Learn lonic 2

Develop Multi-platform Mobile Apps

Joyce Justin
Joseph Jude

Apress’

ww.allitebooks.co

http://www.allitebooks.org

Learn lonic 2

Joyce Justin
Joseph Jude

ApPress’

[vww allitebooks.cond

http://www.allitebooks.org

Learn Ionic 2: Develop Multi-platform Mobile Apps

Joyce Justin Joseph Jude
Bangalore, Karnataka, India Panchkula, Haryana, India
ISBN-13 (pbk): 978-1-4842-2616-2 ISBN-13 (electronic): 978-1-4842-2617-9

DOI10.1007/978-1-4842-2617-9
Library of Congress Control Number: 2017938595
Copyright © 2017 by The Editor(s) (if applicable) and The Author(s)

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr

Lead Editor: Celestin Suresh John

Technical Reviewer: Jayakarthik Jayabalan

Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,
Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal, James Markham,
Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Prachi Mehta

Development Editor: James Markham

Copy Editor: Lori Jacobs

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm. com, or visit www. springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit waw.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales-eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text are available to
readers at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/. Readers can also access source code at SpringerLink in the Supplementary
Material section for each chapter.

Printed on acid-free paper

[vww allitebooks.cond

mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.allitebooks.org

Contents at a Glance

About the AUtNOIS.....ccuiiiissemmmmsssssnmmssssssnmmsssssnmssssssnmesssnsnnessansnnsssssnnnessssnnnnnssssnnnnss Xi
AcknNowledgmentscccuieemnmmisssnnmmsssssssnmsssssssnmsssssnsnessssssnnssssssnnnsssssnnnnsssssnnnnssssnnns xiii
Chapter 1: Welcome to the World of I0NiCcccccumrrrirsssssssssmsnmnmmsssssssssssssssssessssnes 1
Chapter 2: Build Your First 10NiC APP «.occcerrnssemnmmmmssssnnmssssssssssssssssssssssssssssssssssnsssss 5
Chapter 3: Building BIocks Of I0NICccccmrmissmmmmmssssssnmmssssssssssssssssssssssssssssssssnnnns 15
Chapter 4: Those FAamMous QUORESc.uuceemmrmsssnmmmmssssssnmmsssssssnssssssssnssssssnnnsssssnnnnss 29
Chapter 5: Build the Weather APpcuvemmrnisesnmmmssssssnmmssssssmssssssssssssssssesssssnsns 43
Chapter 6: Saving MemOriescccussesrsssssssssanssssanssssanssssansssssnsssssnsssssnnssssnnssssnnssssns 59
Chapter 7: Gather AnalytiCS.......urrmmmmmmmmmrrmsssssssssnnnsnsssssssssssssnsssessssssssnsssnssesssssnns 1
Chapter 8: Go Offline........ccusseeermrnsssnnnsnssssnnnssssssnnnsssssssnnsessssssssssssssnnnesssssnnssssssnnnnss 79
Chapter 9: Where t0 GO From Hereccccvnnsmmmmmmssssnnnmsssssssssssssssnssssssssssssssssnnnss 99
INAEX.eeiiiiisnnnnnnssssnnnnnssssnnnnnssssnnnnnssssnnnnessssnnnnessssnnnnesssnnnneesssnnnnesssssnnnessssnnnnessssnnnnsssss 103
iii

[vww allitebooks.cond

http://www.allitebooks.org

Contents

About the AUtROIS.........ccccmmmsemmmmsnssssnssssss s an s san s an s nnn s annnnsannnnnnns xi
AcknNowledgmentscccuieemnmmisssnnmmsssssssnmsssssssnmsssssnsnessssssnnssssssnnnsssssnnnnsssssnnnnssssnnns xiii
Chapter 1: Welcome to the World of I0NiCcccccumrrrirsssssssssmsnmnmmsssssssssssssssssessssnes 1
Learning ODJECLIVES.ccuvererererere e rs e sa s sa e sa s sr s sa e sa e sa e sa e sa e sn e sa e sn e n e n e 1
EXploding OpPOrtUNILYcoeeeierercrc st en s s sn e n s 1
lonic’s Approach to Building Multiplatform Mobile AppS......cccoeerrreresesesseesessesseesessenas 2
1111 1P SRS 3
Chapter 2: Build Your First IoniC App ...cccccvnnnmsemmssmmmmmmmsssssssssssnssssssssssssssssssssssssssnss 5
Learning ODJECLIVES.ccuvererere e sa e s s sa s ra e sr s sa s sa e sa e sa e sa e sn e sn e sa e n e nn s 5
What We Wil BUIIccoureirieeeeseseressssssssesesssssssssssssssssesssssssssssssssssssssssssssssssssssssssnens 5
INSTAIING ONIC 2. r e r e sa e sa e r e n e sn e n e n e nn s 5
Quick-Start with 10nic TEMPIALEScccevererrrerererererere s ra e sees 6
BUIAING the APP .eeeiererir e n s n e n e nn e nn e nn s n s 7
L] 0Ty o (1 (T 8
ReVIEWING the COUR......ccieeeerirrccccrir et e st e e e e 10
Adding FUNCHONAIILY ..ot s sr s s r e r e nennnns 1
111 1] 11 SRS 14
Chapter 3: Building BIoCKS Of I0NICccccerrrmsssmnnnmssssssnnssssssssssssssssssssssssnssssssssnnnss 15
Learning ODJECLIVES........ccceeeeeeeree et a e n e n e sn e sn e nnen e nan 15
Introduction t0 TYPESCHIPLcccveeeerer e n s 15
0] 11T =] 0 15
DT 0] 15
BaSIC TYPBS ...eveereereruererserarersesersesersesessesassesseessesesaesesaesassesaeessssesseessessssessesesassessssssesassessenesssnsssenanaens 16

v

[vww allitebooks.cond

http://www.allitebooks.org

vi

CONTENTS

00 T=T - (0] £ 18
00T 1] 0 19
FUNCHIONS ...t s 21
0L 22
INERITACES. ... ——————————————————— 23
Introduction t0 ANQUIANJS 2. s 24
MOQUI.....cce 24
DIFBCHIVES. ... 24
R TC] T 26
SUMMEAIY ...ttt e s s s r e s ae e s sa e e e Re e e e eaa e s ae e n e nnnnnnnas 27
Chapter 4: Those FAmMous QUOTESc.uccemmrmsssnnmmmsssssnssmssssssssssssssnssssssssnnnsssssnnnnss 29
Learning ODJECTHIVES.......cveerrrererseresesserssssesesse e e s sss e s ses e sa s sse e s e sss e ssesnnsessensnnens 29
What We Will DUII........ccoeerierereresesesse s e s e se e sses e s s e snsssssssssssnssnsssssssssnnnnns 29
[0NIC GENEIALEccuceerericirirce e 29
LEet’S BUIIA the APP c.eevveererreererieeresssesesssessessessessesssssesssessesssssssssssssssssssssssssssnessssnesanes 30
AU PAQES......eoueereererereesessesessesessesesessssessssessesessssessssssssssssssssssssssssssssssssssssssansssssssssssssssssssssnssssessssnsnses 30
Making @ REST HTTP REQUESTcceeererrrrrererrsrseessssssssesesssssessssssssssessssssssesssssssssssssssssssssssssssssssssaes 31
SEAICH FEALUIE ...t a s s s s s s s s s s s s s s e s s e s snsnnnnnnnas 33
10NIC NAVIGALIONeccecececccriere s e s e e p e e nrn s 35
Add Page Navigation 10 the QUOTESADDcveeerirrrererirre s nnns 35
Share ON TWItEEN ..o —————————— 37
RUNNING The APP .ottt sn e n e nn e n s 38
A PlAtfOrMS ... 38
ST o I Lo oo OO 38
Running the App iN ANAIOId ..o s e e e sa s 39
RUNNING the APP N H0S ...t e s e e 40
SUMMEAIY ...ttt e e sa e e s e e e ae e s e ae e e Re e e e ena e nae e n e nnnnnnnas 41
Chapter 5: Build the Weather Appcccccvnnnnsssessmmmmnmmmssssssssssnssessssssssssssssssesssnns 43
Learning ODJECTHIVES.......ccverrrrererseresesserssssesesse e e s sss e sas e s ses e sse e s sss e ssesnnsessessnnens 43
What We Will BUIccveeriererersessensessessessessessesses e s sessssssssesssssssssssssssssssssssssssssssnsssnnns 43

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

Prer@QUISITEcocerererer sttt n e n e n e nn e n e 43
I 21T o I T- Y o] S 43
Adding DA SEIVICEScvvrrririisiirisiissisiss s 46
FOrMS i HONIC ...c.cucriricssss s 47
Include Weather/Weather FOrm ... 49
Form Validations in I0NIC ... s 51
Call the REST Service Provider and Display the Data............ccoomnnnnnsssnens 53
Display the FOrecast @s Chamt...........cccvccvrrererererererereressessesessesessessssessssessesesssssssessssessssessssessssssassansens 54
Run the Weather APP......c.ccvcvrreriernereres s snssn s s sn e e sns s snssnnsnas 57
SUMMAIY ...ttt se s a e ae e s e ea e e s ae e n e nnennnnnas 58
Chapter 6: Saving MemOriescccurmusssnnnmsssssnnnnssssssnnsssssssnssssssssnssssssssnnssssssnnnnss 59
Learning ODJECTHIVES........coeerierersireressese s sn e s sn s s s sn s snesn s 59
What WE Wil BUIIcoeeeeereerercererce s ses s s e sasssnens 59
BUIING the APP .eeererereri s s nn e nn e n s 99
10NHC NALIVE ... ———————— 59
TaKe PICHUTES ..ottt s e 60
STYIBS N ONIC2 ... —————————— 61
STOrE PICIUIES ...ttt 63
DISPIAY PICTUIES ...t e e e se e nnnn e 64

10 QT TE] (0] - o O 65
Persist the PICIUIES ... s 66
RUN the MEMOKIES APP ...cvcereririrerrire sttt n s sn s n s sn e sr e sn s sn e nnesnenas 67
31111 1P S 69
Chapter 7: Gather AnalyticCs.......ccuummmminssnmmmmmssssnnmmmsssssnmmssssssssmsssssssssssssssssessssnnnnns 71
Learning ODJECTIVES.ccuvererere e sa e s sa e saesae e sa e sa e saesa e a e sn e sn e snennenes 7
What We Wil BUIId ... s s n
PrEr@QUISITEcecererererer sttt e e e n e sn e n e nn e n e 71
BUIIdING the ADPD .eeeere e s a e s s ne e nne 71
1153 e 1L 3= o (U1 I o 1T o 4l
LT T T R T A o 72

vii

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

L T8 110 IR TSRS 73
QL T8 110 21T]SSR 74
Run the ANAIYEICS APP....ccicriririrer st sn s sn e nnenenan 74
Google ANalytiCs Chars.........ccccvererererererie e sae s ssesa e saesaesa s sa s sa e sa s sns s nes 75
SUMMAIY ...t a e e s e AR e eae e s ae e e e nnennnaens 78

Chapter 8: Go Offline......cccuurrrinmnmmmmsmssnmmnmmmmmsssssss s sssssssssssssssssss 19

Learning ODJECTHIVES.......cceeciieeeriererir s sn s s nn s ne e 79
What We Will BUIlcccooercrercrcirer s ss e e e snssnssnssn s nnns 79
o (T (=T |11 | 79
Cloudant ACCOUNT CrE@tioNcococeeeeererecereseeesese e 79
Create TO-DO DAADASEccocreeecrereeereeee e e 80
BUIIdING the APD .eeeeeec e s r e s ne e ne e nne 80
Introduction 10 POUCKDB...........covnninininiiiiii s 80
Introduction to IBM Cloudant DB ... ssssssssssssssssssssssens 81
HOW OFfliN€ SYNC WOTKSeceveereeerc s reserteerse e saesesseses e saesessesessesassessssesassesassssssssssesassessesessssssssanaens 81
Install ReQUIrEU MOTUIESeoueeeereierierere et sae s e s a e s sa s e b s e e e sa e e e e e e e sa e e e e e saesnenan 81
Add @ DAA SEIVICEcccerririisssi i bbb 82
LIy 0T o 03 0 SRS 84
D0 (o1 T T [8 0SSR 86
DEIELING TO D0...cveeeceecececere e s a e e s a e s e e e a e b e e e s e e s e e e e e e e e e e e e e e e e neenen 89
RUN the TO DO APP ..eerererir sttt nn e nn e n s 89
Running the App With CONNECHIVITY........ccourureierecr e 89
Running the App Without CONNECTIVILY..........ccoerrreeererrecre s 94
SUMMEAIY ...ttt e e sa e e s e e e ae e s e ae e e Re e e e ena e nae e n e nnnnnnnas 97
Chapter 9: Where to Go From Herecoumsmsmsmsmsmsmsmsmssssssssssssssssssssssssssssssssnsnss 929
Learning ODJECTHIVES........cceeerrrererreresrssersssssesesse e e s sss e e ses e ssesas e sse e s e sss e ssesnssessensnnens 99
Additional lonic 2 TOOIS aNd SEIVICES.........correrurmimnmnisisiss e 99
(0T (00 - L] 99
10T T 100
viii

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

TONIC CIOU.....eeeeeetccee et e s e e e e e e e e bt e R e Rt e b e Re e e b ne e e e e e nenn e nes 100

L0 Lo T 010 oSSR 100

10NIC COMMUNITY.....civeeteeertrereeeree e rre e sesas e rse e ae e saesasaesasae s s e e sae e s ae e sae e sae e s sesae e sae e sae e naesannerannenes 101
1111 11 SRS 101
1T L 103

[vww allitebooks.cond

ix

http://www.allitebooks.org

About the Authors

Joyce Justin is a technical lead in IBM MobileFirst™ Platform Development; in her current role, she leads the
Push Engine development. Prior to this, she was working with customers on various IBM products. She has
been a speaker at multiple conferences, has received several IBM technical awards, and has patents to her
credit.

Joseph Jude has worked in the IT (information technology) field for more than 20 years. During this time he
has played multiple roles as a CTO, architect, and business analyst. Joseph is currently serving as a Chief
Technology Officer (CTO) of NetSolutions, a boutique IT services company. Prior to that, he was a consultant
to the Ministry of Corporate Affairs, India. During this time he architected an e-governance solution for LLP
Act, managed an MCAZ21 e-governance project, and oversaw integration of MCA21 system with other
e-governance systems. He regularly blogs at waw. jjude.com.

xi

[vww allitebooks.cond

http://www.jjude.com
http://www.allitebooks.org

Acknowledgments

No book s an island. This book is no different. We would like to take a moment to thank those who made
this book possible.

Without the visionary folks at Ionic this book would not have been possible. Thank you all.

We want to thank everyone at Apress for bringing this book into the world. We only interacted with
Suresh John, Prachi Mehta, and James Markham; but we are sure there were countless others who worked
tirelessly without caring if anyone thanked them. Thank you all.

A special thanks to our technical reviewer, Jayakarthik Jayabalan, who managed to review all the
chapters on time, despite being stuck in heavy Chennai floods.

Joseph

I want to thank my dad for showing that hard work and discipline pays off in the long term; my mom for
loving me like only a mom can love, especially when I struggled to build my life; my sister for being a friend,
advisor, and co-author; my wife for being a queen of our home (true to her name) and building it, while I
locked myself into a room pretending to write; my kids for refreshing me whenever I felt tired.

I want to thank Sastry Tumuluri, a dear friend and a mentor, for being a driving force behind all my
career breaks. I owe him a lot more than just thanks in a book.

One last thank you. Twenty-six years ago, I accepted Jesus as the Lord. Ever since then, He has renewed
my mind, guided me in every venture, and been with me and made me lucky. Thank you Lord.

Joyce

As they say, the family is always a great place for learning, I would like to thank my father for teaching me
that hard work pays; my mother for being an inspiration and motivation; my brother for being there for me
always; my husband for being patient with all my tantrums and being supportive of all the work that I do,
including this book; my daughter for making me smile when I need it most.

I'want to thank Vinod Kumar KG and Vijaya Bhaskar Siddareddi for being my mentors and guiding me
throughout my career.

This acknowledgement would not be complete without thanking my beautiful friends Subhashini
Raman and Gayathiri Bheemesh for motivating me to write this book.

A final thank you to God for being the light and showing me the path.

xiii

CHAPTER 1

Welcome to the World of lonic /

The Ionic team has built a strong ecosystem around its framework. The framework and the ecosystem have
reinforced each other to establish a stable hybrid mobile development framework.

Learning Objectives

e Reason for hybrid mobile application development

e Advantages of Ionic over other hybrid mobile application development platforms

Exploding Opportunity

There are 2.5 billion smart phones in the world, and that number is growing at an exponential rate. As a mobile
developer, that’s the number of devices on which your application can possibly find a place. But, these smart
phones are not homogeneous. At the operating system (OS) level, there are only two popular OSs—Android
and i0S. However, these devices come in more than ten different screen sizes. Designing and coding user
interfaces that work well across so many screen sizes is a huge challenge for mobile application developers.

This challenge must be combined with growing customer expectations. Customers expect applications
to work the same across their devices. They also expect regular updates to the application, indicating the
commitment of the developers.

Finding developers who know a particular language (e.g., Swift or Java) is easy. But training them to
use debug tools and instrumentation tools for each of the mobile platforms is a tough job for any product
managerin any enterprise.

Hybrid mobile development platforms provide a welcome relief from the difficulties these challenges
present. These platforms come in two kinds. Most of them are built on top of web technologies like
HTMLS5, CSS3, and JavaScript. Platforms like Ionic and Appcelerator fall into this category. Then there is
Xamarin, which is built on top of .Net technology. All of these tools help the developers to move into mobile
application development using their existing knowledge.

Ionic has emerged as a popular multiplatform framework. for many reasons, among them

¢ Tools & Services: Ionic provides a range of tools and services that eases
development. There are powerful command-line tools to create the new Ionic
application, to generate appropriately sized icons for each platform, to serve the
app on a web browser, and so on. Ionic Playground is a tool to learn Ionic without
installing anything on your computer. Ionic View is an application through which
you can distribute your app to testers and clients for early feedback.

© The Editor(s) (if applicable) and The Author(s) 2017 1
J. Justin and J. Jude, Learn Ionic 2, DOI 10.1007/978-1-4842-2617-9_1

CHAPTER 1 © WELCOME TO THE WORLD OF IONIC

e Documentation: Ionic has concise but comprehensive documentation on its main
site. The documentation details the essentials of the framework—installing, starting,
testing, and pushing to the stores. Reading through the documentation will allow you
to learn all about Ionic, which is also the first topic of the documentation.

e Community: Despite clear documentation, developers, run into irritating bugs from
time to time. Members in the online community help us resolve them and move
further in our development. Ionic has an active and growing community (105,613
users as we write this). Since, Ionic is based on Angularjs, Angularjs communities
support Ionic developers too.

¢ Rich marketplace: Do you want to integrate with Stripe payment gateway, or with
Google maps? Or, do you want to style with the latest Google material design? Ionic
has you covered with its marketplace, where there are paid as well as free themes,
plug-ins, and starter apps.

