we are using JSF 1.1).
We can also declare per-page message bundles in pages.xml, one of
Seam's configuration files, and access them via this component. These are
more examples of how Seam can simplify JSF development by making a
lot of tasks easier and more convenient for developers.

decorate01.jsf

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:s="http://jboss.com/products/seam/taglib"
 xmlns:ui="http://java.sun.com/jsf/facelets">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>s:decorate example</title>
<link rel="stylesheet" type="text/css" href="/chapter6/css/style.css"
/>
</head>
<body>
<h:form>
 <s:decorate template="validation.jsf">
 <ui:define name="label">#{messages.firstNameLabel}</ui:define>
 <h:inputText label="#{messages.firstNameLabel}" id="firstName"
 value="#{customerBean.customer.firstName}" required="#{true}" />

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 6

[263]

 </s:decorate>
 <s:decorate template="validation.jsf">
 <ui:define name="label">#{messages.lastNameLabel} </ui:define>
 <h:inputText label="#{messages.lastNameLabel}" id="lastName"
 value="#{customerBean.customer.lastName}" required="#{true}" />
 </s:decorate>
 <h:commandButton value="Sign Up" />
</h:form>
</body>
</html>

The next screenshot demonstrates the use of the <s:decorate> tag and an external
validation template to render form labels and validation messages in a consistent
and intuitive way. JSF does not provide a simple mechanism to indicate required
fields; with this approach, Seam makes it easy to indicate to users which fields are
required using any arbitrary convention. In the following example, required fields
are indicated with a red asterisk. Also, the field labels are obtained from a message
bundle using the built-in Seam "messages" component in our EL expressions.

Once the form is submitted, our validation template is applied to the page. We can
see in the next screenshot that an X icon is rendered beside each invalid field, and the
default JSF required validation message is rendered next to each field.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss Seam Components

[264]

Notice that we are not overriding the default required message. Instead, we are
setting the label attribute on the <h:inputText> tags to provide a localized label
for each field (First Name and Last Name). This label is inserted into the default JSF
validation message instead of using the component's ID as is the default behavior,
resulting in a far more readable error message for the user. Also notice that the
invalid CSS style class is applied to the error messages and to the field labels as per
our validation.jsf template.

Adding cutting-edge Ajax technology
with Ajax4jsf
We also add the <a4j:support> tag as a child of each input component tag to add
Ajax capabilities to the standard JSF components. We indicate that the onblur event
of the component should trigger an Ajax request that will submit the form and re-
render the component that fired the event. The effect of this technique is that invalid
fields will be instantly highlighted when the user tabs through the fields in the form.

We also set the ajaxSingle attribute to true to indicate that Ajax4jsf should only
include the active component in the Ajax request when it submits the JSF form on the
onblur event. This is an important technique for Ajax performance optimization as it
limits the volume of form data that is sent to the server on each Ajax request, sending
only the data that is necessary to validate the active component. This technique will
be covered in more detail in the next chapter.

 <s:validateAll>
 <h:panelGrid columns="2">
 <h:outputLabel for="firstName"
 value="#{bundle.firstNameLabel}" />
 <s:decorate id="firstNameDecoration">
 <h:inputText id="firstName"
 value="#{customerBean.customer.firstName}"

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 6

[265]

 required="#{true}">
 <a4j:support ajaxSingle="true" event="onblur"
 reRender="firstNameDecoration" />
 </h:inputText>
 </s:decorate>
 <h:outputLabel value="#{messages.lastNameLabel}"
 for="lastName" />
 <s:decorate id="lastNameDecoration">
 <h:inputText id="lastName"
 value="#{customerBean.customer.lastName}"
 required="#{true}">
 <a4j:support ajaxSingle="true" event="onblur"
 reRender="lastNameDecoration" />
 </h:inputText>
 </s:decorate>
 <h:outputLabel for="dateOfBirth"
 value="#{messages.dateOfBirthLabel}" />
 <s:decorate id="dateOfBirthDecoration">
 <rich:calendar id="dateOfBirth"
 value="#{customerBean.customer.birthDate}"
 required="#{true}">
 <a4j:support ajaxSingle="true" event="onchanged"
 reRender="dateOfBirthDecoration" />
 </rich:calendar>
 </s:decorate>
 <h:outputLabel for="gender" value="#{messages.genderLabel}" />
 <s:decorate id="genderDecoration">
 <h:selectOneRadio id="gender"
 value="#{customerBean.customer.male}"
 required="#{true}">
 <f:selectItem itemLabel="Male" itemValue="#{true}" />
 <f:selectItem itemLabel="Female" itemValue="#{false}" />
 <a4j:support ajaxSingle="true" event="onchange"
 reRender="genderDecoration" />
 </h:selectOneRadio>
 </s:decorate>
 <h:outputLabel for="phoneNumber"
 value="#{messages.phoneNumberLabel}" />
 <s:decorate id="phoneNumberDecoration">
 <h:inputText id="phoneNumber"
 value="#{customerBean.customer.phoneNumber}">
 <a4j:support ajaxSingle="true" event="onblur"
 reRender="phoneNumberDecoration" />
 </h:inputText>
 </s:decorate>
 <h:outputLabel for="emailAddress"
 value="#{messages.emailAddressLabel}" />
 <s:decorate id="emailAddressDecoration">

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss Seam Components

[266]

 <h:inputText id="emailAddress"
 value="#{customerBean.customer.emailAddress}"
 required="#{true}">
 <a4j:support ajaxSingle="true" event="onblur"
 reRender="emailAddressDecoration" />
 </h:inputText>
 </s:decorate>
 <h:outputLabel for="emailAddress"
 value="#{messages.emailAddressConfirmLabel}" />
 <s:decorate id="emailAddress2Decoration">
 <h:inputText id="emailAddress2" required="#{true}">
 <a4j:support event="onblur"
 reRender="emailAddress2Decoration" />
 <s:validateEquality for="emailAddress"
 message="Email addresses do not match." />
 </h:inputText>
 </s:decorate>
 <h:outputLabel value="#{messages.countryLabel}"
 for="country" required="#{true}" />
 <s:decorate id="countryDecoration">
 <h:selectOneMenu id="country"
 value="#{customerBean.customer.countryOfOrigin}"
 required="#{true}">
 <s:selectItems noSelectionLabel="Select"
 value="#{customerBean.countries}" var="country"
 label="#{country.name}" />
 <s:convertEntity />
 <a4j:support event="onchange" reRender="countryDecoration" />
 </h:selectOneMenu>
 </s:decorate>
 </h:panelGrid>

Finally, we use the <a4j:commandButton> tag to render an Ajax-enabled command
button component that will submit the form.

 <a4j:commandButton value="Save"
 actionListener="#{customerBean.saveCustomer}"
 reRender="customerForm" />
</s:validateAll>
</a4j:form>

To demonstrate, we partially complete the form and click the Save button. The three
remaining required fields are instantly highlighted after the Ajax request.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 6

[267]

Next, we enter an invalid e-mail address and press the Tab key to cycle to the next
field. The e-mail address field is instantly highlighted and a Hibernate Validation
error message is displayed next to the field.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss Seam Components

[268]

We correct the e-mail address and tab to the next field. The e-mail address validation
message disappears.

Finally, all validation messages have been cleared.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 6

[269]

Displaying success messages in JSF
The JSF framework includes built-in support for rendering validation error messages
when form validation fails. These messages are typically rendered using the
<h:message> or <h:messages> tags. When a JSF form is posted to the server, the JSF
framework's request processing lifecycle includes the following phases:

1. Restore the UI component tree for the view.
2. Apply the incoming form data to the UI components in the tree.
3. Attempt to convert and validate the data.
4. If the conversion/validation is successful, update the application's model.
5. Invoke the backing bean method associated with the component that

submitted the form.
6. Send the response back to the client.

When a conversion or validation error causes the conversion and validation
phase to fail, the JSF framework sends back a response containing request-scoped
FacesMessage objects containing the validation messages for the invalid fields. As
these message objects are request scoped, they cannot be displayed to the user if a
redirect response is issued. If a redirect was sent by the server (as is commonly the
case for success outcomes), the browser would send a new request and the validation
messages scoped to the previous request would be lost.

In a successful scenario, the navigation rules defined by the application are executed
after the Invoke Application phase and a response is sent back to the client that
may involve a redirect. Therefore, it is impossible to send "success" messages to the
user after a form submission that results in a redirect: any request-scoped messages
would be lost in the subsequent request. We can forward or redirect the user to a
success page that displays a static success message or obtains a success message from
a backing bean, but there is no reliable way to send success messages to a JSF page
after a redirect using the standard JSF FacesMessage API.

The Seam framework includes a mechanism for sending success messages to the
user after a redirect. This mechanism involves storing the success message in session
scope for a single request, and then removing it once the message has been rendered.
We will see an example of this later on in this chapter when we discuss Seam
conversation management.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss Seam Components

[270]

Seam conversation management
The JBoss Seam framework provides elegant solutions to a number of problems.
One of these problems is the concept of conversation management. Traditional
web applications have a limited number of scopes (or container-managed memory
regions) in which they can store data needed by the application at runtime.

In a typical Java web application, these scopes are the application scope, the session
scope, and the request scope. JSP-based Java web applications also have a page
scope. Application scope is typically used to store stateless components or long-term
read-only application data. Session scope provides a convenient, medium-term storage
for per-user application state, such as user credentials, application preferences, and
the contents of a shopping cart. Request scope is short-term storage for per-request
information, such as search keywords, data table sort direction, and so on.

Seam introduces another scope for JSF applications: the conversation scope. The
conversation scope can be as short-term as the request scope, or as long-term as the
session scope. Seam conversations come in two types: temporary conversations
and long-running conversations. A temporary Seam conversation typically lasts as
long as a single HTTP request. A long-running Seam conversation typically spans
several screens and can be tied to more elaborate use cases and workflows within
the application, for example, booking a hotel, renting a car, or placing an order for
computer hardware.

There are some important implications for Seam's conversation management when
using Ajax capabilities of RichFaces and Ajax4jsf. As an Ajax-enabled JSF form may
involve many Ajax requests before the form is "submitted" by the user at the end of a
use case, some subtle side effects can impact our application if we are not careful.

Let's look at an example of how to use Seam conversations effectively with Ajax.

Temporary conversations
When a Seam-enabled conversation-scoped JSF backing bean is accessed for the
first time, through a value expression or method expression from the JSF page for
instance, the Seam framework creates a temporary conversation if a conversation
does not already exist and stores the component instance in that scope.

If a long-running conversation already exists, and the component invocation
requires a long-running conversation, for example by associating the view with a
long-running conversation in pages.xml, by annotating the bean class or method
with Seam's @Conversational annotation, by annotating a method with Seam's
@Begin annotation, or by using the conversationPropagation request parameter,
then Seam stores the component instance in the existing long-running conversation.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 6

[271]

ShippingCalculatorBean.java
The following source code demonstrates how to declare a
conversation-scoped backing being using Seam annotations. In this example,
we declare the ShippingCalculatorBean as a Seam-managed
conversation-scoped component named shippingCalculatorBeanSeam.

@Name("shippingCalculatorBeanSeam")
@Scope(ScopeType.CONVERSATION)
public class ShippingCalculatorBean implements Serializable {

 /**
 *
 */
 private static final long serialVersionUID = 1L;

 private Country country;

 private Product product;

 public Country getCountry() {
 return country;
 }

 public Product getProduct() {
 return product;
 }

 public Double getTotal() {
 Double total = 0d;
 if (country != null && product != null) {
 total = product.getPrice();
 if (country.getName().equals("USA")) {
 total = +5d;
 } else {
 total = +10d;
 }
 }
 return total;
 }

 public void setCountry(Country country) {
 this.country = country;
 }

 public void setProduct(Product product) {
 this.product = product;
 }
}

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss Seam Components

[272]

faces-config.xml
We also declare the same ShippingCalculatorBean class as a request-scoped
backing bean named shippingCalculaorBean in faces-config.xml. Keep in
mind that the JSF framework manages this instance of the class, so none of the Seam
annotations are effective for instances of this managed bean.

<managed-bean>
 <description>Shipping calculator bean.</description>
 <managed-bean-name>shippingCalculatorBean</managed-bean-name>
 <managed-bean-class>chapter5.bean.ShippingCalculatorBean
 </managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
</managed-bean>

pages.xml
The pages.xml file is an important Seam configuration file. When a Seam-enabled
web application is deployed, the Seam framework looks for and processes a file in
the WEB-INF directory named pages.xml.

This file contains important information about the pages in the JSF application, and
enables us to indicate if a long-running conversation should be started automatically
when a view is first accessed.

In this example, we declare two pages in pages.xml, one that does not start
a long-running conversation, and one that does.

<?xml version="1.0" encoding="utf-8"?>
<pages xmlns="http://jboss.com/products/seam/pages"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://jboss.com/products/seam/pages
 http://jboss.com/products/seam/pages-2.1.xsd">
<page view-id="/conversation01.jsf" />
<page view-id="/conversation02.jsf">
 <begin-conversation join="true"/>
</page>
…
</pages>

conversation01.jsf
Let's look at the source code for our first Seam conversation test page. In this page,
we render two forms side-by-side in an HTML panel grid. The first form is bound to
the JSF-managed request-scoped ShippingCalculatorBean, and the second form
is bound to the Seam-managed conversation-scoped ShippingCalculatorBean.
The form allows the user to select a product and a shipping destination, and then
calculates the shipping cost when the command button is clicked.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 6

[273]

When the user tabs through the fields in a form, an Ajax request is sent, submitting
the form data and re-rendering the button. The button is in a disabled state until the
user has selected a value in both the fields. The Ajax request creates a new HTTP
request on the server, so for the first form JSF creates a new request-scoped instance
of our ShippingCalculatorBean for every Ajax request.

As the view is not configured to use a long-running conversation, Seam creates a new
temporary conversation and stores a new instance of our ShippingCalculatorBean
class in that scope for each Ajax request.

Therefore, the behavior that can be observed when running this page in the browser
is that the calculation simply does not work. The value is always zero. This is because
the model state is being lost due to the incorrect scoping of our backing beans.

<h:panelGrid columns="2" cellpadding="10">
 <h:form>
 <rich:panel>
 <f:facet name="header">
 <h:outputText value="Shipping Calculator (No
 Conversation)" />
 </f:facet>
 <h:panelGrid columns="1" width="100%">
 <h:outputLabel value="Select Product: " for="product" />
 <h:selectOneMenu id="product"
 value="#{shippingCalculatorBean.product}">
 <s:selectItems var="product"
 value="#{productBean.products}"
 label="#{product.name}" noSelectionLabel="Select" />
 <a4j:support event="onchange" reRender="button" />
 <s:convertEntity />
 </h:selectOneMenu>
 <h:outputLabel value="Select Shipping Destination: "
 for="country" />
 <h:selectOneMenu id="country"
 value="#{shippingCalculatorBean.country}">
 <s:selectItems var="country"
 value="#{customerBean.countries}"
 label="#{country.name}" noSelectionLabel="Select" />
 <a4j:support event="onchange"
 reRender="button"/>
 <s:convertEntity />
 </h:selectOneMenu>
 <h:panelGrid columns="1" columnClasses="centered"
 width="100%">
 <a4j:commandButton id="button" value="Calculate"
 disabled="#{shippingCalculatorBean.country eq null or
 shippingCalculatorBean.product eq null}"
 reRender="total" />

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss Seam Components

[274]

 <h:panelGroup>
 <h:outputText value="Total Shipping Cost: " />
 <h:outputText id="total"
 value="#{shippingCalculatorBean.total}">
 <f:convertNumber type="currency" currencySymbol="$"
 maxFractionDigits="0" />
 </h:outputText>
 </h:panelGroup>
 </h:panelGrid>
 </h:panelGrid>
 </rich:panel>
 </h:form>
 <h:form>
 <rich:panel>
 <f:facet name="header">
 <h:outputText value="Shipping Calculator (with Temporary
 Conversation)" />
 </f:facet>
 <h:panelGrid columns="1">
 <h:outputLabel value="Select Product: " for="product" />
 <h:selectOneMenu id="product"
 value="#{shippingCalculatorBeanSeam.product}">
 <s:selectItems var="product"
 value="#{productBean.products}"
 label="#{product.name}" noSelectionLabel="Select" />
 <a4j:support event="onchange"
 reRender="button" />
 <s:convertEntity />
 </h:selectOneMenu>
 <h:outputLabel value="Select Shipping Destination: "
 for="country" />
 <h:selectOneMenu id="country"
 value="#{shippingCalculatorBeanSeam.country}">
 <s:selectItems var="country"
 value="#{customerBean.countries}"
 label="#{country.name}" noSelectionLabel="Select" />
 <a4j:support event="onchange"
 reRender="button" />
 <s:convertEntity />
 </h:selectOneMenu>
 <h:panelGrid columns="1" columnClasses="centered"
 width="100%">
 <a4j:commandButton id="button" value="Calculate"
 disabled="#{shippingCalculatorBeanSeam.country eq null
 or shippingCalculatorBeanSeam.product eq null}"
 reRender="total" />
 <h:panelGroup>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 6

[275]

 <h:outputText value="Total Shipping Cost: " />
 <h:outputText id="total"
 value="#{shippingCalculatorBeanSeam.total}">
 <f:convertNumber type="currency" currencySymbol="$"
 maxFractionDigits="0" />
 </h:outputText>
 </h:panelGroup>
 </h:panelGrid>
 </h:panelGrid>
 </rich:panel>
 </h:form>
</h:panelGrid>

The following screenshot demonstrates the problem of using request-scoped or
temporary conversation-scoped backing beans in an Ajax-enabled JSF application. As
an Ajax request is simply an asynchronous HTTP request marshalled by client-side
code executed by the browser's JavaScript interpreter, the request-scoped backing
beans are recreated with every Ajax request. The model state is lost and the behavior
of the components in the view is incorrect. (We will take a more in-depth look at
the Ajax behavior of these components in the next chapter; for now, let's try to
understand this example in terms of Seam's conversation management.)

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss Seam Components

[276]

conversation02.jsf
Let's look at an example of how to implement this form correctly. First of all,
we declare that the view should start a long-running conversation in
pages.xml (rmentioned above). Then, we bind the form to the conversation-scoped
ShippingCalculatorBean.

Now every Ajax request obtains a reference to the same conversation-scoped backing
bean. Seam serializes the Ajax requests within a long-running conversation on the
server side to control concurrency and to ensure our backing bean is handling at
most one request at a time.

<h:form>
 <rich:panel style="width:50%">
 <f:facet name="header">
 <h:outputText value="Shipping Calculator (with Long-Running
 Conversation)" />
 </f:facet>
 <h:panelGrid columns="1">
 <h:outputLabel value="Select Product: " for="product" />
 <h:selectOneMenu id="product"
 value="#{shippingCalculatorBeanSeam.product}">
 <s:selectItems var="product"
 value="#{productBean.products}" label="#{product.name}"
 noSelectionLabel="Select" />
 <a4j:support event="onchange"
 reRender="button" /><s:convertEntity />
 </h:selectOneMenu>
 <h:outputLabel value="Select Shipping Destination: "
 for="country" />
 <h:selectOneMenu id="country"
 value="#{shippingCalculatorBeanSeam.country}">
 <s:selectItems var="country"
 value="#{customerBean.countries}"
 label="#{country.name}" noSelectionLabel="Select" />
 <a4j:support event="onchange"
 reRender="button" /><s:convertEntity />
 </h:selectOneMenu>
 <h:panelGrid columns="1" columnClasses="centered"
 width="100%">
 <a4j:commandButton id="button" value="Calculate"
 disabled="#{shippingCalculatorBeanSeam.country eq null
 or shippingCalculatorBeanSeam.product eq null}"
 reRender="total" />
 <h:panelGroup>
 <h:outputText value="Total Shipping Cost: " />

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 6

[277]

 <h:outputText id="total"
 value="#{shippingCalculatorBeanSeam.total}">
 <f:convertNumber type="currency" currencySymbol="$"
 maxFractionDigits="0" />
 </h:outputText>
 </h:panelGroup>
 </h:panelGrid>
 </h:panelGrid>
 </rich:panel>
</h:form>

Starting a long-running conversation
There are several ways to start a long-running conversation in Seam. We can declare
that a view should automatically start a long-running conversation in pages.xml;
we can set the conversationPropagation request parameter to begin using the
Seam <s:conversationPropagation> tag, or we can annotate a backing bean
method with the Seam framework's @Begin annotation. Let's look at an example
of defining and executing a long-running conversation based on an online product
ordering use case.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss Seam Components

[278]

Declaring navigation rules in faces-config.xml
In this example, we design a JSF page flow in our faces-config.xml file that ties
together all the necessary screens that make up this use case. The first screen in the
page flow is the customer registration step. The second screen is the shipping and
product information step. The third screen is the order details confirmation step. Our
navigation flow branches after the third step. If we are out of stock, we redirect the
user to an error page. Otherwise, we redirect the user to the order processed page.

