
www.allitebooks.com

http://www.allitebooks.org

��������	
������	

��������

������
����

�����	
������	�	�

���������	�����	������	����������	���

���������	��	���	����	���	������������	�

�	
��������	��

������	����	��	��	����

Raimon Ràfols Montané
Laurence Dawson

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Android Application Development

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2016

Production reference: 1190816

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78528-611-7

����������	
����

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors

Raimon Ràfols Montané
Laurence Dawson

Copy Editor

Gladson Monteiro

Reviewers

Vincent Brison
Pablo Pera
Karim Varela

Project Coordinator

Suzanne Coutinho

Commissioning Editor

Veena Pagare

Proofreader

Safis Editing

Acquisition Editor

Reshma Raman

Indexer

Rekha Nair

Content Development Editor

Zeeyan Pinheiro

Production Coordinator

Aparna Bhagat

Technical Editors

Vivek Pala

Cover Work

Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Author
Raimon Ràfols Montané is a software engineer currently living in the Barcelona area. He
has been working on mobile devices since the early stages, ranging from monochrome
devices to the current smartphones. In all these years, he has worked in several areas:
B2C/B2E/B2B apps, portals, and mobile gaming. Due to this broad experience, he has
expertise in many technologies and, especially in UI, build systems, and client-server
communications.

He is currently working as an engineering manager at AXA Group Solutions in Barcelona,
taking care of all the engineering and development processes, mobile application quality,
and leading a small R&D team. In the past, he has worked abroad for Imagination
Technologies near London and for Service2Media in the Netherlands.

In his spare time, he enjoys taking part in hackathons, photography, and speaking
at conferences. Raimon has won more than 40 international awards, including AngelHack
Barcelona 2015, Facebook World Hack Barcelona, and he has secured second place at js1k
2016. He has been speaking about Java/Android performance and bytecode, Android
custom views, and entrepreneurship in several conferences around the world.

I would like to thank my girlfriend for her support and understanding during the late
night and lengthy writing weekends. Also, I would like to thank my parents and Rafa, my
cousin, as without their support and encouragement, I would not be doing what I do today.

Last, but not least, I would like to thank everyone who challenged me and helped me grow
in my professional career, people such as Carlos Carrasco, Alfred Ferrer, Pau Vivancos,
Miquel Barceló, David Domingo, Marcel Roorda, Diego Morales, Alberto Chamorro, Teun
van Run, Tom van Wietmarschen, Josep Cedó, Joanne Pupo, Jordi Valldaura, Mathieu
Sivade, Chris Jakob, Tomas Kustrzynski, Bartłomiej Żarnowski, Radosław Holewa, and all
those who I have forgotten to mention here.

www.allitebooks.com

http://www.allitebooks.org

Laurence Dawson is a software developer and an academic focused on mobile
development.

He received a PhD in 2015 from Durham University, developing efficient parallel
implementations of algorithms for GPUs using NVIDIA CUDA with an emphasis on
metaheuristics and image processing.

Laurence currently runs his own mobile software development company and is also a guest
lecturer at King's College London, teach software engineering modules.

You can follow his projects on his GitHub page at
	�	�	�	�	�	�	�	�	�	�	
			
	�	�	�	�	�	�	�			�	�	�	�	�	�	�	�	�	�	�.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers
Vincent Brison is a veteran Android software craftsman. With 4 years of Android
development experience, he successfully lead the development of reference banking
applications as the lead Android developer. He specializes in application architecture
around Clean Code, code quality and testing on Android, and cutting edge graphical
implementations for Android. As an open source enthusiast, Vincent is sharing some of his
work on GitHub (
	�	�	�	�	�	�	�	�	�	�	
			
	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�), on his personal website (
	�	�	�	�	�	�

�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�), and in events like Droidcon.

I personally would like to thank Thomas B. for showing me the right way of crafting Android
applications.

Pablo Pera is an entrepreneur and engineer who has built and launched Android apps that
have reached more than 30 million users worldwide. He started his professional career at
Google, right about the time Android was born, and worked for large organizations such as
CERN and tech startups, where he has been leading various engineering teams.

Karim Varela is an entrepreneur and mobile enthusiast at heart. He is currently involved in
a couple of mobile start-ups, Coffee Meets Bagel and Tastemates. At Coffee Meets Bagel, he
leads the engineering team and he advises Tastemates and Proxloop on strategy, product,
and technology. Previously, he built the Android app for the world-famous Tinder app.

He earned an MBA from the University of Florida and a bachelor's degree in computer
science from the University of California. He also contributed as a technical reviewer on the
book Pro Android 4 and coauthored the book Instant GSON.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at ����������	
���� and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at �	�����������������	
���� for more details.

At ����������	
����, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�			
	�	�	�	�	�	
	�	�	�	�	�	�			
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Free access for Packt account holders
Get notified! Find out when new books are published by following ���������������� on
Twitter or the Packt Enterprise Facebook page.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Chapter 1: Getting Started with Android Development 6

Setting up Android Studio 6
Getting the right version of Android Studio 7
Installing Android Studio 8
First run 10

Creating a sample project 12
Starting a new project 13
Running your project 17
Resource configuration qualifiers 20

Additional elements 21
Resources 21
Modules 22
Android Manifest 22
Gradle build system 22
ProGuard 26

Summary 29

Chapter 2: Activities and Fragments - The Backbone of Your App 30

Activities 31
Android design guidelines 33
The Activity context and scope 33
Activity lifecycle 34

Activity states 34
Activity lifecycle callbacks 35
Activity states and callbacks 36
The activity stack 37

Creating activities 37
Defining your activity 37

Editing the app manifest 38
Creating our Activity class 40
Building the sample application 40

Setting up your device for debugging 40
Running the application 41

Fragments 42
When to use fragments 42
Fragment lifecycle 44

Fragment context 44

www.allitebooks.com

http://www.allitebooks.org

[ii]

Activity – fragment lifecycles 45
Fragment lifecycle callbacks 45

Creating fragments 46
Creating our own fragment 46
Creating a static fragment constructor 47

Using values from the static factory implementation 48
Adding a fragment to an activity 49

Running the application 51
Adding multiple fragments to a single activity 51

Adding multiple fragments to an activity 52
Adding two fragments in a single FragmentTransaction 53
Running the application 54

Navigating through an app 54
Activity navigation 54

Summary 57

Chapter 3: Working with Views – Interacting with Your App 58

Views and ViewGroups 59
Common views 59

TextView 59
Common operations 60

EditText 61
Common operations 61

ImageView 62
Common operations 63

Button 63
Common operations 64

ImageButton 65
Common operations 65

Switch and CheckBox 66
Common operations 66

WebView 67
Common operations 68

Common ViewGroups 68
FrameLayout 68

Common operations 69
CardView 70

Common operations 70
LinearLayout 71

Common operations 71
RelativeLayout 71

Common operations 72
ScrollView 73

Common operations 73
ListView 74

Common operations 74

www.allitebooks.com

http://www.allitebooks.org

[iii]

GridView 75
Common operations 75

RecyclerView 76
Common operations 77

ConstraintLayout 77
Common operations 79

Building a user interface using views and ViewGroups 79
Creating interfaces using layout files 80

Creating a basic layout 80
Adding a TextView 83
Previewing the layout 83
Using your layout file 85
Styling the TextView 86
Testing the layout 87

Creating user interfaces programmatically 87
Creating custom views 90

The first custom view example 90
Custom drawing 92

Drawing on a Canvas 94
Hooking up the CustomView 96

Adding the custom view programmatically 96
Adding the custom view using a layout file 96
Testing the CustomView 97

The second custom view example 98
Creating the CustomTextView class 98
Adding on-click behavior 99
Testing the CustomTextView 101
Overriding the onTouchEvent method 101

Additional user interface components 102
Toasts 102
Dialogs 103

Summary 105

Chapter 4: Lists and Adapters 106

ListView and ListActivity 106
ListView 106
ListActivity 110
Customizing the item view 111

Adapters 113
ArrayAdapter 113
Performance considerations 116
BaseAdapter 123

RecyclerView 126
Replacing ListView with RecyclerView 127

[iv]

CardView 134
ItemAnimator 137
ItemDecoration 137
StaggeredGridLayoutManager 142

Summary 146

Chapter 5: Remote Data 147

Permissions 147
Android M permission mechanism 148
Permission groups 153

Background processing 153
Java threads 154
AsyncTask 155
IntentService 157

Network code 164
Android standard libraries 165
Volley 166
Gson 170
Retrofit 174
Real case scenario 177

Summary 182

Chapter 6: Image Management 183

Caching remote data 183
Memory caches 184
Disk caches 188
Handling configuration changes 194

Loading images 196
Memory 196
Handling large images 199
Different image types 202
Vector drawables 203
Images in a RecyclerView 206

Widely used third-party libraries 206
Glide 207
UIL 208
Picasso 210
Fresco 211

Summary 213

Chapter 7: Permanent Data 214

[v]

Storing preferences 214
Initialization 215
Basic use 215
Additional features 218

Files 219
Internal storage 220
External storage 222
Additional methods 224

SQLite 225
Schema and contract definition 225
Helper implementation 227

Third-party libraries 230
Realm 230

Summary 232

Chapter 8: Testing Your Application 233

Testing logic 233
Simple calculator application 234
Unit tests 235
Discovering and fixing issues by creating tests 240
Instrumentation tests 242
Testing integrations 245
Mocking Android dependencies 245

Testing the UI 246
Setup 247
Creating UI tests 248
Simplifying UI test creation 250

Putting it all together 251
Summary 255

Chapter 9: Publishing Your Application 257

Preparation steps 257
Application signing 257
Account creation 259

Publishing your application on Google Play 260
Adding a new application 260
Preparing the Store Listing 261
Uploading the application APK 265

Summary 269

Chapter 10: Monetization – Make Money with Your App 270

[vi]

Paid apps 271
Creating a paid app 271
Finance tracking 272

In-app purchases 272
Initial setup 273
Adding in-app products 275
Application code setup 276
Purchasing in-app products from our application 284
Consuming purchases 286

In-app advertising 286
Integrating with the Google Mobile Ads SDK 287

Summary 292

Index 293

Preface
Mobile development has been a market with huge potential since the very beginning, but
there have been some issues in the past, ranging from content discovery, where to
download apps and games, to the prohibitive costs of data in some countries. With the
launch of iPhone and the App Store, the whole market skyrocketed. Google followed up
and introduced Android and the Google Play Store. Today, we all know where we can find
applications for our smartphone and flat data rates or, at least, very accessible data plans
are more common in many countries. In addition, many companies transformed their
operating model to become mobile first and, nowadays, it is very strange not to find a
mobile application of a service or business that has direct interaction with consumers that
provides services to their employees and, obviously, those companies whose whole
business model is based on a mobile application.

The aim of this book is to introduce newcomers to Android development and, for those that
are already experienced, to brush up on some concepts and maybe add some final touches
to their applications. We will cover several aspects of Android development, ranging from
the very basics to the more advanced subjects. We will briefly explain the foundations, as it
is important to understand how everything works, but we will focus more on open source
and broadly used third-party libraries. Android has a very rich, open source, and
extensively tested library ecosystem, and it will be a mistake not to take advantage of it.
These libraries are widely used by many of the most downloaded apps in Google Play and
knowing how they work is becoming crucial, both to speed up the development time and to
perform well in job interviews. Do not forget to contribute back to the community!

What this book covers
�
�������, Getting Started with Android Development, will explain how to install Android
Studio, create a sample project, and run it on an Android emulator, and finally provide an
introduction to the Gradle build system.

�
�������, Activities and Fragments – The Backbone of Your App, will demonstrate how to
create activities and fragments and understand their lifecycle.

�
������ , Working with Views – Interacting with Your App, will show the most common
Views and ViewGroups and how to create custom Views.

�
������!, Lists and Adapters, will explore how to add lists to our application, ranging from
the good old ListView to the new RecyclerView. We will also cover the possible

Preface

[2]

performance issues we might run into.

�
������", Remote Data, will explain how to retrieve data from the network using Android
standard classes and then some third-party open source libraries.

�
������#, Image Management, will describe how to load images, cache them efficiently, and
use different libraries to hide all the complexity.

�
������$, Permanent Data, will teach you how to store information on the local device,
ranging from temporary files to an SQLite database.

�
������%, Testing Your Application, will demonstrate how to automatically test our
application and add unit and UI tests.

�
������&, Publishing Your Application, will describe how to publish our application to
Google Play.

�
�������', Monetization – Make Money with Your App, will explain how to add in-app
purchases, set the price of our application, and add in-app advertisements.

What you need for this book
To start developing for Android, you will need a version of Android Studio. In this book,
we will cover how to download and install the latest stable version and, for the brave, how
to install a development or beta version. The development version will contain all the latest
features but they might not be as stable as they should be.

Who this book is for
Want to get started with Android development? Start here.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "To edit
your app manifest, open the folder ����(���� and double-click on

Preface

[3]

the)������*���(����+�� file."

A block of code is set as follows:

�	
����������,�����)������-��+������)������-�.

���/�������
�������������������������01	����������2�������,����3�.
�����	������������0�����2�������,����34

���������������
����
���������-����(������������
5

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Click on this tab and
select Android from the top drop-down menu."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail (���
����������	
����, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at ����������	
������	�
���.

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
	�	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�			
	�	�	�	�. If you purchased this book elsewhere, you can visit
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�			
	�	�

�	�	�	�			�	�	�	�	� and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
	�	�	�	�	�	�	�	�	�	�	
			
	�	�	�	�	�	�	�	�	�	�	�			
	�

�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�. We also have other code bundles
from our rich catalog of books and videos available at
	�	�	�	�	�	�	�	�	�	�	
			
	�	�	�	�	�	�	�	�	�	�	�			
	�	�	�	

�	�	�	�. Check them out!

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�			
	�	�	�	�	�	�			
	�	�	�	6	�	�	�	�	�	�,
selecting your book, clicking on the Errata Submission Form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded to our website or added to any list of existing errata under the Errata
section of that title.

To view the previously submitted errata, go to
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�			
	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�

�	�	�			�	�	�	�	� and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at ���-���
��������	
���� with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
7	��������������	
����, and we will do our best to address the problem.

11
Getting Started with Android

Development
In this chapter, we will go through all the steps required to start developing Android
devices. We have to be aware that Android is an evolving platform and so are its
development tools. We will show how to download and install Android Studio and how to
create a new project and run it on either an emulator or a real device. We will spend some
time going through some additional components that we will use in later chapters.

Installing Android Studio
Creating a sample project
Additional components

Setting up Android Studio
Before being able to build an Android application, we have to download and install
Android Studio on our computer. It is still possible to download and use Eclipse with the
Android Development Tools (ADT) plugin, but Google no longer supports it and they
recommend that we migrate to Android Studio. In order to be aligned with this, we will
only focus on Android Studio in this book. For more information on this, visit

	�	�	�	�	�	�	�	�	�	�	�	�	�	6	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	"	�		#	�	�	�	6			�	�	�	�	�	6	�	�	6	�	�	�	�	�	�	�	6	�	�	�	�	�	�	�

6	�	�	�	�	�	�	�	�	�	�	
	�	�	�.

Getting Started with Android Development

[7]

Getting the right version of Android Studio
 ��	������	������	�������	�!	
������	"�����	���	��	!����	��		
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	+	�	
	�	�	�#

If you are among the bravest developers, and you are not afraid of bugs, you can always go
to the Canary channel and download the latest version. The Canary channel is one of the
preview channels available on the Android tools download page (available at
	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�			�	�	�) and contains weekly builds.

The following are other preview channels available at that URL:

The Canary channel contains weekly builds. These builds are tested but they
might contain some issues. Just use a build from this channel if you need or want
to see the latest features.
The Dev channel contains selected Canary builds.
The Beta channel contains the beta milestones for the next version of Android
Studio.
The Stable channel contains the most recent stable builds of Android Studio.

Getting Started with Android Development

[8]

The following screenshot illustrates the Android Tools download page:

It is not recommended to use an unstable version for production. To be on
the safe side, always use the latest stable version. In this book, we will use
the 2.2 preview version. Although it is a beta version at this moment, we
will have the main version quite soon.

Installing Android Studio
Android Studio requires JDK 6 or higher: JDK 7 is required as a minimum if you aim to
develop for Android 5.0 and higher. You can easily check which version you have installed
by running this on your command line:

javac -version

If you don't have any version of the JDK or you have an unsupported version, please install
or update your JDK before proceeding to install Android Studio.

Getting Started with Android Development

[9]

Refer to the official documentation for a more comprehensive installation guide and details
on all platforms (Windows, Linux, and Mac OSX) at 	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	+	�	
	�	�	�	8	�	�	�	9	�	�			�	�	�.

Once you have JDK installed, unpack the package you have just downloaded from the
Internet and proceed with the installation. For example, let's use Mac OSX. If you download
the latest stable version, you will get a ���� file that can be mounted on your filesystem.
Once mounted, a new Finder window will appear and will ask us to drag the Android
Studio icon to the)����������� folder. Just doing this simple step will complete the basic
installation.

Getting Started with Android Development

[10]

If you have downloaded a preview version, you will have a ZIP file that once unpacked will
contain the Android Studio Application directly (it can be just dragged to the
)����������� folder using Finder).

For other platforms, refer to the official installation guide provided by Google at the web
address mentioned earlier.

First run
Once you have finished installing Android Studio, it is time to run it for the first time. On
the first execution (at least if you have downloaded version 2.2), it will let you configure
some options and install some SDK components if you choose the custom installation type.
Otherwise, both these settings and SDK components can be configured or installed later.

Getting Started with Android Development

[11]

The first option you will be able to choose is the UI theme. We have the default UI theme or
the Darcula theme, which basically is a choice of light or dark backgrounds, respectively.

After this step, the next window will show the SDK Components Setup where the
installation process will let you choose some components to automatically download and
install. On Mac OS, there is a bug in some versions of Android Studio 2.0 that sometimes
does not allow selecting any option if the target folder does not exist. If that happens, follow
these steps for a quick fix:

Copy the contents of the Android SDK Location field, just the path or something1.
like �:�����;	�������<�=�
���-�)����������, to the clipboard.
Open the terminal application.2.
Create the folder manually as3.
�������:�����;	�������<�=�
���-�)����������.

Getting Started with Android Development

[12]

Go back to Android Studio, press the Previous button, and then the Next button4.
to come back to this screen. Now, you will be able to select the components that
you would like to install.
If that still does not work, cancel the installation process, ensuring that you5.
checked the option to rerun the setup on the next installation. Quit Android
Studio and rerun it.

Creating a sample project
We will introduce some of the most common elements in Android Studio by creating a
sample project, building it, and running it on an Android emulator or on a real android
device. It is better to display those elements when you need them rather than just
enumerate a long list without a real use behind.

Getting Started with Android Development

[13]

Starting a new project
Just press the Start a new Android Studio project button to start a project from scratch.
Android Studio will ask you to make some project configuration settings, and you will be
able to launch your project. If you have an already existing project and would like to import
it to Android Studio, you could do it now as well. Any projects based on Eclipse, Ant, or
Gradle build can be easily imported into Android Studio. Projects can be also checked out
from Version Control software such as Subversion or Git directly from Android Studio.

Getting Started with Android Development

[14]

When creating a new project, it will ask for the application name and the company domain
name, which will be reversed into the application package name.

Once this information is filled in, Android Studio will ask the type of device or form factors
your application will target. This includes not only phones and tablets, but also Android
Wear, Android TV, Android Auto, or Google Glass. In this example, we will target only
phones and tablets and require a minimum SDK API level of 14 (Android 4.0 or Ice Cream
Sandwich). By setting the minimum required level to 14, we make sure that the app will run
on approximately 96.2% of devices accessing Google Play Store, which is good enough. If
we set 23 as the minimum API level (Android 6.0 Marshmallow), our application will only
run on Android Marshmallow devices, which is fewer than 1% of active devices on Google
Play right now.

Unless we require a very specific feature available on a specific API level, we should use
common sense and try to aim for as many devices as we can. Having said that, we should
not waste time supporting very old devices (or very old versions of Android), as they might
be, for example, only 5% of the active devices but may imply lots and lots of work to make
your application support them. In addition to the minimum SDK version, there is also the
target SDK version. The target SDK version should be, ideally, set to the latest stable version

Getting Started with Android Development

[15]

of Android available to allow your application to take advantage of all the new features,
styles, and behaviors from newer versions.

As a rule of thumb, Google gives you the percentage of active devices on Google Play, not
the percentage of devices out there in the wild. So, unless we need to build an enterprise
application for a closed set of devices and installed ad hoc, we should not mind those
people not even accessing Google Play, as they will not the users of our application because
they do not usually download applications, unless we are targeting countries where Google
Play is not available. In that case, we should analyze our requirements with real data from
the available application stores in those countries.

To see the Android OS version distribution, always check the Android developer
dashboard at
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�			�	�	�	�	�	
	
	�	�	�	�	�	�	�	�	�	�	+	�	
	�	�	�.

Alternatively, when creating a new project from Android Studio, there is a link to help you
choose the version that you would like to target; this will open a new screen with the
cumulative percentage of coverage.

Getting Started with Android Development

[16]

If you click on each version, it will give you more details about that Android OS version
and the features that were introduced, as shown in the following screenshot:

After this step, and to simplify our application creation process, Android Studio will allow
us to add an)������- class to the project from some templates. In this case, we can add an
empty)������- class for the time being. Let's not worry about the name of the)������-
class and layout file at this moment; we can safely proceed with the prefilled values.

As defined by Android developer documentation an:)������- is a single, focused thing
that the user can do.
(Source:
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�)	�	�	�	�	�	�	-	�	
	�

�	�)

To simplify further, we can consider an)������- class as every single screen of our
application where the user can interact with it. If we take into consideration the MVC
pattern, we can assume the)������- class to be the Controller, as it will receive all the user
inputs and events from the views, and the layout XML and UI widgets to be the views.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Android Development

[17]

To know more about the MVC pattern, check out the following page:

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	*	�	�	�	�	>	�	�	>	%		>	&	 	�	�	�	�	>	�	�	>	%		>	&	 	�	�	�	�	�	�	�

�	�	�.

So, we have just added one)������- class to our application; let's see what else the
Android Studio wizard created for us.

Running your project
The Android Studio project wizard not only created an empty)������- class for us, but it
also created an)������*���(���, a layout file (�������-?�����+��) defining the View
controlled by the)������- class, an application icon placed carefully into different
mipmaps (
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	*	�	�	�	�	�) so that the most appropriate will be
used depending on the screen resolution, some Gradle scripts, and and some other �+��
files containing colors, dimensions, strings, and style definitions.

Getting Started with Android Development

[18]

We can have multiple resources, and even repeated resources, depending on screen
resolution, screen orientation, night mode, layout direction, or even the mobile country
code of the SIM card. Take a look at the next topic to understand how to add qualifiers and
filters to resources. For the time being, let's just try to run this example by pressing the Play
button next to our build configuration named ��� at the top of the screen.

Android Studio will show us a small window where we can select the deployment target: a
real device or emulator where our application will be installed and launched. If we have not
connected any device or created any emulator, we can do it from the following screen. Let's
press the Create New Emulator button.

From this new screen, we can easily select a device and create an emulator that looks like
that device. A Nexus 5X will suit us. After choosing the device, we can choose which
version of the Android OS and architecture the platform will run on. For instance, if we
want to select Android Marshmallow (API level 23), we can choose from armeabi-v7a, x86
(Intel processors) and x86_64 (Intel 64bit processors). As we previously installed HAXM
during our first run (
	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	6			�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	6	
	�	�

Getting Started with Android Development

[19]

�	�	�	�	�	6	�	�	�	�	�	�	�	�	�	�	�	6	�	+	�	�			�	�	�	�	6	�	�	�	�	�	�	�), we should install an Intel image, so the
emulator will be a lot faster than having to emulate an ARM processor. If we do not have
the Android OS image downloaded to our computer, we can do it from this screen as well.
Note that you can have an image of the OS with Google APIs or without them. We will use
one image or another depending on whether the application uses any Google-specific
libraries (Google Play Services) or only the Android core libraries.

Once the image is selected (and downloaded and installed, if needed), we can proceed to
finish the Android Virtual Device (AVD) configuration. On the last configuration screen,
we can fine-tune some elements of our emulator, such as the default orientation (portrait or
landscape), the screen scale, the SD card (if we enable the advanced settings), the amount of
physical RAM, network latency, and we can use the webcam in our computer as the
emulator's camera.

$��	���	���	�����	��	���	����	�

��������	��	���	
������	��������	����	���	%���	�������#	&���	������	��	��	���

��
�������	������	���	����	!��	��	��	����	���	�������	���	�

#	'!	����������	����	��	��	������(���	������	���	����

������	��	���	
������	��������)

Getting Started with Android Development

[20]

If you want to use a real device instead of an emulator, make sure that your device has the
developer options enabled and it is connected to your computer using a USB cable. To
enable development mode on your device or get information on how to develop and
debug applications over the network, instead of having the device connected through an
USB, check out the following links:

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	
	�	
	�	�	�

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�

If these steps are performed correctly, your device will appear as a connected device on the
deployment target selection window.

Resource configuration qualifiers
As we introduced in the previous section, we can have multiple resources depending on the
screen resolution or any other device configuration, and Android will choose the most
appropriate resource at runtime. In order to do that, we have to use what is called
configuration qualifiers. These qualifiers are only strings appended to the resource folder.
Consider the following example:

�����
��
�����
��6
���
�����
��6����
�����
��6��6�:,6����
��-�	�
��-�	�6��
��-�	�6��#''��
��-�	�6�$

Qualifiers can be combined, but they must always follow the order specified by Google in
the Providing Resource documentation, available at
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�			�	�	�

�	�	�	�	�	�	�	�	�	�	�	�			�	�	�	�	�	�	�	�	�	�	�	�	�	�	6	�	�	�	�			�	�	�	�	�	
	�	�	�.

This allows us, for instance, to target multiple resolutions and have the best experience for
each of them. It can be also used to have different images based on the country in which the
application is executed, or the language.

Getting Started with Android Development

[21]

We have to be aware that putting in too many resources (basically, images or any other
media) will make our application grow in size. It is always good to apply common sense.
And, in the event of having too many different resources or configurations, do not bloat the
application and produce different binaries that can be deployed selectively to different
devices on Google Play. We will briefly explain in the Gradle build system topic in this
chapter, how to produce different binaries from one single source code. It will add some
complexity on our development but will make our application smaller and more convenient
for end users. For more information on multiple APK support, visit
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	-	�	�			
	�	�	�	
	�	�	�	�	�			�	�	�	�	�	�	6	�	�	�	�	�	
	�	�	�.

Additional elements
Now that we have already introduced some of the elements involved in the process of
building mobile applications for Android devices, we will dive deep into some of them.

Resources
To build an application we do not only need source code, we also need some additional files
such as images, text, layout description files, or others. Those additional files are what we
call resources. Our project will contain a res directory together with our ��� directory.
Inside this directory, we can find resources needed by our application.

To make our application as easy as possible to maintain and add new features to we should
externalize resources such as application images and texts from the source code. It will keep
our application code simple and we can easily add support for new countries or new
languages for example. As explained earlier, we can have multiple resources and, thanks to
the resource qualifiers, the Android device will pick the proper resource based on its
properties in runtime.

For static files that need to be included without any kind of filter, you can use the assets
folder. Everything there will be included into the final application. To access these assets,
we will have to use the)����*������ class, but we will cover this later. Visit 	
	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�)	�	�	�	�	*	�	�	�	�	�	�	�	
	�	�	� for more
information on the)����*������ class.

Getting Started with Android Development

[22]

Modules
In order to keep the code of the application tidy and uncoupled, we can identify parts of the
application, which might be even reused later in some other applications, that can be
completely decoupled and exposed as a module. Gradle, the build system, allows us to
have several modules and establish dependencies between the main application and those
modules. To make it more interesting, these modules can be extracted as independent
projects and have an independent release cycle as though we are using a third-party library.
Modules can be considered as Android libraries or Android library projects. Instead of
having third-party dependencies pulled from remote repositories, we have them inside our
project. Visit
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�			�	�	�	�	�	�	�	@	�	�	�	�	�	�	�	�	6	�	�	�	6	�	�	�			�	�	�	
	�	�	�

for more information on modules.

Android Manifest
The Android Manifest file is our application descriptor. Here, we can find all the activities,
services, content providers, and broadcast receivers defined in our application, the list of
permissions required, which icon to use on the)���������� menu, and a lot of other
configurations. For an exhaustive list of configurations, check the official documentation at

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�			�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	(�	�	�	6	�	�	�	�	�	�	
	�	�	�.

When the application is compiled, the manifest is transformed into a binary format. In order
to see the manifest of a compiled APK, we can use the following tool, included with the
Android SDK:

;)�������,AB����
<�
	���6������� �'���������	���
�������;����(���<

On Mac OS, Android SDK will be installed inside your local =�
���- directory,
as C�=�
���-�)�����������.

Gradle build system
Gradle(
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�) is the new build system recommended by Google. On
previous versions, and before the introduction of Android Studio, Ant was the default build
system used. Gradle is a DSL, or domain-specific language, that allows scripting for more
complex build processes or configurations. You can do lots of things with it, but some of the
most used parts of the Gradle build system are dependency management and the option to
build different flavors (or configurations) of your application.

Getting Started with Android Development

[23]

Dependency management is not only useful for managing internal modules, but also for
managing external third-party libraries that we will use in our application.

If, for instance, we want to include Retrofit (HTTP client,

	�	�	�	�	�	�	�	7			�	�	�	�	�	�	�	
			
	�	�	�	�	�	�	�	�	�	(�	�	�) and Picasso (the image downloading library,

	�	�	�	�	�	�	�	7			�	�	�	�	�	�	�	
			
	�	�	�	�	�	�	�	�	�	�	�	�), we will have to add the two dependencies to our

	���������� file under the dependencies keyword:

�������������.
����������(���D���0�����E��
�EF�����	����GEH�@��EI3
��������������E@	����@	����!���E
����������E�������������	���������������6�$�� ����E
����������E�����7	���	�������(���������(�����'�'6
��� E
����������E�����7	���	��������������������"��E
5

We have just added the last two lines to the dependencies that Android Studio puts in by
default.

Let's now discuss flavors, a very powerful way to build multiple configurations out of the
same source code. If we take a look at Google Play, we will notice that there are many apps
and games with a free version, usually limited or with ads, and a full or pro version.

Instead of duplicating all the code and having to build two different applications, adding
two different flavors to your application allows you to have two or more different builds
out of almost the same source code. Each flavor can have a specific source code and
resources that will differentiate it from the other flavors, but at the same time each flavor
will share the common source code and resources with all the others.

Let's modify our test application, the one created by the Android Studio Wizard, to add two
flavors.

First, we need to add the two flavors to our
	���������� file. Here is the resulting file
with the two flavors and the dependencies we introduced in the previous topic.

����-���	�����E�����������������������E
��������.
���������,��J��������
��
	���D����J�������K� �'��K
����(�	�����(���.
�������������2��K�������������(�����+�����K
�����,��J��������!
��������,��J��������
���������������
���������L����K��'K
�5

Getting Started with Android Development

[24]

�����	��M�������.
���(����.
����������������2��K�������������(�����+������(���K
���5
�������.
����������������2��K�������������(�����+���������K
���5
�5
�
	���D-����.
�����������.
���������(-���
����(����
���������	���M��������A�(�	������	���M���0E����	���6
��������������+�E3FE����	���6�	�������E
��5
�5
5
�������������.
����������(���D���0�����E��
�EF�����	����GEH�@��EI3
��������������E@	����@	����!���E
����������E�������������	���������������6�$�� ����E
����������E�����7	���	�������(���������(�����'�'6
��� E
����������E�����7	���	��������������������"��E
5

As you can see, there are two different flavors, free and pro, with different
�����������2� objects, so we can have both installed on any device at the same time.

Now, we go to Android Studio and create these directories:

��������(����@�����������������(���

������������@�����������������(���

The shared part of the code will remain in ��������@��� and the specific code for each
flavor will go into its own directory. Let's create a dummy class named)����������L���
inside the directory we created for the free flavor with the following content:

���������������������(���4
�	
����������)����������L����.
���	
�����������(�����,������)��=2�)D2/L?M=)J/N�9�K(���K4
5

We will do the same for the pro flavor:

���������������������(���4
�	
����������)����������L����.
���	
�����������(�����,������)��=2�)D2/L?M=)J/N�9�K���K4
5

Getting Started with Android Development

[25]

Now, we will have two classes with the same name but, no need to worry, only one of them
will be included in our build, depending on which flavor we are building.

To show that this is working, let's modify the *���)������- class to change the title to the
)��=2�)D2/L?M=)J/N value:

���������������������(�����+�����4
����������������	�������$�����)��������)������-4
������������������1	����4
��������������������(����)����������L���4
�	
����������*���)������-��+������)��������)������-�.
���/�������
�������������������������01	����������2�������,����3�.
�����	������������0�����2�������,����34
��������������J���0N���-�	���������-?����34
�������,	�����)�����1��03
��������D����0)����������L����)��=2�)D2/L?M=)J/N34
�5
5

We can choose which flavor to build from the Build Variants tab in Android Studio.

We can also achieve the same effect by having different resources in each flavor. Let's
change our *���)������- layout, as follows:

;8+����������9K��'K���������9K	�(6%K8<
;N�������=�-�	��+������������9K
��������
��������������������������������K
��+����������9K
��������
����������������������K
������������-�	�?����
9K����
?������K
������������-�	�?
���
�9K����
?������K
�����������������1�����9K��������������-?��������?������K
�����������������=�(�9K��������������-?
���O�����?������K

Getting Started with Android Development

[26]

�����������������N��
�9K��������������-?
���O�����?������K
�����������������D��9K��������������-?��������?������K
�������������+�9K�������������(�����+������*���)������-K<
�;D�+�J���
�������������-�	�?����
9K����?�������K
�������������-�	�?
���
�9K����?�������K
�������������+�9K�����������?(�����K��<
;�N�������=�-�	�<

Next, let's create the property in the �������	�����������+�� directory:

;�����������9K���?(�����K<L��(�����������(���;�������<

To customize this message, we will have to create two resource folders, one for each flavor
like we did before for the source code:

��������(�����������	��

�������������������	��

In the free flavor resource folder, we will create a new ��������+�� file with the following
content:

;����	����<
;�����������9K���?(�����K<)�����������(�������(���;�������<
;�����	����<

Also, we will do the same for the pro flavor:

;����	����<
;�����������9K���?(�����K<)�����������(����������;�������<
;�����	����<

Properties from our flavor will be merged with the default properties. Those that are equal
will be overwritten by the flavor-specific value and the application will show the selected
flavor message.

As an alternative to Gradle, if you have a very big application and the build time is one of
your bottlenecks, you might even try Buck. Buck (
	�	�	�	�	�	�	�	
			�	�	
			�	�	�	�	�	�	�) is the build
system developed by Facebook. It highly focused on build performance although the latest
versions of Gradle are improving on performance, and Gradle is the tool selected by
Google.

