
www.allitebooks.com

http://www.allitebooks.org

Kendo UI Cookbook

Over 50 recipes to help you rapidly build rich and dynamic
user interfaces for web and mobile platforms

Sagar Ganatra

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Kendo UI Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2014

Production reference: 1180614

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-000-0

www.packtpub.com

Cover image by Faiz F (faizfattohi@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Sagar Ganatra

Reviewers
Sergey N. Bolshchikov

Austin Christenberry

David J. McClelland

Omkar Patil

Radu Poenaru

Acquisition Editor
Kevin Colaco

Content Development Editor
Vaibhav Pawar

Technical Editors
Taabish Khan

Pooja Nair

Nikhil Potdukhe

Copy Editor
Stuti Srivastava

Project Coordinator
Sanchita Mandal

Proofreaders
Simran Bhogal

Ameesha Green

Lawrence Herman

Joanna McMahon

Indexer
Mariammal Chettiyar

Production Coordinator
Komal Ramchandani

Cover Work
Komal Ramchandani

www.allitebooks.com

http://www.allitebooks.org

About the Author

Sagar Ganatra is a frontend architect from Bangalore, India. He is an expert in building web
applications using modern web technologies such as HTML5, CSS3, Object-Oriented JavaScript,
Kendo UI, jQuery, and JavaScript frameworks such as BackboneJS, RequireJS, and AngularJS.
He also writes about these technologies in his blog at http://www.sagarganatra.com/.
This is his second book; his previous book is Instant Kendo UI Mobile, Packt Publishing, which
was published in 2013. When he is not coding, he enjoys writing short stories, swimming, and
reading books.

I dedicate this book to my extraordinary parents, Tara Ganatra and Harshad
Rai Ganatra, two of the greatest and wisest teachers in my life.

I also dedicate this book to my brother, Santosh Ganatra, and sister-in-law,
Nisha Ganatra, for always standing by my side and encouraging me to
write this book.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Sergey N. Bolshchikov is a senior frontend engineer at New ProImage (Agfa), working on
a large-scale, client-side application of workflow systems software for publishing houses. He
also serves as a co-organizer of the Ember-IL meet-up group in Tel Aviv, Israel. He holds an
MSc degree in Information Systems from Technion – Israel Institute of Technology.

Austin Christenberry has experience working with technologies such as ASP.NET, T-SQL,
Knockout.js, and Kendo UI. He currently works for Credera, a management and technology
solutions firm based in Dallas, Texas. He graduated from Baylor University in Waco, Texas, in
2012 with a Bachelor of Science degree in Applied Mathematics. In his free time, he enjoys
playing tennis and discovering new shows on Netflix.

I would like to thank my beautiful wife, Len, for supporting me in reviewing
this book, along with everything else I do.

David J. McClelland has been creating cutting-edge software and content that bridges
design, development, and information for over 20 years. He is currently a Principle User
Interface Engineer developing software to manage distributed devices via the cloud. He has
been a technical reviewer for Instant Kendo UI Mobile, Sagar Ganatra, Packt Publishing.

I would like to thank my family for encouraging my many technical and
artistic interests.

www.allitebooks.com

http://www.allitebooks.org

Omkar Patil is currently working as a senior architect in the Global Technology and
Architecture group of SunGard. He has 14 years experience in architecture, design, and
development of web applications. Starting with server-side Enterprise Java, he has shifted
focus to frontend development of web and mobile applications in the last few years. His
current skill set consists of JavaScript, jQuery, Kendo UI, AngularJS, and Node.js. In his
spare time, he enjoys reading, playing with new technologies, and contributing to open
source software. He is a committer of the Angular-Kendo project that integrates Kendo UI
with AngularJS (https://github.com/kendo-labs/angular-kendo).

I would like to thank my wife, Anu, for her support and encouragement over
the past 12 years. I would also like to mention my daughter, Rewa, who at
seven years of age, has already started coding and keeps me on my toes
with her programming questions.

Radu Poenaru has over 12 years experience in software engineering, ranging from
desktop to web and mobile applications. As a freelancer based in Frankfurt, Germany,
he focuses his skills to deliver solutions for the complete life cycle of a website, including
architecture and user experience—in the frontend using HTML5 and CSS3 and enhanced by
JavaScript libraries such as jQuery, Knockout.js, Kendo UI, AngularJS, RequireJS, Modernizr,
and Bootstrap; and in the backend using ASP.NET, MVC pattern (including Single-Page
applications), Entity Framework, and Microsoft SQL. He discusses these and other software
subjects on his blog at http://www.radupoenaru.com or on his company's website at
http://www.itbrainiacs.com.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read, and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: The Kendo UI Application Framework	 7

Introduction	 7
Using client-side templates to generate HTML markup from a JSON data	 8
Creating a two-way binding between View elements and JavaScript
objects using the Model View ViewModel (MVVM) pattern	 12
Using Source and Template binding with ViewModels to generate
HTML content	 16
Validating user input using the built-in Validator	 19

Chapter 2: The Kendo UI Grid	 23
Introduction	 23
Creating a Grid view and displaying tabular data	 23
Displaying data from a local or remote DataSource component in a Grid view	 28
Sorting data in a Grid using a selected column	 32
Using filters to display data that matches certain criteria in the Grid	 35
Creating, updating, and deleting in Grid	 39
Using the virtualization mechanism to improve the performance of the Grid	 43
Customizing the look and feel of the Grid	 46

Chapter 3: Kendo UI TreeView	 49
Introduction	 49
Using a TreeView widget to display a directory structure	 49
Using the drag and drop feature to move elements in TreeView	 55
Using checkboxes to select nodes in TreeView	 58
Associating icons with labels in TreeView	 62

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Chapter 4: Kendo UI Editor	 65
Introduction	 65
Creating a WYSIWYG Editor using the kendoEditor function	 65
Adding and removing tools in the Editor toolset	 67
Using the image browser tool to insert images into the Editor	 70

Chapter 5: Kendo UI PanelBar	 77
Introduction	 77
Creating a PanelBar	 77
Loading the content of a PanelBar using Ajax	 83
Binding the PanelBar to a DataSource object	 86
Customizing the PanelBar	 88

Chapter 6: Kendo UI File Uploader	 91
Introduction	 91
Using the file uploader to upload files to the server	 91
Uploading files to the server asynchronously	 94
Listening to file upload events	 98

Chapter 7: Kendo UI Window	 101
Introduction	 101
Displaying a pop up and blocking the user interaction by configuring it as
a modal window	 102
Customizing the look and feel of the window and including action buttons	 105
Using the Window API to act on a window object	 108

Chapter 8: Kendo UI Mobile Framework	 111
Introduction	 111
Creating a layout and adding views to the layout	 112
Setting the initial layout and view when initializing the application	 117
Using the Application object to navigate to various views	 121
Adding touch events to your mobile application	 126

Chapter 9: Kendo UI Mobile Widgets	 129
Introduction	 129
Creating a list using a ListView widget	 130
Binding the ListView widget to a DataSource object	 134
Fixing the headers when the user scrolls through the list	 137
Filtering the elements in ListView	 139
Building a hierarchical list using the ListView widget	 143
Building an endless scrolling list	 148
Showing a list of actions that can be performed using the
ActionSheet widget	 150

iii

Table of Contents

Using the ScrollView widget to navigate through a collection of pictures	 153
Creating a SplitView widget to display multiple panes in a tablet and
building interaction between the panes	 157
Tab between views in the application using a TabStrip widget	 163

Chapter 10: Kendo UI DataViz	 167
Introduction	 167
Creating charts using kendoChart	 168
Binding a chart to a DataSource object	 173
Creating a multiaxis chart	 177
Displaying data over a period of time and using aggregate functions	 181
Making a chart interactive by adding events	 185
Changing the chart type dynamically	 188

Chapter 11: Kendo UI DataViz – Advance Charting	 193
Introduction	 193
Creating a chart to show stock history	 194
Using the Radial Gauge widget	 199
Using the Linear Gauge widget	 205
Generating barcode images using various encoding methods	 207
Generating a QR code image to represent a URL, e-mail, telephone,
and geographic location	 209
Creating flow diagrams using Kendo Diagram	 211
Creating hierarchical structural diagrams using layouts	 215
Creating a map to display geospatial information using an OpenStreet map	 220
Creating a map by binding it to the GeoJSON data	 225

Index	 229

Preface
Kendo UI is an HTML- and jQuery-based client-side framework that enables you to build web
applications for the web and mobile platforms. The library contains a multitude of widgets that
can be configured with ease to build applications rapidly. In addition to the widgets for the web
and mobile platforms, the library provides numerous data-visualization components that allow
you to build complex charts, diagrams, interactive maps, and barcode and QR code generators.

What this book covers
Chapter 1, The Kendo UI Application Framework, introduces you to the core components
in the framework, such as client-side templates, using the Model View ViewModel (MVVM)
pattern, and using the built-in validator to validate form fields.

Chapter 2, The Kendo UI Grid, introduces you to the Grid component that is used to display
data in a tabular format and includes various features such as sorting based on the selected
column, filtering data that match certain criteria, and updating data.

Chapter 3, Kendo UI TreeView, introduces you to the TreeView widget that is used to display
hierarchical data such as a directory structure. The widget can be customized by prefixing
the components in TreeView with a checkbox or representing them with a prefixed image.

Chapter 4, Kendo UI Editor, introduces you to the Editor widget that allows you to create
a What You See Is What You Get (WYSIWYG) interface. This interface contains a number
of tools that can be added to the toolset bar.

Chapter 5, Kendo UI PanelBar, introduces you to the PanelBar component that is used to
construct an accordion-like layout. This layout allows you to group data and stack them vertically.

Chapter 6, Kendo UI File Uploader, introduces you to the Upload widget that allows you
to upload multiple files to the server and track the progress of the same. It provides a
consistent interface for all browsers.

Chapter 7, Kendo UI Window, introduces you to the Window widget that is used to create
pop-up windows or modal windows to display alert messages.

Preface

2

Chapter 8, Kendo UI Mobile Framework, introduces you to the mobile framework, which
includes core mobile components used in building a mobile application. This also includes
creating layouts and views, navigating through views, and adding touch events.

Chapter 9, Kendo UI Mobile Widgets, introduces you to the mobile widgets in the Kendo UI
Mobile library. These widgets allow you to build mobile applications quickly. This includes the
use of widgets such as ListView, ActionSheet, TabStrip, and SplitView for tablet applications.

Chapter 10, Kendo UI DataViz, introduces you to the basic data visualization components
that allow you to create interactive charts easily. These components can also be customized
to match the desired look and feel.

Chapter 11, Kendo UI DataViz – Advance Charting, introduces you to the advanced data
visualization components that allow you to build dashboard-like applications with ease.
This includes creating a Stock chart, creating a radial and linear gauge, generating barcode
and QR code, creating flowchart-like diagrams, creating diagrams to represent a hierarchical
structure, and creating maps to display geospatial data.

What you need for this book
This book includes numerous recipes on building applications using web, mobile, and
data visualization components. You are required to download the Kendo UI framework from
www.kendoui.com. The library has a dependency on the jQuery framework and therefore
should be loaded before including the Kendo UI library.

Basic knowledge of building web applications using HTML, CSS, and JavaScript is required.
It will be helpful if you have used jQuery in your projects.

Who this book is for
This book will do wonders for web developers who have knowledge of HTML and JavaScript
and want to polish their skills in building applications using the Kendo UI library.

The library provides web, mobile, and data visualization widgets that can be configured easily
to match the needs of the application.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds
of information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames,
dummy URLs, user input, and Twitter handles are shown as follows: "The Kendo UI library
exports an object, kendo, which is a namespace for various other objects and functions."

Preface

3

A block of code is set as follows:

var template = kendo.template("Full Name: " +
 " #= lastName # ," +

 " #= firstName # ");

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

<div
 data-role="view"
 data-layout="defaultLayout">
 <div
 id="touchSurface"
 data-role="touch"
 data-enable-swipe="1"
 data-touchstart="touchstart"
 data-swipe="swipe"
 data-tap="tap"
 data-doubletap="doubletap"
 data-hold="hold"
 style="height: 200px;">

 Touch Surface

 </div>
</div>

Any command-line input or output is written as follows:

Directory1 is checked: no

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "For example, if the first
name is not specified, the message would be First Name is required."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

4

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the errata submission form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing errata
can be viewed by selecting your title from http://www.packtpub.com/support.

Preface

5

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
The Kendo UI

Application Framework

In this chapter, we will cover the following recipes:

ff Using client-side templates to generate HTML markup from JSON data

ff Creating a two-way binding between View elements and JavaScript objects using
the Model View ViewModel (MVVM) pattern

ff Using source and template binding with ViewModel to generate HTML content

ff Validating user input using the built-in Validator

Introduction
The Kendo UI library is composed of various widgets that are built for both the web and
mobile platform. It also provides data visualization components, which can be used to build
rich and interactive charts. This chapter focuses on the Kendo UI application framework.
This framework includes tools such as the client-side templating engine, data binding,
and routing, and it also helps users to validate form fields.

The Kendo UI Application Framework

8

Using client-side templates to generate
HTML markup from a JSON data

The concept of using a templating system with some data source to generate a dynamic
web content has been around web development for a long time. Java Server Pages (Java),
Smarty (PHP), and Django (Python) are examples of some of the server-side templating
engines. Generating content at runtime used to be a server-side-only affair. In recent
years, generating the content on the client side (on the browser) has been embraced.

The dynamic applications that are being built today require the user interface to be updated
frequently. This can be achieved by fetching the HTML fragment from the server and then
inserting it into the document. However, this requires the server to generate such fragments
as opposed to delivering complete web pages. In the client-side templating engine, the servers
are responsible for sending only the dynamic data in the JSON format and then have the page
assembled in the browser using a static client-side template. This template can be served from
Content Delivery Network (CDN) instead of the same server that sends the dynamic data.
The time taken to send the records in the form of JSON data and not generate the markup
on the server side takes away more CPU cycles, thereby improving the performance of the
application to a great extent. Consider a shopping cart application, which lists the products
in the cart. The cart data can be sent to the client in the JSON format. Then, use templates
to generate an HTML markup on the client side.

There are various types of client-side templating engines to choose from; some of them are
logic-less such as Mustache and Handlebars, some are based on the HAML syntax such as
Jade, and some others are based on John Resig's micro templating such as underscore.js.

In Kendo UI, a microtemplating library is used, which is called hash templates. In these
templates, hash symbols are used to mark regions in the template that will be executed
when the template is used to generate dynamic content.

How to do it…
The Kendo UI library exports an object, kendo, which is a namespace for various other
objects and functions. The template function is one of them. The template function compiles
hash-based templates into functions that can be evaluated for rendering. It is useful to
render complicated bits of HTML from a JSON data source. The following are the three
hash-based syntaxes:

ff The syntax to render literal values is #= #

ff The syntax to render HTML-encoded values is #: #

ff The syntax to execute arbitrary JavaScript code is # for(…) #

Chapter 1

9

Let's take a look at a very simple example of rendering firstName and lastName of a
person using the following hash-based template:

<script>

 var template = kendo.template("Full Name: " +
 " #= lastName # ," +
 " #= firstName # ");
 var data = {};

 data.lastName = "Smith";
 data.firstName = "Todd";

 var result = template(data);

 $('.addressContainer').append(result);

</script>

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Here, the #= <literal> # expression is used. Similarly, we can also use a hash-based
expression to render HTML-encoded values:

<script>

 var template = kendo.template("Full Name: # lastName # #
 , #: firstName # ");
 var data = {};

 data.lastName = "Smith";
 data.firstName = "<i>Todd</i>";

 var result = template(data);

 $('.addressContainer').append(result);

</script>

The Kendo UI Application Framework

10

Here, the #: <literal> # expression is used. Rendering HTML-encoded values is particularly
useful when you are accepting HTML strings as a part of a form input string, and they display
the same in the result. The HTML characters\tags present in the data would be escaped and
rendered as strings.

How it works…
Now, let's understand what is happening in the preceding code examples. In the first example,
the first line is as follows:

var template = kendo.template("Full Name: " +
 " #= lastName # ," +

 " #= firstName # ");

Here, the template function is used to compile the input string. Note that the input string
contains HTML tags with hash-based expressions. This will return a function that can then
be used with data to generate output. In the following four lines of the code snippet, a
JavaScript data object with two variables, lastName and firstName, is created:

var data = {};

data.lastName = "Smith";
data.firstName = "Todd";

var result = template(data);

The last line in the preceding code snippet invokes the compiled function (assigned to the
template variable), which then passes the JavaScript object as a parameter. This will replace
the literal values inside the hash-based expression and generate the following output string:

Full Name: Smith , Todd

In the second example, the code is very similar, except that the #: <literal> # hash-based
expression is used. This expression will escape the HTML tags and generate the output that
contains HTML tags as it is.

There's more…
As seen in the previous examples, the HTML is passed as a string to the kendo.template
function. An alternative to this is to define a template in a script tag:

Chapter 1

11

<script type="text/x-kendo-template" id="testTemplate">

 # for (var i=0; i < functions.length; i++) { #
 #= functions[i] #
 # } #

</script>

Note the hash-based syntax used in the preceding code as well; it contains a JavaScript
for statement that iterates over an array and generates list tags (tags). Now, to compile
this template, we will refer to the script tag using the id attribute:

<script>

 var templateContent = $('#testTemplate').html();

 var template = kendo.template(templateContent);

 var functions = ["concat", "indexOf", "join", "lastIndexOf",
 "pop", "push", "reverse", "shift", "slice", "sort", "splice",
 "toString", "unshift", "valueOf"];

 var result = template(functions);

 $('.listContainer').append(result);

</script>

Here, the template is referred using the id attribute, #testTemplate. The content of the
template is retrieved using $('#testTemplate').html(). The content is then used with
the kendo.template function to generate the markup. This content is then inserted into
the page by appending the same inside an unordered list using $('ul.listContainer').
append(result).

The script tag used here to write template has its type as text/
x-kendo-template. This is a common way to implement
templating on the client side. The browser simply ignores the
script tag with a type that is not recognized by it.

The Kendo UI Application Framework

12

Creating a two-way binding between View
elements and JavaScript objects using the
Model View ViewModel (MVVM) pattern

There are various architectural patterns that are used in most of the applications. The three
very important architectural patterns are as follows:

ff Model View Controller (MVC)

ff Model View Presenter (MVP)

ff Model View ViewModel (MVVM)

These patterns are heavily used in structuring both the desktop and server-side applications.
In recent years, these patterns have been applied to client-side applications as well. Frameworks
such as AngularJS, BackboneJS, and EmberJS provide components that can be readily used to
build applications that follow one of these patterns. All three patterns mentioned previously try
to separate the development of the user interface from the development of the business logic.

The Model View ViewModel (MVVM) pattern is an architectural pattern, which is based
on MVC and MVP. Here, the model layer represents the domain-specific data. An example
application will include the bank account number, the holder's name, the balance amount,
and so on. The model layer represents raw data that needs to be formatted to be consumed
by View. The View layer consumes the data provided by the model and formats it as required.
On the other hand, the behavior of the application or the business logic is encapsulated in a
layer called ViewModel.

There are several frameworks, such as KnockoutJS, KnockbackJS, and Kendo UI,
that implement the MVVM pattern. In Kendo UI, the MVVM pattern is at the core of the
application framework. The framework provides APIs using which the various components,
such as model, ViewModel, and data binding (that binds the markup to the ViewModel
object) can be accomplished.

How to do it…
To illustrate how the MVVM pattern is implemented in Kendo UI, let's take a look at a very
simple example in which the form elements are bound to a ViewModel object. The ViewModel
object, in this case, would define the model data and also the behavior for one of the elements:

<form id="testView">

 Firstname: <input id="firstName"
 type="text"

Chapter 1

13

 data-bind="value: fisrtName">

 Lastname: <input id="lastName"
 type="text"
 data-bind="value: lastName">

 Fullname: <input id="fullName"
 type="text"
 data-bind="value: fullName"
 readonly>

 <input type="submit">

</form>

In the previous code snippet, a form with the id attribute, testview, that contains
three input elements (textboxes) is created. Note the data-bind attribute in each
one of these input elements. The data-bind attribute is used to specify the binding
between View elements and the ViewModel object.

Here, the first input element specifies the value of the data-bind attribute as
value: firstName. This indicates that the value of the input element is bound
to the firstName model attribute. Now let's define ViewModel, which encapsulates
the model data and behavior:

var viewModel = kendo.observable({
 fisrtName: "Sagar",
 lastName: "Ganatra",
 fullName: function() {
 return this.get("fisrtName") +
 ' ' + this.get("lastName");
 }

});

A ViewModel object is created using the Observable interface on the kendo object. In
this example, the ViewModel object contains the firstName, lastName, and fullName
attributes. Note that while firstName and lastName are of the string type, the fullName
attribute is a function that returns a string by concatenating firstName and lastName.

Now that we have the markup and ViewModel, they should be tied to each other. The bind
method is used to bind View components to ViewModel:

kendo.bind($('form#testView'),viewModel);

The Kendo UI Application Framework

14

The first argument to the bind function is the View component referred by using
$('form#testView') and the second argument is the ViewModel object, viewModel.
Once View and ViewModel are bound, any changes made to the model will update View,
and any changes made by the user will be reflected in the model.

How it works...
When you execute the previously mentioned code snippets, the form elements with the
values mentioned in the model are populated, as shown in the following screenshot:

Notice that in the markup, the last input element for FullName is read only. It is bound to
a fullName model attribute, which is a function that returns the string concatenated by
firstName and lastName. When you change the value of either firstName or lastName,
the fullName model also gets updated and the same is reflected in the View class.

In the preceding screenshot, when the value of the Firstname input element is changed,
the value of the Fullname attribute also gets updated. Note that the model attributes are
updated on a blur event on the View component.

There's more…
In the previous screenshot, we saw how data binding can be used to set the values of input
elements in the form. In addition to setting the value for some of the elements in the page,
data binding can also be used to set attribute values (attr), to set HTML content (html),
hide or show the elements in the page (visible and invisible), and so on.

Chapter 1

15

Let's take a look at each one of these scenarios. The attr binding is used to bind tag
attributes with model attributes in the following code snippet:

<a data-bind="attr: {href: websiteLink}"
 target="_blank">

 Click Here

In the preceding code snippet, the data-bind attribute has the attr: {href:
websiteLink} value. Here, attr indicates that the tag attributes are bound to ViewModel.
In this example, the href attribute of the anchor element is bound to a model attribute,
websiteLink. The ViewModel object for the same would be as shown in the following
code snippet:

<script>

 var viewModel = kendo.observable({
 websiteLink: 'http://www.packtpub.com',
 });

 kendo.bind($('a'),viewModel);

</script>

In the code snippet, the ViewModel object contains only one attribute, websiteLink.
The value for this model attribute is an external link, which is http://www.packtpub.com.
When the View component is bound to the ViewModel object, the anchor element
is updated, which then has an attribute, href, that refers to the external link mentioned
in ViewModel.

Similarly, the components in View can be hidden or shown on the page by using the binding
attribute, visible:

<div id="view">
 <span id="container"
 data-bind="visible: isVisible">

 Some content here....

 <button id="toggleVisible"

The Kendo UI Application Framework

16

 data-bind="click: updateVisible">

 Toggle Visible

 </button>
</div>

In the previous code snippet, the span element has the data-bind attribute set to visible:
isVisible. Here, the value of the isVisible model attribute should be of the Boolean type.
If the same is false, then the style attribute of the span element is set to display: none.
Also, the button has the data-bind attribute set to click: updateVisible. Here, the
button's click event is bound to the model attribute, updateVisible. The ViewModel
object for the previous markup is shown in the following code snippet:

var viewModel = kendo.observable({

 isVisible: true,

 updateVisible: function() {

 this.set('isVisible', !this.get('isVisible'));

 }
});

kendo.bind($('div#view'),viewModel);

The initial value for isVisible in ViewModel is set to true and hence the text,
Some Content here…, (inside the span) would be visible. When you click on the
toggleVisible button, it toggles the isVisible model attribute. This will either show
or hide the span element.

Using Source and Template binding with
ViewModels to generate HTML content

In the previous recipe, data binding between View components and ViewModel attributes
was explored. Binding can be performed not only on the value of the form elements, but also
on the attributes, and also to hide or show the elements on the page. In this recipe, we will
look at the source and the HTML binding in combination.

Consider a dropdown (to select an element) that you want to populate it with data (option
tags). The data for these could be provided from a ViewModel object; use a template to
generate these option tags.

Chapter 1

17

How to do it…
Let's first construct a ViewModel object:

var viewModel = kendo.observable({
 optionsData: [
 {optionValue:1, optionName: "Test1"},
 {optionValue:2, optionName: "Test2"},
 {optionValue:3, optionName: "Test3"}
]

});

The ViewModel object here contains an optionsData attribute, which is a collection (array)
of objects. Each object in optionsData contains two attributes, namely optionValue and
optionName. The optionValue attribute will be used for the value attribute of the option
tag, and optionName will be used for the HTML content to be shown in the dropdown.
The template that contains the option tag binding is shown in the following code snippet:

<script id="select-template" type="text/x-kendo-template">
 <option data-bind=
 "attr: {value: optionValue}, html: optionName">			
	
 </option>

</script>

Here, the template with the id attribute set to select-template contains one option
tag. The option tag contains the data-bind attribute whose value is attr: {value:
optionValue}, html: optionName. We already saw the attribute binding in
action in the previous recipe. The other binding specified here is html. This binding is
used to generate the HTML content for the tag. These option tags should be bound to the
ViewModel object and be encapsulated inside a select tag.

The select tag can refer to the template (mentioned previously) and bind to the ViewModel
object using the source attribute:

<select data-template="select-template"
 data-bind="source: optionsData">
</select>

Here, the select tag specifies the two attributes, namely data-template and data-bind.
The value of the data-template attribute is the id attribute of the template (the script tag)
that we defined earlier, that is, select-template. This instructs kendo to bind the template
to the select tag, and the generated content would become the HTML content for this
select tag.

www.allitebooks.com

http://www.allitebooks.org

The Kendo UI Application Framework

18

The data-bind attribute specifies a binding source that refers to the optionData model
attribute in ViewModel. Now, the only step pending is to bind View elements to ViewModel,
which is attained by executing the following line of code:

kendo.bind($('select'),viewModel);

How it works…
The select tag specifies the source binding that refers to the optionsData model attribute.
This will make the collection of objects available to all the tags inside it.

The data-template attribute that refers to the template in the page is provided with the
collection of objects (optionsData) and the template is iterated for the number of entries
in the array. In this example, the optionsData collection contains three objects and hence,
the template is generated three times and inserted as the HTML content for the select tag.
The generated content would look like the following code snippet:

<select data-template="select-template"
 data-bind="source: optionsData">

 <option data-bind=
 "attr: {value: optionValue}, html: optionName"
 value="1">
 Test1
 </option>

 <option data-bind=
 "attr: {value: optionValue}, html: optionName"
 value="2">
 Test2
 </option>

 <option data-bind=
 "attr: {value: optionValue}, html: optionName"
 value="3">
 Test3
 </option>

</select>

The data- attributes would remain as they are, and the generated content now has the
value attribute and the HTML content. Note that the preceding code could have been
accomplished by using a for statement in a hash-based template and then appending
the generated output to the select tag. However, using a data-template attribute
and source binding allows you to do this seamlessly and write more intuitive code.

Chapter 1

19

This pattern can be applied in various situations. Another example includes generating
list tags (li elements) and inserting them into an unordered or ordered list.

Validating user input using the built-in
Validator

Validating user-input data is one of the common tasks in any project. A client-side validation
includes checking the form-input data for the type or for the missing data. This is not to say
that the server-side validation is not important. However, a client-side validation takes care
of performing basic validations and shows error or validation messages before submitting
the form data to a server for processing. Therefore, it provides instant feedback to the user
and improves the overall user experience.

With the advent of HTML5, the input fields in a form can have types defined for it. For example,
an input field that should accept only an e-mail address can be specified as type=email.
Similarly, the input fields can have types such as URL, NUMBER, RANGE, DATE, SEARCH, and
COLOR. When the user specifies incorrect data for any of these fields, the browser will show an
appropriate validation message. In addition to the types, the form elements can also be marked
as required by adding an additional attribute, required, to the input elements. However, some
of the old browsers don't support HTML5 features, including the previously mentioned form
validation. The Kendo UI library comes with a built-in validator that can be used to perform
client-side validations.

The Kendo UI validator encourages users to use HTML5-like syntax and provides
out-of-the-box support to make the form validation work on older browsers.