¢ Free and Open Source: Ionic framework is MIT-licensed open source software. This
means you can use Ionic to build and sell personal as well as enterprise applications
without paying any fee to anyone.

lonic’s Approach to Building Multiplatform Mobile Apps

Ionic is a HTMLS5 framework that stands on the shoulders of HTML5, CSS3, Cordova, and Angularjs.
Figure 1-1 shows the high-level view of Ionic application architecture.

Your App

lonic Framework
Angular JS

Cordova WebView

Native SDKs

Figure 1-1. Ionic application architecture

CHAPTER 1 © WELCOME TO THE WORLD OF IONIC

Native software development kits (SDKs) from the respective platforms (iOS and Android) still form
the basis of the entire Ionic framework. Cordova, through its plug-ins, exposes device capabilities like
accelerometer, camera, and contacts to Ionic. Ionic exposes native-styled mobile controls, like textbox and
labels. It also handles any user interface (UI) interactions, like tap and type, with these controls.

Since Ionic is based on web technologies, you develop Ionic apps using HTML5, CSS3, and JavaScript.
Ionic uses AngularJs for its core functionality. Developers are not required to use Angular]s to write their
apps, but it is recommended. In this book, we will be using Angular]s to build mobile apps.

Summary

The Ionic framework helps us to build multiplatform mobile applications with our existing knowledge of
web technologies. We also saw why it is an excellent framework in this category of tools.
In the next chapter, we will build a simple mobile application using the Ionic framework.

CHAPTER 2

Build Your First lonic App

In this chapter we’ll build a simple counter app. The app will have just two buttons: one to increment the
counter and another to reset it.

Learning Objectives

e Howto install Ionic 2

e Types of templates Ionic provides to quick-start your development
e How to create a new Ionic 2 application using the template

e Folder structure for a typical Ionic 2 project

e Howto run the app in a browser

What We Will Build

An app with just two buttons sounds so simple. Let us add a few more details. If you close and reopen
the app, the app should reset the counter to 0. If the app is sent to background and brought back to the
foreground, the counter should retain the previous value.

Now it looks like a good enough app to start with Ionic 2. Let us dive into building it.

Installing lonic 2

Before we can code our app, we need to install Ionic 2. Thankfully it is easy.

Note If you already have lonic 1 installed on your machine, you can continue to use it. Installing lonic 2 will
not hinder developing while using lonic 1.

First, let us install nodejs. Nodejs is a cross-platfrom environment for developing server applications.
Don’t ask why a server-side environment is needed to install a mobile development framework.

We are going to download and install Nodejs from its web site: https://nodejs.org/en/download/.
This will also install its package manager npm. After installing nodejs and npm, verify if they are installed
properly by issuing the following command at the command line:

npm -v

© The Editor(s) (if applicable) and The Author(s) 2017 5
J. Justin and J. Jude, Learn Ionic 2, DOI 10.1007/978-1-4842-2617-9_2

https://nodejs.org/en/download/

CHAPTER 2 © BUILD YOUR FIRST IONIC APP

It should return the version of the npm installed. On my machine, it returns the following:
3.10.8

Once nodejs and npm are installed, it’s time to install Ionic 2. Use the following command to install Ionic 2:
npm install -g cordova ionic

In some cases, you might need to install using the command (prefixing with sudo)
sudo npm install -g cordova ionic

As we saw in the first chapter, we need the native software development kits (SDKs) to develop
applications for those platforms. iOS applications can be developed only on a Mac; however, Android
applications can be developed on any platform. When you install Xcode, iOS SDKs are already
installed. Installing Android SDK is complicated. You can find a guide to install Android SDK at http://
ionicframework.com/docs/ionic-cli-faq/#android-sdk.

If all of these steps go well, you should have Ionic installed on your machine. Go into the terminal, and
issue the following command to verify if Ionic is installed properly:

ionic -v

If this returned without any error, that means you are good to go for the rest of this chapter.

Quick-Start with lonic Templates

Ionic provides an easy approach to quick-start an app development. It provides a few default templates to
create the app. These templates, based on the template selected, come with the default code. Before we start,
let’s understand these templates. Table 2-1 lists the templates available in Ionic 2 (this list can be seen by
issuing the command “ionic start -list” in a terminal).

Table 2-1. Ionic Templates

Template name Purpose Command to create the project
blank A blank starter project for Ionic ionic start MyApp blank --v2
complex-list A complex list starter template ionic start MyApp complex-list --v2
maps An Ionic starter project using Google Maps ionic start MyApp maps --v2
and a side menu
salesforce A starter project for Ionic and Salesforce ionic start MyApp salesforce --v2
sidemenu A starting project for Ionic using a side menu ionic start MyApp sidemenu --v2
with navigation in the content area
tabs A starting project for Ionic using a simple ionic start MyApp tabs --v2
tabbed interface

http://ionicframework.com/docs/ionic-cli-faq/#android-sdk
http://ionicframework.com/docs/ionic-cli-faq/#android-sdk

CHAPTER 2 © BUILD YOUR FIRST IONIC APP

Building the App

Coming back to our app development, let’s use the “blank” app template to understand the complete details
of the app development. Issue the command to create a blank app in a terminal with name of the app as
CounterApp.

$ ionic start CounterApp blank --v2 --ts

In the foregoing command “--v2” instructs Ionic start to build an Ionic 2 app, and “--ts” instructs it to
create the app based on TypeScript (We will cover TypeScript in the next chapter).

Now the blank template of the CounterApp is ready. The previous command would create a new folder
with the name of the app, CounterApp, in our case, and the project artifacts are placed. Before adding
new code or updating any existing code, it’s important to understand what this template is creating. To
understand it, first let’s run the app.

In the same terminal as above, change the directory to the app and let’s issue the command “ionic
serve!” Tonic serve command has multiple options which we will discuss in detail later. For now let’s run
without any options.

Since the app template that we choose is a blank one, Figure 2-1 shows the minimal content in the
launched browser.

lonic Blank

The world is your oyster.

If you get lost, the docs will be your guide.

Figure 2-1. Blank template view of Ionic 2

Do you want to know how your app will look in various Oss? Open http://localhost:8100/ionic-1ab,
in a browser. Select the platforms to view from the Platforms list.

CHAPTER 2 © BUILD YOUR FIRST IONIC APP

@ lab Platforms =
Android & 05
seeec T 12:34PM 100% -
lonic Blank lonic Blank

The world is your oyster.
The world is your oyster. youroys

If you get lost, the docs will be your guide.
If you get lost, the docs will be your guide. youg hdad youro

Figure 2-2. “ionic-lab” view of the blank app

Folder Structure

Before we understand the generated code, let’s review the folder structure of the app as shown in Figure 2-3.

9 config.xml wm==) Cordova config file.

> hooks l—: Cordova hooks folder.

ionic.config.json =) lonic configuration file

[node_modules === Dependent node modules folder
package.json) Definition file for npm

> platforms) Folder to hold native added project files.

[plugins s Folder to store cordova plugins.

- resources) Resources for the platforms added into the project

> src) Application source folder
tsconfig.json s File to customize the TypeScript build options.
tslint.json) TSLint file to check for typescript errors

b WWW e Fokder 1 hoid il the i elted source

Figure 2-3. Ionic 2 folder structure

Ionic 2 organizes the folder structure by feature. All of the logic, templates, and styling of a feature or
functionality are kept in the sxc folder. Figure 2-4 shows the contents of the src folder.

Src

-

|
J

CHAPTER 2

app
app.component.ts
@ app.html
app.module.ts
@] app.scss
main.dev.ts
main.prod.ts
assets
icon

declarations.d.ts
index.html
manifest.json
pages

home

@ home.html

2 home.scss

home.ts

service-worker.js
theme

@) variables.scss

Figure 2-4. Ionic 2 src folder structure

BUILD YOUR FIRST IONIC APP

index.html is the file which is used to load the entire app. This would be copied to www folder during
the app build process. service-worker. js enables offline capabilities when it comes to web apps. To learn
more about service workers, refer to https://developer.mozilla.org/en/docs/Web/API/Service_Worker
API. declaration.d.ts is a definition file which lists the libraries used. theme\variables.scss helps in
defining the styling variables.

The src/app folder contains the app level files, and defines how the whole app is compiled and bundled.
Following are the details of the files in the app folder:

app.module.ts-Represents the app as a module.

app.component.ts-Root component of the app

app.html-Root view of the app

app.scss-App style definition

main.dev.ts / main.prod.ts-Used for bootstrapping the application.

https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en/docs/Web/API/Service_Worker_API

CHAPTER 2 © BUILD YOUR FIRST IONIC APP

Depending on the type of build, one of these files will be used.

In the blank app we created, there is only one functionality to display the blank page, and there is only
one folder under app\pages folder, in our case “home” (see Figure 2-4).

Following are the details of the files in the home folder:

e home.html-Template of the page

e home.ts—TypeScript of the page view. This is where the @Component decorator is
defined

e home.scss-File that would contain the custom SASS (Syntactically Awesome Style
Sheets) for this page. If you are new to SASS refer to http://sass-lang.com/.

To apply styles or themes to Ionic 2 applications, you must modify the html and scss files. . css files are
generated from the .scss files.

The www folder is the web root folder of the Ionic app. The build folder under the www folder contains
the compiled code of the Ionic 2 applications. In general, there is no need to modify the code inside this
folder. index.html in the www folder shows the initial view of the application.

Reviewing the Code

Listing 2-1 contains www/index.html code, which provides a view of the application.

Listing 2-1. www/index.html Code

<body>

<!-- TIonic's root component and where the app will load -->
<ion-app></ion-app>

<!-- The polyfills js is generated during the build process -->
<script src="build/polyfills.js"></script>

<!-- The bundle js is generated during the build process -->
<script src="build/main.js"></script>

</body>

<ion-app></ion-app> is the directive that informs Ionic that this is where the CounterApp lives.

Src/app/app.module.ts indicates the HomePage component as the root page of the app. This is the
first component to be invoked in the ionic application execution and it controls the rest of the application
flow. sxc/pages/home/home.ts contains the HomePage component of our app (Listing 2-2).

Listing 2-2. src/pages/home/home.ts Code

import { Component } from '@angular/core';
import { NavController } from 'ionic-angular’;
@Component ({

selector: 'page-home’,
templateUrl: 'home.html'

1)

10

http://sass-lang.com/

CHAPTER 2 © BUILD YOUR FIRST IONIC APP

export class HomePage {

constructor(public navCtrl: NavController) {

}

export class HomePage{} is the root component of our app. We can use this to load other components,
if they exist. @Component is a decorator which allows us to add the metadata to our component. In our app,
it defines the template associated with.

NavController stores and controls the navigation items in Ionic. Navigation stack contains all the views
that you have used previously in the app. You can imagine this as an array of items. To add a view to the stack
we use the push method; to remove the view from the stack we use the pop method.

Listing 2-3 contains src/pages/home/home. html, which is the template of our component and contains
the Ionic tags to display our view.

Listing 2-3. pages/home/home.html Code

<ion-header>
<ion-navbar>
<ion-titles
Ionic Blank
<¢/ion-titley
</ion-navbar>
</ion-header>

<ion-content paddings
The world is your oyster.
<p>
If you get lost, the docs will be your
guide.
</p>
</ion-content>

<ion-navbar/> creates the top bar displayed in the app. <ion-content/> defines the content area of the
app. To know more, refer to http://ionicframework.com/docs/api/directive/ionContent/.

Adding Functionality

Now that we understand the folder structure and the files’ definitions, let’s start to build our CounterApp. A
simple process will help us increment a counter or reset it. There are three components in this CounterApp.

e Avariable value in the page with the default value as 0.
e A button which, when clicked, should increment the counter variable.
e A button which, when clicked, should reset the counter to its default value.

As our first Ionic 2 app is also a simple one, we will not add a service separately. Instead, we will execute
it all together. Later in this book, we will introduce controllers and services.

To display a variable, we need to define it by modifying the HomePage class in the src/pages/home/
home. ts file. Let’s assign its default value as 0, as shown in Listing 2-4.

11

http://ionicframework.com/docs/api/directive/ionContent/

CHAPTER 2 © BUILD YOUR FIRST IONIC APP

Listing 2-4. Changes to the home.ts Code

@Component ({
selector: 'page-home’,
templateUrl: 'home.html'
H
export class HomePage {
public tapCounter: number = 0;
constructor(public navCtrl: NavController) {

Now let’s look at the code to display this variable’s value in the page. Open the src/pages/home/home.
html file. Modify the title of the page from Ionic Blank to Tap Me (Listing 2-5).

Listing 2-5. Changes to the home.html Code

<ion-navbar>
<ion-title>

Tap Me
</ion-title>
</ion-navbar>

In Listing 2-6 we add the <div> code to the <ion-content/>, which would display the variable.

Listing 2-6. Changes to the home.html Code to Display the Variable

<ion-content padding>
<divy
<p align="center"»>{{tapCounter}}</p>
</div>
</ion-content>

Now the app would display the title and the counter variable value according to our changes (Figure 2-5).
If you are already running ionic serve, refreshing the page should display the new changes.

Tap Me

Figure 2-5. Counter app displaying the variable

Now let’s add buttons to manage the value of this variable and their corresponding methods. Add the
buttons into the home.html file, as shown in Listing 2-7.

12

CHAPTER 2 © BUILD YOUR FIRST IONIC APP

Listing 2-7. Code to Add the Buttons

<ion-content padding>
<div>
<p align="center">{{tapCounter}}</p>
</div>
<ion-buttonss
<button ion-button block (click)="buttonTapped()">Tap me!</buttons
<button ion-button block (click)="reset()"s>Reset</buttons
</ion-buttons>
</ion-content>

Clicking these buttons calls two different methods. The buttonTapped method increments the
tapCounter variable and the reset method sets the value of the tapCounter to 0. Let’s add those two
methods in to the home. ts file (Listing 2-8).

Listing 2-8. Code to Add Functionality to Buttons

export class HomePage {
public tapCounter: number = 0;
constructor(public navCtrl: NavController) {

}

buttonTapped() {
this.tapCounter++;

}

reset() {
this.tapCounter = 0;
}

}

With all the foregoing changes, the app would look like Figure 2-6.

Tap Me

0
TAP ME!

Figure 2-6. Fully functional CounterApp

Clicking the Tap Me button would call the method buttonTapped which increments the count of the
variable. Clicking the Reset button would call the method reset, which will reset the count variable to 0.

13

CHAPTER 2 * BUILD YOUR FIRST IONIC APP

MODIFY THE APP TO INCREASE / DECREASE COUNTER

You can modify the app to include Increase and Decrease buttons in place of the Tap Me! button and
include the feature accordingly.

e The Increase button should increase the counter
e The Decrease button should decrease the counter

» The Reset button, which already exists, should reset the counter to 0.

Summary

In this chapter we installed Ionic and learned about the different templates Ionic provides so that we could
accelerate our development. We created a CounterApp with the Ionic blank template. We modified the

home . html file to add two buttons and displayed value stored in a variable. We also modified the home. ts file
to add the functionality of the buttons: when clicked, one button increments the variable value and the other
resets the value to 0.

14

CHAPTER 3

Building Blocks of lonic

We built our first Ionic app in the previous chapter. Before we dive deep into Ionic components, we need to
understand the basic building blocks of Ionic.

Ionic 2 is built on Angular 2, and Angular 2 is built on TypeScript. It is essential to understand these two
building blocks if we are to master Ionic 2.

Learning Objectives

e Review TypeScript, a language used by Ionic 2

e Review Angular]S, the JavaScript framework used by Ionic 2

Introduction to TypeScript

TypeScript is superset of JavaScript created by Microsoft. TypeScript brings optional static typing, classes,
and interfaces to JavaScript.

This section provides a comprehensive introduction to TypeScript, so we discuss some of the elements
of JavaScript here as well.

Comments

TypeScript supports both single line and multiline comments.

// this is a single line comment
/* this is a multi line comment.
Multiline comments starts with slash-star and ends with star-slash */

Declaration
In TypeScript you use const to declare a constant and let to declare a variable.
let name = "TypeScript";

name = "nodejs";
const pi = 3.141;

TypeScript infers type from declaration. In the foregoing example, name is a variable and piisa
constant. Once an identifier has a type, that type can't be changed.

© The Editor(s) (if applicable) and The Author(s) 2017 15
J. Justin and J. Jude, Learn Ionic 2, DOI 10.1007/978-1-4842-2617-9_3

CHAPTER 3 ' BUILDING BLOCKS OF IONIC

You can also specify the type by writing it after the variable, separated by a colon.

let name: string = "TypeScript";

Basic Types

TypeScript supports all JavaScript types. In addition, it introduces an enumeration type. This section
discusses TypeScript datatypes.

Boolean

Boolean variables can hold either a true or a false value.

let isDone: boolean = false;

Number

All numbers are floating point values in TypeScript, as in JavaScript. TypeScript supports hexadecimal,
decimal, binary, and octal literals.

let loc: number = 600;

String

You can use both double quotes (") and single quotes (') to surround string data.

let name = "typescript";
name = "java";

TypeScript supports multiline strings, with backtick(").

let subject: string = “TypeScript is awesome.
Google adapting a language developed at Microsoft, shows how awesome it is.”

TypeScript supports _template strings_, which can have embedded expressions. Embedded expressions
take the form ~${expression} . Embedded expressions are useful in cases like mail-merge where you
invoke a templated string multiple times with different value for embedded expressions.

let customerName: string = “Harry";

let invoiceAmount: number = 1500;

let email: string = “Dear ${customerName},
Invoice for ${invoiceAmount} is enclosed.
Thank you.”

16

CHAPTER 3 ' BUILDING BLOCKS OF IONIC

Any

When it is impossible to know the type, you can use ~any".

let userInput: any;
userInput = "any user input"
userInput = 45.3;

userInput = false;

Void
void is absence of type. It is commonly used to indicate that a function does not return a value.

function showWarning(): void {
alert("This is a warning")
}

Type Assertions

Sometimes you might want to override the inferred type. Then you can use type assertions. There are two
forms of type assertion. One is using angle brackets.

let name: any = "Bruce Wills";
let namelen: number = (<string>name).length;

The Second form is using as.

let name: any = "Bruce Wills";
let namelLen: number = (name as string).length;

Type assertions are different from type casting found in other languages. Casting is a runtime operation,

whereas assertion is a compile time operation.

Collections

A Collection is a grouping of multiple elements into a single unit. TypeScript supports two types of
collections, array and tuple.

