
www.allitebooks.com

http://www.allitebooks.org

Java EE 7 Development
with NetBeans 8

Develop professional enterprise Java EE applications
quickly and easily with this popular IDE

David R. Heffelfinger

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Java EE 7 Development with NetBeans 8

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2008

Second edition: June 2011

Third edition: January 2015

Production reference: 1270115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-352-0

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
David R. Heffelfinger

Reviewers
Saurabh Chhajed

Halil Karaköse

Mario Pérez Madueño

David Salter

Manjeet Singh Sawhney

Acquisition Editor
Sam Wood

Content Development Editors
Madhuja Chaudhari

Anand Singh

Technical Editor
Pramod Kumavat

Copy Editors
Roshni Banerjee

Neha Karnani

Project Coordinator
Akash Poojary

Proofreaders
Ting Baker

Simran Bhogal

Samuel Redman Birch

Maria Gould

Ameesha Green

Paul Hindle

Bernadette Watkins

Indexer
Tejal Soni

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Author

David R. Heffelfinger is the Chief Technology Officer (CTO) at Ensode
Technology, LLC, a software consulting firm based in the Greater Washington DC
area. He has been architecting, designing, and developing software professionally
since 1995. He has been using Java as his primary programming language since
1996. He has worked on many large-scale projects for several clients, including the
U.S. Department of Homeland Security, Freddie Mac, Fannie Mae, and the U.S.
Department of Defense. He has a master's degree in software engineering from
Southern Methodist University, Dallas, Texas. David is the editor-in-chief of Ensode.
net (http://www.ensode.net), a website on Java, Linux, and other technologies.
David is a frequent speaker at Java conferences such as JavaOne. You can follow
David on Twitter at @ensode.

www.allitebooks.com

http://www.ensode.net
http://www.allitebooks.org

About the Reviewers

Saurabh Chhajed is a Cloudera Certified Developer for Apache Hadoop and Sun
(Oracle) Certified Java/J2EE Programmer with 5 years of professional experience in
the enterprise application development life cycle using the latest frameworks, tools,
and design patterns. He has extensive experience of working with Agile and Scrum
methodologies and enjoys acting as an evangelist for new technologies such as NoSQL
and big data and analytics. Saurabh has helped some of the largest U.S. companies to
build their product suites from scratch. While not working, he enjoys traveling and
sharing his experiences on his blog (http://saurzcode.in).

Halil Karaköse is a freelance software architect. He graduated from Işık University
in Turkey as a computer engineer in 2005.

He has worked in the telecommunications industry for 10 years, and has worked
for Turkcell and Ericsson. In 2014, he quit his job at Ericsson to establish his own
software consultancy company, KODFARKI (http://kodfarki.com).

His primary focus is Java, Java EE, Spring, and Primefaces. He also likes to give Java
trainings. He has a keen interest in Java tools that speed up development, such as
NetBeans and IntelliJ IDEA. In his spare time, he likes running, skiing, and playing
PES.

www.allitebooks.com

http://saurzcode.in
http://kodfarki.com
http://www.allitebooks.org

Mario Pérez Madueño was born in 1975 in Turin and lives in Barcelona. He
graduated in computer engineering from the Open University of Catalonia (UOC),
Spain, in 2010. Mario is a Java SE, ME, and EE enthusiast and has been a member of
the NetBeans Community Acceptance Testing program (NetCAT) for many years.
He was also the technical reviewer of the books, Java EE 5 Development with NetBeans
6 and Building SOA-based Composite Applications Using NetBeans IDE 6, both by
Packt Publishing.

I would like to thank my wife, María, for her unconditional help and
support in all the projects I get involved in, and Martín and Matías
for giving me the strength to go ahead.

David Salter is an enterprise software developer and architect who has been
developing software professionally since 1991. His relationship with Java goes back
to the beginning, when Java 1.0 was used to write desktop applications and applets
for interactive websites. David has been developing enterprise Java applications
using both Java EE (and J2EE) and open source solutions since 2001. David wrote
the books, NetBeans IDE 8 Cookbook and Seam 2.x Web Development, both by Packt
Publishing. He has also co-authored the book, Building SOA-Based Composite
Application Using NetBeans IDE 6, Packt Publishing.

I would like to thank my family for supporting me. Special thanks
and love to my wife.

www.allitebooks.com

http://www.allitebooks.org

Manjeet Singh Sawhney currently works for a large IT consultancy in
London, UK, as a Principal Consultant - Enterprise Data Architect within the
Global Enterprise Architecture Consulting practice. Previously, he worked for
global organizations in various roles, including development, technical solutions
consulting, and data management consulting. Although Manjeet has worked across
a range of programming languages, he specializes in Java. During his postgraduate
studies, he also worked as a Student Tutor for one of the top 100 universities in the
world, where he was teaching Java to undergraduate students and was involved
in marking exams and evaluating project assignments. Manjeet acquired his
professional experience by working on several mission-critical projects serving
clients in the financial services, telecommunications, manufacturing, retail, and
public sectors.

I am very thankful to my parents; my wife, Jaspal; my son, Kohinoor;
and my daughter, Prabhnoor, for their encouragement and patience,
as reviewing this book took some of my evenings and weekends
from the family.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Getting Started with NetBeans	 7

Introduction	 7
Obtaining NetBeans	 9
Installing NetBeans	 12

Microsoft Windows	 12
Mac OS X	 12
Linux	 13
Other platforms	 13
Installation procedure	 13

Starting NetBeans for the first time	 20
Configuring NetBeans for Java EE development	 21

Integrating NetBeans with a third-party application server	 22
Integrating NetBeans with a third-party RDBMS	 25

Adding a JDBC driver to NetBeans	 26
Connecting to a third-party RDBMS	 27

Deploying our first application	 30
NetBeans tips for effective development	 33

Code completion	 33
Code templates	 37
Keyboard shortcuts	 40
Understanding NetBeans visual cues	 44
Accelerated HTML5 development support	 46

Summary	 51

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: Developing Web Applications Using
JavaServer Faces 2.2	 53

Introduction to JavaServer Faces	 53
Developing our first JSF application	 54

Creating a new JSF project	 54
Modifying our page to capture user data	 60
Creating our CDI named bean	 66
Implementing the confirmation page	 70
Executing our application	 71
JSF validation	 72

Facelets templating	 76
Adding the Facelets template	 77
Using the template	 80

Resource library contracts	 85
Composite components	 91
Faces flows	 96
HTML5 support	 102

HTML5-friendly markup	 102
Pass-through attributes	 106

Summary	 107
Chapter 3: JSF Component Libraries	 109

Using PrimeFaces components in our JSF applications	 109
Using ICEfaces components in our JSF applications	 116
Using RichFaces components in our JSF applications	 124
Summary	 130

Chapter 4: Interacting with Databases through
the Java Persistence API	 131

Creating our first JPA entity	 132
Adding persistent fields to our entity	 141
Creating a data access object	 142

Automated generation of JPA entities	 149
Named queries and JPQL	 157
Bean Validation	 159
Entity relationships	 159

Generating JSF applications from JPA entities	 167
Summary	 174

Chapter 5: Implementing the Business Tier with Session Beans	 175
Introducing session beans	 176
Creating a session bean in NetBeans	 176

Table of Contents

[iii]

Accessing the bean from a client	 188
Executing the client	 191

Session bean transaction management	 191
Implementing aspect-oriented programming with interceptors	 193

Implementing the Interceptor class	 194
Decorating the EJB with the @Interceptors annotations	 196

The EJB Timer service	 197
Generating session beans from JPA entities	 200
Summary	 205

Chapter 6: Contexts and Dependency Injection	 207
Introduction to CDI	 207
Qualifiers	 214
Stereotypes	 219
Interceptor binding types	 222
Custom scopes	 227
Summary	 229

Chapter 7: Messaging with JMS and Message-driven Beans	 231
Introduction to JMS	 231
Creating JMS resources from NetBeans	 232
Implementing a JMS message producer	 238
Consuming JMS messages with message-driven beans	 245

Seeing our messaging application in action	 250
Summary	 251

Chapter 8: Java API for JSON Processing	 253
The JSON-P object model API	 253

Generating JSON data with the JSON-P object model API	 254
Our example in action	 256

Parsing JSON data with the JSON-P object model API	 260
The JSON-P streaming API	 264

Generating JSON data with the JSON-P streaming API	 265
Parsing JSON data with the JSON-P streaming API	 267

Summary	 269
Chapter 9: Java API for WebSocket	 271

Examining the WebSocket code using samples included
with NetBeans	 271

The sample Echo application in action	 273
Examining the generated Java code	 274
Examining the generated JavaScript code	 275

Table of Contents

[iv]

Building our own WebSocket applications	 277
Developing the user interface	 280
Developing the WebSocket server endpoint	 282
Implementing WebSocket functionality on the client	 285

Summary	 289
Chapter 10: RESTful Web Services with JAX-RS	 291

Generating a RESTful web service from an existing database	 292
Analyzing the generated code	 294

Testing our RESTful web service	 299
Generating RESTful Java client code	 306
Generating RESTful JavaScript clients for our
RESTful web services	 313
Summary	 317

Chapter 11: SOAP Web Services with JAX-WS	 319
Introduction to web services	 319
Creating a simple web service	 320

Testing our web service	 326
Developing a client for our web service	 328

Exposing EJBs as web services	 333
Implementing new web services as EJBs	 333
Exposing existing EJBs as web services	 336
Creating a web service from an existing WSDL	 339

Summary	 342
Index	 343

Preface
Java EE 7, the latest version of the Java EE specification, adds several new features
to simplify enterprise application development. New versions of existing Java EE
APIs have been included in this latest version of Java EE. JSF 2.2 has been updated
to better support wizard-like interfaces via FacesFlows and has been enhanced to
better support HTML5. NetBeans supports JPA 2.1 features such as Bean Validation
and many others. EJB session beans can be automatically generated by NetBeans,
allowing us to easily leverage EJB features such as transactions and concurrency.
CDI advanced features such as qualifiers, stereotypes, and others can be easily
implemented via NetBeans' wizards. JMS 2.0 has been greatly simplified, allowing us
to quickly and easily develop messaging applications. Java EE includes a new Java
API for JSON Processing (JSON-P), allowing us to quickly and easily process JSON
data. NetBeans includes several features to allow us to quickly and easily develop
both RESTful and SOAP-based web services.

This book will guide you through all the NetBeans features that make the
development of enterprise Java EE 7 applications a breeze.

What this book covers
Chapter 1, Getting Started with NetBeans, provides an introduction to NetBeans,
giving time-saving tips and tricks that will result in more efficient development
of Java applications.

Chapter 2, Developing Web Applications Using JavaServer Faces 2.2, explains how
NetBeans can help us easily develop web applications that take advantage of the
JavaServer Faces 2.2 framework.

Preface

[2]

Chapter 3, JSF Component Libraries, covers how NetBeans can help us easily develop
JSF applications using popular component libraries such as PrimeFaces, RichFaces,
and ICEfaces.

Chapter 4, Interacting with Databases through the Java Persistence API, explains how
NetBeans allows us to easily develop applications taking advantage of the Java
Persistence API (JPA), including how to automatically generate JPA entities from
existing schemas. This chapter also covers how complete web-based applications
can be generated with a few clicks from an existing database schema.

Chapter 5, Implementing the Business Tier with Session Beans, discusses how NetBeans
simplifies EJB 3.1 session bean development.

Chapter 6, Contexts and Dependency Injection, discusses how the CDI API introduced
in Java EE 6 can help us integrate the different layers of our application.

Chapter 7, Messaging with JMS and Message-driven Beans, explains Java EE messaging
technologies such as the Java Message Service (JMS) and Message-driven Beans
(MDB), covering NetBeans' features that simplify application development taking
advantage of these APIs.

Chapter 8, Java API for JSON Processing, explains how to process JSON data using the
new JSON-P Java EE API.

Chapter 9, Java API for WebSocket, explains how to use the new Java API for
WebSocket to develop web-based applications featuring full duplex communication
between the browser and the server.

Chapter 10, RESTful Web Services with JAX-RS, covers RESTful web services with
the Java API for RESTful Web Services, including coverage of how NetBeans can
automatically generate RESTful web services and both Java and JavaScript RESTful
web service clients.

Chapter 11, SOAP Web Services with JAX-WS, explains how NetBeans can help us
easily develop SOAP web services based on the Java API for the XML Web Services
(JAX-WS) API.

What you need for this book
You need Java Development Kit (JDK) version 7.0 or newer and NetBeans 8.0 or
newer Java EE edition.

Preface

[3]

Who this book is for
If you are a Java developer who wishes to develop Java EE applications while taking
advantage of NetBeans' functionality to automate repetitive tasks and ease your
software development efforts, this is the book for you. Familiarity with NetBeans
or Java EE is not assumed.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"NetBeans uses the JAVA_HOME environment variable to populate the JDK's
directory location."

A block of code is set as follows:

<package com.ensode.flowscope.namedbeans;

import javax.annotation.PostConstruct;
import javax.annotation.PreDestroy;
import javax.faces.flow.FlowScoped;
import javax.inject.Named;

@Named
@FlowScoped("registration")
public class RegistrationBean {
...

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

package com.ensode.flowscope.namedbeans;

import javax.annotation.PostConstruct;
import javax.annotation.PreDestroy;
import javax.faces.flow.FlowScoped;
import javax.inject.Named;

@Named
@FlowScoped("registration")
public class RegistrationBean {
...

Preface

[4]

Any command-line input or output is written as follows:

chmod +x filename.sh

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: " To
download NetBeans, we need to click on the Download button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Getting Started with
NetBeans

In this chapter, we will learn how to get started with NetBeans. The following topics
are covered in this chapter:

•	 Introduction
•	 Obtaining NetBeans
•	 Installing NetBeans
•	 Starting NetBeans for the first time
•	 Configuring NetBeans for Java EE development
•	 Deploying our first application
•	 NetBeans tips for effective development

Introduction
NetBeans is an Integrated Development Environment (IDE) and platform.
Although initially, the NetBeans IDE could only be used to develop Java
applications, as of version 6, NetBeans supports several programming languages,
either through built-in support, or by installing additional plugins. Programming
languages natively supported by NetBeans include Java, C, C++, PHP, HTML, and
JavaScript. Groovy, Scala, and others are supported via additional plugins.

In addition to being an IDE, NetBeans is also a platform. Developers can use
NetBeans' APIs to create both NetBeans plugins and standalone applications.

Getting Started with NetBeans

[8]

For a brief history of NetBeans, see http://netbeans.org/
about/history.html.

Although the NetBeans IDE supports several programming languages, because
of its roots as a Java only IDE it is more widely used and known within the Java
community. As a Java IDE, NetBeans has built-in support for Java SE (Standard
Edition) applications, which typically run on a user's desktop or notebook computer;
Java ME (Micro Edition) applications, which typically run on small devices such
as cell phones or PDAs; and for Java EE (Enterprise Edition) applications, which
typically run on "big iron" servers and can support thousands of concurrent users.

In this book, we will be focusing on the Java EE development capabilities of
NetBeans, and how to take advantage of NetBeans' features to help us develop
Java EE applications more efficiently.

Some of the features we will cover include how NetBeans can help us speed up
web application development using JavaServer Faces (JSF), the standard Java EE
component based web framework by providing a starting point for these kinds of
artifacts. We will also see how NetBeans can help us generate Java Persistence API
(JPA) entities from an existing database schema (JPA is the standard object-relational
mapping tool included with Java EE).

In addition to web development, we will see how NetBeans allows us to easily
develop Enterprise JavaBeans (EJBs); and how to easily develop web services.
We will also cover how to easily write both EJB and web service clients by taking
advantage of some very nice NetBeans features.

Before taking advantage of all of the aforementioned NetBeans features, we of course
need to have NetBeans installed, as covered in the next section.

http://netbeans.org/about/history.html
http://netbeans.org/about/history.html

Chapter 1

[9]

Obtaining NetBeans
NetBeans can be obtained by downloading it from http://www.netbeans.org.

http://www.netbeans.org

Getting Started with NetBeans

[10]

To download NetBeans, we need to click on the Download button. Clicking on this
button will take us to a page displaying all NetBeans' download bundles.

NetBeans' downloads include different NetBeans bundles that provide different
levels of functionality. The following table summarizes the different NetBeans
bundles available and describes the functionalities they provide.

NetBeans Bundle Description
Java SE Allows development of Java desktop applications.
Java EE Allows development of Java Standard Edition (typically

desktop) applications, and Java Enterprise Edition applications
(enterprise applications running on "big iron" servers).

C/C++ Allows development of applications written in the C or C++
languages.

Chapter 1

[11]

NetBeans Bundle Description
HTML5 and PHP Allows development of web applications using HTML5 and/or

the popular open source PHP programming language.
All Includes functionalities of all NetBeans bundles.

To follow the examples in this book, either the Java EE or the All bundle is needed.

The screenshots in this book were taken with the Java EE bundle.
NetBeans may look slightly different if the All bundle is used,
particularly, some additional menu items might be seen.

The following platforms are officially supported by NetBeans:

•	 Windows
•	 Linux (x86/x64)
•	 Mac OS X

Additionally, NetBeans can be executed on any platform containing Java 7 or newer
version. To download a version of NetBeans to be executed in one of these platforms,
an OS independent of NetBeans is available.

Although the OS independent version of NetBeans can be
executed in all the supported platforms, it is recommended to
obtain the platform specific version of NetBeans for your platform.

The NetBeans download page should detect the operating system being used to
access it, and the appropriate platform should be selected by default. If this is not
the case, or if you are downloading NetBeans with the intention of installing it in
another workstation on another platform, the correct platform can be selected from
the drop down labeled appropriately enough as Platform.

Once the correct platform has been selected, we need to click on the appropriate
Download button for the NetBeans bundle we wish to install; for Java EE
development, we need either the Java EE, or the All bundle. NetBeans will
then be downloaded to a directory of our choice.

Getting Started with NetBeans

[12]

Java EE applications need to be deployed on an application server.
Several application servers exist in the market; both the Java EE and
the All NetBeans bundles come with GlassFish and Tomcat bundled.
Tomcat is a popular open source servlet container, which can be used to
deploy applications using JSF. However, it does not support other Java
EE technologies such as EJBs or JPA. GlassFish is a 100 percent Java EE
compliant application server. We will be using the bundled GlassFish
application server to deploy and execute our examples.

Installing NetBeans
NetBeans requires a Java Development Kit (JDK) Version 1.7 or newer to be
available before it can be installed.

Since this book is aimed at experienced Java developers, we will not
spend much time explaining how to install and configure the JDK. We
can safely assume that the target market for the book is more than likely
to have a JDK installed. Installation instructions for the Java Development
Kit can be found at http://docs.oracle.com/javase/7/docs/
webnotes/install/index.html.

NetBeans installation varies slightly between the supported platforms. In the following
few sections we explain how to install NetBeans on each supported platform.

Microsoft Windows
For Microsoft Windows platforms, NetBeans is downloaded as an executable
file named something like netbeans-8.0-javaee-windows.exe (exact name
depends on the version of NetBeans and the NetBeans bundle that was selected
for download). To install NetBeans on Windows platforms, simply navigate to the
folder where NetBeans was downloaded and double-click on the executable file.

Mac OS X
For Mac OS X, the downloaded file is called something like netbeans-8.0-javaee-
macosx.dmg (exact name depends on the NetBeans version and the NetBeans bundle
that was selected for download). In order to install NetBeans, navigate to the location
where the file was downloaded and double-click on it.

http://docs.oracle.com/javase/7/docs/webnotes/install/index.html
http://docs.oracle.com/javase/7/docs/webnotes/install/index.html

Chapter 1

[13]

Linux
For Linux, NetBeans is downloaded in the form of a shell script. The name of the file
will be similar to netbeans-8.0-javaee-linux.sh (exact name will depend on the
version of NetBeans and the selected NetBeans bundle).

Before NetBeans can be installed on Linux, the downloaded file needs to be
made executable, which can be done using a command line—by navigating to
the directory where the NetBeans installer was downloaded and executing the
following command:

chmod +x filename.sh

Substitute filename.sh in the preceding command with the appropriate filename
for the platform and NetBeans bundle. Once the file is executable it can be installed
from the command line as follows:

./filename.sh

Other platforms
For other platforms, NetBeans can be downloaded as a platform independent ZIP
file. The name of the ZIP file will be something like netbeans-8.0-201403101706-
javaee.zip (exact filename may vary, depending on the exact version of NetBeans
downloaded and the NetBeans bundle that was selected).

To install NetBeans on one of these platforms, simply extract the ZIP file to any
suitable directory.

Installation procedure
Even though the way to execute the installer varies slightly between platforms, the
installer behaves in a similar way between most of them.

One exception is the platform independent ZIP file, in which there is
essentially no installer. Installing this version of NetBeans consists of
extracting the ZIP file to any suitable directory.

Getting Started with NetBeans

[14]

After executing the NetBeans installation file for our platform, we should see a
window similar to the one illustrated in the following screenshot.

The pack shown may vary depending on the NetBeans bundle that was downloaded.
The preceding screenshot is for the Java EE bundle.

At this point, we should click on the button labeled Next> to continue the installation.

Chapter 1

[15]

NetBeans is dual licensed, licenses for NetBeans include the GNU Public License
(GPL) Version 2 with the classpath exception, and the Common Development and
Distribution License (CDDL). Both of these licenses are approved by the Open
Source Initiative (OSI).

To continue installing NetBeans, click on the checkbox labeled I accept the terms in
the license agreement and click on the button labeled Next>.

Getting Started with NetBeans

[16]

NetBeans comes bundled with JUnit, a popular Java unit testing framework. JUnit's
license differs from the NetBeans license, so it needs to be accepted separately.
Clicking the Next> button takes us to the next step in the installation wizard:

At this point the installer will prompt us for a NetBeans installation directory, and
for a JDK to use with NetBeans. We can either select new values for these or retain
the provided defaults.

Once we have selected the appropriate installation directory and JDK, we need to
click on the button labeled Next> to continue the installation.

NetBeans uses the JAVA_HOME environment variable to populate
the JDK's directory location.

Chapter 1

[17]

The installer will now prompt us for an installation directory for the GlassFish
application server, as well as for the JDK to use for GlassFish; we can either enter
a custom directory or accept the default values and then click on Next>.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with NetBeans

[18]

If we chose to install Tomcat, the installer will prompt us for a Tomcat installation
directory. Again, we can either enter a custom directory or accept the default values
and then click on Next>.

At this point, the installer will display a summary of our choices. After reviewing the
summary, we need to click on the button labeled Install to begin the installation.

Chapter 1

[19]

As the installation begins, the installer starts displaying a progress bar indicating the
progress of installation.

After NetBeans and all related components have been installed, the installer indicates
a successful installation, giving us the option to contribute anonymous usage data as
shown in the preceding screenshot. After making our selection we can simply click
on the Finish button to exit the installer.

On most platforms, the installer places a NetBeans icon on the desktop; the icon
should look like the following:

We can start NetBeans by double-clicking on the icon.

Getting Started with NetBeans

[20]

Starting NetBeans for the first time
We can start NetBeans by double-clicking on its icon. We should see the NetBeans
splash screen while it is starting up.

Once NetBeans starts, we should see a page with links to demos, tutorials, and
sample projects, among others.

Chapter 1

[21]

Every time NetBeans is launched, it shows the default start page as illustrated in the
preceding screenshot. If we don't want this page to be displayed automatically every
time NetBeans is started, we can disable this behavior by un-checking the checkbox
labeled as Show on Startup at the top of the page. We can always get the start page
back by going to Help | Start Page.

Configuring NetBeans for Java EE
development
NetBeans comes preconfigured with the GlassFish application server, and with the
JavaDB RDBMS. If we wish to use the included GlassFish application server and
JavaDB RDBMS, then there is nothing we need to do to configure NetBeans. We can,
however, integrate NetBeans with other Java EE application servers such as JBoss/
WildFly, WebLogic, or WebSphere and with other relational database systems such
as MySQL, PostgreSQL, Oracle, or any RDBMS supported by JDBC, which pretty
much means any RDBMS.

Getting Started with NetBeans

[22]

Integrating NetBeans with a third-party
application server
Integrating NetBeans with an application server is very simple. To do so, we need to
perform the following steps:

In this section, we will illustrate how to integrate NetBeans with
JBoss, the procedure is very similar for other application servers
or servlet containers.

1.	 First, we need to click on Window | Services.

Chapter 1

[23]

2.	 Next, we need to right-click on the node labeled Servers in the tree inside
the Services window, and then select Add Server... from the resulting
pop-up menu.

3.	 Then we need to select the server to install from the list in the resulting
window, and click on the button labeled Next>.

Getting Started with NetBeans

[24]

4.	 We then need to enter a location in the filesystem where the application
server is installed and click Next>.

5.	 Finally, we need to select a domain, host, and port for our application server,
then click on the Finish button.

Chapter 1

[25]

The Services window should now display our newly added application server:

That's it! We have successfully integrated NetBeans with a third-party
application server.

Integrating NetBeans with a third-party RDBMS
NetBeans comes with built-in integration with the JavaDB RDBMS system.
Additionally, it comes with JDBC drivers for other RDBMS systems such
as Oracle, MySQL, and PostgreSQL.

To integrate NetBeans with a third-party RDBMS, we need to tell NetBeans the
location of its JDBC driver.

In this section, we will create a connection to HSQLDB, an open source
RDBMS written in Java, to illustrate how to integrate NetBeans with
a third-party RDBMS; the procedure is very similar for other RDBMS
systems such as Oracle, Sybase, SQL Server, among others.

Getting Started with NetBeans

[26]

Adding a JDBC driver to NetBeans
Before we can connect to a third-party RDBMS, we need to add its JDBC driver
to NetBeans. To add the JDBC driver, we need to right-click on the Drivers node
under the Databases node in the Services tab.

We then need to select a JAR file containing the JDBC driver for our RDBMS,
NetBeans guesses the name of the driver class containing the JDBC driver. If more
than one driver class is found in the JAR file, the correct one can be selected from the
drop-down menu labeled Driver Class. We need to click on the OK button to add
the driver to NetBeans as shown in the following screenshot:

Chapter 1

[27]

Once we have followed the preceding procedure, our new JDBC driver is displayed
in the list of registered drivers.

Connecting to a third-party RDBMS
Once we have added the JDBC driver for our RDBMS into NetBeans, we are ready to
connect to the third-party RDBMS.

To connect to our third-party RDBMS, we need to right-click on its driver under the
Services tab, then click on Connect Using... on the resulting pop-up menu as shown
in the following screenshot:

Getting Started with NetBeans

[28]

Then we need to enter the JDBC URL, username, and password for our database.

After clicking on the Next> button, NetBeans will ask us to select a database schema.
In this case, we select PUBLIC from the drop-down menu.

Chapter 1

[29]

In the next step in the wizard, we are allowed to enter a user-friendly name for our
database connection, or we can simply accept the default value.

After clicking on the Finish button, our database is shown in the list of databases in
the Services window. We can connect to it by right-clicking on it, selecting Connect
from the resulting pop-up menu, then entering our username and password for the
database (if we chose not to allow NetBeans to remember the password when we
added the database).

We have now successfully connected NetBeans to a third party RDBMS.

Getting Started with NetBeans

[30]

Deploying our first application
NetBeans comes pre-configured with a number of sample applications. To make
sure everything is configured correctly, we will now deploy one of the sample
applications to the integrated GlassFish application server that comes bundled
with NetBeans.

To open the sample project, we need to go to File | New Project, then select
Samples | Java EE from the Categories list in the resulting pop-up window. Once
we have selected Java EE from the categories list, a list of projects is displayed in the
Projects list; for this example we need to select the JavaServer Faces CDI project.
This sample is a simple project involving both JSF and Contexts and Dependency
Injection (CDI).

Chapter 1

[31]

After clicking on the Next> button, we are prompted to enter a project location in the
next pop-up window. In this case, the default value is sensible.

Once we click on the Finish button, our new project is displayed in the
Projects window:

Getting Started with NetBeans

[32]

We can compile, package, and deploy our project at one go by right-clicking on it
and selecting Run from the resulting pop-up menu.

At this point, we should see the output of the build script. Also, both the integrated
GlassFish application server and the integrated JavaDB RDBMS system should
automatically start.

Chapter 1

[33]

As soon as our application is deployed, a new browser window or tab automatically
starts, displaying the default page for our sample application.

If our browser is displaying a page similar to the preceding one shown, then we can
be certain that NetBeans and GlassFish are working properly and we are ready to
start developing our own Java EE applications.

NetBeans tips for effective development
NetBeans offers a wide array of features that make Java and Java EE development
easier and faster. In the following few sections, we cover some of the most
useful features.

Code completion
The NetBeans code editor includes a very good code completion feature,
for example, if we wish to create a private variable, we don't need to type the
whole private word, we can simply write the first three letters (pri), then hit
Ctrl + Space and NetBeans will complete the word private for us.

Getting Started with NetBeans

[34]

Code completion also works for variable types and method return values, for
example, if we want to declare a variable of type java.util.List, we simply need
to type the first few characters of the type, then hit Ctrl + Space NetBeans will try to
complete with variable types in any of the packages we have imported in our class.
In order to make NetBeans attempt to complete with any type in the classpath, we
need to hit Ctrl + Space again.

As we can see in the preceding screenshot, NetBeans displays JavaDoc for the class
we selected from the code completion options. Another time-saving feature is that
the class we selected from the options is automatically imported into our code.

Once we have the type of our variable, we can hit Ctrl + Space right after the variable
and NetBeans will suggest variable names.

Chapter 1

[35]

When we want to initialize our variable to a new value, we can simply hit Ctrl +
Space again and a list of valid types is shown as options for code completions
as demonstrated in the following screenshot:

Getting Started with NetBeans

[36]

In our example, our type (java.util.List) is an interface, therefore, all classes
implementing this interface are shown as possible candidates for code completion.
Had our type been a class, both our class and all of its subclasses would have been
shown as code completion candidates.

When we are ready to use our variable, we can simply type the first few characters
of the variable name, then hit Ctrl + Space.

Chapter 1

[37]

When we wish to invoke a method in our object, we simply type a period at
the end of the variable name, and all available methods are displayed as code
completion options.

Notice how the JavaDoc for the selected method is automatically displayed.

Code templates
Code templates are abbreviations for frequently used code snippets. To use a
code template, we simply type it into the editor and hit the Tab key to expand the
abbreviations into the full code snippet it represents.

For example, typing sout and pressing the Tab key will expand into
System.out.println("");, with the caret placed between the two double quotes.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with NetBeans

[38]

Some of the most useful code templates are listed in the following table, please note
that code templates are case sensitive.

Abbreviation Example expanded text Description
Psf public static final Useful when declaring

public, static, and
final variables.

fore for (Object object : list) {

}

Use the enhanced for
loop to iterate through a
collection.

ifelse if (boolVar) {

} else {
}

Generate an if-else
conditional statement.

psvm public static void
main(String[] args) {

}

Generate a main method
for our class.

soutv System.out.println("boolVar =
" +
 boolVar);

Generate a System.out.
println() statement
displaying the value of a
variable.

trycatch try {

} catch (Exception exception) {
}

Generate a try-catch
block.

whileit while (iterator.hasNext()) {
 Object object =
iterator.next();

 }

Generate a while loop to
iterate through an iterator.

Chapter 1

[39]

To see the complete list of code templates, click on Tools | Options, click on the
Editor icon, then on the Code Templates tab.

We can add our own templates by clicking on the New button. We will be prompted
for the template's abbreviation. Once we enter it, our new template will be added to
the template list and will automatically be selected. We can then enter the expanded
text for our template in the Expanded Text tab.

Getting Started with NetBeans

[40]

Code templates can be used not only for Java but for HTML, CSS, and all other
editors in NetBeans. To view/edit templates for other languages, simply select the
desired language from the Language drop-down menu under the Code Templates
tab as indicated in the following screenshot:

Keyboard shortcuts
NetBeans offers several keyboard shortcuts that allow very fast navigation between
source files. Memorizing these keyboard shortcuts allows us to develop code a lot
more effectively than relying on the mouse.

Some of the most useful NetBeans' keyboard shortcuts are listed in
this section, but this list is by no means exhaustive. The complete
list of NetBeans' keyboard shortcuts can be obtained by clicking on
Help | Keyboard Shortcuts Card.

Chapter 1

[41]

One useful keyboard shortcut that allows us to quickly navigate within a large Java
file is Ctrl + F12. This keyboard shortcut switches focus to the Navigator window,
which displays an outline of the current Java file and shows all its methods and
member variables.

When the Navigator window has focus, we can simply start typing to narrow down
the list of member variables and methods shown. This keyboard shortcut makes it
very fast to navigate through large files.

Hitting Alt + F12 will open the Hierarchy window, which outlines the class hierarchy
of the current Java class.

We can use the previous shortcut to quickly navigate to a superclass or a subclass of
the current class.

Getting Started with NetBeans

[42]

Another useful keyboard shortcut is Alt + Insert. This keyboard shortcut can be
used to generate frequently used code such as that for constructors, getter and
setter methods, among others.

The code will be generated at the current location of the caret.

Additionally, when the caret is right next to an opening or closing brace, hitting Ctrl
+ [results in the caret being placed in the matching brace. This shortcut works for
curly braces, parenthesis, and square brackets. Hitting Ctrl + Shift + [has a similar
effect, but this key combination not only places the caret in the matching brace, it
also selects the code between the two carets:

Sometimes, we would like to know all the places in our project where a specific
method is invoked. Hitting Alt + F7 while the method is highlighted allows us to
easily find out this information.

Chapter 1

[43]

The keyboard shortcuts works with variables as well.

NetBeans will indicate compilation errors in our code by underlining the erroneous
line with a squiggly red line as shown in the following screenshot. Placing the caret
over the offending code and hitting Alt + Enter will allow us to select from a series
of suggestions to fix our code:

Sometimes navigating through all the files in a project can be a bit cumbersome,
especially if we know the name of the file we want to open but we are not sure of
its location. Luckily, NetBeans provides the Shift + Alt + O keyboard shortcut that
allows us to quickly open any file in our project:

Additional useful keyboard shortcuts include Shift + Alt + F to quickly format
our code, Ctrl + E (Cmd + E on Mac OS) to erase the current line, much faster than
highlighting the line and hitting backspace. Sometimes we import a class into our
code and later decide not to use it. Frequently, the lines where the class is used are
deleted but we forget to delete the import line at the top of the source file. NetBeans
will generate a warning about the unused import; hitting Ctrl + Shift + I will delete
all unused imports in one fell swoop, plus it will attempt to add any missing imports.

Getting Started with NetBeans

[44]

One last thing worth mentioning, even though it is not strictly a keyboard shortcut, a
very useful feature of the NetBeans editor is that left-clicking on a method or variable
while pressing Ctrl will turn the method or variable into a hyperlink. Clicking on this
hyperlink will result in NetBeans taking us to the method or variable declaration.

Understanding NetBeans visual cues
In addition to offering keyboard shortcuts, code templates, and code completion,
NetBeans offers a number of visual cues that allow us to better understand our code
at a glance. Some of the most useful cues are illustrated in the following screenshot:

When there is a warning in our code, NetBeans will alert us in two ways, it will
underline the offending line with a squiggly yellow line, and it will place the
following icon in the left margin of the offending line:

The light bulb in the icon indicates that NetBeans has a suggestion on how to fix the
problem. Moving the caret to the offending line and hitting Alt + Enter, as discussed
in the previous section, will result in NetBeans offering one or more ways of fixing
the problem.

Chapter 1

[45]

Similarly, when there is a compilation error, NetBeans will underline the offending
line with a red squiggly line, and place the following icon on the left margin of
said line.

Again, the light bulb indicates that NetBeans has suggestions on how to fix
the problem. Hitting Alt + Enter in the offending line will allow us to see the
suggestions that NetBeans has.

NetBeans not only provides visual cues for errors in our code, it also provides other
cues, for example, placing the caret next to an opening or closing brace will highlight
both the opening and closing brace, as shown in the populateList() method. This
is demonstrated in the previous screenshot.

If one of our methods overrides a method from a parent class, the following icon will
be placed in the left margin next to the method declaration:

The icon is an upper case "O" inside a circle, the O stands for "override".

Similarly, when one of our methods is an implementation of a method declared
on an interface, the following icon will be placed in the left margin of the
method declaration.

The icon is an uppercase "I" inside a green circle, which stands for "implements".

NetBeans also provides visual cues in the form of fonts and font colors, for example,
static methods and variables are shown in italics, member variables are shown in
green, and Java reserved keywords are shown in blue.

Another nice feature of the NetBeans editor is that highlighting a method or variable
highlights it everywhere it is used in the currently open file.

Getting Started with NetBeans

[46]

Accelerated HTML5 development support
NetBeans has the capability to update deployed web pages in real time as we edit
the markup for the page. This feature works both for HTML files and for JSF facelets
pages (discussed in the next chapter).

In order for this feature to work, we need to use either the embedded WebKit
browser included with NetBeans, or Google's Chrome browser with the NetBeans
Connector plugin. To select the browser to run our web application, we need to click
on the browser icon on the NetBeans toolbar, then select one of the options under
With NetBeans Connector, as shown in the following screenshot:

The accelerated HTML5 development support feature works "out of the box"
with the embedded WebKit browser. To test it, select the embedded WebKit browser,
then run the application we deployed earlier in this chapter in the Deploying our
first application section. It will run inside NetBeans when using the embedded
WebKit browser.

Chapter 1

[47]

To test the accelerated HTML5 development functionality, let's make a simple
change to one of the pages on the application. Open the file called home.xhtml
and look for a line containing the text Number.

<h:panelGrid border="1" columns="5" style="font-size: 18px;">

 Number:

 <h:inputText id="inputGuess" value="#{game.guess}"
 required="true" size="3"
 disabled="#{game.number eq game.guess}"
 validator="#{game.validateNumberRange}">
 </h:inputText>
 <h:commandButton id="GuessButton" value="Guess"
 action="#{game.check}"
 disabled="#{game.number eq game.guess}"/>
 <h:commandButton id="RestartButton" value="Reset"
 action="#{game.reset}" immediate="true" />
 <h:outputText id="Higher" value="Higher!"

Getting Started with NetBeans

[48]

 rendered="#{game.number gt game.guess and
 game.guess ne 0}"
 style="color: red"/>
 <h:outputText id="Lower" value="Lower!"
 rendered="#{game.number lt game.guess and
 game.guess ne 0}"
 style="color: red"/>
 </h:panelGrid>

Replace the string Number with the string Your Guess, so that the markup now looks
like this:

<h:panelGrid border="1" columns="5" style="font-size: 18px;">

 Your Guess:

 <h:inputText id="inputGuess" value="#{game.guess}"
 required="true" size="3"
 disabled="#{game.number eq game.guess}"
 validator="#{game.validateNumberRange}">
 </h:inputText>
 <h:commandButton id="GuessButton" value="Guess"
 action="#{game.check}"
 disabled="#{game.number eq game.guess}"/>
 <h:commandButton id="RestartButton" value="Reset"
 action="#{game.reset}" immediate="true" />
 <h:outputText id="Higher" value="Higher!"
 rendered="#{game.number gt game.guess and
 game.guess ne 0}" style="color: red"/>
 <h:outputText id="Lower" value="Lower!"
 rendered="#{game.number lt game.guess and
 game.guess ne 0}" style="color: red"/>
 </h:panelGrid>

Save the file, and without redeploying the application or reloading the page,
go back to the embedded browser window. Our change will be reflected on
the rendered page.

Chapter 1

[49]

In order for the accelerated HTML5 development feature to work in Chrome, we
need to install the NetBeans Connector plugin from the Chrome Web Store. If we
select Chrome as our web browser (under the With NetBeans Connector section
on the menu) and attempt to run our application, NetBeans will prompt us to install
the plugin.