How to do it…
Let's take a look at an example where in one input, the text field is marked as required, and
the other input field of the email type is also marked as required. Please note that this is
very much an HTML5 syntax and the user doesn't have to alter the markup to mark the fields
as required or of a different type:

<form id="testView">

 <label for="firstName">First Name</label>
 <input id="firstName"
 name="First Name"
 type="text"
 required
 validationMessage="Please specify First Name">

The Kendo UI Application Framework

20

 <label for="emailId">Email Address</label>
 <input id="emailId"
 name="Email Address"
 type="email"
 required
 data-required-msg="Please specify Email Address"
 data-email-msg="Email format is not correct">

 <input type="submit">

</form>

In the preceding markup, the input fields are marked as required and validation messages
are defined in data- attributes. After specifying the validation messages in the markup,
the last step is to attach the kendo validator to the form. This is attained by executing the
following code snippet:

$("form#testView").kendoValidator();

In the previous code snippet, the form element is marked for validation by calling the
kendoValidator function on the same.

How it works…
In the previous markup, the firstName field is of the text type and is marked as required
by adding the required attribute. Also, a validationMessage attribute that specifies the
validation message to show when the user doesn't provide any input data is mentioned. The
next input element, emailId, is of the email type and is marked as required as well. In
this case, there are two rules that are applicable; firstly, the field is required, and secondly,
the user should enter a valid e-mail address. Therefore, we need to specify two validation
messages for the input field. Here, the data-required-msg and data-email-msg
attributes are specified. When the user doesn't specify any value, the validation message
specified in data-required-msg is displayed. Also, when the user specifies an invalid
e-mail address, the validation message specified in data-email-msg is displayed.

Now, let's see this in action; when the user doesn't specify values for both the fields,
then the required validation message would be shown as follows:

Chapter 1

21

When the user clicks on the Submit button, the validator runs, inspects the input data, and
shows the validation message if there is no data specified. Now, when the user keys in an
invalid value in the e-mail field, the validation message specified in data-email-msg would
be shown as follows:

Here, both the fields have some data in place and hence, the required field validation
has passed. However, the e-mail address is not valid and, hence, you see the corresponding
validation message being shown.

By default, the field is validated when it loses focus. This is called the
onBlur event. This can be disabled by passing the validateOnBlur:
false option to the kendoValidator method:

 $("form#testView").kendoValidator({
 validateOnBlur: false
 });

There's more…
In the previous example, we saw that the validation message was specified in the markup.
It is also possible to configure the validator so that the same message is applicable to all
fields with a specific validation rule. For example, all required fields can have the same
validation message, such as This field is required.

The messages configuration option can be used to set the various validation messages
that can be applied across all the input elements, as shown in the following code snippet:

$("form#testView").kendoValidator({
 messages: {
 // {0} would be replaced with the input element's name
 required: '{0} is required'

 email: 'Enter a valid email address'
 }
});

The Kendo UI Application Framework

22

Here, the validation messages are removed from the markup and the same is specified in the
kendoValidator method. Note the use of {0} in the validation message for the required
fields. Here {0} is replaced with the input element's name. For example, if the first name is
not specified, the message would be First Name is required.

Similarly, in the case of fields of the email type, the Enter a valid email address validation
message is shown if the user doesn't provide a valid e-mail address.

In a case where the validation message is specified in the markup as well as in the
kendoValidator method as options, the message specified in the markup would
take precedence.

It is also possible to define custom validation rules in addition to the standard set of validation
rules mentioned previously. This is done by passing the rules option to the kendoValidator
method. Let's consider the same example form that contains two input fields, namely
firstName and emailId.

Now, let's add a custom rule that doesn't allow numbers to be entered in these fields:

$("form#testView").kendoValidator({

 rules: {
 customRule1: function(input) {
 var re = /^[A-Za-z]+$/;
 return re.test(input.val());
 }
 },
 messages: {
 customRule1: 'Numbers are not allowed'
 }
});

In the preceding code snippet, a custom rule, customRule1, is defined. When the form
is being validated, all input fields are checked against this custom rule. Here, a regular
expression is used to test whether the value of the input element contains a numeric value.
If this returns false, then the validation message (defined under the messages object)
Numbers are not allowed is displayed.

As highlighted in the preceding screenshot, the validation message is shown as the user has
entered alphanumeric characters.

2
The Kendo UI Grid

In this chapter, we will cover the following recipes:

ff Creating a Grid view and displaying tabular data

ff Displaying data from a local or remote DataSource component in a Grid view

ff Sorting data in a Grid using a selected column

ff Using filters to display data that matches certain criteria in the Grid

ff Creating, updating, and deleting content in the Grid

ff Using the virtualization mechanism to improve the performance of the Grid

ff Customizing the look and feel of the Grid

Introduction
The Kendo UI library comes with a powerful Grid component. A Grid component is very useful
when you want to display tabular data and provide various functionalities, such as sorting
based on a selected column, filtering data, using pagination, and editing the tabular data.
The Kendo UI Grid component provides various configuration options to customize the way
the Grid is displayed and also provides various APIs to manipulate the Grid's content.

Creating a Grid view and displaying tabular
data

A Grid in Kendo UI can be created in the following two ways:

ff From an existing HTML table element

ff From an existing DIV element

The Kendo UI Grid

24

In this recipe, we will take a look at the first approach, that is, creating a Grid using an existing
HTML table element.

How to do it…
Creating a Grid using an existing table element is very easy. Let's create a table with five rows
using the following code snippet:

<table id="grid">
 <thead>
 <tr>
 <th>Employee ID</th>
 <th>Full Name</th>
 <th>Year of Joining</th>
 <th>Designation</th>
 <th>Extension No.</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>10001</td>
 <td>Sagar H Ganatra</td>
 <td>2008</td>
 <td>Software Architect</td>
 <td>49523</td>
 </tr>
 <tr>
 <td>7008</td>
 <td>Adam Wayne</td>
 <td>2000</td>
 <td>Engineering Manager</td>
 <td>34890</td>
 </tr>
 <tr>
 <td>10298</td>
 <td>Nick Taylor</td>
 <td>2012</td>
 <td>Software Engineer</td>
 <td>56823</td>
 </tr>

Chapter 2

25

 <tr>
 <td>10677</td>
 <td>James Thompson</td>
 <td>2010</td>
 <td>Senior Software Engineer</td>
 <td>48999</td>
 </tr>
 <tr>
 <td>6745</td>
 <td>Andrew Jones</td>
 <td>2003</td>
 <td>Senior Engineering Manager</td>
 <td>48999</td>
 </tr>
 </tbody>

</table>

In the preceding markup, a table element containing five rows is defined. Note that all the
data is defined in the table itself. The next step is to include the style sheets in the page,
which is achieved using the following code snippet:

<link rel="stylesheet"
 type="text/css"
 href="../../styles/kendo.common.min.css">

<link rel="stylesheet"
 type="text/css"

 href="../../styles/kendo.default.min.css">

The downloaded Kendo UI library contains a styles directory. This directory
contains various style sheets. For this example, include kendo.common.min.css
and kendo.default.min.css. The last step is to initialize the Grid:

<script>
 $('document').ready(function(){
 $("#grid").kendoGrid();
 });
</script>

Here, the table element with the grid ID is initialized by invoking the kendoGrid function on
it. This function takes additional parameters, which are used to configure the Grid. We will take
a look at these parameters in the coming recipes.

The Kendo UI Grid

26

How it works…
When you render the page, you will see the previously mentioned table data being displayed
inside a Grid, as shown in the following screenshot:

As seen in the previous screenshot, the columns are automatically adjusted, and each column
has the same width. The previously mentioned Grid occupies the entire viewport width, unless
it is wrapped inside a container with a fixed width. The column size can be changed by using
the colgroup tag:

<table id="grid">
 <colgroup>
 <col style="width:130px"/>
 <col />
 <col style="width:130px" />
 <col />
 <col style="width:130px" />
 </colgroup>
 <thead>

</table>

Here, the width for the Employee ID, Year of Joining, and Extension No columns is
specified as 130px. Now, when Grid is initialized, these columns will have the specified width,
and the two other columns, namely Full Name and Designation, will share the remaining
space. The updated Grid is shown as follows:

Chapter 2

27

As mentioned previously, the second and fourth columns in the Grid have the same width.

There's more…
Note the look and feel applied to the Grid. Alternate rows in the Grid have different colors;
even the Grid header has a color applied to it. This is because of the inclusion of the kendo.
default.min.css style sheet. The library comes with several themes, which you can
apply by removing the reference to the default style sheet and then adding the reference to
one of the themes. For example, the library comes with the moonlight theme. By adding a
reference to kendo.moonlight.min.css, the look and feel of the Grid will change.

There are several other themes that come with the library. It is also possible to create your
own theme; please refer to the following link for the same:

http://demos.kendoui.com/themebuilder/web.html

The Kendo UI Grid

28

Displaying data from a local or remote
DataSource component in a Grid view

A Grid component can be created using the data present in the page or by referring to model
data, that is, data in the JSON format. The Kendo UI library provides a DataSource component
that can be used to store a model data. The DataSource component can be bound to a local
data source or to a remote service that returns data in either the XML or JSON format.

How to do it…
As mentioned in the previous recipe, we can either use a table element or a div element
to construct a Grid:

<div id="grid">

</div>

Now, when we initialize the Grid using the kendoGrid function, we need to specify the
configuration and data for the table:

$("#grid").kendoGrid({
 columns: [
 {
 field : 'movieName',
 title : 'Movie'
 },
 {
 field : 'year',
 title : 'Year'
 },
 {
 field : 'rating',
 title : 'Rating'
 }
],
 dataSource: [
 {
 movieName : 'The Shawshank Redemption',
 year : 1994,
 rating : 9.2
 },

Chapter 2

29

 {
 movieName : 'The Godfather',
 year : 1972,
 rating : 9.2
 },
 {
 movieName : 'The Godfather - Part 2',
 year : 1974,
 rating : 9.0
 },
 {
 movieName : 'Pulp Fiction',
 year : 1994,
 rating : 8.9
 },
 {
 movieName : 'The Good, the Bad and the Ugly',
 year : 1966,
 rating : 8.9
 }
]

});

In the preceding code snippet, the Grid is being initialized with two objects, namely columns
and dataSource. The columns object is a collection of JavaScript objects that specify the
column configuration. The configuration contains two properties, field and title. The
field property refers to the field in dataSource that the column is bound to and title
specifies the text to be displayed as a header in the Grid.

The dataSource object is also a collection of JavaScript objects that contains the data that
will be displayed in the Grid. In this example, there are five objects and hence, the Grid will
contain five rows.

Please note, the columns object can be an array of strings as well:
columns: ['movieName', 'year', 'rating']

In this case, the entries in the columns array should match the field name
in the dataSource object. The title for the columns will be the same as
the field names.

The Kendo UI Grid

30

How it works…
As mentioned previously, we chose a div element to create a Grid. This element would serve
as a container for the Grid. While initializing the Grid, the framework would look at the provided
configuration and generate the markup, which will then be inserted inside the div element.
It creates two div elements—one for the header and the other for the content. The header is
shown as follows:

<div class="k-grid-header" style="padding-right: 16px;">
 <div class="k-grid-header-wrap">
 <table role="grid">
 <colgroup>
 <col>
 <col>
 <col>
 </colgroup>
 <thead>
 <tr>
 <th role="columnheader"
 data-field="movieName"
 data-title="Movie"
 class="k-header">
 Movie
 </th>
 <th role="columnheader"
 data-field="year"
 data-title="Year"
 class="k-header">
 Year
 </th>
 <th role="columnheader"
 data-field="rating"
 data-title="Rating"
 class="k-header">
 Rating
 </th>
 </tr>
 </thead>
 </table>
 </div>
</div>

Chapter 2

31

Based on the configuration provided in the columns object, a table that contains the header
columns is generated (the thead and th tags). To display the Grid data, the library inserts
another div element:

<div class="k-grid-content">
 <table role="grid">
 <colgroup>
 <col>
 <col>
 <col>
 </colgroup>
 <tbody>
 <tr data-uid="d71ac3fd-9769-4161-9277-432f151490c3"
 role="row">
 <td role="gridcell">
 The Shawshank Redemption</td>
 <td role="gridcell">1994</td>
 <td role="gridcell">9.2</td>
 </tr>
 <tr class="k-alt"
 data-uid="3240f52d-f4bb-4a2c-9985-b6ce44d75be6"
 role="row">
 <td role="gridcell">The Godfather</td>
 <td role="gridcell">1972</td>
 <td role="gridcell">9.2</td>
 </tr>
 .
 .
 .
 </tbody>
 </table>
</div>

The preceding code contains a table with rows that display data from the dataSource object.
Now, when you view the Grid on the page, it will be the same as the Grid that was explained in
the previous recipe. This is shown in the following screenshot:

The Kendo UI Grid

32

There's more…
The dataSource object in this example contained the local data, that is, the data for the Grid
was mentioned right within the JavaScript object. However, in most of the scenarios, the data
will be fetched from a remote service. The dataSource object can be used to fetch data
from a remote service by specifying the URL for it:

$("#grid").kendoGrid({
 columns: [
 {
 field : 'movieName',
 title : 'Movie'
 },
 {
 field : 'year',
 title : 'Year'
 },
 {
 field : 'rating',
 title : 'Rating'
 }
],
 dataSource: {
 transport: {
 read: 'http://localhost/kendo/code/chapter2/remote.json'
 }
 }

});

In the preceding code snippet, the DataSource object has changed. It now contains a
reference to the URL of a remote service (under the transport option). When the Grid is
initialized, a GET request to the specified URL is sent and the data received as a response
is then used to populate the content of the Grid.

Sorting data in a Grid using a selected
column

The Kendo UI Grid comes with several features, such as sorting by selected columns, pagination,
grouping, and scrolling. These configuration options can be specified at the Grid configuration
level and at the column level as well.

Chapter 2

33

How to do it…
To enable the sort by column feature, set the sortable configuration option to true. This
will make all the columns in the Grid available for sorting. If you want some of the columns in
the Grid to not be available for sorting, then you can add the same property, sortable, with
a false value at the column level as well:

$("#grid").kendoGrid({
 columns: [
 {
 field : 'movieName',
 title : 'Movie',
 sortable: false,
 },
 {
 field : 'year',
 title : 'Year'
 },
 {
 field : 'rating',
 title : 'Rating'
 }
],
 dataSource: {
 transport: {
 read: 'http://localhost/kendo/code/chapter2/remote.json'
 }
 },
 sortable: true

});

Here, by adding sortable as true, all the columns in the Grid will be available for sorting.
At the column level, for the movieName field, the sortable option is set to false. This will
disable the sorting functionality on the first column. Also, note that adding the sortable
option for each column is not required since this is specified at the Grid level.

In many scenarios, you would like the Grid columns to be sorted by multiple columns.
In our example, the Grid can be sorted by year first and then by rating. To make this
option available, set the option mode as multiple:

sortable: {
 mode: 'multiple'
}

By default, the value for mode is single, that is, the columns will be sorted based on the
selected column.

The Kendo UI Grid

34

How it works…
When you render the Grid with the sortable mode set to either single or multiple, the
Grid is shown as it is. However, when you hover over a sortable column, the cursor changes
to a pointer and when you click on it, the Grid gets sorted by the selected column. In the single
mode, the Grid is sorted based on the selected column, as shown in the following screenshot:

Here, the Grid is sorted by the third column, Rating; an upward arrow indicates that the
Grid is sorted in the ascending order. Based on this column, the data in the Grid is sorted.

Now, let's take a look at an example where the sortable mode is set to multiple. As
mentioned earlier, this mode allows users to sort by multiple columns. This example allows
the columns in the Grid to be sorted by the first selected column and then by the second
selected column.

Chapter 2

35

Here, the Grid is sorted by the second column, Year, first and then by the third column,
Rating. A downward arrow indicates that the column is sorted in the descending order.
Here, the Grid is sorted by listing the recent movies that have high ratings.

Using filters to display data that matches
certain criteria in the Grid

Similar to sorting columns in a Grid, you can update the Grid content by applying a filter.
By applying a filter on the column, users will be able to search relevant data in the Grid
that matches some criteria.

How to do it…
To make the columns in the Grid filterable, set the configuration option, filterable,
to true, as shown in the following line of code. Similar to the sortable option, all columns
in the Grid will be available for filtering by default. If you want some of the columns to not be
available for filtering, then set filterable as false under columns.

filterable: true

How it works…
When you mark the columns for filtering, you will see a filter icon for each of the columns in
the Grid.

The Kendo UI Grid

36

When you click on it, you will be presented with a set of options that will allow you to get
filtered data.

By default, users will be presented with two conditions to enter in the search criteria. In this
example, the user has selected contain from the dropdown and specified the Godfather text.
On clicking on the Filter button, the Grid will be updated to show those movies that contain
the name Godfather. In this example, two rows will be shown, as shown in the following
screenshot:

After applying the filter, you will see that the Grid gets updated and lists only two rows.
The column's filter icon now has a white background, which indicates that a filter has been
applied on the column. To clear the filter, click on the same filter icon and select the Clear
option. This will clear the filter and show the entire Grid. When applying a filter, apart from
specifying the contains condition, a user will have options to specify it as Is equal to, Is not
equal to, Starts with, Does not contain, and Ends with.

Now, when you try to apply a filter on the second column, that is, Year, you will see that the
Grid will not get updated and will throw the Uncaught TypeError: Object 1994 has no method
'toLowerCase error in the console. The library assumes that all columns in the Grid are of the
string type and hence the error.

Chapter 2

37

To get around this, define a schema in the DataSource object, as shown in the following
code snippet:

dataSource: {
 transport: {
 read: 'http://localhost/kendo/code/chapter2/remote.json'
 },

 schema: {
 model: {
 fields: {
 movieName: { type: "string" },
 year: { type: "number" },
 rating: { type: "number" }
 }
 }
 }
}

This will instruct the framework to use the correct data type when applying the filter on columns.

Here, the framework sees that the Year field is of number type and shows the filter criteria with
different conditions in the dropdown. The list contains the Is equal to, Is not equal to, Is greater
than, Is greater than or equal to, Is less than, and Is less than or equal to conditions.

www.allitebooks.com

http://www.allitebooks.org

The Kendo UI Grid

38

There's more…
In the previous example, when you click on the filter icon on a column, you will see two
criterias being shown. Along with this, you can specify the logical operation (AND or OR) to
be performed. More often than not, you would like only one criterion to be specified. The filter
criteria can be configured to show only one criterion by setting the extra configuration option
to false:

filterable: {
 extra: false
}

Now, only one dropdown that lists the criteria will be shown, as displayed in the
following screenshot:

Also, note that the search criteria has various operators, as mentioned earlier. The set of
operators can be configured by specifying this in the filterable configuration, as shown
in the following code snippet:

filterable: {
 extra: false,
 operators: {
 number: {
 eq : 'Is equal to',
 neq: 'Is not equal to'
 }
 }
}

Here, the operators object specifies the set of operators to be displayed for each datatype.
In this case, for the number datatype, the set of operators include Is equal to and Is not
equal to, as shown in the following screenshot:

Chapter 2

39

Creating, updating, and deleting in Grid
Editing the records right within the Grid is another common task. The Kendo UI Grid allows
users to edit the content in the Grid, which is similar to editing the cells in an Excel sheet.
There are two modes, inline and popup, in which a single row in a Grid can be edited.
The inline editing turns the cell into a text-input field and provides options to update the
record. In the popup editing, a pop up that contains the same fields is shown, and it allows
users to save the selected record.

In addition to editing rows in the Grid, the library also allows you to delete and add records
to the Grid. These actions—Create, Read, Update, and Delete—are mapped to a remote
service that can process these requests. A common paradigm used in web development is
to provide a RESTful web service. A RESTful service provides a single endpoint URL and
provides resources that get invoked based on the http method mentioned in the request.

How to do it…
To enable editing of rows in a Grid, set the editable attribute to either inline or popup:

editable: 'inline'

This will enable the inline editing. The next step is to add Edit and Delete action buttons
for each row. In the columns configuration, you can define commands that can be applied
to each row in the Grid. There are two built-in commands, namely edit and delete.

The edit command enables the editing of the row by turning the fields in the row to input
fields. The delete command, on the other hand, deletes the selected row using the following
code snippet:

columns: [{
 field : 'movieName',
 title : 'Movie',
 }, {

The Kendo UI Grid

40

 field : 'year',
 title : 'Year'
 },{
 field : 'rating',
 title : 'Rating'
 },{
 command: ['edit', 'destroy']
 }
]

Here, the columns configuration lists the various fields and mentions the edit and destroy
commands. This will add the Edit and Delete buttons for each row in the Grid. These buttons
should be bound to a remote service so that when the user updates or deletes a record,
the service will update the same in the database. In earlier recipes, we looked at using the
DataSource object with a transport attribute. Here, you can use the same attribute to
specify the endpoint for each of the actions, as shown in the following code snippet:

dataSource: {
 transport: {
 read: '/test',
 create: {
 url: '/test',
 type: 'POST'
 },
 update: {
 url: '/test',
 type: 'PUT'
 },
 destroy: {
 url: '/test',
 type: 'DELETE'
 }
 },

 schema: {
 model: {
 id: "movieName",
 fields: {
 movieName: { type: "string" },
 year: { type: "number" },
 rating: { type: "number" }
 }
 }
 }
}

Chapter 2

41

In the preceding code snippet, the transport object defines endpoint URLs for various actions,
such as read, create, update, and delete. The create, update, and delete actions
specify the endpoint URL as well as the http method to use when sending a request. The
http method is required if you have a RESTful service that accepts the request and invokes
the correct resource by examining the http method in the request. If this is not specified,
then a GET request is sent by default.

How it works…
After setting the editable attribute to inline and adding its command configuration in
columns, each row in the Grid has two buttons, that is, Edit and Delete, as shown in the
following screenshot:

When you click on Edit, the selected row switches to the edit mode and text-input fields
are shown.

The Kendo UI Grid

42

After changing the values and clicking on Update, a PUT request is sent to the mentioned
URL with the model data in the request body. Here, the user also has an option to cancel
the operation. Similarly, when you click on the Delete button, an alert box asking the user to
confirm the delete operation is shown. If the user clicks on OK, then a DELETE request is sent
to the mentioned service and the corresponding row in the Grid is deleted. When you change
the editable attribute to popup, a pop-up window is shown when you click on the Edit button.

There's more…
The Kendo UI Grid also allows the user to add records to the Grid. The Grid component can
define a toolbar attribute whose value is an array that contains a set of action buttons
to be shown. In this case, to add new records to the Grid, specify the value as create:

toolbar: ['create']

This will add a Add new record button at the top of the Grid, as shown in the
following screenshot:

Chapter 2

43

On clicking on the Add new record button, a row is added to the Grid.

This is the case when the editable attribute is set to inline. If the same is set to popup,
then a pop-up window is shown. After clicking on Update, a POST request (refer to create
in transport, shown in the last example in the How to do it… section) is sent to the service,
mentioning the model data in the request body.

Using the virtualization mechanism to
improve the performance of the Grid

Consider a scenario wherein the service returns a large dataset that needs to be displayed
in the Grid. For example, say the dataset has about 10,000 records. As explained earlier, a
table row is created for each record in the DataSource object. In this case, there are 10,000
records, and creating a table row (tr) for each record would make the browser run out of
memory. Creating 10,000 DOM nodes and then appending the same into the document tree
would consume a lot of memory. One way to tackle this problem is to use virtualization. In
virtualization, only a fixed set of nodes are created and when the user scrolls over the Grid,
the existing nodes are updated to show the next set of records in DataSource. This way,
we not only optimize the use of the browser memory by reusing the DOM node, but we also
provide a smooth experience to the user while scrolling through a massive list.

The Kendo UI Grid

44

How to do it…
The first step to virtualization is to set the number of table rows to be displayed. These table
rows will be reused to display the large list of records in the DataSource object. Let's first
set the pageSize attribute in the DataSource object to the number of rows that you want
to show using the following code snippet:

dataSource: {
 transport: {
 read: 'http://localhost/kendo/code/chapter2/remote.json',
 },

 pageSize: 4,
}

The next step is to specify the scrollable object with the virtual attribute set to true:

scrollable: {
 virtual: true
}

By setting the virtual attribute to true, the virtualization of data will be enabled.

The value 4 set for the pageSize attribute is for demonstration purposes
only. You should be setting this to a larger value depending on the number
of records and the one that best matches the user experience.

How it works…
When you set the pageSize attribute to 4 and virtual to true, only four rows will be
displayed and only four nodes are created, as shown in the following screenshot:

Chapter 2

45

The previous screenshot shows you the Grid with four rows and a scrollbar. When you scroll,
the same DOM nodes will be reused, that is, only the content and attributes of the DOM
nodes are updated with the new data present in the DataSource object. Let's examine
the DOM tree when the Grid is rendered, as shown in the following screenshot:

Now, when you scroll, the same DOM nodes are reused.

Note the data-uid attribute of the DOM nodes in the two screenshots shown earlier. When you
scroll, the DOM nodes are transferred up by one level, and the last node that contains the fifth
element in DataSource is referred as the fourth row in the table (since pageSize is four).

There's more…
When working with remote data sources, only a set of records are fetched. When the
user scrolls down, the next sets of records are fetched from a remote service. In this case,
operations such as sorting or filtering cannot be performed at the client side. This is because
the browser can only operate on the data it has received from the service. These operations
have to be performed at the server side. To enable them, set the serverSorting and
serverFiltering attributes to true in the DataSource object, as shown in the following
code snippet:

dataSource: {
 transport: {
 read: 'http://yourdomain.com/serviceName',
 },

 pageSize: 4,

 serverSorting: true,
 serverFiltering: true
}

Now, when you click on the column header, the records are sorted at the server side and
the Grid is updated to show you the list of records sorted by the selected column.

The Kendo UI Grid

46

Customizing the look and feel of the Grid
In this recipe, we will look at how we can customize the look and feel of the rows by using
a template. We will also look at the reordering and resizing of columns in the Grid.

How to do it…
Each record in the DataSource object will be represented by a table row (the tr element)
in the Grid. These rows can be customized by providing a template to the rowTemplate and
altRowTemplate attributes. The rowTemplate and altRowTemplate attributes are used
to style the rows in the Grid. Let's first define these templates. The following code snippet is
the template for rowTemplate:

<script id="gridRowTemplate" type="text/x-kendo-tmpl">
 <tr>
 <td class="details">
 <h3>#: movieName #</h3>
 Rating : #: rating#
 </td>
 <td class="year">
 <h3>#: year #</h3>
 </td>
 </tr>
</script>

The following code snippet is the template for altRowTemplate:

<script id="gridAltRowTemplate" type="text/x-kendo-tmpl">
 <tr class="k-alt">
 <td class="details">
 <h3>#: movieName #</h3>
 Rating : #: rating#
 </td>
 <td class="year">
 <h3>#: year #</h3>
 </td>
 </tr>
</script>

Chapter 2

47

The only difference between the two templates is the use of the k-alt class in
altRowTemplate. Notice that the first column (td class='details') contains the
movieName field as well as the rating. The next step is to specify these templates while
initializing the Grid:

rowTemplate:kendo.template($('#gridRowTemplate').html()),

altRowTemplate:kendo.template($('#gridAltRowTemplate').html())

The compiled templates are assigned to the rowTemplate and altRowTemplate attributes.

How it works…
When you render the Grid, you will see that the first column contains movieName as well as
the rating fields, as shown in the following screenshot:

Also, notice the formatting of the movie name and year. Here, instead of generating table
rows using the standard template, a user-specified template is used to create these rows.
The hash-based templates mentioned in the document will be used to generate table rows.

The Kendo UI Grid

48

There's more…
The columns in the Grid can be resized and reordered by specifying the configuration details
for these while initializing the Grid:

resizable: true,

reorderable: true

By mentioning resizable as true, the columns' width can be changed, as shown in the
following screenshot:

The columns in the Grid can be made reorderable by mentioning this attribute when
initializing the Grid.

Here, the user is trying to reorder the last column by moving it to the second column.

3
Kendo UI TreeView

In this chapter, we will cover the following recipes:

ff Using a TreeView widget to display a directory structure

ff Using the drag and drop feature to move elements in TreeView

ff Using checkboxes to select nodes in TreeView

ff Associating icons with labels in TreeView

Introduction
The Kendo UI TreeView widget allows you to display hierarchical data in a tree-like structure.
This widget allows users to expand or collapse the hierarchical data. It also allows them to
perform drag-and-drop operations, allowing list items to be moved from one node to the other.

Using a TreeView widget to display a
directory structure

A TreeView widget can be created by specifying the hierarchical data either in the HTML
markup or by binding it to a DataSource object.

How to do it…
To create a TreeView, let's specify the data in the markup, as shown in the following
code snippet:

<ul id="treeView">

 Directory1

Kendo UI TreeView

50

 File1.txt
 File2.txt

 Directory2

 File3.txt
 File4.txt

 Directory3

 File5.txt
 File6.txt

The next step is to initialize the TreeView widget by invoking the kendoTreeView function
on the DOM node using the following line of code:

$('#treeView').kendoTreeView();

How it works…
The TreeView widget displays the hierarchical data in a tree-like structure, as shown in the
following screenshot:

Note that TreeView displays only the top-level elements. It shows you a right arrow icon before
the element. On clicking on the icon, the top-level element expands to show you the next level
in the hierarchical structure.