The following screenshot shows a visual representation of the navigation rules that
make up our page flow.

The navigation rules are declared in faces-config.xml as follows:

 <navigation-rule>
 <display-name>order/step1.jsf</display-name>
 <from-view-id>/order/step1.jsf</from-view-id>
 <navigation-case>
 <from-outcome>next</from-outcome>
 <to-view-id>/order/step2.jsf</to-view-id>
 <redirect />
 </navigation-case>
 </navigation-rule>
 <navigation-rule>
 <display-name>order/step2.jsf</display-name>
 <from-view-id>/order/step2.jsf</from-view-id>
 <navigation-case>
 <from-outcome>next</from-outcome>
 <to-view-id>/order/step3.jsf</to-view-id>
 <redirect />
 </navigation-case>
 </navigation-rule>
 <navigation-rule>
 <display-name>order/step3.jsf</display-name>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 6

[279]

 <from-view-id>/order/step3.jsf</from-view-id>
 <navigation-case>
 <from-outcome>success</from-outcome>
 <to-view-id>/order/success.jsf</to-view-id>
 <redirect />
 </navigation-case>
 </navigation-rule>

 <navigation-rule>
 <display-name>order/step3.jsf</display-name>
 <from-view-id>/order/step3.jsf</from-view-id>
 <navigation-case>
 <from-outcome>out-of-stock</from-outcome>
 <to-view-id>/order/out-of-stock.jsf</to-view-id>
 <redirect />
 </navigation-case>
 </navigation-rule>
 <navigation-rule>
 <display-name>order/step3.jsf</display-name>
 <from-view-id>/order/step3.jsf</from-view-id>
 <navigation-case>
 <from-outcome>back</from-outcome>
 <to-view-id>/order/step2.jsf</to-view-id>
 <redirect />
 </navigation-case>
 </navigation-rule>
 <navigation-rule>
 <display-name>order/step2.jsf</display-name>
 <from-view-id>/order/step2.jsf</from-view-id>
 <navigation-case>
 <from-outcome>back</from-outcome>
 <to-view-id>/order/step1.jsf</to-view-id>
 <redirect />
 </navigation-case>
 </navigation-rule>
 <navigation-rule>
 <display-name>order/out-of-stock.jsf</display-name>
 <from-view-id>/order/out-of-stock.jsf</from-view-id>
 <navigation-case>
 <from-outcome>back</from-outcome>
 <to-view-id>/order/step3.jsf</to-view-id>
 <redirect />
 </navigation-case>
 </navigation-rule>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss Seam Components

[280]

Defining a long-running conversation in pages.xml
We have grouped all the views for this use case in one directory named "order".
Conveniently, we can declare in pages.xml that all the pages in this directory
should be associated with a long-running conversation as follows:

<page view-id="/order/*">
 <begin-conversation join="true"/>
</page>

Implementing OrderBeanImpl.java
Next, we implement a long-running conversation-scoped stateful session bean.
We use the EJB3 @Stateful annotation to indicate to the EJB container that this
component should be managed as a stateful session bean. This includes automatic,
JTA-enabled transactions for all methods, activation/passivation for efficient
memory management, declarative security, and more.

We use the Seam framework's @Conversational annotation to indicate that
this component should only be invoked within the context of a long-running
conversation. If a view attempts to access this bean outside a long-running
conversation, Seam will throw an exception.

We use the @Name annotation to indicate that the bean should be available as a JSF
managed bean with the name orderBean, and we use the @Scope annotation to
indicate that the bean should be stored in conversation scope.

We also use several Seam annotations within the class to declare some dependencies
which will be injected by the Seam framework. As we are using a Seam-managed
persistence context, we can annotate our EntityManager instance variable with the
Seam framework's @In annotation and Seam will inject the appropriate object at
runtime. Notice that we use the Seam @End annotation on our submitOrder method
to indicate that the long-running conversation should be concluded after the method
is invoked.

OrderBeanImpl.java

@Stateful
@Conversational
@Name("orderBean")
@Scope(ScopeType.CONVERSATION)
public class OrderBeanImpl implements OrderBean {

 private LineItem lineItem;

 @In
 private EntityManager em;

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 6

[281]

 @In
 private FacesMessages facesMessages;

 @Logger
 private Log logger;

 private Order order;

 private List<Order> orders;

 public LineItem getLineItem() {
 if (lineItem == null) {
 lineItem = new LineItem();
 lineItem.setQuantity(1);
 Order order = getOrder();
 lineItem.setOrder(order);
 order.getLineItems().add(lineItem);
 }
 return lineItem;
 }

 public Order getOrder() {
 if (order == null) {
 order = new Order();
 order.setCustomer(new Customer());
 }
 return order;
 }

 private Integer getUniqueOrderNumber() {
 Integer value = null;
 Query query = em.createNamedQuery(Queries.UNIQUE_ORDER_NUMBER);
 value = (Integer) query.getSingleResult();
 return value;
 }

 @SuppressWarnings("unchecked")
 public List<Order> getOrders() {
 if (orders == null) {
 orders =
 em.createNamedQuery(Queries.ALL_ORDERS).getResultList();
 }
 return orders;
 }

 public void setOrder(Order order) {
 this.order = order;
 }

 @End

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss Seam Components

[282]

 public String submitOrder() {
 String outcome = null;
 try {
 if (lineItem.getProduct().getQuantityInStock() > 0) {
 order.setOrderNumber(getUniqueOrderNumber());
 em.persist(order);
 facesMessages.add("Thank you. Your order has been
 received.");
 outcome = "success";
 } else {
 outcome = "out-of-stock";
 }
 } catch (Exception e) {
 logger.error("Failed to submit order:", e);
 facesMessages.add(Severity.ERROR, "Sorry, we were unable to
 process your order.");
 }
 return outcome;
 }

 @Remove
 @Destroy
 public void remove() {
 }
}

In the preceding example, we use the JPA EntityManager API to execute named
queries. A named query is a Java Persistence Query Language (JPQL) query named
and declared in an external configuration file or in an annotation. As we are using
Hibernate as our JPA provider, we externalize our named queries in a file named
Queries.hbm.xml. When our application is initialized, Hibernate will scan this file
and validate our named queries, reporting issues such as invalid syntax, missing
columns, invalid object paths, and so on. Our JPA named queries are declared
as follows:

Queries.hbm.xml

<?xml version="1.0" encoding='UTF-8'?>
<!DOCTYPE hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD 3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd" >
<hibernate-mapping>
 <query name="Product.findAll">
 <![CDATA[
 select distinct product
 from Product product

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 6

[283]

 inner join fetch product.category
 order by product.name
]]>
 </query>
 <query name="ProductCategory.findAll">
 <![CDATA[
 select category
 from ProductCategory category
 order by category.name
]]>
 </query>
 <query name="Customer.findAll">
 <![CDATA[
 select customer
 from Customer customer
 order by customer.lastName, customer.firstName
]]>
 </query>
 <query name="Country.findAll">
 <![CDATA[
 select country
 from Country country
 order by country.name
]]>
 </query>
 <query name="Order.findAll">
 <![CDATA[
 select o
 from Order o
 order by o.orderNumber
]]>
 </query>
 <query name="ProductCategory.findByName">
 <![CDATA[
 select category
 from ProductCategory category
 where category.name = ?
 order by category.name
]]>
 </query>
 <query name="ProductCategory.findSubCategoryByName">
 <![CDATA[

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss Seam Components

[284]

 select category
 from ProductCategory category
 inner join fetch category.parentCategory parent
 where parent = ?
 and category.name = ?
 order by category.name
]]>
 </query>
 <query name="Product.findByPrice">
 <![CDATA[
 select product
 from Product product
 where product.price <= ?
]]>
 </query>
 <query name="Order.findUniqueOrderNumber">
 <![CDATA[
 select (max(o.orderNumber) + 1)
 from Order o
]]>
 </query>
</hibernate-mapping>

Notice in the OrderBeanImpl source code listing that we called the EntityManager
API by passing a String constant as follows:

 em.createNamedQuery(Queries.UNIQUE_ORDER_NUMBER)

Instead of hardcoding the query name in our code, we also externalize this
information in a constant interface. By using a constant we avoid the risk of typos in
our code as the Java compiler will ensure that our constant reference is valid. Also,
we can reuse the query more easily. This indirection has an additional benefit: if we
decide to rename the query, we can do so in one place (the constant interface) and we
do not have to hunt through code to find and replace string literals.

Queries.java

package chapter6.model;

public class Queries {

 public static final String ALL_COUNTRIES = "Country.findAll";

 public static final String ALL_CUSTOMERS = "Customer.findAll";

 public static final String ALL_ORDERS = "Order.findAll";

 public static final String ALL_PRODUCT_CATEGORIES =
 "ProductCategory.findAll";

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 6

[285]

 public static final String ALL_PRODUCTS = "Product.findAll";

 public static final String PRODUCT_CATEGORY_BY_NAME =
 "ProductCategory.findByName";

 public static final String PRODUCT_SUBCATEGORY_BY_NAME =
 "ProductCategory.findSubCategoryByName";

 public static final String PRODUCTS_BY_PRICE =
 "Product.findByPrice";

 public static final String UNIQUE_ORDER_NUMBER =
 "Order.findUniqueOrderNumber";

}

The introductory page of the order process
The first view in our page flow is an introductory page that simply navigates to
the first step in our ordering process. Notice that we use the Seam <s:link> tag to
render a hyperlink that includes the conversation ID as a query string parameter.
This is called conversation propagation.

Seam conversation propagation using hyperlinks
Seam automatically propagates the conversation during JSF form
submissions using the HTTP POST method. For any GET requests (for
instance, clicking on a hyperlink), we are responsible for including the
current conversation ID as a request parameter to ensure that the request
is handled properly. Seam provides a hyperlink control rendered by the
<s:link> tag that automatically includes the current conversation ID
on the query string. We can also include the conversation ID as a query
string parameter by nesting the Seam <s:conversationId> tag inside
the standard JSF <h:outputLink> tag. Conversation ID propagation is
automatic when a JSF form is submitted using POST.

The markup for the introductory screen in our order process is as follows:

<h1>Product Order Form</h1>
<a4j:form>
<rich:panel>
<f:facet name="header">
 <h:outputText value="Welcome to our Store" />
</f:facet>
<p>Welcome to our store. Our step-by-step forms will guide you through
the ordering process.</p>
<s:link view="/order/step1.jsf" value="Place an order" />
</rich:panel>
</a4j:form>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss Seam Components

[286]

The following screenshot shows the introductory screen of our ordering process.
Notice in the status bar of the browser window that the URL generated by the Seam
JSF hyperlink control contains a query string parameter named cid with a value of
one. As long as we pass this parameter from page to page, all the requests will be
handled as a part of the same conversation. The conversation ID is automatically
submitted during JSF postback requests. When a new conversation is started, Seam
will increment the conversation ID automatically.

The customer registration screen (Step 1)
The first screen, our page flow, requires the user to provide customer information
before placing an order. This view is basically identical to the example used in the
Seam validation section of this chapter. Therefore, much of the JSF markup has been
removed for simplification purposes.

Notice that the action has been hardcoded in the <a4j:commandButton> tag and
corresponds to a navigation rule declaration in faces-config.xml. No additional
work is required for the Seam conversation ID to be propagated to the server when
the form is submitted; this happens automatically.

<h1>Step 1. Customer Registration</h1>
<a4j:form id="customerForm" styleClass="customer-form">
 ...
 <a4j:commandButton value="Next Step" action="next"
 reRender="customerForm" />
 ...
</a4j:form>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 6

[287]

The following screenshot shows the customer registration step in the online ordering
page flow of our application.

The shipping information screen (Step 2)
The following screen requires the user to select a product and a shipping destination
before clicking on the Next Step button. Once again, Seam conversation propagation
happens automatically when the form is submitted.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss Seam Components

[288]

The order details confirmation screen (Step 3)
The next screen requires the user to confirm the order details before submitting
the order for processing. Once again, the JSF markup has been omitted for brevity.
Notice that the command button invokes the submitOrder backing bean method to
submit the order.

As noted earlier, this method is annotated with the Seam framework @End
annotation, indicating that the long-running conversation ends after the method
is invoked. When the method returns, Seam demotes the long-running
conversation to a temporary conversation and destroys it after the view is
rendered. Any references to conversation-scoped beans are released when the
Seam conversation is destroyed, efficiently freeing up server resources in a more
fine-grained way than by invalidating the session.

<h:form>
 ...
 <a4j:commandButton action="#{orderBean.submitOrder}"
 value="Submit Order" />
 ...
</h:form>

The following screenshot shows the order details confirmation screen.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 6

[289]

Concurrent conversations
The JBoss Seam framework supports the concept of concurrent conversations. An
individual user may choose to open multiple browser tabs to access the same page.
This scenario is not as uncommon as we might think. The user might, for example,
try to rent a car for two separate trips, or place two separate orders, or book two
different hotels, within the same browser session.

Conventional web applications do not support this behavior. This is because the
model state needed to complete the page flow for the different use cases is typically
stored in session scope. When the user switches from one tab to another in their
browser, any form data that is submitted effectively overwrites the previous form
data associated with the other tab. Therefore, the observable behavior of this type of
user activity is a loss of session state or inconsistent results when switching between
browser tabs.

Web browsers have evolved considerably over the past few years. Tabbed browsing
is just one of these improvements. The Seam framework enables JSF applications
to support user interaction across multiple browser tabs within the same session,
significantly improving support for concurrency in Java web applications.

Let's look at how Seam supports concurrent conversations by simulating a scenario
where the user opens two browser tabs and performs the same workflow in each
tab. The following screenshot shows a second tab opened in the browser to the
introductory page of our order processing page flow. Notice once again in the status
bar of the browser window that the conversation ID is now six.

When we click on this hyperlink, we will be directed to the customer registration
screen in our page flow, and the backing bean used for this form will be a new
instance of the OrderBean class stored in a new long-running conversation.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss Seam Components

[290]

In the next screenshot, the user enters customer registration information for a new
customer and clicks on the Next Step button. Note that we have not closed the
original browser tab. That conversation is still active and we will be returning to
it momentarily.

In the next screenshot, the user selects the product and shipping destination,
and then clicks Next Step. The activity in the current browser tab is completely
independent from the activity in the other browser tab. Remember that there are now
two instances of our OrderBean class handling requests for this particular user.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 6

[291]

Finally, we arrive at the order details confirmation step once again. The next
screenshot shows your information in the second browser tab just before it is
submitted for processing.

In a conventional web application, if we were to switch back to the original browser
tab and refresh the page, we would see the state that is now shown in the second
browser tab. In other words, the user would have overwritten the state of their
original order by opening a new tab and completing the order forms in a new online
ordering page flow.

Fortunately, the Seam framework was designed to support this type of concurrency,
so when we switch back to the first tab and refresh the page, we see what the user
expects to see: the original ordering page flow has not been modified and is in the
same state as it was in, when we opened the second browser tab.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss Seam Components

[292]

The next screenshot displays the first browser tab after we have refreshed the page.
The view state is the same as it was before we started the second page flow.

To conclude our concurrent conversations, we can now submit the orders. First, we
submit the order in the first tab, as shown in the following screenshot. The backing
bean receives the order information, creates a success message, and redirects to
the success page. When the method returns, the first long-running conversation is
concluded, at which point Seam downgrades it to a temporary conversation. When
the view is rendered the stateful session bean instance is destroyed along with any
state it was holding for the user.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 6

[293]

When we switch to the second tab and submit the order, our second conversation is
also concluded and the order information takes a minute for processing as shown in
the following screenshot.

The JBoss Seam framework enables us to support multiple concurrent requests
within the same browser window without any side effects. In Seam terminology,
our application supports multiple concurrent workspaces.

Debugging Seam applications
The previous long-running conversation example gives us a good overview of
how to use several features of the Seam framework together in a real-world
scenario. Just like the Facelets framework provides a debug page that can be
used to look "under the hood" to make sure that our JSF application is working as
expected, Seam also provides a debug page that provides insightful information for
developers. To enable the Seam debug page, first we must ensure that the JAR file
names jboss-seam-debug.jar is located only in the WEB-INF/lib folder, and not
in the EAR file lib directory. Next, we need to set the debug attribute to true in our
components.xml file as follows:

META-INF/components.xml

<?xml version="1.0" encoding="UTF-8"?>
<components xmlns="http://jboss.com/products/seam/components"
 xmlns:core="http://jboss.com/products/seam/core"
 xmlns:persistence="http://jboss.com/products/seam/persistence"
 xmlns:security="http://jboss.com/products/seam/security"
 xmlns:drools="http://jboss.com/products/seam/drools"

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss Seam Components

[294]

 xmlns:web="http://jboss.com/products/seam/web"
 xmlns:mail="http://jboss.com/products/seam/mail"
 xmlns:ui="http://jboss.com/products/seam/ui"
 xmlns:transaction="http://jboss.com/products/seam/transaction"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://jboss.com/products/seam/core
 http://jboss.com/products/seam/core-2.1.xsd
 http://jboss.com/products/seam/persistence
 http://jboss.com/products/seam/persistence-2.1.xsd
 http://jboss.com/products/seam/security
 http://jboss.com/products/seam/security-2.1.xsd
 http://jboss.com/products/seam/web
 http://jboss.com/products/seam/web-2.1.xsd
 http://jboss.com/products/seam/ui
 http://jboss.com/products/seam/ui-2.1.xsd
 http://jboss.com/products/seam/drools
 http://jboss.com/products/seam/drools-2.1.xsd
 http://jboss.com/products/seam/mail
 http://jboss.com/products/seam/mail-2.1.xsd
 http://jboss.com/products/seam/transaction
 http://jboss.com/products/seam/transaction-2.1.xsd
 http://jboss.com/products/seam/components
 http://jboss.com/products/seam/components-2.1.xsd">

 <core:init debug="true"
 jndi-pattern="7627_06_Application/#{ejbName}/local" />

 <core:manager conversation-id-parameter="cid" />

 <transaction:ejb-transaction />

 <persistence:managed-persistence-context
 name="em" auto-create="true" persistence-unit-jndi-name="java:/
 EntityManagerFactories/jsfbookData" />

 <web:redirect-filter url-pattern="*.jsf" />

 <ui:jpa-entity-loader entity-manager="#{em}" />

</components>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 6

[295]

Now we can access the debug page in our browser by visiting
 http://localhost:8080/chapter6/debug.jsf. The following screenshot displays
the output of the Seam debug page. We can see the activity of the two concurrent
conversations in progress, conversations #1 and #6, from our order processing
demonstration. We can use the Seam debug page to examine the state of our
managed beans and other Seam components.

Summary
In this chapter, we explored how the JBoss Seam framework can be used to create
powerful JSF applications using the full Java EE technology stack, including EJB3
session beans, JPA entities, and more. We also saw how to use Seam JSF controls
and Hibernate Validator annotations to implement JSF validation for our application
efficiently by applying the "DRY" principle. By adding Hibernate Validator
annotations to our JPA domain model, we gain a twofold advantage: (a) we can
use Hibernate Validator to implement declarative data integrity constraints in our
JPA persistence layer, and (b) we can reuse the Hibernate Validator annotations in
our domain model to declare user interface validation constraints for our JSF-based
presentation layer.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss Seam Components

[296]

Next, we looked at ways to decorate components in the user interface to
enhance JSF validation. We saw how to use the <s:decorate> tag to reference an
external validation template that provides decorations for invalid and required
fields. We also explored a technique for adding Ajax capabilities to our JSF form
and highlighting invalid fields using Seam JSF controls when validation fails. The
Seam framework also provides a built-in component named "messages" that exposes
our application's message bundle to any JSF page. We also examined how the Seam
framework solves the concurrency problem associated with multiple browser tabs
for JSF applications by introducing the new conversation scope. We studied how to
implement a multistep page flow using long-running conversations.

The JBoss Seam framework greatly simplifies JSF application development by
providing a set of user interface controls that solve a number of common problems
in JSF, such as form validation, converting JPA entities, and preparing JSF-specific
data structures for selection components. In the next chapter, we will see how Seam
can be combined with the JBoss RichFaces and Ajax4jsf component libraries to create
truly stunning next generation web user interfaces.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss RichFaces and Ajax4jsf
Components

The JBoss RichFaces and Ajax4jsf component libraries represent some of the most
exciting technologies available today for JSF developers. This powerful set of
components significantly enhances web development on the Java EE platform. In
this chapter, we will explore how to use JBoss RichFaces and Ajax4jsf components
together with the Seam framework to create next generation Java web applications
based on JSF.