Getting Started with NetBeans

[50]

Clicking on the button labeled Go to Chrome Web Store takes us directly to the
download page for the NetBeans Connector plugin:

Clicking on the button labeled Free at the upper-right corner results in a pop-up
window displaying the permissions for the NetBeans connector plugin:

Chapter 1

[51]

Clicking on the Add button automatically installs the plugin. We can then run our
project on the Chrome browser and any changes we make to the markup will be
instantly reflected on the browser.

As we can see in this screenshot, when running our application through the
NetBeans connector, Chrome displays a message alerting us of the fact.

Summary
In this chapter, we learned how to download and install NetBeans.

We also learned how to set up NetBeans with third-party Java EE application servers
and with third-party relational database systems, including how to register a JDBC
driver for the RDBMS in question.

We built and deployed our first Java EE application by using one of the sample
projects included by NetBeans.

Finally, we covered some of the NetBeans' features such as code completion, code
templates, keyboard shortcuts, and visual cues that allow us to do our job more
effectively as software developers.

Developing Web Applications
Using JavaServer Faces 2.2

JavaServer Faces is the standard Java EE framework for building web applications. In
this chapter, we will see how using JSF can simplify web application development.

The following topics will be covered in this chapter:

•	 Creating a JSF project with NetBeans
•	 Laying out JSF tags by taking advantage of the JSF <h:panelGrid> tag
•	 Using static and dynamic navigation to define navigation between pages
•	 Developing CDI named beans to encapsulate data and application logic
•	 Implementing custom JSF validators
•	 How to easily generate JSF 2.2 templates via NetBeans wizards
•	 How to easily create JSF 2.2 composite components with NetBeans

Introduction to JavaServer Faces
Before JSF existed, most Java web applications were typically developed using
nonstandard (as in, not part of the Java EE specification) web application frameworks
such as Apache Struts, Tapestry, and Spring Web MVC, among others. These
frameworks are built on top of the Servlet and JSP standards and automate a lot
of functionality that needs to be manually coded when using these APIs directly.

Having a wide variety of web application frameworks available often resulted
in analysis paralysis, that is, developers often spent an inordinate amount of time
evaluating frameworks for their applications.

Developing Web Applications Using JavaServer Faces 2.2

[54]

The introduction of JSF to the Java EE specification resulted in a standard, very
capable web application framework available in any Java EE-compliant application
server. With JSF being the standard Java EE framework, nowadays many Java
enterprise application developers choose to use JSF to develop their user interface.

Developing our first JSF application
From an application developer's point of view, a JSF application consists of a series
of XHTML pages that contain custom JSF tags, one or more CDI named beans, and
an optional configuration file named faces-config.xml.

The faces-config.xml file was required in JSF 1.x; however,
in JSF 2.0, some conventions were introduced to reduce the need
for configuration. Additionally, a number of JSF configurations
can be specified using annotations, reducing and, in some cases,
eliminating the need for this XML configuration file.

Previous versions of JSF required JSF managed beans to implement server-side
functionalities. For backward compatibility, JSF managed beans are still supported;
however, CDI named beans are preferred in modern JSF applications.

Creating a new JSF project
To create a new JSF project, we need to go to File | New Project, select the Java Web
project category, and select Web Application as the project type.

After clicking on Next, we need to enter a project name and, optionally, change other
information for our project. However, NetBeans provides sensible defaults.

Chapter 2

[55]

In the next page in the wizard, we can select the server, Java EE version, and
the context path of our application. In our example, we will simply pick the
default values.

Developing Web Applications Using JavaServer Faces 2.2

[56]

In the next page of the new project wizard, we can select what frameworks our web
application will use.

Unsurprisingly, for JSF applications, we need to select the JavaServer Faces framework.

After clicking on Finish, the wizard generates a skeleton JSF project for us.
This project consists of a single facelet file called index.xhtml and a web.xml
configuration file.

The web.xml file is the standard, optional configuration file needed for Java web
applications. This file became optional in Version 3.0 of the Servlet API, which
was introduced in Java EE 6. In many cases, web.xml is not needed anymore, since
most of the configuration options can now be specified via annotations. For JSF
applications, however, it is a good idea to add one, since it allows us to specify
the JSF project stage.

Chapter 2

[57]

This is shown in the following code:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.1" xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
 http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd">
 <context-param>
 <param-name>javax.faces.PROJECT_STAGE</param-name>
 <param-value>Development</param-value>
 </context-param>
 <servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>/faces/*</url-pattern>
 </servlet-mapping>
 <session-config>
 <session-timeout>
 30
 </session-timeout>
 </session-config>
 <welcome-file-list>
 <welcome-file>faces/index.xhtml</welcome-file>
 </welcome-file-list>
</web-app>

As we can see, NetBeans automatically sets the JSF project stage to Development.
Setting the project stage to Development configures JSF to provide additional
debugging help that is not present in other stages. For example, one common
problem when developing a JSF page is that while a page is being developed,
validation for one or more fields on the page fails but the developer has not added
an <h:message> or <h:messages> tag to the page (more on this later). When this
happens and the form is submitted, the page seems to do nothing, or page navigation
doesn't work properly. When setting the project stage to Development, these
validation errors will automatically be added to the page, without the developer
having to explicitly add one of these tags to the page (we should, of course, add
the tags before releasing our code to production, since our users will not see the
automatically generated validation errors).

Developing Web Applications Using JavaServer Faces 2.2

[58]

The valid values for the javax.faces.PROJECT_STAGE context parameter for the
faces servlet are as follows:

•	 Development

•	 Production

•	 SystemTest

•	 UnitTest

As we previously mentioned, the Development project stage adds additional
debugging information to ease development. The Production project stage focuses
on performance. The other two valid values for the project stage (SystemTest and
UnitTest) allow us to implement our own custom behavior for these two phases.

The javax.faces.application.Application class has a getProjectStage()
method that allows us to obtain the current project stage. Based on the value of this
method, we can implement code that will only be executed in the appropriate stage.
The following code snippet illustrates this:

public void someMethod() {
 FacesContext facesContext = FacesContext.getCurrentInstance();
 Application application = facesContext.getApplication();
 ProjectStage projectStage = application.getProjectStage();

 if (projectStage.equals(ProjectStage.Development)) {
 //do development stuff
 } else if (projectStage.equals(ProjectStage.Production)) {
 //do production stuff
 } else if (projectStage.equals(ProjectStage.SystemTest)) {
 // do system test stuff
 } else if (projectStage.equals(ProjectStage.UnitTest)) {
 //do unit test stuff
 }
 }

As illustrated in the preceding snippet, we can implement code to be executed in any
valid project stage, based on the value returned by the getProjectStage() method
of the Application class.

When creating a Java web project using JSF, a facelet is automatically generated.

The generated facelet file looks like this:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

Chapter 2

[59]

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html">
 <h:head>
 <title>Facelet Title</title>
 </h:head>
 <h:body>
 Hello from Facelets
 </h:body>
</html>

As we can see, a facelet is nothing but an XHTML file using some JSF specific XML
namespaces. In the automatically generated preceding code the following namespace
definition allows us to use the h (for HTML) JSF component library:

xmlns:h="http://xmlns.jcp.org/jsf/html"

The preceding namespace declaration allows us to use JSF specific tags such
as <h:head> and <h:body>, which are a drop-in replacement for the standard
HTML/XHTML <head> and <body> tags, respectively.

Another very commonly used namespace in JSF is the f namespace, which is
typically defined as follows:

xmlns:f= "http://xmlns.jcp.org/jsf/core"

The f namespace contains tags that do not render directly in the page, rather it
allows us to specify the items in a drop-down list or, for instance, bind actions
to our JSF components.

The application generated by the new project wizard is a simple but complete JSF
web application. We can see it in action by right-clicking on our project in the project
window and selecting Run. Now, the application server starts (if it wasn't already
running). Then, the application is deployed and the default system browser opens
to display our application's default page.

Developing Web Applications Using JavaServer Faces 2.2

[60]

Modifying our page to capture user data
The generated application, of course, is nothing but a starting point for us to create a
new application. We will now modify the generated index.xhtml file to collect some
data from the user.

The first thing we need to do is to add an <h:form> tag to our page. The <h:form>
tag is equivalent to the <form> tag in standard HTML pages. After typing the first
few characters of the <h:form> tag into the page, NetBeans automatically suggests
some tags for us to use.

As soon as we highlight the tag we want (<h:form> in this case), NetBeans displays
that tag's documentation.

After adding the <h:form> tag and a number of additional JSF tags, our page
markup now looks like this:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:f="http://xmlns.jcp.org/jsf/core">
 <h:head>

Chapter 2

[61]

 <title>Registration</title>
 <h:outputStylesheet library="css" name="styles.css"/>
 </h:head>
 <h:body>
 <h3>Registration Page</h3>
 <h:form>
 <h:panelGrid columns="3"
 columnClasses="rightalign,leftalign,leftali
gn">
 <h:outputLabel value="Salutation: " for="salutation"/>
 <h:selectOneMenu id="salutation" label="Salutation"
 value="#{registrationBean.
salutation}" >
 <f:selectItem itemLabel="" itemValue=""/>
 <f:selectItem itemLabel="Mr." itemValue="MR"/>
 <f:selectItem itemLabel="Mrs." itemValue="MRS"/>
 <f:selectItem itemLabel="Miss" itemValue="MISS"/>
 <f:selectItem itemLabel="Ms" itemValue="MS"/>
 <f:selectItem itemLabel="Dr." itemValue="DR"/>
 </h:selectOneMenu>
 <h:message for="salutation"/>

 <h:outputLabel value="First Name:" for="firstName"/>
 <h:inputText id="firstName" label="First Name"
 required="true"
 value="#{registrationBean.firstName}" />
 <h:message for="firstName" />
 <h:outputLabel value="Last Name:" for="lastName"/>
 <h:inputText id="lastName" label="Last Name"
 required="true"
 value="#{registrationBean.lastName}" />
 <h:message for="lastName" />

 <h:outputLabel for="age" value="Age:"/>
 <h:inputText id="age" label="Age" size="2"
 value="#{registrationBean.age}"/>
 <h:message for="age"/>

 <h:outputLabel value="Email Address:" for="email"/>
 <h:inputText id="email" label="Email Address"
 required="true"
 value="#{registrationBean.email}">

Developing Web Applications Using JavaServer Faces 2.2

[62]

 </h:inputText>
 <h:message for="email" />

 <h:panelGroup/>
 <h:commandButton id="register" value="Register"
 action="confirmation" />
 </h:panelGrid>
 </h:form>
 </h:body>
</html>

The following screenshot illustrates how our page will be rendered at runtime:

All JSF input fields must be inside an <h:form> tag. The <h:panelGrid> tag helps us
to easily lay out JSF tags in our page. It can be thought of as a grid where other JSF
tags will be placed. The columns attribute of the <h:panelGrid> tag indicates how
many columns the grid will have; each JSF component inside the <h:panelGrid>
component will be placed in an individual cell of the grid. When the number of
components matching the value of the columns attribute (3 in our example) has
been placed inside <h:panelGrid>, a new row is automatically started.

The following table illustrates how tags are laid out inside an <h:panelGrid> tag:

First tag Second tag Third tag
Fourth tag Fifth tag Sixth tag
Seventh tag Eighth tag Ninth tag

Chapter 2

[63]

Each row in our panel grid consists of an <h:outputLabel> tag, an input field, and
an <h:message> tag.

The columnClasses attribute of <h:panelGrid> allows us to assign CSS styles to
each column inside the panel grid. Its value attribute must consist of a comma-
separated list of CSS styles (defined in a CSS style sheet). The first style will be
applied to the first column, the second style will be applied to the second column,
the third style will be applied to the third column, and so on. Had our panel grid had
more than three columns, then the fourth column would have been styled using the
first style in the columnClasses attribute, the fifth column would have been styled
using the second style in the columnClasses attribute, and so on.

If we wish to style rows in a panel grid, we can do so with its rowClasses attribute,
which works the same way that the columnClasses works for columns.

Notice the <h:outputStylesheet> tag inside <h:head> near the top of the page.
This tag was introduced in JSF 2.0. One feature JSF 2.0 brought to the table is
standard resource directories. Resources (such as CSS, JavaScript files, and images)
can be placed under a top-level directory named resources, and JSF tags will have
access to those resources automatically. In our NetBeans project, we need to place the
resources directory under the Web Pages folder.

Then, we need to create a subdirectory to hold our CSS style sheet (by convention, this
directory should be named css). We place our CSS style sheet(s) in this subdirectory.

The CSS style sheet for our example is very simple; therefore, it is not
shown. However, it is part of the code bundle for this chapter.

The value of the library attribute in <h:outputStylesheet> must match the
directory where our CSS file is located, and the value of its name attribute must
match the CSS filename.

Developing Web Applications Using JavaServer Faces 2.2

[64]

In addition to CSS files, we should place any JavaScript files in a subdirectory called
javascript under the resources directory. The file can then be accessed by the
<h:outputScript> tag using javascript as the value of its library attribute and
the filename as the value of its name attribute.

Similarly, images should be placed in a directory called images under the resources
directory. These images can then be accessed by the JSF <h:graphicImage> tag,
where the value of its library attribute will be images and the value of its name
attribute will be the corresponding filename.

Now that we have discussed how to lay out elements on the page and how to access
resources, let's focus our attention into the input and output elements on the page.

The <h:outputLabel> tag generates a label for an input field in the form; the value
of its for attribute must match the value of the id attribute of the corresponding
input field.

The <h:message> tag generates an error message for an input field; the value of its
for field must match the value of the id attribute for the corresponding input field.

The first row in our grid contains an <h:selectOneMenu> tag. This tag generates an
HTML <select> tag on the rendered page.

Every JSF tag has an id attribute. The value for this attribute must be a string
containing a unique identifier for the tag. If we don't specify a value for this
attribute, one will be generated automatically. It is a good idea to explicitly state
the ID of every component; since this ID is used in runtime error messages, affected
components are a lot easier to identify if we explicitly set their IDs.

When using the <h:label> tags to generate labels for input fields or when using
the <h:message> tags to generate validation errors, we need to explicitly set the
value of the id tag, since we need to specify it as the value of the for attribute
of the corresponding <h:label> and <h:message> tags.

Every JSF input tag has a label attribute. This attribute is used to generate
validation error messages on the rendered page. If we don't specify a value for
the label attribute, the field will be identified in the error message by the value
of its id attribute.

Chapter 2

[65]

Each JSF input field has a value attribute; in the case of <h:selectOneMenu>,
this attribute indicates which of the options in the rendered <select> tag will be
selected. The value of this attribute must match the value of the itemValue attribute
of one of the nested <f:selectItem> tags. The value of this attribute is usually a
value binding expression, which means that the value is read at runtime from a CDI
named bean. In our example, the value binding expression #{registrationBean.
salutation} is used. At runtime, JSF will look for a CDI named bean called
registrationBean and look for an attribute named salutation on this bean. Then,
the getter method for this attribute will be invoked, and its return value will be used
to determine the selected value of the rendered HTML <select> tag.

Nested inside <h:selectOneMenu>, there are a number of <f:selectItem> tags.
These tags generate HTML <option> tags inside the HTML <select> tag generated
by <h:selectOneMenu>. The value of the itemLabel attribute is the value that the
user will see while the value of the itemValue attribute will be the value that will be
sent to the server when the form is submitted.

All other rows in our grid contain the <h:inputText> tag. This tag generates an
HTML input field of type text, which accepts a single line of typed text as input.
We explicitly set the id attribute of all of our <h:inputText> fields, which allows us
to refer to them from the corresponding <h:outputLabel> and <h:message> fields.
We also set the label attribute for all of our <h:inputText> tags, which results in
user-friendly error messages.

Some of our <h:inputText> fields require a value. These fields have their required
attributes set to true, and each JSF input field has a required attribute. If we need
the user to enter a value for this attribute, we need to set this attribute to true. This
attribute is optional; if we don't explicitly set a value for it, then it defaults to false.

In the last row of our grid, we added an empty <h:panelGroup> tag. The purpose of
this tag is to allow you to add several tags into a single cell of a panel grid. Any tag
placed inside this tag is placed inside the same cell of the grid where <h:panelGrid>
is placed. In this particular case, all we want to do is to have an empty cell in the
grid so that the next tag, <h:commandButton>, is aligned with the input fields in
the rendered page.

The <h:commandButton> tag is used to submit a form to the server. The value of its
value attribute is used to generate the text of the rendered button. The value of its
action attribute is used to determine what page to display after the button is clicked.

Developing Web Applications Using JavaServer Faces 2.2

[66]

In our example, we are using static navigation. When using JSF static navigation,
the value of the action attribute of a command button is hardcoded in the markup.
With JSF static navigation, the value of the action attribute of <h:commandButton>
corresponds to the name of the page we want to navigate to, minus its .xhtml
extension. In our example, when the user clicks on the button, we want to navigate
to a file named confirmation.xhtml. Therefore, we used the value confirmation
for its action attribute.

An alternative to static navigation is dynamic navigation. When using dynamic
navigation, the value of the action attribute of the command button is a value
binding expression resolving to a method and returning a string in a CDI named
bean. The method can return different values based on certain conditions.
Navigation would then proceed to a different page depending on the value
of the method.

As long as it returns a string, the CDI named bean method
executed when using dynamic navigation can contain any
logic inside it, and it is frequently used to save data into a
database.

When using dynamic navigation, the return value of the method executed when
clicking the button must match the name of the page we want to navigate to (again,
minus the file extension).

In earlier versions of JSF, it was necessary to specify navigation
rules in faces-config.xml. With the introduction of the
conventions discussed in the previous paragraphs, this is no
longer necessary.

Creating our CDI named bean
CDI named beans are standard JavaBeans that are used to hold user-entered data in
JSF applications.

Since a CDI named bean is a standard Java class, we create one like we create any
other Java class: by right-clicking on the Source Packages folder in the Projects
window and going to New | Java Class....

Chapter 2

[67]

We can then enter a value for the Class Name and Package fields for our CDI
named bean.

Developing Web Applications Using JavaServer Faces 2.2

[68]

The generated file is an empty Java class:

package com.ensode.jsf.namedbeans;

public class RegistrationBean {

}

To turn the preceding Java class into a CDI named bean, all we need to do is annotate
it with the @Named annotation. The @Named annotation marks the class as a CDI
named bean. By default, the CDI named bean name defaults to the class name (in our
case, RegistrationBean) with its first character switched to lower case (in our case,
registrationBean). If we want to override the default name, we can do it by setting
the value attribute of the @Named annotation to the desired value. In general, sticking
to the defaults allows more readable and maintainable code; therefore, we shouldn't
deviate from them unless we have a good reason.

The CDI named beans can have different scopes. A scope of request means that the
bean is only available in a single HTTP request. CDI named beans can also have a
session scope, in which case they are available in a single user's HTTP session. CDI
named beans can also have a conversation scope, in which the bean is available
across several HTTP requests.

The CDI named beans can also have a scope of application, which means that the
bean is accessible to all users in the application, across user sessions. A CDI named
bean can have a dependent pseudo-scope, in which case a new instance is injected
any time it is required.

Finally, a CDI named bean can have a scope of flow, in which case the bean will be
available through a specific JSF flow (discussed later in this chapter). To give our CDI
named bean the desired scope, we need to decorate it with the appropriate annotation.

The following table summarizes possible CDI named bean scopes along with the
corresponding annotation:

Scope Annotation
Request @RequestScoped

Session @SessionScoped

Conversation @ConversationScoped

Application @SessionScoped

Dependent @Dependent

Flow @FlowScoped

Chapter 2

[69]

All of the preceding annotations except @FlowScoped are defined in the javax.
enterprise.context package. The @FlowScoped annotation is defined in the
javax.faces.flow package.

We turn our Java class into a request scoped CDI named bean by adding the
appropriate annotations:

package com.ensode.jsf.namedbeans;

import javax.enterprise.context.RequestScoped;
import javax.inject.Named;

@Named
@RequestScoped
public class RegistrationBean {

}

The @Named annotation designates our class as a CDI named bean, and the
@RequestScoped annotation designates that our CDI named bean will have
a scope of request.

NetBeans may not be able to find the @RequestScoped annotation,
if this the case, we need to add cdi-api.jar to our project by
right-clicking on Libraries, selecting Add JAR/Folder..., and selecting
cdi-api.jar from the modules folder of our glassfish installation.

Now, we need to modify our CDI named bean by adding properties that will hold
the values entered by the users.

Automatic generation of getter and setter methods
NetBeans can automatically generate getter and setter methods for
our properties. We simply need to click the keyboard shortcut to
insert code, Alt + Insert in Windows and Linux (Ctrl + I on Mac OS),
and select Getters and Setters.

package com.ensode.jsf.namedbeans;

import javax.enterprise.context.RequestScoped;
import javax.inject.Named;

@Named
@RequestScoped
public class RegistrationBean {

Developing Web Applications Using JavaServer Faces 2.2

[70]

 private String salutation;
 private String firstName;
 private String lastName;
 private Integer age;
 private String email;

 //getters and setters omitted for brevity

}

We can see that the names of all of the bean's properties (instance variables) match
the names we used in the page's value binding expressions. These names must match
so that JSF knows how to map the bean's properties to the value binding expressions.

Implementing the confirmation page
Once our user fills out the data on the input page and submits the form, we want to
show a confirmation page displaying the values that the user entered. Since we used
value binding expressions on every input field on the input page, the corresponding
fields on the named bean will be populated with data entered by the user. Therefore,
all we need to do in our confirmation page is display the data on the named bean via
a series of <h:outputText> JSF tags.

We can create the confirmation page via the New JSF File wizard by going to
File | New File, selecting the JavaServer Faces category, and selecting JSF Page
as the file type.

Chapter 2

[71]

We need to make sure the name the new file matches the value of the action attribute
in the command button of the input page (confirmation.xhtml) so that static
navigation works properly.

After modifying the generated page to meet our requirements, it should look
like this:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html">
 <h:head>
 <title>Confirmation Page</title>
 <h:outputStylesheet library="css" name="styles.css"/>
 </h:head>
 <h:body>
 <h2>Confirmation Page</h2>
 <h:panelGrid columns="2"
 columnClasses="rightalign-bold,leftalign">
 <h:outputText value="Salutation:"/>
 ${registrationBean.salutation}
 <h:outputText value="First Name:"/>
 ${registrationBean.firstName}
 <h:outputText value="Last Name:"/>
 ${registrationBean.lastName}
 <h:outputText value="Age:"/>
 ${registrationBean.age}
 <h:outputText value="Email Address:"/>
 ${registrationBean.email}
 </h:panelGrid>
 </h:body>
</html>

As we can see, our confirmation page is very simple. It consists of a series of
<h:outputText> tags that contain labels and value binding expressions bound
to our named bean's properties. The JSF <h:outputText> tag simply displays
the value of the expression of its value attribute on the rendered page.

Executing our application
We are now ready to execute our JSF application. The easiest way to do so is to
right-click on our project and click on Run in the resulting pop-up menu.

Developing Web Applications Using JavaServer Faces 2.2

[72]

Now, GlassFish (or whatever application server we are using for our project) will
start automatically, if it hadn't been started already. The default browser will open
and it will automatically be directed to our page's URL.

After entering some data on the page, it should look something like the following
screenshot:

When we click on the Register button, our RegistrationBean named bean is
populated with the values we entered into the page. Each property in the field
will be populated according to the value binding expression in each input field.

At this point, JSF navigation kicks in and we are taken to the confirmation page.

The values displayed on the confirmation page are taken from our named bean,
confirming that the bean's properties were populated correctly.

JSF validation
Earlier in this chapter, we discussed how the required attribute for the JSF input
fields allows us to easily make input fields mandatory.

Chapter 2

[73]

If a user attempts to submit a form with one or more required fields missing, an error
message is automatically generated.

The error message is generated by the <h:message> tag corresponding to the
invalid field. The string First Name in the error message corresponds to the value
of the label attribute for the field. Had we omitted the label attribute, the value
of the field's id attribute would have been shown instead. As we can see, the
required attribute makes it very easy to implement mandatory field functionality
in our application.

Recall that the age field is bound to a property of type Integer in our named bean.
If a user enters a value that is not a valid integer into this field, a validation error is
automatically generated.

Developing Web Applications Using JavaServer Faces 2.2

[74]

Of course, a negative age wouldn't make much sense. However, our application
validates that user input is a valid integer with essentially no effort on our part.

The e-mail address input field of our page is bound to a property of type string in our
named bean. There is no built-in validation to make sure that the user enters a valid
e-mail address. In cases like this, we need to write our own custom JSF validator.

Custom JSF validators must implement the javax.faces.validator.Validator
interface. This interface contains a single method named validate(), and
this method takes three parameters, an instance of javax.faces.context.
FacesContext, an instance of javax.faces.component.UIComponent containing
the JSF component we are validating, and an instance of java.lang.Object
containing the value entered by the user for the component. The following example
illustrates a typical custom validator:

package com.ensode.jsf.validators;

import java.util.regex.Matcher;
import java.util.regex.Pattern;
import javax.faces.application.FacesMessage;
import javax.faces.component.UIComponent;
import javax.faces.component.html.HtmlInputText;
import javax.faces.context.FacesContext;
import javax.faces.validator.FacesValidator;
import javax.faces.validator.Validator;
import javax.faces.validator.ValidatorException;

@FacesValidator(value ="emailValidator")
public class EmailValidator implements Validator {

 @Override
 public void validate(FacesContext facesContext,
 UIComponent uiComponent, Object value) throws
 ValidatorException {
 Pattern pattern = Pattern.compile("\\w+@\\w+\\.\\w+");
 Matcher matcher = pattern.matcher(
 (CharSequence) value);
 HtmlInputText htmlInputText =
 (HtmlInputText) uiComponent;
 String label;

 if (htmlInputText.getLabel() == null ||
 htmlInputText.getLabel().trim().equals("")) {
 label = htmlInputText.getId();
 } else {

Chapter 2

[75]

 label = htmlInputText.getLabel();
 }

 if (!matcher.matches()) {
 FacesMessage facesMessage =
 new FacesMessage(label +
 ": not a valid email address");

 throw new ValidatorException(facesMessage);
 }
 }
}

In our example, the validate() method does a regular expression match against the
value of the JSF component we are validating. If the value matches the expression,
validation succeeds; otherwise, validation fails and an instance of javax.faces.
validator.ValidatorException is thrown.

The primary purpose of our custom validator is to illustrate how to
write custom JSF validations, and not to create a foolproof e-mail
address validator. There may be valid e-mail addresses that don't
validate using our validator.

The constructor of ValidatorException takes an instance of javax.faces.
application.FacesMessage as a parameter. This object is used to display the error
message on the page when validation fails. The message to display is passed as a
string to the constructor of FacesMessage. In our example, if the label attribute of
the component is neither null nor empty. We use it as part of the error message;
otherwise, we use the value of the component's id attribute. This behavior follows
the pattern established by standard JSF validators.

Our validator needs to be annotated with the @FacesValidator annotation. The
value of its value attribute is the ID that will be used to reference our validator in
our JSF pages.

Once we are done implementing our validator, we are ready to use it in our pages.

In our particular case, we need to modify the e-mail field to use our custom validator
using the following code:

<h:inputText id="email" label="Email Address"
 required="true" value="#{registrationBean.email}">
 <f:validator validatorId="emailValidator"/>
</h:inputText>

Developing Web Applications Using JavaServer Faces 2.2

[76]

All we need to do is nest a <f:validator> tag inside the input field we wish
to have validated using our custom validator. The value of the validatorId
attribute of <f:validator> must match the value of the value attribute in the
@FacesValidator annotation in our validator.

Now, we are ready to test our custom validator.

While entering an invalid e-mail address into the e-mail address input field and
submitting the form, our custom validator logic was executed and the string we
passed as a parameter to FacesMessage in our validator() method its shown
as the error text by the <h:message> tag for the field.

Facelets templating
One advantage that Facelets has over JSP is its templating mechanism. Templates
allow us to specify page layout in one place. Then, we can have template clients
that use the layout defined in the template. Since most web applications have
consistent layout across pages, using templates makes our applications much more
maintainable because changes to the layout need to be made in a single place. If at
one point we need to change the layout for our pages (for example, add a footer or
move a column from the left side of the page to the right side of the page), we only
need to change the template and the change is reflected in all the template clients.

Chapter 2

[77]

Adding the Facelets template
We can add a Facelets template to our project simply by going to File | New File,
selecting the JavaServer Faces category, and selecting the Facelets Template
file type.

NetBeans provides very good support for Facelets templating. It provides several
templates "out of the box" using common web page layouts.

Developing Web Applications Using JavaServer Faces 2.2

[78]

We can then select from one of several predefined templates to use as a base for our
template or simply use it "out of the box".

NetBeans gives us the option of using HTML tables or CSS for layout. For most
modern web applications, CSS is the preferred approach. For our example, we will
pick a layout containing a header area, a single left column, and a main area.

After clicking on Finish, NetBeans automatically generates our template, along
with the necessary CSS files.

The automatically generated template looks like this:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
 xmlns:h="http://xmlns.jcp.org/jsf/html">

Chapter 2

[79]

 <h:head>
 <meta http-equiv="Content-Type" content="text/html;
charset=UTF-8" />
 <h:outputStylesheet name="./css/default.css"/>
 <h:outputStylesheet name="./css/cssLayout.css"/>
 <title>Facelets Template</title>
 </h:head>

 <h:body>

 <div id="top" class="top">
 <ui:insert name="top">Top</ui:insert>
 </div>
 <div>
 <div id="left">
 <ui:insert name="left">Left</ui:insert>
 </div>
 <div id="content" class="left_content">
 <ui:insert name="content">Content</ui:insert>
 </div>
 </div>
 </h:body>
</html>

As we can see, the template doesn't look much different from a regular facelets file.

We can see that the template uses the following namespace: xmlns:ui="http://
xmlns.jcp.org/jsf/facelets". This namespace allows us to use the <ui:insert>
tag. The contents of this tag will be replaced by the content in a corresponding
<ui:define> tag in template clients.

Developing Web Applications Using JavaServer Faces 2.2

[80]

Using the template
To use our template, we simply need to create a Facelets template client. This can
be done by going to File | New File, selecting the JavaServer Faces category, and
selecting the Facelets Template Client file type.

After clicking on Next, we need to enter a filename (or accept the default) and select
the template that we will use for our template client.

Chapter 2

[81]

When using Facelets templating, if a template client does not override a section
defined on the template, then the template's markup is shown on the rendered page.
This allows us to define, for example, a page header that should be the same across
all pages in our application in one place (the template), rather than redefining it on
every page.

In our example, the top and left sections should be the same across the application.
Therefore, we uncheck these boxes so that those sections are not generated in our
template client.

After clicking on Finish, our template client is created, with the following content:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets">

 <body>

 <ui:composition template="./template.xhtml">

 <ui:define name="content">
 content
 </ui:define>

 </ui:composition>
 </body>
</html>

As we can see, the template client also uses the xmlns:ui="http://xmlns.jcp.org/
jsf/facelets" namespace; in a template client, the <ui:composition> tag must be
the parent tag of any other tag belonging to this namespace. Any markup outside this
tag will not be rendered, and the template markup will be rendered instead.

The <ui:define> tag is used to insert markup into a corresponding <ui:insert>
tag in the template. The value of the name attribute in <ui:define> must match the
corresponding <ui:insert> tag in the template.

Developing Web Applications Using JavaServer Faces 2.2

[82]

After deploying our application, we can see templating in action by pointing the
browser to our template client URL.

We can see that NetBeans generated a template that allows us to create a fairly
elegant page with very little effort on our part. Of course, we should replace the
markup in the <ui:define> tags to suit our needs.

Here is a modified version of our template, adding markup to be rendered in the
corresponding places in the template:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets">

 <body>

 <ui:composition template="./template.xhtml">

 <ui:define name="content">
 <p>
 In this main area we would put our main text,
images, forms, etc. In this example we will simply use the typical
filler text that web designers love to use.
 </p>
 <p>

Chapter 2

[83]

 Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Nunc venenatis, diam nec tempor dapibus, lacus erat
vehicula mauris, id lacinia nisi arcu vitae purus. Nam vestibulum
nisi non lacus luctus vel ornare nibh pharetra. Aenean non lorem
lectus, eu tempus lectus. Cras mattis nibh a mi pharetra ultricies.
In consectetur, tellus sit amet pretium facilisis, enim ipsum
consectetur magna, a mattis ligula massa vel mi. Maecenas id arcu a
erat pellentesque vestibulum at vitae nulla. Nullam eleifend sodales
tincidunt. Donec viverra libero non erat porta sit amet convallis enim
commodo. Cras eu libero elit, ac aliquam ligula. Quisque a elit nec
ligula dapibus porta sit amet a nulla. Nulla vitae molestie ligula.
Aliquam interdum, velit at tincidunt ultrices, sapien mauris sodales
mi, vel rutrum turpis neque id ligula. Donec dictum condimentum arcu
ut convallis. Maecenas blandit, ante eget tempor sollicitudin, ligula
eros venenatis justo, sed ullamcorper dui leo id nunc. Suspendisse
potenti. Ut vel mauris sem. Duis lacinia eros laoreet diam cursus nec
hendrerit tellus pellentesque.
 </p>
 </ui:define>
 </ui:composition>
 </body>
</html>

Since the content section is the only one that is specific to our client, we need to
define the top and left sections of the template:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <!-- <h:head> section omitted for brevity -->
 <h:body>

 <div id="top" class="top">
 <ui:insert name="top">
 <h2>Welcome to our Site</h2>
 </ui:insert>
 </div>
 <div>

Developing Web Applications Using JavaServer Faces 2.2

[84]

 <div id="left">
 <ui:insert name="left">
 <h3>Links</h3>

 <h:outputLink value="http://www.packtpub.
com">
 <h:outputText value="Packt
Publishing"/>
 </h:outputLink>

 <h:outputLink value="http://www.ensode.
net">
 <h:outputText value="Ensode.net"/>
 </h:outputLink>

 <h:outputLink value="http://www.ensode.
com">
 <h:outputText value="Ensode
Technology, LLC"/>
 </h:outputLink>

 <!-- other links omitted for brevity -->

 </ui:insert>
 </div>
 <div id="content" class="left_content">
 <ui:insert name="content">Content</ui:insert>
 </div>
 </div>
 </h:body>
</html>

Since our template client does not override the top and left sections, the markup
from the template will be rendered in the browser.

Chapter 2

[85]

After making the preceding changes, our template client now renders as follows:

As we can see, creating Facelets templates and template clients with NetBeans
is a breeze.

Resource library contracts
Resource library contracts is a new JSF 2.2 feature. It builds on Facelets templates
to allow us to build "themable" web applications. For example, we could have
an application with multiple customers or we could render the application
user interface so that each user sees their own company's logo after logging in.
Alternatively, we could have the user select from a predefined set of themes,
which is exactly what we are going to do in our next example.

Developing Web Applications Using JavaServer Faces 2.2

[86]

We can create a resource library contract by going to File | New and selecting
JSF Resource Library Contract from the JavaServer Faces category in the New
File wizard.

We need to give our resource library contract a name by entering a value into the
Contract Name input field. We can optionally allow NetBeans to generate the initial
templates for our resource library contract.

Chapter 2

[87]

In our example, we are going to have NetBeans generate the initial template and then
we'll modify the CSS a bit so that the resulting page will have a dark background
with light colored fonts. This will be our "dark" theme.

We'll create a second theme selecting the same layout style as our "dark" theme. We'll
leave the CSS as is for the second one (screenshots not shown).

After we create our resource library contracts, NetBeans creates the corresponding
files under a contracts directory.

Once we have our resource library contracts in place, we need to create a template
client as usual (see previous section) to use our contracts in our application's pages.
Copy the following code in the resourcelibrarycontractsdemo.xhtml file:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
 xmlns:f="http://xmlns.jcp.org/jsf/core">

 <body>
 <f:view contracts="normal">
 <ui:composition template="/template.xhtml">

 <ui:define name="content">
 <p>

www.allitebooks.com

http://www.allitebooks.org

Developing Web Applications Using JavaServer Faces 2.2

[88]

 Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Nunc venenatis, diam nec tempor dapibus, lacus erat
vehicula mauris, id lacinia nisi arcu vitae purus. Nam vestibulum
nisi non lacus luctus vel ornare nibh pharetra. Aenean non lorem
lectus, eu tempus lectus. Cras mattis nibh a mi pharetra ultricies.
In consectetur, tellus sit amet pretium facilisis, enim ipsum
consectetur magna, a mattis ligula massa vel mi. Maecenas id arcu a
erat pellentesque vestibulum at vitae nulla. Nullam eleifend sodales
tincidunt. Donec viverra libero non erat porta sit amet convallis enim
commodo. Cras eu libero elit, ac aliquam ligula. Quisque a elit nec
ligula dapibus porta sit amet a nulla. Nulla vitae molestie ligula.
Aliquam interdum, velit at tincidunt ultrices, sapien mauris sodales
mi, vel rutrum turpis neque id ligula. Donec dictum condimentum arcu
ut convallis. Maecenas blandit, ante eget tempor sollicitudin, ligula
eros venenatis justo, sed ullamcorper dui leo id nunc. Suspendisse
potenti. Ut vel mauris sem. Duis lacinia eros laoreet diam cursus nec
hendrerit tellus pellentesque.
 </p>
 </ui:define>

 </ui:composition>
 </f:view>
 </body>
</html>

To use a resource library contract, we need to encapsulate the <ui:composition>
tag inside an <f:view> tag, which has a contracts attribute whose value must
match the name of the resource library contract we wish to use.

After deploying our application and pointing the browser to the template client URL,
we can see the template in action:

Chapter 2

[89]

If we change the value of the contracts attribute of <f:view> to dark, we can see
the dark theme in action.

Of course, hardcoding the resource library contract like we did in our example
doesn't make a whole lot of sense. To dynamically change the theme, we need to
set the value of the contracts attribute of <f:view> to a value binding expression
pointing to a named bean property.

In our project, we will add a ThemeSelector named bean to hold the theme selected
by the user:

package com.ensode.jsf.resourcelibrarycontracts.namedbeans;

import javax.enterprise.context.RequestScoped;
import javax.inject.Named;

@Named
@RequestScoped
public class ThemeSelector {
 private String themeName = "normal";

 public String getThemeName() {
 return themeName;
 }

 public void setThemeName(String themeName) {
 this.themeName = themeName;
 }
}

Developing Web Applications Using JavaServer Faces 2.2

[90]

Then, we need to modify our template client to allow the user to change the theme:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:h="http://xmlns.jcp.org/jsf/html">

 <body>
 <f:view contracts="#{themeSelector.themeName}">
 <ui:composition template="/template.xhtml">
 <ui:define name="top">
 <h:form>
 <h:outputLabel for="themeSelector"
 value="Select a theme"/>
 <h:selectOneMenu id="themeSelector"
 value="#{themeSelector.themeName}">
 <f:selectItem itemLabel="normal"
 itemValue="normal"/>
 <f:selectItem itemLabel="dark"
itemValue="dark"/>
 </h:selectOneMenu>
 <h:commandButton value="Submit"
 action="resourcelibrarycontractsdemo"/>
 </h:form>
 </ui:define>
 <ui:define name="content">
 <p>
 <!-- Lorem Ipsum omitted for brevity -->
 </p>
 </ui:define>
 </ui:composition>
 </f:view>
 </body>
</html>

Chapter 2

[91]

In the preceding markup, we added a <h:selectOneMenu> tag and a command
button to allow the user to select the desired theme.

Composite components
A very nice JSF feature is the ability to easily write custom JSF components. With JSF
2, creating a custom component involves little more than creating the markup for
it, without any Java code or configuration. Since custom components are typically
composed of other JSF components, they are referred to as composite components.

We can generate a composite component by going to File | New File, selecting the
JavaServer Faces category, and selecting the JSF Composite Component file type.

