
www.allitebooks.com

http://www.allitebooks.org

Leaflet.js Essentials

Create interactive, mobile-friendly mapping applications
using the incredibly light yet powerful Leaflet.js platform

Paul Crickard III

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

[FM-2]

Leaflet.js Essentials

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2014

Production reference: 1110814

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-481-2

www.packtpub.com

Cover image by Pratyush Mohanta (tysoncinematics@gmail.com)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

[FM-3]

Credits

Author
Paul Crickard III

Reviewers
Drew Dara-Abrams

Akshay Joshi

Alexander Parshin

Antonio Santiago

Commissioning Editor
Pramila Balan

Acquisition Editor
Reshma Raman

Content Development Editor
Sankalp Pawar

Technical Editors
Shashank Desai

Sebastian Rodrigues

Copy Editors
Dipti Kapadia

Insiya Morbiwala

Stuti Srivastava

Project Coordinator
Harshal Ved

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Paul Hindle

Indexers
Mariammal Chettiyar

Rekha Nair

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.allitebooks.com

http://www.allitebooks.org

[FM-4]

About the Author

Paul Crickard III has been programming for over 15 years and has focused on GIS
and geospatial programming for 7 years. He spent 3 years working as a planner at
an architecture firm, where he combined GIS with Building Information Modeling
(BIM) and CAD, and built web-based GIS applications to display and modify
architectural data. He has given presentations to the New Mexico Public School
Facilities Authority on BIM and GIS integration and on the use of GIS for Facility
Planning, and the BIM505 Users Group on GIS as an interactive frontend to BIM
and editing BIM data via web applications.

Currently, Paul works as a programmer analyst in Albuquerque, specializing in the
design, maintenance, and the implementation of geospatial applications. He has
written plugins and extensions for ArcMap and ArcGIS Explorer Desktop to utilize
NoSQL databases and send data using the Advanced Message Queuing Protocol
(AMQP). Paul has built applications using OpenLayers and Leaflet.js and is currently
utilizing the ESRI JavaScript API in production.

Paul tries to incorporate Python in geospatial development wherever possible. From
building plugins, toolboxes, and the Field Calculator functions in ArcMap to coding
standalone desktop and web applications, pyshp is his favorite library for geospatial
Python applications.

When he is not coding, Paul enjoys relaxing with his wife and son, cooking, and
brewing beer.

www.allitebooks.com

http://www.allitebooks.org

[FM-5]

About the Reviewers

Drew Dara-Abrams is the Principal of City Building Tools, a consultancy in San
Francisco (California, U.S.A.), which provides data collection and analysis services,
R&D strategy and consulting, and the customized deployment of its catalog of web
and mobile apps to urban designers, transportation/transit planners, and other
professionals charged with the usability of office buildings, built environments, and
transportation systems.

He holds a PhD in Computational Geography with an emphasis in Cognitive Science
from the University of California, Santa Barbara. He previously served as the Chief
Technology Officer of Kinnexxus, Inc., which builds communication devices for
seniors and their families; he is also the co-founder of Strategic Spatial Solutions,
Inc., which provides consulting research and development to university labs.

Dr. Dara-Abrams has also co-authored two technical textbooks: Supporting Web Servers
and Analyzing E-Commerce and Internet Law, Prentice Hall. For more information, please
visit www.citybuildingtools.com and http://drew.dara-abrams.com.

Akshay Joshi is the maintainer of the leaflet-rails Ruby gem. He has been
working with web technologies for over 10 years and with mapping technologies
for 5 years. Akshay is passionate about the convergence of web applications and
desktop applications, and he likes to learn about the technologies that make this
possible. Over the years, he has contributed to open source projects in many different
languages, such as Drupal, Fog, and the Linux kernel. Currently, he is a Computer
Engineering student at the University of Waterloo. When he is away from his
computer, Akshay enjoys cooking for his friends and listening to new kinds of music.

www.allitebooks.com

www.citybuildingtools.com
http://drew.dara-abrams.com
http://www.allitebooks.org

[FM-6]

Alexander Parshin is a web developer in the area of web mapping. He was
the author of the first Leaflet workshop in Russia, has been the author of several
Leaflet plugins, and is a contributor to the Leaflet library. His current job is related
to the library as well; he is the Lead of the UI team in his company, which builds
commercial B2B Web-GIS systems based on the Leaflet mapping framework.

Antonio Santiago is a Computer Science professional with more than 10 years of
experience in designing and implementing systems.

Since the beginning of his professional life, his work experience has always
been related to the world of meteorology; he has worked for different companies as
an employee or a freelancer. He is experienced in the development of systems to
collect, store, transform, analyze, and visualize data; he is also actively interested
in any GIS-related technology, with preference for data visualization.

With a restless mind, which is mainly experienced in the Java ecosystem, he has also
worked actively with many related web technologies and is always looking for ways
to improve the client side of web applications.

A firm believer in software engineering practices, he is an enthusiast of Agile
methodologies, which involves customers as the main key for the project's success.

Antonio is also the author of OpenLayers Cookbook, Packt Publishing.

www.allitebooks.com

http://www.allitebooks.org

[FM-7]

www.PacktPub.com

Support files, eBooks, discount offers,
and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

I would like to dedicate this book to my wife, Yolanda. It would not
have been possible without her love and support.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Creating Maps with Leaflet 7

Creating a simple basemap 8
Referencing the JavaScript and CSS files 8

Using a hosted copy 8
Using a local copy 9

Creating a <div> tag to hold the map 9
Creating a map object 10
Adding a tile layer 10

Tile layer providers 12
Adding a Web Mapping Service tile layer 15
Multiple tile layers 16
Adding data to your map 18

Points 19
Polylines 21
Polygons 22

Rectangles and circles 23
Rectangles 23
Circles 24

MultiPolylines and MultiPolygons 25
MultiPolylines 26
MultiPolygons 27

Groups of layers 28
The layer group 28
Feature groups 30

Pop ups 31
Mobile mapping 32

HTML and CSS 32
Creating a mobile map with JavaScript 34

Table of Contents

[ii]

Events and event handlers 36
Custom functions 38

Summary 40
Chapter 2: Mapping GeoJSON Data 41

Understanding the roots of GeoJSON 41
Exploring GeoJSON 42
GeoJSON in Leaflet.js 43

GeoJSON as a variable 43
Multiple geometries in GeoJSON 45

Polygons with holes 46
GeoJSON from Leaflet.js objects 48
Styling GeoJSON layers 48
Iterating through the features 50

Attaching pop ups with onEachFeature 50
Creating layers from points with pointToLayer 51
Displaying a subset of data with filter 52

Summary 54
Chapter 3: Creating Heatmaps and Choropleth Maps 55

What is a heatmap? 55
Heatmaps with Leaflet.heat 56

Using options to style your map 57
Changing the blur value 58
Changing the maxZoom value 60
Changing the radius value 60
Setting the gradient option 60

Methods of Leaflet.heat 60
Adding markers to the heatmap 61

Creating heatmaps with heatmap.js 62
Modifying the heatmap options 64
Adding more data to the map 64

Creating an interactive heatmap 65
Animating a heatmap 67
Creating a choropleth map with Leaflet 69

The GeoJSON data 70
Setting the color with a function 71
Styling the GeoJSON data 71

Creating a normalized choropleth map 73
Summary 75

Chapter 4: Creating Custom Markers 77
Creating a custom marker 77

Preparing your workspace in GIMP 78

Table of Contents

[iii]

Drawing and saving your image 79
Drawing the marker shadow 80
Using an image as an icon 81

Using a custom marker in Leaflet 82
Defining an L.Icon class 84

Using predefined markers with plugins 86
Using Mapbox Maki markers 86
Using Bootstrap and Font Awesome markers 88

Clustering markers with Leaflet.markercluster 90
Coding your first cluster map 90
Methods and events available to markercluster layers 93

Options that default to true 93
Other options and events 94

Animating markers with plugins 95
Bouncing your markers 95
Making your markers move 96

Using markers for data visualization 100
Using the Leaflet Data Visualization Framework plugin 100

Creating basic markers 101
Bar and pie chart markers 103

Summary 105
Chapter 5: ESRI in Leaflet 107

ESRI basemaps 108
Using shapefiles in Leaflet 110
Consuming ESRI services 113
Heatmaps with ESRI in Leaflet 115
Geocoding addresses in Leaflet 117

Geocoding – from an address to a point 117
Geocoding from URL parameters 119
Reverse geocoding – using points to find addresses 121

Query by attribute 122
Query by proximity 124
Summary 126

Chapter 6: Leaflet in Node.js, Python, and C# 127
Building Leaflet applications with Node.js 128

A basic Node.js server with Leaflet 129
Node.js, AJAX, and Leaflet 130
Node.js, Connect, and Leaflet 134
Node.js, Express, Jade, and Leaflet 136

Leaflet with Python and CherryPy 138
Spatial queries with Python, MongoDB, and Leaflet 142

Table of Contents

[iv]

Desktop applications in C# with Leaflet 146
Adding a map to a C# application 146
Adding a marker in C# 149
Using MongoDB with C# and Leaflet 151
Querying with C#, Leaflet, and MongoDB 153

Summary 156
Index 157

Preface
Making maps used to require an extensive knowledge of cartography, expensive
software, and technical know-how. Today, there are numerous tools available, many
of which are free, that have simplified the map-making process. This book is about
using one such library, Leaflet.js.

Leaflet.js is a JavaScript library that although small, is packed with almost every
feature you could need. If a feature is not available in the core library, it may be
available as one of the many plugins that have become available. The largest
map-making software vendor, Environmental Systems Research Institute (ESRI),
has even released a plugin for Leaflet.js. If you are interested in making maps or
in data visualization, Leaflet.js is the library to learn.

Whether you are looking to build simple maps or advanced mapping applications,
this book will build on your JavaScript knowledge to help you reach your goal. This
book was designed to be accessible to individuals who are new to map making and
also to those who may know maps but are just learning to code.

What this book covers
Chapter 1, Creating Maps with Leaflet, walks you through the basics of making maps
in Leaflet.js. You start by creating an HTML file with the minimum JavaScript code
required to display a map. You are going to learn how to select different basemaps
and providers and different basemap formats. Then, you will learn how to display
geographic features such as points, polylines, and polygons.

Chapter 2, Mapping GeoJSON Data, introduces you to a geographic version of the
JSON data format. You will learn how to create your own GeoJSON data as well as
consume data from other sources. In this chapter, you will learn how to style the data
and iterate through features to add pop ups.

Preface

[2]

Chapter 3, Creating Heatmaps and Choropleth Maps, moves away from simply
displaying points and towards displaying the significance or comparisons of the
data. It builds on what you have learned so far and teaches you how to use different
plugins to create heatmaps. You will also learn how to use your knowledge of styling
GeoJSON to create choropleth maps.

Chapter 4, Creating Custom Markers, guides you through the customization of the
markers you use in your maps. You will learn how to draw your own image or
modify an existing image to use it as a marker in your map. You will be introduced
to several plugins that offer premade markers that are customizable. Also, you will
learn how to animate markers and combine plugins for added effects.

Chapter 5, ESRI in Leaflet, opens up the most commonly used data formats and server
endpoints in mapping. This chapter will teach you how to load shapefiles in your
maps. You will also learn how to connect to an ESRI server that has an exposed REST
service. Using the ESRI-Leaflet plugin, you will learn how to geocode and reverse
geocode addresses, filter data from a server, and query by location.

Chapter 6, Leaflet in Node.js, Python, and C#, expands on everything you have learned
in order to teach you how to build applications in other frameworks and languages.
This chapter teaches you how to build both the frontend and the backend. You will
build servers in JavaScript and Python. You will be introduced to NoSQL databases
and AJAX to display and update data without refreshing your web page. Lastly, you
will learn how to create a Windows desktop application by embedding Leaflet in C#.

What you need for this book
You need, at a minimum, the following software for this book:

• A web browser, preferably Google Chrome, which is available at
https://www.google.com/chrome/browser/

For the examples in Chapter 5, ESRI in Leaflet and Chapter 6, Leaflet in Node.js, Python,
and C#, the following software is required:

• Node.js, which is available at http://nodejs.org/.
• Python 2.7, preferably 3.x. You can download either version from

https://www.python.org/.
• Visual Studio Express 2010. You will find a free copy at http://www.

visualstudio.com/downloads/download-visual-studio-vs.
• CherryPy is available at http://www.cherrypy.org/.
• MongoDB is available at http://www.mongodb.org/.

https://www.google.com/chrome/browser/
http://nodejs.org/
https://www.python.org/
http://www.visualstudio.com/downloads/download-visual-studio-vs
http://www.visualstudio.com/downloads/download-visual-studio-vs
http://www.cherrypy.org/
http://www.mongodb.org/

Preface

[3]

• Pymongo is the Python library to use MongoDB, and it is freely available at
https://pypi.python.org/pypi/pymongo/.

• C# drivers for MongoDB are available in several formats at
https://github.com/mongodb/mongo-csharp-driver/releases.

• WAMP can be downloaded from http://www.wampserver.com/en/.

Who this book is for
If you are a map maker with some JavaScript knowledge, this book is an ideal
resource that teaches you how to bring your maps to the Web and make them
interactive. If you are a JavaScript developer, this book will show you how to use
those skills to build powerful mapping applications.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Create a text string of the query and initialize your StringBuilder() method to
hold the JavaScript of the function and results."

A block of code is set as follows:

var layer = new L.TileLayer('http://{s}.tile.thunderforest.com/
landscape/{z}/{x}/{y}.png');
map.addLayer(layer);

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<style>
 html, body, #map {
 padding: 0;
 margin: 0;
 height: 100%;
 }
#points.hidden {
 display: none;
}
</style>

https://pypi.python.org/pypi/pymongo/
https://github.com/mongodb/mongo-csharp-driver/releases
http://www.wampserver.com/en/

Preface

[4]

<body>
<div id="map"></div>
<div id="points"></div>

Any command-line input or output is written as follows:

npm install –g connect

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "You now need to
right-click on the project in the Solution Explorer window and select Add Reference."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
mailto:copyright@packtpub.com

Creating Maps with Leaflet
Web-based mapping has evolved rapidly over the last two decades, from MapQuest
and Google to real-time location information on our phones' mapping apps. There
have been open source projects to develop web-based maps in the past, such as
MapServer, GeoServer, and OpenLayers. However, Environmental Systems Research
Institute (ESRI) includes the Flex and Silverlight APIs; these create web-based maps
from their ArcServer services.

Over the last few years, JavaScript has taken the online mapping world by storm. In
2013, there was a JS.geo conference. The library at the center of attention was Leaflet.
This is a JavaScript library used to create interactive, web-based maps. With it, you
can create a simple map in as little as three lines of JavaScript, or you can create
complex, interactive, editable maps with hundreds of lines of code.

You can find more information on Leaflet at http://leafletjs.com.

This book assumes that you have a basic understanding of HTML and CSS, primarily
of how to link external .js and .css files and how to name and size a <div>
element. It also assumes that you have a working knowledge of JavaScript.

In this chapter, we will cover the following topics:

• Tile layers
• Vector layers
• Pop ups
• Custom functions / Responding to events
• Mobile mapping

http://leafletjs.com

Creating Maps with Leaflet

[8]

Creating a simple basemap
To create a map with Leaflet, you need to do the following four things:

• Reference the JavaScript and Cascading Style Sheet (CSS) files
• Create a <div> element to hold the map
• Create a map object
• Add a tile layer (base layer)

Before we get into the details of building the map, let's set up an HTML file that we
can use throughout the book. Open a text editor and enter the following HTML:

<!DOCTYPE html><html>
<head><title>Leaflet Essentials</title>
</head>
<body>
</body>
</html>

Save the file as LeafletEssentials.html. We will add to this file throughout the
rest of the book.

Downloading the example code
You can download the example code files for all Packt books
you have purchased from your account at http://www.
packtpub.com. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and
register to have the files e-mailed directly to you.

Referencing the JavaScript and CSS files
There are two ways to load Leaflet into your code: you can either reference a hosted
file or download a copy to your local machine and reference that copy. The next two
sections will cover how you can set up your environment for a hosted copy or for a
local copy.

Using a hosted copy
We will not be making any changes to the original CSS or JS files, so we will link to
the hosted version.

In a text editor, open LeafletEssentials.html. In the <head> element, and after
the </title> element, add the following code:

<link rel="stylesheet" href="http://cdn.leafletjs.com/leaflet-
0.7.3/leaflet.css"0.7.3 />

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Chapter 1

[9]

After the <body> tag, add the following code:
<script src="http://cdn.leafletjs.com/leaflet-
0.7.3/Leaflet"></script>

The links are standard HTML for <link> and <script>. Open either link in your
browser and you will see the contents of the files.

Using a local copy
Using a local copy is the same as a hosted copy, except the path to the files is
different. Download Leaflet.js from http://leafletjs.com/download.html
and extract it to your desktop. If you downloaded Leaflet-0.7.3.zip, you should
have a folder with the same name. In the folder, you will find a subfolder named
images and the following three files:

• Leaflet.css: This is the cascading style sheet
• Leaflet: This is a compressed version of Leaflet
• Leaflet-src.js: This is the full version of Leaflet for developers

Add the following code in the <head> tag of LeafletEssentials.html:
<link rel="stylesheet"href="\PATH TO DESKTOP\leaflet-
0.7.3\leaflet.css" />

Add the following code in the <body> tag of LeafletEssentials.html:

<script src="\leaflet-0.7.3\Leaflet"></script>0.7.3Leaflet

You now have local references to the Leaflet library and CSS. We are using the
Leaflet file because it is smaller and will load faster. As long as you do not need
to add any code to the file, you can delete the Leaflet-src.js file.

Creating a <div> tag to hold the map
You need a place to put the map. You can accomplished this by creating a <div>
tag with an ID that will be referenced by a map object. The <div> tag that is holding
the map needs a defined height. The easiest way to give the tag a height is to use
CSS in the <div> tag that you created. Add the following code to the <body> tag of
LeafletEssentials.html after the <script> reference to the Leaflet file:

<div id="map" style="width: 600px; height: 400px"></div>

Style the <div> tag in the HTML file and not the Leaflet.css
file. If you do this, the map <div> size will be global for every
page that uses it.

http://leafletjs.com/download.html

Creating Maps with Leaflet

[10]

Creating a map object
Now that you have the references and a place to put the map, it is time to start
coding the map using JavaScript. The first step is to create a map object. The map
class takes a <div> tag (which you created in the previous step) and options:
L.map(div id, options). To create a map object named map, add the following
code after the <script> element in LeafletEssentials.html:

var map = L.map('map',{center: [35.10418, -106.62987],
zoom: 10
});

Alternatively, you can shorten the code using the setView() method, which takes
the center and zoom options as parameters:

var map = L.map('map').setView([35.10418, -106.62987],10);

In the preceding code, you created a new instance of the map class and named it map.
You may be used to creating new instances of a class using the keyword new; this is
shown in the following code:

var map = new L.Map();

Leaflet implements factories that remove the need for the new keyword. In this
example, L.map() has been given the <div> map and two options: center and zoom.
These two options position the map on the screen with the latitude and longitude
in the center of the <div> element and zoomed in or out at the desired level. The
center option takes the [latitude, longitude] parameters, and zoom takes an
integer; the larger the number, the tighter the zoom.

It is good practice to always assign the center and zoom options.
There is nothing worse than seeing a map of the world when all of the
data is located Albuquerque, NM.

Adding a tile layer
The last step to create your first map in Leaflet is to add a tile layer. A tile layer can
be thought of as your basemap. It is the imagery that you will add points, lines,
and polygons on top of later in the book. Tile layers are a service provided by a tile
server. A tile server usually breaks up the layer into 256 x 256 pixel images. You
retrieve the images needed based on your location and zoom through a URL that
requests /z/x/y.png. Only these tiles are loaded. As you pan and zoom, new tiles
are added to your map.

Chapter 1

[11]

The tile layer, at a minimum, requires the URL to a tile server. In this book, we will
use OpenStreetMap for our tile layer.

You need to abide by the terms of service to use OpenStreetMap
tiles. The TOS is available at http://wiki.openstreetmap.org/
wiki/Tile_usage_policy.

The URL to the OpenStreetMap tile server is shown in the following code:

L.tileLayer('http://{s}.tile.osm.org/{z}/{x}/{y}.png').addTo(map);

In the code, we provide the URL template to OpenStreetMaps. We also call the
addTo() method so that the layer is drawn. We need to pass L.map() as a parameter
to the addTo() function. We named our L.map() instance map in the previous
section (var map = L.map()).

Leaflet allows method chaining: the calling of multiple methods
on an object at the same time. This is what we did when we put
.addTo(map) at the end of the line, creating the instance of
L.tileLayer(). The longer way of adding the layer to the map
without chaining is to assign the instance to a variable and then
call addTo() from the variable, as shown in the following code:

var x =
L.tileLayer('http://{s}.tile.osm.org/{z}/{x}/{y}.
png');
x.addTo(map);

You now have a complete map that allows you to pan and zoom around the world.
Your LeafletEssentials.html file should look like the following code:

<html>
<head><title>Leaflet Essentials</title>
<link rel="stylesheet" href="http://cdn.leafletjs.com/leaflet-
0.7.3/leaflet.css" />
</head>
<body>
<script src="http://cdn.leafletjs.com/leaflet-
0.7.3/Leaflet"></script>
<div id="map" style="width: 600px; height: 400px"></div>
<script>
var map = L.map('map',
{

http://wiki.openstreetmap.org/wiki/Tile_usage_policy
http://wiki.openstreetmap.org/wiki/Tile_usage_policy

Creating Maps with Leaflet

[12]

center: [35.10418, -106.62987],
zoom: 10
});
L.tileLayer('http://{s}.tile.osm.org/{z}/{x}/{y}.png').addTo(map);
</script>
</body>
</html>

Even with liberal spacing, you were able to build a fully functional map of the world
with pan and zoom capabilities in six lines of JavaScript. The following screenshot
shows the finished map:

Tile layer providers
Now that you have created your first map, you are probably wondering how to
change the tile layer to something else. There are several tile layer providers, some
of which require registration. This section will present you with two more options:
Thunderforest and Stamen. Thunderforest provides tiles that extend OpenStreetMap,
while Stamen provides more artistic map tiles. Both of these services can be used to
add a different style of basemap to your Leaflet map.

Thunderforest provides five tile services:

• OpenCycleMap
• Transport

Chapter 1

[13]

• Landscape
• Outdoors
• Atlas (still in development)

To use Thunderforest, you need to point your tile layer to the URL of the tile server.
The following code shows how you can add a Thunderforest tile layer:

var layer = new L.TileLayer('http://{s}.tile.thunderforest.com/
landscape/{z}/{x}/{y}.png');
map.addLayer(layer);

The preceding code loads the landscape tile layer. To use another layer, just
replace landscape in the URL with cycle, transport, or outdoors. The following
screenshot shows the Thunderforest landscape layer loaded in Leaflet:

Stamen provides six tile layers; however, we will only discuss the following
three layers:

• Terrain (available in the United States only)
• Watercolor
• Toner

The other three are Burning Map, Mars and Trees, and Cabs & Crime. The Burning
Map and Mars layers require WebGL, and Trees and Cabs & Crime are only
available in San Francisco. While these maps have a definite wow factor, they are
not practical for our purposes here.

Creating Maps with Leaflet

[14]

Learn about the Stamen tile layers, including Burning Map, Mars
and Trees, and Cabs & Crime, at http://maps.stamen.com.

Stamen requires you to follow the same steps as Thunderforest, but it includes an
additional step of adding a reference to the JavaScript file. After the reference to your
Leaflet file, add the following reference:

<script type="text/javascript"
src="http://maps.stamen.com/js/tile.stamen.js?v1.2.4"></script>

Instead of L.TileLayer(), Stamen uses L.StamenTileLayer(tile set name).
Replace the tile set name with terrain, watercolor, or toner. Lastly, add
addLayer() to the map as shown in the following code:

var layer = new L.StamenTileLayer("watercolor");
map.addLayer(layer);

Stamen's tile layers are not your typical basemap layers; they are works of
cartographic art.