Getting Started with Android Development

[27]

ProGuard
ProGuard is a code obfuscation tool. The Java compiler does not do a good job of
optimizing the resulting class files when compiled from Java sources. By default, it
preserves all the variable names, method names and code is quite easy, not to say
straightforward, to decompile to high-level code once again. There are many tools out there
that allow us to do that, for example, smali (
	�	�	�	�	�	�	�	�	�	�	
			
	�	�	�	�	�	P	�	�			�	M	�	�	�	�	�	�	�	�	�	�) or
dedexer (
	�	�	�	�	�	�	�	�	�	�	+	�	�	�	�	�			�	�	�	(�	�	�	�	�	�	�	�	�). To make it difficult for anyone else to peek
into our code, it is always recommended that we run ProGuard to obfuscate (or minify) the
compiled version of our application. Not only will it replace all our class names, methods,
and variables with single-letter strings 0�F�
F���3, but it will also slightly optimize the
compiled bytecode and make it more complex (although not impossible) for hackers to hack
our application. We should not rely only on ProGuard for the security of our application,
but we can say that ProGuard is an additional barrier that we add to our application.

To enable ProGuard, we have to make a small change to our
	���������� file in our app
folder:

��������.
������(-���
����(����
������	���M��������A�(�	�����Q	���M���0E����	���6���������+�E3F
��E���Q	���6�	�������E5

By just changing minifyEnabled to ��	�, we are telling Gradle that it has to run ProGuard
on the release build.

ProGuard needs to be configured properly to do a good job; we cannot just obfuscate the
whole enchilada. The ProGuard configuration file tells ProGuard, among other things,
which classes or methods need to be preserved. There are some methods that need to be
retained as Android expects them to be there and, when using third-party libraries, always
double-check the ProGuard requirements of those libraries, as they might come with their
own set of rules. As an example, if we use retrofit, which will be introduced in �
������",
Remote Data, we will have to add the following set of rules:

6��������������(����HH
6����������������(����HH�.�H4�5
6���������
	����,�����	��
6���������
	�����+��������

For more information about rules and how to configure ProGuard
properly, check out its official website and documentation at

	�	�	�	�	�	�	�	�	�	�			�	�	�	�	�	�			�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�			�	�	�	�	�	�	�	�	�			�	�	�	�	�	�	
	�	�	�.

Getting Started with Android Development

[28]

We can add these rules to the ����	���6�	������� file, as it is specified in the

	���������� section that we modified before enabling ProGuard.

Even though Android does not use the bytecode produced by the Java compiler directly,
prior to Android 5.0, we had the DALVIK VM, which converted the java bytecode to
DALVIK (DEX) bytecode, and now, with the introduction of ART, bytecode is compiled
into native code for the sake of performance. So, to sum this up, all the resulting code, either
DEX or native, is produced from the original Java bytecode, so optimizing it will definitely
make a small improvement to the final code that will be run by the Android device. For
more information, check out what I discussed at the talk in Droidcon, Amsterdam in late
2014 (
	�	�	�	�	�	�	
	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	6	�	�	�	�	�	�	�	�			�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	?	�	�	?	�	�	�	�	�	�	�	�	�	�	().

Getting Started with Android Development

[29]

Another issue where ProGuard might help is with the 64k method limit. There is a design
flaw on the DEX file specification that only allows 65536 methods to be referenced on each
DEX file (
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
			�	�	�	�	�	�	�	�			�	�	�	�	�	+	�	
	�	�	�).

This is much of a problem for a simple application, but if we start adding lots of third-party
libraries or our application is relatively complex, it can be a problem. For example, if we
have to include the whole Google Play Services, it will already add 38k methods to our
application. Now, Google Play Services is split into several smaller packages, and we can
include only the parts that we require. Nevertheless, if we enable minification or, basically,
ProGuard, it will remove all unused methods from both our application and the libraries
we include, drastically reducing the total number of methods we will end up having in our
application.

If you are concerned about security and would like to go the extra mile, I suggest that you
go for DexGuard (
	�	�	�	�	�	�	�	�	�	�	�	�			�	�	�	�	7			�	�	�	�	�	�	�	�	�	�	+	�			�	�	�); it is not free, but has more
features than ProGuard and it is developed and maintained by the same company as
ProGuard.

Summary
In this chapter, we covered how to install Android Studio and get started with it. We also
briefly covered some of the additional parts or components that we will use in addition to
the source code to build our application resources, Gradle build system, obfuscation, and
Android Manifest.

22
Activities and Fragments - The

Backbone of Your App
Activities and fragments are two of the most important concepts for an Android developer
to master. In fact, in just about any Android-related programming interview, a common
starting question is to ask a candidate to describe and outline activities, fragments, and their
respective life cycles!

Broadly speaking, most Android apps consist of a series of connected screens that a user is
able to navigate through. Obviously, more complex apps can be offered additional
functionality such as background services, cloud messaging, broadcast receivers, and so on.
However, the core UI will usually be centered around navigating through a series of
connected activities or fragments nested within an activity.

A simple example of this basic UI in, for instance, a cooking-recipe application, would be a
screen displaying a list of available recipes (Recipe List Activity) and another screen
displaying details of each recipe (Recipe Detail Activity). These screens can be mapped
easily to activities and managed by the system as an activity stack. In the earlier example, if
a user navigates from the recipe list activity (by clicking on a recipe in the list), a new
instance of the recipe detail activity is added to the stack. When a user navigates back, the
current recipe detail activity is popped off the top of the stack and the user is taken back to
the recipe list activity. On tablets, this pattern can be simplified by displaying both the
recipe list and recipe details view within a single activity. This allows more information to
be presented to users at once and to utilize the available screen space more efficiently.

Activities and Fragments - The Backbone of Your App

[31]

In this chapter, we will introduce the following:

Activities and fragments
Practical examples on how activities and fragments make the backbone of any
Android app
How to create activities and fragments
How to create custom activities and fragments
How to allow your user to navigate through your application moving between
fragments and activities

If you are more of a practical learner, I would suggest skipping straight to
the Creating Activities section.

Activities
Google describes an activity as an application component that provides a screen for a user
to interact with. An Activity can be used to display information, call someone, or to even
play a game. As mentioned earlier, a typical Android app consists of multiple activities and
allows a user to navigate through them (an example of this is shown in the following
screenshot). These Activities represent the basic building blocks of an application and
knowing how to create and manage activities is fundamental to Android development. The
following screenshot shows an example of navigating from a list activity to detail activity
on an Android device. For more information, visit

�����������������������������	��������������������������
���.

Activities and Fragments - The Backbone of Your App

[32]

Each activity can contain a set of views and even fragments presenting information to users
and to allow users to interact with the application. The preceding list-detail pattern is
common among Android apps and can be seen in the stock apps provided by Google, such
as Gmail and Google Play. It is crucial as an Android Developer to follow these patterns
recommended by Google (
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	6	�	�

�	�	�	�	�	�	�	�	�	�	�	�	�	+	�	
	�	�	�) to help your user understand your app.

Activities and Fragments - The Backbone of Your App

[33]

Android design guidelines
Following the design guidelines and patterns can help your app stand out in a sea of lazy
iOS ports and provide the experience that your users expect. Personally, if I see an app with
an iOS style bottom tab bar, I will immediately uninstall the app as either the designers
were too lazy to create a native Android design or the app was likely built in a rush with no
consideration for the Android guidelines!

Google places particular emphasis on following the design guidelines and, since the
introduction of Material Design (
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	6	�	�	�	�	�	�	�

�	�	�	�	�	�			�	�	�	�	�	�	
	�	�	�), your users will come to expect a certain look and feel along with
following the set of standard navigation patterns. Google also provides a great playlist
of Android Design in Action
(
	�	�	�	�	�	�	�	�	�	�	�	-	�			�			
	�	�	�	�	�	�	�	�	�	-	�	�	�	�	8	�	�	�	�	9	�	=	R	O	"	�	P	�	�	B	B	�	%	@	�	1	&	"	O	Q	*	
	%	�			S	�	�	2	-	6	�	�	M)
videos that I strongly recommend to any budding Android developer before trying their
hand at design. Alternatively, if you are working with a team of designers, encourage them
to watch the whole playlist so that they will have an understanding of the specific design
needs for Android.

Patterns and guidelines are great, but that does not say that you cannot experiment with
app design and navigation. However, at this early stage, it is best to follow the guidelines
and do as Google does. It worked for me personally and has helped my apps become the
successes they are today. But, be aware that Google likes to change their mind often and a
good app developer should be quick to implement these changes in their apps to keep their
users happy; also, do not expect designs to last longer than 6 months!

The Activity context and scope
Now that we have introduced activities, it is important to understand what an activity can
do. For many essential operations in Android, a �����+� object is often required as part of
the method parameters. The �����+� objects (
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�

�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	+	�	�	
	�	�	�) are necessary for many essential tasks such as loading
resources, starting an activity, and even creating views. Basically, if you are going to load
anything or navigate to anywhere, chances are you will need a reference to a �����+�
object.

There are different types of context, however for now we will concentrate on the)������-
context. The)������- class inherits from �����+�R������ (
	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	
	�	�	�	�	�	�	�

�	�		�	 	�		#	�	�	�	�	�	�	+	�	�) and keeps an internal reference to a context instance. An)����������
context is able to start services, send broadcasts (system-wide interprocess communication
messages), and load resource values; however, it cannot interact or instantiate UI

Activities and Fragments - The Backbone of Your App

[34]

components. An)������- context allows the developer to start activities, load layouts into
those activities and even show popups known as dialogs. As all activities inherit
from �����+�R������, the activity itself can be passed when a context is required that
touches the UI. An Activity also has access to the application context if required.

Activity lifecycle
As a user interacts with your app, the Android system will call various life cycle callback
methods on your activities. We refer to this process as the activity lifecycle and it is
important to be aware of and understand this life cycle before using many activities and
interacting with them. This is something you will need to feel comfortable early on in order
to progress further, so take your time to get to know the life cycle inside out. Additional
advanced resources can be found on the Android Developer site (
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	-	6	�	�	(�	�	-	�	�	�	�	�	�	�	�	+	�	
	�	�	�).

A good understanding of the life cycle is likely to be something that you
will need to demonstrate in any Android development interview. Often,
you will be asked to explain what an activity is, what are the common life
cycle events and when are these called. Be prepared and do not say I did
not warn you!

Activity states
As mentioned earlier, activities are managed and placed on an)������- stack. On this
stack, an activity can be in one of the following four states:

If an activity is fully displayed, it means that the activity is running and is at the
top of the)������- stack
If an activity is displayed but is partially covered by something else, for instance,
a dialog or another activity with transparent regions, it will be in the paused state
When an activity is no longer visible and there is another activity running, the
previous activity is stopped and is not active any more
When an activity is stopped, it can be killed by the system in order to recover
system memory, in which case the activity is finished

For more information on activity states, visit
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�)	�	�	�	�	�	�	-	�	
	�	�	�.

Activities and Fragments - The Backbone of Your App

[35]

As an activity moves through any of the four main states, the)������- class receives a
callback to signify that the activity state has changed. At this point, code can be added to
execute at any of the state changes. For example, when using any of the popular in-app
analytic monitoring tools, it is often required to manually start and stop the monitoring as
the activity is resumed and paused in order to accurately monitor the journey of the user
through your app. Only one activity can be in the resumed state at once, all previous
activities will be paused or stopped when new activities are started, and they can be killed
either by the system or by explicitly requesting the activity to finish.

Activity lifecycle callbacks
In the following code example, we will show the main callback methods in an example
custom activity (named ,�����)������-). We have annotated these methods; however,
additional information can be found on the official Android developer site
(
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�)	�	�	�	�	�	�	-	�	
	�	�	�):

�	
����������,�����)������-��+������)������-�.

���/�������
�������������������������01	����������2�������,����3�.
�����	������������0�����2�������,����34

���������������
����
���������-����(������������
��5

���/�������
�������������������,����03�.
�����	������,����034

���������������
����
���������-����
������������
��
��5

���/�������
�������������������N��	��03�.
�����	������N��	��034

���������������
����
���������-���������������������������
��
��	���
��5

���/�������
���������������������	��03�.
�����	��������	��034

���������������
�������������-����
�������	���
��5

Activities and Fragments - The Backbone of Your App

[36]

���/�������
�������������������,���03�.
�����	������,���034

���������������
�������������-����
����������������������
������������������
�������
��	���
��5

���/�������
�������������������A�����-03�.
�����	������A�����-034

���������������
�������������-�
�����������-��
��5

5

Activity states and callbacks
The entire life cycle of an activity spans from ��������03 to ��A�����-03. An activity is
visible to the user after it passes from ��,����03 to ��,���03. And finally, the activity is
in the foreground between ��N��	��03 and ����	��03.This is illustrated in the following
diagram. It is not required for any of the lifecycle callback events to be overridden and
used; however, this is often the case.

This diagram shows an overview of the activity lifecycle as the app moves from being
created to subsequently being destroyed (
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�

�	�	�	�	�	�	�	�	�	�	�	-	6	�	�	(�	�	-	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�). The callbacks previously described are shown
as the app transitions through the various states.

www.allitebooks.com

http://www.allitebooks.org

Activities and Fragments - The Backbone of Your App

[37]

The activity stack
In Android, we can refer to a collection or series of activities as a task, and these activities
are arranged in a stack, otherwise known as a back stack. When a user moves from activity
to activity, these activities are placed on the stack in the order in which they are visited.

For example, if the user moves from activity A to activity B to activity C, the back stack
would be A > B > C (where C is at the top of stack). If a user navigates away from a
particular activity to a previous activity, for example, from C back to B, this activity is then
stopped, destroyed, and popped from the top of the back stack. In this example, the stack
after navigating back to the previous activity would be A > B, where B is at the top of the
stack. When a previous activity in the stack is resumed, its previous state is resumed and
the corresponding callbacks are triggered.

When a new activity replaces the current top of the stack, the current activity is pushed
down into the stack and is stopped. The activity stack is a standard LIFO (Last In First Out)
stack, although the Android SDK allows the application developer to implement a custom
behavior as needed.

Creating activities
Now that we have gone through the essentials and covered the activity boilerplate
introduction, we can actually begin to have some fun and create our first activities! In this
simple example, we will cover how to launch an activity and show how to extend the
)������- super class to create an instance of our own activity. This will be a very simple
introductory example and should not take more than 20-25 minutes to complete. So grab a
coffee and let's get started!

Defining your activity
In the previous chapter, we introduced the Android App Manifest ()������*���(����+��)
that contains essential information such as the package name and components of an
application. For each activity in your application, you must create a corresponding entry in
the app manifest along with additional information such as theme of the activity.

Activities and Fragments - The Backbone of Your App

[38]

Creating an entry in the manifest is easy and you will only need the name of your activity in
this example. You also need to add your activities to the manifest file always, so bookmark
this page for future reference!

If you ever forget to create an entry, your app will crash as soon as that
activity starts, so your mistake will not go unnoticed for long! As an
alternative, using the File |New |Activity from Android Studio, will add
it automatically.

Editing the app manifest
To begin, open Android Studio.1.
Once you have created a project or opened an already existing one, you will be2.
able to see an editor tab called Project on the left-hand side of the screen.
Click on this tab and select Android from the top drop-down menu. The3.
following screenshot shows the Android Studio project tab:

Activities and Fragments - The Backbone of Your App

[39]

To edit your app manifest, open the folder ����(���� and double-click on4.
the)������*���(����+�� file.

If you have a large project with multiple modules (more information on projects can be
found at
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	6	�	�	�	@	�	�	�	�	
	�	�	�),
then multiple app manifests will show under ����(���� folder. But luckily, as we are just
starting, there is only one to choose from!

In our example from the previous chapter, the Android Studio new project wizard
automatically created the project structure and the manifest file, but we did not check in
details:

;8+����������9K��'K���������9K	�(6%K8<
;����(����+������������9K
��������
��������������������������������K
�����������9K�������������(�����+�����K<

����;�����������
���������������������1���	�9K��	�K
��������������������9K������
�����?��	��
��K
������������������
��9K�����������?����K
�����������������
���9K���-���)��D
���K�<
��������;�������-
������������������������9K�*���)������-K<

������������;������6(�����<
����������������;������
������������������������������9K����������������������*)2LK��<

����������������;�������-
������������������������������9K����������������������-�=):L�T�NK��<
������������;�������6(�����<

��������;��������-<
����;������������<

;�����(���<

Declaring an)������- class only requires its name. However, in the preceding case, we
have also included an intent filter that tells the system to launch this)������- by default
when the app starts. Without this, the system would not know which)������- to start
when a user clicks on your app icon and, actually, there won't even be an icon, as Android
Launcher will not know that there is an)������- that can be launched. To know more
about intent filters, visit 	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�			�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	6	(�

�	�	�	�	�	�	
	�	�	�.

Activities and Fragments - The Backbone of Your App

[40]

Creating our Activity class
All Activities within an application extend the)������- class. So, let's create a sample
Activity called ,�����)������-, as shown in the following code:

�	
����������,�����)������-��+������)������-�.

���/�������
�������������������������01	����������2�������,����3�.
�����	������������0�����2�������,����34

�������,����
��)������-�
������	���������
�������R�����03����A����J���03����1������	�������0������N�A34
��5

5

In the previously mentioned ��������03 callback, insert an additional line to change the
color of the background of the activity to red. At this stage, it does not matter
what ���R�����03 or ���A����J���03 do, we will use this to change the color of our
activity to a lovely bright U((''' red for the sole purpose of testing.

Building the sample application
So, we created a bared tiny activity, and Android Studio added an entry for it in the
application manifest. Before going any further, it is time to test our activity and execute it on
an Android device. In the previous chapter, we showed how to configure an Android
emulator, but let's see how to connect a real Android device.

��������	
���	
����������
����	�����
Personally, I prefer to develop directly with a real Android device as you can get a good feel
of the app as you are developing it and get to see how your design looks on a physical
device.

Follow these steps to enable debugging on your Android device:

Navigate to Settings | About Phone | Build number.1.
Tap the Build Number times until you see the popup You are now a developer2.
(hurrah!).
Once you have enabled the developer options, navigate to Settings | Developer3.
Options | enable USB debugging.

Activities and Fragments - The Backbone of Your App

[41]

Once you have enabled USB debugging, connect your Android device to your4.
computer.
The Android device will ask for permission to debug from that computer.5.
You will now be able to use this device to test and execute your code directly6.
without any painful certificate process (as compared to Xcode).

�	�����������

��������
Once your Android device is set up and connected, perform these steps:

Like we did while running on an emulator, click on the green arrow in the menu1.
bar at the top in Android Studio (you can also go to Run | Run). This will build
your app and popup a dialog box asking you how you would like to run the
application.
Select choose a running device.2.
Select your phone from the first box and click on OK to push the newly built3.
application to your phone directly.

The result should be a lovely bright red screen on your device from our newly created
custom activity, which is as shown in the following image:

Activities and Fragments - The Backbone of Your App

[42]

Fragments
Informally, fragments are UI building blocks and are analogous to activities. They can be
treated as subactivities and multiple fragments can be placed in a single activity. Fragments
can represent screens within an application and are typically associated with a particular
task such as a map fragment. Fragments can also exist within fragments to allow module
portions of activities to be easily reused. Google formally defines a fragment as a piece of an
application's user interface that can be placed in an activity (
�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	M	�	�	�	�	�	�	�	�	
	�	�	�). Like activities, fragments have their own life
cycles complete with similar callback events to use when implementing custom fragments.
Fragments can also be placed on a stack for activity-like navigation through an app,
complete with back button support.

Definitions and introductions aside, fragments are one of the most useful concepts to master
in Android and they will make your life much easier when developing complex user
interfaces, reusing code, and developing for tablets or large displays. The following figure
shows a simple example of using multiple fragments within a single activity to create a
multi-pane tablet experience or spread the two fragments over two activities to adapt the
interface for smaller devices such as phones:

When to use fragments
The use of fragments is slightly contentious in the Android development community. Some
developers will always suggest using fragments and, thus, minimize the use of activities;
whereas, other developers will completely go against fragments favoring activities. At this

Activities and Fragments - The Backbone of Your App

[43]

point, there is no right answer and it is completely up to you to decide whether to use
fragments in your application.

Personally, I will move most of my activity code and into fragments or code straight into
fragments at the beginning of a project. You never know how or where you would like to
reuse a component! So having the ability to drop the UI code into one or more places
without additional work is a no brainer! For example, if you have a fragment that displays a
gallery of images, there is a good chance that you will likely use this exact component
elsewhere in your app, making this a great use case for using fragments. If you suspect that
you will develop a tablet user interface, then fragments are almost always necessary, as they
can greatly simplify this process and allow you to use multiple fragments within a single
activity and create a multi-pane user interface. The following image shows an example of
the official Google Gmail application running on a Nexus 7 utilizing a multi-pane user
interface. Two columns of information are displayed using fragments within a single
activity. On the left-hand side, we have a list containing the users incoming emails and a
detailed view of the selected e-mail on the right-hand side.

Activities and Fragments - The Backbone of Your App

[44]

Fragment lifecycle
Just like activities, fragments have their own life cycles and corresponding lifecycle event
callbacks. A fragment contains the same four basic callbacks an activity uses:
��������03, ��,����03, ����	��03, and ��,���03. Due to this similarity, Google found
that it is pretty simple to port your existing activity code into a custom fragment instance
without too much modification or effort.

Unlike an activity, a fragment does not provide a default root view for the UI. As your
fragment will be most likely used for interacting with your users, you will need to provide
the default root view for the fragment. Fragments allow you to easily provide this as part of
the fragment lifecycle by overriding the ��������J���03 callback method. This callback
method is executed straight after the fragment is created. After this method is executed, the
root view is set and you can easily access this view by calling ���J���03 from anywhere
else in the custom fragment. However, providing a root view is not required and it is
permitted for the ��������J���03 method to return �	�� if no root view is needed.

Unlike activities, fragments are only placed on the back stack if explicitly requested. When
using activities, this is the default behavior. However, this can also be explicitly disabled if
you do not wish to record a user's journey history. This can be especially useful if you wish
to move through multiple fragments within a single activity and allow a user to go back like
with activities using the physical button on their device.

Fragment context
A fragment does not have its own instance of a �����+� object; however, once the fragment
is added to the parent activity, it can call ���)������-03 to get access to the parent activity
and, thus, use the context of the parent activity. Google found that this operation must be
used with caution as this can only be performed after the fragment has attached to the
parent activity. If the fragment is not attached this will result in a null reference being
returned:

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�			�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	
	�	�	�	U	=	�	(�	�	-	�	�	�

Activities and Fragments - The Backbone of Your App

[45]

Activity – fragment lifecycles
The lifecycle of the parent activity is closely coupled with the lifecycle of the child fragment.
For example, when the parent activity is paused, the child fragment will in turn be paused
and receive the ����	��03 lifecycle event. As a result, the lifecycle of the fragment and
issuing of callback methods is highly dependent on the parent activity. An activity can only
create and attach fragments when it is active and has entered the resumed state. When an
activity leaves the resumed state, the child fragments go through their respective lifecycle
events.

Fragment lifecycle callbacks
In addition to the callbacks mentioned earlier shared with the)������- class
(��������03, ��,����03, ����	��03, and ��,���03 and so on), a fragment exposes
additional fragment-specific callbacks and these, just like the activity callbacks, can be
overridden. In the following code example, we will show the main callback methods in an
example custom fragment (named ,�����M�������). We have annotated these methods;
however, additional information can be found on the official Android Developer site at 	
	�	�

�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	M	�	�	�	�	�	�	�	�	
	�	�	�.

�	
����������,�����M���������+������M��������.

���/�������
���	
�����������)����
0)������-��������-3�.
�����	������)����
0�������-34

���������������
����
��M����������������
���������)������-
��5

���/�������
���	
����J������������J���0=�-�	�2�(��������(�����F
������J���Q��	�����������F�1	����������2�������,����3�.

�������/���������
������
����������	�������(�	��������:2
��5

���/�������
���	
�����������)������-�������01	����������2�������,����3�.
�����	������)������-�������0�����2�������,����34

���������������
����
���������)������-�
�������������������
��5

���/�������

Activities and Fragments - The Backbone of Your App

[46]

���	
�����������A�����-J���03�.
�����	������A�����-J���034

���������������
����
�������:2����������-��
��5

���/�������
���	
�����������A����
03�.
�����	������A����
034

���������������
����
��M����������������
���(�����
���������)������-F
��������(�����
����������
��M�����������������������������������
��
�
��������������)������-
��5

5

Creating fragments
As with activities, now that we have covered the same old dry introduction to fragments,
we can actually begin to use them! In the following sections, we will cover how to create
fragments, create a static M������� constructor, and instantiate a fragment that binds one
or several fragments into a single parent activity.

Creating our own fragment
As we did in the activity example, perform the following steps:

Open the Project tab on the right-hand side of the screen.1.
Right-click on the �����+����� folder.2.
Go to New | Java Class and name the class ,�����M�������.3.

As all custom activities extend the class)������-, all custom fragments extend the
class M�������.

If you are using the support library, you can choose to either use the
M������� class built into Android as of Honeycomb (API v11) or
the ���������	�������!�����M������� class bundled as part of the
support library. If you are planning on supporting devices pre-ICS (API
v14), you must use the support library version; otherwise, I tend to just
use the stock instance built into the framework.

Activities and Fragments - The Backbone of Your App

[47]

On the next page, we define a simple instance of a fragment. As with our activity example,
to see the results of creating our fragment, we set the background color to a nice bright blue
U''''((. To do this, we must override the ��������J��� lifecycle callback (refer to the
fragment lifecycle). In this method, you can either inflate the layout from a layout resource
file (covered in �
������ , Working with Views � Interacting with Your App) or create and
return a view programmatically.

In this example, we will create a new instance of a M����=�-�	�, a simple J���Q��	�
designed to display a single item. In the constructor of the M����=�-�	�, you can see that
we pass in the)������- context using the ���)������-03method. As ��������J���
method is called after the fragment is attached to the parent activity, it is safe to call this
method.

Before returning the instance of the M����=�-�	�, we set the background of the view using
the ���1������	�������03 method. This is the same process as the previous activity
example; however, in the activity example, there was a default root view provided by
the)������- class:

�������������������M�������4

�	
����������,�����M���������+������M��������.

���/�������
���	
����J������������J���0=�-�	�2�(��������(�����F
������J���Q��	�����������F�1	����������2�������,����3�.
����M����=�-�	��(����=�-�	��9�����M����=�-�	�0���)������-0334
����(����=�-�	�����1������	�������0������1=:�34
�������	���(����=�-�	�4
��5

5

Creating a static fragment constructor
When creating a fragment, it is considered best practice to use a static constructor to pass
the input variables in a bundle. The reason for this is that if the system needs to recreate
your fragments at a later time, when restoring the activity state, it will call the default
empty constructor for your custom fragment. Even if you overload the constructor, the
default empty constructor will be called and your input variables will be lost.

Activities and Fragments - The Backbone of Your App

[48]

For more information on M������� constructor, visit 	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	M	�	�	�	�	�	�	�	�	
	�	�	�	U	M	�	�	�	�	�	�	�	0	3.

One common solution to avoid this problem is to use the static factory pattern and create a
static method, usually called ���2�������, to create a new instance of the fragment (
	�	�	�	�

�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	�	�		"	�			�	�	�	�	6	�	�	�	�	�	�	�	�	�	�	�	6	�	�	6	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�).
In the following code example, we will see how to use the ���2������� pattern to create
an instance of our fragment and add a variable to a bundle that we can later retrieve:

�	
����������,�����M���������+������M��������.

�����������������(�����,�������/=/N�9�K�����K4

���	
�����������,�����M�����������2�������0���������3.
����,�����M��������(��������9�����,�����M�������034
����1	�����
	�����9�����1	����034
����
	������	�2��0�/=/NF������34
����(�����������)��	�����0
	����34
�������	���(�������4
��5

�����

5

In the preceding example, we created an instance of our ,�����M������� with a 1	����
class containing a color. This color is added to the bundle using the static �/=/N key. This
value can be set to whatever you want but you will need to use the same key to later
retrieve the color value out of the 1	���� class. Each key must also be unique to avoid
overriding values in the bundle.

Using values from the static factory implementation
Once we have passed the color integer value into the ���2������� method, this is added
to a 1	���� class and this bundle is then linked to the fragment. At any of the lifecycle
events for a fragment we can then access this bundle by calling the ���)��	�����03
method. The 1	���� class contains all of the variables set in the static constructor that are
accessible using the previously set key (in this case, the key was �/=/N).

Activities and Fragments - The Backbone of Your App

[49]

In the following code, we give a complete example of how to create a fragment, implement
a static factory pattern, and pass through variables using the 1	����:

�������������������
���������4
������������������1	����4
��������������������=�-�	�2�(�����4
��������������������J���4
��������������������J���Q��	�4
����������������������M����=�-�	�4

�������������������M�������4

�	
����������,�����M���������+������M��������.

�����������������(�����,�������/=/N�9�K�����K4

���	
�����������,�����M�����������2�������0���������3.
����,�����M��������(��������9�����,�����M�������034
����1	�����
	�����9�����1	����034
����
	������	�2��0�/=/NF������34
����(�����������)��	�����0
	����34
�������	���(�������4
��5

���/�������
���	
����J������������J���0=�-�	�2�(��������(�����F
������J���Q��	�����������F�1	����������2�������,����3�.

�������Q��
��
��������(�����
��
	����
��������������9����)��	�����03����2��0�/=/NF�������N�A34

���������������
�����������
����M����=�-�	��(����=�-�	��9�����M����=�-�	�0���)������-0334

�������,����
��
������	����������(��
������������	������
�����	�
���������������
��	�
�(�����
���������������	����
����(����=�-�	�����1������	�������0�����34

�������N��	����
�����������
�������	���(����=�-�	�4
��5

5

Activities and Fragments - The Backbone of Your App

[50]

Adding a fragment to an activity
As previously mentioned, unlike activities, fragments do not have to be declared in your
Android app manifest file. Fragments can either be added to your UI as part of a layout file
(covered in �
������ , Working with Views � Interacting with Your App) or programmatically
using what is known as a M�������D����������, visit 	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	M	�	�	�	�	�	�	�	D	�	�	�	�	�	�	�	�	�	�	�	
	�	�	� for more information.

In the code following example, we will see how to add a fragment to the default root view
of our custom Activity (,�����)������-):

�	
����������,�����)������-��+������)������-�.

���/�������
�������������������������01	����������2�������,����3�.
�����	������������0�����2�������,����34

�����(0�����2�������,�����99��	��3.

���������R�E������������
��	�����
�	������
��
������	����(
����������	���	�����M�������
����������������9�������1=:�4

��������������������������������(��	��M�������
������,�����M��������(��������9�,�����M�����������2�������0�����34

���������Q��
��
��M�������*������
���������M�������*������03
�����������1�������M�������D����������
���������
����D����������03
�����������)����
��(������������
����(�	������������
������������0��������N�����������F�(�������3
�����������M����
��
��M�������D����������
���������������034
����5

��5

5

If we would like to preserve the state of our activity if the system recreates it, we can do so
by implementing the ��,���,����2������� method. If we store something in
the �����2�������,���� bundle on the ��,���,����2�������, we will get it back on
the ��N������,����2������� and as a parameter in the �������� method as well. Most
implementations will simply use the �������� method, but it might be convenient to do it
on the ��N������,����2������� depending on the logic we would like to implement.

Activities and Fragments - The Backbone of Your App

[51]

For more information, visit 	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�

-	6	�	�	(�	�	-	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�.

In this example, we first check whether the bundle �����2�������,���� is null. If the
bundle is null, we can rest assured that this is the first time the activity has been created and
has not been rotated or stopped previously. The reason for this check is that we do not want
to recreate our fragment each time the activity is recreated as this would result in multiple
instances of the same fragment being attached to the same parent activity, leading to poor
performance and redundancy. Once we have performed this check, we then create an
instance of our ,�����M������� using the static ���2������� constructor and pass in the
color value
�	�. To attach the fragment to the parent activity, we grab an instance of
the M�������*������ to bind the fragment to a particular view using
a M�������D����������. In this case, we have bound the fragment to the default root
view of the activity, which has an ID of ��������N�����������. Once we have instructed
the fragment to be bound to the view ID provided, we then finish
the M�������D���������� using the ������03 method.

Running the application
As with the activity example, click on the green arrow in the top menu bar in Android
Studio (you can also go to Run | Run). The result should be a bright blue screen on your
device from our newly created custom activity and custom fragment. The following figure
shows our super simple custom activity with a blue background:

Activities and Fragments - The Backbone of Your App

[52]

Adding multiple fragments to a single activity
One of the main benefits of using fragments is that multiple fragments can be added to a
single activity (and even fragments within fragments!). In the preceding example, we
attached our simple ,�����M������� to the default view of our ,�����)������-. In the
following example, we will update our ,�����)������- to contain two views and then
attach a fragment to each one of these views with different colors (blue and red) for testing.
This is still all pretty simple but is designed to show off how powerful fragments are.

Adding multiple fragments to an activity
As discussed, one of the main benefits of using fragments is creating reusable components
that can be easily rearranged to form both phone and tablet user interfaces. In the following
example, we will show how we can reuse our simple colored fragment and include two
instances of the fragment in a single activity.

To start, we will need to create a new root layout in our activity file. To do this, we will use
a layout file. We will cover these in much more detail in �
������ , Working with Views �
Interacting with Your App, but for now, copy the following file into the ��-�	� folder in ���
with the filename �������-?�������+��:

;=�����=�-�	�
����+������������9K
��������
��������������������������������K
��������������-�	�?����
9K����
?������K
��������������-�	�?
���
�9K����
?������K
�����������������������9K��������K<

����;M����=�-�	�
������������������9K�V���������?���K
������������������-�	�?����
�9K�K
������������������-�	�?����
9K����
?������K
������������������-�	�?
���
�9K����
?������K�<

����;M����=�-�	�
������������������9K�V���������?���K
������������������-�	�?����
�9K�K
������������������-�	�?����
9K����
?������K
������������������-�	�?
���
�9K����
?������K�<

;�=�����=�-�	�<

Activities and Fragments - The Backbone of Your App

[53]

In the preceding code sample, we created a =�����=�-�	� (
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	=	�	�	�	�	�	=	�	-	�			�	�	
	�	�	�) with two M����=�-�	�� within it.
Each of the views are set to fill the height of the =�����=�-�	� and have a weight of �. This
means that as there are two views, each of the views will occupy half of the screen. We set
the orientation of the =�����=�-�	� to vertical so that the views will occupy the top and
bottom halves of the screen. To set the new root, we amend our ,�����)������-
�������� method to the following:

�/�������
�������������������������01	����������2�������,����3�.
�����	������������0�����2�������,����34

�������,����
����������������
������-����������������-?�������+��
��������������J���0N���-�	���������-?������34

�������
��5

������������
���������������������
�������
���������
In our previous M�������D���������� example, we added a single fragment to the
default root view of the activity. In the following code example, we will now add two
fragments to the newly created custom layout containing two vertically
stacked M����=�-�	��. To do this, we can simply chain an additional add method to the
existing M�������D���������� and modify the layout IDs to match those specified in the
layout file �������-?�������+��:

�����(0�����2�������,�����99��	��3.

