
www.allitebooks.com

http://www.allitebooks.org

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / FM

®

Java EE and HTML5
Enterprise Application
Development

00-FM.indd 1 1/31/14 4:47 PM

www.allitebooks.com

http://www.allitebooks.org

This page has been intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / FM

Java EE and HTML5
Enterprise Application
Development

John Brock
Arun Gupta
Geertjan Wielenga

New York Chicago San Francisco
Athens London Madrid Mexico City
Milan New Delhi Singapore Sydney Toronto

®

00-FM.indd 3 1/31/14 4:47 PM

www.allitebooks.com

http://www.allitebooks.org

Copyright © 2014 by McGraw-Hill Education (Publisher). All rights reserved. Printed in the United States of America.
Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced or distributed in any
form or by any means, or stored in a database or retrieval system, without the prior written permission of publisher, with
the exception that the program listings may be entered, stored, and executed in a computer system, but they may not be
reproduced for publication.

ISBN: 978-0-07-182314-2

MHID: 0-07-182314-X

e-book conversion by Cenveo® Publisher Services

Version 1.0

The material in this e-book also appears in the print version of this title: ISBN: 978-0-07-182309-8,

MHID: 0-07-182309-3

McGraw-Hill Education e-books are available at special quantity discounts to use as premiums and sales
promotions, or for use in corporate training programs. To contact a representative, please visit the Contact Us
pages at www.mhprofessional.com.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. All other trademarks are the property of their
respective owners, and McGraw-Hill Education makes no claim of ownership by the mention of products that contain
these marks.

Screen displays of copyrighted Oracle software programs have been reproduced herein with the permission of Oracle
Corporation and/or its affiliates.

Information has been obtained by McGraw-Hill Education from sources believed to be reliable. However, because of the
possibility of human or mechanical error by our sources, McGraw-Hill Education, or others, McGraw-Hill Education
does not guarantee the accuracy, adequacy, or completeness of any information and is not responsible for any errors or
omissions or the results obtained from the use of such information.

Oracle Corporation does not make any representations or warranties as to the accuracy, adequacy, or completeness of any
information contained in this Work, and is not responsible for any errors or omissions.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education (“McGraw-Hill”) and its licensors reserve all rights in and to the
work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to
store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create
derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without
McGraw-Hill’s prior consent. You may use the work for your own noncommercial and personal use; any other use of the
work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR
WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED
FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE
WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained
in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor
its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or
for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed
through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental,
special, punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of
them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause
whatsoever whether such claim or cause arises in contract, tort or otherwise.

eBook 309-3cr_pg.indd 1 2/6/14 2:42 PM

www.allitebooks.com

http://www.allitebooks.org

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / FM

For my wife Lisa: Thanks for encouraging
me to take on this project, and putting up with all the

long nights and mood swings that came with it.
–John

To my lovely wife Menka and wonderful boys
Aditya and Mihir for their support and encouragement.

–Arun

To my wife Hermine! Also to NetBeans users everywhere—
hope you have fun and learn a lot while you work through this book.

–Geertjan

00-FM.indd 5 1/31/14 4:47 PM

www.allitebooks.com

http://www.allitebooks.org

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / FM

About the Authors
John Brock is a Principal Product Manager for Oracle Corporation. John
has over 15 years’ experience working with web application development.
While working at Sun Microsystems, he was responsible for identifying
emerging Internet technologies and how they could potentially interact
with the Java Virtual Machine (JVM). John has worked with development
teams from JRuby, Jython, Groovy, JavaFX, and more. His current focus is
on HTML5 application development, and he is the product manager for the
HTML5, JavaScript, and CSS3 features of NetBeans IDE. John can easily be
reached at @peppertech.

Arun Gupta is Director of Developer Advocacy at Red Hat and focuses on
building community around JBoss Middleware. As a founding member of
the Java EE team at Sun Microsystems, he spread the love for technology
all around the world. At Oracle, Arun led a cross-functional team to drive
the global launch of the Java EE 7 platform through strategy, planning,
and execution of content, marketing campaigns, and programs. Arun has
extensive speaking experience, including appearances in 37 countries
speaking on myriad topics, and is a JavaOne Rockstar. An author of a best-
selling book, an avid runner, a globe trotter, and a Java Champion, he is
easily accessible at @arungupta.

Geertjan Wielenga is a Principal Product Manager for Oracle Corporation.
Geertjan has worked in the software industry since 1996. While at Sun
Microsystems, he worked on the documentation of a range of technologies,
primarily in the Java EE and web areas, developed tutorials, and contributed
to published books. Geertjan is a passionate advocate of NetBeans as a
central solution to tooling requirements for web-based technologies. He also
promotes the NetBeans Platform as a stable and versatile solution for large
Java desktop applications. He is currently a product manager assigned to the
external evangelism of NetBeans IDE.

00-FM.indd 6 1/31/14 4:47 PM

www.allitebooks.com

http://www.allitebooks.org

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / FM

About the Technical Editor
John Yeary is a Principal Software Engineer on Epiphany CRM Marketing
at Infor Global Solutions. John has been a Java evangelist and has been
working with Java since 1995. John is a technical blogger with a focus on Java
Enterprise Edition technology, NetBeans, and GlassFish. John is currently the
President of the Greenville Java Users Group (GreenJUG), and is its founder.
He is an instructor, a mentor, and a prolific open source contributor.

John graduated from Maine Maritime Academy with a B.Sc. Marine
Engineering with a concentration in mathematics. He is a Merchant Marine
officer, and has a number of licenses and certifications. When he is not doing
Java and F/OSS projects, he likes to hike, sail, travel, and spend time with
his family. John is also the Assistant Cubmaster in the Boy Scouts of America
(BSA) Pack 833, Unit Commissioner, and Southbounder District Chairman for
Activities and Civic Service in the Blue Ridge Council of the BSA.

00-FM.indd 7 1/31/14 4:47 PM

www.allitebooks.com

http://www.allitebooks.org

This page has been intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / FM

 ix

Contents at a Glance

 1 Introduction to Java EE and HTML5 Enterprise Development 1

 2 Persistence . 15

 3 RESTful Resources . 41

 4 WebSocket . 57

 5 HTML5, JavaScript, and CSS . 85

 6 HTML5 and Java Application Security . 125

 Index . 145

00-FM.indd 9 1/31/14 4:47 PM

www.allitebooks.com

http://www.allitebooks.org

This page has been intentionally left blank

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / FM

 xi

Contents

Acknowledgments . xiii
Introduction . xv

 1 Introduction to Java EE and HTML5 Enterprise Development 1
Development Tools . 2

NetBeans . 2
Java EE 7 . 3
HTML5 . 7

Summary . 13

 2 Persistence . 15
JPA Entity . 17
Packaging an Entity . 24
Managing an Entity . 26

Java Persistence Query Language 30
Criteria API . 31
Native SQL . 32
Schema Generation . 37

Summary . 39

 3 RESTful Resources . 41
REST Principles . 42
Java API for RESTful Web Services . 43

JAX-RS Client API . 49
Server-Sent Events . 52

Summary . 56

00-FM.indd 11 1/31/14 4:47 PM

 xii Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / FM

 4 WebSocket . 57
What Is WebSocket? . 59

WebSocket Handshake . 59
WebSocket API . 61

Java API for WebSocket . 62
HTML5 Client Application for WebSocket 68

HTML5 Application Setup . 68
JavaScript API for WebSocket . 73

Summary . 83

 5 HTML5, JavaScript, and CSS . 85
HTML5 Project Setup . 86
REST . 91

Read, Using the GET Request (R of CRUD) 92
Create, Using the POST Request (C of CRUD) 98
Update, Using the PUT Request (U of CRUD) 105
Delete, Using the DELETE Request (D of CRUD) 111

Server-Sent Events (SSE) . 113
WebSocket . 115
Responsive Design . 116
Syntactically Awesome Stylesheets (SASS) 119
Summary . 123

 6 HTML5 and Java Application Security . 125
Client-Side Security . 126

Cross-Site Scripting . 126
Cross-Site Request Forgery . 130
Clickjacking . 132
Authentication and Authorization 133
Client-Side Security Common Sense 135

Server-Side Security . 135
Authentication . 136
REST Resource Security . 141
WebSocket Security . 141

Summary . 143

 Index . 145

00-FM.indd 12 1/31/14 4:47 PM

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / FM

 xiii

Acknowledgments

Thanks to Liza Lyons for her help in visualizing the layout of the Book
Club sample application. A very big thank you to the editors: from
technical to copy. It’s amazing what a good editor can do with the

chicken scratch of a technical-minded author. It was a joy working with the
rest of the Oracle Press team, and, of course, a big thanks to my co-authors.

–John Brock

Sincere thanks to Brandi Shailer and Amanda Russell for shepherding
us throughout the process. Many thanks to John Yeary for providing a solid
technical review showing his vast knowledge of the subject. This was definitely
not possible without my two co-authors and the rest of the team at Oracle Press.

–Arun Gupta

Many thanks to Amanda Russell and Brandi Shailer, as well as JB Brock
and Arun Gupta, for the work and cooperation in putting this book together,
and to our primary reviewer, John Yeary.

–Geertjan Wielenga

00-FM.indd 13 1/31/14 4:47 PM

This page has been intentionally left blank

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / FM

 xv

Introduction

Many books are available that cover just Java web services or just
HTML5, but not both. So, this book strives to find a balance
 between what an HTML developer should know about the Java

web services they connect to and what the Java developer should know
about the HTML5 applications that are consuming and interacting with the
web services.

With the resurgence of JavaScript over the past few years, Java developers
are often faced with the need to understand how HTML5 client-based
applications interact and consume the server-side web services that the
developers have been creating. At the same time, HTML5 developers often
find that they need to understand how the services their applications rely
on are built and configured. With the new HTML5 and CSS3 specifications
generating a lot of industry buzz and the new JavaScript libraries, such
as AngularJS and Knockout, becoming increasingly popular, some Java
developers may wonder whether their skills are still relevant.

Who Should Read This Book
This book is ideal for developers who find that they need to understand
not only how to develop Java EE-based web services such as REST, Server-
Sent Events (SSE), and WebSocket, but also how to develop HTML5-based
clients that consume and interact with those web services. Whether you
are primarily a Java developer looking for information about how HTML5
applications connect to your web services, or an HTML5 developer looking
to better understand how the Java EE web services are created on the server
side, this book will fit your needs.

00-FM.indd 15 1/31/14 4:47 PM

 xvi Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / FM

What This Book Covers
The primary topics covered in this book are

 ■ Java EE 7 Persistence API (JPA)

 ■ Java EE 7 API for RESTful Web Services (JAX-RS)

 ■ Java EE 7 API for WebSocket

 ■ New features of the HTML5 specification

 ■ JavaScript Model-View-ViewModel (MVVM) architectural pattern via
Knockout.js

 ■ JavaScript API for REST, WebSocket, and Server-Sent Events (SSE)

 ■ Responsive design concepts via CSS3 features

 ■ CSS preprocessing with Syntactically Awesome StyleSheets (SASS)

 ■ Client and server security concepts for web-based applications

These topics are covered in the following six chapters:

 ■ Chapter 1, “Introduction to Java EE and HTML5 Enterprise
Development,” provides a brief overview of the three main focus
areas of the book: Java EE 7 web services, HTML5 application
development, and NetBeans IDE.

 ■ Chapter 2, “Persistence,” discusses the Java Persistence API (JPA)
and shows you the key concepts for persistence and how data can
be created, read, updated, and deleted from a relational database
using JPA.

 ■ Chapter 3, “RESTful Resources,” introduces you to REST, or
Representational State Transfer, as an architectural style for distributed
systems such as the World Wide Web. The Java EE 7 API for RESTful
Web Services (JAX-RS) is covered, including the new support for
Server-Sent Events (SSE). You are shown how to develop your own
RESTful web service and SSE service that you will use as the data
resources for a Book Club application that you develop in Chapter 5.

00-FM.indd 16 1/31/14 4:47 PM

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / FM

 Introduction xvii

 ■ Chapter 4, “WebSocket,” covers the development of both the server
and client portions of an application using WebSocket. You learn
about the Java API for WebSocket, as well as how to develop an
HTML5 client that interacts with the WebSocket service.

 ■ Chapter 5, “HTML5, JavaScript, and CSS,” is all about HTML5 and
client-side development. You interact with the REST and SSE web
services that you created in Chapter 3. You are shown how to work
with the Model-View-ViewModel (MVVM) architectural pattern
through the use of the JavaScript library, Knockout. You are introduced
to responsive design concepts as well as CSS preprocessing techniques
with Syntactically Awesome StyleSheets (SASS).

 ■ Chapter 6, “HTML5 and Java Application Security,” covers security
concepts for HTML5 client applications and Java EE–based web
services.

How to Use This Book and Code
This book is structured such that you can read it sequentially or jump to any
chapter and read it as a stand-alone topic. Source code is provided for all
applications discussed in the book and is available for download at www
.OraclePressBooks.com. This allows you to start in a later chapter and still
have access to the resources that you would have developed had you read
the earlier chapters first. For example, if you choose to read Chapter 5 first,
in which you develop the Book Club application, you have access to the
data resources from Chapter 3 that the application relies on. Download the
source code and follow along as you read each chapter, or deploy and run
the source code from NetBeans IDE—whichever method works best for
you. NetBeans IDE is used throughout the book to show you how to use
wizards and other efficient methods of development, such as the built-in
JavaScript debugger.

00-FM.indd 17 1/31/14 4:47 PM

This page has been intentionally left blank

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch01

CHAPTER
1

Introduction to Java EE
and HTML5 Enterprise

Development

01-ch01.indd 1 2/6/14 2:09 PM

 2 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch01

There have been many changes taking place in the area of enterprise
software development in recent years. Two of the largest changes are
the trend toward Software as a Service (SaaS) and the use of HTML5

to provide a pure client-side user interface.
In this chapter, you will be introduced to the main topics that will be

covered throughout the book: NetBeans IDE, Java EE 7, and HTML5. You
will be presented with information about how to obtain the applications
and samples that will help you as you work your way through the coming
chapters. Using this combination of IDE, platform, and HTML5 technology,
you will soon be building powerful, dynamic enterprise applications.

Development Tools
Three main development tools are used throughout this book: NetBeans IDE,
Java EE 7, and HTML5. You will learn how to use the combination of these
tools to build powerful, modern enterprise applications. Before you begin
building applications, it is important to first make sure you have a solid
understanding of the basics of each of these technologies.

NetBeans
NetBeans IDE is the development tool you will
use throughout this book. It provides features
such as editors, templates, and code generators that make it a perfect fit for
creating applications that use Java EE 7 and HTML5. Starting with NetBeans
IDE 7.3, new features have been introduced to support and enhance the
development experience with client-side web applications that utilize
the HTML5 family of technologies. You can use this IDE to rapidly and
intuitively create rich web applications that support the responsive web
design paradigm targeting desktop and mobile platforms simultaneously. In
addition, from NetBeans IDE 7.4 onward, you can use HTML5 technologies
within Java EE and PHP applications.

The NetBeans story begins in 1996, when a group of students at Charles
University in Prague attempted to write a Delphi-like Java IDE in Java.
Originally called Xelfi, the student project delved into what was then the
uncharted territory of Java IDEs. Xelfi generated enough interest in the

01-ch01.indd 2 2/6/14 2:09 PM

 Chapter 1: Introduction to Java EE and HTML5 Enterprise Development 3

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch01

developer community that, after they graduated, the students decided to
put their new product on the market. In 1997, they formed a company and
changed the name of the IDE to NetBeans.

It wasn’t long before Sun Microsystems became interested in NetBeans
as Sun began searching for Java development tools. In 1999, Sun acquired
NetBeans and made the NetBeans IDE the flagship toolset for Java. At the
time, Sun made another critical decision: to establish NetBeans IDE as an
open source project—free to anyone who wanted to use it. Over the years,
the NetBeans IDE has become a fully featured, cross-platform IDE, supporting
all aspects of Java application development.

When Oracle acquired Sun in 2010, NetBeans IDE became part of Oracle,
and Oracle made the commitment to continue to support it. Today, more
people are using NetBeans IDE than ever before. By 2010, the one million
active user mark was reached, and the NetBeans IDE community continues to
innovate and grow.

You can download NetBeans IDE from the Oracle NetBeans website.
Visit http://netbeans.org/downloads for an overview of the available
distributions and to find the corresponding download links. You need to
have either the “Java EE” or “All” distribution of NetBeans IDE to be able
to follow the instructions in this book. The instructions and code samples
have been created in NetBeans IDE 7.4, the latest version at the time of
writing. Subsequently released versions of NetBeans IDE should work just as
well, though if you encounter problems when using a later version, you are
recommended to switch to NetBeans IDE 7.4.

Having just the Java Runtime Environment (JRE) installed on your system
is not sufficient for running NetBeans IDE. You need to have the Java
Development Kit (JDK), which includes a copy of the JRE. The IDE relies on
development tools and sources provided by the JDK. You can go to http://
oracle.com/technetwork/java/index.html to find and download the latest
version of the JDK.

Java EE 7
Java Platform, Enterprise Edition (Java EE) provides a standards-
based platform for developing web and enterprise applications.
The platform consists of multiple components that enable
developers to build these applications. Each component
is defined using a formal specification that describes the

01-ch01.indd 3 2/6/14 2:09 PM

 4 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch01

proposed component and its features. The platform is also accompanied by
an application programming interface (API) described using Javadoc. This
API is then used to build the application. The platform also provides some
additional services, such as naming, injection, and resource management, that
span across the platform. These applications are then deployed in Java EE 7
containers, such as GlassFish, that provide the runtime support.

There are 33 components defined in the Java EE 7 platform. The ones
that are pertinent to the content of this book are described in this section.
For a full list of the components, refer to The Java EE 7 Technologies list
(www.oracle.com/technetwork/java/javaee/tech/index.html).

One of the major themes for the Java EE 7 platform is to simplify
development of HTML5 applications, especially the services that are needed
on the server side. To enable that, Java API for RESTful Web Services (JAX-RS)
is a component in the platform that defines how to develop, deploy, and
invoke RESTful Web Services. A Plain Old Java Object (POJO) can be easily
published as a Representational State Transfer (REST) endpoint by specifying
an annotation. Regular methods can be easily invoked when the resource
is accessed using standard HTTP verbs. A standard Java API to invoke these
REST endpoints is also available. Server-Sent Events (SSE), a key part of the
HTML5 specification, is used to asynchronously push data from the server
to the client. Even though SSE is not part of the platform yet, the JAX-RS
implementation provides support for SSE.

WebSocket provides a full-duplex, bidirectional communication channel
over a single TCP connection and significantly improves the latency for
modern web applications. A new API was added to the Java EE 7 platform for
building WebSocket applications. Just like JAX-RS, adding an annotation on a
POJO converts it into a WebSocket endpoint. With all the excitement around
WebSocket and a simplified API, Java EE 7 is the best platform for building
your HTML5 applications.

JavaScript Object Notation (JSON) is a key technology for data transfer
within HTML5 applications, and certainly a lingua franca of the Web. Java
EE 7 adds new APIs to enable the parsing and generation of JSON text and
objects using JSON-P 1.0. The API allows parsing or generating the entire
JSON text using only the API. Alternatively, the document may be structured
one item at a time.

Any web application typically requires information to be persisted in
a permanent data store. The Java Persistence API (JPA) defines an API for
the management of persistence and object-relational mapping using a

01-ch01.indd 4 2/6/14 2:09 PM

 Chapter 1: Introduction to Java EE and HTML5 Enterprise Development 5

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch01

Java domain model. Consistent with the overarching theme of a simplified
programming model, adding an annotation allows a POJO to be mapped to
a database table. There are reasonable defaults that can be overridden using
annotations. The POJOs can also be used to generate the database tables, or
even table-generation scripts. Developers can write string-based or type-safe
queries to operate on the Java data model.

In addition, the information from this data store needs to be stored and
retrieved to preserve the ACID (atomicity, consistency, isolation, durability)
properties. This can be achieved using Enterprise JavaBeans (EJB) or the newly
introduced @Transactional annotation. EJBs provide convenient container-
managed transactions. They also come in different flavors: stateless (where
there is no state on the server), stateful (state is stored on the server), and
singleton (single instance per application per JVM).

The newly added @Transactional annotation can be specified on a POJO
to provide container-managed transactions outside of Enterprise JavaBeans.
Annotating a class means all methods of the class are going to run inside a
container-managed transaction. Alternatively, this annotation may be specified
on a method to limit the scope of transaction.

This book will cover all of these topics in detail using extensive code
samples.

In addition, the Java EE 7 platform provides several other components:

 ■ Batch Applications for the Java Platform Allows noninteractive,
bulk-oriented, and long-running tasks to be easily defined and
executed. It allows item-oriented processing style, aka Chunk, and
task-oriented processing style, aka Batchlet. Chunk, the primary and
recommended processing style, reads, processes, and aggregates for
writing a “chunk” number of items at a time. Each chunk is written
in a container-managed transaction and also provides checkpoints.
Batchlet is a roll-your-own batch pattern. It is a task-oriented
processing style where a task is invoked once, runs to completion,
and returns an exit status.

 ■ Java Message Service (JMS) Provides a message-oriented middleware
that allows sending and receiving messages between distributed
systems. It provides a point-to-point messaging model, where a
publisher sends a message to a specific destination, called a queue,

01-ch01.indd 5 2/6/14 2:09 PM

 6 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch01

targeted to a subscriber. Alternatively, JMS provides a publish-subscribe
messaging model where multiple publishers can publish a message
to a destination, called a topic, which can then be subscribed to
by multiple subscribers. In both cases, publisher and subscriber
are loosely coupled from each other. They only need to know the
destination and message format.

 ■ Contexts and Dependency Injection (CDI) Provides a type-safe
dependency injection mechanism. A bean is “strongly typed” as it
only defines the type and semantics of other beans it depends upon,
without a string name and using the type information available in the
Java type system. It provides “loose coupling” as the injection request
need not be aware of the actual life cycle, concrete implementation,
threading model, or other clients of the bean.

 ■ Concurrency Utilities Allows adding concurrency design principles
for existing Java EE applications. It allows an application to create user
threads that are managed by the container. The usual classloading
context, Java Naming and Directory Interface (JNDI) context, and
security context are propagated to these threads.

 ■ JavaServer Faces (JSF) Provides the server-side user interface (UI)
framework. It allows creation of web pages with a set of reusable
UI components following the Model-View-Controller (MVC) design
pattern. The components are bound to a server-side model that
enables two-way migration of application data with the UI. JSF
also defines page navigation, manages UI component state across
server requests, and can be easily used to build and reuse custom
components.

 ■ Java Servlet Technology Allows a web client to interact using
a request/response pattern and generates dynamic content. The
container is responsible for the life cycle of the servlet, receives
requests and sends responses, and performs any other encoding/
decoding required as part of that function.

Refer to The Java EE 7 Tutorial (http://docs.oracle.com/javaee/7/tutorial/doc/
home.htm) for more details on the complete set of Java EE 7 technologies.

01-ch01.indd 6 2/6/14 2:09 PM

 Chapter 1: Introduction to Java EE and HTML5 Enterprise Development 7

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch01

HTML5
While most people believe HTML5 is relatively new, it has
actually been in development since 2004. The World Wide
Web Consortium (W3C) designed the original specification
to address what it observed as common uses of HTML and
XHTML across the Internet at the time. Other considerations
the W3C addressed as it drafted the new specification
were the trend toward incorporating multimedia into web
pages and the need to consolidate various specifications that had become
commonly used during the years that the HTML 4.01 specification had been
in use. This consolidation included not only upgrading to the HTML 4
specification, but also combining the XHTML 1 and DOM Level 2 HTML
specifications into one.

HTML5 Specification Reaches Feature Complete
What has brought HTML5 to the forefront the most over the past year is that
on December 17, 2012, the W3C announced that the HTML5 specification
was feature complete. By labeling the specification as a “Candidate
Recommendation,” the W3C gave businesses and developers a stable
specification that they could start working with.

One major issue that you need to take into consideration when working
with HTML5 as your client-side application framework is that, while it has
reached a stable, feature-complete status, it has not been approved as a
completed standard yet. The largest ramification of this is that there are still
different implementations of what was a draft specification being used. Now
that the specification is feature complete, the major browser vendors and user
agent developers should be able to converge on implementations that come
closer to meeting the specification. This will take time though, and you will
need to make sure you test all of your HTML5 code on the browsers and user
agents that you expect your customers to be using.

In its press release announcing the completed definition of the HTML5
specification (www.w3.org/2012/12/html5-cr.html.en), the W3C describes as
follows what the next phase of the specification process will involve:

During this stage, the W3C HTML Working Group will conduct a variety
of activities to ensure that the specifications may be implemented
compatibly across browsers, authoring tools, email clients, servers,
content management systems, and other Web tools. The group will

01-ch01.indd 7 2/6/14 2:09 PM

 8 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch01

analyze current HTML5 implementations, establish priorities for test
development, and work with the community to develop those tests. The
HTML Working Group has planned for this implementation phase to last
into mid-2014, after which W3C expects to publish the final HTML5
Recommendation, available Royalty-Free to implementers under the
W3C Patent Policy.

The implementation of the HTML5 specification so far has been done against
a moving target, so to speak. Different vendors support the specification in
different ways, or may not support certain parts of the specification at all. This
poses a problem for application developers, who have to develop for a customer
base that could be using a wide variety of device and browser combinations.
Thankfully, several websites have been created to help developers navigate this
tricky area of developing HTML applications. Two of the more popular sites are

 ■ HTML5 Test http://html5test.com/

 ■ Can I Use http://caniuse.com/

The HTML5 Test website will allow you to see how well a specific version
or brand of browser implements the whole of the HTML5 specification. This
is very useful when you are trying to decide what kind of browser or device
support matrix your application will provide.

The Can I Use website goes into more detail and allows you to look at
a specific HTML element or attribute and see which browser vendors have
implemented it and in which versions of their browsers.

Use of Mobile Devices
Probably the second largest reason for HTML5’s recent rise in visibility is the
increase in the availability of smartphones, tablets, and other types of mobile
and embedded devices with Internet access (such as Internet-ready TVs, game
consoles, and Blu-ray players, to name just a few). The reason that the rise in
the availability of these devices has brought HTML5 to prominence is that
all of them are being developed with browsers that already support HTML5
to some degree. Unlike on desktop operating systems, the developers of the
browsers for these devices didn’t have to consider any issues of backward
compatibility with existing browser implementations. Everything is new on
these types of devices, and the manufacturers started with the latest HTML
specifications in anticipation of it becoming the standard in the near future.

01-ch01.indd 8 2/6/14 2:09 PM

 Chapter 1: Introduction to Java EE and HTML5 Enterprise Development 9

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch01

This rise in accessing the Internet via mobile devices is also one of the
factors that has enticed enterprise developers to look more closely at HTML5.
The traditional website layout does not comfortably scale down for viewing
on a smaller device like a smartphone or tablet. The existing methods of
producing a completely different version of the website to display when
the client is detected to be a mobile device have proven to be fraught with
maintenance problems and inefficient to scale.

New HTML5 Features
One of the major new features of HTML5 is the inclusion of new semantic
elements (see Table 1-1) to help developers manage the layout of the HTML
page and its content so that it scales flawlessly for viewing on smaller devices.
You can now lay out your HTML content using tags such as <header>,
<footer>, <section>, <article>, <aside>, <nav>, and many others.

Along with the new semantic elements in the HTML5 specification, there
are also new syntactic elements, as listed in Table 1-2, that are meant to

Element Description

<header> The header section of a document. Usually contains
introductory or navigational information.

<footer> The footer of a document. Usually contains things like
copyright information, legal information, links to more
information about the website, etc.

<section> A generic section in a document.
<article> An independent area of content within the document.
<aside> A piece of content that is only slightly connected to the rest

of the document.
<main> The main content for the document. Only one of these

elements is allowed in the document.
<dialog> A section of the document that will be used as a dialog box

or pop-up window.
<nav> A section of the document meant for navigation links.

<menuitem> A piece of text that represents a command the user can
choose from a pop-up menu.
 (Continued)

TABLE 1-1. Semantic Elements

01-ch01.indd 9 2/6/14 2:09 PM

 10 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch01

Element Description

<mark> A piece of text that should be highlighted for reference.
<details> A section of the document that contains additional controls

or information that can be shown or hidden on demand.
<summary> Provides the summary content for the <details> element.
<bdi> A section of the document that needs to be isolated from

other parts because it might be formatted for languages that
need bidirectional language support.

<figure> A self-contained section of the document having its own
flow. Usually of a graphical nature, such as images, video
content, etc.

<figcaption> A caption for a <figure> element.
<meter> A section of the document that represents a measurement.
<progress> A section that presents the completion of a task.
<ruby> Allows for the inclusion of Ruby annotations. Usually used

in East Asian typography.
<rt> Subelement of <ruby>.
<rp> Subelement of <ruby>.
<time> An element containing date and/or time information.
<wbr> An opportunity for a line break.
<datalist> Used in conjunction with the list attribute of an <input>

element to create combo boxes.
<output> A section of the document that represents the output of

some kind of calculation.

<keygen> Used as a key pair generator control.

TABLE 1-1. Semantic Elements

remove the need to install proprietary plug-ins. These include elements such
as <canvas>, <video>, <audio>, and <svg>. These features are designed to
make it easier to work with multimedia and graphics.