Stamen has an online tool to edit map layers and save the output as
an image. To create your own artistic map images, go to http://
mapstack.stamen.com.

The following screenshot shows the Stamen watercolor layer loaded in Leaflet. As
you zoom in, you will see more detail:

http://maps.stamen.com
http://mapstack.stamen.com
http://mapstack.stamen.com

Chapter 1

[15]

Adding a Web Mapping Service tile layer
Another type of tile layer that can be added to a Leaflet map is a Web Mapping
Service (WMS) tile layer. WMS is a way to request and transfer map images over
the Web through HTTP. It is an Open Geospatial Consortium (OGC) specification.

For detailed technical information on the WMS specification,
see the OGC website: http://www.opengeospatial.org/
standards/wms.

With an understanding of how to add tile layers, and having seen several examples,
you may have noticed that none of the examples were of satellite imagery. The
first WMS layer you will add to your map is the United States Geological Survey
(USGS) Imagery Topo.

Like the L.tileLayer() function that we used previously, the L.tileLayer.wms()
function takes a URL and a set of options as parameters. The following code adds the
WMS layer to your map:

varusgs =
L.tileLayer.wms("http://basemap.nationalmap.gov/ArcGIS/services/US
GSImageryTopo/MapServer/WMSServer", {
layers:'0',
format: 'image/png',
transparent: true,
attribution: "USGS"
}).addTo(map);

The URL for the WMS was taken from the USGS website. You can find other WMS
layers at http://basemap.nationalmap.gov/arcgis/rest/services. The options
specified are the layer name, the format, the transparency, and the attribution.
The layer name will be provided on the information page of the service you are
connecting to. The format is an image, and the transparency is set to true. Since this
layer covers the globe, and we are not putting any other layers underneath it, the
transparency could be set to false. In the next example, you will see how setting
the transparency to true allows another layer to become visible. Lastly, there is an
attribution set to USGS. When you assign an attribution to a layer, Leaflet adds the
text value in the lower-right corner of the map. It is important to use an attribution
as it is similar to citing a source in text. If it is not your data, it is accepted practice
to give credit where credit is due. Many times, it is also required by copyright. Since
this layer is from the USGS, it is accredited in the attribution property of the layer.

www.allitebooks.com

http://www.opengeospatial.org/standards/wms
http://www.opengeospatial.org/standards/wms
http://basemap.nationalmap.gov/arcgis/rest/services
http://www.allitebooks.org

Creating Maps with Leaflet

[16]

The attribution value can contain hyperlinks, as shown in the
following code:

attribution: "<a
href='http://basemap.nationalmap.gov/arcgis/rest/
service
s'>USGS"

Insert the WMS layer code into LeafletEssentials.html, and you should now
have a map with satellite imagery. The following screenshot shows the satellite
imagery loaded into Leaflet:

Multiple tile layers
In the previous example, you added a WMS layer and set the transparency to true.
The reason you need to do this is because you can add multiple tile layers on top of
each other, and with the transparency set to true, you will be able to see them all
at the same time. In this example, you need to add the National Weather Service
(NWS) radar mosaic WMS on top of the USGS satellite imagery.

Chapter 1

[17]

The National Oceanic and Atmospheric Administration (NOAA)
provides a list of several WMS layers; they are available at the
following link:
http://nowcoast.noaa.gov/help/mapservices.
shtml?name=mapservices

The adding of extra WMS layers follows the same format as the previous example,
but with a different URL, layer name, and attribution. Add the following code after
the code for the satellite imagery in LeafletEssentials.html:

Varnexrad =
L.tileLayer.wms("http://nowcoast.noaa.gov/wms/com.esri.wms.Esrimap
/obs", {
layers: 'RAS_RIDGE_NEXRAD',
format: 'image/png',
transparent: true,
attribution: "NOAA/NWS"
}).addTo(map);

This code adds the NOAA WMS layer for the NWS radar mosaic. Note that the URL
and layer have changed and the attribution is set to NOAA/NWS. The RAS_RIDGE_
NEXRAD layer is a grid that displays values when they begin to exist. The name of the
layer can be found on the NOAA website; you are not expected to remember that
RAS_RIDGE_NEXRAD is the weather radar layer. There are large portions of the map
with no data, and since we set the transparency to true, these blank spaces allow the
satellite imagery to become visible. Your map should now show the satellite imagery
with the radar mosaic overlaid, as in the following screenshot:

http://nowcoast.noaa.gov/help/mapservices.shtml?name=mapservices
http://nowcoast.noaa.gov/help/mapservices.shtml?name=mapservices

Creating Maps with Leaflet

[18]

If you set the transparency to false, you allow the layer to draw on the entire map.
Areas with no data are displayed as white squares and cover the satellite imagery
underneath, as shown in the following screenshot:

WMS layers do not need to serve as base layers only; they can be used as additional
data. This was shown in the previous example where you overlaid the radar on the
satellite imagery. In this example, you used a satellite image. You can also use the
OpenStreetMap tile layer from the first map. Again, just set the transparency to true.
WMS layers can be added just like points, lines, and polygons, which is discussed in
the following sections.

Adding data to your map
So far, you have learned how to add tile layers to a map. In the previous example,
you added a WMS layer on top of a base tile layer. Now, you will learn how to draw
your own layers that need to be added on top of a tile layer. The three geometric
primitives of vector data that you can add to a map are often referred to as points,
lines, and polygons.

In this section, you will learn how to add markers, polylines, and polygons to
your map.

Chapter 1

[19]

Points
So far, your map is not that interesting. You often draw a map to highlight a specific
place or point. Leaflet has a Point class; however, it is not used to simply add a
point on the map with an icon to specify the place. In Leaflet, points are added to the
map using the Marker class. At minimum, the Marker class requires a latitude and
longitude, as shown in the following code:

Var myMarker = L.marker([35.10418, -106.62987]).addTo(map);

You can create a marker by simply calling L.marker([lat,long]).
addTo(map);, but assigning the marker to a variable will allow you to
interact with it by name. How do you delete a specific marker if it does
not have a name?

In the preceding code, you created a marker at point [35.10418, -106.62987], and
then, as with the tile layer, you used the addTo(map) function. This created a marker
icon at the specified latitude and longitude. The following screenshot shows the
marker on the map:

Creating Maps with Leaflet

[20]

The preceding example is a simplified, and almost useless, marker. The Marker
class has options, events, and methods that you can call to make them more
interactive and useful. You will learn about methods—specifically the bindPopup()
method— and events later in this chapter.

There are 10 options you can specify when creating a marker, as follows:

• icon

• clickable

• draggable

• keyboard

• title

• alt

• zIndexOffset

• opacity

• riseOnHover

• riseOffset

The options clickable, draggable, keyboard, zIndexOffset, opacity,
riseOnHover, and riseOffset are all set to a default value. In Chapter 4, Creating
Custom Markers, you will learn about the icon option in detail. Two options that
you should set are title and alt. The title option is the tooltip text that will be
displayed when you hover over the point with the cursor, and the alt option is the
alternative text that is read using screen readers for accessibility. These options are
used in the following code:

varmyMarker = L.marker([35.10418, -106.62987],
{title:"MyPoint",alt:"The Big I",draggable:true}).addTo(map);

The code extends the original marker example by adding a title and alt text and
making the marker draggable. You will use the draggable options with an event in
the last section of this chapter. The options are set the same as when we created our
map instance; use curly braces to group the options, and separate each option with a
comma. This is how options will be set for all objects.

Chapter 1

[21]

Polylines
The first vector layer you will learn to create is aLine. In Leaflet, you will use
the Polyline class. A polyline can represent a single line segment or a line with
multiple segments. Polylines and polygons extend the path class. You do not call
path directly, but you have access to its methods, properties, and events. To draw a
polyline, you need to provide at least a single longitude and latitude pair. The option
for a polyline is set as default, so you need not specify any values unless you want to
override the default. This is shown in the following code:

var polyline = L.polyline([[35.10418, -106.62987],[35.19738, -
106.875]], {color: 'red',weight:8}).addTo(map);

In this example, the polyline is red and has a weight of 8. The weight option defaults
to 5. If you want a thicker line, increase the number. For a thinner line, decrease the
number. To add more segments to the line, just add additional latitude and longitude
values as shown in the following code:

var polyline = L.polyline([[35.10418, -106.62987],[35.19738, -
106.875],[35.07946, -106.80634]], {color:
'red',weight:8}).addTo(map);

You need to first provide a latitude and longitude pair because a line
consists of at least two points. Afterwards, you can declare additional
latitudes and longitudes to extend your line.

The following screenshot shows the polyline added to the map:

Creating Maps with Leaflet

[22]

Polygons
A polygon is a polyline that is closed. Polygons tend to be classified by the number
of sides, as follows:

• Triangle (3)
• Hexagon (6)
• Octagon (8)

Leaflet has a class for drawing two common polygons: a circle and a rectangle. When
drawing a polygon, you will specify a minimum of three coordinates. A triangle is
the simplest polygon that you can draw. That is why you need to provide at least
three points. You do not need to specify the starting point at the end of the list.
Leaflet will automatically close the polygon for you. To draw a polygon, simply copy
the code for the polyline with three points and change the class to L.polygon(), as
shown in the following code:

var polygon = L.polygon([[35.10418, -106.62987],[35.19738, -
106.875],[35.07946, -106.80634]], {color:
'red',weight:8}).addTo(map);

Since Leaflet automatically closes the polygon, our three-point polyline can become
a polygon. Since polyline and polygon inherit from path, the options color and
weight apply to both. You will notice that color and weight refer to the outline
of the polygon. Two options that you will find useful when drawing polygons are
fillColor and fillOpacity:

var polygon = L.polygon([[35.10418, -106.62987],[35.19738, -
106.875],[35.07946, -106.80634]], {color:
'red',weight:8,fillColor:'blue',fillOpacity:1}).addTo(map);

The preceding code draws a red triangle with a weight of 8. The additional options
of fillColor and fillOpacity are set to blue and 1. The fill color of a polygon
will be set to the default if no fillColor option is selected. You only need to use
fillColor if you want a different fill color than the outline.

Opacity is a value between 0 and 1, where 0 is 100 percent opacity and
1 is no opacity (solid).

Chapter 1

[23]

The following screenshot shows the red triangle with a blue fill added to the map:

Rectangles and circles
Circles and rectangles are common polygons that have built-in classes in Leaflet.
You can also draw them manually using polygon and by specifying all of the line
segments, but that would be a difficult route to take.

Rectangles
To create a rectangle, you need an instance of the class L.rectangle() with the
latitude and longitude pair for the upper-left corner and lower-right corner as a
parameter. The class extends L.polygon(), so you have access to the same options,
methods, and events:

var myRectangle = L.rectangle([[35.19738, -106.875],[35.10418, -
106.62987]], {color: "red", weight:
8,fillColor:"blue"}).addTo(map);

Creating Maps with Leaflet

[24]

The preceding code uses the first two points in the polyline and triangle, but in
reverse order (upper left and lower right). The options are the same as the polygon,
but with opacity removed. The following screenshot shows the rectangle added to
the map:

Circles
To create a circle, you need an instance of L.circle() with the center point and a
radius (in meters) as parameters. You can specify the same options as you used in
your rectangle because the circle class extends the path class. This is shown in the
following code:

L.circle([35.10418, -106.62987], 8046.72,{color: "red", weight:
8,fillColor:"blue"}).addTo(map);

Chapter 1

[25]

The preceding code specifies the center point, a radius of 5 miles (8046.72 meters),
and the same options as the rectangle in the previous example. The following
screenshot shows the circle added to the map:

MultiPolylines and MultiPolygons
In the previous examples, you created each polyline and polygon as its own layer.
When you start creating real data, you will find that you want multiple polylines
or polygons on a single layer. For starters, it is more realistic, and it also makes it
possible to deal with similar features as a single entity. If you want to map parks
and bike trails on a single map, it makes sense to add the parks as MultiPolygon
and the bike trails as MultiPolyline. Then, you can provide the user with the
option of turning either layer on or off.

Bracketing for MultiPolylines and MultiPolygons can get confusing.
You need brackets to hold the MultiPolyline or MultiPolygon,
brackets for each polyline or polygon, and brackets for each latitude
and longitude.

Creating Maps with Leaflet

[26]

MultiPolylines
Creating a MultiPolyline is functionally the same as a single polyline, except that you
pass multiple longitudes and latitudes; a set for each polygon. This is shown in the
following code:

var multipolyline = L.multiPolyline([[[35.10418, -
106.62987],[35.19738, -106.875],[35.07946, -
106.80634]],[[35.11654, -106.58318],[35.13142, -
106.48876],[35.07384, -106.52412]]],{color:
'red',weight:8}).addTo(map);

In the preceding code, the first polyline is the same as the polyline example. A
second polyline is added, and the options are also the same as the first polyline
example. The following screenshot shows the MultiPolyline added to the map:

Chapter 1

[27]

MultiPolygons
Creating a MultiPolygon is the same as creating a MultiPolyline. Since Leaflet will
automatically close the polyline, as long as our polylines have three or more points,
we can use them. This is shown in the following code:

var multipolygon = L.multiPolygon([[[35.10418, -
106.62987],[35.19738, -106.875],[35.07946, -
106.80634]],[[35.11654, -106.58318],[35.13142, -
106.48876],[35.07384, -106.52412]]],{color:
'red',weight:8}).addTo(map).bindPopup("We are the same layer");

In the preceding code, you can see that the parameters used are identical to those
used in the MultiPolyline example earlier. When we create a MultiPolygon or
MultiPolyline, the options will apply to every polygon or polyline in the collection.
This means that they all have to be the same color, weight, opacity, and so on. There
is a new method in the preceding code: .bindPopup("We are the same layer").
MultiPolygons and MultiPolylines also share the same pop up. Pop ups will be
discussed later in this chapter. Also, note the use of method chaining in the line
L.multiPolygon().addTo().bindPopup(). The following screenshot shows the
MultiPolygon added to the map:

Creating Maps with Leaflet

[28]

Groups of layers
MultiPolyline and MultiPolygon layers allow you to combine multiple polylines
and polygons. If you want to create group layers of different types, such as a marker
layer with a circle, you can use a layer group or a feature group.

The layer group
A layer group allows you to add multiple layers of different types to the map
and manage them as a single layer. To use a layer group, you will need to define
several layers:

var marker=L.marker([35.10418, -106.62987]).bindPopup("I am a
Marker");
var marker2=L.marker([35.02381, -106.63811]).bindPopup("I am
Marker 2");
var polyline=L.polyline([[35.10418, -106.62987],[35.19738, -
106.875],[35.07946, -106.80634]], {color:
'red',weight:8}).bindPopup("I am a Polyline");

The preceding code creates two markers and a polyline. Note that you will not
use the addTo(map) function after creating the layers, like you did in the previous
examples. You will let the layer group handle adding the layer to the map. A layer
group requires a set of layers as a parameter:

var myLayerGroup=L.layerGroup([marker, polyline]).addTo(map);

In the previous code, an instance of L.layerGroup() was created as myLayerGroup.
The layers passed as a parameter were marker and polyline. Finally, the layer
group was added to the map. The earlier code shows three layers, but only two were
added to the layer group. To add layers to a layer group without passing them as a
parameter during creation, you can use the layer group addLayer() method. This
method takes a layer as a parameter, as shown in the following code:

myLayerGroup.addLayer(marker2);

Now, all three layers have been added to the layer group and are displayed on the
map. The following screenshot shows the layer group added to the map:

Chapter 1

[29]

If you want to remove a layer from the layer group, you can use the removeLayer()
method and pass the layer name as a parameter:

myLayerGroup.removeLayer(marker);

If you remove a layer from the group, it will no longer be displayed on the map
because the addTo() function was called for the layer group and not the individual
layer. If you want to display the layer but no longer want it to be part of the layer
group, use the removeLayer() function, as shown in the preceding code, and then
add the layer to the map as shown in the earlier examples. This is shown in the
following code:

marker.addTo(map);

All style options and pop ups need to be assigned to the layer when it is created.
You cannot assign a style or pop ups to a layer group as a whole. This is where
feature groups can be used.

Creating Maps with Leaflet

[30]

Feature groups
A feature group is similar to a layer group, but extends it to allow mouse events and
includes the bindPopup() method. The constructor for a feature group is the same as
the layer group: just pass a set of layers as a parameter. The following code displays
an example of a feature group:

VarmyfeatureGroup=L.featureGroup([marker, marker2, polyline])
 .addTo(map).setStyle({color:'purple',opacity:.5})
 .bindPopup("We have the same popup because we are a group");

In the preceding code, the layers added are the same three that you added in the
layer group. Since the feature group extends the layer group, you can assign a style
and pop up to all of the layers at once. The following screenshot shows the feature
group added to the map:

When you created the polyline in the previous example, you set the color to red.
Note now that since you passed style information to the feature group by setting
the color to purple, the polyline took the information from the feature group and
discarded its original settings. If you removed the polyline from the feature group, it
will be removed from the map as well. If you try to add the polyline to the map using
addTo(), as in the previous examples, it will still be purple and have the new pop up.
The markers are still blue even though you passed style information to the feature
group. The setStyle() method only applies to layers in the feature group that have
a setStyle() method. Since a polyline extends the path class, it has a setStyle()
method. The markers do not have a setStyle() method, so their color did not change.

Chapter 1

[31]

Pop ups
The last few examples introduced pop ups. A pop up provides a way to make your
layers interactive or provides information to the user. The simplest way to add a
pop up to a marker, polyline, or polygon is to use the bindPopup() method. This
method takes the contents of the pop up as a parameter. Using the marker variable
we created earlier, we bind the pop up to it with the following code:

marker.bindPopup("I am a marker");

The bindPopup() method allows you to enter HTML as the content. This is shown
in the following code:

marker.bindPopup("<h1>My Marker</h1><p>This is information about
the marker</p>Info 1Info 2Info
3")

The ability to use HTML in a pop up comes in handy when you have a lot of details
to add. It allows the use of images and links in pop ups. The following screenshot
shows the HTML-formatted pop up added to a marker on the map:

Creating Maps with Leaflet

[32]

You can also create an instance of the popup class and then assign it to multiple objects:

var mypopup = L.popup({keepInView:true,closeButton:false})
.setContent("<h1>My Marker</h1><p>This is information about the
marker</p>Info 1Info 2Info 3");
marker.bindPopup(mypopup);
marker2.bindPopup(mypopup);

In the preceding code, you create an instance of the L.popup() class and assign it to
the variable mypopup. Then, you can call the bindPopup() method on marker and
marker2 with mypopup as the parameter. Both markers will have the same pop up
content and options.

In the last section of this chapter, you will learn how to create a function that allows
you to create a pop up with options and pass the content as a parameter.

Mobile mapping
The maps you have made so far have been tested on the desktop. One of the benefits
of mapping in JavaScript is that mobile devices can run the code in a standard
web browser without any external applications or plugins. Leaflet runs on mobile
devices, such as iPhone, iPad, and Android devices. Any web page with a Leaflet
map will work on a mobile device without any changes; however, you probably
want to customize the map for mobile devices so that it works and looks like it was
built specifically for mobile.

Lastly, the L.map() class has a locate() method, which uses the W3C Geolocation
API. The Geolocation API allows you to find and track a user's location using the IP
address, the wireless network information, or the GPS on a device. You do not need
to know how to use the API; Leaflet handles all of this when you call locate().

HTML and CSS
The first step in converting your Leaflet map to a mobile version is to have it display
properly on mobile devices. You can always tell when you open a website on your
phone whether the developer took the time to make it mobile-accessible. How many
times have you been on a website where the page loads and all you can see is the
top-left corner, and you have to zoom around to read the page. It is not a good user
experience. In LeafletEssentials.html in the <head> tag after the <link> tag for
the CSS file, add the following code:

Chapter 1

[33]

<style>

body{
padding: 0;
margin: 0;
 }
html, body, #map {
height: 100%;
 }
</style>

In the preceding CSS code, you set the padding and margin values to 0. Think of a
web page as a box model, where each element exists in its own box. Each box has a
margin, which is the space between it and other boxes, and also padding, which is
the space between the content inside the box and the box border (even if a border is
not physically drawn). Setting the padding and margin values to 0 makes the <body>
content fit to the size of the page. Lastly, you set the height value of the <html>,
<body>, and <div id = 'map'> elements to 100%.

In CSS, # is the ID selector. In the code, #map is telling us to select
the element with the id = 'map' line. In this case, it is our <div>
element that holds the map.

The following diagram shows an overview of the settings for the web page:

Creating Maps with Leaflet

[34]

The last step is to add the following code in the <head> section and after the </
title> element:

<meta name="viewport" content="width=device-width, initial-
scale=1.0, maximum-scale=1.0, user-scalable=no">

The preceding code modifies the viewport that the site is seen through. This code
sets the viewport to the width of the device and renders it by a ratio of 1:1. Lastly, it
disables the ability to resize the web page. This, however, does not affect your ability
to zoom on the map.

Creating a mobile map with JavaScript
Now that you have configured the web page to render properly on mobile devices, it
is time to add the JavaScript code that will grab the user's current location. For this,
perform the following steps:

1. Create the map instance, but do not use setView:
var map = L.map('map');

2. Add a tile layer:
L.tileLayer('http://{s}.tile.osm.org/{z}/{x}/{y}.png').addT
o(map);

3. Define a function to successfully find the location:
Function foundLocation(e){}

4. Define a function to unsuccessfully find the location:
functionnotFoundLocation(e){}

5. Add an event listener for foundLocation() and notFoundLocation():
map.on('locationfound', foundLocation);
map.on('locationerror', notFoundLocation);

6. Use locate() to set the map view:
map.locate({setView: true, maxZoom:10});

Chapter 1

[35]

The code creates the map and adds a tile layer. It then skips over the functions and
event listeners and tries to locate the user. If it is able to locate the user, it runs the
code in foundLocation() and sets the view to the latitude and longitude of the
user. If it does not locate the user, it executes the code in notFoundLocation()
and displays a zoomed-out world map.

To make this example more usable, add the following code to notFoundLocation():

function notFoundLocation(e){
alert("Unable to find your location. You may need to enable
Geolocation.");}

The alert() function creates a pop up in the browser with the message passed as
a parameter. Anytime that the browser is unable to locate the user, they will see the
following message. While some devices do not have location capabilities, at times,
they need to be allowed in their security settings:

Now, add the following code to foundLocation():

function foundLocation(e){
varmydate = new Date(e.timestamp);
L.marker(e.latlng).addTo(map).bindPopup(mydate.toString());
 }

www.allitebooks.com

http://www.allitebooks.org

Creating Maps with Leaflet

[36]

The preceding code will run when the user's location is found. The e in
foundLocation(e) is an event object. It is sent when an event is triggered to
the function that is responsible for handling that specific event type. It contains
information about the event that you will want to know. In the preceding code, the
first event object we grab is the timestamp object. If you were to display the timestamp
in a pop up, you would get a bunch of numbers: 1400094289048. The timestamp is the
number of milliseconds that have passed since January 1, 1970 00:00:00 UTC. If you
create an instance of the date class and pass it to the timestamp object, you receive a
human-readable date. Next, the code creates a marker. The latitude and longitude are
stored in e.latlng. You then add the marker to the map and bind a pop up. The pop
up needs a string as a parameter, so you can use the toString() method of the date
class or use String(mydate) to convert it. The following screenshot shows the pop up
with the date and time when the user clicked on it:

Events and event handlers
So far, you have created maps that display data and added a pop up that displayed
when the user clicked on a marker. Now, you will learn how to handle other events
and assign these events to event handler functions to process them and do something
as a result.

Chapter 1

[37]

You will first learn how to handle a map event. There are 34 events in the map class
that can be subscribed to. This example will focus on the click event. To subscribe
to an event, you use the event method .on(); so, for a map event, you use the map.
on() method and pass the parameters as the event and function to handle the event.
This is shown in the following code:

map.on('click', function(){alert("You clicked the map");});

The code tells Leaflet to send an alert pop-up box with the text You clicked the map
when the user clicks on the map. In the mobile example, you created a listener that
had a named function that executed foundLocation(). In the preceding code, the
function was put in as a parameter. This is known as an anonymous function. The
function has no name, and so, it can only be called when the user clicks on the map.