Chapter 3

51

By default, none of the elements in the hierarchy are expanded initially. To expand an element
when it is rendered, specify the expanded data attribute as true:

.

.
<li data-expanded="true">
 Directory2

 File3.txt
 File4.txt

.
.

By specifying the data-expanded attribute as true, the element would expand to show
you the next-level elements in the hierarchy.

There's more…
The TreeView widget can be created by specifying the hierarchical structure in the DataSource
object. This DataSource object is then bound to a view element. Let's use a div element,
which will be bound to a DataSource object:

<div id="treeView">

</div>

Now, let's bind this view element to a DataSource object when initializing the TreeView widget:

$('#treeView').kendoTreeView({
 dataSource: [{
 text: "Directory1",
 items: [

Kendo UI TreeView

52

 { text: "File1.txt"},
 { text: "File2.txt"}
],
 expanded: true
 }, {
 text: "Directory2",
 items: [
 { text: "File1.txt"},
 { text: "File2.txt"}
]
 }, {
 text: "Directory3",
 items: [
 { text: "File1.txt"},
 { text: "File2.txt"}
]
 }
]
});

Here, the DataSource object is an array of objects and each object specifies the properties
for a node in the TreeView widget. Each object has a text attribute, which specifies the label
for the node in the TreeView widget. It also has an items collection, which specifies the
subitems for the node in TreeView.

The first object in the DataSource collection has an expanded attribute set to true to
indicate that the node would be expanded to show subitems.

Constructing a TreeView widget from a remote
DataSource object
It is also possible to construct a TreeView widget by fetching the data from a remote service.
The DataSource object can specify the URL for the remote service from where the hierarchical
data would be fetched:

$('#treeView').kendoTreeView({

 dataSource: {

 transport: {
 read: '/services/music'
 }
 }

});

Chapter 3

53

Here, the remote service URL, /services/music, should return the data that contains
first-level elements in the TreeView widget. Let's assume that the service returns the
following data:

 [
 {
 "categoryId": 1,
 "categoryName": "Genre",
 "hasSubCategories": true
 },
 {
 "categoryId": 2,
 "categoryName": "Artists",
 "hasSubCategories": true
 },
 {
 "categoryId": 3,
 "categoryName": "Songs",
 "hasSubCategories": true
 },
 {
 "categoryId": 4,
 "categoryName": "Playlists",
 "hasSubCategories": true
 }
]

The preceding JSON response from the service returns four records and these are top-level
nodes in the TreeView widget. Each object in the response contains three fields; when initializing
the TreeView widget, the field that should be used to display the text should be specified:

$('#treeView').kendoTreeView({

 dataSource: {

 transport: {
 read: '/services/music'
 }
 },

 dataTextField: 'categoryName'

});

Kendo UI TreeView

54

Now, when you execute the previous code, you would see the category names being displayed
in the TreeView widget. Here, the dataTextField attribute is used to specify the field name
that should be used when displaying labels in the TreeView widget.

To populate the next level of nodes in TreeView, the widget should be instructed whether the
current node contains subitems or not. Notice that the response contains the categoryId
and hasSubCategories fields; the categoryId field serves as a unique ID for each object
in the response and the hasSubCategories field indicates whether the object contains
subitems. This should be identified in the DataSource object and hence a schema for
the same should be specified:

$('#treeView').kendoTreeView({

 dataSource: {

 transport: {
 read: 'TreeView.json'
 },

 schema: {
 model: {
 id: 'categoryId',
 hasChildren: 'hasSubCategories'
 }
 }
 },

 dataTextField: "categoryName",

});

Here, the properties in the schema models, id and hasChildren, are mapped to the
attributes in the response mentioned earlier. Now, TreeView shows you the list of top-level
nodes and indicates that each node in the tree has children. When you click on any of the
nodes in TreeView, a GET request is sent to remote services, specifying the categoryId as
a query parameter. For example, when you click on the first node in the tree, a GET request is
sent with the categoryId query parameter set to 1:

/services/music?categoryId=1

The service is expected to return a similar JSON response, that is, a collection of objects,
each containing the categoryId and hasSubCategories attributes.

Chapter 3

55

Using the drag and drop feature to move
elements in TreeView

In a TreeView widget, elements in the tree can be dragged-and-dropped to various levels.
This is applicable not only to child elements, but also to top-level nodes in the tree.

How to do it…
To enable the drag and drop feature, specify the dragAndDrop property as true while
initializing the TreeView widget, as shown in the following code snippet:

$('#treeView').kendoTreeView({
 dragAndDrop: true,

 dataSource: [{
 text: "Directory1",
 items: [
 { text: "File1.txt"},
 { text: "File2.txt"}
],
 expanded: true
 }, {
 text: "Directory2",
 items: [
 { text: "File3.txt"},
 { text: "File4.txt"}
]
 }, {
 text: "Directory3",
 items: [
 { text: "File5.txt"},
 { text: "File6.txt"}
]
 }
]

});

Here, when the dragAndDrop property is set to true, the elements in TreeView can be
moved between various levels in the tree.

Kendo UI TreeView

56

As the user drags the node, various events are generated. The application can listen to these
events and customize its behavior. The drag, dragstart, dragend, and drop events are
the set of events for which the user can specify the event listeners.

Let's consider the drag event. The generated event contains meta information and includes
a function to set the tooltip, that is, a tooltip is shown when the user is performing the drag
operation. The event contains properties such as sourceNode, which refers to the element
being dragged; dropTarget, which refers to the element that the sourceNode is placed over;
pageX and pageY, which refer to the x and y coordinates of the mouse pointer on the screen;
and statusClass, which indicates the status of the drag operation, that is, the node being
added, inserted, or denied if the operation is not acceptable.

To set the tooltip, invoke the setStatusClass function on the event object. This function
accepts a string as a parameter, which should be one of k-insert-top, k-insert-middle,
k-insert-bottom, k-add, or k-denied.

The statusClass property can be used in the setStatusClass function to set the
appropriate tooltip while the element is being dragged:

$('#treeView').kendoTreeView({
 dragAndDrop: true,

 drag: function (e) {
 e.setStatusClass('k-' + e.statusClass);
 }
});

Now, when the element is being dragged, the tooltip is set by invoking the setStatusClass
function. The status of the drag operation is available in the statusClass property of the
event object.

How it works…
After setting the dragAndDrop property to true, the elements in TreeView can be
dragged-and-dropped to any level in the tree.

The previous screenshot indicates that the File1.txt element is being dragged and the tooltip
indicates that the element will be inserted at the bottom, that is, it would be the last element
under the parent node, Directory1. When the element is being dragged, the statusClass
property is set to insert-bottom and the tooltip is set to k-insert-bottom.

Chapter 3

57

Similarly, when the element is moved to a different node, you would notice that the tooltip
changes to indicate that the dragged element (sourceNode) would be added to a node
in TreeView.

Notice the tooltip in the preceding screenshot; it indicates that the element is being added to
Directory3. After dropping the element, the parent node is expanded to show its content.

There's more…
In many scenarios, you would like one of the nodes in the tree to not accept a drop from any
other element. In this case, the drop event listener can be used to prevent a drop from any
node in the tree:

$('#treeView').kendoTreeView({
 dragAndDrop: true,

 drop: function(e) {
 if($(e.dropTarget)[0].innerText === 'Directory3') {
 e.setValid(false);
 }
 }
});

Here, the dropTarget node is checked to see whether it contains the Directory3 text.

Kendo UI TreeView

58

If this condition is true, then the setValid function is invoked on the event object, passing
false as the parameter. This will disable the drop of any sourceNode over the node that
contains the Directory3 text.

In another scenario, if you would like to disable the dragging of top-level nodes in the tree, that
is, the root nodes of the tree, then an event listener for the dragstart event can be added:

$('#treeView').kendoTreeView({
 dragAndDrop: true,

dragstart: function (e) {
 if($(e.sourceNode).parentsUntil('.k-treeview', '.k-
 item').length === 0) {
 e.preventDefault();
 }
 }
});

Here, sourceNode is checked for parent-level nodes. If one is not found, that is, if sourceNode
itself is the parent node, then by calling the preventDefault function on the event object,
the action of dragging the element is disabled.

Using checkboxes to select nodes in
TreeView

In TreeView, each node can have a checkbox associated with it. By using a checkbox, you can
select multiple nodes in the tree and perform an action.

How to do it…
To add a checkbox next to a node in TreeView, specify the checkboxes attribute as true
when initializing the TreeView widget:

$('#treeView').kendoTreeView({

 checkboxes: true

});

If you want the child nodes to be selected when the parent node is selected, then specify
checkChildren as true:

$('#treeView').kendoTreeView({

 checkboxes: {

Chapter 3

59

 checkChildren: true
 }

});

Now, when you select the parent node, all child nodes within the parent node would be selected.
It is also possible to specify nodes as checked when they are rendered. In the DataSource
configuration, specify checked as true:

$('#treeView').kendoTreeView({

 checkboxes: {
 checkChildren: true
 },

 dataSource: [{
 text: "Directory1",

 items: [
 {text: "File1.txt"},
 {text: "File2.txt"}
],

 checked: true
 }
 .
 .
]

});

How it works…
When you set the checkboxes property as true, you would see a checkbox before each
node in TreeView.

Kendo UI TreeView

60

When you check any of the parent nodes (for example, Directory1), the child nodes
will not be selected. When you set the configuration option, checkChildren, to true,
the child level nodes would be selected.

Also, note that when you select any of the child nodes, the parent node would be
partially selected.

Here, the File1.txt child node is selected and the root node, Directory1, is partially
selected. When you select all the child nodes, the parent node would be marked as selected.

Chapter 3

61

There's more…
When you select any of the nodes in the tree, the corresponding element's checked attribute
is set to true. This will trigger a change event on the DataSource object associated with
TreeView. A change event listener can be used to check which nodes in the tree are selected:

var treeViewWidget = $("#treeView").data("kendoTreeView");

treeViewWidget.dataSource.bind("change", function() {
 var treeView = $("#treeView").data("kendoTreeView"),
 nodes = treeView.dataSource.view();

 (function(nodes) {
 for (var i = 0; i < nodes.length; i++) {

 console.log(nodes[i].text + ' is checked: ' +
 (nodes[i].checked ? 'yes': 'no'));

 if(nodes[i].hasChildren) {
 arguments.callee.call(this, nodes[i].children.view());
 }
 }

 })(nodes);

});

Here, the code checks whether the node in the tree is checked; then it iterates over its children
recursively and checks whether the child nodes are checked. When you check the first node in
the tree, you will see the following messages in the console:

Directory1 is checked: no

File1.txt is checked: no

File2.txt is checked: no

Directory2 is checked: yes

File3.txt is checked: yes

File4.txt is checked: yes

Directory3 is checked: no

File5.txt is checked: no

File6.txt is checked: no

Kendo UI TreeView

62

Associating icons with labels in TreeView
Similar to associating a checkbox with every node in the TreeView widget, an image or an icon
can be associated with a node in the tree. This icon would be displayed before the node name.

How to do it…
Let's first reference the sprite sheet and add CSS classes to the page:

<style type="text/css">
 #treeView .k-sprite {
 background-image:

 url('../../examples/content/web/treeview/coloricons-
 sprite.png');
 }

 .folder {
 background-position: 0 0
 }

 .pdf {
 background-position: 0 -32px;
 }

 .image {
 background-position: 0 -64px;
 }

 .html {
 background-position: 0 -48px;
 }
</style>

The next step would be to associate nodes in the tree with the previously mentioned CSS
classes. This can be done by adding a spriteCssClass property for each object in the
DataSource collection:

$('#treeView').kendoTreeView({

 dataSource: [{
 text: "Directory1",

Chapter 3

63

 spriteCssClass: "folder",
 items: [
 { text: "File1.png", spriteCssClass: "image"},
 { text: "File2.html", spriteCssClass: "html"}
]
 }, {
 text: "Directory2",
 spriteCssClass: "folder",
 items: [
 { text: "File3.pdf", spriteCssClass: "pdf"},
 { text: "File4.html", spriteCssClass: "html"}
]
 }]

});

Here, the root level nodes have the spriteCssClass property set to folder and the ones
in the items array are set to the corresponding file type.

How it works…
When you associate the spriteCssClass property, the text node's containers (the span
element) class would be set to k-sprite and the class name that you have specified would
be the value of spriteCssClass. For example, the root node, Directory1, would have its
container element's class set to k-sprite folder.

When you execute the page, you will see the icons being shown before the nodes in the tree.

4
Kendo UI Editor

In this chapter, we will cover the following recipes:

ff Creating a WYSIWYG Editor using the kendoEditor function

ff Adding and removing tools in the Editor toolset

ff Using the image browser tool to insert images into the Editor

Introduction
The Kendo UI Editor widget allows you to create rich content using the WYSIWYG (What-You
-See-Is-What-You-Get) interface. The interface allows you to format the text, create bulleted or
numbered lists, and insert tables, hyperlinks, and images. The toolset can also be customized
while initializing the Editor widget. It is also possible to create custom tools that can be used
in the Editor. In addition to various Editor controls, you can use an image browser to insert
images into the Editor.

Creating a WYSIWYG Editor using the
kendoEditor function

An Editor can be created either by using a textarea or div element. In this recipe, we will
create an Editor using a textarea element and show you the default tools available for
formatting the data.

Kendo UI Editor

66

How to do it…
Let's first create a textarea element, specifying the number of rows, columns, and width:

<textarea id="editor"
 row="20"
 cols="80"
 style="width: 700px;">

</textarea>

The next step is to use this textarea element and create an Editor by invoking the
kendoEditor function:

$("#editor").kendoEditor();

The kendoEditor function is used to initialize textarea as an Editor widget. The Editor will
now have a WYSIWYG interface, allowing the user to format the text.

How it works…
When you initialize the textarea element as an Editor by invoking the kendoEditor
function, various tools are available in the toolset, as shown in the following screenshot:

The toolset bar is shown at the top of the Editor and it allows a user to format the entered
data. This includes applying different formatting for the entered text, marking the text as bold
or italic, underlining the selected text, aligning the text, creating a bulleted or numbered list,
and adding images and tables.

Chapter 4

67

Adding and removing tools in the Editor
toolset

The toolbar can be customized to include only those set of tools that are required. For example,
you might like to exclude the option of inserting a table from the toolset bar, or you might like to
include other options to format the text, say, changing the font color, highlighting the selected
text, and so on.

How to do it…
When initializing the Editor widget, specify the tools option and include only those tools that
are required to be displayed in the toolbar:

$("#editor").kendoEditor({
 tools: [
 "bold",
 "italic",
 "strikethrough",
 "subscript",
 "superscript",
 "foreColor",
 "backColor"
]
});

In the preceding code snippet, the tools that should be displayed in the toolbar are
mentioned. These would replace the default ones.

The tools configuration option can include the Editor commands such
as bold, italic, underline, strikethrough, subscript,
superscript, fontName, fontSize, foreColor, backColor,
justifyLeft, justifyCenter, justifyRight, justifyFull,
insertUnorderedList, insertOrderedList, indent, outdent,
createLink, unlink, insertImage, createTable, addColumnLeft,
addColumnRight, addRowAbove, addRowBelow, deleteRow,
deleteColumn, formatting, insertHtml, and viewHtml.

Kendo UI Editor

68

How it works…
As mentioned previously, when the tools configuration is specified while initializing the Editor
widget, the default ones are replaced with the ones specified in the configuration, as shown
in the following screenshot:

There's more…
Some of the tools, such as fontName and fontSize, list the possible values in a drop-down
list. By default, a list of fonts and font sizes are listed in these dropdowns. This list can be
customized in the tools configuration:

$("#editor").kendoEditor({
 tools: [
 {
 name: "fontName",
 items: [{
 text: "Default",
 value: "Arial, Verdana, sans-serif"
 }, {
 text: "Monospace",
 value: "monospace"
 }
]
 }, {
 name: "fontSize",
 items: [{
 text: "Small",
 value: "12px"
 }, {
 text: "Medium",
 value: "16px"
 }, {
 text: "Large",

Chapter 4

69

 value: "20px"
 }
]
 }
]
});

In the preceding code snippet, the tools configuration contains an array of objects. Each object
has a name property, which specifies the name of the tool to be used and an items array,
which lists the values to be displayed in the dropdown. Consider the items array used for the
fontName tool. It contains a collection of objects, each having two properties, namely text
and value. The text property specifies the text to be displayed and the value property
specifies the value to be applied when the user selects the same value from the list. In this
case, if the user selects Default from the list then the Arial, Verdana, sans-serif font would
be applied.

In many cases, you would like to create your own custom command that interacts with the
Editor interface. For example, a custom command that would insert text into the Editor. Apart
from various tools that the user can add to the toolset, the library allows you to define custom
commands that interact with the Editor:

$("#editor").kendoEditor({
 tools: [{
 name: "custom",
 exec: function(e) {
 var editor = $(this).data('kendoEditor');
 editor.exec("inserthtml",
 {value: "Thanks,
Sagar Ganatra."});
 }
 }
]
});

Kendo UI Editor

70

Here, the name of the tool is custom, and it contains a function, exec. The exec function
is executed when the user clicks on the custom tool, as shown in the following screenshot.
The function first gets a reference of the Editor widget and then calls the exec function on
the Editor instance. The function takes two parameters, namely the command name and an
object that contains a set of parameters for the executed command. In the previous example,
the inserthtml command is used to insert text in the Editor widget. The text that should
be inserted is specified as a second parameter.

The command name to be used should be one of the Editor commands.

Using the image browser tool to insert
images into the Editor

One of the tools available in the Editor toolset is the image browser. The image browser
tool allows you to insert an image into the Editor. It asks the user for the image URL and an
optional alternate text by displaying the dialog box, as shown in the following screenshot:

Chapter 4

71

However, many of the rich applications being built today allow users to browse the images
in a repository, upload images, and also remove images from the same repository. The image
browser tool used in the Editor can be customized to allow these actions. In this recipe, we will
see how the image browser tool is used to address such scenarios.

Getting ready
In this recipe, we will first take a look at reading images from a repository and showing
thumbnails for the same in the image browser. This requires a server-side application to
respond to a request that returns a JSON structure that provides metadata, such as the
image name and file size.

Also, to display a set of thumbnail images, a service that returns the requested thumbnail
image is required. The format of the request and fallback options are explained in this recipe.

How to do it…
As mentioned previously, we will need a service that returns a JSON structure that contains
the image metadata. The format in which this data should be sent is shown in the following
code snippet:

[
 {
 "name": "OperaHouse1.jpg",
 "type": "f",
 "size": 73289
 },

 {
 "name": "OperaHouse2.jpg",
 "type": "f",
 "size": 15289
 },
 {
 "name": "HarborBridge.jpg",
 "type": "f",
 "size": 6286
 }
]

Here, the structure is a collection of objects, and each object specifies the image name
(the name attribute) and image size (the size attribute). The type attribute contains the value
f, denoting that it represents the file type. In scenarios where we are creating a directory on
the server, the type attribute should have the value d. The size of the file should be in bytes.
However, when displaying the image metadata, it would be converted to kilobytes.

Kendo UI Editor

72

The next step is to specify the transport URLs to read the structure previously mentioned
and to get the thumbnail images from the repository:

$("#editor").kendoEditor({

 tools: ['insertImage'],

 imageBrowser: {
 transport: {
 read: "/app/ImageService/Read",
 thumbnailUrl: "/app/ImageService/ThumbNailService",
 imageUrl: "/app/ImageService/Image?path={0}"
 }
 }
});

Here, the imageBrowser configuration option specifies the transport URLs to read the JSON
structure that contains the metadata (the read attribute), the service URL that returns the
thumbnail images (the thumbnailUrl attribute), and the service that returns the image that
has to be inserted into the Editor (the imageUrl attribute).

How it works…
When you specify the imageBrowser configuration, the default dialog box is overridden and
an image browser modal window is shown as follows:

Chapter 4

73

When you click on the image browser tool, first the image metadata is fetched from the
URL mentioned as the value to the read attribute. For each object in the JSON structure,
the thumbnail service is referred to get the thumbnail of the image. In our example, the
image name is HarborBridge.jpg and the request to the thumbnail service would
be http://<domain_name>/app/ImageService/ThumbNailService?path=
HarborBridge.jpg.

Here, the query parameter, path, contains the name of the image for which the thumbnail
has to be retrieved. Since there are three objects in the JSON structure, there would be three
requests sent to the thumbnail service.

The thumbnails shown in the preceding screenshot are of the dimension 80px X 60px and show
you the name of the image and its size as well. The image browser tool also has a search input
field, which filters the list of thumbnails displayed in the browser. This is particularly useful if you
have an exhaustive list of thumbnail images and are looking for an image by name.

On selecting the thumbnail image from the list and clicking on the Insert button, the
corresponding image would be fetched from the service mentioned in imageUrl.
Note the usage of {0} in imageUrl:

/app/ImageService/Image?path={0}

Here, {0} is replaced with the selected file name. The fetched image is then inserted into
the Editor.

There's more…
The image browser tool also allows you to upload images and then insert the same into the
Editor. To upload an image to the server, specify the upload service URL:

imageBrowser: {
 transport: {
 read: "/app/ImageService/Read",
 thumbnailUrl: "/app/ImageService/ThumbNailService",
 imageUrl: "/app/ImageService/Image?path={0}",
 uploadUrl: "/app/ImageService/Upload"
 }
}

Kendo UI Editor

74

Here, the uploadUrl attribute specifies the service that will upload the image to the server.
When the uploadUrl attribute is specified, an Upload button becomes available in the
image browser.

On clicking on the Upload button (highlighted in the preceding screenshot), the user is
prompted to specify the file location. A POST request is sent to the service that uploads
the specified image.

Once the image is uploaded to the server, the thumbnail service is queried to get the thumbnail
image of the same. The upload service should ensure that the uploaded image is resized and
made available in the directory where thumbnails reside.

In some scenarios, you might like to create a directory on the server and upload images there.
To create a directory, specify the create attribute with the URL of the service that can create
the directory:

imageBrowser: {
 transport: {
 read: "/app/ImageService/Read",

Chapter 4

75

 thumbnailUrl: "/app/ImageService/ThumbNailService",
 imageUrl: "/app/ImageService/Image?path={0}",
 uploadUrl: "/app/ImageService/Upload",
 create: "/app/ImageService/Create"
 }
}

When you specify the create attribute, a button is added to the image browser screen,
as shown in the following screenshot:

Now, when you click on the Create button, the image browser modal window will show you a
created directory and will allow the user to specify the directory name.

Kendo UI Editor

76

Now, the user can specify the name of the directory and hit Enter. This will send a POST
request to the create service, mentioning the name of the directory in the request body
(the form data):

{
 name: 'test',
 size: '',
 type: 'd',
 path: ''
}

Here, the type attribute is 'd', since we are creating a directory on the server. Now, the user
can select the directory and upload files there. Another thing to note here is that when you
are browsing through the directory, a POST request is sent to the service specified as a value
to the read attribute. The form data contains the path details, that is, it specifies the directory
name as {'path': 'test'}, where test is the directory that is to be read.

5
Kendo UI PanelBar

In this chapter, we will cover the following recipes:

ff Creating a PanelBar

ff Loading the content of a PanelBar using Ajax

ff Binding the PanelBar to a DataSource object

ff Customizing the PanelBar

Introduction
The Kendo UI PanelBar widget is similar to a tabbed panel that contains a list of items grouped
under different tabs or panes. In a PanelBar, these lists of items are stacked vertically, and
each list item can be expanded to show you the content. This widget is particularly useful when
the data can be grouped into multiple sections and there is a constraint on the available space
to display this data. For example, all your contacts can be grouped by some category such as
Favourites, Family, Friends, and Office Contacts; when you tap on one of the these categories,
the panel would expand to show you the list of contacts that belong to that category.

Creating a PanelBar
A PanelBar can be created either by specifying its structure in the HTML markup or by
configuring it using an API. In this recipe, we will take a look at the former approach.

Kendo UI PanelBar

78

How to do it…
A PanelBar widget contains a list of items stacked vertically. To create a PanelBar, we will
need a list of items and hence we use the HTML's ordered or unordered list. In this example,
we will list travel destinations, airlines, and important sights to visit as three panels:

<ul id="panelBar" style="width: 400px">

 Destinations

 Flights

 Important Sights

Here, the list contains three items and these are the headings for each panel that we want
to have. Also, the width property is set to 400px which will set the width of the PanelBar
component. If the width property is not specified, then PanelBar would occupy the entire
screen width, which is not desirable.

The preceding panels do not list any content yet. Let's specify the content for each of these
in the HTML markup:

<ul id="panelBar" style="width: 400px">

 Destinations

 <div class="destinationData">
 <h2>India</h2>

 </div>

 <div class="destinationData">
 <h2>Australia</h2>

 </div>

 <div class="destinationData">
 <h2>Indonesia</h2>

 </div>

Chapter 5

79

 Flights

 <div class="destinationData">
 British Airways
 </div>

 <div class="destinationData">
 Air France
 </div>

 <div class="destinationData">
 Lufthansa Airlines
 </div>

 <div class="destinationData">
 Singapore Airlines
 </div>

 <div class="destinationData">
 Qatar Airways
 </div>

 Important Sights

 <div class="destinationData">
 <h2>Taj Mahal</h2>

 </div>

 <div class="destinationData">
 <h2>Sydney Opera House</h2>

 </div>

 <div class="destinationData">
 <h2>Tanah Lot Temple</h2>

 </div>

Kendo UI PanelBar

80

In the preceding HTML markup, each list item contains the heading and content that needs
to be displayed when the user clicks on an item in the PanelBar.

The destinationData class used in the preceding code snippet is used
for styling purposes only.

The final step is to initialize the PanelBar widget. To initialize, call the kendoPanelBar
function on the list as follows:

$("#panelBar").kendoPanelBar();

How it works…
Initially, when the list contains only the headings, you will see three panes stacked vertically,
as shown in the following screenshot:

When you add content to each of the items in the list, you will see a down arrow for each
heading in the list, as shown in the following screenshot:

Now, when you click on one of these headings, the list item will expand to show its content,
as shown in the following screenshot:

Chapter 5

81

There's more…
In the preceding example, the list elements followed a single level hierarchy. The PanelBar
can be customized to work with multilevel hierarchical data. The preceding example can
now include important cities for each travel destination. In this case, the country name
would serve as a nested panel element:

<ul id="panelBar" style="width: 400px">

 Destinations

 India

 <div class="destinationData">
 Bangalore
 </div>
 <div class="destinationData">
 New Delhi
 </div>
 <div class="destinationData">
 Mumbai
 </div>

 Australia

 <div class="destinationData">

Kendo UI PanelBar

82

 Sydney
 </div>
 <div class="destinationData">
 Melbourne
 </div>
 <div class="destinationData">
 Cairns
 </div>

 Flights

 Important Sights

In the preceding code snippet, the first list item contains nested list elements and each of
these nested list elements contain some content, as shown in the following screenshot:

Like their parent list elements, each child list element has a heading that users can click on
to expand the content.

Chapter 5

83

Loading the content of a PanelBar
using Ajax

In the previous recipe, we looked at how a PanelBar widget can be created using the markup
present in the page. In this recipe, we will look at how the content of each list item in the
PanelBar can be loaded by fetching the same from the server using Ajax.

As observed in the previous recipe, the content for each list item was wrapped inside a div
element. By doing so, the size of the page had increased, which in turn would have affected
the performance of the application. A workaround to this is to load the content of each list
item when it is requested using Ajax.

How to do it…
Let's consider the same example; here, the list headings are specified in the markup and the
div elements are used as placeholders. These placeholders will contain the data fetched
from the server at runtime:

<ul id="panelBar" style="width: 400px">

 Destinations
 <div></div>

 Flights
 <div></div>

 Important Sights
 <div></div>

Here, a placeholder div element is used so that when the PanelBar is initialized, the list
headings will display a down arrow, indicating that it is expandable.

The next step is to create HTML files that would contain the content for each of the headings
in the list. For example, to populate the list of Destinations in the preceding list, create a
PanelBar_Destinations.html file:

<div class="destinationData">
 <h2>India</h2>

Kendo UI PanelBar

84

</div>

<div class="destinationData">
 <h2>Australia</h2>

</div>

<div class="destinationData">
 <h2>Indonesia</h2>

</div>

Similarly, pages that contain the content for the other list elements should be added.

The final step is to bind the PanelBar widget to these URLs when the same is initialized:

$("#panelBar").kendoPanelBar({
 contentUrls: [
 "PanelBar_Destinations.html",
 "PanelBar_Flights.html",
 "PanelBar_Sights.html"
]
});

Here, the contentUrls property specifies the URLs from where the content for each of the
list items should be fetched. These are specified in the same order as list items are specified
on the page.

How it works…
When the page is executed, only the list items with headings would be shown as follows:

You can inspect the DOM and see that there is no content for these list items. However, there is
a down arrow that indicates that the list item contains some content.