�����������������	��M��������
������,�����M��������(�������D���9
��������,�����M�����������2�������0������1=:�34
������,�����M��������(�������1������9
��������,�����M�����������2�������0������N�A34

���������)����
������(��������
���������M�������*������03
���������
����D����������03
������������0N����������?���F�(�������D��3
������������0N����������?���F�(�������1�����3
���������������034
����5

Activities and Fragments - The Backbone of Your App

[54]

�	�����������

��������
Once again, click on the green arrow in the top menu bar in Android Studio (you can also
navigate to Run | Run). All going well, you should be able to see two fragments stacked
vertically in bright blue and red. The following figure shows two fragments added to single
activity stacked vertically in a =�����=�-�	�:

Navigating through an app
In this section, we will cover how to navigate between fragments in your app. To keep
things simple for the chapter, we will build upon our existing ,�����)������- example
and show how to add simple navigation to our application.

Activity navigation
Navigating between activities is one of the simplest actions that you can perform and is
very commonly used. In the following example, we will show how to move from one
instance of our ,�����)������- (which we will refer to as activity A) to another instance
of ,�����)������- (which we will refer to as activity B). As we have already added
the ,�����)������- to our Android app manifest, we do not need to add an additional
entry.

Activities and Fragments - The Backbone of Your App

[55]

First, we will start by modifying the layout file to add an extra view. This view is a 1	����,
and we will hook up this button to perform the activity navigation. The updated layout file
should look like this:

;=�����=�-�	�
����+������������9K
��������
��������������������������������K
��������������-�	�?����
9K����
?������K
��������������-�	�?
���
�9K����
?������K
�����������������������9K��������K<

����;1	����
������������������9K�V���
	����K
������������������+�9K��������WK
������������������-�	�?����
9K����
?������K
������������������-�	�?
���
�9K����?�������K��<

����;M����=�-�	�
������������������9K�V���������?���K
������������������-�	�?����
�9K�K
������������������-�	�?����
9K����
?������K
������������������-�	�?
���
�9K����
?������K�<

����;M����=�-�	�
������������������9K�V���������?���K
������������������-�	�?����
�9K�K
������������������-�	�?����
9K����
?������K
������������������-�	�?
���
�9K����
?������K�<

;�=�����=�-�	�<

In the preceding code, you can now see that before the first M����=�-�	� for the top
fragment, we have added a 1	���� object with the ID
	����. We will now hook up this
button.

In the following code, we find the 1	���� object in our ,�����)������- and set an action
to perform when the button is clicked using an implementation of the/������=�������
interface. When the button is clicked, we create an 2�����. An 2����� describes to the
system an action to perform. In this case, we tell the system that we would like to navigate
from the current activity to a new instance of ,�����)������-.

Activities and Fragments - The Backbone of Your App

[56]

For more information on intents visit
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	2	�	�	�	�	�	�	
	�	�	�.

�	
����������,�����)������-��+������)������-�.

���/�������
�������������������������01	����������2�������,����3�.
�����	������������0�����2�������,����34

��������������J���0N���-�	���������-?������34

�������T����	���
��
	����
����(���J���1-2�0N����
	����3����/������=�������0
������������J����/������=�������03�.
�����������/�������
�����������	
����������������0J�����3�.
����������2�������������9����
��������������2�����0,�����)������-��
��F,�����)������-������34
���������������)������-0������34
��������5
����534

�������D
��M���������������������	��
����������
����+�����
�����(0�����2�������,����99�	��3.

��������,�����M��������(�������D���9
������������,�����M�����������2�������0������1=:�34
��������,�����M��������(�������1������9
������������,�����M�����������2�������0������N�A34

���������M�������*������03
���������
����D����������03
������������0N����������?���F�(�������D��3
������������0N����������?���F�(�������1�����3
���������������034
����5
��5

5

Once you have updated the ,�����)������- code and hooked up the button, click on the
green run arrow and give it a try! Clicking on the Click me! button on the screen will
launch a new instance of the ,�����)������-. Clicking back will navigate back to the
previous instance and will pop off the current instance off of the activity back stack.

Activities and Fragments - The Backbone of Your App

[57]

Summary
In this chapter, we introduced activities and fragments. Activities represent screens within
your app and moving from activity to activity allows your user to navigate through your
application.

Fragments are analogous to subactivities and encapsulate much of the actions and code
from an activity. This allows you to easily reuse the activity logic and add multiple
instances of a fragment to a single activity allowing for richer user experiences, including
designing for larger screens and tablet devices. The next chapter we will focus on how to
add views to our activities and fragments to make them more useful.

33
Working with Views –

Interacting with Your App
In the previous chapter, we introduced activities and fragments, which represent the
backbone of an Android application. As activities are analogous to screens, we can easily
link multiple activities together to create an application. In this chapter, we will go one step
further and add content to those connected screens and will explore how to use common
user interface components to build a rich touch-friendly experience for our user.

The Android SDK provides a set of pre-built user interface components to help you create a
great app without having to reinvent the wheel. The interface components are split into two
groups: views (all of which extend the class J���) and J���Q��	�� (otherwise known as
layouts). Simply put, J���Q��	�� hold views, and views display content to a user. For
example, a D�+�J��� allows you to display text to a user and a =�����=�-�	� allows you
to show multiple D�+�J���� on one screen (either horizontally or vertically). By building
up these J��� and J���Q��	� components, we can easily create rich graphical user
interfaces with minimal effort.

In this chapter, we will cover the following topics:

Types of views and J���Q��	��; what they are used for, and what they look like.
How to use these views and J���Q��	�� programmatically and via layout files,
and how we can perform actions when a user interacts with them.
How to extend the basic J��� components to create custom views, build practical
examples of how to add extra drawing code to our custom J���, and how to
handle user interface events directly.

Working with Views – Interacting with Your App

[59]

Additional user interface components, including Toasts and Dialogs. We will
show how to use them in our applications and under what circumstances each
component should be used.

By the end of this chapter, we will have covered the basics of building a user interface.

Views and ViewGroups
In this section, we will review the main views and J���Q��	�� you will use as an Android
developer. You'll simply be able to use many of these components over and over and never
have to worry about what goes on behind the scenes. In time, you might even begin to
dabble with developing your own versions.

We will start by covering the main views in Android and then move on to J���Q��	��. For
each component, we will give a description, a screenshot of the view in action, and an
overview of the most common view operations. As this section will largely act as a
reference, if you have had prior experience of dealing with Android views you can skip to
the next section, where we will show how to use these views both programmatically and
through layout files.

In this section, we will cover some of the most common view types used in
Android development; however, by visiting the Javadoc for view, you can
refer to all the known direct and indirect subclasses (
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	J	�	�	�	�	
	�	�	�).

Common views
These might be the most widely used Android components, or widgets. With just the
elements introduced here, we can have the core of many popular applications. Additionally,
combining them with layouts, which will be introduced later, we will be able to build pretty
rich UIs for our own applications.

TextView
D�+�J��� is one of the most commonly used views, and as the name would suggest, it is
used to display text to the user.

Working with Views – Interacting with Your App

[60]

The font size, weight, and typeface can all be configured either in the layout file or
programmatically. By default, a D�+�J��� does not allow a user to edit the text; ����D�+�
must be used if editing is required. The following screenshot is an example of D�+�J���:

��������
�
������
As you would expect, with a D�+�J��� you can set the text displayed, configure the font
and typeface, configure how many lines should be shown, allow a user to copy the text, and
finally automatically enable URLs to open in browsers when detected and clicked.

More information on D�+�J��� is available at 	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	D	�	+	�	J	�	�	�	�	
	�	�	�.

Working with Views – Interacting with Your App

[61]

EditText
As previously mentioned, if you need to allow a user to edit the text in a D�+�J���,
 ����D�+� should be used. ����D�+� is a subclass of D�+�J���, so it maintains the core
functionality of D�+�J���, but adds extra functionality to it. Clicking on an ����D�+� will
automatically open a user's keyboard on the screen and allow them to modify the content of
the ����D�+�. The following image is an example of ����D�+�:

��������
�
������
As with a D�+�J���, you can set the default text displayed on the view. With an ����D�+�,
you can grab the current content of the view and use it elsewhere in your app. For example,
you might have an ����D�+� to set the name of a playlist in a music application. You can
also set a �hint� that displays text that will be removed automatically as a user enters new
text.

Working with Views – Interacting with Your App

[62]

More information on ����D�+� is available at
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	D	�	+	�	�	
	�	�	�.

ImageView
Along with D�+�J���, 2����J��� is one of the most basic and fundamental views in
Android. Quite simply, 2����J��� allows you to draw an image in a View and will take
care of all the nasty scaling and aspect ratio issues for you.

In �
������#, Image Management, we will discuss how to efficiently display remote images
in an 2����J��� using image management libraries. The following image is an example of
2����J����

Working with Views – Interacting with Your App

[63]

��������
�
������
Again, as you would expect, with 2����J��� you can set the current image being shown
and change how the image is scaled to fit the view.

More information on 2����J��� is available at 	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	2	�	�	�	�	J	�	�	�	�	
	�	�	�.

Button
Even though what we will explain here can apply to any view, we will focus on the 1	����
widget for simplicity. 1	���� is a simple view that, as Google searches represents, is a
�	�
6
	���� widget. It handles all the states and styling out-of-the-box. For example,
whenever the user presses a 1	����, it will change its state to �����?������� and adjust
the drawing of the 1	���� accordingly.

Having said this the default style of a 1	���� can be overridden if a valid
,����=���A����
�� is provided. This drawable contains a different drawable for each
state the button is in, for example, clicked and not clicked. We will use a
,����=���A����
�� class to provide this list of drawables for each state we would like to
change.

More information on ,����=���A����
�� is available at
	�	�	�	�	�	�	�	�	�	�	�	�
�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	
	�	�	�	,	�	�	�	�	=	�	�	�

A	�	�	�	�	
	�	�	�	
	�	�	�.

Working with Views – Interacting with Your App

[64]

The following image is an example of 1	����:

��������
�
������
As with D�+�J���F you can set the text displayed in 1	����. More importantly though,
you can add a listener to any view to detect when a user has pressed it, and this is one of the
main functionalities of having a 1	���� in our application UI.

More information on 1	���� is available
at
�������������������������������(����������������������1
	�����
���.

Working with Views – Interacting with Your App

[65]

ImageButton
2����1	���� is a simple extension of the default 2����J��� that shows a button with an
image instead of text. By default, 2����1	���� has the same background as that of a
regular button, although this too can be customized by providing a custom
,����=���A����
��� The following image is an example of 2����1	����:

��������
�
������
The most commonly used method in 2����1	���� is setting the 1	���� image. As we can
see in the preceding image, we arranged four 2����1	����� side by side to create a simple
media player controller interface using generic media player icons.

More information on 2����1	���� is available at 	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	2	�	�	�	�	1			�	�	�	�	�	
	�	�	�.

Working with Views – Interacting with Your App

[66]

Switch and CheckBox
A ,����
 view is a common view you will commonly find in places such as Settings. It has
two states: on and off. You can even add a little text label to the side of Switch. A �
���1�+
view is a button with two states as well: checked and unchecked. The following image is an
example of ,����
:

��������
�
������
With a ,����
 view, you can get its current state to determine whether the switch is
enabled/disabled in your user interface code and act accordingly. Similarly, with �
���1�+,
you can check whether it is checked or not.

More information on ,����
 and �
���1�+ is available at
	�	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	,	�	�	�	�	
	�	
	�	�	� and
	�	�	�
�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	1	�	+	�	
	�

�	�.

Working with Views – Interacting with Your App

[67]

WebView
R�
J��� is exactly what the name describes. It allows you to embed a limited web browser
within your application. R�
J��� has the ability to use a local cache and cookies, and can
even handle downloads.

Try not to include R�
J��� in your application unless it is absolutely essential. The content
will feel non-native to your users and may result in a reduced application user experience.
Having a different navigation and UI widgets than those that Android provides might be
confusing for some users. The following image is an example of R�
J���:

Working with Views – Interacting with Your App

[68]

��������
�
������
R�
J��� allows you to perform many operations you would expect from a browser, such as
navigating to a URL, going backward and forward through pages, and even loading local
HTML content.

More information about R�
J��� is available at
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	R	�	
	J	�	�	�	�	
	�	�	�.

Common ViewGroups
Until now, we have seen a few basic widgets that allow us to show text, let users input data,
trigger an action when the button is pressed, and so on. However, we have not mentioned
any mechanism that will help us place them properly on the screen. To do so, we will
introduce some J���Q��	�� that will allow us to define how elements are put on the
screen relative to one another. For example, we can have elements one below the other, one
on top of the other (imagine text on top of an image), or one widget in one corner of the
screen and another in the opposite corner.

FrameLayout
M����=�-�	� is one of the simplest layout classes. It is typically used to hold a single view;
however, multiple child views can be added by using the Q�����- attribute. If the Q�����-
attribute is not used, views will be stacked one on top of an other. This might be a desirable
effect though, depending on the design and widgets we stack.

Working with Views – Interacting with Your App

[69]

Both the foreground and background of M����=�-�	� can be customized, which is handy
for drawing over child views. The following image is an example of M����=�-�	�:

��������
�
������
Child views can be added to M����=�-�	� using the ���J��� method. Views are drawn in
a stack with the first view added being the first to be drawn and the view added last being
the last to be drawn.

More information on M����=�-�	� is available at
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	M	�	�	�	�	=	�	-	�			�	�	
	�	�	�.

Working with Views – Interacting with Your App

[70]

CardView
����J��� is a relatively new Android view and is included in the support library. If you
have used Google Now or Google Play, you will be used to the beautiful rich card UI,
which is powered by ����J���.

The ����J��� class extends from the M����=�-�	� class; however, it draws a beautiful
card layout by default. The following image is an example of ����J���:

��������
�
������
The background color of the card can be changed along with the corner radius of the
rounded corners. By default, the card also casts a shadow, giving the feeling that the card is
elevated in the UI.

More information on ����J��� is available at 	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�			�	�	�	�	�	�	�	$	�	�	�	�	�	�	�	�	�	�	�	�	J	�	�	�	�	
	�	�	�.

Working with Views – Interacting with Your App

[71]

LinearLayout
As we have seen in the previous chapter, =�����=�-�	� is a view that allows us to easily
add and arrange multiple child views either vertically, as shown in the following
screenshot, or horizontally. This layout is great if you want to share the available space
between multiple views. The following screenshot is an example of =�����=�-�	�:

��������
�
������
As with all layouts, you can add child views to =�����=�-�	�. However, you can also
specify how the views should be arranged and the weights of child views. Views with a
larger weight will occupy more of the parent =�����=�-�	�. This is a great way to set child
views to occupy fractions of the parent layout.

More information on =�����=�-�	� is available at 	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	=	�	�	�	�	�	=	�	-	�			�	�	
	�	�	�.

Working with Views – Interacting with Your App

[72]

RelativeLayout
N�������=�-�	� is a powerful layout that allows child views, which have positions
described in relation to each other and to the layout itself, to be added. For example, in the
following screenshot, we have two views. One of these aligns to the top left of the parent
and the other aligns to the bottom right of the parent layout:

��������
�
������
Child views can again be added, but additional layout operations, such as aligning to the
parent layout or aligning to other views in the layout, are available when you add child
views.

More information on N�������=�-�	� is available at 	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	N	�	�	�	�	�	�	�	=	�	-	�			�	�	
	�	�	�.

Working with Views – Interacting with Your App

[73]

ScrollView
,�����J��� provides an easy way to scroll through a child view, or J���Q��	�, that is
taller than the available screen size. In the following example, we include a D�+�J��� in a
,�����J���. The ,�����J��� automatically allows a user to scroll up and down through
the content and shows a scrollbar on the right-hand side of the content as an indicator. The
following image is an example of ,�����J���:

��������
�
������
,�����J��� extends M����=�-�	� and allows you to add a single child view. It only
allows vertical scrolling; T���O�����,�����J��� should be used to provide horizontal
scrolling. Scrollbar indicators, as with any other View that scrolls its content, can be
controlled using the ��������������
��� property in the XML layout file. Views that
handle scrolling by themselves should not be added to ,�����J���, for example, R�
J���
or =���J���.

Working with Views – Interacting with Your App

[74]

More information on ,�����J��� is available at 	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	,	�	�	�	�	�	J	�	�	�	�	
	�	�	�.

ListView
=���J��� is a powerful component that allows you to show sets of data in a scrollable
container. Each item will appear as a row in =���J���. It will continually recycle the rows
allowing very large datasets to be presented only using a small number of views, thus
improving performance. We will cover how to use =���J��� in �
������!, Lists and
Adapters. The following image is an example of =���J���:

��������
�
������
Broadly speaking, =���J��� creates views for each row of your input data and presents
this to a user. You can specify how many rows should be shown and UI customizations are
required, such as the color of the dividers in between rows.

More information on =���J��� is available at 	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	=	�	�	�	J	�	�	�	�	
	�	�	�.

Working with Views – Interacting with Your App

[75]

GridView
Q���J��� is very similar to =���J���, but it allows you to have multiple columns as well
as multiple rows of data. This can be very useful in e-commerce apps where a user is
browsing a list of products.

A common pattern used when designing for both phones and tablets is to simply increase
the number of columns as the screen size increases in order to show more information on
the screen at once, thereby utilizing the available space. The following image is an example
of Q���J���:

��������
�
������
As with =���J���, Q���J��� allows you to specify the number of rows and also set the
number of columns.

Working with Views – Interacting with Your App

[76]

More information on Q���J��� is available at 	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	Q	�	�	�	J	�	�	�	�	
	�	�	�.

RecyclerView
N��-����J���, one of the latest and greatest layouts, allows you to have a much higher
level of control over the older =���J��� and Q���J��� components. N��-����J���, in
order to be as compatible as possible with older Android versions, is included in the
Android support library. N��-����J��� needs to be be given a layout manager that
specifies how the child views will be arranged. For example, the views should be vertically
or horizontally scrollable. The following image is an example of N��-����J���:

Working with Views – Interacting with Your App

[77]

��������
�
������
N��-����J��� is a complex component, and we will cover this in detail in �
������!, Lists
and Adapters. But again, broadly speaking, you can set how the child views are displayed
and how many child views should be shown.

More information on N��-����J��� is available at
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�
�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�			�	�	�	�	�	�	�	$	�	�	�	�	�	�	�	�	N	�	�	-	�	�	�	�	J	�	�	�	�	
	�

�	�.

ConstraintLayout
����������=�-�	� is a new type of layout introduced together with Android Studio 2.2.
The aim of ����������=�-�	� is to reduce the number of layouts inside other layouts and
improve performance. In complex applications, it was very common to find =�����=�-�	�
components embedded inside other =�����=�-�	� components, which at the same time
were embedded inside other =�����=�-�	� components, for example.
����������=�-�	� works by defining a set of constraints and anchors between the
widgets. To simplify the design of screens using ����������=�-�	�, in Android Studio 2.2
Google included a new layout editor tailored to ����������=�-�	�. This new layout
editor has been written from scratch and it is way more usable than the older one.

To make it as compatible as possible, ����������=�-�	� is part of the support library and
needs to be downloaded as an external dependency. We have to download the support
library from the Android SDK Manager if we have not done so yet and add the following
line to our
	���������� file inside the ��� folder:

�������������.
������������E�������������	���������������������������6��-�	����'�'6���
�!E
5

At the time of writing this book, the latest version available is ��'�'6���
�!; it might be a
different version right now.

We can create a new layout file now by right-clicking on the layout folder, navigating to
New | XML | Layout XML, and then setting
���������	���������������������������=�-�	� as the root tag.

Working with Views – Interacting with Your App

[78]

As soon as the editor opens, we can start dragging elements and creating constraints
between the widgets. To become familiar with how ����������=�-�	� works, there is a
Codelab by Google that shows how to use it and build an example layout step by step; refer
to
	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	6	�	�	-	�			�	�	�	�	�	�	+	�	
	�

�	� for more information.

The following image is an example of the new layout editor with a ����������=�-�	� in
action:

Working with Views – Interacting with Your App

[79]

��������
�
������
As with other layouts, the main operation we will perform is adding views to this layout.
Even if it is possible to do so, the generated XML might be a bit cumbersome, so it is highly
recommended that you use the graphic editor when using ����������=�-�	�.

For the time being, there is no API reference documentation available until
the component is made more stable. Anyway, more information about
����������=�-�	� can be found at the technical document page
for Android tooling, which is available at
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	
	6	�	�	�	�	�	�	�	-	�			�	6	�	�	�	�	�	�.

Building a user interface using views and
ViewGroups
Now that we have introduced the most commonly used Android views and J���Q��	��,
we can start to actually build a user interface using them. One recommendation would be to
keep layouts as simple as possible in order to avoid performance issues and to make them
easier to maintain. If possible, stick to =�����=�-�	� components and, as the complexity of
the UI grows, start including N�������=�-�	�, M����=�-�	�, and so on. In addition to
this, avoid stacking multiple layouts inside each other; do this only when required.

In Android, there are two main ways to create a UI. The first, and by far the simplest way
(and the one you should use in most cases), is to use a layout XML file. The second way,
which is slightly more complicated, is to handcode all of your UI using Java.

It is good to know how to make a UI using both methods, as there is a good chance you will
swap between the two, depending on how complex your interface is. As you will see in the
following examples, it is much easier to create large, complex, and reusable layouts using
layout files. Likewise, when you just need one view, it is sometimes easier just to create a
view using Java instead of using a layout file. Please keep in mind that having a layout file
available most of the time is easier to maintain, and if done right, it will decouple the logic
from the process where you lay out the UI for the elements.

It is not a one-size-fits-all scenario with Android. Sometimes it is best to
lay out files, and at other times it is easier to programmatically create your
views.

Working with Views – Interacting with Your App

[80]

Creating interfaces using layout files
The basic gist of using XML layout files is that you specify how you want your interface to
be constructed using simple XML tags from an Android XML vocabulary. In this
vocabulary, the view and J���Q��	� names easily correspond to XML tags. For example,
D�+�J��� would look like ;D�+�J���������<.

Each layout file must contain exactly one root element, which can be either a view or
J���Q��	�. The root element must specify the Android namespace. If you want to have
multiple views in your layout, then the root node must be a J���Q��	�, as this can hold
multiple views. If you add a J���Q��	�, child nodes can be added to XML in order to add
the views as children of the J���Q��	�.

The root node in a layout must specify the Android namespace. This
attribute must always be set to
+������������9K
��������
��������������������������������

K.

Once a layout has been defined, the interface is later �inflated� by the system and the views
are created for you. You can then search for your views and access them in activities and
fragments. If all of this sounds complex, do not worry; we will go through examples now.
In the following example, we will show you where to keep your layout files, how to create a
simple interface, and how to access the views in your activity.

Creating a basic layout
All layout files are kept in the application resources folder under ��-�	�. In the following
example, we will create a new layout file named �example.� Open Android Studio, and
using the same project as in the previous chapter, open the Project tab on the left-hand side.

Working with Views – Interacting with Your App

[81]

Ensure you have the Android view selected as shown in the following screenshot:

Right-click on the layout folder and navigate to New | Layout resource file. This will
display the new resource file shown in the following image, and allow us to easily create
new resource files:

Working with Views – Interacting with Your App

[82]

In the new resource file popup, enter example next to File name and set Root element
to LinearLayout. Then click on OK in the bottom right-hand corner of the popup. This will
create a new layout file for us called example in the ��-�	� folder with a single root
element that is a =�����=�-�	�. If you double-click on the newly created example layout,
it should look something like the following:

;8+����������9K��'K���������9K	�(6%K8<
;=�����=�-�	�
����+������������9K
��������
��������������������������������K
�����������������������9K��������K
��������������-�	�?����
9K����
?������K
��������������-�	�?
���
�9K����
?������K<
;�=�����=�-�	�<

As you can see, a single =�����=�-�	� was added to the example layout. The namespace
was automatically set for us. You will also notice three additional elements:
��-�	�?����
, ��-�	�?
���
�, and �����������. Each view or J���Q��	� you add to
a layout file must have a ����
 and
���
�. You can either set these to an exact size, for
example 10 dp, or use relative sizing. Please be aware we used dp instead of pixels. We
have to be aware that there are many different devices that run Android, and these devices
have different screen sizes. In order to make things work and adapt to most of the screens,
we should not use pixels but dp instead. A dp is, as Google defines it, a density-
independent pixel and the system, internally, adjusts the size to fit the device density. One
dp is equivalent to one pixel on a 160 dpi screen, so the conversion is the following:

px = dp * (dpi / 160)

Although we should not really worry about this at this point, just be aware that, if we use
dp, it will automatically adjust to the device screen where our application is running.

By default, our LinearLayout was set to ����
?������, which means the ViewGroup will
stretch to fill the entire parent size, or in this specific case the entire screen. By setting ����

/��O� to ����?�������, the =�����=�-�	� would only take up as much room as its
children. The =�����=�-�	� ViewGroup also has the notion of orientation. This element
will denote how the children will be added, top to bottom (vertical) or left to right
(horizontal).

Working with Views – Interacting with Your App

[83]

�����������������
We will now modify our simple =�����=�-�	� to have a single D�+�J��� as a child view.
As previously mentioned, to add a child view to a ViewGroup, you can simply add the
child within the parent tag. We will also add an ID for the K�V�����+�����K view. This
will allow us to access the view from our activity:

;8+����������9K��'K���������9K	�(6%K8<
;=�����=�-�	�
����+������������9K
��������
��������������������������������K
�����������������������9K��������K
��������������-�	�?����
9K����
?������K
��������������-�	�?
���
�9K����
?������K<

����;D�+�J���
������������������9K�V�����+�����K
������������������-�	�?����
9K����
?������K
������������������-�	�?
���
�9K����
?������K�<

;�=�����=�-�	�<

�����������������	�
Android Studio has a pretty nifty feature in the layout editor. At the bottom of the editor,
you will see two tabs: Design and Text, as shown in the following screenshot. So far, we
have been looking at Text, but if we switch to Design, we will be able to see what our new
view will look like without building and deploying our application; pretty good, right? It
gets even better. While having the Text tab enabled, we can enable the Preview panel on
our right-hand side panel tab (and view the XML and how it would look) at the same time.

Working with Views – Interacting with Your App

[84]

The Design tab allows us to preview and edit the layout without deploying the app to our
test device for speedy development.

Working with Views – Interacting with Your App

[85]

!�������	
�����	��"��
Now that we have created our simple layout file, we can use it in our activity and access the
D�+�J���. In the following code sample, we call ����������J��� to inflate our example
layout. This will create the actual view objects out of the layout file and set them into the
view hierarchy of the activity. We can then grab our D�+�J��� using the ID we defined in
the preceding XML.

As a J��� attribute, this ID is accessible to other elements in the layout and to our code
through the R class. Android Asset Packaging Tool (AAPT) will automatically generate a
N�@��� class that will contain all the IDs from our resources. We can reference the ID in
Java by calling N������?���� (where ��?���� is any ID we have specified in our
application). In our example, we will be able to access the D�+�J��� we created by
using ID N������+�����. Using this ID, we call (���J���1-2� and cast the result to
D�+�J���. The (���J���1-2� fragment traverses the View hierarchy until it finds the
specified ID, then it either returns a View or �	�� if it could not find it. We will need to cast
the returned view to the specific view subclass we already know, as we previously assigned
the ID to it. To avoid potential cast issues, do not reuse the same ID for different widgets.

Once we have grabbed the D�+�J���, we can call ���D�+�03 to change the text displayed.
In this case, we will set T�����R����W as our text:

�	
����������,�����)������-��+������)������-�.

���/�������
�������������������������01	����������2�������,����3�.
�����	������������0�����2�������,����34
��������������J���0N���-�	���+�����34

����D�+�J������+�J����9�0D�+�J���3�(���J���1-2�0N������+�J���34
������+�J�������D�+�0KT�����R����WK34
��5
5

It is as simple as that! If you add additional child views to the =�����=�-�	� with IDs, you
will be able to grab them in your code too. Now, this was a simple example and it might
seem unnecessary to keep the view layout in a separate file. However, for larger projects, as
mentioned earlier in this chapter, you will find the clear separation, and decoupling,
beneficial. This is because it makes updating your layout much easier, as you do not have to
touch the Java code.

Working with Views – Interacting with Your App

[86]

Be careful when searching for views by ID when you want to determine
that your view is accessible in the current activity or fragment. IDs defined
in a layout file are accessible anywhere in your project.

In the preceding example, if we remove ����������J���03, the code will still compile but
will result in L	����������+������� when we try to call ���D�+� on a �	�� object. This
is because the D�+�J��� will not have been found!

Fortunately, some of the newer Android lint tools will look out of this, but
it is good practice to name your IDs after where they should be expected.
For example, our ID could be renamed
�V����������-?������?��+�����.

��������������������
Before testing our implementation, let's make the D�+�J��� a little prettier. The default text
size in Android is pretty small, so let's increase this to 22 sp (scale-independent pixels) to
actually see the text. Scale-independent pixels share the same base unit as density-
independent pixels, but are scaled by the value set in Settings as the preferred text size. For
this reason, for text, we should always use sp instead of dp.

Let's also place the text at the center of the screen by changing the gravity of the D�+�J���.
Changing a view's gravity allows us to change the placement of a child view within a
parent ViewGroup.

As always, a complete reference to any Android class is available in the
Android developer docs. For more on D�+�J���, visit
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	D	�	+	�	J	�	�	�	�	
	�	�	�.

The completed styled D�+�J��� code will look like the following:

����D�+�J������+�J����9�0D�+�J���3�(���J���1-2�0N������+�J���34
������+�J�������D�+�0KT�����R����WK34
������+�J�������D�+�,�O�0D-���J��	���/*�=�X?:L2D?,�F���34
������+�J�������Q�����-0Q�����-���LD�N34

www.allitebooks.com

http://www.allitebooks.org

Working with Views – Interacting with Your App

[87]

����������������	�
Now that we have inflated our example layout and set the text in our D�+�J���, it is time
to connect to your Android device, hit Run and your output should look like the following
screenshot:

Creating user interfaces programmatically
In the following section, we will cover how to create the same user interface in the previous
example but programmatically. And this time we will only use Java. Each view and
ViewGroup in Android has three default constructors. To create a view programmatically,
we will use the first basic constructor, which only requires a context to instantiate the view.
In our case of ,�����)������-, we can pass the activity itself as the context. Remember
that all activities inherit from �����+�R������, which in turn is inherited from context.

Working with Views – Interacting with Your App

[88]

To begin, let's clean up our ,�����)������- class and strip out all of the layout code from
the last example. Your ,�����)������- should look like the following:

�	
����������,�����)������-��+������)������-�.

���/�������
�������������������������01	����������2�������,����3�.
�����	������������0�����2�������,����34
��5
5

Now that we have a blank canvas, let's create the D�+�J��� programmatically, passing in
the ,�����)������- as the context. After creating the D�+�J���, we can also apply the
same styling as we did in our previous example:

D�+�J�����
���D�+�J����9�����D�+�J���0�
��34
�
���D�+�J�������D�+�0KT�����R����WK34
�
���D�+�J�������D�+�,�O�0D-���J��	���/*�=�X?:L2D?,�F���34
�
���D�+�J�������Q�����-0Q�����-���LD�N34

If we were to deploy this example to our test device now, we would not see anything. This
is because we have not added the child D�+�J��� to the root view of the activity, and as a
result, it is not part of the view hierarchy. At this stage, we could simply add the D�+�J���
to the root view of the activity using ����������J���; however, to match the previous
example, we will create a parent J���Q��	�, in this case a =�����=�-�	�, as we did in our
previous example using a layout file. We will again pass the ,�����)������- to the
=�����=�-�	� constructor to instantiate the view:

=�����=�-�	��������=�-�	��9�����=�����=�-�	�0�
��34
������=�-�	�����/����������0=�����=�-�	��J�ND2�)=34

To match the previous example, we will also set the orientation of =�����=�-�	� using the
���/���������� method. We will again set the orientation to vertical.

XML element attributes often have a very similar-sounding Java
implementation. For our =�����=�-�	�, we used
������������������� when defining the layout using XML; for our
Java version, we called ���/����������.

Next, we will add our D�+�J��� to our =�����=�-�	�. In the previous example, we
simply included the D�+�J��� in the =�����=�-�	�, and this adds the D�+�J��� as a
child to the =�����=�-�	�. In our Java example, we can call ���J��� to achieve the same
result.

Working with Views – Interacting with Your App

[89]

However, we must also set the width and height of the child D�+�J���. If we do not set the
width and height, the view will not, by default, fill the parent =�����=�-�	�. We can set
the width and height using the =�-�	���������� components. Each J���Q��	� has its
own layout parameters, and in this case we will use =�����=�-�	��=�-�	�����������.
We will use the ����
?������ size for the width and height, as we used in the previous
example. Once we create an instance of the =�-�	�����������, we will
call ���=�-�	����������� to set the =�-�	����������� of the D�+�J���.

In the following code, we show all the examples we have just walked through. If you
deploy and run the ,�����)������- example, you should see the exact same screen with a
D�+�J��� centered with the words Hello World! in a nice large font:

�	
����������,�����)������-��+������)������-�.

���/�������
�������������������������01	����������2�������,����3�.
�����	������������0�����2�������,����34

����D�+�J�����
���D�+�J����9�����D�+�J���0�
��34
�����
���D�+�J�������D�+�0KT�����R����WK34
�����
���D�+�J�������D�+�,�O�0D-���J��	���/*�=�X?:L2D?A2�F���34
�����
���D�+�J�������Q�����-0Q�����-���LD�N34

����=�����=�-�	��=�-�	����������-�	��������9
����������=�����=�-�	��=�-�	�������0
��������=�����=�-�	��=�-�	��������*)D�T?�)N�LDF
��������=�����=�-�	��=�-�	��������*)D�T?�)N�LD
����34
�����
���D�+�J�������=�-�	�������0��-�	�������34

����=�����=�-�	��������=�-�	��9�����=�����=�-�	�0�
��34
����������=�-�	�����/����������0=�����=�-�	��J�ND2�)=34
����������=�-�	�����J���0�
���D�+�J���34
��������������J���0������=�-�	�34
��5

5

As you can see in the preceding example, even for small user interfaces, writing everything
by hand in Java can be kind of cumbersome.

Working with Views – Interacting with Your App

[90]

Creating custom views
Now that we have created a simple user interface using views and ViewGroups, both using
a layout resource and programmatically using Java, we will now have a go at creating our
own custom views. Although the Android SDK provides many useful views, as we
reviewed at the start of this chapter, sometimes you will find yourself extending the J���
class and making your own to add additional functionality. Luckily, this is all supported
out of the box and is pretty simple.