Remember e from the mobile example? If you pass e to the function, you can get the
longlat value of the spot that the user clicked on, as shown in the following code:

map.on('click',function(e){
var coord=e.latlng.toString().split(',');
var lat=coord[0].split('(');
var long=coord[1].split(')');
alert("you clicked the map at LAT: "+ lat[1]+" and LONG:"+long[0])
});

The preceding code is spaced in a way that is more readable, but you can put it all
on a single line. The code displays the longitude and latitude of the spot where the
user clicked on the map. The second line assigns the variable coord, the value of
e.latlng. The next two lines strip the latitude and longitude from the value so that
you can display them clearly.

You can build on this example by adding a marker when the user clicks on the map
by simply replacing the code with the following:

L.marker(e.latlng).addTo(map);

The preceding code is identical to the code in the mobile example. The difference is
that in the mobile example, it was only executed when locate() was successful. In
this example, it is executed every time the user clicks on the map.

Creating Maps with Leaflet

[38]

In the section on markers, you created a marker that had the property
draggable:true. Markers have three events that deal with dragging: dragstart,
drag, and dragend. Perform the following steps to return the longitude and latitude
of the marker in a pop up on dragend:

1. Create the marker and set the draggable property to true:
varmyMarker = L.marker([35.10418, -
106.62987],{title:"MyPoint",alt:"The Big
I",draggable:true}).addTo(map);

2. Write a function to bind a pop up to the marker and call the method
getLatLong():
myMarker.bindPopup("I have been moved to:
"+String(myMarker.getLatLng()));

3. Subscribe to the event:
myMarker.on('dragend',whereAmI);

Open the map and click on the marker. Hold down the left mouse button and drag
the marker to a new location on the map. Release the left button and click on the
marker again to trigger the pop up. The pop up will have the new latitude and
longitude of the marker.

Custom functions
You subscribed to an event and handled it with a function. So far, you have only
passed e as a parameter. In JavaScript, you can send anything you want to the
function. Also, functions can be called anywhere in your code. You do not have
to call them only in response to an event. In this short example, you will create a
function that returns a pop up and is triggered on a call and not by an event.

First, create a marker and bind a pop up to it. For the content of the pop up, enter
createPopup(Text as a parameter). Add the marker to the map as shown in the
following code:

var marker1 = L.marker([35.10418, -
106.62987]).addTo(map).bindPopup(createPopup("Text as a
parameter"));

Create a second marker and set the content of the pop up to createPopup
(Different text as a parameter):

var marker2 = L.marker([35, -
106]).addTo(map).bindPopup(createPopup("Different text as a
parameter"));

Chapter 1

[39]

In the previous examples, you created a pop up by passing text or a pop-up instance.
In this example, you call a function, createPopup(), with a string as a parameter, as
shown in the following code:

functioncreatePopup(x){
return
L.popup({keepInView:true,closeButton:false}).setContent(x);functio
n createPopup(x){
returnL.popup({keepInView:true,closeButton:false}).setContent(x);
}

The function takes a parameter called x. In the marker, when you call the function,
you pass a string. This is sent to the function and stored as x. When the pop up is
created, the setContent() method is given the value of x instead of a hardcoded
string. This function is useful if you have a lot of options set on your pop ups and
want them all to be the same. It limits the number of times that you need to repeat
the same code. Just pass the text of the pop up to the function, and you get a new
pop up with the standardized formatting options. The following screenshot shows
both of the pop ups generated by the custom function:

Creating Maps with Leaflet

[40]

Summary
This chapter covered almost every major topic required to create a Leaflet map. You
learned how to add tile layers from multiple providers, including satellite imagery.
You can now add points, lines, and polygons to the map, as well as collections of
polylines and polygons. You can group layers of different types into layer or feature
collections. This chapter covered the styling of objects and adding pop ups. You
learned how to interact with the user by responding to events and created custom
functions to allow you to code more by writing less.

In the next chapter, you will learn how to add GeoJSON data to your map.

Mapping GeoJSON Data
In Chapter 1, Creating Maps with Leaflet, all of the geometry elements—points, lines,
and polygons—were created one at a time. You learned how to create groups of
features using layer and feature groups and also multipolyline and multipolygon
classes. In this chapter, you will learn how to add GeoJSON data to your map.
The data will be comprised of multiple geometries and will have descriptive data
associated with it.

In this chapter, we will cover the following topics:

• What is GeoJSON?
• How to add it to your map
• How to style it
• Iterating through features
• How to call GeoJSON from external sources

Understanding the roots of GeoJSON
Before GeoJSON, there was JavaScript Object Notation (JSON), and before JSON,
there was Extensible Markup Language (XML). As computers started to talk to each
other over the Internet, the ability to send data from a service to a client became more
important. XML, JSON, and GeoJSON are formats that represent and transmit data.
XML was an attempt at a human-readable format that could store and send data.
XML uses opening and closing tags to separate data. JSON is an alternative to XML
that more closely resembles the way objects are created in JavaScript. JSON uses
key-value pairs and is usually smaller than XML.

Mapping GeoJSON Data

[42]

Exploring GeoJSON
GeoJSON is a JSON format that encodes geometries. GeoJSON can encode points,
line strings, and polygons. It also allows for multipart geometries. You can encode
multipoints, multiline strings, and multipolygons. These should sound familiar
because they are pretty close to the geometries you learned to draw in Chapter 1,
Creating Maps with Leaflet. The following GeoJSON code shows you two points in a
feature collection:

{"type":"FeatureCollection",
 "features":[
 {"type":"Feature",
 "geometry":{
 "type":"Point",
 "coordinates":[-106.62987,35.10418]
 },
 "properties":{
 "name":"My Point",
 "title":"A point at the Big I"
 }
 }, {"type":"Feature",
 "geometry":{
 "type":"Point",
 "coordinates":[-106,35]
 },
 "properties":{
 "name":"MyOther Point",
 "title":"A point near Moriarty and I40"
 }
 }
]
}

The feature collection in the preceding code is not a geometry, but rather a
collection of geometries similar to the feature layer described in Chapter 1,
Creating Maps with Leaflet.

To view the full GeoJSON specification, you can go to http://geojson.org/
geojson-spec.html.

For tools that can help you write and check your JSON,
see http://www.jsoneditoronline.org/ or
http://geojsonlint.com/.

http://geojson.org/geojson-spec.html
http://geojson.org/geojson-spec.html
http://www.jsoneditoronline.org/
http://geojsonlint.com/

Chapter 2

[43]

GeoJSON in Leaflet.js
GeoJSON is just another data format for you to add to your map. It can be added as
a hardcoded variable. Leaflet.js geometries—markers, polylines, and polygons—can
be converted to GeoJSON. You can style the data, apply options to each feature, and
even filter the data. The next sections will cover these topics, starting with adding
GeoJSON as a hardcoded variable.

GeoJSON as a variable
The easiest way to add GeoJSON to your map is to hardcode the data into a variable.
In Leaflet.js, you will start by creating a variable that will contain GeoJSON. In
the following code, GeoJSON data consisting of two points is assigned to the
geojson variable:

vargeojson = [{
"type": "Feature",
"geometry": {
"type": "Point",
"coordinates": [-106.62987,35.10418]
 },
 "properties": {
 "name": "My Point",
 "title": "A point at the Big I"
 }
},{
"type": "Feature",
 "geometry": {
 "type": "Point",
 "coordinates": [-106, 35]
 },
"properties": {
 "name": "My Other Point",
 "title": "A point near Moriarty and I40"
 }
}];

Once you have the GeoJSON data in a variable, as shown in the preceding code,
adding it to the map is no different from adding any other geometry you have
learned so far. The following code adds GeoJSON to the map:

vargeoJsonLayer = L.geoJson(geojson).addTo(map);

Mapping GeoJSON Data

[44]

The preceding code creates a geoJsonLayer variable. This variable is an instance of
the L.geoJson()class. It takes a variable with the GeoJSON data as a parameter and
then you chain .addTo(map) to the end.

Objects have been created using (latitude, longitude)
in Chapter 1, Creating Maps with Leaflet; however, note that in
GeoJSON, the format is (longitude, latitude).

The result of this code will be a map with two markers, as shown in the
following screenshot:

Chapter 2

[45]

Multiple geometries in GeoJSON
In the preceding example, GeoJSON contained only points. While it is common for a
GeoJSON file to contain a single geographic feature, it is not a requirement. Leaflet.js
can load GeoJSON with multiple geometries in a single GeoJSON file. In this example,
you will learn how to create and add a GeoJSON file with a point, line string, and
polygon. The following GeoJSON code contains three different geometries:

vargeojson = [{
"type": "Feature",
"geometry": {
"type": "Point",
"coordinates": [-106.62987, 35.10418]
 },
 "properties": {
 "name": "My Point",
 "title": "A point at the Big I"
 }
},{
"type": "Feature",
 "geometry": {
 "type": "LineString",
 "coordinates":[[-106.67999, 35.14097],
 [-106.68892, 35.12974],
 [-106.69064, 35.1098]]
 },
"properties": {
 "name": "My LineString",
 "title": "A line along the Rio Grande"
 }
},{
"type": "Feature",
 "geometry": {
 "type": "Polygon",
 "coordinates":[[[-106.78059, 35.14574],
 [-106.7799, 35.10559],
 [-106.71467, 35.13704],
 [-106.69716, 35.17942],
 [-106.78059, 35.14574]]]
 },
"properties": {
 "name": "My Polygon",
 "title": "Balloon Fiesta Park"
 }
 }];

Mapping GeoJSON Data

[46]

To create different geometries in a single GeoJSON file, you just need to specify
the type and include the proper coordinates, as shown in the preceding code. For
a line string, you must include at least two points. In Leaflet.js, polygons do not
require you to close them by including the starting coordinates at the end of the list.
GeoJSON does require you to close the polygon. The polygon in the preceding code
starts and ends with [-106.78059, 35.14574]. The preceding code will produce
the map shown in the following screenshot:

Polygons with holes
A polygon in GeoJSON can be a donut, that is, you can cut a polygon out of the
middle of another polygon. The following code shows you a polygon feature with
two polygons, the outer and inner polygons:

vargeojson = [{
"type": "Feature",
 "geometry": {
 "type": "Polygon",
 "coordinates":[
 [[-106.875, 35.20074],
 [-106.82281, 34.9895],
 [-106.50146, 35.00525],

Chapter 2

[47]

 [-106.47949, 35.1985],
 [-106.875, 35.20074]],
 [[-106.6745, 35.1463],
 [-106.70403, 35.05192],
 [-106.55296, 35.05979],
 [-106.53854, 35.17212],
 [-106.6745, 35.1463]]
]
 },
"properties": {
 "name": "My Polygon with a hole",
 "title": "Donut"
 }
 }];

In the preceding code, the first set of points creates a four-sided polygon. The second
set of points—the next level of indentation—creates a four-sided polygon in the
middle of the first polygon. The result is shown in the following screenshot:

The middle of the polygon in the preceding screenshot is hollow. If you add a pop
up to the polygon, it will only open when you click on the blue ring.

Mapping GeoJSON Data

[48]

GeoJSON from Leaflet.js objects
Each of the geometries you learned about in Chapter 1, Creating Maps with Leaflet,
have a toGeoJson() method. This method will convert the geometry to a GeoJSON
object that can be added to the map. The following code shows you how to convert a
marker to a GeoJSON layer:

varmyMarker=L.marker([35.10418, -106.62987]);
varmarkerAsGeoJSON = myMarker.toGeoJSON();
vargeoJsonLayer = L.geoJson(markerAsGeoJSON).addTo(map);

The preceding code creates a marker, as you did in the Adding data to your map
section in Chapter 1, Creating Maps with Leaflet. Secondly, it calls the .toGeoJSON()
method, which returns a GeoJSON object and stores it as markerAsGeoJSON. Lastly,
markerAsGeoJSON is added to the map as GeoJSON.

Styling GeoJSON layers
GeoJSON layers have a style option and a setStyle() method. Using the style
option, you specify a function that will style the layer. The following code shows you
how to style a GeoJSON layer with the style option:

functionstyleFunction(feature){
switch (feature.properties.type) {
case 'LineString': return {color: "red"}; break;
case 'Polygon': return {color: "purple"}; break;
 }
}
vargeoJsonLayer =
L.geoJson(geojson,{style:styleFunction}).addTo(map);

The preceding code creates a style function that returns a color based on the
GeoJSON feature names. If it is a line string, it is colored red, and if it is a polygon,
it is colored purple.

You can also style the GeoJSON data using other options
such as stroke, weight, opacity, and fillColor.
The full list is available at http://leafletjs.com/
reference.html#path-options.

http://leafletjs.com/reference.html#path-options
http://leafletjs.com/reference.html#path-options

Chapter 2

[49]

The last line creates the GeoJSON layer, calls the style function, and then adds it to
the map. The result is seen in the following screenshot:

The setStyle() method allows you to change the style after one has already been
applied or by using events. The following code shows you how an event can call the
setStyle() method to update the color of the GeoJSON layer:

functionstyleFunction(){return {color: "purple"}; }
functionnewStyle(){geoJsonLayer.setStyle({color:"green"});}

vargeoJsonLayer =
L.geoJson(geojson,{style:styleFunction}).addTo(map);
geoJsonLayer.on('mouseover',newStyle);
geoJsonLayer.on('mouseout',function(e){geoJsonLayer.resetStyle(e.t
arget);});

The preceding code first creates a function called styleFunction(), which is called
in the fourth line of code using the style option as shown in the previous example.
It sets the color of the GeoJSON layer to purple. Next, there is another function,
newStyle(), which sets the color to green. Lastly, there are two events: mouseover
and mouseout. When the user hovers over the GeoJSON layer, the newStyle()
function is called and the layer is colored green. As soon as the mouse moves off the
layer, an anonymous function is called. This function uses the GeoJSON method,
resetStyle(), to pass the target of the event—the GeoJSON layer—and changes the
layer back to its original style.

Mapping GeoJSON Data

[50]

Consider the following example code:

function styleFunction(){return {color: "purple"}; }
function newStyle(){geoJsonLayer.setStyle({color:"green"});}
function oldStyle(){geoJsonLayer.setStyle({color:"purple"});}
var geoJsonLayer =
L.geoJson(geojson,{style:styleFunction}).addTo(map);
geoJsonLayer.on('mouseover',newStyle);geoJsonLayer.
on('mouseout',oldStyle);

The preceding code first creates a function called styleFunction(), which is called
in the fourth line of code using the style option as shown in the previous example.
It sets the color of the GeoJSON layer to purple. Next, there are two other functions:
newStyle() and oldStyle(). The former sets the color to green and the latter
returns the color back to the original purple. Lastly, there are two events that call the
style functions: mouseover and mouseout. When the user hovers over the GeoJSON
layer, the newStyle() function is called and the layer is colored green. As soon as the
mouse moves off the layer, oldStyle() is called and the color is set back to purple.

Iterating through the features
In Leaflet.js, you can iterate through the features in a GeoJSON file and perform
actions on it before it is added to the map. This can be done with the onEachFeature,
pointToLayer, or filter option.

Attaching pop ups with onEachFeature
The GeoJSON layer in Leaflet.js has an onEachFeature option, which is called for
every feature in the data. This can be used to bind a pop up to each feature as it
is added to the map. The following code uses the onEachFeature option to bind
a pop up:

L.geoJson(geojson, {
onEachFeature: function(feature,layer) {
layer.bindPopup(feature.properties.title);
 }
}).addTo(map);

Chapter 2

[51]

In the preceding code, an anonymous function is called on each feature. The
function binds a pop up in line three with the value of the feature's title property.
You can select any one of a feature's properties using feature.properties.
NameOfProperty. The result is shown in the following screenshot:

Creating layers from points with pointToLayer
The pointToLayer option works with points, as they are handled differently as
compared to polylines and polygons. In the following code, a marker is created and
styled for each feature based on the name of the feature:

var options2 = {
draggable: false,
title: "A point near Moriarty and I40"
};
var x;
var y;
L.geoJson(geojsonFeature, {
pointToLayer: function(feature,latlng) {
switch (feature.properties.name) {
case "My Point": x = L.marker(latlng,{draggable:true,title:"A
point at the

Mapping GeoJSON Data

[52]

 Big I"}).bindPopup(feature.properties.name); return x;
case "My Other Point": y =
L.marker(latlng,options2).bindPopup(feature.properties.name);
return y;
 }
 }
}).addTo(map);

The preceding code starts by creating a JSON variable that holds the style
information. Next, the layers on which the markers will be created are created as x
and y. Then, the GeoJSON layer is created and the pointToLayer option is called
with an anonymous function. The function has a switch statement that styles the
markers based on their name property. The first case statement has the property
information added at the creation of the marker. The second case statement passes
the JSON variable with the style information. Both work, so if you have a style that
you want to apply to all your features, you can write it once in a variable and call it
during the creation of the marker. Because the code assigned the layers to variables x
and y, you can add or remove layers using map.removeLayer(x).

Displaying a subset of data with filter
There might be times when you load in GeoJSON from an outside source and you do
not want to display all the features in the data. Filtering will allow you to not display
certain features based on criteria that you set. Modifying the case statement in the
previous point-to-layer example, you will learn how to filter data based on the name
of the feature. The following code shows you how to do this:

L.geoJson(geojsonFeature, {
filter: function(feature,latlng) {
switch (feature.properties.name) {
case "My Point": return true;
case "My Other Point": return false;
 }
 }
}).addTo(map);

Chapter 2

[53]

The preceding code should look similar to the previous examples. You create the
GeoJSON layer and then pass the filter option. The option uses an anonymous
function. The function, in this case, is a switch statement that takes the name of the
feature as a parameter. Since the function is deciding on whether or not to display
a feature, the return value is a Boolean. In this example, if the name of the feature is
My Other Point, it will not be displayed. The following screenshot shows you the
result; only one marker is added to the map:

Mapping GeoJSON Data

[54]

Summary
In this chapter, you learned how to add and style a GeoJSON layer in Leaflet.
js. Finally, you learned how to iterate through the features in a GeoJSON file and
perform an action such as binding a pop up or applying a style based on a property
in the feature. GeoJSON is a popular and common data format. Knowing how to use
it in Leaflet.js is an important skill. This chapter gave you a solid foundation with
which you can continue to learn about GeoJSON.

In the next chapter, you will learn how to create heatmaps using several
available plugins.

Creating Heatmaps
and Choropleth Maps

In the first two chapters, you learned how to make a map and add points, lines,
polygons, and even GeoJSON. Now, you will use these skills to create two types of
thematic maps: heatmaps and choropleth maps. These maps show you concentrations
of points or statistical variables using two different styles of representations.

In this chapter, we will cover the following topics:

• What is a heatmap?
• How do I create a heatmap?
• What is a choropleth map?
• How do I create a choropleth map?

What is a heatmap?
A heatmap is a color-coded grid added to a map. The colors usually range from
cool colors, such as blue, to hot colors, such as yellow, orange, and red. Heatmaps
represent point data in one of two ways: density or intensity. In a density map, the
grid is colored red when multiple points are in close proximity of each other and
blue when dispersed. High concentrations of points create the heat. In an intensity
map, points are assigned a value or an intensity score. The higher the score or
intensity, the hotter the color in the grid at the location of the point; inversely, the
lower the score, the cooler the grid color at the point location.

Creating Heatmaps and Choropleth Maps

[56]

Heatmaps are created by placing a grid over the map
and calculating the points within an area through a
process called Multivariate Kernel Density Estimation.
For a detailed explanation and the exact formulas used,
you can visit http://en.wikipedia.org/wiki/
Multivariate_kernel_density_estimation.

Heatmaps with Leaflet.heat
The first heatmap you will make will be a density heatmap, using the Leaflet.heat
plugin. You can download the JavaScript plugin at https://github.com/Leaflet/
Leaflet.heat. The following steps will walk you through creating your first heatmap:

1. Using LeafletEssentials.html, add a reference to Leaflet.heat.js with
either a URL to a remote copy or the path to your local copy, as shown in the
following code:
<script
src="http://Leaflet.github.io/Leaflet.heat/dist/Leaflet-
heat.js"></script> or,
<script src="Leaflet-heat.js"></script>

2. Add an array of points. Your points can contain additional information but
must have the latitude and longitude as the first two elements. The following
code shows you three points from the code. The full code contains many
more, which will allow you to create the heatmap:
var points = [
[35.1555 , -106.591838 , "<img
src='http://farm8.staticflickr.com/7153/6831137393_fa38634f
d7_m.jp
g'>"],
[35.0931 , -106.664177 , "<img
src='http://farm3.staticflickr.com/2167/2479129916_0d861b26
00.jpg'
>"],
[35.1143 , -106.577991 , "<img
src='http://farm2.staticflickr.com/1416/908720823_e390a242f
4.jpg'>
"]];

3. Lastly, create the heat layer and add it to the map:
var heat = L.heatLayer(points).addTo(map);

http://en.wikipedia.org/wiki/Multivariate_kernel_density_estimation
http://en.wikipedia.org/wiki/Multivariate_kernel_density_estimation
https://github.com/Leaflet/Leaflet.heat
https://github.com/Leaflet/Leaflet.heat

Chapter 3

[57]

Your map should look like what is shown in the following screenshot:

The preceding screenshot is the default heatmap; it's not very stylish.

Using options to style your map
Leaflet.heat allows you to pass options to the constructor. The options are
as follows:

• MaxZoom

• Max

• Radius

• Blur

• Gradient

The most important options are blur, maxZoom, and radius.

Creating Heatmaps and Choropleth Maps

[58]

Changing the blur value
Blur merges the points the together, or not. A low blur value will create individual
points, whereas a higher number will make the points merge with each other and
look more fluid. Blur too much and you will wash out your points. The following
screenshots show you different blur values.

The following screenshot shows you the blur value set to 1:

The following screenshot shows you the blur value set to 40:

Chapter 3

[59]

The following screenshot shows you the blur value set to 80:

Creating Heatmaps and Choropleth Maps

[60]

Notice how at 80, the blur takes away any hotspots on the map; it is washed out. It
will take some to adjust to finding the perfect value. Starting with the default value
of 15 is a good idea.

Changing the maxZoom value
The maxZoom option sets the points to their maximum intensity at the specified zoom.
If you set the maxZoom option of the map, you can ignore this setting. You should set
this to the zoom level where the map looks best. If you set it to too far out, the points
will lose their heat as you zoom in, and if you make it too tight of a zoom, the user
might not be able to see all the points on the map at once.

Changing the radius value
This option should be obvious. It adjusts the radius of the points. A small number
makes a small point and a large number makes a large point. The amount of data
points can affect the proper radius of your points. The more points you have, the
smaller you could make each point and still have a readable map. Making the radius
too large will create a large blob of values that will be hard to interpret.

Setting the gradient option
The gradient option allows you to specify the color at different levels. The default
is set to {.4:"blue",.6:"cyan",.7:"lime",.8:"yellow",1:"red"}. You can
specify ranges from 0 to 1. The outermost color is 0 and the center is 1. The default
setting tends to be a common color range for heatmaps that most people understand.
Leaving the default is the best option, but if you need to change the colors for some
reason, you can.

To create a color combination that is visually pleasing, you
can use a tool such as Color Brewer 2. This is available at
http://colorbrewer2.org/.

Methods of Leaflet.heat
Along with the options to style your heatmap, Leaflet.heat has four methods
as follows:

• setOptions(options)

• addLatLng(latlng)

• setLatLngs(latlngs)

• redraw()

http://colorbrewer2.org/

Chapter 3

[61]

You can reset the style, add new data, load in all new data, and redraw the map. The
method you will use most is the addLatLng() method. This method allows you to
append data to your map. In the previous example, you can add the following code
as the last line:

heat.addLatLng([35,-106]);

The preceding code uses the addLatLng() method to add the point (35,-106) to
the map. There is an excellent example of using an event with addLatLng() at
http://Leaflet.github.io/Leaflet.heat/demo/draw.html. As you move the
mouse, points are added to the map in real time.