Developing Web Applications Using JavaServer Faces 2.2

[92]

After clicking on Next, we can specify the filename, project, and folder for our
custom component.

To take advantage of JSF 2.0's automatic resource handling and
conventions, it's not recommended to change the folder where
our custom component will be placed.

When we click on Finish, NetBeans generates an empty composite component we
can use as a base to create our own:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:cc="http://xmlns.jcp.org/jsf/composite">

 <!-- INTERFACE -->
 <cc:interface>
 </cc:interface>

Chapter 2

[93]

 <!-- IMPLEMENTATION -->
 <cc:implementation>
 </cc:implementation>
</html>

Every JSF 2 composite component contains two sections: an interface and an
implementation.

The interface section must be enclosed inside a <cc:interface> tag. In the interface,
we define all attributes that our component will have. The implementation section
contains the markup that will be rendered when we use our composite component.

In our example, we will develop a simple component we can use to enter addresses.
That way, if we have to enter several addresses in an application, we can encapsulate
the logic and/or display part in our component. If later we need to change an
address entry (for example, to support international addresses), we only need
to change our component and all address entry forms in our application will be
updated automatically.

After filling in the blanks, our composite component now looks like this:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:cc="http://xmlns.jcp.org/jsf/composite"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:f="http://xmlns.jcp.org/jsf/core">

 <!-- INTERFACE -->
 <cc:interface>
 <cc:attribute name="addrType"/>
 <cc:attribute name="namedBean" required="true"/>
 </cc:interface>

 <!-- IMPLEMENTATION -->
 <cc:implementation>
 <h:panelGrid columns="2">
 <f:facet name="header">
 <h:outputText value="#{cc.attrs.addrType} Address"/>
 </f:facet>
 <h:outputLabel for="line1" value="Line 1"/>
 <h:inputText id="line1"
 value="#{cc.attrs.namedBean.line1}"/>
 <h:outputLabel for="line2" value="Line 2"/>

Developing Web Applications Using JavaServer Faces 2.2

[94]

 <h:inputText id="line2"
 value="#{cc.attrs.namedBean.line2}"/>
 <h:outputLabel for="city" value="City"/>
 <h:inputText id="city" value="#{cc.attrs.namedBean.
city}"/>
 <h:outputLabel for="state" value="state"/>
 <h:inputText id="state" value="#{cc.attrs.namedBean.
state}"
 size="2" maxlength="2"/>
 <h:outputLabel for="zip" value="Zip"/>
 <h:inputText id="zip" value="#{cc.attrs.namedBean.zip}"
 size="5" maxlength="5"/>
 </h:panelGrid>
 </cc:implementation>
</html>

We specify attributes for our component via the <cc:attribute> tag, which has a
name attribute used to specify the attribute name, and an optional required attribute
we can use to specify if the attribute is required.

The body of the <cc:implementation> tag looks almost like plain old JSF markup,
with one exception. By convention, we can access the tag's attributes by using the
#{cc.attrs.ATTRIBUTE_NAME} expression that we used to access the attributes we
defined in the component's interface section. Note that the namedBean attribute of
our component must resolve to a named bean. Pages using our component must
use a JSF expression resolving to a managed bean as the value of the namedBean
attribute. We can access the attributes of this named bean by simply using the
familiar dot (.) notation we have used before; the only difference here is that instead
of using a managed bean name in the expression, we must use the attribute name as
defined in the interface section.

Now that we have a simple but complete composite component, using it in our pages
is very simple:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:ezcomp="http://xmlns.jcp.org/jsf/composite/ezcomp">
 <h:head>
 <title>Address Entry</title>
 </h:head>
 <h:body>
 <h:form>

Chapter 2

[95]

 <h:panelGrid columns="1">
 <ezcomp:address namedBean="#{addressBean}"
 addrType="Home"/>
 <h:commandButton value="Submit" action="confirmation"
 style="display: block; margin: 0
auto;"/>
 </h:panelGrid>
 </h:form>
 </h:body>
</html>

By convention, the namespace for our custom components will always be
xmlns:ezcomp="http://xmlns.jcp.org/jsf/composite/ezcomp" (this is why it
is important not to override the default folder where our component will be placed,
as doing so breaks this convention). NetBeans provides code completion for our
custom composite components, just like it does for standard components.

In our application, we created a simple named bean called addressBean. It is a
simple managed bean with a few properties and corresponding getters and setters;
therefore, it is not shown (it is part of this chapter's code download). We use this
bean as the value of the namedBean attribute of our component. We also used an
address type of Home, and this value will be rendered as a header for our address
input component.

After deploying and running our application, we can see our component in action, as
shown in the following screenshot:

As we can see, creating JSF 2 composite components with NetBeans is a breeze.

Developing Web Applications Using JavaServer Faces 2.2

[96]

Faces flows
Traditional web applications are stateless, that is, a page that just loaded in the
browser has no idea of what data the user was working on in previous pages. Java
web application frameworks have worked around this inherent limitation of web
applications by storing states on the server and attaching Java classes to different
application scopes. JSF does this by using the appropriate scope annotation on CDI
named beans, as described earlier in this chapter.

If we need to share data between exactly two pages, a scope of request is what we
need. If we need to share data across all pages in the application, then a scope of
session makes sense. However, what if we need to share data across three or more
web pages but not with all pages in the application? There wasn't an appropriate
scope we could use until JSF 2.2 added the flow scope.

Since all pages in a flow are related to each other, all pages in the flow must be placed
in the same subdirectory. By convention, the name of the subdirectory will be the
name of the flow. For example, if we were developing a flow named registration,
we would put all pages in the flow in a subdirectory called registration.

In the NetBeans project window, we can create this folder by right-clicking on Web
Pages node and then going to New | Other.

Chapter 2

[97]

Then, we need to select Folder from the Other category.

Then, we give our folder the name we want our flow to have; in our case,
registration.

Developing Web Applications Using JavaServer Faces 2.2

[98]

In order for our flow to work properly, we need to add an XML configuration file
inside our flow directory. The file must be named after the directory and suffixed
with -flow. In our example, the filename will be registration-flow.xml. In
NetBeans, we can add the file by right-clicking on our flow directory (named
registration), going to New | Other, and then selecting Empty File from the
Other category.

Then, we need to give the file the correct name, making sure we place it inside our
flow directory.

Chapter 2

[99]

Data for our flow needs to be held in one or more flow-scoped named beans as
shown in the following code:

package com.ensode.flowscope.namedbeans;

import javax.annotation.PostConstruct;
import javax.annotation.PreDestroy;
import javax.faces.flow.FlowScoped;
import javax.inject.Named;

@Named
@FlowScoped("registration")
public class RegistrationBean {

 private String salutation;
 private String firstName;
 private String lastName;
 private Integer age;
 private String email;

 private String line1;
 private String line2;
 private String city;
 private String state;
 private String zip;

 @PostConstruct
 public void init() {
 System.out.println(this.getClass().getCanonicalName() + "
initialized.");
 }

 @PreDestroy
 public void destroy() {
 System.out.println(this.getClass().getCanonicalName() + "
destroyed.");
 }

 //getters and setters omitted for brevity
}

Developing Web Applications Using JavaServer Faces 2.2

[100]

In our example, we use a simple CDI named bean with several properties and
corresponding setters and getters. Note the use of the @PostConstruct and
@PreDestroy annotations in the example. These are CDI annotations that are invoked
just after a CDI named bean is created and just before it is destroyed, respectively. We
added these annotations to confirm that our flow-scoped CDI named bean is being
created and destroyed as we enter and leave our registration flow.

Now, we need to add the JSF pages in our flow. The first page in the flow needs to
be named after the flow itself (in our example, registration.xhtml). There is no
restriction about the naming of other pages in the flow. The last page in the flow must
be outside the flow directory, and must be named after the flow and suffixed with
-return. For our example, the page name will be registration-return.xhtml.

The markup for the pages doesn't illustrate anything we haven't
seen before; therefore, we will not show it. All example code is
available as part of this book's code bundle.

After adding all of the necessary files, our project should look like this:

We enter our flow by setting the name of the flow as the value of the action
attribute of an <h:commandLink> or <h:commandButton> component.

In our example, we added a simple <h:commandButton> tag to index.xhtml:

<h:commandLink action="registration">
 <h:outputText value="Begin Registration"/>
 </h:commandLink>

Chapter 2

[101]

When the user clicks on the link, the first page on our flow is displayed.

When the user clicks on the Continue button, our flow-scoped named bean is
instantiated. In our example, we can verify this by looking at the GlassFish log,
where we should see a line like the following:

Info: com.ensode.flowscope.namedbeans.RegistrationBean initialized.

The line comes from the init() method in RegistrationBean, which we annotated
with the @PostConstruct annotation.

The markup for pages in our flow have <h:commandButton> tags to navigate
between them, for example, here is the markup for the Continue button on
the first page of the flow:

<h:commandButton id="continue" value="Continue"
 action="registration-pg2" />

The second page on the flow has buttons to navigate forwards and/or backwards:

 <h:commandButton id="back" value="Go Back"
 action="registration" />
 <h:commandButton id="continue" value="Continue"
 action="registration-confirmation" />

This takes us to the corresponding page. The last page of the flow has a Continue
button that takes us out of the flow.

<h:commandButton value="Continue" action="registration-return"/>

Developing Web Applications Using JavaServer Faces 2.2

[102]

When the user clicks on the Continue button, we exit the flow and our flow-scoped
named bean is destroyed as expected. Inspecting the GlassFish log confirms this fact:
Info: com.ensode.flowscope.namedbeans.RegistrationBean destroyed.

The preceding log entry came from the destroy() method on our flow-scoped
named bean, which we annotated with the @PreDestroy annotation.

HTML5 support
JSF 2.2 added new improvements to support HTML5 features. The two most
prominent features for HTML5 support are HTML5-friendly markup and
pass-through attributes.

HTML5-friendly markup
HTML5-friendly markup allows us to develop our JSF views using HTML5 tags,
as opposed to JSF-specific tags. In order use these tags, we need to include the
http://xmlns.jcp.org/jsf namespace on our page and specify at least one
of the tag attributes with one of the attributes defined in this namespace.

In this section, we will rewrite the application we developed in the Developing our
first JSF application section earlier in this chapter to utilize HTML5-friendly markup.

To use HTML5-friendly markup with NetBeans, we need to create a web application
project from the Java Web section and select JavaServer Faces as a framework for
our application as usual. When adding pages to our application, we need to select
the XHTML file type from the Web category.

Chapter 2

[103]

Then, we add HTML markup to our page.

We can quickly and easily develop HTML pages by dragging-and-
dropping components from the NetBeans palette. The palette can
be accessed by going to Window | IDE Tools | Palette.

After adding the markup for our page, it now looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:jsf="http://xmlns.jcp.org/jsf"
 xmlns:f="http://xmlns.jcp.org/jsf/core">
 <head>
 <title>Registration</title>
 <meta name="viewport" content="width=device-width, initial-
scale=1.0"/>
 <link rel="stylesheet" type="text/css" href="css/styles.css"/>
 </head>
 <body>
 <h3>Registration Page</h3>
 <form jsf:id="mainForm" jsf:prependId="false">
 <table border="0" cellspacing="0" cellpadding="0">
 <tbody>
 <tr>
 <td class="rightalign">Salutation:</td>

 <td class="leftalign">
 <select name="salutation"
jsf:id="salutation"
 jsf:value="#{registrationBean.
salutation}" size="1">
 <f:selectItem itemValue=""
itemLabel=""/>
 <f:selectItem itemValue="MR"
itemLabel="Mr."/>

 <!-- other <f:selectItem> tags omitted
for brevity -->
 </select>
 </td>
 </tr>
 <tr>

Developing Web Applications Using JavaServer Faces 2.2

[104]

 <td class="rightalign">
 First Name:
 </td>
 <td class="leftalign">
 <input type="text" jsf:id="firstName"
 jsf:value="#{registrationBean.
firstName}"/>
 </td>
 </tr>
 <tr>
 <td class="rightalign">
 Last Name:
 </td>
 <td class="leftalign">
 <input type="text" jsf:id="lastName"
 jsf:value="#{registrationBean.
lastName}"/>
 </td>
 </tr>
 <tr>
 <td class="rightalign">
 Age:
 </td>
 <td class="leftalign">
 <input type="number" jsf:id="age"
 jsf:value="#{registrationBean.age}"/>
 </td>
 </tr>
 <tr>
 <td class="rightalign">
 Email Address:
 </td>
 <td class="leftalign">
 <input type="text" jsf:id="email"
 jsf:value="#{registrationBean.email}"
 placeholder="username@example.com"/>
 </td>
 </tr>
 <tr>
 <td></td>
 <td>
 <input type="submit" value="Submit" jsf:action="confirmation" />
</td>

Chapter 2

[105]

 </tr>
 </tbody>
 </table>
 </form>
 </body>
</html>

To make JSF interpret HTML tags, we need to add at least one JSF-specific
attribute to the tag—any JSF-specific attribute will do. These tags are defined in the
xmlns:jsf= "http://xmlns.jcp.org/jsf" namespace, which we need to add to
the page.

In our example, we transformed an HTML form into a JSF form by adding the
jsf:id and jsf:prependId attributes to the <form> tag. To every input field, we
added a jsf:id and jsf:value attribute. These JSF specific attributes let JSF know
that these tags should be treated as their JSF equivalents.

We can see in the preceding markup that we used JSF-specific <f:selectItem>
tags to set the options of our dropdown. One disadvantage of JSF HTML5-friendly
markup is that <option> tags inside a <select> tag are not interpreted correctly,
so we still need to use <f:selectItem> to set the options of a dropdown.

When we execute our code, we can see our page rendered in the browser.

Developing Web Applications Using JavaServer Faces 2.2

[106]

Pass-through attributes
HTML5 added several new attributes to existing HTML tags. These new attributes
were not supported by JSF tags. Instead of updating JSF tags to support these new
attributes, the JSF specification team came up with an idea to "future-proof" JSF.
This new idea was pass-through attributes.

Pass-through attributes are attributes that are not interpreted by the JSF API,
but passed-through to the browser to be rendered in the generated HTML. By
incorporating this new feature in JSF 2.2, the JSF specification team immediately
allowed JSF to support all new HTML5 attributes, along with any new attributes
that might be added to HTML in the future.

In the previous section, where we developed a JSF view using HTML5, we used the
new placeholder HTML5 tag. This tag, as its name implies, places some placeholder
text in a text field, giving the user a hint of the format expected for the input. This
is a good example of a tag that was added to HTML5 and can be used in JSF pages
developed using JSF specific tags:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html"
 xmlns:f="http://xmlns.jcp.org/jsf/core"
 xmlns:p="http://xmlns.jcp.org/jsf/passthrough">
 <h:head>
 <title>Registration</title>
 <h:outputStylesheet library="css" name="styles.css"/>
 </h:head>
 <h:body>
 <h3>Registration Page</h3>
 <h:form>
 <h:panelGrid columns="3"
 columnClasses="rightalign,leftalign,leftali
gn">

 <!-- Additional markup removed since it is not
 relevant to the discussion -->

 <h:outputLabel value="Email Address:" for="email"/>
 <h:inputText id="email" label="Email Address"
 required="true"

Chapter 2

[107]

 p:placeholder="username@example.com"
 value="#{registrationBean.email}">
 <f:validator validatorId="emailValidator"/>
 </h:inputText>
 <h:message for="email" />

 <h:panelGroup/>
 <h:commandButton id="register" value="Register"
 action="confirmation" />
 </h:panelGrid>
 </h:form>
 </h:body>
</html>

As we can see in this example, we need to add the xmlns:jsf= "http://xmlns.
jcp.org/jsf/passthrough" namespace to our JSF page in order to use pass-
through attributes. We can then use any arbitrary attributes with our JSF-specific tags
by simply prefixing it with the prefix we defined for the namespace (in our case, p).

Summary
In this chapter, we saw how NetBeans can help us easily create new JSF projects by
automatically adding all the required libraries.

We saw how we can quickly create JSF pages by taking advantage of NetBeans' code
completion feature. Additionally, we saw how we can significantly save time and
effort by allowing NetBeans to generate JSF 2 templates, including the necessary
CSS to easily create fairly elegant pages. We also saw how NetBeans can help us
develop JSF 2 custom components.

We also covered some new JSF 2.2 features such as resource library contracts,
which allow us to easily develop "themable" applications, as well as the outstanding
HTML5 support provided by JSF 2.2—specifically the ability to develop JSF views
using HTML5 markup and the ability to use arbitrary HTML5 attributes in JSF
markup by employing pass-through attributes.

JSF Component Libraries
In the previous chapter, we discussed how to develop web applications using
standard JSF components. One nice feature of JSF is its extensibility. It allows
application developers to develop their own JSF components. Several ready-made
JSF component libraries exist, which makes the job of application developers easier.
By far, the three most popular JSF component libraries are PrimeFaces, ICEfaces, and
RichFaces. NetBeans includes out-of-the-box support for all three.

In this chapter, we will cover the following topics:

•	 Using PrimeFaces components in our JSF applications
•	 Using ICEfaces components in our JSF applications
•	 Using RichFaces components in our JSF applications

Using PrimeFaces components in our
JSF applications
PrimeFaces is a very popular JSF component library, as it allows us to develop
elegant and modern-looking web applications with little effort. To use PrimeFaces in
our JSF applications, create a new Web Application project as usual. When selecting
JavaServer Faces as a framework, click on the Components tab and click on the
checkbox labeled PrimeFaces.

JSF Component Libraries

[110]

This step is depicted in the following screenshot:

On selecting PrimeFaces as a JSF component library, you might see an
attention message that says JSF library PrimeFaces not set up properly:
Searching valid Primefaces library. Please wait... near the bottom of the
window. Wait a few seconds, and the message should go away.

Right off the bat, NetBeans generates a PrimeFaces application that we can use as a
starting point. We can immediately run the generated application to see it in action.

Chapter 3

[111]

As we can see, the generated application is much more elegant than the JSF
applications we developed in the previous chapter. Web applications developed
using PrimeFaces render this way without any additional effort (no need to use CSS),
since all the CSS and JavaScript is provided by PrimeFaces.

Let's examine the generated welcomePrimefaces.xhtml file:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:p="http://primefaces.org/ui">

 <f:viewcontentType="text/html">
 <h:head>
 <f:facet name="first">
 <meta content='text/html; charset=UTF-8'
 http-equiv="Content-Type"/>
 <title>PrimeFaces</title>
 </f:facet>
 </h:head>
 <h:body>

 <p:layoutfullPage="true">

 <p:layoutUnit position="north" size="100"
resizable="true"
 closable="true" collapsible="true">
 Header
 </p:layoutUnit>

 <p:layoutUnit position="south" size="100"
closable="true"
 collapsible="true">
 Footer
 </p:layoutUnit>

 <p:layoutUnit position="west" size="175" header="Left"
collapsible="true">
 <p:menu>
 <p:submenu label="Resources">
 <p:menuitem value="Demo"

JSF Component Libraries

[112]

 url=
 "http://www.primefaces.org/showcase-labs/ui/
home.jsf"
 />
 <p:menuitem value="Documentation"
 url="http://www.primefaces.org/
documentation.html"
 />
 <p:menuitem value="Forum"
 url="http://forum.primefaces.org/" />
 <p:menuitem value="Themes"
 url="http://www.primefaces.org/themes.
html" />

 </p:submenu>

 </p:menu>
 </p:layoutUnit>

 <p:layoutUnit position="center">
 Welcome to PrimeFaces
 </p:layoutUnit>

 </p:layout>
 </h:body>
 </f:view>
</html>

To use PrimeFaces components in our JSF pages, we need to use the
xmlns:p="http://primefaces.org/ui" namespace. NetBeans automatically
adds this namespace to the generated page.

Notice that the rendered page is divided into sections (a header, footer, left hand-
side menu, and the main content area of the application). Normally, we would have
to use HTML <div> tags and CSS to create a layout like this. PrimeFaces, however,
includes the <p:layout> component that takes care of all the difficult tasks for us.

Inside <p:layout>, we need to have some nested <p:layoutUnit> components to
create specific sections for the page. The <p:layoutUnit> element has a position
attribute that we can use to specify what section the layout unit corresponds to:

•	 A value of north will result in the layout unit being rendered at the top
of the page. The width of the section will automatically cover all available
horizontal space in the browser window. This value is used to generate the
Header section in the NetBeans-generated markup.

Chapter 3

[113]

•	 A value of west will render to the left of the page. The height of the section
will automatically cover all available vertical space. This value is used on the
Left section on the NetBeans-generated markup.

•	 A value of south will result in the layout unit being rendered at the
bottom of the page. The width of the section will span through all available
horizontal space. This value is used to generate the Footer section on the
NetBeans-generated markup.

•	 A value of center will result in a layout that renders in the center of the
page. Both the width and the height of the section will expand to take all
available horizontal and vertical space, respectively.

•	 We can also use a value of east for the position attribute of
<p:layoutUnit> (not used in the NetBeans-generated markup). This value
will generate a section rendered on the right side of the page, with its vertical
size expanding to take all available vertical space.

The <p:layoutUnit> component has a size attribute that we can use to set the
width (for a position attribute value of east or west) or height (for a position
attribute value of north or south) of the layout unit. When using center as the
value of the position attribute, the value of the size attribute is ignored and the
layout unit expands to take all available vertical and horizontal space.

The <p:layoutUnit> component also has resizable, closeable, and collapsible
attributes; setting these attributes to true allows us to resize, close, and collapse the
rendered section, respectively.

The NetBeans-generated PrimeFaces markup also employs the <p:menu> PrimeFaces
component. This component allows us to easily create menus to aid the users
navigate though our application.

We can use one or more nested <p:submenu> components inside <p:menu>. This tag
allows us to group related menu items together. The <p:submenu> component has
a label attribute we can use to label our menu items. In the NetBeans-generated
markup, a <p:submenu> component with a label of Resources is used. We can add
one or more <p:menuitem> tags inside <p:submenu>, one for each menu item. The
<p:submenu> component has a value attribute, whose value will render as the text
of the menu item, and a url attribute that we can use to set the URL of the page the
menu will navigate to.

PrimeFaces has drop-in replacements for most standard JSF components, for
example, there is a PrimeFaces-specific <p:inputText> tag that is analogous to the
standard <h:inputText> tag. This fact makes porting standard JSF applications to
PrimeFaces very easy, mostly by replacing the h: prefix of standard JSF applications
with the PrimeFaces-specific p: prefix.

JSF Component Libraries

[114]

The following screenshot shows a PrimeFaces-specific version of the registration
application we developed in the previous chapter:

As we can see, the application renders beautifully and all we had to do was replace
standard JSF components with their PrimeFaces-specific counterparts. Notice that
an asterisk is automatically added to the label for all the required fields.

The following snippet shows the relevant parts of the markup to generate the
registration page:

<p:messages/>
<h:form>
 <p:panelGrid columns="2"
 columnClasses="rightalign,leftalign">
 <p:outputLabel value="Salutation: " for="salutation"/>
 <p:selectOneMenu id="salutation" label="Salutation"
 value="#{registrationBean.
salutation}">
 <f:selectItem itemLabel="" itemValue=""/>
 <f:selectItem itemLabel="Mr." itemValue="MR"/>
 <f:selectItem itemLabel="Mrs." itemValue="MRS"/>
 <f:selectItem itemLabel="Miss" itemValue="MISS"/>
 <f:selectItem itemLabel="Ms" itemValue="MS"/>
 <f:selectItem itemLabel="Dr." itemValue="DR"/>
 </p:selectOneMenu>
 <p:outputLabel value="First Name:" for="firstName"/>
 <p:inputText id="firstName" label="First Name"
 required="true"
 value="#{registrationBean.firstName}" />
 <p:outputLabel value="Last Name:" for="lastName"/>
 <p:inputText id="lastName" label="Last Name"
 required="true"

Chapter 3

[115]

 value="#{registrationBean.lastName}" />
 <p:outputLabel for="age" value="Age:"/>
 <p:inputText id="age" label="Age" size="2"
 value="#{registrationBean.age}"/>
 <p:outputLabel value="Email Address:" for="email"/>
 <p:inputText id="email" label="Email Address"
 required="true"
 value="#{registrationBean.email}">
 <f:validatorvalidatorId="emailValidator"/>
 </p:inputText>
 <h:panelGroup/>
 <p:commandButton id="register" value="Register"
 action="confirmation"
ajax="false"/>
 </p:panelGrid>
</h:form>

As we can see, for the most part, all we had to do was to replace JSF-specific tags
with their PrimeFaces-specific counterparts. For aesthetic reasons, we also changed
the number of columns of <p:panelGrid> to two (as opposed to three in the original
<h:panelGrid> tag) and replaced the <h:message> tags in the original page with a
top-level <p:messages> tag.

By default, PrimeFaces command buttons are Ajax enabled. So, for this particular
example, we explicitly disabled Ajax on our command button by setting its ajax
attribute to false.

Another nice feature of PrimeFaces is that validation messages are nicely
styled and all fields that fail validation are highlighted in red, as shown in
the following screenshot:

JSF Component Libraries

[116]

In this section, we provided a brief introduction to PrimeFaces. There are many
other PrimeFaces custom components and features we didn't cover. You can visit
http://www.primefaces.org for more information.

Using ICEfaces components in our JSF
applications
ICEfaces is another popular JSF library that simplifies JSF application development.
To use ICEfaces in our JSF applications, create a new web application project. When
selecting JavaServer Faces as a framework, click on the Components tab and click
on the checkbox labeled ICEfaces.

Unlike PrimeFaces, the ICEfaces libraries are not included with NetBeans.
Therefore, we need to download them from http://www.icesoft.com
and create a new library.

http://www.primefaces.org
http://www.icesoft.com

Chapter 3

[117]

The file we need to download is the latest stable binary distribution of ICEfaces (the
filename was ICEfaces-3.3.0-bin.zip at the time of writing).

You need to register on the ICESoft website (www.icesoft.org)
to download the ICEfaces libraries.

After extracting the downloaded ZIP file, the JAR files we need to add to our library
can be found under icefaces/lib.

To create a new ICEfaces library in NetBeans, click on the More... button next to
ICEfaces. The following dialog window pops up:

www.icesoft.org

JSF Component Libraries

[118]

Although the dialog indicates icefaces-ace.jar is optional, it is
necessary for the NetBeans-generated markup to work properly.

We then need to click on the Create ICEfaces library button, give the library an
appropriate name (like ICEfaces), and click on OK.

After clicking on OK, we need to locate the ICEfaces JAR files on the filesystem by
clicking on the Add JAR/Folder... button to add them to our library.

Chapter 3

[119]

After we click on OK, the NetBeans ICEfaces library is created.

Now, click on OK and click on Finish on the new JSF project wizard to create our
new project.

Like with PrimeFaces, when using ICEfaces, NetBeans generates a sample ICEfaces
application that we can use as a starting point.

The generated page provides links to additional ICEfaces resources, as shown in the
following code:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:icecore="http://www.icefaces.org/icefaces/core"

JSF Component Libraries

[120]

 xmlns:ace="http://www.icefaces.org/icefaces/components">
 <h:head>
 <title>ICEfaces Welcome Page</title>
 <!-- This line is only for ICE component, remove it if no ice
component is used in this page.-->
 <link rel="stylesheet" type="text/css" href="./xmlhttp/css/
rime/rime.css"/>
 </h:head>
 <h:body>
 <h:form>
 <ace:panel header="Welcome to ICEfaces">
 <h:panelGrid columns="1">
 <!-- NOTICE -To run this page you must have
also ICEfaces ACE components library on your classpath (project
dependencies). -->
 <ace:linkButton id="linkButton1"
 value="ICEfaces Overview" href="http://wiki.
icesoft.org/display/ICE/ICEfaces+Overview">
 </ace:linkButton>
 <ace:linkButton id="linkButton2"
 value="General Documentation" href="http://
wiki.icesoft.org/display/ICE/ICEfaces+Documentation">
 </ace:linkButton>
 <ace:linkButton id="linkButton3"
 value="ICEfaces Demos" href="http://www.icesoft.
org/demos/icefaces-demos.jsf">
 </ace:linkButton>
 <ace:linkButton id="linkButton4" value="Tutorials"
href="http://www.icesoft.org/community/tutorials-samples.jsf">
 </ace:linkButton>
 <ace:linkButton id="linkButton5"
 value="ACE components" href="http://wiki.
icesoft.org/display/ICE/ACE+Components"></ace:linkButton>
 <ace:linkButton id="linkButton6"
 value="ICE components" href="http://wiki.
icesoft.org/display/ICE/ICE+Components">
 </ace:linkButton>
 <!-- You can also use ICE components. Adds ICE
namespace in that case: xmlns:ice="http://www.icesoft.com/icefaces/
component" -->
 <!-- <ice:outputLink id="aceLink" value="http://
wiki.icesoft.org/display/ICE/ACE+Components" target="_blank">ACE
components</ice:outputLink> -->
 <!-- <ice:outputLink id="iceLink" value="http://
wiki.icesoft.org/display/ICE/ICE+Components" target="_blank">ICE
components</ice:outputLink> -->
 </h:panelGrid>
 </ace:panel>

Chapter 3

[121]

 </h:form>
 </h:body>
</html>

ICEfaces includes two sets of components: the ICE components,
whose functionality is primarily implemented as server-side code
with limited JavaScript, and the newer ACE components that are
implemented using a combination of server-side and client-side
code. According to ICESoft (the company behind ICEfaces), ICE
components should be used when we need to support legacy
browsers, when migrating from older ICEfaces versions, or when
we need to minimize JavaScript rendering or data processing. ACE
components should be used to leverage modern browsers.

The NetBeans-generated ICEfaces application uses only ICEfaces ACE components
and standard JSF components. An ICEfaces <ace:panel> tag is used to generate the
panel enclosing the links on the rendered page. This tag has a header attribute we
can use, appropriately enough, to render a header for our panel.

Inside the <ace:panel> tag, there are some <ace:linkButton> tags that are used
to render the links on the page. The <ace:linkButton> tag provides functionality
similar to the standard JSF <h:outputLink> and <h:commandLink> tags. In the
NetBeans-generated markup, the button behaves like a standard <h:outputLink>
component. The URL that the generated link navigates to is defined in its href
attribute. To make <ace:linkButton> behave as a standard JSF command link,
we use its action attribute just like we do with.

The following screenshot illustrates an ICEfaces version of our sample registration
application:

JSF Component Libraries

[122]

The following code snippet shows the relevant markup for the ICEfaces-specific
registration application:

 <h:form>
 <ace:panel header="Registration">
 <ace:messages/>
 <h:panelGrid columns="2"
 columnClasses="rightalign,leftalign">
 <h:outputLabel value="Salutation: "
for="salutation"/>
 <ace:selectMenu id="salutation" label="Salutation"
 value="#{registrationBean.
salutation}" >
 <f:selectItem itemLabel="" itemValue=""/>
 <f:selectItem itemLabel="Mr." itemValue="MR"/>
 <f:selectItem itemLabel="Mrs."
itemValue="MRS"/>
 <f:selectItem itemLabel="Miss"
itemValue="MISS"/>
 <f:selectItem itemLabel="Ms" itemValue="MS"/>
 <f:selectItem itemLabel="Dr." itemValue="DR"/>
 </ace:selectMenu>

 <h:outputLabel value="First Name:"
for="firstName"/>
 <h:inputText id="firstName" label="First Name"
 required="true"
 value="#{registrationBean.firstName}"
/>
 <h:outputLabel value="Last Name:" for="lastName"/>
 <h:inputText id="lastName" label="Last Name"
 required="true"
 value="#{registrationBean.lastName}"
/>
 <h:outputLabel for="age" value="Age:"/>
 <ace:sliderEntry id="age"
 value="#{registrationBean.age}"
 min="0" max="100" showLabels="true"
/>
 <h:outputLabel value="Email Address:"
for="email"/>
 <h:inputText id="email" label="Email Address"
 required="true"
 value="#{registrationBean.email}">
 <f:validatorvalidatorId="emailValidator"/>

Chapter 3

[123]

 </h:inputText>
 <h:panelGroup/>
 <ace:pushButton id="register" value="Register"
 action="confirmation" />
 </h:panelGrid>
 </ace:panel>
 </h:form>

In our example, we use the previously explained <ace:panel> component
to encapsulate our form's input fields. Similar to PrimeFaces, ICEfaces has an
<ace:messages> component that renders messages nicely styled; therefore, we
added this component to our page to avoid styling the JSF messages.

ICEfaces does not have replacements for <h:outputText> or <h:inputText>, so we
simply used these standard components in our ICEfaces application:

•	 The <ace:selectMenu> component is a replacement for the standard
<h:selectOneMenu> component. It renders as a dropdown and works pretty
much the same way as the standard <h:selectOneMenu>.

•	 The <ace:sliderEntry> component allows us to enter numeric values by
moving a slider with the mouse.

•	 The <ace:pushButton> component is equivalent to the standard JSF
<h:commandButton> component. When the user clicks on the button,
the method specified in its action attribute is automatically executed.

In this section, we only scratched the surface of what is available with ICEfaces.
For more information, you can visit the ICEfaces documentation wiki page at
http://wiki.icesoft.org/display/ICE/ICEfaces+Documentation.

http://wiki.icesoft.org/display/ICE/ICEfaces+Documentation

JSF Component Libraries

[124]

Using RichFaces components in our JSF
applications
The third JSF component library we can select when starting a new Java web
application in NetBeans is RichFaces. NetBeans does not bundle the RichFaces
JAR files out of the box; therefore, like with ICEfaces, we need to download the
RichFaces libraries and create a NetBeans library from them.

The latest stable version of RichFaces can be downloaded from http://www.jboss.
org/richfaces/download/stable.html.

http://www.jboss.org/richfaces/download/stable.html
http://www.jboss.org/richfaces/download/stable.html

Chapter 3

[125]

We need to click on the Download link on the RichFaces final distribution (ZIP) row
to get the latest version of RichFaces. Once we extract the ZIP file, the files we need
to add to the NetBeans library will have names similar to the following (exact name
will vary depending on the RichFaces version):

•	 richfaces-components-a4j-4.5.1.Final.jar

•	 richfaces-components-rich-4.5.1.Final.jar

•	 richfaces-core-4.5.1.Final.jar

•	 RichFaces also has some external dependencies that can be found under the
lib directory of the extracted ZIP file (exact names may vary depending on
the RichFaces version):

°° guava-18.0.jar

°° sac-1.3.jar

°° cssparser-0.9.14.jar

Once we have downloaded RichFaces and its external dependencies, we are ready to
create the RichFacesNetBeans library.

JSF Component Libraries

[126]

After we create the RichFacesNetBeans library, our project is ready and NetBeans
generates a sample RichFaces application that we can use as a starting point.

Like with PrimeFaces and ICEfaces, the RichFaces page generated by NetBeans
provides links to additional RichFaces resources, as shown in the following code:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:rich="http://richfaces.org/rich"
 xmlns:h="http://java.sun.com/jsf/html">
 <h:head>
 <title>Richfaces Welcome Page</title>
 </h:head>
 <h:body>
 <rich:panel header="Welcome to Richfaces">
 RichFaces is an advanced UI component framework for easily
integrating Ajax capabilities into business applications using JSF.
Check out the links below to learn more about using RichFaces in your
application.

 <h:outputLink value="http://richfaces.org" >
 Richfaces Project Home Page</h:outputLink>

Chapter 3

[127]

 <h:outputLink
 value="http://showcase.richfaces.org" >
 Richfaces Showcase</h:outputLink>

 <h:outputLink value="https://community.jboss.org/en/
richfaces?view=discussions" >
 User Forum
 </h:outputLink>

 <h:outputLink value="http://www.jboss.org/richfaces/
docs" >Richfaces documentation...
 </h:outputLink>

 <h:outputLink value="http://docs.jboss.org/
richfaces/latest_4_X/Developer_Guide/en-US/html_single/" >
 Development Guide</h:outputLink>

 <h:outputLink value="http://docs.jboss.org/
richfaces/latest_4_X/Component_Reference/en-US/html/" >
 Component Reference</h:outputLink>

 <h:outputLink value="http://docs.jboss.org/
richfaces/latest_4_X/vdldoc/" >
 Tag Library Docs</h:outputLink>

 </rich:panel>
 </h:body>
</html>

The only RichFaces-specific tag used in the NetBeans-generated RichFaces page is
the <rich:panel> tag, which is used to create the panel containing the text and
links on the page.

JSF Component Libraries

[128]

Porting our registration page to RichFaces results in a page that looks like the
following screenshot:

The relevant markup for the RichFaces-specific version of our application looks
like this:

 <rich:panel header="Registration">
 <h:formprependId="false">
 <h:panelGrid columns="3"
 columnClasses="rightalign,leftalign,left
align">
 <h:outputLabel value="Salutation: " for="salutati
on"/>
 <rich:select id="salutation"
 value="#{registrationBean.
salutation}">
 <f:selectItem itemLabel="" itemValue=""/>
 <f:selectItem itemLabel="Mr." itemValue="MR"/>
 <f:selectItem itemLabel="Mrs."
itemValue="MRS"/>
 <f:selectItem itemLabel="Miss"
itemValue="MISS"/>
 <f:selectItem itemLabel="Ms" itemValue="MS"/>
 <f:selectItem itemLabel="Dr." itemValue="DR"/>
 </rich:select>
 <rich:message for="salutation"/>

 <h:outputLabel value="First Name:"
for="firstName"/>

Chapter 3

[129]

 <h:inputText id="firstName" label="First Name"
 required="true"
 value="#{registrationBean.firstName}"
/>
 <rich:message for="firstName" />
 <h:outputLabel value="Last Name:" for="lastName"/>
 <h:inputText id="lastName" label="Last Name"
 required="true"
 value="#{registrationBean.lastName}"
/>
 <rich:message for="lastName" />

 <h:outputLabel for="age" value="Age:"/>
 <rich:inputNumberSpinner id="age" label="age"

value="#{registrationBean.age}"
 minValue="0"
maxValue="110"/>
 <rich:message for="age"/>

 <h:outputLabel value="Email Address:"
for="email"/>
 <h:inputText id="email" label="Email Address"
 required="true"
 value="#{registrationBean.email}">
 <f:validatorvalidatorId="emailValidator"/>
 </h:inputText>
 <rich:message for="email" />

 <h:panelGroup/>
 <h:commandButton id="register" value="Register"
 action="confirmation" />
 </h:panelGrid>
 </h:form>
 </rich:panel>

We encapsulate our form inside a <rich:panel> tag so that it is rendered
inside a panel. The <rich:select> tag is a RichFaces-specific component that
renders as a drop-down list. One advantage of <rich:select> over regular JSF
<h:selectOneMenu> is that <rich:select> can be configured as a combobox, in
which case it will accept typed input. To configure <rich:select> to be used as
a combobox, set its enableManualInput attribute to true.

The <rich:inputNumberSpinner> component allows the user to enter numeric
input either by directly typing it in or by clicking on arrows.

JSF Component Libraries

[130]

RichFaces provides both a <rich:messages> and a <rich:message> component,
which are analogous to standard JSF <h:messages> and <h:message>. The
RichFaces-specific versions render messages nicely formatted. The following
screenshot illustrates how the RichFaces <rich:message> component renders
validation messages:

Once again, we only scratched the surface of what RichFaces offers. For more
information on RichFaces, refer to the RichFaces documentation at http://www.
jboss.org/richfaces/docs.

Summary
In this chapter, we covered NetBeans support for three of the most popular JSF
component libraries: PrimeFaces, ICEfaces, and RichFaces.