Lastly, the HTML5 specification brings new attributes to some of the
existing elements. The most notable of these are the new values for the type
attributes of the <input> element (see Table 1-3). These are primarily used
for forms. While all of these new type values are now part of the finalized

01-ch01.indd 10 2/6/14 2:09 PM

 Chapter 1: Introduction to Java EE and HTML5 Enterprise Development 11

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch01

TABLE 1-2. Syntactic Elements

Element Description

<audio> Audio multimedia content.
<video> Video multimedia content.
<source> A subelement of both <audio> and <video>. Used when

there are multiple source formats available.
<track> Text tracks for the <video> element.
<canvas> A section used for rendering dynamic bitmap content.

Intended for content like graphs or games.

<svg> A section used for rendering Scalable Vector Graphics (SVG).

Attribute Description

<input type=”color”/> Input field value represents a color
<input type=”date”/> Input field value represents a date
<input type=”datetime”/> Input field value represents a date and time
<input type=”datetime-local”/> Input field value represents a local date

and time with no time-zone offset
<input type=”time”/> Input field value represents a time
<input type=”email”/> Input field value represents an email

address
<input type=”month”/> Input field value represents a month
<input type=”week”/> Input field value represents a week
<input type=”number”/> Input field value represents a number
<input type=”range”/> Input field value represents a range

between a minimum and maximum setting
<input type=”search”/> Input field value represents a search
<input type=”tel”/> Input field value represents a telephone

number
<input type=”url”/> Input field value represents a URL

TABLE 1-3. Form Input Type Attributes

01-ch01.indd 11 2/6/14 2:09 PM

www.allitebooks.com

http://www.allitebooks.org

 12 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch01

HTML5 specification, each browser vendor can, and has, implemented how
they behave when they are rendered. It is the intent of the specification that
the vendor will be able to provide a user interface for better integration with
each of these input types. For instance, if a browser renders an input field
with the type set to "date", the end user would see a date picker displayed
to help select the date that they wish to enter. Unfortunately, this is one of
the areas in which browser vendors currently have the largest separation
in functionality. On mobile devices, the experience is better. You will often
find that when you click or touch in an input field that has the type set to
"number", you will get a number pad instead of the normal keyboard,
or a different type of keyboard will be displayed if the input field is set to
something like "url".

Parts of an HTML5 Application
One of the most common misconceptions about HTML5 applications is that
they are composed of HTML5 only. In fact, in almost all cases the application
is actually made up of at least three different components: HTML5, JavaScript,
and Cascading Style Sheets (CSS). By combining all of the new HTML5
elements and attributes with the new media query feature of CSS version 3
(CSS3), you can display the same content with different layouts for different
device sizes. This method of modifying the content to respond to the device’s
available display size is called responsive design; the layout responds to the
display size that it is rendered in.

There are a few important caveats to note about responsive design. First,
although it does allow you to create a website that will have the same look
and feel across multiple device sizes, the HTML5 application is still a web
page that is being viewed in a web browser on a smaller device such as
a smartphone or tablet. The application will not have a true “native” look
and feel like an application that is written and compiled for a specific type
of mobile device. Second, HTML5 and responsive design may not be the
answer for developers who want their application to have access to specific
mobile features such as the camera, contact list, and calendar. Because
the application is running in a web browser, you can only program your
application to use what the browser allows you to interact with.

As previously mentioned, the third component commonly used in HTML5
applications is JavaScript. The introduction of JavaScript architectural libraries
has been a big factor in making it more acceptable to enterprise developers.

01-ch01.indd 12 2/6/14 2:09 PM

 Chapter 1: Introduction to Java EE and HTML5 Enterprise Development 13

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch01

Developing an application in an enterprise environment often means the
separation of development tasks, with designers and UI teams working on
the front end or view layer, while other teams are working on the data and
controller layers. This type of separation between application layers is referred
to as a Model-View-Controller (MVC) architectural pattern. Over the past
few years, JavaScript libraries have been developed to introduce a similar
architecture, called Model-View-ViewModel (MVVM).

MVVM was originally developed by Microsoft in 2005 as part of its
Windows Presentation Foundation (WPF). A JavaScript implementation of this
architectural pattern was introduced as an open source project in 2010 by Steve
Sanderson. It was released under the name of Knockout.js (http://knockoutjs
.com/) and has quickly gained popularity among JavaScript developers who
are already familiar with the MVC architectural development practices. While
a deep understanding of MVVM, and more specifically Knockout.js, is beyond
the scope of this book, you will use Knockout.js in Chapter 5 when creating an
HTML5 application that will consume and interact with web services such as
REST, WebSockets, and Server-Sent Events (SSE).

Summary
You’ve learned what’s new in the Java EE 7 specification in the area of web
services that are used for developing the specific services that an HTML5
application will need. You’ve also been shown some of the new features in
the HTML5 specification and the specific technologies that are required to
develop a client-side HTML5 application. This introduction to the current
state of development tools will help you throughout the rest of this book as
you work with the coding concepts and samples.

As you can see, both Java EE web development and HTML web
development have matured over the past few years toward the common trend
of providing Software as a Service. In keeping with this development trend,
tools such as NetBeans IDE have evolved to provide features that make it
easier than ever to combine these two types of technologies.

In the next chapter, you will dive into the Java EE 7 Persistence API to learn
how to create and maintain a data store for your HTML5 application.

01-ch01.indd 13 2/6/14 2:09 PM

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch01

01-ch01.indd 14 2/6/14 2:09 PM

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch02

CHAPTER
2

Persistence

02-ch02.indd 15 2/6/14 2:12 PM

 16 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch02

Data is an integral part of any application and typically defines the
state of an application at any given point of time. Persistence is
the characteristic of an application state that outlives the process

that created it. Absent persistence, application data would be lost when the
application terminates. If a banking application could not persist information
about the accounts, that application would be useless. Similarly, if a
retail store application could not persist information about the inventory,
customer orders, and shipments, it would be of no value. Persistence allows
applications to access the data and perform CRUD (create, read, update,
and delete) operations that change the data’s state. After an application
crashes unexpectedly and then recovers, persistence enables the application
to use the data in the exact state that it was in at the time of the crash.

There are many ways to persist data in Java. Java Platform, Standard
Edition (Java SE) provides APIs to manipulate streams and files. This requires
lots of low-level handling, such as defining the stream location and names,
opening and closing streams, and defining a data format. The Java Database
Connectivity (JDBC) API can be used to store data to a relational database
such as an Oracle or MySQL database server. This requires managing
database connections, writing SQL queries, mapping results with Java objects,
and a lot more. Different NoSQL data stores provide APIs to manage data
specific to those data stores. The majority of data is persisted in databases,
specifically relational databases.

The Java EE platform provides the Java Persistence API (JPA) for the
management of persistence and object/relational mapping. In other words,
a POJO (Plain Old Java Object) can be used to represent a table in the
relational database, and each class instance corresponds to a row in that
table. The API defines how these rows can be managed using the POJO.

Data stored in a relational database should maintain ACID (atomicity,
consistency, isolation, durability) properties. To help ensure that ACID properties
are maintained, it is very important to ensure that any addition, update, or
deletion of data is done within a transactional boundary. The transactions can
be container-managed or user-managed. Container-managed transactions can be
managed either by the Enterprise JavaBeans (EJB) container or by using the
@javax.transaction.Transactional annotation provided by the Java
Transaction API (JTA). In this case, a transaction is automatically started by the
container and then either committed or rolled back by the container. A user-
managed transaction is explicitly started and completed by the user. In this

02-ch02.indd 16 2/6/14 2:12 PM

 Chapter 2: Persistence 17

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch02

case, the application explicitly starts the transaction and then either commits or
rolls back the transaction before exiting out of the method.

This chapter will introduce the main concepts of JPA, how an entity can be
created, queried, and updated. Text-based Java Persistence Query Language
(JPQL) and type-safe Criteria API are explained. Container-managed transactions
that preserve the ACID properties of these entities are explained. Finally, database
schema generation using persistence properties is explained. NetBeans IDE
tools and wizards are explained in reference to context throughout the chapter.

JPA Entity
JPA defines an entity as a lightweight persistent domain object. Any POJO
with a no-args public constructor can be defined as an entity. A JPA entity
defining the concept of an author is shown in Listing 2-1.

Listing 2-1 Author Entity

@Entity
@Table(name = "AUTHOR")
public class Author implements Serializable {
 private static final long serialVersionUID = 1L;
 @Id
 @NotNull
 private Integer id;

 @NotNull
 @Size(min = 1, max = 20)
 private String firstName;

 @Size(max = 20)
 private String lastName;

 @Size(max = 1000)
 private String bio;

 @Size(max = 30)
 private String email;
 public Author() { }
 // other convenience constructors

 // getters and setters
}

02-ch02.indd 17 2/6/14 2:12 PM

 18 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch02

Let us walk through this code:

 ■ @javax.persistence.Entity annotation on a POJO specifies
that this is an entity. The default name of the entity is the unqualified
name of the class. An optional name attribute may be used to specify
the entity name, which is then used to refer to the entity in queries.

 ■ @javax.persistence.Table is an optional annotation on
an entity and specifies the primary table for the annotated entity.
Additional tables may be specified using SecondaryTable or
SecondaryTables annotation.

 If no @Table annotation is specified on the entity, or the annotation
is specified but no name attribute is specified, then the generated
table defaults to the entity name.

 ■ Implementing the Serializable interface allows the class to be
passed by value through a remote interface.

 ■ The properties of the bean that follow the JavaBeans-style accessors
(“property access”) or instance variables (“field access”) represent the
persistent state of the entity. The persistent fields or properties of an
entity class can be from a wide range of types, such as Java primitive
types, any primitive wrapper type, other fine-grained classes
defined using @javax.persistence.Embedded and known as
embeddables, a collection of embeddables, and many other types.

 The properties id, firstName, lastName, bio, and email have
getters and setters that are omitted for brevity in this code. Each of
these fields will map to a column in the database table.

 Reasonable default column names are used for properties and fields.
For example, the column name ID is used for the id property, and
the column name FIRST_NAME is used for the firstName property.
Optionally, a @javax.persistence.Column annotation may be
used to override the name of the mapped column. This annotation
can also use several attributes to control the definition of the mapped
column.

 ■ @javax.persistence.Id annotation specifies the primary key
of an entity. The field or property to which this annotation is applied

02-ch02.indd 18 2/6/14 2:12 PM

 Chapter 2: Persistence 19

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch02

should be one of the following types: any Java primitive type, any
primitive wrapper type, java.lang.String, java.util.Date,
java.sql.Date, java.math.BigDecimal, or java.math
.BigInteger. The corresponding mapped column is assumed to
be the primary key of the primary table.

 A composite primary key that consists of multiple fields or properties
can be defined using @javax.persistence.IdClass annotation
on an entity. An embeddable class can be denoted as the primary
key using @javax.persistence.EmbeddedId annotation.

 ■ Validation constraints can be specified on entities to ensure that only
valid data is used to communicate with the database. Bean Validation
1.1, another specification in the Java EE 7 platform, defines several such
predefined constraints in the javax.validation.constraints
package. Specifying @javax.validation.constraints
.NotNull on a field ensures that this field cannot be set to null
and persisted. The @javax.validation.constraints.Size
constraint allows you to specify minimum and maximum boundaries
of the field.

The Bean Validation specification even defines an extensible mechanism
by which you can easily define custom constraints to meet application needs.

An entity can capture the relationship between different tables using
@javax.persistence.OneToOne, @javax.persistence.OneToMany,
@javax.persistence.ManyToOne, and @javax.persistence
.ManyToMany annotations. A join table is defined using @javax.persistence
.JoinTable annotation. A collection of basic or embeddable types can be
mapped using @javax.persistence.CollectionTable annotation.

NetBeans IDE provides a wizard that enables you to generate JPA entities
from a database schema. In the IDE, right-click your application and choose
New | Other | Persistence | Entity Classes from Database. The Database
Tables page of the New Entity Classes from Database wizard is shown in
Figure 2-1. The tables available in the selected data source are displayed
in the Available Tables list.

Select any tables in the Available Tables list in the left pane and click the
Add button to add them to the Selected Tables list on the right. If you add
a table that references other tables, the referenced tables are automatically
added to the Selected Tables list as well. The referenced tables are grayed out

02-ch02.indd 19 2/6/14 2:12 PM

 20 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch02

to indicate that they are referenced tables. The IDE will automatically generate
entity classes for each of the tables listed in the Selected Tables list.

Click Next to move to the Entity Classes page of the New Entity Classes
from Database wizard, as shown in Figure 2-2, where you review or set the
following:

 ■ Class Names Displays the name of the class that is generated for
each table listed. The Generation Type column displays whether
the class will be new, updated, or re-created. If the entity class for a
selected table already exists, you can choose to either re-create the
entity class or update the existing class by clicking the toggle button
(...) below the Class Names table.

 ■ Project Displays the project where the entity classes will be saved.
This field is read-only.

 ■ Location Select the source folder where you want to create the
entity class.

 ■ Package Select an existing package from the drop-down list or type
the name of a new package.

FIGURE 2-1. Selecting tables from a database

02-ch02.indd 20 2/6/14 2:12 PM

 Chapter 2: Persistence 21

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch02

 ■ Generate Named Query Annotations for Persistent Fields If selected,
the IDE generates named query annotations in the entity classes.

 ■ Generate JAXB Annotations If selected, the IDE generates annotations
in the entity class for mapping the class to an XML element that
can then be used by a Java Architecture for XML Binding (JAXB)
web service.

To persist entity classes, your project requires a persistence unit (as described
in the following section, “Packaging an Entity”). NetBeans IDE checks if there
is a persistence unit for the project when you create the entity class. If the
IDE cannot locate a persistence unit, the Create Persistence Unit check box
appears, as shown in Figure 2-2. Alternatively, you can create a persistence
unit later by choosing Persistence | Persistence Unit in the New File wizard.

FIGURE 2-2. Defining classes and other files to be created

02-ch02.indd 21 2/6/14 2:12 PM

 22 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch02

From the Entity Classes page, you can click Finish to create entity classes
for each of the specified tables, or you can click Next to modify the default
settings used when generating the mapping annotations, as shown in Figure 2-3.
If you choose the latter option, you can set the following options for configuring
generated annotation elements:

 ■ Association Fetch Select the fetch element to add to the relationship
annotations. You can select default, eager, or lazy. If default is selected
(default is selected by default), no fetch element is added to the
relationship annotations.

 ■ Collection Type Select the collection type for OneToMany and
ManyToMany Container-Managed Relationship (CMR) fields. You can
select java.util.Collection, java.util.List, or java
.util.Set. java.util.Collection is selected by default.

FIGURE 2-3. Setting options for the creation of entity classes

02-ch02.indd 22 2/6/14 2:12 PM

 Chapter 2: Persistence 23

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch02

 ■ Fully Qualified Database Table Names If selected, catalog and
schema elements are added to the @Table annotation. This option
is deselected by default.

 ■ Attributes for Regenerating Database Tables If selected, nullable
(when it is false), length (for String type), precision, and scale
(for decimal type) are added to the @Column annotation. Unique
constraints are also added to the @Table annotation if this option is
selected. This option is deselected by default.

 ■ Use Column Names in Relationships If selected, when a table
references a foreign key, the field name is generated according
to the name of the column in the table. For example, if the table
customer has a column named zip that is mapped to a column
named zip_code in table micromarket, the generated field name
will be zip. This option is selected by default.

 If this option is deselected, the field name is generated according to
the name of the table that contains the foreign key. In the example
shown in the previous figures, the generated field name will be
microMarket.

 ■ Use Defaults if Possible If selected, only annotations that modify
the default behavior or attributes will be generated. Selecting this
option can reduce the number of unnecessary annotations that are
generated. This option is deselected by default.

 ■ Generate Fields for Unresolved Relationships If selected, basic
generic fields are generated for the fields in a relationship that
reference fields or entities that are missing or cannot be resolved.
The basic fields that are generated might not accurately represent the
columns in the tables because of the missing data.

 If this option is deselected, fields in a relationship are not generated
if any of the fields or entities in the relationship are missing. This
option is deselected by default.

When you click Finish, the IDE creates entity classes for each of the tables
you specified in the wizard, as shown in Figure 2-4.

02-ch02.indd 23 2/6/14 2:12 PM

 24 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch02

Packaging an Entity
An entity is managed within a persistence context, a set of managed entity
instances in which any persistent entity identity has a unique entity instance.
A persistence context has multiple entity managers that manage the entity
instances and their life cycles. The entity managers, their configuration
information, the managed entities, and optional metadata that defines
the mapping of the entities to the database are together packaged as
a persistence unit. A persistence unit is defined by a persistence
.xml file and packaged within a WAR file. Listing 2-2 shows a sample
persistence.xml file.

Listing 2-2 Sample persistence.xml File

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.1" xmlns="http://xmlns.jcp.org/xml/ns/
persistence " xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence http://
xmlns.jcp.org/xml/ns/persistence/persistence_2_1.xsd ">
 <persistence-unit name="authorPU" transaction-type="JTA">
 <properties>
 </properties>
 </persistence-unit>
</persistence>

FIGURE 2-4. Examining the result of creating new entity classes

02-ch02.indd 24 2/6/14 2:12 PM

 Chapter 2: Persistence 25

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch02

The persistence.xml file can have one or more <persistence-unit>
elements, each corresponding to an entity manager. Each entity manager can
be configured using several standard javax.persistence.* <properties>
elements.

NetBeans IDE provides an editor for editing persistence.xml files.
Open a persistence.xml file and you will see that three different views
are available for working with the file: Design, Source, and History. Click the
Source button to see the source of the file. When you use code completion
in Source view—that is, you press ctrl-tab (by default)—context-sensitive
suggestions are shown for completing the current word, together with relevant
documentation, as shown in Figure 2-5.

When you click the Design button, a structured view is shown for working
with the persistence.xml file (see Figure 2-6). A drop-down list lets you
navigate to sections of interest, while text fields and buttons let you enter
values into the underlying persistence.xml file.

Finally, clicking the History button opens a local history view of your file.
The History view lets you roll back changes that are saved locally.

FIGURE 2-5. Source view for persistence.xml file

02-ch02.indd 25 2/6/14 2:12 PM

 26 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch02

Managing an Entity
Each entity goes through create, read, update, and delete (CRUD) operations
during its life cycle. Typically, an entity is created once, read and updated
multiple times, and then deleted once.

An Enterprise JavaBean (EJB; also known as enterprise beans) is typically
used to manage the entity. An EJB instance is itself managed at runtime by an
EJB container. The container provides all the plumbing, such as transactions,
remoting, concurrency, connection pooling, and other such details, so that
the application developer can focus on the business logic.

There are two types of EJBs: session beans and message-driven beans.
A session bean processes the message synchronously, and a message-driven
bean is used to process messages asynchronously. There are three types
of session beans: stateful, stateless, and singleton. A stateful session bean
maintains a conversational state for a specific client, a stateless session bean
does not contain any conversational state for a specific client, and a singleton
session bean is instantiated once per application.

A stateless session bean, by its very nature of being stateless, can be pooled
by the container and provides much better scalability for the application. By
default, all methods of a session bean have container-managed transactions.
This means the EJB container implements all the low-level transaction

FIGURE 2-6. Design view for persistence.xml file

02-ch02.indd 26 2/6/14 2:12 PM

 Chapter 2: Persistence 27

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch02

protocols, such as the two-phase commit protocol between a transaction
manager and a database system, to honor the transactional semantics.
The changes to the underlying resources are all committed or rolled back
accordingly.

A container-managed entity manager can be obtained in a stateless session
bean using dependency injection. The entity manager is then used to perform
operations on an entity.

Listing 2-3 shows how a stateless session bean can be used to create or
delete an entity instance.

Listing 2-3 CRUDing Author Entity

@Stateless
public class AuthorSessionBean {
 @PersistenceContext
 EntityManager em;
 public void addAuthor(Author e) {
 em.persist(e);
 }
 public void deleteAuthor(Author e) {
 em.remove(e);
 }
}

A stateless session bean is defined by adding @javax.ejb.Stateless
annotation on a POJO. To create a new row in the database table, a new
entity instance is created using a no-args constructor or a convenience
constructor. Calling setters or assigning instance variables then populates the
entity values. This is typically done in a client component such as a servlet or
any other Java EE component.

A container-managed javax.persistence.EntityManager is
obtained and used within the addAuthor() method to save the entity.
Similarly, an entity instance can be removed by calling the EntityManager
.remove() method. The EJB container starts a transaction before the method
is invoked and commits the transaction after the method completes. All
changes made to the entity manager are stored in the database with a
transaction commit.

NetBeans IDE provides a wizard that enables you to generate EJBs. In the
IDE, right-click your application and choose New | Other | Enterprise JavaBeans |
Session Bean to open the New Session Bean wizard, shown in Figure 2-7.

02-ch02.indd 27 2/6/14 2:12 PM

 28 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch02

For Session Type, you can select one of the following:

 ■ Stateless The bean does not save state information during its
conversation with the user. These enterprise beans are useful for
simple interactions between the client and the application service,
interactions that are complete in a single method invocation.
An example is an enterprise bean that processes orders. Each
order can be processed by an invocation of one method, such as
processOrder(). All the information needed for processing is
contained in the method parameters.

 ■ Stateful The bean saves state information during its conversation
with the user. These enterprise beans are useful for business
processes that require an interaction between a client and application
service that lasts longer than a single method invocation and requires
memory of the state of the interaction. An example is an online
shopping cart. The end user, through the client program, can order a

FIGURE 2-7. Creating new session beans

02-ch02.indd 28 2/6/14 2:12 PM

 Chapter 2: Persistence 29

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch02

number of items. The stateful session bean managing the interaction
must accumulate items until the end user is ready to review the
accumulated order, approve or reject items, and initiate processing
of the lot. The stateful session bean has to store the unprocessed
items and enable the end user to add more.

 ■ Singleton A singleton session bean is instantiated only once per
application and exists for the life cycle of the application. You
can create a singleton bean that the container instantiates when
the application starts up by using the @Startup annotation. An
example is a bean that is used to initialize data for an application
that can be concurrently accessed by many clients.

An alternative to using an EJB container providing container-managed
transactions is to use the newly introduced @javax.transaction
.Transactional annotation on a POJO or its method. This allows
declarative definition of transaction boundaries on beans managed by
Contexts and Dependency Injection (CDI), as well as classes defined as
managed beans or other Java EE components. The transactional semantics are
implemented using CDI interceptor bindings.

Listing 2-4 shows how @javax.transaction.Transactional
annotation can be specified on a method to create or delete an entity
instance. Just like in EJB, a container-managed transaction is automatically
started by the CDI runtime and committed or rolled back, as appropriate.

Listing 2-4 Author with @Transactional

public class AuthorSessionBean {
 @PersistenceContext
 EntityManager em;

 @Transactional
 public void addAuthor(Author e) {
 em.persist(e);
 }

 @Transactional
 public void deleteAuthor(Author e) {
 em.remove(e);
 }
}

02-ch02.indd 29 2/6/14 2:12 PM

 30 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch02

Java Persistence Query Language
Java Persistence Query Language (JPQL) is a string-based query language
used to define queries over entities and their persistent state. JPQL allows the
application developer to specify the semantics of queries in a portable way.
The underlying persistence provider converts the query language to a target
language, such as SQL, of a database or a persistent store.

A query may be a SELECT statement (R from Read of CRUD), UPDATE
statement (U from Update of CRUD), or DELETE statement (D from Delete of
CRUD). An optional WHERE clause can be used to restrict the results, and
a GROUP BY clause, HAVING clause, or ORDER BY clause can be used to
aggregate the results. The query may be constructed dynamically or may be
statically defined in a metadata annotation.

As shown in the following example, @javax.persistence
.NamedQueries annotation can be used on an entity to specify multiple
named JPQL queries. Each query is specified using @javax.persistence
.NamedQuery annotation. Each query requires a name attribute to uniquely
identify the query within the persistence unit. The query string is defined
using the query attribute.

@NamedQueries({
 @NamedQuery(name = " Author.findAll", query = " SELECT a FROM
Author a"),
 @NamedQuery(name = " Author.findById", query = "SELECT a FROM
Author a WHERE a.id = :id")
})

In the preceding example, both the queries are statically defined. The first
query has the name Author.findAll and is equivalent to selecting all rows
from the table. Note that the query string is defined around the entity, and not
the corresponding database table. This is what provides portability of JPQL
over multiple databases. The second query has the name Author.findById,
uses a WHERE clause to restrict the result set, and requires a parameter id to
be specified.

NetBeans IDE provides a JPQL Query dialog so that you can verify
queries without deploying the application. Before you use it, make sure to
compile the JPA entities in your application, since these compiled classes
are used by the JPQL Query dialog. Then, as shown in Figure 2-8, right-click

02-ch02.indd 30 2/6/14 2:12 PM

 Chapter 2: Persistence 31

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch02

the persistence.xml file and choose Run JPQL Query to open the JPQL
Query dialog.

In the JPQL Query dialog, you can use code completion, ctrl-tab (by default),
to help you define your queries. When you run a query, the results are shown
in the Result tab, as shown in Figure 2-9, while the SQL version of the query is
available in the SQL tab.

Criteria API
The javax.persistence.Criteria API is an object-based, type-safe
alternative to string-based JPQL. It operates on a metamodel of the entities,
which is typically generated by an annotation processor. The metamodel is
a set of classes that describes your domain model and provides a generic
way to deal with an application’s domain model. The APIs in the package,
javax.persistence.criteria and javax.persistence
.metamodel, are used to create this strongly typed query.

Listing 2-5 shows how you can write the Author.findAll query using
the Criteria API.

FIGURE 2-8. Opening the JPQL Query dialog

02-ch02.indd 31 2/6/14 2:12 PM

www.allitebooks.com

http://www.allitebooks.org

 32 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch02

Listing 2-5 Author Criteria Query

CriteriaBuilder builder = em.getCriteriaBuilder();
CriteriaQuery criteria = builder.createQuery (Author.class);
Root<Author> root = criteria.from(Author.class);
criteria.select(root);
TypedQuery<Author> query = em.createQuery(criteria);
List<Author> list = query.getResultList();

The Criteria query is verbose but provides a lot more flexibility in
constructing dynamic queries.

Native SQL
In certain cases, a native SQL statement may have to be used to query
the database. The javax.persistence.EntityManager
.createNativeQuery() method can used to specify the native SQL

FIGURE 2-9. Showing query results

02-ch02.indd 32 2/6/14 2:12 PM

 Chapter 2: Persistence 33

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch02

query string. Listing 2-6 shows how the Author.findAll named query
can be executed as a native SQL query.

Listing 2-6 Author Native Query

em.createNativeQuery("select * from author", Author.class);

In this simplified case, the result set is mapped directly to the Author
entity class. More complex mappings can be specified using the @javax
.persistence.SQLResultSetMapping annotation.

NetBeans IDE provides wizards to query the database using native
SQL query strings. Switch to the Services window (ctrl-3) and expand the
Databases node. Right-click a table node, as shown in Figure 2-10, and
choose View Data to view data in the related table in the database.

When the SQL editor opens, you have syntax coloring and code completion
available to query the database and view the data directly in the IDE, as shown
in Figure 2-11.

FIGURE 2-10. Viewing data defined in a database

02-ch02.indd 33 2/6/14 2:12 PM

 34 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch02

A row from the database table can be removed by retrieving the required
entity using any method. The javax.persistence.EntityManager
.remove() method is called to remove the entity. Like the javax
.persistence.EntityManager.persist() method, it must be called
within a transaction. The entity’s state is persisted to the database when
the transaction is committed, either implicitly by the container or explicitly
by the user.

NetBeans IDE provides a wizard to generate JPA controller classes that
perform CRUD functionality for an entity class. In the IDE, right-click your
application and choose New | Other | Persistence | JPA Controller Classes
from Entity Classes.

In addition, you can generate session beans for the entity classes in the
application. In the IDE, right-click your application and choose New | Other |
Enterprise JavaBeans | Session Beans for Entity Classes, which displays the
New Session Beans for Entity Classes wizard page shown in Figure 2-12.

FIGURE 2-11. Editing SQL query strings in the SQL editor

02-ch02.indd 34 2/6/14 2:12 PM

 Chapter 2: Persistence 35

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch02

Select any entity classes from the Available Entity Classes list in the left
pane, and click the Add button. Any referenced entity classes are automatically
added to the Selected Entity Class list in the right pane. If an entity class is
grayed out, that indicates it is a referenced entity class.

Click Next to move to the Generated Session Beans page of the wizard,
shown in Figure 2-13, and review or set the following:

 ■ Project Displays the project where the entity classes will be saved.
This field is read-only.

 ■ Location Select the source folder where you want to create the
entity class.

 ■ Package Select an existing package from the Package drop-down
list or type the name of a new package.

 ■ Create Interfaces Select the session facade interfaces that you want
the wizard to generate.

When you click Finish, the specified session beans are created, as shown
in Figure 2-14.