The redraw() method is called by setOptions(),
addLatLng(), and setLatLngs() so that you do not
need to call it after executing any of these methods.

If you want to show multiple datasets on a single map, you can write a custom
function to add another set. The following code adds a dataset. You will need to
populate the newPoints variable with your other dataset:

function add(){
heat.setLatLngs(newPoints);
}
heat.setLatLngs(newPoints);

In the preceding code, a dataset named newPoints is added to the map and the old
dataset points are removed. In your HTML, create a button to execute the function:

<button onclick="addNewPoints()">Addonclick="add ()">Add New
Points</button>

The preceding code is the HTML that calls the addNewPoints()function when it is
clicked on.

Adding markers to the heatmap
You need a series of points to create the heatmap, so why not use them to attach a
pop up to the heat layer. In the data, there was a latitude, longitude, and a third field
that contained a URL to an image. The following code shows you how to turn that
data into a marker with a pop up:

for(var i=0;i<points.length;i++)
{
L.marker([parseFloat(points[i][0]),parseFloat(points[i][1])],{opac
ity:0}).bindPopup(points[i][2],{keepInView:true}).addTo(map);
}

http://Leaflet.github.io/Leaflet.heat/demo/draw.html

Creating Heatmaps and Choropleth Maps

[62]

The preceding code is a standard for a loop that starts with 0 and executes until
you have iterated through all the points—points.length. This creates a marker
by passing each point's latitude and longitude, points[i][0] and points[i][1],
and converts them to a float value. Next, the opacity option is set to 0. This makes
the points invisible. The points are on the map, and they can be clicked on, but
you cannot see them. This gives the appearance of the hotspot layer that contains
the pop up. Lastly, the bindPopup() method is passed the URL to the image,
bindPopup(points[i][2]), and is added to the map. The following screenshot
shows you the pop up with the invisible markers and heat layer:

Creating heatmaps with heatmap.js
Creating a heatmap that uses intensity can be accomplished in Leaflet using
heatmap.js. You can get heatmap.js at http://www.patrick-wied.at/static/
heatmapjs/index.html. This includes the plugins for leaflet.js and other
mapping packages. The process to create the heatmap is similar to the previous
example. The following steps will walk you through creating a heatmap:

http://www.patrick-wied.at/static/heatmapjs/index.html
http://www.patrick-wied.at/static/heatmapjs/index.html

Chapter 3

[63]

1. Using LeafletEssentials.html, add a reference to heatmap.js and
heatmap-Leaflet with either a URL to a remote copy or the path to your
local copy, as shown in the following code:
<script type="text/javascript" src="http://www.patrick-
wied.at/static/heatmapjs/src/heatmap.js"></script>
<script type="text/javascript" src="http://www.patrick-
wied.at/static/heatmapjs/src/heatmap-Leaflet"></script>

2. Add a JavaScript object with the max value of the intensity and an array
of data:
Var myData={max: 46,
data: [{lat: 33.5363, lon:-117.044, value: 1},{lat:
33.5608, lon:-117.24, value: 1}]};

3. Create the heat layer and set the options:
Var heatmapLayer = L.TileLayer.heatMap({
radius: 20,
opacity: 0.8,
gradient: {
 0.45: "rgb(0,0,255)",
 0.55: "rgb(0,255,255)",
 0.65: "rgb(0,255,0)",
 0.95: "rgb(255,255,0)",
 1.0: "rgb(255,0,0)"
 }
 });

4. Add the data to the map. Because the data is in an object, you use dot
notation, referencing it as objectname.data; in this case, myData.data.
You could also use myData['data']:
heatmapLayer.addData(myData.data);

5. Lastly, modify your map object to add the layers:
var map = new L.Map('map', {
center: new L.LatLng(35,-106),
zoom: 12,
layers: [baseLayer, heatmapLayer]
 });

Please note that currently, you might need to reference an
older version of Leaflet. This will be updated in a future
version of the plugin.

Creating Heatmaps and Choropleth Maps

[64]

Your map should look like what is shown in the following screenshot:

Modifying the heatmap options
The heatmap allows you to modify three settings: radius, opacity, and gradient.
Like the previous example, gradient controls the size of each point in the map.
The opacity option allows you to specify a value between 0 and 1. 0 is completely
transparent and the heatmap layer will not show up on the map. The value 1 will
make the heatmap layer solid, and you will not be able to see what is underneath
each point. Somewhere between .70 and .80 seems to be the perfect opacity to view
the heat layer and the base layer underneath. Lastly, the gradient, while best left
alone, can be modified by setting a value of 0 to 1 and assigning a color. Colors in the
gradient can be RGB values, or you can use color names: red, yellow, blue, or lime.

Adding more data to the map
You will eventually need to add more data to the map after it has been drawn. To do
this requires you to append values to the object and then add the object again. First,
to add data to the JavaScript object, you can use the following code:

myData. push({lat:35,lon:-106,value:46});

Chapter 3

[65]

The myData object has a key data that is an array. You reference it by using myData.
data[index]. You might not know how many items are in the array, so using the
length of the array as the index, you will always get the next available index. This
works because the length is the number of items, but the index starts at 0. So, for
a three-item array, the length is three but the last index is two. Using the length
gives you the next empty index. Then, just assign a value to the index, and it will be
appended to the object. Lastly, add the data to the map again:

heatmapLayer.addData(myData.data);

If you do not use an index, you will overwrite the data
with the one item you were trying to add.

Creating an interactive heatmap
A heatmap is an alternative visualization to a point map. A point map often becomes
cluttered with large markers that make it hard to find hotspots. In an intensity
heatmap, a single point could be a hotspot. The color coding of values in a heatmap
makes it easy to see patterns in the data. Heatmaps can also be used to visualize
other spatial data, such as tracking where a mouse moves on a web page or where a
person's eyes travel when reading something on the screen. In this example, you will
learn how to create a heatmap that responds to user mouse clicks on the map:

1. First, include a reference to Leaflet.heat.js:
<script src="Leaflet-heat.js"></script>

2. Next, disable the doubleClickZoom option on the map. Since the user will be
clicking on the map to make the heatmap, you need to do this so that when
the user clicks too fast, which they will, the map does not zoom:
var map =
L.map("map",{doubleClickZoom:false}).setView([35.10418, -
106.62987], 10);

3. Create a blank dataset that can be added to the map. This allows the user to
draw on a fresh canvas:
var points=[];

4. Add the data to the map:
var heat = L.heatLayer(points,{maxZoom:10}).addTo(map);

Creating Heatmaps and Choropleth Maps

[66]

5. Create a function to handle the user clicks. This function will add points to
the layer by catching the latitude and longitude of the mouse click. The e
parameter is an event object that is automatically sent on the map click. The
object contains information about the event and, in this example, you take the
latitude and longitude, as shown in the following code:
Function addpoint(e){
heat.addLatLng(e.latlng);
}

6. Connect the function to an event, in this case, click:
map.on('click',addpoint);

Your map, after clicking several times, should look like what is shown in the
following screenshot:

Chapter 3

[67]

Animating a heatmap
So far, you have created a heatmap that showed you the current density of points
and intensities, but what if you wanted to show a heatmap that changed over time?
In this last example, you will learn how to create a heatmap animation.

An animated heatmap is not as complicated as it might sound. Animation is nothing
more than adding and removing data from the map, and you have covered these
skills earlier in the chapter. The trick to this example is in the organization of your
data and taking advantage of timing events in JavaScript. The following steps will
walk you through making an animated heatmap:

1. Reference the heatmap plugin:
<script src="Leaflet-heat.js"></script>

2. Next, separate your data into an array per time period. Name your data with
the same name, plus a number that increments the number based on the time
period. The following code can be used for this purpose:
var points1=[[35,-106],[35,-106]];
var points2=[[35.10418, -106.62987],[32,-104]];
var points4=[[33, -104.],[35,-107]];

3. Add a starting dataset to the map:
var heat = L.heatLayer(points1,{maxZoom:10}).addTo(map);

4. Next, create a variable that will iterate through the datasets and a string
that holds the name of the datasets. Note that the iterator starts at 2. This is
because you loaded points1 before the loop:
x=2;
var name="";

5. Create an interval and pass a function and the time in milliseconds (1,000
milliseconds are equal to one second):
var interval = setInterval(function(){run()},1000);

Creating Heatmaps and Choropleth Maps

[68]

6. Create the function that will perform the animation. The following code
creates a name string, that is, the data name concatenated with the iteration
number. The current layer is removed from the map and the next layer
is added. You cannot call a variable using a string as its name, so we use
window[name]. Lastly, the code increments the x iterator:
function run(){
name="points"+x.toString();
map.removeLayer(heat);
heat = L.heatLayer(window[name],{maxZoom:10}).addTo(map);
var x++;
}

When you load the map, you should see the first dataset:

Chapter 3

[69]

Then, the data will change every second. The following screenshot shows you what
the map will look like after a few seconds:

Creating a choropleth map with Leaflet
In the previous examples, you used heatmaps to color code a map based on the
density or intensity of points. A choropleth map also measures the intensity or
density of a statistical variable but within polygons. A popular choropleth map is the
population density by county. Choropleth maps do not require any plugins, as was
the case with the heatmap examples. A choropleth map is usually created by styling
GeoJSON based on a property.

Creating Heatmaps and Choropleth Maps

[70]

The GeoJSON data
When adding a large amount of GeoJSON data to a map, it is easier to place the code
in a separate JavaScript file. This clears your HTML file of hundreds of lines of code,
which makes it hard to focus on building the map. When you place the GeoJSON code
in a JavaScript file, you will declare it as a variable, as shown in the following code:

var ct = {"type": "FeatureCollection", "features": [{"geometry":
{"type": "Polygon", "coordinates": [[[-106.501132, 35.093911], [-
106.501231, 35.09385], [-106.501481, 35.09376], [-106.50201,
35.09371], [-106.50344, 35.093728], [-106.50424, 35.093709], [-
106.50574, 35.093706], [-106.50634, 35.093748], [-106.50748,
35.09368], [-106.508548, 35.0937], [-106.50984, 35.093646], [-
106.51071, 35.093618], [-106.51177, 35.093641], [-106.51295,
35.093613], [-106.513934, 35.09361], [-106.51528, 35.093581], [-
106.51533, 35.09648], [-106.51534, 35.096889], [-106.515398,
35.09966], [-106.515437, 35.101462], [-106.51419, 35.101452], [-
106.51366, 35.10143], [-106.51334, 35.10141], [-106.51308,
35.1014], [-106.51198, 35.101329], [-106.5109, 35.1013], [-
106.50975, 35.10123], [-106.50872, 35.10119], [-106.50641,
35.101106], [-106.50643, 35.101358], [-106.50441, 35.101237], [-
106.50362, 35.10119], [-106.50289, 35.101146], [-106.50187,
35.101085], [-106.50083, 35.10101], [-106.50058, 35.100989], [-
106.50021, 35.10096], [-106.49947, 35.100954], [-106.499153,
35.100933], [-106.49887, 35.100905], [-106.49849, 35.100892], [-
106.497853, 35.100895], [-106.49745, 35.10086], [-106.497415,
35.10086], [-106.49766, 35.094788], [-106.49881, 35.09483], [-
106.49947, 35.09487], [-106.49977, 35.09498], [-106.50022,
35.095099], [-106.5007, 35.094291], [-106.50093, 35.094034], [-
106.501132, 35.093911]]]}, "type": "Feature", "properties":
{"NAME10": "1.26", "AWATER10": 0.0, "TRACTCE10": "000126",
"ALAND10": 1315885.0, "INTPTLAT10": "+35.0975423", "FUNCSTAT10":
"S", "observed": "", "NAMELSAD10": "Census Tract 1.26",
"COUNTYFP10": "001", "STATEFP10": "35", "MTFCC10": "G5020",
"GEOID10": "35001000126", "id": 6059554, "INTPTLON10": "-
106.5067917"}}]};

The preceding code is for a single feature. The complete file contains 153 features.
This would add over fifty 8.5" x 11" pages to your HTML file. Notice that the file is
not GeoJSON but JavaScript. It is a variable declaration. When you reference this file
in your HTML, you can call the ct variable in your script. Once you have your data
as a variable in a JavaScript file, link to it in LeafletEssentials.html:

<script src="censustracts.js"></script>

The preceding code shows how you have referenced any included JavaScript file.

Chapter 3

[71]

Setting the color with a function
The next step in making a choropleth map is to give each feature a color based on the
statistical variable you are mapping. Define a function to handle the ranges of values,
as shown in the following code:

function color(x) {
return x > 200000 ? '#990000' :
x> 100000 ? '#d7301f' :
x> 30000 ? '#ef6548' :
x> 20000 ? '#fc8d59' :
x> 10000 ? '#fdbb84' :
x> 5000 ? '#fdd49e' :
x> 0 ? '#fee8c8' :'#fff7ec';
 }

The preceding code takes a parameter and measures a value, returning the color.
Darker colors are returned for higher values. It is always best to stick to a standard
coloring progression. Using a single hue progression—a single color from light to
dark—should serve you well. Using a tool such as Color Brewer will help ensure that
you use a good color scheme. You can find it at http://colorbrewer2.org/. This
will provide you with color values in RGB, CMYK, and HEX.

Styling the GeoJSON data
Next, you need to create a function to style the GeoJSON data. Using a function
allows you to style each individual feature based on a property. The following code
will style the features:

Function myStyle(feature) {
return {
fillColor: color(feature.properties.AWATER10),
weight: 1,
opacity: 1,
 color: 'white',
 fillOpacity: 0.85
 };
}

The function takes the feature as a parameter and styles it using a few options.
The important option is the fillColor option. This is where you call the color()
function and pass the value of AWATER10 for each feature. Lastly, add the
GeoJSONLayer variable to the map and use the style function as a parameter, as
shown in the following code:

var GeoJSONLayer = L.GeoJSON(ct, {style: myStyle}).addTo(map);

http://colorbrewer2.org/

Creating Heatmaps and Choropleth Maps

[72]

The preceding code adds the layer to the map using the style function. The result will
look like what is shown in the following screenshot:

Using a total value, such as the area of water in a census tract, can be improved
upon by normalizing your data using the land area. This is important because
without normalization, values can be skewed. For example, assume two locations
with a land area of 100 acres and 50 acres, respectively. If they both have a lake that
is 10 acres, and you color code with normalization, they will be of the same color.
When you normalize, the values will be .1 and .2. The second location is 20 percent
water and the first is only 10 percent. This fact is lost without normalization. In the
next example, you will build a map that shows the difference between total and
normalized values.

Chapter 3

[73]

Creating a normalized choropleth map
In this example, you will create a choropleth map that displays both the total area
and the total area divided by the total land area. The following steps will walk you
through this:

1. Using the code from the previous example, add another color function with
values for the new ranges. They will be much smaller values than values for
the total:
function densitycolor(x) {
return x > 0.15 ? '#990000' :
x> 0.12 ? '#d7301f' :
x> 0.06 ? '#ef6548' :
x> 0.03 ? '#fc8d59' :
x> 0.01 ? '#fdbb84' :
x> 0.005 ? '#fdd49e' :
x> 0 ? '#fee8c8' :'#fff7ec';
}

2. Next, define another style function. The key difference in this function is that
the value passed to the color function will be water/land:
function densityStyle(feature) {
return {
fillColor:
densitycolor(feature.properties.AWATER10/feature.properties
.ALAND10),
weight: 1,
opacity: 1,
 color: 'white',
 fillOpacity: 1
 };
}

3. Create two buttons on the bottom of the map to select which choropleth map
is to be displayed. Connect the buttons to a function:
<button onclick="total()">Total</button>
<button onclick="density()">Water/Land</button>

Creating Heatmaps and Choropleth Maps

[74]

4. Lastly, write the functions that display the layers. Remove the other layer
after you display the correct layer:
function total(){
var GeoJSONLayer = L.GeoJSON(ct, {style:
myStyle}).addTo(map);
removeLayer(densitylayer);
}
function density(){
var densitylayer=L.GeoJSON(ct,GeoJSON {style:
densityStyle}).addTo(map);
removeLayer(GeoJSONLayer);
}

Your completed map should be blank. You did not load a layer on the map. You
can now select which layer you want to see by clicking on one of the buttons on the
bottom of the map. Try clicking on the other button. Click on the button labeled
Water/Land. Your map should look like what is shown in the following screenshot:

Chapter 3

[75]

Notice that once you normalize the land area, the areas with the most water—darkest
red—are the small tracts near the Rio Grande area. These large tracts of land have
water, but this makes up a small percent of the total area.

Summary
In this chapter, you have taken your map-making skills beyond points, lines,
polygons, and GeoJSON to create map visualizations—heatmaps and choropleth
maps. You have learned how to use two different plugins to make heatmaps and how
to style them for maximum visual effect. You also learned how to make your heatmap
interactive and create animations to show the time series data. Choropleth maps did
not require plugins. You learned how to style GeoJSON data to make a choropleth
map. Lastly, you learned the difference between totals and normalized data.

In the next chapter, you will learn how to create your own markers. You will also
learn about several plugins that animate and enhance the markers on your map.

Creating Custom Markers
In Chapter 3, Creating Heatmaps and Choropleth Maps, you learned how to style your
maps to create a heatmap and a choropleth map. Leaflet allows you to further
customize the style of your map by modifying the default markers. In this chapter,
you will learn how to style markers by creating custom marker icons. You will also
learn about the available marker plugins for styles and effects.

Creating a custom marker
In Leaflet, a marker is made from two images: an image that represents the marker
and a second image that serves as the shadow to create depth. When you download
Leaflet, there is an images folder. This folder contains the default marker: the blue
pin that you have seen in your maps and a small shadow image. The images are
named marker-icon.png and marker-shadow.png. The default marker and shadow
are shown in the following screenshots:

Creating Custom Markers

[78]

Preparing your workspace in GIMP
To create your own custom marker, you will need to draw an image in a painting
application. In this example, you will use the free GNU Image Manipulation
Program (GIMP). GIMP is a powerful imaging program that is similar to Adobe
Photoshop which runs on most operating systems and is completely free.
To download GIMP, go to http://www.gimp.org/downloads/ and click on
Download GIMP 2.8.10.

You do not need to select a 32- or 64-bit version. GIMP
includes both and will determine the appropriate version
when the installer runs.

Once GIMP is installed, launch the application. The application contains three
windows: two panels on the left- and right-hand side of the screen and the main
window in the center. You can combine the three windows into a standard single
window application by navigating to Windows | Single-Window Mode. To create
a new image file, navigate to File | New.... You will be prompted with a new image
dialog box. Enter a width and height for the icon image. If the advanced options are
not expanded, click on the menu to expand the window. You can enter a resolution
or accept the default. The Fill with option is the most important. You must select
Transparency from the dropdown. If you do not select Transparency, your icon will
be a square or rectangle with a background color. This will not look flattering on
your map. The dialog box should now look like the following screenshot:

http://www.gimp.org/downloads/

Chapter 4

[79]

Drawing and saving your image
Now that the canvas is set up, you can draw your image. How we draw the image is
beyond the scope of this book.

If you would like to learn about GIMP, check out Gimp 2.6
Cookbook, Juan Manuel Ferreyra, Packt Publishing, available at
http://www.packtpub.com/gimp-2-6-cookbook/book.

If you are comfortable drawing in GIMP, create an image that can be used as your
icon. Once you have created the image, navigate to File | Export As.... If you try to
use the Save or Save As… options, you will not get the options for PNG. The Export
Image dialog box allows you to choose the filename and where you would like to
save the file. On the bottom-left corner of the dialog, expand the menu labeled Select
File Type (By Extension). Scroll down to PNG image and click on Export. You will
be prompted with the Export Image as PNG dialog box. You must check the Save
color values from transparent pixels option. The options form should look like the
one shown in the following screenshot:

http://www.packtpub.com/gimp-2-6-cookbook/book

Creating Custom Markers

[80]

Click on the Export button to save the image. The following screenshot is the
finished icon:

Drawing the marker shadow
Create another new image in GIMP, but select a larger width and smaller height: 60 x
40. The shadow will need to start at the same point as the tip of the marker and extend
at approximately 45 degrees to the right. In GIMP, you can move the cursor over
the image and see the pixel coordinates of the cursor. The shadow image is drawn
horizontally at 20 pixels. The image in the following screenshot shows you the cursor
at the tip of the icon and the coordinates in the lower-left corner of the window:

On the shadow image, start shading from pixel 20 towards the upper-right corner of
the image. The finished shadow image will look something like what is shown in the
following screenshot:

Chapter 4

[81]

Using an image as an icon
You can also use an image as an icon. The image need not be PNG or have a
transparent background. You can correct all of these things in GIMP. In GIMP,
navigate to File | Open and select your image. The image in this example is
JPG with a white background.

In the Layers panel, you should see a single layer with a picture of your image on it.
Right-click on the layer and select Add Alpha Channel.

Creating Custom Markers

[82]

You can now select the erase tool or the magic wand and remove the background
color. Export the image as instructed in the previous section. You will still need to
draw a shadow for your marker icon. Follow the same steps as the shadow in the
previous example and save the image.

Now that you have two images—the icon and the shadow—it is time to use them in
your Leaflet map.

Using a custom marker in Leaflet
To create a marker icon in Leaflet, you need to create an instance of the L.icon class.
The L.icon class takes 10 options, as follows:

• iconUrl

• iconRetinaUrl

• iconSize

• iconAnchor

• shadowUrl

• shadowRetinaUrl

• shadowSize

• shadowAnchor

• popupAnchor

• className

The only required option is iconUrl. In this example, you will ignore the retina images
and the class name. Open LeafletEssentials.html and add the following code:

var myIcon = L.icon({
 iconUrl: 'mymarker.png',
 shadowUrl: 'shadow.png',
 iconSize: [40, 60],
 shadowSize: [60, 40],
 iconAnchor: [20, 60],
 shadowAnchor: [20, 40],
 popupAnchor: [0, -53]
});

Chapter 4

[83]

The preceding code sets the options. The iconUrl option directs the URL to the
icon image and the shadowUrl option directs the URL to the shadow image. The
iconSize and shadowSize options require the dimensions of the images in the
format of width by height.

The iconAnchor options set the point at which the marker and icon touch the map
and where the pop up touches the icon. The marker had a point at the horizontal
pixel 20, so this will be the anchor plus the height of the image in pixels. The shadow
was drawn at the point of the marker, so its anchor will be at 20 and its height will be
40 pixels. You want the pop up to be drawn at the top in the center of the marker, so
you must set its anchor accordingly.

The popupAnchor option is set relative to the iconAnchor option. The icon point
is centered horizontally, so the pop-up anchor will be 0 pixels, making it anchored
at 20. To place the anchor at the top of the marker, you subtract pixels. Choosing a
value of -53 for the pop-up anchor opens the pop up just above the icon.

Next, you need to create a marker and tell it to use your new icon. The following
code will do just that:

var marker = L.marker([35.10418, -106.62987],{icon:
myIcon}).addTo(map).bindPopup("I am a custom marker.");

In Chapter 1, Creating Maps with Leaflet, you created markers with several
options—one being draggable:true. The marker class also takes an icon as an
option. In the preceding code, the icon option takes the name of an L.Icon object.