We covered how to develop an application using the bundled PrimeFaces library
included with NetBeans. We also discussed how to configure NetBeans to be able
to develop JSF applications using the ICEfaces and RichFaces component libraries.
Finally, we discussed how NetBeans generates a skeleton application that we can
use as a starting point for our PrimeFaces, ICEfaces, or RichFaces applications.

http://www.jboss.org/richfaces/docs
http://www.jboss.org/richfaces/docs

Interacting with Databases
through the Java
Persistence API

The Java Persistence API (JPA) is an object-relational mapping (ORM) API. ORM
tools help us to automate the mapping of Java objects to relational database tables.
Earlier versions of J2EE used Entity Beans as the standard approach for ORM. Entity
Beans attempted to always keep the data in memory synchronized with the database
data, a good idea in theory, however, in practice this feature resulted in poorly
performing applications.

Several ORM APIs were developed to overcome the limitations of Entity Beans, such
as Hibernate, iBatis, Cayenne, and TopLink, among others.

Java EE 5 deprecated Entity Beans in favor of JPA. JPA took ideas from several ORM
tools and incorporated them in the standard. As we will see in this chapter, NetBeans
has several features that make development with JPA a breeze.

The following topics will be covered in this chapter:

•	 Creating our first JPA entity
•	 Interacting with JPA entities using EntityManager
•	 Generating JPA entities from an existing database schema
•	 JPA named queries and Java Persistence Query Language (JPQL)
•	 Entity relationships
•	 Generating complete JSF applications from JPA entities

Interacting with Databases through the Java Persistence API

[132]

Creating our first JPA entity
JPA entities are Java classes whose fields are persisted to a database by the JPA API.
These Java classes are Plain Old Java Objects (POJOs), and as such, they don't need
to extend any specific parent class or implement any specific interface. A Java class is
designated as a JPA entity by decorating it with the @Entity annotation.

In order to create and test our first JPA entity, we will create a new web application
using the JavaServer Faces framework. In this example, we will name our application
jpaweb, and (as with all of our examples) we will use the bundled GlassFish
application server.

Refer to Chapter 2, Developing Web Applications Using JavaServer Faces
2.2, for instructions on creating a new JSF project.

To create a new JPA entity, select the Persistence category from the new file dialog
and select Entity Class as the file type.

Chapter 4

[133]

After doing so, NetBeans presents the New Entity Class wizard.

At this point, we should specify the values for the Class Name and Package fields
(Customer and com.ensode.jpaweb in our example).

Projects using JPA require a persistence unit. This persistence unit is defined in a
file called persistence.xml. When we create our first JPA entity for the project,
NetBeans detects that no persistence.xml exists and automatically checks the
checkbox labeled Create Persistence Unit. The next step in the wizard allows us to
enter the information necessary to create the persistence unit. This is shown in the
following screenshot:

Interacting with Databases through the Java Persistence API

[134]

The Provider and Database wizard will suggest a name for our persistence unit;
in most cases the default can be safely accepted.

JPA is a specification for which several implementations exist. NetBeans supports
several JPA implementations, including EclipseLink, TopLink Essentials, Hibernate,
KODO, and OpenJPA. Since the bundled GlassFish application server includes
EclipseLink as its default JPA implementation, it makes sense to take this default
value for the Persistence Provider field when deploying our application to GlassFish.

Before we can interact with a database from any Java EE application, a database
connection pool and data source need to be created in the application server.

A database connection pool contains connection information that allows us to connect
to our database, such as the server name, port, and credentials. The advantage of
using a connection pool instead of directly opening a JDBC connection to a database
is that database connections in a connection pool are never closed, they are simply
allocated to applications as they need them. This improves performance, since
the operations of opening and closing database connections are expensive in terms
of performance.

Data sources allow us to obtain a connection from a connection pool, and then invoke
its getConnection() method to obtain a database connection from a connection pool.
When dealing with JPA, we don't need to directly obtain a reference to a data source,
it is all done automatically by the JPA API. However, we still need to indicate the data
source to use in the application's persistence unit.

NetBeans comes with a few data sources and connection pools preconfigured. We
can use one of these preconfigured resources for our application. However, NetBeans
also allows us to create these resources "on the fly", which is what we will be doing
in our example.

To create a new data source, we need to select the New Data Source... item from the
Data Source combobox.

Chapter 4

[135]

A data source needs to interact with a database connection pool. NetBeans comes
preconfigured with a few connection pools out of the box. However, as with data
sources, it allows us to create a new connection pool "on demand". In order to do
this, we need to select the New Database Connection... item from the Database
Connection combobox.

NetBeans includes JDBC drivers for a few relational database management systems
(RDBMS) such as JavaDB, MySQL, PostgreSQL out of the box. JavaDB is bundled
with both GlassFish and NetBeans; therefore, we selected JavaDB for our example to
avoid installing an external RDBMS.

For RDBMS systems that are not supported out of the box, we need to
obtain a JDBC driver and let NetBeans know of its location by selecting
New Driver from the Driver Name combobox. Then, we need to navigate
to the location of the JAR file that contains the JDBC driver. Consult your
RDBMS documentation for details.

Interacting with Databases through the Java Persistence API

[136]

Click on Next > to enter your connection details as shown in the following screenshot:

JavaDB is installed in our workstation. Therefore, use localhost as the server name.
By default, JavaDB listens to port 1527, so that is the port we specify in the URL. We
wish to connect to a database called jpaintro, so we specify it as the database name.

Every JavaDB database contains a schema named APP, since by default each user
uses a schema named after his/her own login name. The easiest way to get going is
to create a user named APP and selecting a password for this user.

Since the jpaintro database does not exist yet, we need to create it. We can do this
by clicking on Connection Properties and entering a property named create with
a value true.

Chapter 4

[137]

In the next step in the wizard, we need to select a schema to use for our application.
The APP schema is the one typically used by applications using JavaDB as
their RDBMS.

In the next step, NetBeans asks us to enter a descriptive name for our connection.

Interacting with Databases through the Java Persistence API

[138]

We can choose to do so or simply accept the default connection name. Once we have
created our new data source and connection pool, we can continue configuring our
persistence unit.

It is a good idea to leave the Use Java Transaction APIs checkbox checked. This will
instruct our JPA implementation to use the Java Transaction API (JTA) to allow the
application server to manage transactions. If we uncheck this box, we will need to
manually write code to manage transactions.

Most JPA implementations allow us to define a table generation strategy. We can
instruct our JPA implementation to create tables for our entities when we deploy
our application, to drop the tables and then regenerate them when our application
is deployed, or to not create any tables at all. NetBeans allows us to specify the table
generation strategy for our application by clicking on the appropriate value in the
Table Generation Strategy radio button group.

When working with a new application, it is a good idea to select
the Drop and Create table generation strategy in the wizard.
This will allow us to add, remove, and rename fields in our JPA
entity at will, without having to make the same changes in the
database schema. When selecting this table generation strategy,
tables in the database schema will be dropped and recreated
every time we deploy our application. Therefore, any data
previously persisted will be lost.

Chapter 4

[139]

Once we have created our new data source, database connection, and persistence
unit, we are ready to create our new JPA entity.

We can do so by simply clicking on the Finish button. At this point, NetBeans
generates the source for our JPA entity.

JPA allows the primary field of a JPA entity to map to any column type
(VARCHAR, NUMBER, and so on). It is a best practice to have a numeric
surrogate primary key, that is, a primary key that serves only as an
identifier and has no business meaning in the application. Selecting the
default Primary Key Type of Long will allow a wide range of values to be
available for the primary keys of our entities.

The Customer class has some important things to consider, as highlighted in the
following code:

package com.ensode.jpaweb;

import java.io.Serializable;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;

@Entity
public class Customer implements Serializable {
 private static final long serialVersionUID = 1L;
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private Long id;

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 //Other generated methods (equals(), hashCode(), toString())
omitted for brevity
 }

Interacting with Databases through the Java Persistence API

[140]

As we can see, a JPA entity is a standard Java object. There is no need to extend any
special class or implement any special interface. What differentiates a JPA entity
from other Java objects are a few JPA-specific annotations.

The @Entity annotation is used to indicate that our class is a JPA entity. Any object
we want to persist to a database via JPA must be annotated with this annotation.

The @Id annotation is used to indicate what field in our JPA entity is its primary key.
The primary key is a unique identifier for our entity. No two entities may have the
same value for their primary key field. This annotation can be used on the field that
serves as a primary key; this is the strategy that the NetBeans wizard uses. It is also
correct to annotate the getter method for the entity's primary key field.

The @Entity and the @Id annotations are the bare minimum two annotations that
a class needs in order to be considered a JPA entity. JPA allows primary keys to
be automatically generated; in order to take advantage of this functionality, the
@GeneratedValue annotation can be used. As we can see, the NetBeans-generated
JPA entity uses this annotation. This annotation is used to indicate the strategy to use
to generate primary keys. All possible primary key generation strategies are listed in
the following table:

Primary key generation strategy Description
GenerationType.AUTO This indicates that the persistence provider will

automatically select a primary key generation
strategy. This is used by default if no primary key
generation strategy is specified.

GenerationType.IDENTITY This indicates that an identity column in the
database table the JPA entity maps to must be used
to generate the primary key value.

GenerationType.SEQUENCE This indicates that a database sequence should be
used to generate the entity's primary key value.

GenerationType.TABLE This indicates that a database table should be used
to generate the entity's primary key value.

In most cases, the GenerationType.AUTO strategy works properly, so it is almost
always used. For this reason, the New Entity Class wizard uses this strategy.

When using the sequence or table generation strategies, we might
have to indicate the sequence or table used to generate the primary
keys. These can be specified by using the @SequenceGenerator
and @TableGenerator annotations, respectively. Refer to the Java
EE 7 JavaDoc at http://download.oracle.com/javaee/7/
api/ for details.

http://download.oracle.com/javaee/7/api/
http://download.oracle.com/javaee/7/api/

Chapter 4

[141]

Adding persistent fields to our entity
At this point, our JPA entity contains a single field: its primary key. This is
admittedly not very useful. We need to add a few fields to be persisted to the
database, as shown in the following code:

package com.ensode.jpaweb;

import java.io.Serializable;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;

@Entity
public class Customer implements Serializable {

 private static final long serialVersionUID = 1L;
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private Long id;
 private String firstName;
 private String lastName;

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

Interacting with Databases through the Java Persistence API

[142]

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }
}

In this modified version of our JPA entity, we added two fields to be persisted to the
database: firstName and lastName, which will be used to store the user's first name
and last name respectively. JPA entities need to follow standard JavaBean coding
conventions. This means that they must have a public constructor that takes no
arguments (one is automatically generated by the Java compiler if we don't specify
any other constructors), and all fields must be private and accessed via public getter
and setter methods.

Automatically generating getters and setters
In NetBeans, getter and setter methods can be generated automatically:
simply declare new fields as usual, use the keyboard shortcut Alt + Insert,
select Getter and Setter from the resulting pop-up window, click on
the checkbox next to the class name to select all fields, and click on the
Generate button.

Before we can use JPA to persist our entity's fields into our database, we need to
write some additional code.

Creating a data access object
It is a good idea to follow the data access object (DAO) design pattern whenever we
write code that interacts with a database. The DAO design pattern keeps all database
access functionality in DAO classes. This creates a clear separation of concerns,
leaving other layers in our application, such as the user interface logic and the
business logic, free of any persistence logic.

NetBeans can help us generate JPA controller classes from existing entities. These
JPA controller classes follow the DAO design pattern. To generate a JPA controller
class, we simply need to go to File | New, select the Persistence category, and select
the JPA Controller Classes from Entity Classes file type from the New File dialog.

Chapter 4

[143]

In the next step in the wizard, we need to select the entity classes we wish to
generate JPA controller classes for.

Interacting with Databases through the Java Persistence API

[144]

Then, we need to specify the project and package for our JPA controller classes.

After clicking on Finish, our JPA controller class is successfully generated,
as shown here:

package com.ensode.jpaweb;
//imports omitted
public class CustomerJpaController implements Serializable {

 public CustomerJpaController(UserTransaction utx,
 EntityManagerFactory emf) {
 this.utx = utx;
 this.emf = emf;
 }
 private UserTransaction utx = null;
 private EntityManagerFactory emf = null;

 public EntityManager getEntityManager() {
 return emf.createEntityManager();
 }

 public void create(Customer customer) throws
 RollbackFailureException, Exception {
 EntityManager em = null;
 try {

Chapter 4

[145]

 utx.begin();
 em = getEntityManager();
 em.persist(customer);
 utx.commit();
 } catch (Exception ex) {
 try {
 utx.rollback();
 } catch (Exception re) {
 throw new RollbackFailureException(
 "An error occurred attempting to roll back the
transaction.",
 re);
 }
 throw ex;
 } finally {
 if (em != null) {
 em.close();
 }
 }
 }

 public void edit(Customer customer) throws
 NonexistentEntityException, RollbackFailureException, Exception
{
 EntityManager em = null;
 try {
 utx.begin();
 em = getEntityManager();
 customer = em.merge(customer);
 utx.commit();
 } catch (Exception ex) {
 try {
 utx.rollback();
 } catch (Exception re) {
 throw new RollbackFailureException(
 "An error occurred attempting to roll back the
transaction.",
 re);
 }
 String msg = ex.getLocalizedMessage();
 if (msg == null || msg.length() == 0) {
 Long id = customer.getId();
 if (findCustomer(id) == null) {
 throw new NonexistentEntityException(

Interacting with Databases through the Java Persistence API

[146]

 "The customer with id " + id
 + " no longer exists.");
 }
 }
 throw ex;
 } finally {
 if (em != null) {
 em.close();
 }
 }
 }

 public void destroy(Long id) throws NonexistentEntityException,
 RollbackFailureException, Exception {
 EntityManager em = null;
 try {
 utx.begin();
 em = getEntityManager();
 Customer customer;
 try {
 customer = em.getReference(Customer.class, id);
 customer.getId();
 } catch (EntityNotFoundException enfe) {
 throw new NonexistentEntityException(
 "The customer with id " + id
 + " no longer exists.", enfe);
 }
 em.remove(customer);
 utx.commit();
 } catch (Exception ex) {
 try {
 utx.rollback();
 } catch (Exception re) {
 throw new RollbackFailureException(
 "An error occurred attempting to roll back the
transaction.",
 re);
 }
 throw ex;
 } finally {
 if (em != null) {
 em.close();
 }

Chapter 4

[147]

 }
 }

 public List<Customer> findCustomerEntities() {
 return findCustomerEntities(true, -1, -1);
 }

 public List<Customer> findCustomerEntities(int maxResults,
 int firstResult) {
 return findCustomerEntities(false, maxResults, firstResult);
 }

 private List<Customer> findCustomerEntities(boolean all, int
maxResults,
 int firstResult) {
 EntityManager em = getEntityManager();
 try {
 CriteriaQuery cq = em.getCriteriaBuilder().createQuery();
 cq.select(cq.from(Customer.class));
 Query q = em.createQuery(cq);
 if (!all) {
 q.setMaxResults(maxResults);
 q.setFirstResult(firstResult);
 }
 return q.getResultList();
 } finally {
 em.close();
 }
 }

 public Customer findCustomer(Long id) {
 EntityManager em = getEntityManager();
 try {
 return em.find(Customer.class, id);
 } finally {
 em.close();
 }
 }

 public int getCustomerCount() {
 EntityManager em = getEntityManager();
 try {
 CriteriaQuery cq = em.getCriteriaBuilder().createQuery();
 Root<Customer> rt = cq.from(Customer.class);

Interacting with Databases through the Java Persistence API

[148]

 cq.select(em.getCriteriaBuilder().count(rt));
 Query q = em.createQuery(cq);
 return ((Long) q.getSingleResult()).intValue();
 } finally {
 em.close();
 }
 }

}

As we can see, NetBeans generates methods to create, read, update, and delete
JPA entities.

The method to create a new entity is called create(), and it takes an instance of
our JPA entity as its sole argument. This method simply invokes the persist()
method on EntityManager, which takes care of persisting the data on the JPA
entity to the database.

For read operation, several methods are generated. The findCustomer() method
takes the primary key of the JPA entity we wish to retrieve as its sole parameter,
invokes the find() method on EntityManager to retrieve the data from the
database, and returns an instance of our JPA entity. Several overloaded versions of
the findCustomerEntities() method are generated, and these methods allow us to
retrieve more than one JPA entity from the database. The version of this method that
does all the real work is the one that contains the following signature:

private List<Customer> findCustomerEntities(boolean all, int
maxResults,
 int firstResult)

The first parameter is a Boolean, which we can use to indicate if we want to retrieve
all values in the database; the second parameter allows us to specify the maximum
number of results we wish to retrieve; the last parameter allows us to indicate
the first result we wish to retrieve. This method uses the Criteria API that was
introduced in JPA 2.0 to build a query programmatically. If the value of the all
parameter is false, then this method sets the maximum number of results and the
first result by passing the appropriate parameters to the setMaxResults() and
setFirstResult() methods in the Query object.

Chapter 4

[149]

The edit() method is used to update existing entities. It takes an instance of our
JPA entity as its sole parameter. This method invokes the merge() method on
EntityManager, which updates the data in the database with the data in the JPA
entity it receives as a parameter.

The destroy() method is used to delete an entity. It takes the primary key of the
object to be deleted as its sole parameter. It first checks to see if the object exists in
the database. If it doesn't exist, this method throws an exception, otherwise it deletes
the corresponding row from the database by invoking the remove() method
on EntityManager.

At this point, we have all the code we need to persist our entity's properties in the
database, and all we need to do to perform CRUD (short for Create, Read, Update,
and Delete) operations involving our JPA entity is invoke these methods on the
generated JPA controller from our code.

Automated generation of JPA entities
In many projects, we will be working with an existing database schema created
by a database administrator. NetBeans can generate JPA entities from an existing
database schema, which saves us a lot of potentially tedious work.

In this section, we will use a custom database schema. In order to create the schema,
we need to execute an SQL script that will create the schema and populate some
of its tables. In order to do this, we need to go to the Services window, expand
Databases, right-click on JavaDB, and select the Create Database... option.

Interacting with Databases through the Java Persistence API

[150]

Then, we need to add the database information in the Create Java DB
Database wizard.

At this point, we can open our SQL script file by going to File | Open File... and
navigating to its location on our disk and opening it. The filename of our script is
create_populate_tables.sql. It is included as part of the source bundle for this
chapter. The following screenshot shows the file as soon as we open it in our project:

Chapter 4

[151]

Once we have opened the SQL script, we need to select our newly-created
connection customerdb from the Connection combobox.

After selecting the connection, we need to click on the icon to execute the
database script.

Our database will now have a number of tables:

Interacting with Databases through the Java Persistence API

[152]

To generate JPA entities from an existing schema such as the one we just created, we
need to create a new project. Go to File | New, and select the Persistence category
and the Entity Classes from Database file type from the New File dialog.

NetBeans allows us to generate JPA entities from pretty much
any kind of Java project. In our example we will be using a Web
Application project.

At this point, we can either select an existing data source, or, like we did in the
previous example, create one "on the fly". In our example, we created a new one
and selected the database connection we created earlier in this section.

Chapter 4

[153]

Once we have created or selected our data source, we need to select one or more
tables to use to generate our JPA entities. If we wish to create JPA entities for all
tables, we can simply click on the Add All button.

After clicking on Next, NetBeans gives us the opportunity to change the names of the
generated classes, although the defaults tend to be sensible. We should also specify
a package for our classes, and it is a good idea to check the Generate Named Query
Annotations for Persistent Fields checkbox. We can optionally generate JAXB
(short for Java API for XML Binding) annotations and create a persistence unit.

Interacting with Databases through the Java Persistence API

[154]

Named queries are explained in detail in the next subsection.

In the next screen in the wizard, we can select how associated entities will be
fetched (eagerly or lazily). The default behavior is to fetch one-to-one and many-to-one
relationships eagerly, and one-to-many and many-to-many relationships lazily.

Additionally, we can select what collection type to use for the many side of a
one-to-many or many-to-many relationship. The default value is java.util.
Collection, and other valid values are java.util.List and java.util.Set.

Checking the Fully Qualified Database Table Names checkbox results in the catalog
and schema elements of the table being mapped to the @Table annotation for each
generated entity.

Checking the Attributes for Regenerating Tables checkbox results in the generated
@Column annotations having attributes such as length, which specifies the maximum
length allowed in the column; nullable, which specifies whether null values are
allowed in the column; and precision and scale, which specify the precision
and scale of decimal values, respectively. Checking this checkbox also adds the
uniqueConstraints attribute to the generated @Table annotation to specify any
unique constraints that apply to the table, if necessary.

Chapter 4

[155]

Checking the Use Column Names in Relationships checkbox results in fields for
one-to-many and one-to-one to be named after the column name in the database
table the generated entity maps to. This field is checked by default. However, in
our experience, unchecking it results in more readable code.

Checking the Use Defaults if Possible checkbox results in NetBeans only generating
annotations that override the default behavior.

Checking the Generate Fields for Unresolved Relationships checkbox results in
NetBeans generating fields whose entities cannot be resolved.

After clicking on Finish, NetBeans generates JPA entities for all tables in
the database.

Our database contains a table named CUSTOMER. Let's take a look at the generated
Customer JPA entity:

package com.ensode.jpa;

import java.io.Serializable;
import java.util.Collection;
import javax.persistence.Basic;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.NamedQueries;

Interacting with Databases through the Java Persistence API

[156]

import javax.persistence.NamedQuery;
import javax.persistence.OneToMany;
import javax.persistence.Table;
import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;

@Entity
@Table(name = "CUSTOMER")
@NamedQueries({
 @NamedQuery(name = "Customer.findAll", query = "SELECT c FROM
Customer c"),
 @NamedQuery(name = "Customer.findByCustomerId", query = "SELECT c
FROM Customer c WHERE c.customerId = :customerId"),
 @NamedQuery(name = "Customer.findByFirstName", query = "SELECT c
FROM Customer c WHERE c.firstName = :firstName"),
 @NamedQuery(name = "Customer.findByMiddleName", query = "SELECT c
FROM Customer c WHERE c.middleName = :middleName"),
 @NamedQuery(name = "Customer.findByLastName", query = "SELECT c
FROM Customer c WHERE c.lastName = :lastName"),
 @NamedQuery(name = "Customer.findByEmail", query = "SELECT c FROM
Customer c WHERE c.email = :email")})
public class Customer implements Serializable {
 private static final long serialVersionUID = 1L;
 @Id
 @Basic(optional = false)
 @NotNull
 @Column(name = "CUSTOMER_ID")
 private Integer customerId;
 @Size(max = 20)
 @Column(name = "FIRST_NAME")
 private String firstName;
 @Size(max = 20)
 @Column(name = "MIDDLE_NAME")
 private String middleName;
 @Size(max = 20)
 @Column(name = "LAST_NAME")
 private String lastName;
 // @Pattern(regexp="[a-z0-9!#$%&'*+/=?^_`{|}~-]+(?:\\.
[a-z0-9!#$%&'*+/=?^_`{|}~-]+)*@(?:[a-z0-9](?:[a-z0-9-]*[a-z0-
9])?\\.)+[a-z0-9](?:[a-z0-9-]*[a-z0-9])?", message="Invalid email")//
if the field contains email address consider using this annotation to
enforce field validation
 @Size(max = 30)
 @Column(name = "EMAIL")
 private String email;

Chapter 4

[157]

 @OneToMany(mappedBy = "customer")
 private Collection<Telephone> telephoneCollection;
 @OneToMany(mappedBy = "customer")
 private Collection<CustomerOrder> customerOrderCollection;
 @OneToMany(mappedBy = "customer")
 private Collection<Address> addressCollection;

 //generated constructors and methods omitted for brevity.
}

As we can see, NetBeans generates a class decorated with the @Entity annotation,
which marks the class as a JPA entity. Notice that NetBeans automatically decorated
one of the fields with the @Id annotation based on the primary key constraint in the
table used to generate the JPA entity. We can also see that no primary key generation
strategy is used; we either need to populate the primary key ourselves, or add the
@GeneratedValue annotation manually. The @Basic annotation is used to mark
this field as nonoptional.

Notice the @Table annotation. This is an optional annotation that indicates what
table our JPA entity maps to. If the @Table annotation is not used, then our entity
will map to a table having the same name as the entity class (case insensitive). In
our particular example, the @Table annotation is redundant, but there are cases
where it is useful. For example, some database schemas have tables named in plural
(CUSTOMERS), but it makes sense to name our entities in the singular (Customer).
Additionally, the standard naming convention for database tables that contain
more than one word is to use underscores to separate the words (CUSTOMER_ORDER),
whereas in Java the standard is to use camel case (CustomerOrder). The @Table
annotation allows us to follow the established naming standards in both the
relational database and the Java world.

Named queries and JPQL
Notice the @NamedQueries annotation in the generated code (this annotation is only
generated if we click on the Generate Named Query Annotations for Persistent
Fields checkbox of the New Entity Classes from Database wizard), this annotation
contains a value attribute (the attribute name can be omitted from the code since
it is the only attribute in this annotation). The value of this attribute is an array of
@NamedQuery annotations. The @NamedQuery annotation has a name attribute, which
is used to give it a logical name (by convention, the JPA entity name is used as part
of the query name, and we can see in the generated code that the New Entity Classes
from Database wizard follows this convention), and a query attribute, which is used
to define a JPQL query to be executed by the named query.

Interacting with Databases through the Java Persistence API

[158]

JPQL is a JPA-specific query language; its syntax is similar to SQL. The New Entity
Classes from Database wizard generates a JPQL query for each field in our entity.
When the query is executed, a list containing all instances of our entity that match
the criteria in the query will be returned. The following code snippet illustrates
this process:

import java.util.List;
import javax.persistence.EntityManager;
import javax.persistence.Query;

public class CustomerDAO {

 public List findCustomerByLastName(String someLastName)
 {
 //code to lookup EntityManager omitted for brevity

 Query query =
 em.createNamedQuery("Customer.findByLastName");
 query.setParameter("lastName", someLastName);
 List resultList = query.getResultList();
 return resultList;
 }
}

Here, we see a DAO object that contains a method that will return a list of Customer
entities for customers whose last name is same as the one provided in the method's
parameter. In order to implement this, we need to obtain an instance of an object of
type javax.pesistence.Query. As we can see in the preceding code snippet, this can
be accomplished by invoking the createNamedQuery() method in EntityManager
and passing the query name (as defined in the @NamedQuery annotation) as a
parameter. Notice that the named queries generated by the NetBeans wizard contain
strings preceded by a colon (:). These strings are named parameters, which act like
placeholders that we can use to substitute for appropriate values.

In our example, we set the lastName named parameter in the JPQL query with the
someLastName argument passed to our method.

Once we have populated all the parameters in our query, we can obtain a list of all
matching entities by invoking the getResultList() method in our Query object.

Going back to our generated JPA entity, we can see that the wizard automatically
placed the @Id annotation in the field mapping to the table's primary key.
Additionally, each field is decorated with the @Column annotation, which allows
us to follow standard naming conventions in both the relational database and
Java worlds.

Chapter 4

[159]

Bean Validation
Bean Validation, which comes from Java Specification Request (JSR 303), was
introduced in Java EE 6. The Bean Validation specification provides a set of
annotations we can use to validate our data. The NetBeans JPA generation wizard
takes full advantage of Bean Validation, adding Bean Validation annotations to
any appropriate fields, based on the column definitions of the tables we are using
to generate our entities.

In our Customer entity, we see some Bean Validation annotations. The
customerId field is decorated with the @NotNull annotation, which—as
its name implies—prevents the field from accepting a null value.

Several fields in the Customer entity are decorated with the @Size annotation. This
annotation specifies the maximum number of characters a bean's property may
accept. Again, the NetBeans wizard obtains this information from the tables used
to generate our entity.

Another Bean Validation annotation we can use is the @Pattern annotation. This
annotation is meant to make sure that the value of the decorated field matches a
given regular expression.

Notice that right above the email property of the Customer annotation, the wizard
added the @Pattern annotation and commented it out. The reason for this is that
the wizard noticed that the name of the table column was EMAIL and suspected
(but couldn't verify) that this table is meant to store e-mail addresses. Therefore,
the wizard added the annotation with a regular expression used to match e-mail
addresses. However, since it couldn't be sure that this table is indeed meant
to store e-mail addresses, it commented out this line of code. This property is
indeed meant to store e-mail addresses, therefore we should uncomment this
automatically-generated line.

Entity relationships
There are several annotations we can use in JPA entities to define relationships
between them. In the Customer entity we discussed, we can see that the wizard
detected several one-to-many relationships in the CUSTOMER table and automatically
added the @OneToMany annotation to define these relationships in our entity. Notice
that each field annotated with the @OneToMany annotation is of the type java.util.
Collection. The Customer entity is one side of the relationship, since a customer
can have many orders, many addresses (street, e-mail, and so on), or many telephone
numbers (home, work, cell, and so on). Notice that the wizard uses generics to
specify the type of objects we can add to each collection. Objects in these collections
are the JPA entities mapping to the corresponding tables in our database schema.

Interacting with Databases through the Java Persistence API

[160]

Notice that the @OneToMany annotation has a mappedBy attribute. This attribute
is necessary because each of these relationships is bidirectional (we can access all
addresses for a customer, and for a given address we can find out which customer it
belongs to). The value of this attribute must match the name of the field on the other
side of the relationship. Let's take a look at the Address entity to illustrate the other
side of the customer-address relationship.

package com.ensode.jpa;

import java.io.Serializable;
import javax.persistence.Basic;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.JoinColumn;
import javax.persistence.ManyToOne;
import javax.persistence.NamedQueries;
import javax.persistence.NamedQuery;
import javax.persistence.Table;
import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;

@Entity
@Table(name = "ADDRESS")
@NamedQueries({
 @NamedQuery(name = "Address.findAll",
 query = "SELECT a FROM Address a"),
 @NamedQuery(name = "Address.findByAddressId",
 query = "SELECT a FROM Address a WHERE a.addressId =
:addressId"),
 @NamedQuery(name = "Address.findByAddrLine1",
 query = "SELECT a FROM Address a WHERE a.addrLine1 =
:addrLine1"),
 @NamedQuery(name = "Address.findByAddrLine2",
 query = "SELECT a FROM Address a WHERE a.addrLine2 =
:addrLine2"),
 @NamedQuery(name = "Address.findByCity",
 query = "SELECT a FROM Address a WHERE a.city = :city"),
 @NamedQuery(name = "Address.findByZip",
 query = "SELECT a FROM Address a WHERE a.zip = :zip")})
public class Address implements Serializable {
 private static final long serialVersionUID = 1L;
 @Id
 @Basic(optional = false)
 @NotNull

Chapter 4

[161]

 @Column(name = "ADDRESS_ID")
 private Integer addressId;
 @Size(max = 100)
 @Column(name = "ADDR_LINE_1")
 private String addrLine1;
 @Size(max = 100)
 @Column(name = "ADDR_LINE_2")
 private String addrLine2;
 @Size(max = 100)
 @Column(name = "CITY")
 private String city;
 @Size(max = 5)
 @Column(name = "ZIP")
 private String zip;
 @JoinColumn(name = "ADDRESS_TYPE_ID",
 referencedColumnName = "ADDRESS_TYPE_ID")
 @ManyToOne
 private AddressType addressType;
 @JoinColumn(name = "CUSTOMER_ID",
 referencedColumnName = "CUSTOMER_ID")
 @ManyToOne
 private Customer customer;
 @JoinColumn(name = "US_STATE_ID",
 referencedColumnName = "US_STATE_ID")
 @ManyToOne
 private UsState usState;

 //generated methods and constructors omitted for brevity
}

Notice that the Address entity has a customer field. This field is of the type
Customer, the entity we were just discussing.

Had we left the Use Column Names in Relationships checkbox
checked in the Entity Classes from Database wizard, the generated
customer field would have been named customerId. In most
cases, unchecking this checkbox results in saner names for fields
used in entity relationships, as was the case here.

Interacting with Databases through the Java Persistence API

[162]

Notice that the field is decorated with a @ManyToOne annotation. This annotation
marks the many side of the one-to-many relationship between Customer and
Address. Notice that the field is also decorated with the @JoinColumn annotation.
The name attribute of this annotation indicates the column in the database our
entity maps to that defines the foreign key constraint between the ADDRESS and
CUSTOMER tables (in our case, the CUSTOMER_ID column on the ADDRESS table). The
referencedColumnName attribute of @JoinColumn is used to indicate the primary
key column of the table on one side of the relationship (in our case, the CUSTOMER_ID
column in the CUSTOMER table).

In addition to one-to-many and many-to-one relationships, JPA provides annotations
to denote many-to-many and one-to-one relationships. In our schema, we have a
many-to-many relationship between the CUSTOMER_ORDER and ITEM tables; since
an order can have many items, and an item can belong to many orders.

The table to hold orders was named CUSTOMER_ORDER since the word
"order" is a reserved word in SQL.

Let's take a look at the CustomerOrder JPA entity to see how the many-to-many
relationship is defined:

package com.ensode.jpa;

import java.io.Serializable;
import java.util.Collection;
import javax.persistence.Basic;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.JoinColumn;
import javax.persistence.JoinTable;
import javax.persistence.ManyToMany;
import javax.persistence.ManyToOne;
import javax.persistence.NamedQueries;
import javax.persistence.NamedQuery;
import javax.persistence.Table;
import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;

@Entity
@Table(name = "CUSTOMER_ORDER")
@NamedQueries({

Chapter 4

[163]

 @NamedQuery(name = "CustomerOrder.findAll",
 query = "SELECT c FROM CustomerOrder c"),
 @NamedQuery(name = "CustomerOrder.findByCustomerOrderId",
 query = "SELECT c FROM CustomerOrder c WHERE c.customerOrderId =
:customerOrderId"),
 @NamedQuery(name = "CustomerOrder.findByOrderNumber",
 query = "SELECT c FROM CustomerOrder c WHERE c.orderNumber =
:orderNumber"),
 @NamedQuery(name = "CustomerOrder.findByOrderDescription",
 query = "SELECT c FROM CustomerOrder c WHERE c.orderDescription
= :orderDescription")})
public class CustomerOrder implements Serializable {
 private static final long serialVersionUID = 1L;
 @Id
 @Basic(optional = false)
 @NotNull
 @Column(name = "CUSTOMER_ORDER_ID")
 private Integer customerOrderId;
 @Size(max = 10)
 @Column(name = "ORDER_NUMBER")
 private String orderNumber;
 @Size(max = 200)
 @Column(name = "ORDER_DESCRIPTION")
 private String orderDescription;
 @JoinTable(name = "ORDER_ITEM", joinColumns = {
 @JoinColumn(name = "CUSTOMER_ORDER_ID",
 referencedColumnName = "CUSTOMER_ORDER_ID")},
 inverseJoinColumns = {
 @JoinColumn(name = "ITEM_ID",
 referencedColumnName = "ITEM_ID")})
 @ManyToMany
 private Collection<Item> itemCollection;
 @JoinColumn(name = "CUSTOMER_ID", referencedColumnName =
"CUSTOMER_ID")
 @ManyToOne
 private Customer customer;

 //generated constructors and methods omitted for brevity.

}

Interacting with Databases through the Java Persistence API

[164]

Notice that the CustomerOrder entity has a property of type java.util.Collection
named itemCollection. This property holds all items for the order. The field is
decorated with the @ManyToMany annotation; this annotation is used to declare a
many-to-many relationship between the CustomerOrder and Item JPA entities. The
field is also annotated with the @JoinTable annotation; this annotation is necessary
since a join table is necessary in a database schema whenever there is a many-to-
many relationship between tables. Using a join table allows us to keep the data in
the database normalized.

The @JoinTable annotation allows us to specify the table that is used to denote
the many-to-many relationship in the schema. The value of the name attribute of
@JoinTable must match the name of the join table in the schema. The value of the
joinColumns attribute of @JoinColumn must be the foreign key relationship between
the join table and the owning side of the relationship. We already discussed the
@JoinColumn annotation when discussing one-to-many relationships; in this case,
its name attribute must match the name of the column in the join table that has the
foreign key relationship, and its referencedColumnName attribute must indicate
the name of the primary key column on the owning side of the relationship. The
value of the inverseJoinColumns attribute of @JoinTable has a similar role as its
joinColumns attribute, except it indicates the corresponding columns for the non-
owning side of the relationship.

The side of the many-to-many relationship that contains the above annotations is
said to be the owning side of the relationship. Let's look at how the many-to-many
relationship is defined in the non-owning side of the relationship, which in our
case is the Item JPA entity. The code is as follows:

package com.ensode.jpa;

import java.io.Serializable;
import java.util.Collection;
import javax.persistence.Basic;
import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.ManyToMany;
import javax.persistence.NamedQueries;
import javax.persistence.NamedQuery;
import javax.persistence.Table;
import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;

@Entity
@Table(name = "ITEM")
@NamedQueries({
 @NamedQuery(name = "Item.findAll", query = "SELECT i FROM Item
i"),

Chapter 4

[165]

 @NamedQuery(name = "Item.findByItemId", query = "SELECT i FROM
Item i WHERE i.itemId = :itemId"),
 @NamedQuery(name = "Item.findByItemNumber", query = "SELECT i FROM
Item i WHERE i.itemNumber = :itemNumber"),
 @NamedQuery(name = "Item.findByItemShortDesc", query = "SELECT i
FROM Item i WHERE i.itemShortDesc = :itemShortDesc"),
 @NamedQuery(name = "Item.findByItemLongDesc", query = "SELECT i
FROM Item i WHERE i.itemLongDesc = :itemLongDesc")})
public class Item implements Serializable {
 private static final long serialVersionUID = 1L;
 @Id
 @Basic(optional = false)
 @NotNull
 @Column(name = "ITEM_ID")
 private Integer itemId;
 @Size(max = 10)
 @Column(name = "ITEM_NUMBER")
 private String itemNumber;
 @Size(max = 100)
 @Column(name = "ITEM_SHORT_DESC")
 private String itemShortDesc;
 @Size(max = 500)
 @Column(name = "ITEM_LONG_DESC")
 private String itemLongDesc;
 @ManyToMany(mappedBy = "itemCollection")
 private Collection<CustomerOrder> customerOrderCollection;

 //generated constructors and methods omitted for brevity
}

As we can see, the only thing we need to do on this side of the relationship is to
create a Collection property, decorate it with the @ManyToMany annotation, and
specify the property name on the other side of the relationship as the value of its
mappedBy attribute.

In addition to one-to-many and many-to-many relationships, it is possible to create
one-to-one relationships between JPA entities.

The @OneToOne annotation is used to indicate a one-to-one relationship between
two JPA entities. Our schema doesn't have any one-to-one relationships between
tables, therefore this annotation was not added to any of the entities generated
by the wizard.

One-to-one relationships are not very popular in database
schemas. Nevertheless, JPA supports one-to-one relationships
in case it is necessary.

Interacting with Databases through the Java Persistence API

[166]

The procedure to indicate a one-to-one relationship between two entities is similar
to what we have already seen. The owning side of the relationship must have a field
of the JPA entity type on the other side of the relationship, and this field must be
decorated with the @OneToOne and @JoinColumn annotations.

Suppose we had a schema in which a one-to-one relationship was defined between
two tables named PERSON and BELLY_BUTTON. This is a one-to-one relationship
because each person has one belly button and each belly button belongs to only one
person (the reason the schema was modeled this way instead of having the columns
relating to the BELLY_BUTTON table in the PERSON table escapes me, but bear with
me—I'm having a hard time coming up with a good example!).

@Entity
public class Person implements Serializable {
 @JoinColumn(name="BELLY_BUTTON_ID")
 @OneToOne
 private BellyButton bellyButton;

 public BellyButton getBellyButton(){
 return bellyButton;
 }

 public void setBellyButton(BellyButton bellyButton){
 this.bellyButton = bellyButton;
 }
}

If the one-to-one relationship is unidirectional (we can only get the belly button from
the person), this would be all we had to do. If the relationship is bidirectional, then
we need to add the @OneToOne annotation on the other side of the relationship and
use its mappedBy attribute to indicate the other side of the relationship. The code is
as follows:

@Entity
@Table(name="BELLY_BUTTON")
public class BellyButton implements Serializable(
{
 @OneToOne(mappedBy="bellyButton")
 private Person person;

 public Person getPerson(){
 return person;
 }
 public void getPerson(Person person){
 this.person=person;
 }
}

Chapter 4

[167]

As we can see, the procedure to establish one-to-one relationships is very similar to
the procedure used to establish one-to-many and many-to-many relationships.