Now, when you click on any of these list items, an Ajax request to the corresponding
contentUrl is sent. The request should return the markup that should be displayed
under the list item, as shown in the following screenshot:

Chapter 5

85

The advantage of loading the content at runtime as opposed to loading it upfront is that the
size of the response from the server is reduced, and hence, the time taken to display the page
is also reduced. In many scenarios where the PanelBar contains several sections, the user
might not click on all of them. In these cases, it is ideal to load the content at runtime.

There's more…
When working with remote requests, there are possibilities of the server taking more time to
respond, or maybe the service is not available. In these scenarios, the user should be informed
of the error message or be redirected to an error page.

A series of events are generated right from when the user clicks on a list heading to the point
the content is loaded in the corresponding panel. The application can specify callback handlers
for these events while initializing the PanelBar widget.

Let's add event handlers to the PanelBar and log the events inside a div element
(logContainer in the following code):

var $logContainer = $('#log');
$("#panelBar").kendoPanelBar({
 contentUrls: [
 "PanelBar_Destinations.html",
 "PanelBar_Flights.html",
 "PanelBar_Sights.html"
],

 select: function(event) {

Kendo UI PanelBar

86

 $logContainer.append($(event.item).find('> .k-link').text() + '
 selected.
');
 },

 expand: function(event) {
 $logContainer.append($(event.item).find('> .k-link').text() +
 ' expanded.
');
 },

 activate: function(event) {
 $logContainer.append($(event.item).find('> .k-link').text() +
 ' activated.
');
 },

 contentLoad: function(event) {
 $logContainer.append($(event.item).find('> .k-link').text() +
 ' content loaded.
');
 },

 error: function(event) {
 $logContainer.append('Error occurred while loading, Status: '
 + event.xhr.status);
 }
});

The sequence of events is as follows:

1.	 When the user clicks on the list item: select.

2.	 The selected list item is expanded: expand.

3.	 When an Ajax request is sent and the content from the Ajax response
is loaded: contentLoad.

4.	 The selected list item is activated: activate.

5.	 If there is an error in loading the content from the server, then the error
callback handler is executed.

Binding the PanelBar to a DataSource object
A PanelBar can also be constructed by specifying the content in a DataSource object.
The DataSource can be local, or may refer to a remote service that returns a JSON structure.
In addition to specifying the data that needs to be displayed in the PanelBar, the DataSource
object can be used to specify some of the configuration options as well. In this recipe, we will
see how a PanelBar can be built using a DataSource object.

Chapter 5

87

How to do it…
When initializing the PanelBar using the kendoPanelBar function, specify the
dataSource option:

$("#panelBar").kendoPanelBar({
 dataSource: [
 {
 text: "Destinations",
 expanded: true,
 items: [
 {
 text: "India",
 imageUrl: "./images/India-Flag-icon.png",
 cssClass: "destinationData"
 }, {
 text: "Australia",
 imageUrl: "./images/Australia-Flag-icon.png",
 cssClass: "destinationData"
 }, {
 text: "Indonesia",
 imageUrl: "./images/Indonesia-Flag-icon.png",
 cssClass: "destinationData"
 }
]
 }
]
});

In the preceding code snippet, the dataSource configuration option specifies the data
that needs to be displayed in the PanelBar. The text attribute specifies the text to be
displayed in the PanelBar header; the configuration option, expanded, when set to true
will expand the panel to show you the list of items. The items configuration option contains
a list of items that will be displayed when the panel is expanded. Each object in the items
configuration mentions the imageUrl and cssClass properties in addition to the text that
should be displayed.

In the DataSource configuration, you can also specify the URL of the page that returns the
HTML content for a panel:

dataSource: [
 .
 .

www.allitebooks.com

http://www.allitebooks.org

Kendo UI PanelBar

88

 {
 text: "Flights",
 contentUrl: "PanelBar_Flights.html"
 }
]

Here, the contentUrl option specifies the URL from which the content for the panel should
be fetched. When the user clicks on the panel, a request is sent to the specified URL and the
HTML content received as a response is then inserted into the panel.

How it works…
When you render the page, the PanelBar is populated with the data that you have specified
in DataSource. When you check the HTML markup inserted into DOM, you will see the class
specified in the cssClass attribute added to each list element. Also, an image is inserted
inside each list element as follows:

<li role="menuitem" class="k-item k-state-default k-first
 destinationData">

 <img class="k-image" alt=""
 src="./images/India-Flag-icon.png">
 India

Customizing the PanelBar
There are a few options available to customize the behavior of the PanelBar widget. In this
recipe, we will take a look at setting the expanded mode for the PanelBar widget and the
animation effects that can be applied.

How to do it…
The PanelBar widget is designed so that it occupies less space on the page and, at the same
time, shows you the necessary content. When you click on any of the list items in the PanelBar
widget, it expands to show you the content. Now, when you click on the other list item, it would
also expand to show its content. At this stage, there are two items in the PanelBar whose
content is being shown. By setting the expandMode property to single, only one item in
the list can remain in the expanded state at any given time:

$("#panelBar").kendoPanelBar({
 expandMode: 'single'
});

Chapter 5

89

By default, the value of the expandMode property is multiple and hence the behavior
mentioned earlier takes place.

In case the expanded panel contains a nested list of elements, the expanded
mode won't be applied to the nested elements.

When the PanelBar is rendered, all the panels are collapsed. By adding a k-state-active
class to one of the list items, one of the panels can be set in the expanded state:

<ul id="panelBar">
 <li class="k-state-active">
 Destinations

 .
 .

 .
 .

The next configuration option that can be applied is the animation effects. An animation effect
can be applied when you expand the panel or collapse it. Also, you can specify the duration of
the animation effect as follows:

$("#panelBar").kendoPanelBar({
 expandMode: 'single',
 animation: {
 collapse: {
 duration: 1000,
 effects: "fadeOut"
 },

 expand: {
 duration: 1000,
 effects: "fadeIn"
 }
 }
});

In the preceding code snippet, the animation configuration is specified, which details the
animation effect that should be applied when the panel is collapsed and expanded. Both
collapse and expand specify the duration property, which specifies the duration of the
animation effect in milliseconds. It also includes the effects property, which specifies the
type of animation effect that needs to be applied. For collapse, only the fadeOut effect
can be applied, whereas in expand, the possible values are fadeIn and expandVertical.

Kendo UI PanelBar

90

How it works…
When the expandMode attribute is set to single, only one panel in the PanelBar widget can
be in the expanded state, as follows:

Now, when you click on the other panel, say Flights, then the first panel will collapse, and the
selected panel will expand, as shown in the following screenshot:

6
Kendo UI File Uploader

In this chapter, we will cover the following recipes:

ff Using the file uploader to upload files to the server

ff Uploading files to the server asynchronously

ff Listening to file upload events

Introduction
The Kendo UI library provides a file uploader widget that can be used to upload multiple
files to the server. On modern browsers such as Chrome, Safari, Firefox, and Opera, the
files can be uploaded asynchronously using the HTML5 File API. The enhancements to the
XmlHttpRequest object in HTML5, such as progress tracking, are also available. On legacy
browsers, it falls back and uploads the file synchronously. In this chapter, we will see the various
ways in which the file uploader widget can be used to upload files to the server, showing the
progress of the file upload process and the options available to customize the widget.

Using the file uploader to upload files
to the server

In this recipe, we will look at how the file uploader widget can be used to upload multiple files
to the server synchronously.

Kendo UI File Uploader

92

How to do it…
Let's create a form that will be used to upload the file as follows:

<form method="post"
 action="/fileUploadService"
 style="width:500px">

 <input name="files" id="fileUpload" type="file" />
 <input type="submit" value="Submit" class="k-button" />

</form>

The next step is to initialize the file uploader widget by invoking the kendoUpload function
on the file input type:

$('#fileUpload').kendoUpload();

This will initialize the file input type to an uploader widget. This uploader widget can then
be used to select files and upload them to the server. You can select multiple files and the
same would be shown in the list.

When you click on the Submit button, the form is submitted to upload the files in the list.
It's a multipart/form-data submission with the file data in the request payload. The
server will be able to accept the form submission and route the user to the next page.

How it works…
When you initialize the file upload widget, you see two buttons, Select files… and Submit,
as shown in the following screenshot:

Note the look and feel of the file input type—there is a button and
this is consistent across all browsers. The button allows you to select
multiple files.

For the purpose of this example, let's select files twice, that is, click on the Select files…
button twice and select a file:

Chapter 6

93

Here, you would notice two files being displayed in the list. When you click on the Submit button,
a POST request with files in the request payload are sent to the file upload service. Please note
that the list also has a cross (x) button, which can be used to remove the files from the list.

There's more…
A few configuration options are available to customize the file uploader widget.

Disabling multiple file uploads
By default, the file uploader allows the user to upload multiple files to the server. However,
in many scenarios, it is desirable to allow only one file to be uploaded. To achieve this,
set the multiple attribute to false while initializing the widget:

$('#fileUpload').kendoUpload({
 multiple: false
});

This will allow only one file to be selected. When you click on the Select files… button again
and select another file, the list will reflect the recently selected file.

Customizing the display of list items using a template
The list that is used to display the selected files can be customized by providing a template
for items in the list. There are three variables available for use in the templates: name, size,
and extension.

<script id="fileListTemplate" type="text/x-kendo-template">
 <div>

 Name: #=name#
 Size: #=size# bytes
 Extension: #=files[0].extension#

 </div>
</script>

Kendo UI File Uploader

94

Now, when initializing the file uploader, include the template property:

$('#fileUpload').kendoUpload({
 template: kendo.template($('#fileListTemplate').html())
});

Now, when you select files, you would see that the list contains metadata such as name,
size, and extension.

Uploading files to the server asynchronously
In this recipe, we will take a look at uploading files asynchronously to the server. This method
uses the HTML5 File API to upload the files to the server. While the files are being uploaded,
the progress of the file upload is shown in the uploader widget.

Getting started
This recipe will require server-side handlers that can store or remove files.

How to do it…
Let's use the same form to upload the files to the server. To upload the files asynchronously,
specify the async configuration:

$('#fileUpload').kendoUpload({
 async: {
 'saveUrl': '/fileUploadService/save',
 'removeUrl': '/fileUploadService/remove',
 'autoUpload': true
 }
});

Chapter 6

95

Here, the async configuration specifies the three attributes: saveUrl, removeUrl, and
autoUpload. The saveUrl property specifies the service URL where the files will be
uploaded. The removeUrl property specifies the service URL that will handle the removal
of the uploaded files. The Boolean autoUpload property specifies whether the files will be
uploaded when they are selected by the user or when the user clicks on the Submit button.
In this example, this is set to true, which means that the files will be uploaded to the server
when the user selects the file.

When you select multiple files using the file uploader widget, each file is uploaded
asynchronously. The client sends a POST request with the file data in the request payload.
It uses the XmlHttpRequest object to send an asynchronous POST request to saveUrl.

How it works…
When you select multiple files using the file uploader widget, a POST request is sent to
the service mentioned in the saveUrl property for each selected file, as shown in the
following screenshot:

Here, three files have been selected, and each file is being uploaded asynchronously.
While the files are being uploaded, the widget shows you the progress of the upload process.
The file uploader widget uses the XmlHttpRequest object to upload the files to the server.
With enhancements in the XmlHttpRequest object in HTML5, the file uploader widget uses
the progress callback handler to track the progress of the file that is being uploaded.

Also, notice that the status—Uploading is shown in the top-right corner while the selected files
are being uploaded. When all the files in the list are uploaded, the status is changed to Done.

Kendo UI File Uploader

96

Once these files are uploaded, the user can delete them by clicking on the cross (x) button.
This will send a POST request to the service mentioned in the removeUrl property.

If there is an error in uploading the file, the uploader widget indicates this by marking the
background color as red. It also provides you with an option to retry the file upload.

On clicking on retry, a POST request is sent to the URL specified in the saveUrl property.

When you try to remove a file from the list after the file is uploaded, a POST request is sent to
the service URL mentioned in removeUrl. If you would like to use a different HTTP method to
remove the uploaded file, then set the removeVerb property in the async configuration:

$('#fileUpload').kendoUpload({
 async: {
 'saveUrl': '/fileUploadService/save',
 'removeUrl': '/fileUploadService/remove',
 'autoUpload': true,
 'removeVerb': 'DELETE'
 }
});

Here, the removeVerb property is set to DELETE, and when the user tries to remove the file,
a DELETE request is sent instead of a POST request.

There's more…
The file uploader widget can be localized to show a different string at various places in the
widget. Also, in modern browsers, users can drag-and-drop files onto the file uploader widget.

Chapter 6

97

Localizing the file uploader widget
To localize the file uploader widget, specify the localization option as follows:

$('#fileUpload').kendoUpload({
 async: {
 'saveUrl': '/fileUploadService/save',
 'removeUrl': '/fileUploadService/remove',
 'autoUpload': true
 },

 localization: {
 select: 'Choose files...',
 remove: 'Remove file',
 retry: 'Retry upload',
 headerStatusUploading: 'Uploading files...',
 headerStatusUploaded: 'Complete'
 }
});

Here, the Select Files… label would be replaced with Choose files…; the tooltip for remove
and retry would be Remove file and Retry upload. While the files are being uploaded,
the Uploading files... message would be shown and once the upload is complete the
Complete message would be shown.

Using drag-and-drop to upload files
The file uploader widget supports dragging-and-dropping of files onto the file uploader widget.
This is supported on all modern browsers that support the HTML5 File API. This method is
available only if the widget has been configured to upload the files asynchronously.

When you try to drop the file(s) onto the uploader widget, it shows you the drop files here
to upload message.

Once you drop files, the files will be added to the list and will be uploaded to the
server asynchronously.

Kendo UI File Uploader

98

Listening to file upload events
Before the advent of HTML5, the only event listener that was available with XmlHttpRequest
was the readystatechange event listener. In HTML5, several event listeners have been
added to the XmlHttpRequest interface: loadstart, progress, load, abort, error, timeout,
and loadend. In this recipe, we will see the various event listeners that can be attached to
the file uploader widget and the sequence in which these events are executed.

How to do it…
The file uploader widget shows you the progress of the files being uploaded and shows
the status as completed when all files have been uploaded. However, in many instances,
you would like to attach listeners and listen to various events:

$('#fileUpload').kendoUpload({

 async: {
 'saveUrl': '/fileUploadService/save',
 'removeUrl': '/fileUploadService/remove',
 'autoUpload': true
 },

 cancel: function () {
 console.log('Cancel Event.');
 },

 complete: function () {
 console.log('Complete Event.');
 },

 error: function () {
 console.log('Error uploading file.');
 },

 progress: function (e) {
 console.log('Uploading file ' + e.percentComplete);
 },

 remove: function () {
 console.log('File removed.');
 },

 select: function () {

Chapter 6

99

 console.log('File selected.');
 },

 success: function () {
 console.log('Upload successful.');
 },

 upload: function () {
 console.log('Upload started.');
 }

});

In the preceding code snippet, various event handlers are specified: cancel, complete,
error, success, progress, remove, select, and upload.

How it works…
When you try to upload a file using the file uploader widget, various callback handlers are
executed in the following sequence:

1.	 When you select a file or multiple files, the select event handler is executed.

2.	 When the uploader widget starts to upload the file, the upload event handler
is executed.

3.	 While the file is being uploaded, the progress event is called continuously.
Note that the event object has a percentComplete property, which indicates
the size of the file uploaded to the server.

4.	 Once a file has been uploaded, the success handler is executed.

5.	 If there are multiple files being uploaded and when all selected files have been
uploaded, the complete handler is executed.

6.	 If the user tries to cancel the upload while the file upload is in progress,
then the cancel event is executed.

7.	 After the file upload has been completed and the user tries to remove the
uploaded file from the uploader widget by clicking on the cross (x) icon,
the remove handler is executed.

8.	 The complete handler is also executed when the remove and cancel
events have completed their execution.

7
Kendo UI Window

In this chapter, we will cover the following recipes:

ff Displaying a pop up and blocking the user interaction by configuring it as a
modal window

ff Customizing the look and feel of the window and including action buttons

ff Using the Window API to act on a window object

Introduction
A Kendo UI Window widget is used to show any HTML content in a pop-up window or a modal
window. The window content is shown on top of the other content in the page and has a title
bar with a close button. The content can be either static HTML, or it can be loaded dynamically
using Ajax. Any DOM node in the page can be initialized to a window, that is, the content of any
element in the DOM can be wrapped inside a window. Also, the window can be resized, moved,
and closed.

The Kendo UI Window widget provides several configuration options that can be used to
customize the actions that can be applied and also the look and feel of the widget. In this
recipe, we will first see how to create a pop-up window and configure it as a modal. Then,
we will customize the look the feel of the window and use APIs to invoke actions on the
window object.

Kendo UI Window

102

Displaying a pop up and blocking the user
interaction by configuring it as a modal
window

In this recipe, we will look at how the Kendo UI window is created for a DOM node in the page.
Later, we will also see how the content of the window is loaded asynchronously by specifying
the URL of the page.

How to do it…
Let's create a div element that contains some text that will be shown in the window:

<div id="window">
 Window content goes here...
</div>

The next step is to invoke the kendoWindow function on the preceding DOM node:

$("#window").kendoWindow();

After initializing the DOM node using the kendoWindow function, you will notice that the
window contains the text mentioned in the div element that is being shown. Note that this
will not add a backdrop. To add a backdrop, the window should be configured as a modal.

The difference between a window and a modal is that a backdrop that hides the body
content is shown in the case of a modal. To create the modal window, specify the modal
property as true:

$("#window").kendoWindow({
 modal: true
});

By default, the value of the modal property is false, and hence the backdrop is not shown.

How it works…
When you initialize any DOM node, its content will be wrapped in a window, as shown in the
following screenshot:

Chapter 7

103

The window contains the Window content goes here… text, and the title bar has a cross(x)
icon. If the same is initialized as a modal window, then a backdrop is added to the page,
as shown in the following screenshot:

Notice that the backdrop is translucent; it shows you the text present in the page and also
highlights the window. This will prevent you from interacting with the rest of the page. Usually,
a modal window is used only when the user is required to complete an action before proceeding
to the next step. For example, a modal window that contains a login form could be shown before
the same user views the content of the page.

There's more…
The modal window can be configured to open when the user triggers an action. For example,
on click of a button the modal window can be shown. Also, since the content of the modal is
loaded when the user triggers an action on the page, the content of the modal can be loaded
at runtime using Ajax.

Showing the modal window on a click of button
In the previously mentioned scenarios, the window or the modal window is shown when
the page is loaded. In most of the scenarios, you would like to show the modal only when
the user initiates an action. Let's consider that the modal window should be shown when
the user clicks on a button.

Let's place a button on the page as follows:

<button id="btn1">Click</button>

To hide the modal, set the visible attribute to false, as follows:

$('#window').kendoWindow({
 visible: false,
 modal: true
});

Kendo UI Window

104

Now, when the page loads, the modal window will be hidden. Add a click event handler
for the button that will open the modal window:

$('#btn1').on('click', function() {
 var modalObject = $('#window').data('kendoWindow');
 modalObject.open();
});

The first line gets the instance of the modal window. Then, in the next line, the open method
is called on the window instance that would open the modal window.

The open method is one of the several methods that can be used to act on the window object.
We will take a look at other methods in the following recipe.

Loading the content of the modal using Ajax
In this recipe, the content of the modal was specified in the HTML markup. The content of the
modal window can be loaded by specifying the URL that returns the HTML markup. This content
will be fetched asynchronously when the page is loaded.

To load the content of the window, specify the content attribute when initializing the window
using kendoWindow:

$('#window').kendoWindow({
 visible: false,
 modal: true,
 content: './jsbooks.html'
});

Here, the ./jsbooks.html URL is specified in the content attribute. This can be any URL
that returns the HTML markup. For example, it could be a PHP page that generates the HTML
markup. When you load the page, an asynchronous request is sent to ./jsbooks.html,
and the generated markup is inserted into the window.

Chapter 7

105

Customizing the look and feel of the window
and including action buttons

There are various options available to the user to customize the window object. In this recipe,
we will take a look at these options.

How to do it…
Some of the customization options for the window have a default value. For example,
the pop-up window can be resized and is draggable. Also, the window is shown since
the visible property is set to true. Let's take a look at some of the other properties:

$('#window').kendoWindow({
 visible: false,
 modal: true,
 title: "Example Modal Window",
 width: '400px',
 height: '400px',
 maxWidth: '600px',
 maxHeight: '600px',
 minWidth: '200px',
 minHeight: '200px',
 position: {
 top: '100px',
 left: '100px'
 }
});

Here, the title attribute specifies the title of the window. When the modal window is rendered,
its width and height would be 400px. This modal window can be resized; however, it can be
resized to a maximum width (maxWidth) and height (maxHeight) of 600px and a minimum
width (minWidth) and height (minHeight) of 200px. The position attribute specifies the
top and left positions as 100px, and the window would be positioned accordingly. If the
same is not specified, then the window is positioned in relation to the document by default.

Kendo UI Window

106

The title bar of the window can be customized to add more action buttons. By default, only
the close (x) button is shown. The action buttons that can be added to the title bar include
Close (added by default), Minimize, Maximize, Refresh, and Pin. These options can
be specified as the value to the actions attribute:

$('#window').kendoWindow({
 visible: false,
 modal: true,
 title: "Example Modal Window",
 actions: ['Pin', 'Refresh', 'Minimize', 'Maximize', 'Close'],
 width: '400px',
 height: '300px',
 content: './jsbooks.html'
});

How it works…
When you execute the preceding code snippet, you will see that the window has a title bar and
various action buttons, as shown in the following screenshot:

The action buttons are added in the same order as they are specified. When you click on the
Refresh button, a request will be sent to the URL specified in the content attribute. If the
content of the window is specified inline, that is, in the same page, then the refresh button
is not required.

When you click on the Minimize or Maximize button, the window is adjusted such that only
the title is shown or expanded to occupy the entire screen, respectively. In both scenarios,
these buttons are replaced with a Restore button. On clicking on this button, the window is
restored to its original state.

Chapter 7

107

The Pin button allows you to fix the position of the window, that is, when the user scrolls,
the window continues to be in the same fixed position. Also, if the window is pinned, the icon
in the title bar is replaced with the Unpin button so that the user can restore the window to
its original state.

There's more…
It is also possible to add a custom action button in the title bar of the window instance.
Also, the action to perform when the custom button is clicked on can also be defined by
adding a click event handler.

To add a custom action button to the title bar, first specify Custom in the actions array:

$('#window').kendoWindow({
 title: "Example Modal Window",
 actions: ['Custom', 'Pin', 'Refresh',
 'Minimize', 'Maximize', 'Close'],
 width: '400px',
 height: '300px',
 content: './jsbooks.html'
});

The next step is to define an event handler for the custom button added to the title bar:

var modalObject = $('#window').data('kendoWindow');

modalObject.wrapper.find('.k-i-custom').on('click', function() {
 alert(modalObject.options.title);
});

The preceding code first gets an instance of the window and then adds a click handler for
the custom button. Here, a reference to the custom icon is used, that is, the k-i-custom
class to add a click handler.

When you execute the page, you will see the custom icon being shown in the title bar.

Kendo UI Window

108

In the preceding screenshot, the first icon from the left is the custom icon. When you click on
the custom icon, an alert message that displays the title of the window is shown. For a given
window, you can add only one custom icon.

Using the Window API to act on a window
object

In this recipe, we will look at several methods that can be used to act on the window object.

How to do it…
There are various methods available that help you act on an existing window object.
These include the following methods:

ff center: This will center the window.
ff open: This will open the window.
ff close: This will close the window.
ff refresh: This will refresh the content of window. Optionally, some parameters

can be passed to this function, which will override the default options.
ff maximize: This will maximize the window to the entire viewing area.
ff minimize: This will minimize the window to its title bar.
ff restore: This will restore the window from its minimized or maximized state.
ff pin: This will pin the window. It will fix the window's position, and hence,

when you scroll, the window will appear at the same position.
ff unpin: This will unpin the window and remove the fixed position.
ff toggleMaximization: This toggles the window between the maximized and

restored state.

Let's test these functions by creating a window and adding buttons that will execute the
corresponding actions when clicking on them:

The following is HTML markup that contains buttons:

<button id="btnOpen">Open</button>

<button id="btnClose">Close</button>

<button id="btnRefresh">Refresh</button>

<button id="btnMaximize">Maximize</button>

<button id="btnToggleMaximization">Toggle Maximization</button>

<button id="btnMinimize">Minimize</button>

<button id="btnRestore">Restore</button>

<button id="btnPin">Pin</button>

<button id="btnUnpin">Unpin</button>

Chapter 7

109

Now, initialize the window object as follows:

$('#window').kendoWindow({
 visible: true,
 title: 'Example Modal Window',
 width: '400px',
 height: '300px',
 content: './jsbooks.html',
 position: {
 top: '200px',
 left: '500px'
 }
});

After initializing the window, add the onclick event listeners as follows:

var modalObject = $('#window').data('kendoWindow');

$('#btnOpen').on('click', function() {
 modalObject.open();
});

$('#btnClose').on('click', function() {
 modalObject.close();
});

$('#btnRefresh').on('click', function() {
 modalObject.refresh();
});

$('#btnMaximize').on('click', function() {
 modalObject.maximize();
});

$('#btnToggleMaximization').on('click', function() {
 modalObject.toggleMaximization();

 //restore to original state after 2 seconds
 setTimeout(function () {
 modalObject.toggleMaximization()
 }, 2000);

});

$('#btnMinimize').on('click', function() {
 modalObject.minimize();
});

$('#btnRestore').on('click', function() {

Kendo UI Window

110

 modalObject.restore();
});

$('#btnPin').on('click', function() {
 modalObject.pin();
});

$('#btnUnpin').on('click', function() {
 modalObject.unpin();
});

How it works…
When you initialize the window, you will see that it is positioned at 200 pixels from top and
500 pixels left of the viewport. The content of the window is loaded asynchronously since
the content attribute that refers to the URL is specified when initializing the widget.

After initializing the widget, a reference to the window object is stored in modalObject.
The modalObject is then referred to in all event listeners.

When you click on the Refresh button, you will notice that an asynchronous request is sent to
the same URL specified in the content attribute. Notice that the window itself does not have
the action buttons in the title bar. When you click on any of the buttons, the corresponding
action is invoked.

8
Kendo UI Mobile

Framework

In this chapter, we will cover the following recipes:

ff Creating a layout and adding views to the layout

ff Setting the initial layout and view when initializing the application

ff Using the Application object to navigate to various views

ff Adding touch events to your mobile application

Introduction
In the earlier recipes, we looked at various components available in the Kendo UI library that
enable you to build web applications rapidly. In the upcoming recipes, we will take a look at
the Kendo UI Mobile library that provides an application framework and a set of widgets that
enable you to build mobile applications quickly. The Kendo UI Mobile framework renders the
application by providing a native look and feel on various mobile platforms, which includes
iOS, Android, Blackberry, and Windows Phone 8. The developers can focus on delivering
functionality and depend on the Mobile framework to provide the native look and feel of
various platforms, thereby reducing the development effort and maintaining the same
code base for all the platforms.

Kendo UI Mobile Framework

112

Creating a layout and adding views to the
layout

Every Kendo Mobile application has one or more layouts and multiple views added to it. Both
the layout and view are widgets, that is, visual components that can be used to build a mobile
application. There are several such widgets, which we will explore in the next chapter. In this
recipe, we will take a look at building a simple application by creating a layout and adding
multiple views to it.

Getting started
There are separate CSS and JS files that need to be included when working with mobile
applications. The CSS file should refer to the kendo.mobile.all.min.css file located
in the styles directory and the JS files should refer to kendo.mobile.min.js, located
in the js directory.

Also, the reference to the jQuery library should remain as it is, that is, the Kendo UI Mobile
library (kendo.mobile.min.js) has a dependency on jQuery.

How to do it…
As mentioned in the previous section, let's first include the CSS and JS files references in
the HTML page, as shown in the following code snippet:

<link rel="stylesheet"
 type="text/css"
 href="../../styles/kendo.mobile.all.min.css">

<script src="../../js/jquery.min.js"></script>

<script src="../../js/kendo.mobile.min.js"></script>

You might have to adjust the paths of the file based on the directory
structure of your development environment.

Chapter 8

113

The next step is to create a layout. A layout serves as a container for various views in the
application. A layout defines the structure of the application; it contains widgets that will
remain constant while the user is interacting with the application. For example, most of
the applications have a header and a footer that remain constant while navigating through
the application. The header and footer widgets can be a part of the layout and the dynamic
part, that is, views that change based on the state of the application will be associated with
a layout. Views can be considered as individual pages in the application that are displayed
based on the state of the application. For example, you can have two views, namely, login
and register. Based on the application state, one of these views is rendered. Create a
layout widget using the div element by adding data attributes:

<div
 data-role="layout"
 data-id="defaultLayout">

</div>

Here, the data-role attribute is set to the layout, identifying the element as a layout
widget. Every widget in the Mobile framework will have the data-role attribute set to the
corresponding widget name. The data-id attribute is used to identify the widget on the
page. There can be multiple layout widgets in the page, and each widget needs to have a
unique ID that identifies the widget in the application.

