Learning Android
Application Development

Build Android N applications using modern techniques and libraries
to get your own high-quality apps published on Google Play in no time

PACKT

http://www.allitebooks.org

Learning Android Application
Development

Build Android N applications using modern techniques and
libraries to get your own high-quality apps published on
Google Play in no time

Raimon Rafols Montané
Laurence Dawson

open source®

| N community experience distilled
PUBLISHING

BIRMINGHAM - MUMBAI

vww allitebooks.conl

http://www.allitebooks.org

Learning Android Application Development

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2016

Production reference: 1190816

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78528-611-7

www.packtpub.com

[vww allitebooks.cond

http://www.allitebooks.org

Authors

Raimon Rafols Montané
Laurence Dawson

Reviewers
Vincent Brison

Pablo Pera
Karim Varela

Commissioning Editor

Veena Pagare

Acquisition Editor

Reshma Raman

Content Development Editor

Zeeyan Pinheiro

Technical Editors

Vivek Pala

Credits

Copy Editor

Gladson Monteiro

Project Coordinator

Suzanne Coutinho

Proofreader

Safis Editing

Indexer

Rekha Nair

Production Coordinator

Aparna Bhagat

Cover Work

Aparna Bhagat

[vww allitebooks.cond

http://www.allitebooks.org

About the Author

Raimon Rafols Montané is a software engineer currently living in the Barcelona area. He
has been working on mobile devices since the early stages, ranging from monochrome
devices to the current smartphones. In all these years, he has worked in several areas:
B2C/B2E/B2B apps, portals, and mobile gaming. Due to this broad experience, he has
expertise in many technologies and, especially in UI, build systems, and client-server
communications.

He is currently working as an engineering manager at AXA Group Solutions in Barcelona,
taking care of all the engineering and development processes, mobile application quality,
and leading a small R&D team. In the past, he has worked abroad for Imagination
Technologies near London and for Service2Media in the Netherlands.

In his spare time, he enjoys taking part in hackathons, photography, and speaking

at conferences. Raimon has won more than 40 international awards, including AngelHack
Barcelona 2015, Facebook World Hack Barcelona, and he has secured second place at js1k
2016. He has been speaking about Java/Android performance and bytecode, Android
custom views, and entrepreneurship in several conferences around the world.

[would like to thank my girlfriend for her support and understanding during the late
night and lengthy writing weekends. Also, I would like to thank my parents and Rafa, my
cousin, as without their support and encouragement, I would not be doing what I do today.

Last, but not least, I would like to thank everyone who challenged me and helped me grow
in my professional career, people such as Carlos Carrasco, Alfred Ferrer, Pau Vivancos,
Migquel Barceld, David Domingo, Marcel Roorda, Diego Morales, Alberto Chamorro, Teun
van Run, Tom van Wietmarschen, Josep Cedd, Joanne Pupo, Jordi Valldaura, Mathieu
Sivade, Chris Jakob, Tomas Kustrzynski, Barttomiej Zarnowski, Radostaw Holewa, and all
those who I have forgotten to mention here.

[vww allitebooks.cond

http://www.allitebooks.org

Laurence Dawson is a software developer and an academic focused on mobile
development.

He received a PhD in 2015 from Durham University, developing efficient parallel
implementations of algorithms for GPUs using NVIDIA CUDA with an emphasis on
metaheuristics and image processing.

Laurence currently runs his own mobile software development company and is also a guest
lecturer at King's College London, teach software engineering modules.

You can follow his projects on his GitHub page athttps://github.com/laurencedawson.

[vww allitebooks.cond

http://www.allitebooks.org

About the Reviewers

Vincent Brison is a veteran Android software craftsman. With 4 years of Android
development experience, he successfully lead the development of reference banking
applications as the lead Android developer. He specializes in application architecture
around Clean Code, code quality and testing on Android, and cutting edge graphical
implementations for Android. As an open source enthusiast, Vincent is sharing some of his
work on GitHub (https://github.com/vincentbrison), on his personal website (https:/
/vincentbrison.com), and in events like Droidcon.

I personally would like to thank Thomas B. for showing me the right way of crafting Android

applications.

Pablo Pera is an entrepreneur and engineer who has built and launched Android apps that
have reached more than 30 million users worldwide. He started his professional career at
Google, right about the time Android was born, and worked for large organizations such as
CERN and tech startups, where he has been leading various engineering teams.

Karim Varela is an entrepreneur and mobile enthusiast at heart. He is currently involved in
a couple of mobile start-ups, Coffee Meets Bagel and Tastemates. At Coffee Meets Bagel, he
leads the engineering team and he advises Tastemates and Proxloop on strategy, product,
and technology. Previously, he built the Android app for the world-famous Tinder app.

He earned an MBA from the University of Florida and a bachelor's degree in computer
science from the University of California. He also contributed as a technical reviewer on the
book Pro Android 4 and coauthored the book Instant GSON.

[vww allitebooks.cond

http://www.allitebooks.org

www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com.

eBooks, discount offers, and more

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.comand as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
atcustomercare@packtpub.comforInoreCkﬁaﬂs

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

IE\ PACKT! i5°

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?

o Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
¢ On demand and accessible via a web browser

Free access for Packt account holders

Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter or the Packt Enterprise Facebook page.

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Chapter 1: Getting Started with Android Development 6
Setting up Android Studio 6
Getting the right version of Android Studio 7
Installing Android Studio 8
First run 10
Creating a sample project 12
Starting a new project 13
Running your project 17
Resource configuration qualifiers 20
Additional elements 21
Resources 21
Modules 22
Android Manifest 22
Gradle build system 22
ProGuard 26
Summary 29
Chapter 2: Activities and Fragments - The Backbone of Your App 30
Activities 31
Android design guidelines 33
The Activity context and scope 33
Activity lifecycle 34
Activity states 34

Activity lifecycle callbacks 35

Activity states and callbacks 36

The activity stack 37
Creating activities 37
Defining your activity 37
Editing the app manifest 38

Creating our Activity class 40

Building the sample application 40

Setting up your device for debugging 40

Running the application 41
Fragments 42
When to use fragments 42
Fragment lifecycle 44
Fragment context 44

[vww allitebooks.cond

http://www.allitebooks.org

Activity — fragment lifecycles 45
Fragment lifecycle callbacks 45
Creating fragments 46
Creating our own fragment 46
Creating a static fragment constructor 47
Using values from the static factory implementation 48
Adding a fragment to an activity 49
Running the application 51
Adding multiple fragments to a single activity 51
Adding multiple fragments to an activity 52

Adding two fragments in a single FragmentTransaction 53

Running the application 54
Navigating through an app 54
Activity navigation 54
Summary 57
Chapter 3: Working with Views — Interacting with Your App 58
Views and ViewGroups 59
Common views 59
TextView 59
Common operations 60

EditText 61
Common operations 61

ImageView 62
Common operations 63

Button 63
Common operations 64

ImageButton 65
Common operations 65

Switch and CheckBox 66
Common operations 66

WebView 67
Common operations 68

Common ViewGroups 68
FrameLayout 68
Common operations 69

CardView 70
Common operations 70
LinearLayout 71
Common operations 71
RelativeLayout 71
Common operations 72

ScrollView 73
Common operations 73

ListView 74
Common operations 74

[ii]

[vww allitebooks.cond

http://www.allitebooks.org

GridView 75

Common operations 75
RecyclerView 76
Common operations 77
ConstraintLayout 77
Common operations 79

Building a user interface using views and ViewGroups 79
Creating interfaces using layout files 80
Creating a basic layout 80

Adding a TextView 83

Previewing the layout 83

Using your layout file 85

Styling the TextView 86

Testing the layout 87

Creating user interfaces programmatically 87
Creating custom views 90
The first custom view example 90
Custom drawing 92

Drawing on a Canvas 94

Hooking up the CustomView 96

Adding the custom view programmatically 96

Adding the custom view using a layout file 96

Testing the CustomView 97

The second custom view example 98
Creating the CustomTextView class 98

Adding on-click behavior 99

Testing the CustomTextView 101
Overriding the onTouchEvent method 101
Additional user interface components 102
Toasts 102
Dialogs 103
Summary 105
Chapter 4: Lists and Adapters 106
ListView and ListActivity 106
ListView 106
ListActivity 110
Customizing the item view 111
Adapters 113
ArrayAdapter 113
Performance considerations 116
BaseAdapter 123
RecyclerView 126
Replacing ListView with RecyclerView 127

[iii]

CardView 134
ltemAnimator 137
ItemDecoration 137
StaggeredGridLayoutManager 142
Summary 146
Chapter 5: Remote Data 147
Permissions 147
Android M permission mechanism 148
Permission groups 153
Background processing 153
Java threads 154
AsyncTask 155
IntentService 157
Network code 164
Android standard libraries 165
Volley 166
Gson 170
Retrofit 174
Real case scenario 177
Summary 182
Chapter 6: Image Management 183
Caching remote data 183
Memory caches 184
Disk caches 188
Handling configuration changes 194
Loading images 196
Memory 196
Handling large images 199
Different image types 202
Vector drawables 203
Images in a RecyclerView 206
Widely used third-party libraries 206
Glide 207
UIL 208
Picasso 210
Fresco 211
Summary 213
Chapter 7: Permanent Data 214

[iv]

Storing preferences 214
Initialization 215
Basic use 215
Additional features 218

Files 219
Internal storage 220
External storage 222
Additional methods 224

SQLite 225
Schema and contract definition 225
Helper implementation 227

Third-party libraries 230
Realm 230

Summary 232

Chapter 8: Testing Your Application 233

Testing logic 233
Simple calculator application 234
Unit tests 235
Discovering and fixing issues by creating tests 240
Instrumentation tests 242
Testing integrations 245
Mocking Android dependencies 245

Testing the Ul 246
Setup 247
Creating Ul tests 248
Simplifying Ul test creation 250

Putting it all together 251

Summary 255

Chapter 9: Publishing Your Application 257

Preparation steps 257
Application signing 257
Account creation 259

Publishing your application on Google Play 260
Adding a new application 260
Preparing the Store Listing 261
Uploading the application APK 265

Summary 269

Chapter 10: Monetization — Make Money with Your App 270

[v]

Index

Paid apps
Creating a paid app
Finance tracking
In-app purchases
Initial setup
Adding in-app products
Application code setup
Purchasing in-app products from our application
Consuming purchases
In-app advertising
Integrating with the Google Mobile Ads SDK
Summary

271
271
272
272
273
275
276
284
286
286
287
292

293

[vi]

Preface

Mobile development has been a market with huge potential since the very beginning, but
there have been some issues in the past, ranging from content discovery, where to
download apps and games, to the prohibitive costs of data in some countries. With the
launch of iPhone and the App Store, the whole market skyrocketed. Google followed up
and introduced Android and the Google Play Store. Today, we all know where we can find
applications for our smartphone and flat data rates or, at least, very accessible data plans
are more common in many countries. In addition, many companies transformed their
operating model to become mobile first and, nowadays, it is very strange not to find a
mobile application of a service or business that has direct interaction with consumers that
provides services to their employees and, obviously, those companies whose whole
business model is based on a mobile application.

The aim of this book is to introduce newcomers to Android development and, for those that
are already experienced, to brush up on some concepts and maybe add some final touches
to their applications. We will cover several aspects of Android development, ranging from
the very basics to the more advanced subjects. We will briefly explain the foundations, as it
is important to understand how everything works, but we will focus more on open source
and broadly used third-party libraries. Android has a very rich, open source, and
extensively tested library ecosystem, and it will be a mistake not to take advantage of it.
These libraries are widely used by many of the most downloaded apps in Google Play and
knowing how they work is becoming crucial, both to speed up the development time and to
perform well in job interviews. Do not forget to contribute back to the community!

What this book covers

Chapter 1, Getting Started with Android Development, will explain how to install Android
Studio, create a sample project, and run it on an Android emulator, and finally provide an
introduction to the Gradle build system.

Chapter 2, Activities and Fragments — The Backbone of Your App, will demonstrate how to
create activities and fragments and understand their lifecycle.

Chapter 3, Working with Views — Interacting with Your App, will show the most common
Views and ViewGroups and how to create custom Views.

Chapter 4, Lists and Adapters, will explore how to add lists to our application, ranging from
the good old ListView to the new RecyclerView. We will also cover the possible

Preface

performance issues we might run into.

Chapter 5, Remote Data, will explain how to retrieve data from the network using Android
standard classes and then some third-party open source libraries.

Chapter 6, Image Management, will describe how to load images, cache them efficiently, and
use different libraries to hide all the complexity.

Chapter 7, Permanent Data, will teach you how to store information on the local device,
ranging from temporary files to an SQLite database.

Chapter 8, Testing Your Application, will demonstrate how to automatically test our
application and add unit and Ul tests.

Chapter 9, Publishing Your Application, will describe how to publish our application to
Google Play.

Chapter 10, Monetization — Make Money with Your App, will explain how to add in-app
purchases, set the price of our application, and add in-app advertisements.

What you need for this book

To start developing for Android, you will need a version of Android Studio. In this book,
we will cover how to download and install the latest stable version and, for the brave, how
to install a development or beta version. The development version will contain all the latest
features but they might not be as stable as they should be.

Who this book is for

Want to get started with Android development? Start here.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows: "To edit
your app manifest, open the folder manifests and double-click on

[2]

Preface

the AndroidManifest .xml file."
A block of code is set as follows:
public class SampleActivity extends Activity {
@Override
protected void onCreate (Bundle savedInstanceState) {

super.onCreate (savedInstanceState);

// Called when the activity is first created
}

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Click on this tab and
select Android from the top drop-down menu."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

[31]

Preface

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at http: //www.p
acktpub.com. If you purchased this book elsewhere, you can visit http: //www.packtpub.c
om/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.

Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

NG N =

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR /7-Zip for Windows
e Zipeg /iZip / UnRarX for Mac
e 7-Zip [/ PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPubl
ishing/learningandroidapplicationdevelopment. We also have other code bundles
from our rich catalog of books and videos available at https://github.com/PacktPublish
ing/. Check them out!

[4]

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded to our website or added to any list of existing errata under the Errata
section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/conten
t/support and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[51]

Getting Started with Android
Development

In this chapter, we will go through all the steps required to start developing Android
devices. We have to be aware that Android is an evolving platform and so are its
development tools. We will show how to download and install Android Studio and how to
create a new project and run it on either an emulator or a real device. We will spend some
time going through some additional components that we will use in later chapters.

e Installing Android Studio
¢ Creating a sample project
¢ Additional components

Setting up Android Studio

Before being able to build an Android application, we have to download and install
Android Studio on our computer. It is still possible to download and use Eclipse with the
Android Development Tools (ADT) plugin, but Google no longer supports it and they
recommend that we migrate to Android Studio. In order to be aligned with this, we will

only focus on Android Studio in this book. For more information on this, visit
http://android-developers.blogspot.com.es/215/6/an-update-on-eclipse—android

—developer.html.

Getting Started with Android Development

Getting the right version of Android Studio

The latest stable version of Android Studio can be found at http://developer.android.com/sdk/in
dex.html.

eoe Download Android Stugio -
& = C [developer.android.com/sdk/index.html w0 =
Developers Design Develop Distribute B Developer Console Q
Training AP| Guides Reference Tools oogle Services Samples
Download B
The official Android IDE
Installing the SDK
Adding SDK Packages
Android Studio
Workflow
Tools Help
Build System
Performance Tools
Testing Tools
Support Libi ’
VpEoR ey » System Requi
Data Binding Library - Other Download Options
Revisions - Migra Android Studio
« Takea
NDK

If you are among the bravest developers, and you are not afraid of bugs, you can always go
to the Canary channel and download the latest version. The Canary channel is one of the
preview channels available on the Android tools download page (available at http://tool
s.android.com/download/studio) and contains Weekly builds.

The following are other preview channels available at that URL:

e The Canary channel contains weekly builds. These builds are tested but they
might contain some issues. Just use a build from this channel if you need or want
to see the latest features.

¢ The Dev channel contains selected Canary builds.

e The Beta channel contains the beta milestones for the next version of Android
Studio.

e The Stable channel contains the most recent stable builds of Android Studio.

[71]

Getting Started with Android Development

The following screenshot illustrates the Android Tools download page:

® © ® [Tandroid Studio Downiges
4+ (& tools.android.com/download/studio —~ =
Android Tools Project Site Search tis e
Project Info Rownioad >
Projects Overvie - "
et Android Studio Downloads
Resase Status
Downiosd We offer preview channels for Android Studio:
Praviow Channal
Recent Changes « Canary
Technical docs = Dav
New Build System « Bota
| + Stabie
Known |ssues
Tips For more information on how to get these updates, see the Prayis &l page.
Contrib info Subpages (5): Android Studic Bafa Channel Android Studio Bullds Android Shudio Canary Channel Android Studio Dev Channel Android Studio Stable
Build Overview Channel
Contributing
Foadback
Filing Bugs Comments
You do not have permission to add comments.
|
Sinin | Repor Abuse | Print Page | Powersd By Google Sites

It is not recommended to use an unstable version for production. To be on
the safe side, always use the latest stable version. In this book, we will use
the 2.2 preview version. Although it is a beta version at this moment, we
will have the main version quite soon.

Installing Android Studio

Android Studio requires JDK 6 or higher: JDK 7 is required as a minimum if you aim to
develop for Android 5.0 and higher. You can easily check which version you have installed
by running this on your command line:

javac —-version

If you don't have any version of the JDK or you have an unsupported version, please install
or update your JDK before proceeding to install Android Studio.

[81]

Getting Started with Android Development

Refer to the official documentation for a more comprehensive installation guide and details
on all platforms (Windows, Linux, and Mac OSX) at http://developer.android.com/sdk/
installing/index.html?pkg=studio.

Once you have JDK installed, unpack the package you have just downloaded from the
Internet and proceed with the installation. For example, let's use Mac OSX. If you download
the latest stable version, you will get a . dmg file that can be mounted on your filesystem.
Once mounted, a new Finder window will appear and will ask us to drag the Android
Studio icon to the Applications folder. Just doing this simple step will complete the basic
installation.

@ & = Android Studio 1.5.1

Android
Studio

» »

Android Studio Applications

[91]

Getting Started with Android Development

If you have downloaded a preview version, you will have a ZIP file that once unpacked will
contain the Android Studio Application directly (it can be just dragged to the
Applications folder using Finder).

o0 e & Downloads

< 2 Bm o =y s L Q
Favorites Name ~ Size Kind
%# Dropbox ® Android Studio 634,1 MB Application

; i android-studio-ide-143.2489090-mac.zip 336,8 MB ZIP archive
All My Files

¢ iCloud Drive
@ AirDrop

#™: Applications
] Desktop

@ Documents

© Downloads

For other platforms, refer to the official installation guide provided by Google at the web
address mentioned earlier.

First run

Once you have finished installing Android Studio, it is time to run it for the first time. On
the first execution (at least if you have downloaded version 2.2), it will let you configure
some options and install some SDK components if you choose the custom installation type.
Otherwise, both these settings and SDK components can be configured or installed later.

[10]

Getting Started with Android Development

The first option you will be able to choose is the Ul theme. We have the default UI theme or
the Darcula theme, which basically is a choice of light or dark backgrounds, respectively.

[] [] Android Studio Setup Wizard

M{ SDK Components Setup

Check the components you want to update/install. Click Next to continue.

_ The collection of Andraid platform APls, tools and

Android SDK Platform utilities that enables you to debug, profile, and
compile your apps.

APl 23: Android 6.0 (Marshmallow) - (67.1 MB)

Performance (Intel ® HAXM) - (2.2 MB) The setup wizard will update your current Android
SDK installation (if necessary) or install a new
Android Virtual Device - (1 GB) version.
Android 5DK Location: Total disk space required: 08

T Available disk :105 GB
JUsers /rrafols /Library/Android/sdk i s

Cancel Previous | Next | Finish

After this step, the next window will show the SDK Components Setup where the
installation process will let you choose some components to automatically download and
install. On Mac OS, there is a bug in some versions of Android Studio 2.0 that sometimes
does not allow selecting any option if the target folder does not exist. If that happens, follow
these steps for a quick fix:

1. Copy the contents of the Android SDK Location field, just the path or something
like /Users/<username>/Library/Android/sdk, to the clipboard.
2. Open the terminal application.

3. Create the folder manually as
mkdir /Users/<username>/Library/Android/sdk.

[11]

Getting Started with Android Development

4. Go back to Android Studio, press the Previous button, and then the Next button
to come back to this screen. Now, you will be able to select the components that
you would like to install.

5. If that still does not work, cancel the installation process, ensuring that you
checked the option to rerun the setup on the next installation. Quit Android
Studio and rerun it.

L] o % rrafols — bash — 80x24

Last login: Sat Dec 26 21:15:51 on ttys@1@
RaimonMac:~ rrafols$ mkdir /Users/rrafols/Library/Android/sdk
RaimonMac:~ rrafolss J

Creating a sample project

We will introduce some of the most common elements in Android Studio by creating a
sample project, building it, and running it on an Android emulator or on a real android
device. It is better to display those elements when you need them rather than just
enumerate a long list without a real use behind.

[12]

Getting Started with Android Development

Starting a new project

Just press the Start a new Android Studio project button to start a project from scratch.
Android Studio will ask you to make some project configuration settings, and you will be
able to launch your project. If you have an already existing project and would like to import
it to Android Studio, you could do it now as well. Any projects based on Eclipse, Ant, or
Gradle build can be easily imported into Android Studio. Projects can be also checked out
from Version Control software such as Subversion or Git directly from Android Studio.

[] Android Studio Setup Wizard

? Welcome to Android Studio

Recent Projects Quick Start
[°T;.-_ Start a new Android Studio project
r“-— Open an existing Android Studio project

No Project Open Yet - Check out project from Version Control
) pen Yet

—

j‘, Import project (Eclipse ADT, Gradle, etc.)

Q

Import an Android code sample

&

Configure

Docs and How-Tos

5]
on

Androld Studio 2.0 Preview 4 Build 143.2489090. Check for updates now.

[13]

Getting Started with Android Development

When creating a new project, it will ask for the application name and the company domain
name, which will be reversed into the application package name.

® @ Create New Project

) New Project

= Android Studio

Configure your new project

Application name: Example
Company Domain: rrafols.packt.com

Package name: com.packt.rrafols.example Edit

Project location: /Users/rrafols/ i ioProjects/

Cancel Previous | Next | Finish

Once this information is filled in, Android Studio will ask the type of device or form factors
your application will target. This includes not only phones and tablets, but also Android
Wear, Android TV, Android Auto, or Google Glass. In this example, we will target only
phones and tablets and require a minimum SDK API level of 14 (Android 4.0 or Ice Cream
Sandwich). By setting the minimum required level to 14, we make sure that the app will run
on approximately 96.2% of devices accessing Google Play Store, which is good enough. If
we set 23 as the minimum API level (Android 6.0 Marshmallow), our application will only
run on Android Marshmallow devices, which is fewer than 1% of active devices on Google
Play right now.

Unless we require a very specific feature available on a specific API level, we should use
common sense and try to aim for as many devices as we can. Having said that, we should
not waste time supporting very old devices (or very old versions of Android), as they might
be, for example, only 5% of the active devices but may imply lots and lots of work to make
your application support them. In addition to the minimum SDK version, there is also the
target SDK version. The target SDK version should be, ideally, set to the latest stable version

[14]

Getting Started with Android Development

of Android available to allow your application to take advantage of all the new features,
styles, and behaviors from newer versions.

As a rule of thumb, Google gives you the percentage of active devices on Google Play, not
the percentage of devices out there in the wild. So, unless we need to build an enterprise
application for a closed set of devices and installed ad hoc, we should not mind those
people not even accessing Google Play, as they will not the users of our application because
they do not usually download applications, unless we are targeting countries where Google
Play is not available. In that case, we should analyze our requirements with real data from
the available application stores in those countries.

To see the Android OS version distribution, always check the Android developer
dashboard at http://developer.android.com/about/dashboards/index.html.

Alternatively, when creating a new project from Android Studio, there is a link to help you
choose the version that you would like to target; this will open a new screen with the
cumulative percentage of coverage.

L} L Android Platform/AP| Viersion Distribution
ANDROID PLATFORM API LEVEL CUMULATIVE The minimum SDK version determines the lowest level of Android that your
VERSION DISTRIBUTICN appwl lninon;
‘] 96.2% You typically want to target as many users as possible, so you would ideally
[T s want to support everyone -- with a minimum SDK version of 1. However,
4.0 15 92.8% that has some disadvantages, such as lack of features, and very few people
T use devices that old anymaore.
gl 1 6 Your choice of minimum SDK level should be a tradeoff between the
81.4% distribution of users you wish to target and the features that your
application will need.
4,2 1 7 Click each Android Version /API level for more information.
66.9%

18 62.6%

4.4 19

23.7%

5.0 21
5.1 21

Close

[15]

Getting Started with Android Development

If you click on each version, it will give you more details about that Android OS version
and the features that were introduced, as shown in the following screenshot:

® o Create New Project

Target Android Devices

Select the form factors your app will run on

Different platforms may require separate SDKs

 Phone and Tablet
Minimum SDK APl 14: Android 4.0 (lceCreamSandwich)

Lower AP| levels target more devices, but have fewer features available.

By targeting APl 14 and later, your app will run on approximately 96.2% of the devices
that are active on the Google Play Store,

Help me choose
Wear

Minimum SDK | AP 21: Android 5.0 (Lollipop)
™

Minimum SDK | AP 21: Android 5.0 (Lollipop)
Android Auto

Glass

Minimum SDK | Glass Development Kit Preview

Cancel Previous | Next | Finish

After this step, and to simplify our application creation process, Android Studio will allow
us to add an Activity class to the project from some templates. In this case, we can add an
empty Activity class for the time being. Let's not worry about the name of the Activity
class and layout file at this moment; we can safely proceed with the prefilled values.

As defined by Android developer documentation an: Activity is a single, focused thing
that the user can do.

(Source: http://developer.android.com/reference/android/app/Activity.ht
ml)

To simplify further, we can consider an Activity class as every single screen of our
application where the user can interact with it. If we take into consideration the MVC
pattern, we can assume the Activity class to be the Controller, as it will receive all the user
inputs and events from the views, and the layout XML and UI widgets to be the views.

[16]

vww allitebooks.conl

http://www.allitebooks.org

Getting Started with Android Development

To know more about the MVC pattern, check out the following page:
https://en.wikipedia.org/wiki/Model%E2%8%93view%E2%8%93control

ler.

So, we have just added one Activity class to our application; let's see what else the
Android Studio wizard created for us.

Running your project

The Android Studio project wizard not only created an empty Activity class for us, but it
also created an AndroidManifest, alayout file (activity_main.xml) defining the View
controlled by the Activity class, an application icon placed carefully into different
mipmaps (https://en.wikipedia.org/wiki/Mipmap) so that the most appropriate will be
used depending on the screen resolution, some Gradle scripts, and and some other . xml
files containing colors, dimensions, strings, and style definitions.

[-1 & s ity i - Eximgig - |~ adroaSiudialN naieciuExampis| - Andndl B 3,0 Preview 4
i 5w O ag & fidgp- 2 Lo @ T L Ao

Laarmgle | app WL N Awa o packi rraloh enarapaE RanArirehy

& Al = i} &= | Wy T e Mges A iy ik .
} T apm perkags Com, pacuT. rrafoly. soesele] -
= T Comarden
- Jurclvod MgndlayE ami by o ro A - Suppart . w T - app. Applosea TADT Lv ATy] E)
- beport s~droid.os, Bendle;
B g
] L0, pasit rraipls aRample peblic cless Maindctlwity sxbessy Applospatdctivity | .
; Wi ity =
¥ [T poen. packr rradoh example ’
= a i h . protecied vald enlreatelBundle aeesdinitawestate) { e
AppEcEnon| et supar, onl reate| savedl nenanceSrate) 5
T Ak setContentyise| R, layout . acti vl ty_saink;
' | drasahile F
-E o ¥
o Wy =g el
' ¥ mipiman
e [T iRt pivg
E s
! o pre. e
= F [T dimess. nml 5
T E
3 o yirings, el E
« by . = =
¥ |7 Gradke Rrign £
i = wild gradie E
= = bk gradhe b =
& Tererenal [Mesnagrs = § Mmdrosd Mgndar = TOOD Lwarvd Log = Cradis Cormale
] Gl bt Pimsin ot i Be ol Bmna (noiaey 015450 14:8 WF: UTF-B: sl ! a

[17]

Getting Started with Android Development

We can have multiple resources, and even repeated resources, depending on screen
resolution, screen orientation, night mode, layout direction, or even the mobile country
code of the SIM card. Take a look at the next topic to understand how to add qualifiers and
filters to resources. For the time being, let's just try to run this example by pressing the Play
button next to our build configuration named app at the top of the screen.

app ¥ | P

Android Studio will show us a small window where we can select the deployment target: a
real device or emulator where our application will be installed and launched. If we have not
connected any device or created any emulator, we can do it from the following screen. Let's
press the Create New Emulator button.

m @ Select Deployment Target

No USB devices or emulators detected Troubleshoot

Connected Devices
<none>
Available Emulators

i5 4 (Edited) APl 19 (minSdk(API 14) > deviceSdk(API 1))
Pl 19 (minSdk{API 14) > deviceSdk{API 1))
» AP 22 xB6 (minSdk(API 14) > deviceSdk(API 1))

Create New Emulator

Use same selection for future launches Cancel | OK |

From this new screen, we can easily select a device and create an emulator that looks like
that device. A Nexus 5X will suit us. After choosing the device, we can choose which
version of the Android OS and architecture the platform will run on. For instance, if we
want to select Android Marshmallow (API level 23), we can choose from armeabi-v7a, x86
(Intel processors) and x86_64 (Intel 64bit processors). As we previously installed HAXM
during our first run (https ://software.intel.com/en-us/android/articles/intel-har

[18]

Getting Started with Android Development

dware-accelerated-execution-manager), we should install an Intel image, so the
emulator will be a lot faster than having to emulate an ARM processor. If we do not have
the Android OS image downloaded to our computer, we can do it from this screen as well.
Note that you can have an image of the OS with Google APIs or without them. We will use
one image or another depending on whether the application uses any Google-specific
libraries (Google Play Services) or only the Android core libraries.

Once the image is selected (and downloaded and installed, if needed), we can proceed to
finish the Android Virtual Device (AVD) configuration. On the last configuration screen,
we can fine-tune some elements of our emulator, such as the default orientation (portrait or
landscape), the screen scale, the SD card (if we enable the advanced settings), the amount of
physical RAM, network latency, and we can use the webcam in our computer as the
emulator's camera.

@ @ Select Deployment Target

Connected Devices
[l LGE Nexus 5 (Android 6.0, AP 23)

[5] Nexus 5X API 23 (Android 6.0, APl 23)
Available Emulators

[H Nexus 5 APl 23_packt
[E Nexus 5 API 22
[Nexus 4 (Edited) API 19 (minSdk(API 14) > deviceSdk(API 1))

Create New Emulator Don't see your device?

Use same selection for future launches Cancel | | OK |

You are now ready to run your application on the Android emulator that you just created. Just select it as the
deployment target and wait for it to load and install the app. If everything goes as it should, you should see this
screen on the Android emulator:

Example

Hello World!

[19]

Getting Started with Android Development

If you want to use a real device instead of an emulator, make sure that your device has the
developer options enabled and it is connected to your computer using a USB cable. To
enable development mode on your device or get information on how to develop and
debug applications over the network, instead of having the device connected through an
USB, check out the following links:

® http://developer.android.com/tools/help/adb.html

® http://developer.android.com/tools/device.html

If these steps are performed correctly, your device will appear as a connected device on the
deployment target selection window.

Resource configuration qualifiers

As we introduced in the previous section, we can have multiple resources depending on the
screen resolution or any other device configuration, and Android will choose the most
appropriate resource at runtime. In order to do that, we have to use what is called
configuration qualifiers. These qualifiers are only strings appended to the resource folder.
Consider the following example:

drawable
drawable—hdpi
drawable-mdpi
drawable—-en-rUS-land
layout

layout—-en
layout-sw600dp
layout-v7

Qualifiers can be combined, but they must always follow the order specified by Google in
thel%vvﬁﬁnglh%oura?docunuﬂﬁaﬁon,avaﬂabkfathttp://developer.android.com/guide
/topics/resources/providing-resources.html.

This allows us, for instance, to target multiple resolutions and have the best experience for
each of them. It can be also used to have different images based on the country in which the
application is executed, or the language.

[20]

Getting Started with Android Development

We have to be aware that putting in too many resources (basically, images or any other
media) will make our application grow in size. It is always good to apply common sense.
And, in the event of having too many different resources or configurations, do not bloat the
application and produce different binaries that can be deployed selectively to different
devices on Google Play. We will briefly explain in the Gradle build system topic in this
chapter, how to produce different binaries from one single source code. It will add some
complexity on our development but will make our application smaller and more convenient
for end users. For more information on multiple APK support, visit http://developer.and
roid.com/google/play/publishing/multiple—apks.html.

Additional elements

Now that we have already introduced some of the elements involved in the process of
building mobile applications for Android devices, we will dive deep into some of them.

Resources

To build an application we do not only need source code, we also need some additional files
such as images, text, layout description files, or others. Those additional files are what we
call resources. Our project will contain a res directory together with our src directory.
Inside this directory, we can find resources needed by our application.

To make our application as easy as possible to maintain and add new features to we should
externalize resources such as application images and texts from the source code. It will keep
our application code simple and we can easily add support for new countries or new
languages for example. As explained earlier, we can have multiple resources and, thanks to
the resource qualifiers, the Android device will pick the proper resource based on its
properties in runtime.

For static files that need to be included without any kind of filter, you can use the assets
folder. Everything there will be included into the final application. To access these assets,
we will have to use the AssetManager class, but we will cover this later. Visit http://deve
loper.android.com/reference/android/content/res/AssetManager.html for more
information on the AssetManager class.

[21]

Getting Started with Android Development

Modules

In order to keep the code of the application tidy and uncoupled, we can identify parts of the
application, which might be even reused later in some other applications, that can be
completely decoupled and exposed as a module. Gradle, the build system, allows us to
have several modules and establish dependencies between the main application and those
modules. To make it more interesting, these modules can be extracted as independent
projects and have an independent release cycle as though we are using a third-party library.
Modules can be considered as Android libraries or Android library projects. Instead of
having third-party dependencies pulled from remote repositories, we have them inside our
pﬂjed;\Hﬁthttps://developer.android.com/studio/projects/addfappfmodule.html
for more information on modules.

Android Manifest

The Android Manifest file is our application descriptor. Here, we can find all the activities,
services, content providers, and broadcast receivers defined in our application, the list of
permissions required, which icon to use on the Application menu, and a lot of other
configurations. For an exhaustive list of configurations, check the official documentation at
http://developer.android.com/guide/topics/manifest/manifest—-intro.html.

When the application is compiled, the manifest is transformed into a binary format. In order
to see the manifest of a compiled APK, we can use the following tool, included with the
Android SDK:

<Android SDK path>/build-tools/23.0.2/aapt dump badging <apk file>

On Mac OS, Android SDK will be installed inside your local Library directory,
as ~/Library/Android/sdk/.

Gradle build system

Gradle(http://gradle.orqg) is the new build system recommended by Google. On
previous versions, and before the introduction of Android Studio, Ant was the default build
system used. Gradle is a DSL, or domain-specific language, that allows scripting for more
complex build processes or configurations. You can do lots of things with it, but some of the
most used parts of the Gradle build system are dependency management and the option to
build different flavors (or configurations) of your application.

[22]

Getting Started with Android Development

Dependency management is not only useful for managing internal modules, but also for
managing external third-party libraries that we will use in our application.

If, for instance, we want to include Retrofit (HTTP client,
http://square.github.io/retrofit/) and Picasso (the image downloading library,
http://square.github.io/picasso/L‘Ne\VﬂlhavetoaddthetMK)dependendestoour
build.gradle file under the dependencies keyword:

dependencies {
compile fileTree(dir: 'libs', include: ['*.jar'])
testCompile 'junit:junit:4.12"
compile 'com.android.support:appcompat-v7:23.1.1"
compile 'com.squareup.retrofit2:retrofit:2.0.0-betal3"’
compile 'com.squareup.picasso:picasso:2.5.2"'

}

We have just added the last two lines to the dependencies that Android Studio puts in by
default.

Let's now discuss flavors, a very powerful way to build multiple configurations out of the
same source code. If we take a look at Google Play, we will notice that there are many apps
and games with a free version, usually limited or with ads, and a full or pro version.

Instead of duplicating all the code and having to build two different applications, adding
two different flavors to your application allows you to have two or more different builds
out of almost the same source code. Each flavor can have a specific source code and
resources that will differentiate it from the other flavors, but at the same time each flavor
will share the common source code and resources with all the others.

Let's modify our test application, the one created by the Android Studio Wizard, to add two
flavors.

First, we need to add the two flavors to our build.gradle file. Here is the resulting file
with the two flavors and the dependencies we introduced in the previous topic.

apply plugin: 'com.android.application'
android {

compileSdkVersion 23

buildToolsVersion "23.0.2"

defaultConfig {

applicationId "com.packt.rrafols.example"

minSdkVersion 14

targetSdkVersion 23

versionCode 1

versionName "1.0"

[23]

Getting Started with Android Development

productFlavors {
free {
applicationId "com.packt.rrafols.example.free"
}
pro A
applicationId "com.packt.rrafols.example.pro"

}
buildTypes {
release {
minifyEnabled false
proguardFiles getDefaultProguardFile ('proguard-
android.txt'), 'proguard-rules.pro'
}
}
}
dependencies {
compile fileTree(dir: 'libs', include: ['*.jar'])
testCompile 'junit:junit:4.12"
compile 'com.android.support:appcompat-v7:23.1.1"
compile 'com.squareup.retrofit2:retrofit:2.0.0-betal3"’
compile 'com.squareup.picasso:picasso:2.5.2"'

}

As you can see, there are two different flavors, free and pro, with different
applicationId objects, so we can have both installed on any device at the same time.

Now, we go to Android Studio and create these directories:

e app/src/free/java/com/packt/rrafols

e app/src/pro/java/com/packt/rrafols

The shared part of the code will remain in app/src/java and the specific code for each
flavor will go into its own directory. Let's create a dummy class named ApplicationName
inside the directory we created for the free flavor with the following content:

package com.packt.rrafols;
public class ApplicationName {

public static final String APPLICATION_FLAVOR = "free";
}

We will do the same for the pro flavor:

package com.packt.rrafols;
public class ApplicationName {
public static final String APPLICATION_FLAVOR = "pro";

[24]

Getting Started with Android Development

Now, we will have two classes with the same name but, no need to worry, only one of them
will be included in our build, depending on which flavor we are building.

To show that this is working, let's modify the MainActivity class to change the title to the
APPLICATION_FLAVOR value:

package com.packt.rrafols.example;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import com.packt.rrafols.ApplicationName;
public class MainActivity extends AppCompatActivity {
@Override
protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView (R.layout.activity_main);
getSupportActionBar ()
.setTitle (ApplicationName.APPLICATION_FLAVOR) ;
}
}

We can choose which flavor to build from the Build Variants tab in Android Studio.

Example app src) main java com
E Build Variants - 2 e
< _ :
& Test Artifact: | Androj~ ‘=t emtestes “
4 - freeDebug §
Module freeRelease
i app (%) v proDebug
£ proRelease
=
=
>
e
o
(=]
v
5
I

We can also achieve the same effect by having different resources in each flavor. Let's
change our MainActivity layout, as follows:

<?xml version="1.0" encoding="utf-8"7?>

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:paddingBottom="@dimen/activity_vertical_margin"
android:paddingLeft="@dimen/activity_horizontal _margin"

[25]

Getting Started with Android Development

android:paddingRight="Q@dimen/activity_horizontal _margin"
android:paddingTop="@dimen/activity_vertical_margin"
tools:context="com.packt.rrafols.example.MainActivity">
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/app_flavor" />
</RelativeLayout>

Next, let's create the property in the res/values/strings.xml directory:

<string name="app_flavor">No flavor specified</string>

To customize this message, we will have to create two resource folders, one for each flavor
like we did before for the source code:

e app/src/free/res/values

e app/src/pro/res/values

In the free flavor resource folder, we will create a new strings.xml file with the following
content:

<resources>
<string name="app_flavor">Application flavor: free</string>
</resources>

Also, we will do the same for the pro flavor:

<resources>
<string name="app_flavor">Application flavor: pro</string>
</resources>

Properties from our flavor will be merged with the default properties. Those that are equal
will be overwritten by the flavor-specific value and the application will show the selected
flavor message.

As an alternative to Gradle, if you have a very big application and the build time is one of
your bottlenecks, you might even try Buck. Buck (https://buckbuild.com) is the build
system developed by Facebook. It highly focused on build performance although the latest
versions of Gradle are improving on performance, and Gradle is the tool selected by
Google.

[26]

Getting Started with Android Development

ProGuard

ProGuard is a code obfuscation tool. The Java compiler does not do a good job of
optimizing the resulting class files when compiled from Java sources. By default, it
preserves all the variable names, method names and code is quite easy, not to say
straightforward, to decompile to high-level code once again. There are many tools out there
that allow us to do that, for example, smali (https://github.com/JesusFreke/smali) Or
dedexer (http://dedexer.sourceforge.net/). To make it difficult for anyone else to peek
into our code, it is always recommended that we run ProGuard to obfuscate (or minify) the
compiled version of our application. Not only will it replace all our class names, methods,
and variables with single-letter strings (a, b, ..), butit will also slightly optimize the
compiled bytecode and make it more complex (although not impossible) for hackers to hack
our application. We should not rely only on ProGuard for the security of our application,
but we can say that ProGuard is an additional barrier that we add to our application.

To enable ProGuard, we have to make a small change to our build.gradle file in our app
folder:

release {
minifyEnabled false
proguardFiles getDefaultProGuardFile ('proguard-android.txt'),
'proGuard-rules.pro'}

By just changing minifyEnabled to t rue, we are telling Gradle that it has to run ProGuard
on the release build.

ProGuard needs to be configured properly to do a good job; we cannot just obfuscate the
whole enchilada. The ProGuard configuration file tells ProGuard, among other things,
which classes or methods need to be preserved. There are some methods that need to be
retained as Android expects them to be there and, when using third-party libraries, always
double-check the ProGuard requirements of those libraries, as they might come with their
own set of rules. As an example, if we use retrofit, which will be introduced in chapter 5,
Remote Data, we will have to add the following set of rules:

—dontwarn retrofit2.**

—-keep class retrofit2.** { *; 1}
—keepattributes Signature
—keepattributes Exceptions

For more information about rules and how to configure ProGuard
properly, check out its official website and documentation at
http://proguard.sourceforge.net/manual/introduction.html.

[27]

Getting Started with Android Development

We can add these rules to the proguard-rules.pro file, as it is specified in the
build.gradle section that we modified before enabling ProGuard.

Even though Android does not use the bytecode produced by the Java compiler directly,
prior to Android 5.0, we had the DALVIK VM, which converted the java bytecode to
DALVIK (DEX) bytecode, and now, with the introduction of ART, bytecode is compiled
into native code for the sake of performance. So, to sum this up, all the resulting code, either
DEX or native, is produced from the original Java bytecode, so optimizing it will definitely
make a small improvement to the final code that will be run by the Android device. For
more information, check out what I discussed at the talk in Droidcon, Amsterdam in late
2014 (http://blog.rafols.org/wp-content/uploads/droidcon_nl_android.pdf).

ART RunTime & DAwik VM
RAimoN Rarols

ART —-
.CL
@ ARM
* NO OPTIMIZATiON '
* ONLY KNows AUTOBOXING METHOD cAL—
ARCMTECTURE PRIMITIVE A42 x ART DALVIKE DVERHEAD
V5 FASTER
» ;1." DALV\K AR"-‘ NOT

(R conenT(
WATH | A ”

Loo1>5 OBFfuscANON
STORE SRE FIRST -\ 0PT(MI2ES
ARRAY, FASTER THAN FoREAMH B YTe(ODE |

SORTWC‘I [T "s*rmNes
WSE Bundegr
My FA6TEK

[28]

Getting Started with Android Development

Another issue where ProGuard might help is with the 64k method limit. There is a design
flaw on the DEX file specification that only allows 65536 methods to be referenced on each
DEX file (http ://developer.android.com/tools/building/multidex. html).

This is much of a problem for a simple application, but if we start adding lots of third-party
libraries or our application is relatively complex, it can be a problem. For example, if we
have to include the whole Google Play Services, it will already add 38k methods to our
application. Now, Google Play Services is split into several smaller packages, and we can
include only the parts that we require. Nevertheless, if we enable minification or, basically,
ProGuard, it will remove all unused methods from both our application and the libraries
we include, drastically reducing the total number of methods we will end up having in our
application.

If you are concerned about security and would like to go the extra mile, I suggest that you
go for DexGuard (https://www.guardsquare.com/dexguard); it is not free, but has more
features than ProGuard and it is developed and maintained by the same company as
ProGuard.

Summary

In this chapter, we covered how to install Android Studio and get started with it. We also
briefly covered some of the additional parts or components that we will use in addition to
the source code to build our application resources, Gradle build system, obfuscation, and
Android Manifest.

[29]

Activities and Fragments - The
Backbone of Your App

Activities and fragments are two of the most important concepts for an Android developer
to master. In fact, in just about any Android-related programming interview, a common
starting question is to ask a candidate to describe and outline activities, fragments, and their
respective life cycles!

Broadly speaking, most Android apps consist of a series of connected screens that a user is
able to navigate through. Obviously, more complex apps can be offered additional
functionality such as background services, cloud messaging, broadcast receivers, and so on.
However, the core UI will usually be centered around navigating through a series of
connected activities or fragments nested within an activity.

A simple example of this basic Ul in, for instance, a cooking-recipe application, would be a
screen displaying a list of available recipes (Recipe List Activity) and another screen
displaying details of each recipe (Recipe Detail Activity). These screens can be mapped
easily to activities and managed by the system as an activity stack. In the earlier example, if
a user navigates from the recipe list activity (by clicking on a recipe in the list), a new
instance of the recipe detail activity is added to the stack. When a user navigates back, the
current recipe detail activity is popped off the top of the stack and the user is taken back to
the recipe list activity. On tablets, this pattern can be simplified by displaying both the
recipe list and recipe details view within a single activity. This allows more information to
be presented to users at once and to utilize the available screen space more efficiently.

Activities and Fragments - The Backbone of Your App

In this chapter, we will introduce the following;:

Activities and fragments

Practical examples on how activities and fragments make the backbone of any
Android app

How to create activities and fragments

How to create custom activities and fragments

How to allow your user to navigate through your application moving between
fragments and activities

If you are more of a practical learner, I would suggest skipping straight to
the Creating Activities section.

Activities

Google describes an activity as an application component that provides a screen for a user
to interact with. An Activity can be used to display information, call someone, or to even
play a game. As mentioned earlier, a typical Android app consists of multiple activities and
allows a user to navigate through them (an example of this is shown in the following
screenshot). These Activities represent the basic building blocks of an application and
knowing how to create and manage activities is fundamental to Android development. The
following screenshot shows an example of navigating from a list activity to detail activity
on an Android device. For more information, visit
http://developer.android.com/guide/components/activities.html.

[31]

Activities and Fragments - The Backbone of Your App

* W 0ozs3

= lifeprotips =
= ml’ p C = H

Here we go asking for trouble: LPT is
allowing image submissions this week

LPT: Mother's Day is next Sunday, don't forget!

s> W @ rzse

74 I'i:fprctips e =

LPT: Ask your S0 to write down all their
clothing sizes for you

"get them 1o write down their favourite colour too”
altemative LPT: 1alk 1o your 50 and remember bazic facts about them

That requires actually listening 1o them. Ughhhh

dat
That

requires actual remembering. Ughhh. Should keep kst in glove

compartment next 1o Insurance, because that list some damn good love
insurance

Which requires actually having a SO

B cant remember my sizes sometimes, haw am | suppese 1
another persons 7

Each activity can contain a set of views and even fragments presenting information to users
and to allow users to interact with the application. The preceding list-detail pattern is
common among Android apps and can be seen in the stock apps provided by Google, such
as Gmail and Google Play. It is crucial as an Android Developer to follow these patterns
recommended by Google (https://developer.android.com/training/implementing-na
vigation/index.html) to help your user understand your app.

[32]

Activities and Fragments - The Backbone of Your App

Android design guidelines

Following the design guidelines and patterns can help your app stand out in a sea of lazy
iOS ports and provide the experience that your users expect. Personally, if I see an app with
an iOS style bottom tab bar, I will immediately uninstall the app as either the designers
were too lazy to create a native Android design or the app was likely built in a rush with no
consideration for the Android guidelines!

Google places particular emphasis on following the design guidelines and, since the
introduction of Material Design (http://www.google.com/design/spec/material-design/
introduction.html), your users will come to expect a certain look and feel along with
following the set of standard navigation patterns. Google also provides a great playlist

of Android Design in Action
(https://www.youtube.com/playlist?1list=PLWz5rJ2EKKc8j2B952GMb8muzvrIy—-wcF)
videos that I strongly recommend to any budding Android developer before trying their
hand at design. Alternatively, if you are working with a team of designers, encourage them
to watch the whole playlist so that they will have an understanding of the specific design
needs for Android.