FIGURE 2-12. Getting started creating session beans for existing entity classes

02-ch02.indd 35 2/6/14 2:12 PM

 36 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch02

FIGURE 2-13. Specifying details for creating session beans

FIGURE 2-14. New session beans created in the application

02-ch02.indd 36 2/6/14 2:12 PM

 Chapter 2: Persistence 37

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch02

Schema Generation
Typically, the database schema is already defined and JPA entity classes can
be generated from that. Alternatively, entity managers can be configured to
generate database table definitions in an existing schema or table generation
scripts by specifying javax.persistence.schema-generation.*
properties in persistence.xml.

Listing 2-7 shows how these properties can be configured on an entity
manager.

Listing 2-7 Generating Schema Using persistence.xml

<persistence version="2.1" xmlns="http://xmlns.jcp.org/xml/ns/
persistence" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence http://
xmlns.jcp.org/xml/ns/persistence/persistence_2_1.xsd">
 <persistence-unit name="authorPU" transaction-type="JTA">
 <properties>
 <property name="javax.persistence.schema-generation.
database.action" value="drop-and-create"/>
 <property name="javax.persistence.schema-generation.
create-source" value="script"/>
 <property name="javax.persistence.schema-generation.
drop-source" value="script"/>
 <property name="javax.persistence.schema-generation.
create-script-source" value="META-INF/create.sql"/>
 <property name="javax.persistence.schema-generation.
drop-script-source" value="META-INF/drop.sql"/>
 <property name="javax.persistence.sql-load-script-
source" value="META-INF/load.sql"/>
 </properties>
 </persistence-unit>
</persistence>

The following list explains these properties:

 ■ The javax.persistence.schema-generation.database
.action property value specifies to drop the existing tables and
create them again. The possible values are none, create, drop-
and-create, and drop.

02-ch02.indd 37 2/6/14 2:12 PM

 38 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch02

 ■ The javax.persistence.schema-generation.create-
source property value specifies that the database creation should
occur on the basis of the scripts.

 ■ The javax.persistence.schema-generation.drop-source
property value specifies that the database deletion should occur on the
basis of the scripts.

 The possible values for the preceding two properties are metadata,
script, metadata-then-script, and script-then-
metadata. In this case, either script or metadata specified on the
entity or a combination is used to create or drop tables.

 ■ The javax.persistence.schema-generation.create-
script-source property value specifies the location of the
database creation script.

 ■ The javax.persistence.schema-generation.drop-script-
source property value specifies the location of the database
deletion script.

 ■ The javax.persistence.sql-load-script-source property
value specifies the location of SQL bulk load script.

The last three property values specify that the script be packaged with the
application. In this case, the location of the script is specified relative to the
root of the persistence unit. Alternatively, a URL may externally identify
the scripts.

These properties enable generation of the database schema from scripts
or entity metadata. In addition to the properties described previously, the
following properties may be used to specify the generation of scripts:

 ■ javax.persistence.schema-generation.scripts.action
can be used to specify which scripts need to be generated. The possible
values are none, create, drop-and-create, and drop.

 ■ javax.persistence.schema-generation.scripts.create-
target and javax.persistence.schema-generation
.scripts.drop-target can be used to specify the location
of create and drop scripts. The locations are specified as strings
corresponding to file URLs.

02-ch02.indd 38 2/6/14 2:12 PM

 Chapter 2: Persistence 39

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch02

JPA provides several annotations such as @javax.persistence
.Index, @javax.persistence.ForeignKey, @javax.persistence
.CollectionTable, @javax.persistence.JoinTable, and @javax
.persistence.JoinColumn that can be specified on an entity to facilitate
database or scripts generation.

NetBeans IDE provides a wizard that simplifies the generation of scripts
based upon metadata. In the IDE, right-click your application and choose
New | Other | Persistence | DB Scripts for Entity Classes to generate the
scripts.

The Java Persistence API also provides a mechanism for second-level
caching, optimistic and pessimistic locking, entity lifecycle listeners, and many
more advanced concepts.

Summary
This chapter described the key concepts of persistence and explained how
data can be created, read, updated, and deleted from a relational database
using JPA. It also looked at how relational database tables can be easily
mapped to JPA entities, and it presented the requirements around their
packaging. Different types of Enterprise JavaBeans were introduced and their
transactional nature was explained briefly. Finally, this chapter demonstrated
how the database tables can be easily generated using the properties defined
in persistence.xml. NetBeans IDE tools and wizards were shown
throughout the chapter to highlight the simplified development process.
The next chapter will take these JPA entities and publish them as RESTful
endpoints.

02-ch02.indd 39 2/6/14 2:12 PM

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch02

02-ch02.indd 40 2/6/14 2:12 PM

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch03

CHAPTER
3

RESTful Resources

03-ch03.indd 41 2/6/14 2:14 PM

 42 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch03

REST, or Representational State Transfer, is an architectural style for
distributed systems such as the World Wide Web. This term was
 originally introduced and defined in 2000 by Roy Fielding in his

dissertation Architectural Styles and the Design of Network-based Software
Architectures. Fielding’s motivation for choosing the dissertation topic was his
“desire to understand and evaluate the architectural design of network-based
application software through principled use of architectural constraints, thereby
obtaining the functional, performance, and social properties desired of an
architecture.” See www.ics.uci.edu/~fielding/pubs/dissertation/introduction.htm.
This was achieved by defining a framework to understand the software
architecture of network-based applications. The thesis then describes how
REST is used to guide the design and development of the architecture for the
modern Web.

Modern applications typically publish their APIs using REST architecture.
For example, Twitter’s REST API is published at https://dev.twitter.com/docs/api.
Integrating any Twitter functionality, such as searching for tweets with a particular
hashtag or obtaining a collection of the most recent tweets, can be accomplished
by invoking the Twitter REST API and processing the result in your application.

This chapter explains the key REST principles and how REST services can
be published and invoked from Java.

REST Principles
The World Wide Web is the largest implementation of a system conforming
to the REST architectural style. In that context, REST is a set of principles
that defines how web standards, such as HTTP and URIs, are supposed
to be used for building your applications. To successfully build Java EE
applications that utilize web standards, you’ll need to understand the
guiding principles of REST architecture. These principles will guide you as
you define resources and set up services.

The guiding principles of REST architecture are

 ■ Resource The key information in this architecture is a resource. Any
information that can be named can be a resource: a document or
image, a book, an author, a collection of other resources, and so on.

 ■ Client and server A client-server model is used where a client
initiates a request to the server; the server processes the request and
returns an appropriate response to the client. Requests and responses
are built around the transfer of resources.

03-ch03.indd 42 2/6/14 2:14 PM

 Chapter 3: RESTful Resources 43

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch03

 ■ Identification of resources Every resource can be uniquely identified
on the client and server. Everything on the Web can be identified as a
resource, and each resource can be uniquely identified by a URI.

 ■ Resources are available in multiple representations A resource can
be represented in multiple formats, defined by a media type. The
client and server can negotiate on the content type of the resource.

 ■ Standard methods can be used to manipulate these resources Each
resource can be created, read, updated, and deleted using standard
methods. HTTP defines verbs such as GET, PUT, POST, and DELETE
to manipulate resources on the Web.

 ■ Communicate statelessly The server does not retain any
communication state for any of the clients beyond a single request.
If state is required, then it should be kept on the client or converted
into resource state. This allows the server to scale much better.

You will see how each of these principles is used with the Java API for
REST as you continue in this chapter, and with the JavaScript API for REST in
Chapter 5.

Java API for RESTful Web Services
Java API for RESTful Web Services (JAX-RS) defines a standard, annotation-
driven API that helps developers develop and invoke a RESTful web service
in Java. JAX-RS 1.1 was first included in the Java EE 6 platform. Java EE 7
includes JAX-RS 2.0, which is a deep revision of JAX-RS that adds several
features that can handle the most modern style of web applications.

Let’s consider a REST resource that provides create, read, update, and
delete operations on an author database. Such a REST resource can be
invoked using any of the standard HTTP verbs such as POST, GET, PUT, or
DELETE. The endpoint should have the capability to publish and consume
resource representations in multiple formats. A complete list of authors or
a specific author should be accessible. A REST endpoint that publishes and
consumes multiple representations of the author resource using common
HTTP verbs is shown in Listing 3-1.

03-ch03.indd 43 2/6/14 2:14 PM

 44 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch03

Listing 3-1 Author REST Resource

@Path("authors")
public class AuthorResource {
 @Inject AuthorSessionBean bean;

 @GET
 @Produces({"application/xml;qs=0.75","application/json;qs=1"})
 public List<Author> findAll() {
 return bean.findAllAuthors();
 }

 @GET
 @Path("{id}")
 @Produces({"application/xml;qs=0.75","application/json;qs=1"})
 public Author find(@PathParam("id") Integer id) {
 return bean.findAuthor(id);
 }

 @GET
 @Path("count")
 @Produces("text/plain")
 public int count() {
 return bean.countAuthors();
 }

 @POST
 @Consumes({"application/xml", "application/json"})
 public void create(Author author) {
 bean.createAuthor(author);
 }

 @PUT
 @Consumes({"application/xml", "application/json"})
 public void edit(Author author) {
 bean.updateAuthor(author);
 }

 @DELETE
 @Path("{id}")
 public void remove(@PathParam("id") Integer id) {
 bean.removeAuthor(id);
 }
}

03-ch03.indd 44 2/6/14 2:14 PM

 Chapter 3: RESTful Resources 45

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch03

The following information will help you to understand this code:

 ■ A POJO can be converted to a REST resource by adding @javax
.ws.rs.Path annotation to the class. The annotation defines
the URI where the resource is accessible—authors in this case.
Paths are relative. For an annotated class, the base URI is defined
using @javax.ws.rs.ApplicationPath annotation on a class
that extends the javax.ws.rs.core.Application class. The
complete URI of the resource is defined as:

http://<host>:<port>/<webapp-context-root>/<base-URI>/<resource-URI>

 So if the resource is packaged in a WAR file with the context root
“sahara” and deployed on the host “localhost” and the port “8080”
with the base URI “webresources,” then the complete path of the
resource would be

http://localhost:8080/sahara/webresources/authors

 ■ A subresource of the main resource can be defined by annotating a
method of the root resource with @javax.ws.rs.Path annotation.
The base URI of this subresource is the effective URI of the containing
class. The annotated method is invoked whenever the resource is
accessed using the complete path defined by the base URI and the
path specified on the method. In Listing 3-1, the count() method is
called if the resource is accessed at the webresources/authors/
count path. Note that the count() method is also annotated with
@javax.ws.rs.GET annotation, but it is available at a different
path because it is defined as a subresource.

 The @javax.ws.rs.Path annotation can take a URI template
parameter. The value passed to this template parameter can be bound
to a resource method parameter using @javax.ws.rs.PathParam
annotation. In Listing 3-1, the find() method is called if the resource
is accessed at the webresources/authors/nnn path, where nnn
is some value. The id() method parameter is populated with the
value nnn and invokes the find() method on the EJB.

 ■ In addition, although not shown in Listing 3-1, cookies can be bound
to a parameter using @javax.ws.rs.CookieParam annotation,
HTTP headers can be bound to a parameter using @javax.ws.rs
.HeaderParam annotation, a matrix parameter can be bound

03-ch03.indd 45 2/6/14 2:14 PM

 46 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch03

to a method parameter using @javax.ws.rs.MatrixParam
annotation, and parameters coming through an HTML form can be
bound to a method parameter using @javax.ws.rs.FormParam
annotation.

 ■ Validation constraints, although not shown in Listing 3-1, can be
specified on the method parameters to ensure that only valid values
are accepted for method parameters. A javax.constraint
.ConstraintViolation exception is thrown if the incoming
values do not meet the criteria (for example, an alphabetic value
is sent when only a numeric value is expected). This can be easily
specified using any of the @javax.validation.constraints
.Min, @javax.validation.constraints.Max, @javax
.validation.constraints.Digits, or similar annotations on
the method parameter. The specification even defines an extensible
mechanism by which custom constraints meeting application needs
can be easily defined.

 ■ Any Java EE component can be injected into the resource using
Dependency Injection. An Enterprise JavaBean, AuthorSessionBean,
is injected in Listing 3-1 to ensure that all the business logic is
defined in the bean. This ensures that any code related to retrieving,
adding, or updating from the database is automatically done within
a transaction and stays within the EJB. This is important as the
runtime container starts and commits or rolls back the transaction
to ensure the ACID properties of the underlying database are
preserved automatically. Otherwise, the application will have to
manually create a transaction and manage it by itself.

 ■ Java EE 7 introduces @javax.transaction. Transactional
annotation, although not shown in Listing 3-1, allows all methods
within a bean or any method in the bean to be selectively transactional.
This is implemented as a CDI interceptor binding and allows the
application developer a choice of using EJB or a POJO for container-
managed transactions.

 ■ Different HTTP verbs such as GET, PUT, POST, and DELETE are
identified by the corresponding annotations in the javax.ws.rs
package.

03-ch03.indd 46 2/6/14 2:14 PM

 Chapter 3: RESTful Resources 47

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch03

 ■ The findAll() method is called when the resource is accessed
using HTTP GET. The path of the resource or subresource is defined
as explained earlier. The media type generated by a method is
described using @javax.ws.rs.Produces annotation. A method
can support one or more media types, and the client requesting the
resource can ask for a specific media type using the standard HTTP
Accept header. The return value from the method is converted to
the appropriate media type and sent on the wire to the client. If this
annotation is not specified, then the container assumes that any type
can be produced. It is recommended to specify the return media type
to ensure that the client and endpoint are aware of the contract.

 ■ JAX-RS provides the javax.ws.rs.core.MediaType class,
which provides strongly typed fields for commonly used media
types. For example, MediaType.APPLICATION_JSON_TYPE
can be used instead of application/json. However, some
developers prefer the literal to be specified in their endpoint because
it improves the readability of the code.

 ■ If a resource is represented using multiple media types and the client
has not indicated any preference, then the endpoint can indicate a
media preference using the qs attribute (short for “quality of service”).
qs is a floating-point number with a value in the range of 0.000
through 1.000 and indicates the relative quality of a representation
compared to the others available, independent of the client’s
capabilities. A representation with a qs value of 0.000 will never
be chosen. A representation with no qs parameter value is given
a qs factor of 1.0. In Listing 3-1, if a client requests the resource
with the */* media type or no preferred representation, then JSON
representation of the resource is returned because that has a higher
priority (qs=1) than the only other media type listed, XML (qs=0.75).
However, if the client explicitly asks for the application/xml
media type, then an XML representation is returned instead.

 ■ By default, standard media types such as application/xml and
application/json are supported. Providing entity providers that
know how to read/write media types from the stream can support
application-specific media types.

 ■ The @javax.ws.rs.Consumes annotation is used to define
the media type that can be consumed by a method. A method

03-ch03.indd 47 2/6/14 2:14 PM

 48 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch03

can consume multiple media types, and the actual media type is
identified using the HTTP Content-Type header. If this annotation
is not specified, then the container assumes that any type can be
consumed.

 ■ A resource can be updated by annotating a method with @javax
.ws.rs.PUT annotation. Similarly, a resource can be deleted by
annotating a method with @javax.ws.rs.DELETE annotation.

Out of the box, NetBeans IDE provides many wizards to help you get
started developing web services, many of which are shown in Figure 3-1.

FIGURE 3-1. New File dialog showing web service wizards

03-ch03.indd 48 2/6/14 2:14 PM

 Chapter 3: RESTful Resources 49

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch03

For example, RESTful web services can be generated directly from your
database. Figure 3-2 shows one step in this process. No entity classes need
be present in your application because the wizard will create those from your
database, too.

JAX-RS Client API
Prior to the release of JAX-RS 2.0, invoking a REST resource required writing
boilerplate code using java.net.URL and a related set of classes. Marshaling
and unmarshaling Java objects to resource representations had to be done
manually. Any errors received from the endpoint had to be again manually
mapped to more meaningful exceptions on the client side. JAX-RS 2.0
introduces a Client API that can be used to invoke a REST resource from a
Java application. This API can be used to consume any web service exposed
on top of an HTTP protocol or its extension (e.g., WebDAV) and is not
restricted to services implemented using JAX-RS.

FIGURE 3-2. RESTful Web Services from Database

03-ch03.indd 49 2/6/14 2:14 PM

 50 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch03

Let’s see how a REST endpoint can be invoked using this API (Listing 3-2).

Listing 3-2 JAX-RS Client API Usage

Client client = ClientBuilder.newClient();
client.register(JacksonFeature.class);
WebTarget target = client.target(http://localhost:8080/sahara/
webresources/authors);
Author[] authors = target.request("application/json").get(Author[].
class);

The following list explains this code:

 ■ The javax.ws.rs.client.ClientBuilder is the entry point
to the fluent JAX-RS Client API. A new javax.ws.rs.client
.Client instance can be created by calling the newClient()
method. This instance is then used to build and execute client
requests in order to consume responses returned. It is recommended
to create only a required number of Client instances in the
application, as the initialization and disposal of a Client instance
may be a rather expensive operation.

 ■ The web resource URI is passed to the target() method and
builds a javax.ws.rs.client.WebTarget instance. A builder-
style API is used to build a request to the targeted web resource.
The request() method starts building the request. Optionally,
the media types acceptable in the response can be specified as a
method parameter. These types can also be specified as parameters
to request().accept() method. Once the request is prepared,
it can be invoked using the intuitive get(), put(), post(), and
delete() methods. The response can be automatically converted
to a Java type by specifying the type as a method parameter. In this
case, the response is returned as an array of Author.

Out of the box, NetBeans IDE provides a New RESTful Java Client wizard
to let you quickly and easily create a Java web service client for an existing
RESTful web service. Figure 3-3 shows the final step in this wizard.

After you select the location of the web service and click Finish, the
IDE will create the Java client for you. Alternatively, you can create an

03-ch03.indd 50 2/6/14 2:14 PM

 Chapter 3: RESTful Resources 51

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch03

HTML/JavaScript/CSS front end for your RESTful web service via the RESTful
JavaScript Client wizard, as shown in Figure 3-4.

In a standard HTTP request-response scenario, a JavaScript client or a
Java client using the JAX-RS Client API opens a connection to the resource
endpoint, sends an HTTP request to the server (for example, an HTTP
GET request), and then receives an HTTP response back; the server closes
the connection once the response is fully sent/received. The client always
initiates the request and “pulls” the information from the server as required.
Sometimes there may be a need for a server to asynchronously “push”
information to the client. For example, a stock ticker endpoint can push the
updated stock price to the client. In our example, information about a new
book can be pushed to the client.

FIGURE 3-3. New RESTful Java Client wizard

03-ch03.indd 51 2/6/14 2:14 PM

 52 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch03

Server-Sent Events
Typically, a client initiates a request to the server and receives a response.
Server-Sent Events (SSE) is a mechanism that allows the server to
asynchronously push the data from the server to the client whenever a new
“chunk” of data is available. The client is still responsible for establishing
the connection with the server. When new data is ready to be sent on
the server, the server sends the data event to the client, hence the name,
Server-Sent Events.

A server-sent event is generated on the server side with a predefined
media type of text/event-stream. There is no restriction for a media
type used in individual event messages. On the client side, the standard
EventSource JavaScript API is used to open an HTTP connection for receiving
push notifications from the server. These events are received in callback
handlers registered in the client JavaScript and are used to update the client.

Note that SSE will be a final specification along with the rest of HTML5.
This is targeted to be final in late 2014. Until then, SSE cannot be added as
a standard API to JAX-RS. However, the JAX-RS reference implementation,
Jersey, has added support for SSE. This chapter will use Jersey to implement
that functionality in our application and explain SSE.

FIGURE 3-4. New RESTful JavaScript Client wizard

03-ch03.indd 52 2/6/14 2:14 PM

 Chapter 3: RESTful Resources 53

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch03

Let’s say you have a Book resource to represent the books written by an
author. This resource can be described following the design pattern used for
the Author resource. Now let’s say you update the Book resource endpoint
such that it generates a server-sent event whenever a new book is added.

First of all, you need to enable support for SSE for the JAX-RS application.
As this is not part of the standard JAX-RS API, you need to update the pom.xml
file to include the SSE media type module, as shown in Listing 3-3.

Listing 3-3 Jersey SSE Media Dependency

<dependency>
 <groupId>org.glassfish.jersey.media</groupId>
 <artifactId>jersey-media-sse</artifactId>
 <version>2.0</version>
 <scope>provided</scope>
</dependency>

Next, you need to register org.glassfish.jersey.media.sse
.SseFeature in the Application class, as shown in Listing 3-4.

Listing 3-4 Adding SseFeature to JAX-RS

public Set<Class<?>> getClasses() {
 Set<Class<?>> resources = new java.util.HashSet<>();

 // . . .
 resources.add(SseFeature.class);
 return resources;
}

The getClasses() method returns a set of root resources, feature, and
feature classes. Adding SseFeature, in addition to other resources, to the set
of classes returned from this method takes care of registering the feature.

Then, you need to add or update methods that push SSE to the client, as
shown in Listing 3-5.

Listing 3-5 Updating SSE Methods

@Path("books")
public class BooksResource {
 //. . .
 private final SseBroadcaster BROADCASTER = new
SseBroadcaster();

03-ch03.indd 53 2/6/14 2:14 PM

 54 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch03

 @POST
 @Override
 @Consumes({"application/xml", "application/json"})
 public void create(Books book) {
 bean.createBooks(book);

 OutboundEvent event = new OutboundEvent.Builder()
 .data(String.class, "New book \""
 + book.getTitle()
 + "\" with ISBN \""
 + book.getIsbn()
 + "\" added")
 .build();
 BROADCASTER.broadcast(event);
 }

 @GET
 @Path("events")
 @Produces(SseFeature.SERVER_SENT_EVENTS)
 public EventOutput getEvents() {
 final EventOutput eventOutput = new EventOutput();
 this.BROADCASTER.add(eventOutput);
 return eventOutput;
 }

 //. . .
}

Listing 3-5 shows only the updated methods. The following list explains
this code:

 ■ Generating SSE on the server side is a two-step process. First, clients
that want to listen to SSE send a GET request to this resource at
/books/events, which is handled by the getEvents() method.
Second, the method creates a new EventOutput instance
representing a connection to the requesting client and registers
it with the broadcaster using the add(eventOutput) method.
EventOutput allows the underlying connection to remain open so
that the application can push SSE later.

03-ch03.indd 54 2/6/14 2:14 PM

 Chapter 3: RESTful Resources 55

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch03

 ■ @Produces on this method ensures that the media type of the
returned type is text/event-stream.

 ■ SseBroadcaster provides a convenient way of grouping multiple
EventOutput instances and broadcasting new events to all the
client connections grouped in the broadcaster.

 ■ SseFeature adds support for a new entity Java type, namely
OutboundEvent. This entity can be used to create any
server outbound events. SseFeature also adds support for
InboundEvent, which can be used for inbound client events for
the JAX-RS Client API.

 ■ The create() method is updated to broadcast a message to all
the clients listening on their SSE connections. A new SSE outbound
event is built in the standard way and passed to the broadcaster
by calling the broadcast message. The broadcaster internally
invokes write(OutboundEvent) on all registered EventOutput
instances. As mentioned earlier, there is no restriction on the media
type for individual event messages. This application is sending a
plain text message as a server-sent event.

 ■ Individual EventOutput instances can be stored in a collection and
iterated over in the create() method. However, SseBroadcaster
also internally identifies and handles client disconnects. When a
client closes the connection, the broadcaster detects this and removes
the stale connection from the internal collection of the registered
EventOutput instances. The broadcaster also frees all the server-
side resources associated with the stale connection. Additionally,
SseBroadcaster is implemented to be thread-safe so that clients
can connect and disconnect at any time; SseBroadcaster will
always broadcast messages only to the most recent collection of
registered and active set of clients.

In addition to addressing many other HTML5 client-specific topics,
Chapter 5 will show you how SSE is consumed on the client side.

03-ch03.indd 55 2/6/14 2:14 PM

 56 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch03

Summary
You started this chapter by learning about the origins of REST and what the
guiding principles are for a RESTful architecture. You then learned from the
Java EE perspective how a RESTful resource can be developed, deployed,
and invoked using the standard Java API for RESTful Web Services (JAX-RS).
Design patterns for integrating other Java EE technologies with your RESTful
resources were discussed. Finally, you were introduced to how support for
Server-Sent Events can be easily incorporated using the JAX-RS reference
implementation, Jersey. You were also shown throughout the chapter how
NetBeans IDE can speed the creation and implementation of these Java
EE features. In the next chapter, you will be shown how to work with an
exciting new area of HTML5 called WebSocket.

03-ch03.indd 56 2/6/14 2:14 PM

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch04

CHAPTER
4

WebSocket

04-ch04.indd 57 2/6/14 2:15 PM

 58 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch04

HTTP was designed to share information over the Internet, and it has
served very well in that respect. But it is inherently half-duplex;
that is, the client (in most cases the browser) initiates a request to

an HTTP server, and the server processes the request and responds to the
client. Web applications that require the server to push information to the
client have typically achieved that functionality by abusing the protocol,
such as via polling and long polling.

In polling, a client requests a resource from a server using normal HTTP
at regular intervals. A new connection to the server is opened at the specified
interval, say after three seconds, and the server returns any new information
in the response. The connection is closed after the client has received the
information. It is likely that new information is not available for each request.
This also requires tuning the interval at which the information is requested,
and is generally application-specific. Therefore, this is not a very efficient way
to push information from server to client.

In long polling, a client requests a resource from a server using normal
HTTP. The server does not immediately respond with the requested information
but rather waits and responds when new information is available. The client
receives the new information, closes the connection, and immediately sends
another request to the server. This type of polling keeps an open connection
between the client and the server indefinitely, with possibly no data exchanged
during the majority of the time. It also requires opening a new connection after
a response is received. This is also not efficient utilization of resources.

The Server-Sent Events (SSE) specification included in HTML5 provides
a similar mechanism to the long polling mechanism, except it does not send
only one message per connection. The client sends a request and the server
holds open a connection until a new message is ready. It sends a message
back to the client when new information is available while still keeping the
connection open. This allows the connection to be reused for subsequent
messages, or events.

For a regular HTTP request and response, each HTTP request requires
establishing a new TCP connection to the server, and that connection is
terminated after the HTTP response has been received. Setting up a TCP
connection is an expensive operation but is rather invisible if the number
of HTTP requests is low. If the number of requests increases, then creation

04-ch04.indd 58 2/6/14 2:15 PM

 Chapter 4: WebSocket 59

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch04

and termination of the TCP connection with each HTTP message exchange
reduces the overall performance of the application.

HTTP also has a high overhead for a wire protocol. A minimum set of
headers must be exchanged on-the-wire between the client and the server in
order to fulfill the protocol requirements. There is a processing cost associated
with parsing these headers that further reduces the performance of an
application if the number of message exchanges increases.

In short, HTTP is a half-duplex and verbose protocol that is inefficient for
full-duplex and bidirectional communication between client and server. This
is exactly the need served by WebSocket.

What Is WebSocket?
WebSocket is a full-duplex, bidirectional protocol that uses a single TCP
connection for exchanging messages in both directions.

WebSocket is defined by two different specifications:

 ■ WebSocket Protocol, RFC 6455 http://tools.ietf.org/html/rfc6455

 ■ W3C WebSocket API www.w3.org/TR/websockets/

RFC 6455 defines how a WebSocket connection can be established
using a handshake. It also defines the wire protocol for WebSocket message
exchange. The W3C WebSocket API is a JavaScript API that is implemented
by different browsers. This API can then be used by web applications to make
connections to WebSocket endpoints and exchange messages.

WebSocket Handshake
Section 14.42 of HTTP 1.1 (RFC 2616) defines an upgrade mechanism that
allows a transition from the HTTP 1.1 protocol to a different protocol. In this
case, to the WebSocket protocol. After an upgrade is negotiated between the
client and the server, the subsequent requests use the newly chosen protocol
for message exchanges.

RFC 6455 defines how a WebSocket client can make an HTTP upgrade
request. This is called a WebSocket client handshake and is shown in
Listing 4-1.

04-ch04.indd 59 2/6/14 2:15 PM

 60 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch04

Listing 4-1 WebSocket Client Handshake

GET /chat HTTP/1.1
Host: server.example.com
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
Origin: http://example.com
Sec-WebSocket-Protocol: chat
Sec-WebSocket-Version: 13

Listing 4-1 shows a typical client opening handshake request. The header
fields in the handshake may be sent in any order. In this fragment, the first
couple of lines are like a usual HTTP request, indicating that this is a GET
request and identifying the host and URI to which the request is addressed.
The key part to notice here is that the WebSocket protocol attempts to
achieve bidirectional communication in the context of existing HTTP
infrastructure. This allows the protocol to work over HTTP ports 80 and 443
and to support HTTP proxies and intermediaries.

The WebSocket-related header fields in Listing 4-1 are as follows:

 ■ The Upgrade and Connection header fields mark this HTTP
request as an upgrade request, specifically requesting an upgrade to
WebSocket.

 ■ Different subprotocols can be negotiated using the Sec-WebSocket-
Protocol header field. If you choose to define a subprotocol, that
same field must be included on both the server and client. It is also
recommended that any subprotocol be registered with the Internet
Assigned Numbers Authority (IANA) to help avoid naming conflicts.

 ■ The Sec-WebSocket-Version header is returned by the server
and must be set to a value of 13.

 ■ The Origin header field is used to protect against unauthorized cross-
origin use of the WebSocket server by scripts using the WebSocket API
in a web browser.