The first custom view example
In our first custom view example, we will extend the J��� class and add some basic
additional drawing code to the view. To begin, add a new Java class named �	����J��� to
your sample project. To add a new Java class, right-click on the �����+����� folder located
under ����@���, where ,�����)������- is currently located, and navigate to New | Java
Class. This will show the new class pop up as shown in the following screenshot:

Once you have created your class, open it and change your �	����J��� to extend view,
shown in the following code sample:

��������������������J���4
���	
�����������	����J�����+������J����.

5

At this point, your code will not compile and Android Studio will complain that there is no
default constructor available for the class J���. To fix this, we will have to add our own
default constructors to the �	����J���.

Working with Views – Interacting with Your App

[91]

Luckily for us, Android Studio has a built-in handy generate constructor function, so we do
not have to memorize the parent J��� class constructors. Right-click on the CustomView
editor pane and navigate to Generate� | Constructor. This will pop up the generate
constructor window, as shown in the following image. Select the first two constructors and
click on OK:

Working with Views – Interacting with Your App

[92]

Once the constructors have been generated, your class should now look something like the
following code example and Android Studio will stop complaining:

�	
�����������	����J�����+������J����.

���	
�����	����J���0�����+�������+�F�)����
	��,��������3�.
�����	���0�����+�F������34
��5

���	
�����	����J���0�����+�������+�3�.
�����	���0�����+�34
��5

5

We have chosen these two constructors for some specific reasons. We chose a constructor
with only the context so we can easily instantiate it from code, and we selected the
constructor with the)����
	��,�� so we can inflate it from XML. While inflating from
XML, we will get the attributes defined in the XML file in the)����
	��,�� parameter.

More information on)����
	��,�� is available at 	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�			�	�	�	�)	�	�	�	�	
			�	�	,	�	�	�	
	�	�	�.

Custom drawing
With our custom view all set up, we can now add some custom drawing code. To override
what is drawn by the custom view, we can simply extend the ��A��� method. In fact, it is
rather exhaustively described in the Google Javadoc, Implement this to do your drawing.

Working with Views – Interacting with Your App

[93]

To override the ��A��� method, we can again use the built-in generate method in Android
Studio. Simply right-click on the �	����J��� editor pane, and navigate to Generate |
/��������*��
���. This will popup the override method dialog, shown in the following
screenshot. Scroll down and select ��A���, followed by OK.

Once you hit OK, the ��A��� method will be automatically generated, including
the �/������� annotation:

�/�������
�����������������A���0�������������3�.
���	������A���0������34
5

Working with Views – Interacting with Your App

[94]

#
�����������������
In the signature of the ��A��� method, you can see that it passes to a ������ object. To add
custom drawing to our custom view, we will be drawing directly on this ������ object. If
you look up the Canvas Javadocs on ���������������������, you will be able to check the
methods available. If you scroll down to the ���� method, you'll see that you can draw
bitmaps, lines, colors, rectangles, text, and much more.

If in doubt, do not forget to check the official Javadocs for any Android
class at 	
	�	�	�	�	�	��	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�

�	�	�	�	�	�	�	�	
	�	�	�.

For this example, we will draw a rectangle that fills exactly half of the view's available
space. To draw a rectangle on a Canvas, we will need to instantiate a ����� object. The
����� class allows us to specify color and style information for when we draw on a Canvas.
We have to be aware that instantiating new objects in the ��A��� method is considered bad
practice. The ��A��� method will be called every time the view needs to be painted, and
this will lead to unnecessary object creation and in turn garbage collection. Imagine, for
example, that we are animating a view; it will be drawn lots of times! To avoid this, we will
initialize an instance of the ����� class in our constructor, as shown in the following code.
As you can see, we used a method called ���� in both constructors to perform the setup of
our ����� object. After we create a new instance of the ����� class, we can then set the
color of the ����� object to solid black using the ����� class:

�	
�����������	����J�����+������J����.

����������������������4

���	
�����	����J���0�����+�������+�F�)����
	��,��������3�.
�����	���0�����+�F������34
��������034
��5

���	
�����	����J���0�����+�������+�3�.
�����	���0�����+�34
��������034
��5

�������������������03.
�����������9����������034
�������������������0������1=)�B34
��5

���/�������

Working with Views – Interacting with Your App

[95]

�������������������A���0�������������3�.
�����	������A���0������34
��5

5

If you've been observant, you will notice that we have called our private
instance of the ����� class ������. This is compliant with the Android
open source contributors' style guidelines (
	�	�	�	�	�	�	�	�	�			�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	�			�	�	�	�	�	�	�	�	6	�	�	-	�	�	�	
	�	�	�).

Once we set up the ����� class, we can easily modify the ��A��� method to draw a
rectangle using the ������ variable. As we want to draw a rectangle to fit half of the
screen, we can grab the size of the view using ���R���
 and ���T���
�. In our example,
we will draw a rectangle that fits half of the screen horizontally. The following code sample
shows the completed drawing code for our custom view:

�	
�����������	����J�����+������J����.

����������������������4

���	
�����	����J���0�����+�������+�F�)����
	��,��������3�.
�����	���0�����+�F������34
��������034
��5

���	
�����	����J���0�����+�������+�3�.
�����	���0�����+�34
��������034
��5

�������������������03.
�����������9����������034
�������������������0������1=)�B34
��5

���/�������
�������������������A���0�������������3�.
�����	������A���0������34

���������������N���0'F�'F����R���
03��F����T���
�03F�������34
��5

5

Working with Views – Interacting with Your App

[96]

Drawing directly on the Canvas is easy and will be refreshed each time the view is
invalidated. If you need to manually force the View to update, say if you were drawing the
text of the current system time for example, you can call ����������03 on the view to
trigger a redraw. Try to keep your ��A��� method light and avoid any heavy lifting, as you
need this to do the drawing process as quickly as possible to keep a smooth buttery UI. For
example, do not load Bitmaps in your ��A��� method as this will block the drawing
process and result in a super slow UI. We will cover how to efficiently draw images
in �
������#, Image Management.

Hooking up the CustomView
To test our custom view, we will hook it into the previously created ,�����)������-, first
programmatically and then using a layout file.

������������	����������

��
�����������
To add the view programmatically, we can simply call ����������J��� in our
,�����)������- with a new instance of our �	����J���. We will use the first
constructor, which only takes an instance of context, as shown in the following code
example:

�	
����������,�����)������-��+������)������-�.

���/�������
�������������������������01	����������2�������,����3�.
�����	������������0�����2�������,����34
��������������J���0�����	����J���0�
��334
��5

5

������������	����������	�����������	��"��
To add our custom view using a layout file, we will have to first modify our previously
created �+����� layout file (found in layouts under res) and include our new custom View.
To include a custom view in a layout file, you must include the full path to the view, unlike
stock view components where you only have to include the view name. The following
example layout file shows how to add the custom view to our layout file:

;8+����������9K��'K���������9K	�(6%K8<
;�����+�������	����J���
����+������������9K
��������
��������������������������������K
��������������-�	�?����
9K����
?������K

Working with Views – Interacting with Your App

[97]

��������������-�	�?
���
�9K����
?������K�<

Once you have modified the layout file, you can then change the ,�����)������- to use
the layout file (as opposed to the programmatically created instance of the �	����J���):

�	
����������,�����)������-��+������)������-�.

���/�������
�������������������������01	����������2�������,����3�.
�����	������������0�����2�������,����34
��������������J���0N���-�	���+�����34
��5
5

�������������	��������
Following the same deployment procedures mentioned earlier in this chapter, build and
deploy your example code to your device and you will get to see your custom view. If all
goes well, fingers crossed, you will see something similar to the following screenshot.
Although we could have achieved the same result using two views in a =�����=�-�	�
with a horizontal orientation, our custom view only requires one single view as opposed to
three.

Working with Views – Interacting with Your App

[98]

Here's the layout code for creating the same UI using three views:

;=�����=�-�	�
����+������������9K
��������
��������������������������������K
��������������-�	�?����
9K����
?������K
��������������-�	�?
���
�9K����
?������K<

����;J���
������������������-�	�?����
�9K�K
����������������
������	��9K���������������
����K
������������������-�	�?����
9K����
?������K
������������������-�	�?
���
�9K����
?������K�<

����;J���
������������������-�	�?����
�9K�K
������������������-�	�?����
9K����
?������K
������������������-�	�?
���
�9K����
?������K�<

;�=�����=�-�	�<

The second custom view example
In the second custom view example, we will extend the D�+�J��� class and make it change
the content to a random string every time the view is clicked. To do this, we will provide a
list of strings and attach a click listener to the view to listen for user input.

Creating the CustomTextView class
As with our previous custom view example, we will create a new class in the �����+�����
folder, where ,�����)������- is currently located, and call the component
�	����D�+�J���. You can check the previous example for detailed instructions on how to
do this using Android Studio.

As with our preview example, implement the first two constructors using the generate
constructor functionality built into Android Studio.

Working with Views – Interacting with Your App

[99]

Adding on-click behavior
After you have created the two constructors, add /������=������� to the view. This will
mean that whenever a user clicks on the custom view, the click listener will be fired and we
will be able to react accordingly.

In the following code example, we will see how to add the click listener and how to update
the contents of the �	����D�+�J��� when the click listener is fired. As there are two
constructors, we move the view setup code into two methods: ���	�=���)��M���
and ���	������=�������. In the first method, we programmatically set up how our
custom D�+�J��� will look. As these methods will be called after the constructor has
already called its super method, the properties we have set in the XML file for our custom
D�+�J��� might be overwritten or completely ignored.

Setting J��� properties after the constructor has been called will override
the properties specified by the XML. Be careful!

In the second method, we set up /������=�������. When the click listener is called, we
call ��������N�����R���. This method generates a random number n between 0 and the
size of the R/NA, array and returns the word at the position n. Then, there is a call
to ���D�+� to change the current text displayed in the �	����D�+�J���. We must also
call ��������N�����R��� and ���D�+� after setting up the /������=������� to set the
initial word displayed.

Other activities, fragments, or even views with a reference to our
�	����D�+�J��� will also be able to set an /������=������� on our
D�+�J���. This means that other Views could potentially break this
functionality, and you should keep the scope of methods in mind when
creating your own views.

Here's the full example:

�	
�����������	����D�+�J�����+������D�+�J����.

�����������������(�����,�����GI�R/NA,�9�.
����KT����KF
����KR����KF
����KD������WKF
����K1��KF
����K2��E���
���(�8K
��54

Working with Views – Interacting with Your App

[100]

���	
�����	����D�+�J���0�����+�������+�3�.
�����	���0�����+�34

�������	�=���)��M���034
�������	������=�������034
��5

���	
�����	����D�+�J���0�����+�������+�F�)����
	��,��������3�.
�����	���0�����+�F������34

�������	�=���)��M���034
�������	������=�������034
��5

������������������	�=���)��M���03.
�������D�+�,�O�0D-���J��	���/*�=�X?:L2D?A2�F���34
�������Q�����-0Q�����-���LD�N34
�������D�+������0������1=)�B34
��5

������������������	������=�������03�.
�������/������=�������0����/������=�������03�.
�������/�������
�������	
����������������0J�����3�.
�����������D�+�0��������N�����R���0334
������5
����534

�������,����
���������������������
�������D�+�0��������N�����R���0334
��5

����������,��������������N�����R���03�.
�������Q��
��
����+�������������
���������������9�0���3�0*��
�������03�H�R/NA,������
34
�������	���R/NA,G������I4
��5
5

Working with Views – Interacting with Your App

[101]

Testing the CustomTextView
Following the same deployment procedures mentioned earlier in this chapter, build and
deploy our example code to your device and you will get to see the �	����D�+�J���.
Again, if all goes well, you will see something similar to the following screenshot, changing
the text dynamically as you click on View. Neat, right?

Overriding the onTouchEvent method
In our example, we added an ������� listener to the view. However, we could use the
same logic without adding a listener, instead overriding the ��D�	�
����� method that all
J��� classes have. In the following example, we show how to modify the class, removing
the ������� listener and using the ��D�	�
����� method:

�/�������
�	
����
���������D�	�
�����0*����������������3�.

���(�0���������)�����03�99�*�����������)�D2/L?:�3�.
�������N�����R���034
�������	�����	�4
��5

�����	���(����4
5

Working with Views – Interacting with Your App

[102]

With great power comes great responsibility! We have to be careful when overriding these
methods; ��D�	�
����� has to return ��	� if the event has been processed and (���� if it
has not.

Additional user interface components
In this section, we will cover two additional user interface components that you will need to
master to create an Android application. These components are very easy to understand,
but we have included them here as you will use them over and over again during your time
as an Android developer.

Toasts
First of all, despite the name, Toasts have nothing to do with bread and are in fact a super
simple way to pop up text to your users. You have probably seen them 100 times but may
not have paid too much attention to them. For example, when you connect to a Wi-Fi
network, you might get a Toast popping up to let you know you are connected.

The great thing about Toasts is that they automatically hide after a few seconds and can be a
great way to enhance your user experience without much additional effort. As a downside,
something we have to be aware, users cannot interact with them.

Although we can customize the look and feel of Toasts, be aware that your
users will be used to seeing Toasts elsewhere on their device and might
not understand a different design or UI. If in doubt, stick with the system
design!

Creating a Toast is a piece of cake. All we need is �����+� reference (for example, your
activity), some text to be displayed, and how long we should display the message. In the
following sample, we create a Toast using our ,�����)������- context to display Hello
there using the short Toast duration. We finish by calling �
��03 to display the Toast:

D���������D�+�0,�����)������-��
��F�KT������
���KF
D�����=�LQDT?,T/ND3��
��034

Working with Views – Interacting with Your App

[103]

The following screenshot shows an example Toast notification:

Dialogs
A dialog is a small popup window that allows a user to input information; it also prompts a
user to select an action.)����A����� is one of the most commonly used dialog classes and
presents a title, message, and up to three buttons to a user.)����A����� can be easily
created using)����A������1	�����. In the following example code, we show how to
create a simple)����A����� with a title and two buttons:

)����A������1	������
	������9�����)����A������1	�����0,�����)������-��
��34

	���������D����0KT���-WK34

	�����������������1	����0K/BKF�����A�����2����(����/������=�������03�.
���/�������
���	
����������������0A�����2����(����������F������
��
3�.
�������D/A/
��5
534

	���������L�������1	����0K������KF�����A�����2����(����/������=�������03�.
���/�������
���	
����������������0A�����2����(����������F������
��
3�.
�����D/A/
��5
534

	�������
��034

Working with Views – Interacting with Your App

[104]

We could also pass �	�� as the listener if we do not want to perform any action.

The following screenshot shows an example)����A�����:

Working with Views – Interacting with Your App

[105]

Summary
In this chapter, we introduced Android views and ViewGroups. We presented the most
common views and ViewGroups, giving examples of each component and the common
actions associated with them.

We also discussed two methods to create user interfaces: either by using layout files or
doing it programmatically in Java.

Additionally, we walked through two examples of how to create custom views: the first
example detailed a simple view with custom drawing code and the second example
detailed how to add extra functionality to the D�+�J��� class.

Finally, we finished this chapter by reviewing additional UI components that are commonly
used in Android development, including Toasts and dialogs.

In the next chapter, we will have a detailed look at how to add =���J���� to our
application, optimize them for performance, and replace them with N��-����J����; we'll
also look at how to use adapters to feed data to the list.

44
Lists and Adapters

Even in the simplest connected application, there is a list of things to be displayed. There is
a list of items, users, locations, or for example, things to do. This is not the case always, but
we can assume that a high percentage of applications show these items. Even in offline-only
applications, there are many things to be shown as a list. In this chapter, we will focus on
how to display lists using a =���J��� element. We'll see how to do this efficiently using
a N��-����J��� element and how to change and update the data shown on these lists by
using adapters. We will end the chapter by introducing a more complex structure that will
allow us to display a list in a more complex way, such as some well-known applications
such as Pinterest or Etsy.

=���J��� and =���)������-
Adapters
N��-����J���

ListView and ListActivity
As described in Google's documentation (
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�			�	�	�	�	�	�	�	�	�	�

�			�	�	�	�	-	�			�	�	�	�	�	�	�	�	�	�	�	
	�	�	�), a =���J��� element is a view group that displays a list of
items and enables scrolling if the items do not fit the size of the =���J��� element. In this
section, we will build a simple =���J��� element�introducing adapters briefly (we will
cover them in more depth in the next section) but we will not spend much time on
the =���J��� element, as we will favor the use of the newer N��-����J��� element
instead in later sections. Using N��-����J��� over =���J��� is highly recommended as it
is more flexible and does not leave performance improvements optional. =���)������- is
like a normal activity, but with only one single element on it: =���J���.

Lists and Adapters

[107]

ListView
Let's begin, first of all, with the =���J��� element. Adding =���J��� is straightforward;
just add it to an existing layout or view group and it will appear in the preview view, as
shown in the following screenshot:

Once we have added the =���J��� element, we need to populate it. Let's use a simple
array of fruits to do so:

K/�����KF�K1�����KF�K����KF�K���������KF�K*����KF�K,����
���-KF�K)����KF
K����
KF�KR���������KF�KB���KF�K�
���-KF�KQ����KF�KM��KF�K��	�KF�KY	����KF
K)������KF�K�����������KF�K=���KF�K*�������KF�KQ����(�	��KF�KN���
���-KF
K*����KF�K������K

Lists and Adapters

[108]

Then add the code shown in the following screenshot:

We need to provide items for the list using an adapter. An adapter, according to Google's
documentation, provides access to data items and is also responsible for making a view for
each item in the dataset. Visit
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	�)	�	�	�	�	�	�	�	
	�	�	� for more information.

As we do not want to over-complicate things here, we wrapped the ,����� array
into)���-)������. An)���-)������ constructor is a very simple implementation of
an)������ object that is backed by an array. Visit 	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�

�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�)	�	�	�	-)	�	�	�	�	�	�	�	
	�	�	� for more information.

To build the)������ object, we need to specify the context, the resource ID of D�+�J���
(more on this later), and the list of items. Android provides many default layout items that
can be freely used, for example, ��������N���-�	��������?����?����?�.

In the following page from the Android documentation, you'll find a
comprehensive list:

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	N	�	�	�	-	�			�	�	
	�	�	�

Lists and Adapters

[109]

Using the ��������N���-�	��������?����?����?� layout will render the list as shown
in the following screenshot:

Showing a list without any kind of interaction is not very useful, although it is sometimes
exactly what we want to do; however, if we want to trigger any action whenever an item on
the list is clicked, we can easily achieve that by just adding the following code snippet to the
previous code:

Whenever an item is clicked, the ��2�������� method of the /�2��������=�������
instance set in =���J��� will be called; in that call, we will get the array position of the item
that was clicked, among other things. In the code snippet, we are only showing a Toast with
the text of the clicked item.

Toasts are a very simple way of showing feedback to the user. Visit
	�	�	�	�	�
�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�			�	�	�	�	�	�	�	�	�	�	�			�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�

for more information on the official Android developer.

Lists and Adapters

[110]

ListActivity
Before showing how to change or improve the UI, let's do a quick visit to the
=���)������- class and explore why it can be useful. =���)������- is an activity that
contains a =���J��� and directly exposes the event handler when the user clicks on an item
on the list.

The next screenshot shows the same example as before, but this time it uses =���)������-
instead of having =���J��� inside our layout. Changes are minimal; instead of having to
find the =���J��� item and calling the ���)������ method on it, we can directly call
the ���=���)������ method. The same applies to the ��2�������� callback; instead of
having to create an instance of /�2��������=������� and set it to =���J���, we can just
override the ��=���2�������� method on =���)������-.

Even if =���)������- comes with a =���J��� item of its own, the layout can be
customized by providing a screen layout, as long as it contains a =���J��� object with the
ID ����������������. This custom layout can be set, using the regular ����������J���
on the �������� method.

This custom layout might optionally contain another view with the ID
����������������- as well. This view will be shown when =���J��� is empty.

You can find detailed information on this at
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	�	�	�	=	�	�	�)	�	�	�	�	�	�	-	�	
	�	�	�.

Lists and Adapters

[111]

Customizing the item view
In the previous examples, we used ��������N���-�	��������?����?����?� as the
view resource for each item on the =���J���. Android provides more default
visualizations, for example ��������N���-�	�����?����?����?����, which cannot be
used in a straightforward manner with an)���-)������ constructor. However, in the
documentation page for =���)������-, there is an example on how to use a cursor to
iterate through your phone contacts. Here, we will create our own item layout. Let's start
with something very simple, just to mimic what Android already offers us. We will make it
more complex later on.

Let's create a resource file named �����+�� inside ������-�	� with the following content:

Let's update the *���)������- source code to use this layout rather than the
default ������?����?����?� provided by Android. We can achieve this by only changing
this line:

)���-)������;,�����<�������=����9�����)���-)������;,�����<0�
��F
��������N���-�	��������?����?����?�F������34

Now refer to the following code:

)���-)������;,�����<�������=����9�����)���-)������;,�����<0�
��F
N���-�	������F�N��������?��+�F������34

For this one, what we have done is replace the default layout ID with the ID of the layout
we have just created and, using an additional parameter, we have specified the ID of
D�+�J���.

Lists and Adapters

[112]

We can make our layout more complex, otherwise there will be no point in creating our
own layout; therefore, as an example, let's add some images. The layout file will be the
same but with two additional 2����J��� views: one before D�+�J��� and one after.

The adapter will look for D�+�J��� using the ID inside the layout, so the code on the
activity does not require any change, as we are already telling the adapter which item ID
is D�+�J���. As long as we do not remove the object, we will be fine.

We have used two default drawable bitmaps from Android in this example, only for the
sake of simplicity and to show the example. In reality, we can make this layout as complex
as we want; we'd need to be careful though as, if we make it unnecessarily complex, there
will be performance issues. We have not really said anything about performance issues, but
this is one of the major topics we will cover later on, as it gets very critical when talking
about =���J��� objects.

Lists and Adapters

[113]

If we run the application with the preceding changes, we will have the following result:

Adapters
We have been using adapters already to populate our =���J���, but we have only seen one
kind of adapter and there are many. In this section, we will introduce the most common
adapters and how they can be used. We will also cover performance optimization, as it is
one of the critical topics when talking about lists.

ArrayAdapter
We have already introduced)���-)������ in all our previous examples and we know,
quite clearly, how to use it. However, if we would like to use it with a more complex view
than D�+�J���, we can easily do so by overriding the ���J���0���F�J���F�J���Q��	�3
method and returning the desired kind of view, as shown in the following screenshot:

Lists and Adapters

[114]

First, we will start by creating the layout resource file that we would like to use for each list
item. Once we have done that, we will have to modify the code to use this new layout and
set the texts to the right views.

Lists and Adapters

[115]

The code to do this is shown in the following screenshot:

We've changed many things in the code; let's go through them one by one. First, we have
overridden the ���J��� method and we are returning a view we are inflating from the
layout resource. =�-�	�2�(����� builds the corresponding view objects from a layout
XML resource. For more information, visit 	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	�	�	�	=	�	-	�			�	2	�	(�	�	�	�	�	�	
	�	�	�.

Once we have our layout inflated, we can find the views we would like to set the text to,
����?��+�� and ����?��+�� in this specific case. Furthermore, you can see we used
an 2LJ)=2A?=)Z/:D parameter, or its value 6�, when calling the)���-)������
constructor. As we will not use the layout ID specified in the constructor, there is no need to
put a valid layout ID.

Lists and Adapters

[116]

Executing this code will provide us with the following results:

Performance considerations
If you look at the previous source code, you will see there is a lint warning. Android lint is a
static code analysis tool that checks your source code for potential bugs and optimizations,
as shown in the following screenshot. You will find more information on lint at
	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	
	�	�	�.

For unconditional layout inflation from a view adapter, use the View Holder pattern (use
the recycled view passed into this method as the second parameter) for smoother scrolling.

This warning is telling us two things: we should use the recycled view passed into this
method as �������J��� and we should use the View Holder pattern. Let's focus on the
recycled view first. By evaluating the code carefully, you'll find it very easy to spot the fact
that we are creating, or inflating, a whole new view hierarchy from the layout resource file
every single time.

Lists and Adapters

[117]

Let's make the assumption that all views on the list are the same; if this is the case, we
will need as many unique views as views fit that the parent list size. As soon as a view is
scrolled out of the viewing window, we will be able to reuse it and just change its contents.
In the following image, we can see how the view used for Item 0 is reused for Item 9.

Android identifies whether a new view needs to be created or a previous one can be reused
using the �������J��� parameter in the ���J��� method. If �������J��� is �	��, we
need to create or inflate one ourselves; if it contains a view, we can reuse it and will have to
change the values we would like to show for the current item:

Lists and Adapters

[118]

The only change we need to make in the code is to check whether �������J��� is �	��
and just inflate a new view in that case. We assumed all items are shown with the same type
of view. Later on, when covering 1���)������, we will explain how to manage different
view types depending on the item or the item position.

The other performance issue mentioned in the lint warning was about using the View
Holder pattern. Even if we are not creating more than the required views, we are still
searching, multiple times, for the right views inside the view hierarchy using the
(���J���1-2� method. This method has been declared particularly slow, and it gets worse
if our view hierarchy becomes more complex. To avoid having to search for views, we need
to get a view every single time we get a request from the list; we can create an object that
will store the references of these views. This is the main idea behind the View Holder
pattern.

First, we need to create a small class to contain the references:

Lists and Adapters

[119]

Then we need to modify the code to create a J���T����� object for every view we create or
inflate and store the references to the views we would like to use later on:

With this change, we will only create a J���T����� object for every new view we will
inflate, and we will only search for D�+�J��� views at that moment. At any other time, we
will try to access a recycled view so that we can just reuse this stored information. Any view
can store additional information using the ���D�� method, having regard to the fact that
the object will have to be cast back to its original class when recovering it using the ���D��
method. For more information, refer to 	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	J	�	�	�	�	
	�	�	�	U	�	�	�	D	�	�	0	�	�	�	F	@	�	�	�	�	�	�	�	�	�	/	
	@	�	�	�	3.

Lists and Adapters

[120]

In the previous code, we only set the text of two D�+�J����. However, if we have to
change an image, or trigger its download for example, or something that might be
really slow, it is a good idea to execute this on a background task. Android provides
multiple options to execute code in background mode, but maybe the simplest solution here
is to use)�-��D���. For more information, visit 	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�

�	�	�	�	�	�	�	�	�	�	�	�	�	�	�)	�	-	�	�	D	�	�	�	�	
	�	�	�.

The next code is a small example of how can we achieve this. We will not go into the details
of how to load an image or how the image is created; here we will only create a dummy
image of 1 pixel width per 1 pixel height:

We also need to modify the J���T����� inner class to add the image:

Lists and Adapters

[121]

We would also need to add an ID to 2����J���, in the two-line item layout
file ����������9K�V�������?�����K, and set it together with D�+�J���:

Once we have performed all these steps, we just need to add one line to the ���J���
method to trigger image loading:

����2����=�����0��������F�
�����3��+��	��034

However, this code faces an important issue. As loading the image takes some time and this
process is executed in the background, what would happen in the case where, after the
image has finished loading, J���T����� points to another item position because it has been
recycled?

To solve this issue, we have to keep track of the position on J���T����� as well and check
it on)�-��D���. In addition, in a real application, we should avoid loading lots of
background images if the user is scrolling very fast. This is because most of the images will
not even be shown and will just waste time and data; additionally, this will make the user
wait for the images he would really like to see, let's say, 200 rows, as shown in the following
screenshot:

Lists and Adapters

[122]

In the preceding code, we have added the item position to J���T�����. While trying to set
the image, if the position is different, we will ignore the image. The following screenshot
shows the new J���T�����, including the item position:

We also have to remember to update the J���T����� position to the item position every
time:

for more information on how to make the scrolling of =���J��� smoother and faster and an
example of how to use)�-��D��� to change the image of 2����J���,
visit 	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	6	�	�	-	�			�	�	�	�	�	�	�	�	
	6	�	�	�	�	�	�	�	�	�

�	
	�	�	�.

Lists and Adapters

[123]

BaseAdapter
1���)������ is the basic implementation of an adapter. It is one of the simplest ways to
implement our own adapter with its specific logic. To create our own custom adapter, we
only have to create a class extending 1���)������:

We will have to implement only four methods:

The �����	��03 method returns the number of elements we have.
The ���2���0������������3 method returns the actual object in the specified
position.
The ���2���2�0������������3 method returns the ID of the object in the
specified position. It can be used for our own purposes; alternatively, we can just
return either 1 or 0, for instance, if we do not have any particular use for this
method.
The ���J���0���������������3 method returns the view associated to this
row. The same principles we saw before in the ���J��� method of
the)���-)������ class apply.

Lists and Adapters

[124]

One of the main advantages of having our own implementation of an adapter is that we
have control over the data in it. There is no need to destroy and create a new adapter
whenever the dataset changes. For example, we can implement an adapter where we can
add or remove rows dynamically.

Let's back the adapter by using)���-=��� (to hold our elements):

Lists and Adapters

[125]

So far it has been very easy; the ���J��� implementation is almost the same as previous
examples, except that we get the data from the list, and the only logic we have implemented
comprises the �����	��03 method and the
 ���2���0������������3 method.

Let's add two new methods: one to add an element and another to remove one element
from the list. This is shown in the following screenshot:

These new methods add and remove items from the list and they both call the
����(-A���,���
�����03 method. This method notifies all the observers of this data that
it has changed and they should refresh themselves. As ����(-A���,���
����� can only
be called from the UI thread, we know ���2��� and ������2��� will not be called at the
same time and there is no need for synchronization blocks. To
call ����(-A���,���
����� from another thread, we can use, for
example,)������-��	�/�:�D
���� or a handler.

Lists and Adapters

[126]

The following example is the modified activity with two buttons to add or remove an item
from the list:

RecyclerView
N��-����J��� was introduced with Android 5.0 or Lollipop and was included directly in
the support library, so it could be used in older versions of Android (we all know that
firmware rollout is not always as fast as it should be because it might depend on operators
and vendors). In this section, we will use the previous example to replace =���J���
with N��-����J���. We will see that it will take a bit more of code to set this up, but we
will also be able to identify, quite clearly, its advantages: its flexibility and the uncoupling
feature along with the ability to perform item layouts or item animation, helping us to keep

Lists and Adapters

[127]

a cleaner code architecture. In addition, N��-����J��� was built with all the performance
features we had to implement before in mind. This does not mean we do not have to do
anything to implement them, but as we will see, the code is structured in a way that it will
force us do to so naturally.

The official Android documentation defines it as a flexible view for providing a limited
window into a large dataset. This definition could apply to any scrolling list, but the main
keyword we have to take into consideration is �recycler.� We have already explained how
critical it is to recycle and reuse views in long scrolling lists, but with the introduction of
N��-����J���, we can see that Google takes this concept very seriously as well. For more
information, visit 	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�			�	�	�	�

�	�	�	$	�	�	�	�	�	�	�	�	N	�	�	-	�	�	�	�	J	�	�	�	�	
	�	�	�.

Replacing ListView with RecyclerView
The first thing we need to do is add a dependency to the dependencies section of the

	���������� file of our application. As we have just mentioned, N��-����J��� is
included as part of the support library, so in order to use it, we will have to add the full
package name from the support library,
namely ���������	�������$��������N��-����J���, as shown in the following
screenshot:

Lists and Adapters

[128]

After making this change, we will need to synchronize our Gradle file so Android Studio
could fetch the new dependencies. Now, after performing this simple step, we could go to
the layout file and replace the =���J��� item with N��-����J���, as shown in the
following screenshot:

So, once we have the right layout item, we can proceed to perform the same change in our
activity. We change the =���J��� class with N��-����J��� and the appropriate cast:

This change will not just work out-of-the-box. N��-����J��� has some additional
requirements regarding the adapter. As we have mentioned before, N��-����J��� will
naturally force us to implement the performance improvements we had to do manually in
the past. Instead of being able to use any adapter, we will have to extend
from N��-����J����)������ and implement their abstract methods.

Lists and Adapters

[129]

In the Android source code, this class is declared
�	
������������
�������������)������;JT��+������J���T�����<�.�����5

using generics to allow any class to extend N��-����J����J���T�����.

More information about generics can be found at the following links:

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	@	�	�	�	�	�	�	�			�	�	�	�	�	�	�	@	�	�	�	�	�	�	�	�	�	�	�	�	�

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	Q	�	�	�	�	�	�	�	?	�	�	?	P	�	�	�

So, first of all, let's create a J���T����� extending from N��-����J����J���T�����
instead of just creating our own independent class:

This implementation is quite straightforward and very similar to our previous J���T�����
implementation. The only thing we have to take into account is that we have to extend our
class from N��-����J����J���T����� and the constructor takes one parameter which is
the actual, already inflated, view. It is very common to have J���T����� defined as an
internal class, as this would make it easier to access its elements. If you are a purist, there
will be no need to write the appropriate getters; however, in this specific case, it is on its
own public class so we can show it more clearly.

Lists and Adapters

[130]

Now that we have our J���T����� built, let's focus on the adapter. Let's create our class
based on the previous definition, using the same name as in the previous section:

�	
�����������+�����1���)��������+�����
N��-����J����)������;N��-����J���T�����<�.�����5

We will have to implement the abstract methods of N��-����J����)������:

�	
����N��-����J���T��������������J���T�����0J���Q��	��������F����
����D-��3
�	
�����������1���J���T�����0N��-����J���T������
�����F�������������3
�	
�����������2�����	��03

The ��������J���T����� method will be called whenever a new J���T����� (and a
view) needs to be created. In our implementation, we will be responsible for returning
a J���T����� instance.

The implementation is also quite simple, assuming we would like to do the same as in our
previous section; obviously, we could add all of the complexity we want depending on our
needs and requirements. The following is a simple implementation of the
��������J���T����� method:

Basically, we are inflating a new view and creating a new J���T����� with it.

The ��1���J���T����� method will be called whenever N��-����J��� is binding
a J���T����� with a position in the list. Implementation in this case is also quite
straightforward. The following is an example of how to reuse the view stored in the
J���T�����:

Lists and Adapters

[131]

As with our previous section, we are just setting the new text to the D�+�J���� previously
cached in J���T�����.

Last but not least, the ���2�����	�� method is simply the equivalent of the �����	��
method in a 1���)������. We have to return the total number of elements we want to
show in N��-����J���.

To sum up this section, we have modified our previous �+�����1���)������ class to
extend from N��-����J����)������ and adapted the implementation to follow the
abstract methods we had to implement. We still back our elements with)���-=���, but we
have slightly changed the ���2��� and ������2��� methods. Instead of just
calling ����(-A���,���
�����, we will call the specific methods when an item has been
inserted and when an item is removed from the list. Check the documentation for more
specific methods as N��-����J��� comes with many very helpful and more precise ways
of notifying changes in the dataset. See the whole class with all the following changes:

Lists and Adapters

[132]

In this case, we added the context to the constructor of the adapter, but because we only
needed it on the ��������J���T����� method, we could just retrieve it
from ���������������+�03.