Patterns and guidelines are great, but that does not say that you cannot experiment with
app design and navigation. However, at this early stage, it is best to follow the guidelines
and do as Google does. It worked for me personally and has helped my apps become the
successes they are today. But, be aware that Google likes to change their mind often and a
good app developer should be quick to implement these changes in their apps to keep their
users happy; also, do not expect designs to last longer than 6 months!

The Activity context and scope

Now that we have introduced activities, it is important to understand what an activity can
do. For many essential operations in Android, a Context object is often required as part of
the method parameters. The Context ObjeCtS (http://developer.android.com/referenc
e/android/content/Context.html) are necessary for many essential tasks such as loading
resources, starting an activity, and even creating views. Basically, if you are going to load
anything or navigate to anywhere, chances are you will need a reference to a Context
object.

There are different types of context, however for now we will concentrate on the Activity
context. The Activity class inherits from ContextWrapper (http://possiblemobile.com
/213/6/context/) and keeps an internal reference to a context instance. An Application
context is able to start services, send broadcasts (system-wide interprocess communication
messages), and load resource values; however, it cannot interact or instantiate Ul

[33]

Activities and Fragments - The Backbone of Your App

components. An Activity context allows the developer to start activities, load layouts into
those activities and even show popups known as dialogs. As all activities inherit

from ContextWrapper, the activity itself can be passed when a context is required that
touches the Ul. An Activity also has access to the application context if required.

Activity lifecycle

As a user interacts with your app, the Android system will call various life cycle callback
methods on your activities. We refer to this process as the activity lifecycle and it is
important to be aware of and understand this life cycle before using many activities and
interacting with them. This is something you will need to feel comfortable early on in order
to progress further, so take your time to get to know the life cycle inside out. Additional
advanced resources can be found on the Android Developer site (http://developer.andro

id. com/training/basics/activity—lifecycle/index.html).

A good understanding of the life cycle is likely to be something that you
will need to demonstrate in any Android development interview. Often,
you will be asked to explain what an activity is, what are the common life
cycle events and when are these called. Be prepared and do not say I did
not warn you!

Activity states

As mentioned earlier, activities are managed and placed on an Activity stack. On this
stack, an activity can be in one of the following four states:

e If an activity is fully displayed, it means that the activity is running and is at the
top of the Activity stack

e If an activity is displayed but is partially covered by something else, for instance,
a dialog or another activity with transparent regions, it will be in the paused state

e When an activity is no longer visible and there is another activity running, the
previous activity is stopped and is not active any more

e When an activity is stopped, it can be killed by the system in order to recover
system memory, in which case the activity is finished

For more information on activity states, visit http://developer.android
.com/reference/android/app/Activity.html.

[34]

Activities and Fragments - The Backbone of Your App

As an activity moves through any of the four main states, the Activity class receives a
callback to signify that the activity state has changed. At this point, code can be added to
execute at any of the state changes. For example, when using any of the popular in-app
analytic monitoring tools, it is often required to manually start and stop the monitoring as
the activity is resumed and paused in order to accurately monitor the journey of the user
through your app. Only one activity can be in the resumed state at once, all previous
activities will be paused or stopped when new activities are started, and they can be killed
either by the system or by explicitly requesting the activity to finish.

Activity lifecycle callbacks

In the following code example, we will show the main callback methods in an example
custom activity (named SampleActivity). We have annotated these methods; however,
additional information can be found on the official Android developer site
(http://developer.android.com/reference/android/app/Activity.html):

public class SampleActivity extends Activity {

@Override
protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);

// Called when the activity is first created
t

@Override
protected void onStart () {
super.onStart () ;

// Called when the activity is becoming visible

}

@Override
protected void onResume () {
super.onResume () ;

// Called when the activity will start interacting with the user
}

@Override
protected void onPause () {
super.onPause () ;

// Called when an activity is being paused

}

[35]

Activities and Fragments - The Backbone of Your App

@Override
protected void onStop () |
super.onStop () ;

// Called when an activity is being stopped and is no

// longer visible to the user

}
@Override
protected void onDestroy () {

super.onbDestroy () ;

// Called when an activity being destroyed
}

Activity states and callbacks

The entire life cycle of an activity spans from onCreate () to onDestroy (). An activity is
visible to the user after it passes from onStart () to onStop (). And finally, the activity is
in the foreground between onResume () and onPause () .This is illustrated in the following
diagram. It is not required for any of the lifecycle callback events to be overridden and
used; however, this is often the case.

onCreate()

lau

i n a \
A (visible) __/-'I ' (partially visible)

onStart() onstop()

- = 7

S (isble)

onResume() onPause()
onResume()

b

Started Paused

onStart()

Stopped

g (hidden) 4

Created | onRestart()
> onDestroy()

Destroyed

This diagram shows an overview of the activity lifecycle as the app moves from being
created to subsequently being destroyed (http://developer.android.com/training/bas
ics/activity-lifecycle/starting.html). The callbacks previously described are shown
as the app transitions through the various states.

[36]

vww allitebooks.conl

http://www.allitebooks.org

Activities and Fragments - The Backbone of Your App

The activity stack

In Android, we can refer to a collection or series of activities as a task, and these activities
are arranged in a stack, otherwise known as a back stack. When a user moves from activity
to activity, these activities are placed on the stack in the order in which they are visited.

For example, if the user moves from activity A to activity B to activity C, the back stack
would be A >B > C (where C is at the top of stack). If a user navigates away from a
particular activity to a previous activity, for example, from C back to B, this activity is then
stopped, destroyed, and popped from the top of the back stack. In this example, the stack
after navigating back to the previous activity would be A > B, where B is at the top of the
stack. When a previous activity in the stack is resumed, its previous state is resumed and
the corresponding callbacks are triggered.

When a new activity replaces the current top of the stack, the current activity is pushed
down into the stack and is stopped. The activity stack is a standard LIFO (Last In First Out)
stack, although the Android SDK allows the application developer to implement a custom
behavior as needed.

Creating activities

Now that we have gone through the essentials and covered the activity boilerplate
introduction, we can actually begin to have some fun and create our first activities! In this
simple example, we will cover how to launch an activity and show how to extend the
Activity super class to create an instance of our own activity. This will be a very simple
introductory example and should not take more than 20-25 minutes to complete. So grab a
coffee and let's get started!

Defining your activity

In the previous chapter, we introduced the Android App Manifest (AndroidManifest .xml)
that contains essential information such as the package name and components of an
application. For each activity in your application, you must create a corresponding entry in
the app manifest along with additional information such as theme of the activity.

[371]

Activities and Fragments - The Backbone of Your App

Creating an entry in the manifest is easy and you will only need the name of your activity in
this example. You also need to add your activities to the manifest file always, so bookmark
this page for future reference!

If you ever forget to create an entry, your app will crash as soon as that
activity starts, so your mistake will not go unnoticed for long! As an
alternative, using the File |New | Activity from Android Studio, will add
it automatically.

Editing the app manifest

1. To begin, open Android Studio.

2. Once you have created a project or opened an already existing one, you will be
able to see an editor tab called Project on the left-hand side of the screen.

3. Click on this tab and select Android from the top drop-down menu. The
following screenshot shows the Android Studio project tab:

vanifest.xml

ity_main.xml

[38]

Activities and Fragments - The Backbone of Your App

4. To edit your app manifest, open the folder manifests and double-click on
the AndroidManifest.xml file.

If you have a large project with multiple modules (more information on projects can be
fOUIKiathttps://developer.android.com/sdk/installing/createfproject.htmlL
then multiple app manifests will show under manifests folder. But luckily, as we are just
starting, there is only one to choose from!

In our example from the previous chapter, the Android Studio new project wizard
automatically created the project structure and the manifest file, but we did not check in
details:

<?xml version="1.0" encoding="utf-8"7?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.packt.rrafols.example">

<application
android:allowBackup="true"
android:icon="Qdrawable/ic_launcher"
android:label="Q@string/app_name"
android:theme="@style/AppTheme" >
<activity
android:name=".MainActivity">

<intent-filter>
<action
android:name="android.intent.action.MAIN" />

<category
android:name="android.intent.category.LAUNCHER" />
</intent-filter>

</activity>
</application>

</manifest>

Declaring an Activity class only requires its name. However, in the preceding case, we
have also included an intent filter that tells the system to launch this Activity by default
when the app starts. Without this, the system would not know which Activity to start
when a user clicks on your app icon and, actually, there won't even be an icon, as Android
Launcher will not know that there is an Act ivity that can be launched. To know more
about intent filters, visit http://developer.android.com/guide/components/intents—fi
lters.html.

[39]

Activities and Fragments - The Backbone of Your App

Creating our Activity class

All Activities within an application extend the Activity class. So, let's create a sample
Activity called SampleActivity, as shown in the following code:

public class SampleActivity extends Activity {

@Override
protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);

// Set the Activity background to red
getWindow () .getDecorView () .setBackgroundColor (Color.RED) ;

}
}

In the previously mentioned onCreate () callback, insert an additional line to change the
color of the background of the activity to red. At this stage, it does not matter

what getWindow () or getDecorView () do, we will use this to change the color of our
activity to a lovely bright #££000 red for the sole purpose of testing.

Building the sample application

So, we created a bared tiny activity, and Android Studio added an entry for it in the
application manifest. Before going any further, it is time to test our activity and execute it on
an Android device. In the previous chapter, we showed how to configure an Android
emulator, but let's see how to connect a real Android device.

Setting up your device for debugging

Personally, I prefer to develop directly with a real Android device as you can get a good feel
of the app as you are developing it and get to see how your design looks on a physical
device.

Follow these steps to enable debugging on your Android device:

1. Navigate to Settings | About Phone | Build number.

2. Tap the Build Number times until you see the popup You are now a developer
(hurrah!).

3. Once you have enabled the developer options, navigate to Settings | Developer
Options | enable USB debugging.

[40]

Activities and Fragments - The Backbone of Your App

4.

Once you have enabled USB debugging, connect your Android device to your
computer.

The Android device will ask for permission to debug from that computer.

You will now be able to use this device to test and execute your code directly
without any painful certificate process (as compared to Xcode).

Running the application

Once your Android device is set up and connected, perform these steps:

1.

Like we did while running on an emulator, click on the green arrow in the menu
bar at the top in Android Studio (you can also go to Run | Run). This will build
your app and popup a dialog box asking you how you would like to run the
application.

Select choose a running device.

Select your phone from the first box and click on OK to push the newly built
application to your phone directly.

The result should be a lovely bright red screen on your device from our newly created
custom activity, which is as shown in the following image:

[41]

Activities and Fragments - The Backbone of Your App

Fragments

Informally, fragments are Ul building blocks and are analogous to activities. They can be
treated as subactivities and multiple fragments can be placed in a single activity. Fragments
can represent screens within an application and are typically associated with a particular
task such as a map fragment. Fragments can also exist within fragments to allow module
portions of activities to be easily reused. Google formally defines a fragment as a piece of an
application's user interface that can be placed in an activity (http://developer.android.c
om/reference/android/app/Fragment.html). Like activities, fragments have their own life
cycles complete with similar callback events to use when implementing custom fragments.
Fragments can also be placed on a stack for activity-like navigation through an app,
complete with back button support.

Definitions and introductions aside, fragments are one of the most useful concepts to master
in Android and they will make your life much easier when developing complex user
interfaces, reusing code, and developing for tablets or large displays. The following figure
shows a simple example of using multiple fragments within a single activity to create a
multi-pane tablet experience or spread the two fragments over two activities to adapt the
interface for smaller devices such as phones:

Tablet Handset

Selecting an item Selecting an item

(updates Fragment B 1 (starts Activity B \l

Activity A contains Activity A contains Activity B contains
Fragment A and Fragment B Fragment A Fragment B

When to use fragments

The use of fragments is slightly contentious in the Android development community. Some
developers will always suggest using fragments and, thus, minimize the use of activities;
whereas, other developers will completely go against fragments favoring activities. At this

[42]

Activities and Fragments - The Backbone of Your App

point, there is no right answer and it is completely up to you to decide whether to use
fragments in your application.

Personally, I will move most of my activity code and into fragments or code straight into
fragments at the beginning of a project. You never know how or where you would like to
reuse a component! So having the ability to drop the UI code into one or more places
without additional work is a no brainer! For example, if you have a fragment that displays a
gallery of images, there is a good chance that you will likely use this exact component
elsewhere in your app, making this a great use case for using fragments. If you suspect that
you will develop a tablet user interface, then fragments are almost always necessary, as they
can greatly simplify this process and allow you to use multiple fragments within a single
activity and create a multi-pane user interface. The following image shows an example of
the official Google Gmail application running on a Nexus 7 utilizing a multi-pane user
interface. Two columns of information are displayed using fragments within a single
activity. On the left-hand side, we have a list containing the users incoming emails and a
detailed view of the selected e-mail on the right-hand side.

Board game night? "fis
‘ Promotions

Updates @ lfl:l]lu#l!.lnr
@ G Patar Johnson

e FRached Shin

-

Kari Andarson
Picture from st Saturday

@ Regie, Potér, Rached 3

Aruna Knight
Book you recommended

Sunday works! If you can get Dexter and Sophée | will handie the ch

[43]

Activities and Fragments - The Backbone of Your App

Fragment lifecycle

Just like activities, fragments have their own life cycles and corresponding lifecycle event
callbacks. A fragment contains the same four basic callbacks an activity uses:

onCreate (), onStart (), onPause (), and onStop (). Due to this similarity, Google found
that it is pretty simple to port your existing activity code into a custom fragment instance
without too much modification or effort.

Unlike an activity, a fragment does not provide a default root view for the Ul As your
fragment will be most likely used for interacting with your users, you will need to provide
the default root view for the fragment. Fragments allow you to easily provide this as part of
the fragment lifecycle by overriding the onCreateview () callback method. This callback
method is executed straight after the fragment is created. After this method is executed, the
root view is set and you can easily access this view by calling getView () from anywhere
else in the custom fragment. However, providing a root view is not required and it is
permitted for the onCreateview () method to return null if no root view is needed.

Unlike activities, fragments are only placed on the back stack if explicitly requested. When
using activities, this is the default behavior. However, this can also be explicitly disabled if
you do not wish to record a user's journey history. This can be especially useful if you wish
to move through multiple fragments within a single activity and allow a user to go back like
with activities using the physical button on their device.

Fragment context

A fragment does not have its own instance of a Context object; however, once the fragment
is added to the parent activity, it can call getActivity () to get access to the parent activity
and, thus, use the context of the parent activity. Google found that this operation must be
used with caution as this can only be performed after the fragment has attached to the
parent activity. If the fragment is not attached this will result in a null reference being
returned:

http://developer.android.com/guide/components/fragments.html#Lifecycle

[44]

Activities and Fragments - The Backbone of Your App

Activity — fragment lifecycles

The lifecycle of the parent activity is closely coupled with the lifecycle of the child fragment.
For example, when the parent activity is paused, the child fragment will in turn be paused
and receive the onPause () lifecycle event. As a result, the lifecycle of the fragment and
issuing of callback methods is highly dependent on the parent activity. An activity can only
create and attach fragments when it is active and has entered the resumed state. When an
activity leaves the resumed state, the child fragments go through their respective lifecycle
events.

Fragment lifecycle callbacks

In addition to the callbacks mentioned earlier shared with the Activity class

(onCreate (), onStart (), onPause (), and onStop () and so on), a fragment exposes
additional fragment-specific callbacks and these, just like the activity callbacks, can be
overridden. In the following code example, we will show the main callback methods in an
example custom fragment (named SampleFragment). We have annotated these methods;
however, additional information can be found on the official Android Developer site at htt

p://developer.android.com/reference/android/app/Fragment .html.

public class SampleFragment extends Fragment {

@Override
public void onAttach (Activity activity) |
super.onAttach (activity);

// Called when the Fragment is attached to an Activity
}

@Override
public View onCreateView (LayoutInflater inflater,
ViewGroup container, Bundle savedInstanceState) {

// Override this method and return a default root UI

}
@Override
public void onActivityCreated (Bundle savedInstanceState) {

super.onActivityCreated (savedInstanceState) ;

// Called when the parent Activity has called onCreated
}

@Override

[45]

Activities and Fragments - The Backbone of Your App

public void onDestroyView () {
super.onDestroyView () ;

// Called when the root UI is destroyed
}

@Override
public void onDetach () {
super.onDetach () ;

// Called when the Fragment is detached from the parent Activity,
// after this point the Fragment is no longer associated with the
// parent Activity

}

Creating fragments

As with activities, now that we have covered the same old dry introduction to fragments,
we can actually begin to use them! In the following sections, we will cover how to create
fragments, create a static Fragment constructor, and instantiate a fragment that binds one

or several fragments into a single parent activity.

Creating our own fragment

As we did in the activity example, perform the following steps:

1. Open the Project tab on the right-hand side of the screen.
2. Right-click on the com.example folder.
3. Go to New | Java Class and name the class SampleFragment.

As all custom activities extend the class Activity, all custom fragments extend the
class Fragment.

If you are using the support library, you can choose to either use the
Fragment class built into Android as of Honeycomb (API v11) or

the android. support.v4.app.Fragment class bundled as part of the
support library. If you are planning on supporting devices pre-ICS (API
v14), you must use the support library version; otherwise, I tend to just
use the stock instance built into the framework.

[46]

Activities and Fragments - The Backbone of Your App

On the next page, we define a simple instance of a fragment. As with our activity example,
to see the results of creating our fragment, we set the background color to a nice bright blue
#0000££. To do this, we must override the onCreateview lifecycle callback (refer to the
fragment lifecycle). In this method, you can either inflate the layout from a layout resource
file (covered in chapter 3, Working with Views — Interacting with Your App) or create and
return a view programmatically.

In this example, we will create a new instance of a FrameLayout, a simple ViewGroup
designed to display a single item. In the constructor of the FrameLayout, you can see that
we pass in the Act ivity context using the getActivity () method. As onCreateview
method is called after the fragment is attached to the parent activity, it is safe to call this
method.

Before returning the instance of the FrameLayout, we set the background of the view using
the setBackgroundColor () method. This is the same process as the previous activity
example; however, in the activity example, there was a default root view provided by

the Activity class:

import android.app.Fragment;
public class SampleFragment extends Fragment {

@Override
public View onCreateView (LayoutInflater inflater,

ViewGroup container, Bundle savedInstanceState) {
FrameLayout framelLayout = new FramelLayout (getActivity());
frameLayout.setBackgroundColor (Color.BLUE) ;
return framelayout;

}

Creating a static fragment constructor

When creating a fragment, it is considered best practice to use a static constructor to pass
the input variables in a bundle. The reason for this is that if the system needs to recreate
your fragments at a later time, when restoring the activity state, it will call the default
empty constructor for your custom fragment. Even if you overload the constructor, the
default empty constructor will be called and your input variables will be lost.

[47]

Activities and Fragments - The Backbone of Your App

For more information on Fragment constructor, visit https://developer

.android.com/reference/android/app/Fragment .html#Fragment ().

One common solution to avoid this problem is to use the static factory pattern and create a
static method, usually called newInstance, to create a new instance of the fragment (http:
//www.androiddesignpatterns.com/212/5/using-newinstance-to-instantiate.html).
In the following code example, we will see how to use the newInstance pattern to create
an instance of our fragment and add a variable to a bundle that we can later retrieve:

public class SampleFragment extends Fragment {
private static final String COLOR = "color";

public static SampleFragment newInstance (int color) {
SampleFragment fragment = new SampleFragment ();
Bundle bundle = new Bundle();
bundle.putInt (COLOR, color);
fragment.setArguments (bundle) ;
return fragment;

}

In the preceding example, we created an instance of our SampleFragment with a Bundle
class containing a color. This color is added to the bundle using the static COLOR key. This
value can be set to whatever you want but you will need to use the same key to later
retrieve the color value out of the Bundle class. Each key must also be unique to avoid
overriding values in the bundle.

Using values from the static factory implementation

Once we have passed the color integer value into the newInstance method, this is added
to a Bundle class and this bundle is then linked to the fragment. At any of the lifecycle
events for a fragment we can then access this bundle by calling the get Arguments ()
method. The Bundle class contains all of the variables set in the static constructor that are
accessible using the previously set key (in this case, the key was COLOR).

[48]

Activities and Fragments - The Backbone of Your App

In the following code, we give a complete example of how to create a fragment, implement
a static factory pattern, and pass through variables using the Bundle:

import android.graphics.Color;
import android.os.Bundle;

import android.view.LayoutInflater;
import android.view.View;

import android.view.ViewGroup;
import android.widget.FrameLayout;

import android.app.Fragment;
public class SampleFragment extends Fragment {
private static final String COLOR = "color";

public static SampleFragment newInstance (int color) {
SampleFragment fragment = new SampleFragment () ;
Bundle bundle = new Bundle();
bundle.putInt (COLOR, color);
fragment.setArguments (bundle) ;
return fragment;

@Override
public View onCreateView (LayoutInflater inflater,
ViewGroup container, Bundle savedInstanceState) {

// Grab the color from the bundle
int color = getArguments () .getInt (COLOR, Color.RED);

// Create the root view
FrameLayout framelLayout = new FramelLayout (getActivity());

// Set the background color of the root view using the value
// passed through from the static constructor
frameLayout.setBackgroundColor (color) ;

// Return the root view
return framelayout;

[49]

Activities and Fragments - The Backbone of Your App

Adding a fragment to an activity

As previously mentioned, unlike activities, fragments do not have to be declared in your
Android app manifest file. Fragments can either be added to your Ul as part of a layout file
(covered in chapter 3, Working with Views — Interacting with Your App) or programmatically
uﬂngvﬂmﬁisknowﬂlasaFragmentTransaction,VEH}mtp://developer.android.com/
reference/android/app/FragmentTransaction.html for more information.

In the code following example, we will see how to add a fragment to the default root view
of our custom Activity (SampleActivity):

public class SampleActivity extends Activity {

@Override
protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);

if (savedInstanceState == null){

// We're going to be using blue as the background of
// our custom Fragment
int color = Color.BLUE;

// Create a new instance of our Fragment
SampleFragment fragment = SampleFragment.newlInstance (color);

// Grab the FragmentManager
getFragmentManager ()
// Begin a FragmentTransaction
.beginTransaction ()
// Add the fragment to the default root view
.add (android.R.id.content, fragment)
// Finish the FragmentTransaction
.commit () ;

}

If we would like to preserve the state of our activity if the system recreates it, we can do so
by implementing the onSaveStateInstance method. If we store something in

the savedInstanceState bundle on the onsavestateInstance, we will get it back on
the onRestorestateInstance and as a parameter in the onCreate method as well. Most
implementations will simply use the onCreate method, but it might be convenient to do it
on the onRestoreStateInstance depending on the logic we would like to implement.

[50]

Activities and Fragments - The Backbone of Your App

For more information, visit https://developer.android.com/training/basics/activit
y-lifecycle/recreating.html.

In this example, we first check whether the bundle savedInstancestate is null. If the
bundle is null, we can rest assured that this is the first time the activity has been created and
has not been rotated or stopped previously. The reason for this check is that we do not want
to recreate our fragment each time the activity is recreated as this would result in multiple
instances of the same fragment being attached to the same parent activity, leading to poor
performance and redundancy. Once we have performed this check, we then create an
instance of our SampleFragment using the static newInstance constructor and pass in the
color value blue. To attach the fragment to the parent activity, we grab an instance of

the FragmentManager to bind the fragment to a particular view using
aFragmentTransaction. In this case, we have bound the fragment to the default root
view of the activity, which has an ID of android.R.id.content. Once we have instructed
the fragment to be bound to the view ID provided, we then finish

the FragmentTransaction using the commit () method.

Running the application

As with the activity example, click on the green arrow in the top menu bar in Android
Studio (you can also go to Run | Run). The result should be a bright blue screen on your
device from our newly created custom activity and custom fragment. The following figure
shows our super simple custom activity with a blue background:

[51]

Activities and Fragments - The Backbone of Your App

Adding multiple fragments to a single activity

One of the main benefits of using fragments is that multiple fragments can be added to a
single activity (and even fragments within fragments!). In the preceding example, we
attached our simple sampleFragment to the default view of our SampleActivity. In the
following example, we will update our SampleActivity to contain two views and then
attach a fragment to each one of these views with different colors (blue and red) for testing.
This is still all pretty simple but is designed to show off how powerful fragments are.

Adding multiple fragments to an activity

As discussed, one of the main benefits of using fragments is creating reusable components
that can be easily rearranged to form both phone and tablet user interfaces. In the following
example, we will show how we can reuse our simple colored fragment and include two
instances of the fragment in a single activity.

To start, we will need to create a new root layout in our activity file. To do this, we will use
a layout file. We will cover these in much more detail in chapter 3, Working with Views —
Interacting with Your App, but for now, copy the following file into the 1ayout folder in res
with the filename activity_sample.xml:

<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">

<FrameLayout
android:id="Q@+id/sample_one"
android:layout_weight="1"
android:layout_width="match_parent"
android:layout_height="match_parent"/>

<FrameLayout
android:id="Q@+id/sample_two"
android:layout_weight="1"
android:layout_width="match_parent"
android:layout_height="match_parent"/>

</LinearLayout>

[52]

Activities and Fragments - The Backbone of Your App

In the preceding code sample, we created a LinearLayout (http://developer.android.c
om/reference/android/widget/LinearLayout.html) with two FrameLayouts within it.
Each of the views are set to fill the height of the LinearLayout and have a weight of 1. This
means that as there are two views, each of the views will occupy half of the screen. We set
the orientation of the LinearLayout to vertical so that the views will occupy the top and
bottom halves of the screen. To set the new root, we amend our SampleActivity
onCreate method to the following:

@Override
protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);

// Set the root view to the newly created activity_sample.xml
setContentView (R.layout.activity_sample);

Adding two fragments in a single FragmentTransaction

In our previous Fragment Transaction example, we added a single fragment to the
default root view of the activity. In the following code example, we will now add two
fragments to the newly created custom layout containing two vertically

stacked FrameLayouts. To do this, we can simply chain an additional add method to the
existing FragmentTransaction and modify the layout IDs to match those specified in the
layout file activity_sample.xml:

if (savedInstanceState == null){

// Create our Fragments

SampleFragment fragmentTop =
SampleFragment .newInstance (Color.BLUE) ;

SampleFragment fragmentBottom =
SampleFragment .newInstance (Color.RED);

// Add the two fragments

getFragmentManager ()
.beginTransaction ()
.add(R.id.sample_one, fragmentTop)
.add(R.id.sample_two, fragmentBottom)
.commit () ;

[53]

Activities and Fragments - The Backbone of Your App

Running the application

Once again, click on the green arrow in the top menu bar in Android Studio (you can also
navigate to Run | Run). All going well, you should be able to see two fragments stacked
vertically in bright blue and red. The following figure shows two fragments added to single
activity stacked vertically in a LinearLayout:

Navigating through an app

In this section, we will cover how to navigate between fragments in your app. To keep
things simple for the chapter, we will build upon our existing SampleActivity example
and show how to add simple navigation to our application.

Activity navigation

Navigating between activities is one of the simplest actions that you can perform and is
very commonly used. In the following example, we will show how to move from one
instance of our SampleActivity (which we will refer to as activity A) to another instance
of SampleActivity (which we will refer to as activity B). As we have already added

the SampleActivity to our Android app manifest, we do not need to add an additional
entry.

[54]

Activities and Fragments - The Backbone of Your App

First, we will start by modifying the layout file to add an extra view. This view is a Button,

and we will hook up this button to perform the activity navigation. The updated layout file
should look like this:

<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical">

<Button
android:id="@+id/button"
android:text="Click me!"
android:layout_width="match_parent"
android:layout_height="wrap_content" />

<FrameLayout
android:id="Q@+id/sample_one"
android:layout_weight="1"
android:layout_width="match_parent"
android:layout_height="match_parent"/>

<FrameLayout
android:id="Q@+id/sample_two"
android:layout_weight="1"
android:layout_width="match_parent"
android:layout_height="match_parent"/>

</LinearLayout>

In the preceding code, you can now see that before the first FrameLayout for the top
fragment, we have added a Button object with the ID button. We will now hook up this
button.

In the following code, we find the Butt on object in our SampleActivity and set an action
to perform when the button is clicked using an implementation of theOnClickListener
interface. When the button is clicked, we create an Intent. An Intent describes to the
system an action to perform. In this case, we tell the system that we would like to navigate
from the current activity to a new instance of SampleActivity.

[55]

Activities and Fragments - The Backbone of Your App

For more information on intents visit http://developer.android.com/re

ference/android/content/Intent.html.

public class SampleActivity extends Activity {
@Override
protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);

setContentView (R.layout.activity_sample);

// Hook up the button
findViewById(R.id.button) .setOnClickListener (

new View.OnClickListener () {
@Override
public void onClick (View v) {
Intent intent = new

Intent (SampleActivity.this, SampleActivity.class);
startActivity (intent);

)i

// The Fragment code remains unchanged in this example
if (savedInstanceState==null) {

SampleFragment fragmentTop =
SampleFragment .newInstance (Color.BLUE) ;

SampleFragment fragmentBottom =
SampleFragment .newInstance (Color.RED) ;

getFragmentManager ()
.beginTransaction ()
.add(R.id.sample_one, fragmentTop)
.add(R.id.sample_two, fragmentBottom)
.commit () ;

}

Once you have updated the SampleActivity code and hooked up the button, click on the
green run arrow and give it a try! Clicking on the Click me! button on the screen will
launch a new instance of the SampleActivity. Clicking back will navigate back to the
previous instance and will pop off the current instance off of the activity back stack.

[561]

Activities and Fragments - The Backbone of Your App

Summary

In this chapter, we introduced activities and fragments. Activities represent screens within
your app and moving from activity to activity allows your user to navigate through your
application.

Fragments are analogous to subactivities and encapsulate much of the actions and code
from an activity. This allows you to easily reuse the activity logic and add multiple
instances of a fragment to a single activity allowing for richer user experiences, including
designing for larger screens and tablet devices. The next chapter we will focus on how to
add views to our activities and fragments to make them more useful.

[571]

Working with Views —
Interacting with Your App

In the previous chapter, we introduced activities and fragments, which represent the
backbone of an Android application. As activities are analogous to screens, we can easily
link multiple activities together to create an application. In this chapter, we will go one step
further and add content to those connected screens and will explore how to use common
user interface components to build a rich touch-friendly experience for our user.

The Android SDK provides a set of pre-built user interface components to help you create a
great app without having to reinvent the wheel. The interface components are split into two
groups: views (all of which extend the class View) and vViewGroups (otherwise known as
layouts). Simply put, ViewGroups hold views, and views display content to a user. For
example, a TextView allows you to display text to a user and a LinearLayout allows you
to show multiple TextViews on one screen (either horizontally or vertically). By building
up these View and ViewGroup components, we can easily create rich graphical user
interfaces with minimal effort.

In this chapter, we will cover the following topics:

e Types of views and ViewGroups; what they are used for, and what they look like.

e How to use these views and ViewGroups programmatically and via layout files,
and how we can perform actions when a user interacts with them.

e How to extend the basic View components to create custom views, build practical
examples of how to add extra drawing code to our custom vView, and how to
handle user interface events directly.

Working with Views — Interacting with Your App

¢ Additional user interface components, including Toasts and Dialogs. We will
show how to use them in our applications and under what circumstances each
component should be used.

By the end of this chapter, we will have covered the basics of building a user interface.

Views and ViewGroups

In this section, we will review the main views and ViewGroups you will use as an Android
developer. You'll simply be able to use many of these components over and over and never
have to worry about what goes on behind the scenes. In time, you might even begin to
dabble with developing your own versions.

We will start by covering the main views in Android and then move on to ViewGroups. For
each component, we will give a description, a screenshot of the view in action, and an
overview of the most common view operations. As this section will largely act as a
reference, if you have had prior experience of dealing with Android views you can skip to
the next section, where we will show how to use these views both programmatically and
through layout files.

In this section, we will cover some of the most common view types used in
Android development; however, by visiting the Javadoc for view, you can
refer to all the known direct and indirect subclasses (http://developer.a

ndroid.com/reference/android/view/View.html).

Common views

These might be the most widely used Android components, or widgets. With just the
elements introduced here, we can have the core of many popular applications. Additionally,
combining them with layouts, which will be introduced later, we will be able to build pretty
rich Uls for our own applications.

TextView

TextView is one of the most commonly used views, and as the name would suggest, it is
used to display text to the user.

[591]

Working with Views — Interacting with Your App

The font size, weight, and typeface can all be configured either in the layout file or
programmatically. By default, a TextView does not allow a user to edit the text; EditText
must be used if editing is required. The following screenshot is an example of TextView:

This is an example of a TextView!

Common operations

As you would expect, with a TextView you can set the text displayed, configure the font
and typeface, configure how many lines should be shown, allow a user to copy the text, and
finally automatically enable URLs to open in browsers when detected and clicked.

More information on TextView is available at https://developer.andro

id.com/reference/android/widget/TextView.html.

[60]

Working with Views — Interacting with Your App

EditText

As previously mentioned, if you need to allow a user to edit the text in a TextView,
EditText should be used. Edit Text is a subclass of TextView, so it maintains the core
functionality of TextView, but adds extra functionality to it. Clicking on an EditText will
automatically open a user's keyboard on the screen and allow them to modify the content of
the EditText. The following image is an example of EditText:

This is an example of an EditText!

Common operations

As with a TextView, you can set the default text displayed on the view. With an EditText,
you can grab the current content of the view and use it elsewhere in your app. For example,
you might have an EditText to set the name of a playlist in a music application. You can
also set a “hint” that displays text that will be removed automatically as a user enters new

text.

[61]

Working with Views — Interacting with Your App

More information on Edit Text is available at https://developer.andro
id.com/reference/android/widget/EditText.html.

ImageView

Along with TextView, ImageView is one of the most basic and fundamental views in
Android. Quite simply, ImageView allows you to draw an image in a View and will take
care of all the nasty scaling and aspect ratio issues for you.

In chapter 6, Image Management, we will discuss how to efficiently display remote images
in an ImageView using image management libraries. The following image is an example of

ImageView:

[62]

Working with Views — Interacting with Your App

Common operations

Again, as you would expect, with ImageView you can set the current image being shown
and change how the image is scaled to fit the view.

More information on ImageView is available at https://developer.andr

oid.com/reference/android/widget/ImageView.html.

Button

Even though what we will explain here can apply to any view, we will focus on the Button
widget for simplicity. Button is a simple view that, as Google searches represents, is a
push-button widget. It handles all the states and styling out-of-the-box. For example,
whenever the user presses a Button, it will change its state to state_pressed and adjust
the drawing of the Button accordingly.

Having said this the default style of a But ton can be overridden if a valid
StateListDrawable is provided. This drawable contains a different drawable for each
state the button is in, for example, clicked and not clicked. We will use a
StateListDrawable class to provide this list of drawables for each state we would like to
change.

More information on StateListDrawable is available at https://devel
oper.android.com/reference/android/graphics/drawable/StatelList

Drawable.html.

[63]

Working with Views — Interacting with Your App

The following image is an example of Button:

* w1739

EXAMPLE BUTTON!

Common operations

As with TextView, you can set the text displayed in Button. More importantly though,
you can add a listener to any view to detect when a user has pressed it, and this is one of the
main functionalities of having a But ton in our application UL

More information on Button is available
athttps://developer.android.com/reference/android/widget /B
utton.html.

[64]

Working with Views — Interacting with Your App

ImageButton

ImageButton is a simple extension of the default Imageview that shows a button with an
image instead of text. By default, ImageButton has the same background as that of a
regular button, although this too can be customized by providing a custom
StateListDrawable. The following image is an example of ImageButton:

> H I«

Common operations

The most commonly used method in ImageButton is setting the Button image. As we can
see in the preceding image, we arranged four ImageButtons side by side to create a simple
media player controller interface using generic media player icons.

More information on ImageButton is available at https://developer.an

droid.com/reference/android/widget/ImageButton.html.

[65]

Working with Views — Interacting with Your App

Switch and CheckBox

A switch view is a common view you will commonly find in places such as Settings. It has
two states: on and off. You can even add a little text label to the side of Switch. A CheckBox
view is a button with two states as well: checked and unchecked. The following image is an
example of Switch:

Sample switch .

Common operations

With a switch view, you can get its current state to determine whether the switch is
enabled/disabled in your user interface code and act accordingly. Similarly, with CheckBox,
you can check whether it is checked or not.

More information on Switch and CheckBox is available at https://deve

loper.android.com/reference/android/widget/Switch.html and http
s://developer.android.com/reference/android/widget/CheckBox.ht

ml.

[66]

Working with Views — Interacting with Your App

WebView

WebView is exactly what the name describes. It allows you to embed a limited web browser
within your application. WwebView has the ability to use a local cache and cookies, and can
even handle downloads.

Try not to include WwebView in your application unless it is absolutely essential. The content
will feel non-native to your users and may result in a reduced application user experience.
Having a different navigation and UI widgets than those that Android provides might be
confusing for some users. The following image is an example of WebView:

—
Google
[

[67]

Working with Views — Interacting with Your App

Common operations

WebView allows you to perform many operations you would expect from a browser, such as
navigating to a URL, going backward and forward through pages, and even loading local
HTML content.

More information about WebView is available at https://developer.and

roid.com/reference/android/webkit/WebView.html.

Common ViewGroups

Until now, we have seen a few basic widgets that allow us to show text, let users input data,
trigger an action when the button is pressed, and so on. However, we have not mentioned
any mechanism that will help us place them properly on the screen. To do so, we will
introduce some ViewGroups that will allow us to define how elements are put on the
screen relative to one another. For example, we can have elements one below the other, one
on top of the other (imagine text on top of an image), or one widget in one corner of the
screen and another in the opposite corner.

FramelLayout

FrameLayout is one of the simplest layout classes. It is typically used to hold a single view;
however, multiple child views can be added by using the Gravity attribute. If the Gravity
attribute is not used, views will be stacked one on top of an other. This might be a desirable
effect though, depending on the design and widgets we stack.

[68]

Working with Views — Interacting with Your App

Both the foreground and background of FrameLayout can be customized, which is handy
for drawing over child views. The following image is an example of FrameLayout:

Example text in a FrameLayout

Common operations

Child views can be added to FrameLayout using the addview method. Views are drawn in
a stack with the first view added being the first to be drawn and the view added last being
the last to be drawn.

More information on FrameLayout is available at https://developer.an

droid.com/reference/android/widget/FrameLayout.html.

[69]

Working with Views — Interacting with Your App

CardView

CardVieuw is a relatively new Android view and is included in the support library. If you
have used Google Now or Google Play, you will be used to the beautiful rich card Ul
which is powered by Cardview.

The Cardview class extends from the FrameLayout class; however, it draws a beautiful
card layout by default. The following image is an example of Cardview:

Common operations

The background color of the card can be changed along with the corner radius of the
rounded corners. By default, the card also casts a shadow, giving the feeling that the card is
elevated in the UL

More information on Cardview is available at https://developer.andro
id.com/reference/android/support/v7/widget/CardView.html.

[70]

Working with Views — Interacting with Your App

LinearLayout

As we have seen in the previous chapter, LinearLayout is a view that allows us to easily
add and arrange multiple child views either vertically, as shown in the following
screenshot, or horizontally. This layout is great if you want to share the available space
between multiple views. The following screenshot is an example of LinearLayout:

Top TextView

Bottom TextView

Common operations

As with all layouts, you can add child views to LinearLayout. However, you can also
specify how the views should be arranged and the weights of child views. Views with a
larger weight will occupy more of the parent LinearLayout. This is a great way to set child
views to occupy fractions of the parent layout.

More information on LinearLayout is available at https://developer.a

ndroid.com/reference/android/widget/LinearLayout.html.

[71]

Working with Views — Interacting with Your App

RelativeLayout

RelativeLayout is a powerful layout that allows child views, which have positions
described in relation to each other and to the layout itself, to be added. For example, in the
following screenshot, we have two views. One of these aligns to the top left of the parent
and the other aligns to the bottom right of the parent layout:

Top TextView
Bottom TextView
<] (9] [m]

Common operations

Child views can again be added, but additional layout operations, such as aligning to the
parent layout or aligning to other views in the layout, are available when you add child
views.

More information on RelativeLayout is available at https://developer

.android.com/reference/android/widget/Relativelayout.html.

[72]

Working with Views — Interacting with Your App

ScrollView

Scrollview provides an easy way to scroll through a child view, or ViewGroup, thatis
taller than the available screen size. In the following example, we include a TextViewina
ScrollView. The Scrollview automatically allows a user to scroll up and down through
the content and shows a scrollbar on the right-hand side of the content as an indicator. The
following image is an example of Scrollview:

Lorem ipsum dolor sit amet,
consectetur adipiscing elit.
Pellentesque tellus risus, laoreet eu
volutpat a, ultricies in lorem. Nulla
facilisi. Sed vitae luctus orci. Aenean
vitae tellus lorem. Nulla magna leo,
auctor a maximus eu, rutrum laoreet
tellus. Etiam lectus enim, ultrices
eget suscipit et, ultricies elementum
quam. Praesent sit amet risus
egestas, luctus sapien vel, efficitur
mi. Pellentesque non elit vel mi
dignissim rutrum. Sed mollis sapien
orci, at dignissim justo molestie eu.
Etiam efficitur eu metus vitae porta.
Ut consequat turpis mi, non suscipit
nibh congue ut. Maecenas eu sem
vestibulum lacus dictum tempus.
Vivamus placerat orci vel efficitur
sagittis. Integer nec condimentum
nulla, in malesuada metus.

Morbi et ligula ac ipsum suscipit
vestibulum in ut nunc. Mauris a orci
tortor. Donec sit amet fringilla guam.
Ut dapibus non quam fringilla
vulputate. Mauris tristique porttitor
diam. Sed mattis eros nec ultrices
tincidunt. Vivamus dignissim ante
massa, sed faucibus metus luctus

< O O

Common operations

ScrollView extends FrameLayout and allows you to add a single child view. It only
allows vertical scrolling; HorizontalScrollview should be used to provide horizontal
scrolling. Scrollbar indicators, as with any other View that scrolls its content, can be
controlled using the android: scrollbars property in the XML layout file. Views that
handle scrolling by themselves should not be added to Scrollview, for example, WebView
or ListView.

[73]

Working with Views — Interacting with Your App

More information on ScrollView is available at https://developer.and

roid.com/reference/android/widget/ScrollView.html.

ListView

ListView is a powerful component that allows you to show sets of data in a scrollable
container. Each item will appear as a row in ListView. It will continually recycle the rows
allowing very large datasets to be presented only using a small number of views, thus
improving performance. We will cover how to use ListView in Chapter 4, Lists and
Adapters. The following image is an example of ListView:

Common operations

Broadly speaking, ListView creates views for each row of your input data and presents
this to a user. You can specify how many rows should be shown and UI customizations are
required, such as the color of the dividers in between rows.

More information on ListView is available at https://developer.andro

id.com/reference/android/widget/ListView.html.

[74]

Working with Views — Interacting with Your App

GridView

Gridview is very similar to ListView, but it allows you to have multiple columns as well
as multiple rows of data. This can be very useful in e-commerce apps where a user is
browsing a list of products.

A common pattern used when designing for both phones and tablets is to simply increase
the number of columns as the screen size increases in order to show more information on
the screen at once, thereby utilizing the available space. The following image is an example
of Gridview:

Common operations

As with ListView, Gridview allows you to specify the number of rows and also set the
number of columns.

[75]

Working with Views — Interacting with Your App

More information on Gridview is available at https://developer.andro

id.com/reference/android/widget/GridvView.html.

RecyclerView

RecyclerView, one of the latest and greatest layouts, allows you to have a much higher
level of control over the older ListView and Gridview components. RecyclerView, in
order to be as compatible as possible with older Android versions, is included in the
Android support library. Recyclerview needs to be be given a layout manager that
specifies how the child views will be arranged. For example, the views should be vertically
or horizontally scrollable. The following image is an example of RecyclerView:

< O O

[76]

Working with Views — Interacting with Your App

Common operations

RecyclerView is a complex component, and we will cover this in detail in chapter 4, Lists
and Adapters. But again, broadly speaking, you can set how the child views are displayed
and how many child views should be shown.

More information on RecyclerView is available at https://developer.a
ndroid.com/reference/android/support/v7/widget/RecyclerView.ht

ml.

ConstraintLayout

ConstraintLayout is a new type of layout introduced together with Android Studio 2.2.
The aim of ConstraintLayout is to reduce the number of layouts inside other layouts and
improve performance. In complex applications, it was very common to find LinearLayout
components embedded inside other LinearLayout components, which at the same time
were embedded inside other LinearLayout components, for example.
ConstraintLayout works by defining a set of constraints and anchors between the
widgets. To simplify the design of screens using ConstraintLayout, in Android Studio 2.2
Google included a new layout editor tailored to ConstraintLayout. This new layout
editor has been written from scratch and it is way more usable than the older one.

To make it as compatible as possible, ConstraintLayout is part of the support library and
needs to be downloaded as an external dependency. We have to download the support
library from the Android SDK Manager if we have not done so yet and add the following
line to our build.gradle file inside the app folder:

dependencies {
compile 'com.android.support.constraint:constraint-layout:1.0.0-alpha4’

}

At the time of writing this book, the latest version available is 1.0.0-alpha4; it might be a
different version right now.

We can create a new layout file now by right-clicking on the layout folder, navigating to
New | XML | Layout XML, and then setting
android.support.constraint.ConstraintLayout as the root tag.

[77]

Working with Views — Interacting with Your App

As soon as the editor opens, we can start dragging elements and creating constraints
between the widgets. To become familiar with how ConstraintLayout works, there is a
Codelab by Google that shows how to use it and build an example layout step by step; refer
to https://codelabs.developers.google.com/codelabs/constraint—-layout/index.ht
ml for more information.

The following image is an example of the new layout editor with a ConstraintLayout in
action:

® i xF 8 E-|= I- Qi ®HE ¥ n D overlay_icon

o 100 200 200 400 500 00 700
0

ol ~
w
~

16 > <<€ 16 ‘

Constraint Layout Demo

100

@

~
~
~
b
I
layout_width |wrap7mn[sm

layout_height | wrap_content

200

ImageView

contentDescri... I:l -

scaleType | none
adjustViewBou... B
cropToPadding =

200

Toronto is the most populous city in

Canada, the provincial capital of

Ontario, and the centre of the Greater

Toronto Area, the most populous

metropolitan area in Canada. In the

2011 census, Toronto had a

population of 2,615,060, making it the

fifth largest city in North America. A

population estimate from a city report

released in 2013 shows the city is

now the fourth most populous city in BUTTON
North America, after Mexico City, New

York City, and Los Angeles. A global

city, Toronto Is an international centre — guTTON
of business, finance, arts, and cuiture,

400

s00

&00

700

View all properties

[781]

Working with Views — Interacting with Your App

Common operations

As with other layouts, the main operation we will perform is adding views to this layout.
Even if it is possible to do so, the generated XML might be a bit cumbersome, so it is highly
recommended that you use the graphic editor when using ConstraintLayout.

For the time being, there is no API reference documentation available until
the component is made more stable. Anyway, more information about
ConstraintLayout can be found at the technical document page

for Android tooling, which is available at http://tools.android.com/te
ch-docs/layout—-editor.

Building a user interface using views and
ViewGroups

Now that we have introduced the most commonly used Android views and ViewGroups,
we can start to actually build a user interface using them. One recommendation would be to
keep layouts as simple as possible in order to avoid performance issues and to make them
easier to maintain. If possible, stick to LinearLayout components and, as the complexity of
the UI grows, start including RelativeLayout, FrameLayout, and so on. In addition to
this, avoid stacking multiple layouts inside each other; do this only when required.

In Android, there are two main ways to create a UL The first, and by far the simplest way
(and the one you should use in most cases), is to use a layout XML file. The second way,
which is slightly more complicated, is to handcode all of your Ul using Java.

It is good to know how to make a UI using both methods, as there is a good chance you will
swap between the two, depending on how complex your interface is. As you will see in the
following examples, it is much easier to create large, complex, and reusable layouts using
layout files. Likewise, when you just need one view, it is sometimes easier just to create a
view using Java instead of using a layout file. Please keep in mind that having a layout file
available most of the time is easier to maintain, and if done right, it will decouple the logic
from the process where you lay out the UI for the elements.

It is not a one-size-fits-all scenario with Android. Sometimes it is best to
lay out files, and at other times it is easier to programmatically create your
views.

[791]

Working with Views — Interacting with Your App

Creating interfaces using layout files

The basic gist of using XML layout files is that you specify how you want your interface to
be constructed using simple XML tags from an Android XML vocabulary. In this
vocabulary, the view and ViewGroup names easily correspond to XML tags. For example,
TextView would look like <TextView ... />.