 ■ If the server is capable of handling this upgrade request, then it
processes the received Sec-WebSocket-Key header field using a
predefined algorithm and returns the generated value in the server
handshake response.

04-ch04.indd 60 2/6/14 2:15 PM

 Chapter 4: WebSocket 61

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch04

A typical server opening handshake response looks like this:

HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=

The first line is an HTTP status line and indicates that the handshake was
successful. The Upgrade and Connection header fields complete the HTTP
upgrade. The Sec-WebSocket-Accept header field must contain the value
generated on the server using the predefined algorithm defined by RFC 6455. All
these header fields must be present in order for the handshake to be complete.

Once a connection is established between the client and server, they are
considered to be peers with equal capabilities. Each can send messages to the
other without waiting for the other to respond.

Either peer can initiate the closing handshake by sending a Close control
frame with data containing a specified control sequence. The receiving peer
sends a Close control frame in response indicating that the connection is
now closed.

A peer does not send any further data after sending a Close control frame.
Similarly, a peer discards any further data received after receiving a Close
control frame. The WebSocket closing handshake then initiates the TCP
closing handshake as well.

WebSocket API
The WebSocket API (www.w3.org/TR/websockets/) enables web pages to use
the WebSocket protocol for two-way communication with a remote host.

WebSocket can send and receive text and binary data. The API provides
an overloaded send method that can send text or binary data by taking any
of the following parameters:

 ■ Text: String

 ■ Binary: Blob, ArrayBuffer, ArrayBufferView

The API provides event handlers that are invoked for different lifecycle
events and when a message is received:

 ■ Lifecycle events: onopen(), onerror(), onclose()

 ■ Message: onmessage()

04-ch04.indd 61 2/6/14 2:15 PM

 62 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch04

Java API for WebSocket
Java API for WebSocket defines a set of Java APIs for the development of
WebSocket applications. The API enables you to define a server endpoint
and a client endpoint. A server endpoint listens for requests from multiple
clients. A client endpoint communicates with only one server.

You can define a server endpoint or a client endpoint by decorating a POJO
with annotations from the Java API for WebSocket. Such an endpoint is called
an annotated endpoint. Alternatively, you can extend some of the classes from
the Java API for WebSocket to provide a more fine-grained control over the
endpoint. This type of endpoint is called a programmatic endpoint.

In this chapter, we’ll build the legendary game of tic-tac-toe using WebSocket.
In this game, two players, identified by X and O, take turns marking the squares
in a nine-square grid composed of three columns and three rows. The player
who succeeds in placing their respective mark (X or O) in three consecutive
squares horizontally, vertically, or diagonally wins the game.

The annotated endpoint for the game is shown in Listing 4-2.

Listing 4-2 WebSocket Endpoint Annotations

@ServerEndpoint(value = "/endpoint",
 decoders = BoardDecoder.class)
public class TicTactToeEndpoint {

 private static final Map<String, String> games = new
HashMap<>();

 @OnOpen
 public void onOpen(Session session) throws IOException {
 if (games.isEmpty()) {
 games.put(session.getId(), "x");
 session.getBasicRemote().sendText("You play X");
 } else {
 games.put(session.getId(), "y");
 session.getBasicRemote().sendText("You play O");
 }
 }

 @OnMessage
 public void onMessage(Board board, Session session) throws
IOException, EncodeException {
 if (board.getStatus() != null && board.getStatus().
equals("clear")) {

04-ch04.indd 62 2/6/14 2:15 PM

 Chapter 4: WebSocket 63

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch04

 for (Session s : session.getOpenSessions()) {
 games.remove(s.getId());
 s.close();
 }
 return;
 }

 String symbol = null;
 for (String game : games.keySet()) {
 if (game.equals(session.getId())) {
 symbol = games.get(game);
 break;
 }
 }

 // Create JSON structure
 StringWriter writer = new StringWriter();
 JsonGenerator gen = Json.createGenerator(writer);
 gen.writeStartObject();
 gen.write("symbol", symbol);
 gen.write("x", board.getX() + "");
 gen.write("y", board.getY() + "");
 gen.writeEnd();
 gen.flush();

 // Send to all other open clients
 for (Session s : session.getOpenSessions()) {
 if (!s.equals(session)) {
 s.getBasicRemote().sendText(writer.toString());
 }
 }
 }
}

The following list explains the code shown in Listing 4-2:

 ■ @ServerEndpoint is a class-level annotation that decorates
a POJO to be a WebSocket endpoint. The annotation allows the
developer to define the URL where this endpoint is published using
the value attribute.

 By default, a new instance of the endpoint is created per application
per virtual machine (VM) to represent the logical endpoint per
connected peer. Each instance of the endpoint in this typical case
handles connections to the endpoint from one and only one peer.

04-ch04.indd 63 2/6/14 2:15 PM

 64 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch04

 ■ The configurator attribute can be used to specify a
ServerEndpointConfig.Configurator class that can be
used to provide a singleton instance of the endpoint for all the peers.
Custom configuration algorithms, such as intercepting the opening
handshake, can also be specified using this configurator. This
attribute is not used in this example.

 Additional configuration information can be specified using other
attributes; for example, the decoders attribute defines an ordered
array of decoder classes used by this endpoint. BoardDecoder
.class converts WebSocket messages into an application-defined
Board object. The implementation creates a new instance of the
decoder per endpoint instance per connection.

 ■ The annotated class must have a public no-args constructor.

 ■ games is a Map object that stores the unique identifier of the client
with the corresponding symbol.

 ■ @OnOpen is a method-level annotation that decorates a Java method
to be called when a new WebSocket connection is open. The
method may take the following parameters:

 ■ An optional Session parameter that represents a conversation
between two WebSocket endpoints

 ■ An optional EndpointConfig parameter that contains the
information used during the handshake for this endpoint

 ■ Zero to n String parameters annotated with @PathParam
annotation that maps the URI template specified in the path
mapping of the endpoint

 This method defines the player’s symbol, puts it in the games Map
object keyed by the client identifier, and also sends a message back
to the player indicating the symbol.

 ■ @OnMessage is a method-level annotation that decorates a Java
method to be called when an incoming WebSocket message is
received. Each WebSocket endpoint may have only one method for
each of the native WebSocket message formats: text, binary, and pong.

04-ch04.indd 64 2/6/14 2:15 PM

 Chapter 4: WebSocket 65

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch04

 If the method is handling text messages, then the parameter may be
one of the following:

 ■ String to receive the whole message

 ■ Java primitive or class equivalent to receive the whole message
converted to that type

 ■ String and boolean pair to receive the message in parts

 ■ Reader to receive the whole message as a blocking stream

 ■ Any object parameter for which the endpoint is a text decoder

 If the method is handling binary messages, then the parameter may
be one of the following:

 ■ byte[] or ByteBuffer to receive the whole message

 ■ byte[] and boolean pair, or ByteBuffer and boolean pair,
to receive the message in parts

 ■ InputStream to receive the whole message as a blocking stream

 ■ Any object parameter for which the endpoint is a binary decoder

 If the method is handling pong messages, then the parameter should
be PongMessage.

 In this case, Board is decoded by BoardDecoder. An optional
Session parameter is specified to represent the conversation
between two endpoints.

 If the received board status is set to "clear", then all games are
removed from the games Map and the connection to the client peer is
also closed. Otherwise, the symbol is retrieved from the games Map.

 ■ Java API for JSON Processing provides a standard API to parse and
generate JSON. It allows production/consumption of JSON text in
a streaming fashion (similar to StAX API for XML), or allows the
building of a Java object model (similar to DOM API for XML).

 A streaming generator is created using the Json
.createGenerator() method. A Writer or an OutputStream
can be passed to this method. A Writer is used to write to a

04-ch04.indd 65 2/6/14 2:15 PM

 66 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch04

character stream, and an OutputStream is used to write to a byte
stream. A JSON structure indicating the current symbol used in the
game and the x and y coordinates in the grid are created. It looks like:

{
 "symbol": "x",
 "x": "1",
 "y": "2"
}

 ■ The session.getOpenSessions() method provides a list of
all the listening clients. This generated JSON text is sent to all the
listening clients, which then update the state of the game board.

BoardDecoder.class decodes the incoming text payload and converts
it to the application-specific Board class. Listing 4-3 shows what it looks like.

Listing 4-3 BoardDecoder Class

public class BoardDecoder implements Decoder.Text<Board> {
 @Override
 public Board decode(String string) throws DecodeException {
 System.out.println("BoardDecoder.decoding: " + string);
 JsonObject jsonObject = Json.createReader(new
StringReader(string)).readObject();
 Board board = new Board();
 if (jsonObject.getString("x") != null) {
 board.setX(Integer.parseInt(jsonObject.
getString("x")));
 }
 if (jsonObject.getString("y") != null) {
 board.setY(Integer.parseInt(jsonObject.
getString("y")));
 }
 if (jsonObject.getString("status", null) != null) {
 board.setStatus((jsonObject.getString("status")));
 }

 System.out.println("decoded: " + board);
 return board;
 }

 @Override
 public boolean willDecode(String string) {
 try {
 Json.createReader(new StringReader(string)).

04-ch04.indd 66 2/6/14 2:15 PM

 Chapter 4: WebSocket 67

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch04

readObject();
 return true;
 } catch (JsonException ex) {
 ex.printStackTrace();
 return false;
 }
 }

 @Override
 public void init(EndpointConfig ec) {
 System.out.println("BoardDecoder.init");
 }

 @Override
 public void destroy() {
 System.out.println("BoardDecoder.destroy");
 }
}

The following list describes the code shown in Listing 4-3:

 ■ The text-based decoder typically implements the Decoder.Text<T>
interface, and the binary-based decoder typically implements the
Decoder.Binary<T> interface.

 In addition, there are Decoder.TextStream and Decoder
.BinaryStream interfaces that read the WebSocket message
from a character or binary stream, respectively.

 ■ The Decoder.Text<T> interface requires implementing the decode()
method that decodes the given String into an object of type T. In our
method implementation, the message payload is read using a Reader
and then converted into a JsonObject. Different values read from
the parsed object are used to populate the application-specific Board
class. An overloaded version of the getString() method is used to
define a default value of null.

 ■ The interface also requires implementing the willDecode() method.
This method returns true if the given String can be decoded to
an object of type T. Our method implementation tries to parse the
message payload as JsonObject. If the parsing is successful, then it
returns true; it returns false otherwise.

Other lifecycle methods like init() and destroy() need to be
implemented. They are no-op in this case.

04-ch04.indd 67 2/6/14 2:15 PM

 68 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch04

HTML5 Client Application
for WebSocket
The client-side code for the tic-tac-toe application that you’ve been working
on so far is all located in the Web Pages folder in the NetBeans IDE navigator
window, as shown in Figure 4-1. Over the next sections of this chapter,
you will build the client code that connects to the WebSocket service you
created in previous sections.

HTML5 Application Setup
The client side of this tic-tac-toe application is created using a couple
of different JavaScript frameworks. Twitter Bootstrap is used for the basic
look and feel, as well as to enable the application to resize as the browser
window changes size—called responsive design (covered in more detail in
Chapter 5). The second framework is Knockout.js.

Listing 4-4 shows how the index.html file is set up to load all of the
dependencies.

FIGURE 4-1. Client code in IDE

04-ch04.indd 68 2/6/14 2:15 PM

 Chapter 4: WebSocket 69

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch04

Listing 4-4 Loading Dependencies in index.html

<head>
 <title>Tic-Tac-Toe</title>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width">
 <link rel="stylesheet" href="css/bootstrap3/bootstrap.css"/>
 <link rel="stylesheet" href="css/overrides.css"/>
 <script type="text/javascript" src="js/libs/jquery/jquery.
js"></script>
 <script type="text/javascript" src="js/libs/knockout/knockout-
min.js"></script>
 <script type="text/javascript" src="js/libs/bootstrap3/
bootstrap.js"></script>
 <script type="text/javascript" src="js/websocket.js"></script>
 <script type="text/javascript" src="js/tictactoe.js"></script>
 <script type="text/javascript" src="js/app.js"></script>
</head>

Let’s take a look at how the application is configured in the <head> section
of the index.html file. This application uses Knockout.js (http://knockoutjs
.com/) to implement a Model-View-ViewModel (MVVM) architectural pattern.
All of this will be explained in much more detail in Chapter 5, but for now,
you can see in this code that the Knockout JavaScript libraries are being added
with a simple <script> reference. The other JavaScript libraries being used are
jQuery and Bootstrap.

To get the proper layout and style for the game, Twitter Bootstrap CSS
files and an override CSS file are referenced. CSS files are read in the order in
which they are listed, so the override.css files must come last in the list of
all CSS files.

The two JavaScript files that you will work with the most for connecting
up the WebSocket interface and managing the game itself are found in
websocket.js and tictactoe.js.

Listing 4-5 shows the main sections of the body of the index.html file
and how the view layer of the application is set up.

Listing 4-5 Main Sections of index.html File

<header class="header">
 <div >
 <div id="title" class="headertext text-center">Tic-Tac-Toe</
div>
 </div>
</header>

04-ch04.indd 69 2/6/14 2:15 PM

 70 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch04

<section id="playerInfo" class="col-sm-3">
 <div class="row">
 <div id="playerName" data-bind="text: playerName">Player
One</div>
 <div id="playStatus" class="playerStatus" data-
bind="visible: showStatus, text: gameStatus">You Go First!</div>
 <!--<div id="playSecond" class="playerStatus" data-
bind="visible: gameOver">You Win!!</div>-->
 <div id="win-lose" class="win-lose" data-bind="visible:
gameOver">You Win!!</div>
 <div id="output"></div>
 </div>
 <div class="row">
 <div class="btn" data-bind="click: clearBoard">New
Game?</div>
 </div>
</section>

<section id="boardLayout" class="col-sm-9">
 <div id="board" class="container col-xs-12">
 <div id="row1" class="row col-xs-12">
 <div id="1" class="col-sm-offset-4 col-xs-1 game-
cell"><img id="cellImage1-1" data-x="1" data-y="1" class="blank"
src="css/images/blank.png" data-bind="click: gameCellClicked"/></
div>
 <div id="2" class="col-xs-1 game-cell"><img
id="cellImage1-2" class="blank" data-x="1" data-y="2" src="css/
images/blank.png" data-bind="click: gameCellClicked"/></div>
 <div id="3" class="col-xs-1 game-cell"><img
id="cellImage1-3" class="blank" data-x="1" data-y="3" src="css/
images/blank.png" data-bind="click: gameCellClicked"/></div>
 </div>
 <div id="row2" class="row col-xs-12">
 <div id="4" class="col-sm-offset-4 col-xs-1 game-
cell" ><img id="cellImage2-1" data-x="2" data-y="1" class="blank"
src="css/images/blank.png" data-bind="click: gameCellClicked"/></
div>
 <div id="5" class="col-xs-1 game-cell"><img
id="cellImage2-2" class="blank" data-x="2" data-y="2" src="css/
images/blank.png" data-bind="click: gameCellClicked"/></div>
 <div id="6" class="col-xs-1 game-cell"><img
id="cellImage2-3" class="blank" data-x="2" data-y="3" src="css/
images/blank.png" data-bind="click: gameCellClicked"/></div>
 </div>
 <div id="row3" class="row col-xs-12">
 <div id="7" class="col-sm-offset-4 col-xs-1 game-
cell"><img id="cellImage3-1" data-x="3" data-y="1" class="blank"

04-ch04.indd 70 2/6/14 2:15 PM

 Chapter 4: WebSocket 71

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch04

src="css/images/blank.png" data-bind="click: gameCellClicked"/></
div>
 <div id="8" class="col-xs-1 game-cell"><img
id="cellImage3-2" class="blank" data-x="3" data-y="2" src="css/
images/blank.png" data-bind="click: gameCellClicked"/></div>
 <div id="9" class="col-xs-1 game-cell"><img
id="cellImage3-3" class="blank" data-x="3" data-y="3" src="css/
images/blank.png" data-bind="click: gameCellClicked"/></div>
 </div>
 </div>
</section>

<footer>
 <div id="footerContent">
 <ul class="footerLinks" data-bind="foreach :
footerLinks">
 <a data-bind="text : name, attr : {id:
linkId, href : linkTarget}">

 Copyright © 2013. All
rights reserved.
 </div>
</footer>

Let’s take a look at the different sections of the code:

 ■ The first section of the code is the <header> element, which does
exactly what its name suggests: it defines the header for the main
game page.

 ■ The playing area is broken into two <section> elements. The first
<section> element shows the current player information and any
messages that may need to be displayed while the game is being
played. The second <section> element is the game board itself. This
is a nine-square grid (three columns by three rows) whose layout
is managed by the CSS grid layout provided by Twitter Bootstrap.
The key things to notice in the game board layout are that the x and
y coordinates for each cell are being set as data attributes for the
specific cell, and that a click binding has been set up for each cell
using a Knockout data binding. Each cell also has a blank image
set by default as a placeholder. The importance of the Knockout
binding is that it allows us to do all of our WebSocket integration
at the JavaScript layer and just assign the information that needs to

04-ch04.indd 71 2/6/14 2:15 PM

 72 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch04

be displayed in the game board, via Knockout’s two-way binding
mechanism. We do not have to set up any kind of event listeners on
HTML DOM elements ourselves. All of that is handled by Knockout
for us.

 ■ The last section is the <footer> element. It contains a list of links for
the footer of our page. Again, Knockout is being used to dynamically
provide the links themselves.

When the index.html file is loaded in the browser, each dependency
is loaded in the order in which it’s listed in the <head> section of the page.
In the tictactoe.js file, there is a jQuery JavaScript call set up to bind the
Knockout.js viewmodel to the view layer once the HTML page is fully loaded.
Listing 4-6 shows this code.

Listing 4-6 Knockout.js Binding

vm = new boardViewModel();
$(document).ready(function() {
 ko.applyBindings(vm, document.getElementById('mainPage'));
});

When the Knockout binding is made, the viewmodel code is run. Not all
browsers support the WebSocket protocol yet, so the first thing that you need
to do in the viewmodel is make sure that your current browser does provide
the proper support. For our example, this is achieved by using the code
shown in Listing 4-7 from the tictactoe.js BoardViewModel() function.

Listing 4-7 Checking for WebSocket Support

if (typeof (websocket) !== "undefined") {
 ...
} else {
 alert('Websocket is NOT supported by your browser. Please use
a more modern browser to play this game.');
}

If the browser doesn’t support the WebSocket protocol, this code will
display an alert dialog that tells the player to use a more modern browser.

04-ch04.indd 72 2/6/14 2:15 PM

 Chapter 4: WebSocket 73

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch04

JavaScript API for WebSocket
You’ve learned about how to create and interact with the Java API for
WebSocket on the server side, so now let’s take a look at how that same
WebSocket service can be consumed and interacted with from the client side.

WebSocket Initialization
When the websocket.js file is loaded, the initialization of the WebSocket
connection is attempted as shown in Listing 4-8.

Listing 4-8 WebSocket Endpoint Initialization

var host = window.location.host;
var wsUri = "ws://" + host + "/TicTacToe/endpoint";
var websocket = new WebSocket(wsUri);
var output = document.getElementById("output");

You’ll notice that the URL for the WebSocket endpoint is a reference to the
endpoint that you set up during your work with the Java API for WebSocket.

While you can set the URL directly to the service in your final
production code, it’s a good idea to set up the URL dynamically when you
are in development. The reason for this is more about testing than about
development. When you run the code from the IDE, it will usually load with
localhost as the hostname from your local development machine. However,
if you hard-code the endpoint URL to localhost, you will have trouble
connecting to the web application from some other device for testing. By
getting the current hostname from the browser’s window object, you can
connect from any device on the same network for testing. As an example,
if you run the tic-tac-toe game from your local machine, it will show up
in the browser as http://localhost:8080/TicTacToe/. However, if
you connected to the same web app from a tablet that is connected to the
same wireless network, you would have to do something like http://<ip
address of dev machine>:8080/TicTacToe.

Using the code shown in Listing 4-8 will connect using whichever
hostname you join the game from.

WebSocket Control Methods
Just as when working with the Java API for WebSocket, you have five
different methods available in the JavaScript API:

 ■ onopen()

 ■ onmessage()

04-ch04.indd 73 2/6/14 2:15 PM

 74 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch04

 ■ onclose()

 ■ onerror()

 ■ send()

As part of this sample application, an HTML element is set up to show
the current state of the WebSocket connection. You can see this being
defined as “output” in Listing 4-8. As you review the code for each of the
JavaScript API methods shown in Listing 4-9, you will see that a function
called writeToScreen(message) was defined as a simple means of setting
the value for the output HTML element. The onmessage() method is not
covered in Listing 4-9. It will be covered in a separate section after the other
four methods.

Listing 4-9 JavaScript Methods for WebSocket

websocket.onopen = function() {
 displayMessage ("Connected!");
};
websocket.onclose = function(evt){
 var message = ' ';
 var closeCode = evt.code;
 if (closeCode == '1006'){
 message = "Error connecting to Websocket endpoint";
 }else if (closeCode == '1000'){
 message = "Connection closed normally";
 }else{
 message = "Closed with status: "+closeCode;
 }
 displayMessage (message);
};

websocket.onerror = function(evt) {
 displayMessage('ERROR: ' +
evt.data);
};

function send(text) {
 websocket.send(text);
}

04-ch04.indd 74 2/6/14 2:15 PM

 Chapter 4: WebSocket 75

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch04

Let’s take a closer look at the methods shown in Listing 4-9. Remember
that during the initialization, you defined the new WebSocket object as a
variable named websocket.

 ■ For websocket.onopen(evt) you are simply sending a message
to the output variable saying that the connection was successful. This
is the first event thrown by the WebSocket connection and is where
you would do any additional setup code if you needed it.

 ■ For websocket.onclose(evt) you are going to check for the
code given by the WebSocket protocol to help determine why the
connection was closed. The tricky part with doing this is that the
WebSocket specification (RFC 6455) says only that the endpoint
“may” send a close code, not that it has to. If a code is sent, it should
conform with one of the close codes defined in the IETF specification
(http://tools.ietf.org/html/rfc6455#section-7.4). The recommended
codes are listed and described (quoting RFC 6455) in Table 4-1.

Code Description

1000 Indicates a normal closure, meaning that the purpose for which
the connection was established has been fulfilled.

1001 Indicates that an endpoint is “going away,” such as a server going
down or a browser having navigated away from a page.

1002 Indicates that an endpoint is terminating the connection due to
a protocol error.

1003 Indicates that an endpoint is terminating the connection because
it has received a type of data it cannot accept (e.g., an endpoint
that understands only text data MAY send this if it receives a
binary message).

1004 Reserved. The specific meaning might be defined in the future.
1005 Is a reserved value and MUST NOT be set as a status code in a

Close control frame by an endpoint. It is designated for use in
applications expecting a status code to indicate that no status
code was actually present.

(Continued)

TABLE 4-1. RFC 6455 Close Codes

04-ch04.indd 75 2/6/14 2:15 PM

 76 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch04

Code Description

1006 Is a reserved value and MUST NOT be set as a status code in
a Close control frame by an endpoint. It is designated for use
in applications expecting a status code to indicate that the
connection was closed abnormally (e.g., without sending or
receiving a Close control frame).

1007 Indicates that an endpoint is terminating the connection because
it has received data within a message that was not consistent
with the type of the message (e.g., non-UTF-8 [RFC3629] data
within a text message).

1008 Indicates that an endpoint is terminating the connection because
it has received a message that violates its policy. This is a generic
status code that can be returned when there is no other more
suitable status code (e.g., 1003 or 1009) or if there is a need to
hide specific details about the policy.

1009 Indicates that an endpoint is terminating the connection because
it has received a message that is too big for it to process.

1010 Indicates that an endpoint (client) is terminating the connection
because it has expected the server to negotiate one or more
extensions, but the server didn’t return them in the response
message of the WebSocket handshake. The list of extensions
that are needed SHOULD appear in the /reason/ part of the
Close frame. Note that this status code is not used by the server,
because it can fail the WebSocket handshake instead.

1011 Indicates that a server is terminating the connection because it
encountered an unexpected condition that prevented it from
fulfilling the request.

1015 Is a reserved value and MUST NOT be set as a status code
in a Close control frame by an endpoint. It is designated for
use in applications expecting a status code to indicate that
the connection was closed due to a failure to perform a TLS
handshake (e.g., the server certificate can’t be verified).

TABLE 4-1. RFC 6455 Close Codes

04-ch04.indd 76 2/6/14 2:15 PM

 Chapter 4: WebSocket 77

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch04

 In the code for this game you are only going to check for a couple
of specific codes, and just fall back to a generic message that shows
the close code for anything else that may be sent by the endpoint.
The check for close code 1006 is just in case the application tries
to connect to the endpoint and it’s not there. You can’t use the
onerror() event for this case because the WebSocket object is not
completely created when this happens. It closes before it has been
completely opened. The check for close code 1000 is to indicate that
the New Game button was clicked and the websocket.close()
method was called and processed successfully.

 ■ The websocket.onerror() method is pretty self-explanatory. If
there is an error, the endpoint may trigger an error event. That error
would be captured by this method and the message will be displayed
on the game.

 ■ The websocket.send() method is used to send a message to the
server. For this game example, only text is being sent and received
over the WebSocket connection. However, the WebSocket protocol
can also send and receive binary data in the form of a Blob or an
ArrayBuffer.

WebSocket Data Management
The final method for the WebSocket API is websocket.onmessage().
This is where the heart of the communication between the client and server
is performed. Listing 4-10 shows the code from the websocket.js file that
handles the incoming text messages from the server endpoint.

Listing 4-10 websocket.onmessage() Method

websocket.onmessage = function(evt) {
 var json = null;
 try {
 json = $.parseJSON(evt.data);
 } catch (ex) {
 json = null;
 }
 if (json === null) {
 if (evt.data.toLowerCase().indexOf("x") >= 0) {
 vm.playerName('Player One');
 vm.showStatus(true);

04-ch04.indd 77 2/6/14 2:15 PM

 78 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch04

 vm.gameStatus('You Go First!');
 vm.image(vm.X);
 vm.symbol(vm.playerOne);
 } else {
 vm.playerName('Player Two');
 vm.showStatus(true);
 vm.gameStatus('Please Wait');
 vm.image(vm.O);
 vm.symbol(vm.playerTwo);
 }
 } else {
 if (json.symbol === 'x') {
 vm.image(vm.X);
 vm.symbol(json.symbol);
 setCellImage(json);
 } else {
 vm.image(vm.O);
 vm.symbol(json.symbol);
 setCellImage(json);
 }
 }
};

Let’s walk through the code in Listing 4-10 to get a better idea of how the
client interacts with the server for the game:

 ■ The data that is being sent from the server is expected by the client
to be in the form of a JSON object, except for the first time a browser
connects. That first message is sent as plain text and indicates which
player the game should be showing. Once the message is received,
a try-catch block tries to parse the data from the event and assign
it to the json variable. If this fails, then you know that this is the first
connection for this player, and the json variable is set to null. If it
succeeds, then the data is assigned to the variable and the game that
is in progress can continue.

 ■ The first time the browser connects to the WebSocket endpoint, the
server sends back a message saying which player that connection is
assigned to. Player X always goes first in the game of tic-tac-toe, so
the retuned string is parsed for the character “x” and, if found, the
onmessage() method does all of the game setup for “Player One.”
Any other connection string is assigned to “Player Two.”

04-ch04.indd 78 2/6/14 2:15 PM

 Chapter 4: WebSocket 79

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch04

 ■ If the onmessage data is a JSON object, the symbol member of the
object is checked to see if this is data for player X or player Y, and
the onmessage() method sets the appropriate image name for that
player. It then passes the JSON object over to the setCellImage()
method for further processing. Figure 4-2 shows the use of the
NetBeans IDE Network Monitor feature to see the data being sent
and received in the WebSocket frame.

Managing the Game Logic
In the tictactoe.js file, the rest of the game logic is processed. Listing 4-11
shows the setCellImage() method.

Listing 4-11 setCellImage() Method

function setCellImage(data) {
 var myData = data;
 var cellId = "cellImage" + myData.x + "-" + myData.y;
 if (myData.symbol === 'x') {
 vm.image(vm.X);
 vm.symbol(vm.playerTwo);
 } else {
 vm.image(vm.O);
 vm.symbol(vm.playerOne);
 }
 $('#' + cellId).attr("src", vm.image());
 if (vm.gameStatus().toLowerCase().indexOf("wait") >= 0) {
 vm.gameStatus('Your turn');

 } else {
 vm.gameStatus('Please wait');

 }
}

FIGURE 4-2. NetBeans Network Monitor window

04-ch04.indd 79 2/6/14 2:15 PM

 80 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch04

When setting the image for the specific game cell, as shown in Listing 4-11,
the image can be set either from the client of the player actually clicking the
game cell or from the server to show what the opponent just selected. This
method has to handle both cases. Here is where your use of the Knockout
viewmodel starts to come into play. If the symbol member of the data object
is for player X, the viewmodel’s image attribute, or observable in Knockout
terms, is set to be the image for X. You are then going to set the viewmodel’s
symbol observable to be the opposite of who just played. This is because
the existing player’s turn is done and you are beginning to set things up for
the next player now. Next you set the src attribute of the specific cell to be
that location of the X or Y image. Finally, the status needs to be updated to
tell the players whose turn it is. If the gameStatus observable is currently
set to “Please wait,” then you switch it to say “Your turn.” Otherwise, set it to
“Please wait.”