Are we ready to run our application again using N��-����J��� instead of =���J���?
Almost, but not just yet. If we build and launch the application at this moment, it will crash
with L	����������+������� as soon as we add one item to the list. The reason is
that N��-����J��� does not know how to lay out the items so we have to
provide =�-�	�*������. For more information, visit 	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�			�	�	�	�	�	�	�	$	�	�	�	�	�	�	�	�	N	�	�	-	�	�	�	�	J	�	�	�	�	=	�	-	�			�	*	�	�	�	�	�	�	�	
	�	�	�.

At the time of writing this book, N��-����J��� provides three default implementations:

The straightforward =�����=�-�	�*������, Q���=�-�	�*������, and
 ,��������Q���=�-�	�*������. We will talk about the last one in more detail later on,
but for the time being we will just use =�����=�-�	�*������ to run our application. To
make the code work, just add a new =�����=�-�	�*������ to N��-����J���:

���-����J�������=�-�	�*������0����=�����=�-�	�*������0�
��33

For more information, visit the following links:

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	6	�	�	�	�	�	�	
	�	�	�

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�			�	�	�	�	�	�	�	$	�	�	�
�	�	�	�	�	=	�	�	�	�	�	=	�	-	�			�	*	�	�	�	�	�	�	�	
	�	�	�

Lists and Adapters

[133]

The resulting class is not really very different from our previous implementation. We have
also modified how items are removed from the list; this time, we removed a random item
from the list:

Lists and Adapters

[134]

CardView
The advantage of using ����J��� is that it comes with a default implementation for
rounded corners and a shadow. This is precisely how it is defined in the official Android
documentation (
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�			�	�	�	�	�	�	�	$	�	�	�	�

�	�	�	�	�	�	�	�	J	�	�	�	�	
	�	�	�).

In addition to this, many mobile applications use ����J��� widgets, and there are some
interesting discussions about the future of cards as a UX pattern at the following links:

	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	-	6	�	�	�	�	�	6	�	�	�	6	�	
	�	6	(�			�	�	6	�	(6	�	
	�	6	�	�	
	�

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	-	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�			+	6	(�	�	�	�	6	
	�	�	6	�	�	6	�	
	�	�	�	�	�	�	6
-	�			�	6	�	�	�	�	�	�	�	6	�	�	�	
	6	�	�	�	�	�

To use ����J���� in our application, we will have to add the dependency to our
application's
	���������� file:

Let's create a new layout file, which includes a ����J���. If we want to add a complex
layout inside it, we need to add N�������=�-�	� or any other layout as a child. For this
example, we do not really need that, as we will only add a background image and a single
line of text.

Lists and Adapters

[135]

Double-check the ����?���� properties: �������������, ����������N���	�,
and ����:���������������.

�������������: This property sets the card elevation in a backward-compatible
mode. On Android L, we will use the elevation API, and on versions previous to
Android L we will just change the shadow size.

����������N���	�: This property sets the radius of the rounded corners.
����:���������������: This property adds a padding to Android L to have
the same measurements as in the previous versions.

Lists and Adapters

[136]

For detailed information and more parameters, check the official Android documentation.

Once we have created our new layout file, we will modify our J���T����� class to only
keep a reference to one single D�+�M���� and to the background image, as shown in the
following screenshot:

We just need a minor modification in our adapter to set the background and only one line.
This example has not been optimized for performance or memory use; we just show the
changes in the adapter to make the background of ����J��� appear.

Lists and Adapters

[137]

If we run our application now, we will see the rounded corners of ����J��� and a soft
shadow due to the elevation of the item:

ItemAnimator
Let's do a quick modification of the ���2��� method in our adapter implementation so that
the items will be inserted at the top of the list, not at the bottom:

If we now run our application, add a few items, and remove some of them, we see there are
some animations. N��-����J��� uses A�(�	��2���)������� by default. Visit 	
	�	�	�	�	�	�	�	�
�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�			�	�	�	�	�	�	�	$	�	�	�	�	�	�	�	�	A	�	(�			�	�	2	�	�	�)	�	�	�	�	�	�	�	�

	�	�	� for more information.

Implementing our own 2���)������� might be a bit complex, but we can
extend N��-����J����2���)������� and implement our own class. For more
information, refer to 	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�			�	�	�	�	�	�	�	$	�	�

�	�	�	�	�	�	N	�	�	-	�	�	�	�	J	�	�	�	�	2	�	�	�)	�	�	�	�	�	�	�	�	
	�	�	�.

This is not very easy, so our recommendation is to look at the Android source code (shown
in the following link) and analyze the A�(�	��2���)������� source code:

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�			�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�			�	�	�	�	�	�	V	�	�	�	(�	�	
	�	�	�	�	�	�	�
�	�	�	�	�	�	$	�	�	�	�	-	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�			�	�	�	�	�	�	�	$	�	�	�	�	�	�	�	�	A	�	(�			�	�	2	�	�	�)	�	�	�	�	�	�	�	�	@	�	�	�

Lists and Adapters

[138]

ItemDecoration
In addition to animations, we can easily create our own decorations by just extending
N��-����J����2���A���������. It is quite common to use it to draw decorations or
dividers between items in case we need them. 2���A��������� gives us the opportunity to
draw something under item views or over them and change their positioning by overriding
some of the methods of N��-����J����2���A���������:

The ��A��� method allows us to draw before the N��-����J��� child views are
drawn. Anything drawn here will appear under them.
The ��A���/��� method is called after all child views are drawn, so anything
drawn here will be drawn on top of the child views.
The ���2���/((���� method allows us to modify the outer bounds of the item.
We can easily add an offset or additional margin here. If we need the item
position, we have to use the ����
���)�������������� method
in N��-����J���.

For example, let's assume we would like to draw even rows slightly displaced to the right
and fill that space with a solid color rectangle. First, we would have to create our own
2���A��������� class:

That is quite straightforward, but now we would have to implement some of the methods
in order to do something different.

Lists and Adapters

[139]

Let's start by adding a configurable amount of displacement to the right for even rows. We
will add the displacement as a parameter to the constructor:

As mentioned before, we are using the ����
���)�������������� method in the
parent N��-����J��� to get the actual position of the view. Based on the position, we are
modifying the left position of the item to be the displacement. By default, and according to
the documentation, ���2���/((���� sets all bounds to 0.

Let's take advantage of this empty space to draw something of our own. We will have to
create a ����� object in our constructor. Let's not create it every single time we have to
draw something, for performance reasons. This is to avoid unnecessary operations and
memory allocations and to initialize it to fill the empty space with a solid color, which will
be passed as a parameter as well.

Then, we have to iterate for all the even items in our parent N��-����J��� and draw a
rectangle, although we have chosen a round rectangle in our example, with appropriate
coordinates. As we can get the child view using the ����
���)� method
in N��-����J���, we could use it to get the coordinates. In this specific example, we could
use the top and bottom coordinates of the child view as they are, and we just need to
calculate the left and right positions. Calculating the left side is quite easy; it will not
depend on any other child or element, just the parent padding, so let's set it to the left
padding of N��-����J���. For the right side, it is also quite straightforward. We know we
have displaced the views to the right, so we can get the left coordinate of the child view and
set it as the right coordinate of the rectangle we would like to draw. Please note that, in this
example, we have hardcoded the radius of the oval used to make the round rectangle; we
could have added it as another parameter if we customized it.

Lists and Adapters

[140]

Finally, we only have to set this 2���A��������� to N��-����J��� in our activity and
initialize it with some appropriate values. Ideally, both horizontal displacement and color
should be defined as a XML resource and retrieved here, but for clarity reasons, we have
put the immediate value here:

Lists and Adapters

[141]

If we run our application now, and we add some lines, we will see them, as shown in the
following screenshot. As we can see, even rows are displaced to the right and there is a
bluish round rectangle on the left-hand side.

Let's do a quick update to our project to draw that bluish background on all the items and
remove the displacement so we can reuse it in our next section:

Lists and Adapters

[142]

Here we just drew the same round rectangle in all the child views, without adding the
padding, and we also added a very small bottom offset to the items so there will be a small
separation.

For more information about 2���A���������, check the source code of one of the
examples in the original Android source code, A������2���A���������. Visit 	
	�	�	�	�	�	�	�	�
�	�	�	�	�	�	�	�	�	�	�	�	�	�	�			�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	V	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	,			�	�	�	�	�	$	A	�	�	�	�	�
�	�	�	�	�	�	�	�	�	+	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�			�	�	�	�	�	�	$	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	A	�	�	�	�	�	�	2	�	�	�	A	�	�	�	�	�	�	�	�	�	�	@	�	�

�.

StaggeredGridLayoutManager
There are many popular applications that show a special and more complex grid such as
Etsy or Pinterest. Etsy was designed as an open source component, but it has been
deprecated since September 2015 because Google added ,��������Q���=�-�	�*������
to their default set of =�-�	�*�������.

Find the GitHub repository of the Etsy component at 	
	�	�	�	�	�	�	�	�	�	�	
			
	�	�	�	�	�	�	�	�	-	�)	�	�	�	�	�	�	,

�	�	�	�	�	�	�	�	Q	�	�	�.

In this book, we will be using Google's ,��������Q���=�-�	�*������ together
with N��-����J���. What we want to achieve is basically a staggered grid layout. This is
because items can have different sizes, and gaps between views have to be smartly
managed.

Lists and Adapters

[143]

The following is a screenshot of the Etsy application where we can see what we want to
achieve:

We can easily get started by just replacing our =�����=�-�	�
with ,��������Q���=�-�	�*������ and see what happens:

Lists and Adapters

[144]

We will not see that much difference as all the items have the same size. Let's randomize
things a bit in our adapter. Every time we get a J���T����� bind a call to a new position,
we will randomly assign a new size to that view. Also, as we are inserting elements at the
top, just calling ����(-2���2�������0'3 will not be enough as it does not propagate
structural changes to the other views and assumes they have not been modified. There are
two options here: either we insert elements at the end of the list or we
call ����(-A���,���
�����03. The following screenshot shows the changes to the
adapter when you insert elements at the end of the list:

We have chosen to insert elements at the end of the array and give each item a size between
150 and 350 density pixels (dp), which we would need to convert into pixels in order to use
them.

Lists and Adapters

[145]

,��������Q���=�-�	�*������, by default, uses
Q)�?T)LA=2LQ?*/J�?2D�*,?1�DR��L?,�)L, as the gap-handling strategy. Whenever the
scroll state is changed to ,�N/==?,D)D�?2A=�, it will check whether there are gaps
between the items and lay them out again. We could also disable this behavior by setting
the gap strategy to Q)�?T)LA=2LQ?L/L�.

For more detailed information on how ,��������Q���=�-�	�*������ works, check the
Android source code and documentation:

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�			�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�			�	�	�	�	�	�	V	�	�	�	(�	�

	�	�	�	�	�	�	�	�	�	�	�	�	�	$	�	�	�	�	-	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�			�	�	�	�	�	�	�	$	�	�	�	�	�	�	�	�	,	�	�	�	�	�	�	�	�
Q	�	�	�	=	�	-	�			�	*	�	�	�	�	�	�	�	@	�	�	�

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�			�	�	�	�	�	�	�	$	�	�	�	�	�	�	�	�	,	�	�
�	�	�	�	�	�	Q	�	�	�	=	�	-	�			�	*	�	�	�	�	�	�	�	
	�	�	�

The following screenshot shows the result after you randomize the ����J���� height:

Lists and Adapters

[146]

Summary
In this chapter, we learned how to add dynamic lists to our application. We also covered the
performance issues that we might face if we do not do things in the right way, and we
evolved our example from the good old =���J��� and =���)������- to the new and
more efficient N��-����J���.

Additionally, we introduced a new =�-�	�*������, which is able to manage items with
different sizes, and the ability to draw decorations before or after the N��-����J��� child
items are drawn.

For the time being, the source of data for the lists is quite static, but in upcoming chapters
we will see how to make it more dynamic and have different data sources.

55
Remote Data

So far you have seen how to create dynamic lists with a static data source (a Java array in
our previous examples). In this chapter, you will learn how to request and retrieve data
from Internet origins. There is a huge market for hyperconnected and hypersocial
applications, so we can imagine how critical it is to rely on a good implementation of the
networking part of the application. If it is done wrong, it might cause serious performance
issues, never-ending activity indicators, or even application crashes.

We will initially focus on how to request permissions and on background tasks and later
move on to how networking works internally and how to add widely used third-party
libraries to simplify all the connection needs our application might have.

Permissions
First of all, we need to understand the need for permissions. Permissions were introduced
to let the user know what kind of operations the application will perform. These operations
are potentially using services with a cost, for example, sending an SMS message or
connecting to the Internet or getting potentially sensitive information from the phone or the
user. As malicious applications might potentially abuse this, Android introduced a
permission mechanism that will show all the required permissions to the user when he/she
installs the application from Google Play. As this method did not show very clearly how
these features that require special permission were used, Google introduced, in Android
Marshmallow or API version 23, a new permission mechanism to check permissions at
application runtime.

Remote Data

[148]

Android M permission mechanism
Permissions have to be declared in the *���(��� file as with previous versions of Android,
but there are some new methods to check and request permissions while the application is
running, providing, this way, the right context to the user and giving him the flexibility to
allow or deny these specific features of the application.

In previous versions of Android, when the user proceeded with the installation of the
application, the user was, in fact, accepting all the permissions at the same time without the
right context or knowledge of why the application was requesting those permissions.

This new permissions model is more convenient for the user since, if implemented
correctly, it will give the right context before having to accept a specific permission, but
adds some complex logic to handle when developing our applications. We do not have to
assume that we always have permission to do everything in the application, for example,
even if the user granted one permission, he/she can deny it later on from the application
settings.

Let's see how we can do it; let's add Internet connectivity to our application. First of all, we
have to add the Internet permission to our manifest file:

Remote Data

[149]

It is pretty straightforward. Just adding single line code
;	���6�����������������������9K�������������������2LD�NL�DK�<, before the
application tag will do the job.

This covers all that we need for previous Android versions and if we still build our
application with a target API lower than 23. But if we target our application for Android M
(or API level 23), we will have to do some additional work. Let's check at runtime if the
Internet permission is granted:

If we execute the preceding code, we will see the permission has already been granted; we
do not have to request for it or do anything else. Also, this code will only run on Android M
and onward devices. To avoid performing constant checks for the API version, there are
some helper methods in the ���6������ library that would make our lives a bit easier:

Only changing the call �
���,��(���������� to
 �����+���������
���,��(���������� will do the work. This call will work and return
the appropriate value depending on the Android version of the device running the
application. From now on, we will be using all methods from the ���6������ library and it
is actually a good recommendation to do so on all our applications.

Remote Data

[150]

As we saw earlier, the Internet permission was already granted. This is because the Internet
permission belongs to a group of permissions categorized as normal.

Google classified some permissions as normal and others as dangerous. Normal
permissions are granted by default, although they still need to be declared in the
application *���(��� file. For the list of normal permissions, refer
to
�����������������������������	��������������	���-�������6������������
���.

For more information on permissions, refer to

�������������������������������(�������������������������������

�����2�(��
���.

Let's use the same approach with a dangerous permission: read contacts. As mentioned
previously, we have to start by adding the 	���6���������� line in the application
manifest:

And we change the �
���,��(���������� with the right one:

Remote Data

[151]

If we run the following code, we will see the permission is not granted. Let's request it:

We have introduced a call to the �
�	��,
��N�7	�������������N�������� method,
which is an optional call and will return if we show an explanation to the user as to why we
need this permission. It usually returns true whenever the user denies the permission
request or disables it afterwards in the application settings. If the use of the permission is
very obvious for the application, it is not really required, but if there are some doubts, it is
always good to explain to the user why are we requesting this permission.

We should take into consideration that anything we do here to show the explanation to the
user has to be done asynchronously and call an appropriate callback afterward. In this case,
we are only showing a dummy Toast.

If we do not want to show any explanation or if
�
�	��,
��N�7	�������������N�������� returns (����, we can proceed and do the
actual request of the permission with the ��7	�������������� method. This method is
asynchronous and can be used to request multiple permissions at the same time, although
in this example we are only requesting one.

As this method is asynchronous, we will have to override another method called
��N�7	��������������N��	��, which will be called with the results of what the user
selected. The additional parameter to �
��,
��N�7	�������������N�������� is an ���,
which we can use to track the request.

In our implementation, we assume that we have requested only one permission. Code has
to be refactored to be more generic and support multiple permissions at the same time.

Remote Data

[152]

If the user did not grant a permission, our application has to be smart enough to disable that
functionality or implement a mechanism to keep asking, without being annoying, for that
permission.

This implementation has been done in the ��N��	�� method, which might be the right
location for a permission we would need to start the application, but in our case, the
permission to read contacts should be placed in a more appropriate point in the code, which
makes more sense to the end user:

As mentioned previously, even if the permission is granted, we should not assume that it
will be always be that way. The user can deny the permission from the application settings.
If that happens, Android will kill our application, and a lot of unexpected things might
happen. Anyway, it is good practice to check if we have permission whenever we have to
do a protected operation; this way we will have the most robust solution to permission
changes.

Remote Data

[153]

Permission groups
Google grouped permissions into permissions groups. Whenever an application is
requesting a permission and does not have any permission in the same group granted, it
will ask the user to grant the permission to the group without going into detail of which
specific permission. For example, if we ask permission to read contacts, it will show the
following popup:

If the application asks for another permission from a group that has already a granted
permission, it will immediately grant that permission.

For more information, refer to the following links:

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	*	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	?	�
�	�			�	�	
	�	�	�

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�			�	�	�	�	�	�	�	�	�	�	�	�	�	�			�	�	�	-	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�

Background processing
Now that we have addressed how to request permission, we will slightly shift our focus on
how to perform background operations. All network communications have to be done in
the background. If we do it on the UI thread or main thread, we will block the UI layer and,
most probably, throw an Application Not Responding (ANR) dialog. For more information,
refer to
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(6	�	�	�	�	
	�	�	�.

Remote Data

[154]

Anyway, any application targeted after Honeycomb will throw an exception
L������/�*���D
�����+������� if it detects any networking operations on the main
thread. For more information, refer to

������������������������������(������������������L������/�*���D
�����+��������

���.

We have several tools to address these points, but Android provides us with many useful
mechanisms already.

Java threads
We can always use Java threads to do background work. It is good practice to use an
Android provided mechanism, as using, or abusing, Java threads might lead to a complex
and hard-to-maintain code.

For instance, if we want to load an image from the network (using the same example as that
in the official documentation at

�����������������������������	������������������������6���6�
������
���):

This would perform the downloading and creation of the bitmap in a background thread
but will, actually, not work due to accessing the UI in a different thread than the UI thread.
To solve this, we can use some additional mechanism provided by Android that makes sure
that some code will be executed on the UI thread:

)������-��	�/�:�D
����0N	���
��3�
J��������0N	���
��3�
J��������A���-��0N	���
��F�����3�

Remote Data

[155]

Modifying our code, now the 2����J��� class is only modified on the UI thread and we
kept the downloading on the background thread, therefore not blocking any other thread:

To solve this complexity when working on background processes and interacting with the
UI, Android introduced the)�-��D��� class.

AsyncTask
We saw the)�-��D��� class in the previous chapter but we will go into more detail in this
chapter.

As we have just mentioned,)�-��D��� class is ideal when we have to do some background
processing and interact with the UI layer with either the results or some intermediate
process.

Implementation is very straightforward. We just have to subclass and implement the right
methods and know when, and in which thread, they will be executed:

������+��	��: This is executed on the UI thread and is called before doing the
background process
��2�1������	��: This is invoked in a background thread
����������:�����: This is executed on the UI thread and is called after a call
to �	
���
�������� from ��2�1������	��

Remote Data

[156]

�������+��	��: This is executed on the UI thread and is called after the
background process finishes

Following are the parameters of the)�-��D��� class:

������: Type of params sent to the ��2�1������	�� method
��������: Type of progress units, we will see it further down
N��	��: Type of result done by ��2�1������	��

It is also very easy to call, as shown in the following code:

The execute call has to be done on the UI thread though.

Implementing ����������:����� method is a very useful way to update a progress bar
or, basically, inform the UI about the progress of the background task.
The ��������:����� method has to be called from ��2�1������	�� method and update
the progress value from there. For an example, check the official documentation
at
������������������������������(������������������)�-��D����
���.

Remote Data

[157]

The)�-��D���� can be cancelled by just calling the ������ method. If
the)�-��D��� class has been cancelled, it will call ����������� instead
of �������+��	�� when ��2�1������	�� finishes. What we have to take into
consideration is periodically checking if the task has been cancelled in the ��2�1������	��
method, otherwise it might be doing lot of work for nothing and the background task will
not be felt as though cancelled immediately.

Before HoneyComb,)�-��D��� classes will be executed in parallel by default. In
HoneyComb and later, all)�-��D���� will be executed serially unless called with
the �+��	��/��+��	���0DTN�)A?�//=?�X��:D/NF����3 method instead of
just �+��	��0���3:

The)�-��D��� class does not solve all our issues for free. If it is not implemented correctly,
it can introduce lots of problems as well. For example, if the activity that spawned
the)�-��D��� class is destroyed, that does not destroy or stop the)�-��D���. We have to
manually take care of all our)�-��D��� classes and cancel them. As we saw previously,
when we cancel an)�-��D���, it is not automatically stopped; it is our job to check
whenever it is cancelled and stop the process.

This can be very easily reproduced if we have not taken care of it by just rotating the device
for example. In addition, we have to be careful in the �������+��	�� method of
the)�-��D���; if the original activity that created the)�-��D��� is no longer valid,
the 2����J��� or any UI element we can reference might be potentially null. Also, as we
are referencing these elements from inside the)�-��D���, they will not be garbage
collected until the)�-��D��� finishes, so, again, if we are not careful, we might introduce
unnecessary memory use or even memory leaks.

IntentService
Another way to perform background operations is using an IntentService. As a difference
from)�-��D���, an operation running on an IntentService could not interact directly with
the UI and could not be interrupted, but it does not have the potential issues the)�-��D���
had. For more information, refer to
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	�	�	2	�	�	�	�	�	,	�	�	�	�	�	�	�	
	�	�	�.

Remote Data

[158]

To create an IntentService, first of all, we will have to extend the 2�����,������ class and
implement ��T�����2����� method. IntentService subclasses the ,������ class but
provides the ��T�����2����� method that is executed on a different thread than the main
thread:

Once this is done, we need to declare our service into our *���(��� file:

Remote Data

[159]

Now that we have created an IntentService, which, in fact, will be used to connect to the
Internet, we need to be able to pass parameters to it and get the output back.

IntentServices are invoked by calling the �����,������ method with an Intent. Passing
parameters is simple, for example, if we modify the ����2���� method from our previous
section to call the newly created IntentService rather than the)�-��D���, we could specify
the URL in the ���A��� method of the Intent:

On the IntentService itself, we can retrieve the URL by reading the data string from the
intent we get as parameter in the ��T�����2����� method:

More information on how to create a background service can be found at the official
documentation page:
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�			�	6	
	�	�	�	�	�	�			�	�	6	�	�	�	�	�

�	�	�	�	�	�	�	�	�	6	�	�	�	�	�	�	�	�	
	�	�	�.

Remote Data

[160]

We can receive the output data from the IntentService through multiple ways. Maybe the
simplest is to create our own N��	��N������� and pass it to the IntentService as a
�������
��. Another way is using a 1��������N������� and broadcasting an 2�����
with the result. We will not cover this in this book, but an example can be found at the
official documentation page (
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�			�	6	
	�	�	�	�	�	�			�	�

6	�	�	�	�	�	�	�	�	�	�	�	�	�	�	6	�	�	�	�			�	�	
	�	�	�).

To avoid going into many details about HTTP connections right now, this implementation
is rather simple. We receive an instance of a A�������N�������, our own implementation
of N��	��N�������, in the intent extended data together with the URL. For more
information on N��	��N�������, refer to 	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	N	�	�			�	�	N	�	�	�	�	�	�	�	�	
	�	�	�.

Remote Data

[161]

After downloading the data from the URL, we create a new 1	���� class where we put the
URL back to simplify tracking, which was the origin of the request, and if we get a positive
response from the server, we put the payload as a byte array and deliver the result to the
receiver asynchronously by calling the ���� function. As a ���	������, we
used A/RL=/)A?,:���,, to identify whether we were able to connect to the server. If we
can not connect to the server, we do not put the payload but deliver a A/RL=/)A?M)2=
message back to the receiver. In a real implementation, we would take care, for example, of
the HTTP response code, and the A�������,������ would have a specific logic depending
on the response code value.

To create our own N��	��N�������, we have to create a class, extend from it, and
implement the ��N������N��	�� method. In the following example, we created two
empty methods that will be called accordingly to the ���	������ we receive:

�	�����0,������	��F�
-��GI�����3
(���	��0,������	��3

As they are empty, we would have to subclass A�������N������� and implement these
methods if we are interested in those callbacks:

Remote Data

[162]

Another way we could implement the A�������N������� is to declare an internal
interface and a method to set an interface implementation:

In case of having a valid instance of that implementation, we will just forward the
��N�������N��	�� call to that receiver.

In our example, we will use the first implementation of A�������N������� and extend the
success and failure methods to implement our own logic:

Remote Data

[163]

We are currently not using the �����J���, as, even if we could not do it, we do not want to
pass the 2����J��� as a parameter to the A�������,������. A possible implementation
would be the following; use a T��
*�� to map each URL to its associated 2����J���:

We have to make sure to clean up our T��
*�� after we load, or fail to load, an image and
also to clean it up whenever we do not need it anymore, for example, when our activity is
destroyed:

Remote Data

[164]

The preceding code works fine, but there is an issue: when we create the
A�������N�������, we pass a new handler as a parameter. This new handler will be
created in the looper of the current thread, so whenever we send a message,
the ��N������N��	�� will be executed in the same thread as it was created, but as a posted
message. Looper runs a message loop in a specific thread. For more information on looper,
visit 	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	=	�	�	�	�	�	�	
	�	�	�.

As a consequence, if we do it this way, we are decoding the Bitmap on the main thread and
potentially blocking any other process. To solve this, we pass a null handler to
the N��	��N�������, which will execute the ��N������N��	�� on an arbitrary thread,
and we make sure we modify the 2����J��� only on the UI thread:

Network code
Now that we have seen how to do some background processing and decode the data by
ourselves, we will see how to implement the networking code. We will start by showing the
standard classes and libraries Android provides us, and later we will cover widely used
third-party networking libraries.

Remote Data

[165]

Android standard libraries
As we have just mentioned earlier, there are a lot of third party libraries that will make our
lives easier, but it is important to know the basics. Android provides a set of standard
classes and libraries which are not really used anymore by application developers unless
there is something very specific of low-level access is required. Anyway, we will briefly
show a possible implementation of an HTTP downloader and then will switch to higher
level-party libraries.

In the previous example, we did not show the implementation of the ����A���M���:N=
method, as we will cover it here in this section:

What we are doing in this implementation is to create an T���:N=���������� from
the URL and read all the data from the 2��	�,����� of the connection as long as we have
more information coming from it or as long as does not return 6�. The ����A���M���:��
method is very similar to the method explained in the example in the official
documentation at 	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	@	�	�	�	�	�	�	�	�	T	�	�	�	:	N	=	�	�	�	�	�	�

�	�	�	�	�	
	�	�	�. However, here we are also provided with an implementation of
the ����,����� method. A stream can be read in multiple ways, but we have chosen to
read it by small blocks rather than byte per byte as this performs a lot better.

Remote Data

[166]

Volley
Volley is an HTTP library to make networking faster and easier for Android applications. It
is included as a framework in the Android Open Source
Project:
�����������������������	������������(����(���������������-.

To include volley in your project, you can clone it from the original repository by using the
following command:

git clone https://android.googlesource.com/platform/frameworks/volley

You can also add it as a subproject in Android Studio or by just adding a dependency to our

	���������� file:

��������E�����������������-������-���'�'E

As documented at the official documentation page,

��-�����+�
���, what volley does better is
to perform calls to web services that return structured data and comes with support for raw
strings, images, and JSON.

Let's adapt our previous source code to request the images using Volley instead of our own
implementations:

First of all, we have to initialize a N�7	���Y	�	�� We could do this following the example
in the documentation at

��-���7	���7	�	��
���:

Or by simply using the following code:

��7	���Y	�	��9�J����-����N�7	���Y	�	�0�
��34

Remote Data

[167]

Initializing the queue this way, it will be already started and contain a default
A���1�������
� and L������ object, like the ones we have created ourselves previously.

Once we have done this, we can replace the ����2���� method by the following code,
removing the background service, the intent, and N��	��N�������:

This new implementation is very simple and quite easy to understand. Volley has a specific
type of request for images, and we can even specify the maximum width and height and the
scaling type we want for the images. What we have to implement ourselves is two
callbacks: firslty N��������=�������;1�����<, when we get a valid response from the
server and we got the decoded Bitmap as a parameter; and
secondly N�������������=�������, when we find any issue while connecting to the
server.

In a case where we would like to have multiple connections from different parts of the app,
Volley suggests creating a singleton and use that single instance to hold a single request
queue. We could also take advantage of the 2����=����� and L������2����J��� to
efficiently load and show images in a list for example. For more information and examples,
refer to 	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	-	�	�	�	7			�	�	�	�	
	�	�	�.

Remote Data

[168]

If we want to connect to a REST service returning a JSON response, we could use a similar
approach; for example, let's try to connect to Yahoo financial API and check for Yahoo,
Google, and Apple symbols:

	�	�	�	�	�	�	(�	�	�	�	�	�	�	-	�	
	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	-	�	
	�	�	�	�	Z	T	/	/	F	Q	/	/	Q	F))	�	=	�	7			�	�	�	8	(�	�	�	�	�	9	@
�	�	�

As we can see, the code structure is very similar to the previous one. When creating the
P���/
@���N�7	���F we can also send a P,/L/
@��� to the server. In case
the P,/L/
@��� is present and not null, Volley will use the HTTP �/,D method instead of
Q�D�

In a case where you would like to write more complex or custom requests, you could do so
by following the guidelines in the documentation at

��-���7	���6�	�����
���.

There is also a nice presentation on YouTube about Volley done at the Google Developers
conference Google I/O 2013; for more information, refer to
	�	�	�	�	�	�	�	�	�	�	�	-	�			�			
	�	�	�	�	�	�	�	�	�

�	
	8	�	9	-	
	�	%	�	&	M	!	!	7	�.

In the documentation, we can find a complete implementation of a Q���N�7	����Q��� is a
Java serialization/deserialization library that we will cover in more detail in the next section,
and basically it converts JSON to and from Java objects automatically. It uses reflection, so
there will be a small performance impact but this will be insignificant compared to the time
it takes to do any network operation. For more information on Gson, refer
to
����������
	
����������������.

Remote Data

[169]

In this implementation of a custom request, we can also see how to provide request headers,
to manually set the HTTP request method, for example, and to put the response headers on
the N������� object:

Remote Data

[170]

Gson
Reusing the same API from Yahoo as previously and carefully checking its contents, we can
recreate the same structure as Java objects:

.
���K����K�.
������K����K�.
���������K�-��K�K����	���6����KF
���������K�����K�'F
���������K��	��K�
������5F
������K����	����K�G
���������.
������������K����	���K�.
���������������K���������K�KY	���KF
���������������K(�����K�.
������������������K����K�KZ�
��W�2���KF
������������������K�����K�K #� �''''KF
������������������K�-�
��K�KZT//KF
������������������K��K�K�!"&�%�#''KF
������������������K�-��K�K�7	��-KF
������������������K	������K�K�'�#6' 6�&D�'�''�''V''''KF
������������������K���	��K�K� "&%#&'K
���������������5
������������5
���������5F
���������.
������������K����	���K�.
���������������K���������K�KY	���KF
���������������K(�����K�.
������������������K����K�K)��
�
���2���KF
������������������K�����K�K$!!�$$''�'KF
������������������K�-�
��K�KQ//QKF
������������������K��K�K�!"&�%�#''KF
������������������K�-��K�K�7	��-KF
������������������K	������K�K�'�#6' 6�&D�'�''�''V''''KF
������������������K���	��K�K�&'�#%$K
���������������5
������������5
���������5F
���������.
������������K����	���K�.
���������������K���������K�KY	���KF
���������������K(�����K�.
������������������K����K�K)�����2���KF
������������������K�����K�K�'$�#%''''KF
������������������K�-�
��K�K))�=KF

Remote Data

[171]

������������������K��K�K�!"&�%�#'�KF
������������������K�-��K�K�7	��-KF
������������������K	������K�K�'�#6' 6�&D�'�''�'�V''''KF
������������������K���	��K�K ��#""�"K
���������������5
������������5
���������5
������I
���5
5

We have to create Java objects where the instance variable name matches the field name in
the JSON data, and, in addition, we have to mimic, for example, the same kind of structures,
subclasses, or arrays.

First of all, the whole model is wrapped into a list object, so we need to create a class
representing this list object:

The list object contains a meta object and a list of resource objects. The meta object is like the
previous example, and we can easily represent the list of resource objects by creating an
array:

Remote Data

[172]

The meta object will already have some primitives and not only objects. If we look carefully
at the JSON file, we could appreciate that the start and count properties are just plain
numbers instead of a string:

One small detail that we have to pay attention to is that objects inside the list are wrapped
in the JSON file with a resource object. To properly serialize those objects, we have to create
a N���	���R������ class and then the actual N���	��� object:

This N���	��� object will have a ��������� property, stored as a ,����� data type, and a
list of M�����:

Remote Data

[173]

Fields will contain almost all the data, and as we can see in the following class
implementation, there is a property mapping each JSON field:

Usually, in real-life applications or integration with complex data models, it is
recommended to automate this step, as writing all the serialization classes and code can be
tedious and quite error-prone.

Once we have created all the infrastructure or model classes, we can create the request with
it:

Remote Data

[174]

After the call, the *���� response object will be filled with all the JSON data and we will
not have to worry about parsing the �����Q��� takes care to serialize and unserialize Java
objects to JSON and back. This is rather convenient, but depending on the API complexity,
it is a laborious process and needs to be done very meticulously as any single mistake will
leave us with some null fields that can be hard to debug where the bug or issue comes from.

Retrofit
Retrofit is an HTTP client for Java developed by Square. It is defined as a �Retrofit turns
your HTTP API into a Java interface� at the official website (
	�	�	�	�	�	�	�	7			�	�	�	�	�	�	�	
			
	�	�	�	�	�	�

�	�	�	(�	�	�).

Source code can be found in its Github repository (
	�	�	�	�	�	�	�	�	�	�	
			
	�	�	�	�	�	�	7			�	�	�	�	�	�	�	�	�	(�

�).

To include it in our Android application, we would only have to add a dependency line in
our
	���������� file: ��������E�����7	���	�������(���������(�����'�'E and
��������E�����7	���	�������(�������������6�������'�'6
��� E if we want to
continue using Gson for serializing and deserializing JSON to and from Java objects. This
library is still in beta at the time of writing this book.