Now let's add a couple of widgets to the layout, such as a header widget, which contains
a navbar, and a footer widget, which contains tabstrip:

<div
 data-role="layout"
 data-id="defaultLayout">

 <header data-role="header">

 <div data-role="navbar">
 Application Header
 </div>

 </header>

Kendo UI Mobile Framework

114

 <footer data-role="footer">

 <div data-role="tabstrip">

 <a data-icon="about">About

 <a data-icon="settings">Settings

 </div>

 </footer>
</div>

As mentioned earlier, a widget is created by assigning appropriate values to the data-role
attribute. In this case, the header, navbar, footer, and tabstrip values are assigned
to the data-role attribute of various elements.

Once a layout is added to the page, the next step would be to add a view. A view widget
represents a single view that needs to be shown when the application is rendered. There
can be multiple views in the page and only one view can be rendered at any given point,
depending on the state of the application:

<div
 data-role="view"
 data-layout="defaultLayout">

 Hello Kendo!!
</div>

Here, apart from the data-role attribute, the div element also has a data-layout
attribute. The data-layout attribute is used to associate the view widget with a layout
widget in the page. In this case, the value of the data-layout attribute is defaultLayout,
which is the value of the data-id attribute of the layout widget. The header and footer
widgets defined in layout are positioned accordingly, and the View widget is rendered in
the available space inside the layout. The last step would be to initialize the application.
To initialize it, include the following code snippet:

<script>
 var app = new kendo.mobile.Application();
</script>

The preceding code snippet will initialize all the widgets in the page and make associations
between the layout and views. The Application object can then be used to route between
multiple views in the page, and we will visit this scenario in the upcoming recipes.

Chapter 8

115

How it works…
When you execute the page, you will see a navigational bar and a tab strip in the header and
footer of the page. Also, the Hello Kendo!! message will be shown in the body of the page.

The following screenshot shows you how the application will look when you view the page on
an iPhone that runs iOS7:

Notice that there was no extra code written to set the look and feel of the application.
The Mobile framework provides this functionality out of the box, that is, it determines the
user agent and adds CSS classes to the elements in the page.

When you inspect the page, you will see classes added to the body tag, as shown in the
following line of code:

<body class="km-on-ios km-ios7 km-7 km-m0 km-web km-black-status-
 bar km-vertical km-widget km-pane" data-role="pane" style="">

Kendo UI Mobile Framework

116

Notice the km-on-ios and km-ios7 class added to the body tag. If you view the same page
on an Android device, it would be rendered differently.

Again, the framework determines the user agent and adds CSS classes to the body tag.
In this case, it would be as shown in the following code snippet:

<body class="km-on-android km-android km-4 km-m0 km-web km-black-
 status-bar km-vertical km-widget km-pane" data-role="pane"
 style="">

Here, the km-on-android and km-android classes are added.

There's more…
The Mobile framework renders the application based on the device it is accessed from.
However, in scenarios where you want to customize the layout for a given platform, you can
specify the data-platform attribute. For example, you can specify data-platform as
the iOS for the previous layout and add another layout to the page with its data-platform
attribute set to android:

Chapter 8

117

<div
 data-role="layout"
 data-id="defaultLayout"
 data-platform="android">

 <footer data-role="footer">

 <div data-role="tabstrip">

 <a data-icon="about">About

 <a data-icon="settings">Settings

 <a data-icon="share">Share

 <a data-icon="refresh">Refresh

 </div>

 </footer>
</div>

The tabstrip widget has two additional icons. When you access
the application from an Android device, the previous layout would be
selected by the framework.

Setting the initial layout and view when
initializing the application

When working on complex mobile applications, you will have multiple layouts and views in
the page. In this case, the initial view to render within a selected layout would not be possible
to determine. However, options can be passed to the kendo.mobile.application function
to set the layout and the initial view to use when the application is initialized.

How to do it…
Let's consider that there are two layouts and two views in the page. The layouts differ by
the number of elements in tabstrip. In layout1, let's consider the header text, which
reads Layout1 header and has two elements in its tabstrip:

<div
 data-role="layout"

Kendo UI Mobile Framework

118

 data-id="layout1">

 <!-- header here -->

 <footer data-role="footer">

 <div data-role="tabstrip">

 <a data-icon="about">About

 <a data-icon="settings">Settings

 </div>

 </footer>
</div>

In the same page, there will be another layout with the data-id attribute set to layout2.
This layout's header text would read Layout2 header, and the footer would contain four
elements in its tabstrip:

<div
 data-role="layout"
 data-id="layout2">

 <!-- header here -->

 <footer data-role="footer">

 <div data-role="tabstrip">

 <a data-icon="about">About

 <a data-icon="settings">Settings

 <a data-icon="share">Share

 <a data-icon="refresh">Refresh

 </div>

 </footer>
</div>

Chapter 8

119

The next step is to add views to the page. Let's add two views and specify the id attribute
for them:

<div
 data-role="view"
 id="view1">

 From View1

</div>

<div
 data-role="view"
 id="view2">

 From View2

</div>

Notice that the views in this page do not have the data-layout attribute. When the page
is rendered, you would see that the first view in the page (with id='view1') is rendered
without any layout. To change this behavior, you can specify the layout and the initial view
to use when initializing the application:

<script>
 var app = new kendo.mobile.Application(document.body, {
 layout: 'layout2',
 initial: 'view2'
 });
</script>

Here, the first argument of the kendo.mobile.Application function is document.body.
The first argument of this function is the target element. It is usually the container for various
widgets (the element with the data-role attribute). The second argument is an object that
contains a set of options used to initialize the application. Here, we will specify the layout and
the initial view to use when rendering the page.

Kendo UI Mobile Framework

120

How it works…
When you render the page, you would see that layout2 is used when rendering view2.

If you specify the data-layout attribute for the view element, then the view would be
rendered with that layout instead of the one mentioned when initializing the application.

There's more…
In the previous recipe, it was mentioned that the data-platform attribute is used to specify
the platform for which the layout is built. In many scenarios, you might like the same look
and feel to appear in all the platforms. For example, if you are using an iOS device and would
like to force the look and feel of Android, then you can specify the attribute platform when
initializing the application:

<script>
 var app = new kendo.mobile.Application(document.body, {
 layout: 'layout2',
 initial: 'view2',

Chapter 8

121

 platform: 'android'
 });
</script>

Now when you render the page on any device, you should be able to see the same look and
feel across all platforms.

Using the Application object to navigate to
various views

When building a mobile application, you will have multiple views representing various states in
the application, that is, each state is represented by a View component in the application.
For example, when you click on a button, the current view is disposed and the new view
should be displayed. The Application object is used to navigate between various views in the
application. These views can be defined in the same HTML document or can be present as a
separate document (partials).

How to do it…
A good way to structure the code is to create multiple pages and separate the views. Specifying
all the views in the same page will increase the size of the response and, hence, hamper the
performance. Let's create a page that contains two buttons, namely, Login and Register:

<div
 data-role="layout"
 data-id="layout1">

 <header data-role="header">

 <div data-role="navbar">

 </div>

 </header>
</div>

<div
 data-role="view"
 data-layout="layout1"

Kendo UI Mobile Framework

122

 data-title="Home">

 <a
 data-role="button"
 id="loginBtn"
 class="button">

 Login

 <a
 data-role="button"
 id="registerBtn"
 class="button">

 Register

</div>

Let's call this page the Home page. It contains a layout widget and a view widget. The view
contains two buttons. Notice that the layout's navbar widget contains a span element with
the data-role attribute set to view-title. This allows various views to provide a title that
will be displayed in the navbar widget. The view widget specifies the data-title attribute
with its value as Home. This will set the layout's navbar text with the same value.

The view contains two buttons: Login and Register. The next step is to define views that will
be displayed when you click on one of these buttons; the following code snippet shows you a
description of Login View:

<div
 data-role="layout"
 data-id="login-layout">

 <header data-role="header">

 <div data-role="navbar">
 <a
 class="nav-button"
 data-role="backbutton"
 data-align="left">
 Back

Chapter 8

123

 </div>

 </header>

</div>

<div
 data-role="view"
 data-layout="login-layout"
 data-title="Login">

 Login Page

</div>

The preceding code snippet is placed in the login.html file. Here, the layout is
similar to the one created in the Home page, except that it now contains a Back button
(data-role=backbutton). The backbutton widget is used as a navigation widget to
navigate back to the previous page. A similar page, register.html, is created and
contains the same layout and view.

The next step is to bind the buttons in the Home page to these pages. The Application object
is used to navigate between various pages. Let's add event handlers to the login and register
buttons on the page:

<script>
 var app = new kendo.mobile.Application();

 $('#loginBtn').on('click', function () {
 app.navigate('login.html');
 });

 $('#registerBtn').on('click', function () {
 app.navigate('register.html');
 });

</script>

The navigate method is used to navigate to different pages. When the user clicks on any
of these buttons, the navigate method on the Application object is called to navigate to
the corresponding page.

Kendo UI Mobile Framework

124

How it works…
When you render the page (Home page), there are two buttons, Login and Register.

On clicking on the Login button, the user would be navigated to the login.html page,
and when you click on the Register button, you would be navigated to the register.html
page. The screenshot of the Login page is shown as follows:

Chapter 8

125

The navbar title is updated, and it has a Back button. On clicking on the Back button,
the user is navigated to the Home page. On the Home page, when you click on the Register
button, the registration page, that is, the register.html page, is shown as follows:

The Register view also contains the Back button, allowing the user to navigate to the
Home page.

There's more…
When navigating from one view to the other, you can specify the transition effects that can
be applied.

Specifying view transitions
When transitioning from one view to the other, you can specify the transition effect that
needs to be applied using the data-transition attribute. The following values can be
set as values of the data-transition attribute:

ff slide: This transition effect slides the old view content to the left and inserts the
new view content slides in its place. You can specify the direction using the slide
(direction). By default, the direction is left; the other option is right.

ff zoom: Here, the new view content zooms from the center of the old view. The old
view content will fade out and the new view content will be shown.

Kendo UI Mobile Framework

126

ff fade: Using this effect, the new content fades in on top of the old view. The old view
content will fade out, showing you the content from the new view.

ff overlay: The overlay effect is similar to the slide effect, except that the
previous view remains under the new one. The transition direction can be specified
using overlay (direction). By default, the direction is left; other supported directions
include right, up, and down.

In all of the transition effects mentioned, the content along with its header and footer is shown.
It is also possible to specify the transition effect for the entire application instead of specifying
the data-transition attribute for each view widget in the document. When initializing the
application using the Application object, specify the transition property with the desired
effect as its value:

var app = new kendo.mobile.Application(document.body, {
 transition: "zoom"
});

This allows the transition effect to be applied to the entire application.

Adding touch events to your mobile
application

The Kendo UI Mobile framework provides various APIs to handle touch-based events.
The applications that you build should not only allow the user to perform regular select
events on the touch interface, but they should also handle various touch gestures such
as double tap, swipe, and drag-and-drop. In this recipe, we will take a look at the various
touch events that can be added.

How to do it…
For the purpose of this example, let's consider the same layout used in the previous recipe
and add a view to the page. The content of this view would be a touch widget that specifies
an area in the view enabled for touch events:

<div
 data-role="view"
 data-layout="defaultLayout">
 <div
 id="touchSurface"
 data-role="touch"

 data-enable-swipe="1"

Chapter 8

127

 data-touchstart="touchstart"
 data-swipe="swipe"
 data-tap="tap"
 data-doubletap="doubletap"
 data-hold="hold"
 style="height: 200px;">

 Touch Surface

 </div>
</div>

In addition to the data-role attribute being set to touch, the widget includes various
data attributes that specify the touch event handlers. This includes touchstart, swipe, tap,
double tap, and hold. The value assigned to these data attributes are names of the event
handlers. These event handlers would be defined in the script tag. Notice that there is an
attribute, data-enable-swipe, set to 1, indicating that the swipe feature is enabled:

<script>
 var app = new kendo.mobile.Application();

 function touchstart(event) {
 console.log('Event - Touch Start' + " X=
 "+event.touch.x.location + " Y= " + event.touch.y.location);
 }
 function tap(event) {
 console.log('Event - Tap');
 }
 function doubletap(event) {
 console.log('Event - Double tap');
 }
 function hold(event) {
 console.log('Event - Hold');
 }
 function swipe(event) {
 console.log('Swipe direction ' + event.direction);
 }
</script>

Kendo UI Mobile Framework

128

How it works…
The touchstart event is invoked when the user touches the surface. The event object
available in the touchstart event handler can be used to determine the x and y coordinates
where the touch was triggered. The tap event is invoked when the user taps on the screen,
that is, after lifting the finger from the touch screen. Similarly, a doubletap event is invoked
when the user taps on the screen twice in quick succession. If the user touches the screen
and does not lift his finger for a few seconds, then the hold event is fired. The swipe event
is fired when the users swipes his finger either from left to right or from right to left. The
direction attribute available on the event object can be used to determine the direction
in which the user has initiated the swipe. The sequence of events is as follows:

ff The touchstart event will be triggered when the user touches the screen

ff The tap event will be triggered when the user taps on the screen

ff The doubletap event will be invoked after tap when the application recognizes
the second tap

In the case of hold, the following sequence is executed:

ff The touchstart event will be triggered

ff The hold event will be triggered when the user continues his focus on one point
for a long time

9
Kendo UI Mobile

Widgets

In this chapter, we will cover the following recipes:

ff Creating a list using a ListView widget

ff Binding the ListView widget to a DataSource object

ff Fixing the headers when the user scrolls through the list

ff Filtering the elements in the ListView widget

ff Building a hierarchical list using the ListView widget

ff Building an endless scrolling list

ff Showing a list of actions that can be performed using the ActionSheet widget

ff Using the ScrollView widget to navigate through a collection of pictures

ff Creating a SplitView widget to display multiple panes in a tablet and building
interaction between the panes

ff Using a TabStrip widget to display different views

Introduction
The Kendo UI Mobile library contains a multitude of widgets that can be readily used in your
mobile applications. These widgets allow you to build some of the common mobile-related
workflows by configuring them to match your needs. Some of the commonly used widgets
include ListView, ScrollView, ActionSheet, TabStrip, and Navbar. The library also provides a
SplitView widget that can be used in tablet applications.

Kendo UI Mobile Widgets

130

In this chapter, we will see how to create ListView that displays a flat or hierarchical collection
of data; then, visit some of the configuration options that can be used to achieve some of the
workflows, for example, building an endless scrolling list. The ActionSheet widget is then used
to perform an action on the selected list element. We will also see how a gallery-like application
can be created using the ScrollView widget. The SplitView widget is used in tablets to display
two different views in a single page and bind the interaction between them.

Creating a list using a ListView widget
The ListView widget allows you to display a list of items on the page. This list can be flat
or grouped. The list values can be specified in the HTML markup, or the ListView widget can
be bound to a DataSource object. In this recipe, we will take a look at creating a ListView
widget where the list values are specified in the markup.

How to do it…
A ListView widget can be created using an unordered or ordered list. To create a ListView
widget, assign the listview value to the data-role attribute:

<ul
 data-role="listview">

 Her

 12 Years A Slave

Chapter 9

131

 .
 .
 .

The preceding markup contains an unordered list, where each list element contains an image
and a text. When the application is initialized, the widgets that are present in the page are
initialized based on the values assigned to the data-role attribute.

How it works…
When you render the page, the ListView widget is constructed and rendered on the mobile
device, as shown in the following screenshot:

Here, each list item contains an anchor (hyperlink to a page) element whose href attribute
refers to the html page. Also, it contains a right arrow aligned to the right-hand side of each
item in the list. This indicates that the user can click to view the details for that particular item
in the list.

Kendo UI Mobile Widgets

132

When you click on the list element, you will be navigated to the corresponding page.

There's more…
A ListView widget integrates with a DetailsButton widget that can be used to add an icon to
the right-hand side of each element in the list. This icon is added to mention the action that
can be performed on the list item.

To add detailbutton for the list element, insert an anchor element with the data-role
attribute set to detailbutton. Also, you need to specify the data-style attribute that
specifies the type of detail button being added. Detail buttons support four styles: contactadd,
detaildisclose, rowinsert, and rowdelete.

You can also add custom icons by specifying the data-icon attribute instead of data-style:

<ul
 data-role="listview">

 Contact Add

Chapter 9

133

 <a data-role="detailbutton"
 data-style="contactadd">

 Detail Disclose
 <a data-role="detailbutton"
 data-style="detaildisclose">

 Row Insert
 <a data-role="detailbutton"
 data-style="rowinsert">

 Row Delete
 <a data-role="detailbutton"
 data-style="rowdelete">

 Battery (Custom Icon)
 <a data-role="detailbutton"
 data-icon="battery">

Here, the last element in the ListView widget contains an anchor with the data-icon attribute
set to battery. You can assign the following values to the data-icon attribute: about,
action, add, bookmarks, camera, cart, compose, contacts, details, downloads,
fastforward, favorites, featured, toprated, globe, history, home, info, more,
mostrecent, mostviewed, organize, pause, play, recents, refresh, reply, rewind,
search, settings, share, stop, and trash.

Kendo UI Mobile Widgets

134

When you render the page, you will see detail buttons added to the right-hand side of each
list element.

You can also add a custom icon by specifying the value of the data-icon attribute as
custom and adding the km-custom class to the CSS style sheet.

Binding the ListView widget to a DataSource
object

As mentioned in the previous recipe, a ListView widget can be created either by specifying the
list elements in the markup or by binding it to a DataSource object. In this recipe, we will
look at how ListView is populated using the DataSource object.

How to do it…
Let's create an empty list that will then be populated with data from a DataSource object:

<ul
 id="listViewContainer">

Notice that the unordered list does not specify the data-role attribute. A ListView widget
can be initialized by invoking the kendoMobileListView function on the DOM element:

Chapter 9

135

var listElements = ['Her', 'Gravity', '12 Years A Slave',
 'Captain Phillips', 'American Hustle',
 'The Wolf Of Wall Street', 'Nebraska',
 'Dallas Buyers Club', 'Philomena'];

$('#listViewContainer').kendoMobileListView({
 dataSource: listElements
});

The listElements array contains a set of strings that will then be used as a dataSource to
populate the ListView widget. The kendoMobileListView function is used to initialize the
list element. The dataSource option is specified when initializing the widget.

Alternatively, dataSource can also refer to a remote service that returns an array of strings:

$('#listViewContainer').kendoMobileListView({
 dataSource: {
 transport: {
 read: '/services/listViewService'
 }
 }
});

How it works…
When you render the page, the ListView widget is initialized and is populated with data that
is present in the array. If DataSource refers to a service URL, a GET request is sent to the
service and the data returned by the service is used to populate the ListView widget.

Kendo UI Mobile Widgets

136

There's more…
In the preceding recipe, we have populated a ListView widget with values in an array. You can
also provide a template that can be used when populating the list with a DataSource object.

Let's create an array of objects, where each object contains two properties, name and image,
as follows:

var listElements = [
 {name: 'Her', image: 'her.jpg'},
 {name: 'Gravity', image: 'gravity.jpg'},
 {name: '12 Years A Slave', image: '12_years_a_slave.jpg'},
 {name: 'Captain Phillips', image: 'captain_phillips.jpg'},
 {name: 'American Hustle', image: 'american_hustle.jpg'},
 {name: 'The Wolf Of Wall Street',
image: 'wolf_of_wall_street.jpg'},
 {name: 'Nebraska', image: 'nebraska.jpg'},
 {name: 'Dallas Buyers Club',
 image: 'dallas_buyers_club.jpg'},
 {name: 'Philomena', image: 'philomena.jpg'}
];

The next step is to create a template that will be used when populating the list:

<script type="text/x-kendo-template" id="list-template">
 <a>

 #= name #

</script>

The template specifies a placeholder for the image and name properties. Now when
you initialize the widget, in addition to specifying the dataSource property, specify the
template property:

$('#listViewContainer').kendoMobileListView({
 dataSource: listElements,
 template: $('#list-template').html()
});

The template property here contains a reference to the template specified earlier
(id=#list-template); this template is compiled against the data present in the
dataSource object. For each object in the dataSource object, a list element is
generated and appended to the ListView widget.

Chapter 9

137

Fixing the headers when the user scrolls
through the list

The items in the ListView widget can be grouped by a property. For example, assume that the
list contains a set of names or contacts in your directory. These contacts can be grouped by
the letter the contact name begins with. When you render the list, you would see that these
contacts are grouped and on scrolling, the header is fixed.

How to do it…
To create fixed headers, that is, data grouped by a particular attribute, each object in the
collection or the array should include that attribute. Let's create a sample array where each
object contains two properties, name and startsWith; the startsWith attribute will be
used to group the names in the list:

var actors = [
 {"name": "Leonardo DiCaprio", "startsWith": "L"},
 {"name": "Johnny Depp", "startsWith": "J"},
 {"name": "Al Pacino", "startsWith": "A"},
 {"name": "Bradley Cooper", "startsWith": "B"},
 {"name": "Tom Cruise", "startsWith": "T"},
 {"name": "Jude Law", "startsWith": "J"},
 {"name": "Robert Downey Jr.", "startsWith": "R"},
 {"name": "Will Smith", "startsWith": "W"},
 {"name": "Robert De Niro", "startsWith": "R"},
 {"name": "Antonio Banderas", "startsWith": "A"},
 {"name": "Christian Bale", "startsWith": "C"},
 {"name": "Brad Pitt", "startsWith": "B"},
 {"name": "Tom Hanks", "startsWith": "T"},
 {"name": "Robert Pattinson", "startsWith": "R"},
 {"name": "Ben Stiller", "startsWith": "B"}
];

Note that the list is not in a sorted order; we will use this list as a DataSource for a
ListView widget:

function mobileListViewInit () {
 $('#listViewContainer').kendoMobileListView({
 dataSource: kendo.data.DataSource.create({
 data: actors,

Kendo UI Mobile Widgets

138

 group: 'startsWith'
 }),

 template: '#= name #',
 fixedHeaders: true
 });
}

In the preceding code snippet, the mobileListViewInit function is used to initialize
the ListView widget. This function is invoked when the view that contains the ListView
widget is initialized. The view should specify the data-init attribute that refers to the
mobileListViewInit function as its value. The dataSource property is used to
provide the input data (that refers to the actors array), and it also specifies the group
property whose value is startsWith. Apart from the dataSource property, the list's
view initialization also contains the template and fixedHeaders properties. The
fixedHeaders property is used to fix the header for each list group when the user
scrolls the list.

How it works…
When the ListView widget is initialized, the names in the array are grouped by the
startsWith property, and you will see the names in ascending order, that is,
the names are listed in alphabetical order, as shown in the following screenshot:

Chapter 9

139

Now when the user scrolls down, you will see that the corresponding headers stick to the top,
indicating that the current list that is at the top of the list is that of a particular group.

In the preceding screenshot, the user has scrolled down but the header is at the top of the
page, indicating that the current list starts with the letter A. The fixedHeaders property
will fix the header when the user scrolls down the list.

Filtering the elements in ListView
The ListView widget can contain several list elements, and scrolling through the entire list to
get to the desired list element would be time consuming. For example, consider your contacts
list; to get to a particular contact, one will have to scroll several times. To obliterate this, you
can add a filter and use it to retrieve the desired list element that matches the input text.

How to do it…
Let's consider a flat data source, that is, an array that contains a list of strings:

var listElements = ['Leonardo DiCaprio', 'Johnny Depp',
 'Bradley Cooper', 'Al Pacino',
 'Tom Cruise','Jude Law',

Kendo UI Mobile Widgets

140

 'Robert Downey Jr.', 'Will Smith',
 'Robert De Niro', 'Christian Bale',
 'Brad Pitt','Tom Hanks',
 'Robert Pattinson', 'Ben Stiller'];

Now when initializing the ListView widget, provide the preceding elements as a dataSource
and also include a filterable attribute and set its value to true:

$('#listViewContainer').kendoMobileListView({
 dataSource: listElements,
 filterable: true
});

When you set the filterable attribute to true, a search input field is added to the top
of the list. When the user starts to type in the search input field, the list is filtered to show the
options that match the user input. Here, the user input string is compared with elements in
the list and only those that start with the input string are displayed in the list. If you would like
to change this logic so that it returns those elements that contain the input string instead of
the ones that start with it, then mention the operator field as follows:

$('#listViewContainer').kendoMobileListView({
 dataSource: listElements,
 filterable: {
 "operator": "contains"
 }
});

The operator field can contain one of these values: startsWith, endswith, contains,
eq (equal to), neq (not equal to), lt (less than), lte (less than or equal to), gt (greater than),
and gte (greater than or equal to).

When working with dataSource, which contains objects, the widget would fail to filter the list
because it wouldn't know the field against which the user input has to be matched. To fix this,
you can specify the field option:

$('#listViewContainer').kendoMobileListView({
 dataSource: actors,
 template: '#= name #',
 filterable: {
 "field": "name",
 "operator": "contains"
 }
});

Chapter 9

141

The preceding code snippet looks for the—name field and filters out the elements in the list.
In all the previous cases, the list is filtered out as and when the user starts to type in the
search input field. If you would like the user to click on the search button, then specify the
autoFilter option and set it to false:

$('#listViewContainer').kendoMobileListView({
 dataSource: actors,
 template: '#= name #',
 filterable: {
 "field": "name",
 "autoFilter": false,
 "operator": "contains"
 }
});

By setting the autoFilter property to false, the user will have to hit the search button to
get the filtered list. This is useful when you are working with a long list and don't want the list
to refresh on every key input.

How it works…
When you render the page, you will see the search input field at the top of the list.

Kendo UI Mobile Widgets

142

When you start to key in the search field, the list is filtered, and it contains only those options
that start with the input text.

When you change the operator to contains, the list is filtered out and it now has those
options that contain the input text.

Chapter 9

143

There's more…
The search input field has a placeholder text, Search. You can customize this text by
specifying the placeholder option:

$('#listViewContainer').kendoMobileListView({
 dataSource: actors,
 template: '#= name #',
 filterable: {
 "field": "name",
 "autoFilter": false,
 "placeholder": "Find...",
 "operator": "contains"
 }
});

When you render the page, you will see that the placeholder text has changed to Find….

Building a hierarchical list using the
ListView widget

In all the previous recipes, the data returned from the service contained all the records,
and the same were displayed in the list. When working with a hierarchical data structure
instead of a flat one, the ListView widget can be customized so that it can display the data
in a hierarchical way, that is, displaying the elements in the first level of the hierarchy and
then traversing through various levels until the leaf nodes in the hierarchy are reached.

Kendo UI Mobile Widgets

144

Getting started
To build a hierarchical list, the service should return data that lists the first set of records that
need to be displayed. Each record should have a field that indicates whether there are child
records or it's a leaf node in the hierarchy. This information will then be used in the ListView
widget, which would enable the user to navigate through the hierarchy.

How to do it…
The ListView widget should first display the records present in the top level of the hierarchy.
Let's assume that the service is configured to return the same when it's queried from the
client browser:

[
 {"id": 1, "name": "Lamborghini", "hasModels": true},
 {"id": 2, "name": "Ferrari", "hasModels": true},
 {"id": 3, "name": "Aston Martin", "hasModels": true}
]

The id property is used to uniquely identify each record in the hierarchical structure. It also
has a hasModels property that indicates whether the record has child nodes associated with
it. The next step is to create a DataSource object and specify the service URL as well as the
schema details:

var cars = new kendo.data.HierarchicalDataSource({
 transport: {
 read: '/carService'
 },

 schema: {
 model: {
 id: 'id',
 hasChildren: 'hasModels'
 }
 }
});

Chapter 9

145

In the preceding code snippet, we are using kendo.data.HierrachicalDataSource
to create an instance of hierarchical data source. The definition contains the schema object
that specifies the mapping for the id and hasChildren properties. The view that renders
the hierarchical structure should be used every time the user navigates to various levels in
the hierarchy:

<div
 id="hierarchicalView"
 data-role="view"
 data-title="Cars"
 data-show="attachDataSource"
 data-layout="defaultLayout">

 <ul
 id="listViewContainer"
 data-role="listview"
 data-template="hierachicalTemplate">

</div>

The preceding view (with id=hierarchicalView) contains a ListView widget. The
view specifies data attribute – show, whose value refers to the function that
will be invoked every time view is rendered, that is, whenever view is reused to display
the next level elements. The ListView widget specifies the data-template attribute as
hierarchicalTemplate. The template can be specified when initializing the widget,
or it can be specified as a data- attribute:

<script id="hierachicalTemplate" type="text/x-kendo-template">
 # if(data.hasModels) { #

 #= name #

 # } else { #
 #= name #
 # } #
</script>

The template first checks whether the current model object (referred in data) has the
hasModels property set to true and then adds a hyperlink that refers to the same view
(with id=hierarchicalView) with a query parameter, parent, set to id of the model
object. If the current model object is the leaf node, then the same would be added to the
list without any hyperlink.