Each layout file must contain exactly one root element, which can be either a view or
ViewGroup. The root element must specify the Android namespace. If you want to have
multiple views in your layout, then the root node must be a ViewGroup, as this can hold
multiple views. If you add a ViewGroup, child nodes can be added to XML in order to add
the views as children of the ViewGroup.

The root node in a layout must specify the Android namespace. This

attribute must always be set to
xmlns:android="http://schemas.android.com/apk/res/android

n

Once a layout has been defined, the interface is later “inflated” by the system and the views
are created for you. You can then search for your views and access them in activities and
fragments. If all of this sounds complex, do not worry; we will go through examples now.
In the following example, we will show you where to keep your layout files, how to create a
simple interface, and how to access the views in your activity.

Creating a basic layout

All layout files are kept in the application resources folder under l1ayout. In the following
example, we will create a new layout file named “example.” Open Android Studio, and
using the same project as in the previous chapter, open the Project tab on the left-hand side.

[80]

Working with Views — Interacting with Your App

Ensure you have the Android view selected as shown in the following screenshot:

A nddroid

Right-click on the layout folder and navigate to New | Layout resource file. This will
display the new resource file shown in the following image, and allow us to easily create
new resource files:

New Resource File

File name:

Minht Made

Cancel

[81]

Working with Views — Interacting with Your App

In the new resource file popup, enter example next to File name and set Root element

to LinearLayout. Then click on OK in the bottom right-hand corner of the popup. This will
create a new layout file for us called example in the 1ayout folder with a single root
element that is a LinearLayout. If you double-click on the newly created example layout,
it should look something like the following:

<?xml version="1.0" encoding="utf-8"7?>

<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent">

</LinearLayout>

As you can see, a single LinearLayout was added to the example layout. The namespace
was automatically set for us. You will also notice three additional elements:
layout_width, layout_height, and orientation. Each view or ViewGroup you add to
a layout file must have a width and height. You can either set these to an exact size, for
example 10 dp, or use relative sizing. Please be aware we used dp instead of pixels. We
have to be aware that there are many different devices that run Android, and these devices
have different screen sizes. In order to make things work and adapt to most of the screens,
we should not use pixels but dp instead. A dp is, as Google defines it, a density-
independent pixel and the system, internally, adjusts the size to fit the device density. One
dp is equivalent to one pixel on a 160 dpi screen, so the conversion is the following:

px =dp * (dpi/ 160)

Although we should not really worry about this at this point, just be aware that, if we use
dp, it will automatically adjust to the device screen where our application is running.

By default, our LinearLayout was set to match_parent, which means the ViewGroup will
stretch to fill the entire parent size, or in this specific case the entire screen. By setting width
/size towrap_content, the LinearLayout would only take up as much room as its
children. The LinearLayout ViewGroup also has the notion of orientation. This element
will denote how the children will be added, top to bottom (vertical) or left to right
(horizontal).

[82]

Working with Views — Interacting with Your App

Adding a TextView

We will now modify our simple LinearLayout to have a single TextView as a child view.
As previously mentioned, to add a child view to a ViewGroup, you can simply add the
child within the parent tag. We will also add an ID for the "@+id/textview" view. This
will allow us to access the view from our activity:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent">

<TextView
android:id="@+id/textview"
android:layout_width="match_parent"
android:layout_height="match_parent"/>

</LinearLayout>

Previewing the layout

Android Studio has a pretty nifty feature in the layout editor. At the bottom of the editor,
you will see two tabs: Design and Text, as shown in the following screenshot. So far, we
have been looking at Text, but if we switch to Design, we will be able to see what our new
view will look like without building and deploying our application; pretty good, right? It
gets even better. While having the Text tab enabled, we can enable the Preview panel on
our right-hand side panel tab (and view the XML and how it would look) at the same time.

Design = Text

x| Terminal B o Messages

[83]

Working with Views — Interacting with Your App

The Design tab allows us to preview and edit the layout without deploying the app to our
test device for speedy development.

Palette

MNexus 4 [) AppTheme [l

Layauts = |I|]I|
. Framelayout

. LinearLayout (Horizontal

. LinearLayout (Vertical)

ExamplePy

(Maormal)

ar (Small)

[84]

Working with Views — Interacting with Your App

Using your layout file

Now that we have created our simple layout file, we can use it in our activity and access the
TextView. In the following code sample, we call setContentView to inflate our example
layout. This will create the actual view objects out of the layout file and set them into the
view hierarchy of the activity. We can then grab our TextView using the ID we defined in
the preceding XML.

As a View attribute, this ID is accessible to other elements in the layout and to our code
through the R class. Android Asset Packaging Tool (AAPT) will automatically generate a
R.java class that will contain all the IDs from our resources. We can reference the ID in
Java by calling R.id.id_name (where id_name is any ID we have specified in our
application). In our example, we will be able to access the TextView we created by

using ID R. id.textview. Using this ID, we call findviewById and cast the result to
TextView. The findviewById fragment traverses the View hierarchy until it finds the
specified ID, then it either returns a View or null if it could not find it. We will need to cast
the returned view to the specific view subclass we already know, as we previously assigned
the ID to it. To avoid potential cast issues, do not reuse the same ID for different widgets.

Once we have grabbed the TextView, we can call setText () to change the text displayed.
In this case, we will set Hello World! as our text:

public class SampleActivity extends Activity {

@Override

protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView (R.layout.example) ;

TextView textView = (TextView) findViewById(R.id.textView);
textView.setText ("Hello World!");

}

It is as simple as that! If you add additional child views to the LinearLayout with IDs, you
will be able to grab them in your code too. Now, this was a simple example and it might
seem unnecessary to keep the view layout in a separate file. However, for larger projects, as
mentioned earlier in this chapter, you will find the clear separation, and decoupling,
beneficial. This is because it makes updating your layout much easier, as you do not have to
touch the Java code.

[85]

Working with Views — Interacting with Your App

Be careful when searching for views by ID when you want to determine
that your view is accessible in the current activity or fragment. IDs defined
in a layout file are accessible anywhere in your project.

In the preceding example, if we remove setContentView (), the code will still compile but
will result in Nul1PointerException when we try to call setText on a null object. This
is because the TextView will not have been found!

Fortunately, some of the newer Android lint tools will look out of this, but
it is good practice to name your IDs after where they should be expected.
For example, our ID could be renamed
@+id/activity_sample_textview.

Styling the TextView

Before testing our implementation, let's make the TextView a little prettier. The default text
size in Android is pretty small, so let's increase this to 22 sp (scale-independent pixels) to
actually see the text. Scale-independent pixels share the same base unit as density-
independent pixels, but are scaled by the value set in Settings as the preferred text size. For
this reason, for text, we should always use sp instead of dp.

Let's also place the text at the center of the screen by changing the gravity of the TextView.
Changing a view's gravity allows us to change the placement of a child view within a
parent ViewGroup.

As always, a complete reference to any Android class is available in the
Android developer docs. For more on TextView, visit https://develope

r.android.com/reference/android/widget/TextView.html.

The completed styled TextView code will look like the following;:

TextView textView = (TextView) findViewById(R.id.textView);
textView.setText ("Hello World!");

textView.setTextSize (TypedValue.COMPLEX_UNIT_SP, 22);
textView.setGravity (Gravity.CENTER) ;

[86]

vww allitebooks.conl

http://www.allitebooks.org

Working with Views — Interacting with Your App

Testing the layout

Now that we have inflated our example layout and set the text in our TextVieuw, it is time
to connect to your Android device, hit Run and your output should look like the following
screenshot:

Hello World!

Creating user interfaces programmatically

In the following section, we will cover how to create the same user interface in the previous
example but programmatically. And this time we will only use Java. Each view and
ViewGroup in Android has three default constructors. To create a view programmatically,
we will use the first basic constructor, which only requires a context to instantiate the view.
In our case of SampleActivity, we can pass the activity itself as the context. Remember
that all activities inherit from ContextWrapper, which in turn is inherited from context.

[871]

Working with Views — Interacting with Your App

To begin, let's clean up our SampleActivity class and strip out all of the layout code from
the last example. Your SampleActivity should look like the following:

public class SampleActivity extends Activity {

@Override
protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
}
}

Now that we have a blank canvas, let's create the TextView programmatically, passing in
the SampleActivity as the context. After creating the TextView, we can also apply the
same styling as we did in our previous example:

TextView childTextView = new TextView (this);
childTextView.setText ("Hello World!");
childTextView.setTextSize (TypedValue.COMPLEX_UNIT_SP, 22);
childTextView.setGravity (Gravity.CENTER) ;

If we were to deploy this example to our test device now, we would not see anything. This
is because we have not added the child TextView to the root view of the activity, and as a
result, it is not part of the view hierarchy. At this stage, we could simply add the TextView
to the root view of the activity using setContentView; however, to match the previous
example, we will create a parent ViewGroup, in this case a LinearLayout, as we did in our
previous example using a layout file. We will again pass the SampleActivity to the
LinearLayout constructor to instantiate the view:

LinearLayout parentLayout = new LinearLayout (this);
parentLayout.setOrientation (LinearLayout.VERTICAL) ;

To match the previous example, we will also set the orientation of LinearLayout using the
setOrientation method. We will again set the orientation to vertical.

XML element attributes often have a very similar-sounding Java
implementation. For our LinearLayout, we used
android:orientation when defining the layout using XML; for our
Java version, we called setOrientation.

Next, we will add our TextView to our LinearLayout. In the previous example, we
simply included the TextView in the LinearLayout, and this adds the TextVview as a
child to the LinearLayout. In our Java example, we can call addview to achieve the same
result.

[881]

Working with Views — Interacting with Your App

However, we must also set the width and height of the child TextVview. If we do not set the
width and height, the view will not, by default, fill the parent LinearLayout. We can set
the width and height using the LayoutParameter components. Each ViewGroup has its
own layout parameters, and in this case we will use LinearLayout .LayoutParameters.
We will use the match_parent size for the width and height, as we used in the previous
example. Once we create an instance of the LayoutParameters, we will

call setLayoutParameters to set the LayoutParameters of the TextView.

In the following code, we show all the examples we have just walked through. If you
deploy and run the sampleActivity example, you should see the exact same screen with a
TextView centered with the words Hello World! in a nice large font:

public class SampleActivity extends Activity {

@Override
protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);

TextView childTextView = new TextView (this);
childTextView.setText ("Hello World!");
childTextView.setTextSize (TypedValue.COMPLEX_UNIT_DIP, 22);
childTextView.setGravity (Gravity.CENTER) ;

LinearLayout.LayoutParams layoutParams =
new LinearLayout.LayoutParams (
LinearLayout.LayoutParams .MATCH_PARENT,
LinearLayout.LayoutParams.MATCH_PARENT
)i
childTextView.setLayoutParams (layoutParams) ;

LinearLayout parentLayout = new LinearLayout (this);
parentLayout.setOrientation (LinearLayout.VERTICAL) ;
parentLayout.addView (childTextView) ;

setContentView (parentLayout) ;

}

As you can see in the preceding example, even for small user interfaces, writing everything
by hand in Java can be kind of cumbersome.

[891]

Working with Views — Interacting with Your App

Creating custom views

Now that we have created a simple user interface using views and ViewGroups, both using
a layout resource and programmatically using Java, we will now have a go at creating our
own custom views. Although the Android SDK provides many useful views, as we
reviewed at the start of this chapter, sometimes you will find yourself extending the View
class and making your own to add additional functionality. Luckily, this is all supported
out of the box and is pretty simple.

The first custom view example

In our first custom view example, we will extend the View class and add some basic
additional drawing code to the view. To begin, add a new Java class named Customview to
your sample project. To add a new Java class, right-click on the com. example folder located
under app/java, where SampleActivity is currently located, and navigate to New | Java
Class. This will show the new class pop up as shown in the following screenshot:

Create New Class

Mame: | CustomWiew|

kind: | @ Class

Once you have created your class, open it and change your CustomvView to extend view,
shown in the following code sample:

import android.view.View;
public class CustomView extends View {

}

At this point, your code will not compile and Android Studio will complain that there is no
default constructor available for the class View. To fix this, we will have to add our own
default constructors to the Customview.

[90]

Working with Views — Interacting with Your App

Luckily for us, Android Studio has a built-in handy generate constructor function, so we do
not have to memorize the parent view class constructors. Right-click on the CustomView
editor pane and navigate to Generate... | Constructor. This will pop up the generate

constructor window, as shown in the following image. Select the first two constructors and
click on OK:

Copy JavaDoc

Cancel

[91]

Working with Views — Interacting with Your App

Once the constructors have been generated, your class should now look something like the
following code example and Android Studio will stop complaining:

public class CustomView extends View {

public CustomView (Context context, AttributeSet attrs) {
super (context, attrs);

}

public CustomView (Context context) {
super (context) ;

}
}

We have chosen these two constructors for some specific reasons. We chose a constructor
with only the context so we can easily instantiate it from code, and we selected the
constructor with the AttributeSet so we can inflate it from XML. While inflating from
XML, we will get the attributes defined in the XML file in the AttributeSet parameter.

More information on AttributeSet is available at https://developer.a
ndroid.com/reference/android/util/AttributeSet.html.

Custom drawing

With our custom view all set up, we can now add some custom drawing code. To override
what is drawn by the custom view, we can simply extend the onDraw method. In fact, it is
rather exhaustively described in the Google Javadoc, Implement this to do your drawing.

[92]

Working with Views — Interacting with Your App

To override the onDraw method, we can again use the built-in generate method in Android
Studio. Simply right-click on the CustomvView editor pane, and navigate to Generate |
Override Methods. This will popup the override method dialog, shown in the following
screenshot. Scroll down and select onbDraw, followed by OK.

Select Methods to Override/iImplement

anint) ivai

@D
@.
@
]
o
o
@
(]
@
@.
o
o
o
O
@
(¥
@
QF
@'..:.—
@
@

Once you hit OK, the onDraw method will be automatically generated, including
the @Override annotation:

@Override
protected void onDraw (Canvas canvas) {
super.onDraw (canvas) ;

[93]

Working with Views — Interacting with Your App

Drawing on a Canvas

In the signature of the onDraw method, you can see that it passes to a Canvas object. To add
custom drawing to our custom view, we will be drawing directly on this Canvas object. If
you look up the Canvas Javadocs on developer.android.com, you will be able to check the
methods available. If you scroll down to the draw method, you'll see that you can draw
bitmaps, lines, colors, rectangles, text, and much more.

If in doubt, do not forget to check the official Javadocs for any Android
class at http://developer.android.com/reference/android/graphics
/Canvas.html.

For this example, we will draw a rectangle that fills exactly half of the view's available
space. To draw a rectangle on a Canvas, we will need to instantiate a Paint object. The
Paint class allows us to specify color and style information for when we draw on a Canvas.
We have to be aware that instantiating new objects in the onDraw method is considered bad
practice. The onDraw method will be called every time the view needs to be painted, and
this will lead to unnecessary object creation and in turn garbage collection. Imagine, for
example, that we are animating a view; it will be drawn lots of times! To avoid this, we will
initialize an instance of the Paint class in our constructor, as shown in the following code.
As you can see, we used a method called init in both constructors to perform the setup of
our Paint object. After we create a new instance of the Paint class, we can then set the
color of the Paint object to solid black using the Color class:

public class CustomView extends View {
private Paint mPaint;

public CustomView (Context context, AttributeSet attrs) {
super (context, attrs);
init ();

}

public CustomView (Context context) {
super (context) ;
init ();

}

private void init () {
mPaint = new Paint ();
mPaint.setColor (Color.BLACK) ;
}

@Override

[94]

Working with Views — Interacting with Your App

protected void onDraw(Canvas canvas) {
super.onDraw (canvas) ;

If you've been observant, you will notice that we have called our private
instance of the Paint class mPaint. This is compliant with the Android
open source contributors' style guidelines (https://source.android.com
/source/code-style.html).

Once we set up the Paint class, we can easily modify the onDraw method to draw a
rectangle using the mPaint variable. As we want to draw a rectangle to fit half of the
screen, we can grab the size of the view using getwWidth and getHeight. In our example,
we will draw a rectangle that fits half of the screen horizontally. The following code sample
shows the completed drawing code for our custom view:

public class CustomView extends View {
private Paint mPaint;

public CustomView (Context context, AttributeSet attrs) {
super (context, attrs);
init () ;

public CustomView (Context context) {
super (context) ;
init () ;

private void init () {
mPaint = new Paint();
mPaint.setColor (Color.BLACK) ;

@Override
protected void onDraw (Canvas canvas) {
super.onDraw (canvas) ;

canvas.drawRect (0, 0, getWidth()/2, getHeight (), mPaint);

[95]

Working with Views — Interacting with Your App

Drawing directly on the Canvas is easy and will be refreshed each time the view is
invalidated. If you need to manually force the View to update, say if you were drawing the
text of the current system time for example, you can call invalidate () on the view to
trigger a redraw. Try to keep your onDraw method light and avoid any heavy lifting, as you
need this to do the drawing process as quickly as possible to keep a smooth buttery UI For
example, do not load Bitmaps in your onDraw method as this will block the drawing
process and result in a super slow Ul. We will cover how to efficiently draw images

in Chapter 6, Image Management.

Hooking up the CustomView

To test our custom view, we will hook it into the previously created SampleActivity, first
programmatically and then using a layout file.

Adding the custom view programmatically

To add the view programmatically, we can simply call setContentView in our
SampleActivity with a new instance of our Customview. We will use the first
constructor, which only takes an instance of context, as shown in the following code
example:

public class SampleActivity extends Activity {

@Override

protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView (new CustomView (this));

}

Adding the custom view using a layout file

To add our custom view using a layout file, we will have to first modify our previously
created example layout file (found in layouts under res) and include our new custom View.
To include a custom view in a layout file, you must include the full path to the view, unlike
stock view components where you only have to include the view name. The following
example layout file shows how to add the custom view to our layout file:

<?xml version="1.0" encoding="utf-8"7?>

<com.example.CustomView
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"

[96]

Working with Views — Interacting with Your App

android:layout_height="match_parent"/>

Once you have modified the layout file, you can then change the SampleActivity to use
the layout file (as opposed to the programmatically created instance of the Customview):

public class SampleActivity extends Activity {

@Override

protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView (R.layout.example) ;

}

Testing the CustomView

Following the same deployment procedures mentioned earlier in this chapter, build and
deploy your example code to your device and you will get to see your custom view. If all
goes well, fingers crossed, you will see something similar to the following screenshot.
Although we could have achieved the same result using two views in a LinearLayout
with a horizontal orientation, our custom view only requires one single view as opposed to
three.

[971]

Working with Views — Interacting with Your App

Here's the layout code for creating the same Ul using three views:

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent">

<View

android:
android:
android:
android:

<View

android:
android:
android:

</LinearLayout>

The second

layout_weight="1"
background="@android:color/black"
layout_width="match_parent"
layout_height="match_parent"/>

layout_weight="1"
layout_width="match_parent"
layout_height="match_parent"/>

custom view example

In the second custom view example, we will extend the TextView class and make it change
the content to a random string every time the view is clicked. To do this, we will provide a
list of strings and attach a click listener to the view to listen for user input.

Creating the CustomTextView class

As with our previous custom view example, we will create a new class in the com.example
folder, where SampleActivity is currently located, and call the component
CustomTextView. You can check the previous example for detailed instructions on how to
do this using Android Studio.

As with our preview example, implement the first two constructors using the generate
constructor functionality built into Android Studio.

[981]

Working with Views — Interacting with Your App

Adding on-click behavior

After you have created the two constructors, add onClickListener to the view. This will
mean that whenever a user clicks on the custom view, the click listener will be fired and we
will be able to react accordingly.

In the following code example, we will see how to add the click listener and how to update
the contents of the CustomTextView when the click listener is fired. As there are two
constructors, we move the view setup code into two methods: setupLookAndFeel

and setupClickListener. In the first method, we programmatically set up how our
custom TextView will look. As these methods will be called after the constructor has
already called its super method, the properties we have set in the XML file for our custom
TextView might be overwritten or completely ignored.

Setting View properties after the constructor has been called will override
the properties specified by the XML. Be careful!

In the second method, we set up onClickListener. When the click listener is called, we
call generateRandomWord. This method generates a random number n between 0 and the
size of the WORDS array and returns the word at the position n. Then, there is a call

to setText to change the current text displayed in the CustomTextView. We must also
call generateRandomWord and setText after setting up the OnClickListener to set the
initial word displayed.

Other activities, fragments, or even views with a reference to our
CustomTextView will also be able to set an OnClickListener on our
TextView. This means that other Views could potentially break this
functionality, and you should keep the scope of methods in mind when
creating your own views.

Here's the full example:

public class CustomTextView extends TextView {

private static final String[] WORDS = {
"Hello",
"World",
"Testing!",
"Boo",
"Isn't this fun?"
}i

[991]

Working with Views — Interacting with Your App

public CustomTextView (Context context) {
super (context) ;

setupLookAndFeel () ;
setupClickListener () ;

public CustomTextView (Context context, AttributeSet attrs) {
super (context, attrs);

setupLookAndFeel () ;
setupClickListener () ;

private void setupLookAndFeel () {
setTextSize (TypedValue.COMPLEX_UNIT_DIP, 22);
setGravity (Gravity.CENTER) ;
setTextColor (Color.BLACK) ;

private void setupClickListener () {
setOnClickListener (new OnClickListener () {
@Override
public void onClick (View v) {
setText (generateRandomWord()) ;
}
}) i

// Set the initial random word
setText (generateRandomWord()) ;

private String generateRandomWord () {
// Grab the next random word
int random = (int) (Math.random() * WORDS.length);

return WORDS[random];

[100]

Working with Views — Interacting with Your App

Testing the CustomTextView

Following the same deployment procedures mentioned earlier in this chapter, build and
deploy our example code to your device and you will get to see the CustomTextView.
Again, if all goes well, you will see something similar to the following screenshot, changing
the text dynamically as you click on View. Neat, right?

Overriding the onTouchEvent method

In our example, we added an onClick listener to the view. However, we could use the
same logic without adding a listener, instead overriding the onTouchEvent method that all
View classes have. In the following example, we show how to modify the class, removing
the onClick listener and using the onTouchEvent method:

@Override
public boolean onTouchEvent (MotionEvent event) {

if (event.getAction() == MotionEvent.ACTION_UP) {
setRandomWord () ;
return true;

}

return false;

}

[101]

Working with Views — Interacting with Your App

With great power comes great responsibility! We have to be careful when overriding these
methods; onTouchEvent has to return t rue if the event has been processed and false if it
has not.

Additional user interface components

In this section, we will cover two additional user interface components that you will need to
master to create an Android application. These components are very easy to understand,
but we have included them here as you will use them over and over again during your time
as an Android developer.

Toasts

First of all, despite the name, Toasts have nothing to do with bread and are in fact a super
simple way to pop up text to your users. You have probably seen them 100 times but may
not have paid too much attention to them. For example, when you connect to a Wi-Fi
network, you might get a Toast popping up to let you know you are connected.

The great thing about Toasts is that they automatically hide after a few seconds and can be a
great way to enhance your user experience without much additional effort. As a downside,
something we have to be aware, users cannot interact with them.

Although we can customize the look and feel of Toasts, be aware that your
users will be used to seeing Toasts elsewhere on their device and might
not understand a different design or UL If in doubt, stick with the system
design!

Creating a Toast is a piece of cake. All we need is Context reference (for example, your
activity), some text to be displayed, and how long we should display the message. In the
following sample, we create a Toast using our SampleActivity context to display Hello
there using the short Toast duration. We finish by calling show () to display the Toast:

Toast .makeText (SampleActivity.this, "Hello there",
Toast .LENGTH_SHORT) .show () ;

[102]

Working with Views — Interacting with Your App

The following screenshot shows an example Toast notification:

Hello there

Dialogs

A dialog is a small popup window that allows a user to input information; it also prompts a
user to select an action. AlertDialog is one of the most commonly used dialog classes and
presents a title, message, and up to three buttons to a user. AlertDialog can be easily
created using AlertDialog.Builder. In the following example code, we show how to
create a simple AlertDialog with a title and two buttons:

AlertDialog.Builder builder = new AlertDialog.Builder (SampleActivity.this);
builder.setTitle ("Howdy!");

builder.setPositiveButton ("OK", new DialogInterface.OnClickListener () {
@Override
public void onClick(DialogInterface dialog, int which) {
// TODO
}
}) i
builder.setNegativeButton ("Cancel", new DialogInterface.OnClickListener () {
@Override
public void onClick(DialogInterface dialog, int which) {
// TODO

}

)i
builder.show () ;

[103]

Working with Views — Interacting with Your App

We could also pass null as the listener if we do not want to perform any action.

The following screenshot shows an example AlertDialog:

CANCEL oK

[104]

Working with Views — Interacting with Your App

Summary

In this chapter, we introduced Android views and ViewGroups. We presented the most
common views and ViewGroups, giving examples of each component and the common
actions associated with them.

We also discussed two methods to create user interfaces: either by using layout files or
doing it programmatically in Java.

Additionally, we walked through two examples of how to create custom views: the first
example detailed a simple view with custom drawing code and the second example
detailed how to add extra functionality to the TextView class.

Finally, we finished this chapter by reviewing additional UI components that are commonly
used in Android development, including Toasts and dialogs.

In the next chapter, we will have a detailed look at how to add ListViews to our
application, optimize them for performance, and replace them with Recyclerviews; we'll
also look at how to use adapters to feed data to the list.

[105]

Lists and Adapters

Even in the simplest connected application, there is a list of things to be displayed. There is
a list of items, users, locations, or for example, things to do. This is not the case always, but
we can assume that a high percentage of applications show these items. Even in offline-only
applications, there are many things to be shown as a list. In this chapter, we will focus on
how to display lists using a ListView element. We'll see how to do this efficiently using

a RecyclerView element and how to change and update the data shown on these lists by
using adapters. We will end the chapter by introducing a more complex structure that will
allow us to display a list in a more complex way, such as some well-known applications
such as Pinterest or Etsy.

e ListViewand ListActivity
e Adapters

® RecyclerView

ListView and ListActivity

As described in GOOgle'S documentation (http://developer.android.com/guide/topics
/ui/layout/listview.html), a ListView element is a view group that displays a list of
items and enables scrolling if the items do not fit the size of the ListView element. In this
section, we will build a simple ListView element—introducing adapters briefly (we will
cover them in more depth in the next section) but we will not spend much time on

the ListView element, as we will favor the use of the newer RecyclerView element
instead in later sections. Using RecyclerView over ListView is highly recommended as it
is more flexible and does not leave performance improvements optional. ListActivity is
like a normal activity, but with only one single element on it: ListView.

Lists and Adapters

ListView

Let's begin, first of all, with the ListView element. Adding ListView is straightforward;
just add it to an existing layout or view group and it will appear in the preview view, as
shown in the following screenshot:

—_ Ny =
= activity_main.xml x Preview -

i Nexus 5+ [(D AppTheme @~ MainActivity @)~ 1§23~
<?xml version="1.0" encoding="utf-8"7> v : : : .

& <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" SERDEECRC R, I C N - 1
xmLns:tools="http://schemas.android.com/tools" :
android: layout_width="match_parent"
android:layout_height="match_parent"
tools:context="com.packt.rrafols.example.MainActivity">

<ListView
android:id="@+id/listView"
android:layout_width="match_parent"
i android:layout_height="match_parent" /> Example
</-inearLayout>

Item 1
Sub Iltem 1

Item 2
Sub Item 2

Item 3
Sub Item 3

ltem 4
Sub Item 4

Once we have added the ListView element, we need to populate it. Let's use a simple
array of fruits to do so:

"Orange", "Banana", "Pear", "Pineapple", "Mango", "Strawberry", "Apple",
"Peach", "Watermelon", "Kiwi", "Cherry", "Grape", "Fig", "Plum", "Quince",
"Avocado", "Pomegranate", "Lime", "Mandarin", "Grapefruit", "Raspberry",
"Melon", "Pomelo"

[107]

Lists and Adapters

Then add the code shown in the following screenshot:

C MainActivity java =
package com.packt.rrafols.example;
import ...
< public class MainActivity extends AppCompatActivity {
@lverride
al protected void onCreate(Bundle savedInstanceState) {
super.onCreate{savedInstanceState);
setContentView(R. layout.activity_main);
final Stringl] items = new String[]l {"Orange", "Banana", "Pear”, "Pineapple”, "Mango", "Strawberry",
"Apple”, "Peach”, "Watermelon", "Kiwi", "Cherry”, "Grape", "Fig", "Plum”, "Quince",
"Avocado”, "Pomegranate”, “Lime", “Mandarin”, "Grapefruit", "Raspberry”, “Melon", “Pomelo"};

ArrayAdapter<String= stringlList = new ArrayAdapter=~>(this, android.R.layout.simple_list_item 1, items);

ListView listView = (ListView) findViewById(R.id.listView);
listView.setAdapter{stringList);

We need to provide items for the list using an adapter. An adapter, according to Google's
documentation, provides access to data items and is also responsible for making a view for
each item in the dataset. Visit http://developer.android.com/reference/android/widg
et /Adapter.html for more information.

As we do not want to over-complicate things here, we wrapped the String array

into ArrayAdapter. An ArrayAdapter constructor is a very simple implementation of

an Adapter object that is backed by an array. Visit http://developer.android.com/refer
ence/android/widget/ArrayAdapter.html for more information.

To build the Adapter object, we need to specify the context, the resource ID of TextView
(more on this later), and the list of items. Android provides many default layout items that
can be freely used, for example, android.R.layout.simple_list_item_1.

In the following page from the Android documentation, you'll find a

comprehensive list:
http://developer.android.com/reference/android/R.layout.html

[108]

Lists and Adapters

Using the android.R.layout.simple_list_item_1 layout will render the list as shown
in the following screenshot:

e

Example

Orange

Banana

Pear

Showing a list without any kind of interaction is not very useful, although it is sometimes
exactly what we want to do; however, if we want to trigger any action whenever an item on
the list is clicked, we can easily achieve that by just adding the following code snippet to the
previous code:

listView.setOnItemClickListener({new AdapterView.OnItemClickListener() {
@verride
L public void onItemClick({AdapterView<?> parent, View view, int position, long id) {
Toast.makeText(MainActivity.this, items[position], Toast.LENGTH_SHORT).show();

s

Whenever an item is clicked, the onItemC1ick method of the OnItemClickListener
instance set in ListView will be called; in that call, we will get the array position of the item

that was clicked, among other things. In the code snippet, we are only showing a Toast with
the text of the clicked item.

Toasts are a very simple way of showing feedback to the user. Visit http:/
/developer.android.com/guide/topics/ui/notifiers/toasts.html

for more information on the official Android developer.

[1091]

Lists and Adapters

ListActivity

Before showing how to change or improve the U, let's do a quick visit to the
ListActivity class and explore why it can be useful. ListActivity is an activity that
contains a ListView and directly exposes the event handler when the user clicks on an item

on the list.

The next screenshot shows the same example as before, but this time it uses ListActivity
instead of having ListView inside our layout. Changes are minimal; instead of having to
find the ListView item and calling the setAdapter method on it, we can directly call

the setListAdapter method. The same applies to the onItemClick callback; instead of
having to create an instance of OnItemClickListener and set it to ListView, we can just
override the onListItemClick method on ListActivity.

C ListActivityExample java »

package com.packt.rrafols.example;
import ...
< public class ListActivityExample extends ListActivity {

private final String[] items = new String[] {"Orange", "Banana", "Pear", "Pineapple", "Mange", "Strawberry”,
"Apple”, "Peach”, "Watermelon", “Kiwi", "Cherry", "Grape", "Fig", "Plum”, "Quince",
"Avocado”, "Pomegranate”, "Lime", "Mandarin", "Grapefruit™, "Raspberry”, "Melon", "Pomelo"};

@verride
al protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

ArrayAdapter<Strings= stringlList = new ArrayAdapter=-=(this, android.R.layout.simple_list_item_1, items);
setListAdapter(stringList);
}

@verride
al protected void onListItemClick(ListView 1, View v, int position, long id) {
Toast.makeText(this, items[position], Toast.LENGTH_SHORT).show();

Evenif ListActivity comes with a ListView item of its own, the layout can be
customized by providing a screen layout, as long as it contains a ListView object with the
ID @android:id/1list. This custom layout can be set, using the regular setContentView
on the onCreate method.

This custom layout might optionally contain another view with the ID
@android:id/empty as well. This view will be shown when ListView is empty.

You can find detailed information on this at nttp://developer.android.com/reference/
android/app/ListActivity.html.

[110]

Lists and Adapters

Customizing the item view

In the previous examples, we used android.R.layout.simple_list_item_1 as the
view resource for each item on the ListView. Android provides more default
visualizations, for example android.R.layout.two_line_list_item, which cannot be
used in a straightforward manner with an ArrayAdapter constructor. However, in the
documentation page for ListActivity, there is an example on how to use a cursor to
iterate through your phone contacts. Here, we will create our own item layout. Let's start
with something very simple, just to mimic what Android already offers us. We will make it
more complex later on.

Let's create a resource file named item.xml inside res/layout with the following content:

& item.xm| X

<?xml version="1.8" encoding="utf-8"7> v
c <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical”
android:layout_width="match_parent"
android:layout_height="match_parent"
android: padding="16dp">

<TextView
android:id="@+id/item_text"
android:layout_width="wrap_content"
android:layout_height="wrap_content" />
</LinearLayout>

Let's update the MainActivity source code to use this layout rather than the
default simple_list_item_1 provided by Android. We can achieve this by only changing
this line:

ArrayAdapter<String> stringlList = new ArrayAdapter<String>(this,
android.R.layout.simple_list_item_1, items);

Now refer to the following code:

ArrayAdapter<String> stringlList = new ArrayAdapter<String>(this,
R.layout.item, R.id.item_text, items);

For this one, what we have done is replace the default layout ID with the ID of the layout
we have just created and, using an additional parameter, we have specified the ID of
TextView.

[111]

Lists and Adapters

We can make our layout more complex, otherwise there will be no point in creating our
own layout; therefore, as an example, let's add some images. The layout file will be the
same but with two additional ImageView views: one before TextView and one after.

The adapter will look for TextView using the ID inside the layout, so the code on the
activity does not require any change, as we are already telling the adapter which item ID
is TextView. As long as we do not remove the object, we will be fine.

We have used two default drawable bitmaps from Android in this example, only for the
sake of simplicity and to show the example. In reality, we can make this layout as complex
as we want; we'd need to be careful though as, if we make it unnecessarily complex, there
will be performance issues. We have not really said anything about performance issues, but
this is one of the major topics we will cover later on, as it gets very critical when talking
about ListView objects.

| = "
5 jtem.xml %

<7xml version="1.0" encoding="utf-8"7>
8 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android”
android:orientation="horizontal"
android:layout_width="match_parent”
android:layout_height="match_parent"
android:padding="16dp">

<ImageView
i android:src="@android:drawable/star_big on"
android:layout_width="wrap_content"
android:layout_height="match_parent"
android:layout_gravity="center_vertical” />

<TextView
android:id="@+id/item text"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center_vertical |center_horizontal”/>

<ImageView
g android:src="@android:drawable/star_big_on"
android:layout_width="wrap_content”
android:layout_height="match_parent"
android:layout_gravity="center_vertical”/>
</LinearLayout>

[112]

Lists and Adapters

If we run the application with the preceding changes, we will have the following result:

T Pineapple ¥

¥ Mango ¥

Adapters

We have been using adapters already to populate our ListView, but we have only seen one
kind of adapter and there are many. In this section, we will introduce the most common
adapters and how they can be used. We will also cover performance optimization, as it is
one of the critical topics when talking about lists.

ArrayAdapter

We have already introduced ArrayAdapter in all our previous examples and we know,
quite clearly, how to use it. However, if we would like to use it with a more complex view
than TextView, we can easily do so by overriding the getView (int, View, ViewGroup)
method and returning the desired kind of view, as shown in the following screenshot:

[113]

Lists and Adapters

=3 - -
5 two_lines_item.xml %

<?xml version="1.8" encoding="utf-8"7>
c <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal™
android:layout_width="match_parent”
android:layout_height="match_parent"
android: padding="16dp">

<ImageView
W android:src="@android:drawable/star_big_on"
android:layout_width="wrap_content"
android:layout_height="match_parent"
android:layout_gravity="center_vertical™ />

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical”
android:layout_width="match_parent”
android:layout_height="wrap_content”
android:layout_gravity="center_vertical|center_horizontal"
android:layout_marginLeft="18dp">

<TextView
android:id="@+id/item_textl"
android:text="first line"
android:textSize="22sp"
android:layout_width="wrap_content”
android:layout_height="wrap_content"
i>

<TextView
android:id="@+id/item_ text2"
android:text="second line"
android:textSize="14sp"
android:layout_width="wrap_content™
android:layout_height="wrap_content" />

</LinearLayout>
</LinearLayout>

First, we will start by creating the layout resource file that we would like to use for each list
item. Once we have done that, we will have to modify the code to use this new layout and
set the texts to the right views.

[114]

Lists and Adapters

The code to do this is shown in the following screenshot:

) TwoltemsActivity java x

package com.packt.rrafols.example;
import ...
£33 public class TwoItemsActivity extends AppCompatActivity {

final String[] fruits = new String[] {"Orange", "Banana", "Pear", "Pineapple", "Mango",
"Strawberry”, “Apple", "Peach", "Watermelon", "Kiwi", "Cherry", “Grape", "Fig",
"Plum", "Quince", "Avocado", "Pomegranate”, "Lime", "Mandarin”, "Grapefruit”,
"Raspberry”, "Melon", "Pomelo"};

final String[] color = new String[]l {"orange", “yellow", “green", "brown", "orangeish",
“red", "red", "orange", “green", "brown", "red", "green", "burgundy", "burgundy",
"yellow", "green", "red", “"green", “orange”, “orange", "red", "green", "green"};

private static final int INVALID_LAYOUT = -1;

@lverride
&l protected void onCreate(Bundle savedInstanceState) {
super.onCreate({savedInstanceState);
setContentView(R. layout.activity_main);

ArrayAdapter<String> stringList = new ArrayAdapter=-=(this, INVALID_LAYOUT, fruits) {
@verride
al public View getView(int position, View convertView, ViewGroup parent) {
LayoutInflater inflater = (LayoutInflater)
TwoItemsActivity.this.getSystemService (Context.LAYOUT_INFLATER_SERVICE);
View inflatedView = inflater.inflate(R.layout.two_lines_item, null);

((TextView) inflatedView.findViewById(R.id.item_textl)).setText(fruits[position]);
((TextView) inflatedView.findViewById(R.id.item_text2)).setText{color[position]);

return inflatedView;
}
h

ListView listView = (ListView) findViewById(R.id.listView);
ListView.setAdapter(stringList);

We've changed many things in the code; let's go through them one by one. First, we have
overridden the getView method and we are returning a view we are inflating from the
layout resource. Layout Inflater builds the corresponding view objects from a layout
XML resource. For more information, visit http://developer.android.com/reference/a
ndroid/view/LayoutInflater.html.

Once we have our layout inflated, we can find the views we would like to set the text to,
item_textl and item_text2 in this specific case. Furthermore, you can see we used
an INVALID_LAYOUT parameter, or its value —1, when calling the ArrayAdapter

constructor. As we will not use the layout ID specified in the constructor, there is no need to
put a valid layout ID.

[115]

Lists and Adapters

Executing this code will provide us with the following results:

T-“-'? Orange

orange

ﬁ? Banana
yellow

T!? Pear
green

<&, Pineapple

Performance considerations

If you look at the previous source code, you will see there is a lint warning. Android lint is a
static code analysis tool that checks your source code for potential bugs and optimizations,
as shown in the following screenshot. You will find more information on lint at http: //dev
eloper.android.com/tools/help/lint.html.

app) TAyOUTINT (aTer INTater = (LayoutInT tater]

rties (Gradle TwoItemsActivity.this.getSystemService (Context.LAYOUT_INFLATER_SERVICE);
C R - View inflatedView = inflater.inflate(R.layout.two_lines_item, null);

roGuard Ru app)

ject | Unconditional layout inflation from view adapter: Should use View Holder pattern (use recycled view passed into this method as the second parameter) for
-+ e smoother scrolling more... (¥F1)

return inflatedView;

For unconditional layout inflation from a view adapter, use the View Holder pattern (use
the recycled view passed into this method as the second parameter) for smoother scrolling.

This warning is telling us two things: we should use the recycled view passed into this
method as convertview and we should use the View Holder pattern. Let's focus on the
recycled view first. By evaluating the code carefully, you'll find it very easy to spot the fact
that we are creating, or inflating, a whole new view hierarchy from the layout resource file
every single time.

[116]

Lists and Adapters

Let's make the assumption that all views on the list are the same; if this is the case, we

will need as many unique views as views fit that the parent list size. As soon as a view is
scrolled out of the viewing window, we will be able to reuse it and just change its contents.
In the following image, we can see how the view used for Item 0 is reused for Item 9.

‘ Item 0 ‘

[Item 0] ‘ Item 1 ‘ [ltem 1]
[ftem 1] [Item 2] [ftem 2]
{ Item 2] [Item 3] [Item 3]
[frem 3] [Item 4] [frem 4]

ltem 4 ltem 5 ltem 5

ftem § Item & item 6

Item 6 Item 7 Item 7

ftem 7 Item 0 -> ftem 9

Android identifies whether a new view needs to be created or a previous one can be reused
using the convertVview parameter in the getView method. If convertviewis null, we
need to create or inflate one ourselves; if it contains a view, we can reuse it and will have to
change the values we would like to show for the current item:

ArrayAdapter<String> stringlist = new ArrayAdapter<~>(this, INVALID_LAYOUT, fruits) {
@0verride
af public View getView(int position, View convertView, ViewGroup parent) {
if{convertView = null) {
LayoutInflater inflater = (LayoutInflater)
TwoItemsActivity.this.getSystemService(Context.LAYOUT INFLATER SERVICE);
convertView = inflater.inflate(R. layout.two_lines_item, null};

((Textview) convertView.findViewById(R.id.item_textl)).setText{fruits[position]);
((TextView) convertView.findViewById(R.id.item_textZ}).setText{color[positionl);

return convertView;
H
I

ListView listView = (ListView) findViewById(R.id.listView);
listView.setAdapter{stringlList);

[117]

Lists and Adapters

The only change we need to make in the code is to check whether convertviewis null
and just inflate a new view in that case. We assumed all items are shown with the same type
of view. Later on, when covering BaseAdapter, we will explain how to manage different
view types depending on the item or the item position.

The other performance issue mentioned in the lint warning was about using the View
Holder pattern. Even if we are not creating more than the required views, we are still
searching, multiple times, for the right views inside the view hierarchy using the
findviewById method. This method has been declared particularly slow, and it gets worse
if our view hierarchy becomes more complex. To avoid having to search for views, we need
to get a view every single time we get a request from the list; we can create an object that
will store the references of these views. This is the main idea behind the View Holder
pattern.

First, we need to create a small class to contain the references:

2 public class TwoIltemsActivity extends AppCompatActivity {

@lverride
&[protected veid onCreate(Bundle savedInstanceState) {...}
private static class ViewHolder {

TextView textl;
TextView text2;

[118]

Lists and Adapters

Then we need to modify the code to create a ViewHolder object for every view we create or
inflate and store the references to the views we would like to use later on:

ArrayAdapter<String> stringList = new ArrayAdapter<~>(this, INVALID_LAYOUT, fruits) {
@verride
al public View getView(int position, View convertView, ViewGroup parent) {
ViewHolder holder;

if{convertView == null) {
LayoutInflater inflater = (LayoutInflater)
TwoItemsActivity.this.getSystemService(Context.LAYOUT_INFLATER_SERVICE);

convertView = inflater.inflate(R. layout.two_lines_item, null);

holder = new ViewHolder();
holder.textl = {{TextView) convertView.findViewById(R.id.item_textl));
holder.text2 = {{TextView) convertView.findViewById(R.id.item_text2));
convertView.setTag(holder);

} else {
holder = (ViewHolder) convertView.getTag();

e

holder.textl.setText(fruits[position]l);
holder.text2.setText{color[position]);

return convertView;
i
ListView listView = (ListView) findViewById(R.id.listlView);
listView.setAdapter(stringList);
}
private static class ViewHolder {

TextView textl;
TextView text2;

With this change, we will only create a ViewHolder object for every new view we will
inflate, and we will only search for TextView views at that moment. At any other time, we
will try to access a recycled view so that we can just reuse this stored information. Any view
can store additional information using the set Tag method, having regard to the fact that
the object will have to be cast back to its original class when recovering it using the getTag
method. For more information, refer to http://developer.android.com/reference/andr
oid/view/View.html#setTag (int, java.lang.Object).

[119]

Lists and Adapters

In the previous code, we only set the text of two TextViews. However, if we have to
change an image, or trigger its download for example, or something that might be

really slow, it is a good idea to execute this on a background task. Android provides
multiple options to execute code in background mode, but maybe the simplest solution here
is to use AsyncTask. For more information, visit http://developer.android.com/refere

nce/android/os/AsyncTask.html.

The next code is a small example of how can we achieve this. We will not go into the details
of how to load an image or how the image is created; here we will only create a dummy

image of 1 pixel width per 1 pixel height:

private ViewHolder holder;

public ImageLoader(ViewHolder holder) {
this.holder = holder;

@lverride
al protected Bitmap doInBackground(ViewHolder.

/ load real image here and return some

params) {

ng more sensiole

return Bitmap.createBitmap(1, 1, Bitmap.Config.ARGB_8888);
}

@lverride
af protected void onPostExecute(Bitmap bitmap) {
holder.image.setImageBitmap(bitmap);

}

private static class ImagelLoader extends AsyncTask<ViewHolder, Void, Bitmap> {

We also need to modify the ViewHolder inner class to add the image:

private static class ViewHolder {
TextView textl;
TextView text2;
ImageView image;

[120]

Lists and Adapters

We would also need to add an ID to ImageVieuw, in the two-line item layout
file android:id="@+id/item_image", and set it together with TextView:

holder = new ViewHolder();

holder.textl = (TextView) convertView.findViewById{(R.id.item_ textl);
holder.text2 = (TextView) convertView.findViewById(R.id.item_text2);
holder.image = (ImageView) convertView.findViewById(R.id.item_ image);

Once we have performed all these steps, we just need to add one line to the getView
method to trigger image loading:

new Imageloader (position, holder) .execute();

However, this code faces an important issue. As loading the image takes some time and this
process is executed in the background, what would happen in the case where, after the
image has finished loading, ViewHolder points to another item position because it has been
recycled?

To solve this issue, we have to keep track of the position on ViewHolder as well and check
it on AsyncTask. In addition, in a real application, we should avoid loading lots of
background images if the user is scrolling very fast. This is because most of the images will
not even be shown and will just waste time and data; additionally, this will make the user
wait for the images he would really like to see, let's say, 200 rows, as shown in the following
screenshot:

private static class Imageloader extends AsyncTask<ViewHolder, Void, Bitmap> {
private ViewHolder holder;
private int position;

public ImageLoader(int position, ViewHolder holder) {
this.position = position;
this.holder = holder;

}
@verride
&l protected Bitmap doInBackground(ViewHolder... params) {
/f load real image here and return s 19 more sensible
return Bitmap.createBitmap(1, 1, Bitmap.Config.ARGB_8888);
@lverride
al protected void onPostExecute(Bitmap bitmap) {

if(position == holder.position) {
holder.image.setImageBitmap(bitmap);

}

[121]

Lists and Adapters

In the preceding code, we have added the item position to ViewHolder. While trying to set
the image, if the position is different, we will ignore the image. The following screenshot
shows the new ViewHolder, including the item position:

private static class ViewHolder {
TextView textl;
TextView text2;
ImageView image;
int position;

We also have to remember to update the ViewHolder position to the item position every
time:

holder.textl.setText(fruits[position]);
holder. text2.setText{color[position]};
holder.position = position;

new ImagelLoader{position, holder).execute();

for more information on how to make the scrolling of ListView smoother and faster and an
example of how to use AsyncTask to change the image of Imageview,

Visit http://developer.android.com/training/improving—layouts/smooth-scrolling
.html.

[122]

Lists and Adapters

BaseAdapter

BaseAdapter is the basic implementation of an adapter. It is one of the simplest ways to
implement our own adapter with its specific logic. To create our own custom adapter, we
only have to create a class extending BaseAdapter:

C ExampleBaseAdapter java x
package com.packt.rrafols.example;
import android.view.View;

impert android.view.ViewGroup;
import android.widget.BaseAdapter;

public class ExampleBaseAdapter extends BaseAdapter {
@lverride
Ll public int getCount() {
return @;
@lverride
af public Object getItem({int position) {

return null;

@lverride
& public long getItemId(int position) {
return @;
¥
@lverride
af public View getView(int position, View convertView, ViewGroup parent) {

return null;

I

We will have to implement only four methods:

e The getCount () method returns the number of elements we have.

e The getItem(int position) method returns the actual object in the specified
position.

e The getItemId (int position) method returns the ID of the object in the
specified position. It can be used for our own purposes; alternatively, we can just
return either 1 or 0, for instance, if we do not have any particular use for this
method.

o The getView (int position...) method returns the view associated to this
row. The same principles we saw before in the getView method of
the ArrayAdapter class apply.