Once we have generated JPA entities from a database, we need to write additional
code that contains the business and presentation logic. Alternatively, we can use
NetBeans to generate code for these two layers.

Generating JSF applications from
JPA entities
One very nice feature of NetBeans is that it allows us to generate JSF applications
that will perform Create, Read, Update, and Delete (CRUD) operations from existing
JPA entities. This feature, combined with the ability to create JPA entities from an
existing database schema as described in the previous section, allows us to write web
applications that interact with a database in record time.

To generate JSF pages from existing JPA entities, we need to right-click on File, select
New File, select the JavaServer Faces category, and then select the JSF Pages from
Entity Classes file type.

In order to be able to generate JSF pages from existing JPA entities,
the current project must be a Web Application project.

Interacting with Databases through the Java Persistence API

[168]

After clicking on Next, we need to select one or more JPA entities. We would
typically want to select all of them, and they can easily be selected by clicking
on the Add All button.

The next page in the wizard allows us to specify a package for newly-created JSF
managed beans. Two types of classes are generated by the wizard: JPA Controllers
and JSF Classes. We can specify packages for both of these individually.

Chapter 4

[169]

We are also given the opportunity to specify a folder for the JSF pages to be created.
If we leave this field blank, pages will be created in our project's Web Pages folder.

The values of the Session Bean Package and JSF Classes
Package text fields default to the package where our JPA
entities reside. It is a good idea to modify this default, since
placing the JSF managed beans in a different package separates
the data access layer classes from the user interface and
controller layers of our application.

The wizard also allows us to use two kinds of templates: Standard JavaServer Faces
or PrimeFaces. Selecting Standard JavaServer Faces will result in a fairly basic,
standard web application that we can use as the base for our application. Selecting
PrimeFaces will result in a very elegant web application. For our example, we will
select PrimeFaces, but the procedure is nearly identical when selecting Standard
JavaServer Faces. We can select the template from the Choose Templates dropdown.

Make sure to add the PrimeFaces 4.0 library to the project when
choosing to generate the PrimeFaces templates. Refer to Chapter 3,
JSF Component Libraries, for details.

After clicking on Finish, a complete web application that can perform CRUD
operations will be created.

Interacting with Databases through the Java Persistence API

[170]

As we can see, NetBeans generates a folder for each of our entities under the Web
Pages folder of our application. Each of the folders has a Create, Edit, List, and View
XHTML files. These files are JSF pages that use Facelets as their view technology;
since we selected the PrimeFaces template, our pages use PrimeFaces components.
The Create page will provide functionality to create new entities, the Edit page will
allow users to update information for a specific entity, the List page will display
all instances of a specific entity in the database, and the View page will display all
properties for a JPA entity.

The generated application is a regular JSF application. We can execute it by simply
right-clicking on the project and selecting Run. Then, the usual things happen: the
application server is started if it wasn't already up, the application is deployed,
and a browser window opens to display the welcome page for our application.

As we can see, the welcome page contains a link corresponding to each of our JPA
entities. The links will render a table that displays all the existing instances of our
entity in the database. When we click on the Show All Customer Items link, the
following page is shown:

Chapter 4

[171]

Since we haven't inserted any data into the database yet, the page displays the
message No records found. We can insert a customer into the database by clicking
on the Create button.

Interacting with Databases through the Java Persistence API

[172]

Notice how an input field is generated for each property in our entity, which in turn
corresponds to a column in the database table.

As we can see, an input field was generated for the primary key field
of our entity. This field is only generated if the JPA entity does not
use a primary key generation strategy.

After entering some information on the page and clicking on the Save button, a new
row is added to the data table and the message Customer was successfully created.
is shown.

Notice that the page has buttons to view, edit, and delete the entity.

We can work with other entities by selecting one from the generated Maintenance
drop-down menu.

Chapter 4

[173]

Let's say we want to add an address for our customer. To do so, we simply need to
select Address from the Maintenance drop-down menu and then click on Create.

Interacting with Databases through the Java Persistence API

[174]

The Address entity is at one end of several one-to-many relationships. Notice how
a drop-down menu is generated for each one of the entities at the many end. Since
we wish to assign this address to the customer we just added, we attempt to select
a customer from the Customer combobox.

Clicking on the combobox reveals a cryptic and almost undecipherable (from the
user's point of view) label for our customer. The reason we see this label is because
the labels generated for each item in the combobox come from the toString()
method of the entities used to populate it. We can work around this issue by
modifying the toString() method so that it returns a user-friendly string
suitable to use as a label.

As we can see, the generated code from NetBeans wizards could certainly use
some minor tweaking, such as modifying the toString() methods of each JPA
entity so that it can be used as a label, or modifying the labels on the generated
JSF pages so that they are more user friendly. Nevertheless, as we can see, we can
have a fully-working application that is created with a few clicks of the mouse.
This functionality certainly saves us a lot of time and effort (just don't tell your
boss about it).

Summary
In this chapter, we saw the many ways in which NetBeans can help us speed up the
development of applications by taking advantage of JPA.

We saw how NetBeans can generate new JPA classes with all the required annotations
already in place. Additionally, we covered how NetBeans can automatically generate
code to persist a JPA entity to a database table. We also covered how NetBeans can
generate JPA entities from an existing database schema, including the automated
generation of JPQL named queries and validation. Finally, we saw how NetBeans can
generate a complete, visually appealing JSF application from existing JPA entities.

Implementing the Business
Tier with Session Beans

Most enterprise applications have a number of common requirements such as
transactions, security, scalability, and so on. Enterprise JavaBeans (EJBs) allow
application developers to focus on implementing business logic without worrying
about implementing these requirements. There are two types of EJBs: session
beans and message-driven beans. In this chapter, we will discuss session beans,
which greatly simplify the server-side business logic implementation. In Chapter 7,
Messaging with JMS and Message-driven Beans, we will discuss message-driven beans,
which allow us to easily implement the messaging functionality in our applications.

Previous versions of J2EE included Entity Beans as well;
however, as of Java EE 5, Entity Beans have been deprecated
in favor of the JPA.

The following topics will be covered in this chapter:

•	 Introduction to session beans
•	 Creating a session bean with NetBeans
•	 EJB transaction management
•	 Implementing aspect-oriented programming with Interceptors
•	 EJB Timer service
•	 Generating session beans from JPA entities

Implementing the Business Tier with Session Beans

[176]

Introducing session beans
Session beans encapsulate business logic for enterprise applications. It is a good
idea to use session beans when developing enterprise applications, since we (as
application developers) can focus on developing business logic without worrying
about other enterprise application requirements such as scalability, security,
transactions, and so on.

Even though we don't directly implement common enterprise application
requirements such as transactions and security, we can configure these
services via annotations.

There are three types of session beans: stateless session beans, stateful session
beans, and singleton session beans. Stateful session beans maintain conversational
state with their client between method invocations, where stateless session beans
do not. There exists only one instance of a singleton session bean in an application,
whereas several instances are created by the application server for stateless and
stateful session beans.

Creating a session bean in NetBeans
Session beans can be created in three types of NetBeans projects: Enterprise
Application, EJB Module, and Web Application. EJB Module projects can contain
only EJBs, whereas Enterprise Application projects can contain EJBs along with their
clients, which can be web applications or "standalone" Java applications. The ability
to add EJBs to web applications was introduced in Java EE 6. Having this ability
allows us to simplify packaging and deployment of web applications using EJBs. We
can now package the web application code and the EJB code in a single Web Archive
(WAR) file, whereas with previous versions of Java EE and J2EE, we had to create
an Enterprise Archive (EAR) file.

When deploying enterprise applications to the GlassFish application server included
with NetBeans, it is possible to deploy standalone clients as part of the application to
the application server. These standalone clients are then available via Java Web Start
(http://www.oracle.com/technetwork/java/javase/javawebstart/index.
html); this feature also allows us to more easily access EJBs from the client code by
using annotations. "True" standalone clients executing outside the application server
require Java Naming and Directory Interface (JNDI) lookups to obtain a reference
to the EJB. In our first example, we will create both a session bean and a Java Web
Start client both deployed to the same enterprise application.

http://www.oracle.com/technetwork/java/javase/javawebstart/index.html
http://www.oracle.com/technetwork/java/javase/javawebstart/index.html

Chapter 5

[177]

To create an Enterprise Application project, go to File | New Project... and
select Enterprise Application from the Java EE category, as shown in the
following screenshot:

After clicking on Next, we need to enter a project name.

Implementing the Business Tier with Session Beans

[178]

We can optionally select a Project Location for our new Enterprise Application
project; Project Folder will be updated automatically if we do so.

In the next screen, we need to select the modules to be included in our enterprise
application. Create EJB Module and Create Web Application Module are selected
by default. In our example, we won't be creating a web application module;
therefore, we need to uncheck the Create Web Application Module checkbox.

In our example, SessionBeanIntro is our Enterprise Application project and
SessionBeanIntro-ejb is our EJB module.

Before we can continue, we need to create an Enterprise Application Client project
that will contain our EJB client code. To do this, we need to select Enterprise
Application Client from the Java EE category in the New Project wizard.

Chapter 5

[179]

We need to enter a name for Project Name and, optionally, a value for Project
Location for our Enterprise Application Client project.

Implementing the Business Tier with Session Beans

[180]

We need to select our Enterprise Application project from the Add to Enterprise
Application drop-down, and then enter an appropriate package and name for the
Main Class field.

After clicking on Finish, our new project is created.

Since our EJB client is going to execute on a different JVM than our EJBs, we need
to create a Java Class Library project that will contain the remote interface for our
session bean. We can create a new Java Class Library project by going to File |
New Project..., selecting the Java category, and selecting Java Class Library
under Projects.

Chapter 5

[181]

We then need to enter a name for our project, and, optionally, select a value for
Project Location.

Implementing the Business Tier with Session Beans

[182]

After clicking on Finish, our Java class library is created.

We then need to add our Java Class Library project as a library to our application
client project. We can do this by right-clicking on the Libraries node of the
application client project and selecting Add Project....

We then need to select our Java Client Library project from the resulting window.

Chapter 5

[183]

Now that we have set up our projects, it's time to create our first session bean. We
can do so by right-clicking on the EJB module, navigating to New | Other, and then
selecting the Enterprise JavaBeans category and the Session Bean file type from the
New File wizard.

We now need to specify a number of things:

•	 It is a good idea to override the default name given to our session bean.
•	 We need to specify the package for our session bean.
•	 We need to specify the session bean type: stateless, stateful, or singleton.

°° Stateful session beans maintain conversational state with the client
(which simply means that the values of any of their member variables
are in a consistent state between method calls).

°° Stateless session beans don't maintain conversational state; therefore,
they perform better than stateful session beans.

°° Singleton session beans were introduced in Java EE 6. A single
instance of each singleton session bean is created when our
application is deployed. Singleton session beans are useful
to cache frequently read database data.

•	 We need to specify whether our session bean will have a remote interface,
which is used for clients executing in a different JVM than our bean; a local
interface, which is meant for clients running in the same JVM as our bean;
or both a remote and a local interface.

Implementing the Business Tier with Session Beans

[184]

In early versions of Java EE, local interfaces were required when the EJBs
and their clients were on the same JVM. Java EE 6 made local interfaces
optional; therefore, it isn't necessary to create any interface for our session
beans if they will only be accessed by clients executing in the same JVM.

Our example bean does not need to maintain conversational state with its clients;
therefore, we should make it a stateless session bean. Its only client will be executing
in a different JVM; therefore, we need to create a remote interface and don't need
to create a local interface.

When creating a remote interface, NetBeans requires us to specify a client library
in which the remote interface will be added. The client library is added as a
dependency to both the EJB project and the client project. This is the reason we had
to create a Java class library earlier. Our client library is selected by default when
we specify that we need to create a remote interface.

Chapter 5

[185]

After selecting all the appropriate options and clicking on Finish, our session bean
is created in the EJB module project and the remote interface is created in the client
library project.

The generated code for our session bean is simply an empty class with the
@Stateless annotation already added and the remote interface implemented.

Implementing the Business Tier with Session Beans

[186]

Notice that our bean implements the remote interface, which at this point is an
empty interface with the @Remote annotation added. This annotation was added
because we chose to create a remote interface.

The reason we need to have a remote and/or an optional local interface is because
session bean clients never invoke the bean's methods directly; instead, they obtain a
reference of a class implementing their remote and/or local interface and invoke the
methods on this class. Beginning with Java EE 6, it is no longer necessary to create
a local interface; the application server can generate one automatically when the
application is deployed.

The remote and/or local interface implementation is created automatically by the
EJB container when we deploy our bean. This implementation does some processing
before invoking our session bean's method. Since the methods need to be defined
both on the interface and our bean, typically we would need to add the method
signature to both the bean and its remote and/or local interface. However, when
working with session beans in NetBeans, we can simply right-click on the bean's
source code and go to Insert Code | Add Business Method. This will result in the
method being added to both the bean and the remote/local interface.

Chapter 5

[187]

This results in a window popping up, which prompts us to enter the method name,
return type, parameters, and the interface(s) where the method should be added
(remote and/or local).

In our example, we will add a method named echo that takes a string value as a
parameter and returns a string. Since our bean only has a remote interface, the radio
buttons for Local and Both are grayed out.

Implementing the Business Tier with Session Beans

[188]

After entering the appropriate information, the method is added both to the bean
and its remote interface.

The default implementation will simply return null. For this simple example, we
will modify it to return the string echoing: concatenated with the parameter that
was passed.

At this point, we have a simple but complete stateless session bean, which is ready
to be accessed from the client code.

Accessing the bean from a client
Now, it's time to focus our attention on the client. For remote clients, the client
project needs to use the Java Class Library project containing the remote interface;
this is the reason we created a Java Class Library project earlier in the chapter and
added it to the client project.

Chapter 5

[189]

After adding the client library containing the remote interface for our session bean,
we are ready to invoke our EJB method. The client code needs to obtain a reference
to an instance of a class implementing the remote interface for our bean. When using
NetBeans, this is very easy. We simply need to right-click on the client code (com.
ensode.sessionbeanintro.Main in the application client project in our example)
and go to Insert Code... | Call Enterprise Bean.

At this point, we are shown a list of all open projects that have EJBs in them; we need
to select the bean we wish to access from one of these projects.

Implementing the Business Tier with Session Beans

[190]

If our bean had both a local and remote interface, we would have been given the
choice to select the appropriate one. However, since it only has a remote interface,
the option to select a local interface is disabled. In our particular example, even if we
had the option of selecting a local interface, the correct option would have been to
select the remote interface. This is because our client will be executing in a different
JVM from the server, and local interfaces are not accessible across JVMs.

At this point, a member variable of type EchoRemote (our bean's remote interface)
is added to the client; this variable is annotated with the @EJB annotation. This
annotation is used to inject the instance of the remote interface at runtime.

In previous versions of J2EE, it was necessary to perform a
JNDI lookup to obtain a reference to the home interface of the
bean, and then use the home interface to obtain a reference
to the remote or local interface. As we can see, the procedure
to obtain a reference to an EJB has been greatly simplified in
Java EE.

The generated code shown in the following screenshot:

Chapter 5

[191]

Now we simply need to add a call to the echo() method on the remote interface, and
our client will be complete.

Executing the client
We can execute our client by simply right-clicking on the Enterprise Application
project and clicking on Run. After a few seconds, we should see an information
dialog displaying the output of the session bean's method.

Clients deployed this way take advantage of Java Web Start technology. Java
Web Start applications run on the client workstation. However, they can be
executed from a URL. The Web Start URL for NetBeans enterprise application
client modules defaults to the Enterprise project name, followed by the application
client module name. In our example, the URL will be http://localhost:8080/
SessionBeanIntro/SessionBeanIntro-app-client. We can verify this by
pointing the browser to this URL. The application client will be executed after
a brief wait.

At the time of writing, the this procedure does not work with
Google Chrome.

Session bean transaction management
As previously mentioned, one of the advantages of EJBs is that they automatically
take care of transactions. However, there is still some configuration that we need
to do in order to better control transaction management.

Transactions allow us to execute all the steps in a method or, if one of the steps fails
(for instance, an exception is thrown), roll back the changes made in that method.

http://localhost:8080/SessionBeanIntro/SessionBeanIntro-app-client
http://localhost:8080/SessionBeanIntro/SessionBeanIntro-app-client

Implementing the Business Tier with Session Beans

[192]

Primarily, what we need to configure is our bean's behavior if one of its methods is
called while a transaction is in progress. Should the bean's method become part of
the existing transaction? Should the existing transaction be suspended and a new
transaction created just for the bean's method? We can configure these behaviors
via the @TransactionAttribute annotation.

The @TransactionAttribute annotation allows us to control how an EJB's methods
will behave both when invoked while a transaction is in progress and when invoked
when no transaction is in progress. This annotation has a single value attribute
that we can use to indicate how the bean's method will behave in both of these
circumstances.

The following table summarizes the different values that we can assign to the
@TransactionAttribute annotation:

@TransactionAttribute value Method invoked
when a transaction
is in progress

Method invoked when no transaction
is in progress

TransactionAttributeType.
MANDATORY

Method becomes
part of the existing
transaction

TransactionRequiredException
is thrown

TransactionAttributeType.
NEVER

RemoteException
is thrown

Method is executed without any
transaction support

TransactionAttributeType.
NOT_SUPPORTED

Client transaction
is temporarily
suspended, the
method is executed
without transaction
support, and then
the client transaction
is resumed

Method is executed without any
transaction support

TransactionAttributeType.
REQUIRED

Method becomes
part of the existing
transaction

A new transaction is created for the
method

TransactionAttributeType.
REQUIRES_NEW

Client transaction
is temporarily
suspended, a
new transaction
is created for the
method, and then
the client transaction
is resumed

A new transaction is created for the
method

TransactionAttributeType.
SUPPORTS

Method becomes
part of the existing
transaction

Method is executed without any
transaction support

Chapter 5

[193]

The @TransactionAttribute annotation can be used to decorate the class
declaration of our EJB, or it can be used to decorate a single method. If used to
decorate the class declaration, the declared transaction behavior will apply to all
methods in the bean. If used to decorate a single method, the declared behavior
will affect only the decorated method. If a bean has an @TransactionAttribute
annotation both at the class level and at the method level, the method-level
annotation takes precedence. If no transaction attribute is specified for a method,
the TransactionAttributeType.REQUIRED attribute is used by default.

The following example shows how to use the @TransactionAttribute annotation:

package com.ensode.sessionbeanintro.ejb;

import javax.ejb.Stateless;
import javax.ejb.TransactionAttribute;
import javax.ejb.TransactionAttributeType;

@Stateless
public class Echo

 @override
 @TransactionAttribute(
 TransactionAttributeType.REQUIRES_NEW)
 public String echo(String.saying) {
 return "echoing: " + saying;
 }
}

As we can see, we simply need to decorate the method to be configured
with the @TransactionAttribute annotation with the appropriate
TransactionAttributeType enumeration constant as a parameter to configure
transactions for a single method. As we mentioned before, if we want all
of our methods to use the same transaction strategy, we can place the
@TransactionAttribute annotation at the class level.

Implementing aspect-oriented
programming with interceptors
Sometimes, we wish to execute some logic just before and/or just after a method's
main logic executes. For example, we might want to measure the execution time of a
method to track down performance problems, or we might want to send a message
to a log every time we enter and leave a method, to make it easier to track down
bugs or exceptions.

Implementing the Business Tier with Session Beans

[194]

The most common solution to these kinds of problems is to add a little bit of code
at the beginning and end of every method, implementing the logic to profile or
log in each method. This approach, however, has problems: the logic needs to
be implemented several times, and; if we later wish to modify or remove the
functionality, we need to modify several methods.

Aspect-oriented programming (AOP) is a programming paradigm that solves
the problems mentioned earlier by providing a way to implement the logic to be
executed just before and/or just after a method's main logic in a separate class.
EJB 3.0 introduced the ability to implement AOP via interceptors.

Implementing AOP via interceptors consists of two steps: coding the Interceptor
class and decorating the EJBs to be intercepted with the @Interceptors annotation.
These steps are described in detail in the next section.

Implementing the Interceptor class
An interceptor is a standard Java class. It must have a single method with the
following signature:

@AroundInvoke
public Object methodName(InvocationContext invocationContext) throws
Exception

Notice that the method must be decorated with the @AroundInvoke annotation,
which marks the method as an interceptor method. The InvocationContext
parameter can be used to obtain information from the intercepted method, such as its
name, parameters, the class that declares it, and more. InvocationContext also has
a proceed() method that is used to indicate when to execute the method logic.

The following table summarizes some of the most useful InvocationContext
methods. Refer to the Java EE 7 JavaDoc for the complete list (it is accessible
within NetBeans by going to Help | JavaDoc References | Java (TM) EE 7
Specification APIs).

Method name Description
getMethod() This returns an instance of the java.lang.reflect.

Method class, which can be used to introspect the
intercepted method.

getParameters() This returns an array of objects containing the parameters
passed to the intercepted method.

getTarget() This returns the object containing the method being
invoked. Its return value is java.lang.Object.

proceed() This invokes the method being intercepted.

Chapter 5

[195]

The following example illustrates a simple interceptor class:

package com.ensode.sessionbeanintro.ejb;

import java.lang.reflect.Method;
import javax.interceptor.AroundInvoke;
import javax.interceptor.InvocationContext;

public class LoggingInterceptor {

 @AroundInvoke
 public Object logMethodCall(
 InvocationContext invocationContext)
 throws Exception {
 Object interceptedObject =
 invocationContext.getTarget();
 Method interceptedMethod =
 invocationContext.getMethod();

 System.out.println("Entering " +
 interceptedObject.getClass().getName() + "." +
 interceptedMethod.getName() + "()");

 Object o = invocationContext.proceed();

 System.out.println("Leaving " +
 interceptedObject.getClass().getName() + "." +
 interceptedMethod.getName() + "()");

 return o;
 }
}

The preceding example sends a message to the application server log just before
and just after an intercepted method is executed. The purpose of implementing
something like this would be to aid in debugging applications.

For simplicity, our example simply uses System.out.
println to output messages to the application server log. A real
application more than likely would use a logging API such as the
Java Logging API or Log4j.

Implementing the Business Tier with Session Beans

[196]

The first thing that we do in our interceptor method is obtain a reference to the
object and method being intercepted. We then output a message to the log indicating
the class and method being invoked. This code is executed just before we let the
intercepted method execute, which we do by invoking invocationContext.
proceed(). We store the return value of this method in a variable, and then add
some additional logic to be executed just after the method finishes. In our example,
we simply send an additional line of text to the application server log. Finally, our
method returns the return value of invocationContext.proceed().

Decorating the EJB with the @Interceptors
annotations
For an EJB's method to be intercepted, it must be decorated with the @Interceptors
annotation, which has a single class array attribute. This attribute contains all the
interceptors to be executed before and/or after the method call.

The @Interceptors annotation can be used at the method level, in which case it
applies only to the method it decorates, or at the class level, in which it applies
to every method in the bean.

The following example is a new version of our EchoBean session bean,
which is slightly modified to have its echo() method intercepted by the
LoggingInterceptor class we wrote in the previous section:

package com.ensode.sessionbeanintro.ejb;

import javax.ejb.Stateless;
import javax.ejb.TransactionAttribute;
import javax.ejb.TransactionAttributeType;
import javax.interceptor.Interceptors;

@Stateless
public class Echo implements EchoRemote {
 // Add business logic below. (Right-click in editor and choose
 // "Insert Code > Add Business Method")

 @Interceptors({LoggingInterceptor.class})
 @TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)
 public String echo(String saying) {
 return "echoing: " + saying;
 }
}

Chapter 5

[197]

Notice that the only change we had to make to our session bean was to add the
@Interceptors annotation to its echo() method. In this particular case, the class
array attribute has a single value, which is the LoggingInterceptor class we
defined earlier. In our example, we are using a single interceptor for our bean's
method. If we need our method to be intercepted by more than one interceptor, we
can do that by adding additional interceptor classes between the curly braces in the
@Interceptors annotation. The list of interceptors between the curly braces must
be separated by commas.

At this point, we are ready to test our interceptor. In NetBeans, we can simply right-
click on the project in the Projects window and select Run. After doing so, we should
see the output of the interceptor's logMethodCall() method in NetBean's GlassFish
output window.

The EJB Timer service
Stateless session beans and message-driven beans (another type of EJB discussed
later in the book) can have a method that is executed automatically at regular
intervals. This functionality is useful if we want to execute some logic periodically
(once a week, every day, every other hour, and so on) without having to explicitly
call any methods. This functionality is achieved by the EJB Timer service.

Implementing the Business Tier with Session Beans

[198]

In order to use the EJB Timer service, we need to use the @Schedule annotation to
specify when our method will be called. NetBeans provides a handy wizard that
we can use to help us in the process.

The next step in the wizard allows us to select several options.

Chapter 5

[199]

We can implement our bean either as a stateless or as a singleton session bean. We
can also choose to create either a local or a remote interface. Local interfaces are
optional, and remote interfaces are required only if we need to access our session
bean from a different JVM. So, in our example, we choose not to create either one.
In the Method schedule text area, we need to enter the attributes and values of the
@Schedule annotation that will be added to the generated session bean.

The @Schedule annotation uses a syntax similar to the cron utility
commonly found in Unix and Unix-like operating systems such
as Linux. Refer to http://www.unixgeeks.org/security/
newbie/unix/cron-1.html for a good introduction to cron.

After clicking on Finish, our new session bean is generated, as shown in the
following code:

package com.ensode.ejbtimer.ejb;

import java.util.Date;
import javax.ejb.Schedule;
import javax.ejb.Stateless;
import javax.ejb.LocalBean;

@Stateless
@LocalBean
public class EjbTimerDemo {

 @Schedule(hour = "*", minute = "*", second = "*/30")
 public void myTimer() {
 System.out.println("Timer event: " + new Date());
 }

 // Add business logic below. (Right-click in editor and choose
 // "Insert Code > Add Business Method")
}

Notice how the values and attributes of the @Schedule annotation match the values
we entered in the wizard. We used the value "*" for its hour attribute to specify that
the method should be invoked every hour. We used the value of "*" for the minute
attribute as well to specify that the method should be invoked every minute. Finally,
we used the value of "*/30" for its second attribute to specify that the method
should be invoked every 30 seconds.

http://www.unixgeeks.org/security/newbie/unix/cron-1.html
http://www.unixgeeks.org/security/newbie/unix/cron-1.html

Implementing the Business Tier with Session Beans

[200]

After deploying and executing our project in NetBeans, we should see the following
output in the output console of GlassFish:

We can see the output of the generated myTimer() method in the GlassFish log.
This method is being invoked automatically every 30 seconds (as specified in
the @Schedule annotation) by the EJB Timer service.

Generating session beans from
JPA entities
One very nice NetBeans feature is that it allows the generation of stateless session
beans from the existing JPA entities. The generated session beans act as Data Access
Objects (DAOs). This feature, combined with the ability to generate JPA entities
from an existing database schema, allows us to completely generate the data access
layers of our application without having to write a single line of Java code.

To take advantage of this functionality, we need to create an EJB project (go to File |
New Project, select Enterprise from the Categories list, select EJB Module from the
Projects list), or use the EJB project from an Enterprise Application project and add
some JPA entities to it either by manually coding them or by generating them from
an existing schema as discussed in Chapter 4, Interacting with Databases through the
Java Persistence API.

Once we have some JPA entities in the project, we need to go to File | New File,
select Persistence from the categories list, and select Session Beans For Entity
Classes from the File Types list.

Chapter 5

[201]

The next screen in the wizard allows us to select for which of the existing JPA entity
classes in the project we want to generate session beans; in most cases, they should
be generated for all of them by simply clicking on the Add All button.

Implementing the Business Tier with Session Beans

[202]

The last screen in the wizard allows us to specify the package for the generated
session beans and whether we want to generate local and/or remote interfaces.

After clicking on Finish, the session beans are created and placed in the package
we specified.

All of the generated session beans extend AbstractFacade, an abstract class that is
also generated by the Session Beans for Entity Classes wizard. This abstract class
contains a number of methods that allow us to perform CRUD (short for Create,
Read, Update, and Delete) operations on our entities. The code is as follows:

package com.ensode.ejbdao.sessionbeans;

import java.util.List;
import javax.persistence.EntityManager;

public abstract class AbstractFacade<T> {
 private Class<T> entityClass;

 public AbstractFacade(Class<T> entityClass) {
 this.entityClass = entityClass;
 }

 protected abstract EntityManager getEntityManager();

Chapter 5

[203]

 public void create(T entity) {
 getEntityManager().persist(entity);
 }

 public void edit(T entity) {
 getEntityManager().merge(entity);
 }

 public void remove(T entity) {
 getEntityManager().remove(getEntityManager().merge(entity));
 }

 public T find(Object id) {
 return getEntityManager().find(entityClass, id);
 }

 public List<T> findAll() {
 javax.persistence.criteria.CriteriaQuery cq =
 getEntityManager().getCriteriaBuilder().createQuery();
 cq.select(cq.from(entityClass));
 return getEntityManager().createQuery(cq).getResultList();
 }

 public List<T> findRange(int[] range) {
 javax.persistence.criteria.CriteriaQuery cq =
 getEntityManager().getCriteriaBuilder().createQuery();
 cq.select(cq.from(entityClass));
 javax.persistence.Query q = getEntityManager().
createQuery(cq);
 q.setMaxResults(range[1] - range[0] + 1);
 q.setFirstResult(range[0]);
 return q.getResultList();
 }

 public int count() {
 javax.persistence.criteria.CriteriaQuery cq =
 getEntityManager().getCriteriaBuilder().createQuery();
 javax.persistence.criteria.Root<T> rt = cq.from(entityClass);
 cq.select(getEntityManager().getCriteriaBuilder().count(rt));
 javax.persistence.Query q = getEntityManager().
createQuery(cq);
 return ((Long) q.getSingleResult()).intValue();
 }
}

Implementing the Business Tier with Session Beans

[204]

As we can see, AbstractFacade is not much more than a facade to EntityManager.
Wrapping its calls inside a session bean gives us all of its advantages, such as
transaction management and distributed code. The generated create() method is
used to create new entities, the edit() method updates an existing entity, and the
remove() method deletes existing entities. The find() method finds an entity with
the given primary key, and the findAll() method returns a list of all entities in the
database. The findRange() method allows us to retrieve a subset of the entities in
the database; it takes an array of integers as its sole parameter. The first element in
this array should have the index of the first result to retrieve, and the second element
should have the index of the last element to retrieve. The count() method returns
the number of entities in the database; it is similar to a select count(*) from
TABLE_NAME statement in standard SQL.

As we mentioned previously, all of the generated session beans extend
AbstractFacade. Let's look at one of these generated EJBs:

package com.ensode.ejbdao.sessionbeans;

import com.ensode.ejbdao.entities.Customer;
import javax.ejb.Stateless;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;

@Stateless
public class CustomerFacade extends AbstractFacade<Customer> {
 @PersistenceContext(unitName = "EjbDaoPU")
 private EntityManager em;

 @Override
 protected EntityManager getEntityManager() {
 return em;
 }

 public CustomerFacade() {
 super(Customer.class);
 }
}

As we can see, the generated session beans are very simple. They simply include an
instance variable of type EntityManager and take advantage of resource injection to
initialize it. They also include a getEntityManager() method meant to be called by
the parent class so that it has access to this session bean's EntityManager instance.
Additionally, the session bean's constructor invokes the parent class' constructor,
which via generics initializes the entityClass instance variable on the parent class.

Chapter 5

[205]

We are, of course, free to add additional methods to the generated session beans.
For example, sometimes it is necessary to add a method to find all entities that
meet specific criteria, such as finding all customers with the same last name.

One disadvantage of adding methods to the generated session beans
is that, if for any reason they need to be regenerated, we will lose our
custom methods and they will need to be added again. In order to avoid
this situation, it is a good idea to extend the generated session beans and
add additional methods in the child classes; this will prevent our methods
from being "wiped out" if we ever need to regenerate our session beans.

Summary
In this chapter, we gave an introduction to session beans, and explained how
NetBeans can help us speed up session bean development.

We covered how EJBs in general, and session beans in particular, allow us to easily
implement transaction strategies in our enterprise applications. We also covered
how we can implement AOP with session beans via interceptors. Additionally, we
discussed how session beans can have one of their methods invoked periodically
by the EJB container by taking advantage of the EJB Timer service. Lastly, we
covered how NetBeans can help speed up the implementation of the data access
layer of our applications by generating session beans implementing the Data Access
Object (DAO) design pattern automatically.

Contexts and
Dependency Injection

Contexts and Dependency Injection (CDI) can be used to simplify integrating the
different layers of a Java EE application. For example, CDI allows us to use a session
bean as a managed bean, so that we can take advantage of the EJB features, such as
transactions, directly in our managed beans.

In this chapter, we will cover the following topics:

•	 Introduction to CDI
•	 Qualifiers
•	 Stereotypes
•	 Interceptor binding types
•	 Custom scopes

Introduction to CDI
JavaServer Faces (JSF) web applications employing CDI are very similar to JSF
applications without CDI; the main difference is that instead of using JSF managed
beans for our model and controllers, we use CDI named beans. What makes CDI
applications easier to develop and maintain are the excellent dependency injection
capabilities of the CDI API.

Contexts and Dependency Injection

[208]

Just as with other JSF applications, CDI applications use facelets as their view
technology. The following example illustrates a typical markup for a JSF page
using CDI:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html">
 <h:head>
 <title>Create New Customer</title>
 </h:head>
 <h:body>
 <h:form>
 <h3>Create New Customer</h3>
 <h:panelGrid columns="3">
 <h:outputLabel for="firstName" value="First Name"/>
 <h:inputText id="firstName" value="#{customer.
firstName}"/>
 <h:message for="firstName"/>

 <h:outputLabel for="middleName" value="Middle Name"/>
 <h:inputText id="middleName"
 value="#{customer.middleName}"/>
 <h:message for="middleName"/>

 <h:outputLabel for="lastName" value="Last Name"/>
 <h:inputText id="lastName" value="#{customer.
lastName}"/>
 <h:message for="lastName"/>

 <h:outputLabel for="email" value="Email Address"/>
 <h:inputText id="email" value="#{customer.email}"/>
 <h:message for="email"/>
 <h:panelGroup/>
 <h:commandButton value="Submit"
 action="#{customerController.
navigateToConfirmation}"/>
 </h:panelGrid>
 </h:form>
 </h:body>
</html>

Chapter 6

[209]

As we can see, the preceding markup doesn't look any different from the markup
used for a JSF application that does not use CDI. The page renders as follows
(shown after entering some data):

In our page markup, we have JSF components that use Unified Expression Language
expressions to bind themselves to CDI named bean properties and methods. Let's
take a look at the customer bean first:

package com.ensode.cdiintro.model;

import java.io.Serializable;
import javax.enterprise.context.RequestScoped;
import javax.inject.Named;

@Named

@RequestScoped

public class Customer implements Serializable {

 private String firstName;
 private String middleName;
 private String lastName;
 private String email;

 public Customer() {
 }

 public String getFirstName() {
 return firstName;
 }

Contexts and Dependency Injection

[210]

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getMiddleName() {
 return middleName;
 }

 public void setMiddleName(String middleName) {
 this.middleName = middleName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public String getEmail() {
 return email;
 }

 public void setEmail(String email) {
 this.email = email;
 }
}

The @Named annotation marks this class as a CDI named bean. By default, the bean's
name will be the class name with its first character switched to lowercase (in our
example, the name of the bean is "customer", since the class name is Customer).
We can override this behavior if we wish by passing the desired name to the value
attribute of the @Named annotation, as follows:

@Named(value="customerBean")

A CDI named bean's methods and properties are accessible via facelets, just like
regular JSF managed beans.

Chapter 6

[211]

Just like JSF managed beans, CDI named beans can have one of several scopes as
listed in the following table. The preceding named bean has a scope of request, as
denoted by the @RequestScoped annotation.

Scope Annotation Description
Request @RequestScoped Request scoped beans are shared through

the duration of a single request. A single
request could refer to an HTTP request, an
invocation to a method in an EJB, a web
service invocation, or sending a JMS message
to a message-driven bean.

Session @SessionScoped Session scoped beans are shared across all
requests in an HTTP session. Each user of an
application gets their own instance of a session
scoped bean.

Application @ApplicationScoped Application scoped beans live through the
whole application lifetime. Beans in this scope
are shared across user sessions.

Conversation @ConversationScoped The conversation scope can span multiple
requests, and is typically shorter than the
session scope.

Dependent @Dependent Dependent scoped beans are not shared. Any
time a dependent scoped bean is injected, a
new instance is created.

As we can see, CDI has equivalent scopes to all JSF scopes. Additionally, CDI adds
two additional scopes. The first CDI-specific scope is the conversation scope, which
allows us to have a scope that spans across multiple requests, but is shorter than
the session scope. The second CDI-specific scope is the dependent scope, which
is a pseudo scope. A CDI bean in the dependent scope is a dependent object of
another object; beans in this scope are instantiated when the object they belong
to is instantiated and they are destroyed when the object they belong to is destroyed.

Our application has two CDI named beans. We already discussed the customer bean.
The other CDI named bean in our application is the controller bean:

package com.ensode.cdiintro.controller;

import com.ensode.cdiintro.model.Customer;
import javax.enterprise.context.RequestScoped;
import javax.inject.Inject;
import javax.inject.Named;

Contexts and Dependency Injection

[212]

@Named

@RequestScoped

public class CustomerController {

 @Inject

 private Customer customer;

 public Customer getCustomer() {
 return customer;
 }

 public void setCustomer(Customer customer) {
 this.customer = customer;
 }

 public String navigateToConfirmation() {
 //In a real application we would
 //Save customer data to the database here.

 return "confirmation";
 }
}

In the preceding class, an instance of the Customer class is injected at runtime; this
is accomplished via the @Inject annotation. This annotation allows us to easily use
dependency injection in CDI applications. Since the Customer class is annotated with
the @RequestScoped annotation, a new instance of Customer will be injected for
every request.

The navigateToConfirmation() method in the preceding class is invoked when
the user clicks on the Submit button on the page. The navigateToConfirmation()
method works just like an equivalent method in a JSF managed bean would, that is,
it returns a string and the application navigates to an appropriate page based on the
value of that string. Like with JSF, by default, the target page's name with an .xhtml
extension is the return value of this method. For example, if no exceptions are
thrown in the navigateToConfirmation() method, the user is directed to a page
named confirmation.xhtml:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html">
 <h:head>

Chapter 6

[213]

 <title>Success</title>
 </h:head>
 <h:body>
 New Customer created successfully.
 <h:panelGrid columns="2" border="1" cellspacing="0">
 <h:outputLabel for="firstName" value="First Name"/>
 <h:outputText id="firstName" value="#{customer.
firstName}"/>

 <h:outputLabel for="middleName" value="Middle Name"/>
 <h:outputText id="middleName"
 value="#{customer.middleName}"/>

 <h:outputLabel for="lastName" value="Last Name"/>
 <h:outputText id="lastName" value="#{customer.lastName}"/>

 <h:outputLabel for="email" value="Email Address"/>
 <h:outputText id="email" value="#{customer.email}"/>

 </h:panelGrid>
 </h:body>
</html>

Again, there is nothing special we need to do to access the named beans properties
from the preceding markup. It works just as if the bean was a JSF managed bean.
The preceding page renders as follows:

As we can see, CDI applications work just like JSF applications. However, CDI
applications have several advantages over JSF, for example (as we mentioned
previously) CDI beans have additional scopes not found in JSF. Additionally, using
CDI allows us to decouple our Java code from the JSF API. Also, as we mentioned
previously, CDI allows us to use session beans as named beans.