Array
Arrays could be typed or generic.

let cities: string[] = ['delhi', 'chennai', 'mumbai'];
let cities: Array<string> = ['delhi', 'chennai', 'mumbai'];

17

CHAPTER 3 ' BUILDING BLOCKS OF IONIC

Tuple

Tuples are used to group fixed number of elements. Their type does not need to be the same.

let yearBorn: [string, number];
yearBorn = ['julia roberts', 1967];

Enum

Enum gives friendly names to sets of numeric values.

enum Day {Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday};
let firstDay: Day = Day.Sunday;

By default, enums begin numbering their members starting at 0. You can override this manually. In fact,
you can set values manually for all elements.

enum Day {Sunday = 1, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday};
enum Direction {North = 2, South = 4, East = 6, West = 8};
enum Direction {North = 2, South = 4, East, West}; // East = 5; West = 6

Union

Sometimes you want variables to be of multiple types. Say a path variable can be either a single string or an
array of strings. Then that variable should be of the union type.

let path: string[] | string;

path = ['/home', '/home/dropbox'];
path = '/home’;

Operators

Operators act on variables and constants, specifiying what is to be done to them.

Arithmetic Operators

The binary arithmetic operators are +, -, *, /, %, ++, --.

let a = 5;

let b = 4;

let c = 0;

c=a+b; //lc=9
c=a-b; //c=1
c=a*hb; //c=20
c=a/b; //c=1.25
c=a%b; //lc=1

C =at++; //c =6
c=b--; //c =3

18

CHAPTER 3 ' BUILDING BLOCKS OF IONIC

Comparison Operators

== and === are equality comparison operators. == checks equality of value, as in any language; ===
checks equality of value and type.

let a = 55
let b = 4;
let ¢ = false;
let d = 5;

== b; //c = false
=== d; //c = true
I= b; //c = true
> b; //c = true

< b; //c = false
>= b; //c = true
<= b; //c = false

N NN NN NN
1}
[\DR VR <D RV I DR D V)

Logical Operators

The logical operators are 88, | |, and !.
&8 is a logical AND operator. If both operands are true, then the condition becomes true.
| | is a logical OR operator. If one of the two operands is true, then the condition becomes true.
! is alogical NOT operator. It reverses the state of the operand.

Assignment Operators

The assignment operators are =, +=, -=, *=, /=, %=
= is a simple assignment operators. Others carry out the operation and then assigns the value.
b +=aisequivalenttob=b+a

Control Flow

In this section, we will see decision-making and looping statements.

if ...else

The if-else statement is a decision-making statement. The syntax of the statement is as follows:

if (boolean-expression) {

statement1
}
else {

statement2
}

The else part of the statement is optional.

19

CHAPTER 3 ' BUILDING BLOCKS OF IONIC

ternary operator

This ternary operator is a simplified, concise if-else statement. It takes the following form:
boolean-expression ? statement1l : statement2

let speed = 80;
let isFast = speed > 55 ? true : false

Following is a detailed example that allows you to find out if the year is a leap year.
let year = 2016

let isleapYear = ((year % 400) == 0) ? 1 :
(((year % 100) == 0)? 0 :
(((year % 4) ==0) 2?1 :
0));//default result
alert(isLeapYear)

for loop

We use for loop when we know how many times a task has to be repeated.

var sum = 0;
for (var i = 0; i <= 1000; i++){
if (1%3==01]|1%5==0){
sum = sum + 1i;
}

}

console.log(sum);

for-of loop

TypeScript introduces a *for-of* loop (since TypeScript is a superset, you can also use the existing for-in
loop) to loop through collections.

let cities: string[] = ['delhi', 'chennai', 'mumbai'];

for (let city of cities) {
alert(city);
}

switch

The switch statement is an enhanced "if-else’ statement, which is convenient to use if there are many
options to choose.

20

[vww allitebooks.cond

http://www.allitebooks.org

CHAPTER 3 ' BUILDING BLOCKS OF IONIC

let animal = 'dog';

switch (animal){

case 'dog':
alert('dog');
break;

case 'cat':
alert('cat');
break;

default:
alert('none?")

while

Use while to execute a task until a given condition is true.
let sum = 0;

while (sum <= 5) {
sum = sum + 1;
}

do...while

do...while is similar to the “while" loop, except that the statement is guaranteed to run at least once.
let sum = 0;
do {

sum = sum + 1;
} while (sum <= 4)

Functions
In TypeScript you declare functions similar to JavaScript, with type information.
function squareOf(i: number): number {
return i * i;
};

You can interfere with return types, so we can declare a function as follows:
function squareOf(i: number) { return i * i };

In TypeScript, as in JavaScript, functions are first-class citizens. This means we can assign functions to
variables and pass functions as parameters. We can also write anonymous functions. All of the following will
generate the same JavaScript:
let sqr1 = function sqr (i: number) : number {

return i * i;

21

CHAPTER 3 ' BUILDING BLOCKS OF IONIC

// anonymous function

let sqr2 = function (i: number) : number {
return i * i;

}

// alternate syntax for anonymous function using =>
let sqr3 = (i: number) : number => { return i * i;}

// return type can be inferred
let sqr4 = (i: number) => { return i * i;}

// return is optional in one line functions
let sqr5 = (i: number) => i * i

Optional and Default Values

Functions can take optional values. You mention the optional values by using ? : syntax.

function getFullName(firstName: string, lastName?: string) : string {
if (lastName) {
return firstName +

+ lastName;

} else {
return firstName
}
}
You can also mention default values for parameters.
function getFullName(firstName: string, lastName: string = "") : string {
return (firstName + " " + lastName).trim();
}
Classes

TypeScript brings object-oriented approach to JavaScript. Let us consider an example.
Say you are developing a digital library of books. Then you can define a Book class as follows:

class Book {
name: string;
purchasedYear: number;
constructor (name: string, purchasedYear: number){

this.name = name;
this.purchasedYear = purchasedYear;

}

let Bookl = new Book('7 habits', 2005)

22

CHAPTER 3 ' BUILDING BLOCKS OF IONIC

TypeScript also supports subclassing or inheritance. If you want to extend the digital library to include
all assets like CDs, PDFs, and so on, you can modify the above class into a superclass and many subclasses.

class Asset {
name: string;
purchasedYear: number;

constructor (name: string, purchasedYear: number){
this.name = name;
this.purchasedYear = purchasedYear;

}

class Book extends Asset {
constructor (name: string, purchasedYear: number) {
super(name, purchasedYear)
}
}

let book1 = new Book('7-habits', 2013);

Interfaces

Interfaces allow multiple objects to expose common functionality. By using an interface, you can ensure that
all these assets implement a common functionality (e.g., name, purchased year, and age). Interface is only a
contract; implementation is carried out at the class level.

interface iAsset {
name: string;
purchasedYear: number;
age: () => number;

class Book implements iAsset{
name: string;
purchasedYear: number;

constructor (name: string, purchasedYear: number){
this.name = name;
this.purchasedYear = purchasedYear;

}
age() {
return (2016 - this.purchasedYear);
}
}
let Bookl = new Book('7 habits', 2005)
alert(Book1.age)

23

CHAPTER 3 ' BUILDING BLOCKS OF IONIC

Introduction to AngularJ$S 2

Angular]S is a client-side JavaScript framework to create web applications. It enhances HTML to describe
user interface and behavior by way of directives; it enables building data-driven applications with its two-
way data binding approach.

Let us look at each of these elements in detail.

Module

Like any modern development system, Angular]S is modular. An AngularJS application, and hence an Ionic
application, is composed of many existing modules.

Almost all of the Angular]JS application have to create a component. This is a library module and you
import it as follows:

import { Component } from '@angular2/core’;

You can also divide your code into logical units, such as modules. This increases the reusability of your
code. You create a module by exporting a class in your file. You import your modules using a relative path as
follows:

import {HomePage} from '../home/home’;

Directives

Directives are the fundamental building blocks of AngularJS. They either modify the layout structure or
modify aspects of DOM (Document Object Model) elements. There are three types of directives: structural
directives, attribute directives, and components.

Note AngularJS comes with few built-in directives and you can also define your own directives.

Structural Directives
Structural directives alter the layout by adding or removing DOM elements.

e *ngFor: “*ngFor" is a repeat directive. It repeats a template once per item in a
collection. For example, see

<div *ngFor="let item of items"></div>

This will create one “<div>" element for each ‘item" in the ‘items’ collection.

o *nglf: *nglf adds or removes an element and its children to the DOM based on a
condition.

<item-detail *ngIf="atruestmt"></item-detail>

24

CHAPTER 3 ' BUILDING BLOCKS OF IONIC

This will display this item only if atruestmt evaluates to true.

e ngSwitch: Use ngSwitch when you want to display different elements depending on
a condition.

You selected A
You selected B
You selected C
You selected none

Attribute Directives

Attribute directives attach behavior or alter the appearance of a particular element.

e ngClass

e ngStyle
e ngModel
Component

Components are special directives and are associated with a view. They are decorated with * @Component
decorator.

Component is a class decorator that represents a Ul element on the screen with its properties and
behavior. It is a directive with template.

Let's dig into Component with a helloworld example.

import {Component} from 'angular2/core;

@Component ({
selector: 'helloworld';
template: “<div>Hello World!</div>;

1)

class HelloWorld{}

This component introduces a Ul element, in this case an HTML tag, helloworld, with a template
<divy>Hello World!</div>
It can be used in HTML as follows:

<body>
<helloworld></helloworld>
</body>

Metadata

In the aforementioned example, selector and template are metadata that define the look and behavior of this
component. Almost all components will contain these two metadata. There are other metadata fields like
templateUr], directives, and providers.

25

CHAPTER 3 ' BUILDING BLOCKS OF IONIC

Template

A component's view is defined by templates. Like any templating engine, Angular]S extends HTML and adds
its own elements and attributes. Angular]S elements are primarily for data binding. Using data binding, we
can display data from application, as well as updating the application from data provided by the user.

Interpolation

Interpolation is the first form of the data binding. Interpolation is displaying the value of a component
property in HTML. It goes as follows:

<div>My Name is {{name}}</div>

Here, Angular]S will replace name with the string value of the corresponding property.

Binding Properties
We can initialize and update the property of an element through template expressions.

Here the id of this span element will be set to the value of postld. If and when the value of postld
changes, the id will get changed as well.
This is one-way data binding, as the data flows in only one direction—from the expression to the

target—which is property of the element. You can use interpolation most of the scenarios than property
binding.

Binding Events

You can configure your application to listen to events like keystrokes and clicks by binding events. This is still
one-way data binding as data flows from the elements to target method.

<button (click)="onSave()">Save</button>

Here, with one click of the button, onSave () method is invoked.

Two-Way Binding

If you want to display a property value as well as update that property when the user changes the value, you
use two-way binding.

<input [(ngModel)]="postTitle">

Services

Services are classes that encapsulate data and function to offer a feature. Angular doesn't mandate any
specification for service. Yet, you will find services everywhere.

26

CHAPTER 3 ' BUILDING BLOCKS OF IONIC

export class Logger {
log(msg: any) { console.log(msg); }

export class GeneratePostsService{
constructor(
private logger: Logger) {
this.logger.log('creating posts');
}

Though you could write the entire business logic within the component, it is a recommended practice
to keep the component lean and delegate all business logic to services.

Summary

We learned the basics of TypeScript and Angular]S. TypeScript introduces static typing, an object-oriented
approach to JavaScript. Angular]S is a JavaScript framework for creating web applications.

In the subsequent chapters we will see how Ionic uses these two technologies to build mobile
applications.

27

CHAPTER 4

Those Famous Quotes

Use the HTTP REST call to read a json file and display the list/details view. Quickly check the behavior of the
app in the browser and run the app on different mobile platforms. Use a social sharing plug-in with the app
to share on twitter using the twitter app available in the device.

Learning Objectives

e Use HTTP to retrieve data

e Use a multipage app in Ionic 2

e Display list

e Navigate between pages in an app and pass information
¢ Install Cordova plug-in on an app

e Share on twitter

e Add mobile platforms to the app

e Run the app in Android/iOS platforms

What We Will build

We are going to build a “Those Famous Quotes” app, which allows us to search famous quotes by author
name. Once the search results are displayed, you can select a quote to view its complete details. Quote
search results are displayed on one page and the details are displayed on another page. We use item click to
navigate from the list to the details page, and we use a back button to navigate from the details page to the
list/search page.

lonic Generate

Ionic CLI (command-line interface) provides an “ionic generate” feature. This feature helps to easily move
from a basic app to a full-featured app. This tool saves us a lot of work in generating the required app
artifacts. It also helps to keep the structure of the app under control. You can see a list of available generators
(as shown in Figure 4-1) by using the “ionic generate --list” command.

© The Editor(s) (if applicable) and The Author(s) 2017 29
J. Justin and J. Jude, Learn Ionic 2, DOI 10.1007/978-1-4842-2617-9_4

CHAPTER 4 © THOSE FAMOUS QUOTES

$ ionic generate --list

Component
Directive
Page

Pipe
Provider
Tabs

Figure 4-1. List of available generators

In this chapter we will use the generator to create pages. And we will use this “ionic generate” tool to
create other components of Ionic 2 in the upcoming chapters.

Let’s Build the App

To build this app, let’s begin with the blank template and use ionic-cli to generate pages—list and details
view. We include a search feature on the page, to filter the data. The details view allows the user to share the
quotes on twitter. We can also run the app in a device to see how it works on various platform devices.

As we did in our last chapter, let's use the “blank” app template to create the basic app template.
Issue the command to create a blank app in a terminal (as shown in Listing 4-1). The name of the app is
QuotesApp.

Listing 4-1. Blank App Creation
$ ionic start QuotesApp blank --v2 --ts

Now the blank template of the QuotesApp is ready. Before we add any features to this app, let's create
the two pages necessary for listing quotes and displaying quote details.

Add Pages

To add a page, run the command “ionic generate page <name>" as shown in Listing 4-2. This should be run
within the folder of the app. So change the directory to “QuotesApp” created in the above step.

Listing 4-2. Generate Page

$ ionic generate page quotes-list --ts

“--ts” in the command indicates that the created page artifacts should be based on the typescript. Since
this is a page creation, three files are added. In the previous chapter, the home page had an html file, a ts file,
and a scss file. Those three files are created for the page name that we defined in the command.

Similarly, create the quotes-detail page using the command “ionic generate page quotes-detail --ts.”

To refer the newly created pages in the root component of the app, modify the src/app/app.component.ts
file, as shown in the Listing 4-3. Also modify the rootPage as the quotes-list page.

30

CHAPTER 4 © THOSE FAMOUS QUOTES

Listing 4-3. src/app/app.component.ts Code

import { QuotesListPage } from '../pages/quotes-list/quotes-list’;

@Component ({
templateUrl: 'app.html’

)
export class MyApp {
rootPage = QuotesListPage;

To list the new pages as the modules of the app, modify the src/app/app.module. ts file (Listing 4-4).

Listing 4-4. src/app/app.module.ts Code

import { QuotesListPage } from '../pages/quotes-list/quotes-list’;
import { QuotesDetailPage } from '../pages/quotes-detail/quotes-detail’;

@NgModule({
declarations: [
MyApp,
QuotesListPage,
QuotesDetailPage
I
imports: [

IonicModule.forRoot (MyApp)
1
bootstrap: [IonicApp],
entryComponents: [
MyApp,
QuotesListPage,
QuotesDetailPage
P

providers: [{provide: ErrorHandler, useClass: IonicErrorHandler}]

)

Open the src/pages/quotes-1ist/quotes-1ist.ts file. This file contains the generated class for the
page QuotesListPage. Similarly open the pages/quotes-1list/quotes-detail. ts file. This file contains the
generated class for the page QuotesDetailPage. These two pages are not linked together, which we will do in
this chapter.

Ionic’s blank template creates a home page in the app. We will not be using that for this app. So delete
the “import { HomePage } from '../pages/home/home'; “from app.module.ts & app.component.ts file and
also delete the src/pages/home folder.

Making a REST HTTP Request

In this chapter we will just use a basic REST HTTP call. This app reads a json file which contains all the
quotes and its details. A HTTP call is used to retrieve the json file content and loads the json to a local
variable. We need the http objects to be available to the quotes-1list.ts file.

31

CHAPTER 4 © THOSE FAMOUS QUOTES

To import the necessary components, add the code in Listing 4-5 to the top of the file.

Listing 4-5. src/pages/quotes-list/quotes-list.ts Imports Code

import {Http} from '@angular/http';
import 'rxjs/add/operator/map’;
import {QuotesDetailPage} from '../quotes-detail/quotes-detail’;

e Http—Service to handle requests. HTTP calls returns observable of HTTP Responses
(Observable<Response>). Observables are Angular 2 concepts which are similar to
Promises. Differing from Promises, observables can return multiple values over time.
Observables can be treated as arrays. This allows the usage of methods like map and
flatmap, to reduce the observable returns.

e RxJS Library—Reactive Extensions Library for JavaScript. This is a library for
composing asynchronous and event-based programs using observables. We are
including the map operator in our class, which we will use to manage the JSON
return. This is used to transform the return object of collection.

¢ QuotesDetailPage—Including the class for navigating to the details page.

Update the constructor of the quotes-list to make the http call (see Listing 4-6).

Listing 4-6. pages/quotes-list/quotes-list.ts Constructor Code

quotesList = [];
filteredQuotes = [];
isfiltered: boolean ;

constructor(private http:Http, private navController: NavController) {
this.isfiltered = false;
this.http.get('quotes.json")
.map(res => res.json())
.subscribe(
data => {
this.quotesList = data.quotes;
1
err => console.log("error is "+err), // error
() => console.log('read quotes Complete '+ this.quotesList) // complete

);

quotesList is the variable defined to contain the json object. filteredQuotes is the variable which will
contain the search results. Constructor is modified to inject the Http object, which will be used to make the
http call. The HTTP get call takes a URL (uniform resource locator). In our case we want to load the JSON,
so we can do this in two ways. We can either provide the URL of the JSON or copy the json file into the app’s
www folder and provide the file name instead of the complete URL. You can download the json file from
http://www.apress.com/9781484226162.

map is an operator used to transform the result to the object of the type that we need. In our case we
want a JSON object. So we are transforming the res object to res. json(). Operator subscribe helps us to
subscribe to the observable. The format for subscribe is “subscribe(success, failure, complete).” In our case,
for the success we assign the return to the quotesList variable.

32

http://www.apress.com/9781484226162

CHAPTER 4 © THOSE FAMOUS QUOTES

Search Feature

QuotesApp allows searching through the quotes list with the author name. HTML needs to be added to the
quotes-list.html to display the search bar and the quotes results. Add the code in Listing 4-7, to the
<ion-content> in the quotes-1ist.html file in the /pages/quotes-1ist folder.

Listing 4-7. src/pages/quotes-list/quotes-list.html Code

<ion-input type="text" placeholder="Search Quotes..." (input)="searchQuotes($event)">
</ion-input>
</ion-item>

<ion-list *ngIf="lisfiltered">
<ion-item *ngFor="let quotel of quotesList" (click)="itemTapped($event,
quotel)">
<h2>{{quote1.author}}</h2>
<p class="item-description">{{quote1.quote}}</p>
</ion-item>
</ion-list>

<ion-list *ngIf="isfiltered">
<ion-item *ngFor="let quote of filteredQuotes" (click)="itemTapped($event,
quote)">
<h2>{{quote.author}}</h2>
<p class="item-description">{{quote.quote}}</p>
</ion-item>
</ion-list>

The first ion-list is displayed when the isfiltered value is false, to display the entire list of quotes. The
second ion-list is displayed when the isfiltered value is true, to display only the filtered list of quotes.

searchQuotes() is called for searching the json object. searchQuotes is a method in the quotes-1ist.ts
file and contains the code in Listing 4-8. This code just gets the value typed in the search box, and if it’s more
than two characters, it will filter the quotes from the quotesList variable. Based on the search key, the filtered
list will be copied into the filteredQuotes variable.