So far you have followed the flow of how things work when data is received
from the server with the websocket.onmessage() event. The flow for
clicking a specific game cell and then sending that data to the server and then
your opponent is very similar, but it starts with the gameCellClicked()
method shown in Listing 4-12.

Listing 4-12 Capturing Game Cell Clicks and Sending Data

function gameCellClicked(data, event) {
 var player = vm.symbol();
 var json = createJSON(player, $(event.currentTarget).
attr('data-x'), $(event.currentTarget).attr('data-y'));
 setCellImage(json);
 send(JSON.stringify(json));
}

function createJSON(symbol, x, y) {
 var jsonData = "{"
 + "\"symbol\" : \"" + symbol + "\","
 + "\"x\" : \"" + x + "\","
 + "\"y\" : \"" + y + "\"}";

 return JSON.parse(jsonData);
}

Let’s walk through the two functions shown in Listing 4-12:

 ■ When a cell on the game board is clicked, it calls the
gameCellClicked() method. The Knockout click binding

04-ch04.indd 80 2/6/14 2:15 PM

 Chapter 4: WebSocket 81

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch04

that is being used for this automatically sends the data and the event
objects as part of the method. The data object in this case contains
the current boardViewModel() content. The event object is what
you are really looking for though. You want to know which game cell
was clicked so you can set the appropriate image, and then you want
to create the JSON data for that cell so you can send it back to the
server and have your opponent’s game board updated.

 ■ In the gameCellClicked() method, the current player is set by
getting the value of symbol from the viewmodel. Then the values
of the data-x and data-y attributes of the specific cell that was
clicked are gathered. All three of these values are sent to a function
that will format the values into the JSON object that your WebSocket
endpoint expects. This is done in the createJSON() method
shown in Listing 4-12.

NOTE
It would be desirable to use the HTML5 dataset
method to get the data-x and data-y values in
this function. If you were to use dataset, the code
would look like this:

$(event.currentTarget).data('x')

The reason this is not done in this example is that
the dataset HTML5 feature is not supported in
all browsers at the time of writing. Internet Explorer
specifically did not support this feature until IE 11
was released. Using a direct DOM call to get the
attribute will work with all browsers.

 ■ The createJSON() function returns the formatted JSON as a JSON
object so that it can be used in the setCellImage() function that
you looked at earlier in Listing 4-11.

 ■ Once the image and game status have been set properly, the
JSON object is converted back to a string so it can be sent to the
WebSocket endpoint using the websocket.send() method.
Remember that WebSocket data must be in either UTF-8 string
format or a binary format of Blob or ArrayBuffer. Sending the
actual JSON object will result in a WebSocket protocol error.

04-ch04.indd 81 2/6/14 2:15 PM

www.allitebooks.com

http://www.allitebooks.org

 82 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch04

While the game code used for this chapter does not make use of the Blob
or ArrayBuffer binary data types, you may want to know a little more
about how they are used. Blob is the default binary data type, and there is
nothing special that you have to do to send data in this format. Just pass in a
Blob object as the argument to the send() method, just as you would with
a text string. The server code will need to check for the type of the incoming
message. Listing 4-13 shows a possible way of checking for the message type
and processing it appropriately.

Listing 4-13 Example of Testing for Message Type

if (message.type === 'utf8') {
 console.log('Received Text Message: ' + message);
 ... // do something more with the string
}
else if (message.type === 'binary') {
 console.log('Received Binary Message: ' + message.binaryData.
length);
 ... // do something more with the binary data
}

From the client side, you would need to provide some method for gathering
the binary data and then passing that data to a function for processing and
sending to the WebSocket connection. Listing 4-14 shows one possible solution:
using an input type of file and allowing the end user to select a file and send
it to the WebSocket stream.

Listing 4-14 Example of Client-Side Code for Sending Binary Data

document.getElementById("binary").addEventListener('change',
sendBinary, false);
function sendBinary(evt) {
 var file = evt.target.files[0];
 socket.binaryType = "arraybuffer";
 var reader = new FileReader();
 reader.readAsArrayBuffer(file);
 console.log('filesize: '+ file.size);
 reader.onload = function(e) {
 socket.send(e.target.result);
 };
}

04-ch04.indd 82 2/6/14 2:15 PM

 Chapter 4: WebSocket 83

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch04

Let’s take a quick look at the code in Listing 4-14:

 ■ The first line is adding an event listener to an input element of type
file in the HTML markup. This input element has an id attribute set to
the name “binary.”

 ■ When the event listener detects that a change has happened to
the input element, it will call the sendBinary() function. This
function uses the event object that the listener sent by default to get
the file that the end user selected.

 ■ The sendBinary() method then sets the binaryType property of
the WebSocket connection to be a type of ArrayBuffer.

 ■ At this point a FileReader object is created and the
contents of the file are read into it using the FileReader’s
readAsArrayBuffer() method.

 ■ Finally, once the FileReader has completed the loading of the
data, the data is sent over the WebSocket connection.

NOTE
It should be noted that the FileReader API is
new to HTML5 and is not implemented by all
browsers. Specifically, Internet Explorer 9 and any
version of Safari older than 6.0 do not support it.

Summary
In this chapter you have learned about what the WebSocket protocol is,
and how the APIs for both Java and JavaScript are used to interact with
the WebSocket protocol on the server and in a pure client-side HTML5
application. You have learned how to work with the Java API for JSON to
read and generate JSON objects on the server.

On the client side, you learned how to work with String and JSON object
data to manipulate the HTML DOM elements and interact with the game
board using the Knockout.js MVVM architectural pattern.

One thing that you may have noticed while either playing the game or
reading all of the Knockout observables in the boardViewModel() is that
there is not a scoring system implemented in the game. This omission is

04-ch04.indd 83 2/6/14 2:15 PM

 84 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch04

intentional. It is now up to you to take what you have learned and add the
client- and server-side code that can store and manage the game state. The
Knockout observables of win, lose, and tie are already in place and ready
for you to use with the gameStatus system that is in place.

In Chapter 5 you will learn more details about working with HTML5,
JavaScript, and CSS. The Knockout.js library will also be given more attention.

04-ch04.indd 84 2/6/14 2:15 PM

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch05

CHAPTER
5

HTML5, JavaScript,
and CSS

05-ch05.indd 85 2/6/14 2:18 PM

 86 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch05

The increase in development and availability of HTML5 applications
for just about every type of device, from desktop computers to
smartphones, and everything in between, has brought much-needed

scrutiny to how HTML5 applications can best be used in the enterprise
application space. In this chapter you will learn how to create a pure
client-side HTML5 application that will consume and interact with the
REST, Server-Sent Events (SSE), and WebSocket Java web services that you
learned how to write in previous chapters. You will see how to implement
the Model-View-ViewModel (MVVM) architecture pattern through the use
of the JavaScript library Knockout.js. You will also be shown the basics of
responsive design techniques using CSS3 media queries to dynamically
change the UI layout when the application is displayed on devices of
different sizes. Finally, you will be shown the basics of working with
Syntactically Awesome StyleSheets (SASS) and the Sassy CSS (SCSS) syntax
for managing more complex CSS file sets in an enterprise application.

HTML5 Project Setup
To get started, create a new HTML5 project using NetBeans IDE:

1. Choose File | New Project.

2. As shown next, select HTML5 in the Categories pane and then select
HTML5 Application in the Projects pane. Click the Next button to
enter details about your project.

05-ch05.indd 86 2/6/14 2:18 PM

 Chapter 5: HTML5, JavaScript, and CSS 87

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch05

3. For the second step of the wizard, enter BookClub in the Project
Name field and click Next again.

05-ch05.indd 87 2/6/14 2:18 PM

 88 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch05

4. In the next step of the wizard, Site Template, you are given three
options from which to choose how you want to configure your new
project. For this example, you are going to base your new project on
a template provided as part of this book. This template will provide
the foundation for the information covered later in this chapter.
So, as shown next, click the Select Template radio button, click the
Browse button, and go to the location of the BookClub.zip file. Click
the Next button after you have the BookClub.zip file selected in the
Template field.

5. The last step in creating your new project is to add any other
JavaScript libraries that you may need. The list of JavaScript libraries,
shown partially in the following image, is pulled directly from the
Content Delivery Network for JavaScript (CDNJS) repository and can
be updated at any time by clicking the link under the library list.
If you need to add more libraries at a later time, go to the Project
Properties dialog in NetBeans IDE and select the JavaScript Library
Manager option. For now, all of the JavaScript libraries that you will

05-ch05.indd 88 2/6/14 2:18 PM

 Chapter 5: HTML5, JavaScript, and CSS 89

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch05

need for this project are included in the template. Click the Finish
button to create the project.

Listing 5-1 shows the index.html file that the wizard loaded from
the template for your project. As you can see, the <title> element identifies
the name of your project. Also note how the CSS and JavaScript libraries
are referenced: The <link> and <script> tags in the <head> section tell the
browser to load the designated files when the index.html document
file is run.

Listing 5-1 Setting Up CSS and JavaScript References

<head>
 <title>My Book Club</title>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width">
 <link rel="stylesheet" href="css/bootstrap3/responsive.css"/>
 <script type="text/javascript" src="js/jquery/jquery.js"></
script>

05-ch05.indd 89 2/6/14 2:18 PM

 90 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch05

 <script type="text/javascript" src="js/knockout/knockout-min.
js"></script>
 <script type="text/javascript" src="js/knockout.mapping/knockout.
mapping.js"></script>
 <script src="js/bootstrap3/bootstrap.js"></script>
 <script type="text/javascript" src="js/app.js"></script>
</head>

Notice that the last line of the <head> section includes an extra <script>
element that references a JavaScript file called app.js. This file contains
JavaScript code that is specific to this application. If you were starting this
project from scratch and needed to add this file, you would right-click the js
node in the project navigator, as shown here, and select New | JavaScript File.

A dialog will be shown as in the following illustration. Set the file name to
app and click Finish.

05-ch05.indd 90 2/6/14 2:18 PM

 Chapter 5: HTML5, JavaScript, and CSS 91

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch05

You can now run your project, and everything should load in the browser
without errors.

REST
When working with a REST service, you first will want to identify the REST
APIs that you have available to work with. This information is most often
found in the developer documentation for the specific REST service. For
this chapter, you are going to use the REST service and the persistence APIs
that you created in Chapters 2 and 3 of this book. The code for those two
chapters is available as part of the book for you to load and run from your
installation of the NetBeans IDE. If you are running from a local machine,
the URL will be localhost:8080/sahara/webresources.

05-ch05.indd 91 2/6/14 2:18 PM

 92 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch05

The APIs that you have available are shown in Listing 5-2.

Listing 5-2 Available REST APIs

{hostname}/{application name}/webresources/books
{hostname}/{application name}/webresources/books/{id}
{hostname}/{application name}/webresources/books/{id}/authors
{hostname}/{application name}/webresources/authors
{hostname}/{application name}/webresources/authors/{id}
{hostname}/{application name}/webresources/authors/{id}/books

The APIs shown in Listing 5-2 provide the following functionality:

 ■ /books returns a list of all books in the database.

 ■ /books/{id} returns the details for a specific book. The {id} of a
book is its ISBN (International Standard Book Number).

 ■ /books/{id}/authors returns all of the authors for a specific book.

 ■ /authors returns a list of all authors.

 ■ /authors/{id} returns the details for a specific author. Each
author has a unique ID in the database.

 ■ /authors/{id}/books returns a list of all books that a specific
author is associated with.

The easiest way to learn how to use a particular REST service is to write a
CRUD application that exercises the APIs required to create, read, update, and
delete data. You will use the APIs in Listing 5-2 to do just that in this section.
All of the code discussed in this REST section is found in the app.js file of
your project.

Read, Using the GET Request (R of CRUD)
You’re going to start with the code shown in Listing 5-3 to perform a read of
the available data.

Listing 5-3 jQuery getJSON Method Call

$.getJSON(self.serviceURL, function(data) {
 // do something with the data
});

05-ch05.indd 92 2/6/14 2:18 PM

 Chapter 5: HTML5, JavaScript, and CSS 93

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch05

This is a very simple call that uses the jQuery alias of $ and calls the
.getJSON method. The call takes two arguments: the URL of the REST API,
and a callback function to do something with the data that is returned. Listing
5-3 uses .getJSON() to make the call, so it requests the data to be returned
as a JavaScript Object Notation (JSON) object. Because the JSON data format
is syntactically identical to the code used to create JavaScript objects, it can
be parsed directly from the JavaScript language without the need for any
additional parsers or processors.

NOTE
$.getJSON is a shortcut for
$.ajax({
 type: "get",
 dataType: "json",
 url: url,
 data: data,
 success: success
});

You’ll notice that the callback function only works against a successful
request. If you need to do error handling, you will want to use the full syntax
similar to what is shown in Listing 5-7 later in the chapter.

You’ll also notice that the URL in this example is being set using a variable,
self.serviceURL, instead of a string for the URL itself. This is because this
line is actually part of a larger function called a ViewModel. This is part of the
Knockout.js Model-View-ViewModel (MVVM) architectural pattern that you
read about in Chapter 1. Listing 5-4 shows the full ViewModel code.

Listing 5-4 Example ViewModel

function booksViewModel() {
 var self = this;
 self.serviceURL = serviceRootURL + "/books";
 self.Books = ko.observableArray([]);
 $.getJSON(self.serviceURL, function(data) {
 var mappedBooks = $.map(data, function(item) {
 return new bookModel(item);
 });
 self.Books(mappedBooks);
 });
}

05-ch05.indd 93 2/6/14 2:18 PM

 94 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch05

Let’s walk through what each line provides:

 ■ function booksViewModel() { var self = this; The
current object in JavaScript is often referenced by a pseudo variable
called this. The major problem with always using this to reference
variables in a function is that the scope of this can change depending
on how the function is called. You want to bind a local variable to the
current this object so that the same object can still be referenced no
matter how the function is called later in your code.

 ■ self.serviceURL = serviceRootURL + "/books"; This
line sets up the URL that will be used to make the actual REST API
call. Since all of the REST API calls have the same hostname and
application path, a global variable has been set to contain the part
of the URL that is always the same. One thing to keep in mind while
working with REST service calls in development mode is that the
hostname may vary as you test your code from different devices.
For example, using “localhost” as the hostname will work fine for
any browser that you would use to connect to the REST service that
you have running on the same machine. However, if you were to try
to test your code from, say, a tablet and connect to the IP address
of your development machine, the JavaScript call to “localhost”
would fail. For this reason, you will see at the top of the same
application code that the serviceHostname variable is being set to
serviceHostname = window.location.hostname; and the
final serviceRootURL variable is created using this dynamic value.

serviceHostname = window.location.hostname;

serviceRootURL="http://"+serviceHostname+":8080/sahara/
webresources";

 ■ self.Books = ko.observableArray([]); This shows
your first use of a Knockout.js method. You are assigning the variable
self.Books to a Knockout observableArray and initializing it with
an empty array. The use of Knockout observables and observableArrays
is the key to setting up two-way binding between the data at the
Model layer of your MVVM architecture and the View layer. You’ll see
a bit later in this chapter how this observableArray is used.

05-ch05.indd 94 2/6/14 2:18 PM

 Chapter 5: HTML5, JavaScript, and CSS 95

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch05

 ■ $.getJSON(self.serviceURL, function(data) { This
line was already presented in Listing 5-3 and discussed thereafter,
but the variables should make a little more sense at this point. The
callback function is processed when a successful request is returned.
The data object contains the data that is returned from the server as
part of the response object. Because you are using $.getJSON(),
the data returned is a JSON object.

 ■ var mappedBooks = $.map(data, function(item) {
This line is using the jQuery .map() utility method to take each
top-level element in the returned JSON object and add it to an
array. Each item is created as a new bookModel object before it is
returned from the .map() method.

 ■ return new bookModel(item); In the end, you have an array
that contains a collection of models. You’ll find out more about the
Model object when Listing 5-5 is discussed a bit later.

 ■ self.Books(mappedBooks); This final line sets the value
of the predefined observableArray self.Books to contain the
collection of Model objects. You will see how this object is used
when you bind the ViewModel to the View layer.

The Model represents one instance of your data. It’s easiest to think of
this as a single record in your database, or a single row of a table. In Listing
5-5 you can see that each field in your Model is assigned to a Knockout
observable variable. This lets you take advantage of the two-way binding
that Knockout.js is known for. Two-way binding means that when the value
of an observable or observableArray is changed, either programmatically or
from end-user data entry, the Knockout libraries automatically update all of
the elements that are bound to it. You do not have to worry about setting up
listeners for every variable that is used in your View layer. (This will become
clearer when you get to the discussion of the View layer a little later in the
chapter.) In the last line of the Model, you will notice that you not only assign
each field from the data set, but you can also define your own variables that
will be used in your View layer. In the example application, the book cover
photos are provided already and are named after the ISBN code for each
book. In Listing 5-5, you can see that the variable this.coverImage is
being assigned to the value of bookData.isbn so that it can be used later
to load that specific image in the HTML code.

05-ch05.indd 95 2/6/14 2:18 PM

 96 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch05

Listing 5-5 Example Model

function bookModel(bookData) {
 this.description = ko.observable(bookData.description);
 this.isbn = ko.observable(bookData.isbn);
 this.publishedDate = ko.observable(formatDate(bookData.
publishedDate));
 this.publisher = ko.observable(bookData.publisher);
 this.title = ko.observable(bookData.title);
 this.coverImage = ko.observable(bookData.isbn);
}

Now that you have your Model and ViewModel created, there is one last
piece to the puzzle. Listing 5-6 shows the HTML code for the View layer. This
is included in the main.html file of your project.

Listing 5-6 View Example

<article id="bookInfo">
 <div class="item active" data-bind="foreach: Books ">
 <div id="bookCoverPhoto" class="bookCoverPhoto col-md-3" data-
bind="click: getBookDetails">

 <img alt="book cover photo" data-bind="attr: {src:
'img/'+coverImage()+'.jpg'}" />
 <div class="caption" data-bind="text: title"
style="margin-left: 10px;"></div>
 <div id="isbnValue" class="hidden" data-bind="text:
isbn"></div>

 </div>
 </div>
</article>

Let’s break down this code example:

 ■ <article id="bookInfo"> This element represents a simple
semantic element that helps define the structure of the larger page.
However, the id attribute is important because it is what will be used
by the Knockout.js applyBindings() method to bind this section
of the HTML View to the ViewModel that you created previously.

 ■ <div class="item active" data-bind="foreach:
Books "> This line is the beginning of the list of books that will

05-ch05.indd 96 2/6/14 2:18 PM

 Chapter 5: HTML5, JavaScript, and CSS 97

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch05

be rendered. This <div> will contain the layout and styling for one
Model. If this were a table, this would be the layout and styling
for one row of data. The key attribute is data-bind. This uses the
Knockout foreach: binding to render everything contained inside
this <div> for each item that is in the object “Books.” Recall from
the discussion about Listing 5-4 that you set the value of Books to the
array of Models returned from the REST call.

 ■ <div id="bookCoverPhoto" class="bookCoverPhoto
col-md-3" data-bind="click: getBookDetails"> This
<div> is the container for the book cover image and its caption. It
has a Knockout click: binding bound to it so that you can drill
down in your page to get more details about this specific book. You
will see more about getting and displaying the book details a little
later, as this details page will be used for the update and delete
actions of your CRUD application.

 ■ The next three lines set up the contents that will be displayed for
each book. The cover image, the caption, and the ISBN for each
book are bound to their own HTML elements. There are two items of
note in this code:

 ■ data-bind="attr: {src: 'img/'+coverImage()+'.
jpg'}" In this data-bind attribute, the Knockout observable
coverImage is being called as a method instead of just
referencing the variable as you have seen done in all of the
previous bindings so far. You do this when you want to get the
actual value of the variable and not a reference to the function
that Knockout uses for the two-way binding. This breaks the two-
way binding for this reference, but in some cases, that is fine.
In this case, you are just using the variable to dynamically get
the name of the coverImage file. You do not plan on changing
this name in other parts of your code, so you don’t need to have
it set up as a two-way binding. You will see a better example of
why you would do this later in the chapter, when you get to the
Update section of the code.

 ■ class="hidden" data-bind="text: isbn"> In this
code line, the value is being bound to the ISBN value for this
particular book. You don’t actually need to use this value as

05-ch05.indd 97 2/6/14 2:18 PM

 98 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch05

part of the current View, but you do need this value when you
get the details for this book. By setting the CSS style class to
"hidden", the actual <div> is not rendered, but the ISBN value
will be available as part of the data that Knockout passes to the
function as part of the click: binding.

The final result of putting all of the code from Listing 5-3 through Listing 5-6
together will look like Figure 5-1 when you run it in a browser.

Create, Using the POST Request (C of CRUD)
Now that you know how to do the most common task, reading data, with a
REST service, you will learn how to add a new record to your data service.

For this example, you will be adding a new book to the database. You will
use the same REST API that you used for reading the list of books, /books;
however, the request type that you use will be a POST request instead of the
GET request that you used previously. Listing 5-7 shows the code for making
this POST request.

Listing 5-7 Example of AJAX POST Call

$.ajax({
 url: serviceRootURL + "/books",
 type: 'POST',
 data: JSON.stringify(json),
 dataType: 'json',
 contentType: 'application/json',

FIGURE 5-1. List of all books

05-ch05.indd 98 2/6/14 2:18 PM

 Chapter 5: HTML5, JavaScript, and CSS 99

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch05

 success: function(response, status, xhr) {
 booksVM.Books.push(new bookModel(json));
 $('#addBookDialog').modal('hide');
 },
 error: function(xhr, status, errorThrown){
 alert('Error adding new Book: '+status+": "+errorThrown)
 }
});

Let’s walk through the code:

 ■ $.ajax({, This is the jQuery method for implementing an
asynchronous HTTP request (AJAX).

 ■ url: serviceRootURL + "/books", This line sets the URL
that you will make the REST call to.

 ■ type: 'POST', This line sets the request type to POST. This tells
the REST service that you want to add this new data to the database.

 ■ data: JSON.stringify(json), The data that you will pass
into the request is going to come from a form, which you’ll learn
how to create in a little while. Since the REST service is expecting
to receive data as a JSON object, you will use the utility method
.stringify()provided by the JSON object to convert the
JavaScript object into a valid JSON object.

 ■ dataType: 'json', This is the type of data that you are
expecting back from the server in response to this request.

 ■ contentType: 'application/json', This tells the server
what type of data you are sending to it in this request.

 ■ success: This is the callback function that is used if the request is
successful.

 ■ error: This the callback function that is used if the request fails.

TIP
To test your error callback function, try sending
a request with the same value for a field that is
required to be unique. In the case of the sample
application, try adding two books with the
same ISBN.

05-ch05.indd 99 2/6/14 2:18 PM

 100 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch05

The HTML code shown in Listing 5-8 includes a Knockout click:
binding that displays the dialog in which to enter the information about the
new book that you want to add to the database.

Listing 5-8 click: Binding to Show New Book Dialog

<div id="featuredBooks" class="featured">
 Featured Books

+
</div>

This code is straightforward. The Knockout click: binding is calling a
function called showAddDialog. This function is using the modal dialog
functionality provided by the Twitter Bootstrap framework (with which you
initially created the project) to display a modal dialog. This dialog contains
the form that gathers the details for new books being added to the database.
Listing 5-9 shows the HTML for the dialog. The one line of code that displays
the modal dialog is

$('#addBookDialog').modal('show');

Listing 5-9 New Book Modal Dialog with Form

<div id="addBookDialog" class="modal fade" tabindex="-1"
role="dialog" aria-labelledby="addBookLabel" aria-hidden="true">
<div class="modal-dialog">
 <div class="modal-content">
 <div class="modal-header">
 <button type="button" class="close" data-dismiss="modal"
aria-hidden="true"></button>
 <h3 id="addBookLabel">New Book</h3>
 </div>
 <form class="form-horizontal" data-bind="submit: addBook">
 <div class="modal-body" style="padding: 20px;">
 <fieldset>
 <div class="form-group">
 <label class="control-label col-md-3"
for="bookTitle">Title</label>
 <div class="col-md-9">
 <input id="bookTitle" type="text"
class="form-control"/>
 </div>
 </div>

05-ch05.indd 100 2/6/14 2:18 PM

 Chapter 5: HTML5, JavaScript, and CSS 101

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch05

 <div class="form-group">
 <label class="control-label col-md-3"
for="selectAuthor">Author</label>
 <div class="col-md-9">
 <select id="selectAuthor" class="form-
control">
 <option value="1">John Pollock</option>
 <option value="2">Ken Bluttman</option>
 <option value="3">Wendy Willard</option>
 <option value="4">Danny Corward</option>
 </select>
 </div>
 </div>
 <div class="form-group">
 <label class="control-label col-md-3"
for="bookISBN">ISBN</label>
 <div class="col-md-9">
 <input id="bookISBN" type="text" class="form-
control"/>
 </div>
 </div>
 <div class="form-group">
 <label class="control-label col-md-3"
for="bookPublisher">Publisher</label>
 <div class="col-md-9">
 <input id="bookPublisher" type="text"
class="form-control"/>
 </div>
 </div>
 <div class="form-group">
 <label class="control-label col-md-3" for="bookPu
blishedDate">Published</label>
 <div class="col-md-9">
 <input id="bookPublishedDate" type="text"
class="form-control" placeholder="mm-dd-yyyy" />
 </div>
 </div>
 <div class="form-group">
 <label class="control-label col-md-3"
for="bookCover">Cover Image</label>
 <div class="col-md-9">
 <input id="bookCover" type="file"
class="form-control" disabled="disabled" />
 </div>
 </div>
 <div class="form-group">
 <label class="control-label col-md-3"
for="bookDescrip">Description</label>

05-ch05.indd 101 2/6/14 2:18 PM

 102 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch05

 <div class="col-md-9">
 <textarea id="bookDescrip" class="form-
control" rows="3"></textarea>
 </div>
 </div>
 </fieldset>
 </div>
 <div class="modal-footer">
 <button class="btn btn-primary" type="submit">Save</
button>
 <button class="btn" data-dismiss="modal" aria-
hidden="true">Close</button>
 </div>
 </form>
 </div>
</div>
</div>

This is a really large piece of code, but almost all of it is just HTML layout
and styling. Let’s discuss the lines that provide the functionality:

 ■ <form class="form-horizontal" data-bind="submit:
addBook"> This is the Knockout submit: binding that tells
Knockout to pass all of the form elements to the addBook function
when a submit is performed.

 ■ <button class="btn btn-primary" type="submit">Save<
/button> By setting the type attribute of this button to
"submit", it will fire the submit event when it’s clicked, causing the
initial submit: binding to be invoked.

When the form is submitted, it will call back to the addBook function that
contains the REST call that you reviewed previously. The only thing not shown
in the previous example is how the data was formatted into the JSON object that
was passed as part of the request. Listing 5-10 shows you how the JSON data is
created using the form elements passed in by the Knockout submit: binding.

Listing 5-10 Example Parsing Form Data to JSON Object

function addBook(data) {
 var json = {
title: data.elements[1].value,
isbn: data.elements[3].value,

05-ch05.indd 102 2/6/14 2:18 PM

 Chapter 5: HTML5, JavaScript, and CSS 103

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch05

publisher: data.elements[4].value,
publishedDate: new Date(data.elements[5].value),
description: data.elements[7].value
};

...
}

The data passed into the addBook() function contains an array of the
HTML elements, and you will assign the value, from those elements that you
need, to the fields that are expected by the REST service. In this case, the
array includes the five fields shown in Listing 5-10. When you are sending
data to the REST service, you have to know in which format each field is
expecting its value to be sent. For example, when the publishedDate field
is being set, the REST service expects a Date to be sent for this field, so you
will need to transform the data from the form into the appropriate format.

Data validation can be done in two ways at this point. You can use built-in
validation functionality from the client-side frameworks, such as Twitter
Bootstrap, to make sure that the data entered into the form is in the proper
formats before the submit event is fired, and/or you can perform validation on
the data as you are assigning it to the JSON object. The sample application
provided doesn’t perform any client-side validation. It does, however, provide
a hint on the Published Date form field to help the end user know which
format is expected for this field:

<input id="bookPublishedDate" type="text" class="form-control"
placeholder="mm-dd-yyyy" />

Knowing which specific HTML element contains the data that you want
to assign to a specific field in your JSON object may be tricky if you have also
included elements in your form that you don’t want to use. NetBeans IDE
provides a JavaScript debugger that is very useful for determining what is what
in the data object returned to the function. Figure 5-2 shows an example of
how the debugger can be used to determine which elements you need to use
to achieve the code shown in Listing 5-10. Clicking in the left-hand gutter of
your JavaScript file will place a breakpoint on that line, as shown for line 141 in
Figure 5-2. When the form is submitted in the browser, the IDE will stop at this
line. You can hover over the data variable to see the value of it in the tooltip.
Expanding it will show each of the elements in the data object and their values.
Of course, you can also see this debugger information in the Variables window
at the bottom of the IDE if you don’t want to use the tooltip approach.