[123]

Lists and Adapters

One of the main advantages of having our own implementation of an adapter is that we
have control over the data in it. There is no need to destroy and create a new adapter
whenever the dataset changes. For example, we can implement an adapter where we can
add or remove rows dynamically.

Let's back the adapter by using ArrayList (to hold our elements):

© ExampleBaseAdapter java x

package com.packt.rrafols.example;
import ...

€ public class ExampleBaseAdapter extends BaseAdapter {
private Context context;
private ArraylList<String= list;

public ExampleBaseAdapter(Context context) {
this.context = context;
list = new ArrayList<=();

}

@lverride
®f public int getCount() {
return list.size();

@lverride
o public Object getItem(int position) {
return list.get(position);

@dverride
of public long getItemId(int position) {
return @;

@lverride
o public View getView(int position, View convertView, ViewGroup parent) {
ViewHolder holder;

if(convertView == null) {
LayoutInflater inflater = (LayoutInflater) context.getSystemService(Context.LAYOUT_INFLATER_SERVICE);

convertView = inflater.inflate(R. layout.two_lines_item, null);
holder = new ViewHolder();

holder.textl = (TextView) convertView.findViewById(R.id.item_textl);
holder.text2 = (TextView) convertView.findViewById(R.id.item_text2);
convertView.setTag(holder);

} else {
holder = (ViewHolder) convertView.getTag();

holder.textl.setText(List.get{position));
holder.text2.setText("pos: " +position);

return convertView;

[124]

Lists and Adapters

So far it has been very easy; the get View implementation is almost the same as previous
examples, except that we get the data from the list, and the only logic we have implemented
comprises the getCount () method and the

getItem(int position) method.

Let's add two new methods: one to add an element and another to remove one element
from the list. This is shown in the following screenshot:

public void addItem(String str) {
list.add(str);
notifyDataSetChanged();

}

public void removeItem{String str} {
list.remove{str);
notifyDataSetChanged(};

These new methods add and remove items from the list and they both call the
notifyDataSetChanged () method. This method notifies all the observers of this data that
it has changed and they should refresh themselves. As notifyDataSetChanged can only
be called from the Ul thread, we know addItem and removeItem will not be called at the
same time and there is no need for synchronization blocks. To

call notifyDataSetChanged from another thread, we can use, for

example, Activity.runOnUiThread or a handler.

[125]

Lists and Adapters

The following example is the modified activity with two buttons to add or remove an item
from the list:

) MainAdapterActivity java *

package com.packt.rrafols.example;
import ...
o public class MainAdapterActivity extends AppCompatActivity {

private fimal String[] fruits = new String[] {"Orange", "Banana", "Pear", "Pineapple”, "Mango™, "Strawberry",
"Apple”, "Peach", "Watermelon™, "Kiwi", "Cherry", "Grape", "Fig", "Plum", "Quince”,
"Avocado”, "Pomegranate”, “Lime", "Mandarin", "Grapefruit”, "Raspberry", "Melon”, "Pomelo"};

private int index;
private ExampleBaseAdapter adapter;

@lverride
al protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R. layout.activity_main);

adapter = new ExampleBaseAdapter(this);
ListView ListView = (ListView) findViewById(R.id.listView);
listView.setAdapter(adapter);

ol findViewById(R.1id.addline).setOnClickListener((v) = {
if(index < fruits.length) {
adapter.addItem{fruits [index++]);
}
i

findViewById(R.id.delline).setOnClickListener(new View.OnClickListener() {
@lverride
®f public woid onClick{View v} {
if(adapter.getCount() > 0} {
int i = (int) (Math.random() * adapter.getCount(});
adapter.removeltem((String) adapter.getItem(i));

12N

RecyclerView

RecyclerView was introduced with Android 5.0 or Lollipop and was included directly in
the support library, so it could be used in older versions of Android (we all know that
firmware rollout is not always as fast as it should be because it might depend on operators
and vendors). In this section, we will use the previous example to replace ListView

with Recyclerview. We will see that it will take a bit more of code to set this up, but we
will also be able to identify, quite clearly, its advantages: its flexibility and the uncoupling
feature along with the ability to perform item layouts or item animation, helping us to keep

[126]

Lists and Adapters

a cleaner code architecture. In addition, RecyclerView was built with all the performance
features we had to implement before in mind. This does not mean we do not have to do
anything to implement them, but as we will see, the code is structured in a way that it will
force us do to so naturally.

The official Android documentation defines it as a flexible view for providing a limited
window into a large dataset. This definition could apply to any scrolling list, but the main
keyword we have to take into consideration is “recycler.” We have already explained how
critical it is to recycle and reuse views in long scrolling lists, but with the introduction of
RecyclerView, we can see that Google takes this concept very seriously as well. For more
information, visit http://developer.android.com/intl/es/reference/android/suppor
t/v7/widget/RecyclerView.html.

Replacing ListView with RecyclerView

The first thing we need to do is add a dependency to the dependencies section of the
build.gradle file of our application. As we have just mentioned, RecyclerView is
included as part of the support library, so in order to use it, we will have to add the full
package name from the support library,

namely android. support.v7.widget.RecyclerView, as shown in the following
screenshot:

dependencies {
compile fileTree{dir: 'libs', include: ['#.jar'l)
testCompile 'junit:junit:4.12°
compile 'com.android.support:appcompat-v7:23.1.1"
compile 'com.android.support:recyclerview-v7:+'

[127]

Lists and Adapters

After making this change, we will need to synchronize our Gradle file so Android Studio
could fetch the new dependencies. Now, after performing this simple step, we could go to
the layout file and replace the ListView item with Recyclerview, as shown in the
following screenshot:

—

A rg Nexus 5+ r - é@AppTheme

<7xml version="1.0" encoding="utf-8"7> . .

c <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"” B 6 @D
xmlns:tools="http://schemas.android.com/tools" : :
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical"
tools:context="com.packt.rrafols.example.MainActivity"> R600

<LinearLayout Example
android:orientation="horizontal”
android:layout_width="match_parent" ADD LINE! DELETE LINE!
android:layout_height="wrap_content">

<Button
android:id="@+id/addline"
android:text="Add line!"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="1"/>

<Button
android:id="@+id/delline"
android: text="Delete Lline!"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="1"/>
</LinearLayout>

<android.support.v7.widget.RecyclerView
android:id="@g+id/listView"
android:layout_width="match_parent"
android:layout_height="match_parent" />
</LinearLayout>

So, once we have the right layout item, we can proceed to perform the same change in our
activity. We change the ListView class with RecyclerView and the appropriate cast:

RecyclerView recyclerView = (RecyclerView) findViewById(R.id.listView);
recyclerView. setAdapter(adapter);

This change will not just work out-of-the-box. Recyclerview has some additional
requirements regarding the adapter. As we have mentioned before, Recyclerview will
naturally force us to implement the performance improvements we had to do manually in
the past. Instead of being able to use any adapter, we will have to extend

from RecyclerView.Adapter and implement their abstract methods.

[128]

Lists and Adapters

In the Android source code, this class is declared
public static abstract class Adapter<VH extends ViewHolder> { ... }

using generics to allow any class to extend RecyclervView.ViewHolder.
More information about generics can be found at the following links:

® https://docs.oracle.com/javase/tutorial/java/generics/

® https://en.wikipedia.org/wiki/Generics_in_Java

So, first of all, let's create a ViewHolder extending from RecyclerView.ViewHolder
instead of just creating our own independent class:

) RecyclerViewHolder java

package com.packt.rrafols.example;

import android.support.v7.widget.RecyclerView;
import android.view.View;
import android.widget.TextView;

public class RecyclerViewHolder extends RecyclerView.ViewHolder {
private TextView textl;
private TextView text2;

public RecyclerViewHolder(View itemView)
super(itemView);

textl
text2

(TextView) itemView.findViewById(R.id.item_textl);
(TextView) itemView.findViewById(R.id.item_text2);

¥

public TextView getTextl() { return textl; }
public TextView getText2() { return text2; }

This implementation is quite straightforward and very similar to our previous ViewHolder
implementation. The only thing we have to take into account is that we have to extend our
class from RecyclerView.ViewHolder and the constructor takes one parameter which is
the actual, already inflated, view. It is very common to have ViewHolder defined as an
internal class, as this would make it easier to access its elements. If you are a purist, there
will be no need to write the appropriate getters; however, in this specific case, it is on its
own public class so we can show it more clearly.

[129]

Lists and Adapters

Now that we have our ViewHolder built, let's focus on the adapter. Let's create our class
based on the previous definition, using the same name as in the previous section:

public class ExampleBaseAdapter extends
RecyclerView.Adapter<RecyclerViewHolder> { ... }

We will have to implement the abstract methods of RecyclerView.Adapter:

public RecyclerViewHolder onCreateViewHolder (ViewGroup parent, int
viewType)

public void onBindViewHolder (RecyclerViewHolder holder, int position)
public int getItemCount ()

The onCreateviewHolder method will be called whenever a new ViewHolder (and a
view) needs to be created. In our implementation, we will be responsible for returning
a ViewHolder instance.

The implementation is also quite simple, assuming we would like to do the same as in our
previous section; obviously, we could add all of the complexity we want depending on our
needs and requirements. The following is a simple implementation of the
onCreateViewHolder method:

@0verride
L] public RecyclerViewHolder onCreateViewHolder(ViewGroup parent, int viewType) {
LayoutInflater inflater = (LayoutInflater) context.getSystemService(Context.LAYOUT_INFLATER_SERVICE);
return new RecyclerViewHolder{inflater.inflate(R. layout.two_lines_item, parent, false));

Basically, we are inflating a new view and creating a new ViewHolder with it.

The onBindviewHolder method will be called whenever Recyclerview is binding
a ViewHolder with a position in the list. Implementation in this case is also quite
straightforward. The following is an example of how to reuse the view stored in the
ViewHolder:

@iverride
@] public void onBindViewHolder{RecyclerViewHolder holder, int position) {
holder.getTextl().setText(list.get(position));
holder.getText2().setText("pos: " + position)

[130]

Lists and Adapters

As with our previous section, we are just setting the new text to the TextViews previously
cached in ViewHolder.

Last but not least, the get ItemCount method is simply the equivalent of the getCount
method in a BaseAdapter. We have to return the total number of elements we want to
show in RecyclerView.

To sum up this section, we have modified our previous ExampleBaseAdapter class to
extend from RecyclerView.Adapter and adapted the implementation to follow the
abstract methods we had to implement. We still back our elements with ArrayList, but we
have slightly changed the addItem and removeItem methods. Instead of just

calling notifyDataSetChanged, we will call the specific methods when an item has been
inserted and when an item is removed from the list. Check the documentation for more
specific methods as RecyclerView comes with many very helpful and more precise ways
of notifying changes in the dataset. See the whole class with all the following changes:

C ExampleBaseAdapter java

package com.packt.rrafols.example;
import ...

public class ExampleBaseAdapter extends RecyclerView.Adapter<RecyclerViewHolder= {
private Context context;
private ArrayList<String= list;

public ExampleBaseAdapter(Context context) {
this.context = context;
list = new ArrayList<=();

1

@verride
af public RecyclerViewHolder onCreateViewHolder(ViewGroup parent, int viewType) {
LayoutInflater inflater = (LayoutInflater) context.getSystemService(Context.LAYOUT_INFLATER_SERVICE);
return new RecyclerViewHolder({inflater.inflate(R.layout.two_lines_item, parent, false));
¥

@override
af public void onBindViewHolder(RecyclerViewHolder holder, int position) {
holder.getText1().setText{list.get{position});
holder.getText2().setText("pos: " + position);
}

@dverride
L public int getItemCount() { return list.size(); }

public void addItem{String str) {
list.add{str);
notifyItemInserted{list.size());

public void removeItem(int position) {
list.remove(position);
notifyItemRemoved(position);

[131]

Lists and Adapters

In this case, we added the context to the constructor of the adapter, but because we only
needed it on the onCreatevViewHolder method, we could just retrieve it
from parent .getContext ().

Are we ready to run our application again using RecyclerView instead of ListView?
Almost, but not just yet. If we build and launch the application at this moment, it will crash
with NullPointerException as soon as we add one item to the list. The reason is

that Recyclerview does not know how to lay out the items so we have to

provide LayoutManager. For more information, visit http://developer.android.com/in
tl/es/reference/android/support/v7/widget/RecyclerView.LayoutManager.html.

At the time of writing this book, Recyclerview provides three default implementations:

The straightforward LinearLayoutManager, GridLayoutManager, and
StaggeredGridLayoutManager. We will talk about the last one in more detail later on,
but for the time being we will just use LinearLayoutManager to run our application. To
make the code work, just add a new LinearLayoutManager to RecyclerView:

recyclerView.setLayoutManager (new LinearLayoutManager (this))
For more information, visit the following links:

® https://developer.android.com/training/material/lists-cards.html

® http://developer.android.com/intl/es/reference/android/support/v7/wi
dget/LinearLayoutManager.html

[132]

Lists and Adapters

The resulting class is not really very different from our previous implementation. We have
also modified how items are removed from the list; this time, we removed a random item
from the list:

C) MainAdapterActivity.java *

package com.packt.rrafols.example;
+import ...
o public class MainAdapterActivity extends AppCompatActivity {

private final String[] fruits = new String[] {"Orange”, “Banana", "Pear", "Pineapple"”, "Mango", “Strawberry",
"Apple”, "Peach", "Watermelon", "Kiwi", "Cherry", "Grape", “Fig", "Plum", "Quince",
"Avocado", "Pomegranate”, "Lime", “Mandarin", "Grapefruit", "Raspberry”, "Melon", "Pomelo"l};

private int index;
private ExampleBaseAdapter adapter;

@lverride
al protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R. layout.activity main);

adapter = new ExampleBaseAdapter{this);

RecyclerView recyclerView = (RecyclerView) findViewById(R.id.listView);
recyclerView. setAdapter(adapter);
recyclerView.setlayoutManager(new LinearLayoutManager(this));

8 findViewById(R.id.addline).setOnClickListener((v) - {
if(index < fruits.length) {
adapter.addItem(fruits [index++]);

}
N
o findViewById(R.id.delline).setOnClickListener((v) = {
if(adapter.getItemCount() > @) {
int i = (int) (Math.random() * adapter.getItemCount{());
adapter.removeItem(i);
N

[133]

Lists and Adapters

CardView

The advantage of using Cardvieuw is that it comes with a default implementation for
rounded corners and a shadow. This is precisely how it is defined in the official Android
docunuﬂﬂaﬁon(https://developer.android.com/reference/android/support/v7/wid
get/CardView.html)

In addition to this, many mobile applications use Cardview widgets, and there are some
interesting discussions about the future of cards as a UX pattern at the following links:

® https://blog.intercom.io/why-cards—-are-the-future-of-the-web/

® http://www.dtelepathy.com/blog/inspiration/ux—-flows—how-to-champion-
your-content-with-cards

To use cardviews in our application, we will have to add the dependency to our
application's build.gradle file:

dependencies {
compile fileTree{dir: 'libs', include: ['*.jar'])
testCompile "junit:junit:4.12"
compile 'com.android.support:appcompat-v7:23.1.1"
compile 'com.android.support:recyclerview-v7:+'
compile 'com.android.support:cardview-v7:+'

Let's create a new layout file, which includes a Cardview. If we want to add a complex
layout inside it, we need to add RelativeLayout or any other layout as a child. For this
example, we do not really need that, as we will only add a background image and a single
line of text.

[134]

Lists and Adapters

= -
& cardview.sml x

<7xml version="1.8" encoding="utf-8"7>
c <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal"
android:layout_width="match_parent”
android:layout_height="match_parent”
android: padding="16dp">

<android.support.v7.widget.CardView
xmlns:card_view="http://schemas.android. com/apk/res-auto"
android: id="@+id/card_view"
android:layout_gravity="center"
android:layout_width="match_parent”
android:layout_height="280dp"
card_view:cardElevation="4dp"
card_view:cardCornerRadius="10dp"
card_view:cardUseCompatPadding="true">

<ImageView
android:id="@+id/item_background"”
android:layout_width="match_parent”
android:layout_height="match_parent”
android:scaleType="centerCrop" />

<TextView

android: id="@+id/item_ textl"
android:text="item name"
android:textSize="22s5p"
android:textColor="@android: color/white"
android:layout_width="wrap_content”
android:layout_height="wrap_content”
android:layout_marginLeft="20dp"
android:layout_gravity="center_vertical"/>

</android.support.v7.widget.CardView=>

</LinearLayout=

Double-check the card_view properties: cardElevation, cardCornerRadius,
and cardUseCompatPadding.

e cardElevation: This property sets the card elevation in a backward-compatible
mode. On Android L, we will use the elevation API, and on versions previous to
Android L we will just change the shadow size.

e cardCornerRadius: This property sets the radius of the rounded corners.

e cardUseCompatPadding: This property adds a padding to Android L to have
the same measurements as in the previous versions.

[135]

Lists and Adapters

For detailed information and more parameters, check the official Android documentation.

Once we have created our new layout file, we will modify our ViewHolder class to only
keep a reference to one single TextField and to the background image, as shown in the
following screenshot:

C) RecyclerViewHolder java x

package com.packt.rrafols.example;
import ...

public class RecyclerViewHolder extends RecyclerView.ViewHolder {
private TextView textl;
private ImageView imageView;
private CardView cardiiew;

public RecyclerViewHolder(View itemView) {
super(itemView);

textl = (TextView) itemView.findViewById(R.id.item_textl);
imageView = (ImageView) itemView.findViewById(R.id.item_background);
cardView = (CardView) itemView.findViewById(R.id.card view);

}

public TextView getTextl() { return textl; }
public ImageView getImageView() { return imageView; }

We just need a minor modification in our adapter to set the background and only one line.
This example has not been optimized for performance or memory use; we just show the
changes in the adapter to make the background of Cardview appear.

@lverride
Ll public void onBindViewHolder{RecyclerViewHolder holder, int position) {
holder.getTextl().setText{list.get(position]}};
holder.getImageView().setImageResource({R.drawable.background);

[136]

Lists and Adapters

If we run our application now, we will see the rounded corners of Cardview and a soft
shadow due to the elevation of the item:

ADD LINE! DELETE LINE!

ItemAnimator

Let's do a quick modification of the addItem method in our adapter implementation so that
the items will be inserted at the top of the list, not at the bottom:

public void addItem{String str) {
list.add(®, str);
notifyItemInserted(@);

If we now run our application, add a few items, and remove some of them, we see there are
some animations. RecyclerView uses DefaultItemAnimator by default. Visit http://de
veloper.android.com/reference/android/support/v7/widget/DefaultItemAnimator.

html for more information.

Implementing our own ItemAnimator might be a bit complex, but we can

extend RecyclerView.ItemAnimator and implement our own class. For more
information, refer to http://developer.android.com/reference/android/support/v7/w
idget/RecyclerView.ItemAnimator.html.

This is not very easy, so our recommendation is to look at the Android source code (shown
in the following link) and analyze the DefaultItemAnimator source code:

https://android.googlesource.com/platform/frameworks/support/+/refs/heads/ma
ster/v7/recyclerview/src/android/support/v7/widget/DefaultItemAnimator. java

[137]

Lists and Adapters

ItemDecoration

In addition to animations, we can easily create our own decorations by just extending
RecyclerView.ItemDecoration. Itis quite common to use it to draw decorations or

dividers between items in case we need them. ItemDecoration gives us the opportunity to
draw something under item views or over them and change their positioning by overriding

some of

the methods of RecyclerView.ItemDecoration:

¢ The onDraw method allows us to draw before the Recyclerview child views are

drawn. Anything drawn here will appear under them.

e The onDrawOver method is called after all child views are drawn, so anything
drawn here will be drawn on top of the child views.

¢ The getItemOf fsets method allows us to modify the outer bounds of the item.
We can easily add an offset or additional margin here. If we need the item
position, we have to use the getChildAdapterPosition method
in RecyclerView.

For example, let's assume we would like to draw even rows slightly displaced to the right
and fill that space with a solid color rectangle. First, we would have to create our own
ItemDecoration class:

c

af

af

al

RecycleritemDecoration.java %

package com.packt.rrafols.example;

import android.graphics.Canvas;

import android.graphics.Rect;

import android.support.v7.widget.Recyclerview;
import android.view.View;

public class RecyclerItemDecoration extends RecyclerView.ItemDecoration {
@verride
public void onDraw(Canvas c, RecyclerView parent, RecyclerView.State state) {
super.onDraw(c, parent, state);

@verride
public void onDrawOver(Canvas ¢, RecyclerView parent, RecyclerView.State state) {
super.onDrawOver(c, parent, state);

@iverride
public void getItemOffsets(Rect outRect, View view, RecyclerView parent, RecyclerView.State state) {
super.getItemOffsets{outRect, view, parent, statel;

That is quite straightforward, but now we would have to implement some of the methods
in order to do something different.

[138]

Lists and Adapters

Let's start by adding a configurable amount of displacement to the right for even rows. We
will add the displacement as a parameter to the constructor:

c ! RecyclerltemDecoration java x

package com.packt.rrafols.example;

import android.graphics.Rect;
import android.support.v7.widget.RecyclerView;
import android.view.View;

public class RecyclerItemDecoration extends RecyclerView.ItemDecoration {
private int horDisplacement;

public RecyclerItemDecoration(int horDisplacement) {
this.horDisplacement = horDisplacement;

}

@verride
al public void getItemOffsets(Rect outRect, View view, RecyclerView parent, RecyclerView.State state) {
super.getItem0ffsets(outRect, view, parent, state);

int position = parent.getChildAdapterPosition{view);
if(position % 2 = @) outRect.left = horDisplacement;

As mentioned before, we are using the getChildAdapterPosition method in the
parent RecyclerView to get the actual position of the view. Based on the position, we are
modifying the left position of the item to be the displacement. By default, and according to
the documentation, get ItemOffsets sets all bounds to 0.

Let's take advantage of this empty space to draw something of our own. We will have to
create a Paint object in our constructor. Let's not create it every single time we have to
draw something, for performance reasons. This is to avoid unnecessary operations and
memory allocations and to initialize it to fill the empty space with a solid color, which will
be passed as a parameter as well.

Then, we have to iterate for all the even items in our parent RecyclerView and draw a
rectangle, although we have chosen a round rectangle in our example, with appropriate
coordinates. As we can get the child view using the getChildAt method

in RecyclerView, we could use it to get the coordinates. In this specific example, we could
use the top and bottom coordinates of the child view as they are, and we just need to
calculate the left and right positions. Calculating the left side is quite easy; it will not
depend on any other child or element, just the parent padding, so let's set it to the left
padding of RecyclerView. For the right side, it is also quite straightforward. We know we
have displaced the views to the right, so we can get the left coordinate of the child view and
set it as the right coordinate of the rectangle we would like to draw. Please note that, in this
example, we have hardcoded the radius of the oval used to make the round rectangle; we
could have added it as another parameter if we customized it.

[139]

Lists and Adapters

£ RecyclerltemDecoration.java x

package com.packt.rrafols.example;

import android.graphics.Canvas;

impert android.graphics.Paint;

import android.graphics.Rect;

import android.support.v7.widget.RecyclerView;
import android.view.View;

public class RecyclerItemDecoration extends RecyclerView.ItemDecoration {
private int horDisplacement;
private Paint paint;

public RecyclerItemDecoration{int horDisplacement, int color) {
this.horDisplacement = horDisplacement;

this.paint = new Paint();
this.paint.setStyle(Paint.Style.FILL);
this.paint.setColor(color);

¥

@0verride
8l public void onDraw(Canvas ¢, RecyclerView parent, RecyclerView.State state)
for(int i = @; i < parent.getChildCount(); i += 2} {
View child = parent.getChildAt(i);

-

int top = child.getTop();

int bottom = child.getBottom();
int left = parent.getPaddingleft();
int right = child.getleft();

c.drawRoundRect (left, top, right, bottom, 1@.f, 18.f, paint);
¥
@verride
@l public void getItemOffsets(Rect outRect, View view, RecyclerView parent, RecyclerView.State state) {

super.getItem0ffsets{outRect, view, parent, state);

int position = parent.getChildAdapterPosition(view);
if(position % 2 == B) outRect.left = horDisplacement;

Finally, we only have to set this ITtemDecoration to RecyclerView in our activity and
initialize it with some appropriate values. Ideally, both horizontal displacement and color
should be defined as a XML resource and retrieved here, but for clarity reasons, we have
put the immediate value here:

adapter = new ExampleBaseAdapter{this);

RecyclerView recyclerView = (RecyclerView) findViewById(R.id.listView);
recyclerView. setAdapter({adapter);

recyclerView.setLayoutManager (new LinearLayoutManager(this));
recyclerView,.addItemDecoration({new RecyclerItemDecoration(25@, @xff556688));

[140]

Lists and Adapters

If we run our application now, and we add some lines, we will see them, as shown in the
following screenshot. As we can see, even rows are displaced to the right and there is a
bluish round rectangle on the left-hand side.

® v 4 01236

Example

ADD LINE! DELETE LINE!

Let's do a quick update to our project to draw that bluish background on all the items and
remove the displacement so we can reuse it in our next section:

@lverride
&l public void onDraw(Canvas c, RecyclerView parent, RecyclerView.State state) {
for(int i = 8; i < parent.getChildCount(}; i++) {
View child = parent.getChildAt(1};

int top = child.getTop();

int bottom = child.getBottom();
int left = child.getleft();
int right = child.getRight();

c.drawRoundRect(left, top, right, bottom, 10.f, 1@.f, paint);
T

@iverride
&l public void getItemOffsets{Rect outRect, View view, RecyclerView parent, RecyclerView.State state) {
super.getItem0ffsets(outRect, view, parent, state);
outRect.bottom = 5;
¥
}

[141]

Lists and Adapters

Here we just drew the same round rectangle in all the child views, without adding the
padding, and we also added a very small bottom offset to the items so there will be a small
separation.

For more information about ItemDecoration, check the source code of one of the

examples in the original Android source code, DividerItemDecoration. Visit https://a
ndroid.googlesource.com/platform/development/+/master/samples/Support7Demos/
src/com/example/android/supportv7/widget/decorator/DividerItemDecoration. jav

a.

StaggeredGridLayoutManager

There are many popular applications that show a special and more complex grid such as
Etsy or Pinterest. Etsy was designed as an open source component, but it has been
deprecated since September 2015 because Google added staggeredGridLayoutManager
to their default set of LayoutManagers.

Find the GitHub repository of the Etsy component at https://github.com/etsy/Androids
taggeredGrid.

In this book, we will be using Google's sStaggeredGridLayoutManager together

with Recyclerview. What we want to achieve is basically a staggered grid layout. This is
because items can have different sizes, and gaps between views have to be smartly
managed.

[142]

Lists and Adapters

The following is a screenshot of the Etsy application where we can see what we want to
achieve:

Purple embroidery wool f...
Loopicraft £12.56

&
S

Rose made with red cotto...

Santa Claus felt brooch or..
Loopicraft £14.98 f

Loopicraft £6.88

=]
=

The Three Wise Men felt b...
£19.55

We can easily get started by just replacing our LinearLayout
with staggeredGridLayoutManager and see what happens:

firecyclerView.setlayoutManager(new LinearlayoutManager(this));
recyclerView. setLayoutManager({new StaggeredGridlayoutManager(2, StaggeredGridlayoutManager.VERTICAL));

[143]

Lists and Adapters

We will not see that much difference as all the items have the same size. Let's randomize
things a bit in our adapter. Every time we get a ViewHolder bind a call to a new position,
we will randomly assign a new size to that view. Also, as we are inserting elements at the
top, just calling notifyItemInserted(0) will not be enough as it does not propagate
structural changes to the other views and assumes they have not been modified. There are

two options here: either we insert elements at the end of the list or we

call notifybataSetChanged (). The following screenshot shows the changes to the

adapter when you insert elements at the end of the list:

@[

private HashMap<Integer, Integer> heightList;

public ExampleBaseAdapter{Context context) {
this.context = context;
list = new ArraylList==();
heightList = new HashMap<=();

}

private static int dpToPixels(double dp) {
return {int) (dp * Resources.getSystem().getDisplayMetrics().density);
}

@lverride

public void onBindViewHolder(RecyclerViewHolder holder, int position) {
holder.getText1(}.setText(list.get(position));
holder.getImageView().setImageResource(R.drawable.background);

if(!heightList.containsKey(position}) {
int height = dpToPixels(150 + Math.random() * 200);
heightList.put(position, height});

}

holder.getCardView().getLayoutParams().height = heightList.get(position);
}

public void addItem(String str) {
list.add(str);
notifyItemInserted(list.size());

We have chosen to insert elements at the end of the array and give each item a size between
150 and 350 density pixels (dp), which we would need to convert into pixels in order to use
them.

[144]

Lists and Adapters

StaggeredGridLayoutManager, by default, uses
GAP_HANDLING_MOVE_ITEMS_BETWEEN_SPANS as the gap-handling strategy. Whenever the
scroll state is changed to SCROLL_STATE_IDLE, it will check whether there are gaps
between the items and lay them out again. We could also disable this behavior by setting
the gap strategy to GAP_HANDLING_NONE.

For more detailed information on how StaggeredGridLayoutManager works, check the
Android source code and documentation:

® https://android.googlesource.com/platform/frameworks/support/+/refs/
heads/master/v7/recyclerview/src/android/support/v7/widget/Staggered
GridLayoutManager. java

® http://developer.android.com/reference/android/support/v7/widget/Sta
ggeredGridLayoutManager.html

The following screenshot shows the result after you randomize the Cardviews height:

ADD LINE! DELETE LINE!

[145]

Lists and Adapters

Summary

In this chapter, we learned how to add dynamic lists to our application. We also covered the
performance issues that we might face if we do not do things in the right way, and we
evolved our example from the good old ListView and ListActivity to the new and
more efficient RecyclerView.

Additionally, we introduced a new LayoutManager, which is able to manage items with
different sizes, and the ability to draw decorations before or after the Recyclerview child
items are drawn.

For the time being, the source of data for the lists is quite static, but in upcoming chapters
we will see how to make it more dynamic and have different data sources.

[146]

Remote Data

So far you have seen how to create dynamic lists with a static data source (a Java array in
our previous examples). In this chapter, you will learn how to request and retrieve data
from Internet origins. There is a huge market for hyperconnected and hypersocial
applications, so we can imagine how critical it is to rely on a good implementation of the
networking part of the application. If it is done wrong, it might cause serious performance
issues, never-ending activity indicators, or even application crashes.

We will initially focus on how to request permissions and on background tasks and later
move on to how networking works internally and how to add widely used third-party
libraries to simplify all the connection needs our application might have.

Permissions

First of all, we need to understand the need for permissions. Permissions were introduced
to let the user know what kind of operations the application will perform. These operations
are potentially using services with a cost, for example, sending an SMS message or
connecting to the Internet or getting potentially sensitive information from the phone or the
user. As malicious applications might potentially abuse this, Android introduced a
permission mechanism that will show all the required permissions to the user when he/she
installs the application from Google Play. As this method did not show very clearly how
these features that require special permission were used, Google introduced, in Android
Marshmallow or API version 23, a new permission mechanism to check permissions at
application runtime.

Remote Data

Android M permission mechanism

Permissions have to be declared in the Manifest file as with previous versions of Android,
but there are some new methods to check and request permissions while the application is
running, providing, this way, the right context to the user and giving him the flexibility to
allow or deny these specific features of the application.

In previous versions of Android, when the user proceeded with the installation of the
application, the user was, in fact, accepting all the permissions at the same time without the
right context or knowledge of why the application was requesting those permissions.

This new permissions model is more convenient for the user since, if implemented
correctly, it will give the right context before having to accept a specific permission, but
adds some complex logic to handle when developing our applications. We do not have to
assume that we always have permission to do everything in the application, for example,
even if the user granted one permission, he/she can deny it later on from the application
settings.

Let's see how we can do it; let's add Internet connectivity to our application. First of all, we
have to add the Internet permission to our manifest file:

e AndroidManifest.xml

<7xmlL version="1.8" encoding="utf-8"7>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"”
package="com.packt.rrafols.example">

<uses-permission android:name="android.permission.INTERNET"/>

<application
android:allowBackup="true"
android:icon="@mipmap/ic_launcher"
android:label="Example"
android:supportsRtl="true"
android:theme="@style/AppTheme">
<activity android:name=".MainAdapterActivity">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
=/activity=
</application>

</manifest>

[148]

Remote Data

It is pretty straightforward. Just adding single line code
<uses-permission android:name="android.permission.INTERNET" />, before the
application tag will do the job.

This covers all that we need for previous Android versions and if we still build our
application with a target API lower than 23. But if we target our application for Android M
(or API level 23), we will have to do some additional work. Let's check at runtime if the
Internet permission is granted:

@0verride
al protected void onResume() {
super.onResume();

if(checkSelfPermission{Manifest.permission.INTERNET) == PackageManager.PERMISSION_GRANTED) {
Toast.makeText(this, "Internet permission granted”, Toast.LENGTH_SHORT).show();

} else {
Toast.makeText(this, "Internet permission not granted”, Toast.LENGTH_SHORT).show();

If we execute the preceding code, we will see the permission has already been granted; we
do not have to request for it or do anything else. Also, this code will only run on Android M
and onward devices. To avoid performing constant checks for the API version, there are
some helper methods in the app-compat library that would make our lives a bit easier:

@0verride
a protected void onResume() {
super.onResume(};

if(ContextCompat.checkSelfPermission(this, Manifest.permission.INTERNET)
== PackageManager.PERMISSION GRANTED} {
Toast.makeText{this, "Internet permission granted", Toast.LENGTH_SHORT).show();
} else {
Toast.makeText{this, "Internet permissien not granted", Toast.LENGTH_SHORT).show();
H

Only changing the call checkSelfPermission to
ContextCompat.checkSelfPermission will do the work. This call will work and return
the appropriate value depending on the Android version of the device running the
application. From now on, we will be using all methods from the app-compat library and it
is actually a good recommendation to do so on all our applications.

[149]

Remote Data

As we saw earlier, the Internet permission was already granted. This is because the Internet
permission belongs to a group of permissions categorized as normal.

Google classified some permissions as normal and others as dangerous. Normal
permissions are granted by default, although they still need to be declared in the
application Manifest file. For the list of normal permissions, refer

to http://developer.android.com/guide/topics/security/normal-permissions.html.

For more information on permissions, refer to
https://developer.android.com/reference/android/content/pm/Permi

ssionInfo.html.

Let's use the same approach with a dangerous permission: read contacts. As mentioned
previously, we have to start by adding the uses-permission line in the application
manifest:

<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission android:name="android.permission.READ_CONTACTS"/>

And we change the checkSelfPermission with the right one:

@lverride
af protected void onResume(} {
super.onResume();

if(ContextCompat.checkSelfPermission({this, Manifest.permission.READ_CONTACTS)
= PackageManager.PERMISSION GRANTED) {
Toast.makeText(this, "Read contacts permission granted", Toast.LENGTH_SHORT).show();
} else {
Toast.makeText(this, "Read contacts permission not granted”, Toast.LENGTH_SHORT).show();

[150]

Remote Data

If we run the following code, we will see the permission is not granted. Let's request it:

@lverride
af protected void onResume(} {
super.onResume();

if(ContextCompat.checkSelfPermission(this, Manifest.permission.READ_CONTACTS)
== PackageManager.PERMISSION GRANTED) {
Toast.makeText(this, "Read contacts permission granted”, Toast.LENGTH_SHORT).show();
} else {
if(ActivityCompat. shouldShowRequestPermissionRationale(this,
Manifest.permission.READ_CONTACTS)) {
Toast.makeText{this, "Explain why we need this permission", Toast.LENGTH_LONG).show();
1 else {
ActivityCompat.requestPermissions(this, new String[] {Manifest.permission.READ_CONTACTS},
PERMISSION_READ_CONTACTS);

We have introduced a call to the shouldShowRequestPermissionRationale method,
which is an optional call and will return if we show an explanation to the user as to why we
need this permission. It usually returns true whenever the user denies the permission
request or disables it afterwards in the application settings. If the use of the permission is
very obvious for the application, it is not really required, but if there are some doubits, it is
always good to explain to the user why are we requesting this permission.

We should take into consideration that anything we do here to show the explanation to the
user has to be done asynchronously and call an appropriate callback afterward. In this case,
we are only showing a dummy Toast.

If we do not want to show any explanation or if
shouldShowRequestPermissionRationale returns false, we can proceed and do the
actual request of the permission with the requestPermissions method. This method is
asynchronous and can be used to request multiple permissions at the same time, although
in this example we are only requesting one.

As this method is asynchronous, we will have to override another method called
onRequestPermissionsResult, which will be called with the results of what the user
selected. The additional parameter to showShowRequestPermissionRationaleisan int,
which we can use to track the request.

In our implementation, we assume that we have requested only one permission. Code has
to be refactored to be more generic and support multiple permissions at the same time.

[151]

Remote Data

If the user did not grant a permission, our application has to be smart enough to disable that
functionality or implement a mechanism to keep asking, without being annoying, for that
permission.

This implementation has been done in the onResume method, which might be the right
location for a permission we would need to start the application, but in our case, the
permission to read contacts should be placed in a more appropriate point in the code, which
makes more sense to the end user:

@bverride
&l public void onRequestPermissionsResult(int requestCode, @lonfull String[] permissions,
@lonfull int[] grantResults) {
switch(requestCode) {
case PERMISSION READ CONTACTS:

if{grantResults.length > @ &% grantResults[@] == PackageManager.PERMISSION_GRANTED)
Toast.makeText(this, “Permission granted!", Toast.LENGTH_SHORT).show();
! el?’iaét.mﬁke]’ext{this. "Permission denied!™, Toast.LENGTH_SHORT).show();
break;
default:

Log.e{TAG, "Wrong permission request code: " + reguestCode);

As mentioned previously, even if the permission is granted, we should not assume that it
will be always be that way. The user can deny the permission from the application settings.
If that happens, Android will kill our application, and a lot of unexpected things might
happen. Anywayj, it is good practice to check if we have permission whenever we have to
do a protected operation; this way we will have the most robust solution to permission
changes.

App permissions

Example

Contacts .

[152]

Remote Data

Permission groups

Google grouped permissions into permissions groups. Whenever an application is
requesting a permission and does not have any permission in the same group granted, it
will ask the user to grant the permission to the group without going into detail of which
specific permission. For example, if we ask permission to read contacts, it will show the
following popup:

é Allow Example to

— access your contacts?

DENY ALLOW

If the application asks for another permission from a group that has already a granted
permission, it will immediately grant that permission.

For more information, refer to the following links:

® http://developer.android.com/reference/android/Manifest.permission_g
roup.html

® http://developer.android.com/guide/topics/security/permissions.html

Background processing

Now that we have addressed how to request permission, we will slightly shift our focus on
how to perform background operations. All network communications have to be done in
the background. If we do it on the UI thread or main thread, we will block the UI layer and,
most probably, throw an Application Not Responding (ANR) dialog. For more information,
refer to http://developer.android.com/training/articles/perf-anr.html.

[153]

Remote Data

Anyway, any application targeted after Honeycomb will throw an exception
NetworkOnMainThreadException if it detects any networking operations on the main

thread. For more information, refer to
http://developer.android.com/reference/android/os/NetworkOnMainThreadException.

html.

We have several tools to address these points, but Android provides us with many useful
mechanisms already.

Java threads

We can always use Java threads to do background work. It is good practice to use an
Android provided mechanism, as using, or abusing, Java threads might lead to a complex
and hard-to-maintain code.

For instance, if we want to load an image from the network (using the same example as that
in the official documentation at
http://developer.android.com/guide/components/processes—and-threads. html):

private void loadImage(final ImageView imageView, fimal String url) {
new Thread(new Runnable() {
L) public void run{) {
Bitmap b = loadImageFromMetwork(url);
imageView.setImageBitmap(b);

}).start();

This would perform the downloading and creation of the bitmap in a background thread
but will, actually, not work due to accessing the Ul in a different thread than the UI thread.
To solve this, we can use some additional mechanism provided by Android that makes sure
that some code will be executed on the Ul thread:

Activity.runOnUiThread (Runnable) .
View.post (Runnable) .
View.postDelayed (Runnable, long).

[154]

Remote Data

Modifying our code, now the ImageView class is only modified on the Ul thread and we
kept the downloading on the background thread, therefore not blocking any other thread:

private void loadImage(final ImageView imageView, final String url) {
new Thread(new Runnable() {
of public void run() {
final Bitmap b = loadImageFromNetwork({url);
imageView.post{new Runnable() {
@verride
of public void run{) {
imageView.setImageBitmap(b);
}
HH

}
}.start();
t

To solve this complexity when working on background processes and interacting with the
Ul, Android introduced the AsyncTask class.

AsyncTask

We saw the AsyncTask class in the previous chapter but we will go into more detail in this
chapter.

As we have just mentioned, AsyncTask class is ideal when we have to do some background
processing and interact with the Ul layer with either the results or some intermediate
process.

Implementation is very straightforward. We just have to subclass and implement the right
methods and know when, and in which thread, they will be executed:

e onPreExecute: This is executed on the Ul thread and is called before doing the
background process

e doInBackground: This is invoked in a background thread

e onProgressUpdate: This is executed on the Ul thread and is called after a call
to publishProgress from doInBackground

[155]

Remote Data

e onPostExecute: This is executed on the Ul thread and is called after the
background process finishes

private static class ImagelLoader extends AsyncTask<String, Void, Bitmap> {
private ImageView imageView;

private ImagelLoader(ImageView imageView) {
this.imageView = imageView;

@verride
&l protected void onPreExecute() {
imageView.setImageResource(R.drawable.placeholder);

@lverride
Ll protected Bitmap doInBackground(String... params) {
return loadImageFromNetwork (params[@]);

@lverride
al protected void onPostExecute(Bitmap bitmap) {
imageView.setImageBitmap(bitmap);

Following are the parameters of the AsyncTask class:

e Params: Type of params sent to the doInBackground method
e pProgress: Type of progress units, we will see it further down
e Result: Type of result done by doInBackground

It is also very easy to call, as shown in the following code:

private void loadImage({final ImageView imageView, final String url) {
new ImagelLoader{imageView).execute{url);

The execute call has to be done on the UI thread though.

Implementing onProgressUpdate method is a very useful way to update a progress bar
or, basically, inform the UI about the progress of the background task.

The progressUpdate method has to be called from doInBackground method and update
the progress value from there. For an example, check the official documentation

at http://developer.android.com/reference/android/os/AsyncTask.html.

[156]

Remote Data

The AsyncTasks can be cancelled by just calling the cancel method. If

the AsyncTask class has been cancelled, it will call onCancelled instead

of onPostExecute when doInBackground finishes. What we have to take into
consideration is periodically checking if the task has been cancelled in the doInBackground
method, otherwise it might be doing lot of work for nothing and the background task will
not be felt as though cancelled immediately.

Before HoneyComb, AsyncTask classes will be executed in parallel by default. In
HoneyComb and later, all AsyncTasks will be executed serially unless called with
the executeOnExecutor (THREAD_POOL_EXECUTOR, ...) method instead of
just execute (...):

private void loadImage(final ImageView imageView, final String url) {
new ImagelLoader{imageView).executeOnExecutor{AsyncTask.THREAD_POOL_EXECUTOR, url);

The AsyncTask class does not solve all our issues for free. If it is not implemented correctly,
it can introduce lots of problems as well. For example, if the activity that spawned

the AsyncTask class is destroyed, that does not destroy or stop the AsyncTask. We have to
manually take care of all our AsyncTask classes and cancel them. As we saw previously,
when we cancel an AsyncTask, it is not automatically stopped; it is our job to check
whenever it is cancelled and stop the process.

This can be very easily reproduced if we have not taken care of it by just rotating the device
for example. In addition, we have to be careful in the onPostExecute method of

the AsyncTask; if the original activity that created the AsyncTask is no longer valid,

the ImageView or any Ul element we can reference might be potentially null. Also, as we
are referencing these elements from inside the AsyncTask, they will not be garbage
collected until the AsyncTask finishes, so, again, if we are not careful, we might introduce
unnecessary memory use or even memory leaks.

IntentService

Another way to perform background operations is using an IntentService. As a difference
from AsyncTask, an operation running on an IntentService could not interact directly with
the Ul and could not be interrupted, but it does not have the potential issues the AsyncTask
had. For more information, refer to http://developer.android.com/reference/android/
app/IntentService.html.

[157]

Remote Data

To create an IntentService, first of all, we will have to extend the IntentService class and
implement onHandleIntent method. IntentService subclasses the Service class but
provides the onHandleIntent method thatis executed on a different thread than the main
thread:

public class DownloadService extends IntentService {
public DownloadService() {
super("DownloadService");
}
@verride
ol protected veid onHandleIntent(Intent intent) {

b

Once this is done, we need to declare our service into our Manifest file:

E AndroidManifest.uml x

<7xml version="1.0" encoding="utf-8"7>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.packt.rrafols.example">

<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission android:name="android.permission.READ_CONTACTS"/>

<application
android:allowBackup="true"
a android:icon="@mipmap/ic_launcher™
android:label="Example"
android: supportsRtl="true"
android:theme="@style/AppTheme">
<activity android:name=".MainAdapterActivity">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity=

<service
android:name=".DownloadService"
android:exported="false"/>

</application>

</manifest>

[158]

Remote Data

Now that we have created an IntentService, which, in fact, will be used to connect to the
Internet, we need to be able to pass parameters to it and get the output back.

IntentServices are invoked by calling the startService method with an Intent. Passing
parameters is simple, for example, if we modify the 1oadImage method from our previous
section to call the newly created IntentService rather than the AsyncTask, we could specify
the URL in the setData method of the Intent:

private void loadImage(final ImageView imageView, final String url) {
Intent intent = new Intent(this, DownloadService.class);
intent.setData(Uri.parse(url)};
startService(intent);

On the IntentService itself, we can retrieve the URL by reading the data string from the
intent we get as parameter in the onHandleIntent method:

@0verride
@] protected void onHandleIntent{Intent intent) {
String url = intent.getDataString(});
}

More information on how to create a background service can be found at the official
documentation page: http://developer.android.com/training/run-background-servi

ce/create-service.html.

[159]

Remote Data

We can receive the output data from the IntentService through multiple ways. Maybe the
simplest is to create our own ResultReceiver and pass it to the IntentService as a
Parcelable. Another way is using a BroadcastReceiver and broadcasting an Intent
with the result. We will not cover this in this book, but an example can be found at the
official documentation page (http://developer.android.com/training/run-background
-service/report-status.html).

C DownloadService.java

package com.packt.rrafols.example;

import ...

[+ public class DownloadService extends IntentService {
public static final String DOWNLOAD_PAYLOAD = "DownloadService.DOWNLOAD_PAYLOAD";
public static final String DOWNLOAD_URL = "DownloadService.DOWNLOAD_URL";
public static final String PARAM_RECEIVER = “DownloadService.RECEIVER";

public static final int DOWNLOAD_SUCCESS = 8;
public static final int DOWNLOAD_FAIL = 1;

public DownloadService() { super{"DownloadService"); }

@verride
of protected void onHandleIntent{Intent intent) {
String url = intent.getDataString();
ResultReceiver receiver = intent.getParcelableExtra(PARAM_RECEIVER);

byte[] data = loadDataFromUril{url};

Bundle bundle = new Bundle();
bundle.putString(DOWNLOAD_URL, url);

if(data != null) {
bundle.putByteArray(DOWNLOAD_PAYLOAD, data);
receiver.send(DOWNLOAD_SUCCESS, bundle);

} else {
receiver.send (DOWNLOAD_FAIL, bundle);

}

To avoid going into many details about HTTP connections right now, this implementation
is rather simple. We receive an instance of a DownloadReceiver, our own implementation
of ResultReceiver, in the intent extended data together with the URL. For more
information on ResultReceiver, refer to http://developer.android.com/reference/an

droid/os/ResultReceiver.html.

[160]

Remote Data

After downloading the data from the URL, we create a new Bundle class where we put the
URL back to simplify tracking, which was the origin of the request, and if we get a positive
response from the server, we put the payload as a byte array and deliver the result to the
receiver asynchronously by calling the send function. As a resultCode, we

used DOWNLOAD_SUCCESS to identify whether we were able to connect to the server. If we
can not connect to the server, we do not put the payload but deliver a DOWNLOAD_FAIL
message back to the receiver. In a real implementation, we would take care, for example, of
the HTTP response code, and the DownloadService would have a specific logic depending
on the response code value.