Listing 4-8. pages/quotes-list/quotes-list.ts searchQuotes Code

searchQuotes(event) {
if(event.target.value.length > 2) {
var filteredJson = this.quoteslList.filter(function (row) {

if(row.author.indexOf(event.target.value) != -1) {
return true

} else {
return false;

}

D;

this.isfiltered = true;
this.filteredQuotes = filteredJson;

}
}

33

CHAPTER 4 © THOSE FAMOUS QUOTES
Modify the quotes-list page title to “Quotes List” by modifying the ion-title (Listing 4-9).

Listing 4-9. pages/quotes-list/quotes-list.html Title Change Code

<ion-navbar>
<ion-title>Quotes List</ion-title»
</ion-navbar>

Let’s run the app to verify if the search works as expected. In the command line issue the command
ionic serve to run the app. The browser should be launched to display the app as shown in Figure 4-2.

Quotes List

Mar

Mark Twain
Twenty years from now you will be more disappoint...

Mark Twain
The two most important days in your life are the day...

Marie Curie
We must believe that we are gifted for something, a...

Joshua J. Marine
Challenges are what make life interesting and overc...

Martin Luther King Jr.

Our lives begin to end the day we become silent abo...

Figure 4-2. Search results page view

At this point, clicking the item would lead to an error thrown in the console. This is because the tapping
of the item has not been completely implemented. It is being done in the following section.

34

CHAPTER 4 © THOSE FAMOUS QUOTES

Ionic Navigation

Before we add navigation to the details page, let’s come to an understanding of navigation in ionic.

Navigation Stack

Like the browser history, each time you visit a page in an Ionic app, it gets added to the stack as a navigation
stack. Each item in the stack has been viewed previously.

A navigation stack is stored in and controlled by NavController in Ionic. To manipulate the stack, we
inject the NavController class to a @Page. “Push” is a method by which we add items to the stack and “pop”
is a method to remove the items from the stack. While navigating from one page to another we push the page
into the stack and to go back to the already viewed page we pop the view off.

NavController

NavController is used to control the navigation of the app. To navigate through an app, create and navigate
through a NavController using the ion-nav component.

@Component (
template: “<ion-nav [root]="rootPage"s</ion-navs"

1

NavController is injected into the constructor. This helps in getting a reference to the NavController to
control the navigation of the app. push() and pop() methods can be used to add and remove views.

import { NavController } from 'ionic-angular';
constructor(private navCtrl: NavController) {

Passing Data Between Pages

NavParams are objects that exist on a page and contain the data for that particular view.

constructor(public params: NavParams){
// userParams is an object we have in our nav-parameters
this.params.get('userParams');

}

Add Page Navigation to the QuotesApp

Now that we have the Quotes listing view, let’s add the details view. When an item in the search result is
clicked, details of the quotes should be displayed. In our app, list page displays the quote only partially, but
the details will display the entire quote. However, more details can be displayed in the Details page, if there
are any.

First, to capture the item being tapped in the list view, include the following method in the quotes-1ist.ts
file (Listing 4-10). This is called from the quotes-1ist.html file when the item is tapped and the tapped quote
is passed.

35

CHAPTER 4 © THOSE FAMOUS QUOTES

Listing 4-10. page/quotes-list/quotes-list.ts itemTapped Code

itemTapped(event, quote) {
console.log(quote);
this.navController.push(QuotesDetailPage, {
quote: quote
D;

}

The itemTapped method performs two actions. One is to navigate to QuotesDetailPage by adding the
QuotesDetailPage to the app navigation and second is to pass the quote that is selected as a NavParam.

Modify the constructor of the QuotesDetailPage in the pages/quotes-detail/quotes-detail.ts file
as shown in Listing 4-11. This retrieves the selected quote from the NavParams and assigns it to the variable
which is used to display the details of the Quote.

Listing 4-11. page/quotes-detail/quotes-detail.ts Constructor Code

quoteDetail: {quote:'', author:''};

constructor(private navCtrl: NavController,private navParams: NavParams) {
this.quoteDetail = navParams.get('quote');

Now to display the quotes details modify the pages/quotes-detail/quotes-detail.html ion-content
with the variable which is populated with the quote details (Listing 4-12).

Listing 4-12. page/quotes-detail/quotes-detail.html Code

<ion-content padding>
<h5>{{quoteDetail.quote}}</h5>

<h3> - {{quoteDetail.author}}</h3>
</ion-content>

Modify the quotes-detail page title to “Quotes Details” by modifying the ion-title (Listing 4-13).

Listing 4-13. pages/quotes-list/quotes-list.html Title Change Code

<ion-navbar>
<ion-titleyQuotes Detail</ion-titles
</ion-navbar>

Run the app using “ionic serve”; tapping the quote item will display the new details page. Since the

navigation of the app contains two pages, going back to the list page from the details page is automatically
enabled by Ionic as shown in Figure 4-3.

36

CHAPTER 4 © THOSE FAMOUS QUOTES

Quotes List Quotes List ¢ Back Quotes Detail
Life isn't about getting and having, it's about

Kev| giving and being.

Kevin Kruse

feisn't about Kevin Kruse - Kevin Kruse

Naooteon Hil . it's about giving a

o ot WShare on Twitter
Kevin Kruse

Albert Einstein W t bala

R.ob.ert Fros
Floren.ce Nughtingale.
Wayne Gralzkgf
Michael Jordar.|

Amelia Earhart

Figure 4-3. App list and details view

Just to recap on what we did, we created a Quotes app with the Ionic blank template. We added two
pages with the ionic generate CLI. Then we added the http call to retrieve required data. We also added the
page navigation between two pages and passed parameters between the pages.

Share on Twitter

The social sharing plug-in needs to be installed for the app to use sharing on Twitter. To install the plug-in,
issue the ionic plug-in add command as shown in the Listing 4-14.
Listing 4-14. Social Sharing Plug-in Addition
$ ionic plugin add cordova-plugin-x-socialsharing

To share the quote to the Twitter account, add the sharing icon to the quotes-detail.html file before
the </ion-content> (Listing 4-15). Ionic provides icons which can be used. For the complete list of icons,
visit http://ionicons.com/.
Listing 4-15. page/quotes-detail/quotes-detail.html Code for Twitter Share

<ion-item (click)="twitterShare()">
<ion-icon name="logo-twitter">Share on Twitter</ion-icon>
</ion-item>

Twitter share needs the social sharing plug-in to be added to the app. Add the code shown in
Listing 4-16 to the quotest-detail.ts file.

Listing 4-16. Adding SocialSharing Plug-in

import { SocialSharing } from 'ionic-native';

37

http://ionicons.com/

CHAPTER 4 © THOSE FAMOUS QUOTES

Add the twitterShare() method to the QuotesDetailPage class in the quotes-detail.ts file as shown
in Listing 4-17. The SocialSharing plug-in is from the ionic-native module and will work only when run
inside a device or simulator. When you click the share icon from a browser you will notice an error thrown.

Listing 4-17. page/quotes-detail/quotes-detail.ts Code for Twitter Share

twitterShare(){
console.log("in twitter share");
let quote: string = this.quoteDetail.quote;
SocialSharing.shareViaTwitter(quote.substring(0,110)+"..",null /*Image*/,"http://
ionicframework.com/img/homepage/ionicview-icon_2x.png")
.then((data)=>{
alert("Success "+data);

b

(err)=>{
alert("failed "+err)
)

Just to recap what we did, we have two pages on the app. These pages were added using the ionic-cli.
Quotes List page displays the list of quotes read from a json file. A filter is applied to the list if a search string
is typed. When you click an item in the list, the Quotes Detail page is displayed with only the details of the
selected quotes. Also a Twitter share icon is displayed which allows the user to share the quote if the app is
viewed in the simulator or device.

Running the App

Until now, we were running the app in a browser. To run the app in an emulator or a device we need to add
the appropriate platforms. The following steps help in understanding how this app can be run on Android or
iOS platforms.

Add Platforms

To add the respective platforms, run the “ionic platform” command with the platforms that are to be added
for the app. Similar to Listing 4-18, issue ionic platform add windows. iOS platform is added into the Ionic
app by default.

Listing 4-18. Android Platform Addition

$ ionic platform add android

Build the App

To build the app, the “ionic build” command is used as shown in Listing 4-19. Similarly, you can build the
app in other environments too, like “ionic build ios.”

Listing 4-19. Android Platform Build

$ ionic build android

38

CHAPTER 4 © THOSE FAMOUS QUOTES

Running the App in Android

You need to have the Android SDK installed on the machine to run your app. To run the app for android
platform, you can choose to run it on a real android device or an emulator.

If the Android SDK is installed and device images are defined in the avd manager, then to emulate your
app you can just use ionic emulate as shown in Listing 4-20.

Listing 4-20. Android app on the emulator

$ ionic emulate android

This would launch the emulator and display the app. If you don’t have the emualator images defined,
you will receive an error “Error: No emulator images (avds) found.”

To deploy the app on a real device, you can use the ionic run command (Listing 4-21). This would
deploy the app to a real device if available; otherwise it will deploy it to an emulator.

Listing 4-21. Android Platform Run

$ ionic run android

The quotes app would be displayed in the emulator as shown in Figure 4-4.

5584:5_4_FWVGA_AP_23 5584:5_4_ FWVGA_API_23 5584:5_4_FWVGA_API_23
- T Y]
Quotes List Quotes List €« Quotes Detail

Elo | attribute my success to this: | never gave or took any

excuse.
Kevin Kruse Florence Hightingats - Florence Nightingale
k=3
Napoleon Hill ‘Wshare on Twitter
Albert Einstein
Strive 1ot 1o be 8 success, but rathe

Robert Frost
Two roads diverged in a wood, and
Florence Nightingale

Wayne Gretzky

Michael Jordan
» missed mote than 9

Amelia E.':rlla:l.) .) q w e r i y u | (o]
A A i s asdf ghj kI
bt RN - - v @ W 5 o o O

Kevin Kruse

Figure 4-4. Quotes app on an emulator

39

CHAPTER 4 © THOSE FAMOUS QUOTES

Note If your emulator or device does not have the required app, Twitter in this case, you may not see the
sharing icon work as expected.

Running the App in i0OS

If you have xcode installed, iOS simulator is available along with it. To run the app for the iOS platform, you
can choose to run it on a real Android device or an emulator. To run the app on an emulator, issue the ionic
emulate command as shown in Listing 4-22.

Listing 4-22. i0OS Platform Emulate

$ ionic emulate ios
This would launch the emulator and display the app. In the foregoing command, because no target is
specified it might choose a default. To list all the possible targets run the command “ionic emulate ios -list.”

From this list you can choose one of the available emulators as the target as shown in Listing 4-23.

Listing 4-23. i0OS Platform Emulate

$ ionic emulate ios -target="iPhone-5, 9.3"
To deploy the app on a real iOS device, you can use the ionic run command (Listing 4-24).

Listing 4-24. iOS Platform Run

$ ionic run ios --device

Note If your emulator or device does not have the required app, Twitter in this case, you may not see the
sharing icon work as expected.

40

CHAPTER 4 © THOSE FAMOUS QUOTES

The quotes app would be displayed in the ios emulator as shown in Figure 4-5.

wevee pirtal 3G 00 AM O sesen el 36 00 AM Of [b4 eesss il 3G 00 AM o+ [Seeee 00 AM
Quotes List Quotes List £ Back Quotes Detail ¢r_ﬂﬂﬂﬁ_f;‘lmwﬁ
B Cancel Twitter Post
Rob If you do what you've always done,
you'll get what you‘ve always If you do what you've -
Kevin Kruse Robert Frost gotten. always done, you'll get
t it qetting and having, it . . what you've always
. - Tony Robbins gotten...
Mapoleon Hill Tony Robbins
Whatever the r an can cor what WShare on Twitter
Albert Einstein Location None
N b ;. r e .

Robert Frost

Florence Nightingale

gwertyuiop gwer rtyuiop
"_"’a!’"e‘?“‘m’__ asdfghijk.I asdfghijk/|
Mic_haelm_rdan__ & zxcvbnma@ &4 zxcvbnm@
Amelia Earhart 123 @ 0 space return 123 @ o space @ #.

Figure 4-5. Running the App

While running the app, if you face Signing for "QuotesApp” requires a development team. Then open the
platforms/ios/QuotesApp.xcodeproj in a xcode and assign the profile rightly before you run the app.

MODIFY THE APP WITH ADDITIONAL FUNCTIONALITY

You can modify the app to include the following features:

¢ In the quotes list, modify the filtering not to match the character case of the entered
text. This way one should a greater number of results in the quotes list

e Also enable sharing of the quotes in other medium like whatsapp or facebook

Summary

In this chapter, we created a blank app and added two pages to it. Quotes List page displays the list of quotes
and when filtered displays the filtered list. This is done by reading a quotes. json file by making an http REST
call. When you click an item in the list, the app navigates to the Quotes Detail page with the item details
along with a share icon. When clicked, this share icon displays the social sharing plug-in used to launch

the Twitter app, if installed in the device. This plug-in allows you ro share the selected quote to the Twitter
account configured in the Twitter app.

41

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER 5

Build the Weather App

In this chapter you'll retrieve weather data by making an HTTP REST call and taking a closer look at the
behavior of forms and form validations. You'll then see how to integrate other modules and display the
charts to represent the weather data.

Learning Objectives
e Use HTTP to retrieve data
e Use the tab view
e Forms, Form Fields, Form validations
e Integrate angular modules

e Use charts to display data

What We Will Build

Now it’s time to build a “Weather App” that displays the current weather and a weather forecast in two tabs.
The user can enter the location in a form, and the app will validate the location and retrieve weather for that
location via the https://developer.forecast.io/ APIs (application programming interfaces). This app
also fetches the forecast for the location and displays it in a chart format.

Prerequisite

To use the https://developer.forecast.io/ APIs you have to register with this site and get the API key.
The API key is available from the Ionic Service Providers.

Note You can also use any other publicly available APIs to retrieve weather details.

Let’s Build the App

Create a blank app named WeatherApp and remove the home page, which is created by default,
as we did in the earlier chapters.

© The Editor(s) (if applicable) and The Author(s) 2017 43
J. Justin and J. Jude, Learn Ionic 2, DOI 10.1007/978-1-4842-2617-9_5

https://developer.forecast.io/
https://developer.forecast.io/

CHAPTER 5 ' BUILD THE WEATHER APP

For the weather view, we will have two tabs. Issue the ionic generate tabs WeatherAPI command
and select 2 as the number of tabs (Figure 5-1).

$ ionic generate tabs WeatherAPI
2 How many tabs would you like?

>

[0, B TV R

Figure 5-1. ionic generate command to create tabs

Once you have selected the number of tabs, name the first tab “Weather” and the second “Forecast,” as
shown in Figure 5-2.

$ 1onic generate tabs WeatherAPI

7 How many tabs would you like? 2

7 Enter the first tab name: Weather

? Enter‘ the second tab name: Forecast

Figure 5-2. Tabs generation

Update the /src/pages/weather-api/weather-api.ts file with the right import of the pages
as shown in Listing 5-1.

Listing 5-1. Tab Import Correction

import { WeatherPage } from '../weather/weather’
import { ForecastPage } from '../forecast/forecast'

Similarly, update the tab root reference as shown in Listing 5-2.

Listing 5-2. Tab Root Page Upate

tabiRoot: any = WeatherPage;
tab2Root: any = ForecastPage;

To list all pages as the modules of the app, modify sxc/app/app.module. ts file as shown in Listing 5-3.
The home page reference can be removed too.

Listing 5-3. Modules Update

import { NgModule, ErrorHandler } from '@angular/core';

import { IonicApp, IonicModule, IonicErrorHandler } from 'ionic-angular';
import { MyApp } from './app.component’;

import { WeatherAPIPage } from '../pages/weather-api/weather-api';
import { ForecastPage } from '../pages/forecast/forecast';

44

import { WeatherPage } from

@NgModule ({
declarations: [
MyApp,
WeatherAPIPage,
ForecastPage,
WeatherPage
1,

imports: [

IonicModule.forRoot (MyApp)

I
bootstrap: [IonicApp],

entryComponents: [
MyApp,
WeatherAPIPage,
ForecastPage,
WeatherPage

1

CHAPTER 5

'« ./pages/ueather/weather';

providers: [{provide: ErrorHandler, useClass: IonicErrorHandler}]

H
export class AppModule {}

BUILD THE WEATHER APP

To modify the root page to be the root of the tab, modify the src/app/app.component.ts file

as shown in Listing 5-4.

Listing 5-4. Component Root Page Update

import { Component } from '@angular/core’;
import { Platform } from 'ionic-angular';
import { StatusBar, Splashscreen } from 'ionic-native';

import { WeatherAPIPage } from

@Component ({
templateUrl: 'app.html’

1
export class MyApp {

rootPage = WeatherAPIPage;

. ./pages/weather-api/weather-api’;

constructor(platform: Platform) {
platform.ready().then(() => {
// Okay, so the platform is ready and our plugins are available.
// Here you can do any higher level native things you might need.
StatusBar.styleDefault();

Splashscreen.hide();
D;
}
}

45

CHAPTER 5 ' BUILD THE WEATHER APP

Adding Data Services

In the weather app, when you provide a location as input, the latitude and longitude of the location are
required. You can retrieve this information using the google API. Once you have those details you can retrieve
the weather details of the location using the forecast API. We will implement both these calls as services.

An application may use more than few constants. For example, in the WeatherApp, the google API URL
(uniform resource locator) and the forecast URL are constants. To avoid hard-coding in multiple places, it’s
better to bring such hard-coding from one single provider.

Add the Constants Service Provider

Using ionic generate create a provider for the constants and name it AppConstants (Listing 5-5).

Listing 5-5. Constants Provider Generation

$ ionic generate provider AppConstants

The app needs two constants. Add both the constants and their corresponding get methods to this
provider. Add the code shown in Listing 5-6 to the AppConstants class by replacing the existing constructor.
Listing 5-6. src/providers/app-constants.js Code

googleAPIURL: string;
forecastURL: string;

constructor(private http: Http) {
this.googleAPIURL = "https://maps.googleapis.com/maps/api/geocode/json?address=";
this.forecastURL = "https://api.forecast.io/forecast/<<ApiKey of Forecast.io>>/";

}

getGoogleAPIURL () {
return this.googleAPIURL;

}

getForecastURL() {
return this.forecastURL;

}

In the weather app, we don'’t set the value of the constants from the app, so we don’t have any setter
methods included in the provider. But if the app requires calling the setter method, you can added that too.

Add the REST Service Provider

Create the REST service provider with the name WeatherApi (see Listing 5-7).