Introducing JBoss RichFaces and
Ajax4jsf
JBoss RichFaces and Ajax4jsf are two of the most advanced JSF component libraries
available today. RichFaces includes around 75 rich user interface components that
can greatly enhance the visual appeal and interactivity of a Web 2.0 application.
Ajax4jsf includes around 25 mostly non-visual tags that provide the Ajax
infrastructure on which RichFaces components are based.

The JBoss RichFaces component library
JBoss RichFaces is one of the most advanced JSF component libraries available today.
It provides a stunning set of full featured Ajax-enabled UI components to bring new
levels of Web 2.0 usability and interactivity to the Java platform.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss RichFaces and Ajax4jsf Components

[298]

RichFaces provides rich input components, such as in-place editable text and
selection controls, a color chooser control, a calendar control, and a suggestion
box that supports autocompletion using Ajax. Additionally, RichFaces includes
sophisticated panel and menu components for rendering advanced user interface
layouts and menu structures. One of the most impressive features of the RichFaces
component library is its support for working with dynamic data. RichFaces makes it
very simple to implement a sortable, scrollable data table that renders dynamic data
retrieved from a database by a backing bean.

The Ajax4jsf component library
The Ajax4jsf component library is a popular Ajax solution for the JSF framework.
It was developed initially by Exadel and contributed as an open source project to
JBoss in 2008. Since then, Ajax4jsf and RichFaces have become integrated and are
now distributed as a single JSF component library.

One of the most interesting features of the Ajax4jsf library is that it can add
a sophisticated level of Ajax support to existing JSF components that have no
built-in Ajax capabilities. Ajax4jsf is the Ajax engine that powers RichFaces,
and Seam includes built-in support for Ajax4jsf.

Some of the benefits of the Ajax4jsf library include:

•	 Automatically adding Ajax support to other non-Ajax JSF components
•	 Adding drag-and-drop capabilities to JSF user interfaces
•	 Synchronizing (queueing) Ajax requests on the client side to optimize

and control bandwidth usage and communication between the browser
and the server

•	 Limiting the number of components on the screen that will be refreshed after
an Ajax request to improve performance

•	 Polling the server periodically using Ajax to display ongoing changes to
a web page

•	 Persisting request-scoped backing beans between requests to support
Ajax functionality

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 7

[299]

In this chapter, we will examine advanced topics in JSF web application development
and will explore how to use the JBoss RichFaces and Ajax4jsf component libraries
effectively. We will look at several examples of how to develop next generation web
user interfaces using JBoss RichFaces, Ajax4jsf, and Seam. Conceptually, RichFaces
provides many interesting visual UI components, while Ajax4jsf provides mostly
non-visual Ajax-specific infrastructure support for the JSF presentation layer.

The tasks we will cover include:

•	 Accepting user input
•	 Using Ajax effectively
•	 Working with panel components
•	 Displaying data
•	 Using special components

Accepting user input
The JBoss RichFaces and Ajax4jsf component libraries contain a wealth of UI
components that can be used to accept user input in new and interesting ways. By
combining these components together effectively, we can significantly enhance
the visual appeal and interactivity of our JSF pages. We will look at a number of
examples of these components; such as the RichFaces in-place input text field,
number spinbox, slider, calendar, color picker, combo box, pick list, and rich text
editor components.

Rendering editable text
Let's begin by looking at the RichFaces <rich:inplaceInput> tag. This tag
renders as an editable text control that enables users to click to edit the value of the
component directly on the screen. This component allows us to control how the text
becomes editable by defining the mouse event that activates the component using the
editEvent attribute. It could be set to ondoubleclick for example. The default edit
event is onclick.

<rich:panel style="width:220px;">
 <f:facet name="header">
 <h:outputText value="Contact Info"></h:outputText>
 </f:facet>
 <h:panelGrid columns="2">
 <h:outputText value="Name: " />
 <rich:inplaceInput defaultLabel="enter your name" />
 <h:outputText value="Email:" />

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss RichFaces and Ajax4jsf Components

[300]

 <rich:inplaceInput defaultLabel="enter your email" />
 </h:panelGrid>
</rich:panel>

Rendering an in-place select component
The RichFaces library includes a similar in-place editing component that provides
a list of available options. The <rich:inplaceSelect> tag renders this component
and is useful for situations where a backing bean property is bound to a predefined
list of values, such as a list of countries.

Notice that in this example we are populating the list of items using a nested
<s:selectItems> tag, a Seam framework component tag that automatically
converts a list of objects to a list of SelectItem instances. We also use the Seam
<s:convertEntity> tag to provide automatic conversion of the Country type from
our JPA domain model.

This is a significant improvement because we no longer have to write custom
converters for our domain model classes or special backing bean methods to produce
lists of SelectItem objects.

<h:form>
<rich:panel style="width:320px;">
 <f:facet name="header">
 <h:outputText value="Countries" />
 </f:facet>
 <h:panelGrid columns="2">
 <h:outputText value="Selected Country: " />
 <rich:inplaceSelect
 value="#{shippingCalculator.country}"
 defaultLabel="Double click to edit" openOnEdit="true"
 showControls="true" editEvent="ondblclick" layout="block"
 viewClass="inplace" changedClass="inplace"
 changedHoverClass="hover" viewHoverClass="hover">

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 7

[301]

 <s:selectItems value="#{customerBean.countries}"
 var="country" label="#{country.name}" />
 <s:convertEntity />
 </rich:inplaceSelect>
 </h:panelGrid>
</rich:panel>
</h:form>

When the in-place select component is activated, a drop-down list of countries is
presented to the user. The component also displays a green checkmark icon and a
red cancel icon beside the list. Once the user selects a value from the list, clicking
on the checkmark applies the selection while clicking on the cancel icon resets the
component's value back to the previous state.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss RichFaces and Ajax4jsf Components

[302]

Combining in-place input and select
components
The RichFaces in-place input and in-place select components can be combined to
create a highly intuitive user interface. In this example, we render a list of products
in an editable data table.

<h:form>
 <rich:dataTable value="#{productBean.products}" var="product"
 rows="5" columnClasses="left-aligned,left-aligned,
 right-aligned,centered">
 <rich:column>
 <f:facet name="header">
 <h:outputText value="Product Name" />
 </f:facet>
 <rich:inplaceInput value="#{product.name}" />
 </rich:column>
 <rich:column>
 <f:facet name="header">
 <h:outputText value="Category" />
 </f:facet>
 <rich:inplaceSelect value="#{product.category}">
 <s:selectItems value="#{productBean.productCategories}"
 var="category" label="#{category.name}" />
 </rich:inplaceSelect>
 </rich:column>
 <rich:column>
 <f:facet name="header">
 <h:outputText value="Price" />
 </f:facet>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 7

[303]

 <rich:inplaceInput value="#{product.price}">
 <f:convertNumber type="currency" currencySymbol="$"
 maxFractionDigits="0" />
 </rich:inplaceInput>
 </rich:column>
 <rich:column>
 <f:facet name="header">
 <h:outputText value="Quantity in Stock" />
 </f:facet>
 <rich:inplaceInput value="#{product.quantityInStock}" />
 </rich:column>
 </rich:dataTable>
</h:form>

The next screenshot demonstrates the use of the <rich:inplaceInput> component
in a RichFaces data table. Notice how seamlessly the component fits into the
user interface. This creates a very interesting visual effect that goes beyond the
capabilities of the basic HTML widget library.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss RichFaces and Ajax4jsf Components

[304]

Similarly, when the user tabs to the next field in the data table, we can see another
visually interesting RichFaces component in use. The <rich:inplaceSelect>
renders a sophisticated drop-down list that appears when the user activates
the component.

Once an in-place editing component's value has changed, RichFaces renders a small
red decoration in the top-left corner of the field to provide a visual cue to the user
that the original value has been modified. Once the form is submitted, the value is
changed and the red decoration is cleared.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 7

[305]

Rendering a slider component
One of the nice things about desktop software GUI toolkits is the presence of rich
UI components that enhance user interaction. The Swing GUI toolkit, for example,
includes a slider component that enables the user to adjust a numeric value
gradually by clicking and dragging a control to the desired position.

The RichFaces library introduces a slider component that can be used to give JSF
applications a more intuitive feel similar to desktop application behavior. The slider
component supports horizontal and vertical orientations and can be bound to any
numeric backing bean property.

This component is well suited to situations where the user wants to make more
coarse-grained or imprecise adjustments to a numeric value, such as adjusting
a volume, brightness, contrast, or zoom level. Adjusting the value using precise
increments with this component can be challenging for the user (especially if the
numeric range of the slider is fairly wide). For more precise numeric input, the
<rich:inputNumberSpinbox> tag is recommended.

<rich:panel style="width:320px;">
 <f:facet name="header">
 <h:outputText value="Number Selector">
 </h:outputText>
 </f:facet>
 <h:panelGrid columns="2">
 <h:outputText value="Select Number: " />
 <rich:inputNumberSlider orientation="horizontal" />
 </h:panelGrid>
</rich:panel>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss RichFaces and Ajax4jsf Components

[306]

Rendering a number spinner component
While the RichFaces slider component provides a sophisticated type of control for
selecting a numeric value, RichFaces also includes another numeric value component.
The <rich:inputNumberSpinner> tag renders a text field with a pair of image buttons
beside it that allow the user to adjust the numeric value incrementally. This component
is useful in situations where the user wants to make more precise adjustments.

 <rich:panel style="width:320px;">
 <f:facet name="header">
 <h:outputText value="Number Spinner">
 </h:outputText>
 </f:facet>
 <h:panelGrid columns="2">
 <h:outputText value="Select Number: " />
 <rich:inputNumberSpinner />
 </h:panelGrid>
 </rich:panel>

Rendering a calendar component
The RichFaces calendar component renders an elegant date selection control that
allows the user to easily navigate between months, years, and dates.

<rich:panel style="width:320px;">
 <f:facet name="header">
 <h:outputText value="Calendar" />
 </f:facet>
 <h:panelGrid columns="2">
 <h:outputText value="Select Date: " />

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 7

[307]

 <rich:calendar popup="#{true}" />
 </h:panelGrid>
</rich:panel>

Rendering a color picker component
The RichFaces color picker component is rendered by the <rich:colorPicker> tag
as a full featured color selection control on the screen similar to the controls provided
by advanced photo editing software, such as Adobe Photoshop.

This component enables the user to select a color intuitively by dragging the mouse
inside a rich color gradient area, by adjusting a slider on a color strip, or by entering
Red-Green-Blue (RGB) and Hue-Saturation-Brightness (HSB) values. Optionally,
the user can enter a hexadecimal color code often used in cascading style sheets. The
component also provides an Apply and Cancel button that close the color picker
component with or without applying the selection. The component can be bound to
a backing bean property of type java.awt.Color or of type java.lang.String.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss RichFaces and Ajax4jsf Components

[308]

<h:form>
<rich:colorPicker
 value="#{customerBean.customer.favoriteColor}" />
</h:form>

Rendering a combo box component
The RichFaces HtmlComboBox component is rendered by the <rich:comboBox> tag
as a drop-down list that supports text entry. In this example, we bind the component
to a list of countries. As the user types in a country name, the list of options is limited
automatically to any elements that start with the string entered by the user.

This component is a simplified version of the <rich:suggestionbox> component,
a more full-featured text selection component that supports Ajax-enabled dynamic
autocompletion. We use the Seam <s:selectItems> tag in the following example to
convert a list of String objects to a list of SelectItem objects. The <s:selectItems>
tag will be covered later in this chapter.

The <rich:comboBox> tag is basically a more powerful version of the
<h:inputText> tag that facilitates data entry by providing a drop-down list of
possible values. The user is not constrained by the list of values; they can enter
whatever free-form text they wish.

<rich:panel style="width:420px;">
 <f:facet name="header">
 <h:outputText value="Countries" />
 </f:facet>
 <h:panelGrid columns="2">
 <h:outputText value="Select an Interest: " />

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 7

[309]

 <rich:comboBox defaultLabel="Select" width="300">
 <s:selectItems value="#{customerBean.interestList}"
 label="#{item}" var="item" />
 </rich:comboBox>
 </h:panelGrid>
</rich:panel>

Rendering a suggestion box component with
auto-complete
One of the coolest components in the RichFaces library list the suggestion box
component. This component is rendered by the <rich:suggestionbox> tag and
is associated with a text field in the view. This suggestion box component can
communicate with the server using Ajax to provide an incrementally updating
dynamic list of suggestions based on user input.

The following JSF markup demonstrates how to add the component to our JSF
page. Notice in this example that we combine the Tomahawk <t:inputTextHelp>
tag with the RichFaces <rich:suggestionbox> tag to implement a text box that
shows help text and has auto-complete behavior. We also nest the <a4j:support>
tag inside the Tomahawk <t:inputTextHelp> tag to add Ajax capabilities to the
Tomahawk component. In our reRender attribute, we specify that the "selection"
panel grid component that displays the selected suggestion should be updated after
an Ajax request triggered by an onblur event.

<h:form>
 <t:inputTextHelp id="text"
 value="#{shippingCalculatorBeanSeam.country.name}"
 helpText="Enter a Country">

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss RichFaces and Ajax4jsf Components

[310]

 <a4j:support event="onblur" reRender="selection" />
 </t:inputTextHelp>
 <rich:suggestionbox id="suggestionBoxId" for="text"
 tokens=",[]" rules="true"
 suggestionAction="#{customerBean.countryAutocomplete}"
 var="result" fetchValue="#{result}" rows="10"
 columnClasses="center" usingSuggestObjects="true">
 <h:column>
 <h:outputText value="#{result.name}" />
 </h:column>
 </rich:suggestionbox>
 <h:panelGrid id="selection">
 <h:outputText
 value="You selected: #{shippingCalculatorBeanSeam.country.name}"
 rendered="#{shippingCalculatorBeanSeam.country.name ne null}" />
 </h:panelGrid>
</h:form>

Notice in the preceding source code that we set the suggestionAction attribute
of the <rich:suggestionbox> tag to a method expression that references a special
method in our CustomerBean class named countryAutocomplete() that takes
an Object and returns a List of Country objects. This method is implemented as
follows. First we cast the suggestion object to a String, then if the value is not null
or an empty String, we create a JPA named query, pass the suggestion String as the
country name "like" argument for the where clause in our JPQL select statement,
execute the query, and return a List of Country objects.

 @SuppressWarnings("unchecked")
 public List<Country> countryAutocomplete(Object suggestion) {
 List<Country> list = null;
 String text = (String) suggestion;
 if (text != null && text.length() > 0) {
 Query query = em.createNamedQuery(Queries.
 COUNTRIES_LIKE);
 query.setParameter(1, text + "%");
 list = query.getResultList();
 }
 return list;
 }

The named query is shown below:

 <query name="Country.findByNameLike">
 <![CDATA[
 select country
 from Country country

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 7

[311]

 where country.name like ?
 order by country.name
]]>
 </query>

The following screenshot demonstrates the Tomahawk <t:inputTextHelp> tag
rendering a text field with help text:

Next, we enter some text to trigger the suggestion box auto-complete behavior. The
RichFaces suggestion box component uses Ajax to send the user's input to the server.
The text is passed to our CustomerBean.countryAutocomplete() backing bean
method where the text is included in a JPA query that fetches a list of countries from
our database. The list of countries is sent back to the browser in the Ajax response
and a list of countries is displayed below the text field.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss RichFaces and Ajax4jsf Components

[312]

Once we tab out of the text field, the onblur event is fired and the text message is
updated to reveal our selection:

Rendering a pick list component
The RichFaces pick list component is inserted using the <rich:pickList> tag and is
rendered on the screen as a pair of selection list boxes that support transferring items
from one box to the other. This component supports moving items individually or in
bulk between the two selection boxes. It can be used to managed more complex user
interface tasks such as removing a subset of items from a master list.

The component renders a button for each of the four supported operations (moving
one item, moving all items, removing one item, removing all items) and the labels for
these buttons can be customized by the developer.

<f:facet name="header">
 <h:outputText value="Select Countries " />
 </f:facet>
 <h:panelGrid columns="2">
 <rich:pickList copyAllControlLabel="copy all label"
 copyControlLabel="copy label"
 removeAllControlLabel="remove all label"
 removeControlLabel="remove label">
 <f:selectItems value="#{customerBean.countrySelectItems}" />
 </rich:pickList>
 </h:panelGrid>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 7

[313]

This screenshot displays the <rich:pickList> component. It contains two list boxes
and a set of controls for moving items from one list to another.

Rendering a rich text editor component
Often, users will be asked to input textual information such as a long description
requiring several paragraphs of text. In this situation, the default HTML <textarea>
element falls short of the functionality provided by desktop word processing
software that many users are accustomed to. Fortunately, the RichFaces library
includes a component that renders a rich text editor on the screen.

The <rich:editor> tag displays the TinyMCE rich text editor in the browser,
enabling users to enter text using a powerful and full featured WYSIWYG editor.
This component supports a wide range of customizations, such as which menu
buttons to display, automatic text area resizing, width, height, and much more.

<rich:panel style="width:320px;">
 <f:facet name="header">
 <h:outputText value="Text Editor " />
 </f:facet>
 <rich:editor theme="advanced">
 <f:param name="theme_advanced_buttons1"
 value="bold,italic,underline,cut,copy,paste,pasteword" />

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss RichFaces and Ajax4jsf Components

[314]

 <f:param name="theme_advanced_buttons2"
 value="strikethrough,bullist,numlist,outdent,indent" />
 <f:param name="theme_advanced_buttons3"
 value="hr,removeformat,visualaid,sub,sup,charmap" />
 </rich:editor>
</rich:panel>

Using Ajax effectively
The Ajax4jsf tag library provides a number of powerful Ajax components that can
significantly enhance the interactivity and performance of the user interface for a JSF
application. One of the goals of Ajax is to enable more fine-grained communication
between the browser and the web server, allowing the application to make incremental
view updates without the overhead of a full-page reload for each minor change.

As Ajax-based interactivity can increase the "chattiness" of a web page, the
developers of the Ajax4jsf library made sure to include some performance-tuning
features in the component library. Let's examine some of the key features of Ajax4jsf
and discuss how we can use Ajax effectively in combination with RichFaces and
Seam to improve the end user experience for our application.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 7

[315]

Understanding how Ajax4jsf works
Ajax4jsf is a powerful Ajax implementation for JSF that includes a number of
advanced features. Before diving into the details, let's review the Ajax concept as a
background for further discussion.

Ajax is an acronym for Asynchronous JavaScript and XML. It is a Rich Internet
Application (RIA) development approach that involves submitting an HTTP request
from a web page to the web server, waiting for a response, and then updating the
HTML Document Object Model (DOM) dynamically. The browser's JavaScript
engine provides the XMLHTTPRequest object that allows a script to marshal an HTTP
request and response asynchronously while the page remains in an interactive state.
The effect of this approach is that a web page can communicate with the web server
and update itself incrementally, independent of the user's control and without
interrupting the user's work with a full-page refresh.

One of the value propositions of a component-based web framework like JSF is that
advanced capabilities such as Ajax can be encapsulated by the component library
and delivered to the client without the developer needing to learn an Ajax scripting
API. Effectively this means we can use advanced Ajax techniques without having to
write a single line of JavaScript.

Ajax-enabled form submission
The Ajax4jsf component library includes the <a4j:form> tag that provides an
Ajax-aware replacement for the standard JSF <h:form> tag. This tag is functionally
identical to the standard <h:form>, in that it renders an HTML <form> element, but
it also supports an Ajax-based form submission mode.

By setting the ajaxSubmit attribute to true, we indicate that the form should be
submitted asynchronously using Ajax. Any command components inside the form
will now trigger an Ajax request instead of the usual HTTP form submission.

The following example demonstrates five possibilities when using the standard JSF
<h:form> and the Ajax4jsf <a4j:form> tag in combination with the standard JSF
command button and the Ajax4jsf command button components.

<h:form>
 <h:commandButton value="Submit (No Ajax)" />
</h:form>
<a4j:form>
 <h:commandButton value="Submit (No Ajax)" />
</a4j:form>
<h:form>
 <a4j:commandButton value="Submit (Ajax)" />

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss RichFaces and Ajax4jsf Components

[316]

</h:form>
<a4j:form ajaxSubmit="true">
 <h:commandButton value="Submit (Ajax)" />
</a4j:form>
<a4j:form>
 <a4j:commandButton value="Submit (Ajax)" />
</a4j:form>

In this example, only the first two forms are not submitted using Ajax. The
<a4j:commandButton> component always performs an Ajax request instead of
the usual form submission. When the <h:commandButton> tag is nested in an
<a4j:form> tag with the ajaxSubmit attribute set to true, the <h:commandButton>
also fires an Ajax request when invoked.

The following example demonstrates that the ajaxSubmit attribute of the
<a4j:form> tag must be set to true for <h:commandButton> tags to use Ajax. If this
attribute is not set, the <h:commandButton> tag's behavior is unchanged and results
in non-Ajax form submission.