Contexts and Dependency Injection

[214]

Qualifiers
In some instances, the type of bean we wish to inject into our code may be an
interface or a Java superclass, but we may be interested in injecting a subclass or
a class implementing the interface. For cases like this, CDI provides qualifiers we
can use to indicate the specific type we wish to inject into our code.

A CDI qualifier is an annotation that must be decorated with the @Qualifier
annotation. This annotation can then be used to decorate the specific subclass or
interface. In this section, we will develop a Premium qualifier for our customer bean;
premium customers could get perks that are not available to regular customers,
for example, discounts.

Creating a CDI qualifier with NetBeans is very easy; all we need to do is go to File
| New File, select the Contexts and Dependency Injection category, and select the
Qualifier Type file type.

Chapter 6

[215]

In the next step in the wizard, we need to enter a name and a package for
our qualifier.

After these two simple steps, NetBeans generates the code for our qualifier:

package com.ensode.cdiintro.qualifier;

import static java.lang.annotation.ElementType.TYPE;
import static java.lang.annotation.ElementType.FIELD;
import static java.lang.annotation.ElementType.PARAMETER;
import static java.lang.annotation.ElementType.METHOD;
import static java.lang.annotation.RetentionPolicy.RUNTIME;
import java.lang.annotation.Retention;
import java.lang.annotation.Target;
import javax.inject.Qualifier;

@Qualifier
@Retention(RUNTIME)
@Target({METHOD, FIELD, PARAMETER, TYPE})
public @interface Premium {
}

Contexts and Dependency Injection

[216]

Qualifiers are standard Java annotations. Typically, they have retention of runtime
and can target methods, fields, parameters, or types. The only difference between
a qualifier and a standard annotation is that qualifiers are decorated with the
@Qualifier annotation.

Once we have our qualifier in place, we need to use it to decorate the specific
subclass or interface implementation, as shown in the following code:

package com.ensode.cdiintro.model;

import com.ensode.cdiintro.qualifier.Premium;
import javax.enterprise.context.RequestScoped;
import javax.inject.Named;

@Named
@RequestScoped

@Premium

public class PremiumCustomer extends Customer {

 private Integer discountCode;

 public Integer getDiscountCode() {
 return discountCode;
 }

 public void setDiscountCode(Integer discountCode) {
 this.discountCode = discountCode;
 }
}

Once we have decorated the specific instance we need to qualify, we can use our
qualifiers in the client code to specify the exact type of dependency we need:

package com.ensode.cdiintro.controller;

import com.ensode.cdiintro.model.Customer;
import com.ensode.cdiintro.model.PremiumCustomer;
import com.ensode.cdiintro.qualifier.Premium;

import java.util.logging.Level;
import java.util.logging.Logger;
import javax.enterprise.context.RequestScoped;
import javax.inject.Inject;
import javax.inject.Named;

Chapter 6

[217]

@Named
@RequestScoped
public class PremiumCustomerController {

 private static final Logger logger = Logger.getLogger(
 PremiumCustomerController.class.getName());
 @Inject

 @Premium

 private Customer customer;

 public String saveCustomer() {

 PremiumCustomer premiumCustomer =
 (PremiumCustomer) customer;

 logger.log(Level.INFO, "Saving the following information \n"
 + "{0} {1}, discount code = {2}",
 new Object[]{premiumCustomer.getFirstName(),
 premiumCustomer.getLastName(),
 premiumCustomer.getDiscountCode()});

 //If this was a real application, we would have code to save
 //customer data to the database here.

 return "premium_customer_confirmation";
 }
}

Since we used our @Premium qualifier to decorate the customer field, an instance
of the PremiumCustomer class is injected into that field. This is because this class
is also decorated with the @Premium qualifier.

As far as our JSF pages go, we simply access our named bean as usual using its
name, as shown in the following code;

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html">
 <h:head>
 <title>Create New Premium Customer</title>
 </h:head>
 <h:body>
 <h:form>

Contexts and Dependency Injection

[218]

 <h3>Create New Premium Customer</h3>
 <h:panelGrid columns="3">
 <h:outputLabel for="firstName" value="First Name"/>
 <h:inputText id="firstName"
 value="#{premiumCustomer.firstName}"/>
 <h:message for="firstName"/>

 <h:outputLabel for="middleName" value="Middle Name"/>
 <h:inputText id="middleName"
 value="#{premiumCustomer.middleName}"/>
 <h:message for="middleName"/>

 <h:outputLabel for="lastName" value="Last Name"/>
 <h:inputText id="lastName"
 value="#{premiumCustomer.lastName}"/>
 <h:message for="lastName"/>

 <h:outputLabel for="email" value="Email Address"/>
 <h:inputText id="email"
 value="#{premiumCustomer.email}"/>
 <h:message for="email"/>

 <h:outputLabel for="discountCode" value="Discount
Code"/>
 <h:inputText id="discountCode"
 value="#{premiumCustomer.discountCode}"/>
 <h:message for="discountCode"/>

 <h:panelGroup/>
 <h:commandButton value="Submit"
 action="#{premiumCustomerController.
saveCustomer}"/>
 </h:panelGrid>
 </h:form>
 </h:body>
</html>

In this example, we are using the default name for our bean, which is the class name
with the first letter switched to lowercase.

Chapter 6

[219]

Now, we are ready to test our application:

After submitting the page, we can see the confirmation page.

Stereotypes
A CDI stereotype allows us to create new annotations that bundle up several CDI
annotations. For example, if we need to create several CDI named beans with a scope
of session, we would have to use two annotations in each of these beans, namely
@Named and @SessionScoped. Instead of having to add two annotations to each of
our beans, we could create a stereotype and annotate our beans with it.

Contexts and Dependency Injection

[220]

To create a CDI stereotype in NetBeans, we simply need to create a new file by
selecting the Contexts and Dependency Injection category and the Stereotype
file type.

Then, we need to enter a name and package for our new stereotype.

Chapter 6

[221]

At this point, NetBeans generates the following code:

package com.ensode.cdiintro.stereotype;

import static java.lang.annotation.ElementType.TYPE;
import static java.lang.annotation.ElementType.FIELD;
import static java.lang.annotation.ElementType.METHOD;
import static java.lang.annotation.RetentionPolicy.RUNTIME;
import java.lang.annotation.Retention;
import java.lang.annotation.Target;
import javax.enterprise.inject.Stereotype;

@Stereotype
@Retention(RUNTIME)
@Target({METHOD, FIELD, TYPE})
public @interface NamedSessionScoped {
}

Now, we simply need to add the CDI annotations that we want the classes annotated
with our stereotype to use. In our case, we want them to be named beans and have a
scope of session; therefore, we add the @Named and @SessionScoped annotations as
shown in the following code:

package com.ensode.cdiintro.stereotype;

import static java.lang.annotation.ElementType.TYPE;
import static java.lang.annotation.ElementType.FIELD;
import static java.lang.annotation.ElementType.METHOD;
import static java.lang.annotation.RetentionPolicy.RUNTIME;
import java.lang.annotation.Retention;
import java.lang.annotation.Target;
import javax.enterprise.context.SessionScoped;
import javax.enterprise.inject.Stereotype;
import javax.inject.Named;

@Named

@SessionScoped

@Stereotype
@Retention(RUNTIME)
@Target({METHOD, FIELD, TYPE})
public @interface NamedSessionScoped {
}

Now we can use our stereotype in our own code:

package com.ensode.cdiintro.beans;

Contexts and Dependency Injection

[222]

import com.ensode.cdiintro.stereotype.NamedSessionScoped;
import java.io.Serializable;

@NamedSessionScoped

public class StereotypeClient implements Serializable {

 private String property1;
 private String property2;

 public String getProperty1() {
 return property1;
 }

 public void setProperty1(String property1) {
 this.property1 = property1;
 }

 public String getProperty2() {
 return property2;
 }

 public void setProperty2(String property2) {
 this.property2 = property2;
 }
}

We annotated the StereotypeClient class with our NamedSessionScoped stereotype,
which is equivalent to using the @Named and @SessionScoped annotations.

Interceptor binding types
One of the advantages of EJBs is that they allow us to easily perform aspect-oriented
programming (AOP) via interceptors. CDI allows us to write interceptor binding
types; this lets us bind interceptors to beans and the beans do not have to depend
on the interceptor directly. Interceptor binding types are annotations that are
themselves annotated with @InterceptorBinding.

Creating an interceptor binding type in NetBeans involves creating a new file,
selecting the Contexts and Dependency Injection category, and selecting the
Interceptor Binding Type f﻿ile type.

Chapter 6

[223]

Then, we need to enter a class name and select or enter a package for our new
interceptor binding type.

Contexts and Dependency Injection

[224]

At this point,, NetBeans generates the code for our interceptor binding type:

package com.ensode.cdiintro.interceptorbinding;

import static java.lang.annotation.ElementType.TYPE;
import static java.lang.annotation.ElementType.METHOD;
import static java.lang.annotation.RetentionPolicy.RUNTIME;
import java.lang.annotation.Inherited;
import java.lang.annotation.Retention;
import java.lang.annotation.Target;
import javax.interceptor.InterceptorBinding;

@Inherited
@InterceptorBinding
@Retention(RUNTIME)
@Target({METHOD, TYPE})
public @interface LoggingInterceptorBinding {
}

The generated code is fully functional; we don't need to add anything to it. In order
to use our interceptor binding type, we need to write an interceptor and annotate it
with our interceptor binding type, as shown in the following code:

package com.ensode.cdiintro.interceptor;

import com.ensode.cdiintro.interceptorbinding.
LoggingInterceptorBinding;
import java.io.Serializable;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.interceptor.AroundInvoke;
import javax.interceptor.Interceptor;
import javax.interceptor.InvocationContext;

@LoggingInterceptorBinding

@Interceptor
public class LoggingInterceptor implements Serializable{

 private static final Logger logger = Logger.getLogger(
 LoggingInterceptor.class.getName());

 @AroundInvoke
 public Object logMethodCall(InvocationContext invocationContext)
 throws Exception {

Chapter 6

[225]

 logger.log(Level.INFO, new StringBuilder("entering ").append(
 invocationContext.getMethod().getName()).append(
 " method").toString());

 Object retVal = invocationContext.proceed();

 logger.log(Level.INFO, new StringBuilder("leaving ").append(
 invocationContext.getMethod().getName()).append(
 " method").toString());

 return retVal;
 }
}

As we can see, other than being annotated with our interceptor binding type, the
preceding class is a standard interceptor similar to the ones we use with EJB session
beans (refer to Chapter 5, Implementing the Business Tier with Session Beans, for details).

In order for our interceptor binding type to work properly, we need to add a CDI
configuration file (beans.xml) to our project.

Contexts and Dependency Injection

[226]

Then, we need to register our interceptor in beans.xml as follows:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
 http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd"

 bean-discovery-mode="all">

 <interceptors>

 <class>

 com.ensode.cdiintro.interceptor.LoggingInterceptor

 </class>

 </interceptors>

</beans>

To register our interceptor, we need to set bean-discovery-mode to all in the
generated beans.xml and add the <interceptor> tag in beans.xml, with one or
more nested <class> tags containing the fully qualified names of our interceptors.

The final step before we can use our interceptor binding type is to annotate the class
to be intercepted with our interceptor binding type:

package com.ensode.cdiintro.controller;

import com.ensode.cdiintro.interceptorbinding.
LoggingInterceptorBinding;
import com.ensode.cdiintro.model.Customer;
import com.ensode.cdiintro.model.PremiumCustomer;
import com.ensode.cdiintro.qualifier.Premium;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.enterprise.context.RequestScoped;
import javax.inject.Inject;
import javax.inject.Named;

@LoggingInterceptorBinding

@Named
@RequestScoped
public class PremiumCustomerController {

 private static final Logger logger = Logger.getLogger(
 PremiumCustomerController.class.getName());
 @Inject
 @Premium

Chapter 6

[227]

 private Customer customer;

 public String saveCustomer() {

 PremiumCustomer premiumCustomer = (PremiumCustomer) customer;

 logger.log(Level.INFO, "Saving the following information \n"
 + "{0} {1}, discount code = {2}",
 new Object[]{premiumCustomer.getFirstName(),
 premiumCustomer.getLastName(),
 premiumCustomer.getDiscountCode()});

 //If this was a real application, we would have code to save
 //customer data to the database here.

 return "premium_customer_confirmation";
 }
}

Now, we are ready to use our interceptor. After executing the preceding code and
examining the GlassFish log, we can see our interceptor binding type in action.

The lines entering saveCustomer method and leaving saveCustomer method
were added to the log by our interceptor, which was indirectly invoked by our
interceptor binding type.

Custom scopes
In addition to providing several prebuilt scopes, CDI allows us to define our own
custom scopes. This functionality is primarily meant for developers building
frameworks on top of CDI, not for application developers. Nevertheless, NetBeans
provides a wizard for us to create our own CDI custom scopes.

Contexts and Dependency Injection

[228]

To create a new CDI custom scope, we need to go to File | New File, select the
Contexts and Dependency Injection category, and select the Scope Type file type.

Then, we need to enter a package and a name for our custom scope.

Chapter 6

[229]

After clicking on Finish, our new custom scope is created, as shown in the
following code:

package com.ensode.cdiintro.scopes;

import static java.lang.annotation.ElementType.TYPE;
import static java.lang.annotation.ElementType.FIELD;
import static java.lang.annotation.ElementType.METHOD;
import static java.lang.annotation.RetentionPolicy.RUNTIME;
import java.lang.annotation.Inherited;
import java.lang.annotation.Retention;
import java.lang.annotation.Target;
import javax.inject.Scope;

@Inherited
@Scope // or @javax.enterprise.context.NormalScope
@Retention(RUNTIME)
@Target({METHOD, FIELD, TYPE})
public @interface CustomScope {
}

To actually use our scope in our CDI applications, we would need to create a custom
context which, as mentioned previously, is primarily a concern for framework
developers and not for Java EE application developers. Therefore, it is beyond the
scope of this chapter. Interested readers can refer to JBoss Weld CDI for Java Platform,
Ken Finnigan, Packt Publishing. (JBoss Weld is a popular CDI implementation and it is
included with GlassFish.)

Summary
In this chapter, we covered NetBeans support for CDI, a new Java EE API introduced
in Java EE 6. We provided an introduction to CDI and explained additional
functionality that the CDI API provides over standard JSF. We also covered how to
disambiguate CDI injected beans via CDI Qualifiers. Additionally, we covered how
to group together CDI annotations via CDI stereotypes. We also saw how CDI
can help us with AOP via interceptor binding types. Finally, we covered how
NetBeans can help us create custom CDI scopes.

Messaging with JMS and
Message-driven Beans

Java Message Service (JMS) is a standard Java EE messaging API that allows loosely
coupled, asynchronous communication between Java EE components.

NetBeans includes good support to aid us in creating applications that take
advantage of the JMS API, generating most of the JMS-specific code and
allowing us to focus on the business logic of our application.

We will cover the following topics in this chapter:

•	 Introduction to JMS
•	 Creating JMS resources from NetBeans
•	 Implementing a JMS message producer
•	 Consuming JMS messages with message-driven beans

Introduction to JMS
JMS is a standard Java EE API that allows loosely coupled, asynchronous
communication between Java EE components. Applications that take advantage of
JMS do not interact with each other directly; instead, JMS message producers send
messages to a destination (JMS queue or topic) and JMS consumers receive messages
from those destinations.

There are two messaging domains that can be used when working with JMS:
point-to-point (PTP) messaging, in which a JMS message is processed by only one
message receiver, and publish/subscribe (pub/sub) messaging, in which all message
receivers subscribed to a specific topic receive and process each message for said
topic. JMS applications that use the PTP messaging domains use message queues as
their JMS destinations, whereas applications that use pub/sub use message topics.

Messaging with JMS and Message-driven Beans

[232]

Creating JMS resources from NetBeans
Before we can send and receive JMS messages, we need to add a JMS destination
(queue or topic) in our application server. When using GlassFish as our application
server, we can create JMS destinations directly from any Java EE project in NetBeans.

Older versions of Java EE required the creation of a JMS connection
factory in addition to JMS destinations. The Java EE 7 specification
requires all compliant application servers to supply a default JMS
connection factory; therefore, this step is no longer necessary.

JMS destinations are an intermediate location where JMS producers place messages
and JMS consumers retrieve them. When using the PTP messaging domain, JMS
destinations are message queues, whereas with the pub/sub messaging domain,
the destination is a message topic.

In our example, we will use the PTP messaging domain. Therefore, we need to create
a message queue; the procedure to create a message topic is almost identical.

First, we need to create a new Java EE project; for our example, we will create a
Web Application project:

Chapter 7

[233]

In the next step in the wizard, name the project JMSIntro.

Accept all the default values in the next step in the wizard.

Messaging with JMS and Message-driven Beans

[234]

Select the JavaServer Faces framework in the next step in the wizard.

Click on Finish to create the project.

In order to create a message queue, we need to go to File | New File, select
GlassFish from the Categories list, and select JMS Resource from the File
Types list. This is shown in the following screenshot:

Chapter 7

[235]

Then, we need to enter a JNDI name for our queue; in our example, we simply
picked the default name jms/MyQueue and accepted the default resource type
javax.jms.Queue.

JMS message queues require a Name property; in our example, we simply chose to use
the JNDI name of our queue (without the jms/ prefix) as the value of this property.

Messaging with JMS and Message-driven Beans

[236]

So, we have created a JMS queue to act as a JMS destination for our application.

NetBeans adds the GlassFish resources we created to a file called sun-resources.xml.
This file is created under the Server Resources node in the Projects view.

When we deploy our project to GlassFish, it reads this file and creates the resources
defined in it. We can see the contents of this file by double-clicking on it.

We can confirm that the queue was created successfully by inspecting the GlassFish
web console. We can open the GlassFish web console by clicking on the Services tab,
expanding the Servers node, then right-clicking on the GlassFish Server 4 node, and
finally selecting View Domain Admin Console.

Chapter 7

[237]

After a few seconds, a browser window will open automatically to display the
GlassFish web-based administration console.

Messaging with JMS and Message-driven Beans

[238]

We can verify that our queue was created successfully by expanding the JMS
Resources node on the left-hand side, expanding the Destination Resources
node, and verifying that our queue is listed.

Now that we have verified that our queue was created successfully, it is time to write
some code to send a JMS message.

Implementing a JMS message producer
In this section, we will develop a simple JSF application. One of the CDI managed
beans in our application will produce a JMS message and send it to the queue we
configured in the previous section.

Let's create a new Java class named JmsMessageModel. This class will store the
message text that will be sent to the queue.

Chapter 7

[239]

We should then annotate the class with the @Named annotation to make the class
a CDI named bean. We should also annotate the class with the @RequestScoped
annotation to give it a scope of request.

We should add a private variable named msgText of type String, along with its
corresponding getter and setter methods.

Generating getter and setter methods
Getter and setter methods can be automatically generated by pressing Alt
+ Insert, and then selecting Getter and Setter

When finished, our class should look like this:

package com.ensode.jmsintro;

import javax.enterprise.context.RequestScoped;
import javax.inject.Named;

@Named
@RequestScoped
public class JmsMessageModel {

 private String msgText;

 public String getMsgText() {
 return msgText;
 }

 public void setMsgText(String msgText) {
 this.msgText = msgText;
 }

}

We now turn our attention to the controller, which will actually send the JMS
message to the queue we created in the previous section. Using the NetBeans wizard,
let's create a new Java class named JmsMesageController and annotate it with the
@Named and @RequestScoped annotations.

Messaging with JMS and Message-driven Beans

[240]

Now, our class should look like this:

package com.ensode.jmsintro;

import javax.enterprise.context.RequestScoped;
import javax.inject.Named;

@Named
@RequestScoped
public class JmsMessageController {

}

We need to add some code to send a JMS message. NetBeans can aid us in this task.
All we need to do is click on Alt + Insert and select Send JMS Message...:

Now, a dialog window appropriately titled Send JMS Message pops up. We need
to select the Server Destinations radio button and select jms/myQueue from the
corresponding dropdown (this is the queue we created in the previous section).

Chapter 7

[241]

When we click on OK, NetBeans automatically generates the code to send the
JMS message:

package com.ensode.jmsintro;

import javax.annotation.Resource;
import javax.enterprise.context.RequestScoped;
import javax.inject.Inject;
import javax.inject.Named;
import javax.jms.JMSConnectionFactory;
import javax.jms.JMSContext;
import javax.jms.Queue;

@Named
@RequestScoped
public class JmsMessageController {
 @Resource(mappedName = "jms/myQueue")
 private Queue myQueue;
 @Inject
 @JMSConnectionFactory("java:comp/DefaultJMSConnectionFactory")
 private JMSContext context;

 private void sendJMSMessageToMyQueue(String messageData) {
 context.createProducer().send(myQueue, messageData);
 }

}

Messaging with JMS and Message-driven Beans

[242]

NetBeans generates a private variable called myQueue of the type javax.jms.Queue.
This variable is annotated with the @Resource annotation, which binds the myQueue
variable to the JMS queue we created in the previous section.

NetBeans also adds a private variable named context of the type JMSContext. This
variable is annotated with the @Inject annotation, which results in the application
server (GlassFish, in our case) injecting an instance of JMSContext to this variable
at runtime. The context variable is also annotated with @JMSConnectionFactory,
which binds the context variable to a JMS connection factory.

In previous versions of Java EE, we had to create a JMS connection
factory in addition to a JMS destination. Java EE 7 introduces a default
connection factory that we can use in our JMS code. The NetBeans
generated code takes advantage of this new Java EE 7 feature.

Finally, NetBeans adds a method to actually send the JMS message to the queue.
The name of the generated method depends on the name of the queue. In our
case, we named our queue myQueue; therefore, NetBeans named the method
sendJMSMessageToMyQueue().

This method uses the simplified JMS 2.0 API added in Java EE 7. The body of the
method invokes the createProducer() method of the generated JMSContext
instance. This method returns an instance of javax.jms.JMSProducer. Then, the
method invokes the send() method of JMSProducer; this method sends the message
to the queue. The first parameter of the send() method is the JMS destination that
will receive the message; the second parameter is a string that contains the message.

There are several message types we can send to a JMS queue (all standard JMS
message types are described later in the chapter). The most common message type
is javax.jms.TextMessage. In previous versions of the JMS API, we had to
explicitly use this interface to send JMS messages containing simple strings. The
new JMS 2.0 API generates an instance of a class implementing this interface
behind the scenes when we send a string as a message; this simplifies our work
as application developers.

After generating the JMS code with a few simple clicks, we need to add a few simple
modifications to our code. To do this, simply invoke the generated code with the
message we wish to send:

package com.ensode.jmsintro;

import javax.annotation.Resource;
import javax.enterprise.context.RequestScoped;
import javax.inject.Inject;
import javax.inject.Named;

Chapter 7

[243]

import javax.jms.JMSConnectionFactory;
import javax.jms.JMSContext;
import javax.jms.Queue;

@Named
@RequestScoped
public class JmsMessageController {

 @Inject
 private JmsMessageModel jmsMessageModel;

 @Resource(mappedName = "jms/myQueue")
 private Queue myQueue;
 @Inject
 @JMSConnectionFactory("java:comp/DefaultJMSConnectionFactory")
 private JMSContext context;

 public String sendMsg() {
 sendJMSMessageToMyQueue(jmsMessageModel.getMsgText());
 return "confirmation";
 }

 private void sendJMSMessageToMyQueue(String messageData) {
 context.createProducer().send(myQueue, messageData);
 }

}

As we can see, all we had to do was to inject an instance of the JmsMessageModel
class we developed earlier and add a simple method that will invoke the generated
sendJMSMessageToMyQueue() method, passing the message text as a parameter.

Next, we need to modify the generated index.xhtml file to add a form binding the
msgText variable of JmsMessageModel to a text field and a command button that
invokes the sendMsg() method when it is clicked. The code is as follows:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html">
 <h:head>
 <title>Send JMS Message</title>
 </h:head>
 <h:body>

Messaging with JMS and Message-driven Beans

[244]

 <h:form>
 <h:panelGrid columns="2">
 <h:outputLabel for="msgText" value="Enter Message
Text:"/>
 <h:inputText id="msgText"
 value="#{jmsMessageModel.msgText}"/>
 <h:panelGroup/>
 <h:commandButton value="Submit"
 action="#{jmsMessageController.sendMsg()}"/>
 </h:panelGrid>
 </h:form>
 </h:body>
</html>

The <h:inputText> tag binds user input to the msgText variable of
JMSMessageModel via its Unified Expression Language value binding
expression (#{jmsMessageModel.msgText}).

As is evident from the value of its action attribute, the <h:commandButton>
tag passes control to the sendMsg() method of JmsMessageController
when the user clicks on the rendered button. As we discussed in the chapter,
JmsMessageController.sendMsg() takes the value of JmsMessageModel.msgText
and puts it in a message queue. The JmsMessageController.sendMsg() method
also directs the user to a simple confirmation page. The code is as follows:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html">
 <h:head>
 <title>JMS message sent</title>
 </h:head>
 <h:body>
 JMS message sent successfully.
 </h:body>
</html>

As we can see, the confirmation page for our example is very simple. It simply
displays the message JMS message sent successfully on the browser.

Now that we are done producing a message and placing it in a JMS queue, we will
see how to develop code that will retrieve the message from the queue.

Chapter 7

[245]

Consuming JMS messages with
message-driven beans
The most common way of implementing JMS message consumers is by developing
message-driven beans. Message-driven beans are a special type of Enterprise
JavaBean (EJB) whose purpose is to listen to JMS messages on a message queue or
topic. Message-driven beans provide EJB features such as transactions and scalability.

In real systems, JMS message producers and JMS message
consumers will be developed in separate NetBeans projects, as
these are usually completely different systems. For simplicity, we
will develop both the JMS producer and consumer in the same
NetBeans project.

We can develop message-driven beans in NetBeans by going to File | New File,
selecting the Enterprise JavaBeans category, and selecting the Message-Driven
Bean file type.

Messaging with JMS and Message-driven Beans

[246]

Then, we need to enter an EJB Name and select an appropriate value for the Project
Destinations or Server Destinations fields; in our example, we need to select the
server destination we created earlier in the chapter.

In the next step in the wizard, we can select several Activation Config
Properties that are used to provide information about the configuration
of our message-driven bean.

Chapter 7

[247]

The following table explains the different activation configuration properties:

Activation configuration
property

Valid values Description

acknowledgeMode AUTO_ACKNOWLEDGE
or DUPS_OK_
ACKNOWLEDGE

When set to AUTO_
ACKNOWLEDGE, the
application server
acknowledges the message
immediately after it is
received. When set to
DUPS_OK_ACKNOWLEDGE,
the application server
acknowledges the message
at any time after it has
received the message.

clientId Free form This is the client ID for
durable subscribers. This
is only used when using
the pub/sub messaging
domains (that is, topics
instead of queues).

connectionFactoryLookup Free form This is the JNDI name of
the JMS connection factory,
and the default value is the
JNDI name of the default
connection factory.

destinationType QUEUE or TOPIC This defines whether
the destination type is a
queue (for the point-to-
point messaging domain)
or topic (for the pub/sub
messaging domain).

destinationLookup Free form This is the JNDI name of
the destination (queue or
topic).

messageSelector Free form This allows message-driven
beans to be selective about
which messages they
process.

Messaging with JMS and Message-driven Beans

[248]

Activation configuration
property

Valid values Description

subscriptionDurability NON_DURABLE or
DURABLE

This specifies whether a
subscription is durable
or nondurable. Durable
subscriptions survive an
application server restart
or crash and they are only
used for JMS topics (pub/
sub messaging domain).

subscriptionName Free form This sets the subscription
name for durable
subscriptions.

For our example, we simply need to accept all of the default values and click on the
Finish button. The following code shows the generated message-driven bean:

package com.ensode.jmsintro;

import javax.ejb.ActivationConfigProperty;
import javax.ejb.MessageDriven;
import javax.jms.Message;
import javax.jms.MessageListener;

@MessageDriven(activationConfig = {
 @ActivationConfigProperty(propertyName =
 "destinationLookup", propertyValue = "jms/myQueue"),
 @ActivationConfigProperty(propertyName = "destinationType",
 propertyValue = "javax.jms.Queue")
})
public class MessageReceiver implements MessageListener {

 public MessageReceiver() {
 }

 @Override
 public void onMessage(Message message) {
 }

}

Chapter 7

[249]

The @MessageDriven annotation marks our class as a message-driven bean. Its
activationConfig attribute accepts an array of @ActivationConfigProperty
annotations, each of which specifies a JMS property name and value. Both the
@MessageDriven annotation and the corresponding @ActivationConfig
annotations are generated automatically from the values we pick on the last
page of the NetBeans New Message-Driven Bean wizard.

Notice that the generated class implements the javax.jms.MessageListener
interface. This is a requirement for message-driven beans. This interface defines
a single method, the onMessage() method, which takes an instance of a class
implementing javax.jms.Message as its sole parameter and returns void. This
method is invoked automatically when a message is received in the JMS destination
where the message-driven bean is listening. We need to add our custom processing
to this method to handle the received message, as shown in the following code:

 @Override
 public void onMessage(Message message) {
 TextMessage textMessage = (TextMessage) message;
 try {
 System.out.println("received message: " +
 textMessage.getText());
 } catch (JMSException ex) {
 Logger.getLogger(MessageReceiver.class.getName()).log(
 Level.SEVERE, null, ex);
 }
 }

All JMS message types extend the javax.jms.Message interface. In order to process
the message, we need to cast it to the specific Message subinterface. In our case, the
message we received is an instance of javax.jms.TextMessage.

In our simple example, we simply sent the message content to the application server
log by invoking System.out.println() and passing the value textMessage.
getText() as a parameter. The getText() method of javax.jms.TextMessage
returns a string containing the message text. In a real application, we would do
something more substantial, such as populating database tables from the message
contents or rerouting the message to another JMS destination based on the contents
of the message.

Last but not least, the getText() method of javax.jms.TextMessage can
potentially throw a JMSException; therefore, we need to add a catch block
to handle the exception.

Messaging with JMS and Message-driven Beans

[250]

Seeing our messaging application in action
Now that we have finished developing our application, it is time to see it in action;
we can deploy it and run it in one shot by right-clicking on the project and
selecting Run Project.

After a brief wait, the browser will automatically pop up to display the index page of
our application.

After entering some text in the text field and clicking on Submit, we can see the
output of the onMessage() method on our message-driven bean on the application
server log.

Chapter 7

[251]

As we can see, developing messaging applications using the JMS 2.0 API is very
simple, and it is made even simpler by employing NetBeans features such as code
generation and wizards.

In our example, we discussed only one message type, namely javax.jms.
TextMessage. In the following table, we briefly describe all JMS message types:

Subinterface Description
BytesMessage This is used to send an array of bytes as a message.
MapMessage This is used to send name-value pairs as messages. The

names must be string objects and the values must be either
primitive types or Java objects.

ObjectMessage This is used to send serializable objects as messages. A
serializable object is an instance of any class that implements
java.io.Serializable.

StreamMessage This is used to send a stream of Java primitive types as a
message.

TextMessage This is used to send a string as a message.

Summary
In this chapter, we covered an introduction to JMS and messaging systems in
general. We talked about the two JMS messaging domains, namely the PTP
messaging domain, in which a single listener processes a message, and the pub/sub
messaging domain, in which all subscribed message listeners process the message.

Then, we covered how to create JMS resources such as message queues quickly
and easily by taking advantage of the NetBeans JMS Resource wizard.

We also covered how to send JMS messages using JMS 2.0 included in Java EE 7,
and we saw how NetBeans can generate most of the JMS boilerplate code.

Then, we turned our attention to developing code to receive and process JMS
messages, specifically how to develop message-driven beans via the NetBeans
Message-Driven Bean wizard.

Java API for JSON
Processing

JSON (short for JavaScript Object Notation) is a lightweight data interchange format.
JSON's primary advantage over other data interchange formats such as XML is that
JSON is both easy for humans to read and easy for computers to generate and parse.
It is commonly used in many modern web applications.

Java EE 7 introduces the Java API for JSON Processing (JSON-P), which is a
standard Java EE API to parse and generate JSON data.

JSON-P provides two ways to both parse and generate JSON data: the object model
API and the streaming API.

In this chapter, we will cover the following topics:

•	 The JSON-P object model API:
°° Generating JSON data with the JSON-P object model API
°° Parsing JSON data with the JSON-P object model API

•	 The JSON-P streaming API:
°° Generating JSON data with the JSON-P streaming API
°° Parsing JSON data with the JSON-P streaming API

The JSON-P object model API
The JSON-P model API allows us to generate an in-memory tree structured
representation of a JSON object. The JSON-P API uses the builder pattern, which
allows us as application developers to easily create a JSON representation of a
Java object.

Java API for JSON Processing

[254]

Generating JSON data with the JSON-P object
model API
When using the JSON-P object model API, we typically start by invoking the add()
method of an implementation of the JsonObjectBuilder interface. This method
returns an instance of another JsonObjectBuilder interface implementation. We can
chain invocations of JsonObject.add() together, allowing us to easily create a JSON
representation from a Java object. The following example illustrates this process:

package com.ensode.jsonpmodelapi;

//imports omitted

@Named
@RequestScoped
public class JsonPModelApiBean {

 @Inject
 private Person person;
 private String jsonStr;

 public String generateJson() {
 JsonObjectBuilder jsonObjectBuilder =
 Json.createObjectBuilder();

 JsonObject jsonObject = jsonObjectBuilder.
 add("firstName", person.getFirstName()).
 add("middleName", person.getMiddleName()).
 add("lastName", person.getLastName()).
 add("gender", person.getGender()).
 add("age", person.getAge()).
 build();

 StringWriter stringWriter = new StringWriter();

 try (JsonWriter jsonWriter = Json.createWriter(stringWriter))
{
 jsonWriter.writeObject(jsonObject);
 }
 setJsonStr(stringWriter.toString());

 //JSF Dynamic navigation
 return "generated_json";
 }

 //other methods omitted
}

Chapter 8

[255]

This example part of a JSF application, specifically a CDI named bean.
We are only showing code that is relevant to the discussion.

In this example, we are generating a JSON representation of a simple Person Java
class containing a few simple properties such as firstName, middleName, lastName,
and so on, along with the corresponding getter and setter methods.

The first thing we do in our example is obtain an instance of a class implementing
the JsonObjectBuilder interface by invoking the static createObjectBuilder()
method on the Json class. This method returns an instance of a class implementing
the JsonObjectBuilder interface, which we can use as a starting point to generate
a JSON representation of a Java object.

Once we obtain an instance of JsonObjectBuilder, we need to invoke one of its
overloaded add() methods, all of which accept a string as their first parameter
and a value as its second parameter. This method returns another instance of
JsonObjectBuilder, as seen in our example. We can chain invocations of the add()
method to quickly and easily generate the final JSON representation we need. What
we are seeing here is the builder pattern in action.

In our example, we used two versions of the JsonObjectBuilder.add() method,
one accepting a string as its second parameter and another one accepting an integer
as its second parameter. (In our example, we passed an Integer object to this
method. Java unboxing takes care of converting our parameter to an int primitive)
There are several other overloaded versions of JsonObjectBuilder.add(). This
allows great flexibility when building JSON representations of Java objects via the
JSON-P object model API. The following table describes all overloaded versions of
JsonObjectBuilder.add(); in all cases, the first parameter corresponds to the name
of the JSON property on the generated JSON object, and the second parameter is the
corresponding value in the generated JSON.

add method Description
add(String name, BigDecimal
value)

This adds a JsonNumber representation of
a BigDecimal value to the generated JSON
object

add(String name, BigInteger
value)

This adds a JsonNumber representation of
a BigInteger value to the generated JSON
object

add(String name, boolean
value)

This adds either a JsonValue.TRUE or
JsonValue.FALSE value to the generated
JSON object, depending on the Boolean value
passed as a parameter

Java API for JSON Processing

[256]

add method Description
add(String name, double value) This adds a JsonNumber representation of a

double value to the generated JSON object
add(String name, int value) This adds a JsonNumber representation of

an int value to the generated JSON object
add(String name,
JsonArrayBuilder builder)

This adds an array of JSON objects to the
generated JSON object

add(String name,
JsonObjectBuilder builder)

This adds another JSON object to the
generated JSON object

add(String name, JsonValue
value)

This adds an implementation of the
JsonValue interface to the generated JSON
object

add(String name, long value) This adds a JsonNumber representation of a
long value to the generated JSON object

add(String name, String value) This adds a string value to the generated
JSON object

Lets go back to our example. After invoking the chain of add() methods, we invoke
the build() method on the resulting JsonObjectBuilder implementation. This
method invocation returns an instance of a class implementing JsonObject.

Once we have a JsonObject implementation, typically we would want to convert
it to its string representation. To convert a JsonObject implementation to a JSON
string, we need to invoke the static createWriter() method on the Json class,
passing a new instance of StringWriter as a parameter. This method returns an
instance of a class implementing the JsonWriter interface. Now, we need to invoke
the writeObject() method of JsonWriter, passing the JsonObject instance
we previously created as a parameter. This method invocation populates the
StringWriter object we used to create our JsonWriter interface. We can obtain
the JSON string representation of our object by simply invoking the toString()
method of our StringWriter object.

Our example in action
Our example consists of a simple web application that uses JSF to populate a CDI
named bean and generates a JSON string from this bean. The markup for our simple
JSF page populating the CDI named bean is as follows:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html">

Chapter 8

[257]

 <h:head>
 <title>Object to JSON With the JSON-P Object Model API</title>
 </h:head>
 <h:body>
 <h:form>
 <h:panelGrid columns="2">
 <h:outputLabel for="firstName" value="First Name"/>
 <h:inputText id="firstName" value="#{person.
firstName}"/>
 <h:outputLabel for="middleName" value="Middle Name"/>
 <h:inputText id="middleName"
 value="#{person.middleName}"/>
 <h:outputLabel for="lastName" value="Last Name"/>
 <h:inputText id="lastName" value="#{person.
lastName}"/>
 <h:outputLabel for="gender" value="Gender"/>
 <h:inputText id="gender" value="#{person.gender}"/>
 <h:outputLabel for="age" value="Age"/>
 <h:inputText id="age" value="#{person.age}"/>
 <h:panelGroup/>
 <h:commandButton value="Submit"
 action="#{jsonPModelApiBean.generateJson()}"/>
 </h:panelGrid>
 </h:form>
 </h:body>
</html>

As we can see, the preceding markup is very simple. It consists of a form with
several input text fields bound to properties in the Person CDI named bean. There is
also a command button that transfers control to the generateJson() method of the
JsonPModelApiBean class we discussed in the previous section.

Here is the source code for the Person bean:

package com.ensode.jsonpmodelapi;

import java.io.Serializable;
import javax.enterprise.context.SessionScoped;
import javax.inject.Named;

@Named
@SessionScoped
public class Person implements Serializable {

Java API for JSON Processing

[258]

 private String firstName;
 private String middleName;
 private String lastName;
 private String gender;
 private Integer age;

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getMiddleName() {
 return middleName;
 }

 public void setMiddleName(String middleName) {
 this.middleName = middleName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public String getGender() {
 return gender;
 }

 public void setGender(String gender) {
 this.gender = gender;
 }

 public Integer getAge() {
 return age;
 }

 public void setAge(Integer age) {
 this.age = age;
 }

}

Chapter 8

[259]

Again, there is nothing special about the Person class; it's just a simple CDI named
bean with private properties and corresponding setter and getter methods.

We can execute our application as usual by right-clicking on the project and
selecting Run.