Creating Custom Markers

[84]

Save LeafletEssentials.html and open it in your browser. You should see a map
similar to the one shown in the following screenshot:

Defining an L.Icon class
You can also extend the L.Icon class to create your own marker class. This allows
you to create markers in a variety of colors and only specify the size and anchor
options once. This example will look very similar to the previous example. Add the
following code to your LeafletEssentials.html file:

var MyIcon = L.Icon.extend({
 options:{
 shadowUrl: 'shadow.png',
 iconSize: [40, 60],
 shadowSize: [60, 40],
 iconAnchor: [20, 60],
 shadowAnchor: [20, 40],
 popupAnchor: [0, -53] }
});

Chapter 4

[85]

The preceding code looks almost identical to the code in the previous example,
except for the following differences:

• The first line, which instead of creating a new L.icon class, extends it
• The options are wrapped in an object in line two
• There is no iconUrl option

By wrapping the options in an object, you can pass additional options when you
create the marker. Add the following code to the LeafletEssentials.html file:

var redIcon= new myIcon({iconUrl: 'mymarker.png'});
var blueIcon=new myIcon({iconUrl: 'mybluemarker.png'});

The preceding code sets the iconUrl option for each new icon object. Now, in one
line of code, you have a red and blue icon. You can now assign the icon to a marker,
as shown in the following code:

var marker = L.marker([35.10418, -106.62987],{icon:
redIcon}).addTo(map).bindPopup("I am a custom marker.");
var marker = L.marker([35, -106],{icon:
blueIcon}).addTo(map).bindPopup("I am a custom marker.");

In the preceding code, each marker is assigned a different color icon. The result is
shown in the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Creating Custom Markers

[86]

Using predefined markers with plugins
In the first three chapters, you used the default Leaflet marker. In this chapter, you
have just learned how to draw your own or use a pre-existing image. Rolling your own
is not always practical, especially if you are not proficient in drawing. In this section,
you will learn about two plugins that have stylish markers that you can customize and
use in your Leaflet map: Maki markers and Bootstrap/Awesome markers.

Using Mapbox Maki markers
Mapbox is a company that provides a mapping platform and tools. Its icons have
been made available through the Leaflet.Makimarkers plugin. You can download
the plugin at https://github.com/jseppi/Leaflet.MakiMarkers.

You can learn about Mapbox by visiting their website
at http://mapbox.com.

Maki markers is an open source icon library with over 100 available markers. You
can find a full list of their names in the Leaflet.MakiMarkers.js file or go to the
website at https://www.mapbox.com/maki/. The following screenshot shows you
all of the icons:

https://github.com/jseppi/Leaflet.MakiMarkers
http://mapbox.com
https://www.mapbox.com/maki/

Chapter 4

[87]

The icons in the preceding screenshot are placed on a colored marker symbol. Using
the markers in your map requires only two lines of code and three options. The
following steps will help you create a Maki marker and place it on your map:

1. Add a reference to the JavaScript file. No CSS file is required with this plugin:
<script src="Leaflet.MakiMarkers.js"></script>

2. Create an icon. You have to choose three options: the icon image you want to
use, the hex color value of the marker, and the size (s, m, l):
var icon = L.MakiMarkers.icon({icon: "rocket", color:
"#0a0", size: "l"});

3. Add the icon to a marker and add the marker to the map:
L.marker([35.10418, -106.62987], {icon: icon}).addTo(map);

When you select a color, there will be an outline in a lighter shade of the same color.
The following screenshot shows you the results of the preceding code:

Creating Custom Markers

[88]

Using Bootstrap and Font Awesome markers
Another plugin for Leaflet that allows you to use predefined markers is
Leaflet.awesome.markers. This plugin allows you to choose the Twitter
Bootstrap markers or the Font Awesome markers. If you can't choose, you
can always use both. The different libraries provide different icons to your
markers and slightly different functionalities. Which one you use is a personal
preference. You can download the plugin at https://github.com/lvoogdt/
Leaflet.awesome-markers.

Using Leaflet.awesome.markers is almost the same procedure as you used in the
Maki marker example. You can perform the following steps:

1. Add a reference to Twitter Bootstrap or Font Awesome or both. Also, add
a reference to the CSS and JavaScript for Leaflet.awesome.markers:
<link rel="stylesheet"
href="http://netdna.bootstrapcdn.com/bootstrap/3.2.0/css/bo
otstrap.min.css">
<link rel="stylesheet"
href="http://netdna.bootstrapcdn.com/bootstrap/3.2.0/css/bo
otstrap-theme.min.css">
<link href="http://maxcdn.bootstrapcdn.com/font-
awesome/4.1.0/css/font-awesome.min.css" rel="stylesheet">
<link rel="stylesheet" href="Leaflet.awesome-markers.css">
<script
src="http://netdna.bootstrapcdn.com/bootstrap/3.2.0/js/boot
strap.min.js"></script>
<script src="Leaflet.awesome-markers.js"></script>

2. Create a Twitter Bootstrap marker and add it to the map. The Bootstrap
marker is the default. You only need to set the icon image and color options.
Create the marker and add it to the map:
var redMarker = L.AwesomeMarkers.icon({
 icon: 'tint',
 markerColor: 'red'
 });
 L.marker([35.10418, -106.62987], {icon:
redMarker}).addTo(map);

https://github.com/lvoogdt/Leaflet.awesome-markers
https://github.com/lvoogdt/Leaflet.awesome-markers

Chapter 4

[89]

3. Create a Font Awesome marker and add it to the map. Since Bootstrap
is the default, you need to use the prefix option with the value of fa for
Font Awesome. This example also uses the spin:true option to create an
animated spinning marker. Create the marker and add it to the map:
var blueMarker = L.AwesomeMarkers.icon({
 prefix:'fa',
 spin:true,
 icon: 'spinner',
 markerColor: 'blue'
 });
 L.marker([35, -106], {icon: blueMarker}).addTo(map);

The preceding code will produce the map shown in the following screenshot:

You might not always have the time to create your own markers, and when you have
the option to use icons by Mapbox, Twitter, or Font Awesome, why reinvent the
wheel? Take advantage of what has already been done, and do it extremely well.

Creating Custom Markers

[90]

Clustering markers with
Leaflet.markercluster
As you create more maps, you will eventually run in to a dataset that is thousands
of points. Displaying 10,000 points on a map results in a slow load time, lagging
animation on zooming and panning, and makes it hard for the user to select a single
marker or to make sense of the data. Clustering allows you to group markers into
clusters—single points that expand as the zoom level increases. This way, you can
get a sense of the magnitude of data without being visually overwhelmed by the
sheer number of points. If you need to see a single point, you can zoom in to the
region or point of interest. Leaflet.markercluster is a fast and powerful cluster
implementation that is also visually appealing.

You can download this plugin at https://github.com/
Leaflet/Leaflet.markercluster.

Coding your first cluster map
A marker cluster is just another example of a layer in Leaflet. So, creating one should
look very familiar to you. You need to perform the following steps:

1. Using LeafletEssentials.html, add a reference to the Leaflet.
markercluster CSS files and the JS file, as shown in the following code:
<link rel="stylesheet" href="MarkerCluster.Default.css" />
<script src="Leaflet.markercluster.js"></script>

2. You can add a series of markers to the layer, but since you will be loading
723 points, you will use a JS file with the data inside. The data can have
additional attributes. In this example, there is a link to an image file. Add
a reference to the JS file that contains the data:
<script src="art.js"></script>

3. Since you now know how to create custom marker icons, the following code
creates an icon class and an icon that can be used when the clusters expand:
var abqIcon = L.Icon.extend({
 options: {
 shadowUrl: 'vase-shadow.png',
 iconSize: [50, 64],
 shadowSize: [50, 64],
 iconAnchor: [25, 64],

https://github.com/Leaflet/Leaflet.markercluster
https://github.com/Leaflet/Leaflet.markercluster

Chapter 4

[91]

 shadowAnchor: [0, 64],
 popupAnchor: [-3, -64]
 }
 });

var vase = new abqIcon({iconUrl: 'vase.png'});

4. Now, create a markercluster layer by creating an instance of the
MarkerClusterGroup class. Set the showCoverageOnHover option to false:
var markers = new
L.MarkerClusterGroup({showCoverageOnHover:false});

5. To add markers to the group, you need a function that uses the array
from the data file to loop through each data point and add the latitude,
longitude, and any other attributes you want to use in the pop up to a
marker. The loop creates a marker, binds a pop up, and adds the marker
as a layer to the markercluster group. Then, call the function to start
loading the data:
function populate() {
 for (var i = 0; i < artPoints.length; i++) {
 var a = artPoints[i];
 var title = a[2];
var marker = new L.Marker(new L.LatLng(a[0], a[1]), { icon:
vase , title: title });
 marker.bindPopup(title);
 markers.addLayer(marker);

 }
 }

populate();

6. Lastly, add the markercluster group layer to the map using the
following code:
map.addLayer(markers);

Creating Custom Markers

[92]

Your map should look like the following screenshot:

When you zoom in to the map, the clusters should expand and the groupings
become smaller. They will then expand to reveal individual markers, as shown
in the following screenshot:

Chapter 4

[93]

Methods and events available to
markercluster layers
The markercluster layer has several options and methods that can be used to create
and interact with your layer.

Options that default to true
There are four default options that are all set to true, as follows:

• showCoverageOnHover

• zoomToBoundsOnClick

• spiderfyOnMaxZoom

• removeOutsideVisibleBounds

The first option shows you a polygon that represents the coverage area of the
markers in the cluster. This can be confusing as a colored polygon appears on
the map. In the previous example, you set this option to false.

Creating Custom Markers

[94]

When you click on a cluster, the second option zooms to the polygon that represents
the coverage area of the cluster you clicked on. When you zoom all the way into the
map or use the defined maxZoom option, the cluster will expand to reveal the markers
within it.

The last option improves performance by not displaying clusters that are not within
a close proximity of the current map view. You do not need to see a cluster in New
York if you are looking at Los Angeles.

Other options and events
The other options you might want to set are animateAddingMarkers and
maxClusterRadius. Animated markers create a visually interesting map, but if you
are using a large set of data points, it can slow the performance of your map. It is an
effect that should be used sparingly and under the right conditions. Adjusting the
radius of the cluster can create larger or smaller clusters. The default is 80 pixels. If
you are displaying tightly grouped data, you will need a smaller number, and if you
are displaying data that is dispersed, you might need a larger radius. In the previous
example, if the radius is set to 5, the markers take over the map because they are not
getting clustered due to the small radius. The following screenshot shows you the
map when the radius is set to 5:

Chapter 4

[95]

The preceding screenshot is cluttered with markers, making the map almost
unreadable. The markercluster layer has events that you can subscribe to. Usually,
you subscribe to an event on the map using map.on(click, function). With the
markercluster layer, you add a cluster to the available layer events so that they will
apply to the markercluster layer, such as markers.on(clusterclick,function).

Animating markers with plugins
In the next two sections, you will learn how to animate markers using the
Leaflet.BounceMarker and Leaflet.AnimatedMarker plugins. Animation adds a
wow factor to your map, but if overdone, it can make your map appear amateurish.

Bouncing your markers
The Leaflet.BounceMarker plugin does not have a large number of options to
customize the markers or their behavior, but it provides a simple animation that is
useful when you add markers to the map or on the hover event. You can download
and learn more about the plugin at https://github.com/maximeh/leaflet.
bouncemarker.

The following steps will show you how to add a bounce marker to your map:

1. Add a reference to the JavaScript file. There is no CSS file required for
this plugin:
<script src="bouncemarker.js"></script>

2. Creating a bounce marker is exactly the same as creating a standard Leaflet
marker; the plugin adds an additional option to the L.Marker class. Because
of this, the bounce marker has a bounceOnAdd option, and it defaults to
false. Every marker you create will bounce unless you specify otherwise.
Set this option to true for any markers you would like to bounce. Add the
marker to the map.
marker = new L.Marker([35.10418, -106.62987], {bounceOnAdd:
true,}).addTo(map);

The only other options you can specify on a bounce marker are the height, duration,
and a callback function when finished. You set them as shown in the following code:

marker.bounce({duration: 1000, height: 200},
function(){alert("Finished")});

https://github.com/maximeh/leaflet.bouncemarker
https://github.com/maximeh/leaflet.bouncemarker

Creating Custom Markers

[96]

Height is in pixels and duration is in milliseconds. Animation takes resources to run,
so make sure that you do not create animations that run too quickly, or you will find
that your marker disappears and only the shadow is visible. Also, remember that if
you intend for your map to be consumed on mobile devices, the performance might
be slower than on your desktop.

The bounce() method works well with the hover event. When there are many
markers and they are tightly grouped, making the one you are hovering over
bounce helps make sure that you click on the correct one.

To make a marker bounce on a hover event, subscribe to the event and call a function
when the mouse hovers over the marker:

marker.on('mouseover',function(){marker.bounce({duration: 500,
height: 100});});

The preceding code subscribes to the mouseover event and executes an anonymous
function when the mouse hovers over the marker. The anonymous function calls
the bounce() method, making the marker do just that when you move the mouse
over it.

The Leaflet.BounceMarker plugin is an excellent
plugin; however, you might experience some hiccups in
your animations. This is not to be blamed on the plugin,
but rather on the nature of animations and the large
number of resources they require.

Making your markers move
With the Leaflet.AnimatedMarker plugin, you can make your markers
move along a polyline. This comes in handy when you want to draw attention
to a route. A marker moving along the route attracts the eye more than a
line on the map. For more information and to download the plugin, go to
https://github.com/openplans/Leaflet.AnimatedMarker.

One caveat is that if the user zooms in on the map while the
animation is running, the marker will move from its path and
then try to return. It might be a good idea to disable the map
zoom until the animation has finished.

https://github.com/openplans/Leaflet.AnimatedMarker

Chapter 4

[97]

To animate your markers, perform the following steps:

1. Add a reference to the JavaScript file. No CSS file is required for this plugin:
<script src="AnimatedMarker.js"></script>

2. Create a polyline to represent the path that the marker will be animated along:
var line = L.polyline([[35.10306, -106.58695],[35.1046, -
106.60137],[35.10727, -106.61734],[35.1046, -
106.63794],[35.10601, -106.69287]]);

3. Create an animatedMarker variable. The marker takes an array of
latitudes and longitudes. To get it, use the getLatLngs() method of
the line you created:
var animatedMarker = L.animatedMarker(line.getLatLngs());

4. Add the animated marker layer to the map. In this example, you will also
add the line so that you can see it as a reference:
map.addLayer(line);
map.addLayer(animatedMarker);

When you open your map, it should look like the following screenshot:

Creating Custom Markers

[98]

Because you did not pass any options to the marker, it will take a minute to
start moving and will move fairly slowly across the blue line. The plugin has the
following options:

• distance

• interval

• autoStart

• onEnd

The distance and interval options set the rate at which the marker will travel
along the line. Distance is measured in meters, and interval is measured in
milliseconds. Since it is a rate, an option of {distance:100, interval 1000}
would be slower than an option of {distance:300, interval:1000}. In the first
setting, the marker covers 100 meters in one second, and in the second setting, it
would cover three times the distance in the same time.

The autoStart option is set to true by default. If you set it to false, you can call
a start() method on the marker when you are ready. In the code used in the
following steps, you will make a map with two buttons: Start and Stop. Using
autoStart:false, you will allow the user to determine when to start the marker
and when to stop it along its path:

1. Building on the previous example using the same line and marker, add an
option to the marker for distance and interval and set autoStart to false:
var line = L.polyline([[35.10306, -106.58695],[35.1046,
-106.60137],[35.10727, -106.61734],[35.1046,
-106.63794],[35.10601, -106.69287]]);
var animatedMarker =
L.animatedMarker(line.getLatLngs(),{autoStart: false,
distance: 600, interval: 900});

2. Write a start() and stop()function to control the animation. Call the
start() and stop() methods on the marker in the corresponding function:
function start(){animatedMarker.start();}
function stop(){animatedMarker.stop();}

3. In the HTML, before the </body> tag, add two buttons and set their onClick
event equal to the corresponding function:
<button onclick="start()">Start</button>
<button onclick="stop()">Stop</button>

Chapter 4

[99]

Your map should look like the following screenshot:

The marker will not move until the user clicks on the Start button. When the user
clicks on the Stop button, the marker will not stop immediately. Animation occurs in
segments along each segment of the polyline. When the marker reaches the endpoint
of a segment, it will stop and not resume until the user clicks on Start again.

The last setting was onEnd. This option allows you to specify a callback function that
will run when the marker gets to the end of the line. In the code in the following
steps, you will use the bounce marker plugin you learned about earlier in this
chapter to make the marker bounce and then disappear when it finishes. Follow
the next set of steps to create your map:

1. Building on the previous example, add a reference to the bounce
marker plugin:
<script src="bouncemarker.js"></script>

2. Create the bounce marker at the last point of the line:
b = new L.Marker([35.10601, -106.69287], {bounceOnAdd:
true});

Creating Custom Markers

[100]

3. Edit the animated marker to include the onEnd option with an anonymous
function. The anonymous function will add the bounce marker to the map,
make it bounce, remove the animated marker, and then wait 900 milliseconds
and call a bye()function, which will remove the bounce marker. The waiting
will allow the marker to disappear after the bouncing is finished. This slows
the process down so that the animation is not so abrupt. You could also use the
callback function available to the bounce marker instead of the bye() function:
var animatedMarker = L.animatedMarker(line.
getLatLngs(),{autoStart: false, distance: 600, interval: 900,
onEnd: function() {b.addTo(map);b.bounce({duration: 100, height:
50});map.removeLayer(animatedMarker);setTimeout('bye()',900);}});5
0});map.removeLayer(animatedMarker);setTimeout('bye()',900);}});

Your map will look exactly the same as the previous example. When the marker
reaches the end of the line, it will appear to bounce and disappear from the map.
A fun project using custom and animated markers would be to recreate the Boston
Marathon using a custom marker for each of the finishers and setting its rate to their
actual race rate. When you click on the Start button, you could replay the race.

Using markers for data visualization
You have learned about several different marker types that still look like your typical
marker. In this section, you will learn how to add markers that create a pie and bar
chart—not exactly your standard marker.

Using the Leaflet Data Visualization
Framework plugin
The Leaflet Data Visualization Framework plugin allows you to create markers
that are just shapes: a standard pin style marker with a shape cutout, a star marker,
and a polygon marker. It also allows you to add pie chart and bar chart markers to
your map.

The Leaflet Data Visualization Framework plugin also has markers
for radial bar charts, coxcomb charts, stacked and radial meter
markers, as well as a data layer, choropleth layer, and a legend
control. This is a plugin worth exploring. You can download it at
http://humangeo.github.io/leaflet-dvf/.

http://humangeo.github.io/leaflet-dvf/

Chapter 4

[101]

Creating basic markers
Creating basic markers is straightforward. The code used in the following steps will
walk you through making a marker, a polygon marker, and a star marker:

1. First, create a reference to the CSS and two JavaScript files:
<link rel="stylesheet" href="dvf.css" />
<script src="Leaflet-dvf.js"></script>
<script src="Leaflet-dvf.markers.js"></script>

2. Next, create the markers. What really makes this plugin stand out with
regards to the standard markers is that you can use any of the options
in the L.Path class. This allows you to fully customize your markers.
Creating the markers requires you to select the marker type— MapMarker,
RegularPolygonMarker, or StarMarker—and then select the options:
var marker = new L.MapMarker([35.10418, -106.62987], {
 radius: 30,
fillOpacity:0.5,
fillColor:'orange',
color:'purple',
innerRadius:7,
numberOfSides:4,
rotation:10
 });
map.addLayer(marker);

var polygonmarker = new L.RegularPolygonMarker([35,-106], {
 numberOfSides: 3,
 rotation: 10,
 radius: 10,
fillColor:'green',
fillOpacity:1,
opacity:1,
weight:1,
radius:30
});
map.addLayer(polygonmarker);
var star = new L.StarMarker([35,-107], {numberOfPoints:8,
opacity:1, weight:2, fillOpacity:0,radius:30});
map.addLayer(star);

Creating Custom Markers

[102]

When you open your map, it will look like the following screenshot:

There are too many options to list here, but to see them, go to the documentation for
the plugin at https://github.com/humangeo/Leaflet-dvf/wiki/6.-Markers and
the documentation for the Leaflet path class at http://Leafletjs.com/reference.
html#path. The plugin options you will use the most for each marker are explained
in the following sections.

MapMarker options
The MapMarker options used are as follows:

• numberOfSides: The inner hole is determined by the number of sides: three
for a triangle, four for a square. The larger the number, the closer to a circle it
will be. If you leave this option blank, it will default to a circle.

• rotation: This helps you rotate the hole in the middle. This, of course, only
works on shapes that are not a circle.

• radius: This is the size of the marker.
• innerRadius: This is the size of the hole in the middle.

https://github.com/humangeo/Leaflet-dvf/wiki/6.-Markers
http://Leafletjs.com/reference.html#path
http://Leafletjs.com/reference.html#path

Chapter 4

[103]

RegularPolygonMarker options
The RegularPolygonMarker options used are as follows:

• numberOfSides: This is the shape of the marker.
• rotation: This is the orientation of the marker. If you create a four-sided

polygon and leave this blank, it will be a square. If you add rotation, you
can make the corners point in any direction.

• radius: This is the size of the marker.
• innerRadius: This is the size of the hole in the middle.

StarMarker options
The StarMarker options used are as follows:

• numberOfPoints: This defines how many points the start should have
• rotation: This is the orientation of the marker
• radius: This is the size of the marker
• innerRadius: This is the size of the hole in the middle

Bar and pie chart markers
Adding chart markers to your map allows you to show multiple pieces of data for a
single point or polygon. For example, you could map all of the census blocks in your
state and, using the center point of each block, you could place a chart showing the
age distributions. This allows you to present a lot of data quickly and visually.

Making a bar or pie chart with the Leaflet Data Visualization Framework plugin only
requires you to create an options object and pass it to the marker. The following
steps will show you how to do both:

1. Create an options object with data and chart options. The data needs the
name of the data category and the value. In the chart options object, you pass
all of the options to style your chart. Three important options are minValue,
maxValue, and maxHeight. These should, under most circumstances, be the
same for all the categories. If you allow one category to have maxHeight
higher than the rest, it can be displayed as a larger bar than another category
with a higher value. Think of this as setting the x and y axis scales in Excel.
All the data should be within the same scale of the lowest value to the
highest value. Changing the maxHeight option will also make your chart
larger or smaller. The options outside of the chart options are for the stroke
or outline of the chart.

Creating Custom Markers

[104]

When creating a pie chart, the radius option allows you to adjust the size
of the marker:
var options = {
 data: {
 'data1': 20,
 'data2': 50,
 'data3': 10,
 'data4': 20
 },
 chartOptions: {
 'data1': {
 fillColor: 'blue',
 minValue: 0,
 maxValue: 50,
 maxHeight: 30,
 },
 'data2': {
 fillColor: 'red',
 minValue: 0,
 maxValue: 50,
 maxHeight: 30,
 },
 'data3': {
 fillColor: 'green',
 minValue: 0,
 maxValue: 50,
 maxHeight: 30,
 },
 'data4': {
 fillColor: 'yellow',
 minValue: 0,
 maxValue: 50,
 maxHeight: 30,
 }
 },
 weight: 1,
 color: '#000000',
radius:30,
fillOpacity:1
};

2. Next, create the markers, pass the options, and add them to the map:
var bar = new L.BarChartMarker([35.10418, -106.62987],
options);
map.addLayer(bar);

var pie= new L.PieChartMarker([35,-107],options);
map.addLayer(pie);

Chapter 4

[105]

When you open your map, it should look like the following screenshot. When you
hover over one of the data categories, you will see the color, category name, and value.

Summary
In this chapter, you learned how to add custom markers to your Leaflet map. You
can now draw your own markers or use pre-existing images. You can also use
plugins to load markers from Twitter, Font Awesome, and Mapbox. Lastly, you now
know how to create bar chart and pie chart markers to visualize data in the form of
a marker. At this point, you have acquired enough knowledge of Leaflet to build
almost any style of map you can think of.

In the next chapter, you will learn how to use Economic and Social Research
Institute (ESRI) data in your Leaflet map. As the most widely used GIS platform,
you will most certainly run in to its data formats.

ESRI in Leaflet
As you start making more maps and looking for geospatial data to work with, you
will almost certainly run into the file type shapefile (.shp). Economic and Social
Research Institute (ESRI) is the creator of the most widely used GIS system, ArcGIS,
and the shapefile is one of their data formats.

You may see another format called geodatabase with a .gdb extension. Even if
you never run into a shapefile or geodatabase, you will eventually run into a REST
service that is an endpoint to an ArcServer installation.

ArcServer is an ESRI product for distributing GIS services
and web mapping applications. It is separate from ArcGIS,
which refers to the desktop application to create maps and
geographic data.