Listing 5-7. WeatherAPI Provider Creation

$ ionic generate provider WeatherAPI

The REST provider class needs to use the app-constants provider for the HTTP URL requests. So import
app-constants into the WeatherAPI provider file stc/providers/weather-api.ts, as shown in Listing 5-8.

46

CHAPTER 5 BUILD THE WEATHER APP

Listing 5-8. Import app-constants Provider
import {AppConstants} from './app-constants';

The WeatherAPI constructor should contain two variables: the http object and AppConstants.
getGeometry is the method the components can call to retrieve the latitude and longitude for the provided
location. This is done by calling the geocode API from google maps. getCurrentheather is another method
that retrieves the weather information for the provided longitude and latitude of the location. Replace the
constructor of weather-api. ts file with the code in Listing 5-9.

Listing 5-9. src/providers/weather-api.ts Code
weatherURL: string;

private constantVar: any;

constructor(private http: Http, constantVar: AppConstants) {
this.constantVar = constantVar;
this.weatherURL = constantVar.getForecastURL();
}

getCurrentWeather(longitude: any,latitude: any) {
return this.http.get(this.weatherURL+latitude+","+longitude)
.map(res => res.json())

getGeometry(googleAPIURL: any,location: any) {
return this.http.get(googleAPIURL+"' "+location+"'")
.map(res => res.json())

Notice the @Injectable() annotation in the provider classes. This marks the class to be available for the
component for instantiation.

Forms in Ionic

Forms can be implemented in three ways in Ionic:
e [(ngModel]
e Forms with Templates

e Forms with FormBuilder

[(ngModel)]

This is a simple API that binds and passes the object to the class. Templates uses ngModels to bind the object
and ngSubmit to submit the form. When using ngModel, “name” property is required for the form fields.
Listing 5-10 provides an example of how the ngModel is used in forms.

Listing 5-10. ngModel-Based Templates

<form (ngSubmit)="loginForm()">

<ion-item>

47

CHAPTER 5 ' BUILD THE WEATHER APP

<ion-label>Login </ion-label>
<ion-input type="text" [(ngModel)]="login.username" name="username"></ion-input>
</ion-item>
<button type="submit" block>Login</button>
</form>

Class contains the submit form which can use this.<object> format to retrieve the value as shown in
Listing 5-11.

Listing 5-11. ngModel-Based Form Submission

login = {}
loginForm () {
console.log(this. username)

}

Forms with Templates

This way of Form implementation uses the reference to the form instead of the model of the form. The
values are pulled directly from the form itself, which is similar to the ngModel way of implementation.
The main difference is that the ngModel uses the model of the form, but the template uses the form
reference itself (Listing 5-12).

Listing 5-12. Template-Driven Forms

<form #form="ngForm" (ngSubmit)="loginForm(form)" novalidate>
<ion-item>
<ion-label>Login</ion-label>
<ion-input type="text" required [(ngModel)]="login.username
</ion-input>
</ion-item>
</form>

ngControl="username">

Class pulls the form values using the reference to the form itself as shown in Listing 5-13.

Listing 5-13. Template-Driven Forms-Class Definition

login = {
username: "',
}.

loginForm(form) {
console.log(form.value)

}

Forms with FormBuilder

Forms are created in the class and their logic is also maintained in the class. Template should import the
FormBuilder from angular/forms. Also, template would use the formGroup and formControlName as shown
in Listing 5-14. FormBuilder is a helper service which creates the instance of ControlGroup which we can
refer to as “form.”

48

CHAPTER 5 BUILD THE WEATHER APP

Listing 5-14. FormBuilder-Based Template

<form [formGroup]="login" (ngSubmit)="loginForm()">
<ion-item>
<ion-label>Login</ion-label>
<ion-input type="text" formControlName="username"></ion-input>
</ion-item>
<button type="submit" [disabled]="!login.valid">Submit</button>
</form>

The constructor of the class should declare the FormBuilder group and the form submission can pick
up the values from the class variable itself, as shown in Listing 5-15.

Listing 5-15. FormBuilder-Based Class

constructor(private fb: FormBuilder) {
this.login = this.fb.group({

username: ['', Validators.required]
D;

}
loginForm(){
console.log(this. login.value)

}

Of the three ways to implement forms, ngModel is simple but has less programmatic control. Forms with
Templates is hard to test but easy to develop as it is similar to html forms. The recommended way to implement
Forms in Ionic is to follow the FormBuilder, as it’s simpler and provides more programmatic control.

Include Weather/Weather Form

In the src/pages/forecast/forecast.html file include the code in Listing 5-16 within the existing
<ion-content></ion-content>.

Listing 5-16. Forecast Form

<form [formGroup]="forecastForm" novalidate>
<table width="100%">
<tr>
<td>
<div class="1list">

<ion-label>Forecast Type</ion-label>
<ion-list radio-group formControlName="forecastType" name="forecastType">
<ion-item>
<ion-label class="item item-radio">daily</ion-label>
<ion-radio value="daily" checked></ion-radio>
</ion-item>
<ion-item>
<ion-label class="item item-radio">hourly</ion-label>
<ion-radio value="hourly"></ion-radio>
</ion-item>
</ion-list>
</div>

49

CHAPTER 5 ' BUILD THE WEATHER APP

</td>
<td>

<ion-item>

<ion-label floating>Location</ion-label>

<ion-input type="text" formControlName="location" name="location"></ion-input>
</ion-item>
<p [hidden]="forecastForm.controls.location.valid" danger padding-left> Enter a
valid location</p>

</td>

</tr>
<tr> <td colspan="2">
<button ion-button block [disabled]="!forecastForm.controls.location.valid" (click)="getFore
cast(forecastForm)">
<ion-icon name="custom-button"></ion-icon>Get Weather</button>
</td> </tr>
</table>
</form>

A form is a type of FormGroup. A Control is tied to the input field; it has a value and a validation state.

In the code in Listing 5-16, forecastForm is a FormGroup. This form has two fields: alocation text field and a
radio button group for the forecast type. Based on the validation of location, the message “Enter a valid location”
would be displayed. Also, the button to retrieve the weather would be displayed only when the location is valid.

Similarly, the same form fields accept forecast type into the src/pages/weather/weather.html file
(Listing 5-17).

Listing 5-17. Weather Form

<form [formGroup]="weatherForm" novalidate>
<table width="100%">
<tr>
<td>
<ion-item>
<ion-label floating>Location</ion-label>
<ion-input type="text" formControlName="location" name="location"></ion-input>
</ion-item>

<p [hidden]="weatherForm.controls.location.valid" danger padding-left> Enter a valid
location</p>

</td>

</tr>
<tr> <td>

<button ion-button block [disabled]="!weatherForm.controls.location.valid" (click)="getWeat
her(weatherFoxm)">
<ion-icon name="custom-button"></ion-icon>Get Weather</button>
</td> </tr>
</table>
</form>

50

CHAPTER 5 BUILD THE WEATHER APP

Form Validations in Ionic

Validating the form is an integral part of any application that has form elements. Form validations can be of
various types.

e Basic validation. In Ionic this is mostly done using the underlying angular validators.

Multiple validations. These are allowed for a single form field.
e Custom validations. These can be written using custom validators.
e Server-side validations. This can be done asynchronously by contacting the server.

Validators are used in conjunction with FormBuilder to validate the form fields.
For the basic validation, default validators can be used from the @angular/common package. Default
validators include the following:

e Validators.required—used for mandatory fields

e Vadliators.maxLength(number)-used to specify the maximum length of the form
field

e Vadliators.minLength(number)-used to specify the minimum length of the form
field

e Vadliators.pattern(‘pattern’)-used to verify with a regex pattern provided

In this chapter we will use all the foregoing default validators in our weather form.

Custom Validations in lonic

Custom validation can be based on the logic required by the app. It is recommended that you write the
custom validations in a separate service. Listing 5-18 provides a sample custom validator which can match
the passwords provided in two form fields pwd and confirmPwd.

Listing 5-18. Custom Validator

import { Control, ControlGroup } from "@angular/common";
export class CustomValidators {
public static matchPassword(cg: ControlGroup): { [s: string]: boolean } {
let pwd = cg.controls[pwd];
let confirmPwd = cg.controls[confirmPwd];
if (pwd == confirmPwd) {
return { matchPassword: true};
}

return null;

Input to the custom validator may be a Control if the validation is dependent only on one form field, or
a ControlGroup if the validation is dependent on more than one form field.

51

CHAPTER 5 ' BUILD THE WEATHER APP

Validation in the Weather Form

The Weather form uses four types of basic validation: required, minimum length, maximum length, and
pattern. All four types of validation are applied on the location field. They are applied to the file stc/pages/
weather/weather.ts via the constructor as shown in Listing 5-19.

Listing 5-19. Constructor of the Weather Form

weatherForm: FormGroup;
private appConstants: any;
private Weather: any;
private geometry: any;
private currentWeather: any;
weatherResult: boolean;
summaryIcon: string;

constructor(private navController: NavController, private fb: FormBuilder, appConstants:
AppConstants, WeatherApi: WeatherAPI) {
this.weatherForm = fb.group({
'location': ['', Validators.compose([Validators.required,Validators.pattern
('[a-zA-Z,]*"),Validators.minLength(3),Validators.maxLength(100)])]
};
this.appConstants = appConstants;
this.Weather = WeatherApi;
this.geometry = { "longitude":"", "latitude":""};
this.currentWeather = {};
this.weatherResult = false;

this.summaryIcon ="";

Include the imports required for the changes added to the constructor as shown in the Listing 5-20. The
forecast form requires the same imports.

Listing 5-20. Imports Required for Weather and Forecast Form

import { FormBuilder, FormGroup, Validators } from '@angular/forms';
import {AppConstants} from '../../providers/app-constants’;
import {WeatherAPI} from '../../providers/weather-api';

Similarly, replace the constructor of the src/pages/forecast/forecast.ts file as shown in the Listing 5-21.

Listing 5-21. Constructor of the Forecast Form

forecastForm: FormGroup;
private appConstants: any;
private Weather: any;
private geometry: any;
private minWeather: number[][];
private maxWeather: number[][];
private weatherTime: any;
weatherResult: boolean;
summaryIcon: string;

52

CHAPTER 5 BUILD THE WEATHER APP

constructor(private navController: NavController, private fb: FormBuilder, appConstants:
AppConstants, WeatherApi: WeatherAPI) {
this.forecastForm = fb.group({
'location': ['', Validators.compose([Validators.required,Validators.pattern
('[a-zA-Z,]*'),Validators.minLength(3),Validators.maxLength(100)])],
'forecastType': 'daily’
1;
this.appConstants = appConstants;
this.Weather = WeatherApi;
this.geometry = { "longitude":"", "latitude":""};
this.minWeather = new Array();
this.maxWeather = new Array();
this.weatherTime = new Array();
this.weatherResult = false;

this.summaryIcon ="";

}

Add the provider to the component definition, in the src/pages/weather/weather.ts and src/pages/
forecast files.

Call the REST Service Provider and Display the Data

Service providers make the REST API and src/pages/weather/weather.ts should call the service provider
methods to get the weather (see Listing 5-23).

Listing 5-23. Retrieve Weather Data for Display

getWeather(formData: any) {
this.lWeather.getGeometry(this.appConstants.getGoogleAPIURL(), formData.value.location).
subscribe((data: any) => {
this.geometry.longitude = data.results[0].geometry.location.lng;
this.geometry.latitude = data.results[0].geometry.location.lat;
this.Weather.getCurrentileather(this.geometry.longitude,this.geometry.latitude).
subscribe((weatherData: any) =» {
this.currentWeather=weatherData.currently;
this.weatherResult = true;
if(this.currentWeather.summary.tolLowerCase().index0f("cloudy") > 0)
this.summaryIcon = "cloudy";
else if(this.currentWeather.summary.tolLowerCase().indexOf("rainy") > 0)
this.summaryIcon = "rainy";
else if(this.currentWeather.summary.tolLowerCase().indexOf("sunny") > 0)
this.summaryIcon = "sunny";
else if(this.currentWeather.summary.tolLowerCase().index0f("thunderstorm") > 0)
this.summaryIcon = "thunderstorm";
1;
D;
}

getGeometry is called to retrieve the latitude and longitude. Once you have that information you call
getCurrentWeather to retrieve the current weather. Icon is also assigned based on the data. Add the code
shown in Listing 5-24 at the end of the <ion-content> tag.

53

CHAPTER 5 ' BUILD THE WEATHER APP

Listing 5-24. Update the Weather Display

<div *ngIf="weatherResult">
<h3>Right Now</h3>
<h2 class="current-temp">
<ion-icon name="{{summaryIcon}}"></ion-icon>
{{currentlieather.summary}}°
</h2>

<div>
<div>
Feels like {{currentWeather.temperature}}

Dew point: {{currentWeather.dewPoint}}

Humidity: {{currentWeather.humidity}}%

Visibility: {{currentWeather.visibility}} mi

Pressure: {{currentWeather.pressure}} mb
</div>
</div>
</div>

Display the Forecast as Chart

This section focuses on how other modules of angular2 can be integrated with Ionic. To understand
this integration, we will use the chart display for the forecast. To display the forecast as a chart, we use
the “CHART_DIRECTIVES” from “angular2-highcharts” module. Add the dependency of the angular2-
highcharts using the npm with the command shown in Listing 5-25.

Listing 5-25. Charts Plug-in Install

$ npm install angular2-highcharts --save

Charts are used for the forecast, so let’s import the charts into the src/app/app.module. ts file as shown
in Listing 5-26.
Listing 5-26. Import the Charts Module

import { ChartModule } from 'angular2-highcharts';
Include the Chartmodule as an import into the app.module. ts file (Listing 5-27).

Listing 5-27. Imports in app.module.ts

imports: [
ChartModule,
IonicModule.forRoot (MyApp)

1,

Include the chart value variable in the src/pages/forecast/forecast.ts. Define the variable
as part of all the other variable definitions as - chartValue: {};

Filtering the JSON retrieved from the forecast API is required for the chart display. JSON filtration
retrieves the date/hour details and the temperature details (see Listing 5-28).

54

CHAPTER 5 BUILD THE WEATHER APP

Listing 5-28. Filtering of Forecast JSON in src/pages/forecast/forecast.ts

filterJson(json,forecastType)

{
this.minWeather = new Array();
this.maxWeather = new Array();
this.weatherTime = new Array();
for(var i=0;i<json.length;i++)
{
var months = ['Jan','Feb', 'Mar",'Apr', 'May"', 'Jun', 'Jul’,'Aug', 'Sep"', '0ct’, 'No
v','Dec'];

var b: Date = new Date(json[i].time * 1000);

if(forecastType == "daily")

{
this.weathexTime.push(b.getDate()+" "+months[b.getMonth()]+" "+b.getFullYear());
this.maxWeather.push(json[i].temperatureMax);
this.minWeather.push(json[i].temperatureMin);

}

else
{
this.weathexTime.push(b.getDate()+" "+months[b.getMonth()]+" "+b.getFullYear() +"
- "+b.getHours() +" hours");
this.minWeather.push(json[i].temperature);

}

}
}

To display the chart, JSON filtering has to be called and then passed to the chart options value
(see Listing 5-29).

Listing 5-29. Forecast Chart Display in src/pages/forecast/forecast.ts

getForecast(formData: any) {
this.Weather.getGeometry(this.appConstants.getGoogleAPIURL(), formData.value.location).
subscribe((data: any) => {
this.geometry.longitude = data.results[0].geometry.location.lng;
this.geometry.latitude = data.results[0].geometry.location.lat;
this.Weather.getCurrentWeather(this.geometry.longitude,this.geometry.latitude).
subscribe((weatherData: any) => {
this.weatherResult = true;
if(formData.value.forecastType == "daily")
{
this.filterJson(weatherData.daily.data,formData.value.forecastType);
this.chartValue = {
title : { text : 'Weather Forecast' },
chart: { type: 'column' },
xAxis: {

b

series: [

categories: this.weatherTime

55

CHAPTER 5 ' BUILD THE WEATHER APP

{ name : 'Min Temp', data: this.minWeather},
{ name : 'Max Temp', data: this.maxWeather}
1
)
}
else
{

this.filterJson(weathexData.hourly.data,foxrmData.value.forecastType);
this.chartValue = {

title : { text : 'Weather Forecast' },

chart: { type: 'column' },

xAxis: {

b

series: [
{ name : 'Min Temp', data: this.minWeather},
1
b
}
D;
D;

categories: this.weatherTime

Include the required chart js file into the body of the src/index.html file as shown in Listing 5-30.

Listing 5-30. Chart File Included in src/index.html

<body>
<!-- Tonic's root component and where the app will load -->
<ion-app></ion-app>

<!-- Chart.js -->
<script src="https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.3.0/Chart.min.js"></script>

<l-- The polyfills js is generated during the build process -->
<script src="build/polyfills.js"></script>

<!-- The bundle js is generated during the build process -->
<script src="build/main.js"></script>

</body>

Include the chart tag in the forecast view when the weather result is available at the end <ion-content>
(Listing 5-31).

Listing 5-31. Include Chart in Forecast View

<div *ngIf="weatherResult">
<chart [options]="chartValue"></chart>
</div>

The code in Listing 5-31 retrieves the forecast data from the REST call and, based on the daily/hourly
data, displays the charts.

56

CHAPTER 5 ' BUILD THE WEATHER APP

Run the Weather App

Similarly to what we did in the previous chapters, build and run this app. This app contains two tabs. The
first display tab retrieves the current weather, as shown in Figure 5-3.

Note When you run the app in the browser you may see “No 'Access-Control-Allow-0rigin' header is
present on the requested resource.” To solve this issue, set up a proxy server. To learn more about this issue,
refer to http://blog.ionic.io/handling-cors-issues-in-ionic/.

5584:5_4_FWVGA_API_23 5584:5_4_FWVGA_API_23 |
L uuous]

Weather Weather

London

Enter a valid location

Right Now

Clear®

Feels like 39.41

Dew point: 36.54
Humidity: 0.89%
Visibility: 6.59 mi
Pressure: 1020.64 mb

Figure 5-3. First tab view

The second tab displays the weather forecast. It displays the forecast as a chart as in Figure 5-4.

57

http://blog.ionic.io/handling-cors-issues-in-ionic/

CHAPTER 5 ' BUILD THE WEATHER APP

5584:5_4_FWVGA_API_23 5584:5_4 FWVGA_API_23
[uusa T

Forecast Forecast

Forecast Type Forecast Type

daily ® daily o
London London
hourly @] hourly ®
e e
Weather Forecast Weather Forecast
@ MinTemp @ MaxTemp @ MinTemp

Figure 5-4. Second tab view—chart view

MODIFY THE APP TO VALIDATE WEATHER LOCATION

Add a custom validator in to the weather page, for the location to contain some specific starting
characters.

Summary

In this chapter, we used the https://developer.forecast.io/ APIs registration to retrieve the weather
data. And, using Ionic, we developed the tab-based app which displays the weather result based on the
location entered. In the second tab, the monthly or hourly forecast is displayed as a chart.