<h:panelGrid columns="2" columnClasses="align-top">
 <rich:panel>
 <f:facet name="header">
 <h:outputText value="Form with ajaxSubmit=true" />
 </f:facet>
 <a4j:form ajaxSubmit="true" reRender="name">
 <h:panelGrid id="grid">
 <h:outputLabel value="Enter a greeting:" />
 <h:inputText value="#{backingBean.name1}" />
 <h:commandButton value="Submit (Ajax)" />
 </h:panelGrid>
 <h:outputText id="name" value="#{backingBean.name1}" />
 </a4j:form>
 </rich:panel>
 <rich:panel>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 7

[317]

 <f:facet name="header">
 <h:outputText value="Form with ajaxSubmit=false" />
 </f:facet>
 <a4j:form reRender="name">
 <h:panelGrid id="grid">
 <h:outputLabel value="Enter a greeting:" />
 <h:inputText value="#{backingBean.name2}" />
 <h:commandButton value="Submit (Non-Ajax)" />
 </h:panelGrid>
 <h:outputText id="name" value="#{backingBean.name2}" />
 </a4j:form>
 </rich:panel>
</h:panelGrid>

Invoking an Ajax-enabled command link
The <a4j:commandLink> tag is identical to the <h:commandLink> tag except that
it submits a form using Ajax. It also has a reRender attribute that indicates a
comma-separated list of identifiers for components to be re-rendered when the Ajax
request is complete. This allows the page to update itself incrementally in response
to user interaction.

<a4j:form><h:panelGrid columns="3" styleClass="gridhello"
 columnClasses="gridhellocolumn">
 <h:outputText value="Name:" />
 <h:inputText value="#{backingBean.name}" />
 <a4j:commandLink reRender="out">
 <h:outputText value="Say Hello" />
 </a4j:commandLink>
 </h:panelGrid>
</a4j:form>

<h:panelGroup id="out">

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss RichFaces and Ajax4jsf Components

[318]

 <h:outputText value="Hello "
 rendered="#{not empty backingBean.name}" styleClass="outhello" />
 <h:outputText value="#{backingBean.name}" styleClass="outhello" />
 <h:outputText value="!" rendered="#{not empty backingBean.name}"
 styleClass="outhello" />
</h:panelGroup>

Polling the server asynchronously
The Ajax4jsf library includes a component that can be used to poll the server on a
regular interval. This can be useful in situations where a backing bean is waiting on
some long running background work to be completed.

An important consideration when using the <a4j:poll> is when to stop polling.
Typically, we want to stop polling the server when a server-side process has
finished. We can use the enabled attribute of the <a4j:poll> tag to control when
polling should stop. Note that when combining the RichFaces/Ajax4jsf libraries with
the JBoss Seam framework, conversation propagation can directly affect the expected
polling behavior.

Let's look at two examples of how to use the <a4j:poll>. Both examples call a
conversation-scoped backing bean for each Ajax poll request. Remember that
by default Seam places conversation-scoped backing beans into a temporary
conversation that is created and destroyed with each request. Therefore, the next
example does not work as we might think. Polling continues indefinitely because the
backing bean is created and destroyed for each poll request, so the polling state is
reset each time.

<h:form>
 <a4j:poll interval="1000" reRender="grid"
 enabled="#{backingBean.pollEnabled}" />
 <h:panelGrid id="grid">
 <h:outputText id="date" value="#{backingBean.today}">
 <f:convertDateTime type="both" timeZone="EST" />

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 7

[319]

 </h:outputText>
 <h:outputText id="count"
 value="Poll count: #{backingBean.pollCount}" />
 <h:outputText id="enabled"
 value="Polling enabled: #{backingBean.pollEnabled}" />
 <h:outputText value="Conversation: #{conversation.id}" />
 </h:panelGrid>
</h:form>

The following screenshot shows the result of the Ajax4jsf <a4j:poll> tag. The JSF
page sends an Ajax request to the server once every second, and re-renders the panel
grid to display the current time, the poll count, whether polling is enabled, and the
current Seam conversation ID. The poll count never increases and polling is always
enabled because the page and the backing bean are not associated with a long-
running conversation, so a new conversation and a new instance of the backing bean
are created for each request.

Let's look at an example of using the <a4j:poll> tag with a long-running Seam
conversation. By nesting the <s:conversationPropagation> tag inside the
<a4j:poll> tag we can control how Seam handles the conversation on the server
side. In this case, we set the type attribute to join to indicate that Seam should begin
a new long-running conversation if one is not already in progress, otherwise the
request should join the existing long-running conversation.

Effectively we make sure the backing bean that is handling our polling requests is
part of a long-running conversation, instead of a temporary one. The result is that
our backing bean is created once and reused for each poll request, making it possible
for us to reuse the polling state and the behavior of our view is as expected; after five
polling requests, the pollEnabled property is set to false on the server side.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss RichFaces and Ajax4jsf Components

[320]

<h:form>
 <a4j:poll interval="1000" reRender="grid"
 enabled="#{backingBean.pollEnabled}">
 <s:conversationPropagation type="join" />
 </a4j:poll>
 <h:panelGrid id="grid">
 <h:outputText id="date" value="#{backingBean.today}">
 <f:convertDateTime type="both" timeZone="EST" />
 </h:outputText>
 <h:outputText id="count"
 value="Poll count: #{backingBean.pollCount}" />
 <h:outputText id="enabled"
 value="Polling enabled: #{backingBean.pollEnabled}" />
 <h:outputText value="Conversation: #{conversation.id}" />
 </h:panelGrid>
</h:form>

Panel components
The JBoss RichFaces library includes a number of useful components for rendering
panels in our views. Using panels is a nice way to organize visual elements in our
user interface.

Creating a basic panel
The RichFaces <rich:panel> tag renders a basic panel component that can be used
to group related controls or information together with a descriptive header. The
<rich:panel> tag supports a header facet that defines the text to be rendered in the
panel header.

 <rich:panel>
 <f:facet name="header">
 <h:outputText value="Panel Header" />

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 7

[321]

 </f:facet>
 <h:outputText value="Panel content here." />
 </rich:panel>

Rendering a panel bar
RichFaces also provides the <rich:panelBar> tag that renders a panel bar
component as a group of panels organized into a vertical layout. Each panel in
the panel bar arrangement has a clickable header that toggles the panel between
an expanded and collapsed state. The <rich:panelBar> tag renders nested
<rich:panelBarItem> tags as individual panels. The label attribute of the
<rich:panelBarItem> tag defines the text to be displayed in the header of the panel.

 <rich:panelBar width="300px">
 <rich:panelBarItem label="Recommended">
 ...
 </rich:panelBarItem>
 <rich:panelBarItem label="Most Popular">
 <rich:dataTable width="100%"
 value="#{productBean.randomProducts}"
 var="product" rows="3">
 <rich:column colspan="3">
 <h:graphicImage url="/images/#{product.icon}"
 style="text-align:left; vertical-align:middle;
 padding-right:5px" />
 <h:outputText value="#{product.name}" />
 </rich:column>
 <rich:columnGroup>
 <rich:column>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss RichFaces and Ajax4jsf Components

[322]

 <h:outputText value="#{product.category.name}" />
 </rich:column>
 <rich:column>
 <h:outputText value="#{product.price}">
 <f:convertNumber type="currency" currencySymbol="$"
 maxFractionDigits="0" />
 </h:outputText>
 </rich:column>
 <rich:column>
 <h:outputText value="In stock: #{product.quantityInStock}"
 />
 </rich:column>
 </rich:columnGroup>
 </rich:dataTable>
 </rich:panelBarItem>
 <rich:panelBarItem label="Favorites">
 ...
 </rich:panelBarItem>
 <rich:panelBarItem label="Purchased">
 ...
 </rich:panelBarItem>.
 </rich:panelBar>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 7

[323]

Rendering a panel menu
The <rich:panelMenu> and <rich:panelMenuItem> tags provide an alternative to
the <rich:panelBar> and <rich:panelBarItem> tags. This combination of tags
renders a set of Ajax-enabled menu items that support active, inactive, and rollover
states. In this example, clicking on a menu item triggers an Ajax request that invokes
an action listener method in our backing bean to select a set of products..

When the Ajax request is complete, we re-render another panel in the view to display
the selected products. Notice that the menu item icon can also be customized.
The following enumerated icon values are supported: triangle, triangleUp,
triangleDown, disc, chevron, chevronUp, chevronDown, and grid.

 <h:panelGrid columns="2" columnClasses="align-top" cellpadding="10">
 <rich:panelMenu selectedChild="item2">
 <rich:panelMenuItem id="item1" label="Recommended"
 icon="triangle"
 actionListener="#{productBean.selectRecommendedProducts}" />
 <rich:panelMenuItem id="item2" label="Most Popular"
 actionListener="#{productBean.selectPopularProducts}" />
 <rich:panelMenuItem id="item3" label="Favorites"
 actionListener="#{productBean.selectFavoriteProducts}" />
 <rich:panelMenuItem id="item4" label="Purchased"
 actionListener="#{productBean.selectPurchasedProducts}" />
 </rich:panelMenu>.
 <rich:panel>
 <f:facet name="header">
 <h:outputText value="Selected Products" />
 </f:facet>
 <h:outputText value="Select a category"
 rendered="#{empty productBean.selectedProducts}" />
 <rich:dataTable id="selectedProducts" width="100%"
 value="#{productBean.selectedProducts}"
 var="product" rows="3">
 <rich:column colspan="3">
 <h:graphicImage url="/images/#{product.icon}"
 style="text-align:left; vertical-align:middle;
 padding-right:5px" />
 <h:outputText value="#{product.name}" />
 </rich:column>
 <rich:columnGroup>
 <rich:column>
 <h:outputText value="#{product.category.name}" />
 </rich:column>
 <rich:column>
 <h:outputText value="#{product.price}">

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss RichFaces and Ajax4jsf Components

[324]

 <f:convertNumber type="currency" currencySymbol="$"
 maxFractionDigits="0" />
 </h:outputText>
 </rich:column>
 <rich:column>
 <h:outputText value="In stock: #{product.quantityInStock}"
 />
 </rich:column>
 </rich:columnGroup>
 </rich:dataTable>
 </rich:panel>
 </h:panelGrid>

In the following screenshot, we can see the <rich:panelMenu> displayed as a
vertical series of menu items in the left column of our two-column panel grid. The
first <rich:panelMenuItem> has the icon attribute set to triangle, so it looks
different from the remaining three menu items. The second menu item is selected,
so the label is rendered using an italic font. The mouse is hovering over the second
menu item, and it is shown in a highlighted state.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 7

[325]

Rendering groups of menu items
The <rich:panelMenuGroup> tag can also be nested inside a <rich:panelMenu> tag
to create a group of menu items. In this example, we render a panel menu with four
panel menu groups. The first panel menu group is expanded, disclosing three panel
menu items. When the user clicks on a panel menu item, an action listener method is
invoked using Ajax, and the list of selected products is re-rendered.

In the following example, only the first <rich:panelMenuGroup> tag has any child
<rich:panelMenuItem> tags. The remaining three <rich:panelMenuGroup> tags
are simply there for illustration purposes. (When an empty <rich:panelMenuGroup>
is included in the view, only the label is rendered and since there are no child menu
items to display, the menu does not expand when clicked by the user.)

<h:panelGrid columns="2" columnClasses="align-top" cellpadding="10">
 <rich:panelMenu selectedChild="item2">
 <rich:panelMenuGroup label="Recommended">
 <rich:panelMenuItem label="Top Sellers"
 actionListener="#{productBean.selectPopularProducts}" />
 <rich:panelMenuItem label="Best Value"
 actionListener="#{productBean.selectPopularProducts}" />
 <rich:panelMenuItem label="Back to School"
 actionListener="#{productBean.selectPopularProducts}" />
 </rich:panelMenuGroup>
 <rich:panelMenuGroup id="item2" label="Most Popular"
 actionListener="#{productBean.selectPopularProducts}" />
 <rich:panelMenuGroup id="item3" label="Favorites"
 actionListener="#{productBean.selectFavoriteProducts}"
 reRender="" />
 <rich:panelMenuGroup id="item4" label="Purchased"
 actionListener="#{productBean.selectPurchasedProducts}" />
 </rich:panelMenu>
 <rich:panel>
 <f:facet name="header">
 <h:outputText value="Selected Products" />
 </f:facet>
 <h:outputText value="Select a category"
 rendered="#{empty productBean.selectedProducts}" />
 <rich:dataTable id="selectedProducts" width="100%"
 value="#{productBean.selectedProducts}"
 var="product" rows="3">
 <rich:column colspan="3">
 <h:graphicImage url="/images/#{product.icon}"
 style="text-align:left; vertical-align:middle;
 padding-right:5px" />
 <h:outputText value="#{product.name}" />

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss RichFaces and Ajax4jsf Components

[326]

 </rich:column>
 <rich:columnGroup>
 <rich:column>
 <h:outputText value="#{product.category.name}" />
 </rich:column>
 <rich:column>
 <h:outputText value="#{product.price}">
 <f:convertNumber type="currency" currencySymbol="$"
 maxFractionDigits="0" />
 </h:outputText>
 </rich:column>
 <rich:column>
 <h:outputText value="In stock: #{product.quantityInStock}"
 />
 </rich:column>
 </rich:columnGroup>
 </rich:dataTable>
 </rich:panel>
 </h:panelGrid>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 7

[327]

Rendering a tabbed user interface
Using tabs to subdivide a user interface is an effective way to maximize the use
of screen real estate for web application. The RichFaces library includes useful
components for rendering a tabbed user interface. The <rich:tabPanel> tag
provides the parent container to which tab components can be added individually.
The <rich:tab> tag can be nested inside the <rich:tabPanel> tag to create an
individual tab. The text that is displayed in the tab header is defined using the label
attribute of this tag. The following example demonstrates how to create a simple tab
panel that groups related products together an interesting way.

 <rich:tabPanel>
 <rich:tab label="Recommended">
 ...
 </rich:tab>
 <rich:tab label="Most Popular">
 <rich:dataGrid width="100%" value="#{productBean.randomProducts}"
 var="product" columns="3" elements="6" cellpadding="5"
 cellspacing="5">
 <rich:panel>
 <f:facet name="header">
 <h:outputText value="#{product.name}" />
 </f:facet>
 <h:panelGrid columns="2" width="100%"
 columnClasses="align-top">
 <h:outputText value="Category:" />
 <h:outputText value="#{product.category.name}" />
 <h:outputText value="Price:" />
 <h:outputText value="#{product.price}">
 <f:convertNumber type="currency"
 currencySymbol="$" maxFractionDigits="0" />
 </h:outputText>
 <h:outputText value="In Stock:" />
 <h:panelGroup>
 <h:outputText value="#{product.quantityInStock}"
 />
 <h:graphicImage url="/images/#{product.icon}"
 style="float:right;" />
 </h:panelGroup>
 </h:panelGrid>
 </rich:panel>
 </rich:dataGrid>
 </rich:tab>
 <rich:tab label="Favorites">
 ...

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss RichFaces and Ajax4jsf Components

[328]

 </rich:tab>
 <rich:tab label="Purchased">
 ...
 </rich:tab>
 </rich:tabPanel>

In the next example, the contents of the tab are displayed using the
<rich:dataGrid> tag. The six selected products are arranged into a series of three
columns by two rows. The <rich:dataGrid> tag is covered in more detail later on in
this chapter.

Rendering a toggle panel
Another type of panel provided by the RichFaces component library is the toggle
panel. This component is rendered as a clickable link or icon that displays one or
more panels in a navigable sequence. The <rich:togglePanel> tag supports three
switching modes: client-side, server-side, and Ajax. The stateOrder attribute accepts
a comma-separated list of facet names that defines the order in which the panels are
displayed. The component expects a named facet for each of the user defined toggle
states. In this example, we have a closed facet, a tip1 facet, and a tip2 facet for three
possible states. We also define the initial state of the toggle panel as the tip1 facet.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 7

[329]

The <rich:toggleControl> tag is closely related to the <rich:togglePanel> tag.
The <rich:toggleControl> tag provides a state-switching control that enables the
user to click on a link or an icon in order to switch the toggle panel to a different
state. When the user clicks on the info.gif image or on the Information label, the
toggle panel component is activated and the next panel in the sequence is displayed.
Notice that each tip facet has two <rich:toggleControl> tags (one for the image
and one for the text label) that enable the user to toggle the state of the toggle panel
component. The facet rendered by clicking on the toggle control is determined by the
switchToState attribute.

<h:form>
 <rich:togglePanel switchType="client"
 stateOrder="closed,tip1,tip2" initialState="tip1">
 <f:facet name="closed">
 <h:panelGroup>
 <rich:toggleControl style="padding-right:3px">
 <h:graphicImage url="/images/info.gif" style="border:0;
 vertical-align:middle;" />
 </rich:toggleControl>
 <rich:toggleControl>
 <h:outputText value="Information" />
 </rich:toggleControl>
 </h:panelGroup>
 </f:facet>
 <f:facet name="tip1">
 <h:panelGrid cellpadding="0" cellspacing="0" border="0"
 columns="1">
 <h:outputText value="Did you know you can reserve items
 from our store for up to 48 hours?" />
 <rich:separator height="1" />
 <h:panelGrid columns="3">
 <rich:toggleControl switchToState="closed">
 <h:graphicImage url="/images/close.gif"
 style="border:0;" />
 </rich:toggleControl>
 <rich:toggleControl switchToState="tip2"
 value="Next Tip >" />
 </h:panelGrid>
 </h:panelGrid>
 </f:facet>
 <f:facet name="tip2">
 <h:panelGrid cellpadding="0" cellspacing="0" border="0"
 columns="1">
 <h:outputText value="Our sales staff is always ready to
 assist. Please call 1-800-555-1234." />

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss RichFaces and Ajax4jsf Components

[330]

 <rich:separator height="1" />
 <h:panelGrid columns="3">
 <rich:toggleControl switchToState="closed">
 <h:graphicImage url="/images/close.gif"
 style="border:0;" />
 </rich:toggleControl>
 <rich:toggleControl switchToState="tip1"
 value="< Previous Tip" />
 </h:panelGrid>
 </h:panelGrid>
 </f:facet>
 </rich:togglePanel>
</h:form>

The facet named in the initialState attribute of the <rich:togglePanel> tag is
shown by default, as seen in the following screenshot:

When the user clicks on the image or the text label in the first screenshot, the toggle
control component displays the facet named in the <rich:toggleControl> tag's
switchToState attribute.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 7

[331]

Displaying data
The combination of the JBoss Seam framework, the RichFaces component
library, and the Ajax4jsf component library is an excellent set of technologies for
implementing dynamic data-driven JSF applications. RichFaces provides a number
of components that support a range of data-oriented tasks, such as rendering a data
table, sorting data, pagination, complex data tables, and more.

Rendering a data table
One of the most important data components in the RichFaces component library
is the RichFaces data table component rendered by the <rich:dataTable> tag.
This component is an extended version of the standard JSF data table component,
so the two components have many of the same attributes. RichFaces also provides
the <rich:column> tag that renders an extended version of the standard JSF
HTML column component and provides rich behavior such as the ability to sort in
ascending or descending order, the ability to filter the data in the column, column
and row span attributes, custom sort icons, and more. In the next example, we render
a simple RichFaces data table displaying the customers in our database.

<rich:dataTable value="#{customerBean.customers}" var="customer"
rows="5" columnClasses="left-aligned,centered,centered,centered">
 <rich:column>
 <f:facet name="header">
 <h:outputText value="Customer Name" />
 </f:facet>
 <h:outputText value="#{customer.fullName}" />
 </rich:column>
 <rich:column>
 <f:facet name="header">
 <h:outputText value="Gender" />
 </f:facet>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss RichFaces and Ajax4jsf Components

[332]

 <h:outputText value="#{customer.male ? 'Male' : 'Female'}" />
 </rich:column>
 <rich:column>
 <f:facet name="header">
 <h:outputText value="Date of Birth" />
 </f:facet>
 <h:outputText value="#{customer.birthDate}">
 <f:convertDateTime type="date" />
 </h:outputText>
 </rich:column>
 <rich:column>
 <f:facet name="header">
 <h:outputText value="Country of Origin" />
 </f:facet>
 <h:outputText value="#{customer.countryOfOrigin.name}" />
 </rich:column>
</rich:dataTable>

The following screenshot shows the rendered RichFaces <rich:dataTable>
tag containing <rich:column> tags. The RichFaces data table component provides
a more stylized presentation of a data table than the standard JSF HTML data
table component.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 7

[333]

Rendering a data table with a header, footer,
and caption
In this example, we render the RichFaces data table component using a table header,
footer, and caption to display additional information about the data in the table. This
time our data table is rendering product information from our database.