Let's implement the same example of the Yahoo finances API but using Retrofit instead
of Volley. We can use the same model classes as used previously as we will be using a Gson
converter.

First of all, we will write a service interface with all the web service calls, and we will use
the annotation extensions from Retrofit to map a specific interface call to a web service
request.

At this point, we have to indicate only the relative path to the web service we want to map,
as we will define the server URL in another part of our code when initializing the Retrofit
classes. This will come in quite handy if we want to connect to our staging or testing server
instead of production as we will not have to change anything in the web service interface:

Remote Data

[175]

In the preceding code, we created a method, and with the �Q�� annotation, we specified
the URL where it will perform the request. Also note that we can add dynamic parameters
or dynamic parts of the URL by wrapping a variable with .5 and then using the ����

annotation with our parameter to replace the variable with the content of the parameter. In
this case, the symbols we want to request will be given by the parameter.

Now that we have the service interface created, we can write the code to initialize Retrofit
and actually perform the request:

Remote Data

[176]

From Retrofit 2.0.0 onwards, we would have to tell Retrofit to use a
Q������������M�����- if we want to use Gson as it is not the default converter. In
previous versions, Gson was the default converter.

Retrofit allows us to create synchronous or asynchronous requests. We will not cover
synchronous requests, but information can be always found in the official documentation.
To create an asynchronous call, we have to queue a new callback to the ���� object wrapper
we got from the service interface. Callback is really simple and straightforward to
implement. Whenever we get a response from the server, the ��N������� method will be
called, or if there has been any issue while connecting to the server, the ��M���	�� method
is called. If we get an error due to the HTTP response code, we will get a response, but it
will not be a successful response. We will either check �����������,	�����(� to see if
has been successful or the HTTP response code.

Retrofit also allows us, like other HTTP clients, to modify the HTTP headers statically or
send data as form encoded or even multipart. We mentioned that from Retrofit 2.0.0, it is by
default not using a GsonConverter, but we can very easily change that. If our server is using
another protocol, Retrofit comes with support for six different protocols, for example, XML,
wire, or protobuf.

Wire and protobuf are optimized binary protocols. For more information, check their
documentations at
����������
	
������7	��������
and
�������������������������������������6
	((����, respectively.

In order to modify the headers dynamically, we would have to create an /�T���
interceptor. /�T��� is an HTTP and HTTP/2 client for Android also built by Square, and
Retrofit uses it by default to perform HTTP connections. Interceptors are the way /�T���
provides to observe requests and potentially modify them. Typically, they are used to
change headers on either the request or response.

/�T��� can be used as an independent library as well by just adding the following
dependency to our
	���������� file:

��������E�����7	���	����
��� ���
���� ���'E

For more information on how to use it, check the official page and documentation at

	�	�	�	�	�	�	�	7			�	�	�	�	�	�	�	
			
	�	�	�	�	�	�	
	�	�	�	�. Source code is available in its Github repository at
 	
	�	�	�	�	�	�	�	�	�	�	
			
	�	�	�	�	�	�	7			�	�	�	�	�	�	
	�	�	�.

Remote Data

[177]

Real case scenario
One real case scenario of applying /�T���F Retrofit, and Gson is the application we
developed during the AngelHack Barcelona 2015 hackathon. After winning the local
hackathon, we converted the idea into a product. To develop the prototype and the current
version, we used all those libraries. In the very first version, though, connection to the
server was handled by an IntentService, and all networking was done using the native
Android classes, but as we can imagine, it is a lot better to switch to widely used and tested
libraries.

In the following, you can see some parts of the code, how the API calls are mapped, how
requests and responses are built, and some specificities, as some of the parameter names
changed in our REST server and we had to use the annotations of Gson to use a different
instance variable name than the property name returned in the JSON data.

Remote Data

[178]

The following source code is just for illustration purposes and does not contain the whole
example.

The 2�Q��	�,������ class defines all the web service end points and which type of
request we need and which type of response we will get back from the server. There will be
some differences in comparison to our previous example, as we used Retrofit 1.9.0:

Remote Data

[179]

In the following, we can find how to build a request and wrap the response and how simple
a response class object looks, thanks to Gson.

The way we created server requests was very simple � we need a request object with the
data to be serialized and a response object wrapped into a callback. To keep things simple,
we checked for the server response code, and we assumed that it was an error if the
response status code was higher than or equal to !''�

Remote Data

[180]

We kept the response callback very simple by just having two methods, ��,	����� and
�������� In the case that the request was successful, the ��,	����� method was called
with the unserialized response as parameter:

The response object is very simple; we had to change the name of the serialized field by
using the ,������O��L��� annotation, but without worrying about the complexity of the
protocol and parsing the output we got ourselves a server response unserialized into a =���
of Y	������ objects:

Remote Data

[181]

The following is example of a request that is pretty simple as well, but has a bit more logic
than the response, as all the parameters are set by using a Builder pattern (Visit
	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	1			�	�	�	�	�	?	�	�	�	�	�	�	� for more information on Builder pattern) to
simplify our code:

For more information, refer to
	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�		�	"	�	�		�	�	�	�	�	�	�	�	6	�	
	�	6	�		�	"	6	�	�	�	
	�	�	6	�

�	�	�	6	�	�	-	6	(�	�	�	�	�	�	�	�	6	�	
	�	6	�	�	6	�	�	�	�	�			�	�	�.

Remote Data

[182]

Summary
In this chapter, you saw how to perform network connections. You started with
permissions, both normal and dangerous, and covered how to do background processing
and how to avoid doing heavy work on the main thread. We finished by explaining how to
integrate widely used high-level networking libraries that will simplify our work and
reduce the time to market of our application. We briefly looked at real case scenario of how
these libraries can help us to quickly prototype and then build and improve on top of that.

66
Image Management

Nowadays, it is very hard to imagine an application without any kind of images. Images,
and media in general, have become an essential part of our applications if we want to show
appealing information. At the same time, images use a lot of resources, memory, and time
to load, and so on. So, this is a relevant detail we have to take care when developing our
application. Managing images in an inefficient way will prevent our application from
running smoothly, and if we do not address memory constraints properly, our application
will most probably crash. This is even more significant if we load user-generated images or
images that come from sources out of our control. In addition, we always have to keep in
mind that not everyone has the latest, most expensive Android smartphone on the market,
and each smartphone will have different memory constraints.

To work these issues out, we will cover in this chapter how to cache images, both to local
memory and to a local file; handle large images; and manage images efficiently, for
example, when used in a large list or a RecyclerView. We will finish the chapter by
introducing some widely used libraries for loading and managing images that will,
definitely, help us when developing our application.

Caching remote data
We have seen previously how to load images and display them in our application. But what
happens when we have to load a huge amount of images? Let's imagine a List or a
RecyclerView and the end user scrolling back and forth. As RecyclerView is recycling the
views and replacing the bitmap with another, we would have to download the same
images from the Internet again and again. This is not only inefficient and slow, but it also
drains the data plan and the user's battery. We can easily implement a cache to store the
images so that we do not have to download them again and again. Let's see how we can do
it.

Image Management

[184]

Memory caches
The fastest way of accessing images is to store them in memory. We need to be careful as
memory is a limited resource, and even more careful if we make assumptions, as every
device has different amount of free memory. We will create a memory cache based on the
amount of free memory and only use a small portion, leaving lots of memory for the app
itself as well.

Since Honeycomb, and also part of the Android support library, there is a class that comes
in really handy, the =�	���
� class. Visit 	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�

�	�	�	�	�	�			�	�	�	�	=	�			�	�	�	
	�	�	
	�	�	� for more information on the =�	���
� class.

For more information on the Android support library, refer to
	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�			�	�	�	�	�	6	�	�	
	�	�	�	-	�	�	�	�	�	+	�	
	�	�	�.

The =�	���
� class is basically a cache that stores a limited number of entries. LRU stands
for Least Recently Used. The maximum number of entries is specified at the time of
creation, and the cache mechanism works by removing the elements at the end of a queue
whenever the size of the cache will grow beyond its maximum size. Every time an element
is accessed, it is moved to the top of the queue. With this mechanism, the elements that will
be removed will be the least used elements. The =�	���
� class is currently backed by
a =�����T��
*�� class, flagged to iterate elements in the order they were accessed.

For more details on the =�����T��
*�� class, refer to

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	@	�	�	�	�			�	�	�	�	=	�	�	�	�	�	T	�	�	
	*	�	�

�	
	�	�	�.

In our case, we are more interested in the memory size of the images rather than number of
images, but, as the documentation clearly shows, we can easily override the ��O�/(
method and return, for example, the amount of memory an image takes in memory:

Image Management

[185]

In the preceding example, which Google uses in the official documentation, we create a 4
MB cache where the size of each item is the byte count of the bitmap. We will be accessing
the cache using a ,����� as a key, so we can easily use an image name or the image URL,
and we will get back a Bitmap.

If we want to get notified whenever an element gets removed from the cache, we can
override the ����-N������ method. Also, if we want to be notified whenever there is a
cache miss or have the chance to recreate the object at that point, we could do so by
overriding the ������ method as follows:

Image Management

[186]

To calculate the right amount of memory we need for the cache size, we should consider
what kind of application we are building. For example, how many of these images are we
going to show on-screen at the same time? Or what other parts of our application are using
memory and how much memory are those parts using? Having considered these questions,
we also have to check how much memory we have available for our application. We can do
so by calling the ���*����-�����03 method of our)������-*������. In the following,
there is a new implementation using this memory limit and checking on kilobytes instead of
bytes, and this is the reason we are dividing both the byte count of a Bitmap and the
maximum memory by 1,024. The size calculation, approximately 15% of the available
memory per application, is taken directly from Picasso library, which will be introduced
later in this chapter. Full details of Picasso's implementation can be found at 	
	�	�	�	�	�	�	�	�	�	�	
		

	�	�	�	�	�	�	7			�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	@	�	�	�	�	�	�	�	�	�	7			�	�	�			�	�	�	�	�	�	�	�	�	�

:	�	�	�	�	�	@	�	�	�.

Image Management

[187]

To add and retrieve Bitmaps from this cache is relatively straightforward:

In the event there is a Bitmap with the same key as another, the first bitmap will be
replaced. Using the image URL as the hash key is usually a good practice as each image will
have a different URL. Also, ���1�����M������
� might return �	�� if the entry does not
exist or it has been removed from the cache.

Whenever we want to load an image, we have to check the cache first; if the image is there,
we can just work with it, otherwise we would have to load it remotely. Memory cache is
really fast as it resides in memory, but loading images from the Internet or disk or any other
potentially slow source needs to be done on a background thread:

Image Management

[188]

As shown in the following example, in the Android documentation, Google uses an
)�-��D��� class to load and decode a Bitmap, and, once decoded, it adds the Bitmap to the
memory cache:

For more information on caching bitmaps, visit

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	-	�	�	�	6	
	�	�	�	�	�	�	�	�	�	�	
	�

6	
	�	�	�	�	�	�	
	�	�	�.

Disk caches
We have seen how to load and cache images to a memory cache. A memory cache is very
fast but not always reliable, as images might have been removed to make space for new
images or, for example, the application might have been interrupted and killed while in the
background and thus the memory cache is destroyed and all our hard work has been lost. If
we are looking for a more reliable cache, although slower, we should go for a disk cache. A
disk cache when used together with a memory cache will speed up things considerably.
Images that no longer are in memory might still be persisting in the disk cache and avoid
doing a network operation.

We can use an already existing implementation; there is one available in the Android source
code, and also the version used in the Android documentation: 	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�
�			�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	
	�	�	�	�	�	V	�	@	
	6	�	�	�	6	�	�	�	�	�	�	�	�	�			�	�	�	�	�	�	�	�	�	�	�	�	@	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	A	�

�	�	=	�			�	�	�	
	�	�	@	�	�	�.

Image Management

[189]

But, for example, we can also use the disk cache classes in Volley; visit 	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�
�	�	�	�	�	�	�			�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	-	�	V	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	@	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	-	�	�	�	�	�	
	�	+	�	A	�	�	�	1	�	�	�	�	�	�	�	
	�	�	@	�	�	�.

Or, we can use the disk cache classes in OkHttp; visit

	�	�	�	�	�	�	�	�	�	�	
			
	�	�	�	�	�	�	7			�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	@	�	�	�	�	�	�	
	�	�	�	 	�	�	�

�	�	�	�	�	�	�	�	�	�	
	�	�.

Later in this chapter, we will see how to take advantage of the disk cache embedded in
these libraries when using them directly, but first we will focus on how we can use a plain
disk cache to complement our memory cache.

Let's try to write our own 2�������
� class using the A���1�������
� class from Volley.
Our own implementation will use both the memory cache and disk cache whenever there is
a cache miss in the memory cache. Refer to the following android documentation to see
more or less the same example, although more detailed, using the implementation found in
the Android source code: 	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	-	�	�	�	6	
	�	�	�	�	�

�	�	�	�	�	
	�	6	
	�	�	�	�	�	�	
	�	�	�	U	�	�	�	�	6	�	�	�	
	�.

First of all, the class constructor that initializes the memory cache and creates a disk cache is
as follows:

Image Management

[190]

Disk cache is initialized in a background thread as disk operations might take time and we
do not want to block the UI thread. As it might take some time and we might receive,
potentially, any requests before the disk cache is initialized, we need to implement a lock
mechanism. All disk cache operations are synchronized using the �������
�=��� instance
variable. Any request received to get an image from the disk cache before it has finished
initializing will be blocked, thanks to the synchronization blocks and the ����
and ����(-)�� methods; whenever that happens, all requests will be eventually executed:

Let's also create an interface to get notified whenever there is a cache hit or a cache miss. We
can use the cache miss to trigger a download of the image, for example:

We have to use a background thread to store images on the disk cache, as it might take too
much time. As usual, all input/output operations must not be done on the main thread,
otherwise we will block it and cause our UI to become sluggish or stop responding:

Image Management

[191]

In the preceding example, we are using a small helper class, 1��������
�����-, that we
have created, as the A���1�������
� implementation from Volley takes a ���
������-
class. The ���
������- class only defines a bytearray to hold the data to cache. Our
implementation is just a helper to use Bitmaps instead of bytearrays directly.

Implementation is very easy: we take a Bitmap in the constructor and we compress it using
the WebP format to byte array. 1�������������M����� also has PNG and JPG support,
but we will use WebP as, according to Google, it produces smaller files than PNG and JPG.

For more information on WebP, refer to 	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	R	�	
	�.

Image Management

[192]

To convert back from the byte array to a Bitmap, we just use the ������1-��)���- method
from the 1�����M�����- class.

With this helper class, we can now implement the ���1�����M���A��� method, which
will return a Bitmap if it is stored in the disk cache or �	�� otherwise.

This method will check if the disk cache has been already initialized, otherwise it will block
the current thread until then. The disk cache indexes the files and could take some time to
initialize; doing a request for a file while it has not finished might lead to inaccurate
responses:

If the file does not exist in the cache, this method will return �	��.

Now we can implement a Bitmap loader that tries to load a Bitmap from disk, calling the
method we have just defined in a background thread, and notifies of a cache hit or cache
miss.

Image Management

[193]

1�����=����� is also a very simple)�-��D��� class that takes care of that. There should
be some checks to see if the 2����J��� is still valid. Another good practice will be to hold
a R���N�(������ of the 2����J��� and the ���
�L���(���, and then add the proper
checks in the �������+��	�� method, but for clarity we have assumed that nothing wrong
happens in our example:

For more information on WeakReferences , refer to
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	@	�	�	�	�	�	�	�	�	�	�	�	(�	R	�	�	�	N	�	(�	�	�	�	�	�	�	
	�	�	�.

Image Management

[194]

Finally, we could implement the public interfaces to put and get an image from the cache.
As we can see, it is using both the memory cache and the disk-based cache. When getting an
image, if that image is already in the memory cache, it will notify us of a cache hit and
return that image directly; otherwise it will launch the background task we created
previously to load it if it exists on the disk cache:

Handling configuration changes
Memory caches can be destroyed very easily, for example, whenever the device screen is
rotated. We should avoid this behavior since, when the device rotates, we would like to
have the images rendered as soon as possible and skip the process of downloading them
again.

Luckily, we can preserve a fragment if we set the ���N�����2������� to ��	�, and the
same fragment will be reattached to the new activity. If we store the memory cache instance
in the fragment, we still will have access to it after recreating the activity.

Image Management

[195]

Look at the following example from the Android documentation:

The preceding example sets ���N�����2������� to ��	� in the N�����M������� and
creates the cache only when �N����������
� is null after the call
to (���/�������N�����M�������.

Image Management

[196]

For more details, refer to
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	�	-	�	�	�	6	
	�	�	�	�	�	�	�	�	�	�	
	�	6	
	�	�	�	�	�	�	
	�	�	�	U	�	�	�	(�	�	6	�	
	�	�	�	�	�.

An alternative would be to make the cache global to the whole application, simplifying this
whole process.

Loading images
We have seen, so far, how to keep images in a local memory cache and in disk cache to
avoid loading them from the network repeatedly in the quite common case when are used
again. As mobile devices still have very limited resources, we will see how to deal with
memory allocation and handling very large images.

Memory
As we have probably noticed, images take a big amount of space. For example, a 32 bit per
pixel image 512 pixels wide and 512 pixels high will use around 1 megabyte of memory. So,
having a lot of images can easily eat up all our memory. It is very important to take into
consideration a few things when dealing with such amount of memory.

We don't really need to explain in detail how to manage bitmap memory on early releases
of Android, as we will not probably have to support those versions, but just in case, it is
good to know how it worked.

On Android 2.3.3 and lower versions, bitmap memory dedicated to store pixel data was
stored in native memory and not in the Java heap, where the bitmap object and all the other
Java objects resided. To ensure bitmap memory is cleaned as soon it was not needed
anymore, we have to manually call the ���-���03 method. It is important to call it only
when we are sure that the bitmap is no longer on the screen, otherwise Android will throw
us a ����������-�������	��������-�����
����� error.

On the following page, there is a code snippet that shows how to maintain a reference count
of the bitmap and recycle the bitmap at the right time whenever there is no cached or
displayed reference and the bitmap has not been recycled before:
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	-	�	�	�	6	
	�	�	�	�	�	�	�	�	�	�	�	�	�	6	�	�	�	�	�	-	�	
	�	�	�.

Image Management

[197]

Furthermore, the example included in the documentation uses a full class called
N��-�����1�����A����
�� that extends from 1�����A����
�� and handles all the
reference count logic and calls recycle whenever it is needed. For the link to the source code
of N��-�����1�����A����
��, refer to 	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	A	�	�	�	�
�	-	�	�	�	1	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	+	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	-	�	�	�	
	�	�	�	�	�	�	�			�	�	�	�	N	�	�	-	�	�	�	�	�	1	�	�	�	�	�	A

�	�	�	�	
	�	�	�	
	�	�	�.

Image Management

[198]

Starting from Android 3.0, the pixel data is stored in the Java heap together with the bitmap
object. This does not mean we do not have to do anything related to memory. We could still
improve the memory allocation process by only doing so when really needed.

Android 3.0 introduced a field ��1����� in 1�����M�����-�/������. If this field is set
with another bitmap, the bitmap decoder will try to reuse the memory of that already
existing bitmap when loading the new one. This way, we remove the memory allocation
and deallocation and we slightly improve performance. There are a few restrictions to this
new field though, for example, before Android 4.4, it will only work for bitmaps with the
same size.

For more information on the ��1����� field, refer to 	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�
�	�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	1	�	�	�	�	�	M	�	�	�	�	�	-	�	/	�	�	�	�	�	�	�	

�	�	�	U	�	�	1	�	�	�	�	�.

There was another field, called ���	����
��, that allowed Android 4.4 and below to
allocate bitmap pixel data in such a way that it was easy to be purged to recycle memory.
This field is deprecated since Android 5.0 and its not recommended, as it might have some
performance implications due to decoding time and can lead to frames being skipped.

For more information on the ���	����
�� field, including the reason
why it has been deprecated, refer to 	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(
�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	1	�	�	�	�	�	M	�	�	�	�	�	-	�	/	�	�	�	�	�	�	�	
	�	�	�	U	�	�	�			�	�	�	�	
	�

�.

Looking at the Android documentation, there is a code snippet that shows how a bitmap
that has been removed from an =�	���
� class can be reused by using the ��1����� field.
Looking at the example, we notice that we have to set the field ��*	��
�� to ��	� so that
the bitmap decoder returns a mutable image required for the ��1����� to work:

Image Management

[199]

For more information and examples for managing bitmap memory, visit
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	-	�	�	�	6	
	�	�	�	�	�	�	�	�	�	�	�	�	�	6	�	�	�	�	�	-	�	
	�	�	�.

For a complete example of a disk cache, the use of fragment to retain the 2�������
�
instance, and how to reuse memory by using the ��1����� property
of 1�����M�����-�/������, check the example source code of the Android
documentation at 	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	A	�	�	�	�	�	-	�	�	�	1	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	�	+	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	-	�	�	�	
	�	�	�	�	�	�	�			�	�	�	�	2	�	�	�	�	�	�	�	
	�	�	
	�	�	�.

Handling large images
As with most of our applications, we will be loading images from the Internet or from user-
generated content such as pictures from the gallery or those taken by the camera. An issue
that we will face is how to handle big, or relatively big, images. When loading an Internet
feed or getting images from a CMS, we do not know in advance the size of these images.
There are basically two things we should take into consideration. First, the amount of data
we will be transferring from the server to the mobile device. If the image is huge, it will take
a considerable amount of time to download to our mobile device and might also consume a
substantial amount of the data plan of the user.

Image Management

[200]

Sometimes there is not much we can do if we do not have access to the server, but as
recommended alternatives, we can try to rescale the image to an appropriate size and use a
more optimized image format, for instance, WebP (
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	R	�	

�). Some image-loading libraries we will discuss later in this chapter have the ability to
support progressive JPEG files. This will not resolve the amount of data downloaded from
the network, but will improve the user experience of our application, as it partially
disguises the loading by showing a reasonable preview. For more information on
Progressive JPEGs, visit 	
	�	�	�	�	�	�	(�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	6	@	�	�	�	�	�	
	�	�	�.

The second issue in handling large images is the amount of memory that we will consume
on our mobile device. Imagine we have an image of 1,024 × 1,024 pixels that will be shown
as a 64 × 64 pixels thumbnail. Do we really have to keep in memory the 4,194,304 bytes
required to store it versus the 16,384 bytes that are required for the image that will be
shown?

No, definitely it is not a good practice. Imagine many images like that in a scrolling list.
Even using a RecyclerView and memory cache, we will be polluting the memory and taking
all the space of the cache with very few images, making it almost useless. The scenario
could be worse. Imagine the image is even bigger; we might get @���������/	�/(*����-
exceptions trying to load it. To prevent this from happening, we could use another field
in 1�����M�����-�/������, the ��P	��A�����1�	��� property.

Setting ��P	��A�����1�	��� to ��	� will not decode the image data or allocate memory
for it, but will set the image width and height. This will allow us to know beforehand the
size of the image and load a scaled-down version that adjusts more efficiently to the size we
really need. Let's see how we can do it.

First, let's see how we use the ��P	��A�����1�	��� property:

Image Management

[201]

Looking at the preceding source code snippet, we can see that the image loading is done in
two steps: first with the ��P	��A�����1�	��� property to true and later setting it to
(����� Between the two decode calls, we can calculate the value of the ��,�����,�O�
property of 1�����M�����-�/������. ��,�����,�O� is another property that allows us
to load an image scaled down by values that are a power of 2. We can use the code from the
Android documentation to calculate the right value for ��,�����,�O�:

Looking at the preceding code, we can see that it will return the biggest ��,�����,�O� that
is a power of 2, with the resulting width and height bigger than the width and height
requested, in order to maximize quality and not having to upscale the image
afterwards. ��,�����,�O� only works with power of 2 values, that is 1, 2, 4, 8, 16, and so
on. If we set any other value, it will be rounded down to the nearest power of 2. Visit 	
	�	�	�	�
�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	1	�	�	�	�	�	M	�	�	�	�	�	-	�	/	�	�	�	�	�	�	�	
	�	�

�	U	�	�	,	�	�	�	�	�	,	�	O	� for more information on ,�����,�O� property.

Here we used an 2��	�,����� to decode a bitmap, but 1�����M�����- supports
decoding bitmaps from other sources. Check the Android documentation for the same
example but, for decoding from a resource, visit 	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	-	�	�	�	6	
	�	�	�	�	�	�	�	�	�	�	�	6	
	�	�	�	�	�	�	
	�	�	�.

Image Management

[202]

Different image types
As we have just seen, we might have to load images using different approaches. We will
load them using an 2��	�,�����, a file, or from the application resources.

1�����M�����- comes with several mechanisms to load images to adjust to what we need;
here are a few:

1�����M�����-�������,�����03

1�����M�����-�������M���03

1�����M�����-�������1-��)���-03

1�����M�����-�������N���	���03

Let's see how we can also load images from the ������ folder of the application using the
method we created previously:

Using the ���)����� method we can open any asset by just using the file name, and once
we have the 2��	�,����� from it, we can reuse our previous method.

Additionally, we can always use alternative methods to set images to 2����J���. For
instance, we can use
�����J�������2����N���	���0�������
���;�����
��?��<3. Other methods are as
follows:

�����J�������2����1�����01������
�����3

�����J�������2����N���	����0�������2�3

Image Management

[203]

�����J�������2����A����
���0A����
��������
��3

�����J�������2����:N20:���	��3

We have to be very careful with the ���2����:N2 method, as the image will be loaded and
decoded on the UI thread.

For more information on 2����J���F refer to
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	2	�	�	�	�	J	�	�	�	�	
	�	�	�.

Vector drawables
Starting with Android 5.0, there is support for vector drawables. We can easily add a new
vector drawable to our application by using the Vector Asset Studio and use one of the
standard material icons; or we can add our own SVG files, although not all features of SVG
files are supported right now.

See the documentation of the Vector Asset Studio for a comprehensive list
at

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�			�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	6	�	�	�	�	�	6	�	�			�	�	�

�	
	�	�	�.

The main advantage of vector images is that they can be resized without any loss of image
quality, and there is no need to have different sizes for all screen resolutions; so, in fact, this
will help you reduce the size of the application. We have to be careful, though, as even if we
do not see it on our project, if we target Android 4.4 or older versions, Android studio will
generate PNG files in build time and store them in the generated folder. We can avoid this
by using the support library and specifying the following command in our
	����������:

Image Management

[204]

Otherwise, we can always explore, after triggering a build, the project view and see the
���������������;
	�������(��	������<. As in this example, we can see the
generated PNGs for different resolutions.

For more information on the support library v23.2, refer to

	�	�	�	�	�	�	�	�	�	�	�	�	�	6	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�	#	�		�	�	�	�	�	�	�	�	�	6	�			�	�	�	�

�	6	�	�	
	�	�	�	-	6	�	 	�	�	
	�	�	�.

If we are not using the support library, we could do the following to reference a Vector
Asset from code:

Image Management

[205]

Not all the features are available; for instance, �	��*������� is only supported on
Android 5.0 and higher.

Android Studio launches the Vector Asset Studio when we are try to add a new Vector
Asset:

Image Management

[206]

Depending on the application target, our recommendation is to either build one single APK,
as it will be easier or because it is targeting Android 5.0 and higher, or build two
separate APKs, one for Android 5.0 with vector drawables and another with raster images.
This way we can reduce the application size for new devices. To see how to build
multiple APKs, check the android development documentation at 	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	-	�	�			
	�	�	�	
	�	�	�	�	�			�	�	�	�	�	�	6	�	�	�	�	�	
	�	�	�.

For more information and a DevBytes video on vector drawable, refer to

�	�	�	�	�	�	�	-	�			�			
	�	�	�	�	M	J	2	2	�	�	B	�) and 	
	�	�	�	�	�	�	�	�	�	�	�	-	�			�			
	�	�	�	�	�	�	�	�	�	�	
	8	�	9

%	�	 	2	6	�	Z	P	L	T	�.

Images in a RecyclerView
We have to be aware that loading and decoding an image always has to be done in another
thread rather than the main thread�not only loading from a file or network, but also the
decoding and creating an image from an 2��	�,�����F a resource, or an array of bytes. As
a direct consequence, we will have a lot of asynchronous calls, and if the application we are
building contains a RecyclerView, where there are many images to load from the network
for example, we will have to be careful to load and set the right image to the
right 2����J���. We have already seen in �
������!, Lists and Adapters, that we stored the
view position in the ViewHolder as well as in the background task loading the image. Then,
whenever the image is loaded, we check if the position of the ViewHolder is still the same
as the position stored in the background task. If it is different, it means that the previous
view has been recycled and is now used by another item. To solve many of these issues,
including loading large images or setting them into a RecyclerView cell, there are many
open source third-party libraries that can facilitate our job.

Widely used third-party libraries
We will see some of the most widely used libraries for handling images. These libraries
have been developed and contributed by many developers and they will simplify our code,
take care of all the underlying details, and reduce our application development time.

Image Management

[207]

Glide
In order to use Glide, we have to add it to the dependencies section of our
	����������
file:

�������������.
����������E�������
	
�
	�����
������������� �$�'E
����������E�������������	�������	�����6�!�� ����E
5

If our application is obfuscated, we need to add some lines to our proguard configuration,
otherwise we will have some errors while the application is running:

6������	
����������H����������������
	�����
����������	���Q����*��	��
6������	
������	�
����
	�����
����������������	����
������2����T�����������[HH�.
��HHGI�[J)=:�,4
���	
����H4
5

We can simply use Glide to load images, either remote or local, to an 2����J����Q����
will take care of the connection, the background thread, caching, and all the other details:

We can add more complexity by just adding more calls. For example, if we want to use
Glide to load images to an ImageView stored in a ViewHolder of a RecyclerView; center
and crop the image; use a placeholder while loading and crossfade this placeholder to the
downloaded image when the download and decoding are finished; we could use the
following code:

Image Management

[208]

For more information on Glide, more complex examples as well as more transformations
and animations, and how to change the underlying HTTP connection library, check the
following official Github documentation and wiki at 	
	�	�	�	�	�	�	�	�	�	�	
			
	�	�	�	�	�	
			�	�	�	�	�	
	�	�	�	�	�

� and 	
	�	�	�	�	�	�	�	�	�	�	
			
	�	�	�	�	�	
			�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�.

UIL
As with Glide, we will also have to add a Gradle dependency to our
	���������� file to
be able to use UIL. As an alternative, we can also download a JAR file and add it to our
project, but using the Gradle or Maven dependency is recommended as it is very easy to
update or change the version:

�������������.
������������E����������� �	��������������������	��������6�����6
���������&�"E
5

This library seems to be unmaintained since November 2015, but anyway it is worth briefly
covering it so that we can see how other libraries work and have a better general idea.

The Universal Image Library needs to be initialized; for example, in the following scenario,
we initialize the library and we enable the memory and disk cache as, by default, they are
disabled:

Also, to enable the disk cache, we need to request permission to write to external storage:

;	���6�����������������������9K�������������������RN2D�?�XD�NL)=?,D/N)Q�K�<

Image Management

[209]

To load images into an ImageView, we could simply do the following:

The first method is the simplest. 2����=������������-2���� just needs the URL and
the ImageView. If we need some more control, we can create
a ,�����2����=������=�������, implement the ��=��������������, and use
the 2����=����������2���� method with the listener we have just created.

Additionally, we could also implement 2����=������=������� and have a lot more
control, but if we do not require everything, it can be a bit cumbersome. Following is an
example of calling 2����=������������-2���� with an 2����=������=������� and an
2����=��������������=������� with all the methods we can implement:

Image Management

[210]

For more information, details, and complete examples, check the Github
repository of the Universal Image Loader at 	
	�	�	�	�	�	�	�	�	�	�	
			
	�	�	�	�	�	�	�	�	�	�	�

�	 	�)	�	�	�	�	�	�	6	:	�	�	�	�	�	�	�	�	6	2	�	�	�	�	6	=	�	�	�	�	� and 	
	�	�	�	�	�	�	�	�	�	�	
			
	�	�	�	�	�	�	�	�	�	�	�

�	 	�)	�	�	�	�	�	�	6	:	�	�	�	�	�	�	�	�	6	2	�	�	�	�	6	=	�	�	�	�	�	�	�	�	�	�	�	:	�	�	(�	6	2	�	(�.

Picasso
Picasso is an image downloading and caching library developed by square, although it is
shared in Github and anyone can contribute as long as the Individual Contributor License
Agreement is signed.

As with previous libraries, we will have to add the dependency into our
	����������
file:

�������������.
������������E�����7	���	��������������������"��E
5

As with previous libraries, to load an image into an ImageView is very simple. The
following is an example of a very straightforward call, and another with many other
parameters. For example, we could use an image as placeholder, another image when there
is an error loading the image from the network, resize the image, or even apply a
transformation:

Image Management

[211]

The transformation is the same used in the Picasso library website, and it just crops the
image into a square form based on the smallest dimension, either width or height.

While developing our application, we can see more details of how the image cache is
working by enabling the cache indicators. Before doing any image request, we have to call
the ���2������������
��� method with the parameter ��	� if we want to show color
indicators on top of each image:

�����������
0�����+�3����2������������
���0��	�34

This will be very helpful, as we will not have to parse lines and lines of logs, and we will see
on the device screen itself, which is the source of each image. For example, if the top-left
corner is red, then it means the image has been downloaded from the network, if it is blue,
it has been loaded from the disk cache, and if it is green, it has been loaded from the
memory cache.

The following is how it looks in our small demo application:

Other very interesting features of Picasso are its handling of recycling in ImageViews and
the automatic detection of adapter reuse and the cancellation of previous downloads. To get
more information on all these and more complex examples, check the Picasso website at 	
	�	�

�	�	�	�	�	7			�	�	�	�	�	�	�	
			
	�	�	�	�	�	�	�	�	�	�	�	�.

Image Management

[212]

Fresco
The last library we would like to cover is Fresco. It has been developed by Facebook,
although it is also shared in Github like other libraries.

Fresco needs to be initialized, but this can be done quite easily by just calling the initialize
method during our activity's �������� method:

M��������������O�0���)���������������+�0334

Fresco uses a custom view called Drawee to render images; it adds many new features, for
example, scaling the image to a specific focus point, showing rounded corners, or a custom
overlay when the user presses the image.

It also gives the support to load remote images by just setting the URL as follows:

But we need to change the normal ImageView for a ,�����A�����J���:

Image Management

[213]

Fresco also has many additional features, but one of the main differentiators is memory
optimization. On Android 4.x and earlier, Fresco put bitmap data in a separate memory
area to avoid polluting the Java heap and triggering additional garbage collectors.
Moreover, Fresco releases the memory from the image as soon as it is not shown on the
screen, thus improving application performance. Furthermore, it adds support for WebP
images, as well as animated GIF and progressive JPEG.

There is exhaustive documentation on the fresco website at 	
	�	�	�	�	�	�	(�	�	�	�	�	�	�	
	�	�	�	�	�.