58

https://developer.forecast.io/

CHAPTER 6

Saving Memories

The main objective of Ionic is to help developers build a “native-feeling” app that will run on most of the
popular platforms. Ionic native is the wrapper for the Cordova/PhoneGap plug-ins that adds the native
features to your mobile app easily. This chapter will help you to use the ionic-native module by employing a
camera and storage plug-in

Learning Objectives

e Use camera to snap pictures
e Store the pictures to the device

e Display the pictures in a carousel

What We Will Build

Let’s build a “Saving Memories” app, which allows us to capture pictures using the native camera of the
mobile device. The app also displays all the pictures in a carousel. This chapter will show you how to store
the pictures in the mobile device and details the possible options available for the storage.

Building the App

Create a blank app named “NativeApp.” This app is relatively a simple app which uses the camera to snap
pictures.

Ionic Native

Ionic Native is a wrapper and adds the native features to the app. This wraps the callback and provides a
common interface to all plug-ins. There are 107 native plug-ins listed at https://ionicframework.com/
docs/v2/native/. To import the plug-ins, a simple import statement would suffice like import { Camera }
from 'ionic-native';

The required plug-ins have to be installed based on their documentation.

In this chapter we will use the camera and native storage plug-in from this list.

© The Editor(s) (if applicable) and The Author(s) 2017 59
J. Justin and J. Jude, Learn Ionic 2, DOI 10.1007/978-1-4842-2617-9_6

https://ionicframework.com/docs/v2/native/
https://ionicframework.com/docs/v2/native/

CHAPTER 6 © SAVING MEMORIES

Take Pictures

To install the camera plug-in so that it can be used in the app, issue the command from the root folder of the
app, as shown in Listing 6-1.

Listing 6-1. Cordova Camera Plug-in Installation
$ ionic plugin add cordova-plugin-camera

To take pictures, modify the src/pages/home/home.html code to add a button in the nav bar as shown
in Listing 6-2. Remove the existing <ion-header> and add the following. Also remove the content inside
<ion-content>

Listing 6-2. Take Pictures Button

<ion-header>
<ion-navbar>
<ion-title>
Manage your photos!
</ion-title>
<ion-buttons end (click)="takePicture()"»>
<button>
<ion-icon name="camera"></ion-icon>
</button>
</ion-buttons>
</ion-navbar>
</ion-header>

To import the camera module to the code, add the code in Listing 6-3 to the src/pages/home/home. ts file.

Listing 6-3. Camera Import
import {Camera} from 'ionic-native';

takePicture() is the method called when you click the camera button in home.html. Add the method
to the src/pages/home/home. ts file as shown in Listing 6-4.

Listing 6-4. Take Picture

takePicture(){
Camera.getPicture({
quality : 75,
destinationType : Camera.DestinationType.FILE_URI,
sourceType : Camera.PictureSourceType.CAMERA,
allowEdit : true,
encodingType: Camera.EncodingType.JPEG,
targetWidth: 300,
targetHeight: 300,
saveToPhotoAlbum: false
}).then((imageUri) => {
console.log("imageUri is "+imageUri);
b, (err) => {
console.log("camera error is"+err);
D;
}

60

CHAPTER 6 © SAVING MEMORIES

Styles in Ionic2

SASS (Syntactically Awesome Stylesheets) is an extension to CSS (Cascading Style Sheets), which is used in

styling the applications. SASS is a CSS pre-processor, which allows developers to write reusable, maintainable,

and extensible code in CSS. Version 3 of SASS is SCSS (Sassy CSS), which defines the new syntax for SASS and

builds on top of the existing CSS syntax. SCSS is used in Ionic to style the mobile application design.
Following are the few important features of SCSS.

e Variables-Variables can be declared and can be reused. For example,

$primary : rgb(25,25,25);
h1 {
color: $primary;

}

The variable $primary can be reused in the whole document.

¢ Nesting-Nested selectors inside selectors.

page-home {
.custom-icon {
font-size: 32px;
color : blue;
}
}

custom-icon is applicable on the home page only.

e Extend-Extend styles from other declarations, which enables us to avoid copying the
declarations.

.block { margin: 5px 3px; }
h1 {

@extend .block;

border: 2px solid #fff;

}

e Mixins-Mixins are a set of definitions which compiles according to rules or
parameters. Create your own functions using Mixins.

$font-base: 12px;

@mixin custom-para {
font-size: $font-base;

}

P

{

@include custom-para;

}

61

CHAPTER 6 © SAVING MEMORIES

e Import-@import helps the developer to import partial files. While this provides a
small maintainable code set, it also makes an HTTP request to each of these file to
include the code.

//basel.scss
pi
margin: 4;
padding: 0;

//base.scss
@import basel;

body {
font: 100% Palatino;
background-color: #fffff;

}

Styling the Button

The camera icon is displayed as part of the navigation bar. For better visibility it should be styled to make
itlittle bigger. To add the style, modify the src/pages/home/home. scss file. Add the style in Listing 6-5 as a
nested style inside page-home. This is done so that only this page has this style applied.

Listing 6-5. Button Style Change

.custom-icon {
font-size: 32px;
color : blue;

}

To update the icon with the style, update the <ion-buttons> in the pages/home/home.html
file as in Listing 6-6.

Listing 6-6. Applying Styled Button

<ion-buttons end>
<button (click)="takePicture()" class="custom-icon">
<ion-icon name="camera"></ion-icon>
</button>
</ion-buttons>

Now that we have the “take pictures” functionality, run the app in your device. Figure 6-1 shows the

running app. When you click the camera icon, it displays the camera with the options, and the keyboard
picture taken.

62

CHAPTER 6 © SAVING MEMORIES

Manage your p... g}

"NativeApp” Would Like to
Access the Camera

Don't Allow OK

Cancel ©

Figure 6-1. Take picture view

While running the app, you may see an error: “Signing for ‘NativeApp’ requires a development team.” If
so, then open platforms/ios/NativeApp.xcodeproj in xcode and assign the profile correctly before you run
the app.

Store Pictures

Once a picture is captured, we want to store it. To do this, we can choose to store the list of image URIs
(uniform resource identifiers) returned by takePicture(). Since it is a list of images, declare an array in the
pages/home/home. ts file and modify the constructor to initialize the array as shown in Listing 6-7.

Listing 6-7. Array Initialization

public base64Image: string[];
constructor(public navCtrl: NavController) {
this.base64Image = new Array();

Modify takePicture() to store the URI in the array. Modify the method as shown in Listing 6-8 in the
pages/home/home. ts file.

Listing 6-8. Store Image URI in the array.

takePicture() {
Camera.getPicture({
quality : 75,
destinationType : 1,
sourceType : Camera.PictureSourceType.CAMERA,
allowEdit : true,
encodingType: Camera.EncodingType.JPEG,

63

CHAPTER 6 © SAVING MEMORIES

targetWidth: 300,
targetHeight: 300,
saveToPhotoAlbum: false
}).then((imageUri) => {
console.log("imageUri is "+imageUri);
this.base64Image.push(imageUri);
let imageUris = this.base64Image.map(o => o).join("', ");
console.log("imageUris is "+imageUris);

}, (err) = {

console.log("error occurred "+err);
D;

}

Update the src/pages/home/home. html file to display a message when the array is empty. Add the code
in Listing 6-9 within the <ion-content>.

Listing 6-9. Display Message When Image Is Empty

<div *ngIf="base64Image.length == 0">

 8nbsp;Click on the camera icon to
take pictures!</div>

Display Pictures

Now that the pictures are stored, let’s display the pictures in a carousel. <ion-slides/> are used to display
the carousel. Add the code shown in Listing 6-10 within the <ion-content>.

Listing 6-10. Display Pictures

<ion-slides pager autoplay="true" pager="true" [options]="extraOptions" *ngIf="base64Image.
length > 0">
<ion-slide *ngFor="let image of base64Image">

</ion-slide>
</ion-slides>

The ion-slides option has to be defined in the src/pages/home/home. ts file. Define the variable as
shown in Listing 6-11.

Listing 6-11. Options Declaration

public extraOptions : {};
Add the options value, as shown in Listing 6-12, in the constructor of the src/pages/home/home. ts file.

Listing 6-12. Slides Option Values

this.extraOptions = {
pager: true,
paginationClickable: true,
spaceBetween: 30,
centeredSlides: true,
autoplay: 2000

64

CHAPTER 6 © SAVING MEMORIES

Run the app in a device. Pictures captured using the camera would be displayed as a carousel. But if
you switch off the app or close the app and reopen it, the pictures would not be maintained. This is because
we are not persisting the image URI. To persist the image URI, we should use any of the storage options
available with Ionic.

Ionic Storage
In a mobile device, storage may be required for various reasons, including the following:

e Asimple reason that all data need to be stored locally is to prevent external interaction.
Json file containing the quotes, which is stored locally in the app is an example.

e Store data locally for specific functionality. The Remember Me app stores the user
details locally.

e Cache the data locally to avoid server calls. Server data which does not change often
can be stored locally for a specific period.

e Store user preferences locally. An app that gets the user preferences and modifies the
app display accordingly can store the user preferences locally.

e Offline data sync requirements can have offline data stored locally. Evernote offline
can store the to-dos locally and sync when the device is online.

There are various ways to implement storage in the mobile device. The next few sections discuss the
ways to implement storage based on what you are storing.

Local Storage/Web Storage

Local storage and Web storage are simple ways to store the data without any relational database capabilities.
Such storage is easy to use and available in both browser-based and hybrid applications. Local storage has
a 5 MB data limit which can be extended to 25 MB but can only contain strings. For complex types of data,
local storage has to be serialized and lacks performance of complex types of data.

This storage, which is not reliable, should be used only if it’s okay to lose the data at any point in time.
A few third-party implementations are available for local storage and one of them is localForage.

Native Storage

Native storage is simple and fast persistent storage available for Android, i0S, and Windows applications.
Like local storage, this storage is also available only for limited data. But unlike local storage, this storage is
persistent and available until the application is removed from the device.

WebSQL

WebSQL provides a way to store data in a structured database which can be queried using SQL syntax.
This kind of storage is supported by Android and iOS mobile browsers. This storage supports versioning of
data and provides good performance as the data can be indexed.

While not supported by all Cordova platforms, WebSQL is more complex compared to local storage, and
WebSQL is deprecated.

65

CHAPTER 6 © SAVING MEMORIES

SQLLite

SQLLite allows each application in the mobile device to have its own SQL database. Like native storage this
is only applicable to mobile applications and not available for HTML5 applications.
SQLite provides a way to persistently store unlimited data which can be managed using SQL syntax.

IndexedDB

This no-SQL approach to the storage is a collection of “object-stores.” IndexedDB, supported by Android and
Windows (with some limitations), provides better performance than local storage because of its indexing
capabilities. Because of its No-SQL approach, Indexed DB provides a more flexible structure of the data. It
also supports versioning of data.

Persist the Pictures

To store the image URI persistently, the memories app uses the native storage plug-in of Ionic 2. When
pictures are taken, store the image URI in the array. To install the required native plug-in in a terminal, from
the root folder of the app, issue the command as shown in Listing 6-13.

Listing 6-13. Import NativeStorage
$ ionic plugin add cordova-plugin-nativestorage

To import the native storage, modify the existing ionic-native import statement in the src/pages/home/

home. ts file as in Listing 6-14.
Listing 6-14. Import NativeStorage
import {Camera,NativeStorage} from 'ionic-native';

The array should be stored in the native storage. Since NativeStorage can hold only string, the array will
be converted into string before storing. Add the code shown in Listing 6-15 to src/pages/home/home. ts after
storing the image URI in the array in takePicture().

Listing 6-15. Storing in NativeStorage

let imageUris = this.base64Image.map(o => o).join(', '); //This line exist already in the
takePciture()
NativeStorage.setItem('photos’, imageUris).then(

() => console.log('Stored item!"),

error => console.error('Error storing item', error)

)5

To use the image URI from NativeStorage, add the code in Listing 6-16 to the constructor. This code
splits the stored string into an array.

66

CHAPTER 6 © SAVING MEMORIES

Listing 6-16. Retrieve from NativeStorage

this.platform.xeady().then(() => {
NativeStorage.getItem("photos").then(data => {
this.base64Image = data.split(",");

b
error => {
console.log("error in getting photos "+error);
D;
1;

The code in Listing 6-16 should be called only when the device is ready. this.platform.ready() is
used to check if the device is ready. Import the platform for this to work. Modify the existing ‘ionic-angular’
import in Listing 6-17 for the Platform import.

Listing 6-17. Import Platform

import { NavController,Platform } from 'ionic-angular';
Modify the constructor signature with platform as one of the inputs, as in Listing 6-18.

Listing 6-18. Platform in Constructor

constructor(public navCtrl: NavController, public platform: Platform) { ... }

Run the Memories App

As we did in the previous chapters, build and run the app. When the images are empty, the app displays a
default message as shown in the Figure 6-2.

eccoo Airtel 3G 2:31PM (L

Manage your p...

Click on the camera icon to take pictures!

Figure 6-2. Default view

67

CHAPTER 6 © SAVING MEMORIES

When you click the camera button, it displays the camera and allows the user to capture the pictures as
in Figure 6-3.

PHOTO

Cancel

Figure 6-3. Camera view

Once the pictures are being captured, the default view is updated to display the captured images as
slides with pagination as shown in Figure 6-4.

68

CHAPTER 6 © SAVING MEMORIES

0000 Airtel 3G 2:38 PM o 4 eec00 Airtel 3G 2:38 PM o4
Manage your p... Manage your p... 5]

Figure 6-4. Pictures viewed as carousel

MODIFY THE APP TO PICK UP PHOTOS

Maodify this app to include a way to pick up existing photos from the gallery and display them as a
carousel in the app.

Summary

In this chapter we looked at camera usage and styling and storage options of Ionic. We created a blank app
and added the camera native plug-in to the app. We then used the storage plug-in to store the images’ URI to
have persistent storage of the photos.

69

CHAPTER 7

Gather Analytics

Gathering and analyzing mobile app usage data are the key to ascertaining whether the enterprise mobile
app is providing required benefits. They are also a key to gaining insights into user sentiments and they help
in optimizing the app. This chapter helps in configuring Google analytics with the Ionic app to collect the
usage data.

Learning Objectives

e Use the GoogleAnalytics plug-in to gather analytics data
e Understand view tracking and event tracking

e View the results on the Google analytics site

What We Will Build

Let’s extend the “Those Famous Quotes” app, to gather analytics data. We will do both the view tracking and
event tracking in the app. And we will take a look at the Google analytics charts to analyze the gathered data.

Prerequisite

For using Google analytics we need a GA account, which can be created at https://analytics.google.
com/analytics/web. In the “Admin” tab, click “create new account” to create a new account for this chapter.

Building the App

“Those Famous Quotes” (QuotesApp) will be enhanced to gather analytics. QuotesApp has two views, a
quotes list view and a quotes detail view. These two views will be tracked using Google analytics. Social
sharing plug-in is used to share the quote details via Twitter. This event is also gathered as part of the
analytics. The Google analytics page displays the number of views of the individual views and the number of
shares of the quote.

Install Required Plug-in

We were introduced to Ionic Native in the previous chapter. Google analytics is also integrated with Ionic
using the Ionic Native wrapper.

© The Editor(s) (if applicable) and The Author(s) 2017 71
J. Justin and J. Jude, Learn Ionic 2, DOI 10.1007/978-1-4842-2617-9_7

https://analytics.google.com/analytics/web
https://analytics.google.com/analytics/web

CHAPTER 7 © GATHER ANALYTICS

Install the Google plug-in to integrate Google analytics into the app. Following are the different types of
analytics you can gather using this plug-in.

e Trackaview

e Trackan event

e Track a custom metric

e Track exceptions

e Trackuser timings

e Add transaction data

e Create custom dimensions
e Add user identification

e Mask the IP address (Internet Protocol address)
e App version based analytics
e Enable advertising feature

To find the complete details of this plug-in, refer to https://ionicframework.com/docs/v2/native/
google-analytics/.
To add the plug-in to the project, issue the following command from the root folder of the project:

$ ionic plugin add cordova-plugin-google-analytics

Tracking the App
To start tracking the app, include GoogleAnalytics in the app. You can do this at the app level. Update the
StatusBar import statement in the following code in the src/app/app.component. ts file:

import { StatusBar, Splashscreen, GoogleAnalytics } from 'ionic-native';

We will use two methods of GoogleAnalytics.

o startTrackerWithId-This is to provide the tracking ID for the project created in the
Google Analytics site. This will initiate Google Analytics into the project.

e enableUncaughtExceptionReporting-This is to enable the exception reporting.
Those exceptions not caught by the app will be reported. This is an optional step.

Add the code in Listing 7-1 in the src/app/app.component. ts file in the constructor inside the
platform.ready() check.

Listing 7-1. Set the Tracker ID

GoogleAnalytics.startTrackerWithId("<tracking id>");
GoogleAnalytics.enableUncaughtExceptionReporting(true).then((_success) => {
console.log("Successful enabling of uncaught exception reporting "+ success)
}).catch((_error) => {

console.log("error occured "+ error)

B;

72

https://ionicframework.com/docs/v2/native/google-analytics/
https://ionicframework.com/docs/v2/native/google-analytics/

CHAPTER 7 © GATHER ANALYTICS

Note Also add the debug mode to Google Analytics using the code GoogleAnalytics.debugMode(), to debug
the analytics gathering.

The tracker ID of the analytics project can be retrieved from the Google Analytics web site. In
https://analytics.google.com/analytics/web, select the “Admin” tab. In the Property listing, select the
“Tracking Code” link under the “Tracking Info” item as shown in Figure 7-1.

QuotesApp v

D Property Settings
222 User Management

Tracking Info

Tracking Code
User-ID

Session Settings

Figure 7-1. Property listing—retrieve tracking info

Tracking Views

To track the number of views on a page, use the trackView() method. Add the code in Listing 7-2 in the
constructor of the src/pages/quotes-1ist/quotes-1list.ts file. Add the required import { Platform }
from ‘ionic-angular’;

Listing 7-2. Track View—List

platform.ready().then(() => {
GoogleAnalytics.trackView("Quotes List");

};

Similar to this, add the code in Listing 7-3 in the src/pages/quotes-detail/quotes-detail.ts file.
Add the required import { Platform } from ‘ionic-angular’;

Listing 7-3. Track View-Details

platform.ready().then(() => {
GoogleAnalytics.trackView("Quotes Detail”);

1

Make sure to import GoogleAnalytics from ionic-native as we did in stc/app/app.component.ts.