Kendo UI Mobile Widgets

146

When the user clicks on the hyperlink, the view should be reused to display the next
elements in the hierarchy. As mentioned earlier, the data-show attribute specifies the
function that should be invoked every time the view is used to display the content. The
attachDataSource function is invoked every time the view is shown:

function attachDataSource(e) {
 var parentID = e.view.params.parent,
 listView = $("#listViewContainer")
 .data('kendoMobileListView');

 if (!parentID) {
 listView.setDataSource(cars);
 } else {
 cars.fetch(function () {
 var item = cars.get(parentID);
 listView.setDataSource(item.children);
 });
 }
}

Whenever the user clicks on the link, the view is reused and the preceding function is invoked.
The event object is then used to get parentID. Initially, when the view is used to render the
elements, that is, the elements in the top level in the hierarchy, parentID would be null.
In this case, the ListView is set to the hierarchical data source that we defined earlier. When
the user navigates the view, parentID would be present and the ListView's dataSource is
set to the child nodes of the corresponding parent.

How it works…
When you render the page, the elements in the top level of the hierarchy would be displayed
as shown in the following screenshot:

Chapter 9

147

Here, since the hasModels property is set to true, all elements in the list are displayed
along with a right arrow (>). This indicates that the user can navigate to the next set of
nodes by clicking on it.

When the user clicks on any of the elements in ListView, the attachDataSource function is
invoked. The clicked element's id would be used to get the next set of elements in the hierarchy.
Note that the query parameter parentID is present when you have set the DataSource for
the ListView; a GET request is sent to the service specifying the parentID value to the query
parameter id. The remote service looks for the records and returns it. The request URL is of
the form:

/service?id=<parentID>

When you click on the first element (id = 1), the service will look for the records whose
parentID is 1. Let's assume that the service returns the following records:

[
 {"id": 11, "name": "Gallardo", "hasModels": false},
 {"id": 12, "name": "Aventador", "hasModels": false},
 {"id": 13, "name": "Huracan", "hasModels": false}
]

Notice that the value of hasModels is false in all the three objects. Now, view is updated
to show the preceding records in ListView, and it does not contain the right arrow.

The template used to render the list elements checks the value of the hasModels property
and adds an anchor element only if it's set to true. In this case, it's false, and hence it
does not display the right arrow.

Kendo UI Mobile Widgets

148

Building an endless scrolling list
A ListView widget can be customized to display an exhaustive list of items. There are multiple
ways in which this can be done, for example, by adding a button at the bottom of the list, after
clicking on which, the next set of elements would be added to the list. The other way would be
to add more elements as and when the user scrolls down. This is called endless scrolling and
it provides a seamless experience when the user is scrolling through an exhaustive list. In this
recipe, we will see both the approaches, that is, adding a button to load more elements and
creating an endless scrolling list, which is loaded when the user scrolls down.

How to do it…
In both the cases, the DataSource object must be configured so that it returns a limited
number of records. While configuring DataSource for the ListView widget, specify
the pageSize attribute:

dataSource: {
 transport: {
 read: '/movies/listService'
 },
 pageSize: 10
}

To add the button at the bottom of the list, specify the loadMore option with its value set
to true:

function initListView (e) {
 $('#listViewContainer').kendoMobileListView({
 dataSource: {
 transport: {
 read: '/movies/listService'
 },
 pageSize: 10
 },

 loadMore: true

 });
}

Chapter 9

149

To enable endless scrolling instead of adding the load more button, set the endlessScroll
attribute to true:

function initListView (e) {
 $('#listViewContainer').kendoMobileListView({
 dataSource: {
 transport: {
 read: '/movies/listService'
 },
 pageSize: 10
 },

 endlessScroll: true

 });
}

How it works…
When you render the page, the button with the Press to load more text is shown at the
bottom of the list, as shown in the following screenshot:

Kendo UI Mobile Widgets

150

In case of an endless scrolling list, a request is sent to the service when the user scrolls
down. While the list is being loaded, you will see the loader being shown, as depicted in
the following screenshot:

Showing a list of actions that can be
performed using the ActionSheet widget

The Kendo Mobile ActionSheet widget is used to show you a list of actions that can be
performed when a user taps on an element on the screen. The ActionSheet widget slides
from the bottom and shows you a list of actions that can be performed against the tapped
element on the screen.

How to do it…
Let's create view, which contains the ListView widget and an ActionSheet widget:

<div
 data-role="view"
 data-title="Movies to watch"
 data-layout="defaultLayout">

 <ul

Chapter 9

151

 id="listViewContainer">

 <ul
 data-role="actionsheet"
 id="optionActionSheet">

 <a data-action="option1">Favourite

 <a data-action="option2">Watch

 <a data-action="option3">Remove

</div>

The content of the ListView widget is populated using a DataSource object. The ActionSheet
widget (ul with data-role=actionsheet) contains a list of actions that need to be shown
when the user clicks on any of the elements in the ListView widget. Notice that each list element
contains an anchor element with a data-action attribute. This attribute is used to specify
the JavaScript function to be invoked when the user clicks on the action button.

The next step is to associate elements in the list with the ActionSheet widget. To populate the
elements in the list, template can be used and the same can specify the reference to the
ActionSheet widget:

<script id="listViewTemplate" type="text/x-kendo-template">
 <a
 data-rel="actionsheet"
 href="\#optionActionSheet">

 #= data #

</script>

Here, the anchor's data-rel attribute is set to actionsheet, and the href attribute refers
to the ActionSheet widget (id=optionActionSheet).

Kendo UI Mobile Widgets

152

How it works…
Each element in the ListView widget has a right arrow (>), which indicates that an action can
be invoked on the list element:

When you tap on any of the list elements, the ActionSheet widget is shown. The widget
slides from the bottom of the screen and lists the options or actions that the user can
perform, as shown in the following screenshot:

Chapter 9

153

The overlay of the ActionSheet widget covers the entire screen and the list containing actions
is shown. Notice that the ActionSheet widget, apart from listing the mentioned options, also
includes the Cancel button.

When the user clicks on any of the previous options, the associated JavaScript function is
invoked. On clicking on Cancel, the ActionSheet widget is hidden and the overlay is removed.

There's more…
The ActionSheet widget is shown as Modal window on an Android device. As mentioned
earlier, the mobile widgets are customized to provide a native look and feel of various devices.

The options are listed with the Cancel option here as well.

Using the ScrollView widget to navigate
through a collection of pictures

A ScrollView widget is used in picture galleries or carousel-like applications, where you would
like to scroll to the next page to see the next picture in the gallery. The widget allows you to
move to the next page or the previous page by swiping from right to left or left to right.

How to do it…
Let's create a view that contains a ScrollView widget:

<div
 data-role="view"

Kendo UI Mobile Widgets

154

 data-title="Gallery"
 data-layout="defaultLayout">

 <div
 data-role="scrollview">

 </div>
</div>

Here, a ScrollView widget is created inside the view by setting the data-role attribute to
scrollview. The ScrollView widget now needs to contain pages that can be scrolled through
by swiping from right to left or left to right. To create a page, add div elements inside the
ScrollView container, and set the data-role attribute to page. Each page widget can then
contain an image that needs to be shown:

<div
 data-role="scrollview">

 <div
 data-role="page">

 </div><div
 data-role="page">

 </div><div
 data-role="page">

 </div><div
 data-role="page">

 </div><div
 data-role="page">

 </div>
.
.
.
</div>

How it works…
When you render the page, the ScrollView widget shows you the first page that contains
the image.

Chapter 9

155

Here, the ScrollView widget also includes pager at the bottom of the screen, which
highlights the page that the user is on. When you swipe from right to left, the next page
is shown as follows:

Kendo UI Mobile Widgets

156

There's more…
When you render the page, the ScrollView widget shows you the first page in the set of pages
by default. If you want to display a different page, then set the data-page attribute for the
ScrollView widget element:

<div
 data-role="scrollview"
 data-page="4">

</div>

The page numbers are zero indexed, that is, when you specify the data-page attribute
as 4, the fifth page in the list is shown.

If you want to hide the pager that is shown at the bottom of the ScrollView widget, then you
can set the data-enable-pager attribute as false:

In the preceding screenshot, pager is removed; however, the user can still browse through
the set of pages by swiping through it. This option is useful when you have an exhaustive list
of pages to browse through, and showing a pager at the bottom of the screen would not be
the experience that you want to provide.

Chapter 9

157

Creating a SplitView widget to display
multiple panes in a tablet and building
interaction between the panes

The Kendo UI library provides a SplitView widget, which is a tablet specific widget. A SplitView
widget consists of two or more panes, and each of these panes consist of one or more view
widgets. Generally, the SplitView widget is used to select an item in the list in one pane and
update the other pane that displays more data about the selected item.

How to do it…
Let's create two panes, Left Pane and Right Pane, and then include these panes inside a
SplitView widget. Here's the markup for the Left Pane:

<div
 data-role="pane"
 id="nav-pane"
 data-layout="left-navbar-layout">

 <div
 data-role="view"
 id="test">

 <ul
 id="moviesList"
 data-role="listview"
 data-template="navbar-template">

 </div>

 <script type="text/x-kendo-template" id="navbar-template">
 <a href="\#movieDescription?movieID=#= data.id #"
 data-target="content-pane">
 #= data.name #

 </script>

 <div
 data-role="layout"

Kendo UI Mobile Widgets

158

 data-id="left-navbar-layout">

 <header data-role="header">

 <div data-role="navbar">
 Left Pane
 </div>

 </header>
 </div>

</div>

A pane widget is created by setting the data-role attribute to pane. The pane contains a
view widget and the view lists items that use a ListView widget. The view is associated with
Layout, and the ListView widget is populated using the following DataSource object:

var listElements = [
 {id: 1, name: 'Her', image: 'her.jpg'},
 {id: 2, name: 'Gravity', image: 'gravity.jpg'},
 {id: 3, name: '12 Years A Slave', image:
 '12_years_a_slave.jpg'},
 {id: 4, name: 'Captain Phillips', image:
 'captain_phillips.jpg'},
 {id: 5, name: 'American Hustle', image: 'american_hustle.jpg'},
 {id: 6, name: 'The Wolf Of Wall Street', image:
 'wolf_of_wall_street.jpg'},
 {id: 7, name: 'Nebraska', image: 'nebraska.jpg'},
 {id: 8, name: 'Dallas Buyers Club', image: 'dallas_buyers_club.
jpg'},
 {id: 9, name: 'Philomena', image: 'philomena.jpg'}
];

Let's now consider the Right Pane widget that will be used to display details about the
selected item in Left Pane:

<div
 data-role="pane"
 id="content-pane"
 data-layout="right-content-layout">

 <div
 data-role="view"
 data-show="displayOrders"

Chapter 9

159

 id="movieDescription">

 <div id="movieDetails">

 </div>

 </div>

 <div
 data-role="layout"
 data-id="right-content-layout">

 <header data-role="header">
 <div data-role="navbar">
 Right Pane
 </div>
 </header>
 </div>

</div>

The Right Pane widget also contains the view; the content of this view is generated when
the user selects an item in Left Pane. Notice that the anchor element specified in the Left
pane template specifies the href attribute as \#movieDescription?movieID=#=
data.id #, which refers to the view in Right Pane. Also, it specifies the data-target
attribute as content-pane, which refers to Right Pane itself.

The next step would be to enclose the two panes inside a SplitView widget:

<div
 data-role="splitview">

 <div
 data-role="pane"
 id="nav-pane"
 data-layout="left-navbar-layout">
 .
 .
 </div>
 <div
 data-role="pane"

Kendo UI Mobile Widgets

160

 id="content-pane"
 data-layout="right-content-layout">
 .

 .
 </div>
</div>

The view widget in Right pane has the data-show attribute set to displayOrders; the
data-show attribute is used to specify the JavaScript function that should be invoked when the
view is used to show content. When the user clicks on any of the items in Left Pane, the view in
Right Pane is used to display the details. Let's use the Right Pane widget to display the image
of the selected element in Left Pane. The displayOrder function is implemented as follows:

function displayOrders (e) {
 var movieID = parseInt(e.view.params.movieID, 10);

 for (var i=0; i< listElements.length; i++) {
 if(listElements[i].id === movieID) {
 $('#movieDetails').html('<img src="images/large/' +
 listElements[i].image + '"/>');
 break;
 }
 }
}

Here, the function first gets d of the selected element and then gets the image of the
corresponding element. This image is then shown in the view contained in Right Pane.

Similarly, whenever a user selects an item in the ListView present in Left Pane,
the corresponding image would be shown in Right Pane.

How it works…
When you first render the page, the Left Pane widget is populated with the elements
from DataSource.

Chapter 9

161

Initially, Right Pane does not display any content since none of the items are selected in Left
Pane. When you select any of the items from the ListView widget in Left Pane, the Right Pane
widget is updated to show you the image:

Kendo UI Mobile Widgets

162

There's more…
The SplitView widget has stacked the panes horizontally; it's also possible to stack these
panes vertically by specifying the data-style attribute to vertical:

<div
 data-role="splitview"
 data-style="vertical">
 .
 .
</div>

The following screenshot is how the panes would look when they are stacked vertically:

Chapter 9

163

Tab between views in the application using
a TabStrip widget

The TabStrip widget is used to navigate between various views in the application. TabStrip is
usually placed in the footer of the layout, and on clicking the buttons present in TabStrip, the
corresponding view is shown.

How to do it…
Let's create a layout that contains a TabStrip widget in the footer:

<div
 data-role="layout"
 data-id="defaultLayout">

 <footer data-role="footer">

 <div data-role="tabstrip">

 <a href="#contactsView"
 data-icon="about">
 Contacts

 <a
 href="#favoritesView"
 data-icon="favorites">
 Favorites

 <a
 href="#settingsView"
 data-icon="settings">
 Settings

 </div>

 </footer>
</div>

In the preceding code snippet, the TabStrip widget (data-role='tabstrip') contains
three buttons: Contacts, Favorites, and Settings. Each of these buttons specify the href
attribute whose value is the same as the value assigned to the id attribute of the view
defined in the page.

Kendo UI Mobile Widgets

164

The next step would be to define views that would get displayed when you select any of the
buttons in TabStrip:

<div
 id="contactsView"
 data-role="view"
 data-layout="defaultLayout">

 <ul
 id="contactsViewContainer"
 data-role="listview">

</div>

<div
 id="favoritesView"
 data-role="view"
 data-layout="defaultLayout">

 <ul
 id="favoritesViewContainer"
 data-role="listview">

</div>

<div
 id="settingsView"
 data-role="view"
 data-layout="defaultLayout">

 <ul
 data-role="listview">
 Sorted
 <input type="check" data-role="switch" checked>

 Show Images
 <input type="check" data-role="switch">

</div>

Notice that the id attribute of the preceding view widget definitions are referred in the href
attribute of the anchor elements in the TabStrip widget.

Chapter 9

165

How it works…
When you render the page, the Contacts view is shown, and the same is highlighted in the
TabStrip widget:

Notice that the Contacts icon in TabStrip is highlighted, indicating that the current view shows
you a list of Contacts. When you touch on the Favorites or Settings icon, the corresponding
icon in TabStrip is highlighted and the view is also updated:

10
Kendo UI DataViz

In this chapter, we will cover the following recipes:

ff Creating charts using kendoChart

ff Binding a chart to a DataSource object

ff Creating a multiaxis chart

ff Displaying data over a period of time and using aggregate functions

ff Making a chart interactive by adding events

ff Changing the chart type dynamically

Introduction
The Kendo UI library provides a set of powerful visualization components that can be used
to bring data to life. It uses modern browser technologies such as SVG and Canvas to render
these charts. It falls back to VML on older browsers. The browser support ranges from IE7+
to Chrome, Firefox, Opera (15+), and Safari. In this chapter, we will look at building some
of the basic charts such as the area chart, pie chart, and column chart, and how they can
be customized. In the next chapter, we will look at some of the advanced data visualization
charts that are used to build dashboard-like applications.

Kendo UI DataViz

168

Creating charts using kendoChart
The Kendo data visualization library provides several charting widgets that can be built
with ease. In this recipe, we will first build a column chart and then customize its look
and feel. A column chart displays vertical bars, visually representing the provided data.

Getting started
The kendo.all.min.js file contains all the components, that is, Web, Mobile, and DataViz
widgets. However, if you're building only data visualization components, then include the
kendo.dataviz.min.js file.

How to do it…
To create a chart, let's add a container to the page, specifying the dimension of the chart
area, as shown in the following line of code:

<div id="chart" style="width:500px; height: 400px">

Notice that the chart has a width of 500 pixels and a height of 400 pixels. This area will
be used to render the chart. The next step is to initialize the chart using the kendoChart
function, as shown in the following line of code:

$("#chart").kendoChart()

In the preceding code line, a chart is initialized by invoking the kendoChart function on the
selected div element. When you render the page, a chart with only its axes will be shown.
The next step is to provide some data and a set of options that will be used to display the
chart. These includes the chart title and the type of chart that you want to display, as shown
in the following code snippet:

$("#chart").kendoChart({
 title: {
 text: 'Browser Adoption'
 },
 categoryAxis: {
 categories: [2010, 2011, 2012, 2013, 2014]
 },
 series: [{
 name: 'Internet Explorer',
 data: ['32', '23', '17', '12', '9'],
 type: 'column'
 }],
 valueAxis: {
 labels: {

Chapter 10

169

 format: '{0}%'
 }
 }
});

In the preceding code snippet, several options have been provided to initialize the chart
widget. Let's take a look at each one of them:

ff title: This option is used to specify the title text that should be shown on top of
the chart. The text option specified in the title will be displayed.

ff categoryAxis: This option is used to specify the categories that should be
displayed on the x axis of the chart.

ff series: This option is used to specify the data that needs to be displayed in the
chart. The name option is used to display the legend information. The data option
includes all the data that needs to be plotted on the chart and type specifies the
chart type that needs to be displayed.

ff valueAxis: This option refers to the y axis and in the preceding example, it specifies
the format in which the values in the y axis should be displayed. The {0}% value serves
as a template where {0} is replaced with a value based on the data that is provided.

How it works…
After providing all the options in the kendoChart function, you will see that a column chart
is added to the page, which also contains the title and legend information, as shown in the
following screenshot:

Notice that the preceding column chart shows you the title at the top and the legend information
on the right-hand side. The color theme that has been applied is the default one.

Kendo UI DataViz

170

There's more…
Charts can be used to show you series of data for multiple categories, and there are several
options available to the user to customize the chart. Let's take a look at each one of these
options in detail.

Showing multiple categories in the chart
The chart that we created had only one series added; when you want to compare multiple
products or categories, the series array can include them:

series: [{
 name: 'Internet Explorer',
 data: ['32', '23', '17', '12', '9']
}, {
 name: 'Firefox',
 data: ['45', '39', '34', '28', '26']
}, {
 name: 'Chrome',
 data: ['15', '26', '40', '52', '56']
}, {
 name: 'Safari',
 data: ['6', '5', '4', '4', '4']
}]

Notice that the type information is removed from the series. When building a chart, you can
specify the common options for the series under seriesDefault:

seriesDefaults: {
 type: 'column'
}

Now when you render the page, other series will be included.

Chapter 10

171

Changing the position of the title and Iegend information
It is possible to customize the chart to change the position of the title and legend information:

title: {
 text: 'Browser adoption',
 position: 'bottom'
 },
 legend: {
 position: 'bottom'
 }

When you render the page, the chart will occupy the entire width and the legend and title
information will be shown below the chart.

The height of the chart is affected and is now shown in the given height of 400 pixels in the
chart along with the legend and title information. You can specify the position as top, bottom,
right, left, or custom. When the position is custom, you need to specify the offsetX and
offsetY options as well:

legend: {
 position: 'custom',
 offsetX: 50,
 offsetY: 20
}

Kendo UI DataViz

172

Now when you render the page, you will notice that the legend information is positioned
at 50 pixels from the left and 20 pixels from the top of the chart area, as shown in the
following screenshot:

Changing the default theme
The theme applied in the preceding chart is the default one. You can change the theme from
the default one by specifying the theme option, as shown in the following line of code:

theme: 'black'

After changing the theme to black, the page would be rendered as shown in the
following screenshot:

Chapter 10

173

The other values that can be assigned to the theme property include blueopal, bootstrap,
highcontrast, metro, metroblack, moonlight, silver, and uniform.

Binding a chart to a DataSource object
A Kendo chart widget can be bound to a DataSource object. This DataSource object
can be local or remoteDataSource. When using a DataSource object, the series
and configurationAxis fields must be configured to refer to the fields in the
DataSource object.

How to do it…
Let's first create a local DataSource object, which will then be used to construct the chart:

var chromeBrowser = [{
 'year': 2008,
 'percentage': 0
}, {
 'year': 2009,
 'percentage': 4
}, {
 'year': 2010,
 'percentage': 15
}, {
 'year': 2011,
 'percentage': 26
}, {
 'year': 2012,
 'percentage': 40
}, {
 'year': 2013,
 'percentage': 52
}, {
 'year': 2014,
 'percentage': 56
}];

The next step is to specify the preceding code as a DataSource reference when constructing
the chart:

$("#chart").kendoChart({
 dataSource: {
 data: chromeBrowser
 },
 title: {

Kendo UI DataViz

174

 text: 'Chrome Browser adoption',
 position: 'bottom'
 },
 theme: 'blueOpal',
 seriesDefaults: {
 type: 'area'
 },
 categoryAxis: {
 field: 'year',
 },
 series: [{
 field: 'percentage'
 }],
 valueAxis: {
 labels: {
 format: '{0}%'
 }
 }
});

Here, dataSource in the preceding code snippet specifies a reference to the array of objects
(chromeBrowser) that we defined earlier. The categoryAxis option specifies the year
field, and the series field specifies the percentage field. The x axis now plots the year
information and the y axis is projected with the percentage value in the DataSource object.

How it works…
In this example chart, the type of chart is specified as area, and now when you render the
page, an area chart that shows the percentage adoption over several years is displayed,
as shown in the following screenshot:

Chapter 10

175

There's more…
In the preceding example, only one series was shown in the chart. When working with multiple
series, the remote service needs to be configured to return data in a specific format.

Showing multiple series using the DataSource object
When you have multiple series to be added to the chart, the DataSource object should
contain data grouped by category. In this example, the data is grouped by year, as shown
in the following code snippet:

var browserAdoption = [{
 'year': 2011,
 'chrome': 40,
 'firefox': 30,
 'ie': 15,
 'safari': 15
}, {
 'year': 2012,
 'chrome': 45,
 'firefox': 25,
 'ie': 12,
 'safari': 18
}, {
 'year': 2013,
 'chrome': 50,
 'firefox': 22,
 'ie': 8,
 'safari': 20
}];

In our example, the categoryAxis option specifies the field as year; this will group the data
by this field. The next step is to specify the previously mentioned configuration in the series
option when constructing the chart:

series: [{
 field: 'chrome',
 name: 'Chrome'
}, {
 field: 'firefox',
 name: 'Firefox'
}, {
 field: 'safari',
 name: 'Safari'

Kendo UI DataViz

176

}, {
 field: 'ie',
 name: 'IE'
}],

Now when you render the page, the series for various browsers is plotted on the chart, as shown
in the following screenshot:

Showing values on the chart as labels
The chart can be customized to show you the values on the chart at specific points. The labels
option is used to show you the value on the plotted chart:

seriesDefaults: {
 type: 'area',
 labels: {
 visible: true,
 format: '{0}%'
 }
}

Chapter 10

177

Here, the labels option specifies two fields, namely, visible and format. The labels
option for the series will add labels at the intersection of the x and y axes where the value is
projected, as shown in the following screenshot:

The preceding screenshot shows you the exact value of labels at the intersection of both
the axes.

Creating a multiaxis chart
In many scenarios, you would like to group data by more than one field. In the examples
depicted in the earlier recipes, the browser adoption data was grouped by year. Now, this data
can be grouped by platform as well. For example, adoption of the Chrome browser in the year
2012 on the Windows platform can be accomplished by adding multiple axes to the chart.

How to do it…
The first step is to define the series data, which contains information grouped by platforms:

series: [{
 name: 'On Windows',
 data: ['15', '26', '40', '52', '56'],
 type: 'column',

Kendo UI DataViz

178

}, {
 name: 'On Linux',
 data: ['8', '15', '28', '32', '38'],
 type: 'column',
}, {
 name: 'On Mac',
 data: ['12', '20', '33', '40', '45'],
 type: 'area'
}, {
 name: 'On Others',
 data: ['2', '8', '15', '18', '22'],
 type: 'area'
}]

Here, the name attribute specifies the platform and the data attribute specifies the adoption
percentage over the years. Notice that the first two in the series have the type attribute as
column and the other two as area. The next step is to update the valueAxis option and
specify the details about the axis that needs to be plotted:

valueAxis: [{
 title: {
 text: 'Windows'
 },
 min: 0,
 max: 60
}, {
 title: {
 text: 'Linux'
 },
 min: 0,
 max: 60
}, {
 title: {
 text: 'Mac'
 },
 min: 0,
 max: 45
}, {
 title: {
 text: 'Others'
 },
 min: 0,
 max: 45
}]

Chapter 10

179

The valueAxis field specifies the axes that need to be plotted on the chart. These are
defined in the same order as the ones in the series field. The min and max attributes
are used to adjust the valueAxes option. In the preceding code snippet, the min and max
attributes for the Windows and Linux platforms are 0 and 60, which indicates that the y axis
that was used to project the value will start at 0 and will go up to 60. Similarly, for the other
two platforms, the y axis would range from 0 to 45.

When you execute the page, you will notice that there is one horizontal axis (the x axis), which
refers to the categories (the year data), and four vertical axes (the y axis), which refer to the
platforms. All the four vertical axes that refer to the platforms are plotted on the left-hand side.
If you want to move some of these vertical axes to the right, then you will have to specify the
axisCrossingValues array in the categoryAxis option:

categoryAxis: {
 categories: [2010, 2011, 2012, 2013, 2014],
 axisCrossingValues: [0, 0, 5, 5]
}

Here, the axisCrossingValues field is used to specify the crossing value for each axis.
The values in the array are used to indicate the indices for each series. A zero value indicates
that the axis is aligned on the left-hand side (no changes); any other value would indicate its
position from the left. In the previous example, the value five is used to move the axis to the
right-hand side, since the indices zero to four are used by the categories 2010 to 2014.

How it works…
When you execute the page without specifying the axisCrossingValues field, the various
axes are plotted on the left-hand side, shown as follows:

Kendo UI DataViz

180

Here, the library starts plotting the vertical axes in the order in which they are defined in the
series field, moving towards the left. After specifying the axisCrossingValues field, the
axis for the Mac and Others series would be moved to the right-hand side, as shown in the
following screenshot:

There's more…
When working with a multiaxis chart, a series can be turned off by clicking on its legend. For
example, when you click on the On Windows legend, the corresponding series would be hidden.

Chapter 10

181

Notice that in the preceding screenshot, the On Windows legend is grayed out and the
corresponding series is hidden from the chart. This enables users or consumers of the
application to look through various series and compare them, as required.

Displaying data over a period of time and
using aggregate functions

When you work on a data analytics project, you usually come across use cases of plotting a
chart, which displays some data over a period of time. For example, in an order-management
system, you would like to display the order data and plot it against a period of time. This period
could be for a day, week, month, or year. Also, you would like to display data in terms of, say, the
average bill value, number of orders, or total business made during the specified period of time.

The Kendo chart library allows you to project the data based on the given period and also
apply some of the aggregate functions when displaying this data.

How to do it…
Let's first consider an example dataset that contains the order data:

var orderStats = [{
 billAmount: 80,
 date: new Date('2014/01/01')
 }, {
 billAmount: 95,
 date: new Date('2014/01/01')
 }, {
 billAmount: 100,
 date: new Date('2014/01/01')
 }, {
 billAmount: 85,
 date: new Date('2014/01/01')
 }, {
 billAmount: 120,
 date: new Date('2014/01/02')
 }, {
 billAmount: 130,
 date: new Date('2014/01/02')
 }, {
 billAmount: 100,

Kendo UI DataViz

182

 date: new Date('2014/01/02')
 },
 .
 .
 . {
 billAmount: 80,
 date: new Date('2014/01/07')
 }, {
 billAmount: 70,
 date: new Date('2014/01/07')
 }
]

In the DataSource object mentioned in the preceding code snippet, each order contains two
fields, namely billAmount and date. The order data spans from January 1, 2014 to January
7, 2014. This is only an example data and you can consider the data that spans over a month
or a year.