05-ch05.indd 103 2/6/14 2:18 PM

 104 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch05

Now that you have submitted the request to add the book to the REST
service, you want to finish any changes to the View layer that may be affected
by the result of the POST request. Taking another look at Listing 5-7, you will
see the two callback functions for success and error. If there is an error, you
should do something to inform the end user that the request didn’t work. In
this example, an alert is called with the error status and any text that the REST
service returned as a result of the error:

error: function(xhr, status, errorThrown) {
 alert('Error adding new Book: ' + status + ": " + errorThrown);
}

In the case where the request is successful, you will want to add the
same JSON data that you sent to the server to the existing Knockout
observableArray that your View is bound to. In Listing 5-7, the line of
code booksVM.Books.push(new bookModel(json)); creates

FIGURE 5-2. NetBeans JavaScript debugger example

05-ch05.indd 104 2/6/14 2:18 PM

 Chapter 5: HTML5, JavaScript, and CSS 105

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch05

a new Model object out of the JSON data and then pushes it into the
observableArray booksVM.Books(). Because Books is a Knockout
observableArray, just adding the new Model object will cause an event
to be fired, and the HTML that is bound to the foreach: binding will
automatically update itself.

Update, Using the PUT Request (U of CRUD)
The process for updating a record is about the same as the process for
creating a new entry, as covered in the previous section. First you will want
to see the details for the book that you are going to edit. Listing 5-11 shows
how the HTML is coded to list all of the books in your service.

Listing 5-11 Example of Knockout foreach: Binding

<div class="item active" data-bind="foreach: Books ">
 <div id="bookCoverPhoto" class="bookCoverPhoto col-md-3" data-
bind="click: getBookDetails">

 <img alt="book cover photo" data-bind="attr: {src:
'img/'+coverImage()+'.jpg'}" />
 <div class="caption" data-bind="text: title"
style="margin-left: 10px;"></div>
 <div id="isbnValue" class="hidden" data-bind="text:
isbn"></div>

 </div>
</div>

The Knockout binding of foreach: is used to display each item in
Books with the same look and feel. Books is the Knockout observableArray
from your ViewModel. The most important element in the HTML code is
actually a hidden <div> that contains the ISBN for each book. The ISBN is a
unique ID for each book, which will allow you to make another REST call to
get the information about one specific book. Notice that each of the <div
id="bookCoverPhoto"> elements for the book’s cover image, title, and
ISBN has a click: binding to the function getBookDetails(). This
function will load the page that shows all the details about a specific book.
Listing 5-12 shows this function.

05-ch05.indd 105 2/6/14 2:18 PM

 106 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch05

Listing 5-12 getBookDetails Function

function getBookDetails(data) {
 var bookData = data;
 ko.cleanNode($('#mainPage'));
 $('#mainPage').load('bookDetails.html', function() {
 var vm = new bookDetailsViewModel(bookData);
 ko.applyBindings(vm, document.getElementById('bookInfo'));
 ko.applyBindings(vm, document.getElementById('bookDialogCon
tainer'));
 });
}

Let’s take a look at this code:

 ■ The first line simply sets a local variable, bookData, to contain the
data from the page that you just left.

 ■ The entire sample application that you have been working with
so far is designed as a single-page application. This means that
the application doesn’t change URLs and load a new page when
a request is made, but rather loads a new page fragment, or
template, into a specific section of the larger page. In the case of
this application, the index.html page has been designed to have
the header and footer code and a single <div> in the body of the
page to contain all the other page templates. This <div> has an
ID of mainpage. Because Knockout allows you to have only one
binding to a DOM element at one time, you need to clear out the
existing binding and add the new bindings as you load the new page
template.

 ■ After ko.cleanNode($('#mainPage')); clears out
the mainpage DOM element, $('#mainPage').load
('bookDetails.html', function() { loads the new page
template into that same DOM element.

 ■ In the callback function for the .load method, you will set the
new ViewModel and bind that ViewModel to two separate DOM
elements. The first is the container for all of the individual book
details, and the second is the container for the modal dialogs. The
dialogs will be used for updating the details for this book and as a
confirmation of whether to delete the book or not.

05-ch05.indd 106 2/6/14 2:18 PM

 Chapter 5: HTML5, JavaScript, and CSS 107

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch05

Once you call the Knockout applyBindings() call, the
bookDetailsViewModel() ViewModel will be processed. Listing 5-13
shows this ViewModel code.

Listing 5-13 Example of bookDetailsViewModel Function

function bookDetailsViewModel(data) {
 var self = this;
 self.bookAuthor = ko.observable('');
 self.serviceURL = serviceRootURL + "/books/" + data.isbn() + "/
authors";
 self.isbn = ko.observable(data.isbn());
 self.publisher = ko.observable(data.publisher());
 self.publishedDate = ko.observable(data.publishedDate());
 self.title = ko.observable(data.title());
 self.description = ko.observable(data.description());
 $.getJSON(self.serviceURL, function(result) {
 if (result.length > 0) {
 self.bookAuthor(result[0].firstName + " " + result[0].
lastName);
 } else {
 self.bookAuthor("Unknown");
 }
 }, this);
}

When you created the new instance of the bookDetailsViewModel()
in the getBookDetails() function, you passed in the bookData variable.
This means that you have all of the information that you need for that specific
book and can assign those values to Knockout observables for use in your
View. However, the Author information is not included in that book data. The
Author details are kept in a separate table of your database. There is a REST
API for getting the Author details for a specific book, though. In the fourth
line of code in Listing 5-13, you can see that you are setting a variable called
self.serviceURL to point to that REST API.

Further down in Listing 5-13 you make a getJSON() call to get the
Author details:

$.getJSON(self.serviceURL, function(result)

In your database, Author is not a required field, so this API could return
successfully and still not contain specific information. Because of this, the

05-ch05.indd 107 2/6/14 2:18 PM

 108 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch05

code is testing to see if the length of the returned data is larger than zero;
if it is, the code sets the Knockout observable for the author’s name to be a
concatenation of the first and last name returned. If the returned data doesn’t
contain any information, the code sets the author to Unknown.

Now that you have loaded the new page template for book details and
have pulled in the appropriate data to populate the page, you can take a look
at how to allow your end user to edit the book data.

Listing 5-14 shows that at the top of the book details template HTML code
there is a knockout click: binding added to an icon for Edit and another
icon for Delete. Both of these functions do nothing more than load and
display the dialogs for their specific purposes.

Listing 5-14 Example of Icons for Edit and Delete

<div id="bookTitle" class="bookTitle col-md-5" data-bind="text:
title">See Me Run</div>
<div class="bookTitle col-md-4">
 <img class="bookTitleAction" src="css/img/pencil-16x16.png" data-
bind="click: showUpdateDialog"/>
 <img class="bookTitleAction" src="css/img/delete-16x16.png" data-
bind="click: showDeleteDialog" />
</div>

Let’s look at Listing 5-15 to see how the updateBookDialog dialog is
handled first.

Listing 5-15 Partial Edit Dialog

<div id="updateBookDialog" class="modal fade" tabindex="-1"
role="dialog" aria-labelledby="updateBookLabel" aria-hidden="true">
<div class="modal-dialog">
 <div class="modal-content">
 <div class="modal-header">
 <button type="button" class="close" data-dismiss="modal"
aria-hidden="true">

 </button>
 <h3 id="addBookLabel">Edit Book</h3>
 </div>
 <form id="updateForm" class="form-horizontal" data-
bind="submit: updateBook">
 <div class="modal-body">
 <fieldset>

05-ch05.indd 108 2/6/14 2:18 PM

 Chapter 5: HTML5, JavaScript, and CSS 109

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch05

 <div class="form-group">
 <label class="control-label col-md-3"
for="bookTitle">Title</label>
 <div class="col-md-9">
 <input id="bookTitle" type="text"
class="form-control" data-bind="value: title()"/>
 </div>
 </div>
 <div class="form-group">
 <label class="control-label col-md-3"
for="bookISBN">ISBN</label>
 <div class="col-md-9">
 <input id="bookISBN" type="text" class="form-
control" data-bind="value: isbn()"/>
 </div>
 </div>

Like the addBookDialog dialog created in Listing 5-9, this is a Twitter
Bootstrap modal dialog. There are two important things to note in Listing 5-15.
First, you don’t need to pass in any information to this dialog directly. Each
field is bound to the existing Knockout observable that was also used to display
the book details in the main page.

NOTE
Notice that all <input> elements use a value:
binding while other DOM elements use a text:
binding to get their content. When working with
Knockout bindings, it’s important to bind the
proper content attribute for each type of DOM
element. For example, if you set the content of a
DOM element by using the value attribute, then
you would use the value Knockout binding.

Second, notice that the Knockout observables are being called as a function
in all of the form element bindings: data-bind="value: isbn()". This
is very important. Because of Knockout’s two-way binding, if you were to
attempt a binding to the observable directly, as soon as you changed it in the
form field, it would update in the book details page. You don’t want this to
happen immediately, just in case the end user clicks the Cancel button instead
of submitting the changes. By calling the observable as a function, you get the
actual value of the variable instead of the observable object.

05-ch05.indd 109 2/6/14 2:18 PM

 110 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch05

Listing 5-16 shows how the form is processed and the actual update is
performed in the REST API.

Listing 5-16 Submitting Update

function updateBook(data) {
 var json = {
 title: data.elements[1].value,
 isbn: data.elements[2].value,
 publisher: data.elements[3].value,
 publishedDate: new Date(data.elements[4].value),
 description: data.elements[5].value
 };
 $.ajax({
 url: serviceRootURL + "/books",
 type: 'PUT',
 data: JSON.stringify(json),
 dataType: 'json',
 contentType: 'application/json',
 success: function(data, status, xhr) {
 $('#updateBookDialog').modal('hide');
 $('#updateBookDialog').on('hidden.bs.modal', function()
{
 loadDefaults();
 });
 },
 error: function(xhr, status, errorThrown) {
 alert('Error updating the Book: ' + status + ": " +
errorThrown);
 }
 });
}

Let’s walk through this code to examine what is going on:

 ■ The JSON object that will be passed into the REST API call is being
created using the form data passed when the Knockout submit:
binding is triggered.

 ■ The same AJAX call that you used to add a new book is used again
to update a book. However, the type attribute used is now PUT
instead of POST as was used for the add method.

 ■ You have the same success: and error: callback functions as
well. The error: function is exactly the same as before.

05-ch05.indd 110 2/6/14 2:18 PM

 Chapter 5: HTML5, JavaScript, and CSS 111

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch05

 ■ After the update has been completed, the application
returns to the main page. The success: function closes the
updateBookDialog dialog and then waits for that close to be
completed. It then calls the loadDefaults() function, which
resets the ViewModel and correct bindings back to the main page.

Delete, Using the DELETE Request (D of CRUD)
The setup for the update process was a little long, but that setup also enabled
the delete functionality. The confirmDeleteDialog dialog is displayed
in the same way that the updateBookDialog dialog was, with a call to a
showDeleteDialog() function. Listing 5-17 shows the REST API call that
is needed to perform a delete.

Listing 5-17 Example of DELETE REST API Call

function deleteBook(data) {
 var currentISBN = data.isbn();
 var books = booksVM.Books();

 $.ajax({
 url: serviceRootURL + "/books/" + data.isbn(),
 type: 'DELETE',
 dataType: 'json',
 contentType: 'application/json',
 success: function(data, status, xhr) {
 var match = ko.utils.arrayFirst(books, function(item) {
 return item.isbn() === currentISBN;
 });
 ko.utils.arrayRemoveItem(books, match);
 $('#confirmDeleteDialog').modal('hide');
 $('#confirmDeleteDialog').on('hidden.bs.modal',
function(){
 loadDefaults();
 });
 },
 error: function(xhr, status, errorThrown) {
 alert('Error deleting the Book: '+status+":
"+errorThrown);
 }
 })
}

05-ch05.indd 111 2/6/14 2:18 PM

 112 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch05

After the user clicks the Yes button in the confirmDeleteDialog
confirmation dialog, the deleteBook(data) function is called and the
current Books details are passed to the function. To delete a record using a
REST API, you need to have a unique ID for the record you want to delete. In
the example application’s case, this is the ISBN value.

Let’s take a look at the code in Listing 5-17:

 ■ The JSON object that will be passed to the AJAX call needs to
contain only the unique ID for the record you want to delete. Notice
that, once again, you are setting the actual value of the observable,
and not a reference to the observable object.

 ■ A local variable is set to the current ISBN value so that the ISBN
value can be used in a comparison function later.

 ■ A local variable is set to the Books observableArray so that you can
remove the Model entry if the REST API call is successful.

 ■ The URL is set in the AJAX call to use the REST API that will get the
exact book that you want to delete.

 ■ The type attribute is set to DELETE.

 ■ The dataType and contentType are both set to JSON so that the
service knows that is what you are sending and expecting back.

 ■ As with all the other calls, there are success: and error:
callback functions. The error: function is exactly the same as
before.

 ■ The success: function uses the Knockout utility function of
arrayFirst() to find the first match in the observableArray.
Once that is found, it returns a reference to that Model so that it
can be removed using another Knockout utility function called
arrayRemoveItem().

 ■ Just as you did with the updateBookDialog dialog, the
confirmDeleteDialog dialog is closed, and then once the close
is completed, the loadDefaults() function is called to reset the
ViewModel and load the main page.

05-ch05.indd 112 2/6/14 2:18 PM

 Chapter 5: HTML5, JavaScript, and CSS 113

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch05

Server-Sent Events (SSE)
Server-Sent Events is sometimes referred to as push technology because the data
flow is in one direction only. Everything comes from the server. The browser
chooses to attach to the SSE stream to have information sent to it whenever
new information becomes available. The example application has an Events
section set up that will display data coming from an SSE stream. Knockout
two-way binding is really helpful with the displaying of the data since you
can set up the binding between the incoming data and a specific DOM
element and just let Knockout update whenever the observable is changed
by the new data coming in. Listing 5-18 shows how you connect to the SSE
stream and which functions are used to work with the stream and its data.

Listing 5-18 Example of Server-Sent Events

function sseViewModel() {
 var self = this;
 self.sseData = ko.observable('test message');
 self.displayError = ko.observable(false);
 self.displayMessage = ko.observable(false);

 if (typeof (EventSource) !== "undefined") {
 self.source = new EventSource(serviceRootURL + "/books/
events");
 self.source.onopen = function(event) {
 var message = "SSE Connection Opened<hr>";
 self.sseData(message);
 };
 self.source.onmessage = function(event) {
 var message = self.sseData() + event.data +"<hr>";
 self.sseData(message);
 };
 self.source.onerror = function(event) {
 self.displayMessage(false);
 self.displayError(true);
 self.sseData(event.data);
 };
 self.displayMessage(true);
 } else {
 self.sseData("Sorry, your browser does not support server-
sent events...");
 self.displayError(true);
 }

 self.closeSSE = function() {
 self.source.close();

05-ch05.indd 113 2/6/14 2:18 PM

 114 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch05

 self.sseData("SSE Connection Closed<hr>");
 };
}

Server-Sent Events is a new feature introduced in HTML5. Some browsers
do not support this feature at the time of writing.

TIP
Currently, no versions of Microsoft Internet
Explorer support Server-Sent Events.

Before continuing with the initialization code, it’s a good idea to perform
the following check to make sure the browser provides SSE support:

if (typeof (EventSource) !== "undefined") {

If the browser doesn’t understand the type of EventSource, then it doesn’t
support SSE, in which case you can display an error message.

Let’s walk through the code in Listing 5-18 to see what each section does:

 ■ The first few lines set the defaults for your Knockout observables.
These observables are bound to the SSE section of the HTML code.

 ■ Inside the if statement that is checking to make sure the browser
supports Server-Sent Events, you create a new EventSource object
and assign it to the self.source variable. The URL that is used to
make the connection is for the SSE stream that you wrote in Chapter 3
of the book:

new EventSource(serviceRootURL + "/books/events");

 ■ Once you have the EventSource object, there are three events you
can listen for and then perform the appropriate actions:

 ■ onopen: This event is triggered on the initial opening of the
connection.

 ■ onmessage: This is triggered each time the server sends a
message to the browser. This is the main event that you will want
to work with.

 ■ onclose: This is triggered when the connection is closed for
any reason.

05-ch05.indd 114 2/6/14 2:18 PM

 Chapter 5: HTML5, JavaScript, and CSS 115

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch05

 ■ In Listing 5-18, you are setting the local variable message to a string
stating that the connection was opened. You are then assigning that
value to the Knockout observable sseData, which will be displayed
inside the SSE HTML section that is bound to the same observable.
Because you are including HTML markup in the message, the
Knockout binding on the HTML page is actually the html: binding
instead of the plain text: binding:

<div id="sseMessage" data-bind="html: sseData, …</div>

 ■ In the onmessage function, you want to lay out the message that
goes into this area by appending the most recent message from the
server onto the end of the existing messages. You do this by setting
the local variable message to the actual value of the observable and
then appending the incoming event.data. After generating the
new appended message, you set the self.sseData observable to
the new value.

 ■ If the connection is closed for whatever reason, you set a message
stating that the connection is closed and set the same self.sseData
observable to show that message.

 ■ When the original observables for self.displayMessage and
self.displayError were initialized, they were set to false so
they would not show these areas while the page is loading. Now that
the connection has been established and a message has been set,
you can set the observable to true, which will display the Message
area while still leaving the Error section hidden.

 ■ Finally, there is a small X icon in the View layer of the Event section
that has been bound to the closeSSE() function. When the icon is
clicked, the current SSE stream closes and an appropriate message
is displayed.

WebSocket
Using the WebSocket API in JavaScript and connecting the resulting data to
an HTML view layer was covered in Chapter 4. If you haven’t read Chapter 4
yet, the basic approach to setting up the connection to the service is the
same as what you just learned with Server-Sent Events. However, with
the WebSocket API, you can also send data back to the server. One of the
biggest advantages of using a WebSocket connection instead of REST or

05-ch05.indd 115 2/6/14 2:18 PM

 116 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch05

some other type of protocol is the significant reduction in the amount of
traffic that you send over the wire when you use the WebSocket protocol.
The connection between the client and server is set up once and then
maintained until the connection is closed either via the API or via the client
closing. With other protocols, you are required to go through the connection
setup each time you want to send or receive data from the server.

To get a full description of the new WebSocket protocol, please read
Chapter 4.

Responsive Design
The concept of responsive design addresses the need to design your web
application such that it renders its layout appropriately in response to the
screen size of the device on which it is being displayed. The application
View layer needs to respond to this change in view size by changing the
layout, or amount, of the content that is rendered.

The CSS2 specification provided the capability to use different CSS rules
dynamically based on the media type. The most common of these types
were (and continue to be in CSS3) screen and print. The CSS3 specification
expands this capability with the introduction of media queries. A media query
is made up of a media type and zero or more expressions. These expressions
check for specific conditions of media features. A good example of this is an
expression that checks for the current size of the display screen:

@media only screen and (min-width: 450px) and (max-width: 1024px){}

Through the use of media queries and a pattern of CSS classes defined
as a grid layout, you can make your application respond to changes in the
display screen.

The grid layout pattern is something that you can design yourself, but it’s
much easier to use an existing grid framework. Thus far, you have been using
the Twitter Bootstrap framework to show modal dialogs and to help with
the display of buttons and general form layout. Twitter Bootstrap also comes
with a grid layout as part of its CSS files. The most common grid style in use
is a 12-column grid. You can define different sections of your layout into any
number of columns that would add up to the largest width of 12. For example,
you could have three sections that were each set to be four columns wide. In
the sample application’s model dialog for adding a new book, for example,
the dialog uses a nine-column width for all of the form elements, while the

05-ch05.indd 116 2/6/14 2:18 PM

 Chapter 5: HTML5, JavaScript, and CSS 117

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch05

label elements use three columns. Listing 5-19 shows how this looks in part of
that dialog HTML code.

Listing 5-19 Sample Grid Layout HTML

 <div class="form-group">
 <label class="control-label col-md-3" for="bookISBN">ISBN</
label>
 <div class="col-md-9">
 <input id="bookISBN" type="text" class="form-control"/>
 </div>
 </div>
 <div class="form-group">
 <label class="control-label col-md-3"
for="bookPublisher">Publisher</label>
 <div class="col-md-9">
 <input id="bookPublisher" type="text" class="form-
control"/>
 </div>
 </div>

Notice the style class of class="col-md-9" in each of the input
<div> elements and the class="col-md-3" style class for the labels.
The combination of these style classes and media queries is what makes
responsive design possible.

Let’s take a look at the CSS code in Listing 5-20.

Listing 5-20 CSS Example for Grid Layout

.col-md-9,
{
 position: relative;
 min-height: 1px;
 padding-right: 10px;
 padding-left: 10px;
}

@media (min-width: 992px) {
 .col-md-9
 {
 float: left;
 }

 .col-md-9 {
 width: 75%;
 }
}

05-ch05.indd 117 2/6/14 2:18 PM

 118 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch05

The two sections of Listing 5-20 follow the style class for .col-md-9
through to different media queries. The first section covers the situation in
which the browser size doesn’t fall into any specific defined media query.
The second section introduces the media query for the situation in which the
browser size is set to min-width:992px. Any style rules that you place inside
a specific media query will override any previous values for the same rule while
the media query expression is true. If you don’t override a rule, the existing rule
will continue to be used. In the code shown, you are not overriding an existing
value, but rather setting new rules for width: and float:. Notice that the
width is being set to a percentage instead of a specific numeric value. This will
cause the nine-column grid to maintain its relative size as the browser is resized,
but it still remains within the range that this media query has defined.

Figure 5-3 shows the CSS Styles property window in NetBeans IDE.
Selecting an element in the DOM navigator will show that element’s current
CSS styles and rules, including whether the browser is currently resized to fit
within a specific media query.

FIGURE 5-3. NetBeans CSS Styles window

05-ch05.indd 118 2/6/14 2:18 PM

 Chapter 5: HTML5, JavaScript, and CSS 119

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch05

Syntactically Awesome
Stylesheets (SASS)
For most HTML5 applications, you may be able to get away with using a
single CSS file that is reasonably constructed and easy to maintain. However,
as the applications grow and become more complex, the CSS becomes just
as complex. Historically, maintaining very large CSS files has been extremely
difficult. Even if you broke the files down into smaller files and referenced
each file in your HTML, you had to remember to place the files in the
proper order because CSS files are loaded by the browser with the order
they are listed, but each file will overwrite any previously set style classes.
A concept of last in wins. If you happened to have the same rule defined in
multiple files, the file in which the rule would take effect depended on the
order in which the files were listed in your HTML code. In 2007, SASS was
introduced by a developer named Hampton Catlin. The development of
SASS is continued today by Nathan Weizenbaum and Chris Eppstein.

The original dynamic stylesheet language was designed to be similar to the
Haml (HTML abstraction markup language) programming language in its use
of an indentation syntax style. Referred to as indented syntax, this style really
doesn’t look or feel like CSS at all. This syntax is most often referenced with
a file extension of .sass. A newer syntax has been created called Sassy CSS,
or SCSS, which is designed to look and feel exactly like CSS itself—so much
so that any valid CSS code is also a valid subset of SCSS. This syntax is most
often referenced by a file extension of .scss.

SASS works as a preprocessor of the SASS or SCSS files and compiles
these separate files into one or more CSS files that you can reference in your
HTML code.

Listing 5-21 includes two link references to stylesheets. The first is for the
Bootstrap framework that you used as the basis of the My Book Club sample
application, and the second is the reference to the application’s specific styles.
The latter file, named responsive.css, is a CSS file that was generated as
a result of the SASS preprocessing of four separate SCSS files. These files are
shown in Figure 5-4.

Listing 5-21 Referencing the CSS File

 <head>
 <title>My Book Club</title>
 <meta charset="UTF-8">

05-ch05.indd 119 2/6/14 2:18 PM

 120 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch05

 <meta name="viewport" content="width=device-width">
 <link rel="stylesheet" href="css/bootstrap3/bootstrap.
css"/>
 <link rel="stylesheet" href="css/responsive.css"/>
 ...

As you can see in Figure 5-4, the responsive.scss file contains only
three lines of real code. It imports the other three SCSS files in the order in
which you want them to be assembled. The other three files are broken out
to contain the classes and rules specific to a certain media query type: in this
case, Desktop, Tablet, and Handheld. This separation is just one example.
Your individual projects will dictate how you determine what is the best way
to break up your CSS into more manageable sections.

NetBeans IDE makes it very easy to work with SASS in your projects.
Right-click your project name in the Navigator and select the Properties menu
option. In the Project Properties dialog, select the CSS Preprocessors option,
as shown in Figure 5-5. For this project, the IDE is being instructed to look for
the SCSS files in a directory named /scss and to output the compiled files
into the /css directory.

FIGURE 5-4. Listing of SCSS and generated CSS files

05-ch05.indd 120 2/6/14 2:18 PM

 Chapter 5: HTML5, JavaScript, and CSS 121

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch05

TIP
When working with SASS, if you start the name of
an SCSS file with an underscore, that will instruct
the compiler to not compile that specific file into
its own CSS file. This is useful when you have
multiple smaller files that are being imported into
one larger file and you only want the larger file
compiled to a final CSS file.

If you have not already done so, you can install and manage the executable
for SASS by clicking the Configure Executables button at the top right of this
dialog. The Global IDE options dialog for working with CSS preprocessor
executables is shown in Figure 5-6. You’ll notice that if you don’t know where

FIGURE 5-5. CSS preprocessor settings

05-ch05.indd 121 2/6/14 2:18 PM

 122 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch05

to download the executable from, there is a link provided that will take you to
the proper location.

You will also notice that NetBeans IDE supports another type of CSS
preprocessing called LESS. This is a similar approach to SASS and was
designed by Alexis Sellier in 2009. As with many open source projects, one
project may influence another and vice versa. In this case, SASS was designed
in 2007, which influenced the development of LESS in 2009. The introduction
of LESS then influenced the new SCSS syntax used in SASS. Both stylesheet
languages have their advantages and disadvantages. As far as NetBeans IDE is
concerned, the setup and functionality are the same for either one.

Now that you have seen how you can work with SCSS files using NetBeans
IDE, you are ready to take a look at the code. Listing 5-22 presents a very
simple example of nesting, and then displays the resulting CSS in the generated
file. All of the related rules for the #footerContent class are nested inside
the root style in the SCSS file. After the CSS is compiled, the generated CSS
contains separated rules.

FIGURE 5-6. Global IDE properties for CSS preprocessors

05-ch05.indd 122 2/6/14 2:18 PM

 Chapter 5: HTML5, JavaScript, and CSS 123

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch05

Listing 5-22 SCSS Nesting and the Resulting CSS Code

#footerContent {
 float: left;
 ul {
 padding-left : 20px;
 }
 li {
 list-style: none;
 float : left;
 display : inline-block;
 margin-right: 5px;
 margin-left : 0px;
 padding-right : 5px;
 border-right : 1px solid #d9dfe3;
 }
 li:last-child {
 border-right : none;
 }
}

#footerContent {
 float: left;
}
#footerContent ul {
 padding-left: 20px;
}
#footerContent li {
 list-style: none;
 float: left;
 display: inline-block;
 margin-right: 5px;
 margin-left: 0px;
 padding-right: 5px;
 border-right: 1px solid #d9dfe3;
}
#footerContent li:last-child {
 border-right: none;
}

Summary
In this chapter you’ve learned how to work with an HTML5 project within
NetBeans IDE and how to consume and interact with a REST web service
to perform CRUD functions. You connected to a Server-Sent Events (SSE)

05-ch05.indd 123 2/6/14 2:18 PM

 124 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch05

stream using JavaScript, and then used the data from that stream to update
an events window in the BookClub application. You were introduced to
the Model-View-ViewModel (MVVM) architectural pattern through the
use of the Knockout.js JavaScript library. You’ve also learned the basics of
responsive design using a grid layout and media queries provided by the
Twitter Bootstrap framework. Finally, you briefly looked at how you can use
a CSS preprocessor to manage large and complex CSS implementations.

The BookClub application that was used throughout this chapter was
intentionally left unfinished in the area of the Author details. This is so that
you can use the tasks you learned while setting up the Book details to add the
same type of functionality to the Author section of the application.

05-ch05.indd 124 2/6/14 2:18 PM

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch06

CHAPTER
6

HTML5 and Java
Application Security

06-ch06.indd 125 2/6/14 2:18 PM

 126 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch06

As an application developer, you may get the sense that every time you
obtain a good understanding of the latest security issue, a new one
 crops up. Staying ahead of the security curve may seem practically

impossible, but there are basic development practices that you can follow
that will help you to at least keep up with the security curve. Application
security can take many forms. In the case of HTML5 and Java web
applications, the two major forms of security are client-side security and
server-side security. The top issues and common best practices that apply to
client-side security and server-side security differ, so this chapter discusses
each separately, starting with securing the client side.

Client-Side Security
When working with HTML5 applications, always keep in mind this
important fact: different HTTP traffic analyzers can read just about anything
that you send or receive.

TIP
You should treat all data entering and exiting your
HTML5 application as potentially malicious.

While almost all security measures need to be implemented on the server
side for HTML5 applications, there are still a few types of client-side attacks
that you need to be aware of, and properly code against, to avoid having
your application exploited by hackers. These attack types include cross-site
scripting, cross-site request forgery, and clickjacking. You will also want to
have a basic understanding of authentication and authorization practices for
your application and finally, some commonsense practices that should always
be used when doing client-side security coding.