<rich:dataTable value="#{productBean.products}" var="product" rows="5"
columnsWidth="200, 150, 50, 10" columnClasses="left-aligned,left-
aligned,right-aligned,centered" footerClass="centered">
 <f:facet name="caption">
 <h:outputText value="Company XYZ Product List" />
 </f:facet>
 <f:facet name="header">
 <h:outputText value="Available Products" />
 </f:facet>
 <rich:column>
 <f:facet name="header">
 <h:outputText value="Product Name" />
 </f:facet>
 <h:outputText value="#{product.name}" />
 </rich:column>
 <rich:column>
 <f:facet name="header">
 <h:outputText value="Category" />
 </f:facet>
 <h:outputText value="#{product.category.name}" />
 </rich:column>
 <rich:column>
 <f:facet name="header">
 <h:outputText value="Price" />
 </f:facet>
 <h:outputText value="#{product.price}">
 <f:convertNumber type="currency" currencySymbol="$"
 maxFractionDigits="0" />
 </h:outputText>
 </rich:column>
 <rich:column>
 <f:facet name="header">
 <h:outputText value="Quantity in Stock" />
 </f:facet>
 <h:outputText value="#{product.quantityInStock}" />
 </rich:column>
 <f:facet name="footer">

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss RichFaces and Ajax4jsf Components

[334]

 <h:outputText value="New Products Available Next Week" />
 </f:facet>
</rich:dataTable>

The following screenshot demonstrates the <rich:dataTable> tag used
in combination with table and column headers and footers, as well as a table
caption facet.

Implementing sortable data table column
headers
The RichFaces component library makes it trivially easy to render a sortable data
table. The <rich:column> tag has a number of attributes that control sorting
behavior. In this example, we enable sorting on each column simply by setting the
sortBy attribute of the <rich:column> tag. This attribute expects an EL expression
that references the property of the row object that should be used for sorting the data
in that column. No additional work is required. The RichFaces data table component
also tracks the sort order and toggles from ascending to descending whenever the
user clicks a column header.

<rich:dataTable value="#{productBean.products}" var="product"
 rows="5" columnsWidth="200, 150, 50, 10"
 columnClasses="left-aligned,left-aligned,right-aligned,centered"
 footerClass="centered">
 <f:facet name="caption">
 <h:outputText value="Company XYZ Product List" />

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 7

[335]

 </f:facet>
 <f:facet name="header">
 <h:outputText value="Available Products" />
 </f:facet>
 <rich:column sortBy="#{product.name}">
 <f:facet name="header">
 <h:outputText value="Product Name" />
 </f:facet>
 <h:outputText value="#{product.name}" />
 </rich:column>
 <rich:column sortBy="#{product.category.name}">
 <f:facet name="header">
 <h:outputText value="Category" />
 </f:facet>
 <h:outputText value="#{product.category.name}" />
 </rich:column>
 <rich:column sortBy="#{product.price}">
 <f:facet name="header">
 <h:outputText value="Price" />
 </f:facet>
 <h:outputText value="#{product.price}">
 <f:convertNumber type="currency" currencySymbol="$"
 maxFractionDigits="0" />
 </h:outputText>
 </rich:column>
 <rich:column sortBy="#{product.quantityInStock}">
 <f:facet name="header">
 <h:outputText value="Quantity in Stock" />
 </f:facet>
 <h:outputText value="#{product.quantityInStock}" />
 </rich:column>
 <f:facet name="footer">
 <h:outputText value="New Products Available Next Week" />
 </f:facet>
 </rich:dataTable>

The next screenshot demonstrates one of the most powerful features of the RichFaces
data table component: the built-in support for column sorting behavior.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss RichFaces and Ajax4jsf Components

[336]

Filtering rows in a data table
Another nice feature of the RichFaces data table is the component's ability to filter
rows using a slider component. We can use the <rich:dataFilterSlider> tag to
add a slider to the page that the user can interact with to filter out rows that have an
arbitrary value above the numeric limit set by the component.

In this example, we use the <rich:dataFilterSlider> tag to enable the user to
filter out products that have a price above a certain price limit. The user can now
browse products that fit within their price range. To implement this, we use the
for attribute of the <rich:dataFilterSlider> tag to specify the ID of the data
table that we are filtering. The forValRef attribute specifies a non-EL value that
represents the expression used to obtain the original data set. The component needs
this information so it can construct an EL expression to obtain data needed to restore
the list when the slider changes.

The filterBy attribute specifies a getter method name that will be invoked on each
row object to determine if the return value of this method is within the range specified
by the slider component. If the getter methods return a value which is greater than
the current value of the slider component, that row will be filtered out of the data
table. Note that we also specify the numeric range and increment value of the slider
component by setting the startRange, endRange, and increment attributes.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 7

[337]

The manualInput attribute determines whether the value of the slider component
can be set by entering text into a text field. This attribute is true by default. If the
attribute is set to false, the text field is hidden and the value of slider component
cannot be set by manual input into the text field, but only through the slider control.

The storeResults attribute determines if a UIData object containing the row data
is stored in session scope. Setting this to true can improve rendering performance,
but since UI components are not thread-safe, care must be taken to ensure that only
one Ajax request at a time is modifying the UIData object. Therefore, using the
storeResults attribute in conjunction with the eventsQueue attribute to ensure
that any Ajax requests generated by this component are queued on the client side
is recommended.

The trailer attribute specifies whether a trailer is rendered to the left of the slider
handle. If this attribute is set to false (the default), the background behind the slider
handle shows a consistent shadow gradient. If the attribute is set to true, the space
to the left of the slider handle has a white background. The style of the trailer can
be specified using the trailerStyleClass attribute. For example, the background
color could be changed to green or red.

The handleValue attribute specifies the initial slider handle value.

<h:form>
 <h:outputLabel for="slider" value="Filter by Price" />
 <rich:dataFilterSlider id="slider" for="productTable"
 forValRef="productBean.products" filterBy="getPrice"
 manualInput="true" storeResults="true" width="400px"
 startRange="0" endRange="9999" increment="100" trailer="true"
 eventsQueue="sliderQueue" handleValue="2500" />
 <rich:dataTable id="productTable"
 value="#{productBean.products}" var="product" rows="5"
 columnsWidth="200, 150, 50, 10"
 columnClasses="left-aligned,left-aligned,
 right-aligned,centered" footerClass="centered">
 <f:facet name="caption">
 <h:outputText value="Company XYZ Product List" />
 </f:facet>
 <f:facet name="header">
 <h:outputText value="Available Products" />
 </f:facet>
 <rich:column sortBy="#{product.name}">
 <f:facet name="header">
 <h:outputText value="Product Name" />
 </f:facet>
 <h:outputText value="#{product.name}" />
 </rich:column>
 <rich:column sortBy="#{product.category.name}">
 <f:facet name="header">

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss RichFaces and Ajax4jsf Components

[338]

 <h:outputText value="Category" />
 </f:facet>
 <h:outputText value="#{product.category.name}" />
 </rich:column>
 <rich:column sortBy="#{product.price}">
 <f:facet name="header">
 <h:outputText value="Price" />
 </f:facet>
 <h:outputText value="#{product.price}">
 <f:convertNumber type="currency" currencySymbol="$"
 maxFractionDigits="0" />
 </h:outputText>
 </rich:column>
 <rich:column sortBy="#{product.quantityInStock}">
 <f:facet name="header">
 <h:outputText value="Quantity in Stock" />
 </f:facet>
 <h:outputText value="#{product.quantityInStock}" />
 </rich:column>
 <f:facet name="footer">
 <h:outputText value="New Products Available Next Week" />
 </f:facet>
 </rich:dataTable>
</h:form>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 7

[339]

Rendering a data grid
One of the more powerful data components in the RichFaces library is the
HtmlDataGrid component. This component has similar behavior to a data table,
except it renders any arbitrary child components for each item in the data set. The
<rich:dataGrid> tag has a number of attributes that can control the appearance of
the data grid.

We can specify the number of columns in the grid by setting the columns attribute.
The elements attribute specifies how many items should be rendered in the grid.
So, for example, if we set the columns attribute to three and the elements attribute
to five, a 2 x 3 grid will be rendered on screen with elements in the first five cells and
nothing in the sixth cell.

In this example, we render six random products in a 2 x 3 grid. Each product is
rendered as a panel with the product title in the panel header and some information
about the product in the body of the panel.

<rich:dataGrid width="100%" value="#{productBean.randomProducts}"
 var="product" columns="3" elements="6" cellpadding="5"
 cellspacing="5">
 <rich:panel>
 <f:facet name="header">
 <h:outputText value="#{product.name}" />
 </f:facet>
 <h:panelGrid columns="2" width="100%"
 columnClasses="align-top">
 <h:outputText value="Category:" />
 <h:outputText value="#{product.category.name}" />
 <h:outputText value="Price:" />
 <h:outputText value="#{product.price}">
 <f:convertNumber type="currency"
 currencySymbol="$" maxFractionDigits="0" />
 </h:outputText>
 <h:outputText value="In Stock:" />
 <h:panelGroup>
 <h:outputText value="#{product.quantityInStock}"
 />
 <h:graphicImage url="/images/#{product.icon}"
 style="float:right;" />
 </h:panelGroup>
 </h:panelGrid>
 </rich:panel>
</rich:dataGrid>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss RichFaces and Ajax4jsf Components

[340]

Adding a data scroller
The RichFaces component library includes a powerful component that can be
used to add data scrolling behavior to any RichFaces data component. The
<rich:datascroller> tag has a number of attributes that can affect the behavior
and appearance of the data scroller. The most important attribute is the for attribute.
This attribute specifies which data component the scroller is associated with. The
maxPages attribute determines the maximum number of pages that can be scrolled.
Each page is rendered as a separate numbered cell in the data scroller component.

The boundaryControls attribute specifies whether the first and last page navigation
controls are rendered, the fastControls attribute specifies whether the fast
navigation controls are rendered, and the stepControls attribute specifies whether
the next and previous navigation controls are rendered. Fast navigation controls
enable the component to navigate by an arbitrary number of pages across the
data set. The fast navigation button is displayed between the step button and the
boundary button. The fastStep attribute determines how many pages are skipped
when scrolling the data set using the fast navigation buttons. The default value is
zero, so we set the fastStep attribute to 2 to enable the user to skip two pages at a
time when scrolling in either direction.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 7

[341]

The boundaryControls, fastControls, and stepControls attributes each expect
enumerated values: show indicates the controls are always visible, hide indicates
the controls are always hidden, and auto indicates that unnecessary controls are
automatically hidden.

<h:form>
 <rich:dataGrid id="productGrid" value="#{productBean.products}"
 align="center" var="product" columns="3" elements="6"
 border="4" cellpadding="5" cellspacing="3"
 footerClass="centered">
 <f:facet name="caption">
 <h:outputText value="Company XYZ Product List" />
 </f:facet>
 <f:facet name="header">
 <h:outputText value="New Products" />
 </f:facet>
 <f:facet name="footer">
 <h:outputText value="Review Latest Products Every Week" />
 </f:facet>
 <rich:panel>
 <f:facet name="header">
 <h:outputText value="#{product.name}" />
 </f:facet>
 <h:panelGrid columns="2" width="100%"
 columnClasses="align-top">
 <h:outputText value="Category:" />
 <h:outputText value="#{product.category.name}" />
 <h:outputText value="Price:" />
 <h:outputText value="#{product.price}">
 <f:convertNumber type="currency"
 currencySymbol="$" maxFractionDigits="0" />
 </h:outputText>
 <h:outputText value="In Stock:" />
 <h:panelGroup>
 <h:outputText value="#{product.quantityInStock}"
 />
 <h:graphicImage url="/images/#{product.icon}"
 style="float:right;" />
 </h:panelGroup>
 </h:panelGrid>
 </rich:panel>
 </rich:dataGrid>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss RichFaces and Ajax4jsf Components

[342]

 <rich:datascroller for="productGrid" maxPages="5" align="center"
 boundaryControls="show" fastControls="show" fastStep="2"
 stepControls="show" page="3" />
</h:form>

Customizing the data scroller
The RichFaces <rich:datascroller> tag allows customization of the appearance
of this component. We can control the number of pages scrolled by setting the
maxPages attribute. We can also specify what is rendered in the page region of the
component. The pageIndexVar and pagesVar attributes specified the names of the
component-scoped variables for the current page index and the number of pages. In
this example, we use these variables to render information about the current page
and the total number of pages within a facet named pages.

<rich:datascroller align="center" for="productTable" maxPages="3"
 pageIndexVar="pageNumber" pagesVar="numberOfPages">
 <f:facet name="pages">
 <h:outputText value="Page #{pageNumber} / #{numberOfPages}"
 />

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 7

[343]

 </f:facet>
</rich:datascroller>

Rendering an ordered list
In the Facelets chapter, we saw how to render a dynamic list using the <ui:repeat>
tag. In the chapter that covers Apache Tomahawk, we saw how to render
dynamic data as an ordered list using the Tomahawk <t:dataList> tag. The
RichFaces library also includes two dynamic list tags: the <a4j:repeat> tag and
the <rich:dataOrderedList> tag. The <a4j:repeat> tag is very similar to the
<ui:repeat> and <t:dataList>, except it includes additional behavior to simplify
updating individual list items after an Ajax request. The <rich:dataOrderedList>
tag produces an HTML ordered list from a List or DataModel. This tag also
supports customization through CSS. In this example, we render a list of products
as an ordered list. Notice that we set the value attribute to a List of objects, and
the var attribute to the name of the iteration variable for our component. The
<rich:dataOrderedList> tag also supports a rows attribute that can be used to
limit the number of items to be displayed. This could be useful in a situation where
we are rendering the Top 5 most popular items, for example.

Notice the use of the type attribute. This attribute expects an enumerated value
defined by the HTML element's type attribute specification. The HTML
element's type attribute accepts an enumerated value from the set "1, A, a, I, i". These
values determine which type of list numbering to use:

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss RichFaces and Ajax4jsf Components

[344]

•	 1 indicates an ordered list (1, 2, 3, and so on)
•	 A indicates an uppercase alphabetical list (A, B, C, and so on)
•	 a indicates a lowercase alphabetical list (a, b, c, and so on)
•	 I indicates an uppercase Roman numeral list (I, II, III, and so on)
•	 i indicates a lowercase Roman numeral list (i, ii, iii, and so on)

<rich:dataOrderedList value="#{productBean.products}"
 var="product" rows="5" type="1">
 <h:outputText value="#{product.name}" />

 <h:outputText value="Price: " />
 <h:outputText value="#{product.price}">
 <f:convertNumber type="currency" currencySymbol="$"
 maxFractionDigits="0" />
 </h:outputText>

 <h:outputText value="Quantity: " styleClass="label" />
 <h:outputText value="#{product.quantityInStock} " />

</rich:dataOrderedList>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 7

[345]

Customizing an ordered list
In this example, we set the type attribute of the <rich:dataOrderedList> tag to the
value I. The list now renders its items using uppercase Roman numerals.

<rich:dataOrderedList value="#{productBean.products}" var="product"
 rows="5" type="I">
 <h:outputText value="#{product.name}" />

 <h:outputText value="Price: " />
 <h:outputText value="#{product.price}">
 <f:convertNumber type="currency" currencySymbol="$"
 maxFractionDigits="0" />
 </h:outputText>

 <h:outputText value="Quantity: " styleClass="label" />
 <h:outputText value="#{product.quantityInStock} " />

</rich:dataOrderedList>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss RichFaces and Ajax4jsf Components

[346]

Rendering a data definition list
To render an HTML definition list, we can use the RichFaces
<rich:dataDefinitionList> tag. This tag is similar to the
<rich:dataOrderedList> tag, except it renders an HTML <dd> element instead
of the element. This tag can also be bound to a List or DataModel using the
value attribute. The var attribute specifies the name of the iterator variable to use
while rendering the data. To define the definition term, we declare a term facet that
specifies the content to render for the HTML <dt> element. The child content of this
tag will be rendered within the HTML <dd> element for each item in the list.

<rich:dataDefinitionList value="#{productBean.products}" var="product"
 rows="5" columnClasses="left-aligned,left-aligned">
 <f:facet name="term">
 <h:outputText value="#{product.name}" />
 </f:facet>
 <h:outputText value="Price : " styleClass="label" />
 <h:outputText value="#{product.price}">
 <f:convertNumber type="currency" currencySymbol="$"
 maxFractionDigits="0" />
 </h:outputText>

 <h:outputText value="Quantity : " styleClass="label" />
 <h:outputText value="#{product.quantityInStock}" />

</rich:dataDefinitionList>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 7

[347]

Using special components
The RichFaces component library includes a number of special-purpose components
that can be used to enhance the functionality of an existing JSF application.
Some examples of these include the RichFaces HtmlGmap and HtmlVirtualEarth
components, which render a Google Maps object and a Microsoft Virtual Earth
object respectively.

Rendering a Google Maps object
The <rich:gmap> tag can be used to render a Google Maps object on our JSF page.
This tag can be combined with Ajax4jsf tags to integrate the Google map with custom
JavaScript functions and JSF backing bean data.

In this example, we will be using the JavaScript Object Notation (JSON) to
transfer data between our JSF application and web browser. Ajax4jsf supports
this data transfer format and automatically serializes our Java objects into JSON
data structures.

To begin, we write a new Java class named Location that will encapsulate the
geographic information needed to display different locations on the map, ensuring
the best Ajax performance by limiting the size of our JSON data structures.

package chapter5.model;

import java.io.Serializable;
import java.util.UUID;

/**
 * Simple POJO class for RichFaces JSON data transfer.
 *
 * @author Ian
 *
 */
public class Location implements Serializable {

 /**
 *
 */
 private static final long serialVersionUID = 1L;
 private String id = UUID.randomUUID().toString();
 private double latitude;
 private double longitude;
 private String name;
 private int zoom;

 public Location() {

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss RichFaces and Ajax4jsf Components

[348]

 }

 public Location(String name, double latitude, double longitude, int
zoom) {
 super();
 this.latitude = latitude;
 this.longitude = longitude;
 this.name = name;
 this.zoom = zoom; The
 }

 public String getId() {
 return id;
 }

 public double getLatitude() {
 return latitude;
 }

 public double getLongitude() {
 return longitude;
 }

 public String getName() {
 return name;
 }

 public int getZoom() {
 return zoom;
 }

 public void setId(String id) {
 this.id = id;
 }

 public void setLatitude(double latitude) {
 this.latitude = latitude;
 }

 public void setLongitude(double longitude) {
 this.longitude = longitude;
 }

 public void setName(String name) {
 this.name = name;
 }

 public void setZoom(int zoom) {
 this.zoom = zoom;
 }

}

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 7

[349]

Next, we add a backing bean named MapBean to work with map-related data and
events. Notice that we've added Seam annotations to this class to declare it as a
conversation-scoped managed bean. The getLocations method prepares and
list of Location objects that contain the geographic information (the latitude and
longitude) needed to display the location in the map.

package chapter5.bean;

import java.util.ArrayList;
import java.util.List;

import org.jboss.seam.ScopeType;
import org.jboss.seam.annotations.Name;
import org.jboss.seam.annotations.Scope;

import chapter5.model.Location;

@Name("mapBean")
@Scope(ScopeType.CONVERSATION)
public class MapBean {

 private List<Location> locations;

 private Location selectedLocation;

 private int zoom = 15;

 public Location findLocation(String id) {
 Location found = null;
 for (Location location : getLocations()) {
 if (location.getId().equals(id)) {
 found = location;
 break;
 }
 }
 return found;
 }

 public List<Location> getLocations() {
 if (locations == null) {
 locations = new ArrayList<Location>();
 locations.add(new Location("Eiffel Tower (Paris)", 48.858333,
2.294444, zoom));
 locations.add(new Location("Parthenon (Greece)", 37.971389,
23.726389, zoom));
 locations.add(new Location("Colosseum (Rome)", 41.89,
12.49222, zoom));
 }
 return locations;
 }

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss RichFaces and Ajax4jsf Components

[350]

 public Location getSelectedLocation() {
 return selectedLocation;
 }

 public int getZoom() {
 return zoom;
 }

 public void setSelectedLocation(Location location) {
 this.selectedLocation = location;
 }

 public void setZoom(int zoom) {
 this.zoom = zoom;
 }

}

Our next step is to write the JSF markup needed to render a Google map in the
view. In this example, we render a simple Google map along with the RichFaces
HtmlInputNumberSlider component and the standard JSF HtmlSelectOneMenu
component. The slider component demonstrates how to interact with the Google
map using JavaScript to control the zoom level of the map. The drop-down menu
component demonstrates how to interact with the Google map using JavaScript to
control the location displayed on the map.

Facelets, JSF 1.2, and Google Maps XHTML compatibility
The markup produced by Google Maps is not compatible with strict XHTML,
but our document is using the XHTML Transitional DTD which allows
for some flexibility so there are no compatibility issues. If were using the
XHTML Strict DTD, then we would have to surround our markup with the
<f:view contentType="text/html"> … <f:view> tags.