There are two levels at which we want to display analytics:

ff Data over a period of time

ff Data that is grouped by date and on which some of the aggregate functions,
such as average, total, and count, are applied

To display data over a period of time, you can set the baseUnit value in the
categoryAxis field:

categoryAxis: {
 baseUnit: 'days'
}

This will group the objects in the DataSource object by days. The other possible options
are weeks, months, and years. The aggregate field is to specify the aggregate function
to be used in the series, as shown in the following code snippet:

series: [{
 type: 'area',
 aggregate: 'sum',
 field: 'billAmount',
 categoryField: 'date',
 labels: {
 visible: true,
 background: 'transparent'
 },
 color: '#0F0'
}]

Chapter 10

183

Here, in the series definition, the aggregate field specifies sum as the aggregate function
to be used; this means that the chart will plot the total business made by a restaurant over
a period of time. The other possible values that can be assigned to the aggregate include
avg, count, first, min, and max. There is also an option to provide a custom aggregator
function, which would return a value that should be used to project the data.

The series option specifies the color for the series and the labels
option is used to display the data value on the chart. When you display a
single series, all options can be specified in the series option instead
of using the seriesDefaults option.

How it works…
When you execute the page, the order data is plotted on the chart, showing the total business
made over a period of days, as shown in the following screenshot:

Similarly, you can create multiple charts that use the other aggregate functions, such as avg
and count, to display the average bill value and the total number of orders made over a
period of time, respectively.

Kendo UI DataViz

184

You can build a dashboard showing these statistics by creating multiple div elements on the
page (one for each chart), plotting data grouped by dates, and using aggregate functions.

There's more…
The area charts that were built in the previous example connected the values by a straight
line. You can customize this by specifying the style of line to be used. The possible values are
step and smooth:

line: {
 style: 'smooth'
}

When you specify smooth, the values in the chart are connected by a smooth line, that is, a
curved line that connects the two points such that the chart looks like a curved line drawn to
connect all the points, shown as follows:

When you specify the style of the line as step, the values on the chart are connected by a
line at right angles.

Chapter 10

185

Making a chart interactive by adding events
The Kendo UI Chart library can define various event handlers, which will be triggered when
the user hovers or clicks on a data item in a series. In this recipe, we will display a tooltip
when the user hovers over a data item in the chart, and in another example, we will change
the color of the selected column when the user clicks on it.

How to do it…
Let's consider the same DataSource object that we used to show the adoption of the Chrome
browser over the years. In this example, let's add another field, feature, that we will use to
show tooltip:

var chromeBrowser = [{
 'year' : 2008,
 'percentage' : 0,
 'feature' : 'First stable release'
}, {
 'year' : 2009,
 'percentage' : 4,
 'feature' : 'HTML5 Video and Audio tag support'
}, {
 'year' : 2010,
 'percentage' : 15,
 'feature' : 'Support for WebM videos'
}, {
 'year' : 2011,
 'percentage' : 26,
 'feature' : 'Hardware accelerated 3D CSS'

Kendo UI DataViz

186

}, {
 'year' : 2012,
 'percentage' : 40,
 'feature' : 'New Extensions API'
}, {
 'year' : 2013,
 'percentage' : 52,
 'feature' : 'Web Speech API'
}, {
 'year' : 2014,
 'percentage' : 56,
 'feature' : 'Different look for Win8 metro mode'
}];

The next step is to specify the tooltip option that contains fields that will be used to display
a tooltip when the user hovers over a data item in the series, using the following code snippet:

tooltip: {
 visible: true,
 template: '#= dataItem.feature #',
 background: '#0F0'
}

Here, the template field contains the dataIteam.feature value. The dataItem field refers
to the object that is used to plot the column in the chart. The other possible values include
category, which refers to the category in categoryAxis, which, in this case, would be the
year field; value, which refers to the percentage value used to draw the column; and series,
which refers to the entire series object.

To handle click events, specify the seriesClick option:

seriesClick: function (e) {
 //iterate over series data and set the color for each series
 for (vari = 0, j = e.series.data.length; i < j; i++) {
 e.series.data[i].color = '#00F';
 }
 //change the color of the selected series
 e.dataItem.color = '#F00';
 //redraw the graph – required for the changes to get reflected
 this.redraw();
}

The first statement in the preceding function loops through all the objects in the series and
resets the color; then, the selected item in the series is assigned a different color. The chart
needs to be refreshed or redrawn to bring these changes into effect; hence, the last line
invokes the redraw function on this. The this object refers to the context; in this case,
this is the series object.

Chapter 10

187

The other way to subscribe to the event is to add a listener using the bind method on the
chart object:

var chart = $('#chart').data('kendoChart');
chart.bind('seriesClick', function (e) {
 for (vari = 0, j = e.series.data.length; i < j; i++) {
 e.series.data[i].color = '#00F';
 }
 e.dataItem.color = '#F00';
 this.redraw();
});

The first line in the preceding code snippet gets a reference to the chart object. The chart
object is then used to subscribe to the seriesClick event. Now when the user clicks on a
particular column in the series, the callback function will be invoked.

When the chart is refreshed or redrawn, an animation is shown while
the chart is drawn. To disable the animation, specify the transitions
property as false.

How it works…
When you hover over the plotted area, you will see that the feature value in the data item
is shown as a tooltip, as shown in the following screenshot:

Kendo UI DataViz

188

Now change the series type to column and refresh the page; you will see that all columns
in the chart are of the same color. When you click on any column in the chart, the selected
column's color is changed and redrawn.

In the preceding screenshot, the selected column's color has changed and is highlighted in
the chart.

Changing the chart type dynamically
In this recipe, we will take a look at how the type and skin of the chart can be changed at
runtime. For example, if you have projected a column chart and you want to change it to, say,
a line chart, then changes can be made to the series and the chart will be updated. This is
useful in cases where you would like to visually represent data in various forms but you can't
because of the space constraint. In this recipe, we will construct the chart using the data
attributes instead of using the kendoChart function. This is another way of constructing a
chart. Also, we will use the Model View ViewModel pattern to make changes to the chart
when the user changes its type or skin. This pattern obliterates the use of adding event
handlers and, instead, relies on listening to model changes to update the chart dynamically.

How to do it…
Let's create a chart by specifying various options as data attributes:

<div id="chartArea" data-role="chart" data-title="{text: 'Browser
 adoption', position: 'bottom'}" data-category-axis="{field:
 'year'}" data-series-defaults="{type: 'area'}" data-
 theme="blueopal" data-legend="{position: 'bottom'}" data-
 series="[

Chapter 10

189

{ field: 'chrome', name: 'Chrome' },
{ field: 'firefox', name: 'Firefox'},
{ field: 'safari', name: 'Safari'},
{ field: 'ie', name: 'IE' }
]" data-bind="{source: dataSet}" style="width: 500px; height:
 400px">
</div>

In the preceding code snippet, all the options are specified as data attributes. The data
attribute role, with its value set to chart, will initialize the div element as a chart widget.
It also has the data-bind attribute, which specifies its source as dataset. The data-bind
attribute is used to specify the model-binding values. In this case, the source binding, that is,
the DataSource object to which this chart is bound, is specified. The ViewModel object that
we will construct soon will specify a dataset attribute.

The next step is to create two dropdowns, one that lists the chart types and the other that lists
the various themes or skins that should be applied. Let's also add a checkbox that represents
whether the chart should be stacked or not, as shown in the following code snippet:

<select id="chartTypeDropdown" data-bind="value: chartType,
events: {change: onChangeHandler}">
 <option value="area">Area</option>
 <option value="line">Line</option>
 <option value="column">Column</option>
</select>
<select id="chartSkin" data-bind="value: chartSkin,
events: {change: onChangeHandler}">
 <option value="default">Default</option>
 <option value="blueopal">BlueOpal</option>
 <option value="bootstrap">Bootstrap</option>
 <option value="highcontrast">HighContrast</option>
 <option value="metro">Metro</option>
 <option value="metroblack">MetroBlack</option>
 <option value="silver">Silver</option>
 <option value="uniform">Uniform</option>
</select>
<input type="checkbox" data-bind="checked: isStacked,
events: {change: onChangeHandler}" />Stacked

Here, the select elements and the input element has the data-bind attribute specified.
This attribute specifies the model binding for value and checked, respectively and also
specifies the event binding for the change event. All these should be specified in ViewModel.

Kendo UI DataViz

190

The next step is to specify the data source that will be used to plot the chart. Let's use the
same data source that we used in earlier recipes:

var browserAdoption = [{
 'year': 2011,
 'chrome': 40,
 'firefox': 30,
 'ie': 15,
 'safari': 15
}, {
 'year': 2012,
 'chrome': 45,
 'firefox': 25,
 'ie': 12,
 'safari': 18
}, {
 'year': 2013,
 'chrome': 50,
 'firefox': 22,
 'ie': 8,
 'safari': 20
}];

The final step is to create a ViewModel object that contains all the model attributes
that will be consumed by the previously mentioned elements. It should also specify the
onChangeHandler function, which will be called when the user changes the values in
the dropdown or selects the stacked checkbox, as shown in the following code snippet:

var viewModel = kendo.observable({
 chartType: 'area',
 chartSkin: 'blueopal',
 isStacked: false,
 onChangeHandler: function (e) {
 var chart = $('#chartArea').data('kendoChart');
 chart.setOptions({
 seriesDefaults: {
 type: this.chartType,
 stack: this.isStacked
 },
 theme: this.chartSkin
 });

Chapter 10

191

 chart.refresh();
 },
 dataSet: new kendo.data.DataSource({
 data: browserAdoption
 })
});

Here, the bindings for various model attributes such as chartType, chartSkin,
isStacked, dataset, and onChangeHandler are specified. The onChangeHandler
function is an event handler that handles change events from dropdowns and the input
checkbox. When one of these values change, the chart will be updated. The setOptions
function is used to specify the type and stack value in the seriesDefaults field and also
the theme to be used for the chart. The refresh function is then called to update the chart.
The dataSet attribute specifies the DataSource object to be used when plotting the chart.

How it works…
When you render the page, you will see an area chart with the BlueOpal skin applied to it,
as shown in the following screenshot:

Kendo UI DataViz

192

Now, let's change the type of chart to Line and the theme to Silver; this will trigger the
onChangeHandler function in the ViewModel object and the chart will be updated with
the selected options.

Now, let's change all three options, that is, type to Column, theme to Bootstrap, and select
the Stacked option. When you select the checkbox, the stack option is set to true and the
series data will now be stacked instead of showing four different columns for each browser.

In the preceding screenshot, the values for various series are stacked one above the other.

11
Kendo UI DataViz –
Advance Charting

In this chapter, we will cover the following recipes:

ff Creating a chart to show stock history

ff Using the Radial Gauge widget

ff Using the Linear Gauge widget

ff Generating barcode images using various encoding methods

ff Generating a QR code image to represent a URL, e-mail, telephone,
and geographic location

ff Creating flow diagrams using Kendo Diagram

ff Creating hierarchical structural diagrams using layouts

ff Creating a map to display geospatial information using an OpenStreet map

ff Creating a map by binding it to the GeoJSON data

Introduction
The Kendo UI library provides several advance charting widgets that can be used to visualize
data. These include the Stock Chart widget that shows you the stock price history of a particular
stock, the Map widget that visualizes data on a map, the Gauge widget that creates a dashboard
that contains gauge charts, Barcode and QRCode widgets that allow you to create codes that
can be used to identify products, and the Diagram widget that creates diagrams that show you
nested relationships between various entities. These are some of the advance charts in addition
to the basic charts mentioned in the previous chapter.

Kendo UI DataViz – Advance Charting

194

Creating a chart to show stock history
The Kendo UI library provides a specialized chart widget that can be used to display the
stock price data for a particular stock over a period of time. In this recipe, we will take a
look at creating a Stock chart and customizing it.

Getting started
Include the CSS files, kendo.dataviz.min.css and kendo.dataviz.default.min.css,
in the head section. These files are used in styling some of the parts of a stock history chart.

How to do it…
A Stock chart is made up of two charts: a pane that shows you the stock history and another
pane that is used to navigate through the chart by changing the date range.

The stock price for a particular stock on a day can be denoted by the following five attributes:

ff Open: This shows you the value of the stock when the trading starts for the day

ff Close: This shows you the value of the stock when the trading closes for the day

ff High: This shows you the highest value the stock was able to attain on the day

ff Low: This shows you the lowest value the stock reached on the day

ff Volume: This shows you the total number of shares of that stock traded on the day

Let's assume that a service returns this data in the following format:

[
 {
 "Date" : "2013/01/01",
 "Open" : 40.11,
 "Close" : 42.34,
 "High" : 42.5,
 "Low" : 39.5,
 "Volume": 10000
 }
 .
 .
 .
]

Chapter 11

195

We will use the preceding data to create a Stock chart. The kendoStockChart function is
used to create a Stock chart, and it is configured with a set of options similar to the area chart
or Column chart, as mentioned in the previous chapter. In addition to the series data, you
can specify the navigator option to show a navigation pane below the chart that contains
the entire stock history:

$("#chart").kendoStockChart({
 title: {
 text: 'Stock history'
 },

 dataSource: {
 transport: {
 read: '/services/stock?q=ADBE'
 }
 },

 dateField: "Date",

 series: [{
 type: "candlestick",
 openField: "Open",
 closeField: "Close",
 highField: "High",
 lowField: "Low"
 }],

 navigator: {
 series: {
 type: 'area',
 field: 'Volume'
 }
 }
});

In the preceding code snippet, the DataSource object refers to the remote service that
would return the stock data for a set of days. The series option specifies the series type
as candlestick; a candlestick chart is used here to indicate the stock price for a particular
day. The mappings for openField, closeField, highField, and lowField are specified;
they will be used in plotting the chart and also to show a tooltip when the user hovers over it.
The navigator option is specified to create an area chart, which uses volume data to plot
the chart. The dateField option is used to specify the mapping between the date fields in
the chart and the one in the response.

Kendo UI DataViz – Advance Charting

196

How it works…
When you load the page, you will see two panes being shown; the navigator is below the
main chart. By default, the chart displays data for all the dates in the DataSource object,
as shown in the following screenshot:

In the preceding screenshot, a candlestick chart is created and it shows you the stock price
over a period of time. Also, notice that in the navigator pane, all date ranges are selected by
default, and hence, they are reflected in the chart (candlestick) as well. When you hover over
the series, you will notice that the stock quote for the selected date is shown. This includes
the date and other fields such as Open, High, Low, and Close.

The area of the chart is adjusted to show you the stock price for various dates such that the
dates are evenly distributed. In the previous case, the dates range from January 1, 2013 to
January 31, 2013. However, when you hover over the series, you will notice that some of the
dates are omitted. To overcome this, you can either increase the width of the chart area or
use the navigator to reduce the date range. The former option is not advisable if the date
range spans across several months and years.

Chapter 11

197

To reduce the date range in the navigator, move the two date range selectors towards each
other to narrow down the dates, as shown in the following screenshot:

When you try to narrow down the dates, you will see a tooltip in the chart, indicating the date
range that you are trying to select. The candlestick chart is adjusted to show you the stock
price for the selected date range. Also, notice that the opacity of the selected date range in
the navigator remains the same while the rest of the area's opacity is reduced. Once the
date range is selected, the selected pane can be moved in the navigator.

There's more…
There are several options available to you to customize the behavior and the look and feel
of the Stock Chart widget.

Specifying the date range in the navigator when initializing
the chart
By default, all date ranges in the chart are selected and the user will have to narrow them
down in the navigator pane. When you work with a large dataset, you will want to show the
stock data for a specific range of date when the chart is rendered. To do this, specify the
select option in navigator:

navigator: {
 series: {
 type: 'area',

Kendo UI DataViz – Advance Charting

198

 field: 'Volume'
 },
 select: {
 from: '2013/01/07',
 to: '2013/01/14'
 }
}

In the previous code snippet, the from and to date ranges are specified. Now, when you
render the page, you will see that the same dates are selected in the navigator pane.

Customizing the look and feel of the Stock Chart widget
There are various options available to customize the navigator pane in the Stock Chart
widget. Let's increase the height of the pane and also include a title text for it:

navigator: {
 .
 .
 pane: {
 height: '50px',
 title: {
 text: 'Stock Volume'
 }
 }
}

Chapter 11

199

Now when you render the page, you will see that the title and height of the navigator pane
has been increased.

Using the Radial Gauge widget
The Radial Gauge widget allows you to build a dashboard-like application wherein you want
to indicate a value that lies in a specific range. For example, a car's dashboard can contain
a couple of Radial Gauge widgets that can be used to indicate the current speed and RPM.

How to do it…
To create a Radial Gauge widget, invoke the kendoRadialGauge function on the selected
DOM element. A Radial Gauge widget contains some components, and it can be configured
by providing options, as shown in the following code snippet:

$("#chart").kendoRadialGauge({

 scale: {
 startAngle: 0,
 endAngle: 180,
 min: 0,
 max: 180
 },

 pointer: {
 value: 20
 }

});

Kendo UI DataViz – Advance Charting

200

Here the scale option is used to configure the range for the Radial Gauge widget.
The startAngle and endAngle options are used to indicate the angle at which the
Radial Gauge widget's range should start and end. By default, its values are 30 and 210,
respectively. The other two options, that is, min and max, are used to indicate the range
values over which the value can be plotted. The pointer option is used to indicate the
current value in the Radial Gauge widget.

There are several options available to configure the Radial Gauge widget; these include
positioning of the labels and configuring the look and feel of the widget.

How it works…
When you render the page, you will see a Radial Gauge widget that shows you the scale
from 0 to 180 and the pointer pointing to the value 20.

Here, the values from 0 to 180 are evenly distributed, that is, the major ticks are in terms of
20. There are 10 minor ticks, that is, ticks between two major ticks. The widget shows values
in the clockwise direction. Also, the pointer value 20 is selected in the scale.

There's more…
The Radial Gauge widget can be customized to a great extent by including various options
when initializing the widget.

Changing the major and minor unit values
Specify the majorUnit and minorUnit options in the scale:

scale: {
 startAngle: 0,
 endAngle: 180,

Chapter 11

201

 min: 0,
 max: 180,
 majorUnit: 30,
 minorUnit: 10,
}

The scale option specifies the majorUnit value as 30 (instead of the default 20) and
minorUnit as 10. This will now add labels at every 30 units and show you two minor
ticks between the two major ticks, each at a distance of 10 units, as shown in the
following screenshot:

The ticks shown in the preceding screenshot can also be customized:

scale: {
 .
 .
 minorTicks: {
 size: 30,
 width: 1,
 color: 'green'
 },
 majorTicks: {
 size: 100,
 width: 2,
 color: 'red'
 }
}

Here, the size option is used to specify the length of the tick marker, width is used to specify
the thickness of the tick, and the color option is used to change the color of the tick.

Kendo UI DataViz – Advance Charting

202

Now when you render the page, you will see the changes for the major and minor ticks.

Changing the color of the radial using the ranges option
The scale attribute can include the ranges option to specify a radial color for the various
ranges on the Radial Gauge widget:

scale: {
 .
 .
 ranges: [
 {
 from: 0,
 to: 60,
 color: '#00F'
 }, {
 from: 60,
 to: 130,
 color: '#0F0'
 }, {
 from: 130,
 to: 200,
 color: '#F00'
 }
]
}

In the preceding code snippet, the ranges array contains three objects that specify the color
to be applied on the circumference of the widget. The from and to values are used to specify
the range of tick values for which the color should be applied.

Chapter 11

203

Now when you render the page, you will see the Radial Gauge widget showing the colors for
various ranges along the circumference of the widget, as shown in the following screenshot:

In the preceding screenshot, the startAngle and endAngle fields are changed to 10
and 250, respectively. The widget can be further customized by moving the labels outside.
This can be done by specifying the labels attribute with position as outside.

In the preceding screenshot, the labels are positioned outside, hence, the radial appears inside.

Kendo UI DataViz – Advance Charting

204

Updating the pointer value using a Slider widget
The pointer value is set when the Radial Gauge widget is initialized. It is possible to
change the pointer value of the widget at runtime using a Slider widget. The changes
in the Slider widget can be observed, and the pointer value of the Radial Gauge can be
updated accordingly.

Let's use the same Radial Gauge widget mentioned in the previous recipe. A Slider widget
is created using an input element:

<input id="slider" value="0" />

The next step is to initialize the previously mentioned input element to a Slider widget:

$('#slider').kendoSlider({
 min: 0,
 max: 200,
 showButtons: false,
 smallStep: 10,
 tickPlacement: 'none',
 change: updateRadialGuage
});

The min and max values specify the range of values that can be set for the slider. The
smallStep attribute specifies the minimum increment value of the slider. The change
attribute specifies the function that should be invoked when the slider value changes.

The updateRadialGuage function should then update the value of the pointer in the
Radial Gauge widget:

function updateRadialGuage() {
 $('#chart').data('kendoRadialGauge')
 .value($('#slider').val());
}

The function gets the instance of the widget and then sets its value to the value obtained
from the Slider widget.

Chapter 11

205

Here, the slider value is changed to 100, and you will notice that it is reflected in the Radial
Gauge widget.

Using the Linear Gauge widget
The Linear Gauge widget is also used to indicate where a value lies in the given range. It is
similar to the Radial Gauge widget and takes the same set of options as well. It is used to
display the value on a linear scale.

How to do it…
Linear Gauge is created by invoking the kendoLinearGauge function on the DOM element.
It uses the same options as the Radial Gauge widget:

$("#chart").kendoLinearGauge({

 pointer: {
 value: 20,
 },

 scale: {
 min: 0,

Kendo UI DataViz – Advance Charting

206

 max: 200,
 majorUnit: 20,
 minorUnit: 10
 }

});

This will display the Linear Gauge widget with its pointer at 20. By default, the widget is
displayed vertically, that is, the value is projected on the y axis. To display the widget horizontally,
specify vertical as false under the scale option. This will display the widget horizontally.

How it works…
When you render the page, the Linear Gauge is displayed vertically, as shown in the
following screenshot:

After setting vertical as false, the widget is displayed horizontally.

Chapter 11

207

As with the Radial Gauge, the Linear Gauge can also include the ranges option. After including
the ranges option, you will see the widget showing this option along its scale.

There's more…
The pointer shown on the Linear Gauge is barIndicator by default. The other option
available is arrow. To change the pointer, set shape to arrow under the pointer option:

pointer: {
 value: 20,
 shape: 'arrow'
}

Now when you render the page, you will see an arrow.

Generating barcode images using various
encoding methods

The Kendo UI library provides APIs that can be used to generate the barcode graphic image
for the given value. For example, each product in the supermarket can have a barcode
associated with it. When a customer purchases the product, the barcode would be used to
get the product price and other details. The library can generate the barcode by referring to
the unique identifier.

How to do it…
A barcode image can be generated by invoking the kendoBarcode function on the DOM
element:

$("#chart").kendoBarcode({
 value: '1234567'
});

Kendo UI DataViz – Advance Charting

208

Here, the 1234567 value will be encoded using the default encoding, that is, code39. You can
also specify the encoding method to be used by specifying the type field:

$("#chart").kendoBarcode({
 value: '1234567',
 type: 'ean8'
});

In the preceding code snippet, the encoding type is set to ean8. The other possible values
are EAN13, UPCE, UPCA, Code11, Code39, Code39Extended, Code93, Code93Extended,
Code128, Code128A, Code128B, Code128C, GS1-128, MSImod10, MSImod11, MSImod1010,
MSImod1100, and POSTNET. The value attribute is mandatory and a barcode is generated
using the value and the specified encoding type.

How it works…
When you don't specify the encoding type, the code39 encoding is used to generate the
barcode, as shown in the following screenshot:

The value is shown in the previous barcode. To hide the value, specify the text attribute
and set the visible option to false:

$("#chart").kendoBarcode({
 value: '1234567',
 text: {
 visible: false
 }
});

When you use some other encoding type, for example, ean8, the barcode is
generated accordingly.

Chapter 11

209

Generating a QR code image to represent
a URL, e-mail, telephone, and geographic
location

A Quick Response code (QR code) is generally used to efficiently store data by encoding it.
It uses ISO_8859_1 as the encoding method by default to store data. The generated code
consists of black modules (square dots) arranged in a square grid on a white background.
This code can then be read by a camera and then processed by an application.

In this recipe, we will see how various forms of data such as URLs, e-mail addresses,
telephone numbers, and geographic locations can be stored in a QR code.

How to do it…
To generate a QR code, invoke the kendoQRCode function on the DOM element:

$("#chart").kendoQRCode({
 value: 'http://www.kendoui.com'
});

In the previous example, the http://www.kendoui.com URL is specified. This value will
be encoded using ISO_8859_1 and represented in a square grid. When you scan the QR
code, the value stored in it is identified. Since the value is prefixed with the protocol name,
http://, the value is recognized as a URL. Similarly, an e-mail address should be prefixed
with mailto:, a telephone number with tel, and a geolocation with geo followed by the
latitude and longitude information. A geo location can be encoded in the following way:

$("#chart").kendoQRCode({
 value: 'geo: 12.9667, 77.5667, 100'
});

By default, the color of the QR code is black and is drawn on a white background. This can
be changed by specifying the color and background attributes:

$("#chart").kendoQRCode({
 value: 'geo: 12.9667, 77.5667, 100',
 color: 'red',
 background: 'yellow'
});

Kendo UI DataViz – Advance Charting

210

How it works…
When you render the page, you will see a square grid that shows you the dots and lines that
represent the QR code for the URL.

When you change the value to the geolocation and specify the color and background
attributes, the generated QR code is shown as follows:

There's more…
A QR code has an error correction capability that allows you to restore data if the code is
damaged or is dirty. There are four error correction levels, namely, L, M, Q, and H, that can
be applied to a QR code. Each of these levels indicate the percentage of data that can be
recovered, that is, L recovers 7 percent data, M recovers 15 percent, Q recovers 25 percent
data, and H recovers 30 percent. When initializing a QR code, one can change the error
correction level by setting the errorCorrection attribute:

$("#chart").kendoQRCode({
 value: 'geo: 12.9667, 77.5667, 100',
 errorCorrection: 'Q'
});

In the previous example, the errorCorrection attribute is set to Q, and it is used to encode
the value.

Chapter 11

211

Creating flow diagrams using Kendo
Diagram

Adding workflow diagrams or hierarchical structure to a web page is now made easy with
the introduction of diagrams in the Kendo UI library. In this recipe, we will build a flowchart
diagram by creating shapes and then we will connect those with connectors. The library also
provides a set of layouts that can be used to represent a hierarchical or tree-like structure.

How to do it…
A flowchart is used to represent steps in an algorithm; these steps are shown as shapes
(rectangles and circles). The connectors are then used to connect the shapes and describe
the flow. A diagram in Kendo UI is created by invoking the kendoDiagram function on the
selected DOM node:

var diagram = $("#chart").kendoDiagram({

 connectionDefaults: {
 stroke: {
 color: '#F00'
 },
 startCap: 'FilledCircle',
 endCap: 'ArrowEnd',
 }

}).getKendoDiagram();

In the preceding code snippet, an empty diagram is created, with some default attributes for
connections specified. A connection is used to connect two or more shapes in the diagram.
The connectionDefaults option specifies the color of the stroke to be applied; the
startCap and endCap options are used to specify the decoration to be applied. In this case,
the startCap option has the value FilledCircle, which will show you a circle at the start
of the connection. The other value that can be assigned to startCap is ArrowStart. This will
add an arrow directed towards the shape. The endCap option has its value set to ArrowEnd.
In this example, the shape from which the connection is initiated will have a filled circle attached
to it, and an arrow is shown, which is directed towards the second shape.

The getKendoDiagram function will return an instance of the diagram once it's initialized.
The diagram is like a canvas on which you can add several shapes and also connect them.

Kendo UI DataViz – Advance Charting

212

Now let's create a function that will accept the shape details, which includes the text that
needs to be shown, the shape type, and the position of the shape on the diagram:

function createShape(textData, type, positionX, positionY) {

 return new kendo.dataviz.diagram.Shape({
 x: positionX,
 y: positionY,
 width: 100,
 height: 50,
 type: type,
 content: {
 text: textData,
 color: '#FFF'
 },
 background: '#00B'
 });

}

In the preceding code snippet, the createShape function accepts the mentioned arguments
and returns an instance of shape, that is, kendo.dataviz.diagram.Shape. Now let's
create a few shapes and add them to the diagram:

var shape1 = diagram.addShape(
 createShape('Start', 'circle', 400, 20));
var shape2 = diagram.addShape(
 createShape('counter = 0', 'rectangle' , 400,
 100));
var shape3 = diagram.addShape(
 createShape('counter < 5', 'rectangle', 400,
 190));
var shape4 = diagram.addShape(
 createShape('Stop', 'circle', 600, 290));
var shape5 = diagram.addShape(
 createShape('Print (counter)', 'rectangle',
 200, 290));
var shape6 = diagram.addShape(
 createShape('counter++', 'rectangle', 200,
 390));

Chapter 11

213

In the preceding code snippet, six shape objects are created by specifying their content text
along with the position data. There are two types of shapes that you can create, rectangles
and circles. Once the shapes have been created, they are added to the diagram by calling
the addShape function on the diagram object.