73

https://analytics.google.com/analytics/web

CHAPTER 7 © GATHER ANALYTICS

Tracking Events
To track the events, use the trackEvent () method. In the QuotesApp, which is the base of this AnalyticsApp,
a social sharing plug-in is used to share the quotes. If sharing the quotes has to be tracked, add the code in
Listing 7-4 to the twitterShare() method in the src/pages/quotes-detail/quotes-detail. ts file.
Listing 7-4. Track View—details
let quoteAuthor: string = this.quoteDetail.author;
GoogleAnalytics.trackEvent("Quotes", "Share", quoteAuthor, 1);
The trackEvent() method has the following four inputs:

e Category of the event

e Action taken or the event name

e Label for the event

e Numeric value assigned to the event

Run the Analytics App

Asyou did in the previous chapters, build and run the app in a device. When the Quotes List and Quotes
Detail views are initiated, view events are submitted to Google Analytics. Similarly, when the quote sharing
is successful, the events are submitted.

If you are in iOS 10 environment, for Google Analytics to work, iAd framework has to be added to your
app. Open the built code in Xcode 8.0. In the project » General » Linked Frameworks and Libraries, add
the iAd.framework as shown in Figure 7-2.

PROJECT ¥ Linked Frameworks and Libraries
= QuotesApp
TARGETS
@ QuotesApp i libCordova.a Required
& ImagelO.framework Cptional
88 CoreLocation.framework Required
54 AVFoundation.framework Required
% libGoogleAnalyticsServices.a Required
%! libAdidAccess.a Required
;_‘_ SystemConfiguration.tramework Required
3 CoreData.framework Required 2
= AdSupport.framework Required J
libz.dylib Required 3
libsglite3.dylib Required 2
5 Soclal framewark Optional
54 MessageUl.framework Optional
+

Figure 7-2. Linked frameworks and libraries

74

CHAPTER 7 © GATHER ANALYTICS

Click the +button to add the frameworks (Figure 7-3).

Choose frameworks and libraries to add:

Q iad o
Workspace
v i0S 10.1
i

Developer Frameworks

Add Other... Cancel
Figure 7-3. Adding iAd.framework

Also there may be delay in reporting the events. If your app is up and the Google Analytics is not
initialized, wait for a few moments for it to get fully initialized. If your app is reporting the events and if
it’s not seen in the Google Anlaytics site, wait for a day or so and it will start appearing in the app. For the
AnalyticsApp the delay was around 10 minutes.

Google Analytics Charts

The App Overview tab provides the details like users, country, device model, users, and screen details
(Figures 7-4 and 7-5). It also provides in-app revenue if the ecommerce tracking is enabled.

75

CHAPTER 7 © GATHER ANALYTICS

MNew Users Active Users
4 8
2 a
New 23 DecE Dec 13 Dec 20 Now 28 Dec s Dec 13 Dec 20
Country Top Device Models

i iPhane
68 Sessions
8395%

Figure 7-4. AppOverview details-users, region, and device

User Engagement

Screens
= Screen Mame Screen Views
Avg. Session Duration @ Screens / Session
Quates List 2
20m 2
Quotes Detail 1

Figure 7-5. AppOverview details-session details and screens

Audience » Overview provides details like session duration, demographics, language, and so on
(Figure 7-6).

Users ~ V5. Awg. Session Duration = Howly Day Week Month
® Users Avg. Session Duration

] 20m

4 10m
——— ‘—\

Mow 29 Dech Diec 13 Dec 20
M Returning Users M New Users
Users Sessions Screen Views
7 81 2
—’A‘_\ P ‘/\r‘\ A rm—one A
Screens / Session Avg. Session Duration % New Sessions
0.02 00:06:21 4.94%
Ao A ~ A

Figure 7-6. Audience details

76

CHAPTER 7 © GATHER ANALYTICS
To see the view details, click Behavior » Screens (Figure 7-7).

Screen Views = V8. Select a metric

@ Screen Views

Day Week Month | of o%
2

Mov 8 Mav 18 MNow 22 Kav 29 Docé Doc 12 Dec 20
Primary Bimension: Scroen Name
Secondary dimension » Scrt Type: Defauh Q advanced B @ T E @M
Sereen Name Screen Views 4 Unique Sereen Views Avg. Time on Screen % Exit
5 3 00:06:18 49.15%
1. Ouotes Detail 3 (60.00%) 2 (6667 00:0017 66.67%
2. Quotes List 2 (40.00%) 1 (33.33%) 00:18:20 50.00%
Figure 7-7. Behavior details-screens
To view the event details, click Behavior » Events » Overview (Figure 7-8).
Total Events ~ V. Select s metric Hourly ' Day Week Manth
® Total Events
05
Now 8 Naw 15 Now 22 ® o 29 Cec 6 Dec 13 Dec 20
Total Events Unigue Events Evenl Value Avg. Value Sessions with Event Events / Session with Event
1 1 1 1.00 1 1.00
A A A A A A
Event Category Total Events Event Action Total Events Event Label Total Events
Quotes 1 Share 1 Mark Twain 1
view full report view full report view full report
Figure 7-8. Behavior details-events

Real-time details can be collected like how many users are currently using the app. To collect real-time
details, use the real-time category as shown in Figure 7-9.

77

CHAPTER 7 © GATHER ANALYTICS

Overview Create Shortcut 5674 ¥
Screen Views
nght now Per minute Per second
1 15
active users on app — =
B MOBILE
s
21 1€ T 50 sac <45 poc -30 soc 16 sac
Top App Versions: Top Active Screens:
App Version Active Users Active Screen Name Active Users +
1. 001 1 1. Quotes Detail 1 100.00%

Figure 7-9. Real-time view

MODIFY THE APP TO ADD MORE ANALYTICS DATA

Modify this app to include custom metric and transactions, and view them on the Google Analytics site.

Summary

In this chapter we enabled Google Analytics for the QuotesApp, which can track views and events using the
Google Analytics native plug-in. We ran the app in a device, and for every view of the two screens in the app,
analytics is hit. Also we learned that different views of the Google Analytics site display various analytics

information about the app.

78

CHAPTER 8

Go Offline

Users of any data-driven mobile application should be able to read and write data without an Internet
connection. When the app reconnects to the Internet, the details should be synced to the server. In this
chapter we will build an offline mobile app that stores data locally and syncs with an actual database (db)
when the connectivity is available.

Learning Objectives
e Use Pouch DB, a JavaScript DB, with Ionic which syncs with a hosted DB
e UseIBM Cloudant DB, a NoSQL hosted DB from IBM

¢ Code a mobile application which will sync with a hosted DB

What We Will Build

We will build a to-do app to which we can add to-dos. These individual to-do items will be stored in the
Cloudant db. If the device is offline or has no connectivity with the Cloudant db, then the local db is stored
with the updates. Data sync occurs when the Cloudant db becomes available.

Prerequisite

For this chapter we need a Cloudant account and a db created for this tutorial.

Cloudant Account Creation

To create an account, you can generate a service in Bluemix. Refer to https://console.ng.bluemix.net/
catalog/services/cloudant-nosql-db for more information on Bluemix.

You can also create the account directly at http://cloudant.com. Following are the steps to create an
account @Cloudant.com:

e Inabrowser, visithttp://cloudant.com.
e Click the Sign Up button

e On the “Sign Up for a Free Account” page, provide the required details and click the
Create my Account button.

You have successfully created your account!

© The Editor(s) (if applicable) and The Author(s) 2017 79
J. Justin and J. Jude, Learn Ionic 2, DOI 10.1007/978-1-4842-2617-9_8

https://console.ng.bluemix.net/catalog/services/cloudant-nosql-db
https://console.ng.bluemix.net/catalog/services/cloudant-nosql-db
http://cloudant.com/
http://cloudant.com/

CHAPTER 8 © GO OFFLINE

Create To-Do Database

To create a database, log in to Cloudant.com with the user ID details provided previously. Based on the
username that you used during the registration, the URL (uniform resource locator) to the Cloudant db
would be http://<user name provided during registration>.cloudant.com/dashboard.

To create a database, click “Create Database” and provide a name, as shown in Figure 8-1. For this
tutorial, we will use the db name “tododb.”

)

Databases i

Create Database
8 Your Databases 8} Shared Databases

tododb]|

Name Size # of Docs

replicator 3.2KB ik E a E
_users 16.6 KB 0 E G E

Figure 8-1. Cloudant db creation

Building the App

As in previous chapters, create a new Ionic project using the ionic start command shown in Listing 8-1 and
name the project “OfflineToDo.”

Listing 8-1. Start Blank Project

$ ionic start OfflineToDo blank --v2 --ts

Introduction to PouchDB

PouchDB is an in-browser counterpart to CouchDB. It provides an easy way to replicate the data from a
remote db. Following are the features of PouchDB:

e In-Browser db-Pouch DB can run in various browsers and helps to execute queries
faster, as there is no need to execute queries over network.

e Lightweight-Itis a very lightweight db, which can be installed using scripts even in
mobile devices.

e Easytoimplement—It is a JavaScript-based db and is easy to implement.
e Open Source-It is an open source-based db.

e Document-based database—data is stored in granular data types, with associative
mapping of keys to documents.

80

CHAPTER 8 © GO OFFLINE

Introduction to IBM Cloudant DB
IBM Cloudant DB is a managed NoSQL JSON database. Following are the features of IBM Cloudant DB:

¢ Global Availability-Cloudant supports horizontal scalling which helps users connect
to the closest copy of the data, which in turn reduces latency.

¢ Flexibility-Data is accessible as JSON and provides schema flexibility.
e Offline apps-Cloudant Sync provides a better, faster user experience.

Every document in Cloudant DB contains an _id field. This field identifies the document in a database
which is unique. When adding a new document, it can be specified manually or automatically generated.
Cloudant also contains a _rev field, which holds the revision number of the document and changes each
time a document is modified.

How Offline Sync Works

The offline sync feature helps store and retrieve data on or from local or remote storage. Figure 8-2 shows the
sync architecture between devices.

)

-+ With Connectivity

—= Without Connectivity

Figure 8-2. Offline sync architecture

Install Required Modules

Go to the OfflineToDo project folder and install Pouch DB using npm as shown in Listing 8-2.

Listing 8-2. Install Pouch DB

$ npm install pouchdb

81

CHAPTER 8 © GO OFFLINE

Add a Data Service

Add a provider named “dataservice” in to the OfflineToDo project as shown in Listing 8-3. This provider will
contain the db-related code.

Listing 8-3. Dataservice Generation

$ ionic generate provider dataservice

As we need pouchdb and promise for database-related implementation, import the required ones in
the src/providers/dataservice.ts file (Listing 8-4).

Listing 8-4. Required Import for dataservice

import PouchDB from 'pouchdb’;
import 'rxjs/add/operator/toPromise’;

To Do service doesn’t need any http import. So import { Http } from '@angular/http’; canbe
removed from this file.

To add the Cloudant db-related information, define the required variables and initialize the db in the
constructor. Add the code from Listing 8-5 inside the Dataservice class, replacing the constructor code.

Listing 8-5. Db Initialization

private db: any ;

//cloudant username

private userName = 'XYZ';

//cloudant password

private password= 'XYZ' ;

//cloudant db url

private dbURL = 'https://XYZ.cloudant.com/tododb";
//array of todos

private toDos = [];

constructor() {
this.db = new PouchDB('tododb");
let options = {
live: true,
retry: true,
continuous: true,
auth: {
username: this.userName,
password: this.password
}
}
//Sync the db with Cloudant
this.db.sync(this.dbURL, options);

When the app is initialized, the dataservice constructor is called which will sync the local db with the
remote db.

82

CHAPTER 8 © GO OFFLINE

To add and delete ToDo items add the respective data service methods in the Dataservice class as
shown in the Listing 8-6.
Listing 8-6. Add and Delete

addToDo(doc) {
return this.db.post(doc);
}

deleteToDo(doc) {
return this.db.remove(doc);
}

To retrieve Todo items, add the method shown in Listing 8-7. This method returns a promise which
has the “toDos” as an array. Also if the data is changed, it will call the method onChange to update the data
accordingly.

Listing 8-7. Retrieve To Do

retrieveToDos(){
return new Promise<anys(resolve => {

this.db.allDocs({include docs: true}).then((result) => {
if (result.total rows > 0)

{
result.rows.map((row) => {
this.toDos.push(row.doc);
resolve(this.toDos);
D;
}
else {
resolve(this.toDos);
}

this.db.changes({live: true, since: 'now', include docs: true}).
on('change', (change) => {

this.onChange(change);
1)

}).catch((error) => {
console.log(error);
1;

};

If the data is updated, we need to update the toDos array accordingly. So the onChange method in
Listing 8-8 accordingly updates by checking the modified doc and the index.

Listing 8-8. Handle Data Changes

onChange(change){
let changedDoc = null;
let changedIndex = null;
this.toDos.forEach((doc, index) => {
if(doc._id === change.id){

83

CHAPTER 8 © GO OFFLINE

changedDoc = doc;
changedIndex = index;

1

//Handle deleted document
if(change.deleted){
this.toDos.splice(changedIndex, 1);

}
else {
//Handle the updates
if(changedDoc){
this.toDos[changedIndex] = change.doc;
}
//Handle additions
else {
this.toDos.push(change.doc);
}
}
}
Now that we have the data service layer ready, it’s time to work on the view part.
Listing To Do

The initial view of the app displays the To Do list. To retrieve the list, add the code in Listing 8-9, replacing
the constructor in the src/pages/home/home. ts file.

Listing 8-9. Retrieve the To Do for Updating the View

public toDos : any[];
public noToDo : boolean;
constructor(private todoService: Dataservice, private navController: NavController, private
platform: Platform) {
this.navController = navController;
this.platform.ready().then(() => {
this.todoService.retrieveToDos().then(data =» {
this.toDos = data;
if(this.toDos.length » 0) {
this.noToDo = false;

else {
this.noToDo = true;

}
h

.catch(console.error.bind(console));

1

84

CHAPTER 8 © GO OFFLINE

Add the required import as shown in Listing 8-10 for the code in Listing 8-9.

Listing 8-10. Required home.ts Import

import {NavController, Platform} from 'ionic-angular';
import {Dataservice} from '../../providers/dataservice’;

To add the dataservice as a provider, add the code in Listing 8-11 into the @Component part.

Listing 8-11. Add the Provider

@Component ({
selector: 'page-home’,
templateUrl: 'home.html',
providers: [Dataservice]

1))

Update the user identification (UI) to display the list of To Do. Replace with the code in Listing 8-12
in src/pages/home/home. html. Besides displaying the list, this code also has a button to display a To Do
addition page. Each To Do that is being displayed also displays a sliding option on the right side. This sliding
option provides a way to delete the To Do.

Listing 8-12. View Update to List To Do

<ion-header>
<ion-navbar>
<ion-title>
To Do
</ion-title>
<ion-buttons end>
<button (click)="showToDoPage()">
<ion-icon name="add"></ion-icon>
</button>
</ion-buttons>
</ion-navbar>
</ion-header>

<ion-content class="home">
<div *ngIf="noToDo">

Click on + to add to do items.
</div>

<ion-list inset>
<ion-item-sliding *ngFor="let toDo of toDos" >
<ion-item>
<h2>{{ toDo.name }} - {{ toDo.createdTime | date:'yMMMMd' }}</h2>
<p class="item-description">{{toDo.description}}</p>
</ion-item>
<ion-item-options side="right">
<button ion-button (click)="delete(toDo)">

85

CHAPTER 8 © GO OFFLINE

<ion-icon name="ion-trash-a"></ion-icon>
Delete
</button>
</ion-item-options>
</ion-item-sliding>
</ion-list>
</ion-content>

To quickly test the main view, run the app using ‘ionic serve. This will run the app in the browser.
The To Do list would be empty except for the Add button (to add the To Do) and a message as shown in
Figure 8-3.

To Do +

Click on + to add to do items.

Figure 8-3. Empty To Do

You will notice a “No ‘Access-Control-Allow-0rigin’ header is present on the requested resource” error when
you run the app at this stage. Setting up a proxy to handle CORS (Cross-Origin Resource Sharing) issues is the
right way to solve this problem. Since we will ultimately run it on the device, for now run the browser without
any security like “./Google\ Chrome --disable-web-security --user-data-dir”.

Adding To Do
Add a new page for adding To Do using ionic generate (Listing 8-13).
Listing 8-13. Adding ‘Add To Do’ Page

$ ionic generate page addtodo --ts

Since we need the dataservice, as we did in the src/pages/home/home. ts file, import the dataservice
and also include the provider in the @Component in the file src/pages/addtodo/addtodo. ts.

Import the required FormBuilder, FormGroup, and Validators for the To Do form implementation
(Listing 8-14).
Listing 8-14. Form-Related Import

import { FormBuilder, FormGroup, Validators } from '@angular/forms’;

86

CHAPTER 8 © GO OFFLINE

Replace the constructor of the addtodo. ts file with the code in Listing 8-15.

Listing 8-15. Form Validation

todoForm: FormGroup;
constructor(private navController: NavController, private fb: FormBuilder, private
todoService: Dataservice) {
this.todoForm = fb.group({
'name': ['', Validators.compose([Validators.required,Validators.pattern
('[a-zA-Z,]*'),Validators.minLength(3),Validators.maxLength(100)])],
"description’:['']

};

Add the form elements and the submit button for adding the To Do in src/pages/addtodo/addtodo.
html. Replace the contents with the code in Listing 8-16.

Listing 8-16. Add To Do View

<ion-header»
<ion-navbar>
<ion-title>Add To Do</ion-title>
</ion-navbar>
</ion-header>
<ion-content padding>
<form [foxmGroup]="todoForm" (ngSubmit)="addToDo()">
<ion-list>
<ion-item>
<ion-label color="primary">Name</ion-label>
<ion-input placeholder="Name" formControlName="name"></ion-input>
</ion-item>

<ion-item>

<ion-label color="primary">Description</ion-label>

<ion-input placeholder="Description" formControlName="description" ></ion-input>
</ion-item>

<ion-item>
<button ion-button block [disabled]="!todoForm.valid" type="submit">
Add To Do</button>
</ion-item>
</ion-list>
</form>
</ion-content>

When you click the Add To Do button, addToDo() is called. This method has to be added to the
addtodo. ts file. Add the code in Listing 8-17 inside the AddtodoPage class.

87

CHAPTER 8 © GO OFFLINE

Listing 8-17. Add To Do Method

addToDo() {

let date = new Date();

let newDoc = {
'name': this.todoForm.value.name,
"description’ :this.todoForm.value.description,
'createdTime': date.getTime()

};

//Add the to do using the data service

this.todoService.addToDo(newDoc);

//After the addition navigate to the list view

this.navController.popToRoot();

Now that we have all the required code to add To Do, we need to add the code to navigate from the
home.html page to the addtodo.html page. In the src/pages/home/home . html file, we already called the
showToDoPage () to display the Add page. This method would contain the code for the navigation as shown
in Listing 8-18.

Listing 8-18. Navigate to Add To Page

showToDoPage () {
this.navController.push(AddtodoPage);
}

This page has to be added as part of the import by adding import { AddtodoPage } from '../pages/
addtodo/addtodo’ ;.

Finally, the app module has to be modified to include the new addtodo page. For including the page,
open the src/app/app.module. ts file. Add the import of the addtodo page-import { AddtodoPage } from
'../pages/addtodo/addtodo" ;.

Also, in the list of declarations and entryComponents, add the AddtodoPage. The final content of the
app.module.ts file should look like the code in Listing 8-19.