Also note from the markup that we are using the <a4j:jsFunction> tag to render
a dynamically generated JavaScript function. This is an example of the technique
known as Runtime Code Generation (RTCG). The Ajax4jsf tag enables us to define
a JavaScript function declaratively that will be generated when the view is rendered.
This function is named showLocation and when it is invoked, it calls the Google
Maps API to center the map on a new location of our choice.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 7

[351]

The data attribute defines a reference to a JSON object named data that will be
used within the function. In this case, we use the data object to provide the latitude,
longitude, and zoom level information needed to construct a new GLatLng object
from the Google Maps API, which we then pass to the setCenter function of the
Google map object. Notice that we reference the Google map object by the name map.
This variable name is defined using the gmapVar attribute of the <rich:gmap> tag.

The showGScaleControl attribute is set to false to hide the Google Maps scale
control. The default value of this attribute is true. To support our use of the
<h:selectOneMenu> tag, we specify a custom converter named locationConverter
using the converter attribute. We use a custom JavaBean class named Location
to encapsulate the location data. As this class is not a JPA entity, we could not use
Seam's <s:convertEntity> tag. Therefore, a custom converter was needed. Notice
that we use the Seam API Component.getInstance() method to obtain a reference
to our "mapBean" Seam-enabled JSF managed bean. The converter class source code
is as follows:

package chapter6.converter;

import javax.faces.component.UIComponent;
import javax.faces.context.FacesContext;
import javax.faces.convert.Converter;

import org.jboss.seam.Component;

import chapter6.bean.MapBean;
import chapter6.model.Location;

/**
 * This converter class handles Location object conversion. Because
the Location
 * class is not a JPA entity, we are using a custom converter instead
of Seam's
 * built-in JPA entity converter.
 *
 * @author Ian
 *
 */
public class LocationConverter implements Converter {

 public Object getAsObject(FacesContext context, UIComponent
 component, String value) {
 Object result = null;
 if (value != null) {
 MapBean bean = (MapBean) Component.getInstance("mapBean");
 result = bean.findLocation(value);
 }
 return result;
 }

 public String getAsString(FacesContext context, UIComponent
 component, Object value) {

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss RichFaces and Ajax4jsf Components

[352]

 String result = null;
 if (value instanceof Location) {
 result = ((Location) value).getId();
 } else {
 result = String.valueOf(value);
 }
 return result;
 }

}

The following markup demonstrates how to use the <rich:gmap> tag on a JSF page.
Notice that we use the Google Map JavaScript API in the oncomplete attribute of our
<a4j:jsFunction> tag to control the map location and zoom.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xmlns:h="http://
java.sun.com/jsf/html" xmlns:rich="http://richfaces.org/rich"
xmlns:a4j="http://richfaces.org/a4j" xmlns:f="http://java.sun.com/jsf/
core" xmlns:s="http://jboss.com/products/seam/taglib">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>rich:gmap example</title>
<a4j:loadStyle src="./css/style.css" /></head>
<body>
 <h:form id="mapForm">
 <a4j:jsFunction name="showLocation"
 data="#{mapBean.selectedLocation}" reRender="zoom"
 oncomplete="map.setCenter(new GLatLng(data.latitude,
 data.longitude),data.zoom)" />
 <h:panelGrid columns="2">
 <rich:inputNumberSlider id="zoom" showInput="false" minValue="1"
 maxValue="18" onchange="map.setZoom(this.value)" />
 <h:selectOneMenu value="#{mapBean.selectedLocation}"
 converter="locationConverter">
 <s:selectItems noSelectionLabel="Select Location"
 value="#{mapBean.locations}"
 var="item" label="#{item.name}" />
 <a4j:support event="onchange" oncomplete="showLocation()" />
 </h:selectOneMenu>
 </h:panelGrid>
 <rich:gmap id="gmap" gmapVar="map" mapType="G_NORMAL_MAP"
 showGScaleControl="#{false}" />
 </h:form>
</body>
</html>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 7

[353]

In the previous example, when the user selects one of the locations from the drop-
down menu, the selected location is instantly displayed in the Google map. How
does this work? Notice that we have added a child <a4j:support> tag to our
<h:selectOneMenu> tag. We set the event attribute to onchange to indicate that
Ajax4jsf should fire an Ajax request to submit the form data to the server when the
component's value changes. When the Ajax request is complete, the oncomplete
attribute informs Ajax4jsf to invoke the custom JavaScript function named
showLocation(). Ajax4jsf obtains the selected Location object from our managed
bean, serializes it as a JSON data structure, invokes our custom showLocation
JavaScript function and the Google map is updated.

The following screenshot shows a hybrid map view of the Parthenon in Greece that
results from the user selecting the second item in the list.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss RichFaces and Ajax4jsf Components

[354]

Rendering a Microsoft Virtual Earth object
The RichFaces component library includes another special-purpose component that
can render a Microsoft Virtual Earth object, or a Microsoft Bing Map as it is now
called. We can use the same backing bean and model object for this example as we
used in the Google Maps example. In fact, the only difference between this example
and the Google Maps example is the use of the <rich:virtualEarth> tag and the
implementation of the setLocation JavaScript function, as shown in the following
markup. Notice in the oncomplete attribute of our <a4j:jsFunction> tag that we use
the Microsoft Virtual Earth JavaScript API to control the map location and zoom level.

<html xmlns:rich="http://richfaces.org/rich" xmlns:a4j="http://
richfaces.org/a4j" xmlns:h="http://java.sun.com/jsf/html"
xmlns:s="http://jboss.com/products/seam/taglib" xmlns:f="http://java.
sun.com/jsf/core">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>rich:virtualEarth example</title>
<a4j:loadStyle src="./css/style.css" />
</head>
<body>
<h:form>
 <a4j:jsFunction name="showLocation"
 data="#{mapBean.selectedLocation}" reRender="zoom"
 oncomplete="map.SetCenterAndZoom(new VELatLong(data.latitude,
 data.longitude), data.zoom)" />
 <rich:virtualEarth id="gm" style="width:500px"
 dashboardSize="Normal" mapStyle="Birdseye" var="map" />
 <h:panelGrid columns="2">
 <rich:inputNumberSlider id="zoom" value="#{mapBean.zoom}"
 showInput="false" minValue="1" maxValue="19"
 onchange="map.SetZoomLevel(this.value)" />
 <h:selectOneMenu value="#{mapBean.selectedLocation}"
 converter="locationConverter">
 <s:selectItems noSelectionLabel="Select Location"
 value="#{mapBean.locations}" var="item"
 label="#{item.name}" />
 <a4j:support event="onchange" oncomplete="showLocation()" />
 </h:selectOneMenu>
 </h:panelGrid>
</h:form>
</body>
</html>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Chapter 7

[355]

The following screenshot shows the Eiffel Tower displayed in a birdseye view using
the Microsoft Virtual Earth API.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

JBoss RichFaces and Ajax4jsf Components

[356]

Summary
In this chapter, we explored how the RichFaces and Ajax4jsf component libraries
can be combined to create next generation JSF applications using the full Java EE
technology stack. We looked at examples of how to accept user input using a range
of advanced components, such as the in-place input and in-place select, number
slider, number spinbox, calendar, color picker, combo box, suggestion box, pick list,
and rich text editor RichFaces components.

The JBoss RichFaces and Ajax4jsf component libraries add a wealth of Ajax
capabilities to existing JSF applications. To use Ajax effectively, we learned
how to invoke an Ajax request using the Ajax4jsf <a4j:commandButton> and
<a4j:commandLink> tags, how to add Ajax capabilities to other JSF components
using the <a4j:support> tag, and how to poll the server using the <a4j:poll> tag.
We also examined a number of ways to minimize client/server communication,
reduce the size of JSON data structures, and optimize Ajax performance.

The RichFaces component library includes a number of useful components for laying
out elements on the screen using panels. We looked at the basic RichFaces panel
component, panel bar component, the panel menu component, the tabbed panel
component, and the toggle panel component.

We also looked at how to render dynamic data using RichFaces components. We
examined the RichFaces data table component, and we learn how to add sorting,
filtering, and scrolling behavior to a data table. The RichFaces data grid component
can also be used to render dynamic data, and is also compatible with the RichFaces
data scroller component.

Finally, we examined some special-purpose RichFaces components. We learn how to
render an interactive Google Maps object or Microsoft Virtual Earth object, and how
to interact with the objects using Ajax4jsf tags and a custom JavaScript function.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Learning JSF: Next Steps
This book explored a number of popular JSF component libraries with the goal of
providing the most useful information possible to help JSF developers get up to
speed quickly with the many excellent JSF UI components available today.

The JSF ecosystem is in constant evolution, and new JSF technologies are being
released at a rapid pace. It is not possible (or sensible) to try to cover everything in
one book, so this appendix serves as a guidepost for further study on JSF topics that
could not be covered here.

We will take a quick look at some new and upcoming JSF developments that are
worth noting:

•	 JSF 2.0: The next generation of the JSF framework
•	 PrimeFaces: An outstanding UI component library

JSF 2.0
Perhaps the most important change in the history of JSF is the release of JSF 2.0. JSF
1.0 was the initial release of the framework, and it was a bit rough around the edges.
Therefore, JSF 1.1 and JSF 1.2 were subsequently released to address some of the minor
shortcomings of the framework and to provide enhancements to support developers.

JSF 2.0, however, is a significant step forward in the evolution of the JSF framework,
with several important new features and improvements, including:

•	 New JSF annotations added to ease configuration
•	 A simplified navigation mapping convention
•	 A web resource loading mechanism for images, stylesheets, JavaScript files,

and so on
•	 Facelets is now integrated into the core JSF framework

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Learning JSF: Next Steps

[358]

•	 The new "composite" JSF tag library for creating composite components
•	 Built-in support for adding Ajax capabilities to UI components with

<f:ajax>

Let's look at how each of these features work. This is not intended to provide
complete coverage, but rather a brief introduction to JSF 2.0.

New JSF annotations added to ease
configuration
Before JSF 2.0, and without the benefit of the Seam framework, JSF developers needed
to declare each managed bean in faces-config.xml. Maintaining two separate files
for one application artifact (the managed bean) adds overhead to the JSF development
cycle. Therefore, a number of new annotations were added to simplify and centralize
JSF configuration metadata into managed bean classes themselves:

•	 @ManagedBean: This annotation must be applied before the managed bean
Java class declaration and replaces the <managed-bean> element in faces-
config.xml.

•	 @ManagedProperty: This annotation must be applied before the
instance variable of a JSF managed bean property and replaces the
<managed-property> element in faces-config.xml.

•	 @RequestScoped, @SessionScoped, @ApplicationScoped, @NoneScoped,
@ViewScoped, and @CustomScoped: One of these annotations may be applied
before the managed bean Java class declaration. These annotations replace
the <managed-bean-scope> element and enable applications to define
custom bean scopes.

These new annotations eliminate the need to use XML to declare managed
beans. Therefore, our faces-config.xml file now looks like so. Notice that the
<faces-config> XML element now has the version "2.0" and references a different
XSD file. Also notice the absence of any managed bean declarations.

faces-config.xml (JSF 2.0)

<?xml version="1.0" encoding="UTF-8"?>
<faces-config xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-facesconfig_2_0.xsd"
 version="2.0">

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Appendix

[359]

 <application>
 <resource-bundle>
 <base-name>messages</base-name>
 <var>bundle</var>
 </resource-bundle>
 <locale-config>
 <default-locale>en</default-locale>
 <supported-locale>fr</supported-locale>
 <supported-locale>es</supported-locale>
 </locale-config>
 </application>
 <converter>
 <description>This converter handles conversion between
 String and Country objects.</description>
 <display-name>Country Converter</display-name>
 <converter-id>countryConverter</converter-id>
 <converter-class>jsf2.converter.CountryConverter
 </converter-class>
 </converter>
 <validator>
 <description>This birthdate validator checks a date to make
 sure it is within the last 120 years.</description>
 <display-name>Custom Date Validator</display-name>
 <validator-id>customDateValidator</validator-id>
 <validator-class>jsf2.validator.CustomDateValidator
 </validator-class>
 </validator>
</faces-config>

Our managed bean classes are now annotated as follows:

BackingBean.java
package jsf2.bean;

import javax.faces.bean.ManagedBean;
import javax.faces.bean.RequestScoped;

@ManagedBean
@RequestScoped
public class BackingBean {

 ...

}

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Learning JSF: Next Steps

[360]

CustomerBean.java

package jsf2.bean;

import javax.faces.bean.ManagedBean;
import javax.faces.bean.SessionScoped;

@ManagedBean
@SessionScoped
public class CustomerBean {

 ...

}

Simplified navigation mapping convention
The JSF 2.0 release introduces a simplified navigation mapping convention that can
also reduce XML configuration. Instead of declaring navigation rules and outcomes
in faces-config.xml and then referencing these outcomes in the action attributes
of the JSF tags for command buttons and links, we can now simply specify the view
ID (the file name without the file extension) and the JSF framework will infer the
correct view from the action attribute.

JSF 1.x Navigation Mapping
The more verbose style of navigation mapping from JSF 1.x is demonstrated below.

shoppingCart.jsf

<h:commandButton value="Checkout" action="checkout" />

faces-config.xml
<navigation-rule>
 <navigation-case>
 <from-view-id>/shoppingCart.jsf</from-view-id>
 <outcome>checkout</outcome>
 <to-view-id>/checkout.jsf</to-view-id>
 </navigation-case>
</navigation-rule>

JSF 2.0 Navigation Mapping
The simpler, convention-based navigation mapping style from JSF 2.0 is
demonstrated next. It is functionally equivalent to the previous example, but does
not require any navigation rules to be declared in faces-config.xml.

shoppingCart.jsf

<h:commandButton value="Checkout" action="checkout" />

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Appendix

[361]

When the Checkout button is pressed, the JSF framework looks for a view in the
same directory as shoppingCart.jsf named checkout.jsf (or whatever file
extension is used for the javax.faces.FACELETS_VIEW_MAPPINGS context parameter
in web.xml) and navigates to that view after processing the event.

If the destination view is in another directory, we can use a leading slash / character
to specify an absolute path to the view.

We can also indicate that a redirect is required like so:

<h:commandButton value="Checkout"
 action="checkout?faces-redirect=true" />

A Web resource loading mechanism for
images, stylesheets, JavaScript files, and
so on
One of the enhancements to JSF 2.0 is a resource loading mechanism for web page
artifacts, such as images, cascading style sheets, and JavaScript files; resources such
as these can be packaged inside a web application's root directory or a JAR file.

To include resources in a web application, we must create a folder named resources
below the Web root folder. To include resources in a JAR file, we must create a folder
named resources below the META-INF folder of the JAR file. Any files under the
resources directory can be loaded by JSF at request time. The organization of files
below the resources directory is up to the developer. A good practice is to create the
following directory structure for static resources:

•	 /resources/css: Cascading stylesheets (*.css)
•	 /resources/images: Image files (*.gif, *.jpg, *.png,and so on)
•	 /resources/javascript: JavaScript files (*.js)
•	 /resources/media: Flash files and other multimedia (*.swf, *.mp3, and

so on)
•	 /resources/components: Composite JSF components (*.xhtml - covered in

next section)

One of the advantages of this feature is the ability to reference classpath resources
using EL expressions. JSF 2.0 introduces a new implicit object to the JSF EL, the
"resource" map. This map can be used to obtain resources for rendering at request
time, as shown in the following example:

<h:graphicImage value="#{resource['images:icon.gif']" />

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Learning JSF: Next Steps

[362]

The map argument in the EL expression is a String literal specifying the resource
library followed by a colon character followed by the resource name. The resource
library is the directory below the resources directory. The resource name is the
filename of the resource.

An alternative to using the resources implicit EL object is to use the new
library and name attributes of the <h:graphicImage>, <h:outputScript>, and
<h:outputStylesheet> JSF tags. Therefore, the following example is functionally
equivalent to the previous one:

<h:graphicImage library="images" name="icon.gif" />

The HTML produced by this example is as follows. Notice that the src attribute
value is identical for both images.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>JSF 2.0 Example</title>
</head>
<body>

</body>
</html>

Facelets is now integrated in JSF 2.0
Another great feature of JSF 2.0 is that the Facelets view definition framework
that we know and love, is now integrated into the core JSF framework. This means
that a separate jsf-facelets.jar file is no longer needed when deploying a JSF
2.0 application, and specifying the FaceletViewHandler in the <view-handler>
element in faces-config.xml is also no longer necessary.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Appendix

[363]

The new "composite" JSF tag library for
creating composite components
One of the coolest features of JSF 2.0 is the ability to create composite components
using declarative markup. We can now create advanced UI components that are
composed of other UI components without writing any Java code.

One of the principles emphasized in JSF 2.0 is convention over configuration. This
means that we can spend more time actually building JSF applications, and less
time writing configuration files. This is especially apparent with the new JSF 2.0
composite components feature.

JSF 2.0 introduces a new tag library named "composite" for declaring composite
components. A composite component can be a typical Facelets XHTML document
that uses special tags to declare a component interface and a component
implementation. The following "Hello World" example demonstrates the key
concepts behind how to create a composite UI component.

/resources/components/helloworld/hello.xhtml

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xmlns:h="http://java.sun.
com/jsf/html" xmlns:composite="http://java.sun.com/jsf/composite">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>JSF 2.0 Example</title>
</head>
<body>

 <!-- Component interface -->
 <composite:interface>
 <composite:attribute name="name" />
 <composite:attribute name="actionListener"
 method-signature="void sayHello(javax.faces.event.
 ActionEvent)"
 />
 </composite:interface>

 <!-- Component implementation -->
 <composite:implementation>
 <h:form>
 <h:panelGrid>
 <h:panelGroup>
 <h:outputLabel value="Enter your name: " />
 <h:inputText value="#{cc.attrs.name}" />

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Learning JSF: Next Steps

[364]

 <h:commandButton value="Say Hello"
 actionListener="#{cc.attrs.actionListener}" />
 </h:panelGroup>
 <h:outputText value="Hello, #{cc.attrs.name}!"
 rendered="#{cc.attrs.name ne null}" />
 </h:panelGrid>
 </h:form>
 </composite:implementation>
</body>
</html>

Let's discuss the previous example in detail. First, notice the path of the filename. The
file for our composite component is named /resources/components/helloworld/
hello.xhtml. The helloworld directory of the file defines the tag library, and the
file name (without the file extension) defines our tag name. Simply by creating the
file we are effectively declaring a new tag named "hello" in our "helloworld" custom
tag library.

Next, notice the declaration of the "composite" XML namespace to import the new
composite components tag library. This tag library provides JSF infrastructural
support that enable developers to declare composite components.

Next, notice that the <body> tag contains two child tags, a <composite:interface>
tag and a <composite:implementation> tag. The code outside these tags will not be
used, but by defining our component in a complete XHTML document we can edit
the document more easily with typical web authoring tools.

The <composite:interface> tag is responsible for specifying the composite
component's interface. Think of the attribute names and values that will be accepted
by our custom tag. In our example, the "hello" tag has two attributes, a name attribute
and an actionListener attribute. Also notice that the actionListener attribute
expects a JSF EL method expression that resolves to a Java method with the signature
void sayHello(javax.faces.event.ActionEvent). This signature is interpreted
by the JSF framework to mean "any void method that accepts a javax.faces.
event.ActionEvent parameter". The name of the method is not important, and the
parameter variable is not specified.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Appendix

[365]

The <composite:implementation> tag is responsible for defining the
implementation details of our composite component. Here we can see that the
component will render an <h:form> tag that contains an <h:panelGrid> tag with a
label, text field, command button, and text message. Notice that we are using a new
implicit EL object named "cc" for "composite component". The attrs property of
the cc object is a map that has as its keys the names of the attributes we specified
in our <composite:interface> declaration. The values of the map are the values
assigned to the attributes (if any) when our composite component is used in a JSF
view. Essentially, we are "passing through" any literal values or EL expressions
specified by the page author to the components used in our composite component
implementation.

Now that we understand how to define composite components, let's look at how to
use them in a JSF view. In the following example, we render a simple Facelets page
that includes a new namespace we have not seen before. Notice the declaration of
the "helloworld" namespace. The URL for this namespace is http://java.sun.
com/jsf/composite/components/helloworld. The important part of this URL
is http://java.sun.com/jsf/composite. JSF will simply try to resolve the URL
by looking for a composite component library below our /resources directory
that has a folder structure that matches the part of the URL that remains when the
"composite" namespace URL is removed.

So our "helloworld" namespace declaration instructs the framework to look for
a folder named /resources/components/helloworld in the root of our web
application. All composite component libraries follow this naming convention. As
long as the directory structure and the namespace declaration are consistent, JSF will
be able to locate our composite components.