Once the shapes have been added, connections between them can be established:

diagram.connect(shape1, shape2);
diagram.connect(shape2, shape3);
diagram.connect(shape3.getConnector('Right'),
 shape4.getConnector('Top'), {
 points: [
 new kendo.dataviz.diagram.Point(650, 215)
]
});
diagram.connect(shape3.getConnector('Left'),
 shape5.getConnector('Top'), {
 points: [
 new kendo.dataviz.diagram.Point(250, 215)
]
});
diagram.connect(shape5, shape6);
diagram.connect(shape6.getConnector('Bottom'),
 shape3.getConnector('Bottom'), {
 points:[
 new kendo.dataviz.diagram.Point(250, 470),
 new kendo.dataviz.diagram.Point(450, 470)
]
});

The connect function accepts two shape objects and an optional configuration object.
A connection between the two shapes is added; there are four connector points available
on a shape instance, namely, Top, Bottom, Right, and Left. The framework identifies
the position of the shapes on the diagram and chooses the correct connector point from the
Shape instance. In the preceding example, shape2 is positioned right below shape1, and
hence, the connection between the two will be from the shape1 bottom connector point to
the shape2 top connector point.

In the third example, the connector point to be used is explicitly mentioned by calling
shape3.getConnector('Right') and shape4.getConnector('Top'). Also, the
third parameter is the configuration object that is used to configure the connector. The
third parameter in the preceding code snippet specifies the points configuration. This
is used to set intermediate points of the connection. This will be applied in addition to
connectionDefaults, which is specified when initializing the widget.

Kendo UI DataViz – Advance Charting

214

How it works…
When you don't specify the connector, that is, when you use diagram.connect(shape1,
shape2), the framework determines the connector to be used and adds a connection,
as shown in the following screenshot:

In the preceding case, shape2 is positioned below shape1 and appropriate connectors
from the shapes are selected. When the second shape is positioned on the right-hand side,
the first shape's right connector and the second shape's left connector are used to connect
the two shapes.

In the preceding screenshot, the line that connects the two shapes is skewed. This can
be corrected by selecting the connector on each shape and adding intermediate points
between the two shapes, that is, a third parameter that specifies the array of point objects.

Once all the connections are added, a flowchart diagram that connects various shapes
is created.

Chapter 11

215

Notice that the connection between the shape with the counter++ and counter<5 text has
two intermediate points. The points array is used to specify various intermediate point
objects that should be used when adding a connection.

Creating hierarchical structural diagrams
using layouts

In this recipe, we will take a look at building hierarchical structural diagrams or tree-like
diagrams using the layout option in kendoDiagram. The hierarchical structure can be
represented in the JSON format, and it can be used as a DataSource object when building
the diagram.

How to do it…
Let's create a hierarchical structure in the JSON format, which can then be used as a
DataSource object for building the tree diagram:

var data = [
 {
 "designation": "CEO",
 "name": "Mitchell Johnson",
 "manages": [
 {
 "designation": "Vice President",

Kendo UI DataViz – Advance Charting

216

 "name": "Smith Cooper",
 "manages": [
 {
 "designation": "Director",
 "name": "Andrew Walker"
 },
 {
 "designation": "Director",
 "name": "Robert Thompson"
 }
]
 },
 {
 "designation": "Vice President",
 "name": "Harris Jones",
 "manages": [
 {
 "designation": "Director",
 "name": "Edward Collins"
 },
 {
 "designation": "Director",
 "name": "Thomas Wang"
 }
]
 }
]
 }
];

In the preceding code snippet, we are creating a hierarchical structure where each object
contains three fields: designation, name, and manages. The manages field represents
the child nodes for a particular node. Each node will show you the name and designation
fields, and then connectors would be added to represent the ones mentioned in the
manages collection.

The next step is to specify the DataSource object details when creating a diagram. In the
DataSource option, you should also specify the schema details to let the framework know
which attribute is to be considered for adding child nodes, as shown in the following
code snippet:

$("#chart").kendoDiagram({
 dataSource: {
 data: data,
 schema: {

Chapter 11

217

 model: {
 children: "manages"
 }
 }
 },
 .
 .
});

After specifying the DataSource option, the next step is to specify the layout details.
The layout option is used to specify the arrangement of shapes and connections in the
diagram. It will parse the data and then arrange these shapes based on the specified
layout type and subtype:

$("#chart").kendoDiagram({
 .
 .
 layout: {
 type: "tree",
 subtype: "down",
 horizontalSeparation: 50,
 verticalSeparation: 50
 },
 .
});

In the layout option, the type is specified as tree and the subtype is down. This will create
a tree structure with the root node at the top of the diagram, followed by various child nodes.
The other possible values for the subtype include the following:

ff up: In this value, the root node is at the bottom and its child nodes are added
upwards, that is, the tree will be inverted

ff left: In this value, the root node is placed on the left-hand side and its child
nodes are added to the right

ff right: In this value, the root is placed on the right-hand side and its child nodes
are added to the left-hand side

ff mindmapVertical: In this value, the root node is at the center and its child nodes
are distributed equally above and below the root node

ff mindmapHorizontal: In this value, the root node is at the center and its child
nodes are distributed equally on the left and right-hand sides of the root node

ff radial: In this value, the root node is at the center and all its child nodes are
spread around it in the form of a radial

ff tipOver: This value is similar to a tree-down subtype, wherein the direct children
are arranged horizontally and the grandchildren are arranged vertically

Kendo UI DataViz – Advance Charting

218

The other two attributes, horizontalSeparation and verticalSeparation, are used
to specify the distance between the two nodes that are arranged horizontally and vertically.

The next step is to create shapes for the nodes in the DataSource object. In this example,
we will use the shapeDefaults option to add shapes to the diagram, as shown in the
following code snippet:

$("#chart").kendoDiagram({
 .
 .
 shapeDefaults: {
 visual: function (data) {
 var group = new kendo.dataviz.diagram.Group();

 //create a rectangle shape
 group.append(new kendo.dataviz.diagram.Rectangle({
 width: 130,
 height: 75,
 background: '#1696d3',
 stroke: {
 width: 0
 }
 }));

 //add text 'name' inside the rectangle
 group.append(new kendo.dataviz.diagram.TextBlock({
 text: data.dataItem.name,
 x: 10,
 y: 10,
 color: '#fff'
 }));

 //add text 'designation' inside the rectangle
 group.append(new kendo.dataviz.diagram.TextBlock({
 text: data.dataItem.designation,
 x: 10,
 y: 30,
 color: '#fff'
 }));

 return group;
 }
 },
 .
});

Chapter 11

219

Here, the visual attribute's value is a function that returns a visual element that needs
to be rendered on the diagram. In our example, we will create a visual element that includes
the name and designation properties from the model. The function first creates a group
element by creating an instance of kendo.dataviz.diagram.Group. A Group attribute
is an invisible visual element, which is used to contain and group other visual elements.
We then create instances for kendo.dataviz.diagram.Rectangle and kendo.
dataviz.diagram.TextBlock and append it to the group. The function then returns
the group object. This function is invoked recursively and nodes are added to the diagram.

How it works…
When the layout subtype is down, the root node is placed at the top and the child nodes
are added, growing the tree downwards, as shown in the following screenshot:

When you change the subtype to left, the root node is placed on the right-hand side and the
nodes are added such that the tree grows from right to left.

Kendo UI DataViz – Advance Charting

220

After changing the subtype to mindmapHorizontal, the root node is placed at the center
and the child nodes are added on either side.

You can try changing the subtype to radial and tipOver to see the placement of nodes in
the diagram.

Creating a map to display geospatial
information using an OpenStreet map

The library provides APIs that you can use to display a map of a particular location on the
page. In this recipe, we will create a map by using the kendoMap function, providing some
configuration details. We will use OpenStreet maps to fetch images for the map.

How to do it…
To create a map, invoke the kendoMap function on the selected DOM node, providing the
configuration options mentioned in the following code snippet:

 $('#chart').kendoMap({
 center: [30.2681, -97.7448],
 zoom: 4,
 layers: [{
 type: 'tile',
 urlTemplate: "http://#= subdomain
#.tile2.opencyclemap.org/transport/#= zoom #/#= x #/#= y #.png",
 subdomains: ['a', 'b', 'c'],
 attribution: '©
 OpenStreetMap contributors.' +
 'Tiles courtesy of <a href=
 "http://www.opencyclemap.org/"">Andy Allan'
 }],
 .
 .

});

Chapter 11

221

In the preceding code snippet, the center option is used to specify the coordinates of the
map's center location. The latitude and longitude information, along with the provided map's
width and height, is used to center the map in the container. The zoom option is used to set
the zoom level of the map. The layers attribute is used to specify various layers that will be
displayed on the map; in the previous example, the type of layer is specified as tile, which is
used to display data from the OpenStreet map. The other possible values for type are bing,
which is used to retrieve maps from Bing maps; marker, which is used to add markers to the
map; and shape, which is used to display a vector-shape layer. These values are used when
the data is bound to the geoJSON data. The urlTemplate attribute specifies the URL from
which the map data has to be retrieved. It takes into account the zoom level set for the map
and the x and y coordinates, that is, the latitude and longitude information specified in the
center attribute and in the subdomains property. Notice that after the urlTemplate option,
the subdomains property is specified. It is an array that mentions the subdomains that should
be used to get map images. The browser has a limit on the number of images that can be
retrieved in parallel per domain. When using subdomains, the images are fetched in parallel;
hence, it reduces the time required to render the entire map. The attribution field is used
to specify the attribution for the layer.

Let's now add some markers to the map. A marker is another layer type that can be added:

$('#chart').kendoMap({
 .
 .
 layers: [{
 type: 'tile',
 .
 .
 }, {
 type: 'marker',
 locationField: 'latlng ',
 tooltip: {
 content: function (e) {
 return e.sender.marker.dataItem.tooltip;
 }
 },
 dataSource: {
 data: [{
 latlng: [40.6700, -73.9400],
 tooltip: 'New York'
 }, {
 latlng: [34.0500, -118.2500],
 tooltip: 'Los Angeles'
 }]
 }
 }]
});

Kendo UI DataViz – Advance Charting

222

In the preceding code snippet, the type of layer is specified as marker and the
locationField attribute specifies the value as latlng. This refers to the property
in the dataSource option. The dataSource attribute specifies the marker details, that
is, the latitude and longitude information where the marker must be added and the tooltip
to be shown when the user hovers over the marker. The tooltip option contains a
content attribute, whose value is a function that returns the tooltip information from
the dataSource attribute.

How it works…
When you render the page, a map is shown. The map data is fetched from the specified
URL, that is, from OpenStreet maps using various subdomains.

Notice that the map shows you the navigator and zoom controls at the top-left corner of the
map. Also, the attribution text is shown in the bottom-right corner of the map. After adding
layer markers, the map would now contain pins at the specified latitude and longitude
coordinates, as shown in the following screenshot:

Chapter 11

223

In the preceding screenshot, a tooltip is shown when the user hovers over the marker.

There's more…
In the earlier examples, the navigator, zoom, and attribution controls were placed at the
top-left and at the bottom-right corners of the screen. The position of these controls can be
changed by including the controls option and specifying the position of these controls:

$('#chart').kendoMap({
 .
 controls: {
 navigator: {
 position: "bottomRight"
 },
 zoom: {
 position: "bottomLeft"
 },

Kendo UI DataViz – Advance Charting

224

 attribution: {
 position: "topRight"
 }
 },
 .
});

Now when you render the page, the controls will be positioned accordingly.

The position attribute can have one of the following values: topLeft, topRight,
bottomLeft, and bottomRight. It is also possible to hide the controls by setting its
value to false:

controls: {
 navigator: false
},

By setting the specified control to false, the control would not be shown on the page.

Chapter 11

225

Creating a map by binding it to the
GeoJSON data

GeoJSON is a format for encoding a variety of geographic data structures. It is an open-standard
format for encoding a collection of simple geographical features along with non-spatial attributes
using JSON. In this recipe, we will create a map that is bound to the geoJSON data, containing
not only the coordinates, but also other non-spatial information about the area.

How to do it…
To create shapes that correspond to points or coordinates, set the layer type as shape. Let's
first refer to the geoJSON data that contains the coordinates and also other non-spatial data:

{
 "type": "FeatureCollection",
 "features": [
 {
 "type": "Feature",
 "properties": {
 "GEO_ID": "0400000US23",
 "STATE": "23",
 "NAME": "Maine",
 "LSAD": "",
 "CENSUSAREA": 30842.923
 },
 "geometry": {
 "type": "MultiPolygon",
 "coordinates": [
 [
 [
 [-67.619761, 44.519754],
 [-67.61541, 44.521973],
 [-67.587738, 44.516196],
 .
 .
],
 .
 .
]
]
 }
 }]
}

Kendo UI DataViz – Advance Charting

226

The geoJSON data mentioned contains the coordinates that correspond to the points on
the map. These points will be used to construct vector shapes. The geoJSON data also lists
other properties such as NAME and CENSUSAREA. Let's use the previous JSON data as a
DataSource object in building the map using the kendoMap function:

$('#chart').kendoMap({
 center: [30.2681, -97.7448],
 zoom: 4,
 layers: [{
 type: 'shape',
 dataSource: {
 type: 'geojson',
 transport: {
 read: './geojson-us.json'
 }
 }
 }]
});

Here, the type attribute is set as shape and dataSource is specified, which refers to the
file that contains the geoJSON data. The framework would parse the geoJSON data and
refer to the coordinates to construct the map.

We can use other properties present in the geoJSON data and add some functionality to the
map. For example, we could convert the CENSUSAREA field to a hex number and use this to
fill the shape:

$('#chart').kendoMap({
 center: [30.2681, -97.7448],
 zoom: 4,
 layers: [{
 type: 'shape',
 dataSource: {
 type: 'geojson',
 transport: {
 read: './geojson-us.json'
 }
 }
 }],
 shapeCreated: function (e) {
 var shapeColor = parseInt(e.shape.dataItem.properties.
 CENSUSAREA, 16).toString();
 shapeColor = '#' + ('FFFFFF' + shapeColor).slice(-6);
 e.shape.fill(shapeColor);
 }
});

Chapter 11

227

In the preceding code snippet, the shapeCreated function is added, which is called
whenever a shape is added to the map.

How it works…
When you render the page, you will see a map created that will contain shapes, as shown
in the following screenshot:

After adding colors to shapes using the shapeCreated function, you will see a colored map.

The shape is calculated by converting the CENSUSAREA field value to a hex number and then
prefixing it to make it a fixed length.

Index
A
ActionSheet widget

about 130
used, for displaying list of actions 150-153

activate event 86
advance charting widgets

used, for data visualization 193
aggregate functions

avg function 183
count function 183
first function 183
max function 183
min function 183
used, to display data on charts 181-184

Ajax
used, for loading content of modal

window 104
used, for loading PanelBar content 83-86

Application object
used, for navigating between multiple

views 121-125
autoUpload property 95
avg function 183

B
barcode image

generating, various encoding methods
used 207, 208

built-in Validator
used, for validating user input 19-22

C
cancel event handler 99
center method 108
charts

binding, to DataSource object 173-175
creating, kendoChart function used 168, 169
creating to display data, aggregate functions

used 181-184
default theme, modifying 172, 173
legend information position, modifying 171
making interactive, event handlers

used 185-188
multiaxis chart, creating 177-181
multiple categories, displaying 170
multiple series, displaying 175
title position, modifying 171
values, displaying 176, 177

charts, options
categoryAxis option 169
series option 169
title option 169
valueAxis option 169

chart type
changing, dynamically 188-192

checkbox
used, for selecting nodes in TreeView 58-61

click event handler 107
client-side templates

used, for generating HTML markup 8-11
close method 108
complete event handler 99
connect function 213

230

Content Delivery Network (CDN) 8
contentLoad event 86
content, PanelBar

loading, Ajax used 83-86
contentUrls property 84
count function 183
custom aggregator function 183
customization, PanelBar 88, 89
customization, Window 105-108

D
data

displaying, in Grid 28-32
displaying in Grid, filters used 35-38
sorting, in Grid 32-35

data-bind attribute 18, 189
data binding

creating, MVVM used 12-16
used, for generating HTML content 16-19

data-icon attribute 133
data-id attribute 113
data-layout attribute 114
data-role attribute 113, 131
DataSource component 28
DataSource object

about 29, 52
charts, binding to 173-175
ListView widget, binding to 134-136
PanelBar, binding to 86, 88

dataSource property 138
data-style attribute 132
dataTextField attribute 54
data-transition attribute

about 125
fade 126
overlay 126
slide 125
zoom 125

DataViz (data visualization)
about 167
with advance charting widgets 193

delete command 39
display of list items

customizing, template used 93, 94
Django 8
doubletap event 128

drag-and-drop
used, for moving elements in TreeView 55-58
used, for uploading files 97

E
edit command 39
editing

in Grid 39
inline 39
popup 39

Editor
about 65
image browser tool used, for inserting

images 70-76
Editor toolset

tools, adding in 67-70
tools, removing in 67-70

endless scrolling list
building, ListView widget used 148-150

error event handler 86, 99
event handlers

used, for making charts interactive 185-188
exec function 70
expand event 86

F
field property 29
files

uploading asynchronously, file uploader
used 94-96

uploading, drag-and-drop used 97
uploading synchronously, file uploader

used 91-93
file uploader

about 91
file upload events, listening 98, 99
localizing 97
used, for uploading files

asynchronously 94-96
used, for uploading files synchronously 91-93

file upload events
cancel event handler 99
complete event handler 99
error event handler 99
listening 98, 99

231

progress event handler 99
remove event handler 99
select event handler 99
success event handler 99
upload event handler 99

filters
used, for displaying data in Grid 35-38

first function 183
fixed headers

creating, ListView widget used 137-139
fixedHeaders property 138
flow diagrams

creating, Kendo Diagram used 211-215

G
GeoJSON 225
getKendoDiagram function 211
Grid

about 23
creating, to display tabular data 23-27
customizing 46-48
data displaying, filters used 35-38
data, displaying in 28-32
data, sorting in 32-35
records, creating 39-43
records, deleting 39-43
records, updating 39-43
virtualization, using 43-45

group property 138

H
Handlebars 8
hash templates 8
hasModels property 144
hierarchical list

building, ListView widget used 143-147
hierarchical structural diagrams

creating, layout option used 215-220
hold event 128
href attribute 131
HTML content

generating, data binding used 16-19
HTML markup

generating, client-side templates used 8-11
http method 41

I
icons

using with nodes, in TreeView 62, 63
id property 144
image browser tool

used, for inserting images into Editor 70-76
images

inserting into Editor, image browser tool
used 70-76

initial layout
setting, during application

initialization 117-121
initial view

setting, during application
initialization 117-121

inline editing 39
inserthtml command 70
items array 69

J
Jade 8
Java Server Pages 8

K
kendoChart function

used, for creating charts 168, 169
Kendo Diagram

used, for creating flow diagrams 211-215
kendoDiagram function

connectionDefaults option 211
endCap option 211
startCap option 211

kendoEditor function
about 66
used, for creating WYSIWYG Editor 65, 66

kendoMap function 220
kendoMobileListView function 135
kendoRadialGauge function

endAngle option 200
pointer option 200
startAngle option 200

kendoStockChart function 195
Kendo UI

application framework 7
data visualization 167

232

Editor 65
file uploader 91
Grid 23
Mobile framework 111
Mobile widgets 129
PanelBar 77
TreeView 49
Window 101

Kendo UI application framework
client-side templates used, for generating

HTML markup 8-11
data binding, creating with MVVM 12-16
data binding used, for generating HTML

content 16-19
user input validating, built-in Validator

used 19-22
kendoValidator method 22

L
labels option 176
layout

creating, for mobile application 112-116
layout option, kendoDiagram function

left subtype 217
mindmapHorizontal subtype 217
mindmapVertical subtype 217
radial subtype 217
right subtype 217
tipOver subtype 217
up subtype 217
used, for creating hierarchical structural

diagrams 215-220
Linear Gauge widget

creating 205-207
list

creating, ListView widget used 130-134
list elements

filtering, ListView widget used 139-143
ListView widget

about 130-134
binding, to DataSource object 134-136
list elements, filtering 139-143
used, for building endless scrolling

list 148-150
used, for building hierarchical list 143-147

used, for creating fixed headers 137-139
used, for creating list 130-134

M
map

creating, OpenStreet map used 220-224
creating, that is bound to GeoJSON

data 225-227
maximize method 108
min function 183
minimize method 108
Mobile framework

about 111
initial layout, setting 117-121
initial view, setting 117-121
layout, creating for mobile

application 112-116
multiple views, navigating between 121-125
touch events, adding to mobile

application 126-128
views, adding to layout 112-116

Mobile library. See Mobile widgets
mobileListViewInit function 138
Mobile widgets

about 129
ActionSheet widget 129
ListView widget 129
Navbar widget 129
ScrollView widget 129
SplitView widget 130
TabStrip widget 129

modal window
configuring, to display pop up 102, 103
content loading, Ajax used 104
differentiating, with Window 102
displaying, on click of button 103, 104

Model View Controller. See MVC
Model View Presenter. See MVP
Model View ViewModel. See MVVM
multiaxis chart

creating 177-181
multiple file uploads

disabling 93
multiple views

navigating between, Application object
used 121-125

233

Mustache 8
MVC 12
MVP 12
MVVM

about 12
used, for creating data binding 12-16

N
name property 69
navigate method 123

O
onChangeHandler function 191
open method 104, 108
OpenStreet map

used, for creating map 220-224
operators object 38

P
PanelBar

about 77
binding, to DataSource object 86, 88
content loading, Ajax used 83-86
creating 77-82
customizing 88, 89

path parameter 73
pin method 108
popup editing 39
position attribute 105
progress event handler 99

Q
Quick Response code (QR code)

about 209
generating 209, 210

R
Radial Gauge widget

creating 199, 200
majorUnit value, specifying 200, 201
minorUnit value, specifying 200, 201
pointer value, updating with Slider

widget 204, 205

radial color, specifying with ranges
option 202, 203

refresh method 108
remove event handler 99
removeUrl property 95
restore method 108

S
saveUrl property 95
scale attribute

ranges option 202
ScrollView widget

about 130
used, for navigating through collection of

pictures 153-156
select event handler 86, 99
select tag 17, 18
setOptions function 191
setStatusClass function 56
Smarty 8
SplitView widget

about 130
creating, to build interaction between multiple

panes 157-162
creating, to display multiple panes 157-162

spriteCssClass property 62
statusClass property 56
Stock chart

about 194
creating, to show stock history 194-197
date range, specifying 197, 198
navigator pane, customizing 198, 199

styles directory 25
success event handler 99
swipe event 128

T
TabStrip widget

used, for navigating between views 163-165
tap event 128
template

used, for customizing display of list
items 93, 94

template property 136, 138
text property 69

234

title property 29, 105
toggleMaximization method 108
tools

adding, in Editor toolset 67-70
removing, in Editor toolset 67-70

touch events
adding to mobile application 126-128

touchstart event 128
TreeView

about 49
constructing, from remote DataSource

object 52-54
creating, to display directory structure 49-52
elements moving, drag and drop used 55-58
icons, using with nodes 62, 63
nodes selecting, checkbox used 58-61

type attribute 71

U
underscore.js 8
unpin method 108
upload event handler 99
uploadUrl attribute 74
user input

validating, built-in Validator used 19-22

V
value property 69
ViewModel object 13, 17
views

adding, to layout 112-116
navigating between, TabStrip widget

used 163-165
transition effect, specifying 125, 126

virtualization
using, in Grid 43-45

W
What-You-See-Is-What-You-Get interface. See

WYSIWYG interface
Window

about 101
customization 105-108
differentiating, with modal window 102
modal window configuring, to display pop

up 102, 103
Window API

using, to act on window object 108-110
WYSIWYG Editor

creating, kendoEditor function used 65, 66
WYSIWYG interface 65

uploaded by [stormrg]

Thank you for buying
Kendo UI Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Learning Kendo UI
Web Development
ISBN: 978-1-84969-434-6 Paperback: 288 pages

An easy-to-follow practical tutorial to add exciting features
to your web pages without being a JavaScript expert

1. Learn from clear and specific examples on
how to utilize the full range of the Kendo UI
tool set for the web.

2. Add powerful tools to your website
supported by a familiar and trusted
name in innovative technology.

3. Learn how to add amazing features with clear
examples and make your website more interactive
without being a JavaScript expert.

Instant Kendo UI Mobile
ISBN: 978-1-84969-911-2 Paperback: 60 pages

Practical recipes to learn the Kendo UI Mobile library
and its various components for building mobile
applications effectively

1. Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

2. Understand the various components on the Kendo
UI Mobile application framework.

3. Learn to use the various widgets in the Kendo UI
Mobile library that will help you build a mobile
application rapidly.

4. Build applications that provide native look and feel
without having to maintain a separate code base.

Please check www.PacktPub.com for information on our titles

Building Mobile Applications
Using Kendo UI Mobile and
ASP.NET Web API
ISBN: 978-1-78216-092-2 Paperback: 256 pages

Get started with Kendo UI Mobile and learn how
to integrate it with HTTP-based services built using
ASP.NET Web API

1. Learn the basics of developing mobile applications
using HTML5 and create an end-to-end mobile
application from scratch.

2. Discover all about Kendo UI Mobile, ASP .NET
Web API, and how to integrate them.

3. Understand how to organize your JavaScript code
to achieve extensibility and maintainability.

Instant Kendo UI Grid
ISBN: 978-1-84969-913-6 Paperback: 56 pages

Learn an amazing JavaScript framework that will boost
the look and function of your tabular data

1. Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

2. Understand how to allow users to
manipulate data.

3. Learn how to make large datasets easy
to manage and filter.

4. Discover how to dress up tables to make
them look more appealing.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: The Kendo UI Application Framework
	Introduction
	Using client-side templates to generate HTML markup from a JSON data
	Creating a two-way binding between View elements and JavaScript objects using the Model View ViewModel (MVVM) pattern
	Using Source and Template binding with ViewModels to generate HTML content
	Validating user input using the built-in Validator

	Chapter 2: The Kendo UI Grid
	Introduction
	Creating a Grid view and displaying tabular data
	Displaying data from a local or remote DataSource component in a Grid View
	Sorting data in a Grid using a selected column
	Using filters to display data that matches certain criteria in the Grid
	Creating, updating, and deleting in Grid
	Using the virtualization mechanism to improve the performance of the Grid
	Customizing the look and feel of the Grid

	Chapter 3: Kendo UI TreeView
	Introduction
	Using a TreeView widget to display a directory structure
	Using the drag and drop feature to move elements in TreeView
	Using checkboxes to select nodes in TreeView
	Associating icons with labels in TreeView

	Chapter 4: Kendo UI Editor
	Introduction
	Creating a WYSIWYG Editor using the kendoEditor function
	Adding and removing tools in the Editor toolset
	Using the image browser tool to insert images into the Editor

	Chapter 5: Kendo UI PanelBar
	Introduction
	Creating a PanelBar
	Loading the content of a PanelBar using Ajax
	Binding the PanelBar to a DataSource object
	Customizing the PanelBar

	Chapter 6: Kendo UI File Uploader
	Introduction
	Using the file uploader to upload files to the server
	Uploading files to the server asynchronously
	Listening to file upload events

	Chapter 7: Kendo UI Window
	Introduction
	Displaying a pop up and blocking user interaction by configuring it as a modal window
	Customizing the look and feel of the window and including action buttons
	Using the Window API to act on a window object

	Chapter 8: Kendo UI Mobile Framework
	Introduction
	Creating a layout and adding views to the layout
	Setting the initial layout and view when initializing the application
	Using the Application object to navigate to various views
	Adding touch events to your mobile application

	Chapter 9: Kendo UI Mobile Widgets
	Introduction
	Creating a list using a ListView widget
	Binding the ListView widget to a DataSource object
	Fixing the headers when the user scrolls through the list
	Filtering the elements in ListView
	Building a hierarchical list using the ListView widget
	Building an endless scrolling list
	Showing a list of actions that can be performed using the ActionSheet widget
	Using the ScrollView widget to navigate through a collection of pictures
	Creating a SplitView widget to display multiple panes in a tablet and building interaction between the panes
	Tab between views in the application using a TabStrip widget

	Chapter 10: Kendo UI DataViz
	Introduction
	Creating charts using kendoChart
	Binding a chart to a DataSource object
	Creating a multiaxis chart
	Displaying data over a period of time and using aggregate functions
	Making a chart interactive by adding events
	Changing the chart type dynamically

	Chapter 11: Kendo UI DataViz – Advance Charting
	Introduction
	Creating a chart to show stock history
	Using the Radial Gauge widget
	Using the Linear Gauge widget
	Generating barcode images using various encoding methods
	Generating a QR code image to represent a URL, e-mail, telephone, and geographic location
	Creating flow diagrams using Kendo Diagram
	Creating hierarchical structural diagrams using layouts
	Creating a map to display geospatial information using an OpenStreet map
	Creating a map by binding it to the GeoJSON data

	Index