The more data formats you know how to consume in your Leaflet maps, the less time
you will need to spend converting data to suit your needs. In this chapter, you will
learn how to consume ESRI formats and services in Leaflet.

In this chapter, we will cover the following topics:

• ESRI basemaps
• Working with shapefiles
• Displaying a dynamic map layer
• Heatmaps
• Geocoding and reverse geocoding
• Query layers

ESRI in Leaflet

[108]

ESRI basemaps
ESRI provides eight different basemaps that you can use in your Leaflet map.
The eight layers are the following:

• Streets
• Topographic
• National Geographic
• Oceans
• Gray
• Dark gray
• Imagery
• Shaded relief

In addition to the eight basemaps, there are six basemap label layers, OceansLabels,
GrayLabels, DarkGrayLabels, ImageryLabels, ImageryTransportation, and
ShadedReliefLabels, to compliment the basemaps. If that is not enough, there is
also a retina version of each basemap.

To use an ESRI basemap, follow these steps:

1. First, add a reference to the ESRI-leaflet file. It is in beta, but that doesn't
mean that it is not fully functional:
<script src="http://cdn-geoweb.s3.amazonaws.com/esri-
 leaflet/0.0.1-beta.5/esri-Leaflet"></script>

On its GitHub repository, ESRI states that the library is on
track to be moved from beta to production in 2014. You
can find more information and download the additional
files at https://github.com/Esri/esri-leaflet/.

2. Next, create an ESRI basemap layer, passing one of the eight options. In this
example, use Gray. Always remember to add it to the map:
var gray = L.esri.basemapLayer("Gray").addTo(map);

https://github.com/Esri/esri-leaflet/

Chapter 5

[109]

3. You now have a map with an ESRI basemap layer. The preceding code is the
minimal code required to add a basemap. The ESRI basemap layer inherits
from the Leaflet L.TileLayer class, and therefore, allows you to use all of
the options, methods, and events available to any other Leaflet L.TileLayer
class. One option that is extremely useful when building mobile maps is the
detectRetina option. To use this option, just pass it after the basemap name
as shown in the following code:
var gray = L.esri.basemapLayer("Gray",{detectRetina:
 true}).addTo(map);

Many examples that you find in the documentation will create the layers without
assigning them to a variable, as shown in the following code from the ESRI website:

var map = L.map('map').setView([37.75,-122.45], 12);
L.esri.basemapLayer("Topographic").addTo(map);

When you do this, you have no way of calling methods or events on the layer
unless you chain them. In the preceding example, you assigned the basemap to the
variable gray, so you have access to all of the methods and events as shown in the
following code:

gray.setOpacity(.75);
gray.on("load", alertme);
function alertme(){alert("ESRI Basemap Loaded");}

The preceding code modifies the opacity of the basemap layer and also subscribes to
the load event. When the layer loads, it executes the alertme() function and pops
up an alert stating that it is complete.

The last thing you may need to do with your ESRI basemap layer is to add the
corresponding label layer. To do so, just add another basemap layer, passing the
label layer as shown in the following code:

var grayLabel = L.esri.basemapLayer("GrayLabels").addTo(map);

ESRI in Leaflet

[110]

Now, you will have a map that looks like this:

Using shapefiles in Leaflet
A shapefile is the most common geographic file type that you will most likely
encounter. A shapefile is not a single file, but rather several files used to create
geographic features on a map. When you download a shapefile, you will have
.shp, .shx, and .dbf at a minimum. These files are the shapefiles that contain the
geometry, the index, and a database of attributes. Your shapefile will most likely
include a projection file (.prj) that will tell that application the projection of the data
so the coordinates make sense to the application. In the examples, you will also have
a .shp.xml file that contains metadata and two spatial index files, .sbn and .sbx.

To find shapefiles, you can usually search for open data and a city name. In this
example, we will be using a shapefile from ABQ Data, the City of Albuquerque data
portal. You can find more data on this at http://www.cabq.gov/abq-data. When
you download a shapefile, it will most likely be in the ZIP format because it will
contain multiple files.

http://www.cabq.gov/abq-data

Chapter 5

[111]

To open a shapefile in Leaflet using the leaflet-shpfile plugin, follow these steps:

1. First, add references to two JavaScript files. The first, leaflet-shpfile, is
the plugin, and the second depends on the shapefile parser, shp.js:
<script src="leaflet.shpfile.js"></script>
<script src="shp.js"></script>

2. Next, create a new shapefile layer and add it to the map. Pass the layer path
to the zipped shapefile:
var shpfile = new L.Shapefile('council.zip');
shpfile.addTo(map);

Your map should display the shapefile as shown in the following screenshot:

ESRI in Leaflet

[112]

Performing the preceding steps will add the shapefile to the map. You will not be
able to see any individual feature properties. When you create a shapefile layer, you
specify the data, followed by specifying the options. The options are passed to the
L.geoJson class. To add a pop up or to style the features, you use the same process
that you learned in Chapter 2, Mapping GeoJSON Data. The following code shows you
how to add a pop up to your shapefile layer:

var shpfile = new
 L.Shapefile('council.zip',{onEachFeature:function(feature,
 layer) {
layer.bindPopup("Page
<a href='"+feature.
properties.PICTURE+"'>Image");
}});

In the preceding code, you pass council.zip to the shapefile, and for options,
you use the onEachFeature option, which takes a function. In this case, you use
an anonymous function and bind the pop up to the layer. In the text of the pop up,
you concatenate your HTML with the name of the property you want to display
using the format feature.properties.NAME-OF-PROPERTY. To find the names of
the properties in a shapefile, you can open .dbf and look at the column headers.
However, this can be cumbersome, and you may want to add all of the shapefiles
in a directory without knowing its contents. If you do not know the names of the
properties for a given shapefile, the following example shows you how to get them
and then display them with their value in a pop up:

var holder=[];

for (var key in feature.properties){
holder.push(key+": "+feature.properties[key]+"
");
popupContent=holder.join("");
layer.bindPopup(popupContent);
}
shapefile.addTo(map);

In the preceding code, you first create an array to hold all of the lines in your pop
up, one for each key/value pair. Next, you run a for loop that iterates through the
object, grabbing each key and concatenating the key name with the value and a line
break. You push each line into the array and then join all of the elements into a single
string. When you use the .join() method, it will separate each element of the array
in the new string with a comma.

You can pass empty quotes to remove the comma. Lastly, you bind the pop up with
the string as the content and then add the shapefile to the map.

Chapter 5

[113]

You now have a map that looks like the following screenshot:

The shapefile also takes a style option. You can pass any of the path class options, such
as the color, opacity, or stroke, to change the appearance of the layer. The following
code creates a red polygon with a black outline and sets it slightly transparent:

var shpfile = new
L.Shapefile('council.zip',{style:function(feature){return
 {color:"black",fillColor:"red",fillOpacity:.75}}});

Consuming ESRI services
In the first example of this chapter, you learned how to use the esri-leaflet plugin
for basemaps. You then learned how to use a plugin to work with the most common
ESRI file format: the shapefile. While you will most certainly run into a shapefile, you
will increasingly find yourself running into ESRI services that provide endpoints that
you can connect to and consume geographic services from. With the esri-leaflet
plugin, you can connect to these services, and besides basemaps, display five other
layer types:

• The tiled map layer
• The dynamic map layer

ESRI in Leaflet

[114]

• The feature layer
• The clustered feature layer
• The heatmap feature layer

Once you know how to add one of these layers, you can add any of the others
because the process is almost identical. The only differences are the available options
and methods, which are well documented in the API at http://esri.github.io/
esri-leaflet/api-reference/. Later in this chapter, we will learn how to create a
heatmap feature layer, but for now, let's see how to add a dynamic map layer.

On the City of Albuquerque data page at http://www.cabq.gov/abq-data, select the
public art dataset. You will be presented with the contents of the directory. You can
read the MetaData.pdf file to learn about the data source, download a Google Earth
.KMZ file, download or link to a JSON file, or consume a PublicArtREST service.

The JSON file available from the City of Albuquerque data
page is ESRI JSON. It is not GeoJSON, and thus, it will not
be compatible without some conversion.

Click on the link for PublicArtREST and you will be presented with the details of this
service. Scrolling to the bottom of the page will tell you the available fields. This will
be very useful when designing the pop ups. Now that you know where to find the
service, follow these steps to add it to your map:

1. First, add a reference to the ESRI-leaflet file:
<script src="http://cdn-geoweb.s3.amazonaws.com/esri-
 leaflet/0.0.1-beta.5/esri-Leaflet"></script>

2. Create a dynamic map layer by copying the link to the REST service—all
dynamic map layers will end in /mapserver. We removed /0 from the URL,
which means that we are now loading the entire map file. In the following
code, set the opacity option to 0.75 and add the layer to the map:
var art = L.esri.dynamicMapLayer("http://coagisweb.cabq.gov/
arcgis/re
 st/services/public/PublicArt/MapServer).addTo(map);

3. Lastly, bind a pop up using a function that will return the content. In the
following code, use the format feature.features[0].properties.NAME-
OF-PROPERTY:
art.bindPopup(function (err, feature) {
return feature.features[0].properties.TITLE+"
 by:
 "+feature.features[0].properties.ARTIST; });

http://esri.github.io/esri-leaflet/api-reference/
http://esri.github.io/esri-leaflet/api-reference/
http://www.cabq.gov/abq-data

Chapter 5

[115]

Your map will now look like this:

Heatmaps with ESRI in Leaflet
In Chapter 3, Creating Heatmaps and Choropleth Maps, you learned about several
plugins that you can use to create heatmaps. The esri-leaflet plugin also has a
heatmap layer that will allow you to pass an ESRI service as the data. To create a
heatmap using the esri-leaflet plugin, follow these steps:

1. First, add a reference to the ESRI-leaflet file, and since the heatmap layer is
not included in the core build of the esri-leaflet plugin, you will need to
reference an additional ESRI file, esri-leaflet-heatmap-feature-layer.
js. The ESRI heatmap layer requires leaflet-heat.js, so you need to add a
reference to that as well:
<script src="http://cdn-geoweb.s3.amazonaws.com/esri-
 leaflet/0.0.1-beta.5/esri-Leaflet"></script>
<script src="esri-leaflet-heatmap-feature-
 layer.js"></script>
<script src="leaflet-heat.js"></script>

ESRI in Leaflet

[116]

2. Create your map and basemap as you normally would and then add the
heatmap layer. The heatmap layer requires a link to a feature layer service
and acquires all of the options available in leaflet-heat.js. Add the layer
to the map:
url= ("http://services.arcgis.com/pmcEyn9tLWCoX7Dm/arcgis/rest/
 services/USGS_Earthquakes_Excel_Layer/FeatureServer/0";
var heatmap = new L.esri.HeatmapFeatureLayer(url, {
 radius: 50,
 blur:90,
 maxZoom:10
}).addTo(map);

To see a list of the available services from ESRI, browse to
http://services.arcgis.com/rOo16HdIMeOBI4Mb/
ArcGIS/rest/services/. The location of ArcServer
services defaults to http://Server Name/ ArcGIS/
rest/services.

Your map will look like the following screenshot:

http://services.arcgis.com/rOo16HdIMeOBI4Mb/ArcGIS/rest/services/
http://services.arcgis.com/rOo16HdIMeOBI4Mb/ArcGIS/rest/services/

Chapter 5

[117]

Geocoding addresses in Leaflet
Geocoding is the process by which you can enter an address and be taken to a
point on the map. Geocoding functionality is not part of the Esri-leaflet core but is a
separate plugin. You can find more information on the esri-leaflet-geocoder GitHub
page at https://github.com/Esri/esri-leaflet-geocoder.

Geocoding – from an address to a point
The geocoding plugin places a search box below the zoom control. As you type an
address, the search autocompletes and presents the possible options. You can either
type the whole address or select from the list when the one you want is available.
Clicking on an option or pressing enter will put a marker on the map at the location
and zoom into it. To create a map with geocoding functionality, follow these steps:

1. Reference the CSS and JS files:
<script src="http://cdn-geoweb.s3.amazonaws.com/esri-
 leaflet-geocoder/0.0.1-beta.3/esri-leaflet-geocoder.js"></
script>
<link rel="stylesheet" type="text/css" href="http://cdn-
 geoweb.s3.amazonaws.com/esri-leaflet-geocoder/0.0.1-
 beta.3/esri-leaflet-geocoder.css">

2. Create the control:
var searchControl = new
 L.esri.Controls.Geosearch().addTo(map);

3. Create a layer where the result will be placed:
 var results = new L.LayerGroup().addTo(map);

4. Subscribe to the results event and add the marker:
searchControl.on("results", function(data){
results.clearLayers();
results.addLayer(L.marker(data.results[0].latlng));

https://github.com/Esri/esri-leaflet-geocoder

ESRI in Leaflet

[118]

Your map will now have a small magnifying glass under the zoom control, as shown
in the following screenshot:

When you click on the magnifying glass, it will expand into a textbox. As you type,
the textbox will autocomplete and guess the location that you are typing. Once
you see the address you want, select it from the list. Your map should look like the
following screenshot:

Chapter 5

[119]

Once you have clicked on your selection, the map will automatically place a marker at
the location and zoom into it. You will now have a map that looks like the following:

For the next example, you will use a URL to map an address.

Geocoding from URL parameters
In the last example, a user is able to load the map and enter an address to find it.
In this example, you will allow the user to enter the address in the URL and be
presented with a map that has zoomed into a marker at the location. To create the
map, follow these steps:

1. First, add a reference to the esri-leaflet-geocoder.js file. You do not
need the CSS file, as you did in the previous example, because you are not
adding the search box:
<script src="http://cdn-geoweb.s3.amazonaws.com/esri-
 leaflet-geocoder/0.0.1-beta.5/esri-leaflet-
 geocoder.js"></script>

ESRI in Leaflet

[120]

2. Next, you need to get the parameter from the URL. In this example, a is chosen
as the variable that will contain the address. To get the URL parameters,
use location.search. This grabs everything after the question mark. You
only want the address, so split it on the equals sign and then grab the second
element of the returned array, y[1]. This will return %20 wherever there is a
space in the URL, so use decodeURIComponent(y[1]) to remove them:
var x = location.search;
var y = x.split("=");
var temp=y[1];
var address = decodeURIComponent(temp);
var geocodeService = new L.esri.Services.Geocoding();

3. Create the geocoding service, passing the address, parameters, and a callback
function. The function will create a marker from the first result and then set
the view zoomed in on the marker:
geocodeService.geocode(address, {}, function(error,
 result){
L.marker(result[0].latlng).addTo(map);
map.setView(result[0].latlng,8);
});

Load the page and add ?a=400 roma ave ne,albuquerque,nm,usa after the
URLgeocode.html file. Your map will load and look like this:

Chapter 5

[121]

Reverse geocoding – using points to
find addresses
Reverse geocoding does the exact opposite of geocoding. It takes a point on a map
and finds its address. In this example, you will allow the user to click on the map and
add a marker that has the address as a pop up. To create the map, follow these steps:

1. First, add a reference to the Esri-leaflet and esri-leaflet-geocoder.js files:
<script src="http://cdn-geoweb.s3.amazonaws.com/esri-
 leaflet/0.0.1-beta.5/esri-Leaflet"></script>
<script src="http://cdn-geoweb.s3.amazonaws.com/esri-
 leaflet-geocoder/0.0.1-beta.5/esri-leaflet-geocoder.js"></
script>

2. Create a new geocoding service:
 var geocodeService = new L.esri.Services.Geocoding();

3. Subscribe to the click event and add a function that calls reverse(),
passing longitude and latitude options, and a callback function. The callback
function will create a marker, add it to the map, and then bind a pop up. The
address is stored in the result object as result.address. This code will add
a point every time you click on the map. To only have one point displayed,
add map.removeLayer(r) before creating the marker:
map.on('click', function(e){
geocodeService.reverse(e.latlng, {}, function(error,
 result){
r = L.marker(result.latlng).addTo(map).bindPopup(result.address
).openPopup();
 });
 });

ESRI in Leaflet

[122]

When you are finished, your map will look like this:

Query by attribute
When consuming a service, you usually load the entire layer. Sometimes, you may
only want a subset of the layer data. Using a query will allow you to load only that
subset that you are interested in. In this example, you will query a graffiti layer for
open and closed cases. To create the map, follow these steps:

1. Reference the Esri-leaflet file as you have seen in the previous examples.
You do not need any additional files. Style the <div> query using CSS:
<style>
 #query {
 position: absolute;
 top: 10px;
 right: 10px;
 z-index: 10;
 background: white;
 padding: 1em;
 }

Chapter 5

[123]

 #query select {
 font-size: 16px;
 }
</style>

2. Create the selection element and add Open and Closed as options:
<label>
 Status
 <select id="caseStatus">
 <option value=''>Clear Screen</option>
 <option value='Open'>Open</option>
 <option value='Closed'>Closed</option>
 </select>
</label>

3. Add a feature layer that connects to the graffiti service. Use the pointToLayer
option to create a marker for each feature and add them to the map:
var graffiti =
 L.esri.featureLayer('http://services.arcgis.com/
 rOo16HdIMeOBI4Mb/ArcGIS/rest/services/Graffiti_Locations3
 /FeatureServer/0', {
 pointToLayer: function (geojson, latlng, feature) {
 return L.marker(latlng);
 },
 }).addTo(map);

4. Create a popupTemplate variable. You can find the parameters in the layer
by browsing to the link in the feature layer. Bind the pop up by creating a
function that returns the template. The template allows you to pass the fields
contained in the ESRI layer to the template. The field name goes in curly
braces. Then, you can use the template as your string in bindPopup():
var popupTemplate =
 "<h3>Details:</h3>Address:{Incident_Address_Display}

Borough: {Borough}
Community Board:
{Community_Board}
Police Precinct:
 {Police_Precinct}
City_Council_District:
 {City_Council_District}
Created_Date:
 {Created_Date}
Status: {Status}
Resolution_Action:
 {Resolution_Action}
Closed_Date: {Closed_Date}
City:
{City}
State: {State}";
graffiti.bindPopup(function(feature){
return L.Util.template(popupTemplate, feature.properties)
 });

ESRI in Leaflet

[124]

5. Create an event for when the selection element changes. Pass the value of
the current selection to the method setWhere(). This method refreshes the
feature layer based on the where query. In this example, where is the value
of the status property:
 caseStatus.addEventListener('change', function(){
 graffiti.setWhere('Status="'+caseStatus.value+'"');
 });

When you are finished, you can select Closed, and the map will look like this:

Query by proximity
In the previous example, you queried a feature layer based on an attribute. You
can also query your feature layer based on its proximity to a point. In this example,
you will query the layer based on the location of a mouse click. The following
instructions will walk you through creating a proximity query:

1. Reference the Esri-leaflet file as you have in previous examples. Add the
feature layer to the map. You will pass the pointToLayer option, returning
circleMarker for each feature. You need to create the circle marker so that
you can change the color of the marker in a later step:
var graffiti = L.esri.featureLayer('http://services.arcgis.com/
 rOo16HdIMeOBI4Mb/ArcGIS/rest/services/
 Graffiti_Locations3/FeatureServer/0', {

Chapter 5

[125]

 pointToLayer: function (geojson, latlng) {
 return L.circleMarker(latlng);
 },

 }).addTo(map);

2. Create a pop-up template using the feature properties. Bind the pop up to the
feature as follows:
var popupTemplate = "<h3>Details:</h3>Address:
 Incident_Address_Display}
Borough:
 {Borough}
Community Board: Community_Board}
Police
 Precinct: {Police_Precinct}
City_Council_District:
 City_Council_District}
Created_Date:
 {Created_Date}
Status: Status}
Resolution_Action:
 {Resolution_Action}
Closed_Date: Closed_Date}
City:
 {City}
State: {State}";
graffiti.bindPopup(function(feature){
return L.Util.template(popupTemplate, feature.properties)
 });

3. Create a query. If you browse to the service—place the URL of the query in
your browser—and scroll to the bottom of the page, you will see on the last
line that this service supports querying. Pass the query to the layer you want
to query:
var query =
L.esri.Tasks.query('http://services.arcgis.com/
 rOo16HdIMeOBI4Mb/ArcGIS/rest/services/
 Graffiti_Locations3/FeatureServer
/0');

4. Create an event for a mouse click and subscribe using the
runQuery() function:
map.on('click', runQuery);

5. Create a function, runQuery(), to be executed when the user clicks on the
map. This function will do three things: it will execute a query using the
nearby() method, passing the latitude and longitude of the mouse click
and a distance of 804 meters (half mile); it will set the style of all of the circle
markers to blue; and it will take the results of the query and pass the ID of
every marker that is returned to a style function, turning them green. We
used the circle marker in the second step so that we could change the color
to highlight the query results:
function runQuery(e){
graffiti.query().nearby(e.latlng,804).ids(function
 (error,ids){
graffiti.setStyle(function(){return { color: "blue"};});

ESRI in Leaflet

[126]

for(var i=0;i<ids.length;i++){graffiti.setFeatureStyle(ids[i],
 {color:"green"});}});
}

When you click on the map, it should look like this:

The green markers are all within half a mile of the user's click.

Summary
In this chapter, you learned how to use the most common file format for geographical
data: the shapefile. You also learned how to use the esri-leaflet plugin to connect
to ESRI services and add basemaps as well as five other ESRI layer types. You already
learned about heatmaps previously, but in this chapter, you also learned how to
consume ESRI services and add them as a heatmap. You learned how to geocode an
address to a map and also how to reverse geocode a point to a street address. Lastly,
you learned how to query an ESRI service first by attribute and then by location.

In the next chapter, you will combine everything you have learned to create an
application using Leaflet with other programming languages.

Leaflet in Node.js,
Python, and C#

In the first five chapters, you covered the fundamentals of Leaflet.js. You now
know how to add a wide variety of basemaps from multiple sources and in several
different formats. You can draw simple geometries as well as display data from
servers, GeoJSON, and ESRI file formats. Creating visualizations from your data was
covered in Chapter 3, Creating Heatmaps and Choropleth Maps. You also know how to
customize the look and feel of your markers now and how to utilize plugins in order
to add extra functionalities to your map.

In this last chapter, you will learn how to build applications utilizing Leaflet.js in
three popular programming frameworks: Node.js, Python, and C#. In Node.js and
Python, you will build a server to render your web page and allow for AJAX calls
to display additional data. In the last example, using C#, you will build a desktop
Windows application that embeds a web page into a form, connects to MongoDB,
and retrieves data using a general search and a spatial search.

While you are not expected to have a working knowledge of either of these three
frameworks, Node.js is a JavaScript framework and the examples should be easy to
follow. The Python and C# examples might be a little different from what you are
used to; however, the main ideas should be easy to grasp and they will give you
an idea of how you can think of using Leaflet in larger applications. Furthermore,
starting to think about how Leaflet can interact with the server side will expand your
ability to dream up new and exciting applications, utilizing libraries and resources
from multiple frameworks.

The first example will start with the most familiar framework, Node.js.

Leaflet in Node.js, Python, and C#

[128]

Building Leaflet applications with Node.js
Node.js is a JavaScript-based platform that builds non-blocking applications. The
non-blocking feature is what has made Node.js extremely popular. Think about how
you code. You complete tasks step-by-step. You might jump around in your code,
calling functions and responding to events, but you wait until one action is complete
before you start the next. With Node.js, you assign callbacks and move on to the next
task or handle the next request. Take a database search, for example. In the following
pseudocode, you retrieve a record and do something with it in the traditional manner:

var result = SELECT * from MyTable;
document.getElementById['results'].innerHTML= result;

In the example, you wait for the database to send back the results, and then you
move on to displaying them. In Node.js, you would do something similar but assign
a callback function, as shown in the following example:

function showResults(){document.getElementById['results'].innerHTML=
 result;};
var result = query(SELECT * from MyTable, showResults);
doWhateverElseYouNeed();

The preceding code will query the database and move on to the
doWhateverElseYouNeed function until the query is finished, at which point it will
execute the showResult callback function. This can be very confusing and make your
code difficult to read, but it is very powerful, and on the server side, it allows for a
large number of connections.