After a few seconds, the browser should pop up and render our JSF page.

When we click on the Submit button, control goes to the controller we discussed
in the previous section. Then, we navigate to the JSF page displaying the JSON
representation of the Person object.

Here is the markup of the JSF page displaying the JSON string:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html">

Java API for JSON Processing

[260]

 <h:head>
 <title>Generated JSON with the JSON-P Object Model API</title>
 </h:head>
 <h:body>
 <h:form>
 <h:panelGrid columns="2">
 <h:outputLabel for="parsedJson" value="Parsed JSON"/>
 <h:inputTextarea
 value="#{jsonPModelApiBean.jsonStr}" rows="4"/>
 <h:panelGroup/>
 <h:commandButton value="Submit"
 action="#{jsonPModelApiBean.parseJson()}"/>
 </h:panelGrid>
 </h:form>
 </h:body>
</html>

It simply displays a text area that contains the JSON representation of the Person
object, as shown in the following screenshot:

Notice how the property names match the ones we used to create the JSON object
in the previous section, and all the values match the values we entered on the input
page we just discussed. At this point, we can modify the JSON string displayed in
the text area (making sure that it is still properly formatted JSON). When the user
clicks on the Submit button, the Person object will be repopulated from the updated
JSON string.

Parsing JSON data with the JSON-P object
model API
Now that we know how to generate JSON from Java objects, let's focus our attention
on the opposite functionality, populating Java objects from JSON strings.

Chapter 8

[261]

The following code illustrates how to do this:

package com.ensode.jsonpmodelapi;

//imports omitted

@Named
@RequestScoped
public class JsonPModelApiBean {

 @Inject
 private Person person;
 private String jsonStr;

 public String generateJson() {
 //body omitted for brevity
 }

 public String parseJson() {
 JsonObject jsonObject;

 try (JsonReader jsonReader = Json.createReader(
 new StringReader(jsonStr))) {
 jsonObject = jsonReader.readObject();
 }

 person.setFirstName(jsonObject.getString("firstName"));
 person.setMiddleName(jsonObject.getString(
 "middleName"));
 person.setLastName(jsonObject.getString("lastName"));
 person.setGender(jsonObject.getString("gender"));
 person.setAge(jsonObject.getInt("age"));

 return "display_populated_obj";
 }

 public String getJsonStr() {
 return jsonStr;
 }

 public void setJsonStr(String jsonStr) {
 this.jsonStr = jsonStr;
 }

}

Java API for JSON Processing

[262]

The first thing we need to do is create a new instance of java.io.StringReader
from our JSON string. We do this by passing a string containing our JSON data to the
constructor of StringReader. Then, we pass the resulting StringReader instance to
the static createReader() method of JSON-P's javax.json.Json class. This method
invocation returns an implementation of the javax.json.JsonReader interface,
which we then use to obtain an implementation of javax.json.JsonObject.

The JSON object contains several get methods we can use to obtain data from the
JSON string. These methods take the JSON property name as a parameter and return
the corresponding value. In our example we used two of these methods, namely
getString() and getInt(), and we used them to populate an instance of our
Person object. The following table summarizes all of the available get methods:

get method Description
getBoolean(String
name)

This returns the value of the specified property as a Boolean.

getInt(String name) This returns the value of the specified property as an integer.
getJsonArray(String
name)

This returns the value of the specified property as an array in
the form of a JsonArray implementation.

getJsonNumber(String
name)

This returns the value of the specified numeric property
as a JsonNumber implementation. The value can then
be converted to int, long, or double by invoking
intValue(), longValue(), or doubleValue(),
respectively.

getJsonObject(String
name)

This returns the value of the specified property as a
JsonObject implementation.

getJsonString(String
name)

This returns the value of the specified property as a
JsonString implementation.

getString(String
name)

This returns the value of the specified property as a string.

Let's go back to our example. You can see that the parseJson() method of our
JsonModelApiBean controller class returns the string display_populated_obj.
Therefore, based on JSF conventions, we know that it will navigate to a JSF page
named display_populated_obj.xhtml. The markup for this page is as follows:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html">
 <h:head>
 <title>Java Object Properties Populated from JSON</title>

Chapter 8

[263]

 </h:head>
 <h:body>
 <table>
 <tr>
 <td>
 First Name:
 </td>
 <td>
 #{person.firstName}
 </td>
 </tr>
 <tr>
 <td>
 Middle Name:
 </td>
 <td>
 #{person.middleName}
 </td>
 </tr>
 <tr>
 <td>
 Last Name:
 </td>
 <td>
 #{person.lastName}
 </td>
 </tr>
 <tr>
 <td>
 Gender:
 </td>
 <td>
 #{person.gender}
 </td>
 </tr>
 <tr>
 <td>
 Age:
 </td>
 <td>
 #{person.age}
 </td>
 </tr>
 </table>
 </h:body>
</html>

Java API for JSON Processing

[264]

As we can see, all it does is display all of the Person object properties via the Unified
Expression Language. The object properties are repopulated from the JSON string
that was displayed on the previous page, which is bound to the jsonStr property
of JsonPModelApiBean.

As we can see, populating and parsing JSON using JSON-P's object model API is
fairly straightforward and intuitive. It works great when we are dealing with smaller
amounts of data. It might be possible, however, to run into performance problems
when dealing with large amounts of data. In such instances, we can use JSON-P's
streaming API.

The JSON-P streaming API
The JSON-P streaming API allows us to read and write JSON data to and from a
stream (a subclass of java.io.OutputStream or a subclass of java.io.Writer). The
JSON-P streaming API has better performance and better memory efficiency than the
JSON-P object model API. These performance and efficiency gains, however, come
with some limitations. The JSON-P streaming API only allows JSON data to be read
sequentially; we can't access JSON properties directly like we can with the object
model API. In general, we should use the streaming API if we need to handle large
amount of JSON data; otherwise, the simpler object model API should be used.

In the following sections, we will reimplement the example from the previous section
using the JSON-P streaming API.

Since the examples on this section mirror the functionality we
implemented in the previous sections, we will not show any screenshots
of our sample application in action. They will be identical to the ones we
saw earlier on this chapter.

Chapter 8

[265]

Generating JSON data with the JSON-P
streaming API
When using the JSON-P streaming API, we generate JSON data via the
JsonGenerator class, invoking one or more of its several overloaded write()
methods to add JSON properties and corresponding values to the JSON data.

The following example illustrates how to generate data via the JSON-P
streaming API:

package com.ensode.jsonpstreamingapi;

//imports omitted

@Named
@RequestScoped
public class JsonPStreamingApiBean {

 @Inject
 private Person person;
 private String jsonStr;

 public String generateJson() {
 StringWriter stringWriter = new StringWriter();
 try (JsonGenerator jsonGenerator
 = Json.createGenerator(stringWriter)) {
 jsonGenerator.writeStartObject().
 write("firstName", person.getFirstName()).
 write("middleName", person.getMiddleName()).
 write("lastName", person.getLastName()).
 write("gender", person.getGender()).
 write("age", person.getAge()).
 writeEnd();
 }

 setJsonStr(stringWriter.toString());
 return "generated_json";
 }
}

This example is part of a JSF application, specifically a CDI named bean,
and we are only showing code that is relevant to our discussion.

Java API for JSON Processing

[266]

To generate JSON data using the JSON-P streaming API, first we need to invoke
a call to the static Json.createGenerator() method. This method returns an
instance of a class implementing javax.json.stream.JsonGenerator. There are
two overloaded versions of the Json.createGenerator() method, one takes an
instance of java.io.OutputStream (or one of its subclasses) as a parameter and
the other one takes an instance of java.io.Writer (or one of its subclasses) as a
parameter. In our example we chose the second version, passing an instance of
java.io.StringWriter to Json.createGenerator().

Once we obtain an instance of JsonGenerator, we need to invoke the
writeStartObject() method on it. This method writes the start object character
of JSON (the opening curly brace {) to the OutputStream or Writer we passed to
Json.createGenerator(). The writeStartObject() method returns another
instance of JsonGenerator, allowing us to immediately invoke the write()
method on the resulting JsonGenerator.

The write() method of JsonGenerator adds a JSON property to our JSON data. Its
first parameter is a string containing the property value, and its second parameter
is the corresponding value. There are several overloaded versions of the write()
method, one for each corresponding supported JSON value type (either String or a
numeric type such as BigInteger or double). In our example, we are only adding
properties of the type String and Integer, therefore we used the corresponding
versions of the write() methods. The following table lists all of the existing versions
of the write() method:

write() method Description
write(String name,
BigDecimal value)

Adds a numeric property of type BigDecimal to our
JSON data

write(String name,
BigInteger value)

Adds a numeric property of type BigInteger to our
JSON data

write(String name,
JsonValue value)

Adds a property of type JsonValue or one of its
subinterfaces (JsonArray, JsonNumber, JsonObject,
JsonString or JsonStructure) to our JSON data

write(String name,
String value)

Adds a property of type String to our JSON data

write(String name,
boolean value)

Adds a boolean property to our JSON data

write(String name,
double value)

Adds a numeric property of type double to our JSON data

write(String name,
int value)

Writes a numeric property of type int to our JSON data

write(String name,
long value)

Writes a numeric property of type long to our JSON data

Chapter 8

[267]

Once we are done adding properties to our JSON data, we need to invoke the
writeEnd() method of JsonGenerator, which adds the JSON end object character
(represented by a closing curly brace }) to our JSON string.

At this point, the Writer or OutputStream we passed to Json.createGenerator()
contains a complete JSON object. What we do with it depends on our application
requirements; in our example we simply invoke the toString() method of the
StringWriter instance we used and assign its return value to the jsonStr variable.

Parsing JSON data with the JSON-P
streaming API
The following example illustrates how we can parse JSON data using the JSON-P
streaming API:

package com.ensode.jsonpstreamingapi;

//imports omitted

@Named
@RequestScoped
public class JsonPStreamingApiBean {

 @Inject
 private Person person;
 private String jsonStr;

 public String parseJson() {
 StringReader stringReader = new StringReader(jsonStr);

 JsonParser jsonParser = Json.createParser(stringReader);

 Map<String, Object> jsonMap = new HashMap<>();
 String jsonKeyNm = null;
 Object jsonVal = null;

 while (jsonParser.hasNext()) {
 JsonParser.Event event = jsonParser.next();

 if (event.equals(Event.KEY_NAME)) {
 jsonKeyNm = jsonParser.getString();
 } else if (event.equals(Event.VALUE_STRING)) {
 jsonVal = jsonParser.getString();

Java API for JSON Processing

[268]

 } else if (event.equals(Event.VALUE_NUMBER)) {
 jsonVal = jsonParser.getInt();
 }

 jsonMap.put(jsonKeyNm, jsonVal);
 }

 person.setFirstName((String) jsonMap.get("firstName"));
 person.setMiddleName((String) jsonMap.get("middleName"));
 person.setLastName((String) jsonMap.get("lastName"));
 person.setGender((String) jsonMap.get("gender"));
 person.setAge((Integer) jsonMap.get("age"));

 return "display_populated_obj";
 }

}

In order to read and parse JSON data using the JSON-P streaming API, we need
to obtain an implementation of the JsonParser interface. The Json class has
two overloaded versions of a createParser() method we can use to obtain a
JsonParser implementation. One version of Json.createParser() takes an
instance of java.io.InputStream (or one of its subclasses) as its sole parameter,
and the other version takes an instance of java.io.Reader (or one of its subclasses)
as its sole parameter. In our example, we use the second version, passing an instance
of java.io.StringReader (which extends java.io.Reader) that contains our JSON
string as a parameter.

Once we obtain a reference to JsonParser, we invoke its hasNext() method in a
while loop. The JsonParser.hasNext() method returns true if there are more
property names or values to read from the JSON string, otherwise it returns false.

Inside the while loop, we invoke JsonParser.next(). This method returns an
instance of the JsonParser.Event enum. The specific value of the JsonParser.
Event enum we get from JsonParser.next() lets us know what type of data we
are reading (key name, string value, numeric value, and so on). In our example, our
JSON string contains only string and numeric values, so we only check for those two
value types by comparing the JsonParser.Event instance we got from JsonParser.
next() against Event.VALUE_STRING and Event.VALUE_NUMBER, respectively. We
also check for a JSON key name by comparing the obtained value against Event.KEY_
NAME. Once we have read a key/value pair combination from our JSON string, what
we do with it depends on our application requirements. In our example, we simply
populate a hash map using the corresponding values from our JSON string.

Chapter 8

[269]

We only saw three of the possible values we can obtain when sequentially reading
JSON data by invoking JsonParser.next(). The following table lists all of the
possible values:

Event enum Value Description
Event.START_OBJECT Indicates the beginning of a JSON object
Event.END_OBJECT Indicates the end of a JSON object
Event.KEY_NAME Indicates the name of a JSON property
Event.VALUE_STRING Indicates a String value was read
Event.VALUE_NUMBER Indicates a numeric value was read
Event.VALUE_TRUE Indicates a Boolean true value was read
Event.VALUE_FALSE Indicates a Boolean false value was read
Event.VALUE_NULL Indicates that a null value was read
Event.VALUE_START_ARRAY Indicates that the start of an array was read
EVENT.VALUE_END_ARRAY Indicates that the end of an array was read

Summary
In this chapter we covered JSON-P, which is a new addition to the Java EE
specification. We covered how to generate and parse data using the simple JSON-P
object model API, and then we switched our attention to the more performant and
memory-efficient JSON-P streaming API, covering JSON data manipulation with
this JSON-P API as well.

Java API for WebSocket
Traditionally, web applications consist of a request/response model. That is, the
browser sends an HTTP request to the server and the server sends back an HTTP
response. WebSocket is a new HTML5 technology that allows two-way, full-duplex
communication between the client (typically a web browser) and the server. In other
words, it allows the server to send data to the browser in real time, without having to
wait for an HTTP request. Java EE 7 includes full support for developing WebSocket
applications, and NetBeans includes some features that make developing WebSocket
Java EE applications easier.

In this chapter, we will cover the following topics:

•	 Examining WebSocket code using samples included with NetBeans
•	 Developing a Java EE application using WebSocket

Examining the WebSocket code using
samples included with NetBeans
NetBeans includes a lot of example projects that we can use as the basis for our
own projects. One particularly useful sample included with NetBeans is an Echo
application that uses WebSockets to output some server data on the browser.

Java API for WebSocket

[272]

To create the sample project, go to File | New Project, select Java EE under Samples
from Categories, and select Echo WebSocket (Java EE 7) from Projects.

In the next screen of the wizard, select a project location or accept the
default location.

Click on Finish and the project is created.

Chapter 9

[273]

The sample Echo application in action
Before looking at the generated source code, let's take a quick look at the sample
Echo application in action. We can run it as usual by right-clicking on the project
and selecting Run.

A few seconds after clicking on Run, the browser pops up and automatically runs
the application.

The text Hello WebSocket! Is automatically prepopulated on the text input field.
Clicking on the button labeled Press me sends the text to a WebSocket server
endpoint, which simply sends the text back to the client. We can see the results
of this at the bottom of the preceding screenshot.

The sample project consists of two files: an index.html file containing JavaScript
functions that generate WebSocket events and a corresponding Java class that
processes these events. We'll discuss the Java class first, and briefly cover the
client-side JavaScript.

Java API for WebSocket

[274]

Examining the generated Java code
The following code snippet lists the Java source code for the generated WebSocket
server endpoint:

package org.glassfish.samples.websocket.echo;

import javax.websocket.OnMessage;
import javax.websocket.server.ServerEndpoint;

@ServerEndpoint("/echo")
public class EchoEndpoint {

 @OnMessage
 public String echo(String message) {
 return message;
 }
}

A Java class that processes WebSocket requests on the server side is called a server
endpoint. As we can see, developing a WebSocket server endpoint using the Java
API for WebSocket requires very little code.

We can designate a Java class as a server endpoint by annotating it with the
@ServerEndPoint annotation. Its value attribute indicates the Uniform Resource
Identifier (URI) of the server endpoint, and clients (typically client-side web
applications) access the server endpoint via this URI.

Any method annotated with the @OnMessage annotation is invoked automatically
any time a client sends a message to the WebSocket server endpoint. Methods
annotated with this annotation and expecting textual data must take a string
argument, which will contain the contents of the message sent from the client. The
contents of the message can be anything; however, it is a common practice for the
clients to send JSON-formatted data. In the NetBeans sample application, a simple
string is passed to the echo() method.

The value returned by the @OnMessage annotated method is sent back to the client.
A typical use case is to send a JSON-formatted string; however, in this simple
example, the string that was received as an argument is sent back to the client.

Chapter 9

[275]

Examining the generated JavaScript code
The other file in the Echo WebSocket sample included with NetBeans is an HTML
file that contains embedded JavaScript used to communicate with the Java server
endpoint. Take a look at the following code:

<html>
<head>
 <meta http-equiv="content-type"
 content="text/html; charset=ISO-8859-1">
</head>

<body>
<meta charset="utf-8">
<title>Web Socket JavaScript Echo Client</title>
<script language="javascript" type="text/javascript">
 var wsUri = getRootUri() + "/websocket-echo/echo";

 function getRootUri() {
 return "ws://" + (document.location.hostname == "" ?
"localhost" :
 document.location.hostname) + ":" +
 (document.location.port == "" ? "8080" :
 document.location.port);
 }

 function init() {
 output = document.getElementById("output");
 }

 function send_echo() {

 websocket = new WebSocket(wsUri);
 websocket.onopen = function (evt) {
 onOpen(evt)
 };
 websocket.onmessage = function (evt) {
 onMessage(evt)
 };
 websocket.onerror = function (evt) {
 onError(evt)
 };

 }

Java API for WebSocket

[276]

 function onOpen(evt) {
 writeToScreen("CONNECTED");
 doSend(textID.value);

 }

 function onMessage(evt) {
 writeToScreen("RECEIVED: " + evt.data);
 }

 function onError(evt) {
 writeToScreen('ERROR: ' +
 evt.data);
 }

 function doSend(message) {
 writeToScreen("SENT: " + message);
 websocket.send(message);
 }

 function writeToScreen(message) {
 var pre = document.createElement("p");
 pre.style.wordWrap = "break-word";
 pre.innerHTML = message;
 //alert(output);
 output.appendChild(pre);
 }

 window.addEventListener("load", init, false);

</script>

<h2 style="text-align: center;">WebSocket Echo Client</h2>

</br>

<div style="text-align: center;">
 <form action="">
 <input onclick="send_echo()" value="Press me" type="button">
 <input id="textID" name="message" value="Hello WebSocket!"
 type="text">

 </form>
</div>
<div id="output"></div>
</body>
</html>

Chapter 9

[277]

What we are interested in here is the embedded JavaScript code between the
<script> tags. You can see that the send_echo() JavaScript function creates a new
JavaScript WebSocket object then assigns the onopen, onmessage, and onerror
functions of the WebSocket object to the onOpen(), onMessage(), and onError()
functions that are embedded in the code. Now, our onOpen() function will be
automatically invoked when a WebSocket connection is opened, our onMessage()
function will be called whenever a WebSocket message is received from the server,
and our onError() function will be automatically called whenever there is a
WebSocket error.

The Echo sample project simply updates the div with the ID of output with the
message received from the server. This is done in the writeToScreen() function,
which is invoked from the onMessage() function whenever a WebSocket message
is received from the server.

The Echo sample project is a great way to understand how to write our own
applications using the Java API for WebSocket. In the next section, we will write our
own application, shamelessly borrowing as much as possible from the sample Echo
application to make our job easier.

Building our own WebSocket
applications
In the previous section, we saw how NetBeans provides sample WebSocket
applications we can use as a base for our own projects. In this section, we will build a
web application that contains a WebSocket server endpoint that will populate a form
with default values.

Java API for WebSocket

[278]

To build a WebSocket application, create a web application project by going to File
| New Project, selecting the Java Web option from the Categories list, and selecting
Web Application from the Projects list.

Then, we pick a name and location as usual.

Chapter 9

[279]

The Java API for WebSocket was introduced in Java EE 7; therefore, we must select
this Java EE version if we want to develop WebSocket applications. The default
values in this step of the wizard are sensible and can be used as they are:

In our example, we will be using JSF for the user interface. Therefore, we need to
select JavaServer Faces from the Frameworks list.

Now, we are ready to develop our WebSocket application.

Java API for WebSocket

[280]

Developing the user interface
Before developing the WebSocket-specific code, let's develop the user interface
using JSF 2.2 and HTML5-friendly markup as explained in Chapter 2, Developing
Web Applications Using JavaServer Faces 2.2.

When adding JSF as a framework to a NetBeans project, an index.xhtml file is
automatically generated. Take a look at the following code:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://xmlns.jcp.org/jsf/html">
 <h:head>
 <title>Facelet Title</title>
 </h:head>
 <h:body>
 Hello from Facelets
 </h:body>
</html>

The generated markup uses JSF-specific tags. We need to make a few small changes
to modify it to use HTML5-friendly markup. Take a look at the following code:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:jsf="http://xmlns.jcp.org/jsf">
 <head jsf:id="head">
 <title>Facelet Title</title>
 <head>
 <body jsf:id="body">
 Hello from Facelets
 </body>
</html>

The main change we made was to replace the xmlns:h=http://xmlns.jcp.org/jsf/
html namespace with xhmlns:jsf=http://xmlns.jsp.org/jsf; the former specifies
JSF-specific tags (that we won't use in our application), while the latter specifies
JSF-specific attributes (that we will use in our applications). Then, we changed
the JSF-specific <h:head> and <h:body> attributes with their standard HTML
counterparts, and we added the JSF-specific jsf:id attribute to both tags. Recall
from Chapter 2, Developing Web Applications Using JavaServer Faces 2.2, that to make JSF
interpret HTML tags, we need to add at least one JSF-specific attribute to the tags.

Chapter 9

[281]

Then, we need to add a form and a couple of simple input fields. Later, we will use
the Java API for WebSocket to populate these fields with default values.

After making the previously mentioned modifications, our markup now looks like this:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:jsf="http://xmlns.jcp.org/jsf">
 <head jsf:id="head">
 <title>WebSocket and Java EE</title>
 </head>
 <body jsf:id="body">
 <form method="POST" jsf:prependId="false">
 <table>
 <tr>
 <td>First Name</td>
 <td>
 <input type="text" jsf:id="firstName"
 jsf:value="#{person.firstName}"/>
 </td>
 </tr>
 <tr>
 <td>Last Name</td>
 <td>
 <input type="text" jsf:id="lastName"
 jsf:value="#{person.lastName}"/>
 </td>
 </tr>
 <tr>
 <td></td>
 <td>
 <input type="submit" value="Submit"
 jsf:action="confirmation"/>
 </td>
 </tr>
 </table>
 </form>
 </body>
</html>

We just added some simple HTML to the markup and used JSF-specific attributes so
that the HTML tags are treated like their equivalent JSF-specific tags.

Java API for WebSocket

[282]

Note that the input fields in our markup are bound to properties of a CDI named
bean with a name of person. The Person bean looks like this:

package com.ensode.websocket;

import javax.enterprise.context.RequestScoped;
import javax.inject.Named;

@Named
@RequestScoped
public class Person {

 private String firstName;
 private String lastName;

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

}

As we can see, the Person bean is a simple request scoped CDI named bean.

Now that we have a simple JSF application that uses HTML5-friendly markup, the
next step is to modify it to take advantage of the Java API for WebSocket.

Developing the WebSocket server endpoint
Once we have our JSF code in place, we can add a WebSocket server endpoint to
our project by going to File | New File, selecting the Web category, and selecting
WebSocket Endpoint as the file type.

Chapter 9

[283]

We need to give our endpoint a name and specify the value for WebSocket URI.

Java API for WebSocket

[284]

After clicking on Finish, NetBeans generates a WebSocket server endpoint for us:

package com.ensode.websocket;

import javax.websocket.OnMessage;
import javax.websocket.server.ServerEndpoint;

@ServerEndpoint("/defaultdataendpoint")
public class DefaultDataEndpoint {

 @OnMessage
 public String onMessage(String message) {
 return null;
 }
}

Notice how the value attribute of the @ServerEndpoint annotation matches the
value we entered when creating the class with the wizard. NetBeans also generates
a dummy method annotated with @OnMessage for us to modify. We will modify this
method to return a JSON string that will be parsed by the client side. The modified
onMessage() method looks like this:

 @OnMessage
 public String onMessage(String message) {
 String retVal;

 if (message.equals("get_defaults")) {
 retVal = new StringBuilder("{").
 append("\"firstName\":\"Auto\",").
 append("\"lastName\":\"Generated\"").
 append("}").toString();
 } else {
 retVal = "";
 }

 return retVal;
 }

In this example, we are generating a simple JSON string by hand.
JSON can be generated with the Java API for JSON-P. Refer to
Chapter 8, Java API for JSON Processing, for details.

Chapter 9

[285]

The message parameter of the onMessage() method represents the value of the
message that will be sent from the client. If our onMessage() method receives the
get_defaults string from the client, it generates a JSON string with default values
that will be used to populate the form.

Typically, messages sent from clients are JSON-formatted strings.
In our simple example, we are just using an arbitrary string.

The JSON string will then need to be parsed by JavaScript on the client side. In order
to implement this last piece of the puzzle, we need to add some JavaScript to our
JSF markup.

Implementing WebSocket functionality
on the client
Now, we need add JavaScript code to our markup to interact with our WebSocket
server endpoint. Take a look at the following code:

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:jsf="http://xmlns.jcp.org/jsf">
 <head jsf:id="head">
 <title>WebSocket and Java EE</title>
 <script language="javascript" type="text/javascript">
 var wsUri = getRootUri() +
 "/WebSocketJavaEE/defaultdataendpoint";

 function getRootUri() {
 return "ws://" + (document.location.hostname == "" ?
 "localhost" : document.location.hostname) + ":" +
 (document.location.port == "" ? "8080" :
 document.location.port);
 }

 function init() {
 websocket = new WebSocket(wsUri);
 websocket.onopen = function (evt) {
 onOpen(evt)
 };

Java API for WebSocket

[286]

 websocket.onmessage = function (evt) {
 onMessage(evt)
 };
 websocket.onerror = function (evt) {
 onError(evt)
 };
 }

 function onOpen(evt) {
 console.log("CONNECTED");

 }

 function onMessage(evt) {
 console.log("RECEIVED: " + evt.data);

 var json = JSON.parse(evt.data);

 document.getElementById('firstName').value=
 json.firstName;
 document.getElementById('lastName').value=
 json.lastName;
 }

 function onError(evt) {
 console.log('ERROR: ' + evt.data);
 }

 function doSend(message) {
 console.log("SENT: " + message);
 websocket.send(message);
 }

 window.addEventListener("load", init, false);

 </script>

 </head>
 <body jsf:id="body">
 <form method="POST" jsf:prependId="false">
 <input type="button" value="Get Defaults"
 onclick="doSend('get_defaults')"/>
 <table>
 <tr>

Chapter 9

[287]

 <td>First Name</td>
 <td>
 <input type="text" jsf:id="firstName"
 jsf:value="#{person.firstName}"/>
 </td>
 </tr>
 <tr>
 <td>Last Name</td>
 <td>
 <input type="text" jsf:id="lastName"
 jsf:value="#{person.lastName}"/>
 </td>
 </tr>
 <tr>
 <td></td>
 <td>
 <input type="submit" value="Submit"
 jsf:action="confirmation"/>
 </td>
 </tr>
 </table>
 </form>
 </body>
</html>

We based the JavaScript code in this example on the Echo sample application
included with NetBeans and discussed this earlier in this chapter. The first change
we made was to change the value of the wsUri variable to match the URI of our
WebSocket server endpoint. The URI of the WebSocket endpoints we develop
will always consist of the context root of our application followed by the value
of the value attribute of the @ServerEndpoint annotation (in our example,
/defaultdataendpoint).

The context root of a Java EE application is the part of the URL that we
type right after the port; by default, the context root matches the name of
our WAR file.
For example, our application's URL is http://localhost:8080/
WebSocketJavaEE. Therefore, the context root of our application is
WebSocketJavaEE.

http://localhost:8080/WebSocketJavaEE
http://localhost:8080/WebSocketJavaEE

Java API for WebSocket

[288]

In the original Echo sample application, a new WebSocket connection was created
every time we clicked on the button labeled Press me. We modified the JavaScript
code to establish the connection only once when the page loads for the first time. We
added the necessary calls to the init() JavaScript function. In this function, we bind
some of our JavaScript functions to react to certain WebSocket events. Our onOpen()
function will be called when a connection is made to our WebSocket server endpoint.
The onMessage() function will be invoked when the client receives a message from
the WebSocket server endpoint, and onError() will be invoked if there is an error
while communicating with the WebSocket server endpoint.

Our onOpen() and onError() JavaScript functions are slightly modified versions of
the corresponding functions in the Echo sample message; in our case, we modified
them to simply display a message on the browser log.

In most browsers, the browser console can be seen by hitting F12 and
clicking on the Console tab.

Our onMessage() function parses the JSON string sent by our WebSocket server
endpoint and populates our form with the appropriate values.

As far as the actual markup goes, we added a button labeled Get Defaults that
invokes our doSend() JavaScript function, passing the get_defaults string as a
parameter. The doSend() function, in turn, passes this string to our WebSocket
server endpoint via the send() function of the JavaScript WebSocket object. Our
WebSocket server endpoints returns a JSON string with default values when it
gets this exact string as a parameter.

The following screenshot shows our application in action:

Chapter 9

[289]

Our screenshot shows what happens after we click on the button labeled Get
Defaults. Text fields are populated with the values we got from the JSON-formatted
string we got from the server. At the bottom of the screenshot, we can see the output
of the values we sent to the browser log.

Summary
In this chapter, we covered how to develop Java EE applications using the new
WebSocket protocol. First, we examined a sample application using WebSocket
provided by NetBeans, examining its source code to better understand how to
write our own applications. We then applied that knowledge to develop our own
WebSocket application via the new Java API for WebSocket introduced in Java EE 7,
taking full advantage of NetBeans wizards to aid us in the creation of our application.

RESTful Web Services
with JAX-RS

Representational State Transfer (REST) is an architectural style in which web services
are viewed as resources and can be identified by Uniform Resource Identifiers (URI).

Web services developed using the REST style are known as RESTful web services.
Java EE 6 added support to RESTful web services through the addition of the Java
API for RESTful Web Services (JAX-RS). JAX-RS has been available as a standalone
API for a while, but it became part of Java EE in version 6 of the specification.

One very common use of RESTful web services is to act as a frontend to a database,
that is, RESTful web service clients can use a RESTful web service to perform CRUD
(short for create, read, update, and delete) operations in a database. Since this is
such a common use case, NetBeans includes outstanding support for this—allowing
us to create RESTful web services that act as a database frontend with a few simple
mouse clicks.

Here are some of the topics we will cover in this chapter:

•	 Generating RESTful web services from an existing database
•	 Testing RESTful web services using tools provided by NetBeans
•	 Generating RESTful Java client code for our RESTful web services
•	 Generating RESTful JavaScript clients for our RESTful web services

RESTful Web Services with JAX-RS

[292]

Generating a RESTful web service from
an existing database
To create a RESTful web service from an existing database, we simply need to go to
File | New in a web application project, then select the Web Services category, and
select the RESTful Web Services From Database file type:

In the next step in the wizard, we need to pick a data source and select one or more
tables to use to generate our web service. In our example, we will generate a web
service for the CUSTOMER table of the sample database included in NetBeans.

Chapter 10

[293]

Now, we need to enter a package for our web service code.

RESTful Web Services with JAX-RS

[294]

Then, we need to pick a Resource Package or simply accept the default value of
service. It is a good idea to enter a package name that follows standard package
naming conventions.

When we click on Finish, our RESTful web service code is generated.

Analyzing the generated code
The wizard discussed in the previous section creates a JPA entity for each chosen
table, along with an AbstractFacade class and a Facade class for each generated JPA
entity. The generated code follows the Facade design pattern; in essence, each Facade
class is a wrapper for the JPA code.

See http://en.wikipedia.org/wiki/Facade_pattern for more
information on the Facade design pattern.

http://en.wikipedia.org/wiki/Facade_pattern

Chapter 10

[295]

The generated Facade classes are deployed as RESTful web services and can be
accessed as such.

The AbstractFacade class serves as a parent class for all other Facade classes, as
shown in the following code:

package com.ensode.netbeansbook.jaxrs.service;

import java.util.List;
import javax.persistence.EntityManager;

public abstract class AbstractFacade<T> {
 private Class<T> entityClass;

 public AbstractFacade(Class<T> entityClass) {
 this.entityClass = entityClass;
 }

 protected abstract EntityManager getEntityManager();

 public void create(T entity) {
 getEntityManager().persist(entity);
 }

 public void edit(T entity) {
 getEntityManager().merge(entity);
 }

RESTful Web Services with JAX-RS

[296]

 public void remove(T entity) {
 getEntityManager().remove(getEntityManager().merge(entity));
 }

 public T find(Object id) {
 return getEntityManager().find(entityClass, id);
 }

 public List<T> findAll() {
 javax.persistence.criteria.CriteriaQuery cq =
 getEntityManager().getCriteriaBuilder().createQuery();
 cq.select(cq.from(entityClass));
 return getEntityManager().createQuery(cq).getResultList();
 }

 public List<T> findRange(int[] range) {
 javax.persistence.criteria.CriteriaQuery cq =
 getEntityManager().getCriteriaBuilder().createQuery();
 cq.select(cq.from(entityClass));
 javax.persistence.Query q = getEntityManager().
createQuery(cq);
 q.setMaxResults(range[1] - range[0] + 1);
 q.setFirstResult(range[0]);
 return q.getResultList();
 }

 public int count() {
 javax.persistence.criteria.CriteriaQuery cq =
 getEntityManager().getCriteriaBuilder().createQuery();
 javax.persistence.criteria.Root<T> rt = cq.from(entityClass);
 cq.select(getEntityManager().getCriteriaBuilder().count(rt));
 javax.persistence.Query q = getEntityManager().
createQuery(cq);
 return ((Long) q.getSingleResult()).intValue();
 }

}

As we can see, AbstractFacade has an entityClass variable that gets set to the
appropriate type via generics by its child classes. Also, it has methods to create, edit,
remove, find, and count entities. The body of these methods is standard JPA code
and should be familiar to you by now.

Chapter 10

[297]

As we mentioned earlier, the wizard generates a facade for each generated JPA
entity. In this example, we picked a single table (CUSTOMER); therefore, a JPA entity
was created for this table (along with two related tables). The Facade class for the
Customer JPA entity is called CustomerFacadeREST. The code is as follows:

package com.ensode.netbeansbook.jaxrs.service;

import com.ensode.netbeansbook.jaxrs.Customer;
import java.util.List;
import javax.ejb.Stateless;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import javax.ws.rs.Consumes;
import javax.ws.rs.DELETE;
import javax.ws.rs.GET;
import javax.ws.rs.POST;
import javax.ws.rs.PUT;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.Produces;

@Stateless
@Path("com.ensode.netbeansbook.jaxrs.customer")
public class CustomerFacadeREST extends AbstractFacade<Customer> {
 @PersistenceContext(unitName = "jaxrxPU")
 private EntityManager em;

 public CustomerFacadeREST() {
 super(Customer.class);
 }

 @POST
 @Override
 @Consumes({"application/xml", "application/json"})
 public void create(Customer entity) {
 super.create(entity);
 }

 @PUT
 @Path("{id}")
 @Consumes({"application/xml", "application/json"})
 public void edit(@PathParam("id") Integer id, Customer entity) {
 super.edit(entity);
 }

RESTful Web Services with JAX-RS

[298]

 @DELETE
 @Path("{id}")
 public void remove(@PathParam("id") Integer id) {
 super.remove(super.find(id));
 }

 @GET
 @Path("{id}")
 @Produces({"application/xml", "application/json"})
 public Customer find(@PathParam("id") Integer id) {
 return super.find(id);
 }

 @GET
 @Override
 @Produces({"application/xml", "application/json"})
 public List<Customer> findAll() {
 return super.findAll();
 }

 @GET
 @Path("{from}/{to}")
 @Produces({"application/xml", "application/json"})
 public List<Customer> findRange(@PathParam("from") Integer from,
 @PathParam("to") Integer to) {
 return super.findRange(new int[]{from, to});
 }

 @GET
 @Path("count")
 @Produces("text/plain")
 public String countREST() {
 return String.valueOf(super.count());
 }

 @Override
 protected EntityManager getEntityManager() {
 return em;
 }

}

Chapter 10

[299]

As evident from the @Stateless annotation, the generated class is a stateless session
bean. The @Path annotation is used to identify the Uniform Resource Identifier
(URI) that our class will serve requests for. As we can see, several of the methods
in our class are annotated with the @POST, @PUT, @DELETE and @GET annotations.
These methods will be automatically invoked when our web service responds to
the corresponding HTTP requests. Notice that several of the methods are annotated
with the @Path annotation as well; this is because some of these methods require a
parameter. For example, when we need to delete an entry from the CUSTOMER table,
we need to pass the primary key of the corresponding rows as a parameter. The
format of the value attribute of the @Path annotation is "{varName}", where the text
between the curly braces is known as a path parameter. Notice that the method has
corresponding parameters that are annotated with the @PathParam annotation.

Testing our RESTful web service
Once we deploy our project, we can make sure that the web service was deployed
successfully by expanding the RESTful Web Services node on our project,
right-clicking on our RESTful web service, and selecting Test Resource Uri:

RESTful Web Services with JAX-RS

[300]

This action will invoke the findAll() method in our service (since it is the only
method that doesn't require a parameter), and the generated XML response will
automatically be opened in the browser.

The XML response for our web service displays the data in the CUSTOMER table in the
database in an XML format.

We can also easily test other methods in our web service by right-clicking on the
project and selecting Test RESTful Web Services:

Chapter 10

[301]

Now, the following popup window will show up:

In most cases, we should accept the default Web Test Client from the Project option,
since it works with most browsers and operating systems.

Now, a page similar to the following will automatically open in the browser:

RESTful Web Services with JAX-RS

[302]

Expand any node from the left and click on a web service, select GET(application/
json) from the dropdown labeled Choose method to test, and click on Test.
Now, an HTTP GET request being sent to the RESTful web service and returns
a JSON response.

Now, the page displays a JSON-formatted representation of the data in the
CUSTOMER table.

Our RESTful web service can produce or consume either XML or JSON (short for
JavaScript Object Notation); this can be seen in the values for each of the @Produces
and @Consumes annotations in our code.

Chapter 10

[303]

If we want to see the XML representation of the result of the findAll() method, all
we need to do is select GET(application/xml) and click on the Test button.

RESTful Web Services with JAX-RS

[304]

We can also insert a single record by selecting the POST method from the dropdown
and passing either XML or JSON-formatted data. For example, if we want to test
the post method using JSON, we would select POST(application/json), enter the
JSON-formatted data for a new customer, and click on the Test button.

Now that we have verified that our RESTful web service was deployed successfully,
the next step is to implement a client application that uses our service. However,
before doing so, let's take a look at the ApplicationConfig class generated
by NetBeans.

Chapter 10

[305]

The source code for this class looks like this:

package com.ensode.netbeansbook.jaxrs.service;

import java.util.Set;
import javax.ws.rs.core.Application;

@javax.ws.rs.ApplicationPath("webresources")
public class ApplicationConfig extends Application {

 @Override
 public Set<Class<?>> getClasses() {
 Set<Class<?>> resources = new java.util.HashSet<>();
 addRestResourceClasses(resources);
 return resources;
 }

 /**
 * Do not modify addRestResourceClasses() method.
 * It is automatically populated with
 * all resources defined in the project.
 * If required, comment out calling this method in getClasses().
 */
 private void addRestResourceClasses(Set<Class<?>> resources) {
 resources.add(
com.ensode.netbeansbook.jaxrs.service.CustomerFacadeREST.class
);
 resources.add(
com.ensode.netbeansbook.jaxrs.service.DiscountCodeFacadeREST.class
);
 resources.add(
com.ensode.netbeansbook.jaxrs.service.MicroMarketFacadeREST.class
);
 }
}

The purpose of this class is to configure JAX-RS. The only requirement is that the
class should extend javax.ws.rs.core.Application and should be annotated
with the @javax.ws.rs.ApplicationPath annotation. This annotation is used to
specify the base URI of all paths specified by the @Path annotation in our RESTful
web services classes. By default, NetBeans uses a path named webresources for all
RESTful web services.