Listing 8-19. App Module Content

import { NgModule, ErrorHandler } from '@angular/core';

import { IonicApp, IonicModule, IonicErrorHandler } from 'ionic-angular';
import { MyApp } from './app.component’;

import { HomePage } from '../pages/home/home’;

import { AddtodoPage } from '../pages/addtodo/addtodo’;

@NgModule({
declarations: [
MyApp,
HomePage,
AddtodoPage

1

88

CHAPTER 8 © GO OFFLINE

imports: [
IonicModule. forRoot (MyApp)

1,
bootstrap: [IonicApp],
entryComponents: [

MyApp,
HomePage,
AddtodoPage

I

providers: [{provide: ErrorHandler, useClass: IonicErrorHandler}]

1))
export class AppModule {}

Deleting To Do

You have already added a sliding option to delete a To Do in the home . html file; the sliding option displays
the Delete button which, when clicked, will call the delete method. The method shown in Listing 8-20
should be added to the src/pages/home/home.ts file.

Listing 8-20. Delete To Do

delete(item) {
this.todoService.deleteToDo(item);
}

Run the To Do App

To run the app on a device or an emulator, build and run the app. We will test the sync by running the app
with and without connectivity to verify the behavior of offline sync.

Running the App with Connectivity

To test the sync between two devices run the app on two different devices. Adding the To Do item on one of
the devices also updates the other device due to the sync feature.

89

CHAPTER 8 © GO OFFLINE

The initial view on both the devices shows empty To Do items (see Figure 8-4).

&} iPhone SE -i0S 10.1 (14B72)

Carrier = 913 PM . 4o

To Do ? To Do -
iClick on + to add to do items

Click on + to add to do items.

Figure 8-4. Initial view of the app

90

CHAPTER 8 © GO OFFLINE

Add an item to one of the devices as shown in Figure 8-5.

Phone SE -i0S 10.1 (14872 5684:5_4_FWVGA_API_23
Carrier = 9:19 PM - T T

To Do i < AddTo Do

Name My First To Do

Click on + to add to do items.
Description This is my first one. This is a sample one

&
1234567.89{‘
qgqwe T Tty uiop

Al ol BT R R |

4 z X ¢c vbnm @

n3 . ©

Figure 8-5. Adding item in device 1

91

CHAPTER 8 © GO OFFLINE

Once you submit the To Do, it updates the other device immediately as both are connected
(see Figure 8-6).

5584:5_4_FWVGA_API_23

Carrier = 9:22 PM 4o

To Do ; To Do =

(Click on + to add to do items.
~lick on + to add to do items. My First To Do - December 27, 2016

My First To Do - December 27, 20

Figure 8-6. Item on device 1 updates the other device list too

92

CHAPTER 8 © GO OFFLINE

Similarly, adding a new To Do item on device 2 updates both the devices. Add a To Do on the other

device as shown in Figure 8-7.

Carrier 9:31 PM -

< Back Add To Do
Name From the other one

Description ~ Try

Add To Do

& zxcvbnm@
ann N, enara n

Figure 8-7. Add To Do on device 2

5584:5_4_FWVGA_API_23
To Do +

My First To Do - December 27, 2016

his is my first one. This is a sample one.

93

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER 8 © GO OFFLINE
Now both the devices display the To Do list that has been added (see Figure 8-8).

® iPhone SE-iOS 10.1 (14872)
Carrier & 9:33 PM . uusu
To Do To Do +
My First To I?n Dlecember 27,2016
My First To Do - December 27, 20 kot

From the other one - December 27, 2016

From the other one - December 2

Figure 8-8. Both devices in sync

Running the App Without Connectivity

Run one of the devices in airplane mode or remove the connectivity and add a To Do item. In Figure 8-9 one
of the devices shows the airplane symbol to indicate that it is not connected to the Internet.

94

Carrier ¥ 9:36 PM

To Do

My First To Do - December 27, 20

This is my first one. This is a sample o...

From the other one - December 2
Try

Figure 8-9. Add To Do in airplane mode

CHAPTER 8 © GO OFFLINE

5584:5_4 FWVGA_API_23

- N YT

€< AddToDo

e Todo sync test

Jescription This is a to do without connectivity

ADD TO DO

nEm . ©

Because the device did not have connectivity, the To Do item is stored only in local storage and did not
update the Cloudant db (i.e., sync did not happen). So both devices show a different list of To Do items, as in

Figure 8-10.

95

CHAPTER 8 © GO OFFLINE

® iPhone SE - i0S 10.1 (14B72)

Cartier' % :97 P -

To D +
To Do E°

My First To Do - December 27, 2016
This is my first 5 15 a sampie one
My First To Do - December 27, 20
This is my irst one. This is a sample o.. From the other one - December 27, 2016

From the other one - December 2

To do sync test - December 27, 2016

Figure 8-10. No connectivity, no sync

Now turn off airplane mode and reconnect to the Internet. You can see that the other device updates
immediately, as shown in Figure 8-11.

96

CHAPTER 8 © GO OFFLINE

® iPhone SE -i0S 10.1 (14872)

Carrier 9:42 PM ey U«
To Do +
To Do
My First To Do - December 27, 2016

My First To Do - December 27, 20

This is a sample o.. From the other one - December 27, 2016

From the other one - December 2 To do sync test - December 27, 2016

To do sync test - December 27, 2(

Figure 8-11. Once connected, sync works!

MODIFY THE APP TO UPDATE TO DO ITEMS

Maodify this app to include updates to the to do items using a sliding option and required dataservice
layer methods.

Summary

In this chapter, we installed the pouch db plug-in and used it to create a to-do list. When you connect the
device to the Internet, the To Do list is synced to the db and all the devices running the app get the new
items. To Do lists are stored in the Cloudant db when connectivity exists. When the device is not connected
to the Internet, the added item is stored in the local pouch db and then syncs to Cloudant db when the
Internet becomes available.

97

CHAPTER 9

Where to Go From Here

We learned a lot of important concepts about Ionic 2 in this book. In this chapter we will discuss Ionic 2 tools

and services and becoming part of the Ionic community.

Learning Objectives

e Discover additional Ionic 2 tools and services

e Become part of Ionic 2 community

Additional lonic 2 Tools and Services

In addition to the framework, the Ionic team has created many tools to ease the development of mobile
apps. Let us look at some of them.

Ionic Creator

Ionic creator is a drag-and-drop prototyping tool to create mobile apps quickly. You can create a new
account at https://creator.ionic.io/. Once you create an account and sign in, you can generate new
projects by choosing a template. The options are similar to the ones offered in Ionic CLI. After you select a
template, you will be greeted with a screen similar to the one in Figure 9-1.

© The Editor(s) (if applicable) and The Author(s) 2017
3. Justin and J. Jude, Learn Ionic 2, DOI 10.1007/978-1-4842-2617-9_9

99

https://creator.ionic.io/

CHAPTER 9 © WHERE TO GO FROM HERE

Pages 1 Davice P - 100% Side Menu

' & Background =
Miscellaneous -
Heading ah
CIml]
Button B Button «
«

Figure 9-1. Ionic Creator

From here, you can add pages (screens) to your app, add UI (user interface) elements to pages, and save
and export your files. You can use these files from your desktop for further coding.

Ionic View

You have developed your mobile app and tested it, and you see that it works well on your devices. Now what?
Next you want to distribute the app to beta testers.

You could go through the long AppStore approval process, or you could distribute the app through Ionic
View app. If you are familiar with iOS development, the Ionic View app is similar to TestFlight.

You can download the Ionic app from http://view.ionic.io/.

Ionic Cloud

Ionic cloud is a mobile back-end service providing push notification, user authentication, and packaging of
mobile apps into native apps. Ionic offers this in a “freemium” model, which has free monthly quotas. So you
can develop it for free and even use it for free until your user base grows. You can learn about Ionic Cloud
and its pricing at https://ionic.io/cloud.

Ionic Marketplace

Are you building an e-commerce app? Do you want to display charts in your hybrid mobile app? Ionic
marketplace hosts community-developed plug-ins, themes, and starter kits to speed up your Ionic project.
It has both free and paid versions. You should be able to find a suitable asset for your project.

You can also host your assets on the marketplace. You can host your assets for free and get exposure or
you can sell them and earn. The choice is yours.

You can learn about Ionic Marketplace at https://market.ionic.io/.

100

http://view.ionic.io/
https://ionic.io/cloud
https://market.ionic.io/

CHAPTER 9 © WHERE TO GO FROM HERE

Ionic Community

Every component of Ionic 2 is evolving fast, like TypeScript, Angular, and Ionic itself. The success of
any platform depends on its community, and the Ionic team has ensured that the community grows
continuously.

The traditional community, Ionic Forum (https://forum. ionicframework.com), is a typical Q & A site
dedicated to Ionic. You can post your questions and receive answers.

There is also a slack community. You can sign up for this community at http://ionicworldwide.
herokuapp.com/. There you can showcase your apps, post questions, and also interact with other Ionic
developers around the world. This community is more informal than the other options.

You can use Stackoverflow to get answers regarding technical questions. If you have questions specific
to Ionic 2, follow http://stackoverflow.com/questions/tagged/ionic2.

Codepen is a site where you can learn everything about the front end via code sharing. You can also post
your code and share it with others. Codepen has an exclusive page for Ionic at https://codepen.io/ionic/.

Similar to Codepen, there is an Ionic playground at http://play.ionic.io/. You can code specific
parts of an Ionic app and share that piece of app with others. You can use both Codepen and Ionic
playground to test pieces of your app.

As a platform, Ionic ecosystem is also growing. Check out the latest partners in the ecosystem at the
Ionic home page (http://ionicframework.com/)

Summary

Ionic is not just a mobile framework. It is a rich ecosystem for mobile developers. It has a tool for every
phase of the mobile development life cycle. You can mock up screens with Ionic creator, get a head start
with themes and plug-ins from the Ionic marketplace, develop the mobile app with the Ionic framework, get
feedback from testers using Ionic View, and continue to update your app with Ionic cloud.

In this book, we learned to develop fully featured hybrid mobile applications using the Ionic framework.
We also learned about other tools in the Ionic ecosystem. Now go create awesome mobile applications using
Ionic and grab the attention of the world. Best wishes.

101

https://forum.ionicframework.com/
http://ionicworldwide.herokuapp.com/
http://ionicworldwide.herokuapp.com/
http://stackoverflow.com/questions/tagged/ionic2
https://codepen.io/ionic/
http://play.ionic.io/
http://ionicframework.com/

Index

A

Airplane mode, 95-96
Angular]S, 24
communities, 2
directives, 24
attribute, 25
component, 25
metadata, 25
structural, 24
template, 26
events, 26
interpolation, 26
module, 24
properties, 26
services, 26
two-way binding, 26
Attribute directives, 25

B

Bluemix, 79

C

Cloudant
create, 79
create to-do database, 80
db creation, 80
IBM Cloudant DB, 81
Codepen site, 101
Command-line interface (CLI), 29
Cross-Origin Resource Sharing (CORS), 86

D

Drag-and-drop prototyping tool, 99

E,F

enableUncaughtExceptionReporting methods, 72

© The Editor(s) (if applicable) and The Author(s) 2017

G H

Google analytics

charts, 75-78
enableUncaughtExceptionReporting, 72
GA account, 71
iAd.framework, 74, 75
install Google plug-in, 72
i0S 10,74

QuotesApp, 71

run analytics app, 74
startTrackerWithld, 72
tracker ID, 73

tracking events, 74
tracking views, 73

LJ, K L

IBM Cloudant DB, 81
Interpolation, 26
Ionic application

architecture, 2
blank app template, 7
code review, 10
folder structure, 8
ionic-lab view, 8
ionic serve command, 7
buttons sounds, 5
documentation, 2
framework, 3
function
buttons, 13
CounterApp, 11, 13
home.html code, 12
home.ts code, 12
refresh page, 12
variables, 12
increase and decrease buttons, 14
installation, 5
mobile developer, 1
multiplatform framework, 1

103

J. Justin and J. Jude, Learn Ionic 2, DOI 10.1007/978-1-4842-2617-9

INDEX

Tonic application (cont.)
nodejs, 5
objectives, 1
rich marketplace, 2
templates, 6

Ionic 2 tools and services
cloud, 100
community, 101
creator, 99-100
Forum, 101
marketplace, 100
playground, 101
view, 100

Mixins, 61

N

Navigation
NavController, 35
NavParams, 35
passing data, 35
stack, 35

(0

Offline sync, 81
OfflineToDo project
add dataservice provider, 85
adding, 86-88
airplane mode, 95-96
with connectivity, 89, 92-94
data service
add and delete, 83
changes, 83-84
db initialization, 82
import, 82
retrieve, 83
delete, 89
empty, 86
install Pouch DB, 81
listing, 84-86
Ul, 85
without connectivity, 94-97

P

PouchDB, 80

Q

QuotesApp, 35, 71
QuotesDetailPage, 32

104

R

RxJS library, 32

S

Saving memories app
ionic native, 59

local storage and web storage, 65

objectives, 59
persist, 66
pictures, 64
running app, 67
camera view, 68
carousel view, 69
default view, 67
storage, 65
IndexedDB, 66
native storage, 65
SQLLite, 66
WebSQL, 65
store pictures, 63
styles, 61
button, 62
extend, 61
features, 61
import partial files, 62
Mixins, 61
nested selectors, 61
picture view, 63
take pictures, 60
searchQuotes() method, 33

Software development kits (SDKs), 3

startTrackerWithId methods, 72
Structural directives, 24

Syntactically Awesome Stylesheets

(SASS), 61

T

Those Famous Quotes app

app running
Android SDK, 39
build command, 38
emulator, 39
iOS§, 40-41
platforms, 38

blank app template
add pages, 30-31
creation, 30

REST HTTP request, 31-32

search feature, 33
detail.html code, 36
generate, 29
itemTapped method, 36

navigation (see Navigation)
objective, 29

QuotesApp, 35-36

search results page view, 34
share on Twitter, 37-38

To-do app

add dataservice provider, 85
adding, 86-88
airplane mode, 95-96
with connectivity, 89, 92-94
data service
add and delete, 83
changes, 83-84
db initialization, 82
import, 82
retrieve, 83
delete, 89
empty, 86
install Pouch DB, 81
listing, 84-86
Ul, 85
without connectivity, 94-97

twitterShare() method, 38
TypeScript, 15

any, 17
arithmetic operators, 18
assertions, 17
assignment operators, 19
boolean, 16
classes, 22-23
collections

array, 17

enum, 18

tuple, 18
comments, 15
comparison operators, 19
control flow

do...while, 21

for loop, 20

for-of loop, 20

if-else statement, 19

switch, 20

ternary operator, 20

while, 21

declaration, 15
functions, 21
interfaces, 23
logical operators, 19
numbers, 16
operators, 18

optional and default values, 22

string, 16
types, 16
union, 18
void, 17

U Vv

User identification, 85
User interface, 100

W XYZ
Weather app

APIs, 43

chart, 54-56

component root page, 45

constants service provider, 46

create tabs, 44

data services, 46

forecast form, 49

forms, 47, 50, 52-53
FormBuilder, 48-49
ngModel, 47
templates, 48

import correction code, 44

modules update, 44
objectives, 43
prerequisite, 43

REST service provider, 46-47, 53

root page upate, 44
run app
chart view, 57-58
tap view, 57
tabs generation, 44
validations
custom, 51

types, 51

INDEX

105

	Contents at a Glance
	Contents
	About the Authors
	Acknowledgments
	Chapter 1: Welcome to the World of Ionic
	Learning Objectives
	Exploding Opportunity
	Ionic’s Approach to Building Multiplatform Mobile Apps
	Summary

	Chapter 2: Build Your First Ionic App
	Learning Objectives
	What We Will Build
	Installing Ionic 2
	Quick-Start with Ionic Templates
	Building the App
	Folder Structure
	Reviewing the Code
	Adding Functionality

	Summary

	Chapter 3: Building Blocks of Ionic
	Learning Objectives
	Introduction to TypeScript
	Comments
	Declaration
	Basic Types
	Boolean
	Number
	String
	Any
	Void
	Type Assertions
	Collections
	Array
	Tuple
	Enum

	Union

	Operators
	Arithmetic Operators
	Comparison Operators
	Logical Operators
	Assignment Operators

	Control Flow
	if …else
	ternary operator
	for loop
	for-of loop
	switch
	while
	do…while

	Functions
	Optional and Default Values

	Classes
	Interfaces

	Introduction to AngularJS 2
	Module
	Directives
	Structural Directives
	Attribute Directives
	Component
	Metadata
	Template

	Interpolation
	Binding Properties
	Binding Events
	Two-Way Binding

	Services

	Summary

	Chapter 4: Those Famous Quotes
	Learning Objectives
	What We Will build
	Ionic Generate
	Let’s Build the App
	Add Pages
	Making a REST HTTP Request
	Search Feature
	Ionic Navigation
	Navigation Stack
	NavController
	Passing Data Between Pages

	Add Page Navigation to the QuotesApp

	Share on Twitter
	Running the App
	Add Platforms
	Build the App
	Running the App in Android
	Running the App in iOS

	Summary

	Chapter 5: Build the Weather App
	Learning Objectives
	What We Will Build
	Prerequisite
	Let’s Build the App
	Adding Data Services
	Add the Constants Service Provider
	Add the REST Service Provider

	Forms in Ionic
	[(ngModel)]
	Forms with Templates
	Forms with FormBuilder

	Include Weather/Weather Form
	Form Validations in Ionic
	Custom Validations in Ionic
	Validation in the Weather Form

	Call the REST Service Provider and Display the Data
	Display the Forecast as Chart

	Run the Weather App
	Summary

	Chapter 6: Saving Memories
	Learning Objectives
	What We Will Build
	Building the App
	Ionic Native
	Take Pictures
	Styles in Ionic2
	Styling the Button

	Store Pictures
	Display Pictures
	Ionic Storage
	Local Storage/Web Storage
	Native Storage
	WebSQL
	SQLLite
	IndexedDB

	Persist the Pictures

	Run the Memories App
	Summary

	Chapter 7: Gather Analytics
	Learning Objectives
	What We Will Build
	Prerequisite
	Building the App
	Install Required Plug-in
	Tracking the App
	Tracking Views
	Tracking Events

	Run the Analytics App
	Google Analytics Charts
	Summary

	Chapter 8: Go Offline
	Learning Objectives
	What We Will Build
	Prerequisite
	Cloudant Account Creation
	Create To-Do Database

	Building the App
	Introduction to PouchDB
	Introduction to IBM Cloudant DB
	How Offline Sync Works
	Install Required Modules
	Add a Data Service
	Listing To Do
	Adding To Do
	Deleting To Do

	Run the To Do App
	Running the App with Connectivity
	Running the App Without Connectivity

	Summary

	Chapter 9: Where to Go From Here
	Learning Objectives
	Additional Ionic 2 Tools and Services
	Ionic Creator
	Ionic View
	Ionic Cloud
	Ionic Marketplace
	Ionic Community

	Summary

	Index