Cross-Site Scripting
Cross-site scripting (XSS) is one of the most common security vulnerabilities
in web applications. There are actually three different kinds of XSS attacks:
reflected, stored, and DOM-based. Reflected and stored XSS attacks are
server-side attacks that must be handled at the application server or web
server, whereas DOM-based XSS attacks are client-side attacks that must be
addressed by client-side developers.

06-ch06.indd 126 2/6/14 2:18 PM

 Chapter 6: HTML5 and Java Application Security 127

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch06

XSS occurs when a web application incorporates user input into the output
that it generates without first properly validating or encoding the input. Data
coming from the end user (for example, form input) or from a data connection
(for example, a REST service) is considered untrusted data. You didn’t create
the data as part of your application, so you can’t verify that it came from a
trusted source. It’s this untrusted data that you have to guard against.

The best way to understand XSS is to look at some examples. Although
the focus of this section is client-side security, server-side XSS attacks are the
easiest to understand, so a couple of examples of server-side XSS attacks are
provided next, followed by a client-side example.

For the first example, assume that you’ve decided to create a custom error
page for a 404 (file not found) error. When someone types in a URL similar to

http://my.website.com/not-here

the error page returns a message stating that the file not-here could not
be found on the server. The XSS vulnerability occurs if the data displayed in
the error message is not escaped properly before it’s read by the browser, in
which case an attacker could do something like this:

http://my.website.com/<script>alert("TEST");</script>

The browser would execute the <script> when it parsed the data to display it
as part of the error message.

For the second example, assume that your web application has a search
box. When a user conducts a search, the results of the search are displayed
on a separate results page. The XSS vulnerability occurs if the results page
uses the very common pattern of displaying “x number of results found for:
<display what was searched for>” and does not perform proper encoding
of the search string. If a malicious user enters a search string similar to the
<script> block in the previous example, the JavaScript will be executed when
the search results page is loaded in the browser.

Both of the preceding examples would normally be managed on the server
side, because the error page and the search results page would normally be
generated on the server. As previously mentioned, the third kind of XSS attack
is purely client side and deals with how JavaScript handles the execution of
DOM elements.

To demonstrate how a DOM-based XSS attack works, we’ll use a similar
example to the previous search field example. Suppose your HTML5 web
application has a form that includes an input field requesting the user’s

06-ch06.indd 127 2/6/14 2:18 PM

 128 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch06

username. The form also includes a <div> element that will be updated to
show the content of whatever the user typed into the input field when the
user presses the enter key. Listing 6-1 shows the code for this example.

Listing 6-1 Form Example

<label id="nameLbl" for="userName">User name: </label>
<input id="userName" autocomplete="off"/>

<div id="user"></div>

You want to set the contents of this <div> element to the value of the
string entered into the userName input field. Doing this with plain JavaScript
may look something like Listing 6-2.

Listing 6-2 innerHTML Example

document.getElementById("user").innerHTML = document.
getElementById("userName").value;

The code shown in Listing 6-2 will work just fine. However, by using the
.innerHTML attribute of the <div> element, you have opened yourself up
to a DOM-based XSS attack. If a malicious user were to enter a string that
looked something like

<div onmouseover="javascript:alert('failed!')">XSS Test</div>

the HTML would be added to the DOM as written, and the next time
someone moves their mouse over the new <div> element, the JavaScript
would be executed.

There are certain DOM attributes and methods that you should avoid
when working with untrusted data. A partial list includes

 ■ element.innerHTML

 ■ document.write()

 ■ document.writeln()

 ■ javascript.eval()

 ■ element eventHandlers

06-ch06.indd 128 2/6/14 2:18 PM

 Chapter 6: HTML5 and Java Application Security 129

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch06

 ■ .setTimeout

 ■ .setInterval

 ■ new function()

In general, if you are working with untrusted data, set up your HTML so you
can use the element’s .textContext method, as shown in Listing 6-3,
instead of trying to add HTML directly.

Listing 6-3 textContext Example

document.getElementById("user").textContext = document.
getElementById("userName").value;

If you absolutely have to allow untrusted data into a context that can be
executed by either JavaScript or the HTML parser, then you should learn how
to use one of the many HTML and JavaScript encoders that are available. You
could try to write an encoder yourself, but doing so can be tricky because
each browser’s JavaScript engine can handle things a little bit differently. You
are better off using an encoder that has been developed by a trusted security
team, such as the Enterprise Security API (ESAPI) that is available from the
Open Web Application Security Project (OWASP) team.

You should also be aware that using a JavaScript framework like jQuery
poses the same issue. Using code such as

$('#user').html($('#userName').val());

will open the same XSS attack vector as using .innerHTML. If you are using
jQuery, make sure you use .text instead of .html:

$('#user').text($('#userName').val());

NOTE
Modern versions of both Firefox and Chrome web
browsers come equipped with a basic XSS auditor
that will help prevent some kinds of XSS attacks.
However, you should not rely on this functionality
in any way as the sole method of protection. Using
proper coding practices is the only way to truly
protect against XSS attacks.

06-ch06.indd 129 2/6/14 2:18 PM

 130 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch06

Cross-Site Request Forgery
Attacks that exploit the cross-site request forgery (CSRF) security vulnerability
are uncommon because they are successful only under a very limited set
of conditions. However, if you don’t take some measures to guard against
CSRF attacks, you are exposing your website visitors to a potentially very
nasty result.

A good way to explain the CSRF attack is to use an example of a banking
website. Let’s call the website megabank.com. When you log into your
account on this bank’s website, the login stores a session cookie in your
browser. This is a perfectly normal and acceptable practice for a banking
website. The CSRF vulnerability exists if you leave the website without first
logging out manually by clicking the Logout button. Your browser still has
that session cookie in its cache up until the cookie expires. The expiration
of the session cookie is set by the megabank.com website and in most cases
will expire approximately 15 minutes after the last activity on the website.
This expiration time can vary though. Suppose you next navigate to some
other website that happens to have been hacked to include malicious code
that, when activated (via a button click, for example), instructs your browser
to send a request to megabank.com to transfer funds from “your” account to
the hacker’s account listed in the malicious code. When the megabank.com
website receives the request, it will look for a session cookie to identify the
user, which it will find in your browser because you just visited the website
and didn’t log out. The transfer will go through as if you performed the
request yourself.

Although the chances are low that all the variables required for a successful
CSRF attack will be present, it would take only one successful attack to ruin the
reputation of the megabank.com website. If you’ve encountered spam emails
or spam forum comment posts that just have links in them to some seemingly
random websites, they could very well be attempts to lure you into a CSRF
attack. The worst part of the CSRF vulnerability is that the end user doesn’t even
have to click anything on the website that is hacked. The entire attack can be
handled via JavaScript when the page is loaded.

So, what can you do to help make sure your HTML5 application doesn’t
allow this kind of CSRF attack? First, be aware that your application has to be
maintaining a session cookie in order for this type of attack to happen. If your
application doesn’t maintain session cookies (a stateless application), then it
isn’t vulnerable to this type of attack and you do not need to do anything. If
your application does maintain session cookies, then your first priority is to

06-ch06.indd 130 2/6/14 2:18 PM

 Chapter 6: HTML5 and Java Application Security 131

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch06

make sure your website isn’t susceptible to the XSS types of attack described
in the previous section. If it is susceptible to XSS attacks, then anything you
do to try and prevent CSRF attacks is meaningless.

To implement any kind of CSRF prevention in an HTML5 client-side
application, you need to work in conjunction with what is being done on the
server side of your application. The technique that you use to prevent CSRF
is called double-sending cookies. This technique involves reading the session
ID from the cookie that was sent from the server when the web page was first
requested. Using JavaScript, you place that same session ID into a hidden field
in all of the forms in your application, and attach it to any AJAX calls that your
application makes back to the server. When sending the session ID value back
to the server, it’s often referred to as a CSRF token.

NOTE
Never set a CSRF token on an AJAX call that uses
the method type of GET. Doing so will potentially
expose the CSRF token in many different places
(server logs, browser logs, network monitors, and
so forth).

Using code similar to that shown in Listing 6-4 will allow you to echo the
current session ID back to the server, which will then check to make sure
that it matches the session ID in the cookie. Using this technique makes it
extremely unlikely that the server will receive from another website a request
that has both the proper session cookie and the same session ID in a hidden
form element.

Listing 6-4 CSRF Hidden Form Token

<form action="/servlet/formsubmission " method="post">
 <input type="hidden" name="CSRFToken" value="secret_key">
 …
</form>
<script>
 document.getElementById('csrf').setAttribute('value',
getCookie('Session'));
</script>

As you can see, the real solution to prevent CSRF attacks has to start at
the server, but as a client-side developer, you can also do your part to protect
against such attacks.

06-ch06.indd 131 2/6/14 2:18 PM

 132 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch06

Clickjacking
Clickjacking is another type of attack against which you must protect your
HTML5 web application. For a clickjacking attack to succeed, the attacker
first must manage to wrap a web page from your application inside of a
frame, or <iframe>, of some kind on a website that the hacker has created.
The hacker creates a series of stacked transparent layers over the top of the
website that the hacker created, which appears to be a normal website.
When a website visitor thinks they are clicking buttons or links on this
website, they are really interacting with your website and clicking a button
or link that is not visible. Back in 2009, Chris Shiflett described an attack
of this kind (http://shiflett.org/blog/2009/feb/twitter-dont-click-exploit) that
used a Twitter page as the transparent overlay. When an end user clicked the
visible “Don’t Click” button, they were actually clicking the Post button of
the hidden Twitter page and sending out a tweet devised by the attacker.

As with most of these kinds of attacks, the best way to defend against
clickjacking is to do so from the server side. In the case of clickjacking, the
service-side defense is to set the X-Frame-Options response header to either
deny all types of frames or to allow only frames from the same domain.
However, there is one coding practice that you can use on the client side to
protect your application from clickjacking.

If you cannot modify the response headers from the server side, or you
need to support older browser versions that don’t understand the X-Frame-
Options header, you can add the piece of code shown in Listing 6-5 to the
<head> element of your pages to help protect against clickjacking attacks.
This concept comes from Jason Li at Aspect Security and is discussed here:
https://www.codemagi.com/blog/post/194.

Listing 6-5 Anti-clickjacking Example

<head>
<style id="antiClickjack">body{display:none !important;}</style>
<script type="text/javascript">
 if (self === top) {
 var antiClickjack = document.getElementById("antiClickj
ack");
 antiClickjack.parentNode.removeChild(antiClickjack);
 } else {
 top.location = self.location;
 }
</script>
...
</head>

06-ch06.indd 132 2/6/14 2:18 PM

 Chapter 6: HTML5 and Java Application Security 133

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch06

Adding a <style> element to the top of your page enables the script that
immediately follows it to know that it’s referencing your page. If you were to
use only the else part of the code by itself, the expression could be defeated
through multiple kinds of workarounds. With the code in Listing 6-5, the
script looks for the antiClickjack <style> element, and if it’s not already
the top layer, it moves it to the top. This is the OWASP-recommended method
for preventing clickjacking attacks from the client side.

Authentication and Authorization
Probably the most obvious security issue when developing an HTML5 web
application is how to handle your application login. None of the coding
examples presented thus far in this book have included a login process,
but if your application is going to store information that is specific to a
user and/or information that will help to make the user’s current visit to
your application more enjoyable, then you will want to build some form of
authentication into your application.

The most common method of authentication used for JavaScript applications
is the OAuth standard. OAuth is an open standard for authentication. In 2006, a
few developers from Twitter and Magnolia put together the concept for OAuth.
Through the work of a small group of developers over the next year, a draft
proposal for the OAuth standard was developed, resulting in a final draft that
was released in October of 2007. In 2008, the OAuth specification was brought
in front of a group of developers at the Internet Engineering Task Force (IETF)
annual meeting for work on further standardization.

The OAuth 1.0 protocol was released in April 2010 as IETF RFC 5849
(http://tools.ietf.org/html/rfc5849). The OAuth standard is now the required
authentication protocol for many leading web service APIs, such as Twitter,
Flickr, Netflix, and others. The OAuth 2.0 specification was released as
RFC 6749 (http://tools.ietf.org/html/rfc6749) in 2012. Although it is slowly
gaining popularity across the Internet, many controversies arose throughout
its development. Some of the original developers of the OAuth 1.0 protocol
have resigned from the project because of disagreements over its direction
and policies. To decide which of the two protocols to use in your specific
situation, you will need to conduct further research on your own. It’s safe to say
that if your application needs to support direct authentication, you should start
with the OAuth protocol.

06-ch06.indd 133 2/6/14 2:18 PM

 134 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch06

Without getting into the technical details of the protocol, OAuth enables a
client application, often a web application, to act on behalf of a user, with the
user’s permission. The main components of OAuth 2.0 are

 ■ Client

 ■ Authorization server

 ■ Resource server

 ■ Resource owner

The resource owner is an entity that can grant access to a protected
resource. The client is the application that makes the access request on behalf
of the resource owner. A client performs actions on a resource server based on
authorization provided by the user at the authorization server. For example, a
user can access images on www.flickr.com (resource server) via a web browser
(client) by signing in to Flickr using their Google Account (where www.google
.com is the authorization server). The advantage of this approach, as opposed
to creating a separate login on www.flickr.com, is that the user does not have
to create and remember multiple logins and passwords. Instead, the client
obtains a bearer token from the authorization server, with the user’s approval,
and stores it. Then, when the resource needs to be accessed at the resource
server, the client sends a special HTTP header in the following form:

Authorization: Bearer <token_value>

The token value is opaque to the client but can be decoded by a resource
server so that the server can check that the client, on the user’s behalf, has
permission to access the resource.

If your application is going to be used as part of a larger enterprise
environment that requires user authentication, then your application probably
does not need to provide separate authentication. If you do need to include
some form of authentication in your application, there are plenty of libraries in
different languages by different authorization servers and resource providers
that provide OAuth support. It’s worth looking at them before deciding on
your security infrastructure.

In a typical enterprise environment, your application will be part of
a larger application server installation. This application server will do
the authentication for your application, and the user will not get to your
application’s pages until they have already been authenticated by the

06-ch06.indd 134 2/6/14 2:18 PM

 Chapter 6: HTML5 and Java Application Security 135

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch06

application server’s methods. This is also where the concept of authorization
comes into play. Once the application server, or the identity management
system that the application server is using, authenticates the end user, it
can then be used to determine if the end user even has the rights, or is
authorized, to access your application. In such an environment, you will need
to get information from your security team about what kinds of checks your
application will need to implement to make sure it behaves properly within
your specific environment.

Client-Side Security Common Sense
A commonsense approach to client-side security will help you to avoid
many pitfalls. With that in mind, here are some commonsense practices that
you should consider following:

 ■ Try to always run your application using the HTTPS protocol.

 ■ If your application is running in a secure domain (HTTPS), don’t
connect your application to unsecured services. Make sure that
your REST calls are also going to HTTPS domains and that your
WebSocket calls are using wss instead of ws (see “WebSocket
Security” later in the chapter).

 ■ If at all possible, don’t allow <script> elements in your HTML files.
Place your JavaScript in external files and reference them.

 ■ If you are using a JavaScript framework, check to see what kind of
help it provides with common security issues, and use those features.

 ■ Finally, take the time to research which security measures your
specific application requires. You’ll find that there is a lot of
application security information available, and it’s growing rapidly.

Server-Side Security
This section explains the key concepts of server-side security: authentication,
authorization, confidentiality, and data integrity.

 ■ Authentication validates the identity of a client. It determines
whether the client is, in fact, really what it is claiming to be. It
usually involves receiving a request from a client that includes a user

06-ch06.indd 135 2/6/14 2:18 PM

 136 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch06

ID and credentials. The servlet container in a Java EE application
server provides mechanisms to leverage standard web protocols and
validate the credentials.

 ■ Authorization ensures that the authenticated client has appropriate
rights to access the requested resource. This allows the server to
check if the user can invoke certain operations on your service.
The servlet container typically defines the operations that can be
performed.

 ■ Confidentiality ensures that only the authorized recipients can access
the information. This concept is similar to authorization, the key
difference being that while authorization prevents the information
from reaching unintended parties, confidentiality ensures that even if
the information does reach unintended parties, it cannot be viewed
or used.

 ■ Data integrity ensures that the information has not changed while in
transit between the client and server. A hashcode, or signature of the
data, is sent along with the data and confirmed on the receiving side.

Let’s take a look at how these concepts can be realized in a Java EE
container. After that, we’ll turn our attention to REST resource security and
WebSocket security.

Authentication
There are different ways to achieve authentication; the first two types listed
next are from the RFC 2617 draft standard:

 ■ Basic Authentication This is the simplest method of authentication
over HTTP. The client, most often a web browser, opens a login box
prompting the user to enter a username and password. The client
then sends a base64-encoded username and password to the service.
The server then checks if the user account exists and verifies the
sent password. If the username and password match those of the
account, then the resource is made available; otherwise, an HTTP
401 response code is returned to the client, informing the client that
it is not authorized to access the resource.

06-ch06.indd 136 2/6/14 2:18 PM

 Chapter 6: HTML5 and Java Application Security 137

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch06

 Under the covers, the client generates an HTTP Authorization header
set to a base64-encoded string of the username, a colon character,
and the password. The authorization method and a space (that is,
“Basic ”) is added before this encoded string. If your username is
“u1” and your password is “p1,” then the header will look like this:

Authorization:Basic dTE6cDE=

 Using Basic Authentication with HTTPS is highly recommended
because otherwise the username and password can be easily
decoded.

 ■ Digest Authentication One of the limitations of Basic
Authentication is that the password is sent in clear text and is
susceptible to man-in-the-middle attacks. Digest Authentication,
which is Basic Authentication over an encrypted HTTP connection,
solves this problem.

 Digest Authentication communicates credentials in an encrypted form
by applying a hash function to the username, the password, a server-
supplied nonce value, the HTTP method, and the requested URI.

 For your username and password, the Authorization header looks
like this:

Authorization: Digest username="u1",
 realm="file",
 nonce="o6mhNddONXUNMTM4NjgxMjQ1MTEzNfiTUvu5MR7R5KhM/wtvplE=",
 uri="/webresources/authors",
 algorithm=MD5,
 response="21c29c7a7c7600e5c39ba46637ad413a",
 opaque="00000000000000000000000000000000"

 Many of the security options in Digest Authentication are optional so
the server may operate in a security-reduced mode. Even though it
is slightly better than Basic Authentication, it is still not intended to
replace stronger authentication protocols, like client-cert. Like Basic
Authentication, Digest Authentication is also susceptible to man-in-
the-middle attacks. These types of attacks can be avoided by using
HTTPS instead of HTTP.

 ■ Form-based Authentication Form-based authentication allows
customization of the login screen and error pages that are presented

06-ch06.indd 137 2/6/14 2:18 PM

 138 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch06

to the client. The contents of an HTML page for a login page should
be coded as follows:

<form method="POST" action="j_security_check">
 Username: <input type="text" name="j_username"> <p/>
 Password: <input type="password" name="j_password"
autocomplete="off"> <p/>
 <input type="submit" value="Submit">
 <input type="reset" value="Reset">
</form>

 The login form must contain fields for entering a username and
a password. These fields must be named j_username and
j_password, respectively. The action of the login form must be
j_security_check.

 The client is asked to enter the username and password and then
click the Submit button, which submits the form to the server. If the
authentication succeeds, the client is redirected to the requested
resource. If the authentication fails, the error page is returned, which
typically contains information about the failure.

 ■ Client-Cert Authentication HTTPS not only provides a secure
connection to the server but also can be used for authentication.
This mechanism requires the client to possess a public key
certificate (PKC) issued by a trusted organization, called a certificate
authority. The PKC provides identification for the bearer. The server
authenticates the client using this PKC.

 The only disadvantage of this approach is the managing of the
certificates themselves on both the client and server. Otherwise, this
method is more secure than both Basic Authentication and form-
based authentication.

All of these authentication mechanisms can be configured using the
deployment descriptor (web.xml) of your application, as shown in Listing 6-6.

Listing 6-6 Deployment Descriptor Example

<web-app xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd"
 version="3.1">

06-ch06.indd 138 2/6/14 2:18 PM

 Chapter 6: HTML5 and Java Application Security 139

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch06

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Authors</web-resource-name>
 <url-pattern>/webresources/authors</url-pattern>
 <http-method>GET</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>admin</role-name>
 </auth-constraint>
 </security-constraint>

 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>file</realm-name>
 </login-config>

 <security-role>
 <role-name>admin</role-name>
 </security-role>
</web-app>

As you can see in Listing 6-6, the deployment descriptor has three main
elements:

 ■ The <security-constraint> element is used to associate security
constraints with one or more web resource collections. It has the
following subelements:

 ■ <web-resource-collection> Identifies a subset of the
resources and HTTP methods on those resources within a web
application to which a security constraint applies. For example,
in Listing 6-6, the security constraints are defined for the HTTP
GET method on the resource accessible at /webresources/
authors. Wildcards can be used to specify URL patterns, such as:

/webresources/*
/webresoures/authors/*
/*.html

 Once the user is authenticated, <web-resource-collection>
defines which methods the user is authorized to access.

 ■ <auth-constraint> Indicates the user roles that should
be permitted access to this resource. The <role-name> used

06-ch06.indd 139 2/6/14 2:18 PM

 140 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch06

here must correspond to the <role-name> of one of the
<security-role> elements defined for this web application.
Alternatively, it can be the reserved role name, *, which
indicates all roles in the web application. In other words,
specifying the reserved role name * means that anybody who is
able to log in can access the resource.

 ■ <user-data-constraint> If specified, indicates that the
resources are accessible over a secure transport. In Listing 6-6,
the following element would need to be added:

<user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraint>

 If a client tries to access the resource using HTTP, it is redirected
to an HTTPS URL instead. This ensures that the data transmitted
cannot be observed by other entities and thus allows enforcing of
the key concept of confidentiality.

 The <transport-guarantee> subelement can also take the
value of NONE or INTEGRAL. The later value ensures that the
data cannot be changed in transit and thus allows enforcing the
key concept of data integrity.

 It is also important to note that if one <http-method> is listed
in <security-constraint>, then that method is protected as
defined by the constraints in the deployment descriptor. All other
HTTP methods not explicitly listed are called as uncovered methods.
Adding a top-level <deny-uncovered-http-methods/>
element to the deployment descriptor can protect these methods.

 ■ The <login-config> element is used to configure the
authentication method and the realm name that should be used for
this application. It has the following subelements:

 ■ <auth-method> Configures the authentication mechanism
for the web application. The element content must be
BASIC, DIGEST, FORM, CLIENT-CERT, or a vendor-specific
authentication scheme. The first four values correspond to the
different authentication schemes explained earlier.

06-ch06.indd 140 2/6/14 2:18 PM

 Chapter 6: HTML5 and Java Application Security 141

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch06

 ■ <realm-name> Indicates the realm name to use for the
authentication scheme chosen for the web application.

 ■ The <security-role> element defines a security role. The
subelement <role-name> designates the name of the security role.
Note that these roles are created in an application server–specific way.

REST Resource Security
The following are some other guidelines to keep in mind when securing
REST resources:

 ■ Username and passwords, security tokens, or API keys should not
appear in the URL, as these can be captured in web server logs and
reused for malicious purposes.

 ■ Every REST resource may not need to be read (GET), created (POST),
updated (PUT), and deleted (DELETE). Make sure that only the
required HTTP methods are exposed in the deployment descriptor
and that other methods are explicitly protected using the mechanism
defined earlier, such as <deny-uncovered-http-methods/>.

 ■ Each user need not have access to all the REST resources. Use
appropriate authorization by defining roles using <security-
role> and giving access rights to resources accordingly using
<auth-constraint>.

 ■ For REST endpoints receiving multiple content types, always check
the Content-Type header and use Bean Validation constraints, as
discussed in Chapter 2, to restrict the types.

 ■ Most third-party REST APIs allow authentication and authorization
with popular OAuth providers like Google, Facebook, and Twitter.
Consider integrating these providers instead of creating your own
infrastructure from scratch.

WebSocket Security
WebSocket connections are upgraded from an existing HTTP connection.
A plain WebSocket connection is established using the ws URI scheme,
and a secure connection can be established using the wss URI scheme.
This allows the WebSocket communication over standard ports 80 for plain

06-ch06.indd 141 2/6/14 2:18 PM

 142 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch06

text communication and 443 for secure communication, thus not requiring
opening additional ports in firewalls. This also allows many existing HTTP
security mechanisms to apply to a WebSocket connection.

WebSocket uses an origin-based security model policy commonly used
by web browsers. RFC 6454 (www.ietf.org/rfc/rfc6454.txt) defines how user
agents, such as browsers, isolate content retrieved from different origins
(scheme, host, and port combination of the URL) to prevent malicious website
operators from interfering with the operation of benign websites. Basically,
content retrieved from one origin can interact freely with other content
retrieved from that same origin, but it is restricted on how it can interact with
content retrieved from a different origin. RFC 6454 defines an HTTP header
field, named Origin, that indicates which origins are associated with an HTTP
request. A WebSocket opening handshake from a browser is required to
have this header so that subsequent requests can be serviced accordingly.
However, this model does not work when a non-browser client initializes
WebSocket connections.

In addition to the Origin field, the WebSocket opening handshake is required
to have a Sec-WebSocket-Key field. This field is sent from the client as part of
the opening handshake and is used by the server to prove that it received a valid
WebSocket opening handshake. This helps to ensure that the server does not
accept connections from non-WebSocket clients (for example, HTTP clients) that
may be abused to send data to unsuspecting WebSocket servers.

As you can see, WebSocket already provides a decent level of protocol-
level security. In addition, WebSocket endpoints within a Java EE application
can be secured using the web container security model. A WebSocket
mapped to a given ws:// URI is protected in the deployment descriptor with
a listing to an http:// URI with the same hostname, port, and path since this
is the URL of the opening handshake. A WebSocket application may use Basic
Authentication or form-based authentication prior to the opening handshake.
Similarly, WebSocket authorization may be set by adding a <security-
constraint> element to the deployment descriptor. The <url-pattern>
used in the security constraint is used to match the request URI of the
opening handshake of WebSocket. Finally, a <transport-guarantee>
of CONFIDENTIAL allows WebSocket communication over an encrypted
wss:// connection. This allows WebSocket applications to assign an
authentication scheme, user roles, and a transport guarantee using standard
mechanisms.

06-ch06.indd 142 2/6/14 2:18 PM

 Chapter 6: HTML5 and Java Application Security 143

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch06

Summary
The HTML5 specification provides many new features that also bring their
own potential security issues. While this book is focused specifically on
HTML5 interactions with web services of REST, WebSocket, and Server-Sent
Events, there may be other areas that you will want to research, such as
local-storage, geolocation, and more.

The Open Web Application Security Project (OWASP) is a worldwide,
not-for-profit organization whose main focus is on improving security in
software. This organization’s website (www.owasp.org) is a great resource
for researching existing and potential security issues in all areas of HTML5
development.