Now that you have an idea of what Node.js can do, you can download it at
http://nodejs.org/. Follow the instructions to install Node.js based on your
operating system. Once it is installed, you will have a command-line interface
and a Node.js window on Windows. Using the command line, you can launch
your applications and install additional packages, which you will learn to do in
a later example.

http://nodejs.org/

Chapter 6

[129]

A basic Node.js server with Leaflet
In this first example, you will create a simple Node.js server and serve
LeafletEssentials.html. You can write your code in any text editor
and save it as a .js file.

Create a folder to store your files and place a copy of LeafletEssentials.html in
the folder. This will be the file that we are going to serve with Node.js. Next, you will
create the server as shown in the following code:

require('http').createServer(function (req, res) {
 if ('/' == req.url){
 res.writeHead(200, { 'Content-Type': 'text/html' });
 require('fs').createReadStream('leafletessentials.html')
 .pipe(res);
 }
}).listen(3000);

The preceding code uses two modules: http and fs. You import these modules using
require(module). Both of these modules are standard Node.js modules and do not
require any additional downloads. The preceding code imports the http module and
then calls the createServer() method. It uses an anonymous function that takes a
request and a response—req and res, respectively. The if block tests to see whether
the request to the server is equal to the root directory; in this example, whether the
browser is pointed to http://localhost:3000. The last line of code is listening on
port 3000. If the request is to the root directory, then the code writes a header. It is
beyond the scope of this book to cover the HTTP protocol and headers. However,
know that when a response is sent, it is status 200 if successful and status 404 if it is
not successful, and the response has the content type text/html. Lastly, the code
imports the fs module and uses pipe() to read in and write out the contents of
LeafletEssentials.html. Pipe is the preferred method for sending files; however,
you could also manually write the HTML as a string using res.end('the HTML').
Piping allows you to do some neat things, such as reading and writing out a video
file so that the user can play it while it is still receiving data from the server. Writing
out HTML as a string will make your code long and complicated; never mind trying
to escape all the quotes required in most HTML. In the last example, you will learn
about a templating library in which you can store your HTML.

Leaflet in Node.js, Python, and C#

[130]

Using the command in tool, navigate to the directory that holds your
server.js code and run it by typing node server.js. Point your browser
to http://localhost:3000. You should see your loaded map as shown:

The preceding example simply serves a single file, and if the user points their
browser to any other URL, such as http://localhost:3000/about.html, they
will not see anything, not even an error message. The next example fixes this.

Node.js, AJAX, and Leaflet
Now that you have a Node.js server running and serving up a Leaflet web page, you
can use the same server to make Asynchronous JavaScript and XML (AJAX) calls. You
are programming in JavaScript, so even though there is XML in AJAX, you should use
JSON; it is much easier to handle than XML in JavaScript. Building on the first example,
the following code adds another page and sends an error message on bad requests:

 require('http').createServer(function (req, res) {
 if ('/' == req.url){
 res.writeHead(200, { 'Content-Type': 'text/html' });

Chapter 6

[131]

 require('fs').createReadStream('leafletessentialsAjax.html')
 .pipe(res);
 } else if ('/getpoints'==req.url){
 res.writeHead(200, { 'Content-Type': 'application/json'
 });
 res.end(JSON.stringify([{"lat":35,"long":-106}]));
 } else {
 res.writeHead(404);
 res.end('The page you requested '+req.url+' was not
 found');
 }
}).listen(3000);

The preceding code makes two changes to the first example; it adds two new routes.
The first if statement is the same, returning LeafletEssentials.html. The else if
statement checks to see whether the browser is pointed at http://localhost:3000/
getpoints. If it is, then the server returns a JSON string, [{"lat":35,"long":-106}].
Lastly, if the user requests a page that doesn't exist, the server will return a 404 error
message saying that the page is not found and will return the value of the page they
were looking for—req.url.

The preceding server requires a change to your LeafletEssentials.html file. You
will need a subscriber for the click event and to make an AJAX call when it occurs.
Before AJAX, you will need to submit a form or make a request to the server and then
be redirected to a new page that would display the results. AJAX allows you to make
a request to the server, have the results returned, and display them without reloading
the entire page. In this example, you will make an AJAX call to the getpoints URL.
You will receive a JSON representation of a point. Then, you will add a marker that
will represent the returned point—all without refreshing the web page:

map.on('click',function(){
var xhReq = new XMLHttpRequest();
xhReq.open("GET", "getpoints", true);
xhReq.send();
var serverResponse = xhReq.responseText;
var d=JSON.parse(serverResponse);
L.marker([d[0].lat,d[0].long]).addTo(map).bindPopup("Added via
 AJAX call to Node.js").openPopup();
});

Without getting too deeply into the details of AJAX, the preceding code creates an
XMLHttpRequest instance and opens the getpoints.html web page.

For a quick lesson on XMLHttpRequest, check out the
W3Schools website at http://www.w3schools.com/
xml/xml_http.asp.

http://www.w3schools.com/xml/xml_http.asp
http://www.w3schools.com/xml/xml_http.asp

Leaflet in Node.js, Python, and C#

[132]

It then receives the response, parses out the points separated by a comma, and then
adds them to the map as a marker. You're only receiving a single point, so the d
variable only has a single value, which is represented by d[0]. Objects in JavaScript
are used by calling the object and then the value of a field, in this case, d[0].lat and
d[0].long.

Your map will look exactly as it did in the first example. When you click on the map,
you will see another point, and your map will look like the following screenshot:

Chapter 6

[133]

This example returns the same point when the user clicks on the map. This example
can be improved by returning a different point every time the user clicks on the
map. To do so, simply use a random number generator to return a new latitude and
longitude. The key here is to set the maximum and minimum values so that the point
is close to our current location. The following code uses Math.random() to return
different values. To do so, replace the res.end(JSON.stringify([{"lat":35,"lo
ng":-106}])); line in the server code with the following code:

var lat=Math.random()*(36-35)+35;
var lon=Math.random()*(-107+106)-106;
res.end(JSON.stringify([{"lat":lat,"long":lon}]));

Now, when the user clicks on the map, the points will appear at random. After
several clicks, your map should look like this:

Leaflet in Node.js, Python, and C#

[134]

Node.js, Connect, and Leaflet
In the previous example, you had to write the path for every possible URL. A user
could type that path in your domain. You allowed two possibilities and sent an error
for every other possibility. If you have a website with many pages, you would not
want to type an if statement for every URL. Connect is a module that provides
a middleware code for common tasks. The middleware allows you to accomplish
these common tasks with minimal work on your part; you just need to use the
use() function.

You can learn about Connect at http://www.senchalabs.org/
connect/.

To install Connect, open the command-line tool for Node.js and enter the
following command:

npm install –g connect

npm is a Node.js package manager. The preceding command launches the package
manager and asks it to install Connect. The –g switch is to install it globally so that it
is available everywhere on the machine. When Connect is installed, your command
prompt will look like this:

Make note of the version that is installed because you will need
this in a later step.

http://www.senchalabs.org/connect/
http://www.senchalabs.org/connect/

Chapter 6

[135]

Once you have Connect installed, you can start the example. This example will
create a simple server that will only serve static files. Perform the following steps
to create the server:

1. Make a project folder and place another folder inside and name it www.
2. Place several HTML files in the directory, but especially LeafletEssentials.

html and getpoints.json. You can use the sample included with the book or
you can create your own. A minimum getpoints.json file would contain the
following contents:
[{"lat":35,"long":-106}]

The contents of the file are a single point represented in JSON. You can add
as many points as you like. You can even write a script to update the contents
of the file at a set interval.

3. Next, in the main project folder, create a file with the following contents and
name it package.json. Note that this example is using a version of Connect
prior to Version 3:
{
"name": "leafletessentials",
"version": "0.0.1",
"dependencies": {"connect": "2.21.1"}
}

This file is used to build the project. At the command line, navigate to your
project directory and type npm install. The package manager will read
the package.json file and create a new subfolder in your project folder
named Node_modules.

4. Open the folder and you will see another folder with all of the files for the
Connect module. Before writing the server, you need to make a change in
LeafletEssentialsAjax.html. The code for the AJAX call needs to point to
the getpoints.json file. Now you are ready to write the server.

The first thing to do is to import the Connect module with require() and assign
it to a variable. Create a server by calling connect(). And lastly, invoke the
middleware static() and ask it to take the www directory and serve all files within
it. The _dirname variable takes the current directory and concatenates it with the
/www directory, giving the path to your files as shown in the following code. Listen
on any available port:

var connect = require('connect')
var server = connect();
server.use(connect.static(__dirname+ '/www'));
server.listen(3000);

Leaflet in Node.js, Python, and C#

[136]

The code is much shorter than the previous examples. There are no if ('/' ==
req.url) statements. The middleware knows all the files in the directory, and if
a URL that matches a filename is requested, it will be sent. If it does not exist, the
middleware will send the error page. If you add a new HTML file, it will be served
up as soon as it is placed in the folder and requested. Now, when you connect and
get your map, you can click on it, and the contents of getpoints.json will be
returned and displayed on the map.

Node.js, Express, Jade, and Leaflet
In the first two examples, you had to create a static HTML file for the server to serve to
the client. In this example, you will use a template that allows you to pass variables to
the HTML when loaded. This will allow you to create dynamic data-driven websites.

For this example, you will need to install the Jade module for Node.js. To do so, open
the command-line tool and enter the following command. This is the same procedure
as the previous example.
echo '{}' > package.json

npm install jade –save

Now, you have the Jade module installed globally. You will also need to install
Express. Express is one of the most popular web frameworks that can be used with
Node.js. It is similar to Connect, but in this example, it is the tool that allows us to
use a view engine, which is Jade. Again, type the following command and make sure
that you note the installed versions:
echo '{}' > package.json

npm install express –save

For more information on Express and Jade, you can go to the
website for Express at http://expressjs.com/ and for
Jade at http://jade-lang.com/.

Now that you have both modules installed, create a folder for your application.
In the folder, you will need to create the package.json file. In this example, you
have two dependencies, so your file should look like the following code:

{
"name": "leafletessentials",
"version": "0.0.1",
"dependencies": {
 "express": "4.4.5",
 "jade": "1.3.1"
 }
}

http://expressjs.com/
http://jade-lang.com/

Chapter 6

[137]

Using the command-line tool, navigate to the application directory and use npm to
add the dependencies using the following command:

npm install

You will now have a Node.js_modules folder with the Jade and Express
subfolders. You will need a directory to hold or view the template file. This folder
needs to be named views because that is where Express will look. Create the
directory and then open a text editor to create your view. For a quick introduction
to Jade, you can read the tutorial at http://jade-lang.com/tutorial/. The
important thing to note is that Jade is whitespace sensitive, and hence indentations
must be exact. This can be extremely frustrating at first. The following template is the
modified LeafletEssentials.html file that you have been using in the previous
examples. One key difference is the fourth line: title = title. This line sets the
title of the HTML document to the value of a variable, title, in the server code:

doctype html
html(lang="en")
 head
 title= title
link(rel='stylesheet', href='http://cdn.leafletjs.com/leaflet-
 0.7.2/leaflet.css')
script(src="http://cdn.leafletjs.com/leaflet-0.7.2/leaflet.js")
 body
 #map(style='width:'+900+'px;'+'height:'+800+'px')
 script(type='text/javascript').
var map = L.map('map', {center: [35.10418, -106.62987], zoom:
 9});
var base = L.tileLayer('http://{s}.tile.osm.org/{z}/{x}/{y}.png').
addTo(map);
L.marker([35.10418, -106.62987]).addTo(map).bindPopup("A Lonely
 Marker").openPopup();
map.on('click',function(){var xhReq = new
 XMLHttpRequest();xhReq.open("GET", "getpoints",
 false);xhReq.send(null);var serverResponse =
 xhReq.responseText;var d=JSON.parse(serverResponse);L.marker
 ([d[0].lat,d[0].long]).addTo(map).bindPopup
 ("Added via AJAX call to Node.js").openPopup();});

Save the preceding code in a file named LeafletEssentials.jade within your view
folder. Now, you are ready to write the server.

Jade is a popular and powerful template module; however,
there are others too. Two others that might be easier to
learn at first are HAML at http://haml.info/ and EJS
at http://embeddedjs.com/.

http://jade-lang.com/tutorial/
http://haml.info/
http://embeddedjs.com/

Leaflet in Node.js, Python, and C#

[138]

The code for the server is as follows:

var express=require('express')
var app = express();
app.set('view engine', 'jade');
app.get('/', function(req,res){
 res.render('LeafletEssentials',{title:"Leaflet Essentials"});
 });
app.get('/getpoints', function(req,res){
 res.send([{'lat':35,'long':-106])
});
var server = app.listen(3000);

The preceding code imports the Express module and assigns it to a variable. It then
creates an app with Express. The view engine defaults to Jade, but if you want to
use another, you need the third line to set the appropriate engine. The next lines
use app.get() to specify the two URLs that our application will return. The first
one will return our view and the second is for the AJAX call and returns a point in
JSON. In the first AJAX example, you needed to specify JSON.stringify() when
you returned the point. One of the reasons to use a framework is that it takes care
of many common tasks for you. In this case, Express will know what it is you are
returning and set the value accordingly. In this example, you are returning a JSON
string, and Express will automatically JSONify it for you.

Your map will look just like the one in the previous examples, and when the user clicks,
a point will be added. The next examples will use Python to serve a Leaflet application.

Leaflet with Python and CherryPy
The Python programming language is extremely powerful and has a large number
of standard libraries and other third-party libraries. It is also fairly easy to pick up
for simple tasks. There is extensive documentation, and a large number of books and
different libraries are available on the language. You can download Python from the
Python website at https://www.python.org/downloads/. Version 3 is the latest;
however, Version 2.7 is still in use. It is probably best to start learning with Version 3,
but if you have v2.7, it will work with the examples.

In this example, you will use the CherryPy library. You can download the library at
http://www.cherrypy.org/.

For more books on CherryPy and Python web development,
visit http://www.packtpub.com/CherryPy/book
or http://www.packtpub.com/python-3-web-
development-beginners-guide/book.

https://www.python.org/downloads/
http://www.cherrypy.org/
http://www.packtpub.com/CherryPy/book
http://www.packtpub.com/python-3-web-development-beginners-guide/book
http://www.packtpub.com/python-3-web-development-beginners-guide/book

Chapter 6

[139]

CherryPy is a smaller web framework compared to Django or Pyramid—formerly
Pylons. For this example, it will allow you to get up and running quickly without
much overhead. To manually install a third-party Python library, extract it to a folder
and run the following command:

python setup.py install

After running the command, you will be able to import the library in your Python
code. For this example, you will connect to a NoSQL database: MongoDB. MongoDB
is a document database. It stores everything as a JSON-style document, not in
relational tables. While it's not as spatially enabled as PostGIS, which is an extension
to PostgreSQL, it has a few spatial features that make it an excellent choice for a
Leaflet backend. You can download MongoDB at http://www.mongodb.org/.

To use MongoDB with Python, you will also need to download and install PyMongo.
You can download the library at https://pypi.python.org/pypi/pymongo/. Once
you have your environment set up, you can start your MongoDB by running the
application mongod.

If you receive an error about a missing path, you will need to add
the C:\data\db directory. Just create the folders and then rerun
mongod. On Linux and OS X, execute mkdir -p /data/db to
add the data directory.

Your database is empty. The pa.py Python file that is available on these books'
website will create a database and populate it with the public art data that was used
in earlier chapters of this book. The file looks like the following code:

from pymongo import Connection
from pymongo import GEO2D
db=Connection().albuquerque
db.publicart.create_index([("loc",GEO2D)])
db.publicart.insert({"loc":[35.1555,-106.591838],"name":"Almond
 Blossom/Astronomy","popup":
 http://farm8.staticflickr.com/7153/6831137393_fa38634fd7_m.jpg
 })
 db.publicart.insert({"loc":[35.0931,-106.664177],
 "name":"Formas Esperando Palabra de Otros
 Mundos","popup":
"http://farm3.staticflickr.com/2167/2479129916_0d861b2600.jpg"})
print " Completed…"

http://www.mongodb.org/
https://pypi.python.org/pypi/pymongo/

Leaflet in Node.js, Python, and C#

[140]

The preceding code imports two modules from the PyMongo library: Connection
and GEO2D. The first handles our connection to the DB and the second allows
us to spatially enable it. The next line makes a connection to a database called
albuquerque. Next, a spatially enabled index is created for a collection called
publicart and it indexes the loc field. The next two lines are public art points that
are inserted into the collection. They each contain a location, name, and pop-up field
that contains the URL to an image of the piece.

Execute the file by typing python pa.py. Your MongoDB will now have a database,
collection, and enough data to allow you to try some samples.

If you ever delete, corrupt, or just want to refresh your database,
you can run this file over again to start a fresh.

Now that you have your database running and populated and have Python installed
with CherryPy and PyMongo, you are now ready to write your first server:

1. The first step is to import the Python libraries as follows:
import cherrypy
from pymongo import Connection,GEO2D

2. Next, you create a class and a function that will represent the URL to your
application. In this example, it will be the index function:
class mongocherry(object):
 def index(self):

3. The function will first create an array to hold the contents of an HTML file.
You can append the contents of LeafletEssentials.html up until you add
the tile layer basemap:
output =[]

output.append("<HTML><HEAD><TITLE>QUERY
 MONGODB</TITLE></HEAD><BODY><h1>Query MongoDB</h1><link
 rel='stylesheet' href='http://cdn.leafletjs.com/leaflet-
 0.7.2/leaflet.css' /><style> html, body, #map {padding:
 0;margin: 0;height: 100%;}</style></head><body><script
 src='http://cdn.leafletjs.com/leaflet-
 0.7.2/leaflet.js'></script><div
 id='map'></div><script>var map = L.map('map',{center:
 [35.10418, -106.62987],zoom:
 9});L.tileLayer
('http://{s}.tile.osm.org/{z}/{x}/{y}.png').addTo(map);")

Chapter 6

[141]

4. Now, create the database connection and search for all documents in the
collection named publicart. The find() function will return a large number
of records. On each record, you will append an HTML string, creating a
marker using the record. The location field creates the marker and the name
and pop-up fields are added to the markers' pop up:
db=Connection().albuquerque
for x in db.publicart.find():
output.append("L.marker(["+str(x["loc"][0])+","+str(x["loc"
][1])+"]).addTo(map).bindPopup(\""+x["name"]+"<img
 src='"+x["popup"]+"'>\");")

5. Once all the documents are added, you can append the closing HTML tags to
the array. Then, convert the array to a string so that you can return it when
the user requests the index of the application as follows:
output.append('</SCRIPT></BODY></HTML>')
i=0
html=""
while i<len(output):
 html+=str(output[i])
 i+=1
return html

6. Lastly, you need to expose the index function, set the address and port the
application will use, and then start the server by calling the classname:
index.exposed = True
cherrypy.config.update({'server.socket_host': '127.0.0.1',
'server.socket_port': 8000,
})
cherrypy.quickstart(mongocherry())

When you have finished, run the program by opening a command line and typing
the following command:

python mongocherry.py

Leaflet in Node.js, Python, and C#

[142]

Open a browser and point it to http://127.0.0.1:8000. You should see a map
like the following one:

The application returned the contents of your MongoDB and displayed them in a
Leaflet map. Now that you know how to create a URL route in an application, let's
expand on this example to add an AJAX call for spatial searches.

Spatial queries with Python, MongoDB,
and Leaflet
MongoDB allows you to access spatial queries. You can search for results near
a single point, near a point by setting a maximum distance, within a bounding
rectangle, or within a circle. In this example, you will query for results near a point.

Chapter 6

[143]

Import the required libraries. In the following code, you will import two new
module tools from the cherrypy library and json:

import cherrypy
from pymongo import Connection,GEO2D
from cherrypy import tools
import json

After importing the libraries, perform the following steps:

1. Create the class. Using tools, you will expose the function with the @ sign.
Connect to the database and write out the HTML code. The HTML code in
this example is different. You will add a listener for the click event. The
code for this block will make an AJAX call to the getdata page and pass
it the (x,y) coordinates of the click event. The data returned will only
contain three objects, so you can hardcode the HTML instead of running a
for loop as follows:
class mongocherry(object):
 @cherrypy.expose
 def index(self):
 db=Connection().albuquerque
 output =[]
 output.append("<HTML><HEAD><TITLE>QUERY
MONGODB</TITLE></HEAD><BODY><h1>Query MongoDB</h1><link
rel='stylesheet' href='http://cdn.leafletjs.com/leaflet-
0.7.2/leaflet.css' /><style> html, body, #map {padding:
0;margin: 0;height: 100%;}</style></head><body><script
src='http://cdn.leafletjs.com/leaflet-
0.7.2/leaflet.js'></script><div id='map'></div><script>var
lat; var lon; var map = L.map('map',{center: [35.10418, -
106.62987],zoom:
9});L.tileLayer('http://{s}.tile.osm.org/{z}/{x}/{y}.png')
.addTo(map);map.on('click',function(e){var
a=String(e.latlng).split(\",\");lat=a[0].split(\"(\");lon=a
[1].split(\")\");var xhReq = new XMLHttpRequest();var
s=\"getdata?x=\";var s2=String(lat[1]);var s3=\"&y=\";var
s4=String(lon[0]);var url=s.concat(s2,s3,s4);
xhReq.open(\"GET\", url, false); xhReq.send(null); var
serverResponse = xhReq.responseText; var
d=JSON.parse(serverResponse);L.marker([d[0].lat,d[0].long])
.addTo(map);L.marker([d[1].lat,d[1].long]).addTo(map);L.mar
ker([d[2].lat,d[2].long]).addTo(map);});")

Leaflet in Node.js, Python, and C#

[144]

2. Next, close the HTML tags, convert them to a string, and return them when
the page function is called:
 output.append("</SCRIPT></BODY></HTML>")
 i=0
 html=""
 while i<len(output):
 html+=str(output[i])
 i+=1

 return html

3. Now, you will define and expose another URL function. This one will be
called getdata and it will handle the AJAX call from the users' click. This
function gets passed the x and y variables. These will be the coordinates of the
users' click. The query in this example is different than the previous example.
Notice that you use find() but add $near and pass it the coordinates of the
users' click. The search is set to only return three results. Lastly, you pass back
the results as JSON using @tools.json_out(), as follows:
 @cherrypy.expose
 @tools.json_out()
 def getdata(self,x,y):
 db=Connection().albuquerque
 data=[]
 lat=float(x)
 long=float(y)
 for doc in db.publicart.find({"loc": {"$near": [lat,
 long]}}).limit(3):
 data.append({'lat':str(doc["loc"][0]),'long':
 str(doc["loc"][1])})
 return data

4. Lastly, set the IP address of the server and port. Then, run it:
cherrypy.config.update({'server.socket_host': '127.0.0.1',
 'server.socket_port': 8000,
 })
cherrypy.quickstart(mongocherry())

Chapter 6

[145]

Now you can run the file and point your browser to http://127.0.0.1:8000.
You will see a blank map. Click anywhere on the map and you will see three points
appear. These are the closest points to where you clicked. Your map will look like
the following screenshot after clicking once:

Using Python to connect to your MongoDB allows you to not only query the
database to display results, but with a little more code, you can use it to save the
results of a map. You could allow the user to click on the map where they would
like to add a point and then use the (x,y) coordinates and perform an insert()
method instead of a find() function. The preceding examples provided a very
brief overview of how to serve up a Leaflet map with Python and handle AJAX
queries. The next examples will move on to using C# to make desktop applications
with Leaflet.

Leaflet in Node.js, Python, and C#

[146]

Desktop applications in C# with Leaflet
Leaflet is used in a web page; however, with C#, you can embed a web browser in
a Windows form to create what appears to be a desktop application. The examples
in this section will show you how to add a map to a C# application, add a point by
calling a JavaScript function from C#, and show you how to connect to MongoDB in
C# and display the results on the map.