To create our own ResultReceiver, we have to create a class, extend from it, and
implement the onReceiveResult method. In the following example, we created two
empty methods that will be called accordingly to the resultCode we receive:

success (String url, byte[] data)
failure (String url)

As they are empty, we would have to subclass DownloadReceiver and implement these
methods if we are interested in those callbacks:

C DownloadReceiver java x

package com.packt.rrafols.example;

import android.annotation.SuppressLint;
import android.os.Bundle;

import android.os.Handler;

import android.support.vd.os.ResultReceiver;

@suppressLint("ParcelCreator™)
8| public class DownloadReceiver extends ResultReceiver {
public DownloadReceiver{Handler handler) {
super{handler);

}
@verride
&l protected void onReceiveResult{int resultCode, Bundle resultData) {
byte[] data = resultData.getByteArray(DownloadService.DOWNLOAD_PAYLOAD);
String url = resultData.getString(DownloadService.DOWNLOAD_URL);
if{resultCode == DownloadService.DOWNLOAD SUCCESS) {
success{url, data);
} else {
failure(url);
H
}
8] public void success(String url, byte[]l data) {}
8] public void failure(String url) {}

[161]

Remote Data

Another way we could implement the DownloadReceiver is to declare an internal
interface and a method to set an interface implementation:

C DownloadReceiver java x

package com.packt.rrafols.example;

import android.annotation.SuppressLint;
import android.os.Bundle;

import android.os.Handler;

import android.support.vd4.os.ResultReceiver;

@suppressLint("ParcelCreator")
8] public class DownloadReceiver extends ResultReceiver {
private Receiver receiver;
public DownloadReceiver(Handler handler) { super{handler); }

public interface Receiver {

void onReceivedResult(int resultCode, Bundle resultData);

public void setReceiver(Receiver receiver) {
this.receiver = receiver;

}
@lverride
&l protected void onReceiveResult({int resultCode, Bundle resultData) {
if({receiver '= null) receiver.onReceivedResult(resultCode, resultData);
+

In case of having a valid instance of that implementation, we will just forward the
onReceivedResult call to that receiver.

In our example, we will use the first implementation of DownloadReceiver and extend the
success and failure methods to implement our own logic:

private void loadImage(final ImageView imageView, final String url) {
Intent intent = new Intent(this, DownloadService.class);
intent.setData(Uri.parse(url)};
intent.putExtra{DownloadService.PARAM_RECEIVER, imageReceiver);
startService(intent);

private DownloadReceiver imageReceiver = new DownloadReceiver(new Handler()) {
@verride

& public void success(String url, byte[] data) {
}
@verride
&l public void failure(String url) {
}
i

[162]

Remote Data

We are currently not using the imageVieuw, as, even if we could not do it, we do not want to
pass the ImageView as a parameter to the DownloadService. A possible implementation
would be the following; use a HashMap to map each URL to its associated Imageview:

private void loadImage(final ImageView imageView, finmal String url) {
imageViewByUrl.put{url, imageView);
Intent intent = new Intent(this, DownloadService.class);
intent.setData(Uri.parse(url));
intent.putExtra(DownloadService.PARAM_RECEIVER, imageReceiver);
startService(intent);

private DownloadReceiver imageReceiver = new DownloadReceiver({new Handler(}) {
@iverride
al public void success(String url, byte[l data) {

ImageView iv = imageViewByUrl.get{url);

if(iv != null) {
Bitmap bm = BitmapFactory.decodeByteArray(data, @, data.length);
if(bm != null) iv.setImageBitmap(bm);
imageViewByUrl. remove(url);

1

@verride
&l public veid failure(String url) {
imageViewByUrl. remove{url);

Toast.makeText{MainAdapterActivity.this, "Error loading image: ™ + url,
Toast.LENGTH_SHORT) .show();

We have to make sure to clean up our HashMap after we load, or fail to load, an image and
also to clean it up whenever we do not need it anymore, for example, when our activity is
destroyed:

@verride
&l protected void onDestroy() {
imageViewByUrl.clear();

super.onDestroy();

[163]

Remote Data

The preceding code works fine, but there is an issue: when we create the
DownloadReceiver, we pass a new handler as a parameter. This new handler will be
created in the looper of the current thread, so whenever we send a message,

the onReceiveResult will be executed in the same thread as it was created, but as a posted
message. Looper runs a message loop in a specific thread. For more information on looper,
visit https://developer.android.com/reference/android/os/Looper.html.

As a consequence, if we do it this way, we are decoding the Bitmap on the main thread and
potentially blocking any other process. To solve this, we pass a null handler to

the ResultReceiver, which will execute the onReceiveResult on an arbitrary thread,
and we make sure we modify the ImageView only on the Ul thread:

private DownloadReceiver imageReceiver = new DownloadReceiver{null) {
@override
al public void success(String url, byte[l data) {
final ImageView iv = imageViewByUrl.get{url);
if{iv = null) {
final Bitmap bm = BitmapFactory.decodeByteArray(data, @, data.length);
if(bm != null) {
iv.post{new Runnable(}) {
@lverride
®f public void run() {
iv.setImageBitmap(bm);

i

}
imageViewByUrl. remove(url);

Network code

Now that we have seen how to do some background processing and decode the data by
ourselves, we will see how to implement the networking code. We will start by showing the
standard classes and libraries Android provides us, and later we will cover widely used
third-party networking libraries.

[164]

Remote Data

Android standard libraries

As we have just mentioned earlier, there are a lot of third party libraries that will make our
lives easier, but it is important to know the basics. Android provides a set of standard
classes and libraries which are not really used anymore by application developers unless
there is something very specific of low-level access is required. Anyway, we will briefly
show a possible implementation of an HTTP downloader and then will switch to higher
level-party libraries.

In the previous example, we did not show the implementation of the 1oadDataFromURL
method, as we will cover it here in this section:

@ullable

private byte[] loadDataFromUrl{@ionhull String urlString) {
HttpURLConnection conn = null;
BufferedInputStream is = null;
try {

URL url = new URL{urlString);
conn = {(HttpURLConnection) url.openConnection();

is = new BufferedInputStream(conn.getInputStream());
return readStream{is);
} catch (IOException e) {
Log.w(TAG, "Exception connecting to " + urlString, e);
} finally {
if{conn != null) conn.disconnect();

return null;

}

private byte[] readStream{InputStream is) throws IOException {
ByteArrayOutputStream baos = new ByteArrayOutputStream();
byte[] buffer = new byte[BUFFER_SIZE];
int count;

while((count = is.read(buffer)) != -1} {
baos.write(buffer, @, count);
}

return baos.toByteArray();

What we are doing in this implementation is to create an Ht t pURLConnection from

the URL and read all the data from the InputStream of the connection as long as we have
more information coming from it or as long as does not return -1. The loadbataFromUrl
method is very similar to the method explained in the example in the official
documentation at http://developer.android.com/reference/java/net /HttpURLConnec
tion.html. However, here we are also provided with an implementation of

the readStream method. A stream can be read in multiple ways, but we have chosen to
read it by small blocks rather than byte per byte as this performs a lot better.

[165]

Remote Data

Volley

Volley is an HTTP library to make networking faster and easier for Android applications. It
is included as a framework in the Android Open Source
Prokﬁﬁ:https://android.googlesource.com/platform/frameworks/volley.

To include volley in your project, you can clone it from the original repository by using the
following command:

git clone https://android.googlesource.com/platform/frameworks/volley

You can also add it as a subproject in Android Studio or by just adding a dependency to our
build.gradle file:

compile 'com.android.volley:volley:1.0.0'

As documented at the official documentation page,
http://developer.android.com/training/volley/index.html, what Volley does better is
to perform calls to web services that return structured data and comes with support for raw
strings, images, and JSON.

Let's adapt our previous source code to request the images using Volley instead of our own
implementations:

First of all, we have to initialize a RequestQueue. We could do this following the example
in the documentation at
http://developer.android.com/training/volley/requestqueue.html:

Cache cache = new DiskBasedCache(getCacheDir(), 1024 + 1824);
Network network = new BasicNetwork(new HurlStack()});
requestQueue = new RequestQueue(cache, network);
requestQueue.start();

Or by simply using the following code:

requestQueue = Volley.newRequestQueue (this);

[166]

Remote Data

Initializing the queue this way, it will be already started and contain a default
DiskBasedCache and Network object, like the ones we have created ourselves previously.

Once we have done this, we can replace the 1oadImage method by the following code,
removing the background service, the intent, and ResultReceiver:

private void loadImage(final ImageView imageView, finmal String url) {
ImageRequest request = new ImageRequest(url,
new Response.Listener<Bitmap=() {
@lverride
of public wvoid onResponse(Bitmap response) {
imageView.setImageBitmap(response);

}
}. @, 0, ImageView.ScaleType.FIT_CENTER, null,
new Response.ErrorListener() {
@verride
ol public void onErrorResponse{VolleyError error) {
imageView.setImageResource(R.drawable.placeholder);

IaH

requestQueue.add({ request);

This new implementation is very simple and quite easy to understand. Volley has a specific
type of request for images, and we can even specify the maximum width and height and the
scaling type we want for the images. What we have to implement ourselves is two
callbacks: firslty Response.Listener<Bitmap>, when we get a valid response from the
server and we got the decoded Bitmap as a parameter; and

secondly Response.ErrorListener, when we find any issue while connecting to the
server.

In a case where we would like to have multiple connections from different parts of the app,
Volley suggests creating a singleton and use that single instance to hold a single request
queue. We could also take advantage of the ImageLoader and NetworkImageView to
efficiently load and show images in a list for example. For more information and examples,
refer to http://developer.android.com/training/volley/request .html.

[167]

Remote Data

If we want to connect to a REST service returning a JSON response, we could use a similar
approach; for example, let's try to connect to Yahoo financial API and check for Yahoo,
Google, and Apple symbols:

http://finance.yahoo.com/webservice/v1l/symbols/YHOO, GOOG, AAPL/quote?format=j
son

String url = "http://finance.yahoo.com/webservice/v1/symbols/YHOO,GOOG, AAPL/quote? format=json";
JsonObjectRequest request = new JsonObjectRequest(url, null,
new Response.Listener<]SONObject>() {

@iverride
of public void onResponse(JSOMObject response) {
Log.i(TAG, response.toString());
}
i
new Response.ErrorListener() {
@lverride
ol public void onErrorResponse{VolleyError error) {
Toast.makeText{MainAdapterActivity.this, “Error processing json: " +
error.getMessage(), Toast.LENGTH_SHORT).show();
}
HaH

reguestQueue. add(request);

As we can see, the code structure is very similar to the previous one. When creating the
JsonObjectRequest, we can also send a JSONObJject to the server. In case

the JSONObject is present and not null, Volley will use the HTTP POST method instead of
GET.

In a case where you would like to write more complex or custom requests, you could do so
by following the guidelines in the documentation at
http://developer.android.com/training/volley/request—custom.html.

There is also a nice presentation on YouTube about Volley done at the Google Developers
conference Google 1/O 2013; for more information, refer to https://www.youtube.com/wat
ch?v=yhv819F44qgo.

In the documentation, we can find a complete implementation of a GsonRequest .Gsonis a
Java serialization/deserialization library that we will cover in more detail in the next section,
and basically it converts JSON to and from Java objects automatically. It uses reflection, so
there will be a small performance impact but this will be insignificant compared to the time
it takes to do any network operation. For more information on Gson, refer

to https://github.com/google/gson

[168]

Remote Data

In this implementation of a custom request, we can also see how to provide request headers,
to manually set the HTTP request method, for example, and to put the response headers on
the Response object:

public class GsonRequest<T=> extends Request<T> {
private final Gson gson = new Gson();
private final Class<T> clazz;
private final Map<String, String= headers;
private final Listener<T> listener;

Make a GET request and return a parsed object from JSON.

@param clazz Relevant class object, for Gson's reflection
@param headers Map of request headers
#*/
public GsonRequest(String url, Class<T> clazz, Map<String, String= headers,
Listener<T= listener, ErrorListener errorListener) {
super(Method.GET, url, errorListener);
this.clazz = clazz;
this.headers = headers;
this.listener = listener;

*
*
* @param url URL of the request to make
*
*

}

@verride

public Map<String, String> getHeaders() throws AuthFailureError {
return headers != null 7 headers : super.getHeaders();

H

@0verride

protected void deliverResponse(T response) {
listener.onResponse(response);
)

@verride
protected Response<T= parseNetworkResponse(NetworkResponse response) {
try {
String json = new String(
response.data,
HttpHeaderParser.parseCharset(response.headers));
return Response.success(
gson. fromJson(json, clazz),
HttpHeaderParser.parseCacheHeaders(response));
} catch (UnsupportedEncodingException e) {
return Response.error(new ParseError{e));
} catch (JsonSyntaxException e) {
return Response.error(new ParseError{e));

}

[169]1]

Remote Data

Gson

Reusing the same API from Yahoo as previously and carefully checking its contents, we can
recreate the same structure as Java objects:

{
"list":{

"meta":{
"type":"resource-list",
"start":0,

"count":3

}!

"resources": [
{

"resource": {

"classname":"Quote",

"fields":{
"name":"Yahoo! Inc.",
"price":"36.320000",
"symbol™":"YHOO",
"ts":"1459281600",
"type":"equity",
"utctime":"2016-03-29T20:00:00+0000",
"volume" :"23598690"

"resource": {

"classname":"Quote",

"fields":{
"name" :"Alphabet Inc.",
"price":"744.770020",
"symbol":"GOOG",
"ts":"1459281600",
"type":"equity",
"utctime":"2016-03-29T20:00:00+0000",
"volume":"1902687"

"resource": {
"classname":"Quote",
"fields":{

"name" :"Apple Inc.",
"price":"107.680000",
"symbol":"AAPL",

[170]

Remote Data

"ts":"1459281601",

lltype" . "equityll ,
"utctime":"2016-03-29T20:00:01+0000",
"volume":"31165525"

}

We have to create Java objects where the instance variable name matches the field name in
the JSON data, and, in addition, we have to mimic, for example, the same kind of structures,
subclasses, or arrays.

First of all, the whole model is wrapped into a list object, so we need to create a class
representing this list object:

C) Modeljava =

package com.packt.rrafols.example.model;

public class Model {
public List list;

public List getList{} { return list; }
public void setList{List list) { this.list = list; }

The list object contains a meta object and a list of resource objects. The meta object is like the
previous example, and we can easily represent the list of resource objects by creating an
array:

C Listjava =

package com.packt.rrafols.example.model;

public class List {
private Meta meta;
private ResourceWrapper[] resources;

public Meta getMeta() { return meta; }

public veid setMeta(Meta meta) { this.meta = meta; }

public Resourcewrapper[] getResources({) { return resources; }

public void setResources({ResourceWrapper[] resources) { this.resources = resources; }

[171]

Remote Data

The meta object will already have some primitives and not only objects. If we look carefully
at the JSON file, we could appreciate that the start and count properties are just plain
numbers instead of a string;:

€ Metajava x

package com.packt.rrafols.example.model;

public class Meta {
private String type;
private int start;
private int count;

public String getType() { return type; }
public void setType{String type) { this.type = type; }

public int art{}) { return start; }
public veoid tart(int start) { this.start = start; }
public int t{) { return count; }

public void setCount(int count) { this.count = count; }

One small detail that we have to pay attention to is that objects inside the list are wrapped
in the JSON file with a resource object. To properly serialize those objects, we have to create
a ResourceWrapper class and then the actual Resource object:

£ ResourceWrapper.java x

package com.packt.rrafols.example.model;
public class ResourceWrapper {
private Resource resource;

public Resource
public veid set

source{) { return resource; }
‘ce{Resource resource) { this.resource = resource; }

¥

This Resource object will have a c1assname property, stored as a String data type, and a
list of Fields:

C) Resourcejava x
package com.packt.rrafols.example.model;
public class Resource {

private String classname;
private Fields fields;

ssname() { return classname; }

me(String classname) { this.classname = classname; }
{) { return fields; }

Fields fields) { this.fields = fields; }

public
public
public Fields
public void se

se

[172]

Remote Data

Fields will contain almost all the data, and as we can see in the following class
implementation, there is a property mapping each JSON field:

C Fields java x

package com.packt.rrafols.example.model;

public class Fields {
private String name;
private String price;
private String symbol;
private String ts;
private String type;
private String utctime;
private String volume;

public String getMame() { return name; }

public void setName(String name) { this.name = name; }

public String getPrice() { return price; }

public void = e(String price) { this.price = price; }
public String mbol{) { return symbol; }

public veid = ol{String symbol) { this.symbol = symbol; }
public String () { return ts; }

public veid = {String ts) { this.ts = ts; }

public String Type() { return type; }

public veoid sct (5tring type) { this.type = type; }

public String ime{) { return utctime; }

public void = e{String utctime} { this.utctime = utctime; }
public String me{) { return volume; }

public void = ume(String volume) { this.volume = volume; }

Usually, in real-life applications or integration with complex data models, it is
recommended to automate this step, as writing all the serialization classes and code can be
tedious and quite error-prone.

Once we have created all the infrastructure or model classes, we can create the request with
it:

String url = "http://finance.yahoo.com/webservice/v1/symbols/YHOO, GOOG, AAPL/quote? format=json";
GsonRequest<Model> request = new GsonRequest<>(url, Model.class, null,
new Response.Listener<Model=(} {
@verride
L} public void onResponse(Model response) {
Log.i(TAG, response.toString());

+

new Response.ErrorListener() {
@iverride

of public wvoid onErrorResponse{VolleyError error) {
Toast.makeText(MainAdapterActivity.this, “Error processing json: ™ +
error.getMessage(), Toast.LENGTH_SHORT).show();

H

s

requestQueue.add({ request);

[173]

Remote Data

After the call, the Model response object will be filled with all the JSON data and we will
not have to worry about parsing the data.Gson takes care to serialize and unserialize Java
objects to JSON and back. This is rather convenient, but depending on the API complexity,
it is a laborious process and needs to be done very meticulously as any single mistake will
leave us with some null fields that can be hard to debug where the bug or issue comes from.

Retrofit

Retrofit is an HTTP client for Java developed by Square. It is defined as a “Retrofit turns
your HTTP APl into a Java interface” at the official website (http://square.github.io/re
trofit/).

Source code can be found in its Github repository (https://github.com/square/retrofi

t).

To include it in our Android application, we would only have to add a dependency line in
our build.gradle file: compile 'com.squareup.retrofit2:retrofit:2.0.0"' and
compile 'com.squareup.retrofit2:converter—gson:2.0.0-beta3' if we want to
continue using Gson for serializing and deserializing JSON to and from Java objects. This
library is still in beta at the time of writing this book.

Let's implement the same example of the Yahoo finances API but using Retrofit instead
of Volley. We can use the same model classes as used previously as we will be using a Gson
converter.

First of all, we will write a service interface with all the web service calls, and we will use
the annotation extensions from Retrofit to map a specific interface call to a web service
request.

At this point, we have to indicate only the relative path to the web service we want to map,
as we will define the server URL in another part of our code when initializing the Retrofit
classes. This will come in quite handy if we want to connect to our staging or testing server
instead of production as we will not have to change anything in the web service interface:

[174]

Remote Data

import
import
import
import

public

1) YahooFinanceService java x

package com.packt.rrafols.example;
com. packt.rrafols.example.model.Model;

retrofit2.Call;
retrofit2.http.GET;
retrofit2.http.Path;

interface YahooFinanceService {
@GET("webservice/vl/symbols/{symbols}/quote? format=json™)
Call<Model> getQuote(@Path{"symbols") String symbols);

In the preceding code, we created a method, and with the @Get annotation, we specified
the URL where it will perform the request. Also note that we can add dynamic parameters
or dynamic parts of the URL by wrapping a variable with {} and then using the @path
annotation with our parameter to replace the variable with the content of the parameter. In

this case, the symbols we want to request will be given by the parameter.

Now that we have the service interface created, we can write the code to initialize Retrofit

and actually perform the request:

@]

Retrofit retrofit = new Retrofit.Builder()

.baseUrl{"http://finance.yahoo.com/")
.addConverterFactory(GsonConverterFactory.create())
Jbuild();

YahooFinanceService symbols = retrofit.create(YahooFinanceService.class);

Call<Model> symbolsCall = symbols.getQuote{™YHOO,GOOG, AAPL");
symbolsCall.enqueue(new Callback<Model=(} {

@lverride
public veid onResponse(Call<Model> call, retrofit2.Response<Model> response) {
if(response.isSuccessful()) {

Model model = response.body();

} else {
Toast.makeText(MainAdapterActivity.this, "Request not successful: " +
response.message(), Toast.LENGTH_SHORT).show();

I

@lverride
public void onFailure(Call<Model> call, Throwable t) {
Toast.makeText(MainAdapterActivity.this, "Error processing request: " +
t.getMessage(), Toast.LENGTH_SHORT).show();

[175]

Remote Data

From Retrofit 2.0.0 onwards, we would have to tell Retrofit to use a
GsonConverterFactory if we want to use Gson as it is not the default converter. In
previous versions, Gson was the default converter.

Retrofit allows us to create synchronous or asynchronous requests. We will not cover
synchronous requests, but information can be always found in the official documentation.
To create an asynchronous call, we have to queue a new callback to the call object wrapper
we got from the service interface. Callback is really simple and straightforward to
implement. Whenever we get a response from the server, the onResponse method will be
called, or if there has been any issue while connecting to the server, the onFailure method
is called. If we get an error due to the HTTP response code, we will get a response, but it
will not be a successful response. We will either check response.isSuccessful to see if
has been successful or the HTTP response code.

Retrofit also allows us, like other HTTP clients, to modify the HTTP headers statically or
send data as form encoded or even multipart. We mentioned that from Retrofit 2.0.0, it is by
default not using a GsonConverter, but we can very easily change that. If our server is using
another protocol, Retrofit comes with support for six different protocols, for example, XML,
wire, or protobuf.

Wire and protobuf are optimized binary protocols. For more information, check their
documentations at https://github.com/square/wire
and https://developers.google.com/protocol-buffers/, respectively.

In order to modify the headers dynamically, we would have to create an OkHttp
interceptor. OkHt tp is an HTTP and HTTP/2 client for Android also built by Square, and
Retrofit uses it by default to perform HTTP connections. Interceptors are the way OkHttp
provides to observe requests and potentially modify them. Typically, they are used to
change headers on either the request or response.

OkHttp can be used as an independent library as well by just adding the following
dependency to our build.gradle file:

compile 'com.squareup.okhttp3:okhttp:3.2.0'

For more information on how to use it, check the official page and documentation at
http://square.github.io/okhttp/. Source code is available in its Github repository at
https://github.com/square/okhttp.

[176]

Remote Data

OkHttp

An HTTP & HTTP/2 client for Android and Java applications

Overview

HTTP is the way modern applications network. It's how we exchange data & media. Doing HTTP efficiently makes your stuff load
faster and saves bandwidth.

OkHttp is an HTTP client that's efficient by default:

» HTTP/2 support allows all requests to the same host to share a socket.
« Connection pooling reduces request latency (if HTTP/2 isn't available).
« Transparent GZIP shrinks download sizes.

» Response caching avoids the network completely for repeat requests.

OkHttp perseveres when the network is troublesome: it will silently recover from common connection problems. If your service has
multiple IP addresses OkHttp will attempt alternate addresses if the first connect fails. This is necessary for IPv4+IPv6 and for
services hosted in redundant data centers. OkHttp initiates new connections with modern TLS features (SNI, ALPN), and falls back
to TLS 1.0 if the handshake fails.

Using OkHttp is easy. Its request/response API is designed with fluent builders and immutability. It supports both synchronous
blocking calls and async calls with callbacks.

OkHttp supports Android 2.3 and above. For Java, the minimum requirement is 1.7.

Real case scenario

One real case scenario of applying OkHttp, Retrofit, and Gson is the application we
developed during the AngelHack Barcelona 2015 hackathon. After winning the local
hackathon, we converted the idea into a product. To develop the prototype and the current
version, we used all those libraries. In the very first version, though, connection to the
server was handled by an IntentService, and all networking was done using the native
Android classes, but as we can imagine, it is a lot better to switch to widely used and tested
libraries.

In the following, you can see some parts of the code, how the API calls are mapped, how
requests and responses are built, and some specificities, as some of the parameter names
changed in our REST server and we had to use the annotations of Gson to use a different
instance variable name than the property name returned in the JSON data.

[177]

Remote Data

The following source code is just for illustration purposes and does not contain the whole
example.

The InGroupService class defines all the web service end points and which type of
request we need and which type of response we will get back from the server. There will be
some differences in comparison to our previous example, as we used Retrofit 1.9.0:

I InGroupServicejava *

package com.blinkingdash.ingroup.network;
+import ..

public interface InGroupService {
String API_VERSION = "vl1";

@POST("/" + API_VERSION + “/user/auth")
void userAuth(@Body UserAuthRequest request,
Callback<UserAuthResponse> authResponse);

@POST("/" + API_VERSION + "/question/list")
void getQuestionList({@Body QuestionListReguest request,
Callback<QuestionListResponse> eventResponse);

@POST{"/" + API_VERSION + "/question/choose”)
void questionChoose(@Body QuestionChooseReguest reguest,
Callback=QuestionChooseResponse> eventResponse);

@POST("/™ + API_VERSION + "/question/skip")
void questionSkip{@Body QuestionSkipRequest request,
Callback<QuestionSkipResponse> eventResponse);

@POST{(" /" + API_VERSION + "/question/create")
void questionCreate(@Body QuestionCreateRequest reguest,
Callback<QuestionCreateResponse> eventResponse);

@POST("/" + API_VERSION + “/user/feedback™)
void userFeedback(@Body UserFeedbackRequest reguest,
Callback<UserFeedbackResponse> eventResponse);

@POST{("/" + API_VERSION + “/user/matches")
void userMatches(@Body UserMatchesRequest reguest,
Callback<UserMatchesResponse> eventResponse);

@POST("/" + API_VERSION + “/user/myprofile")
void getUserProfile{@Body UserProfileGetRequest request,
Callback<UserProfileGetResponse> eventResponse);

@POST("/" + API_VERSION + "/user/profile”)
void getMatchProfile(@Body MatchProfileGetRequest request,
Callback<MatchProfileGetResponse> eventResponse);

@POST{"/" + API_VERSION + "/user/guestions")
void getUserQuestions(@Body UserQuestionListRequest reguest,
Callback=UserQuestionListResponse> eventResponse);

@PUT("/" + API_VERSION + "/user/myprofile")
void getUserProfile{@Body UserProfileSetRequest request,
Callback=<UserProfileSetResponse> eventResponse);

@POST{("/" + API_VERSION + “/question/log")
void getQuestionLog(@Body QuestionLogRequest request,
Callback<QuestionLogResponse> eventResponse);

[178]

Remote Data

In the following, we can find how to build a request and wrap the response and how simple
a response class object looks, thanks to Gson.

The way we created server requests was very simple — we need a request object with the
data to be serialized and a response object wrapped into a callback. To keep things simple,
we checked for the server response code, and we assumed that it was an error if the
response status code was higher than or equal to 400:

I InGroupService java =

package com.blinkingdash.ingroup.network;
import ..

public interface InGroupService {
String API_VERSION = "wv1";

@POST("/" + API_VERSION + "/user/auth")
void userAuth(@Body UserAuthRequest request,
Callback=UserAuthResponse> authResponse);

@POST("/" + API_VERSION + "/question/list")
void getQuestionList{@Body QuestionListRequest request,
Callback<QuestionListResponse> eventResponse);

@POST("/" + API_VERSION + "/question/choose")
void questionChoose(@Body QuestionChooseRequest reguest,
Callback<QuestionChooseResponse> eventResponse);

@POST("/" + API_VERSION + "/question/skip")
void questionSkip{@Body QuestionSkipRequest request,
Callback<QuestionSkipResponse> eventResponse);

@POST("/" + API_VERSION + "/guestion/create")
void questionCreate(@Body QuestionCreateRequest request,
Callback<QuestionCreateResponse> eventResponse);

@POST("/" + API_VERSION + "/user/feedback")
void userFeedback(@Body UserFeedbackRequest reguest,
Callback<UserFeedbackResponse> eventResponse);

@POST("/"™ + API_VERSION + "/user/matches"”)
void userMatches(@Body UserMatchesRequest reguest,
Callback<UserMatchesResponse> eventResponse);

@POST("/" + API_VERSION + "/user/myprofile”)
void getUserProfile(@Eody UserProfileGetRequest request,
Callback<UserProfileGetResponse> eventResponse);

@POST("/" + API_VERSION + "/user/profile")
void getMatchProfile(@Body MatchProfileGetRequest request,
Callback<MatchProfileGetResponse> eventResponse);

@POST("/™" + API_VERSION + "/user/questions™)
void getUserQuestions{@Body UserQuestionListRequest request,
Callback<UserQuestionListResponse> eventResponse);

@PUT("/" + API_VERSION + "/user/myprofile”)
void getUserProfile(@Body UserProfileSetRequest request,
Callback<UserProfileSetResponse> eventResponse);

@POST("/" + API_VERSION + "/question/log")
void getQuestionLog(@Body QuestionLogRequest request,
Callback<QuestionLogResponse> eventResponse);

[179]

Remote Data

We kept the response callback very simple by just having two methods, onSuccess and
onError. In the case that the request was successful, the onSuccess method was called
with the unserialized response as parameter:

I InCGroupAPIResponse.java ®
package com.blinkingdash.ingroup.network;
® public interface InGroupAPIResponse<T= {

L! void onSuccess(T t);
Ll void onError{int status, String reason);

The response object is very simple; we had to change the name of the serialized field by
using the serializedName annotation, but without worrying about the complexity of the
protocol and parsing the output we got ourselves a server response unserialized into a List
of Question objects:

C QuestionListResponsejava
package com.blinkingdash.ingroup.responses;
import ...
public class QuestionListResponse extends GenericResponse {
@serializedMame("qguestion")

private List<Question> questionList;

public List<Question> getQuestions(} { return questionList; }

@lverride
al public String toString() {
return "result: " + result + " code: " + code + " message " + message +
" list size: " + ((questionList != null) ? questionList.size() : @);

[180]

Remote Data

The following is example of a request that is pretty simple as well, but has a bit more logic
than the response, as all the parameters are set by using a Builder pattern (Visit https://en
.wikipedia.org/wiki/Builder_pattern for more information on Builder pattern) to
simplify our code:

C QuestionListRequestjava =

package com.blinkingdash.ingroup.reguests;

public class QuestionListRequest extends GenericRequest {
private String vstoken;
private double lat;
private double lon;
private double alt;
private int radius;
private int limit;

public static class Builder {
private QuestionListRequest request;
public Builder() { request = new QuestionListRequest(}; }
public Builder setVSToken{String vsToken) {...}
public Builder setLat({double lat) {...}
public Builder setLon{double lon) {...}
public Builder setAlt({double alt) {...}
public Builder setRadius(int radius) {...}
public Builder setLimit(imt limit) {...}
public QuestionListRequest build() { return reguest; }

A

¥

private QuestionListRequest(} {}

public String getVWstoken{) { return vstoken; }

public double getlLat(}) { return lat; }

public double getlLon(} { return lon; }

public double getAlt() { return alt; }

public int getRadius() { return radius; }

public int getLimit{) { return limit; }

public void setVstoken{String vstoken) { this.vstoken = vstoken; }
public void setlLat(double lat) { this.lat = lat; }

public void setLon({double lon) { this.lon = lon; }

public void setRadius({int radius) { this.radius = radius; }
public void setLimit(int limit) { this.limit = limit; }

-

For more information, refer to http://angelhack.com/215/1/22/meet-the-215-global-d
emo-day-finalists-the-22-startups/.

[181]

Remote Data

Summary

In this chapter, you saw how to perform network connections. You started with
permissions, both normal and dangerous, and covered how to do background processing
and how to avoid doing heavy work on the main thread. We finished by explaining how to
integrate widely used high-level networking libraries that will simplify our work and
reduce the time to market of our application. We briefly looked at real case scenario of how
these libraries can help us to quickly prototype and then build and improve on top of that.

[182]

Image Management

Nowadays, it is very hard to imagine an application without any kind of images. Images,
and media in general, have become an essential part of our applications if we want to show
appealing information. At the same time, images use a lot of resources, memory, and time
to load, and so on. So, this is a relevant detail we have to take care when developing our
application. Managing images in an inefficient way will prevent our application from
running smoothly, and if we do not address memory constraints properly, our application
will most probably crash. This is even more significant if we load user-generated images or
images that come from sources out of our control. In addition, we always have to keep in
mind that not everyone has the latest, most expensive Android smartphone on the market,
and each smartphone will have different memory constraints.

To work these issues out, we will cover in this chapter how to cache images, both to local
memory and to a local file; handle large images; and manage images efficiently, for
example, when used in a large list or a RecyclerView. We will finish the chapter by
introducing some widely used libraries for loading and managing images that will,
definitely, help us when developing our application.

Caching remote data

We have seen previously how to load images and display them in our application. But what
happens when we have to load a huge amount of images? Let's imagine a List or a
RecyclerView and the end user scrolling back and forth. As RecyclerView is recycling the
views and replacing the bitmap with another, we would have to download the same
images from the Internet again and again. This is not only inefficient and slow, but it also
drains the data plan and the user's battery. We can easily implement a cache to store the
images so that we do not have to download them again and again. Let's see how we can do
it.

Image Management

Memory caches

The fastest way of accessing images is to store them in memory. We need to be careful as
memory is a limited resource, and even more careful if we make assumptions, as every
device has different amount of free memory. We will create a memory cache based on the
amount of free memory and only use a small portion, leaving lots of memory for the app
itself as well.

Since Honeycomb, and also part of the Android support library, there is a class that comes
in really handy, the LruCache class. Visit http://developer.android.com/reference/an
droid/util/LruCache.html for more information on the LruCache class.

For more information on the Android support library, refer to http://dev

eloper.android.com/tools/support-library/index.html.

The LruCache class is basically a cache that stores a limited number of entries. LRU stands
for Least Recently Used. The maximum number of entries is specified at the time of
creation, and the cache mechanism works by removing the elements at the end of a queue
whenever the size of the cache will grow beyond its maximum size. Every time an element
is accessed, it is moved to the top of the queue. With this mechanism, the elements that will
be removed will be the least used elements. The LruCache class is currently backed by

a LinkedHashMap class, flagged to iterate elements in the order they were accessed.

For more details on the LinkedHashMap class, refer to
http://developer.android.com/reference/java/util/LinkedHashMap
.html.

In our case, we are more interested in the memory size of the images rather than number of
images, but, as the documentation clearly shows, we can easily override the size0f
method and return, for example, the amount of memory an image takes in memory:

int cacheSize = 4 * 1024 % 1024;
LruCache<5tring, Bitmap=> bitmapCache = new LruCache<String, Bitmap>{cacheSize) {
@iverride
&l protected int sizeOf(String key, Bitmap wvalue) {
return value.getByteCount(};
1
i

[184]

Image Management

In the preceding example, which Google uses in the official documentation, we create a 4
MB cache where the size of each item is the byte count of the bitmap. We will be accessing
the cache using a St ring as a key, so we can easily use an image name or the image URL,
and we will get back a Bitmap.

If we want to get notified whenever an element gets removed from the cache, we can
override the ent ryRemoved method. Also, if we want to be notified whenever there is a
cache miss or have the chance to recreate the object at that point, we could do so by
overriding the create method as follows:

int cacheSize = 4 % 1024 % 1024;
LruCache<String, Bitmap> bitmapCache = new LruCache<String, Bitmap=>{cacheSize) {

@lverride
al protected int sizeOf(String key, Bitmap value) {
return value.getByteCount();
}
@lverride
al protected void entryRemoved(boolean evicted, String key, Bitmap oldValue, Bitmap newvalue) {
if{evicted) {
Log.d(TAG, "Key: " + key + " has been removed to make space”);
} else {
Log.d(TAG, "Key: " + key + ™ has been replaced”);
}
}
@verride
gl @ protected Bitmap create(String key) {
Log.d{TAG, "cache miss for key: ™ + key);
return null;
}

[185]

Image Management

To calculate the right amount of memory we need for the cache size, we should consider
what kind of application we are building. For example, how many of these images are we
going to show on-screen at the same time? Or what other parts of our application are using
memory and how much memory are those parts using? Having considered these questions,
we also have to check how much memory we have available for our application. We can do
so by calling the getMemoryClass () method of our ActivityManager. In the following,
there is a new implementation using this memory limit and checking on kilobytes instead of
bytes, and this is the reason we are dividing both the byte count of a Bitmap and the
maximum memory by 1,024. The size calculation, approximately 15% of the available
memory per application, is taken directly from Picasso library, which will be introduced

later in this chapter. Full details of Picasso's implementation can be found at https://githu
b.com/square/picasso/blob/master/picasso/src/main/java/com/squareup/picasso/

Utils.java.

static int calculateMemoryCacheSize(Context context) {
ActivityManager am = getService(context, ACTIVITY_SERVICE);
boolean largeHeap = (context.getApplicationInfo().flags &
android. content.pm.ApplicationInfo.FLAG _LARGE HEAP) '= 0;

int memoryClass = am.getMemoryClass();
if (largeHeap &&
android.os.Build.VERSION.SDK_INT == android.os.Build.VERSION_CODES.HONEYCOMB) {
memoryClass = ActivityManagerHoneycomb.getlargeMemoryClass(am);

i Taraet ~15% af +he availahle heap
f larget ~15% or 1ne avallable neap.

}eturn (int) (1024L % 1824L * memoryClass / 7);

LruCache<String, Bitmap> bitmapCache =
new LruCache<String, Bitmap=>{calculateMemoryCacheSize(getApplicationContext())) {

@verride
&l protected int sizeOf(String key, Bitmap value) {
return value.getByteCount() / 1824;
}

[186]

Image Management

To add and retrieve Bitmaps from this cache is relatively straightforward:

public void addBitmapToCache(String key, Bitmap bitmap) {
bitmapCache.put(key, bitmap);
b

public Bitmap getBitmapFromCache(String key) {
return bitmapCache.get(key);
b

In the event there is a Bitmap with the same key as another, the first bitmap will be
replaced. Using the image URL as the hash key is usually a good practice as each image will
have a different URL. Also, getBitmapFromCache might return null if the entry does not
exist or it has been removed from the cache.

Whenever we want to load an image, we have to check the cache first; if the image is there,
we can just work with it, otherwise we would have to load it remotely. Memory cache is
really fast as it resides in memory, but loading images from the Internet or disk or any other
potentially slow source needs to be done on a background thread:

public void loadBitmap{String url, ImageView imageView) {
final Bitmap bitmap = getBitmapFromCache{url);
if (bitmap != null) {
imageView.setImageBitmap(bitmap);
T else {
loadRemoteBitmap(url, imageView);

b

[187]

Image Management

As shown in the following example, in the Android documentation, Google uses an
AsyncTask class to load and decode a Bitmap, and, once decoded, it adds the Bitmap to the
memory cache:

class BitmapWorkerTask extends AsyncTask<Integer, Void, Bitmap= {

// Decode image in background.

@dverride

protected Bitmap doInBackground(Integer... params) {
final Bitmap bitmap = decodeSampledBitmapFromResource(

getResources(), params([@], 1lee, 1@@));

addBitmapToMemoryCache(String.valueOf(params[@]), bitmap);
return bitmap;

For more information on caching bitmaps, visit
http://developer.android.com/training/displaying-bitmaps/cache
-bitmap.html.

Disk caches

We have seen how to load and cache images to a memory cache. A memory cache is very
fast but not always reliable, as images might have been removed to make space for new
images or, for example, the application might have been interrupted and killed while in the
background and thus the memory cache is destroyed and all our hard work has been lost. If
we are looking for a more reliable cache, although slower, we should go for a disk cache. A
disk cache when used together with a memory cache will speed up things considerably.
Images that no longer are in memory might still be persisting in the disk cache and avoid
doing a network operation.

We can use an already existing implementation; there is one available in the Android source
code, and also the version used in the Android documentation: https://android.googles
ource.com/platform/libcore/+/Jjb-mr2-release/luni/src/main/java/libcore/i0/D1i

skLruCache. java.

[188]

Image Management

But, for example, we can also use the disk cache classes in Volley; visit https://android.g
ooglesource.com/platform/frameworks/volley/+/master/src/main/java/com/androi

d/volley/toolbox/DiskBasedCache. java.

Or, we can use the disk cache classes in OkHttp; visit
https://github.com/square/okhttp/tree/master/okhttp/src/main/java/okhttp3/in
ternal/cache?.

Later in this chapter, we will see how to take advantage of the disk cache embedded in
these libraries when using them directly, but first we will focus on how we can use a plain
disk cache to complement our memory cache.

Let's try to write our own ImageCache class using the DiskBasedCache class from Volley.
Our own implementation will use both the memory cache and disk cache whenever there is
a cache miss in the memory cache. Refer to the following android documentation to see
more or less the same example, although more detailed, using the implementation found in
the Android source code: http://developer.android.com/training/displaying-bitmap
s/cache-bitmap.htmlfdisk—-cache

First of all, the class constructor that initializes the memory cache and creates a disk cache is
as follows:

public ImageCache{Context context) {
int maxMemory = {int) (Runtime.getRuntime().maxMemory() / 1824);
int cacheSize = maxMemory / &;

bitmapCache = new LruCache<String, Bitmap=(cacheSize) {
@0verride
8l protected int sizeOf(String key, Bitmap value) { return value.getByteCount() / 1824; }
h

File cacheDir = new File{context.getCacheDir{), DEFAULT_CACHE DIR);
diskCache = new DiskBasedCache(cacheDir);

diskCacheInitialized = false;
new InitializeDiskCache().execute();

[189]

Image Management

Disk cache is initialized in a background thread as disk operations might take time and we
do not want to block the UI thread. As it might take some time and we might receive,
potentially, any requests before the disk cache is initialized, we need to implement a lock
mechanism. All disk cache operations are synchronized using the diskCacheLock instance
variable. Any request received to get an image from the disk cache before it has finished
initializing will be blocked, thanks to the synchronization blocks and the wait

and notifyAll methods; whenever that happens, all requests will be eventually executed:

class InitializeDiskCache extends AsyncTask<Void, Void, Voild> {
@iverride
L) protected Void doInBackground{Void... params} {

synchronized (diskCachelock) {
diskCache.initialize();
diskCacheInitialized = true;
diskCacheLock.notifyAll(};

¥

return null;

Let's also create an interface to get notified whenever there is a cache hit or a cache miss. We
can use the cache miss to trigger a download of the image, for example:

public interface CacheNotifier {
void cacheMiss(String key);
void cacheHit({String key);

We have to use a background thread to store images on the disk cache, as it might take too
much time. As usual, all input/output operations must not be done on the main thread,
otherwise we will block it and cause our UI to become sluggish or stop responding;:

[190]

Image Management

class BitmapStorer extends AsyncTask<Void, Void, Void> {
private String key;
private Bitmap bitmap;

BitmapStorer(String key, Bitmap bitmap) {
this.key = key;
this.bitmap = bitmap;

}
@verride
L) protected Void doInBackground(Void... params) {
synchronized (diskCachelock) {
diskCache.put{key, new BitmapCacheEntry(bitmap));

}
return null;

e

In the preceding example, we are using a small helper class, BitmapCacheEntry, that we
have created, as the DiskBasedCache implementation from Volley takes a Cache.Entry
class. The Cache.Entry class only defines a bytearray to hold the data to cache. Our
implementation is just a helper to use Bitmaps instead of bytearrays directly.

Implementation is very easy: we take a Bitmap in the constructor and we compress it using
the WebP format to byte array. BitmapCompressFormat also has PNG and JPG support,
but we will use WebP as, according to Google, it produces smaller files than PNG and JPG.

For more information on WebP, refer to https://en.wikipedia.org/wik
i/WebP.

class BitmapCacheEntry extends Cache.Entry {
public BitmapCacheEntry(Bitmap bitmap) {
ByteArrayQutputStream baos = new ByteArrayOutputStream();
bitmap.compress(Bitmap.CompressFormat.WEBP, 100, baos);
data = baos.toByteArray();
¥

public Bitmap getBitmap() {
return BitmapFactory.decodeBytedrray(data, 0, data.length);
¥

[191]

Image Management

To convert back from the byte array to a Bitmap, we just use the decodeByteArray method
from the BitmapFactory class.

With this helper class, we can now implement the get BitmapFromDisk method, which
will return a Bitmap if it is stored in the disk cache or null otherwise.

This method will check if the disk cache has been already initialized, otherwise it will block
the current thread until then. The disk cache indexes the files and could take some time to
initialize; doing a request for a file while it has not finished might lead to inaccurate
responses:

@ullable
private Bitmap getBitmapFromDisk{String key) {
synchronized (diskCachelock) {
while (!diskCacheInitialized) {
try {
diskCacheLock.wait();
} catch (InterruptedException e) {}
b

BitmapCacheEntry cacheEntry = (BitmapCacheEntry) diskCache.get(key);
if(cacheEntry != null) {
return cacheEntry.getBitmap();
}
return null;

If the file does not exist in the cache, this method will return nul1l.

Now we can implement a Bitmap loader that tries to load a Bitmap from disk, calling the
method we have just defined in a background thread, and notifies of a cache hit or cache
miss.

[192]

Image Management

BitmapLoader is also a very simple AsyncTask class that takes care of that. There should
be some checks to see if the ImageView is still valid. Another good practice will be to hold
a WeakReference of the Imageview and the CacheNotifier, and then add the proper
checks in the onPostExecute method, but for clarity we have assumed that nothing wrong
happens in our example:

class BitmaplLoader extends AsyncTask<Void, Void, Bitmap> {
private String key;
private ImageView iv;
private CacheNotifier notifier;

BitmapLoader(String key, ImageView iv, CacheNotifier notifier) {
this.key = key;
this.iv = iv;
this.notifier = notifier;

b

@lverride
L) protected Bitmap doInBackground(Void... params) { return getBitmapFromDisk(key); }

@wverride
al protected void onPostExecute(Bitmap bitmap) {
if(bitmap '= null) {
notifier.cacheHit(key);
iv.setImageBitmap(bitmap);
} else {
notifier.cacheMiss(key);

¥

For more information on WeakReferences , refer to http://developer.an

droid.com/reference/java/lang/ref/WeakReference.html.

[193]

Image Management

Finally, we could implement the public interfaces to put and get an image from the cache.
As we can see, it is using both the memory cache and the disk-based cache. When getting an
image, if that image is already in the memory cache, it will notify us of a cache hit and
return that image directly; otherwise it will launch the background task we created
previously to load it if it exists on the disk cache:

public void putImage(String key, Bitmap bitmap) {
bitmapCache.put{key, bitmap);
new BitmapStorer({key, bitmap).execute();

¥

public void getImage(String key, ImageView iv, CacheMotifier notifier) {
final Bitmap bitmap = bitmapCache.get(key);
if (bitmap !'= null) {
notifier.cacheHit(key);
iv.setImageBitmap(bitmap);
} else {
new BitmapLoader(key, iv, notifier).execute();
}

Handling configuration changes

Memory caches can be destroyed very easily, for example, whenever the device screen is
rotated. We should avoid this behavior since, when the device rotates, we would like to
have the images rendered as soon as possible and skip the process of downloading them
again.

Luckily, we can preserve a fragment if we set the setRetainInstance to true, and the
same fragment will be reattached to the new activity. If we store the memory cache instance
in the fragment, we still will have access to it after recreating the activity.

[194]

Image Management

Look at the following example from the Android documentation:

private LruCache<=S5tring, Bitmap> mMemoryCache;

@verride
protected void onCreate(Bundle savedInstanceState) {
RetainFragment retainFragment =
RetainFragment.findOrCreateRetainFragment(getFragmentManager());
mMemoryCache = retainFragment.mRetainedCache;
if (mMemoryCache == null) {
mMemoryCache = new LruCache=String, Bitmap=(cacheSize) {
-«. // Initialize cache here as usual
+
retainFragment.mRetainedCache = mMemoryCache;

class RetainFragment extends Fragment {
private static final String TAG = "RetainFragment";
public LruCache=String, Bitmap> mRetainedCache;

public RetainFragment() {}

public static RetainFragment findOrCreateRetainFragment(FragmentManager fm) {
RetainFragment fragment = (RetainFragment) fm.findFragmentByTag(TAG);
if (fragment == null) {
fragment = new RetainFragment();
fm.beginTransaction().add(fragment, TAG).commit();

}

return fragment;
}
@lverride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setRetainInstance(true);

The preceding example sets setRetainInstance to true in the RetainFragment and
creates the cache only when mRetainedCache is null after the call
to findOrCreateRetainFragment.

[195]

Image Management

For more details, refer to http://developer.android.com/training/dis
playing-bitmaps/cache-bitmap.html#config-changes.

An alternative would be to make the cache global to the whole application, simplifying this
whole process.

Loading images

We have seen, so far, how to keep images in a local memory cache and in disk cache to
avoid loading them from the network repeatedly in the quite common case when are used
again. As mobile devices still have very limited resources, we will see how to deal with
memory allocation and handling very large images.

Memory

As we have probably noticed, images take a big amount of space. For example, a 32 bit per
pixel image 512 pixels wide and 512 pixels high will use around 1 megabyte of memory. So,
having a lot of images can easily eat up all our memory. It is very important to take into
consideration a few things when dealing with such amount of memory.

We don't really need to explain in detail how to manage bitmap memory on early releases
of Android, as we will not probably have to support those versions, but just in case, it is
good to know how it worked.