06-ch06.indd 143 2/6/14 2:18 PM

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3 / ch06

06-ch06.indd 144 2/6/14 2:18 PM

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3

 145

HTML5 new input type, 10–12
WebSocket endpoint annotations, 64

Attributes for Regenerating Database Tables,
mapping annotations, 23

authentication, client-side, 133–135
authentication, server-side

Basic Authentication, 136–137
Client-Cert, 138
deployment descriptor for,

138–139
Digest Authentication, 137
form-based, 137–138
overview of, 135

author REST resource, 43–44
authorization

client-side security, 133–135
REST resources, 141
server-side security, 136

authorization server, OAuth 2.0, 134
Available Tables list, New Entity Classes from

Database, 19–20

B

backwards compatibility, HTML5 for mobile
and, 7–8

Basic Authentication
and man-in-the-middle attacks, 137
overview of, 136–137
for WebSocket applications, 142

batch applications, Java EE 7, 5
Batchlet, 5
Bean Validation specification, 19
bearer token OAuth 2.0, 134
binary format, 83
binary messages, 65
binaryType property, WebSocket, 83

A

accept(), JAX-RS Client, 50
ACID (atomicity, consistency, isolation,

durability) properties
JAX-RS Client, 49–52
preserving with EJBs, 4–5
transactions preserving, 16–17

addBook(), POST request, 102–103
addBookDialog dialog, 99–100, 109
add(eventOutput), SSE for JAX-RS, 54
AJAX

DELETE request, 112
POST request, 98–99
PUT request, 110

annotated endpoints, WebSocket, 61–64
annotations

generating scripts with JPA, 39
mapping, 22–24

APIs (application programming interfaces)
Java EE 7, 4
REST service, 91–92

app.js file, new HTML5 project, 90
application/json, JAX-RS, 47
application/xml, JAX-RS, 47
applyBindings()

GET request, 96
PUT request, 106–107

Architectural Styles and the Design of
Network-based Software Architectures
(Fielding), 42

ArrayBuffer binary data type, 81–82
arrayRemoveItem(), Knockout, 112
Association Fetch, mapping annotations, 22
attributes

database tables, 23
DOM, avoiding for untrusted data, 128–129

Index

07-Index.indd 145 2/5/14 4:06 PM

 146 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3

common sense, 135
cross-site resource forgery, 130–131
cross-site scripting, 126–129
overview of, 126

Close control frame, WebSocket handshake, 61
closeSSE(), SSE, 114
@Column annotation, 23
columns, using names in relationships, 23
communicate states, REST principles, 43
components, Java EE 7, 4–7
composite primary key, entities, 19
concurrency, 6
confidentiality, 136
configurator attribute, WebSocket, 64
Configure Executables button, SASS, 121
confirmDeleteDialog dialog, DELETE

request, 111–112
Connection header field, WebSocket

handshake, 60–61
container, EJB, 26–29
container-managed entity manager, 27
container-managed transactions, 16, 27–29
Content Delivery Network for JavaScript

(CDNJS), 88–89
contentType

DELETE request, 112
POST request, 99

Contexts and Dependency Injection (CDI), 6
control methods, JavaScript API for

WebSocket, 73–77
cookies

CSRF attacks from session, 130–131
JAX-RS, 45
preventing CSRF attacks, 131

coverImage(), GET request, 97
create operation, CRUD, 98–105, 141
create(), SSE for JAX-RS, 55
createGenerator(), JSON, 65–66
createJSON(), 81
createNativeQuery(), 32–33
Criteria API, 31–32
cross-site resource forgery (CSRF) attacks,

130–131
cross-site scripting (XSS) attacks,

126–129, 131
CRUD (create, read, update, and delete)

operations
create using POST request, 98–105
delete using DELETE request, 111–112
with JPA controller classes for entities, 34
JPQL queries, 30
life cycle of entity, 26
persistence allowing, 16

bindings, Knockout
applyBindings(), 96
breaking two-way, 97
click: binding, 97–98
foreach: binding, 97
POST request, 100, 102
PUT request, 105–106, 108–110
two-way, 94–95

Blob binary data type, 81–82
BoardDecoder class, 65–67
boardViewModel(), 81
bookData variable, PUT request, 106–107
bookDetailsViewModel(),

PUT request, 110
Books observableArray, DELETE request, 112
broadcast message, SSE for JAX-RS, 55
browsers

CSRF vulnerability of, 130–131
dataset HTML5 not implemented by all, 81
FileReader API not implemented by all, 83
preventing clickjacking on, 132–133
preventing XSS attacks, 129
responsive design in, 68, 118
SSE not implemented by all, 114
testing HTML5 on, 7–8, 12
WebSocket not implemented by all, 72
WebSocket security model for, 142

C

:callback function, POST request, 99
Can I Use website, HTML, 7
Candidate Recommendation status, HTML5, 6
Cascading Style Sheets. See CSS (Cascading

Style Sheets)
CDI (Contexts and Dependency Injection), 6
CDNJS (Content Delivery Network for

JavaScript), 88–89
Chrome, XSS auditor and, 129
Chunk, 5
Class names, Entity Classes page, 20
click: binding, Knockout

GET request, 97–98
POST request, 100
PUT request, 105, 108

clickjacking attacks, 132–133
Client API, JAX-RS, 49–52
Client-Cert authentication, 138
client, OAuth 2.0, 134
client-server model, REST principles, 42
client-side security

authentication and authorization, 133–135
clickjacking, 132–133

07-Index.indd 146 2/5/14 4:06 PM

 Index 147

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3

GET request, 97–98
PUT request, 105–106

DOM-based XSS attacks, 126–129
double-sending cookies, preventing CSRF

attacks, 131

E

EJB (Enterprise JavaBeans)
introduction to, 5
managing container-managed

transactions, 16
managing entities, 26–29

embeddables, on entities, 18–19
encode input, and XSS attacks, 127
encoders, for untrusted data, 129
encryption, Digest Authentication, 137
endpoints

annotated, 61–64
defining from Java API for

WebSocket, 61
programmatic, 61
securing REST resources, 141
WebSocket initialization, 73
WebSocket security for, 142

Enterprise Security (ESAPI), for untrusted
data, 129

entities
Criteria API defining queries over,

31–32
JPA, 17–24
JPQL defining queries over, 30–31
managing, 26–29
native SQL defining queries over,

32–36
packaging, 24–26

Entity Classes page, New Entity Classes from
Database, 19–24

entity managers, persistence contexts, 24
EntityManager.remove(), 27
error: callback function

DELETE request, 112
POST request, 99
PUT request, 110

error pages, XSS attacks on, 127
ESAPI (Enterprise Security), for untrusted

data, 129
event handlers, WebSocket API, 59
event listeners, game logic, 83
EventOutput instances, SSE for JAX-RS,

54–55
EventSource, SSE, 52

read using GET request, 92–98
REST service using, 92
securing REST resources, 141
of stateless session bean, 27
update using PUT request, 105–111

CSS (Cascading Style Sheets)
grid layout pattern, 116–118
HTML5 application component, 12
new HTML5 project, 89
preprocessor for large, 119–123
SASS, 119–123

D

data-bind attribute, GET request, 97
data integrity, 136
data management, WebSocket, 77
Database Tables page, New Entity Classes

from Database wizard, 19–20
dataType

DELETE request, 111–112
POST request, 98–99
PUT request, 110

debugger, JavaScript, 103–104
decode(), Decoder.Text<T> interface,

WebSocket, 67
Decoder.BinaryStream interface,

WebSocket, 67
Decoder.Binary<T> interface,

WebSocket, 67
Decoder.TextStream interface,

WebSocket, 67
Decoder.Text<T> interface, WebSocket, 67
delete operation, CRUD

securing REST resources, 141
using DELETE request, 111–112

DELETE statement, JPQL queries, 30
deleteBook(data) function, 112
dependency injection

container-manager entity manager,
27–28

JAX-RS, 46
deployment descriptor, 138–141
Design view, persistence.xml files,

25–26
development tools

HTML5, 7–13
Java EE 7, 3–6
NetBeans, 2–3

Digest Authentication, 137
<div> element

defined, 126
DOM-based XSS attacks, 127–129

07-Index.indd 147 2/5/14 4:06 PM

 148 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3

hostname, using REST, 94
HTML abstraction markup language

(Haml), 119
HTML encoders, untrusted data, 129
HTML form parameters, JAX-RS, 46
HTML5

application security. See security
client application for WebSocket, 67–72
connecting to SSE, 113–115
create operation, using POST, 98–105
delete operation, using DELETE, 111–112
as feature complete, 7–8
history of, 7
input type attributes, 10–12
interacting with REST to perform CRUD

operations, 91–98
Java EE 7 simplifying, 4
for mobile devices, 8–9
parts of applications, 12–13
project setup, 86–91
read operation, using GET, 92–98
responsive design, 116–118
SASS, 119–123
semantic elements, 9–10
summary review, 123–124
syntactic elements, 9–11
Test website, 7
update operation, using PUT, 105–111
WebSocket, 115–116

HTTP
Basic Authentication, 136–137
as half-duplex, 58
headers, JAX-RS, 45
high overhead of, 59
invoking REST resource, 44–45
JAX-RS, 46
polling/long polling mechanisms, 58
request/response, JAX-RS Client API, 51
request/response, TCP connection, 58–59

HTTPS
Basic Authentication, 137
Client-Cert authentication, 138
client-side security, 135

I

IETF (Internet Engineering Task Force), OAuth
standard, 133

if statement, SSE, 114
<iframe> element, clickjacking, 132
images, setting specific game cell, 79–80
indented syntax, style, 119
index.html file, 68–72, 89

F

feature complete, HTML5 as, 6
fetch elements, mapping annotations, 22
FileReader API, 82–83
findAll(), JAX-RS, 47
Firefox, XSS auditor and, 129
<footer> element, index.html, 71–72
foreach: binding, Knockout

GET request, 97
POST request, 105
PUT request, 105

form-based authentication, 137–138, 142
frames, clickjacking, 132
Fully Qualified Database Table Names,

mapping annotations, 23
function booksViewModel(), GET

request, 94

G

gameCellClicked(), game logic, 80–81
Generate Fields for Unresolved Relationships,

mapping annotations, 23
Generate JAXB Annotations, 20
Generate Named Query Annotations for

Persistent Fields, 20
GET request, reading using, 92–98
getBookDetails(), PUT request, 105–107
getClasses(), SSE for JAX-RS, 53
getEvents(), SSE for JAX-RS, 54
getJSON(), 92–93, 107
$.getJSON variable, GET request, 95
getOpenSessions(), Java API for JSON

Processing, 66
getters, on entities, 17–18
Global IDE properties, CSS preprocessors,

121–122
grid layout pattern, responsive design,

116–118

H

Haml (HTML abstraction markup
language), 119

handshake, WebSocket, 59–61, 142
HAVING clause, JPQL queries, 30
<head> element, 89–90, 132–133
<header> element, index.html file,

69–72
header fields, WebSocket, 60–61
History view, persistence.xml file, 25

07-Index.indd 148 2/5/14 4:06 PM

 Index 149

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3

@javax.persistence.Column
annotation, 18

javax.persistence.Criteria API,
31–32

@javax.persistence.Embedded
annotation, 18

@javax.persistence.EmbeddedId
annotation, 19

@javax.persistence.Entity
annotation, 18

@javax.persistence.Id annotation,
18–19

@javax.persistence.IdClass
annotation, 19

@javax.persistence.JoinTable
annotation, 19

@javax.persistence.ManyToMany
annotation, 19

@javax.persistence.NamedQuery
annotation, 30

@javax.persistence.OneToMany
annotation, 19

@javax.persistence.OneToOne
annotation, 19

javax.persistence.schema-
generation.* properties,
persistence.xml, 37–38

@javax.persistence
.SQLResultSetMapping annotation, 33

@javax.persistence.Table annotation, 18
@javax.transaction, JAX-RS, 46
@javax.transaction.Transactional

annotation, 16, 29
javax.ws.rs package, JAX-RS, 46–47
@javax.ws.rs.CookieParam annotation,

JAX-RS, 45
@javax.ws.rs.FormParam annotation,

JAX-RS, 46
@javax.ws.rs.HeaderParam annotation,

JAX-RS, 45
@javax.ws.rs.MatrixParam, JAX-RS, 46
@javax.ws.rs.Path annotation,

JAX-RS, 45
@javax.ws.rs.Produces annotation,

JAX-RS, 47
JAX-RS (Java API for RESTful Web Services)

Client API, 49–52
introduction to, 4
overview of, 43–49

JAXB (Java Architecture for XML Binding) web
service, 20

JDBC (Java Database Connectivity) API, 16
JDK (Java Development Kit), 3

initialization
SSE, 114–115
WebSocket, 73
.innerHTML attribute, <div>

element, 128
Internet Engineering Task Force (IETF), OAuth

standard, 133
introduction

HTML5, 7–13
Java EE 7, 3–6
NetBeans, 2–3
summary review, 13

ISBN value
delete operation, 112
read operation, 97–98

item-oriented processing style, of Chunk, 5

J

Java API for JSON Processing, 65–67
Java API for RESTful Web Services. See JAX-RS

(Java API for RESTful Web Services)
Java API for WebSocket, 62–67
Java application security. See security
Java Architecture for XML Binding (JAXB) web

service, 20
Java Database Connectivity (JDBC) API, 16
Java Development Kit (JDK), 3
Java EE (Java Platform, Enterprise Edition), 3–6
Java Message Service (JMS), 5–6
Java Persistence API. See JPA

(Java Persistence API)
Java Persistence Query Language (JPQL), 30–31
Java Platform, Enterprise Edition (Java EE), 3–6
Java Platform, Standard Edition (Java SE), 16
Java Runtime Environment (JRE), 3
Java SE (Java Platform, Standard Edition), 16
Java Server Faces (JSF), 6
Java Servlet technology, 6
Java Transactions API (JTA), 16
Javadoc, 4
JavaScript

client-side security tips, 135
debugger, 103–104
encoders for untrusted data, 129
in HTML5 applications, 13
for WebSocket. See WebSocket,

JavaScript API for
JavaScript Object Notation. See JSON

(JavaScript Object Notation)
javax.constraint
.ConstraintViolation, 46

@javax.ejb.Stateless annotation, 27

07-Index.indd 149 2/5/14 4:06 PM

 150 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3

Digest Authentication, 137
form-based authentication, 137–138
security issues, 133–135

long polling, HTTP, 58
loose coupling, CDI, 6

M

man-in-the-middle attacks, 137
map(), jQuery, 95
mapping annotations, Entity Classes page,

22–24
matrix parameters, JAX-RS, 45–46
media queries, CSS, 116–118
media types

JAX-RS, 47–48
SSE, 52–55

message-driven beans, EJB, 26
messages, JMS, 5–6
metamodel of entities, Criteria API, 31–32
methods

DOM, avoiding for untrusted data,
128–129

JavaScript API for WebSocket, 73–77
REST principles, 43

mobile devices, 7–8, 9–12
MVC (Model-View-Controller), 6, 13
MVVM (Model-View-ViewModel)

HTML5 application setup, 68–72
managing game logic, 80
overview of, 13
read operation using GET, 93–98

N

name attribute, JPQL queries, 30
naming conventions, columns, 18
native SQL, 32–36
NetBeans IDE

creating HTML5 project, 86–91
CSS Styles window, 118
generating JPA controller classes for

entities, 34
introduction to, 2–3
JPQL Query dialog, 30–31
Network Monitor, 79
querying database using SQL native

query strings, 33
support for LESS, 122
support for SASS, 120–122
web service wizards, 27–31, 48–52

Network Monitor feature, NetBeans IDE, 79

Jersey, SSE for JAX-RS, 52–55
JMS (Java Message Service), 5–6
join tables, 19
JPA (Java Persistence API)

creating controller classes for entities, 34
defined, 16
generating scripts, 39
overview of, 4–5

JPQL (Java Persistence Query Language),
30–31

jQuery, and DOM-based XSS attacks, 129
JRE (Java Runtime Environment), 3
JSF (Java Server Faces), 6
JSON (JavaScript Object Notation)

create operation using POST, 99, 102
data validation using, 103
delete operation using DELETE, 112
introduction to, 4
Java API for JSON Processing, 65–67
managing game logic, 80–82
read operation using GET, 92–98
update operation using PUT, 110
WebSocket data management, 77–79

JTA (Java Transactions API), 16

K

Knockout.js
calling observables as functions, 109
create operation using POST, 100–105
implementing MVVM, 69
read operation using GET, 93–98
SSE, 113–115
update operation using PUT, 105–106,

108–110

L

layout
HTML5 components for, 12
responsive design, 12–13, 116–118

LESS, NetBeans IDE supporting, 122
libraries, new HTML5 project, 88–89
<link> tags, HTML5 project, 89
.load method callback function,

PUT request, 106
loadDefaults(), 110–112
Location, Entity Classes page, 20
<login-config> element, deployment

descriptor, 140–141
login process

Basic Authentication, 136

07-Index.indd 150 2/5/14 4:06 PM

 Index 151

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3

P

packaging entity, 20, 24–26
parameters, WebSocket, 64–65
passwords

Basic Authentication, 136
Digest Authentication, 137
form-based authentication, 138
securing REST resources, 141

persist(), Entity Manager, 34
persistence

Criteria API, 31–32
defined, 16
JPA entity, 17–24
JPQL, 30–31
managing entities, 26–29
native SQL, 32–36
overview of, 16–17
packaging entity, 24–26
schema generation, 36–39
summary review, 39

persistence unit, 20–21, 24
persistence.xml files,

24–26, 31
PKC (public key certificate), Client-Cert

authentication, 138
point-to-point messaging model, JMS, 5
POJO (Plain Old Java Object)

converting to REST resource, 45
defining as entity, 17–18
defining endpoints from Java API for

WebSocket, 61
defining stateless session bean on, 27
introduction to, 4–5
Java Persistence API using, 16

polling, HTTP and, 58
pong messages, WebSocket, 65
POST request, create operation, 98–105
primary key, entities, 18–19
programmatic endpoints, WebSocket, 61
Project, Entity Classes page, 20
properties

CSS preprocessors for Global ID,
121–122

schema generation, 37–39
protocol-level security, WebSocket, 142
public key certificate (PKC), Client-Cert

authentication, 138
public no-args constructor, WebSocket, 64
publish-subscribe messaging model,

JMS, 5–6
PUT request, update operation,

105–111

New Entity Classes from Database wizard,
19–24

New HTML5 Application
adding other JavaScript libraries, 88–89
Name and Location pane, 87
New Project Wizard, 88
Projects pane, 86–87
Site Template pane, 88

New RESTful Java Client wizard, 50–51
New RESTful JavaScript Client wizard, 51–52
New Session Bean Wizard, 27–29
New Session Beans for Entity Classes Wizard,

34–36

O

OAuth standard, authentication,
133–135, 141

observables, 109, 114–115
onclose event, SSE, 114
onclose(), WebSocket API, 73–77
onerror(), WebSocket API, 74, 77
online resources

anti-clickjacking, 132
clickjacking attacks, 132
HTML application development, 7
The Java EE 7 Technologies list, 4
Java EE 7 Tutorial, 6
JDK, 3
Knockout.js, 69
NetBeans IDE, 3
OAuth standard, 133
RFC 6454, WebSocket security, 142
WebSocket API, 61
WebSocket specifications, 59

onmessage()
SSE, 114–115
WebSocket API, 73, 77–79

@OnMessage method-level annotation,
WebSocket, 64–65

onopen event, SSE, 114
@OnOpen method-level annotation,

WebSocket, 64
onopen(), WebSocket API, 73–75
opening handshake, WebSocket, 142
Oracle, acquiring NetBeans IDE, 3
ORDER BY clause, JPQL queries, 30
origin-based security model, WebSocket,

60, 142
OutputStream, JSON, 65–66
overhead, HTTP, 59
OWASP (Open Web Application Security

Project), 129, 143

07-Index.indd 151 2/5/14 4:06 PM

 152 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3

securing, 141
Server-Sent Events, 52–55
summary review, 56

RFC 5849, IETF, 133
RFC 6455, IETF, 74–77
RFC 6749 , IETF, 133

S

SASS (syntactically awesome stylesheets),
119–123

Sassy CSS (SCSS), 119–122
schema generation, 37–39
screen size, responsive design layout, 116–118
<script> element

adding Knockout.js, 69
new HTML5 project, 89–90
not allowing in HTML files, 135

SCSS (Sassy CSS), 119–122
search results page, XSS attacks on, 127
<section> element, index.html file,

70–71
security

client-side. See client-side security
overview of, 126
server-side. See server-side security
summary review, 143

<security-constraint> element,
deployment descriptor, 139–140

<security-role> element, deployment
descriptor, 141

SELECT statement, JPQL queries, 30
self.Books variable, 94–95
self.serviceURL variable, 93–94, 107
semantic elements, HTML5, 9–10
send()

managing game logic, 81–82
WebSocket API, 59, 74, 77

sendBinary(), game logic, 83
Serializable interface, entities, 17–18
Server-Sent Events. See SSE

(Server-Sent Events)
server-side security

authentication, 136–141
overview of, 135–136
REST resources, 141
WebSocket, 141–142
XSS attacks, 126–129

@ServerEndpoint class-level annotation,
WebSocket, 63

ServerEndpointConfig.Configurator
class, WebSocket, 64

Services window, native SQL, 33

Q

qs attribute, JAX-RS, 47
queries

CSS media, 116–118
defining over entities with Criteria API,

31–32
defining over entities with JPQL, 30–31
using native SQL, 32–36

query attribute, JPQL queries, 30

R

read operation, CRUD
securing REST resources, 141
using GET, 92–98

readAsArrayBuffer(), WebSocket, 83
referenced tables, persistence, 19–20
reflected XSS attacks, 126
relationship annotations, mapping, 22–24
remove(), entities, 34
Representational State Transfer. See REST

(Representational State Transfer)
request(), JAX-RS Client API, 50
resources

JAX-RS, 43–49
OAuth 2.0 owner and server, 134
REST principles, 42–43
updating, 48

response headers, preventing clickjacking, 132
responsive design

defined, 68
HTML5 and, 12–13
overview of, 116–118

responsive.scss file, 119–120
REST (Representational State Transfer)

advantages of WebSocket vs., 115–116
applications publishing APIs with, 42
converting POJO to, 4, 45
create, using POST, 98–105
delete, using DELETE, 111–112
guiding principles of, 42–43
overview of, 42
performing CRUD operations, 91–98
read, using GET, 92–98
update, using PUT, 105–111

RESTful Web Services
Java EE 7, 4
JAX-RS, 43–49
JAX-RS client API, 49–52
overview of, 42
REST principles, 42–43

07-Index.indd 152 2/5/14 4:06 PM

 Index 153

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3

TCP connection
HTTP request/response, 58–59
WebSocket using single, 59–61

template, new HTML5 project, 88
text: binding, Knockout, 109
text/event-stream media type, SSE

events, 52, 55
text, WebSocket, 65–67
.textContext method, for untrusted

data, 129
<title> element, HTML5 project, 89
tokens

CSRF, 131
OAuth 2.0 bearer, 134
REST, 141

topics, JMS, 6
@Transactional annotation, 5
Transactional annotation, JAX-RS, 46
transactions

preserving ACID properties, 16–17
removing entity from database within, 34

<transport-guarantee> of
CONFIDENTIAL, WebSocket, 142

try-catch block, WebSocket, 78
Twitter Bootstrap framework

create operation using POST, 100
data validation, 103
grid layout pattern, 116–117
HTML5 application setup, 68
modal dialog, 109

two-way bindings, Knockout
breaking, 97
overview of, 94–95
SSE, 113–115

type attribute, DELETE request, 112

U

UI (user interface), JSF server-side, 6
untrusted data, XSS attacks on, 126–129
update operation, CRUD, 48, 105–111, 141
UPDATE statement, JPQL queries, 30
Upgrade header field, WebSocket

handshake, 60–61
upgrades, WebSocket client handshake for

HTTP, 59–61
URL

create operation using POST, 99
delete operation using DELETE, 112
securing REST resources, 141
setting for GET, 93–94
SSE, 114
WebSocket initialization, 73

session beans, EJB
creating, 28–29
defined, 26–27
for new entity classes, 34–36

session cookies, CSRF attacks, 130–131
session ID, CSRF attack prevention, 131
setCellImage(), game logic, 79–83
setters, on entities, 17–18
showAddDialog(), POST, 100
showDeleteDialog(), DELETE, 111–112
singleton session beans, EJB, 26, 29
Source view, persistence.xml files, 25
specifications, WebSocket, 59
SQL

editing SQL query strings, 33–34
native, 32–36

SSE (Server-Sent Events)
example, 113–115
introduction to, 4
JAX-RS, 52–55
as long polling mechanism, 58
overview of, 113

SseBroadcaster, 54–55
SseFeature, 55
standard, HTML5 not yet approved as

complete, 6
@Startup annotation, 29
stateful session beans, EJB, 26–29
stateless session beans, EJB, 26–27
stored XSS attacks, 126
streaming generator, Java API for JSON

Processing, 65
stringify(), create using POST, 99
<style> element, anti-clickjacking, 133
submit: binding, Knockout, 102, 110
subprotocol negotiation, WebSocket

handshake, 60
success: callback function, 110–111, 112
Sun Microsystems, acquiring NetBeans IDE, 3
syntactic elements, HTML5, 9–11
syntactically awesome stylesheets (SASS),

119–123

T

@Table annotation, 18, 23
tables

entities capturing relationships between,
19–20

mapping annotations, 22–24
querying using native SQL, 32–36

target(), JAX-RS Client API, 50
task-oriented processing style, Batchlet as, 5

07-Index.indd 153 2/5/14 4:06 PM

 154 Java EE and HTML5 Enterprise Application Development

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3

WebSocket
API, 61
handshake, 59–61
HTML application setup, 68–72
HTML5 client application for, 68–83
introduction to, 4
Java API for, 62–67
overview of, 58–59
REST service vs., 115–116
security, 141–142
specifications, 59
summary review, 83–84

WebSocket, JavaScript API for
control methods, 73–77
data management, 77–79
initialization, 73
managing game logic, 79–83

WebSocket Protocol, RFC 6455, 59–61
websocket.js file, 73
WHERE clause, JPQL queries, 30
willDecode(), Decoder.Text<T>

interface, 67
Windows Presentation Foundation (WPF), 13
World Wide Web Consortium. See W3C

(World Wide Web Consortium)
WPF (Windows Presentation Foundation), 13
Writer, createGenerator(), 65–66
ws URI scheme, 141–142
wss URI scheme, 141–142

X

X-Frame-Options response header, preventing
clickjacking, 132

Xelfi, 2
XSS (cross-site scripting) attacks, 126–129, 131

Use Column Names in Relationships,
mapping annotations, 23

Use Defaults if Possible, mapping
annotations, 23

user interface (UI), JSF server-side, 6
user-managed transactions, 16
usernames

Basic Authentication, 136
Digest Authentication, 137
form-based authentication, 138
securing REST resources, 141

UTF-8 string format, WebSocket
data, 81

V

validation
Bean Validation specification, 19
constraints on entities, 19
create operation using POST, 103
JAX-RS constraints, 46
XSS attacks from failed input, 127

value: binding, Knockout, 109
View Data, native SQL, 33
View layer, 96–98, 104
ViewModel, 110

W

W3C (World Wide Web Consortium)
developing HTML, 6
HTML as feature complete, 6
next stage of HTML specification, 6–7
WebSocket API, 59, 61

web service wizards, NetBeans IDE, 27–31,
48–51

07-Index.indd 154 2/5/14 4:06 PM

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3

07-Index.indd 155 2/5/14 4:06 PM

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3

07-Index.indd 156 2/6/14 2:24 PM

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. 123022

You Need an Oracle ACE
Oracle partners, developers, and customers look to
Oracle ACEs and Oracle ACE Directors for focused
product expertise, systems and solutions discussion,
and informed opinions on a wide range of data center
implementations.

Their credentials are strong as Oracle product and
technology experts, community enthusiasts, and
solutions advocates.

And now is a great time to learn more about this
elite group—or nominate a worthy colleague.

For more information about the
Oracle ACE program, go to:
oracle.com/technetwork/oracleace

Need help? Need consultation?
Need an informed opinion?

Stay Connected

oracle.com/technetwork/oracleace

 oracleaces

 @oracleace

 blogs.oracle.com/oracleace B

07-Index.indd 157 2/5/14 4:06 PM

ORACLE FLUFF / Java EE and HTML5 Enterprise Application Development / Wielenga / 309-3

Reach More than 700,000 Oracle Customers
with Oracle Publishing Group

Connect with the Audience
that Matters Most to Your Business

Oracle Magazine
The Largest IT Publication in the World
Circulation: 550,000
Audience: IT Managers, DBAs, Programmers, and Developers

Profit
Business Insight for Enterprise-Class Business Leaders to
Help Them Build a Better Business Using Oracle Technology
Circulation: 100,000
Audience: Top Executives and Line of Business Managers

Java Magazine
The Essential Source on Java Technology, the Java
Programming Language, and Java-Based Applications
Circulation: 125,000 and Growing Steady
Audience: Corporate and Independent Java Developers,
Programmers, and Architects

For more information
or to sign up for a FREE
subscription:
Scan the QR code to visit
Oracle Publishing online.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. 113940

07-Index.indd 158 2/5/14 4:06 PM

Join the Oracle Press Community at

OraclePressBooks.com
Find the latest information on Oracle products and
technologies. Get exclusive discounts on Oracle
Press books. Interact with expert Oracle Press
authors and other Oracle Press Community members.
Read blog posts, download content and multimedia,
and so much more. Join today!

Join the Oracle Press Community today

and get these benefits:

• Exclusive members-only discounts and offers

• Full access to all the features on the site: sample

chapters, free code and downloads, author blogs,

podcasts, videos, and more

• Interact with authors and Oracle enthusiasts

• Follow your favorite authors and topics and

receive updates

• Newsletter packed with exclusive offers and

discounts, sneak previews, and author podcasts

and interviews

@OraclePress

	Cover
	Title Page
	Copyright Page
	About the Authors
	About the Technical Editor

	Contents at a Glance
	Contents
	Acknowledgments
	Introduction
	Who Should Read This Book
	What This Book Covers
	How to Use This Book and Code

	Chapter 1: Introduction to Java EE and HTML5 Enterprise Development
	Development Tools
	NetBeans
	Java EE 7
	HTML5

	Summary

	Chapter 2: Persistence
	JPA Entity
	Packaging an Entity
	Managing an Entity
	Java Persistence Query Language
	Criteria API
	Native SQL
	Schema Generation

	Summary

	Chapter 3: RESTful Resources
	REST Principles
	Java API for RESTful Web Services
	JAX-RS Client API
	Server-Sent Events

	Summary

	Chapter 4: WebSocket
	What Is WebSocket?
	WebSocket Handshake
	WebSocket API

	Java API for WebSocket
	HTML5 Client Application for WebSocket
	HTML5 Application Setup
	JavaScript API for WebSocket

	Summary

	Chapter 5: HTML5, JavaScript, and CSS
	HTML5 Project Setup
	REST
	Read, Using the GET Request (R of CRUD)
	Create, Using the POST Request (C of CRUD)
	Update, Using the PUT Request (U of CRUD)
	Delete, Using the DELETE Request (D of CRUD)

	Server-Sent Events (SSE)
	WebSocket
	Responsive Design
	Syntactically Awesome Stylesheets (SASS)
	Summary

	Chapter 6: HTML5 and Java Application Security
	Client-Side Security
	Cross-Site Scripting
	Cross-Site Request Forgery
	Clickjacking
	Authentication and Authorization
	Client-Side Security Common Sense

	Server-Side Security
	Authentication
	REST Resource Security
	WebSocket Security

	Summary

	Index