Next we declare our <helloworld:hello> tag and set some of its attributes. Here
we can use the typical JSF EL value expressions and method expressions that we are
accustomed to using. Remember that the JSF composite component infrastructure
will pass along the EL expressions to the actual underlying UI components (the text
field and command button).

 index.jsf

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xmlns:h="http://java.
sun.com/jsf/html" xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:helloworld=
 "http://java.sun.com/jsf/composite/components/helloworld">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>JSF 2.0 Example</title>

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Learning JSF: Next Steps

[366]

</head>
<body>
 <helloworld:hello name="#{backingBean.name}"
 actionListener="#{backingBean.sayHello}" />
</body>
</html>

The result of requesting this page in the browser is shown in the next screenshot.
Thanks to JSF 2.0 composite components, we are now able to reuse and combine UI
components in new and interesting ways to create new components, without writing
a single line of Java code.

Built-in support for adding Ajax capabilities to
UI components with <f:ajax>
Solving the Ajax problem is one of the crowning achievements of JSF 2.0. One of the
problems with the numerous Ajax-enabled JSF component libraries available today
is that they cannot be combined together, due to conflicts between their respective
Ajax JavaScript libraries. The JSF Expert Group recognized this problem and spent
considerable effort to find a working solution.

After consultations with the OpenAjax Alliance—an independent organization
made up of vendors and open source software developers that is committed to the
standardization and interoperability of Ajax solutions—the JSF framework now
has its own Ajax JavaScript namespace. What this means is that JSF component
developers can now use a single Ajax JavaScript API to ensure the compatibility of
their components with those from other developers.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Appendix

[367]

In addition to standardizing Ajax for the JSF framework, JSF 2.0 introduces another
cool feature: the <f:ajax> tag. This new tag has been added to the JSF Core tag
library and provides behavior similar to the <a4j:support> tag from the Ajax4jsf tag
library. Like the <a4j:support> tag, the <f:ajax> tag can also add Ajax capabilities
to other JSF components, even those that have no built-in Ajax behavior.

The <f:ajax> tag has a number of attributes, but we will focus on three of them
to get a better understanding of how this tag can be used. Let's enhance our "Hello
World" composite component example by adding Ajax behavior to our form. Notice
that we have created a new composite component file for this example named
helloAjax.xhtml. With minor exceptions, it is identical to the previous example.

/resources/components/helloworld/helloAjax.xhtml

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xmlns:f="http://java.sun.
com/jsf/core" xmlns:h="http://java.sun.com/jsf/html" xmlns:ui="http://
java.sun.com/jsf/facelets" xmlns:composite="http://java.sun.com/jsf/
composite">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>JSF 2.0 Example</title>
</head>
<body>

 <!-- Component interface -->
 <composite:interface>
 <composite:attribute name="name" />
 <composite:attribute name="actionListener"
 method-signature="void sayHello(javax.faces.event.
 ActionEvent)"
 />
 </composite:interface>

 <!-- Component implementation -->
 <composite:implementation>
 <h:form>
 <h:panelGrid>
 <h:panelGroup>
 <h:outputLabel value="Enter your name: " />
 <h:inputText id="input" value="#{cc.attrs.name}" />
 <h:commandButton value="Say Hello"
 actionListener="#{cc.attrs.actionListener}">
 <f:ajax execute="@this input" render="text" />

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Learning JSF: Next Steps

[368]

 </h:commandButton>
 </h:panelGroup>
 <h:panelGroup id="text">
 <h:outputText value="Hello, #{cc.attrs.name}!"
 rendered="#{cc.attrs.name ne null}" />
 </h:panelGroup>
 </h:panelGrid>
 </h:form>
 </composite:implementation>
</body>
</html>

Notice the <f:ajax> tag nested inside the <h:commandButton> tag. As we know,
using Ajax is a two-step process; the first step is to define which components should
be included in the request, and the second step is to define which components
should be updated in the view when the Ajax request is complete. The <f:ajax> tag
in the previous example has an execute attribute that specifies which components
should be included in the Ajax request. In this way it is similar to the process
attribute of the <a4j:support> tag. Here we specify the value @this input for the
execute attribute. The keyword "@this" is part of a small set of reserved keywords
which are new in JSF 2.0, and implies the parent UI component (the command button
in this case). The "input" value is the ID of the text field component.

As we can see, the execute attribute accepts a space-separated list of keywords
and/or component identifiers and indicates which components should be processed
in the request. In this scenario, the text field's value will be submitted to the server,
and the command button's actionListener method will be invoked on the server
during the JSF request processing lifecycle. We could have simply specified @form
in the execute attribute to indicate that the form all its child components are to be
included in the Ajax request, but this example takes a more fine-grained approach
to Ajax communication which also gives us the opportunity to learn more about the
new <f:ajax> tag.

Next, notice the render attribute on the <f:ajax> tag. This attribute is similar to the
reRender attribute of the <a4j:support> tag. Like the execute attribute, the render
attribute accepts a space-separated list of keywords and/or component identifiers to
indicate which component(s) should be updated in the view when the Ajax request is
completed. In this example, we specify that the <h:panelGroup> tag containing the
text message should be rendered.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Appendix

[369]

Note that we had to move the component identifier from the <h:outputText> tag to
the <h:panelGroup> tag because the <h:outputText> tag is not rendered unless the
user enters a value, therefore when the user clicks the button for the first time,
an Ajax request is sent and the view is only partially updated, but as the text
message was not rendered the first time, JSF is unable to update that component
in the view. By specifying the parent component, we are able to dynamically update
the text message in the view and work around this issue.

The JSF page that uses our new and improved Ajaxified "Hello World" composite
component is very similar to the previous example. As we can see from the source
code below, the only difference is the use of the <helloworld:helloAjax> tag
instead of the <helloworld:hello> tag. Once again, convention over configuration
is the rule here, and JSF knows where to look to find our newly defined composite
component. It will search for a file named helloAjax.xhtml in the /resources/
components/helloworld directory at the root of our web application.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xmlns:h="http://java.
sun.com/jsf/html" xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:helloworld="http://java.sun.com/jsf/composite/components/
helloworld">
<h:head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>JSF 2.0 Example</title>
</h:head>
<body>
 <helloworld:helloAjax name="#{backingBean.name}"
 actionListener="#{backingBean.sayHello}" />
</body>
</html>

To summarize, JSF 2.0 introduces a number of excellent new features that
significantly enhance JSF development, such as new JSF annotations added to ease
configuration, simpler navigation mapping, a Web resource loading mechanism,
direct integration of the Facelets framework, composite components, and built-in
Ajax support. Now that we have covered what's new in JSF 2.0, let's look at another
exciting development in the JSF ecosystem: the PrimeFaces component library.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Learning JSF: Next Steps

[370]

The PrimeFaces component library
While titans such as ICEfaces, Apache Trinidad, JBoss RichFaces, and Ajax4jsf
have dominated the Ajax-enabled JSF component landscape, another open
source project has quietly been building momentum and is set to raise the bar for
professional grade Ajax-based JSF component libraries. That project is PrimeFaces
(http://primefaces.prime.com.tr), and with more than 70 high quality UI
components, this library is definitely worth checking out. Some of the more
interesting components in the PrimeFaces library include:

•	 An accordion component (renders vertically expanding panels)
•	 A breadcrumb component (includes icons and automatically stretches to

reveal text)
•	 An autocomplete component (supports skinning and animation)
•	 A CAPTCHA component (to add security features to JSF pages)
•	 A carousel component (supports horizontal scrolling for image collections)
•	 A number of chart components (pie, line, column, stacked column, bar, and

so on)
•	 A collector component (simplifies working with Java collections)
•	 A color picker component (RGB, HSV, hexadecimal modes)
•	 A data exporter component (supports Excel, PDF, CSV, and XML)
•	 A dock component (similar to the dock on the Mac OS X desktop)
•	 An effect component (supports multiple effects, for example, blind, clip,

drop, fold, and so on)
•	 A growl component (renders JSF FacesMessages as floating panels similar to

Mac OS X)
•	 An idle monitor component (renders a pop-up message if no user activity)
•	 A layout component (supports a resizable split pane orientation)
•	 A light box component (for image slideshows)
•	 A password strength component (measures password strength, displays a bar)
•	 A terminal component (renders an interactive console)
•	 A wizard component (supports multistep screen navigation)
•	 Many more!

Next steps
Our journey into JSF has just begun. Learning to use existing JSF components is just
the beginning. Our next challenge is to learn how to write custom JSF components.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Index
Symbols
3-D pie chart

rendering 226
<a4j:commandButton> component 316
<a4j:commandButton> tag

using 266
<a4j:commandLink> tag 317
<a4j:form> tag 315
<a4j:poll> tag 319, 320
<a4j:repeat> tag 343
<a4j:support> tag 264
@ApplicationScoped 358
<body> tag

<composite:interface> tag 364
<c:forEach> tag 58
<composite:implementation> tag 364, 365
@Conversational annotation 280
@CustomScoped 358
@End annotation 280
@Entity annotation

adding 256
<f:ajax> tag 367, 368
<f:convertDateTime> tag 94
<f:loadBundle> tag 17, 18, 263
<f:selectItem> tag 28
<f:validateLength> tag 254
<f:validateLongRange> tag 11
<f:validateLongRange> tag 254
<f:validator> tag 254
<f:view> tag 19
<h:commandLink> tag 14, 15
<h:dataTable> tag 41, 132
<helloworld:helloAjax> tag 369
<helloworld:hello> tag 365
<h:form> tag 14

<h:form> tag
<composite:interface> tag 365
about 14

<h:graphicImage> tag 259
<h:inputText> tag 94
<h:messages>tag

using 269
<h:message>tag

using 269
<h:outputText> tag 10, 16
<h:panelGrid> tag 37
<h:panelGroup> tag 40
<h:selectBooleanCheckbox> tag 27
<h:selectManyCheckbox> tag 27
<h:selectManyListbox> tag 32, 35, 36
<h:selectManyMenu> tag 32
<h:selectOneListbox> tag 32, 33, 35
<h:selectOneMenu> tag 32, 33
<h:selectOneRadio> tag 29, 30
<ice:column> tag 218
<ice:commandSortHeader> tag 215
<ice:dataPaginator> tag 223
<ice:graphicImage> tag 206
<ice:inputFile> tag 197
<ice:menuItemSeparator> tag 202
<ice:menuItem> tags 203
<ice:menuPopup> tag 203
<ice:message> tag 194
<ice:outputChart> tag 224
<ice:panelBorder> tag 230
<ice:panelCollapsible> tag 235
<ice:panelGroup> tag 203
<ice:panelPopup> tag 239
<ice:panelPositioned> tag 231
<ice:panelSeries> tag 235
<ice:panelTab> tag 237

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

[372]

<ice:selectInputDate> tag 198
<ice:tree> tag 204
@In annotation 280
<input> element 26
@JoinColum annotation

adding 256
<locale:config> element 17
@ManagedBean 358
@ManagedProperty 358
@ManyToOne annotation

adding 256
@Name annotation 280
@NoneScoped

@NoneScopedabout 358
<optgroup> elements 32
<option> element 32
@RequestScoped 358
<rich:colorPicker> tag 307
<rich:column> tag

about 331, 332
using 334, 335

<rich:comboBox> tag 308
<rich:dataDefinitionList> tag 346
<rich:dataFilterSlider> tag

using 336
<rich:dataGrid> tag 328, 339
<rich:dataOrderedList> tag 343
<rich:datascroller> tag 340-342
<rich:dataTable> tag

about 331
using 334

<rich:editor> tag 313
<rich:gmap> tag 347-352
<rich:inplaceInput> component 303
<rich:inplaceInput> tag 299
<rich:inplaceSelect> tag 300-302
<rich:inputNumberSpinbox> tag

using 305
<rich:inputNumberSpinner> tag 306
<rich:panelBar> tag

using 321, 322
<rich:panelMenuGroup> tag 325
<rich:panelMenuItem> tag 323
<rich:panelMenu> tag 323-325
<rich:panel> tag 320, 321
<rich:pickList> tag 312
<rich:suggestionbox> tag 307

<rich:tabPanel> tag 327
<rich:tab> tag 327
<rich:toggleControl> tag 329, 330
<rich:togglePanel> tag 328
<rich:virtualEarth> tag 354
<s:convertEntity> tag 246, 300, 351
<s:decorate> tag

about 260, 261
using 263

<select> element 31
@SessionScoped 358
<s:label> tag 260
<s:selectItems> tag 300, 308
@Stateful annotation 280
<s:validateAll> tag

about 259
adding 256

@Table annotation
adding 256

<t:commandNavigation> tags 116
<t:dataScroller> tag 138
<t:htmlTag> tag 134
<t:inputCalendar> tag 98
<t:inputDate> tag 98
<t:inputFileUpload> tag 104
<t:inputTextHelp> tag 91, 309
<t:jscookMenu> tag 123, 125
<t:navigationMenuItems> tag 118, 123
@Transient annotation 249
<tr:breadCrumbs> tag 173, 176
<tr:commandNavigationItem> tag 174, 175
<trh:cellFormat> tag 161
<trh:rowLayout> tag 160
<trh:tableLayout> tag 161
<tr:icon> tag 185, 186
<tr:inputColor> tag

combining, with <tr:chooseColor> tag 144
using 143

<tr:inputDate> tag
about 145
combining with, <tr:chooseDate> tag 145
distinguishing feature 145

<tr:inputListOfValues> tag
using 148, 149

<tr:inputNumberSpinbox> tag 147
<tr:inputText> tag 147
<tr:navigationTree> tag 171

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

[373]

<tr:panelFormLayout> tag 162
<tr:poll> tag 154
<tr:processChoiceBar> tag 180, 181
<tr:progressIndicator> tag 158, 159
<tr:selectOrderShuttle> tag 166
<tr:statusIndicator> tag 156
<tr:train> tag 178
<tr:treeTable> tag 169
<tr:tree> tag 167
<t:schedule> tag 98
<t:tree> tag 106
<t:validateCreditCard> 90
<t:validateEmail> 90
<t:validateEqual> tag 93, 254
<ui:component> tag

declaring 70, 71
including 70
rendering 69

<ui:composition> tag
declaring 68, 69
including 68
rendering 67
using 63

<ui:decoration> tag
Facelets decoration, creating 80, 81
using 79

<ui:define> tag
using 84

<ui:fragment> tag
rendering 82, 83
<ui:decorate>, difference 82

<ui:insert> tag 72, 261
<ui:param> tag

parameters, passing 65
<ui:include> tag, combining with 67
using 65, 66

<ui:remove> tag 60
<ui:repeat> tag

about 58, 343
using 58

A
accessor methods 194, 249
actionListener attribute 15, 215
Adapter design pattern 107

advanced Facelets composition template
about 84, 85, 86
<ui:define> tag, using 84
<ui:include> tag, using 85

Ajax
<a4j:poll> tag, using 318, 319
about 142
Ajax4jsf, working 315
Ajax-enabled command link, invoking 317
Ajax-enabled form submission 315-317
using 314-318
working 142

Ajax4jsf
about 297
component library 298
component library, benefits 298
tasks 299, 314, 320, 331, 347
using, for cutting-edge Ajax addition

264-268
Ajax functionality, enabling

about 152
partial submit tag 153, 154
partial triggers tag 153, 154
progress bar, rendering 158, 159
server, polling 154, 155
status indicator, rendering 156-158

Anemic Domain Model anti-pattern 249
Apache Tomahawk component library

about 90
date and time selection, managing 94, 95
file, managing 103
navigation menus 114
trees 106
user input, validating 90
user interface security 126, 127

Apache Trinidad component library
about 141
web development tasks 141, 142, 149, 152,

160-167, 170, 182, 187
Asynchronous JavaScript and XML. See

Ajax

B
BackingBean class 15
bar chart

rendering 227, 228

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

[374]

BorderLayout class 229
boundaryControls attribute 340
buildTreeModel() method 106, 107

C
charts, ICEfaces component library

3-D pie chart, rendering 226
bar chart, rendering 227, 228
stacked bar chart, rendering 225

checkState() method 213, 214
client-side form conversion

about 149
enabling 150
one field at time, validating 151, 152

client-sideform validation. See client-side
form conversion

CMT 250
components

complex layout table, rendering 37-40
laying out 36, 37
table column, rendering 40

components, laying out
complex table layout, rendering 161
CorePanelFormLayout component,

rendering 162, 163
CorePanelGroupLayout component,

rendering 163, 164
CorePanelGroupLayout component,

<tr:panelGroupLayout> tag used 163
HtmlRowLayout component, rendering

160
Composite View design pattern

creating, SSI used 63
footer Facelet, creating 64
footer, including 63, 64
header Facelet, creating 63, 64
header, including 63, 64

Composite View Design Pattern 47
conversation management, JBoss Seam

framework
about 270
concurrent conversation 289-293
conversation scope 270
long-running conversation, starting 277
temporary conversions 270

converters 8
CustomerBean class 226

D
data, Apache Tomahawk component library

data table, rendering 135
definition list, rendering 134, 135
displaying 132, 133
unordered list, rendering 133, 134

data attribute 351
data, Facelets

<c:forEach> tag 58
<ui:repeat> tag 58
iterating 58
unordered list, rendering 58

data, JSF framework
displaying, to user 41
HTML table, rendering 41, 42

data table
<rich:column> tag, using 334, 335
<rich:dataDefinitionList> tag, using 346
<rich:dataFilterSlider> tag, using 336
<rich:dataGrid> tag, using 339
<rich:datascroller> tag, using 340, 342
<rich:dataTable> tag, using 331
<ui:repeat> tag, using 343
about 331
data definition list, rendering 346
data grid, rendering 339, 340
data grid, rendering, columns attribute 339
data scroller, adding 340, 341, 342
data scroller, customizing 342
ordered list, customizing 345
ordered list, rendering 343, 344
rendering 331, 332
rendering, with caption 333, 334
rendering, with footer 333, 334
rendering, with header 333, 334
rows, filtering 336-338
sortable column headers, implementing

334-336
dataTable component, ICEfaces component

library
about 208
data set paging, implementing 223
dynamic columns, rendering 209, 210

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

[375]

multiple row selection mode, data table 221
multiple row selection mode, data table

enhanced 222
resizable columns, supporting 217, 218
single row selection mode, data table 218-

220
sortable column headers, implementing

211-217
data table, rendering

about 135, 136
data table, paginating 137, 138
multi-column data table with newspaper

layout, rendering 139, 140
debug information

rendering 53-58
DefaultMutableTreeNode object 205
DefaultScheduleEntry class 99
Dependency Injection. See DI
DI 245
dialog window 189

<tr:table> tag, using 189
launching 188
navigation rules, declaring in

faces-config.xml file 188
value, returning from 189-191

DOM 142
draggable dialog box, modal dialogs

draggable modal dialog, rendering 242
rendering 241

E
EAR 251
EJB3

about 248
and JSF integration, with Seam 251, 252
CMT 250
JPA 248
SFSBs, activation 250
SFSBs, passivation 250
SLSBs, object pooling 251

EJB3 components
entity beans 248
SFSBs 248
SLSBs 248
timer beans 248

enhancedMultiple attribute 219, 222
Enterprise ARchive. See EAR
escape attribute 16

F
Facelets

<ui:component> tag 69
<ui:composition> tag, rendering 67
<ui:debug> tag, hotkey attribute 56
<ui:debug> tag, rendered attribute 56
<ui:fragment> tag 83
<ui:remove> tag 60
about 52
advanced composition template 84-86
comparing, with JSP 48, 49
data, iterating 58
debug information, rendering 53-58
getting started 52
Hello World Facelets 52
object, passing from one Facelet to othere

65
pages, difference with JSP 53
UI Composition template, creating 72, 73
user interface, decorating 78

FacesServlet
mapping 50

fastControls attribute 340
fastStep attribute 340
FCKeditor 196
file, Apache Tomahawk component library

managing 103
uploading 104, 105

filterBy attribute 336
form submission

about 13
button, rendering 14
form, rendering 14
link, rendering 15

Front Controller 46

G
getAge() method 249
getCellValue() method 210
getter method 195
getter methods. See accessor methods
getTotal() method 249

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

[376]

Google Maps object
rendering 347-353

H
<h:selectManyListbox> tag 33
handleValue attribute 337, 338
Hibernate Validator framework

about 246
@NotNull annotation 259
uisng, for implementing JSF validation

256-259
HSB 307
HtmlCommandButton component 15
HtmlCommandNavigationItem component

118
HtmlDataList component 133, 134
HtmlDataScroller component 138
HtmlGmap components 347
HtmlInputCalendar component 95
HtmlInputDate component 94-96
HtmlInputTextarea component 13
HtmlInputText component 9, 13, 91
HtmlInputTextHelp component 91
HTML markup language 132
HtmlNewspaperTable component 139, 140
HtmlOutputText component 13
HtmlPanelGrid component 37, 39
HtmlPanelNavigation component 116
HtmlPanelNavigationMenu component