On Android 2.3.3 and lower versions, bitmap memory dedicated to store pixel data was
stored in native memory and not in the Java heap, where the bitmap object and all the other
Java objects resided. To ensure bitmap memory is cleaned as soon it was not needed
anymore, we have to manually call the recycle () method. It is important to call it only
when we are sure that the bitmap is no longer on the screen, otherwise Android will throw
us aCanvas: trying to use a recycled bitmap error

On the following page, there is a code snippet that shows how to maintain a reference count
of the bitmap and recycle the bitmap at the right time whenever there is no cached or
displayed reference and the bitmap has not been recycled before: http://developer.andro

id.com/training/displaying-bitmaps/manage-memory.html.

[196]

Image Management

Furthermore, the example included in the documentation uses a full class called
RecyclingBitmapDrawable that extends from BitmapDrawable and handles all the
reference count logic and calls recycle whenever it is needed. For the link to the source code

of RecyclingBitmapDrawable, refer to http://developer.android.com/samples/Displ
ayingBitmaps/src/com.example.android.displayingbitmaps/util/RecyclingBitmapD
rawable.html.

private int mCacheRefCount = @;
private int mDisplayRefCount = @;
// Notify the drawable that the displayed state has changed.
// Keep a count to determine when the drawable is no longer displayed.
public void setIsDisplayed(boolean isDisplayed) {
synchronized (this) {
if (isDisplayed) {
mDisplayRefCount++;
mHasBeenDisplayed = true;
} else {
mDisplayRefCount——;
}
}
// Check to see if recycle() can be called.
checkState();

// Notify the drawable that the cache state has changed.
// Keep a count to determine when the drawable is no longer being cached.
public woid setIsCached{boolean isCached) {
synchronized (this) {
if (isCached) {
mCacheRefCount-++;
I else {
mCacheRefCount—-;
+
}
// Check to see if recycle() can be called.
checkState();
}

private synchronized void checkState() {
// If the drawable cache and display ref counts = @, and this drawable
// has been displayed, then recycle.
if (mCacheRefCount == @ && mDisplayRefCount == @ &5 mHasBeenDisplayed
&& hasValidBitmap()) {
getBitmap().recycle();

¥

private synchronized boolean hasValidBitmap() {
Bitmap bitmap = getBitmap();
return bitmap !'= null && !bitmap.isRecycled();

[197]

Image Management

Starting from Android 3.0, the pixel data is stored in the Java heap together with the bitmap
object. This does not mean we do not have to do anything related to memory. We could still
improve the memory allocation process by only doing so when really needed.

Android 3.0 introduced a field inBitmap in BitmapFactory.Options. If this field is set
with another bitmap, the bitmap decoder will try to reuse the memory of that already
existing bitmap when loading the new one. This way, we remove the memory allocation
and deallocation and we slightly improve performance. There are a few restrictions to this
new field though, for example, before Android 4.4, it will only work for bitmaps with the
same size.

For more information on the inBitmap field, refer to http://developer.
android.com/reference/android/graphics/BitmapFactory.Options.h

tml#inBitmap.

There was another field, called inPurgeable, that allowed Android 4.4 and below to
allocate bitmap pixel data in such a way that it was easy to be purged to recycle memory.
This field is deprecated since Android 5.0 and its not recommended, as it might have some
performance implications due to decoding time and can lead to frames being skipped.

For more information on the inPurgeable field, including the reason

why it has been deprecated, refer to http://developer.android.com/ref
erence/android/graphics/BitmapFactory.Options.html#inPurgeabl

e.

Looking at the Android documentation, there is a code snippet that shows how a bitmap
that has been removed from an LruCache class can be reused by using the inBitmap field.
Looking at the example, we notice that we have to set the field inMutable to true so that
the bitmap decoder returns a mutable image required for the inBitmap to work:

[198]

Image Management

private static void addInBitmapOptions(BitmapFactory.Options options,
ImageCache cache) {
// inBitmap only works with mutable bitmaps, so force the decoder to
// return mutable bitmaps.
options.inMutable = true;

if (cache != null) {
// Try to find a bitmap to use for inBitmap.
Bitmap inBitmap = cache.getBitmapFromReusableSet(options);

if (inBitmap !'= null) {
// IT a suitable bitmap has been found, set it as the value of
A/ inBitmap.
options.inBitmap = inBitmap;

For more information and examples for managing bitmap memory, visit http://developer

.android.com/training/displaying-bitmaps/manage-memory.html.

For a complete example of a disk cache, the use of fragment to retain the ImageCache
instance, and how to reuse memory by using the inBitmap property

of BitmapFactory.Options, check the example source code of the Android
documentation at http://developer.android.com/samples/DisplayingBitmaps/src/co
m.example.android.displayingbitmaps/util/ImageCache.html.

Handling large images

As with most of our applications, we will be loading images from the Internet or from user-
generated content such as pictures from the gallery or those taken by the camera. An issue
that we will face is how to handle big, or relatively big, images. When loading an Internet
feed or getting images from a CMS, we do not know in advance the size of these images.
There are basically two things we should take into consideration. First, the amount of data
we will be transferring from the server to the mobile device. If the image is huge, it will take
a considerable amount of time to download to our mobile device and might also consume a
substantial amount of the data plan of the user.

[199]

Image Management

Sometimes there is not much we can do if we do not have access to the server, but as
recommended alternatives, we can try to rescale the image to an appropriate size and use a
more optimized image format, for instance, WebP (https://en.wikipedia.org/wiki/Web
P). Some image-loading libraries we will discuss later in this chapter have the ability to
support progressive JPEG files. This will not resolve the amount of data downloaded from
the network, but will improve the user experience of our application, as it partially
disguises the loading by showing a reasonable preview. For more information on
Progressive J[PEGs, visit http://frescolib.org/docs/progressive-jpegs.html.

The second issue in handling large images is the amount of memory that we will consume
on our mobile device. Imagine we have an image of 1,024 x 1,024 pixels that will be shown
as a 64 x 64 pixels thumbnail. Do we really have to keep in memory the 4,194,304 bytes
required to store it versus the 16,384 bytes that are required for the image that will be
shown?

No, definitely it is not a good practice. Imagine many images like that in a scrolling list.
Even using a RecyclerView and memory cache, we will be polluting the memory and taking
all the space of the cache with very few images, making it almost useless. The scenario
could be worse. Imagine the image is even bigger; we might get java.lang.OutOfMemory
exceptions trying to load it. To prevent this from happening, we could use another field
h1BitmapFactory.Options,theinJustDecodeBoundsFmopeﬂy.

Setting inJustDecodeBounds to true will not decode the image data or allocate memory
for it, but will set the image width and height. This will allow us to know beforehand the
size of the image and load a scaled-down version that adjusts more efficiently to the size we
really need. Let's see how we can do it.

First, let's see how we use the inJustDecodeBounds property:

puh11c static Bitmap decndeSampLedBltmapFromStream{InputStream 15, 1nt width, int height) {

/{ First decode with inJustDecodeBounds = true to check din sior
flnal BltmapFactory Options optlons = new BitmapFactory. Dptlons{}
options.inJustDecodeBounds = true;

BitmapFactory.decodeStream{is, null, options)

'/ Calculate inSampleSize

options. 1nSampleS1ze = calculateInSamplesizel{options, width, height);

e5iFe set

/{ Decode bitmap with inSampl
optlons inJustDecodeBounds = false;
return BitmapFactory.decodeStream{is, null , options)

[200]

Image Management

Looking at the preceding source code snippet, we can see that the image loading is done in
two steps: first with the inJustDecodeBounds property to true and later setting it to
false. Between the two decode calls, we can calculate the value of the inSampleSize
property of BitmapFactory.Options. inSampleSize is another property that allows us
to load an image scaled down by values that are a power of 2. We can use the code from the
Android documentation to calculate the right value for inSamplesize:

public static int calculateInSampleSize(
BitmapFactory.Options options, int regWidth, int regHeight) {
// Raw height and width of image
final int height = options.outHeight;
final int width = options.outWidth;
int inSampleSize = 1;

if (height > regHeight || width > regwidth) {

final int halfHeight = height / 2;
final int halfWidth = width / 2;

// Calculate the largest inSampleSize wvalue that is a power of 2 and keeps both
// height and width larger than the requested height and width.
while ((halfHeight / inSampleSize) = regHeight
&& (halfwidth / inSampleSize) > regwidth) {
inSampleSize *= 2;

Iy

return inSampleSize;

Looking at the preceding code, we can see that it will return the biggest inSampleSize that
is a power of 2, with the resulting width and height bigger than the width and height
requested, in order to maximize quality and not having to upscale the image

afterwards. inSampleSize only works with power of 2 values, thatis 1, 2, 4, 8, 16, and so

on. If we set any other value, it will be rounded down to the nearest power of 2. Visit http:
//developer.android.com/reference/android/graphics/BitmapFactory.Options.htm
l1#inSamplesize for more information on SamplesSize property.

Here we used an InputStream to decode a bitmap, but BitmapFactory supports
decoding bitmaps from other sources. Check the Android documentation for the same
example but, for decoding from a resource, visit http://developer.android.com/trainin
g/displaying-bitmaps/load-bitmap.html.

[201]

Image Management

Different image types

As we have just seen, we might have to load images using different approaches. We will
load them using an InputStream, a file, or from the application resources.

BitmapFactory comes with several mechanisms to load images to adjust to what we need;
here are a few:

BitmapFactory.decodeStream()
® BitmapFactory.decodeFile ()
e BitmapFactory.decodeByteArray ()

® BitmapFactory.decodeResource ()

Let's see how we can also load images from the assets folder of the application using the
method we created previously:

public Bitmap decodeSampleBitmapFromAssets(String name, int width, int height) {
InputStream is = null;
try {
is = getAssets{).open{name)};
return decodeSampledBitmapFromStream({is, width, height);
} catch{IDException e) {
Log.w(TAG, “Error loading image " + name);
return null;

} finally {
if {is !'= null) {
try 1
is.close();
} catch{Exception e) {
fiNothing we can do about it
¥
}
¥

Using the getAssets method we can open any asset by just using the file name, and once
we have the InputStream from it, we can reuse our previous method.

Additionally, we can always use alternative methods to set images to ImageView. For
instance, we can use
imageView.setImageResource (r.drawable.<drawable_id>). Other methods are as

follows:

e imageView.setImageBitmap (Bitmap bitmap)

® imageView.setImageResource (int resId)

[202]

Image Management

® imageView.setImageDrawable (Drawable drawable)

e imageView.setImageURI (Uri uri)

We have to be very careful with the set ImageURI method, as the image will be loaded and
decoded on the UI thread.

For more information on ImageView, refer to http://developer.androi

d.com/reference/android/widget/ImageView.html.

Vector drawables

Starting with Android 5.0, there is support for vector drawables. We can easily add a new
vector drawable to our application by using the Vector Asset Studio and use one of the
standard material icons; or we can add our own SVG files, although not all features of SVG
files are supported right now.

See the documentation of the Vector Asset Studio for a comprehensive list

at
https://developer.android.com/studio/write/vector—-asset-studio

.html.

The main advantage of vector images is that they can be resized without any loss of image
quality, and there is no need to have different sizes for all screen resolutions; so, in fact, this
will help you reduce the size of the application. We have to be careful, though, as even if we
do not see it on our project, if we target Android 4.4 or older versions, Android studio will
generate PNG files in build time and store them in the generated folder. We can avoid this
by using the support library and specifying the following command in our build.gradle:

android {
defaultConfig {
vectorDrawables.useSupportlibrary = true
}
}

dependencies {
compile ‘com.android.support:appcompat-v7:23.2.0°'

1

[203]

Image Management

Otherwise, we can always explore, after triggering a build, the project view and see the
generated/pngs/<build configuration>. As in this example, we can see the
generated PNGs for different resolutions.

CaExample ' CZapp © [src) [main » [java » [com - E7 packt © 5] rrafols ©] example
o (13 Prublems| ~ Production | i Te_sts| A3 TP_stsl » Qo | M- I+
Caapp
Elapp
[build
[generated
[Cres/pngs/debug
[drawable-anydpi-v21
o ic_directions_subway_black_24dp.xml
[*1drawable-hdpi
[l ic_directions_subway_black_24dp.png
[drawable-Idpi
[i] ic_directions_subway_black_24dp.png
1 drawable-mdpi
Ej ic_directions_subway_black_24dp.png
[drawable-xhdpi
[i] ic_directions_subway_black_24dp.png
[drawable-xxhdpi
[i}i ic_directions_subway_black_24dp.png
[drawable-xxxhdpi
il ic_directions_subway_black_24dp.png
[source
[“lintermediates

Misrc

«f 7:Structure | +% 1:Projec

(& Captures

For more information on the support library v23.2, refer to
http://android-developers.blogspot.com.es/216/2/android-suppor

t-library-232.html.

If we are not using the support library, we could do the following to reference a Vector
Asset from code:

if (Build.VERSIOM.SDK_INT == Build.VERSION_CODES.LOLLIPOP) {
VectorDrawable vectorDrawable = (VectorDrawable) drawable;
} else {
BitmapDrawable bitmapDrawable = (BitmapDrawable) drawable;

b

[204]

Image Management

Not all the features are available; for instance, autoMirrored is only supported on

Android 5.0 and higher.

Android Studio launches the Vector Asset Studio when we are try to add a new Vector

Asset:
e Lk T
a ssion.READ_CONTACTS)
u
Size: |24 dp X (24| d #, Toast.LENGTH_SHORT).show()|
© Material Icon Local SVG file ;
Override default size from Material Design o(this
nission”, Toast.LENGTH_LONG).
lcon: Choose
Onarite N O L S T VO T ' YT Tlio_cios o —so_io nrap gl
e 0 Select Icon =
Resource name: |ic_vector_name | . =
Action H q T ln E
Alert CI —
Av '\'+r L L= ‘j\ L=
Communication @ ® @
o0
Content =
DeVice {) E ﬂ E
O |
Editor g '
File . p
E H
~ AABBA8 O .
Image
Maps
Navigation o
Notification
Social ’ Q
Toggle r @ E g
| B & B B =
] & om
aa . PLY 1 N a daml
These icons are available under the CC-BY license
? Cancel Previous _ |
e 7 loadImage| ImageViewlert, "http://labs.rafols.org/imagel.jpg");

[205]

Image Management

Depending on the application target, our recommendation is to either build one single APK,
as it will be easier or because it is targeting Android 5.0 and higher, or build two

separate APKs, one for Android 5.0 with vector drawables and another with raster images.
This way we can reduce the application size for new devices. To see how to build

multiple APKs, check the android development documentation at https://developer.and
roid.com/google/play/publishing/multiple-apks.html.

For more information and a DevBytes video on vector drawable, refer to h
ttps://youtube/wlFVIIstKmA and https://www.youtube.com/watch?v=
8e3I-PYJNHg.

Images in a RecyclerView

We have to be aware that loading and decoding an image always has to be done in another
thread rather than the main thread—not only loading from a file or network, but also the
decoding and creating an image from an InputStream, aresource, or an array of bytes. As
a direct consequence, we will have a lot of asynchronous calls, and if the application we are
building contains a RecyclerView, where there are many images to load from the network
for example, we will have to be careful to load and set the right image to the

right Imageview. We have already seen in Chapter 4, Lists and Adapters, that we stored the
view position in the ViewHolder as well as in the background task loading the image. Then,
whenever the image is loaded, we check if the position of the ViewHolder is still the same
as the position stored in the background task. If it is different, it means that the previous
view has been recycled and is now used by another item. To solve many of these issues,
including loading large images or setting them into a RecyclerView cell, there are many
open source third-party libraries that can facilitate our job.

Widely used third-party libraries

We will see some of the most widely used libraries for handling images. These libraries
have been developed and contributed by many developers and they will simplify our code,
take care of all the underlying details, and reduce our application development time.

[206]

Image Management

Glide

In order to use Glide, we have to add it to the dependencies section of our build.gradle
file:

dependencies {
compile 'com.github.bumptech.glide:glide:3.7.0"
compile 'com.android.support:support-v4:23.2.1"

}

If our application is obfuscated, we need to add some lines to our proguard configuration,
otherwise we will have some errors while the application is running:

—keep public class * implements com.bumptech.glide.module.GlideModule
—-keep public enum
com.bumptech.glide.load.resource.bitmap.ImageHeaderParser$** {

**[] SVALUES;

public *;
}

We can simply use Glide to load images, either remote or local, to an ImageView.Glide
will take care of the connection, the background thread, caching, and all the other details:

Glide.with(this).load("http://labs.rafols.org/imagel.jpg”).into{imageViewLeft);
Glide.with{this).load{"http://labs.rafols.org/image2.jpg”).into({imageViewRight);

We can add more complexity by just adding more calls. For example, if we want to use
Glide to load images to an ImageView stored in a ViewHolder of a RecyclerView; center
and crop the image; use a placeholder while loading and crossfade this placeholder to the
downloaded image when the download and decoding are finished; we could use the
following code:

@iverride
L] public void onBindViewHolder(RecyclerViewHolder holder, int position) {
ImageView imageView = holder.getImageView();
Glide

with{context)

. load("http://labs.rafols.org/imagel.jpg™)
.centerCrop{)
.placeholder{R.drawable.placeholder)
.crossFade()

Linto(imageView) ;

[207]

Image Management

For more information on Glide, more complex examples as well as more transformations
and animations, and how to change the underlying HTTP connection library, check the
following official Github documentation and wiki at https://github.com/bumptech/glid
e and https://github.com/bumptech/glide/wiki.

UIL

As with Glide, we will also have to add a Gradle dependency to our build.gradle file to
be able to use UIL. As an alternative, we can also download a JAR file and add it to our
project, but using the Gradle or Maven dependency is recommended as it is very easy to
update or change the version:

dependencies {

compile 'com.nostral3.universalimageloader:universal-image-
loader:1.9.5"
}

This library seems to be unmaintained since November 2015, but anyway it is worth briefly
covering it so that we can see how other libraries work and have a better general idea.

The Universal Image Library needs to be initialized; for example, in the following scenario,
we initialize the library and we enable the memory and disk cache as, by default, they are
disabled:

DisplayImageOptions options = new DisplayImageOptions.Builder()
.cacheInMemory(true)
.cacheOnDisk(true)
Lbuild();

ImageLoaderConfiguration config = new ImagelLoaderConfiguration.Builder{getApplicationContext(})
.defaultDisplayImageOptions(options)
Jbuild();

ImageLoader.getInstance().init(config);

Also, to enable the disk cache, we need to request permission to write to external storage:

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

[208]

Image Management

To load images into an ImageView, we could simply do the following;:

ImageLoader imagelLoader = ImagelLoader.getInstance();
imageLoader.displayImage("http://labs.rafols.org/image2.jpg"”, imageViewLeft);

imageLoader. loadImage("http://labs.rafols.org/image2.jpg", new SimpleImageloadinglListener{) {
@verride
&l public void onlLoadingComplete(String imageUri, View view, Bitmap loadedImage) {
imageViewRight.setImageBitmap(loadedImage);
H
I H

The first method is the simplest. ImageLoader.displayImage just needs the URL and
the ImageView. If we need some more control, we can create

a SimpleImageLoadingListener, implement the onLoadingComplete, and use

the ImageLoader.loadImage method with the listener we have just created.

Additionally, we could also implement ImageLoadingListener and have a lot more
control, but if we do not require everything, it can be a bit cumbersome. Following is an
example of calling ImageLoader.displayImage with an ImageLoadingListener and an
ImageLoadingProgressListener with all the methods we can implement:

imageLoader.displayImage("http://labs.rafols.org/image3.jpg", imageViewRight, null,
new ImageloadingListener{) {
@lverride
of public void onLoadingComplete(String imageUri, View view, Bitmap loadedImage) {
Log.i(TAG, "Image loaded " + imageUri);

@iverride
of public void onLoadingStarted{String imageUri, View view) {
Log.1{TAG, "Image loading started ™ + imagelri);
}

@verride
ol public void onLoadingFailed(String imageUri, View view, FailReason failReason) {
Log.1{TAG, "Image loading failed " + imagelri);
}

@0verride
L} public void onLoadingCancelled({String imageUri, View view) {
Log.i(TAG, "Image loading cancelled " + imageUri);

t, new ImageloadingProgressListener({) {
@lverride
of public void onProgressUpdate(String imageUri, View view, int current, int total) {
Log.i(TAG, "Progress " + imagelUri + ", " + current + " / " + total);
}
I

[209]

Image Management

For more information, details, and complete examples, check the Github
repository of the Universal Image Loader at https://github.com/nostra
13/Android-Universal-Image-Loader and https://github.com/nostra
13/Android-Universal-Image-Loader/wiki/Useful-Info.

Picasso

Picasso is an image downloading and caching library developed by square, although it is
shared in Github and anyone can contribute as long as the Individual Contributor License
Agreement is signed.

As with previous libraries, we will have to add the dependency into our build.gradle
file:

dependencies {
compile 'com.squareup.picasso:picasso:2.5.2"'

As with previous libraries, to load an image into an ImageView is very simple. The
following is an example of a very straightforward call, and another with many other
parameters. For example, we could use an image as placeholder, another image when there
is an error loading the image from the network, resize the image, or even apply a
transformation:

Picasso.with(this).load("http://labs.rafols.org/image3.jpg”).into({imageViewLeft);

Picasso.with(this)

.load("http://labs.rafols.org/imagel. jpg")

.placeholder(R.drawable.placeholder)

.error{R.drawable.error)

.transform(new Transformation() {

@lverride
af public Bitmap transform(Bitmap source) {
int size = Math.min(source.getWidth(), source.getHeight(});
int x = (source.getwWidth() - size) / 2;
int y = (source.getHeight() - size) / 2;
Bitmap result = Bitmap.createBitmap(source, x, y, size, size);
if (result != source) {
source. recycle();

return result;

I

@lverride
of public String key() {
return "crop_square_transformation™;

h

.resize(10@, 100)
.centerCrop()
.into(imageViewRight);

[210]

Image Management

The transformation is the same used in the Picasso library website, and it just crops the
image into a square form based on the smallest dimension, either width or height.

While developing our application, we can see more details of how the image cache is
working by enabling the cache indicators. Before doing any image request, we have to call
the setIndicatorsEnabled method with the parameter t rue if we want to show color
indicators on top of each image:

Picasso.with (context) .setIndicatorsEnabled (true);

This will be very helpful, as we will not have to parse lines and lines of logs, and we will see
on the device screen itself, which is the source of each image. For example, if the top-left
corner is red, then it means the image has been downloaded from the network, if it is blue,
it has been loaded from the disk cache, and if it is green, it has been loaded from the
memory cache.

The following is how it looks in our small demo application:

Other very interesting features of Picasso are its handling of recycling in ImageViews and
the automatic detection of adapter reuse and the cancellation of previous downloads. To get
more information on all these and more complex examples, check the Picasso website at htt
p://square.github.io/picasso/.

[211]

Image Management

Fresco

The last library we would like to cover is Fresco. It has been developed by Facebook,
although it is also shared in Github like other libraries.

Fresco needs to be initialized, but this can be done quite easily by just calling the initialize
method during our activity's onCreate method:

Fresco.initialize (getApplicationContext ());

Fresco uses a custom view called Drawee to render images; it adds many new features, for
example, scaling the image to a specific focus point, showing rounded corners, or a custom
overlay when the user presses the image.

It also gives the support to load remote images by just setting the URL as follows:

Uri uri = Uri.parse("http://labs.rafols.org/imagel.jpg");
((SimpleDraweeView) findViewById(R.id.ivl))}.setImageURI{uri);

uri = Uri.parse("http://labs.rafols.org/image2.jpg");
((5impleDraweeView) findViewById(R.id.iv2)).setImageURI{uri);

But we need to change the normal ImageView for a SimpleDraweeView:

<LinearLayout
android:orientation="horizontal™
android:layout_width="match_parent"
android:layout_height="wrap_content"
android: padding="5dp"
android:clipToPadding=""false">

<com. facebook. drawee. view.SimpleDraweeView
android:id="@+id/ivl"
fresco:placeholderImage="@drawable/placeholder”
android:layout_width="0dp"
android:layout_height="1008dp"
android:layout_weight="1"
android:layout_margin="2dp"/>

<com. facebook.drawee.view.SimpleDraweeView
android:id="@+id/iv2"
fresco:placeholderImage="@drawable/placeholder”
android:layout_width="0dp"
android:layout_height="100dp"
android:layout_weight="1"
android:layout_margin="2dp"/>

[212]

Image Management

Fresco also has many additional features, but one of the main differentiators is memory
optimization. On Android 4.x and earlier, Fresco put bitmap data in a separate memory
area to avoid polluting the Java heap and triggering additional garbage collectors.
Moreover, Fresco releases the memory from the image as soon as it is not shown on the
screen, thus improving application performance. Furthermore, it adds support for WebP
images, as well as animated GIF and progressive JPEG.

There is exhaustive documentation on the fresco website at http://frescolib.org/.

Summary

In this chapter, you saw how to cache images to avoid downloading them multiple times.
This way we speed up our application, improve the user experience, and reduce the amount
of data our application consumes. You also covered how to improve memory handling and
how to solve some potential issues with large images. We finished the chapter by briefly
covering multiple third-party libraries. These libraries are widely used by many
applications, contributed by many developers, and are a way to reduce our development
time and add many features without the complexity of having to develop them.

In the next chapter we will cover how to store information locally on the device. We have to
make sure our application works properly whenever the device has no connection and
avoid downloading information again and again. For performance reasons, responsiveness
of our application and to save some data from the user's data plan.

[213]

Permanent Data

Even though Internet connection has improved quite noticeably in recent years and most
mobile users have a data plan, there are always situations where we can't rely on mobile
data. This is because either the user is in an area without network coverage or the user is
not willing to pay for roaming costs, assuming that they are traveling to another country. In
these situations, our application will benefit from having some data stored in the device
itself to allow the user to work in, what we call, offline mode. With this, we will not only
allow the user to do some work, but also greatly improve the user experience, as being able
to store data on the device will reduce the time the application will take to display
information.

In this chapter, we will explain different mechanisms to store data locally on the device:
from how to store basic settings using SharedPreferences and writing internal and external
files to how to use a SQLite database for a more complex way of storing data.

Storing preferences

One of the easiest ways to store information from our application is to store application
preferences. Android provides us with a class named sharedPreferences to do this;

however, it can be used to store anything that can be represented by a key-value. Refer to ht
tp://developer.android.com/reference/android/content/SharedPreferences.html

for more information.

Permanent Data

Initialization

To use the SharedPreferences class, we have to get a reference to a preferences file. To do
this, we can simply use the get SharedPreferences (String name, int mode) method

in our context; refer to
http://developer.android.com/reference/android/content/Context.html#getShare

dPreferences (java.lang.String, int). Alternatively, if we only need one single
preference file, we can always use getPreferences (int mode) from our activity.
Context.getPreferences will internally call get SharedPreferences and use the class
name of the activity as the filename.

There are three different modes to get the preferences file:

e MODE_PRIVATE or : Here, only the application that created the file will be able to
access it.

e MODE_WORLD_READABLE: Here, all other applications will be able to read the file.
The use of this flag is discouraged, and it is deprecated since API level 17. To give
access to other applications to the application data, a service,

ContentProvider, or BroadcastReceiver should be used to expose the data
in the most appropriate way. It is not guaranteed that it will remain in this state
after a backup and restore operation.

e MODE_WORLD_WRITABLE: In this, all other applications will be able to read and
write data. As with the previous flag, the use of this flag is discouraged and
deprecated, and it is not guaranteed that it will remain in this state after a backup
and restore operation.

More information about file-opening modes is available at
http://developer.android.com/reference/android/content/Context

.html.

Basic use

Let's write a simple application to see how can we write and read some values. We can start
by creating a simple layout file with two checkboxes:

[215]

Permanent Data

@ activity_mainxml x

<?xml version="1.8" encoding="utf-8"7>
[= <Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent”
android:layout_height="match_parent"
android:paddingBottom="@dimen/activity_vertical_margin"
android:paddingLeft="@dimen/activity_horizontal_margin”
android:paddingRight="@dimen/activity_horizontal_margin"
android:paddingTop="@dimen/activity vertical_margin"
tools:context="com.packt.rrafols.example.MainActivity">

<CheckBox
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android: text="@string/checkboxl"
android:id="@+id/checkBox1"
android:layout_alignParentTop="true"
android:layout_alignParentStart="true" /=

<CheckBox
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android: text="@string/checkbox2"
android: id="@+id/checkBox2"
android:layout_below="@+id/checkBoxl™
android:layout_alignParentStart="true" /=

</RelativelLayout>

Not too fancy, but this will get the job done. Going back to our activity, we will save the
status of the checkboxes in the onDestroy method. So every time the application is closed
and opened again, it will preserve the status of the checkboxes.

In order to do so, we need to get a SharedPreferences.Editor object. Using the Editor
object, we can save some primitive values:

® boolean

e String

e int

e float

e long

e Set of strings

[216]

Permanent Data

For more information on the SharedPreferences.Editor class, refer
to http://developer.android.com/reference/android/content/SharedP
references.Editor.html.

We will only store the status of the two checkboxes by calling their i sChecked method:

@0verride
il protected void onDestroy() {

SharedPreferences sharedPreferences
SharedPreferences.Editor prefEditor

= getPreferences(Context.MODE_PRIVATE);

= sharedPreferences.edit();
prefEditor.putBoolean{getString{R.string.checkboxl_property), checkboxl.isChecked(});
prefEditor.putBoolean({getString(R.string.checkboxZ property), checkbox2.isChecked());
boolean saved = prefEditor.commit();

if(!saved) Log.e(TAG, "Error saving to SharedPreferences");

super.onDestroy();

To save the changes, we can either use commit () or apply (). The latter will apply the
changes to the memory and trigger an asynchronous task to write the new values to a disk.
If we read from a SharedPreference object immediately after calling apply (), we will
get the right values because SharedPreference objects are singletons and apply () stores
all the changes to the memory in a flash. If we call commit (), it will block the current
thread until it finishes writing the file.

Now that we are persisting the status of the checkboxes when the application finishes, we
need to read those values when the application starts and do something useful with them.
In our onCreate method, we check whether the properties exist in

the sharedPreferences file, and if they do, we toggle the status of the checkbox to either
check or uncheck.

[217]

Permanent Data

The property key is stored in the St rings file, so we can access it from any part of the code
without having to type it again.

@0verride
al protected void onCreate(Bundle savedInstanceState) {
super.onCreate{savedInstanceState);
setContentView(R. layout.activity_main);

SharedPreferences sharedPreferences = getPreferences(Context.MODE_PRIVATE);

checkboxl = {CheckBox) findViewById(R.id.checkBoxl);
String checkbox1Property = getString{R.string.checkboxl_property);
if (sharedPreferences.contains{checkboxlProperty)) {
checkboxl. setChecked(sharedPreferences.getBoolean(checkbox1Property, false));
}

checkbox2 = (CheckBox) findViewById(R.id.checkBox2);
String checkbox2Property = getString(R.string.checkbox2_property);
if (sharedPreferences.contains{checkbox2Property)) {
checkbox2. setChecked{sharedPreferences.getBoolean(checkbox2Property, false));
}

We also specify a default value and if the key is not found, the getBoolean method will
return false and leave the checkbox unchecked.

We could actually slightly reduce the code to the following;:

@lverride
al protected void onCreate({Bundle savedInstanceState) {
super.onCreate{savedInstanceState);
setContentView(R. layout.activity main);

SharedPreferences sharedPreferences = getPreferences{Context.MODE PRIVATE);

checkboxl = (CheckBox) findViewById{R.id.checkBoxl);
String checkbox1Property = getString(R.string.checkboxl_property);
checkboxl. setChecked{sharedPreferences.getBoolean{checkbox1Property, false));

checkbox2 = (CheckBox) findViewById(R.id.checkBox2);
String checkbox2Property = getString(R.string.checkbox2_property);
checkbox2. setChecked(sharedPreferences.getBoolean{checkbox2Property, false));

As with the default behavior of getBoolean and the other getters, there is no need to check
whether the key exists beforehand.

[218]

Permanent Data

Additional features

In addition to the standard read/write operations, SharedPreferences allows us to
directly remove the keys using the remove method and register

an onSharedPreferenceChangeListener listener to get notified whenever a key/value is
changed in our SharedPreferences file.

According to the documentation, SharedPreferences does not store a strong reference of
the listener, so it is the responsibility of the code calling
registerOnSharedPreferenceChangeListener to keep a strong reference of it. For
example, as per the following code, we log in whenever a preference is changed:

private SharedPreferences.0OnSharedPreferenceChangeListener preferenceChangelListener = new
SharedPreferences.OnSharedPreferenceChangeListener() {
@0verride
B[public void onSharedPreferenceChanged({SharedPreferences sharedPreferences, String key) {
Log.i(TAG, key + " has been changed on SharedPreferences");
}
b

We need to change the onCreate method as well to register the listener,
sharedPreferences.registerOnSharedPreferenceChangelistener (preferenceCh

angelListener) ;.

More information on SharedPreferences is available at
http://developer.android.com/training/basics/data-storage/shared

-preferences.html.

Files

Shared preferences are the perfect solution if we want to store key-value sets of data, but if
we want to store some complex data, it is not enough. In addition to shared preferences,
Android allows us to read and write files in its file system. Depending on our needs, we can
use internal or external storage. For information on file storage, check

out http://developer.android.com/training/basics/data-storage/files.html.

Let's look at the differences between internal and external storage.

[219]

Permanent Data

Internal storage

It is highly recommended that you save files in internal storage when these files need to be
kept private from other applications. Moreover, Android guarantees that all the files saved
in internal storage will be removed when the user uninstalls the application.

To create a file in internal storage, we need to get the base directory first. We can easily get
it from the current context by calling the getFilesDir method. If we have to write a
temporary file or, for example, an on-disk cache, we should call the get CacheDir method.
We should not store anything critical in the cache directory as Android might delete it at
any time and without any warning if the system is running low on space.

As an example, to facilitate comparison, let's store and retrieve the same information as
with did before with SharedPreferences.

To simplify our data, we will just store two bytes: the first one will indicate the status of the
first checkbox and the second will do the same for the second checkbox. If the value of a
byte is 1, the respective Checkbox will be checked. If the value is 0, the checkbox is not
checked:

private void saveState() {
FileQutputStream fos = null;
try {
File settingsFile = new File(getFilesDir{), "settings.properties”);
fos = new FileQutputStream(settingsFile);
fos.write{checkboxl. isChecked() 7 1 : @);
fos.write{checkbox2.isChecked{() 7 1 : @);
fos.flush{);
fos.close();
} catch(IDException e) {
Log.w{TAG, "Exception writing settings file”, e);
} finally {
if(fos !'= null) {
try {
fos.close();
} catch{I0Exception e) {}

[220]

Permanent Data

Once we create a file using getFilesDir and an appropriate filename, we need to
open FileOutputStream so we can start writing data to it. To read data, we need to follow

a similar approach once we have the file reference;
open FileInputStream and read two bytes from it. If the file does not exist, it means it is

we check whether the file exists and then

the first time we have run the application or the internal file has been deleted.

private void readState() {
FileInputStream fis = null;
try {

if(settingsFile.exists{)) {

checkboxl. setChecked(fis.read()

checkbox2. setChecked(fis.read()
} else {

Log.i{TAG, "Settings file does not

}
} catch(IOException e) {
Log.w{TAG, “Exception reading settings
} finally {
if(fis != null) {
try {
fis.close();
} catch(IOException e) {}

File settingsFile = new File{getFilesDir(), "settings.properties");

fis = new FileInputStream({settingsFile);

1);
1);

exist yet. Setting default properties");

file", e);

Alternatively, instead of having to get a file and the path with getFilesDir, we could

use openFileOutput and openFileInput, which returns FileOutputStream

or FileInputStream directly:

private void saveState{) {
FileQutputStream fos = null;
try {

fos.flush();
fos.close();
} catch{IDException e) {

} finally {
if(fos != null) {
try {
fos.close();
} eateh(IOException e) {}

fos = openFileQutput("settings.properties”, Context.MODE_PRIVATE);
fos.write{checkboxl,isChecked() 7 1 : @);
fos.write(checkbox2. isChecked() ? 1 : 8);

Log.w(TAG, "Exception writing settings file", e);

[221]

Permanent Data

One small thing we have to pay attention to is that we can't check whether the file exists, as
we do not have the File reference; however, openFileInput will
throw FileNotFoundException if the file we're trying to open does not exist.

private void readState() {
FileInputStream Tis = null;
try {
fis = openFileInput{"settings.properties”);
checkboxl. setChecked{fis. read() == 1);
checkbox2.setChecked{fis.read() = 1);
} catch{FileNotFoundException fnfe) {
Log.i{TAG, "Settings file does not exist yet. Setting default properties");
} catch{IDException e) {
Log.w{TAG, "Exception reading settings file", e);
} finally {
if(fis != null) {
try {
fis.close();
} catch{IDException e} {}

External storage

From the point of view of writing and reading files, using external storage is the same thing
as using internal, but there are some details we have to pay attention to.

External storage might become unavailable at any time. Most of the time, external storage
refers to a removable storage medium; however, some devices might mount the external
storage area as a partition of the total storage of the device. It goes without saying that, if
the external storage is a removable medium, it might be removed or ejected at any time.
Also, external storage can be mounted as USB storage and then be logically, not physically,
ejected from the device.

[222]

Permanent Data

To check whether the external storage is mounted and we can write or at least read from it,
we can use the code example shown in the official documentation; refer to
http://developer.android.com/guide/topics/data/data-storage.html#filesExternal:

/* Checks if external storage is available for read and write */
public boolean isExternalStorageWritable() {
String state = Environment.getExternalStorageState();
if (Environment.MEDIA_MOUNTED.equals(state)}) {
return true;

}

return false;

/* Checks if external storage is available to at least read */
public boolean isExternalStorageReadable() {
String state = Environment.getExternalStorageState();
if (Environment.MEDIA_MOUNTED.equals(state) ||
Environment.MEDIA_MOUNTED_READ ONLY.eguals(state)) {
return true;
}

return false;

In addition to this, files stored in external storage can be read by anyone. For example, if we
write the same settings.properties file as before in the external storage, we could
retrieve it by doing the following:

adb pull
/storage/emulated/0/Android/data/com.packt.rrafols.example/files/settings.p
roperties

If we try to do the same with the internal file, we will get the following error:

adb pull /data/user/0/com.packt.rrafols.example/files/settings.properties
adb: error: remote object
'/data/user/0/com.packt.rrafols.example/files/settings.properties' does not
exist

Another thing we have to check is permissions. If we are targeting devices, such as an
Android version lower than KitKat (4.4 or API level 19), we would need to request
permission to read and write the external storage. Write permission includes read access,
but read permission does not include write access. We can add this permission when
needed by adding the maxsdk keyword and limiting it to AP level 18:

[223]

Permanent Data

<manifest ...»
<uses-permission android:name="android.permission.WRITE_EXTERNAL STORAGE"
android:maxSdkVersion="18" />

</manifest>»

Starting with Android 4.4, permissions are only required if the application wants to access
or write files to the device's public folders. To get a public folder, we could use the
Environment.getExternalStoragePublicDirectory (String type) method and
specify the type of file we want to access or write. For example, to save a picture, we can get
the path of the pictures folder:

File path =
Environment.getExternalStoragePublicDirectory (Environment .DIRECTORY_PICTURE
S)i

As the folder may not have been created, it is always a good practice to call
path.mkdirs (). If the directory already exists, it will not do anything.

To get more information about the public folders available, check the
Environment class documentation

at http://developer.android.com/reference/android/os/Environment.
html.

Additional methods

Android also provides us with some more methods to manage the file system:

e delete: Thisis to delete a file (http://developer.android.com/reference/and
roid/content/Context.html#deleteFile(java.lang.String))

e fileList: This returns a list of private files (http://developer.android.com/r
eference/android/content/Context.html#fileList ())

[224]

Permanent Data

SQLite

We have seen how to store key-value data in the SharedPreferences class and more
complex data in the form of files in either internal or external storage. But, if we want to
store structured data, we should go for a database-like storage option. Android provides us
with an implementation of SQLite we can use to store and query data.

More information about SQLite is available at https://www.sglite.org

/. For more information on the SQLite applied to Android, refer to http:/
/developer.android.com/training/basics/data-storage/databases.

html.

Schema and contract definition

As a good practice, it is recommended that you define your database structure in a contract
class. Doing it this way will make things very easy, for example, changing a column name
and propagating all the changes to everywhere the database is used.

In addition to this, if we implement the BaseColumns interface, it will automatically add an
_1ID field, which we can use as the primary
autoincrement key.

Returning to the example we used in chapter 5, Remote Data, in order to get finance
information using the Yahoo finance API with retrofit, we could store the data in a local
database. Just after we receive the response on the retrofit callback, we will store it in the
database.

public static abstract class ModelContractElement implements BaseColumns {
public static final String TABLE _NAME = "element";

public static final String COLUMN_NAME _NAME = "name";
public static fimal String COLUMN_NAME_PRICE = "price";

public static final String COLUMN_NAME_SYMBOL = "symbol";

public static final String EOLWN_NAHE:TS = "ts";
public static final String COLUMN_NAME_TYPE = "type";
public static final String COLUMN_NAME_UTCTIME = "time";

public static final String COLUMN_NAME_VOLUME = "volume";

In this contract class, we could also define other constants required by the database
implementation. For example, we could define the filename to be used; the version of the
database; and (to keep it together), the SQL queries we need to, for example, create or
destroy tables.

[225]

Permanent Data

In the full class illustrated in the following screenshot, we can see we defined the SQL query
to create the table. We can also see that it refers to ModelContractElement ._1ID, the
inherited field from BaseColumn, as the primary key.

b= ModelContract.java x

package com.packt.rrafols.example.storage;
import android.provider.BaseColumns;
public final class ModelContract {

public static final String DB_NAME
public static final int DB_VERSION

"model.db";
1;

private ModelContract() {}

public static abstract class ModelContractElement implements BaseColumns {
public static fimal String TABLE_NAME = “element”;

public static fimal String COLUMN_NAME_NAME = "name";
public static fimal String COLUMN_NAME_PRICE = "price";
public static fimal String COLUMN_NAME_SYMBOL = "symbol";
public static final String COLUMN_NAME_TS = "ts";
public static final String COLUMN_NAME_TYPE = "type";
public static final String COLUMN_NAME_UTCTIME = "time";
public static final String COLUMN_NAME VOLUME = "volume";
}

public static final String TEXT_TYPE

public static final String COMMA_SEP W3

public static final String SQL_CREATE_ENTRIES =

"CREATE TABLE " + ModelContractElement.TABLE NAME + ™ (" +

ModelContractElement._ID + ™ INTEGER PRIMARY KEY," +
ModelContractElement. COLUMN NAME NAME + TEXT _TYPE + COMMA_SEP +
ModelContractElement. COLUMN NAME PRICE + TEXT _TYPE + COMMA_SEP +
ModelContractElement. COLUMN_NAME SYMBOL + TEXT_TYPE + COMMA_SEP +
ModelContractElement. COLUMN_NAME TS + TEXT_TYPE + COMMA_SEP +
ModelContractElement. COLUMN_NAME_TYPE + TEXT_TYPE + COMMA_SEP +
ModelContractElement. COLUMN_NAME UTCTIME + TEXT_TYPE + COMMA_SEP +
ModelContractElement. COLUMN_NAME_VOLUME + TEXT_TYPE +

"

" TEXT";

Note that, in order to avoid anyone using this contract to make an instance of this class, the
constructor has been declared private. In addition to this, the class is final, thereby
preventing anybody from extending it as well.

To read more about contract classes, take a look at the content provider
documentation at http://developer.android.com/guide/topics/provi

ders/content-provider-basics.html.

[226]

Permanent Data

Helper implementation

Android provides us with a helper class called SQLiteOpenHelper to manage everything
related to database creation and its upgrade and downgrade. We just have to extend it and,
at least, implement the onCreate (SQLiteDatabase) and onUpgrade (SQLiteDatabase,
int, int) methods with the logic of our database. There are other methods we can
implement if we need them, but they are not mandatory, such

as onDowngrade (SQLiteDatabase, int, int) and onOpen (SQLiteDatabase). Visith
ttp://developer.android.com/reference/android/database/sglite/SQLiteOpenHelp

er.html for more information on Android documentation.

Let's just build a basic implementation using the SQL query we defined before in the
contract to create the database:

C ModelStorageHelper java x
package com.packt.rrafols.example.storage;
import android.content.Context;

import android.database.sqlite,SQLiteDatabase;
import android.database.sqlite.SQLiteOpenHelper;

public class ModelStorageHelper extends SQLiteOpenHelper {
public ModelStorageHelper(Context context) {
super(context, ModelContract.DB_NAME, null, ModelContract.DB_VERSION);
}

@0verride
@l public void onCreate(SQLiteDatabase db) { db.execSQL(ModelContract.SQL_CREATE ENTRIES); }

@0verride
af public void onDowngrade(SQLiteDatabase db, int oldVersion, int newVersion) {}

@0verride
B public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {}

Once we have the basics, we could write the specific implementation to store Model objects,
although we will only store the field values instead of the whole model. In order to do so,
first we need to get writeable access to the database. SQLiteOpenHelper provides us with
two simple methods to access the database: getWritableDatabase

and getReadableDatabase. The latter will return the same database object as the first
method unless there is an issue or something crops up that prevents the database from
being written.

[227]

Permanent Data

Using the access to the database, we could call an insert operation with the values of all the
fields in the model; refer to the following example:

public void storeModel(Model model) {
SQLiteDatabase db = getWritableDatabase();

for(ResourceWrapper resourceWrapper : model.getList().getResources()) {
Resource res = resourceWrapper.getResource();
Fields fields = res.getFields();

ContentValues values = new ContentValues();
values.put(ModelContract.ModelContractElement.COLUMN_NAME NAME, fields.getName());
values.put(ModelContract.ModelContractElement.COLUMN_NAME PRICE, fields.getPrice());
values.put(ModelContract.ModelContractElement. COLUMN_NAME SYMBOL, fields.getSymbol());
values.put(ModelContract.ModelContractElement.COLUMN_NAME_TS, fields.getTs());
values.put(ModelContract.ModelContractElement. COLUMN_NAME_TYPE, fields.getType());
values.put(ModelContract.ModelContractElement.COLUMN _NAME_UTCTIME, fields.getUtctime());
values.put(ModelContract.ModelContractElement.COLUMN_NAME VOLUME, fields.getVolume());

long newRowId = db.insert(ModelContract.ModelContractElement.TABLE_NAME, null, values);
Log.d(TAG, "storing rowid: " + newRowld);

Now that we have some data stored locally in a database, let's see how we can retrieve the
data stored. First, we need to create a projection of the columns we will be using after
executing our query. Just creating an array with the constants we defined in our contract
will do:

Stringl[] projection = {
ModelContract.ModelContractElement._ID,
ModelContract.ModelContractElement.COLUMN_NAME_NAME,
ModelContract.ModelContractElement.COLUMN NAME PRICE,
ModelContract.ModelContractElement.COLUMN NAME SYMBOL,
ModelContract.ModelContractElement.COLUMN_NAME_TS,
ModelContract.ModelContractElement.COLUMN NAME_TYPE,
ModelContract.ModelContractElement. COLUMN_NAME UTCTIME,
ModelContract.ModelContractElement.COLUMN_NAME_VOLUME

I

[228]

Permanent Data

Then, when we execute the query with that projection, we will have a Cursor object with
all of the data. We could also use null as the projection, but then we will get all of the data.
Retrieving more data than we will use is not good practice:

String sortOrder = ModelContract.ModelContractElement._ID + " DESC";

SQLiteDatabase db = getReadableDatabase();
Cursor cursor = db.query(ModelContract.ModelContractElement. TABLE_NAME,
projection,
null,
null,
null,
null,
sortOrder);

So, in order to get the data from Cursor, we will have to iterate. Therefore, as long as the
cursor is not positioned after the last elements, we will retrieve the object from the database
and store it in a local list so that it can be easily manipulated by Java classes in the memory:

LinkedList<Fields> fieldList = new LinkedList<>();

cursor.moveToFirst();
while (!cursor.isAfterLast()) {
Fields field = new Fields();
field.setName(cursor.getString(
cursor.getColumnIndex(ModelContract.ModelContractElement. COLUMN_NAME_NAME))) ;
field.setPrice(cursor.getString(
cursor.getColumnIndex (ModelContract.ModelContractElement. COLUMN_NAME_PRICE)));
field.setSymbol(cursor.getString(
cursor.getColumnIndex(ModelContract.ModelContractElement. COLUMN_NAME SYMBOL)));
field.setTs(cursor.getString(
cursor.getColumnIndex(ModelContract.ModelContractElement. COLUMN_NAME_TS)));
field.setType(cursor.getString(
cursor.getColumnIndex(ModelContract.ModelContractElement. COLUMN_NAME_TYPE)));
field.setUtctime(cursor.getString(
cursor.getColumnIndex (ModelContract.ModelContractElement. COLUMN_NAME_UTCTIME)));
field.setVolume(cursor.getString(
cursor.getColumnIndex(ModelContract.ModelContractElement. COLUMN_NAME_VOLUME)));

fieldList.add(field);
cursor.moveToNext();

cursor.close();

String sortOrder = ModelContract.ModelContractElement._ID + " DESC";

SQLiteDatabase db = getReadableDatabase();
Cursor cursor = db.query(ModelContract.ModelContractElement.TABLE_NAME,
projection,
null,
null,
null,
null,
sortOrder) ;

[229]

Permanent Data

Third-party libraries

We have seen how to store data in multiple ways but, as with previous chapters, there are
many libraries out there that simplify this job. As usual, depending on what your project
requires and common sense, we recommend that you either use a third-party library or
build your own implementation. If you wish to use a third-party library, let's briefly talk
about Realm, nttp://www.realm.io.