RESTful Web Services with JAX-RS

[306]

NetBeans overrides the getClasses() method of javax.ww.rs.core.Application
and makes it return a set of classes containing all of the RESTful web services in our
application (classes annotated with the @Path annotation). NetBeans automatically
adds all of our RESTful web services in the addRestResourceClasses() method,
and invokes this method from the generated getClasses() method.

Generating RESTful Java client code
NetBeans provides a wizard that can automatically generate client Java code that
invokes our RESTful web service methods via the corresponding HTTP requests.

To generate this client code in a Java application project, we simply need to go to File
| New File, select the Web Services category, and select RESTful Java Client as the
file type.

Chapter 10

[307]

In the next step in the wizard, we need to enter a class name and a package name for
our JAX-RS client.

Jersey is the JAX-RS implementation included with GlassFish. Since
we are using the GlassFish application server included with NetBeans,
NetBeans uses a default name NewJerseyClient for the Class Name field;
this default class name will suffice for our purposes.

RESTful Web Services with JAX-RS

[308]

Then, we need to select the RESTful web service that our client will consume. In
our case, we need to select the From Project radio button under Select the REST
resource and click on the button labeled Browse.

Then, we simply need to select the RESTful web service we developed earlier.

At this point, NetBeans generates the following code:

/*
 * To change this license header, choose License Headers in Project
Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */
package com.ensode.netbeansbook.jaxrsclient;

import javax.ws.rs.ClientErrorException;
import javax.ws.rs.client.Client;
import javax.ws.rs.client.WebTarget;

Chapter 10

[309]

/**
 * Jersey REST client generated for REST resource:CustomerFacadeREST
 * [com.ensode.netbeansbook.jaxrs.customer]

 * USAGE:
 * <pre>
 * NewJerseyClient client = new NewJerseyClient();
 * Object response = client.XXX(...);
 * // do whatever with response
 * client.close();
 * </pre>
 *
 */
public class NewJerseyClient {
 private WebTarget webTarget;
 private Client client;
 private static final String BASE_URI = "http://localhost:8080/
jaxrx/webresources";
 public NewJerseyClient() {
 client = javax.ws.rs.client.ClientBuilder.newClient();
 webTarget = client.target(BASE_URI).path(
 "com.ensode.netbeansbook.jaxrs.customer");
 }
 public String countREST() throws ClientErrorException {
 WebTarget resource = webTarget;
 resource = resource.path("count");
 return resource.request(
 javax.ws.rs.core.MediaType.TEXT_PLAIN).get(String.class);
 }
 public void edit_XML(Object requestEntity, String id) throws
ClientErrorException {
 webTarget.path(
 java.text.MessageFormat.format("{0}", new Object[]
 {id})).request(
 javax.ws.rs.core.MediaType.APPLICATION_XML)
 .put(javax.ws.rs.client.Entity.entity(requestEntity,
 javax.ws.rs.core.MediaType.APPLICATION_XML));
 }
 public void edit_JSON(Object requestEntity, String id)
 throws ClientErrorException {
 webTarget.path(
 java.text.MessageFormat.format("{0}", new Object[]
 {id})).request(

RESTful Web Services with JAX-RS

[310]

 javax.ws.rs.core.MediaType.APPLICATION_JSON)
 .put(javax.ws.rs.client.Entity.entity(requestEntity,
 javax.ws.rs.core.MediaType.APPLICATION_JSON));
 }
 public <T> T find_XML(Class<T> responseType, String id)
 throws ClientErrorException {
 WebTarget resource = webTarget;
 resource = resource.path(java.text.MessageFormat.format(
 "{0}", new Object[]{id}));
 return resource.request(
 javax.ws.rs.core.MediaType.APPLICATION_XML).
get(responseType);
 }
 public <T> T find_JSON(Class<T> responseType, String id)
 throws ClientErrorException {
 WebTarget resource = webTarget;
 resource = resource.path(java.text.MessageFormat.format("{0}",
 new Object[]{id}));
 return resource.request(
 javax.ws.rs.core.MediaType.APPLICATION_JSON).
 get(responseType);
 }
 public <T> T findRange_XML(Class<T> responseType, String from,
 String to) throws ClientErrorException {
 WebTarget resource = webTarget;
 resource = resource.path(java.text.MessageFormat.format("{0}/
{1}",
 new Object[]{from, to}));
 return
 resource.request(javax.ws.rs.core.MediaType.APPLICATION_
XML).
 get(responseType);
 }
 public <T> T findRange_JSON(Class<T> responseType, String from,
 String to) throws ClientErrorException {
 WebTarget resource = webTarget;
 resource = resource.path(java.text.MessageFormat.format("{0}/
{1}",
 new Object[]{from, to}));
 return resource.request(
 javax.ws.rs.core.MediaType.APPLICATION_JSON).
get(responseType);
 }

Chapter 10

[311]

 public void create_XML(Object requestEntity) throws
 ClientErrorException {
 webTarget.request(javax.ws.rs.core.MediaType.APPLICATION_XML).
 post(javax.ws.rs.client.Entity.entity(requestEntity,
 javax.ws.rs.core.MediaType.APPLICATION_XML));
 }
 public void create_JSON(Object requestEntity) throws
 ClientErrorException {
 webTarget.request(javax.ws.rs.core.MediaType.APPLICATION_JSON).
 post(javax.ws.rs.client.Entity.entity(requestEntity,
 javax.ws.rs.core.MediaType.APPLICATION_JSON));
 }
 public <T> T findAll_XML(Class<T> responseType) throws
 ClientErrorException {
 WebTarget resource = webTarget;
 return
 resource.request(javax.ws.rs.core.MediaType.APPLICATION_
XML).
 get(responseType);
 }
 public <T> T findAll_JSON(Class<T> responseType) throws
 ClientErrorException {
 WebTarget resource = webTarget;
 return resource.request(
 javax.ws.rs.core.MediaType.APPLICATION_JSON).
get(responseType);
 }
 public void remove(String id) throws ClientErrorException {
 webTarget.path(java.text.MessageFormat.format("{0}",
 new Object[]{id})).request().delete();
 }
 public void close() {
 client.close();
 }
}

The generated Java client code uses the JAX-RS client API introduced in JAX-RS 2.0.

As we can see, NetBeans generates wrapper methods for each of the methods in our
RESTful web service. NetBeans generates two versions of each method: one that
produces and/or consumes XML and another one that produces and/or consumes
JSON. Each method uses generics so that we can set the return type of these methods
at run time.

RESTful Web Services with JAX-RS

[312]

The easiest and most straightforward way of using these methods is to use strings.
For example, we can invoke the find_JSON(Class<T> responseType, String id)
as follows:

public class Main {
 public static void main(String[] args) {
 NewJerseyClient newJerseyClient = new NewJerseyClient();
 String response = newJerseyClient.find_JSON(
 String.class, "1");

 System.out.println("response is: " + response);

 newJerseyClient.close();
 }

}

The preceding invocation will return a string containing a JSON representation of the
values in the row with an ID of 1 in the database. On executing the code, we should
see the following output:

response is: {"addressline1":"111 E. Las Olivas
Blvd","addressline2":"Suite 51","city":"Fort Lauderdale","creditLimit"
:100000,"customerId":1,"discountCode":{"discountCode":"N","rate":0.00
},"email":"jumboeagle@example.com","fax":"305-555-0189","name":"Jumbo
Eagle Corp","phone":"305-555-0188","state":"FL","zip":{"areaLength":54
7.967,"areaWidth":468.858,"radius":755.778,"zipCode":"95117"}}

We can then parse and manipulate the JSON response as usual.

Additionally, we can send data to our web service in JSON or XML format; all we
need to do is create a string with the appropriate JSON or XML and pass it to one
of the generated methods. For example, we could insert a row into the database by
using the following code:

package com.ensode.netbeansbook.jaxrsclient;

import javax.ws.rs.ClientErrorException;

public class Main1 {
 public static void main(String[] args) {
 String json = "{\"addressline1\":\"123 Icant Dr.\","
 + "\"addressline2\":\"Apt 42\",\"city\":"
 + "\"Springfield\",\"creditLimit\":1000,"

Chapter 10

[313]

 + "\"customerId\":999,\"discountCode\":"
 + "{\"discountCode\":\"N\",\"rate\":0.00},"
 + "\"email\":\"customer@example.com\","
 + "\"fax\":\"555-555-1234\",\"name\":"
 + "\"Customer Name\",\"phone\":"
 + "\"555-555-2345\",\"state\":"
 + "\"AL\",\"zip\":{\"areaLength\":"
 + "547.967,\"areaWidth\":468.858,\""
 + "radius\":755.778,"
 + "\"zipCode\":\"12345\"}}";

 NewJerseyClient newJerseyClient = new NewJerseyClient();

 newJerseyClient.create_JSON(json);

 newJerseyClient.close();
 }
}

In the preceding client code, we generate JSON-formatted data so that our RESTful
web service can understand it, and pass it to the create_JSON() method in the
generated client class. This class in turn invokes our web service, which inserts
a row in the database.

Generating RESTful JavaScript clients
for our RESTful web services
In the previous section, we saw how to generate Java clients for our RESTful
web services. A common scenario is to develop RESTful web services in Java and
RESTful web service clients in JavaScript running in the browser. Just as NetBeans
can generate Java clients, it can also generate JavaScript clients for our RESTful
web services.

RESTful Web Services with JAX-RS

[314]

To generate JavaScript clients for our RESTful web services, go to File | New in a
web application project, select the Web Services category, and select the RESTful
JavaScript Client file type:

In the next step in the wizard, select Tablesorter UI from the Choose resulting UI
dropdown to generate a complete CRUD application. The generated web application
uses the Backbone.js JavaScript library. Checking the Add Backbone.js to project
sources checkbox does exactly what is expected; if we don't click it, then backbone
will be loaded from http://cdnjs.com, a popular Content Delivery Network (CDN)
containing several popular JavaScript libraries.

http://cdnjs.com

Chapter 10

[315]

Now, we need to select a REST project resource by clicking on the Browse button:

In this example, we pick the CustomerFacadeREST web service we developed earlier
in this chapter.

RESTful Web Services with JAX-RS

[316]

In the next step in the wizard, we need to select a filename for the HTML file that
will be generated.

Now, we can deploy our application and point the browser to the generated page.

Chapter 10

[317]

Clicking on the Create button in the top-left corner allows us to insert a new row to the
database; input fields will be displayed at the bottom of the page. Moreover, clicking
on the ID or any row will allow us to modify the data for that particular customer.

As we can see, NetBeans generated a complete JavaScript RESTful web service client
without us having to write a single line of code.

Summary
In this chapter, we covered some of the powerful RESTful web service generation
capabilities that NetBeans offers. We saw how NetBeans allows us to easily generate
a RESTful web service from an existing database schema. We also saw how we can
easily test our web services using tools provided by NetBeans and GlassFish.

Additionally, we saw how to generate a Java RESTful web service client with a few
clicks of the mouse and how we can generate JavaScript web service clients with
very little effort.

SOAP Web Services
with JAX-WS

Web Services allow us to develop functionality that can be accessed across a
network. What makes web services different from other similar technologies such
as EJBs or Remote Method Invocation (RMI) is that they are language and platform
independent, for example, a web service developed in Java might be accessed by
clients written in other languages and vice versa.

In this chapter, we will cover the following topics:

•	 Introduction to web services
•	 Creating a simple web service
•	 Creating a web service client
•	 Exposing EJBs as web services

Introduction to web services
Web services allow us to write functionality that can be accessed across a network in
a language- and platform-independent way.

There are two different approaches that are frequently used to develop web services:
the first approach is to use the Simple Object Access Protocol (SOAP) and the second
approach is to use the Representational State Transfer (REST) protocol. NetBeans
supports creating web services using either approach. SOAP web services are
covered in this chapter. RESTful web services were covered in the previous chapter.

SOAP Web Services with JAX-WS

[320]

When using the SOAP protocol, web service operations are defined in an XML
document called a Web Services Definition Language (WSDL) file. After creating the
WSDL file, an implementation of web services is performed in a proper programming
language such as Java. The process of creating a WSDL is complex and error-prone;
fortunately, when working with Java EE, a WSDL file can be automatically generated
from a web service written in Java when this web service is deployed to the application
server. Additionally, if we have a WSDL file available and need to implement the
web service operations in Java, NetBeans can automatically generate most of the Java
code for the implementation—creating a class with method stubs for each web service
operation. All we need to do is to implement the actual logic for each method; all the
"plumbing" code is automatically generated.

Creating a simple web service
In this section, we will develop a web service that performs a conversion of units of
length. Our web service will have an operation that will convert inches to centimeters
and another operation to do the opposite conversion (centimeters to inches).

In order to create a web service, we need to create a new web application project; in
our example, the project name is UnitConversion. We can create the web service
by right-clicking on our project, going to File | New File, then selecting the Web
Services category, and finally selecting Web Service as our file type.

Chapter 11

[321]

After clicking on Next, we need to enter a name and package for our web service in
the following window:

After clicking on Finish, our web service is created. The source code for our web
service is automatically opened, as shown in the following screenshot:

SOAP Web Services with JAX-WS

[322]

As you can see, NetBeans automatically generates a simple "Hello World" web
service. The class-level @WebService annotation marks our class as a web service.
The method-level @WebMethod annotation marks the annotated method as a web
service operation; its operationName attribute defines the name of the web service
operation. This is the name to be used by the web service clients. The @WebParam
annotation is used to define the properties of the web service operation parameters.
In the generated web service, the name attribute is used to specify the name of the
parameter in the WSDL that is generated when the web service is deployed.

NetBeans allows us to modify our web services via a graphical interface. We can
simply add and/or remove web service operations and parameters by pointing
and clicking on them, and the corresponding method stubs and annotations are
automatically added to our web service's code. To access the graphical web service
designer, we simply need to click on the Design button in the top-right corner of
the web service source code.

Chapter 11

[323]

The first thing we need to do is to remove the automatically generated operation;
to accomplish this, click on the hello operation and then click on the Remove
Operation button.

To add a web service operation, we simply need to click on the Add Operation
button and fill in the blanks in the resulting window.

Our web service will have two operations: one to convert from inches to centimeters
and another one to convert centimeters to inches. Both of these operations will
take a single parameter of type double and return a double value. After clicking
on the Add Operation button, we can enter the required information for the
inchesToCentimeters operation.

SOAP Web Services with JAX-WS

[324]

Then, we need to do the same for the centimetersToInches operation (not shown
here). After doing so, our design window will show the newly added operations.

In addition to adding operations to our web service, we can control the quality of
service settings by simply selecting or deselecting checkboxes in the design window.

Web services transmit data as XML text messages between the web service and its
client. Sometimes, it is necessary to transmit binary data such as images. Binary data
is normally inlined in the SOAP message by using MTOM (Message Transmission
Optimization Mechanism); binary data is sent as an attachment to the message. This
makes the transmission of binary data more efficient. When using NetBeans, we can
indicate that we wish to use MTOM by simply checking the Optimize Transfer Of
Binary Data (MTOM) checkbox in the design window.

Checking the Reliable Message Delivery checkbox allows us to indicate that we
want to make sure that messages are delivered at least once and not more than once.
Enabling reliable message delivery allows our applications to recover from situations
where our messages might have been lost in transit.

Chapter 11

[325]

Clicking on the Secure Service checkbox results in security features, such
as encrypting messages between the client and server and requiring client
authentication to be enabled for our web service.

We can see the generated method stubs by clicking on the Source tab:

Now, all we need to do is to replace the generated body of the methods in the class
with the real bodies, deploy our application, and our web service will be good to go.
In our case, all we need to do is multiply the inches by 2.54 to convert from inches to
centimeters and divide the centimeters by 2.54 to convert them to inches.

Once we have replaced the method bodies with the actual required functionality,
we are ready to deploy our web service. This can be done by right-clicking on our
project and selecting Deploy.

SOAP Web Services with JAX-WS

[326]

Testing our web service
At this point, we should notice a Web Services node in our Projects window. If we
expand it, we should see our newly developed web service.

If we deployed our web service to the GlassFish application server included with
NetBeans, we can test it by simply right-clicking on it in the Projects window and
selecting Test Web Service.

If you see the following error in the GlassFish log: Failed to read schema
document 'xjc.xsd', because 'bundle' access is not allowed due to
restriction set by the accessExternalSchema property, then create a file
named jaxp.properties that contains the following line: javax.xml.
accessExternalSchema=all.
Place the file under (path to JDK): /jre/lib.

Chapter 11

[327]

Here, we can test our web service's methods by simply entering some values in the
text fields and clicking on the appropriate button. For example, entering 2.54 in the
second text field and clicking on the button labeled centimetersToInches displays
the following page in the browser:

At the top of the page, we can see the parameters that were passed to the method,
along with the return value. At the bottom of the page, we can see the "raw" SOAP
request and response.

SOAP Web Services with JAX-WS

[328]

Developing a client for our web service
Now that we have developed our web service and tested it to verify that it works
properly, we are going to create a simple client that will invoke our web service.
A web services client can be any kind of Java project, such as a standard Java
application, a Java ME application, a web application or an enterprise project. To
keep our client code simple, we will create a Java application project for our client.

Once we have created our project, we need to create a new web service client by
creating a new file, selecting the Web Services category, and selecting the Web
Service Client file type.

Chapter 11

[329]

In the next step in the wizard, we need to select the radio button labeled Project
if it is not selected already, then click on Browse, and finally select one of the web
services we created in our web services project. The URL for the generated WSDL
file for the web service we selected will automatically be added to the corresponding
text field.

SOAP Web Services with JAX-WS

[330]

Notice that we can develop web service clients for web services we didn't develop
ourselves. In order to do this, we simply select the Local File radio button to use
a WSDL file in our hard drive or the WSDL URL radio button to use a WSDL that
is published online. NetBeans also comes preconfigured to use several publicly
available web services. To develop a client for one of these, click on the IDE
Registered radio button.

At this point, a new node labeled Web Service References is added to our project.
Expanding this node all the way reveals the operations we defined in our web
services project.

Typically, writing a web services client involves some amount of boilerplate code.
However, when using NetBeans, we can simply drag the web service operation we
wish to invoke to our code. This generates all the necessary boilerplate code and we
just need to specify which parameters we want to send to the web service. Dragging
the inchesToCentimeters operation from the Projects window to the main class of
our web services client project generates the following code:

Chapter 11

[331]

As we can see, a method called inchesToCentimeters() (the name of the web
service operation we dragged to the source code) is automatically added. This
method in turn invokes a couple of methods in a class called UnitConversion_
Service. This class (along with several others) is automatically generated when
we drag the web service operation to our code. We can see the generated classes by
expanding the Generated Sources (jax-ws) node in our project window:

SOAP Web Services with JAX-WS

[332]

The getUnitConversionPort() method of UnitConversion_Service returns an
instance of the UnitConversion class that is generated from the WSDL and is similar
to the identically named class we wrote in our web service project. The method
generated when we drag the web service operation to our code invokes this method,
and then invokes the inchesToCentimeters() method on the UnitConversion
instance that is returned. All we need to do is invoke the generated method from
the main method in our code. After making this simple modification, our code now
looks like this:

At this point, we are ready to execute our web services client code. We should see the
following output in the console:

Chapter 11

[333]

Exposing EJBs as web services
In our previous web service example, we saw how we can expose a Plain Old Java
Object (POJO) as a web service by packaging it in a web application and adding a
few annotations to it. This makes it very easy to create web services deployed in a
web application.

When working with an EJB module project, we can have stateless session beans
exposed as web services. This way, they can be accessed by clients written in
languages other than Java. Exposing stateless session beans as web services has the
effect of allowing our web services to take advantage of all the features available to
EJBs, such as transaction management and aspect oriented programming.

There are two ways of exposing a session bean as a web service. When creating a
new web service in an EJB module project, the web service will automatically be
implemented as a stateless session bean. Additionally, existing session beans in an
EJB module project can be exposed as a web service.

Implementing new web services as EJBs
In order to implement a new web service as an EJB, we simply need to create the web
service in an EJB Module or Web Application project by right-clicking on the project
and selecting New | Web Service.

When using a web application project to create our SOAP-based web
service, we are given the option of implementing the web service as a
POJO or as a stateless session bean. When using an EJB module project,
we can only implement the web service as a stateless session bean.

SOAP Web Services with JAX-WS

[334]

In the New Web Service window, we need to enter the required details as shown in
the following screenshot:

In the web services wizard, we need to enter a name for our web service, a package
where our web service implementation code will be created, select the Create Web
Service From Scratch radio button, and then click on Finish to generate our web
service. At this point, we should see the web service source code.

Chapter 11

[335]

As we can see, the generated session bean does not implement a local or remote
business interface. It is decorated with the @WebService annotation, its methods
are decorated with the @WebMethod annotation, and each parameter is decorated
with the @WebParam annotation. The only difference between the generated code
for this web service and the one for the previous example is that the generated class
is a stateless session bean, and therefore it can take advantage of EJB transaction
management, aspect oriented programming, and other EJB features.

Just like with regular web services, a web service implemented as a session bean can
be designed using the NetBeans visual web service designer. In our example, after
removing the automatically generated operation and adding two operations, our
web service visual designer looks like this:

SOAP Web Services with JAX-WS

[336]

Clicking on the Source tab reveals the newly generated methods, along with all the
appropriate annotations.

Once we deploy our project, our web service can be accessed by clients just like
any other web service. It makes no difference to the client that our web service
was implemented as a session bean.

Exposing existing EJBs as web services
The second way we can expose EJBs as web services is to expose an existing EJB as a
web service. In order to do this, we need to create a web service as usual by going to
File | New | Web Service, entering a name and a package for our web service, and
selecting the Create Web Service from Existing Session Bean radio button. Then, we
need to select the session bean to expose as a web service by clicking on the Browse
button and selecting the appropriate bean.

Chapter 11

[337]

When we click on Finish, our new web service is created and its source code is
automatically opened.

SOAP Web Services with JAX-WS

[338]

As we can see, creating a web service from an existing session bean results on a new
stateless session bean being created. This new session bean acts as a client for our
existing EJB (as evident by the ejbRef instance variable in our example, which is
annotated with the @EJB annotation).

Clicking on the Design button at the top, we can see the visual designer for our
newly created web service.

EJBs can also be exposed as web services from a web application project, in which
case the generated web service will be a POJO annotated with the @WebService,
@WebMethod and @WebParam annotations, with pass-through methods invoking
the corresponding methods on the EJB being exposed as a web service.

Chapter 11

[339]

Creating a web service from an existing WSDL
Normally, creating SOAP web services requires the creation of a WSDL file. The
process of creating a WSDL is complex and error-prone, but thankfully Java EE
frees us from having to create a WSDL file by hand; it gets generated automatically
whenever we deploy a web service into our application server.

However, sometimes we have a WSDL file available and we need to implement its
operations in Java code. For these cases, NetBeans provides a wizard that creates a
Java class with method stubs from an existing WSDL.

In order to do so, we need to create a new file, select the Web Services category, and
select Web Service from WSDL as the file type.

SOAP Web Services with JAX-WS

[340]

Then, we need to enter a name, package, and the existing WSDL location for our
web service.

Chapter 11

[341]

A web service will then be generated with method stubs for all operations defined in
the WSDL.

At this point, we simply need to add the method bodies for all the generated methods.

In this example, we used the WSDL that was generated from our previous example,
which is redundant since we already have implementations for all the operations.
However, the procedure described here applies to any WSDL file, either in the local
file system or deployed in a server.

SOAP Web Services with JAX-WS

[342]

Summary
In this chapter, we explored NetBeans support for SOAP-based web service
development using JAX-WS, including how to expose POJO methods as web services
and how NetBeans automatically adds the required annotations to our web services.

We covered how NetBeans aids us in creating web service clients by generating
most of the required boilerplate code; we just need to initialize any parameters
to be passed to our web service's operations.

Additionally, we covered how to expose EJB methods as web service operations and
how NetBeans supports and makes it easy to expose both new and existing EJBs as
web services.

Finally, we saw how NetBeans can help us implement a web service from an existing
WSDL file, which is located either on our local file system or deployed on a server by
generating method stubs from said WSDL.

Index
Symbols
<ace:pushButton> component 123
<ace:selectMenu> component 123
<ace:sliderEntry> component 123
@ApplicationScoped annotation 211
@ConversationScoped annotation 211
@Dependent annotation 211
@Interceptors annotations

EJB, decorating with 196, 197
@RequestScoped annotation 211
@Schedule annotation 199
@SessionScoped annotation 211
@TransactionAttribute annotation,

values 192
@WebMethod annotation 322
@WebParam annotation 322
@WebService annotation 322

A
accelerated HTML5 development

support 46-51
ACE components 121
activation configuration properties

acknowledgeMode 247
clientId 247
connectionFactoryLookup 247
destinationLookup 247
destinationType 247
messageSelector 247
subscriptionDurability 248
subscriptionName 248

add methods
add(String name, BigDecimal value) 255
add(String name, BigInteger value) 255

add(String name, boolean value) 255
add(String name, double value) 256
add(String name, int value) 256
add(String name, JsonArrayBuilder

builder) 256
add(String name, JsonObjectBuilder

builder) 256
add(String name, JsonValue value) 256
add(String name, long value) 256
add(String name, String value) 256

application
deploying 30-33

aspect-oriented programming (AOP)
about 194, 222
implementing, with interceptors 193

automated generation, JPA entities
about 149-157
Bean Validation 159
entity relationships 159-166
JPQL 158
named queries 157

B
bean

accessing, from client 188-190
Bean Validation 159
BytesMessage interface 251

C
C 10
C++ 10
CDI

about 30, 207
typical markup, for JSF page 208-213

[344]

CDI custom scopes
creating 228, 229

CDI qualifier
creating 214-219

CDI stereotype
creating 220-222

client
bean, accessing from 188-190
executing 191

code completion 33-37
code templates

fore 38
ifelse 38
Psf 38
psvm 38
soutv 38
trycatch 38
using 37-39
whileit 38

Common Development and Distribution
License (CDDL) 15

composite components
about 91
generating 91-95

Contexts and Dependency
Injection. See CDI

conversation scope, CDI-specific scope 211
cron utility

reference link 199
CSS parser

URL, for downloading 125
custom scopes 227

D
data access object (DAO)

about 200
creating 142-149

dependent scope, CDI-specific scope 211

E
effective development tips

about 33
accelerated HTML5 development

support 46-51
code completion 33-37
code templates 37

keyboard shortcuts 40-43
visual cues 44, 45

EJBs, exposing as web services
about 333
existing EJBs, exposing 336-338
new web services, implementing 333-336
web service, creating from existing

WSDL 339-341
EJB Timer service

about 197
using 198-200

Enterprise Archive (EAR) 176
Enterprise JavaBeans (EJBs)

about 8, 175
decorating, with @Interceptors

annotations 196, 197
entity relationships 159-166
Event enum Value

Event.END_OBJECT 269
Event.KEY_NAME 269
Event.START_OBJECT 269
EVENT.VALUE_END_ARRAY 269
Event.VALUE_FALSE 269
Event.VALUE_NULL 269
Event.VALUE_NUMBER 269
Event.VALUE_START_ARRAY 269
Event.VALUE_STRING 269
Event.VALUE_TRUE 269

existing database
RESTful web service, generating

from 292-294

F
Facade design pattern

URL 294
Facelets template

adding 77-79
using 80-85

Facelets templating 76
faces-config.xml file 54
Faces flows 96-101

G
get methods

getBoolean(String name) 262
getInt(String name) 262

[345]

getJsonArray(String name) 262
getJsonNumber(String name) 262
getJsonObject(String name) 262
getJsonString(String name) 262
getString(String name) 262

GNU Public License (GPL) 15

H
HTML5 11
HTML5-friendly markup 102-105

I
ICE components 121
ICEfaces

about 116
components, using in JSF

applications 116-123
URL, for documentation 123

ICESoft
URL 116

installation, NetBeans
about 12
on Linux 13
on Mac OS X 12
on Microsoft Windows 12
on other platforms 13
procedure 13-19

Integrated Development
Environment (IDE) 7

interceptor binding types
about 222
creating 222-227

Interceptor class
implementing 194-196

interceptors
about 194
aspect-oriented programming (AOP),

implementing with 193
InvocationContext methods

getMethod() 194
getParameters() 194
getTarget() 194
proceed() 194

J
JavaDB 136
Java Development Kit (JDK)

URL, for installation instructions 12
Java EE 10
Java EE 5 131
Java EE 7 253
Java EE 7 JavaDoc

URL 140
Java EE applications 12
Java EE development

NetBeans, configuring for 21
JAVA_HOME environment variable 16
Java IDE 8
Java Message Service. See JMS
Java Naming and Directory Interface

(JNDI) 176
Java Persistence API. See JPA
Java Persistence Query Language. See JPQL
JavaScript Object Notation. See JSON
Java SE 10
JavaServer Faces (JSF) 8, 53
Java Transaction API (JTA) 138
JDBC driver

adding, to NetBeans 26
Jersey 307
JMS 231
JMS message producer

implementing 238-244
JMS messages

consuming, with message-driven
beans 245-249

JMS resources
creating, from NetBeans 232-238

JPA 8, 131, 134
JPA entity

automated generation 149-157
creating 132-140
data access object (DAO),

creating 142-149
JSF applications, generating from 167-174
persistent fields, adding to 141, 142
session beans, generating from 200-205

[346]

JPA specific annotations
@Entity annotation 140
@GeneratedValue annotation 140
@Id annotation 140

JPQL 131, 158
JSF applications

developing 54
executing 71, 72
generating, from JPA entities 167-174
ICEfaces components, using in 116-123
PrimeFaces components, using in 109-116
RichFaces components, using in 124-130

JSF project
CDI named bean, creating 66-69
confirmation page, implementing 70, 71
creating 54-59
page, modifying 60-66

JSF validation 72-76
JSON 253
JSON data

generating, with JSON-P object
model API 254-256

generating, with JSON-P
streaming API 265-267

parsing, with JSON-P object
model API 260-264

parsing, with JSON-P streaming
API 267-269

JSON-P 253
JSON-P object model API

about 253
example 256-260
JSON data, generating with 254-256
JSON data, parsing with 260-264

JSON Processing. See JSON-P
JSON-P streaming API

about 264
JSON data, generating with 265-267
JSON data, parsing with 267-269

JUnit 16

L
Linux

NetBeans, installing on 13

M
Mac OS X

NetBeans, installing on 12
MapMessage interface 251
message-driven beans

about 175
JMS messages, consuming with 245-249

messaging application
working 250

Microsoft Windows
NetBeans, installing on 12

N
named parameters 158
named queries 157, 158
NetBeans

about 7, 8
configuring, for Java EE development 21
connecting, to third-party RDBMS 27-29
installation procedure 13-19
installing 12
installing, on Linux 13
installing, on Mac OS X 12
installing, on Microsoft Windows 12
installing, on other platforms 13
integrating, with third-party application

server 22-25
integrating, with third-party RDBMS 25
JDBC driver, adding to 26
JMS resources, creating from 232-238
obtaining 9, 10
session beans, creating in 176-188
starting 20, 21
supported platforms 11
URL 8
URL, for downloading 9

NetBeans bundles
C/C++ 10
HTML5 11
Java EE 10
Java SE 10
PHP 11

NetBeans IDE 7

[347]

O
ObjectMessage interface 251
object-relational mapping (ORM) 131
Open Source Initiative (OSI) 15

P
pass-through attributes 106, 107
persistent fields

adding, to JPA entity 141, 142
PHP 11
Plain Old Java Objects (POJOs) 132
primary key generation strategy

GenerationType.AUTO 140
GenerationType.IDENTITY 140
GenerationType.SEQUENCE 140
GenerationType.TABLE 140

PrimeFaces
about 109
components, using in JSF

applications 109-116
URL 116

publish/subscribe (pub/sub) messaging 231

Q
qualifiers 214

R
relational database management systems

(RDBMS) 135
Remote Method Invocation (RMI) 319
Representational State Transfer. See REST
resource library contracts

about 85
creating 86, 87
using 88-91

REST 291
RESTful Java client code

generating 306-313
RESTful JavaScript clients

generating, for RESTful
web services 313-317

RESTful web service
about 291
generated code, analyzing 294-299

generating, from existing database 292-294
RESTful JavaScript clients,

generating for 313-317
testing 299-305

RichFaces
about 124
components, using in JSF

applications 124-130
external dependencies 125
URL, for documentation 130
URL, for downloading latest stable

version 124

S
SAC

URL, for downloading 125
session beans

about 175, 176
creating, in NetBeans 176-188
generating, from JPA entities 200-205
singleton session beans 176
stateful session beans 176
stateless session beans 176

session bean transaction
management 191-193

simple web service
client, developing 328-332
creating 320-325
testing 326, 327

singleton session beans 176
standalone clients, Java Web Start

URL 176
stateful session beans 176
stateless session beans 176
stereotypes 219
StreamMessage interface 251

T
TextMessage interface 251
third-party application server

NetBeans, integrating with 22-25
third-party RDBMS

NetBeans, connecting to 27-29
NetBeans, integrating with 25

[348]

V
visual cues 44, 45

W
Web Archive (WAR) 176
web services

about 319, 320
EJBs, exposing as 333

Web Services Definition Language
(WSDL) 320

WebSocket applications
building 277-279
user interface, developing 280-282

WebSocket code
examining, samples included with

NetBeans used 271, 272
generated Java code, examining 274

generated JavaScript code,
examining 275-277

sample Echo application, working 273
WebSocket functionality

implementing, on client 285-289
WebSocket server endpoint

developing 282-285
welcomePrimefaces.xhtml file

generating 111
write() methods

write(String name, BigDecimal value) 266
write(String name, BigInteger value) 266
write(String name, boolean value) 266
write(String name, double value) 266
write(String name, int value) 266
write(String name, JsonValue value) 266
write(String name, long value) 266
write(String name, String value) 266

Thank you for buying
Java EE 7 Development with NetBeans 8

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

NetBeans Platform 6.9
Developer's Guide
ISBN: 978-1-84951-176-6 Paperback: 288 pages

Create professional desktop rich-client Swing
applications using the world's only modular Swing
application framework

1.	 Create large, scalable, modular Swing
applications from scratch.

2.	 Master a broad range of topics essential
to have in your desktop application
development toolkit, right from
conceptualization to distribution.

3.	 Pursue an easy-to-follow sequential and
tutorial approach that builds to a complete
Swing application.

Java EE 7 with GlassFish 4
Application Server
ISBN: 978-1-78217-688-6 Paperback: 348 pages

A practical guide to install and configure the
GlassFish 4 application server and develop Java EE 7
applications to be deployed to this server

1.	 Install and configure GlassFish 4.

2.	 Covers all major Java EE 7 APIs and includes
new additions such as JSON Processing.

3.	 Packed with clear, step-by-step instructions,
practical examples, and straightforward
explanations.

Please check www.PacktPub.com for information on our titles

Java EE 7 Performance Tuning
and Optimization
ISBN: 978-1-78217-642-8 Paperback: 478 pages

Boost the efficiency of your enterprise applications by
performance tuning and optimization with Java

1.	 Learn to plan a performance investigation in
enterprise applications.

2.	 Build a performance troubleshooting strategy.

3.	 Design and implement high performing Java
enterprise applications.

NetBeans IDE 8 Cookbook
ISBN: 978-1-78216-776-1 Paperback: 386 pages

Over 75 practical recipes to maximize your
productivity with NetBeans

1.	 Increase developer productivity using features
like refactoring and code creation.

2.	 Test applications effectively using JUnit,
TestNG, and Arquilian.

3.	 A recipe-based guide filled with practical
examples to help you create robust applications
using NetBeans.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with NetBeans
	Introduction
	Obtaining NetBeans
	Installing NetBeans
	Microsoft Windows
	Mac OS X
	Linux
	Other platforms
	Installation procedure

	Starting NetBeans for the first time
	Configuring NetBeans for Java EE development
	Integrating NetBeans with a third-party application server
	Integrating NetBeans with a third-party RDBMS
	Adding a JDBC driver to NetBeans
	Connecting to a third-party RDBMS

	Deploying our first application
	NetBeans tips for effective development
	Code completion
	Code templates
	Keyboard shortcuts
	Understanding NetBeans visual cues
	Accelerated HTML5 development support

	Summary

	Chapter 2: Developing Web Applications using JavaServer Faces 2.2
	Introduction to JavaServer faces
	Developing our first JSF application
	Creating a new JSF project
	Modifying our page to capture user data
	Creating our CDI named bean
	Implementing the confirmation page
	Executing our application
	JSF validation

	Facelets templating
	Adding the Facelets template
	Using the template

	Resource library contracts
	Composite components
	Faces flows
	HTML5 support
	HTML5-friendly markup
	Pass-through attributes

	Summary

	Chapter 3: JSF Component Libraries
	Using PrimeFaces components in our JSF applications
	Using ICEfaces components in our JSF applications
	Using RichFaces components in our JSF applications
	Summary

	Chapter 4: Interacting with Databases through the Java
Persistence API
	Creating our first JPA entity
	Adding persistent fields to our entity
	Creating a data access object

	Automated generation of JPA entities
	Named queries and JPQL
	Bean Validation
	Entity relationships

	Generating JSF applications from
JPA entities
	Summary

	Chapter 5: Implementing the Business Tier with Session Beans
	Introducing session beans
	Creating a session bean in NetBeans
	Accessing the bean from a client
	Executing the client

	Session bean transaction management
	Implementing aspect-oriented programming with interceptors
	Implementing the Interceptor class
	Decorating the EJB with the @Interceptors annotations

	The EJB Timer service
	Generating session beans from
JPA entities
	Summary

	Chapter 6: Contexts and
Dependency Injection
	Introduction to CDI
	Qualifiers
	Stereotypes
	Interceptor binding types
	Custom scopes
	Summary

	Chapter 7: Messaging with JMS and Message-driven Beans
	Introduction to JMS
	Creating JMS resources from NetBeans
	Implementing a JMS message producer
	Consuming JMS messages with message-driven beans
	Seeing our messaging application in action

	Summary

	Chapter 8: Java API for JSON Processing
	The JSON-P object model API
	Generating JSON data with the JSON-P object model API
	Our example in action

	Parsing JSON data with the JSON-P object model API

	The JSON-P streaming API
	Generating JSON data with the JSON-P streaming API
	Parsing JSON data with the JSON-P streaming API

	Summary

	Chapter 9: Java API for WebSocket
	Examining the WebSocket code using samples included with NetBeans
	The sample Echo application in action
	Examining the generated Java code
	Examining the generated JavaScript code

	Building our own WebSocket applications
	Developing the user interface
	Developing the WebSocket server endpoint
	Implementing WebSocket functionality
on the client

	Summary

	Chapter 10: RESTful Web Services
with JAX-RS
	Generating a RESTful web service from an existing database
	Analyzing the generated code

	Testing our RESTful web service
	Generating RESTful Java client code
	Generating RESTful JavaScript clients for our RESTful web services
	Summary

	Chapter 11: SOAP Web Services
with JAX-WS
	Introduction to web services
	Creating a simple web service
	Testing our web service
	Developing a client for our web service

	Exposing EJBs as web services
	Implementing new web services as EJBs
	Exposing existing EJBs as web services
	Creating a web service from an existing WSDL

	Summary

	Index