Summary
In this chapter, you saw how to cache images to avoid downloading them multiple times.
This way we speed up our application, improve the user experience, and reduce the amount
of data our application consumes. You also covered how to improve memory handling and
how to solve some potential issues with large images. We finished the chapter by briefly
covering multiple third-party libraries. These libraries are widely used by many
applications, contributed by many developers, and are a way to reduce our development
time and add many features without the complexity of having to develop them.

In the next chapter we will cover how to store information locally on the device. We have to
make sure our application works properly whenever the device has no connection and
avoid downloading information again and again. For performance reasons, responsiveness
of our application and to save some data from the user's data plan.

77
Permanent Data

Even though Internet connection has improved quite noticeably in recent years and most
mobile users have a data plan, there are always situations where we can't rely on mobile
data. This is because either the user is in an area without network coverage or the user is
not willing to pay for roaming costs, assuming that they are traveling to another country. In
these situations, our application will benefit from having some data stored in the device
itself to allow the user to work in, what we call, offline mode. With this, we will not only
allow the user to do some work, but also greatly improve the user experience, as being able
to store data on the device will reduce the time the application will take to display
information.

In this chapter, we will explain different mechanisms to store data locally on the device:
from how to store basic settings using SharedPreferences and writing internal and external
files to how to use a SQLite database for a more complex way of storing data.

Storing preferences
One of the easiest ways to store information from our application is to store application
preferences. Android provides us with a class named ,
�������(������� to do this;
however, it can be used to store anything that can be represented by a key-value. Refer to
	�
�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	,	
	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	
	�	�	�

for more information.

Permanent Data

[215]

Initialization
To use the ,
�������(������� class, we have to get a reference to a preferences file. To do
this, we can simply use the ���,
�������(�������0,����������F���������3 method
in our context; refer to

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	+	�	�	
	�	�	�	U	�	�	�	,	
	�	�	�

�	�	�	�	(�	�	�	�	�	�	�	0	@	�	�	�	�	�	�	�	�	�	,	�	�	�	�	�	F	�	�	�	3. Alternatively, if we only need one single
preference file, we can always use ������(�������0��������3 from our activity.
�����+��������(������� will internally call ���,
�������(������� and use the class
name of the activity as the filename.

There are three different modes to get the preferences file:

*/A�?�N2J)D� or : Here, only the application that created the file will be able to
access it.
*/A�?R/N=A?N�)A)1=�: Here, all other applications will be able to read the file.
The use of this flag is discouraged, and it is deprecated since API level 17. To give
access to other applications to the application data, a service,
���������������F or 1��������N������� should be used to expose the data
in the most appropriate way. It is not guaranteed that it will remain in this state
after a backup and restore operation.
*/A�?R/N=A?RN2D)1=�: In this, all other applications will be able to read and
write data. As with the previous flag, the use of this flag is discouraged and
deprecated, and it is not guaranteed that it will remain in this state after a backup
and restore operation.

More information about file-opening modes is available at

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	+	�

�	
	�	�	�.

Basic use
Let's write a simple application to see how can we write and read some values. We can start
by creating a simple layout file with two checkboxes:

Permanent Data

[216]

Not too fancy, but this will get the job done. Going back to our activity, we will save the
status of the checkboxes in the ��A�����- method. So every time the application is closed
and opened again, it will preserve the status of the checkboxes.

In order to do so, we need to get a ,
�������(�������������� object. Using the ������
object, we can save some primitive values:

������

,�����

���

(����

����

Set of strings

Permanent Data

[217]

For more information on the ,
�������(�������������� class, refer
to
������������������������������(�����������������������,
�����
��(���������������
���.

We will only store the status of the two checkboxes by calling their ���
����� method:

To save the changes, we can either use ������03 or ����-03. The latter will apply the
changes to the memory and trigger an asynchronous task to write the new values to a disk.
If we read from a ,
�������(������ object immediately after calling ����-03, we will
get the right values because ,
�������(������ objects are singletons and ����-03 stores
all the changes to the memory in a flash. If we call ������03, it will block the current
thread until it finishes writing the file.

Now that we are persisting the status of the checkboxes when the application finishes, we
need to read those values when the application starts and do something useful with them.
In our �������� method, we check whether the properties exist in
the ,
�������(������� file, and if they do, we toggle the status of the checkbox to either
check or uncheck.

Permanent Data

[218]

The property key is stored in the ,������ file, so we can access it from any part of the code
without having to type it again.

We also specify a default value and if the key is not found, the ���1������ method will
return (���� and leave the checkbox unchecked.

We could actually slightly reduce the code to the following:

As with the default behavior of ���1������ and the other getters, there is no need to check
whether the key exists beforehand.

Permanent Data

[219]

Additional features
In addition to the standard read/write operations, ,
�������(������� allows us to
directly remove the keys using the remove method and register
an ��,
�������(�������
����=������� listener to get notified whenever a key/value is
changed in our ,
�������(������� file.

According to the documentation, ,
�������(������� does not store a strong reference of
the listener, so it is the responsibility of the code calling
��������/�,
�������(�������
����=������� to keep a strong reference of it. For
example, as per the following code, we log in whenever a preference is changed:

We need to change the �������� method as well to register the listener,
�
�������(����������������/�,
�������(�������
����=�������0���(�������

����=�������34.

More information on ,
�������(������� is available at

�������������������������������������
����������6���������
����

6���(��������
���.

Files
Shared preferences are the perfect solution if we want to store key-value sets of data, but if
we want to store some complex data, it is not enough. In addition to shared preferences,
Android allows us to read and write files in its file system. Depending on our needs, we can
use internal or external storage. For information on file storage, check
out
�������������������������������������
����������6��������(�����
���.

Let's look at the differences between internal and external storage.

Permanent Data

[220]

Internal storage
It is highly recommended that you save files in internal storage when these files need to be
kept private from other applications. Moreover, Android guarantees that all the files saved
in internal storage will be removed when the user uninstalls the application.

To create a file in internal storage, we need to get the base directory first. We can easily get
it from the current context by calling the ���M����A�� method. If we have to write a
temporary file or, for example, an on-disk cache, we should call the ������
�A�� method.
We should not store anything critical in the cache directory as Android might delete it at
any time and without any warning if the system is running low on space.

As an example, to facilitate comparison, let's store and retrieve the same information as
with did before with ,
�������(�������.

To simplify our data, we will just store two bytes: the first one will indicate the status of the
first checkbox and the second will do the same for the second checkbox. If the value of a
byte is 1, the respective �
���
�+ will be checked. If the value is 0, the checkbox is not
checked:

Permanent Data

[221]

Once we create a file using ���M����A�� and an appropriate filename, we need to
open M���/	��	�,����� so we can start writing data to it. To read data, we need to follow
a similar approach once we have the file reference; we check whether the file exists and then
open M���2��	�,����� and read two bytes from it. If the file does not exist, it means it is
the first time we have run the application or the internal file has been deleted.

Alternatively, instead of having to get a file and the path with ���M����A��, we could
use ����M���/	��	� and ����M���2��	�, which returns M���/	��	�,�����
or M���2��	�,����� directly:

Permanent Data

[222]

One small thing we have to pay attention to is that we can't check whether the file exists, as
we do not have the M��� reference; however, ����M���2��	� will
throw M���L��M�	���+������� if the file we're trying to open does not exist.

External storage
From the point of view of writing and reading files, using external storage is the same thing
as using internal, but there are some details we have to pay attention to.

External storage might become unavailable at any time. Most of the time, external storage
refers to a removable storage medium; however, some devices might mount the external
storage area as a partition of the total storage of the device. It goes without saying that, if
the external storage is a removable medium, it might be removed or ejected at any time.
Also, external storage can be mounted as USB storage and then be logically, not physically,
ejected from the device.

Permanent Data

[223]

To check whether the external storage is mounted and we can write or at least read from it,
we can use the code example shown in the official documentation; refer to

�����������������������������	��������������������6��������
���U(�����+������:

In addition to this, files stored in external storage can be read by anyone. For example, if we
write the same ������������������� file as before in the external storage, we could
retrieve it by doing the following:

adb pull
/storage/emulated/0/Android/data/com.packt.rrafols.example/files/settings.p
roperties

If we try to do the same with the internal file, we will get the following error:

adb pull /data/user/0/com.packt.rrafols.example/files/settings.properties
adb: error: remote object
'/data/user/0/com.packt.rrafols.example/files/settings.properties' does not
exist

Another thing we have to check is permissions. If we are targeting devices, such as an
Android version lower than KitKat (4.4 or API level 19), we would need to request
permission to read and write the external storage. Write permission includes read access,
but read permission does not include write access. We can add this permission when
needed by adding the ��+,�� keyword and limiting it to)�2 level �%:

Permanent Data

[224]

Starting with Android 4.4, permissions are only required if the application wants to access
or write files to the device's public folders. To get a public folder, we could use the
����������������+������,�������	
���A�������-0,�������-��3 method and
specify the type of file we want to access or write. For example, to save a picture, we can get
the path of the pictures folder:

M�������
�9
����������������+������,�������	
���A�������-0������������A2N��D/NZ?�2�D:N�
,34

As the folder may not have been created, it is always a good practice to call
���
�������03. If the directory already exists, it will not do anything.

To get more information about the public folders available, check the
����������� class documentation
at
������������������������������(������������������������������

���.

Additional methods
Android also provides us with some more methods to manage the file system:

������: This is to delete a file (
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	+	�	�	
	�	�	�	U	�	�	�	�	�	�	M	�	�	�	0	@	�	�	�	�	�	�	�	�	�	,	�	�	�	�	�	3)
(���=���: This returns a list of private files (
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	+	�	�	
	�	�	�	U	(�	�	�	=	�	�	�	0	3)

Permanent Data

[225]

SQLite
We have seen how to store key-value data in the ,
�������(������� class and more
complex data in the form of files in either internal or external storage. But, if we want to
store structured data, we should go for a database-like storage option. Android provides us
with an implementation of SQLite we can use to store and query data.

More information about SQLite is available at
	�	�	�	�	�	�	�	�	�	�	�	�	7	�	�	�	�	�	�	�	�

�. For more information on the SQLite applied to Android, refer to
	�	�	�	�	�
�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	6	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�

	�	�	�.

Schema and contract definition
As a good practice, it is recommended that you define your database structure in a contract
class. Doing it this way will make things very easy, for example, changing a column name
and propagating all the changes to everywhere the database is used.

In addition to this, if we implement the 1������	��� interface, it will automatically add an
?2A field, which we can use as the primary
�	����������� key.

Returning to the example we used in �
������", Remote Data, in order to get finance
information using the Yahoo finance API with retrofit, we could store the data in a local
database. Just after we receive the response on the retrofit callback, we will store it in the
database.

In this contract class, we could also define other constants required by the database
implementation. For example, we could define the filename to be used; the version of the
database; and (to keep it together), the SQL queries we need to, for example, create or
destroy tables.

Permanent Data

[226]

In the full class illustrated in the following screenshot, we can see we defined the SQL query
to create the table. We can also see that it refers to *��������������������?2A, the
inherited field from 1������	��, as the primary key.

Note that, in order to avoid anyone using this contract to make an instance of this class, the
constructor has been declared private. In addition to this, the class is final, thereby
preventing anybody from extending it as well.

To read more about contract classes, take a look at the content provider
documentation at
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�			�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	�	�	�	6	�	�	�	�	�	�	�	�	6	
	�	�	�	�	�	�	
	�	�	�.

Permanent Data

[227]

Helper implementation
Android provides us with a helper class called ,Y=���/���T����� to manage everything
related to database creation and its upgrade and downgrade. We just have to extend it and,
at least, implement the ��������0,Y=���A���
���3 and ��:������0,Y=���A���
���F
���F����3 methods with the logic of our database. There are other methods we can
implement if we need them, but they are not mandatory, such
as ��A��������0,Y=���A���
���F����F����3 and ��/���0,Y=���A���
���3. Visit

�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	7	�	�	�	�	�	,	Y	=	�	�	�	/	�	�	�	T	�	�	�

�	�	�	
	�	�	� for more information on Android documentation.

Let's just build a basic implementation using the SQL query we defined before in the
contract to create the database:

Once we have the basics, we could write the specific implementation to store Model objects,
although we will only store the field values instead of the whole model. In order to do so,
first we need to get writeable access to the database. SQLiteOpenHelper provides us with
two simple methods to access the database: ���R����
��A���
���
and ���N����
��A���
���. The latter will return the same database object as the first
method unless there is an issue or something crops up that prevents the database from
being written.

Permanent Data

[228]

Using the access to the database, we could call an insert operation with the values of all the
fields in the model; refer to the following example:

Now that we have some data stored locally in a database, let's see how we can retrieve the
data stored. First, we need to create a projection of the columns we will be using after
executing our query. Just creating an array with the constants we defined in our contract
will do:

Permanent Data

[229]

Then, when we execute the query with that projection, we will have a �	���� object with
all of the data. We could also use �	�� as the projection, but then we will get all of the data.
Retrieving more data than we will use is not good practice:

So, in order to get the data from �	����, we will have to iterate. Therefore, as long as the
cursor is not positioned after the last elements, we will retrieve the object from the database
and store it in a local list so that it can be easily manipulated by Java classes in the memory:

Permanent Data

[230]

Third-party libraries
We have seen how to store data in multiple ways but, as with previous chapters, there are
many libraries out there that simplify this job. As usual, depending on what your project
requires and common sense, we recommend that you either use a third-party library or
build your own implementation. If you wish to use a third-party library, let's briefly talk
about Realm,
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�.

Realm
Realm is a mobile database that aims to replace SQLite. For more information, full
examples, and documentation go to the official website.

For details about the latest Java and Android release, refer to
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	@	�	�

�	�	�	�	�	�	�	�	�.

To start with Realm, we need to add the dependencies to our gradle file. In our top folder
root, add the following:

	����������.
���������������.
����@������03
��5
���������������.
������������
�K��������������6������6��	��������'K
��5
5

If we already have jcenter as the repository, we just need to add the line with the classpath
pointing to Realm. In the ��� folder, we need to add the following to apply the plugin:

����-���	�����E�����6�������E

Permanent Data

[231]

Furthermore, if we want to reuse the code as much as possible from the previous case, we
will implement a *����,������ interface and change all the *����,������T�����
references to *����,������:

Both the SQLite implementation and the new Realm implementation of the persistence
layer will implement this simple interface. The real implementation is quite simple and
straightforward:

Permanent Data

[232]

To persist an object, we use the ���-D�N���� method; to return the elements in a list, we
can use the (���)�� method on the where clause of the filter. In addition, to be able to
persist instances of the M����� class, we have to modify the M����� class to extend
from N����/
@���:

Summary
In this chapter, we learned how to persist some data to the local storage of the device. We
learned how to write and read from a key-value preferences file and a standard file and
how to use SQLite or a third-party database library. Finally, we briefly saw how to integrate
Realm and how to convert the example from a previous chapter to use Realm.

88
Testing Your Application

OK! You have built your mobile application and you are ready to publish it to the store, but
how do you know the application will work the way it was designed and will not crash? In
addition to this, how do you know you did not break any functionality when you added
that last-minute change to one of the screens? Even if you manually tested the change, there
might be something related to your change you may have missed or forgotten to test.

In this chapter, we will see how to write automatic tests for your application, covering
topics that range from testing your application logic to application UI and navigation. This
does not mean everything will be automatically tested and there will be no need for any
further manual and exploratory tests, but adding automatic tests as early as possible when
developing software will help us identify and discover issues in the very early stages of our
development. As documented multiple times, the cost of fixing software development
defects is much smaller if done in the early stages, by factors of 50 to 200, rather than in the
later stages, for instance when our application is already published and distributed.

This was originally published in the Understanding and Controlling Software Costs paper back
in 1988.

Barry W. Boehm and Philip N. Pappacio, Understanding and Controlling Software Costs, IEEE
Transactions on Software Engineering, Vol. 14, issue: 10, p. 1466, Oct. 1988,

	�	�	�	�	�	�	�	�	�	�	+	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	+	�	�	�	�	�	�	�	�	�	�	A	�	�	�	�	�	�	�	@	�	�	8	�	�	�			�	
	�	�	9	#	�	&	�.

This is also crucial when working in teams. Developing automatic tests is an easier way to
verify, if tests have been done properly, that nothing critical is broken when merging code
from multiple developers. This principle applies perfectly to situations where you have to
build one functionality on top of another, which is already built. By running automatic
tests, you can quickly check whether the old functionality and features still work as
intended.

Testing Your Application

[234]

Testing logic
Usually, the most straightforward tests you can write for your applications are unit tests. As
the name indicates, each unit test should test a single unit or individual piece of the
software and should be relatively simple. These types of tests are useful, for example, to
check whether the logic or the business logic of your application is working as intended. If
done right, logic should be isolated or abstracted from other components and even from
Android SDK classes and methods. It could be run directly on the IDE, Android Studio, or
even from the command line.

To show how to create some simple unit tests in your application, we will write a small and
simple calculator application and write some tests for it. Later, we will add some more
functionality so we will see other kinds of test in action.

Simple calculator application
The aim of this calculator application is to provide an example of how to create and run
tests, so the functionality aspect will be very limited and we will not focus on how to build
the UI and interactions. It will only contain two ����D�+� fields, where we can put the
numbers, and a D�+�J��� field to show the result and two buttons, one to perform an
addition operation and another to perform a multiplication operation.

Testing Your Application

[235]

All of the calculation logic will be placed in a specific class, isolated from any other
functionality of the application. Let's call this class ����	�����=����. We will implement
only two straightforward methods to add and multiply long numbers:

Also, we'll add two additional methods to support addition and multiplication from
numbers provided as strings with the obvious checks:

As you can see, we will return the constant L/D?)?L:*1�N if any string does not contain a
number or is empty or null.

Testing Your Application

[236]

Unit tests
After we create the project, we will be able to see two classes in green in the Android project
structure: one is �+�����2����	���������D��� and the other is �+�����:���D���. As
we will see later, instrumentation tests are those tests that require the components of the
Android framework or, for instance, an application context. On the other hand, plain unit
tests only require the class logic and plain Java dependencies.

Let's focus on the �+�����:���D��� class file first; the code is shown in the following
screenshot:

Testing Your Application

[237]

We have implemented two tests. Any method preceded by the �D��� annotation will be
executed as a unit test. These two tests are responsible for making sure that the ���
and �	�����- methods work as they are supposed to work. Here, we added some random
but simple tests; however, if we leave aside that nothing critical core functionality, edge
cases will be the next main things to test.

We have been using a static class, very easy to use in a test; however, if we need an instance
of a class or have some initialization to do before every test, we could easily do so in any
method as long as it has the �1�(��� annotation. To prevent side-effects, JUnit executes
every test, so each method is annotated with �D��� in a new instance of the class. Before the
execution, JUnit will always call the methods annotated with �1�(���D���; after the
execution, it will call test methods annotated with �)(���D���. So it is easy to allocate and
set up anything that is needed for every test and then shut it down in a clean way.

If we need to initialize something that has to be shared between all the tests, we can do so
by creating a static method and adding the �1�(�������� annotation. For example,
this will be the right approach if we want to initialize a huge data array or read and process
a big file during our tests.

Changing our class from a static reference to creating an instance of the logic, and changing
the methods in ����	�����=���� to be instance methods rather than static methods, will
look like the following class:

Testing Your Application

[238]

We also added methods to ����	�����=���� to calculate these operations from strings;
let's add some more tests for those methods:

We start seeing some tests, but how do we execute them? The easy way is to right-click on
top of the class in the Android project structure and select Run:

Testing Your Application

[239]

We will also check out a direct shortcut to run it. Once we press Run, Android Studio will
execute the test without an emulator or real device. We will get the results in the bottom
part of Android Studio, where we can check whether everything went fine, something
similar to the following screen:

Testing Your Application

[240]

Android Studio will show us the number of tests that passed, the total time taken, and the
details of every test executed (whether passed or not and the time taken by that specific
test).

Discovering and fixing issues by creating tests
As mentioned earlier, in addition to the core functionality, we should test for edge cases
and special values. Let's see what happens if we add a test to check the addition of 1 to
=����*)X?J)=:�:

If we run the test, we can do it like before and run it with all the other tests. Alternatively,
we can just execute the test by pressing the small red, or green if the test has passed before
time, bullet placed on the left-hand side of the method.

Testing Your Application

[241]

The test does not work, as when we add 1 to =����*)X?J)=:�, it does not return 0. It
actually returns =����*2L?J)=:�. We could add a test for this, but it does not seem to be
the right solution. We'd need to modify the code in such cases to throw an arithmetical
exception:

Then, we'd need to modify the test accordingly:

In this case, instead of writing an assert method call, we added an attribute to the �D���
annotation specifying that we will receive an)���
������+������� error.

If we execute the test now, we can see the test will pass:

Testing Your Application

[242]

These tests can be easily run on the command line as well by running the following code:

./gradlew test

Results in XML format can be found at
;���������������
<�����
	��������6������� and in HTML format
at ;���������������
<�����
	����������������.

For general information on unit tests in Android, refer to
	�	�	�	�	�	�	�	�	�	�	�	�	�
�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�			�	�	�	6	�	�	�	�	�	�	�	�	�	�	�	�	�	6			�	�	�	6	�	�	�	�	�

�	
	�	�	�. And more information on JUnit is available
at
������@	��������@	���!�.

Instrumentation tests
So far, the execution of tests has been quite easy as all of the code was independent of
Android SDK classes and their methods. But, what about those cases where we need a
context or something that Android runtime provides, such as SharedPreferences or
a Parcelable interface? This is called an instrumentation test, and it will be executed either
on our emulator or a real device.

In our previous example, we returned a constant string when the operation was invalid.
Let's change this constant and read it from our application resources, more specifically,
from the ,�������+�� file.

Testing Your Application

[243]

Let's build an instrumentation test to check whether this is working as well. If we look at
the Android project structure, we can see, next to the unit tests, there is a class with
instrumentation tests. In the instrumentation test class, we have to specify the class that will
act as the runner of the test, instead of the default runner: JUnit. As we want to run Android
instrumentation tests, we will specify the)������P:���! class:

�N	�R��
0)������P:���!������3

There is also a size classification of the test; for instance, in our case, we could use the
�,����D��� annotation to specify that it will be a relatively small test that will not access
resources such as files, networks, or databases. Generally, we can assume small tests almost
as unit tests, medium tests as integration tests, and large tests as end-to-end tests. We could
use the following table, which is taken from a code-testing blogging site from Google, as a
reference point (refer to 	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�		�		�	�	�	�	�	�	�	�	6	�	�	O	�	�	�	
	�

�	�):

Testing Your Application

[244]

Leaving aside these details, we can use the previous annotations and mechanisms to
implement the tests:

We used the 2����	���������N������- class to get the current ��������+� variable so
that we could access the resources and get the not a number string.

For more methods and information about 2����	���������N������-, refer to 	
	�	�	�	�	�	�	�	�
�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�			�	�	�	�	�	�	�	�	�	�	�	2	�	�	�	�			�	�	�	�	�	�	�	�	�	N	�	�	�	�	�	�	-	�

	�	�	�.

If we run this test, it might take some time, as it has to build the APK and deploy it to either
a real device or an emulator and run it from there.

More information about instrumented tests is available at

��	���6�������������	������6	���6�

�����
���.

To see how to run instrumented tests on Google Cloud Test Lab, check out
	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	+	�	
	�	�	�	U	�			�	6	�	�	�	�	�			�	�	�	�	�	�	6	�	�	�	�	�.

Testing Your Application

[245]

Testing integrations
Instrumentation tests also allow us to test the Android components we have in our
application, such as services and content providers. For example, in order to test a service,
not IntentService as it is not supported, we need to use ,������D���N	��.
,������D���N	�� will start and shut down our service for the duration of the tests. Once
,������D���N	�� is created, we can start or bind to our service, call methods directly, and
test its correctness.

For more information, refer to the Android documentation site at
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	6	�	�	�	�	�	�	�	�	�	�	�	�	+	�	
	�	�	�.

Mocking Android dependencies
As we have seen, instrumented tests take much more time than unit tests. If we do not want
to depend specifically on the Android SDK classes and methods, we could mock them. We
could use Mockito as a mock framework, although we have to be aware that, by design, we
will not be able to mock any static method with Mockito.

To use it, we have to just add a reference to our app's
	���������� file:

������������E�������������������6��������'��&E

And, as we did before, to run it with)������P:���!, set the �N	�R��
 annotation in our
test to �N	�R��
0*������P:���N	����������3.

To mock any Android dependency, we have to add a �*��� annotation before the field
declaration.

We need to define the behavior; for example, if we are mocking the application context, we
can tell Mockito to return a specific constant string when the code requests for a string from
the resources:

�
��0��������+�����,�����0N�����������?�?�	�
��33��
��N��	��0L�L34

Testing Your Application

[246]

���*�	������	�	����	����	+��,���	���,���	���	�

��������	�����-�)

If we run this test, it should run as fast as standard unit tests and there is no need to deploy
the APK file to the device or the emulator.

More information about mocking Android dependencies is available at

��	���6�������������6	���6������
�

��U�������6������������.

The source code along with more information about Mockito is available at 	
	�	�	�	�	�	�	�	�	�	�	
		

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�.

Testing the UI
Now that we have the mechanisms to test our application logic, and at the same time we're
sure nothing was broken when we added new functionality or modified the already
existing features, we could add some more tests to check whether the UI behaves as it
should.

Testing Your Application

[247]

Writing UI tests with the Espresso framework is quite similar to writing plain
instrumentation tests; the difference is in navigating and performing checks and actions
on UI views and the elements on the screen. When a UI test is executed, the emulator or real
Android device will show the changes and actions in real time as if somebody was
triggering those actions.

Setup
To set up the Espresso framework, we will not require additional work if we have
configured our project for instrumentation tests already. We have to be sure that
our
	���������� file contains the Espresso dependencies:

�������D�����������E�������������	����������������������������6����������E
�������D�����������E�������������	������������	�����'�"E

Be aware that Espresso is added to the �������D���������� configuration and not the
standard compile, as we do not want to include espresso in our final application when
deployed to Google Play. For the same reason, JUnit and Mockito are added to
the ����������� configuration, but not to either of the standard compile
or �������D���������� configurations.

For more information about build configurations in Gradle, check their documentation
at
������������������������	������	����	��������(���?������������?�	�������
���
.

In addition to this, to prevent errors from occurring once the process is automated�
elements appearing after a long animation, for instance�we should disable animations on
our device by toggling off the following options inside
Settings | Developer Options:

Window animation scale
Transition animation scale
Animator animation scale

Once we have performed these simple steps, we can start using Espresso.

Testing Your Application

[248]

Creating UI tests
To create a new UI test, we should create a new instrumentation test. Once this has been
created, in a way that is quite similar to standard instrumentation tests, we set the JUnit
runner to)������P:���!; however, this time we use the �=����D��� annotation to
determine the size of the test. As the documentation states, as a rule of thumb, all UI tests
are large tests.

Let's create a test, which verifies that once we press the add button, the correct result
appears on the right-hand side of the field. In order to do this, we need to introduce some
values to both the ����D�+� fields, simulate a button click, and then check D�+�J��� to see
whether the result is shown.

To achieve this, we will have to launch the activity first; we can use the)������-D���N	��
class, annotated by �N	��, to launch the activity we need before running the test. Even if
the activity is not the main activity, it will be launched:

Testing Your Application

[249]

Once we have it, we can start performing our actions in all the screen elements by using the
EspressoAPI. For instance, check the imports of our previous example:

We can appreciate the use of the import static of Espresso classes. If we statically import a
static field or method, we could use it as if it was declared on our class directly. This avoids
a lot of boilerplate code and typing. More information about static imports is provided by
Oracle; refer
to
����������������������@��������"�'�������	��������	����������6�������
���.

To trigger actions on views, we need to find them first. Using ��J��� and J���*���
�� on
it, we could pinpoint the exact view where we would like to perform an action. For
instance, if we use the ���
2� matcher, it will find a view that matches that exact ID. We
have to be careful, as there might be more than one view with that ID, and if that is the
case, Espresso will throw an)�
��	�	�J���*���
���+������� error. To avoid this, we
can use more matchers, and even combine them, to finally have one single view matching
our criteria. However, if we are too strict and not even a single view matches our criteria,
Espresso will throw L�*���
���J����+�������, so we always have to be careful.

Testing Your Application

[250]

Espresso uses Hamcrest matchers and provides many alternatives. Check out the full
documentation at
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�			�	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	J	�	�	�	*	�	�	�	
	�	�	�	�	
	�	�	�.

More information about Hamcrest matchers is available
at
������
������������P���T��������.

If you want to have a spinner or an adapter that shows lots of data, we can also filter by
data instead of using view properties. For example, we could use the following:

��J���0���
2�0N�����������?������33����(���0�����0334
��A���0���/(0��0��������/(0,�����������33F
��0K)��������K333����(���0�����0334

To perform a click on the spinner with ID �������?������ and then, find all the views
that are strings and the content is �Americano�. Once the view is found, perform a click on
it.

On the Espresso page, there are detailed examples; refer to

�����������������
	
�����������6�������6�	�����6��
���-���������������
������.

In addition, there is an Espresso online cheat sheet for all the View Matchers, Intent
Matchers, View Actions, and so on:
(
�����������������
	
�����������6�������6�	�����6��
���-����������������
����

��������+�
���).

Simplifying UI test creation
In Android Studio 2.2, Google introduced the Espresso test recorder. It is still not available
on the current preview at the time of writing this book, but this feature will be able to
record our clicks and actions on a running application and recreate them directly
on Espresso code, while being able to introduce assertions.

Check out
	�	�	�	�	�	�	�	�	�	�	�	-	�			�			
	�	�	�	�	�	�	�	�	�	�	
	8	�	9	�	�	�	X	�	�	!	+	�	L	%. This is the link to the
Google I/O 2016 presentation on What's new in Android development tools? The part about the
Espresso test recorder starts around 22:50. The following screenshot shows the cheat sheet
for espresso 2.1, including view matchers, intent matchers and object matchers:

Testing Your Application

[251]

Testing Your Application

[252]

Putting it all together
Let's add some more functionality to our calculator example. For instance, let's add a login
screen and test the whole functionality:

In this case, when we provide the correct login and password details, we will proceed to the
next screen, to our calculator. What we want to test is whether the transition works and
how we can continue testing on multiple activities.

Imagine we have implemented the following checks on our application logic to check
whether an e-mail ID and password are valid (although that does not necessarily mean they
are correct):

Testing Your Application

[253]

We can add many unit tests to these methods, but let's just add few of them and focus on UI
tests:

With regard to UI tests, first of all let's add some simple tests that will validate that an error
is shown if either the username or password is invalid.

When we press the login button, we check for the validity and then for the correctness of
the username and password; if something goes wrong, we show an error.

Testing Your Application

[254]

To show the error, we change the visibility of a D�+�J��� field (initially set to invisible) to
visible, and we set the text of the error in such a way that it shows up.

We can easily test the functionality by using different checks/matches,
���
�((������J���
����-, to see whether the D�+�J��� field is visible after we
introduce wrong data.

Testing Your Application

[255]

Let's test what happens when we use the right credentials:

In this case, to check that we have changed to another activity, we could simply check
whether one of the views of the second activity is displayed. Espresso will continue to run
tests even if activities are changed, and J���*���
�� will match the views on the current
activity.

Even if this allows us to build huge tests that can go from the login screen of our application
to all the screens and functionality, it is recommended (and a good practice) to write many
small tests rather than a few large tests. The smaller the test, the more concrete it is; if the
test fails, it will provide more details to the developer so they can discover what is going on
and fix it.

Summary
In this chapter, we learned how to add automatic tests to our application. We started with
testing basic logic, which should be isolated from Android SDK classes and methods, using
unit tests to instrumentation tests for those tests that had dependencies with Android.
Eventually, we progressed to performing UI tests to check whether the UI layer behaves in
the way it was designed to.

Automating tests is very important. Not only does it help the programmer develop the code
while proactively thinking about quality, but it also solves a lot of issues when merging
code from other colleagues and prevents regression issues when adding new features on
top of an already existing functionality. Tests have to be smart and test the right thing; we
could add almost infinite tests that would test useless functionalities, which would
definitely be a waste of time and money as well. As a recommendation, test the critical
functionality, edge cases, and, if you are working in a team, get an agreement as to what
should constitute the minimum set of test cases. Later on, if you find an issue, extend the
tests to check and correct it.

Testing Your Application

[256]

We have not mentioned test coverage in this chapter as it is often misunderstood as a
quality metric. Test or code coverage is only useful to see which parts of the code are being
tested. For more information, read Martin Fowler's page at
	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	
	�	�

�	�	�	D	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�.

99
Publishing Your Application

After adding some tests to your application and polishing any last-minute defects, now you
are ready to publish it to Google Play. Publishing an application is the way to make your
work available to a larger public.

In this chapter, we will see what we need to do before publishing, how to create an account
in Google Play, and finally, how to upload our application binary.

Preparation steps
There are a few minor details that we have to pay attention to before we publish the
application.

Application signing
Android Studio has been signing all our debug builds with a debug dummy certificate. You
will not be able to publish an application to Google Play signed with a debug certificate.
You will need to generate a signed production build with your release certificate. Signing
an application with your own certificate will help you identify yourself as the author of the
application in Google Play.

Publishing Your Application

[258]

In order to generate a signed build, go to the Build menu and select Generate Signed APK:

If you have not created a keystore before or you would like to use a new one, Android
Studio will allow you to create a keystore or select a previously created one. Once an
application is signed with a key and published to the store, it will have to be always signed
with that key; otherwise, users with the previous version of the app will not be able to
update it. So, once you create a keystore, store the keystore file safely.

The steps to create the keystore are very easy. You just have to enter your personal or
business details, set the password of the keystore and the key, and introduce the path where
the keystore will be saved.

Publishing Your Application

[259]

If you already have a keystore and would like to use it, or if you have just created it, press
the Choose existing� button and select the keystore file.

Once we have selected the keystore and key combination, Android Studio will ask us where
to save the final APK and which build type and flavor to use. Android Studio will take
some time to build, and when it finishes, we will have a small notification on the top-right
border telling us whether the build was successful.

For more information about the signing process, keystore, and key generation, check the
Android documentation about signing at
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�			�	�	�	�	�			
	�	�

�	
	�	�	�	�	6	�	�	�	�	�	�	�	�	
	�	�	�	8	
	�	9	�	�.

Account creation
To create an account on Google Play, go to the Google Play Developer Console (
	�	�	�	�	�	�	�	�	�	�	-	�

�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�			
	�	�	�	
	�).

Publishing Your Application

[260]

It only requires an e-mail address registered with Google or a Gmail e-mail address, our
personal or business details, and $25 in order to activate the account.

Publishing your application on Google Play
Once we have created an account and have paid the $25, we are able to add and publish
Android applications. We are only required to do some previous steps before actually
publishing an Android application: prepare the store listing with all the screenshots,
marketing material, and texts and promotional images, and upload the application binaries.

Publishing Your Application

[261]

Adding a new application
Our first step will be to add a new application to our account. We have to select the default
language of the application, which will be the default language in which we will be editing
our texts in Google Play and our application title.