Realm

Realm is a mobile database that aims to replace SQLite. For more information, full
examples, and documentation go to the official website.

For details about the latest Java and Android release, refer to https://realm.io/docs/jav
a/latest/.

To start with Realm, we need to add the dependencies to our gradle file. In our top folder
root, add the following:

buildscript {
repositories {
jcenter ()
t
dependencies {
classpath "io.realm:realm-gradle-plugin:1.1.0"
t
t

If we already have jcenter as the repository, we just need to add the line with the classpath
pointing to Realm. In the app folder, we need to add the following to apply the plugin:

apply plugin: 'realm-android'

[230]

Permanent Data

Furthermore, if we want to reuse the code as much as possible from the previous case, we
will implement a ModelStorage interface and change all the ModelStorageHelper
references to ModelStorage:

1 ModelStorage java *

package com.packt.rrafols.example.storage;

import com.packt.rrafols.example.model,Fields;
import com.packt.rrafols.example.model.Model;

import java.util.List;
®, public interface ModelStorage {

LS void storeModel(Model model);
o List<Fields> retrieveFieldList();

Both the SQLite implementation and the new Realm implementation of the persistence
layer will implement this simple interface. The real implementation is quite simple and
straightforward:

© ' ModelStorageRealm java *

package com.packt.rrafols.example.storage;
import ...

public class ModelStorageRealm implements ModelStorage {
private static final String TAG = ModelStorageRealm.class.getSimpleName();

private RealmConfiguration realmConfig;
private Realm realm;
private Context context;

public ModelStorageRealm{Context context) { this.context = context; }

@0verride
] public List<Fields> retrieveFieldList() {
checkAndCreate():

return realm.where(Fields.class).findAll();
}

@0verride
o public void storeModel(Model model) {
for(ResourceWrapper resourceWrapper : model.getList().getResources()) {
Resource res = resourceWrapper.getResource();
Fields fields = res.getFields();

checkAndCreate();

realm.beginTransaction();
realm.copyToRealm{fields);
realm.commitTransaction();

}

private void checkAndCreate() {
if(realm = null) {
realmConfig = new RealmConfiguration.Builder(context).build();
realm = Realm.getInstance(realmConfig);

[231]

Permanent Data

To persist an object, we use the copyToRealm method; to return the elements in a list, we
can use the findal1l method on the where clause of the filter. In addition, to be able to
persist instances of the Fields class, we have to modify the Fields class to extend

from RealmObject:

C Fields.java x

package com.packt.rrafols.example.model;
import io.realm.RealmDbject;

8 public class Fields extends RealmObject {

Summary

In this chapter, we learned how to persist some data to the local storage of the device. We
learned how to write and read from a key-value preferences file and a standard file and
how to use SQLite or a third-party database library. Finally, we briefly saw how to integrate
Realm and how to convert the example from a previous chapter to use Realm.

[232]

Testing Your Application

OK! You have built your mobile application and you are ready to publish it to the store, but
how do you know the application will work the way it was designed and will not crash? In
addition to this, how do you know you did not break any functionality when you added
that last-minute change to one of the screens? Even if you manually tested the change, there
might be something related to your change you may have missed or forgotten to test.

In this chapter, we will see how to write automatic tests for your application, covering
topics that range from testing your application logic to application Ul and navigation. This
does not mean everything will be automatically tested and there will be no need for any
further manual and exploratory tests, but adding automatic tests as early as possible when
developing software will help us identify and discover issues in the very early stages of our
development. As documented multiple times, the cost of fixing software development
defects is much smaller if done in the early stages, by factors of 50 to 200, rather than in the
later stages, for instance when our application is already published and distributed.

This was originally published in the Understanding and Controlling Software Costs paper back
in 1988.

Barry W. Boehm and Philip N. Pappacio, Understanding and Controlling Software Costs, IEEE
Transactions on Software Engineering, Vol. 14, issue: 10, p. 1466, Oct. 1988,
http://ieeexplore.ieee.org/xpl/articleDetails. jsp?arnumber=6191.

This is also crucial when working in teams. Developing automatic tests is an easier way to
verify, if tests have been done properly, that nothing critical is broken when merging code
from multiple developers. This principle applies perfectly to situations where you have to
build one functionality on top of another, which is already built. By running automatic
tests, you can quickly check whether the old functionality and features still work as
intended.

Testing Your Application

Testing logic

Usually, the most straightforward tests you can write for your applications are unit tests. As
the name indicates, each unit test should test a single unit or individual piece of the
software and should be relatively simple. These types of tests are useful, for example, to
check whether the logic or the business logic of your application is working as intended. If
done right, logic should be isolated or abstracted from other components and even from
Android SDK classes and methods. It could be run directly on the IDE, Android Studio, or
even from the command line.

To show how to create some simple unit tests in your application, we will write a small and
simple calculator application and write some tests for it. Later, we will add some more
functionality so we will see other kinds of test in action.

Simple calculator application

The aim of this calculator application is to provide an example of how to create and run
tests, so the functionality aspect will be very limited and we will not focus on how to build
the Ul and interactions. It will only contain two EditText fields, where we can put the
numbers, and a TextView field to show the result and two buttons, one to perform an
addition operation and another to perform a multiplication operation.

CalculatorTestExample

Value 1 Value 2

ADD MULTIPLY

[234]

Testing Your Application

All of the calculation logic will be placed in a specific class, isolated from any other
functionality of the application. Let's call this class CalculatorLogic. We will implement
only two straightforward methods to add and multiply long numbers:

@ static long add(long x, long y) {
return x + y;
}
@ static long multiply(long x, long y) {
return x x y;
}

Also, we'll add two additional methods to support addition and multiplication from
numbers provided as strings with the obvious checks:

final static String MOT_A_NUMBER = "“NaN";

static String add(String xs, String ys) {
if(xs == null || ys == null || xs.length() == @ || ys.length() == @)

return NOT_A_NUMBER;

try {
long x = Long.parselLong(xs);
long y = Long.parseLong(ys);

long result = add(x, y);
return String.valueOf(result);

} catch(NumberFormatException e) {
return NOT_A_NUMBER;

}

static String multiply(String xs, String ys) {
if(xs == null || ys == null || xs.length() == @ || ys.length({) == @)
return NOT_A_NUMBER;

try {
long x = Long.parseLong(xs);
long y = Long.parseLong(ys);

long result = multiply(x, y);
return String.valueOf(result);

} catch(NumberFormatException e) {
return NOT_A_NUMBER;

}

As you can see, we will return the constant NOT_A_NUMBER if any string does not contain a

number or is empty or null.

[235]

Testing Your Application

Unit tests

After we create the project, we will be able to see two classes in green in the Android project
structure: one is ExampleInstrumentationTest and the other is ExampleUnitTest. As
we will see later, instrumentation tests are those tests that require the components of the
Android framework or, for instance, an application context. On the other hand, plain unit
tests only require the class logic and plain Java dependencies.

it Android v © 5| %
Caapp
1 manifests
[java
[=1 com.packt.rrafols.calculatortestexample
£ & CalculatorActivity
©) o CalculatorLogic
[21 com.packt.rrafols.calculatortestexample (androidTest)
& % ExamplelnstrumentationTest
=1 com.packt.rrafols.calculatortestexample (test)
& % ExampleUnitTest

Cares

Let's focus on the ExampleUnitTest class file first; the code is shown in the following
screenshot:

& ExampleUnitTestjava *

import org.junit.Test;

import static org.hamcrest.CoreMatchers.is;
import static org.junit.Assert.*;

% public class ExampleUnitTest {

@Test

public void addition_isCorrect() throws Exception {
assertEquals(4L, StaticCalculatorLogic.add(2L, 2L));
assertEquals(2L, StaticCalculatorlLogic.add(@L, 2L));
assertEquals(BL, StaticCalculatorLogic.add(eL, @));

-

@Test
S public void multiplication_isCorrect() throws Exception {
assertEquals(8L, StaticCalculatorLogic.multiply(2L, 4L));
assertEquals(@BL, StaticCalculatorLogic.multiply(@L, 258L));
assertEquals(125L, StaticCalculatorLogic.multiply(25L, 5L));

[236]

Testing Your Application

We have implemented two tests. Any method preceded by the @Test annotation will be
executed as a unit test. These two tests are responsible for making sure that the add

and multiply methods work as they are supposed to work. Here, we added some random
but simple tests; however, if we leave aside that nothing critical core functionality, edge
cases will be the next main things to test.

We have been using a static class, very easy to use in a test; however, if we need an instance
of a class or have some initialization to do before every test, we could easily do so in any
method as long as it has the @Before annotation. To prevent side-effects, JUnit executes
every test, so each method is annotated with @Test in a new instance of the class. Before the
execution, JUnit will always call the methods annotated with @BeforeTest; after the
execution, it will call test methods annotated with @AfterTest. So it is easy to allocate and
set up anything that is needed for every test and then shut it down in a clean way.

If we need to initialize something that has to be shared between all the tests, we can do so
by creating a static method and adding the @BeforeClass annotation. For example,

this will be the right approach if we want to initialize a huge data array or read and process
a big file during our tests.

Changing our class from a static reference to creating an instance of the logic, and changing
the methods in CalculatorLogic to be instance methods rather than static methods, will
look like the following class:

& CalculatorUnitTests java

+ public class CalculatorUnitTests {
private CalculatorLogic logic;

¢ void initClass() {
for the moment being

@Before
public void initTest() {
logic = new CalculatorLogic();

@Test
3 public void addition_isCorrect() throws Exception {
assertEquals({4L, logic.add{2L, 2L));
assertEquals(2L, logic.add(eL, 2L));
assertEquals(@L, logic.add(eL, @));
}

@Test
b public void multiplication_isCorrect() throws Exception {
assertEquals(BL, logic.multiply(2L, 4L));
assertEquals(@L, logic.multiply(eL, 25eL));
assertEquals(125L, logic.multiply(25L, 5L));
}

[237]

Testing Your Application

We also added methods to CalculatorLogic to calculate these operations from strings;
let's add some more tests for those methods:

-

@Test

public void stringAddition_isCorrectForPositiveNumbers() throws Exception {
assertThat("30", is(logic.add("25", "5")));
assertThat("5", is(logic.add("8", "5")));

}

@Test

public void stringAddition_isCorrectForNegativeNumbers() throws Exception {
assertThat("20", is(logic.add("25", "-5")));
assertThat("-5", is(logic.add("2e", "-25")));

}

@Test

public void stringAddition_isCorrectForInvalidNumbers() throws Exception {
assertThat(CalculatorLogic.NOT_A_NUMBER, is(logic.add(null, null)));
assertThat(CalculatorLogic.NOT_A_NUMBER, is(logic.add("25", null)));
assertThat(CalculatorLogic.NOT_A_NUMBER, is(logic.add("", "")));
assertThat(CalculatorLogic.NOT_A_NUMBER, is(logic.add("Invalid Number", “dummy")));

We start seeing some tests, but how do we execute them? The easy way is to right-click on
top of the class in the Android project structure and select Run:

[238]

Testing Your Application

i Android - € == - I~ (@ CalculatorUnitTests java x
i l?aDpp fest @Before
maniiesrs public void initTest() {
v Cjava

logic = new CalculatorLogic();
v [E1com.packt.rrafols.calculatortestexample

£ ‘o CalculatorActivity

>
€ = CalculatorLogic hew

¥id addition_isCorrect() throws Ej

€@ LoginActivity Link C++ Project with Gradle tEquals(dL, logic.add(2L, 2L));

© = StaticCalculatorLogic ~tEquals(2L, logic.add(®L, 2L));

[*1 com.packt.rrafols.calculatol 3 Cut 3gx [tEquals(eL, logic.add(oL, @));
& % Examplelnstrumentati [Copy 3C
v [E1com.packt.rrafols.calculatol Copy Path O%8C

& & CalculatorUnitTests id multiplication_isCorrect() th

Copy as Plain Text “tE 3
- - quals{8L, log.'!.c.multip‘l.y(ZL, 4
& ExampleUnitTest Copy Reference N{¥C rtEquals(eL, logic.multiply(eL, 2!
= GE?!:S 2 {7 Paste sgy TtEquals(125L, logic.multiply(2sL
v (# Gradle Scripts
@ build.gradle (Project: Calculato L JUmP to Source #®1
@ bui
h bu;:f.gradle I[_':?Dd:‘rlel ;DIDJP Find Usages F7 id stringAddition_isCorrectForPo
I P [Jobal Frope - T] L L
Eﬁgradl:—i:::pe:spropenies cc‘:; Analyze 4 :;:g:i:o ‘x;ﬂm::a«::?:nzs :'5"
[El proguard-rules.pro (ProGuard Refactor >
[gradle.properties (Project Propt
(& settings.gradle (Project Setting Add to Favorites »)id stringAddition_isCorrectForhe
[local.properties (SDK Location) *tThat("20", is(logic.add("25", *
Browse Type Hierarchy ~H rtThat("-5", is(logic.add("2@8", *
Reformat Code L
Optimize Imports ~XO0
Delete... > Md stringAddition_isCorrectForIn

~tThat (CalculatorLogic.NOT_A_!
" ' 0 tThat (CalculatorLogic.NOT_A_NUMB
Run CalculatorbnitTests R 7ot (CalculatorLogic. NOT A
1% Debug 'CalculatorUnitTests' ~“0D -tThat({CalculatorLogic.NOT_A

i+ Run ‘CalculatorUnitTests' with Coverage

S Saue 'CalrulatarlinitTocte'

We will also check out a direct shortcut to run it. Once we press Run, Android Studio will
execute the test without an emulator or real device. We will get the results in the bottom
part of Android Studio, where we can check whether everything went fine, something
similar to the following screen:

« PP
p @@ LE I 13 » All 5 tests passed - 5ms
¥ + & CalculatorUnitTests (com.pacl 5ms /Library/Java/JavaVirtualMachines/jdk1.8.0_45.jdk/Contents/Home/bin/java ...

@ CalculatorUnitTests.string, 5ms
S @ CalculatorUnitTests.string, ome
= @ CalculatorUnitTests.multig oms
+

Process finished with exit code @

@ CalculatorUnitTests.additit 0ms
@ CalculatorUnitTests.string, 0ms

[239]

Testing Your Application

Android Studio will show us the number of tests that passed, the total time taken, and the

details of every test executed (whether passed or not and the time taken by that specific
test).

Discovering and fixing issues by creating tests

As mentioned earlier, in addition to the core functionality, we should test for edge cases
and special values. Let's see what happens if we add a test to check the addition of 1 to
Long.MAX_VALUE:

@Test
G public void addition_isCorrectEdgeCases() throws Exception {
assertEquals(0L, logic.add(Long.MAX_VALUE, 1L));
}

If we run the test, we can do it like before and run it with all the other tests. Alternatively,
we can just execute the test by pressing the small red, or green if the test has passed before
time, bullet placed on the left-hand side of the method.

@8 12 Z ¢+ ¥+ 0 » 1 test failed - 9ms

] U CalculatorUnitTests (com.packt.t 9ms /Library/Java/JavaVirtualMachines/jdk1.8.8_45.jdk/Contents/Home/bin/java ...
U addition_isCorrectEdgeCases “m :]

m java.lang.AssertionError:

% Expected :0
o] Actual 1-9223372036854775808
4] <Click to see difference>
] + <1 internal calls>
=

at org.junit.Assert,failNotEquals(A: Java:834) <2 internal calls>
at com.packt.rrafols. calculamrtestexample CalculatorUnitTests.addition_isCorre

‘(.-/

[240]

Testing Your Application

The test does not work, as when we add 1 to Long.MAX_VALUE, it does not return 0. It
actually returns Long.MIN_VALUE. We could add a test for this, but it does not seem to be

the right solution. We'd need to modify the code in such cases to throw an arithmetical
exception:

public long add(long x, long y) throws ArithmeticException {
long result = x + vy;

if(x > 0 && y > 0 & result < @) throw

new ArithmeticException("Numbers out of bounds: " + x + ", " + y);

if(x < 0 && y < 0 & result > @) throw
new ArithmeticException("Numbers out of bounds: " + x + ", " + y);
return result;

Then, we'd need to modify the test accordingly:

@Test(expected = ArithmeticException.class)

public void addition_isCorrectEdgeCases() throws Exception {
logic.add(Long.MAX_VALUE, 1L);
}

G

In this case, instead of writing an assert method call, we added an attribute to the @Test
annotation specifying that we will receive an ArithmeticException error.

If we execute the test now, we can see the test will pass:

@@ L2FE T ¢+ 40 &

) 1 test passed - 2ms
= CalculatorUnitTests (com.packt.| 2ms /Library/Java/JavaVirtualMachines/jdk1.8.08_45.jdk/Contents/Home/bin/java ...

@ addition_isCorrectEdgeCases 7rs !) g
o Process finished with exit code @

[241]

Testing Your Application

These tests can be easily run on the command line as well by running the following code:

./gradlew test

Results in XML format can be found at
<application path>/app/build/test-reports and in HTML format
at <application path>/app/build/reports/test.

For general information on unit tests in Android, refer to https://develo
per.android.com/training/testing/unit-testing/local-unit-tests

.html. And more information on JUnit is available
athttp://junit.org/junit4/.

Instrumentation tests

So far, the execution of tests has been quite easy as all of the code was independent of
Android SDK classes and their methods. But, what about those cases where we need a
context or something that Android runtime provides, such as SharedPreferences or

a Parcelable interface? This is called an instrumentation test, and it will be executed either
on our emulator or a real device.

In our previous example, we returned a constant string when the operation was invalid.
Let's change this constant and read it from our application resources, more specifically,
from the Strings.xml file.

public String NOT_A_NUMBER;

public CalculatorLogic(Context context) {
NOT_A_NUMBER = context.getResources().getString(R.string.not_a_number);
}

[242]

Testing Your Application

Let's build an instrumentation test to check whether this is working as well. If we look at
the Android project structure, we can see, next to the unit tests, there is a class with
instrumentation tests. In the instrumentation test class, we have to specify the class that will
act as the runner of the test, instead of the default runner: JUnit. As we want to run Android
instrumentation tests, we will specify the AndroidJuUnit4 class:

QRunWith (AndroidJUnit4.class)

There is also a size classification of the test; for instance, in our case, we could use the
@SmallTest annotation to specify that it will be a relatively small test that will not access
resources such as files, networks, or databases. Generally, we can assume small tests almost
as unit tests, medium tests as integration tests, and large tests as end-to-end tests. We could
use the following table, which is taken from a code-testing blogging site from Google, as a
reference point (refer to http://googletesting.blogspot.com.es/21/12/test-sizes.ht
ml):

Feature Small Medium Large
Network access localhost only ~ Yes
Database Yes Yes
File system access Yes Yes
Use external systems Discouraged Yes
Multiple threads Yes Yes
Sleep statements Yes Yes
System properties Yes Yes
Time limit (seconds) 60 300 900+

[243]

Testing Your Application

Leaving aside these details, we can use the previous annotations and mechanisms to
implement the tests:

o] ExamplelnstrumentationTest java *

package com.packt.rrafols.calculatortestexample;
~import ...

@5mallTest
@RunWith(AndroidlUnit4.class)
»» public class ExampleInstrumentationTest {

private CalculatorLogic legic;
private Context appContext;

@Before

public void initTest() {
appContext = InstrumentationRegistry.getTargetContext();
logic = new CalculatorLogic(appContext);

}

@Test
2 public void useAppContext() throws Exception {
String nan = appContext.getResources().getString(R.string.not_a_number);
assertThat(nan, is(logic.add(null, null)));

We used the InstrumentationRegistry class to get the current appContext variable so
that we could access the resources and get the not a number string.

For more methods and information about InstrumentationRegistry, refer to https://d
eveloper.android.com/reference/android/support/test/InstrumentationRegistry.

html.

If we run this test, it might take some time, as it has to build the APK and deploy it to either
a real device or an emulator and run it from there.

More information about instrumented tests is available at
https://developer.android.com/training/testing/unit-testing/instrumented-unit-t

ests.html.

To see how to run instrumented tests on Google Cloud Test Lab, check out https://develo

per.android.com/training/testing/start/index.html#run-instrumented-tests.

[244]

Testing Your Application

Testing integrations

Instrumentation tests also allow us to test the Android components we have in our
application, such as services and content providers. For example, in order to test a service,
not IntentService as it is not supported, we need to use ServiceTestRule.
ServiceTestRule will start and shut down our service for the duration of the tests. Once
ServiceTestRule is created, we can start or bind to our service, call methods directly, and
test its correctness.

For more information, refer to the Android documentation site at https://developer.andr

oid.com/training/testing/integration-testing/index.html.

Mocking Android dependencies

As we have seen, instrumented tests take much more time than unit tests. If we do not want
to depend specifically on the Android SDK classes and methods, we could mock them. We
could use Mockito as a mock framework, although we have to be aware that, by design, we
will not be able to mock any static method with Mockito.

To use it, we have to just add a reference to our app's build.gradle file:
testCompile 'org.mockito:mockito-core:1.10.19"'

And, as we did before, to run it with AndroidJuUnit4, set the @RunWith annotation in our
test to EQRunWith (MockitoJUnitRunner.class).

To mock any Android dependency, we have to add a @Mock annotation before the field
declaration.

We need to define the behavior; for example, if we are mocking the application context, we
can tell Mockito to return a specific constant string when the code requests for a string from
the resources:

when (appContext.getString (R.string.not_a_number)) .thenReturn (NaN) ;

[245]

Testing Your Application

Let's create a test with Mockito mocking the application context:

&' MockedCalculatorUnitTests java x

package com.packt.rrafols.calculatortestexample;

+import ...

@RunWith(MockitoJUnitRunner.class)
%, public class MockedCalculatorUnitTests {
private static final String NaN = "NaN";

private CalculatorLogic legic;

@ock
private Context appContext;

@Before
public void initTest() {
when(appContext.getString(R.string.not_a_number)).thenReturn(NaN);

logic = new CalculatorlLogic(appContext);

2

@Test
G public void useAppContext() throws Exception {
String nan = appContext.getString(R.string.not_a_number);
assertThat(nan, is(logic.add(null, null)));

If we run this test, it should run as fast as standard unit tests and there is no need to deploy
the APK file to the device or the emulator.

More information about mocking Android dependencies is available at
https://developer.android.com/training/testing/unit-testing/local-unit-tests.ht

ml#mocking-dependencies.

The source code along with more information about Mockito is available at https://githu

b.com/mockito/mockito.

Testing the Ul

Now that we have the mechanisms to test our application logic, and at the same time we're
sure nothing was broken when we added new functionality or modified the already

existing features, we could add some more tests to check whether the Ul behaves as it
should.

[246]

Testing Your Application

Writing Ul tests with the Espresso framework is quite similar to writing plain
instrumentation tests; the difference is in navigating and performing checks and actions

on Ul views and the elements on the screen. When a UI test is executed, the emulator or real
Android device will show the changes and actions in real time as if somebody was
triggering those actions.

Setup

To set up the Espresso framework, we will not require additional work if we have
configured our project for instrumentation tests already. We have to be sure that
our build.gradle file contains the Espresso dependencies:

androidTestCompile 'com.android.support.test.espresso:espresso-core:2.2.2"'
androidTestCompile 'com.android.support.test:runner:0.5"'

Be aware that Espresso is added to the androidTestCompile configuration and not the
standard compile, as we do not want to include espresso in our final application when
deployed to Google Play. For the same reason, JUnit and Mockito are added to

the testCompile configuration, but not to either of the standard compile

or androidTestCompile configurations.

For more information about build configurations in Gradle, check their documentation
at https://docs.gradle.org/current/userguide/artifact_dependencies_tutorial.html

In addition to this, to prevent errors from occurring once the process is automated—
elements appearing after a long animation, for instance—we should disable animations on
our device by toggling off the following options inside

Settings | Developer Options:

e Window animation scale
e Transition animation scale
e Animator animation scale

Once we have performed these simple steps, we can start using Espresso.

[247]

Testing Your Application

Creating Ul tests

To create a new UI test, we should create a new instrumentation test. Once this has been
created, in a way that is quite similar to standard instrumentation tests, we set the JUnit
runner to AndroidJUnit4; however, this time we use the @LargeTest annotation to
determine the size of the test. As the documentation states, as a rule of thumb, all UI tests
are large tests.

Let's create a test, which verifies that once we press the add button, the correct result
appears on the right-hand side of the field. In order to do this, we need to introduce some
values to both the Edit Text fields, simulate a button click, and then check TextView to see
whether the result is shown.

To achieve this, we will have to launch the activity first; we can use the ActivityTestRule
class, annotated by @Rule, to launch the activity we need before running the test. Even if
the activity is not the main activity, it will be launched:

& CalculatorUITestjava x
package com.packt.rrafols.calculatortestexample;
+import ...
@RunWith(AndroidlUnit4.class)

@LargeTest
b public class CalculatorUITest {

private String valuel = "1@";
private String value2 = "20";
private String result = "38";

@Rule
public ActivityTestRule<CalculatorActivity> calculatorActivityTestRule =
new ActivityTestRule<CalculatorActivity=(CalculatorActivity.class);

@Test
3 public void checkResultShown_calculatorActivity() {
onView(withId(R.id.valuel)).perform(typeText(valuel), closeSoftKeyboard());
onView(withId(R.id.value2)).perform(typeText(value2), closeSoftKeyboard()):
onView(withId(R.id.add_button)).perform(click());
onView(withId(R.id.result_viewer)).check(matches(withText(result)));

[248]

Testing Your Application

Once we have it, we can start performing our actions in all the screen elements by using the
EspressoAPI. For instance, check the imports of our previous example:

import android.support.test.filters.LargeTest;
import android.support.test.rule,ActivityTestRule;
import android.support.test.runner.AndroidlUnit4;

import org.junit.Rule;
import org.junit.Test;
import org.junit.runner.RunWith;

import static android.support.test.espresso.Espresso.onView;

import static android.support.test.espresso.action.ViewActions.click;

import static android.support.test.espresso.action.ViewActions.closeSoftKeyboard;
import static android.support.test.espresso.action.ViewActions.typeText;

import static android.support.test.espresso.assertion.ViewAssertions.matches;
import static android.support.test.espresso.matcher.ViewMatchers.withlId;

import static android.support.test.espresso.matcher.ViewMatchers.withText;

We can appreciate the use of the import static of Espresso classes. If we statically import a
static field or method, we could use it as if it was declared on our class directly. This avoids
a lot of boilerplate code and typing. More information about static imports is provided by
Oracle; refer

to http://docs.oracle.com/javase/1.5.0/docs/guide/language/static—import.html.

To trigger actions on views, we need to find them first. Using onview and ViewMatcher on
it, we could pinpoint the exact view where we would like to perform an action. For
instance, if we use the withId matcher, it will find a view that matches that exact ID. We
have to be careful, as there might be more than one view with that ID, and if that is the

case, Espresso will throw an AmbiguousViewMatcherException error. To avoid this, we
can use more matchers, and even combine them, to finally have one single view matching
our criteria. However, if we are too strict and not even a single view matches our criteria,
Espresso will throw NoMatchingViewException, so we always have to be careful.

[249]

Testing Your Application

Espresso uses Hamcrest matchers and provides many alternatives. Check out the full
documentation at https://developer.android.com/reference/android/support/test/

espresso/matcher/ViewMatchers.html.

More information about Hamcrest matchers is available
at http://hamcrest.org/JavaHamcrest/.

If you want to have a spinner or an adapter that shows lots of data, we can also filter by
data instead of using view properties. For example, we could use the following:

onView (withId(R.id.spinner_simple)) .perform(click());
onData (allOf (is (instanceOf (String.class)),
is("Americano"))) .perform(click());

To perform a click on the spinner with ID spinner_simple and then, find all the views
that are strings and the content is “Americano”. Once the view is found, perform a click on
it.

On the Espresso page, there are detailed examples; refer to
https://google.github.io/android-testing-support—-library/docs/espresso/basics/.

In addition, there is an Espresso online cheat sheet for all the View Matchers, Intent
Matchers, View Actions, and so on:
(https://google.github.io/android-testing-support-library/docs/espresso/cheatsh
eet/index.html).

Simplifying Ul test creation

In Android Studio 2.2, Google introduced the Espresso test recorder. It is still not available
on the current preview at the time of writing this book, but this feature will be able to
record our clicks and actions on a running application and recreate them directly

on Espresso code, while being able to introduce assertions.

Check out https://www.youtube.com/watch?v=csaxml4xtN8. This is the link to the
Google I/O 2016 presentation on What's new in Android development tools? The part about the
Espresso test recorder starts around 22:50. The following screenshot shows the cheat sheet
for espresso 2.1, including view matchers, intent matchers and object matchers:

[250]

Testing Your Application

onView(ViewMatcher) onData(0ObjectMatcher) Jp Cpresso
.perform(ViewAction) .DataOptions
.check(ViewAssertion); .perform(ViewAction)
.check(ViewAssertion);

View Matchers Data Options

USER PROPERTIES

View Actions

CLICK/PRESS GESTURES

CLASS

sAsaignablefroal, ..}

sithClasshame(. .}

intended(IntentMatcher); intending(IntentMatcher)
.respondWith(ActivityResult);

Intent Matchers

v2.1.0,4/21/2015

[251]

Testing Your Application

Putting it all together

Let's add some more functionality to our calculator example. For instance, let's add a login
screen and test the whole functionality:

CalculatorTestExample

Login

Password

BUTTON

In this case, when we provide the correct login and password details, we will proceed to the
next screen, to our calculator. What we want to test is whether the transition works and
how we can continue testing on multiple activities.

Imagine we have implemented the following checks on our application logic to check
whether an e-mail ID and password are valid (although that does not necessarily mean they
are correct):

@ static boolean isUsernameValid(String username) {
if (username == null) return false;
if (username.length() < 6) return false;
if (username.index0f('@') == -1) return false;
if (username.indexOf('.', username.index0f('@')) = -1) return false;

return true;

}

@ static boolean isPasswordValid(String password) {
if (password == null) return false;
if (password.length() < 6) return false;
if (countDigits(password) == @ || countletters(password) == @) return false;

return true;

[252]

Testing Your Application

We can add many unit tests to these methods, but let's just add few of them and focus on Ul
tests:

& LoginUnitTests java %

package com.packt.rrafols.calculatortestexample;

import org.junit.Test;
import static junit.framework.Assert.assertEquals;

T public class LoginUnitTests {
@Test
G public void checkUsernameValidity_isCorrect() {
assertEquals(true, LoginActivity.isUsernameValid("john@doe.net"));
assertEquals(false, LoginActivity.isUsernameValid("john@doenet"));
assertEquals(false, LoginActivity.isUsernameValid("johndoe.net"));
assertEquals(false, LoginActivity.isUsernameValid("jed.t"));

}
@Test
G public void checkPasswordValidity_isCorrect() {

assertEquals(true, LoginActivity.isPasswordValid("lettersl1@8"));
assertEquals(false, LoginActivity.isUsernameValid("onlytext"));
assertEquals(false, LoginActivity.isUsernameValid("123456789"));
assertbEquals(false, LoginActivity.isUsernameValid("abl2"));

}

With regard to Ul tests, first of all let's add some simple tests that will validate that an error
is shown if either the username or password is invalid.

of = findViewById(R.id.login_button).setOnClickListener((v) - {
String username = usernameEditText.getText().toString();
String password = passwordEditText.getText().toString();

if(!isUsernameValid(username)) {
showError("Invalid username");

} else if(!isPasswordValid(password)) {
showError(“Invalid password");

} else if(!areCredentialsCorrect(username, password)) {
showError(“Incorrect username/password");

} else {
startActivity(new Intent(LoginActivity.this, CalculatorActivity.class));
finish():

1)

When we press the login button, we check for the validity and then for the correctness of
the username and password; if something goes wrong, we show an error.

[253]

Testing Your Application

To show the error, we change the visibility of a TextView field (initially set to invisible) to
visible, and we set the text of the error in such a way that it shows up.

private void showError(int stringResource) {
errorTextView.setText(getString(stringResource));
errorTextView.setVisibility(View.VISIBLE);

We can easily test the functionality by using different checks/matches,
withEffectiveVisibility, to see whether the TextView field is visible after we
introduce wrong data.

& LoginUITestjava x
package com.packt.rrafols.calculatortestexample;

- import ...

@RunWith({AndroidlUnitd. class)
@BlLargeTest
¥ public class LoginUITest {

private String username = “johngdoe.net";

private String password = “adminl234";

private String incorrectPassword = “invalidl234";
private String invalidUsername = “invalidl234";

@Rule
public ActivityTestRule<LoginActivity> calculatorActivityTestRule =
new ActivityTestRule<LoginActivity>(LoginActivity.class);

@Test
» public void checklLogin_incorrectCredentials(]) {
onView(withId(R.1id.login_username)).perform(typeText(username), closeSoftKeyboard());
onView(withId(R.id.login_password)).perform(typeText(incorrectPassword), closeSoftKeyboard());
onView(withId(R.id.login_button)).perform(click());

onView(withId(R.id.login_error_text)).checki{matches(
withEffectiveVisibility(ViewMatchers.Visibility.VISIBLE)));

onView(withId(R.id.login_error_text)).check{matches(withText(
“Incorrect username/password”)));

}
@Test
» public void checkLogin_invalidUsername() {
onView(withId(R.id.login_username)).perform(typeText(invalidUsername), closeSoftKeyboard());
onView(withId(R.id.login_password)).perform({typeText(password), closeSoftKeyboard());
onView(withId(R.id.login_button)).perform(click());
onView(withId(R.id.login_error_text)).checkimatches(
withEffectiveVisibility(ViewMatchers.Visibility.VISIBLE)));
onView(withId(R.id.login_error_text)).checki{matches(withText(
“Invalid username")));
}

[254]

Testing Your Application

Let's test what happens when we use the right credentials:

@rest

2 public void checkLogin_correctCredentials() {
onView(withId(R.id.login_username)).perform(typeText(username), closeSoftKeyboard());
onView(withId(R.id.login_password)).perform(typeText(password), closeSoftKeyboard());
onView(withId(R.id.login_button)).perform(click());

onView(withId(R.id.login_error_text)).check(matches(
withEffectiveVisibility(ViewMatchers.Visibility.INVISIBLE)));

onView(withId(R.id.add_button)).check(matches(isDisplayed()));

In this case, to check that we have changed to another activity, we could simply check
whether one of the views of the second activity is displayed. Espresso will continue to run
tests even if activities are changed, and ViewMatcher will match the views on the current
activity.

Even if this allows us to build huge tests that can go from the login screen of our application
to all the screens and functionality, it is recommended (and a good practice) to write many
small tests rather than a few large tests. The smaller the test, the more concrete it is; if the
test fails, it will provide more details to the developer so they can discover what is going on
and fix it.

Summary

In this chapter, we learned how to add automatic tests to our application. We started with
testing basic logic, which should be isolated from Android SDK classes and methods, using
unit tests to instrumentation tests for those tests that had dependencies with Android.
Eventually, we progressed to performing UI tests to check whether the Ul layer behaves in
the way it was designed to.

Automating tests is very important. Not only does it help the programmer develop the code
while proactively thinking about quality, but it also solves a lot of issues when merging
code from other colleagues and prevents regression issues when adding new features on
top of an already existing functionality. Tests have to be smart and test the right thing; we
could add almost infinite tests that would test useless functionalities, which would
definitely be a waste of time and money as well. As a recommendation, test the critical
functionality, edge cases, and, if you are working in a team, get an agreement as to what
should constitute the minimum set of test cases. Later on, if you find an issue, extend the
tests to check and correct it.

[255]

Testing Your Application

We have not mentioned test coverage in this chapter as it is often misunderstood as a
quality metric. Test or code coverage is only useful to see which parts of the code are being
tested. For more information, read Martin Fowler's page at http://martinfowler.com/bli
ki/TestCoverage.html.

[256]

Publishing Your Application

After adding some tests to your application and polishing any last-minute defects, now you
are ready to publish it to Google Play. Publishing an application is the way to make your
work available to a larger public.

In this chapter, we will see what we need to do before publishing, how to create an account
in Google Play, and finally, how to upload our application binary.

Preparation steps

There are a few minor details that we have to pay attention to before we publish the
application.

Application signing

Android Studio has been signing all our debug builds with a debug dummy certificate. You
will not be able to publish an application to Google Play signed with a debug certificate.
You will need to generate a signed production build with your release certificate. Signing
an application with your own certificate will help you identify yourself as the author of the
application in Google Play.

Publishing Your Application

In order to generate a signed build, go to the Build menu and select Generate Signed APK:

“, Make Project 3ry
Make Module ‘app'

Clean Project
Rebuild Project

Edit Build Types...

Edit Flavors...

Edit Libraries and Dependencies...
Select Build Variant...

Build APK

Analyze APK...
Deploy Module to App Engine...

If you have not created a keystore before or you would like to use a new one, Android
Studio will allow you to create a keystore or select a previously created one. Once an
application is signed with a key and published to the store, it will have to be always signed
with that key; otherwise, users with the previous version of the app will not be able to
update it. So, once you create a keystore, store the keystore file safely.

The steps to create the keystore are very easy. You just have to enter your personal or
business details, set the password of the keystore and the key, and introduce the path where
the keystore will be saved.

[258]

Publishing Your Application

If you already have a keystore and would like to use it, or if you have just created it, press
the Choose existing... button and select the keystore file.

[NN] New Key Store

Key store path:

Password: Confirm:
Key
Alias:
Password: Confirm:
Validity (years): | 25 [
Certificate

First and Last Name:
Organizational Unit:
Organization:

City or Locality:
State or Province:

Country Code (XX):

Cancel I... = -

Once we have selected the keystore and key combination, Android Studio will ask us where
to save the final APK and which build type and flavor to use. Android Studio will take
some time to build, and when it finishes, we will have a small notification on the top-right
border telling us whether the build was successful.

For more information about the signing process, keystore, and key generation, check the
Android documentation about signing at https://developer.android.com/studio/publi
sh/app-signing.html?hl=cs.

Account creation

To create an account on Google Play, go to the Google Play Developer Console (https://play.
google. com/apps/publish/).

[259]

Publishing Your Application

It only requires an e-mail address registered with Google or a Gmail e-mail address, our
personal or business details, and $25 in order to activate the account.

L] [® Gaogle Play Developer o % % |

& — C | @ nitps://play.google.com/apps/publish/signup/ &

p Google Play Developer Console

Sign-in with your Google Accept Developer Pay Registration Fee Complete your Account
account Agreement detalls

YOU ARE SIGNED IN AS...

- If you would like to use a different account, you can choose from the following options below. If you are an
organisation, consider registering a new Google account rather than using a personal account.

This is the Google account that will be with your D per Console.
Sign in with a different account Creats a new Google account

BEFORE YOU CONTINUE...

= —
=] & = 525
Read and agree to the Google Play Developer Review the distribution countries where you can distribute Make sure you have your credit card handy to pay
distribution agreement. and sell applications. the $25 registration fee in the next step.

If you are planning to sell apps or in-app products, check if

Lagee anc Latwiog fonssocisba iy you can have a merchant account in your country.

account registration with the Google Play
Developer distribution agreement.

USEFUL ANDROID RESOURCES NEED HELP?
Android Developers Help centre
Android Design Contact support
Android.com

® 2016 Google - Google Play Terms of Service - Privacy Policy -

Publishing your application on Google Play

Once we have created an account and have paid the $25, we are able to add and publish
Android applications. We are only required to do some previous steps before actually
publishing an Android application: prepare the store listing with all the screenshots,
marketing material, and texts and promotional images, and upload the application binaries.

[260]

Publishing Your Application

Adding a new application

Our first step will be to add a new application to our account. We have to select the default
language of the application, which will be the default language in which we will be editing
our texts in Google Play and our application title.

If we have our APK ready, we can start by uploading it; otherwise, we can start by
preparing the store listing.

ADD NEW APPLICATION

Default language *

English (United Kingdom) - en-GB %

Title *

0 of 30 characters

‘What would you like to start with?

Upload APK | Prepare Store Listing [IE-TTY

Preparing the Store Listing

As mentioned before, an application is not only a binary. When we upload it to the store,
we have to add a lot of marketing material. With the huge number of applications in the
market, unless the application's marketing material is exceptional, well-targeted, and well
maintained, it might be very difficult to discover and reach all the potential customers or
users.

[261]

Publishing Your Application

Texts are also very important. Google Play provides us with different types of texts, from
the title to the short description and full description. We can also have these texts in many
languages. It is also recommended that you have texts in the native languages of the
countries targeted in the application. It might depend on the type of application and content
but you'll have to keep the target audience in mind; for instance, Spanish users do not only
prefer Spanish texts to English, but many of them will not even understand English at all.

L] [> Store Listing - PhotonBox % B §

& — C | @ nitps://play.google.com/apps/publish/?dev_acc= ks

p Google Play Developer Console p e =

E [

Why can't | publish?

)
DRAFT
-
* APK
STORE LISTING
ﬁ I Store Listing
PRODUCT DETAILS Fields marked with * need to be filled before publishing.
A Content Rating
Pricing & Distribution English (United Kingdom) - en-GB Manage translations v
In-app Products
Title*
Services & APIs English (United Kingdom) — en-GB

9 of 30 characters

Opfimisation Tips Short description®

English (United Kingdom) — en-GB
0 of 80 characters

Full description *
English (United Kingdom) — en-GB

0 of 4000 characters

Please review our Metadata policy to avoid some common violations related to app metadata.
Also, please be sure to review all the other programme policies before you submit your apps.
If your app or store listing is eligible for advance notice to the Google Play App Review team,
contact us prior to publishing.

As the popular idiom says, a picture is worth a thousand words. The first thing the
potential users of the application will see on the store is the application's graphical assets:
either the app icon or the feature graphic, or even the screenshots of the application. If the
first impression does not convince them, they will move along and will not even read the
texts we have carefully created in our previous step.

[262]

Publishing Your Application

If you need to capture some screenshots from your application, you can take them from an
emulator or a real device by using Android Device Monitor, accessible from the Tools
menu under the Android submenu. On the Android Device Monitor, there will be an active
camera icon on the Devices tab that will take a screenshot of the connected device or the
emulator. Another option is to take a screenshot from the device itself, for instance, by
pressing the volume and power buttons down at the same time on some devices.

Please be aware that each graphic asset has a specific resolution and format and Google
Play is very restrictive with that. For example, the high resolution icon is, at this moment, a
512 x 512 32 bpp PNG file, while the featured graphic is a 1024 x 500 JPEG or 24 bpp PNG.

L] [P* store Listing - PhotonBox % W %

& — C (& nttps://play.google.com/apps/publish/?dev_acc= e =

APK STORE LISTING
I Store Listing

B

English (United Kingdom) - en-GB Manage translations v
Content Rating L —————

“@

Pricing & Distribution GRAPHIC ASSETS

In-app Products If you haven't added localised graphics for each language, graphics for your default language will be used.

e Learn more about graphic assels
Services & APls o

Screenshots *
Optimisation Tips Default — English (United Kingdom) — en-GB
JPEG or 24-bit PNG (no alpha). Min length for any side: 320px. Max length for any side: 3840px.
At least 2 screenshots are required overall. Max 8 screenshots per type. Drag to reorder or to move between types.

For your app 1o be showcased in the 'Designed for tablets' list in the Play Store, you need to upload at least one 7-inch and one 10-inch
screenshol. If you previously uploaded screenshots, make sure you move them into the right area below.

Learn how tablet screenshots will be displayed in the store listing.

Please take a look at our Impersonation and Intellectual Property policy to avoid common violations.

Phone Tablet Android TV Android Wear

+

Add screenshot

Drop image here

Hi-res icon * Feature graphic *
Default — English (United Kingdem) —en-GB Default — English (United Kingdom) — en-GB
512x 512 1024 wx 500 h
32-bit PNG (with alpha) JPG or 24-bit PNG (no alpha)
- +
Add high-res icon Add feature graphic
Drop image here Drop image here

[263]

Publishing Your Application

After adding our graphical assets, we still have to fill out our contact details, privacy policy,
application category, and content rating. However, note that Google Play will not allow us
to fill out the content rating until we have uploaded an APK.

We also have to fill out our pricing and distribution model. Here, we can choose whether
our application is free or paid and, in the latter case, select what will be the price in every
country that is available. In order to create a paid application, Google Play will ask us to
create a merchant account first so that Google can process the application payments with
the right TAX information. As part of the pricing and distribution section, we will also have
to mention whether our application contains advertisements and we can access Google's
advertising policy from there.

Finally, we can also select whether our application is for Android Wear, Android TV, or
Android Auto. There are specific terms and conditions and additional requirements; for
example, we need to upload an Android Wear screenshot if we want to distribute our
application for Android Wear devices.

[264]

Publishing Your Application

[Pricing & Distribution - Phe % & '} &
&« C' & https://play.google.com/apps/publish/?dev_acc= i
- APK
L PRICING & DISTRIBUTION
= Store Listing
o - . .
Does your application have ads? Also, please take a look at our Ads policy to aveid common
* y PP) P!

Content Rating CONTAINS ADS violations.

i_—: If yes, users will be able to see the 'ads’ label on your application in the Play Store. Learn mora
I Pricing & Distribution Yes, it has ads
o In-app Products No, it has no ads
A Services & APls
DEVICE CATEGORIES

Optimisation Tips
Android Wear Distribute your app on Android Weal
Extend your app to wearables with Android Wear. To submit your app for review, you need

to add an Android Wear screenshot on your app's Store listing page.
To find out more, read the Android Wear documentation and distribution guidelines,

Android TV Reimagine your app for the biggest screen in the house with Android TV. To submit your app
for review, you need to include a Lea er intent in your app.
To learn more, read the Android TV and distribution guidelines.

Android Auto Bring your app to cars with Android Auto. To submit your app for review, you need to aceept
the Android Auto terms and condifions,
To find out more, read the Android Auto documentation and distribution guidelines.

USER PROGRAMMES

Designed for Families Opt in to Designed for Families

This app is not eligible to apply for Designed for Families, a developer program for apps and
games designed specifically for kids and family audiences. To enable opt-in, please make
sure you've completed the following steps: (1) add a privacy policy on the Store Listing
page, (2) update your content rating infermation and (3) confirm the ads declaration on the
Pricing & Distribution page. Learn more

Google Play for Work Free applications are always available to Android for Work customers through Google Play
for Work.

Uploading the application APK

We have seen how to add and modify the store listing information of our application; now
we can upload our first application APK to the store. Our application needs to be versioned;
there are two properties in the application manifest related to the application version:

¢ android:versionCode: This is the numeric property that represents the
application version. It is a plain number up to 2,147,483,647 that allows us to
easily check whether there has been an update programmatically. Google Play
will not allow you to publish another APK with the same versionCode property
as the previous one.

e android:versionName: This is a string literal that is basically shown to the user.

[265]

Publishing Your Application

Users will not understand or pay attention to the application version 32,848 for
instance, but 4.0.0 will be more user-friendly for them.

For more information on versioning, refer to https://developer.androi

d.com/studio/publish/versioning.html.

L] [P APK - PhotonBox - Google % % §
& — C | @ nitps://play.google.com/apps/publish/?dev_acc= D —
p Google Play Developer Console A p (=
=
|]
= % com.packt.rrafols.calculatortestexample Why can't | publish?
DRAFT
-
o APK g
> APK Y Switch to simple mode
° Store Listing
A Content Rating PRODUCTION BETA TESTING ALPHA TESTING
ut IF app or Versions Set up Alpha testing
Pricing & Distribution jle Pla 1
In-app Products :
- BETA CONFIGURATICN
Services & APIs
MANAGE TESTERS

Optimisation Tips

. Disable Beta Testi
Choose how to run your testing programme. Learn mare i el)

@ CHOOSE A TESTING METHOD -
Closed Beta Testing Open Beta Testing
Add individual users by email address. Users need to Run a public programme that users can join through
be on your test's list of email addresses to join the a specific link or your app's store listing on Google
programme. Play Learn more =0
Set up Closed Beta Testing Set up Open Beta Testing

Beta Testing using Google Groups or Google+ Communities

Users need to be in specified Google Groups or Google+ Cor ities to join the pr

[266]

Publishing Your Application

Google Play will not allow us to upload an APK to production. We could set beta testing or
alpha testing with a set of users before switching the application to production. How to run
the alpha or beta testing is up to us. We can do a public beta, only to a closed Google+
group or an e-mail list. It all depends on what we want to achieve with our beta program. It
is very useful to distribute a new version of the application to a few selected or a small
percentage of the users, so that if something goes wrong, it will only affect a few and not
everyone. There is always time to make a beta release with the fix and when everything is
working fine, make the switch to production.