118
HtmlSchedule component 95, 98
HtmlVirtualEarth components 347
Hue-Saturation-Brightness. See HSB

I
ICEfaces component library

about 193
charts, rendering 225
dataTable component 208
input, receiving from users 193
modal dialogs, working with 239
navigation 199
tree components 204

IceUserObject class 206
inputFile component 197

input receiving from users, ICEfaces
component library

about 194
calendar component, rendering 198, 199
file uploads, handling 197
HTML input, receiving from users 196
text with effects, rendering 194, 195
validation messages, rendering 194, 195

InputRichText component 196
itemValue attribute 28

J
JAAS 127
Java API for RESTful Web Services. See

JAX-RS
Java Authentication and Authorization

Service. See JAAS
Java EE

about 246, 247
benefits 247
EJB3 components 248
REST 252
Seam components 252

Java Enterprise Edition. See Java EE
Java Message Service. See JMS
Java Naming and Directory Interface. See

JNDI
Java Persistence Query Language. See JPQL

query
JavaScript Object Notation. See JSON
Java SE 246, 247
JavaServer Pages. See JSP
JavaServer Pages Standard Tag Library. See

JSTL
Java Standard Edition. See Java SE
Java Transaction API. See JTA
Java web development

history 46, 47
JAX-RS 252
JBoss RichFaces

<rich:gmap> tag 347
about 297
component library 297
features 298
Google Maps object, rendering 347

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

[377]

Microsoft Virtual Earth object, rendering
354

panel 320
tasks 299, 314, 320, 331, 347

JBoss Seam framework
<s:decorate> tag 260
about 245, 246
conversation management 270
cutting-edge Ajax addition. Ajax4jsf used

264-268
JSF success messages, displaying 269
JSF validation, implementing 255
UI, decorating 260-264
user input, validating 254, 255
validation messages 262

JMS 247
JNDI 247
JPA

@Transient annotation 249
about 248
annotating 248

JPQL query 282
JSCookMenu component 123
JSF

about 7
Ajax4jsf 297
and EJBS integration, with Seam 251, 252
application configuration, to use Facelets

49
convertors 8
HtmlDataTable component 41
JBoss RichFaces 297
JSF EL 8
managed beans 8
MVC architecture 7
validators 8
versus Struts 48
ViewHandler 45
view IDs 176

JSF 1.1
message bundle, registering 17

JSF 1.2
message bundle, registering 18, 19

JSF 2.0
features 357

JSF 2.0, features
Ajax built-in support 366-369
composite components, creating 363-366
new JSF annotations 358
resource loading mechanism 361
simplified navigation mapping convention

360
view definition framework 362

JSF components 7
JSF configuration

faces-config.xml, configuring 52
for using, Facelets 49
web.xml, configuring 50, 51

JSF developments
JSF 2.0 357
PrimeFaces 370

JSF EL 8
JSF Expression Language. See JSF EL
JSF HTML component library

HtmlPanelGrid component 37
JSF validation, JBoss Seam framework

Hibernate Validator framework 256-259
implementing 255
JPA 256-259

JSF validation messages 12
JSON 142
JSP

about 45
comparing, with facelets 48, 49

JSP EL 47
JSP Expression Langugae. See JSP EL
JSTL 45
JTA 247

K
key features, Ajax

<a4j:poll> tag, using 318-320
Ajax-enabled command link invoking 317
Ajax-enabled form submission 315-317
Working 315

L
label attribute 32
long-running conversation, conversation

management
customer registration screen 286, 287

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

[378]

defining 280
navigation rules, declaring in faces-config.

xml 278, 279
OrderBeanImpl.java, implementing 280-

284
order details confirmation screen 288
order process, introductory page 285, 286
shipping information screen 287

M
managed beans 8
manualInput attribute 337
markup

<ui:remove> tag, using 60
including 63
removing 60

MDBs
use 248

menuPopup attribute 203
message attribute 90
message bundle keys and JSF EL 18
Microsoft Virtual Earth object

<rich:virtualEarth> tag, using 354
rendering 354, 355

modal dialogs, ICEfaces component library
draggable dialog box, rendering 241
simple modal dialog, rendering 239, 240

Model-View-Controller architecture. See
MVC architecture

multiple attribute 221
mutators 249
MVC architecture 7

N
named query 282
navigation, ICEfaces component library

context menus, using 203, 204
horizontal navigation menu, creating with

submenus 200-202
menu separator items, adding 202, 203
vertical navigation menu, creating with

submenus 202
NavigationMenuItem object 123
navigation menus, Apache Tomahawk com-

ponent library
about 114, 115

bookmarkable navigation menus, creating
118-122

creating 116, 117
dynamic navigation menus, creating 123
JSCookMenu component, using 123, 124,

125
populating 123

navigation menus, creating
<tr:navigationTree> tag 171
breadcrumbs, rendering 173-177
CoreNavigationTree, rendering 171-173
nCoreProcessChoiceBar component,

rendering 180, 181
multistep process, rendering 178, 179

new JSF annotations, JSF 2.0
@ApplicationScoped 358
@CustomScoped 358
@ManagedBean 358
@ManagedProperty 358
@NoneScoped 358
@RequestScoped 358
@SessionScoped 358
@ViewScoped 358
about 358-360
simplified navigation mapping convention

360
NumberConverter class 11

O
Object Oriented Programming. See OOP
Object/Relational Mapping. See ORM
Observer pattern

about 48
advantage 48

oncomplete attribute 352
OOP 248
ORM 247

P
pageIndexVar attribute 342
pagesVar attribute 342
panel

<rich:panelBar> tag, using 321, 322
bar, creating 321, 322
basic panel, creating 320, 321
menu item groups, rendering 325, 326

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

[379]

menu, rendering 323, 324
menu, <rich:panelMenuItem> tag used 323
menu, <rich:panelMenu> tag used 323
tabbed user interface, rendering 327, 328
toggle panel, rendering 328-331
toggle panel, <rich:togglePanel> tag used

328
panelCollapsible component 235
panel components, ICEfaces component

library
about 229
border layout, working with 229, 230
collapsible panels, rendering 235-237
elements in list, rearranging 231, 232
series of components, rendering 233, 234

panelSeries component 233
Partial Page Rendering. See PPR
partial submit tag 153
partial triggers tag 153
PhaseListener class 214
Plain Old Java Objects. See POJOs
POJOs 7
popupCalendar attribute 96
pop-up menus. See navigation
PPR 146
PrimeFaces

components 370
property 249
Push-style versus pull-style MVC pattern

117

Q
Queries.hbm.xml 282-284
Queries.java 284, 285

R
RBAC 127
Red-Green-Blue. See RGB
Remote Method Invocation. See RMI
renderAsPopup attribute 97, 98
Representational State Transfer. See REST
resource loading mechanism, JSF 2.0

for images 361, 362
for stylesheets 361, 362
JavaScript files 361, 362

REST 253
RGB 307
RIAs 142
Rich Internet Applications. See RIAs
RMI 247
role-based access control. See RBAC
RTCG 350
Runtime Code Generation. See RTCG

S
schedule model 101
ScheduleModel object 98
Seam. See JBoss Seam framework
Seam application

debugging 293-295
selectedProduct property 119
SelectInputDate component 198
selection components

about 26, 27
checkbox, rendering 27
list of countries, rendering 33, 34
multiple checkboxes, rendering 28
multiple-select list of options, rendering

35, 36
one or many values, selecting 31-33
radio buttons, rendering 2-31
single-select list of options, rendering 35

selections, shuttling
CoreSelectManyShuttle component,

<tr:selectManyShuttle> tag used 165
CoreSelectOrderShuttle component, render-

ing 166
CoreSelectOrderShuttle component,

<trselectOrderShuttle> tag used 166
selectProduct method 119
Server Side Include. See SSI
setter methods. See mutators
SFSBs 248, 250
showGScaleControl attribute 351
showLocation() function 353
simple modal dialog

rendering 239, 240
simplified navigation mapping convention,

JSF 2.0
JSF 1.x Navigation Mapping 360
JSF 2.0 Navigation Mapping 361

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

[380]

skinning
about 182
CoreIcon component, rendering 185, 186
skin's cascading stylesheet, implementing

183, 184
Trinidad skin, creating 182, 183

SLBs 251
SLSBs

about 251
use 248

SortableDataModel class 212
sortAscending attribute 211
sortColumn attribute 211
source property 175
SSI 63
stacked bar chart

rendering 225
Stateful Session Beans. See SFSBs
Stateless Session Beans. See SLSBs
status property 197
stepControls attribute 340
storeResults attribute 337
String property 196
Struts

versus JSF 48
Swing tree component 205

T
<tr:selectManyShuttle> tag 165
tabbed user interface, ICEfaces component

library
creating 237, 238

Tag Library Descriptor. See TLD
template 72
temporary conversions, conversation man-

agement
conversation01.jsf 272-275
conversation02.jsf 276, 277
faces-config.xml 272
pages.xml 272
ShippingCalculatorBean.java 271

text
all validation messages, rendering 26
date/time information, rendering 21, 22
labels, rendering 24, 25
localized text, rendering 17

message bundle (JSF 1.1), registering 17
message bundle (JSF 1.2), registering 18-21
parameterized text, rendering 22, 23
rendering 16, 17
validation message, rendering 25

theme selection. See skinning
Tiles 47
TLD 46
Tomahawk 90
trailer attribute 337
tree component

<tr:tree> tag, using 167
CoreTree component, rendering 167-169

tree components, ICEfaces component
library

about 204
default tree node icons, using 205

trees, Apache Tomahawk component library
column, creating 109, 110
creating 106-109
tree component, customizing 111-113
working with 106

tree table component
<tr:treeTable> tag, using 169
rendering 169, 170

type attribute
setting 345
use 343

U
UI components

<ui:remove> tag, using 61, 62
including 63
removing 59

UI Composition template, creating
complex Facelets template 76-78
simple Facelets template 73
imple Facelets template, client 74, 75

UIForm component 14
user input

e-mail addresses, validating 90, 91
phone number with regular expression

pattern, validating 91, 92
receiving 9
validating 90

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

[381]

user input, accepting
<rich:inplaceInput> component 303
<rich:inplaceInput> tag 299
<rich:inputNumberSpinbox> tag, using 305
accepting 299
calendar component, rendering 306, 307
color picker component, rendering 307, 308
color picker component,

<rich:colorPicker> tag used 307
combo box component, rendering 308
combo box component, <s:selectItems> tag

used 308
editable text, rendering 299, 300
in-place input, combining with in-place

select 302-304
in place select component, rendering 300,

301, 302
number spinner component, rendering 306
pick list component, rendering 312, 313
pick list component, <rich:pickList> tag

used 312
rich text editor component, rendering

313, 314
rich text editor component, <rich:editor>

tag used 313
slider component, rendering 305
suggestion box component with auto-com-

plete, rendering 309-312
user input, receiving

calendar, rendering 144
color picker, rendering 143, 144
number spinbox, rendering 146, 147
selectable list of values, rendering 148, 149
text area, rendering 13
text field, rendering 9-13, 147, 148

user interface, decorating
<ui:decoration> tag, using 79
about 78
Facelets decoration, creating 80, 81
Facelets page content, decorating 79

user interface security, Apache Tomahawk
component library

about 126, 127
security-enabled components 129-131
Tomahawk SecurityContext EL extension

132
web.xml, configuring 127, 128

V
validators 8
value attribute 16

W
WAR 251
Web Application Archive. See WAR
web development tasks, Apache Trinidad

component library
Ajax functionality, enabling 152
client-side form conversion, enabling 149
components, laying out 160
dialog window, implementing 187
navigation menus, creating 170
selections, shuttling between lists 164
skinning 182
theme, selecting 182
tree components, working with 167
tree table components, working with 167
user input, receiving 142

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

Thank you for buying
JSF 1.2 Components

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

 Apache MyFaces Trinidad 1.2: A
Practical Guide
ISBN: 978-1-847196-08-8 Paperback: 292 pages

Develop JSF web applications with Trinidad and
Seam

1. Develop rich client web applications using
the most powerful integration of modern web
technologies

2. Covers working with Seam security,
internationalization using Seam, and more

3. Get well-versed in developing key areas of
web applications

4. A step-by-step approach that will help you
strengthen your understanding of all the
major concepts

ICEfaces 1.8: Next Generation
Enterprise Web Development
ISBN: 978-1-847197-24-5 Paperback: 292 pages

Build Web 2.0 Applications using AJAX Push, JSF,
Facelets, Spring and JPA

1. Develop a full-blown Web application using
ICEfaces

2. Design and use self-developed components
using Facelets technology

3. Integrate AJAX into a JEE stack for Web 2.0
developers using JSF, Facelets, Spring, JPA

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by Gay Anschultz on 5th December 2009

21844 Grovepark Dr., , Santa Clarita, , 91350

Download at WoweBook.Com

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Standard JSF Components
	An introduction to JSF
	The Model-View-Controller architecture
	Managed beans
	The JSF Expression Language (JSF EL)
	Converters and validators

	Next steps
	Getting input from the user
	Rendering a text field
	Rendering a text area

	Form submission
	Rendering a form
	Rendering a button
	Rendering a link

	Rendering text
	Rendering localized text
	Registering a message bundle (JSF 1.1)
	Registering a message bundle (JSF 1.2)

	Rendering date/time information
	Rendering parameterized text
	Rendering labels
	Rendering a validation message
	Rendering all validation messages

	Making selections
	Rendering a checkbox
	Rendering multiple checkboxes
	Rendering radio buttons
	Selecting one or selecting many values
	Rendering a list of countries
	Rendering a single-select list of options
	Rendering a multiple-select list of options

	Laying out components
	Rendering a complex layout table
	Rendering a table column

	Displaying data
	Rendering an HTML table

	Summary

	Chapter 2: Facelets Components
	A brief history of Java web development
	Comparing Facelets and JSP
	Configuring a JSF application to use Facelets
	Configuring web.xml
	Configuring faces-config.xml

	Getting started with Facelets
	Hello World Facelets

	Rendering debug information
	Iterating data in a Facelets page
	Removing UI components and markup
	Including UI components and markup
	Including a header and footer
	Creating the header Facelet
	Creating the footer Facelet

	Passing parameters from one Facelet to another
	Rendering a UI composition
	Including a UI composition
	Declaring a UI composition

	Rendering a UI component
	Including a UI component
	Declaring a UI component

	Creating a Facelets UI composition
template
	A simple Facelets template
	A simple Facelets template client
	Another simple Facelets template client

	A more complex Facelets template

	Decorating the user interface
	Decorating content on a Facelets page
	Creating a Facelets decoration

	Rendering a UI fragment
	An advanced Facelets composition
template
	Summary

	Chapter 3: Apache Tomahawk Components
	Validating user input
	Validating e-mail addresses
	Validating a phone number with a regular expression pattern
	Validating that two fields have an equal value

	Managing date and time selection
	Selecting a date
	Rendering a simple calendar
	Rendering an appointment schedule

	File management
	Uploading a file

	Working with trees
	Creating a tree
	Creating a tree column
	Customizing the tree component

	Navigation menus
	Creating a navigation menu
	Creating bookmarkable navigation menus
	Populating a navigation menu
	Generating dynamic navigation menus
	Using the JSCookMenu component

	User interface security
	Configuring web.xml
	Security-enabled components
	Tomahawk SecurityContext EL extension

	Displaying data
	Rendering an unordered list
	Rendering a definition list
	Rendering a data table
	Paginating a data table
	Rendering a multi-column data table with a newspaper layout

	Summary

	Chapter 4: Apache Trinidad Components
	What is Ajax?
	Receiving input from the user
	Rendering a color picker
	Rendering a calendar
	Rendering a number spinbox
	Rendering a text field
	Rendering a selectable list of values

	Client-side conversion and validation
	Enabling client-side validation in
trinidad-config.xml
	Validating one field at a time

	Enabling Ajax functionality
	Partial submit and partial triggers
	Polling the server
	Rendering a status indicator
	Rendering a progress bar

	Laying out components on the screen
	Rendering a row layout
	Rendering a complex table layout
	Rendering a form layout
	Rendering a panel group layout

	Shuttling selections between lists
	Rendering a multiple selection shuttle
	Rendering an ordered shuttle

	Working with tree and tree table
components
	Rendering a tree
	Rendering a tree table

	Creating navigation menus
	Rendering a navigation tree
	Rendering breadcrumbs
	Rendering a multistep process (Train)
	Rendering a process choice bar

	Skinning and theme selection
	Creating a new Trinidad skin
	Implementing the skin's cascading style sheet
	Rendering an icon
	Customizing the Trinidad tree component's node icons

	Implementing dialog windows
	Declaring dialog navigation rules in
faces-config.xml
	Launching a dialog window
	Returning a value from a dialog window

	Summary

	Chapter 5: ICEfaces Components
	Receiving input from users
	Rendering validation messages and text
with effects
	Receiving HTML input from users
	Handling file uploads with ICEfaces
	Rendering a calendar component

	Creating navigation and pop-up menus
	Creating a horizontal navigation menu with submenus
	Rendering a vertical navigation menu with submenus
	Adding menu separator items
	Using context menus

	Using tree components
	Using the default tree node icons
	Using custom tree node icons

	Displaying data in tables
	The ICEfaces data table component
	Rendering dynamic columns
	Implementing sortable column headers
	Supporting resizable columns
	Data table single row selection mode
	Data table multiple row selection mode
	Data table enhanced multiple row selection mode
	Implementing data set paging

	Rendering charts
	Rendering a stacked bar chart
	Rendering a 3-D pie chart
	Rendering a bar chart

	Laying out components with panels
	Working with a border layout
	Rearranging elements in a list
	Rendering a series of components
	Rendering collapsible panels

	Creating a tabbed user interface
	Working with modal dialogs
	Rendering a simple modal dialog
	Rendering a draggable dialog box
	Rendering a draggable modal dialog

	Summary

	Chapter 6:JBoss Seam Components
	Introducing the JBoss Seam framework
	Java Enterprise Edition (Java EE)
technology
	Understanding Java SE and Java EE
	Introducing Enterprise JavaBeans (EJB3) technology
	Introducing Seam components

	Introducing REST

	Next steps
	Validating user input with the Seam framework
	Implementing JSF validation with Seam
	JPA and the Hibernate Validator framework

	Decorating the UI to improve form
validation
	Adding cutting-edge Ajax technology with Ajax4jsf
	Displaying success messages in JSF
	Seam conversation management
	Temporary conversations
	ShippingCalculatorBean.java
	faces-config.xml
	pages.xml
	conversation01.jsf
	conversation02.jsf

	Starting a long-running conversation
	Declaring navigation rules in faces-config.xml
	Defining a long-running conversation in pages.xml
	Implementing OrderBeanImpl.java
	The introductory page of the order process
	The customer registration screen (Step 1)
	The shipping information screen (Step 2)
	The order details confirmation screen (Step 3)

	Concurrent conversations

	Debugging Seam applications
	Summary

	Chapter 7: JBoss RichFaces and Ajax4jsf Components
	Introducing JBoss RichFaces and Ajax4jsf
	The JBoss RichFaces component library
	The Ajax4jsf component library

	Accepting user input
	Rendering editable text
	Rendering an in-place select component
	Combining in-place input and select components
	Rendering a slider component
	Rendering a number spinner component
	Rendering a calendar component
	Rendering a color picker component
	Rendering a combo box component
	Rendering a suggestion box component with auto-complete
	Rendering a pick list component
	Rendering a rich text editor component

	Using Ajax effectively
	Understanding how Ajax4jsf works
	Ajax-enabled form submission
	Invoking an Ajax-enabled command link
	Polling the server asynchronously

	Panel components
	Creating a basic panel
	Rendering a panel bar
	Rendering a panel menu
	Rendering groups of menu items
	Rendering a tabbed user interface
	Rendering a toggle panel

	Displaying data
	Rendering a data table
	Rendering a data table with a header, footer, and caption
	Implementing sortable data table column headers
	Filtering rows in a data table
	Rendering a data grid
	Adding a data scroller
	Customizing the data scroller
	Rendering an ordered list
	Customizing an ordered list
	Rendering a data definition list

	Using special components
	Rendering a Google Maps object
	Rendering a Microsoft Virtual Earth object

	Summary

	Appendix: Learning JSF: Next Steps
	JSF 2.0
	New JSF annotations added to ease configuration
	Simplified navigation mapping convention
	JSF 1.x Navigation Mapping
	JSF 2.0 Navigation Mapping

	A Web resource loading mechanism for images, stylesheets, JavaScript files, and
so on
	Facelets is now integrated in JSF 2.0
	The new "composite" JSF tag library for creating composite components
	Built-in support for adding Ajax capabilities to UI components with <f:ajax>

	The PrimeFaces component library
	Next steps

	Index