Adding a map to a C# application
To build an application in C#, you will need to install Microsoft Visual Studio
Express. You will need at least Visual Studio C# 2010. You can download it at
http://www.visualstudio.com/downloads/download-visual-studio-vs.
This program is a slimmed-down version of the commercial Visual Studio. It allows
you to rapidly build Windows Form Applications and compile your code in to an
easily redistributable Windows Executable.

Launch the application and create a new Windows Form Application from the
dialog box, as shown in the following screenshot:

http://www.visualstudio.com/downloads/download-visual-studio-vs

Chapter 6

[147]

Your application will be a blank form. Select the toolbox on the upper-left corner of the
window and drag the web browser to the form, as shown in the following screenshot:

Leaflet in Node.js, Python, and C#

[148]

Click on the web browser that you dragged to the form and modify the URL property
to point to an instance of LeafletEssentials.html running on your web server.
Save the application. Click on the Debug menu and then start debugging. Your
application will launch and you will see your Leaflet map loaded in the Windows
Form, as shown in the following screenshot:

You now have a map in a C# application without any code. The next example will
add some functionality to your application.

Chapter 6

[149]

Adding a marker in C#
In this example, you will build on the previous example by adding a marker. The
first thing you need to do is drag a button onto the bottom of the form using the
toolbox. In the properties of the button, change the text property from button1 to
Add Marker. Then, double-click on the button.

You are now looking at the code that Visual Studio created for you when you created
the application, and it has now added a function to handle the button click. It wrote
the function when you clicked on the button. Before you code the button, you will
need to add a reference to MSHTML.dll. This file will allow you to use the web and
HTML objects you need to make your map work. At the top of your code, you
will see several lines that start with using. This is where you import the required
libraries into your application. The most common ones have already been added. At
the end of the list, type the code using MSHTML;. It will be underlined and won't be
found. You now need to right-click on the project in the Solution Explorer window
and select Add Reference. Add a COM reference to Microsoft HTML Object Library
as shown in the following screenshot:

Now that you have added the reference, the underline will disappear and you can
start coding the button1_Click() function. Add the following code to the function:

HtmlElement head = webBrowser1.Document.GetElementsByTagName("head")
[0];
HtmlElement scriptEl = webBrowser1.Document.CreateElement("script");
IHTMLScriptElement element = (IHTMLScriptElement)scriptEl.DomElement;

Leaflet in Node.js, Python, and C#

[150]

element.text = "var mymarker; function addPoints() { mymarker =
new L.marker([36.104743, -106.629925]); map.addLayer(mymarker);
mymarker.bindPopup('HELLO
Added By C#.'); }";
head.AppendChild(scriptEl);
webBrowser1.Document.InvokeScript("addPoints");

The preceding code grabs the <head> tag of the LeafletEssentials.html file that
you loaded through the web browser properties. It then creates a <script> element
so that you can add JavaScript to the HTML and execute it. You then create the script
element and pass it a text string. The string is a JavaScript function for adding a
point to the map.

You must wrap your code in a function, because that is how C# will call and execute
it. You then append the <script> tag to the <head> tag of the document and tell the
web browser to invoke the addPoints()function. So now, when the user clicks on
the button, the JavaScript function will be added to LeafletEssentials.html and
will be executed. Save and debug the project. When the application launches, click
on the button and your application should look like this:

Chapter 6

[151]

To allow C# applications to modify a Leaflet application, insert a JavaScript function
to a base HTML file and then execute it using an event such as a button click. The
next example will connect to MongoDB.

Using MongoDB with C# and Leaflet
Just as in the Python example, to use MongoDB in C# will require a driver.
You can download the C# drivers at https://github.com/mongodb/
mongo-csharp-driver/releases. This example uses the .zip file. In your project,
add another reference, but instead of selecting COM, this time, you will browse
to where you extracted the drivers from the .zip file. The folder should contain
MongoDB.Bson.dll and MongoDB.Driver.dll. After adding the reference, you
must import the required libraries using the following code:

using MongoDB.Bson;
using MongoDB.Driver;
using MongoDB.Driver.Linq;
using MongoDB.Driver.Builders;

With the libraries imported, you can modify your button to connect to MongoDB and
load the points. The following instructions will walk you through the code to connect
to MongoDB:

1. First, you will need a string to hold the JavaScript function that will add the
points. In C#, you will use StringBuilder() so that you can append to the
string. You can start by appending the function name and the first brace:
StringBuilder myString = new StringBuilder();
myString.Append("function addPoints() {");

2. Next, you set up the connection to MongoDB. Connect to the IP and
port—the default is localhost on port 27017. Get the server and then the
database named albuquerque. Lastly, connect to the publicart collection:
var client = new MongoClient("mongodb://localhost:27017");
var server = client.GetServer();
var database = server.GetDatabase("albuquerque");
var collection = database.GetCollection("publicart");

3. Now, you can execute the query. The query will find all documents and return
each one. The code appends a string, which creates a marker by concatenating
the location, name, and pop-up information from each document:
 foreach (var document in collection.FindAll())
 {
 myString.Append("L.marker([" +
document["loc"][0] + "," + document["loc"][1] +
"]).addTo(map).bindPopup(\"" + document["name"] + "
<img
 src='" + document["popup"] + "'>\");" + "\r\n");
 }

https://github.com/mongodb/ mongo-csharp-driver/releases
https://github.com/mongodb/ mongo-csharp-driver/releases

Leaflet in Node.js, Python, and C#

[152]

4. Close the string with the last brace:
 myString.Append("}");

5. The last code block is the same as the previous example. Create the HTML
elements and insert the string by converting StringBuilder.toString():
HtmlElement head = webBrowser1.Document.
GetElementsByTagName("body")[0];
HtmlElement scriptElement = webBrowser1.Document.
CreateElement("script");
IHTMLScriptElement addPointsElement = (IHTMLScriptElement)
scriptElement.DomElement;
addPointsElement.text = myString.ToString();
head.AppendChild(scriptElement);
webBrowser1.Document.InvokeScript("addPoints");

Save and debug the project. When the application is launched, click on the button,
and your application should look like the following screenshot:

Chapter 6

[153]

The very last step is to select the debug menu and, instead of debugging, select build
solution. If you browse to the project folder, you will have a directory named bin.
Within the directory, you now have an .exe file.

Now, you have a MongoDB collection in a Leaflet map written in C# and compiled
as .exe. For this to run on another machine, you would only need to make your
MongoDB sit on a real IP and allow access from outside your network.

The last example will allow the user to click on the map and return the closest points.

Querying with C#, Leaflet, and MongoDB
You have learned how to pass data from C# to Leaflet by writing a JavaScript function,
injecting it into the HTML file, and then executing it. Passing data from JavaScript back
to C# is a little different. One way in which you can pass data is to have the JavaScript
write the contents to <div>, and then C# can read it in. The key here is to set the <div>
tag to be invisible. The following steps will walk you through the last example:

1. First, modify LeafletEssentials.html by adding a new <div>, and set the
style so that the display is set to none. If you set it as hidden, it will take up
space in the document and there would be a blank spot below your map:
<style>
 html, body, #map {
 padding: 0;
 margin: 0;
 height: 100%;
 }
#points.hidden {
 display: none;
}
</style>
<body>
<div id="map"></div>
<div id="points"></div>

2. Next, create a listener for the click event and write a function that creates a
marker, showing you the location of the click event that cleans up the text
of the returned latitude and longitude and writes the results to <div>:
map.on('click',function(e){L.marker(e.latlng).addTo(map).bi
ndPopup("SEARCH LOCATION").openPopup();
var a=String(e.latlng).split(",");
var lat=a[0].split("(");
var lon=a[1].split(")");
document.getElementById("points").innerHTML =
 lat[1]+","+lon[0];
});

Leaflet in Node.js, Python, and C#

[154]

3. With the HTML file ready, you can now modify the C#. The first step is to
read in the points from the <div> tag and then parse them so that each is in
its own variable as follows:
string hiddenHTML = webBrowser1.Document.GetElementById("points").
InnerHtml;
string[] thePoints = hiddenHTML.Split(',');

4. Set up the connection to MongoDB. Connect to the IP and port. Get the
server and then the database named albuquerque. Lastly, connect to the
publicart collection:
var client = new MongoClient("mongodb://localhost:27017");
var server = client.GetServer();
var database = server.GetDatabase("albuquerque");
var collection = database.GetCollection("publicart");

5. Create a text string of the query and initialize your StringBuilder()
function to hold the JavaScript of the function and results:
var query = Query.Near("loc", double.Parse(thePoints[0]), double.
Parse(thePoints[1]));
StringBuilder myLocString = new StringBuilder();
myLocString.Append("function addLocPoints() {");

6. Execute the query in a loop using the near() function. Pass the results to the
string, building up the JavaScript function:
 foreach (BsonDocument item in collection.Find(query).
SetLimit(5))
 {
 BsonElement loc = item.GetElement("loc");
 string g = loc.Value.ToString();
 string x = g.Trim(new Char[] { '[', ']' });
 String[] a = x.Split(',');

 myLocString.Append("L.marker([" + a[0] +
"," + a[1] + "]).addTo(map).bindPopup(\"" + item["name"] +
"
\");" + "\r\n");
 }

7. The last code block is the same as the previous two examples.
Create the HTML elements and insert the string by converting
StringBuilder.toString():
myLocString.Append("}");
HtmlElement head = webBrowser1.Document.
GetElementsByTagName("body")[0];

Chapter 6

[155]

HtmlElement scriptElement = webBrowser1.Document.
CreateElement("script");
IHTMLScriptElement addPointsElement = (IHTMLScriptElement)
scriptElement.DomElement;
addPointsElement.text = myLocString.ToString();
head.AppendChild(scriptElement);
webBrowser1.Document.InvokeScript("addLocPoints");

8. Save and debug the project. When the application is launched, click on the
button, and your application should look like the following screenshot:

Leaflet in Node.js, Python, and C#

[156]

Summary
In this last chapter, you have learned how to use Leaflet.js in other programming
languages and frameworks. Starting with Node.js, you learned how to use JavaScript
on the frontend and the backend. You created a Node.js server that returned a Leaflet
web page. You then modified the code to allow AJAX calls back to the server to
update the map without reloading the page.

You also learned how to create a server and allow AJAX requests using Python
and CherryPy. The Python example introduced NoSQL databases, in particular,
MongoDB. You learned how to write a query to return all the documents in a
database collection as well as how to use AJAX to query only points that are
near the points where a user has clicked.

Lastly—for something totally different—you learned how to embed a web browser
into a Windows Form and run a desktop application with Leaflet. The applications
used buttons on the form to execute JavaScript functions that were injected into the
LeafletEssentials.html file. You then passed data in the other direction—from
JavaScript back to C#—capturing mouse clicks on the map and using them to query
MongoDB and return the results. The C# applications you built can then be compiled
in a .exe file and distributed to anyone who can connect to your MongoDB and
LeafletEssentials.html file.

Index
Symbols
<div> tag

creating 9
-g switch 134
.join() method 112

A
addLatLng() method, Leaflet.heat 61
addresses

finding, point used 121
geocoding, in Leaflet 117

addTo() method 30
alert() function 35
animated heatmap

creating 67, 68
ArcServer 107
Asynchronous JavaScript and XML

(AJAX) 130
attribute query

creating 122, 123

B
bar chart markers

creating, with Leaflet Data Visualization
Framework 103-105

basemap
<div> tag, creating 9
creating, with Leaflet 8
CSS files, referencing 8
data, adding to 18
JavaScript, referencing 8
map object, creating 10

points, adding to 19, 20
polygons, adding to 22
polylines, adding to 21
tile layer, adding 10, 11

basic markers
MapMarker 101, 102
RegularPolygonMarker 101-103
StarMarker 101, 103

bindPopup() method 31
blur value, heatmap

changing 58-60

C
C#

application, building 146, 148
map, adding 148
marker, adding 149-151
MongoDB, using with 151-153
querying with 153-155

Cascading Style Sheet. See CSS
CherryPy

about 139
URL 138
used, for building Leaflet

applications 138-142
choropleth map, creating with Leaflet

about 69
color, setting 71
GeoJSON data, adding 70
GeoJSON data, styling 71, 72

circles
about 23
creating 24, 25

clustering, markers
with Leaflet.markercluster 90

[158]

cluster map
coding 90-92

color
setting, with function 71

Color Brewer
URL 71

Color Brewer 2 tool
URL 60

Connect
installing 134
URL 134
using 135

CSS
used, for mobile mapping 32, 34

custom function, events
creating 38

custom marker
creating 77
creating, in Leaflet 82, 83
image, creating in GIMP 78
image, drawing 79
image, saving 79
image, using as icon 81, 82
L.Icon class, defining 84, 85
shadow image, creating 80

D
data, adding to basemap

points 19, 20
polygons 22
polylines 21

density map 55
desktop application, C#

creating, with Leaflet 146
map, adding 146-148
marker, adding 149-151
MongoDB, using 151-153

detectRetina option 109

E
Economic and Social Research

Institute. See ESRI
EJS

URL 137
ESRI

about 107

api-reference 114
basemaps 108

ESRI basemaps
about 108
label layers 108
layers 108
using 108, 109

esri-leaflet-geocoder
URL 117

esri-leaflet plugin
used, for creating heatmap 115, 116

ESRI services
consuming 113, 114

event handler
events, assigning to 36-38

events
custom function, creating 38
handling 36-38
subscribing 37

Express
URL 136

Extensible Markup Language (XML) 41

F
feature group 30
features, GeoJSON

iterating through 50
fillColor option 71
Font Awesome markers

URL, for downloading 88
using 88, 89

G
geocoding

about 117
from address, to point 117-119
URL parameters 119, 120
used, for creating map 117

GeoJSON
about 42
history 41
layers, styling 48-50
multiple geometries 45, 46
polygons 46, 47
URL 42

[159]

GeoJSON data, choropleth map
adding 70
styling 71, 72

GeoJSON layers
styling 48-50

GeoJSON, Leaflet.js
as variable 43, 44
data subset, displaying with filter 52
iterating, through features 50
marker, converting to GeoJSON layer 48
pointToLayer option, using 51, 52
pop ups, attaching with onEachFeature 50

GNU Image Manipulation Program (GIMP)
about 78
URL, for downloading 78
used, for creating image for custom

marker 78
gradient option, heatmap

changing 60
graffiti layer

querying 122, 123
group layers

about 28
feature group 30
layer group 28, 29

H
HAML

URL 137
heatmap

about 55
animating 67, 69
creating 56
creating, with esri-leaflet plugin 115, 116
creating, with heatmap.js 62-65
creating, with Leaflet.heat 56, 57
data, adding 64
density map 55
intensity map 55
markers, adding 61
options, modifying 64
styling, options 57

heatmap.js
URL 62
used, for creating heatmap 62-65

heatmap, styling
blur value, changing 58-60
gradient option, changing 60
maxZoom option, changing 60
radius value, changing 60

hosted copy
used, for environment setup 8

HTML
used, for mobile mapping 32-34

I
intensity map 55
interactive heatmap

creating 65, 66

J
Jade, Node.js

installing 136
URL 136, 137

JavaScript
referencing 8
used, for creating mobile map 34-36

JavaScript Object Notation (JSON) 41
JavaScript plugin

URL, for download 56

L
layer group 28, 29
Leaflet.js

Leaflet.css file 9
Leaflet file 9
Leaflet-src.js file 9
URL 9

Leaflet
about 7
addresses, geocoding 117
choropleth map, creating with 69
custom marker, creating in 82, 83
esri-leaflet plugin, used for creating

heatmap 115, 116
querying with 153-155
shapefile, using 110-113
spatial queries, accessing 142-145
URL 7

[160]

used, for creating basemap 8
used, for creating desktop application

in C# 146
Leaflet.AnimatedMarker plugin

autoStart option 98
distance option 98
interval option 98
markers, animating with 96-100
onEnd option 98
URL, for downloading 96

Leaflet applications
building, with CherryPy 138-142
building, with Node.js 128
building, with Python 138-142

Leaflet applications, building with Node.js
AJAX calls, making 130-133
Connect, using 134, 135
Express, using 136-138
Jade module, using 136
Node.js server, creating 129, 130

Leaflet.BounceMarker plugin
markers, animating with 95, 96
URL, for downloading 95

Leaflet Data Visualization Framework
about 100
bar chart markers, creating with 103-105
basic markers, creating 101, 102
pie chart markers, creating with 103-105
URL, for downloading 100
using 100

Leaflet.heat
options 57
used, for creating heatmap 56, 57

Leaflet.heat methods
about 60
addLatLng() method 61
redraw() method 61
setLatLngs() method 61
setOptions(options) 61

Leaflet.markercluster
markers, clustering with 90
URL 90

leaflet-shpfile plugin 111
L.Icon class

about 82
className option 82
defining 84, 85

iconAnchor option 82
iconRetinaUrl option 82
iconSize option 82
iconUrl option 82
popupAnchor option 82
shadowAnchor option 82
shadowRetinaUrl option 82
shadowSize option 82
shadowUrl option 82

local copy
used, for environment setup 9

M
Maki markers

URL, for downloading 86
using 86, 87

map
adding, to C# application 146-148

MapMarker, basic markers
innerRadius option 102
numberOfSides option 102
radius option 102
rotation option 102

map object, basemap
creating 10

markercluster layer, options
animateAddingMarkers 94, 95
maxClusterRadius 94, 95
removeOutsideVisibleBounds 93
showCoverageOnHover 93
spiderfyOnMaxZoom 93
zoomToBoundsOnClick 93

markers
adding, to C# application 149-151
adding, to heatmap 61
animating 95
animating, with Leaflet.AnimatedMarker

plugin 96-100
animating, with Leaflet.BounceMarker

plugin 95, 96
creating 19
clustering, with Leaflet.markercluster

plugin 90
cluster map, coding 90-92
markercluster layer 93
options 20

[161]

maxZoom option, heatmap
changing 60

mobile map
creating, with JavaScript 34-36

mobile mapping
about 32
CSS, using 32-34
HTML, using 32-34
with Leaflet map 32

MongoDB
querying with 153-155
spatial queries, accessing 142-145
URL 139
using, with C# and Leaflet 151-153
using, with Python 139

multiple geometries, GeoJSON
about 45, 46
polygons 46, 47

multiple tile layers
adding 16-18
RAS_RIDGE_NEXRAD layer 17

MultiPolygons
about 25
creating 27

MultiPolylines
about 25
creating 26

Multivariate Kernel Density Estimation
URL 56

N
National Oceanic and Atmospheric

Administration. See NOAA
National Weather Service (NWS) 16
nearby() method 125
NOAA

URL 17
Node.js

Leaflet applications 128
URL 128
used, for building Leaflet applications 128

Node.js server
creating, with Leaflet 129, 130

normalized choropleth map
creating 73-75

O
onEachFeature option 50
Open Geospatial Consortium (OGC)

about 15
URL 15

OpenStreetMap tiles
URL 11

P
pie chart markers

creating, with Leaflet Data Visualization
Framework 103-105

point
adding, to basemap 19, 20
addresses, geocoding to 117-119
using, to find addresses 121

pointToLayer option 51, 52
polygons

adding, to basemap 22
polylines

adding, to basemap 21
pop up

about 31, 32
attaching, from onEachFeature option 50, 51

predefined markers
Font Awesome markers, using 88, 89
Maki markers, using 86, 87
Twitter Bootstrap markers, using 88, 89
using 86

projection file (.prj), shapefile 110
proximity query

creating 124-126
Python

spatial queries, accessing 143-145
URL 138
used, for building Leaflet

applications 138-142

R
radius value, heatmap

changing 60
rectangle

about 23
creating 23

[162]

redraw() method, Leaflet.heat 61
RegularPolygonMarker, basic markers

innerRadius option 103
numberOfSides option 103
radius option 103
rotation option 103

removeLayer() function 29
reverse geocoding

about 121
point, using 121

S
setLatLngs() method 61
setStyle() method 30, 49
shapefile

about 110
using, in Leaflet 110-113

spatial queries
accessing, with Leaflet 142-145
accessing, with MongoDB 142-145
accessing, with Python 143-145

Stamen
about 14
tile layers 13
URL 14
URL, for creating maps 14

StarMarker, basic markers
innerRadius option 103
numberOfPoints option 103
radius option 103
rotation option 103

subset of data
displaying, with filter 52

T
Thunderforest

tile services 12
using 13

tile layer
adding 10, 11
providers 12

tile layer providers
Stamen 13
Thunderforest 12

toGeoJson() method 48
toString() method 36
Twitter Bootstrap markers

using 88, 89

U
United States Geological Survey (USGS) 15
URL parameters

geocoding 119, 120

W
Web Mapping Service (WMS)

about 15
URL 15

WMS tile layer
adding 15, 16

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Creating Maps with Leaflet
	Creating a simple basemap
	Referencing the JavaScript and CSS files
	Using a hosted copy
	Using a local copy

	Creating a <div> tag to hold the map
	Creating a map object
	Adding a tile layer

	Tile layer providers
	Adding a Web Mapping Service tile layer
	Multiple tile layers
	Adding data to your map
	Points
	Polylines
	Polygons

	Rectangles and circles
	Rectangles
	Circles

	MultiPolylines and MultiPolygons
	MultiPolylines
	MultiPolygons

	Groups of layers
	Layer group
	Feature groups

	Pop ups
	Mobile mapping
	HTML and CSS
	Creating the mobile map with JavaScript

	Events and event handlers
	Custom functions

	Summary

	Chapter 2: Mapping GeoJSON Data
	Understanding GeoJSON's roots
	Exploring GeoJSON
	GeoJSON in Leaflet.js
	GeoJSON as a variable
	Multiple geometries in GeoJSON
	Polygons with holes

	GeoJSON from Leaflet.js objects
	Styling GeoJSON layers
	Iterating through the features
	Attaching pop ups with onEachFeature
	Making layers from points with pointToLayer
	Displaying a subset of data with filter

	Summary

	Chapter 3: Creating Heatmaps
and Choropleth Maps
	What is a heatmap?
	Heatmaps with Leaflet.heat
	Using options to style your map
	Changing the blur value
	Changing the maxZoom value
	Changing the radius value
	Setting the gradient option

	Methods of Leaflet.heat
	Adding markers to the heatmap

	Creating heatmaps with heatmap.js
	Modifying the heatmap options
	Adding more data to the map

	Creating an interactive heatmap
	Animating a heatmap
	Creating a choropleth map with Leaflet
	The GeoJSON data
	Setting the color with a function
	Styling the GeoJSON data

	Creating a normalized choropleth map
	Summary

	Chapter 4: Creating Custom Markers
	Creating a custom marker
	Preparing your workspace in GIMP
	Drawing and saving your image
	Drawing the marker shadow
	Using an image as an icon

	Using a custom marker in Leaflet
	Defining an L.Icon class

	Using predefined markers with plugins
	Using Mapbox Maki markers
	Using Bootstrap and Font Awesome markers

	Clustering markers with Leaflet.markercluster
	Coding your first cluster map
	Methods and events available to markercluster layers
	Options that default to true
	Other options and events

	Animating markers with plugins
	Bouncing your markers
	Making your markers move

	Using markers for data visualization
	Using the Leaflet Data Visualization Framework plugin
	Making basic markers

	Bar and pie chart markers

	Summary

	Chapter 5: ESRI in Leaflet
	ESRI basemaps
	Using shapefiles in Leaflet
	Consuming ESRI services
	Heatmaps with ESRI in Leaflet
	Geocoding addresses in Leaflet
	Geocoding – from an address to a point
	Geocoding from URL parameters
	Reverse geocoding – using points to
find addresses

	Query by attribute
	Query by proximity
	Summary

	Chapter 6: Leaflet in Node.js,
Python, and C#
	Building Leaflet applications with Node.js
	A basic Node.js server with Leaflet
	Node.js, AJAX, and Leaflet
	Node.js, Connect, and Leaflet
	Node.js, Express, Jade, and Leaflet

	Leaflet with Python and CherryPy
	Spatial queries with Python, MongoDB,
and Leaflet

	Desktop applications in C# with Leaflet
	Adding a map to a C# application
	Adding a marker in C#
	Using MongoDB with C# and Leaflet
	Query with C#, Leaflet, and MongoDB

	Summary

	Index