For more information about alpha/beta testing, refer to https://support.
google.com/googleplay/android-developer/answer/3131213.

If our application is rather huge and we would like our users to have a smaller download
and updates, Google Play allows us to upload and keep multiple active APKs as long as
they have a different versionCode number, they are signed with the same certificate, and
do not overlap the specific devices supported. To filter the list of devices for each individual
APK, we have to use Google Play's splitting configurations:

OpenGL texture compression format
e Screen size

Device feature sets

API level

CPU architecture (ABI)

Although it is recommended that we have one single APK, as it simplifies the build and
distribution process significantly, sometimes we can have smaller APKs, for example, if we
have a lot of images supporting multiple screen densities or relatively big native, JNI,
libraries. There are many people in the world with access to slow connections or metered
data connections that will be glad to have a smaller download. Also, people running with
low-end devices have very limited space on their device. If the user wants to install a new
application and does not have enough space on the device, Android will show a list of all
the currently installed applications sorted by decreasing size.

[267]

Publishing Your Application

Our application should avoid being on top of that list; otherwise, it might be very quickly
uninstalled.

P> APK - PhotonBox - Google % % § a
¢« > C https://play.google.com/apps/publish/?dev_acc= <ol =
p Google Play Developer Console A p (=
=
|]
oy ﬁ com.packt.rrafols.calculatoriestexample Why can't | publish?
DRAFT
-
o APK (]
APK Switch to advanced mode
o Store Listing
A Centent Rating PRODUCTION BETA TESTING ALPHA TESTING
Version et up Beta te Set up Alpha test
Pricing & Distribution 1

In-app Products

‘ PRODUCTION CONFIGURATION
Services & APls

Optimisation Tips CURRENT APK uploaded on 30 May 2016 14:23:39
Supported devices Excluded devices
10852 0
See list Manage excluded devices
¥ VERSION UPLOADED ON STATUS ACTIONS
1(1.0) 30 May 2016 Draft in Prod

5 TRANSLATION SERVICE

Increase your app’s global reach. Purchase translations for your app, Store Listing and
t AdWords campaigns in 3 easy steps. Learn more

Start or check progress

For more information on multiple APKs, go to the Android
documentation at https://developer.android.com/google/play/publi
shing/multiple-apks.html.

[268]

Publishing Your Application

In addition to this, in the previous URL, there is a recommendation from Google about
application versioning when developers have multiple APKs. It can be a bit complicated to
comply with all the rules defined. Google's suggestion is to use a seven-digit number,
where the first two digits will indicate the API level, the following two numbers will
indicate the minimum and maximum screen size, and the last three will be the last three
digits of the application version. For example, 0412310 will be for API level 04, where the
minimum screen size supported is 1 (small), maximum screen size supported is 2
(medium), and the application version is 3.1.0.

Summary

In this chapter, we learned how to generate, version, and sign a Google Play build and how
to create a Google Play Developer Console account and fill all the data that enables our
application to be distributed on Google Play. It is now time to upload our beloved creation
and start monetizing it! A mobile application is not something we can treat as fire-and-
forget. We need to analyze how it is performing, get maximal feedback from the users, learn
from all of the data, and iterate on our design and development again to fine-tune and
optimize it.

For more information on the Google Play Developer Console, refer to http
s://developer.android.com/distribute/googleplay/developer—cons

ole.html.

[269]

10

Monetization — Make Money
with Your App

Now that we have launched our application on the market and it is beginning to get
downloaded by people, it is time to start earning some money from it. Whether it is our
main business or a spare-time hobby, it took us a considerable amount of time to design,
develop, and test the application. So, it would be good to monetize it somehow.

In this chapter, we will see different monetization strategies. Simply putting a price on our
application is the most straightforward approach and might actually work out quite well,
but we will also see how to enable in-app purchase elements in our application and how to
add advertisements. It will depend on the type of application we are working with to
decide the use of one mechanism or another, or even a combination of them; for example,
we can have a free application with advertisements and an in-app purchase to disable
advertisements. Or, for instance, we can have two versions of the same application: one
could be free with advertisements and the other could be the exact same application but
paid, with advertisements.

At the end of the day, market status and past experience combined with good analytics are
the best way we can learn what works and what does not.

Monetization — Make Money with Your App

Paid apps

Paid apps are the most straightforward approach. At the moment of uploading the
application to Google Play, we set the download price. As mentioned just now, some
applications have a freemium version that includes advertisements or, for example, have
limited functionality. And then, we have a paid version that can be considered the full,
professional version or the one without advertisements.

Creating a paid app

When we created an application in Google Play, under the pricing and distribution section,
we can choose whether we would like to publish it as free or paid. A paid application can
always be converted to free, but a free application, once it has been published as free,
cannot be changed to paid:

i PRICING & DISTRIBUTION

Store Listing
Content Rating

Pricing & Distribution

In-app Products Designed for Google Play Google Play | Android Wear Android TV~ Android Auto
Families for Education for Work

Services & APls

This application is Paid Eree
Optimisation Tips

The only option would be to change the package name and upload it as a brand new
application. For more information, refer to https://support.google.com/googleplay/an
droid-developer/answer/6334373?rd=1#paid_free

We have to set the price of our application. There is a default price that will be applied to all
countries where the application is distributed and do not have a specific price (the price will
be converted into local currency in such cases). This default price is without tax; Google
Play will automatically add the right tax amount for each country (as shown in the
following screenshot). We can manage the countries where our application is distributed
and actually set the price for that country. In some countries, we can even choose to
distribute only to users from one or many specific carriers if we want to do so. One
advantage of using the automatic currency converter with local prices is that Google Play
will automatically update the price based on the current day exchange rate and country-
specific pricing pattern.

[271]

Monetization — Make Money with Your App

EDIT LOCAL PRICES

Your price is used to generate local prices in other countries. Local prices use today's exchange rate and country-specific pricing patterns. You
can change your price, update local prices or manually adjust prices at any time. Learn more

Detault price * EUR 1.00 | This price excludes tax

LOCAL PRICES
7 Local prices use today's exchange rate and rounding to follow country-specific pricing patterns.

List includes countries where users make payments using local cumency. In the 71 other countries where you distribute your app, your price in EUR will be
used instead

| COUNTRY PRICE TAX

~| Australia AUD 1.49

~| Austria EUR 1.19 20% (EUR 0.20}
Belgium EUR 1.19 21% (EUR 0.21)
Bolivia BOB 7.99

_| Brazil BRL 3.89

_| Bulgaria BGN 239 | 20% (BGN 0.40)

Cancel

For more information, refer to https://support .google.com/googleplay/
android-developer/answer/6334373?p=pricing template&rd=
l#pricing template.

Finance tracking

Google Play allows us to see the overall status of our application sales from the Finances
tab. There is also information about Average Revenue Per Paying User (ARPPU) and the
average value per transaction. This information makes more sense and carries a lot more
value when you have in-app purchases with different prices. For more detailed information
about transactions, visit the Google Payments Merchant Console at https://payments.goo

gle.com/merchant.

[272]

Monetization — Make Money with Your App

In-app purchases

Another mechanism to monetize our application is to add in-app purchases. In-app
purchases are, usually, microtransactions that can be used to enable specific functionality in
our application. It is also very common to use in-app purchases to let the user purchase
consumables or local in-game currency if, for instance, we develop a game.

Initial setup

One of the first things we have to do if we want to add support for in-app purchases in our
application is to install Google Play Billing Library from the Android SDK Manager:

SDK Platforms _ SDK Update Sites
Below are the available SDK developer tools. Once installed, Android Studio will automatically
check for updates. Check "show package details" to display available versions of an SDK Tool.
Name Version Status
& Android SDK Build Tools Update Available: 24.0.0 rc4
Android Auto APl Simulators 1 Not installed
Android Auto Desktop Head Unit emulator 1.1 Not installed
Android SDK Platform-Tools 24-rc3 24.0.0 rc3 Installed
Android 5DK Tools 25.1.7 25.1.7 Installed
Android Support Library 23.2.1 Installed
Android Support Repository 32.0.0 Installed
CMake 3.4.1 Not installed
Documentation for Android SDK 1 Installed
GPU Debugging tools 1.0.3 Not installed
Coogle Play APK Expansion library 1 Mot installed
v 5 Installed
Coogle Play Licensing Library 1 Not installed
Coogle Play services 30 Not installed
Coogle Repository 28 Installed
Coogle Web Driver 2 Not installed
Intel x86 Emulator Accelerator (HAXM installer), rev 6.0.1 6.0.1 Installed
LLDB 2.0 2.0.2558144 Not installed
LLDB2.1 2.1.2852477 Not installed
LLDB 2.2 2.2.2904772 Not installed
NDK 12.0.2867246 rc2 Mot installed
com.android.support.constraint:constraint-layout-solver:1.0.0-alpha2 1 Not installed
com.android.support.constraint:constraint-layout:1.0.0-alpha2 1 Not installed

[273]

Monetization — Make Money with Your App

Google Play Billing Library provides us with an Android Interface Definition Language
(AIDL) file; refer to https://developer.android.com/guide/components/aidl.html.
Once we install this, we need to copy the In-app Billing Version 3 service interface
definition called IInAppBillingService.aidl to our project. The build system will
automatically generate a Java class we can directly use from our code. By using this class,
we will not have to manage any network connections to Google Play and it will simplify
our work.

The IInAppBillingService.aidl file will be located in
<sdk>/extras/google/play_billing/ and we will have to copy it into our project
in app/src/main/aidl/ with the com.android.vending.billing package:

app
manifests
java
aidl|
com.android.vending.billing
3 lInAppBillingService.aid|
ares
= Cradle Scripts
& build.gradle (Project: CalculatorTestExample)
build.gradle (Module: app)
il gradle-wrapper.properties (Cradle Version)
=| proguard-rules.pro (ProGuard Rules for app)
il gradle.properties (Project Properties)
settings.gradle (Project Settings)
41 local.properties (SDK Location)

Once we build our project, we will see it generates a Java file inside the
app/build/generated/source/aidl directory, as we can see in the project structure
view.

[274]

Monetization — Make Money with Your App

Our next step will be to declare the billing permission in our manifest. This permission is a
bit different from the other permissions we are requesting in our app, as it is declared in the
Google Play Store application in the com.android.vending package.

Android | 8
Caapp
Elapp
O build
[generated/source
T aidl
[% debug
[com/android/vending/billing
It linAppBillingService
[Crelease/com/android/vending/billing
[buildCenfig
Br
[intermediates fexploded-aar
Eisrc
[zl .gitignore
il app-release.apk
[&app.iml
(#* build.gradle
B proguard-rules.pro
EaCalculatorTestExample

Adding in-app products

From Google Play Developer Console, we can create and manage our in-app products, but
before Google Play allows us to do so, we need to upload an APK file with the

billing permission declared. There is no need to publish it, so we do not have to worry
about the application not being finished; alternatively, we can just upload it to the Beta or
Alpha channel, even before we set up any beta testing program or add any users at all.

We can either add in-app products one by one or if we have multiple products, import a
CSV file:

IN-APP PRODUCTS import / Export v

[275]

Monetization — Make Money with Your App

When adding a product, we can add it as a managed product or a subscription. Managed
products can be bought only once until they are consumed from the application. Depending
on the type of application or game, we might be interested in consuming the products or
leaving them as a one-time purchase only. For example, if we have one application with an
in-app purchase to remove all the advertisements, it would not be consumed; once the user
has purchased it, it will stay that way. Also, we will not have to worry about storing the
purchase in the app, as Google Play will save that information for us and we will be able to
query it at any time. On the contrary, if we are creating a game and we create an in-app
product to get some in-game coins, we will consume the product as soon as we add the in-
game coins. This way, we enable the user to purchase it again. Subscriptions, on the other
hand, set a recurring billing to the user. In addition to the price, we can configure the billing
period, a free trial, and even a grace period if there is an issue with the payment. This might
be a more suitable way of billing our users if we are creating an app that allows them to
access all of our content, for example magazines, comics, movies, and so on, as long as they
are subscribed.

ADD NEW PRODUCT

What type of product would you like to add? *
Managed product | Subscription
Managed items that can be purchased only once per user account on Google Play. Google

Play permanently stores the transaction information for each item on a per-user basis
Learn more

Product ID *

0 of 129 characters

Please note that you can NOT change the product type and product ID later and that
you cannot re-use the product ID again. | e

Cancel

Something we have to pay attention to is the Product ID field. A Product ID field cannot be
changed once it is defined and cannot be reused later on. It is also called SKU or Stock
Keeping Unit.

[276]

Monetization — Make Money with Your App

Application code setup

Once we add in-app products to Google Play, we can begin to add the code to our

application to allow the user to purchase them. We have to be aware that it takes some time
for those in-app products to be available in the store. If we upload a new build to Google
Play immediately and we test the in-app purchases straightaway, it might fail, as the in-app
products are still not propagated. In addition to this, if we want to test the real thing, we
can create, for example, a beta version and only invite ourselves to the distribution list. This
way, we can install the app straight from Google Play and test the whole in-app purchases

process.

By including IInAppBillingService.aidl in our application, Android Studio

automatically generates an interface for us to connect to Google Play. If we carefully look at
the generated documentation inside IInAppBillingService. java, we will see what we

can use this service for:

[k

InAppBillingService is the service that provides in-app billing version 3 and beyond.

This service provides the following features:

1. Provides a new API to get details of in-app items published for the app including
price, type, title and description.

2. The purchase flow is synchronous and purchase information is available immediately
after it completes.

3. Purchase information of in-app purchases is maintained within the Google Play system
till the purchase is consumed.

4. An API to consume a purchase of an inapp item. All purchases of one-time
in-app items are consumable and thereafter can be purchased again.

5. An API to get current purchases of the user immediately. This will not contain any
consumed purchases.

All calls will give a response code with the following possible values

RESULT_OK = @ - success

RESULT_USER_CANCELED = 1 - user pressed back or canceled a dialog

RESULT_BILLING_UNAVAILABLE = — this billing API version is not supported for the type requested
RESULT_ITEM_UNAVAILABLE = 4 - requested SKU is not available for purchase

RESULT_DEVELOPER_ERROR = 5 - invalid arguments provided to the API

RESULT_ERROR = 6 — Fatal error during the API action

RESULT_ITEM_ALREADY_OWNED = 7 - Failure to purchase since item is already owned
RESULT_ITEM_NOT_OWNED = 8 - Failure to consume since item is not owned

H % K ¥ K K X ¥ ¥ FH ¥ F O O K ¥ X

* % ¥ ¥ *

¥

As this file is automatically generated, it should not be edited, as the changes will be lost

when the file is regenerated.

[277]

Monetization — Make Money with Your App

To use this service, we need to declare an instance variable,
private IInAppBillingService billingService;, tohold the instance and bind it to
the Google Play service:

@0verride
al protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R. layout.activity_calculator);

Intent servicelntent = new Intent("com.android.vending.billing.InAppBillingService.BIND");

serviceIntent.setPackage("com.android.vending");
bindService(serviceIntent, billingServiceConn, Context.BIND_AUTO_CREATE);

Il ees

It is important to set the full package com.android.vending as, by doing so, we only
allow Google Play to handle billing requests.

Additionally, we will have to create a ServiceConnection class to monitor the connection
and disconnection aspects in the service. Inside ServiceConnection, we should get the
instance of our interface by calling IInAppBillingService.Stub.asInterface () and
also clear the instance by making it null whenever the service is disconnected:

private final ServiceConnection billingServiceConn = new ServiceConnection() {
@0verride
of public void onServiceConnected(ComponentName name, IBinder service) {
Log.d(TAG, "Billing service connected");
billingService = IInAppBillingService.Stub.asInterface(service);

}

@0verride
®f public void onServiceDisconnected(ComponentName name) {
Log.d(TAG, "Billing service disconnected");
billingService = null;

[278]

Monetization — Make Money with Your App

More information about ServiceConnection is available at
https://developer.android.com/reference/android/content/Servic
eConnection.html.

We should not forget to unbind our service if the activity is destroyed:

@0verride
of protected void onDestroy() {
super.onDestroy();
if(billingService != null) {
unbindService(billingServiceConn);
}

Binding to the service is not an immediate action and it is executed asynchronously. We
should not assume it will be available just after calling the bind method, so it is our
responsibility to verify that the billing service is not null and to track which state we are in
inside our application.

Before making any billing request, we should check whether billing is supported. Users
might be in a country where Google Play is not supported or in-app purchases, or even paid
apps, are not accepted for legal reasons. To check whether billing is supported, we can use
the automatically generated method called isBillingSupported on

the IInAppBillingService. java interface:

private boolean isBillingSupported() {
int billingSupported = -1;
try {

billingSupported = billingService.isBillingSupported(BILLING VERSION, getPackageName(),
IAP_TYPE);

} catch(RemoteException e) {
Log.e(TAG, "Error checking billing support", e);
g

return billingSupported == BILLING_RESPONSE_RESULT_OK;

[279]

Monetization — Make Money with Your App

As parameters, we need to specify the billing API version, 3 in our case, and set it to the
BILLING_VERSION constant. Also, we need to specify the package name and the type of
purchase, which can be either inapp for in-app purchases or subs for subscriptions:

private static final int BILLING_VERSION = 3;
private static final String IAP_TYPE = “ipapp";
private static final String SUB_TYPE = “subs";

Once you start the application, it is a good practice to check with Google Play which items
are already purchased by the user. Doing so, we do not need to keep specific track of
purchased items, and the user can use a different device and have the same items or
advantages he purchased on another device. Like the previous case, we can use another
automatically generated method called getPurchases to get the user's previous purchases.

The getPurchases method and other methods we will see below return data in a bundle
and one of the key-values is the response code. There is a known bug that sometimes
returns it as Integer and sometimes as Long. To work around this issue, we can use the
following helper method:

private static int getResponseCodeFromBundle(Bundle b) {
Object o = b.get(RESPONSE_CODE);
if (0 == null) {
Log.d(TAG, "Bundle with null response code, assuming OK (known issue)");
return BILLING_RESPONSE_RESULT_OK;
}

else if (o instanceof Integer) return (Integer) o;
else if (o instanceof Long) return (int)((Long)o).longValue();
else {
Log.e(TAG, “"Unexpected type for bundle response code:");
Log.e(TAG, o.getClass().getName());
throw new RuntimeException("Unexpected type for bundle response code: " +
o.getClass().getName());

For more information on in-app purchase examples and workarounds

such as this one, check the Google examples in GitHub, at
https://github.com/googlesamples/android-play-billing/blob/mas
ter/TrivialDrive/app/src/main/java/com/example/android/trivial

drivesample/util/IabHelper. java.

[280]

Monetization — Make Money with Your App

Using this helper method, we can now call the getPurchases method and, in this example,
print the already purchased items:

@ private String getPurchases(String continuationToken) {
Bundle ownedItems = null;
try {

ownedItems = billingService.getPurchases(3, getPackageName(), "inapp"”, continuationToken);
} catch (RemoteException e) {

Log.e(TAG, "Error getting previous purchases", e);

return null;

}

if (ownedItems == null) {
Log.w(TAG, "Owned items is null getting previous purchases"|;
return null;

}

int responseCode = getResponseCodeFromBundle(ownedItems);

if (responseCode != BILLING_RESPONSE_RESULT O0K) {
Log.e(TAG, "Error " + responseCode + " getting previous purchases");
return null;

ArraylList<String> ownedSkus = ownedItems.getStringArrayList("INAPP_PURCHASE_ITEM_LIST");
ArrayList<String> purchaseDatalist = ownedItems.getStringArrayList("INAPP_PURCHASE_DATA_LIST");
ArrayList<String> signatureList = ownedItems.getStringArrayList("INAPP_DATA_SIGNATURE_LIST");
continuationToken = ownedItems,getString("INAPP_CONTINUATION_TOKEN");

for (int i = @; purchaseDatalist != null & i < purchaseDatalist.size(); ++i) {
String purchaseData = purchaseDatalist.get(i);
String signature = signatureList.get(i);
String sku = ownedSkus.get(i);

Log.i(TAG, sku + " - ™ + purchaseData + " - " + signature);
}

return continuationToken;

In the response bundle, we will get lists of purchased SKUs, purchased data in JSON
format, and the signature of those purchases on the following keys, respectively:
INAPP_PURCHASE_ITEM_LIST, INAPP_PURCHASE_DATA_LIST, and
INAPP_DATA_SIGNATURE_LIST.

Further details on the information returned by getPurchases can be
found in the Android documentation at https://developer.android.co
m/google/play/billing/billing_reference.html#getPurchases.

[281]

Monetization — Make Money with Your App

SKUs will be the product ID of the products the user purchased, purchase data will be
JSON-formatted as we see in the following code, and the signature list will contain the
signatures of the purchases from this application.

If we parse the purchase data, we can get the purchase time and the payload we added at
the time of performing the purchase:

{
"orderId":"GPA.1234-5678-9012-34567",
"packageName":"com.packt.rrafols.calculatortestexample",
"productId":"prod_1",
"purchaseTime":1465861252311,
"purchaseState":0,
"developerPayload":"payload",
"purchaseToken":"token"

}

If there are more purchases, there will be a continuation token in Bundle, which will be
accessible by the INAPP_CONTINUATION_TOKEN key. If we want to get more purchases, we
should call the getPurchases method again with this continuation token. If the
continuation token is null, it means there are no more purchases. We can implement a
similar loop to the following one to iterate through all the user's purchases:

private void getPurchasedItems() {
String continuationToken = null;

do {
continuationToken = getPurchases(continuationToken);
} while(continuationToken !'= null);

[282]

Monetization — Make Money with Your App

One last step before the actual purchase is to get the updated data from the product IDs or
SKUs we would like the user to purchase via Google Play. We can get the price, title, and
full description, which can be, for example, shown to the user before making the purchase.
This can be done by just calling the get SkuDetails method:

private void getSkuDetails(ArrayList<String> skulList) {
Bundle querySkus = new Bundle();
querySkus.putStringArrayList("ITEM_ID_LIST", skulList);

try {
Bundle skuDetails = billingService.getSkuDetails(BILLING VERSION, getPackageName(),
IAP_TYPE, querySkus);

int response = getResponseCodeFromBundle(skuDetails);
if (response == BILLING_RESPONSE_RESULT 0K) {
ArrayList<String> responselList = skuDetails.getStringArrayList(DETAILS_LIST);
if(responseList == null) {
Log.e(TAG, "Empty response getting SKU details");
return;

}

for(String responseStr : responselList) {
Log.i(TAG, responseStr);
}

} else {
Log.e(TAG, getResponseDesc(response));

} catch (RemoteException e) {
Log.e(TAG, "Exception getting SKU details", e);
}

Each string will contain JSON-formatted data about one single SKU. If, for example, we
query for two SKUs, prod_1 and prod_2, the format will be similar to what is illustrated in
the following JSON example. Note that each product will be in a different string; it will not
be a single JSON object:

{
"productId":"prod_1",
"type":"inapp",
"price":"€1.19",
"price_amount_micros":1190000,
"price_currency_code" :"EUR",
"title":"Product 1 (Application Name)",
"description":"prodl"

"productId":"prod_2",
"type" . "inapp" ,

[283]

Monetization — Make Money with Your App

"price":"€2.39",
"price_amount_micros":2390000,

"price_currency_code" :"EUR",
"title":"Product 2 (Application Name)",
"description":"Prod 2"

We also used another method from the previous Google example repository on GitHub.
The getResponseDesc method prints a human-readable string of the error code.

Now that we have all the details from the SKUs and we know which items the user already
owns, we can proceed to purchase one product.

More information on the in-app product purchase flow is available at
https://developer.android.com/google/play/billing/api.html.

Purchasing in-app products from our application

Purchasing an in-app product is a two-step process. First, we need to get a buy Intent and
then we can start the purchase flow with that intent:

private void purchaseProduct(String sku, String purchaseType, String payload) {
try {
Bundle buyIntentBundle = billingService.getBuyIntent(BILLING_VERSION, getPackageNamel(),
sku, purchaseType, payload);

int responseCode = getResponseCodeFromBundle(buyIntentBundle);

if(responseCode != BILLING_RESPONSE_RESULT_0K) {
Log.e(TAG, "Error " + getResponseDesc(responseCode) + " getting buy intent");
return;

}

PendingIntent pendingIntent = buyIntentBundle.getParcelable(BUY_INTENT);
if (pendingIntent != null) {
startIntentSenderForResult(pendingIntent.getIntentSender(),
PURCHASE_REQUEST_CODE, new Intent(), @, @, @);
} else {
Log.e(TAG, "No pending intent from getBuyIntent");

} catch (RemoteException | IntentSender.SendIntentException e} {
Log.e(TAG, “Error purchasing " + sku, e);

[284]

Monetization — Make Money with Your App

We can get buyIntent by calling the getBuyIntent method and using these as
parameters: the SKU we would like to purchase, the type of purchase

(either inapp or subs), and a developer payload we would like to put. As the developer
payload, we can put, for example, a randomly generated string that uniquely identifies this
purchase. If the request succeeds, it will return PendingIntent. We can use it to start the
purchase flow by calling startIntentSenderForResult.

We will receive the response asynchronously in activity onActivityResult, so we have to
check that the request code is the same we used when doing the
request, PURCHASE_REQUEST_CODE in our specific case:

@0verride
ol protected void onActivityResult(int requestCode, int resultCode, Intent data) {
if (requestCode == PURCHASE_REQUEST_CODE) {
int responseCode = data.getIntExtra{RESPONSE_CODE, BILLING_RESPONSE_RESULT 0K);
String purchaseData = data.getStringExtra("INAPP_PURCHASE_DATA");
String dataSignature = data.getStringExtra(“INAPP_DATA_SIGNATURE");

if (resultCode == RESULT_OK) {
if(responseCode == BILLING_RESPONSE_RESULT OK) {

try {
JSONObject jo = new JSONObject(purchaseData);
String sku = jo.getString(“productId");
Log.i(TAG, sku + " purchased!");

} catch (JSONException e) {
Log.e(TAG, "Failed to parse purchase data.", e);

}
} else {
Log.e(TAG, "Billing error on purchase " + getResp Desc(respor ode));

}

} else if(resultCode == RESULT_CANCELED) {
Log.w(TAG, "Purchase cancelled");

} else {
Log.e(TAG, “Unknown result code " + resultCode);

}
} else {

Log.e(TAG, "Uknown requestCode " + requestCode);
}

More information about start IntentSenderForResult is available at h
ttps://developer.android.com/reference/android/app/Activity.ht
ml#startIntentSenderForResult (android.content.IntentSender, int

,android.content.Intent, int,int, int).

[285]

Monetization — Make Money with Your App

Consuming purchases

Some in-app products can be purchased once and others can be purchased multiple times.
In order to purchase one product more than one time, we need to consume the previous
purchase or Google Play will not allow us to purchase it again.

In the JSON data we will receive either when purchasing an item or getting previous
purchases, we will get a purchase token as well. We can use this purchase token in the
consumePurchase method to actually consume a purchase:

private void consumePurchase(String purchaseToken) {
int response = -1;
try {
response = billingService.consumePurchase(BILLING _VERSION, getPackageName(), purchaseToken);
} catch(RemoteException e) {
Log.e(TAG, "Exception consuming purchase", e);
return;
}

if(response != BILLING_RESPONSE_RESULT_OK) {
Log.e(TAG, "Error consuming purchase " + getResponseDesc(response)});

}

It is recommended that we do not take any action inside the application, for instance
increase in-app currency, until the purchase has been consumed successfully.

More generic information about in-app purchases and how to integrate

them in your application is available at
https://developer.android.com/google/play/billing/billing_inte

grate.html.

In-app advertising

We have seen how to directly monetize our application by either setting a price, making it a
paid application, or by adding in-app purchases to unlock new features, remove
advertisements, or add some benefits in exchange for a microtransaction. Now we will see
how to add a more indirect monetizing mechanism, such as adding advertisements. By
adding advertisements to our application, we will not charge our end user, but we will get
money by the amount of advertisements shown and clicked by the users of our application.

[286]

Monetization — Make Money with Your App

If we are able to generate a lot of advertisement impressions or make our advertisements
non-intrusive and useful to the targeted users, it can be a good way to earn some money,
even more than by paid apps or in-app purchases.

In this section, we will see how to add advertisements to our app. We will focus on Google
Admob although there are many other advertisement providers. At the end of the day, the
approach will be quite similar, and most probably, we will have to integrate with their SDK
and follow some simple steps.

Integrating with the Google Mobile Ads SDK

Integrating the Google Mobile Ads SDK into our application is quite straightforward. We
have to follow a few steps and a test advertisement will show up in no time.

We have to add a new Gradle dependency to build.gradle at the root of our project:
classpath 'com.google.gms:google-services:3.0.0"'

Add one dependency to the build.gradle file inside the app directory:
compile 'com.google.firebase:firebase-ads:9.0.2"'

And add one at the end of the same file:
apply plugin: 'com.google.gms.google-services'

After adding all these lines to the build.gradle files, we have to synchronize so that
Gradle can refresh all the libraries and include the dependencies we have just added.

We would need an Ad Unit ID identifier for each place we would like to show an
advertisement. Later, we will show how to create one, but for the moment, we will use the
one provided by Firebase for testing purposes:
ca-app-pub-3940256099942544/6300978111.

[2871

Monetization — Make Money with Your App

To easily access it, we will create it inside the St rings . xml file of our application:

[@ strings.xml %

<resources>
<string name="app_name">CalculatorTestExample</string>
<string name="not_a_number"=NaN</string>
<string name="invalid_username">=Invalid username</string>
<string name="invalid_password"=Invalid password</string>
<string name="incorrect_credentials">Incorrect username/password</string>

<string name="banner_ad_unit_id">ca-app-pub-3940256099942544/6300978111</string>
</resources>

We will need a google-services. json file as well. We can create it from the Firebase
developer console; refer to https://console.firebase.google.com/.

From the Firebase console, we have to create an Android application; set our application
package and this will trigger the download of the
google-services. json file:

Add Firebase to your Android app

& : ;

Enter app details Copy config file Add to build.gradle

Package name (@

com.packt.rrafols.calculatortestexample

Debug signing certificate SHA-1 (optional) @

B:80:600:PA:0P:068:PO:BR:B0:BP:BP:PB:0B:PR:PO 00 BB 08 88

Required for Dynamic Links, Invites, and Google Sign-In support in Auth. Edit SHA-1s in Settings

CANCEL ADD APP

downloads
google-services.json for
your app

[288]

Monetization — Make Money with Your App

Once we have the file, we have to simply copy it to the app folder of our application:

Add Firebase to your Android app

Enter app details Copy config file Add to build.gradle

Switch to the Project view in g Packages [Sc
Android Studio to see your - M MyApplication (-/0cs 10/ 1y

: > 5 » D.gradle
project root directory. 21 s D‘iea
. v [Happ
= » CIbuild
Move the google-services.json file you : Cilibs
just downloaded into your Android app (% . Es;i:ﬁgnm
5 Y — -
module root directory. [app.iml
3 (& build.gradle
| =2 fligoogle-services json
(5] l:] proguard-rules.pro
® » Dgradle

gcogle services.json

Now we can proceed to add one advertisement to our layout file. We would need to add a
new namespace to the layout XML, namely
xmlns:ads="http://schemas.android.com/apk/res—auto", and then add

a com.google.android.gms.ads.AdView view as if it was another view:

<com.google.android.gms.ads.AdView
android:id="@+id/adView"
android: layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:layout_alignParentBottom="true"
ads:adSize="BANNER"
ads:adUnitId="@string/banner_ad_unit_id">

</com.google.android.gms.ads. AdView>

[289]

Monetization — Make Money with Your App

In our main Activity field, we will have to initialize the SDK on the onCreate method by
calling MobileAds.initialize and using our application ID. In this example, we used
the test application ID, but in our final application, we'll change it to show real
advertisements. During development, we have to use test advertisements as it is against the
Admob policy to click on our own advertisements using our account.

In addition to this, in this demo, we will load an advertisement as soon as the application
starts and show it on the Adview we have just added in the previous step:

MobileAds.initialize(getApplicationContext(), "ca-app-pub-3940256099942544~3347511713");

AdView mAdView = (AdView) findViewById(R.id.adView);
if(mAdView != null) {
AdRequest adRequest = new AdRequest.Builder().build();
mAdView. loadAd(adRequest) ;

There are many other ways to show advertisements, for example interstitial, fullscreen ads,
or native advertisements that allow some degree of configuration and can be more easily
integrated into our application and feel less intrusive.

More information about different types of advertisements can be found at
https://firebase.google.com/docs/admob/android/native and https

://firebase.google.com/docs/admob/android/interstitial.

[290]

Monetization — Make Money with Your App

We can create a valid application ID and Ad Unit ID from our Admob account (https://ap
ps.admob. com):

NEW
n AdMob Home Monetize Promote Analyze

Monetize a new app
€ Selectan app

CalculatorTestExample

Android

App ID: ca-app-pu

v App has been added to AdMob
€ Select ad format and name ad unit

Ad unit name: homescreen

Ad unit ID: ca-app-pub-5552

Here, we can see the App ID and the Ad Unit ID. We just need to replace the test values
with the real ones to start monetizing our application. Please remember that it goes against
the Admob policy to click on your own advertisements, so it is recommended that you use a
test account for development and testing and the real production IDs when publishing the
application to Google Play.

Google published a step-by-step tutorial inside their Firebase documentation, available at h
ttps://firebase.google.com/docs/admob/android/quick-start.

[291]

Monetization — Make Money with Your App

Summary

In this chapter, we learned different mechanisms to monetize our application, from setting a
price to downloading it, adding in-app purchases, or using advertisements. Depending on
the application type, the targeted users, and the business model we would like to use, we
can decide how to use all the different mechanisms to make the app. Sometimes, the best
approach is to combine them in a smart way; just be careful not to saturate the user with
advertisements or make the game too difficult, or just impossible, unless some purchases
are made.

Combining monetizing mechanisms with good analytics will allow us to clearly see what is
working and what is not so that we can focus our efforts on fixing or changing that part.

In this book, we started by installing the development environment and went all the way to
publishing and monetizing our application. Through this journey, you have learned to
create application screens, views, and Ul elements. You also learned how to retrieve data
from the Internet and store it locally on the device. And finally, you learned how to create
some automated tests to make sure the application is working or, at least, verify that the
latest changes did not break anything.

The development of mobile applications in Android is in constant evolution. There are
many ways in which we can keep up-to-date with it: check official documentation
regularly, read development blogs, and even test new libraries and study their source code.
One of the most interesting ways, however, is to attend conferences or local meetups. In
these events, there is always a lot of interesting content and, even more important, a lot of
interesting people. You can meet other Android developers with whom you can discuss
difficulties, solutions, and best of all, build the Android community.

[292]

A

activity lifecycle
reference link 36
Activity
about 31
Android design guidelines 33
Android device, building 40
app manifest, editing 38, 39
callbacks 36
context and scope 33
creating 37
defining 37, 38
lifecycle 34
lifecycle callbacks 35
recreating, reference link 51
reference link 16
stack 37
states 34
states, reference link 34
adapters
about 113
ArrayAdapter 113, 115
BaseAdapters 123, 124, 125
performance considerations 116, 117,118, 119,
120,121,122
reference link 108
advertisements
reference links 290
alpha/beta testing
reference link 267
Android Asset Packaging Tool (APT) 85
Android dependencies
mocking 245, 246
Android Developer site
reference link 34, 45
Android Development Tools (ADT) 6

Index

Android device
running 41
setting up, for debugging 40
Android documentation
reference link 259
Android Interface Definition Language (AIDL)
reference link 274
Android OS version distribution
reference link 15
Android Studio
download link 7
installation link 9
installing 8, 10
reference link 6
right version, obtaining 7
running 10, 11, 12
settingup 6
Android support library
reference link 184
Android Virtual Device (AVD) 19
App comment integrations
reference link 245
testing 245
app
activity navigation 54, 55, 56
navigating, between fragments 54
Application Not Responding (ANR)
reference link 153
application preference
storing 214
application publishing
preparation steps 257
application, publishing on Google Play
about 260
APK application, preparing 267, 268
APK application, uploading 265
application, adding 261

Store Listing, preparing 261, 262, 263, 264
applications debugging
reference link 20
ArrayAdapter
reference link 108
AssetManager class
reference link 21
AsyncTask
reference link 120, 156
AttributeSet
reference link 92
Average Revenue Per Paying User (ARPPU) 272

B

background processing
about 153
AsyncTask 155, 156, 157
IntentService 157, 159, 160, 161, 162, 164
Java threads 154, 155
background service
creating, reference link 159
bitmap memory
reference link 199
bitmap
reference link 196
build configurations, Gradle
reference link 247
Builder pattern
reference link 181
Button
about 63
common operations 64
reference link 64

C

caching bitmaps

reference link 188
Canary channel 7
CardView

about 70

common operations 70

reference link 70, 134
CheckBox

about 66

common operations 66

[294]

reference link 66
configuration changes

reference link 196
ConstraintLayout

about 77

common operations 79

reference link 78, 79
Context objects

reference link 33
ContextWrapper

reference link 33
contract classes

reference link 226
cooking-recipe application 30
custom drawing

adding 92, 93

adding, on Canvas 94, 96
custom requests

reference link 168
custom views

about 90

adding, programmatically 96

adding, with layout file 96

custom drawing, adding 92

CustomTextView class, creating 98

example 90, 92, 98

hooking up 96

on-click behavior, adding 99

onTouchEvent method, overriding 101

testing 97, 98, 101

D

dedexer

reference link 27
DefaultitemAnimator

reference link 137
DevBytes video

reference link 206
DEX file

reference link 29
DexGuard

reference link 29
dialog 103, 104
disk cache classes

reference link 189

disk cache
reference link 189
DividerltemDecoration
reference link 142
Drawee 212

E

EditText
about 61
common operations 61
reference link 62
effective navigation
reference link 31
elements, for building mobile applications
about 21
Android Manifest file 22
Gradle build system 22, 23
modules 22
ProGuard 27, 29
resources 21
Environment class
reference link 224
Espresso
examples, reference link 250
online cheat sheet, reference link 250
reference link 250

F

file storage
reference link 219
file system
managing, with delete method 224
managing, with fileList method 224
file-opening modes
reference link 215
fileList
reference link 224
files
about 219
external storage 222
external storage, reference link 223
internal storage 220, 221, 222
Firebase documentation
reference link 291
fragment constructor

[295]

reference link 48
fragments
about 42
adding, to activity 50
application, running 51, 54
context 44
creating 46
lifecycle 44, 45
lifecycle callbacks 45
multiple fragments, adding to
FragmentTransaction 53
multiple fragments, adding to single activity 52
new instance, reference link 48
reference link 42
static fragment constructor, creating 47
using 42
values, using from static factory implementation
48
FragmentTransaction
reference link 50
FrameLayout
about 68
common operations 69
reference link 69
Fresco
about 212
reference link 213

G

generics

reference link 129
getPurchases

reference link 281
Glide

about 207

reference link 208
Google Play

application, publishing 260
GridView

about 75

common operations 75

reference link 76
Gson

about 170, 172,173

reference link 168

H instrumentation tests

about 242
Hamcrest matchers building 243, 244
reference link 250 reference link 244
HAXM running 244
reference link 18 InstrumentationRegistry
reference link 244
I intents
ImageButton reference link 56
about 65 interface components
common operations 65 View 58
reference link 65 ViewGroups 58
images issues
different image types 202 discovering 240, 241, 242
in RecyclerView 206 fixing, by creating test 242
larger images, handling 199 fixing, by creating tests 240, 241
loading 196
memory space 196 L
vector drawables 203 Last In First Out (LIFO) 37
ImageView layout files
about 62 TextView, styling 86
common operations 63 used, for creating basic layout 80, 82
reference link 63, 203 used, for creating interfaces 80
in-app advertising using 85
about 286 layout
Google integrating, with Mobile Ads SDK 287, previewing 83
288,290,291 testing 87
in-app product purchase TextView, adding 83
flow, reference link 284 LayoutInflater
in-app purchase reference link 115
examples, reference link 280 LayoutManager
in-app purchases reference link 132
adding 273 Least Recently Used (LRU) 184
application code setup 277, 278, 279, 280, 281, LinearLayout
283 about 71

in-app products, adding 275

in-app products, purchasing from applications
284, 285

initial setup 273, 274

purchases, consuming 286

common operations 71

reference link 53, 71
LinearLayoutManager

reference link 132

LinkedHashMapclass
reference link 286 reference link 184
inBitmap field lint
reference link 198 reference link 116
inPurgeable field ListActivity
reference link 198 about 110

[296]

item view, customizing 111, 112
reference link 110

ListView element
about 74,107,108, 109
common operations 74
item view, customizing 111, 112
reference link 74, 106

logic
testing 234

LruCache class
reference link 184

Material Design

reference link 33
Merchant Console

reference link 272
mipmaps

reference link 17
Mockito

reference link 246
modules

reference link 22
multiple APKs

reference link 206, 268
MVC pattern

reference pattern 17

N

network code
about 164
Gson 170
real case scenario 177, 180
Retrofit 174
Volley 168
volley 166, 167
NetworkOnMainThreadException
reference link 154

O

OkHttp

disk cache classes, reference link 189

reference link 176

P

paid app

about 271

creating 271
finance tracking 272
reference link 271

Parcelable interface 242
permissions

about 147

Android N permission mechanism 148, 149,
150, 151, 152

groups 153

reference link 150, 153

Picasso

about 210
reference link 211

preparation steps, application publishing

account, creating 259
signin 257,258, 259

Progressive JPEGs

reference link 200

ProGuard

reference link 27

projects

reference link 39

protobuf

reference link 176

R

R.layout

reference link 108

Realm

about 230
reference link 230

RecyclerView.ltemAnimator

reference link 137

RecyclerView

[2971

about 76,126, 183

CardView 134, 136

common operations 77
ltemAnimator 137
ItemDecoration 138, 139, 141
placing ListView 128, 129
reference link 77, 127

StaggeredGridLayoutManager 142, 144, 145
used, for replacing ListView 127, 130, 131, 132,

133

RecyclingBitmapDrawable

reference link 197
RelativeLayout

about 72

common operations 72

reference link 72
remote data, caching

about 183

configuration changes, handling 194

disk caches 188

memory caches 184
RequestQueue

reference link 166
resources

providing, reference link 20
ResultReceiver

reference link 160
Retrofit

about 174, 176

reference link 174

S

sample project
creating 12
resource configuration qualifiers 20, 21
running 17, 18, 20
starting 13, 14, 16
SampleSize property
reference link 201
ScrollView
about 73
common operations 73
reference link 74
ServiceConnection
reference link 279
SharedPreferences class
about 214
additional features 219
initialization 215
modes 215
reference link 214, 219
uses 215,218

[298]

SharedPreferences.Editor
reference link 217
simple calculator example
functionality, adding 252, 253, 254, 255
smali
reference link 27
SQLite
about 225
contract definition 225
helper implementation 227, 228, 229
reference link 225
schema definition 226
scheme definition 225
SQLiteOpenHelper 227
StaggeredGridLayoutManager
reference link 145
startintentSenderForResult
reference link 285
StateListDrawable
reference link 63
static imports
reference link 249
subactivities 42
support library v23.2
reference link 204
Switch
about 66
common operations 66
reference link 66

o

TextView
about 59
common operations 60
reference link 60, 86
third-party libraries
about 206
Fresco 212
Glide 207
Picasso 210
Realm 230
UIL 208
Toasts
about 102, 103
reference link 109

U

Ul testing
about 246
Espresso framework, settingup 247
Ul tests
creating 248, 249, 250
creation, simplifying 250
UIL
about 208
reference link 210
unit tests, creating
about 234
simple calculator application, writing 234, 235
unit tests
creating 236, 237
executing 238, 240
reference link 242
user interface components
dialogs 103
Toasts 102
user interfaces
building, with ViewGroups 79
building, with views 79
creating, programmatically 87, 89
creating, with layout files 80

\'

versioning
reference link 266
View Holder pattern 116
ViewGroups
about 59, 68
CardView 70
ConstraintLayout 77

FramelLayout 68
LinearLayout 71
RecyclerView 76
RelativeLayout 72
ScrollView 73
used, for building user interface 79
views
about 59
Button 63
CheckBox 66
EditText 61
GridView 75
ImageButton 65
ImageView 62
reference link 59
Switch 66
TextView 59
used, for building user interface 79
WebView 67
volley
about 166, 167
reference link 166, 167

w

WeakReferences
reference link 193
WebP
reference link 191, 200
WebView
about 67
common operations 68
reference link 68
wire
reference link 176

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Android Development
	Setting up Android Studio
	Getting the right version of Android Studio
	Installing Android Studio
	First run

	Creating a sample project
	Starting a new project
	Running your project
	Resource configuration qualifiers

	Additional elements
	Resources
	Modules
	Android Manifest
	Gradle build system
	ProGuard

	Summary

	Chapter 2: Activities and Fragments - The Backbone of Your App
	Activities
	Android design guidelines
	The Activity context and scope
	Activity lifecycle
	Activity states
	Activity lifecycle callbacks
	Activity states and callbacks
	The activity stack

	Creating activities
	Defining your activity
	Editing the app manifest
	Creating our Activity class
	Building the sample application
	Setting up your device for debugging
	Running the application

	Fragments
	When to use fragments
	Fragment lifecycle
	Fragment context
	Activity – fragment lifecycles
	Fragment lifecycle callbacks

	Creating fragments
	Creating our own fragment
	Creating a static fragment constructor
	Using values from the static factory implementation

	Adding a fragment to an activity
	Running the application

	Adding multiple fragments to a single activity
	Adding multiple fragments to an activity
	Adding two fragments in a single FragmentTransaction
	Running the application

	Navigating through an app
	Activity navigation

	Summary

	Chapter 3: Working with Views – Interacting with Your App
	Views and ViewGroups
	Common views
	TextView
	Common operations

	EditText
	Common operations

	ImageView
	Common operations

	Button
	Common operations

	ImageButton
	Common operations

	Switch and CheckBox
	Common operations

	WebView
	Common operations

	Common ViewGroups
	FrameLayout
	Common operations

	CardView
	Common operations

	LinearLayout
	Common operations

	RelativeLayout
	Common operations

	ScrollView
	Common operations

	ListView
	Common operations

	GridView
	Common operations

	RecyclerView
	Common operations

	ConstraintLayout
	Common operations

	Building a user interface using views and ViewGroups
	Creating interfaces using layout files
	Creating a basic layout
	Adding a TextView
	Previewing the layout
	Using your layout file
	Styling the TextView
	Testing the layout

	Creating user interfaces programmatically

	Creating custom views
	The first custom view example
	Custom drawing
	Drawing on a Canvas

	Hooking up the CustomView
	Adding the custom view programmatically
	Adding the custom view using a layout file
	Testing the CustomView

	The second custom view example
	Creating the CustomTextView class
	Adding on-click behavior
	Testing the CustomTextView
	Overriding the onTouchEvent method

	Additional user interface components
	Toasts
	Dialogs

	Summary

	Chapter 4: Lists and Adapters
	ListView and ListActivity
	ListView
	ListActivity
	Customizing the item view

	Adapters
	ArrayAdapter
	Performance considerations
	BaseAdapter

	RecyclerView
	Replacing ListView with RecyclerView
	CardView
	ItemAnimator
	ItemDecoration
	StaggeredGridLayoutManager

	Summary

	Chapter 5: Remote Data
	Permissions
	Android M permission mechanism
	Permission groups

	Background processing
	Java threads
	AsyncTask
	IntentService

	Network code
	Android standard libraries
	Volley
	Gson
	Retrofit
	Real case scenario

	Summary

	Chapter 6: Image Management
	Caching remote data
	Memory caches
	Disk caches
	Handling configuration changes

	Loading images
	Memory
	Handling large images
	Different image types
	Vector drawables
	Images in a RecyclerView

	Widely used third-party libraries
	Glide
	UIL
	Picasso
	Fresco

	Summary

	Chapter 7: Permanent Data
	Storing preferences
	Initialization
	Basic use
	Additional features

	Files
	Internal storage
	External storage
	Additional methods

	SQLite
	Schema and contract definition
	Helper implementation

	Third-party libraries
	Realm

	Summary

	Chapter 8: Testing Your Application
	Testing logic
	Simple calculator application
	Unit tests
	Discovering and fixing issues by creating tests
	Instrumentation tests
	Testing integrations
	Mocking Android dependencies

	Testing the UI
	Setup
	Creating UI tests
	Simplifying UI test creation

	Putting it all together
	Summary

	Chapter 9: Publishing Your Application
	Preparation steps
	Application signing
	Account creation

	Publishing your application on Google Play
	Adding a new application
	Preparing the Store Listing
	Uploading the application APK

	Summary

	Chapter 10: Monetization – Make Money with Your App
	Paid apps
	Creating a paid app
	Finance tracking

	In-app purchases
	Initial setup
	Adding in-app products
	Application code setup
	Purchasing in-app products from our application
	Consuming purchases

	In-app advertising
	Integrating with the Google Mobile Ads SDK

	Summary

	Index