If we have our APK ready, we can start by uploading it; otherwise, we can start by
preparing the store listing.

Preparing the Store Listing
As mentioned before, an application is not only a binary. When we upload it to the store,
we have to add a lot of marketing material. With the huge number of applications in the
market, unless the application's marketing material is exceptional, well-targeted, and well
maintained, it might be very difficult to discover and reach all the potential customers or
users.

Publishing Your Application

[262]

Texts are also very important. Google Play provides us with different types of texts, from
the title to the short description and full description. We can also have these texts in many
languages. It is also recommended that you have texts in the native languages of the
countries targeted in the application. It might depend on the type of application and content
but you'll have to keep the target audience in mind; for instance, Spanish users do not only
prefer Spanish texts to English, but many of them will not even understand English at all.

As the popular idiom says, a picture is worth a thousand words. The first thing the
potential users of the application will see on the store is the application's graphical assets:
either the app icon or the feature graphic, or even the screenshots of the application. If the
first impression does not convince them, they will move along and will not even read the
texts we have carefully created in our previous step.

Publishing Your Application

[263]

If you need to capture some screenshots from your application, you can take them from an
emulator or a real device by using Android Device Monitor, accessible from the Tools
menu under the Android submenu. On the Android Device Monitor, there will be an active
camera icon on the Devices tab that will take a screenshot of the connected device or the
emulator. Another option is to take a screenshot from the device itself, for instance, by
pressing the volume and power buttons down at the same time on some devices.

Please be aware that each graphic asset has a specific resolution and format and Google
Play is very restrictive with that. For example, the high resolution icon is, at this moment, a
512 x 512 32 bpp PNG file, while the featured graphic is a 1024 x 500 JPEG or 24 bpp PNG.

Publishing Your Application

[264]

After adding our graphical assets, we still have to fill out our contact details, privacy policy,
application category, and content rating. However, note that Google Play will not allow us
to fill out the content rating until we have uploaded an APK.

We also have to fill out our pricing and distribution model. Here, we can choose whether
our application is free or paid and, in the latter case, select what will be the price in every
country that is available. In order to create a paid application, Google Play will ask us to
create a merchant account first so that Google can process the application payments with
the right TAX information. As part of the pricing and distribution section, we will also have
to mention whether our application contains advertisements and we can access Google's
advertising policy from there.

Finally, we can also select whether our application is for Android Wear, Android TV, or
Android Auto. There are specific terms and conditions and additional requirements; for
example, we need to upload an Android Wear screenshot if we want to distribute our
application for Android Wear devices.

Publishing Your Application

[265]

Uploading the application APK
We have seen how to add and modify the store listing information of our application; now
we can upload our first application APK to the store. Our application needs to be versioned;
there are two properties in the application manifest related to the application version:

�������������������: This is the numeric property that represents the
application version. It is a plain number up to 2,147,483,647 that allows us to
easily check whether there has been an update programmatically. Google Play
will not allow you to publish another APK with the same ����������� property
as the previous one.
���������������L���: This is a string literal that is basically shown to the user.

Publishing Your Application

[266]

Users will not understand or pay attention to the application version 32,848 for
instance, but 4.0.0 will be more user-friendly for them.

For more information on versioning, refer to
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�			�	�	�	�	�			
	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�.

Publishing Your Application

[267]

Google Play will not allow us to upload an APK to production. We could set beta testing or
alpha testing with a set of users before switching the application to production. How to run
the alpha or beta testing is up to us. We can do a public beta, only to a closed Google+
group or an e-mail list. It all depends on what we want to achieve with our beta program. It
is very useful to distribute a new version of the application to a few selected or a small
percentage of the users, so that if something goes wrong, it will only affect a few and not
everyone. There is always time to make a beta release with the fix and when everything is
working fine, make the switch to production.

For more information about alpha/beta testing, refer to
	�	�	�	�	�	�	�	�			�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	-	�	�	�	�	�	�	�	�	6	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	 	�	 	�	�	�	 .

If our application is rather huge and we would like our users to have a smaller download
and updates, Google Play allows us to upload and keep multiple active APKs as long as
they have a different ����������� number, they are signed with the same certificate, and
do not overlap the specific devices supported. To filter the list of devices for each individual
APK, we have to use Google Play's splitting configurations:

OpenGL texture compression format
Screen size
Device feature sets
API level
CPU architecture (ABI)

Although it is recommended that we have one single APK, as it simplifies the build and
distribution process significantly, sometimes we can have smaller APKs, for example, if we
have a lot of images supporting multiple screen densities or relatively big native, JNI,
libraries. There are many people in the world with access to slow connections or metered
data connections that will be glad to have a smaller download. Also, people running with
low-end devices have very limited space on their device. If the user wants to install a new
application and does not have enough space on the device, Android will show a list of all
the currently installed applications sorted by decreasing size.

Publishing Your Application

[268]

Our application should avoid being on top of that list; otherwise, it might be very quickly
uninstalled.

For more information on multiple APKs, go to the Android
documentation at
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	-	�	�			
	�	�

�	
	�	�	�	�	�			�	�	�	�	�	�	6	�	�	�	�	�	
	�	�	�.

Publishing Your Application

[269]

In addition to this, in the previous URL, there is a recommendation from Google about
application versioning when developers have multiple APKs. It can be a bit complicated to
comply with all the rules defined. Google's suggestion is to use a seven-digit number,
where the first two digits will indicate the API level, the following two numbers will
indicate the minimum and maximum screen size, and the last three will be the last three
digits of the application version. For example, 0412310 will be for API level 04, where the
minimum screen size supported is 1 (small), maximum screen size supported is 2
(medium), and the application version is 3.1.0.

Summary
In this chapter, we learned how to generate, version, and sign a Google Play build and how
to create a Google Play Developer Console account and fill all the data that enables our
application to be distributed on Google Play. It is now time to upload our beloved creation
and start monetizing it! A mobile application is not something we can treat as fire-and-
forget. We need to analyze how it is performing, get maximal feedback from the users, learn
from all of the data, and iterate on our design and development again to fine-tune and
optimize it.

For more information on the Google Play Developer Console, refer to
	�	�	�
�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
			�	�	�	�	�	�	�	�	�	�	�	�	-	�	�	�	�	�	�	�	�	�	�	6	�	�	�	�

�	�	�	�	
	�	�	�.

110
Monetization – Make Money

with Your App
Now that we have launched our application on the market and it is beginning to get
downloaded by people, it is time to start earning some money from it. Whether it is our
main business or a spare-time hobby, it took us a considerable amount of time to design,
develop, and test the application. So, it would be good to monetize it somehow.

In this chapter, we will see different monetization strategies. Simply putting a price on our
application is the most straightforward approach and might actually work out quite well,
but we will also see how to enable in-app purchase elements in our application and how to
add advertisements. It will depend on the type of application we are working with to
decide the use of one mechanism or another, or even a combination of them; for example,
we can have a free application with advertisements and an in-app purchase to disable
advertisements. Or, for instance, we can have two versions of the same application: one
could be free with advertisements and the other could be the exact same application but
paid, with advertisements.

At the end of the day, market status and past experience combined with good analytics are
the best way we can learn what works and what does not.

Monetization – Make Money with Your App

[271]

Paid apps
Paid apps are the most straightforward approach. At the moment of uploading the
application to Google Play, we set the download price. As mentioned just now, some
applications have a freemium version that includes advertisements or, for example, have
limited functionality. And then, we have a paid version that can be considered the full,
professional version or the one without advertisements.

Creating a paid app
When we created an application in Google Play, under the pricing and distribution section,
we can choose whether we would like to publish it as free or paid. A paid application can
always be converted to free, but a free application, once it has been published as free,
cannot be changed to paid:

The only option would be to change the package name and upload it as a brand new
application. For more information, refer to
	�	�	�	�	�	�	�	�			�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	-	�	�	�

�	�	�	�	�	6	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	#	 	 	!	 	$	 	8	�	�	9	�	U	�	�	�	�	?	(�	�	�.

We have to set the price of our application. There is a default price that will be applied to all
countries where the application is distributed and do not have a specific price (the price will
be converted into local currency in such cases). This default price is without tax; Google
Play will automatically add the right tax amount for each country (as shown in the
following screenshot). We can manage the countries where our application is distributed
and actually set the price for that country. In some countries, we can even choose to
distribute only to users from one or many specific carriers if we want to do so. One
advantage of using the automatic currency converter with local prices is that Google Play
will automatically update the price based on the current day exchange rate and country-
specific pricing pattern.

Monetization – Make Money with Your App

[272]

For more information, refer to https://support.google.com/googleplay/
android-developer/answer/6334373?p=pricing_template&rd=

1#pricing_template.

Finance tracking
Google Play allows us to see the overall status of our application sales from the Finances
tab. There is also information about Average Revenue Per Paying User (ARPPU) and the
average value per transaction. This information makes more sense and carries a lot more
value when you have in-app purchases with different prices. For more detailed information
about transactions, visit the Google Payments Merchant Console at 	
	�	�	�	�	�	�	�	�	�	-	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�.

Monetization – Make Money with Your App

[273]

In-app purchases
Another mechanism to monetize our application is to add in-app purchases. In-app
purchases are, usually, microtransactions that can be used to enable specific functionality in
our application. It is also very common to use in-app purchases to let the user purchase
consumables or local in-game currency if, for instance, we develop a game.

Initial setup
One of the first things we have to do if we want to add support for in-app purchases in our
application is to install Google Play Billing Library from the Android SDK Manager:

Monetization – Make Money with Your App

[274]

Google Play Billing Library provides us with an Android Interface Definition Language
(AIDL) file; refer to
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�			�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�.
Once we install this, we need to copy the In-app Billing Version 3 service interface
definition called 22�)��1������,����������� to our project. The build system will
automatically generate a Java class we can directly use from our code. By using this class,
we will not have to manage any network connections to Google Play and it will simplify
our work.

The 22�)��1������,����������� file will be located in
;���<��+���������������-?
������� and we will have to copy it into our project
in ������������������ with the ��������������������
������ package:

Once we build our project, we will see it generates a Java file inside the
����
	����������������	�������� directory, as we can see in the project structure
view.

Monetization – Make Money with Your App

[275]

Our next step will be to declare the billing permission in our manifest. This permission is a
bit different from the other permissions we are requesting in our app, as it is declared in the
Google Play Store application in the ������������������� package.

Adding in-app products
From Google Play Developer Console, we can create and manage our in-app products, but
before Google Play allows us to do so, we need to upload an APK file with the
billing permission declared. There is no need to publish it, so we do not have to worry
about the application not being finished; alternatively, we can just upload it to the Beta or
Alpha channel, even before we set up any beta testing program or add any users at all.

We can either add in-app products one by one or if we have multiple products, import a
CSV file:

Monetization – Make Money with Your App

[276]

When adding a product, we can add it as a managed product or a subscription. Managed
products can be bought only once until they are consumed from the application. Depending
on the type of application or game, we might be interested in consuming the products or
leaving them as a one-time purchase only. For example, if we have one application with an
in-app purchase to remove all the advertisements, it would not be consumed; once the user
has purchased it, it will stay that way. Also, we will not have to worry about storing the
purchase in the app, as Google Play will save that information for us and we will be able to
query it at any time. On the contrary, if we are creating a game and we create an in-app
product to get some in-game coins, we will consume the product as soon as we add the in-
game coins. This way, we enable the user to purchase it again. Subscriptions, on the other
hand, set a recurring billing to the user. In addition to the price, we can configure the billing
period, a free trial, and even a grace period if there is an issue with the payment. This might
be a more suitable way of billing our users if we are creating an app that allows them to
access all of our content, for example magazines, comics, movies, and so on, as long as they
are subscribed.

Something we have to pay attention to is the Product ID field. A Product ID field cannot be
changed once it is defined and cannot be reused later on. It is also called SKU or Stock
Keeping Unit.

Monetization – Make Money with Your App

[277]

Application code setup
Once we add in-app products to Google Play, we can begin to add the code to our
application to allow the user to purchase them. We have to be aware that it takes some time
for those in-app products to be available in the store. If we upload a new build to Google
Play immediately and we test the in-app purchases straightaway, it might fail, as the in-app
products are still not propagated. In addition to this, if we want to test the real thing, we
can create, for example, a beta version and only invite ourselves to the distribution list. This
way, we can install the app straight from Google Play and test the whole in-app purchases
process.

By including 22�)��1������,����������� in our application, Android Studio
automatically generates an interface for us to connect to Google Play. If we carefully look at
the generated documentation inside 22�)��1������,�������@���, we will see what we
can use this service for:

As this file is automatically generated, it should not be edited, as the changes will be lost
when the file is regenerated.

Monetization – Make Money with Your App

[278]

To use this service, we need to declare an instance variable,
��������22�)��1������,�������
������,������4, to hold the instance and bind it to
the Google Play service:

It is important to set the full package ������������������� as, by doing so, we only
allow Google Play to handle billing requests.

Additionally, we will have to create a ,���������������� class to monitor the connection
and disconnection aspects in the service. Inside ,����������������, we should get the
instance of our interface by calling 22�)��1������,�������,�	
���2����(���03 and
also clear the instance by making it null whenever the service is disconnected:

Monetization – Make Money with Your App

[279]

More information about ,���������������� is available at

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	,	�	�	�	�	�

�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�.

We should not forget to unbind our service if the activity is destroyed:

Binding to the service is not an immediate action and it is executed asynchronously. We
should not assume it will be available just after calling the bind method, so it is our
responsibility to verify that the billing service is not null and to track which state we are in
inside our application.

Before making any billing request, we should check whether billing is supported. Users
might be in a country where Google Play is not supported or in-app purchases, or even paid
apps, are not accepted for legal reasons. To check whether billing is supported, we can use
the automatically generated method called ��1������,	������� on
the 22�)��1������,�������@��� interface:

Monetization – Make Money with Your App

[280]

As parameters, we need to specify the billing API version, 3 in our case, and set it to the
12==2LQ?J�N,2/L constant. Also, we need to specify the package name and the type of
purchase, which can be either ����� for in-app purchases or �	
� for subscriptions:

Once you start the application, it is a good practice to check with Google Play which items
are already purchased by the user. Doing so, we do not need to keep specific track of
purchased items, and the user can use a different device and have the same items or
advantages he purchased on another device. Like the previous case, we can use another
automatically generated method called ����	��
���� to get the user's previous purchases.

The ����	��
���� method and other methods we will see below return data in a bundle
and one of the key-values is the response code. There is a known bug that sometimes
returns it as 2������ and sometimes as =���. To work around this issue, we can use the
following helper method:

For more information on in-app purchase examples and workarounds
such as this one, check the Google examples in GitHub, at

	�	�	�	�	�	�	�	�	�	�	
			
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	6	�	�	�	-	6	
	�	�	�	�	�	�	�	
	�	�	
	�	�	�	�
�	�	�	�	D	�	�	�	�	�	�	A	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	@	�	�	�	�	�	�	�	�	�	+	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	�	�	�			�	�	�	�	2	�	
	T	�	�	�	�	�	�	@	�	�	�.

Monetization – Make Money with Your App

[281]

Using this helper method, we can now call the ����	��
���� method and, in this example,
print the already purchased items:

In the response bundle, we will get lists of purchased SKUs, purchased data in JSON
format, and the signature of those purchases on the following keys, respectively:
2L)��?�:N�T),�?2D�*?=2,D, 2L)��?�:N�T),�?A)D)?=2,D, and
2L)��?A)D)?,2QL)D:N�?=2,D.

Further details on the information returned by ����	��
���� can be
found in the Android documentation at 	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	�	�	�	-	�	
	�	�	�	�	�	�	�	
	�	�	�	�	�	�	?	�	�	(�	�	�	�	�	�	�	
	�	�	�	U	�	�	�	�			�	�	
	�	�	�	�.

Monetization – Make Money with Your App

[282]

SKUs will be the product ID of the products the user purchased, purchase data will be
JSON-formatted as we see in the following code, and the signature list will contain the
signatures of the purchases from this application.

If we parse the purchase data, we can get the purchase time and the payload we added at
the time of performing the purchase:

.
��K�����2�K�KQ�)��� !6"#$%6&'��6 !"#$KF
��K�������L���K�K�������������(��������	����������+�����KF
��K����	��2�K�K����?�KF
��K�	��
���D���K��!#"%#��"� ��F
��K�	��
���,����K�'F
��K�����������-����K�K��-����KF
��K�	��
���D����K�K�����K
5

If there are more purchases, there will be a continuation token in 1	����, which will be
accessible by the 2L)��?�/LD2L:)D2/L?D/B�L key. If we want to get more purchases, we
should call the ����	��
���� method again with this continuation token. If the
continuation token is null, it means there are no more purchases. We can implement a
similar loop to the following one to iterate through all the user's purchases:

Monetization – Make Money with Your App

[283]

One last step before the actual purchase is to get the updated data from the product IDs or
SKUs we would like the user to purchase via Google Play. We can get the price, title, and
full description, which can be, for example, shown to the user before making the purchase.
This can be done by just calling the ���,�	A������ method:

Each string will contain JSON-formatted data about one single SKU. If, for example, we
query for two SKUs, ����?� and ����?�, the format will be similar to what is illustrated in
the following JSON example. Note that each product will be in a different string; it will not
be a single JSON object:

.
��K����	��2�K�K����?�KF
��K�-��K�K�����KF
��K�����K�K����&KF
��K�����?���	��?������K���&''''F
��K�����?�	�����-?����K�K�:NKF
��K�����K�K����	�����0)�����������L���3KF
��K�����������K�K�����K
5
.
��K����	��2�K�K����?�KF
��K�-��K�K�����KF

Monetization – Make Money with Your App

[284]

��K�����K�K��� &KF
��K�����?���	��?������K�� &''''F
��K�����?�	�����-?����K�K�:NKF
��K�����K�K����	�����0)�����������L���3KF
��K�����������K�K������K
5

We also used another method from the previous Google example repository on GitHub.
The ���N�������A��� method prints a human-readable string of the error code.

Now that we have all the details from the SKUs and we know which items the user already
owns, we can proceed to purchase one product.

More information on the in-app product purchase flow is available at

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	-	�	
	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�.

Purchasing in-app products from our application
Purchasing an in-app product is a two-step process. First, we need to get a buy 2����� and
then we can start the purchase flow with that intent:

Monetization – Make Money with Your App

[285]

We can get
	-2����� by calling the ���1	-2����� method and using these as
parameters: the SKU we would like to purchase, the type of purchase
(either ����� or �	
�), and a developer payload we would like to put. As the developer
payload, we can put, for example, a randomly generated string that uniquely identifies this
purchase. If the request succeeds, it will return �������2�����. We can use it to start the
purchase flow by calling �����2�����,�����M��N��	��.

We will receive the response asynchronously in activity ��)������-N��	��, so we have to
check that the request code is the same we used when doing the
request, �:N�T),�?N�Y:�,D?�/A� in our specific case:

More information about �����2�����,�����M��N��	�� is available at 	

�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�)	�	�	�	�	�	�	-	�	
	�
�	�	U	�	�	�	�	�	2	�	�	�	�	�	,	�	�	�	�	�	M	�	�	N	�	�			�	�	0	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	2	�	�	�	�	�	,	�	�	�	�	�	F	�	�	�

F	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	2	�	�	�	�	�	F	�	�	�	F	�	�	�	F	�	�	�	3.

Monetization – Make Money with Your App

[286]

Consuming purchases
Some in-app products can be purchased once and others can be purchased multiple times.
In order to purchase one product more than one time, we need to consume the previous
purchase or Google Play will not allow us to purchase it again.

In the JSON data we will receive either when purchasing an item or getting previous
purchases, we will get a purchase token as well. We can use this purchase token in the
����	���	��
��� method to actually consume a purchase:

It is recommended that we do not take any action inside the application, for instance
increase in-app currency, until the purchase has been consumed successfully.

More generic information about in-app purchases and how to integrate
them in your application is available at

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	-	�	
	�	�	�	�	�	�	�	
	�	�	�	�	�	�	?	�	�	�	�

�	�	�	�	�	�	
	�	�	�.

In-app advertising
We have seen how to directly monetize our application by either setting a price, making it a
paid application, or by adding in-app purchases to unlock new features, remove
advertisements, or add some benefits in exchange for a microtransaction. Now we will see
how to add a more indirect monetizing mechanism, such as adding advertisements. By
adding advertisements to our application, we will not charge our end user, but we will get
money by the amount of advertisements shown and clicked by the users of our application.

Monetization – Make Money with Your App

[287]

If we are able to generate a lot of advertisement impressions or make our advertisements
non-intrusive and useful to the targeted users, it can be a good way to earn some money,
even more than by paid apps or in-app purchases.

In this section, we will see how to add advertisements to our app. We will focus on Google
Admob although there are many other advertisement providers. At the end of the day, the
approach will be quite similar, and most probably, we will have to integrate with their SDK
and follow some simple steps.

Integrating with the Google Mobile Ads SDK
Integrating the Google Mobile Ads SDK into our application is quite straightforward. We
have to follow a few steps and a test advertisement will show up in no time.

We have to add a new Gradle dependency to
	���������� at the root of our project:

��������
�E���������������������6��������� �'�'E

Add one dependency to the
	���������� file inside the ��� directory:

��������E�����������(���
����(���
���6����&�'��E

And add one at the end of the same file:

����-���	�����E���������������������6��������E

After adding all these lines to the
	���������� files, we have to synchronize so that
Gradle can refresh all the libraries and include the dependencies we have just added.

We would need an Ad Unit ID identifier for each place we would like to show an
advertisement. Later, we will show how to create one, but for the moment, we will use the
one provided by Firebase for testing purposes:
��6���6�	
6 &!'�"#'&&&!�"!!�# ''&$%���.

Monetization – Make Money with Your App

[288]

To easily access it, we will create it inside the ,�������+�� file of our application:

We will need a ������6���������@��� file as well. We can create it from the Firebase
developer console; refer to 	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	(�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�.

From the Firebase console, we have to create an Android application; set our application
package and this will trigger the download of the
������6���������@��� file:

Monetization – Make Money with Your App

[289]

Once we have the file, we have to simply copy it to the ��� folder of our application:

Now we can proceed to add one advertisement to our layout file. We would need to add a
new namespace to the layout XML, namely
+��������9K
��������
������������������������6�	��K, and then add
a ���������������������������)�J��� view as if it was another view:

Monetization – Make Money with Your App

[290]

In our main)������- field, we will have to initialize the SDK on the �������� method by
calling *�
���)�����������O��and using our application ID. In this example, we used
the test application ID, but in our final application, we'll change it to show real
advertisements. During development, we have to use test advertisements as it is against the
Admob policy to click on our own advertisements using our account.

In addition to this, in this demo, we will load an advertisement as soon as the application
starts and show it on the)�J��� we have just added in the previous step:

There are many other ways to show advertisements, for example interstitial, fullscreen ads,
or native advertisements that allow some degree of configuration and can be more easily
integrated into our application and feel less intrusive.

More information about different types of advertisements can be found at

	�	�	�	�	�	�	�	(�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	� and 	
	�	�	�	�

�	�	�	(�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�.

Monetization – Make Money with Your App

[291]

We can create a valid application ID and Ad Unit ID from our Admob account (
	�	�	�	�	�	�	�	��

�	�	�	�	�	�	�	
	�	�	�	�):

Here, we can see the App ID and the Ad Unit ID. We just need to replace the test values
with the real ones to start monetizing our application. Please remember that it goes against
the Admob policy to click on your own advertisements, so it is recommended that you use a
test account for development and testing and the real production IDs when publishing the
application to Google Play.

Google published a step-by-step tutorial inside their Firebase documentation, available at

�	�	�	�	�	�	�	(�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	7			�	�	�	6	�	�	�	�	�.

Monetization – Make Money with Your App

[292]

Summary
In this chapter, we learned different mechanisms to monetize our application, from setting a
price to downloading it, adding in-app purchases, or using advertisements. Depending on
the application type, the targeted users, and the business model we would like to use, we
can decide how to use all the different mechanisms to make the app. Sometimes, the best
approach is to combine them in a smart way; just be careful not to saturate the user with
advertisements or make the game too difficult, or just impossible, unless some purchases
are made.

Combining monetizing mechanisms with good analytics will allow us to clearly see what is
working and what is not so that we can focus our efforts on fixing or changing that part.

In this book, we started by installing the development environment and went all the way to
publishing and monetizing our application. Through this journey, you have learned to
create application screens, views, and UI elements. You also learned how to retrieve data
from the Internet and store it locally on the device. And finally, you learned how to create
some automated tests to make sure the application is working or, at least, verify that the
latest changes did not break anything.

The development of mobile applications in Android is in constant evolution. There are
many ways in which we can keep up-to-date with it: check official documentation
regularly, read development blogs, and even test new libraries and study their source code.
One of the most interesting ways, however, is to attend conferences or local meetups. In
these events, there is always a lot of interesting content and, even more important, a lot of
interesting people. You can meet other Android developers with whom you can discuss
difficulties, solutions, and best of all, build the Android community.

Index

A
activity lifecycle
 reference link #
Activity
 about �
 Android design guidelines
 Android device, building !'
 app manifest, editing %, &
 callbacks #
 context and scope
 creating $
 defining $, %
 lifecycle !
 lifecycle callbacks "
 recreating, reference link "�
 reference link �#
 stack $
 states !
 states, reference link !
adapters
 about ��
 ArrayAdapter �� , ��"
 BaseAdapters �� , ��!, ��"
 performance considerations ��#, ��$, ��%, ��&,

��', ���, ���
 reference link �'%
advertisements
 reference links �&'
alpha/beta testing
 reference link �#$
Android Asset Packaging Tool (APT) %"
Android dependencies
 mocking �!", �!#
Android Developer site
 reference link !, !"
Android Development Tools (ADT) #

Android device
 running !�
 setting up, for debugging !'
Android documentation
 reference link �"&
Android Interface Definition Language (AIDL)
 reference link �$!
Android OS version distribution
 reference link �"
Android Studio
 download link $
 installation link &
 installing %, �'
 reference link #
 right version, obtaining $
 running �', ��, ��
 setting up #
Android support library
 reference link �%!
Android Virtual Device (AVD) �&
App comment integrations
 reference link �!"
 testing �!"
app
 activity navigation "!, "", "#
 navigating, between fragments "!
Application Not Responding (ANR)
 reference link �"
application preference
 storing ��!
application publishing
 preparation steps �"$
application, publishing on Google Play
 about �#'
 APK application, preparing �#$, �#%
 APK application, uploading �#"
 application, adding �#�

[294]

 Store Listing, preparing �#�, �#�, �# , �#!
applications debugging
 reference link �'
ArrayAdapter
 reference link �'%
AssetManager class
 reference link ��
AsyncTask
 reference link ��', �"#
AttributeSet
 reference link &�
Average Revenue Per Paying User (ARPPU) �$�

B
background processing
 about �"
 AsyncTask �"", �"#, �"$
 IntentService �"$, �"&, �#', �#�, �#�, �#!
 Java threads �"!, �""
background service
 creating, reference link �"&
bitmap memory
 reference link �&&
bitmap
 reference link �&#
build configurations, Gradle
 reference link �!$
Builder pattern
 reference link �%�
Button
 about #
 common operations #!
 reference link #!

C
caching bitmaps
 reference link �%%
Canary channel $
CardView
 about $'
 common operations $'
 reference link $', � !
CheckBox
 about ##
 common operations ##

 reference link ##
configuration changes
 reference link �&#
ConstraintLayout
 about $$
 common operations $&
 reference link $%, $&
Context objects
 reference link
ContextWrapper
 reference link
contract classes
 reference link ��#
cooking-recipe application '
custom drawing
 adding &�, &
 adding, on Canvas &!, &#
custom requests
 reference link �#%
custom views
 about &'
 adding, programmatically &#
 adding, with layout file &#
 custom drawing, adding &�
 CustomTextView class, creating &%
 example &', &�, &%
 hooking up &#
 on-click behavior, adding &&
 onTouchEvent method, overriding �'�
 testing &$, &%, �'�

D
dedexer
 reference link �$
DefaultItemAnimator
 reference link � $
DevBytes video
 reference link �'#
DEX file
 reference link �&
DexGuard
 reference link �&
dialog �' , �'!
disk cache classes
 reference link �%&

[295]

disk cache
 reference link �%&
DividerItemDecoration
 reference link �!�
Drawee ���

E
EditText
 about #�
 common operations #�
 reference link #�
effective navigation
 reference link �
elements, for building mobile applications
 about ��
 Android Manifest file ��
 Gradle build system ��, �
 modules ��
 ProGuard �$, �&
 resources ��
Environment class
 reference link ��!
Espresso
 examples, reference link �"'
 online cheat sheet, reference link �"'
 reference link �"'

F
file storage
 reference link ��&
file system
 managing, with delete method ��!
 managing, with fileList method ��!
file-opening modes
 reference link ��"
fileList
 reference link ��!
files
 about ��&
 external storage ���
 external storage, reference link ��
 internal storage ��', ���, ���
Firebase documentation
 reference link �&�
fragment constructor

 reference link !%
fragments
 about !�
 adding, to activity "'
 application, running "�, "!
 context !!
 creating !#
 lifecycle !!, !"
 lifecycle callbacks !"
 multiple fragments, adding to

FragmentTransaction "
 multiple fragments, adding to single activity "�
 new instance, reference link !%
 reference link !�
 static fragment constructor, creating !$
 using !�
 values, using from static factory implementation

!%

FragmentTransaction
 reference link "'
FrameLayout
 about #%
 common operations #&
 reference link #&
Fresco
 about ���
 reference link ��

G
generics
 reference link ��&
getPurchases
 reference link �%�
Glide
 about �'$
 reference link �'%
Google Play
 application, publishing �#'
GridView
 about $"
 common operations $"
 reference link $#
Gson
 about �$', �$�, �$
 reference link �#%

[296]

H
Hamcrest matchers
 reference link �"'
HAXM
 reference link �%

I
ImageButton
 about #"
 common operations #"
 reference link #"
images
 different image types �'�
 in RecyclerView �'#
 larger images, handling �&&
 loading �&#
 memory space �&#
 vector drawables �'
ImageView
 about #�
 common operations #
 reference link # , �'
in-app advertising
 about �%#
 Google integrating, with Mobile Ads SDK �%$,

�%%, �&', �&�
in-app product purchase
 flow, reference link �%!
in-app purchase
 examples, reference link �%'
in-app purchases
 adding �$
 application code setup �$$, �$%, �$&, �%', �%�,

�%

 in-app products, adding �$"
 in-app products, purchasing from applications

�%!, �%"
 initial setup �$, �$!
 purchases, consuming �%#
 reference link �%#
inBitmap field
 reference link �&%
inPurgeable field
 reference link �&%

instrumentation tests
 about �!�
 building �! , �!!
 reference link �!!
 running �!!
InstrumentationRegistry
 reference link �!!
intents
 reference link "#
interface components
 View "%
 ViewGroups "%
issues
 discovering �!', �!�, �!�
 fixing, by creating test �!�
 fixing, by creating tests �!', �!�

L
Last In First Out (LIFO) $
layout files
 TextView, styling %#
 used, for creating basic layout %', %�
 used, for creating interfaces %'
 using %"
layout
 previewing %
 testing %$
 TextView, adding %
LayoutInflater
 reference link ��"
LayoutManager
 reference link � �
Least Recently Used (LRU) �%!
LinearLayout
 about $�
 common operations $�
 reference link " , $�
LinearLayoutManager
 reference link � �
LinkedHashMapclass
 reference link �%!
lint
 reference link ��#
ListActivity
 about ��'

[297]

 item view, customizing ���, ���
 reference link ��'
ListView element
 about $!, �'$, �'%, �'&
 common operations $!
 item view, customizing ���, ���
 reference link $!, �'#
logic
 testing � !
LruCache class
 reference link �%!

M
Material Design
 reference link
Merchant Console
 reference link �$�
mipmaps
 reference link �$
Mockito
 reference link �!#
modules
 reference link ��
multiple APKs
 reference link �'#, �#%
MVC pattern
 reference pattern �$

N
network code
 about �#!
 Gson �$'
 real case scenario �$$, �%'
 Retrofit �$!
 Volley �#%
 volley �##, �#$
NetworkOnMainThreadException
 reference link �"!

O
OkHttp
 disk cache classes, reference link �%&
 reference link �$#

P
paid app
 about �$�
 creating �$�
 finance tracking �$�
 reference link �$�
Parcelable interface �!�
permissions
 about �!$
 Android N permission mechanism �!%, �!&,

�"', �"�, �"�
 groups �"
 reference link �"', �"
Picasso
 about ��'
 reference link ���
preparation steps, application publishing
 account, creating �"&
 sign in �"$, �"%, �"&
Progressive JPEGs
 reference link �''
ProGuard
 reference link �$
projects
 reference link &
protobuf
 reference link �$#

R
R.layout
 reference link �'%
Realm
 about � '
 reference link � '
RecyclerView.ItemAnimator
 reference link � $
RecyclerView
 about $#, ��#, �%
 CardView � !, � #
 common operations $$
 ItemAnimator � $
 ItemDecoration � %, � &, �!�
 placing ListView ��%, ��&
 reference link $$, ��$

[298]

 StaggeredGridLayoutManager �!�, �!!, �!"
 used, for replacing ListView ��$, � ', � �, � �,

�

RecyclingBitmapDrawable
 reference link �&$
RelativeLayout
 about $�
 common operations $�
 reference link $�
remote data, caching
 about �%
 configuration changes, handling �&!
 disk caches �%%
 memory caches �%!
RequestQueue
 reference link �##
resources
 providing, reference link �'
ResultReceiver
 reference link �#'
Retrofit
 about �$!, �$#
 reference link �$!

S
sample project
 creating ��
 resource configuration qualifiers �', ��
 running �$, �%, �'
 starting � , �!, �#
SampleSize property
 reference link �'�
ScrollView
 about $
 common operations $
 reference link $!
ServiceConnection
 reference link �$&
SharedPreferences class
 about ��!
 additional features ��&
 initialization ��"
 modes ��"
 reference link ��!, ��&
 uses ��", ��%

SharedPreferences.Editor
 reference link ��$
simple calculator example
 functionality, adding �"�, �" , �"!, �""
smali
 reference link �$
SQLite
 about ��"
 contract definition ��"
 helper implementation ��$, ��%, ��&
 reference link ��"
 schema definition ��#
 scheme definition ��"
SQLiteOpenHelper ��$
StaggeredGridLayoutManager
 reference link �!"
startIntentSenderForResult
 reference link �%"
StateListDrawable
 reference link #
static imports
 reference link �!&
subactivities !�
support library v23.2
 reference link �'!
Switch
 about ##
 common operations ##
 reference link ##

T
TextView
 about "&
 common operations #'
 reference link #', %#
third-party libraries
 about �'#
 Fresco ���
 Glide �'$
 Picasso ��'
 Realm � '
 UIL �'%
Toasts
 about �'�, �'
 reference link �'&

U
UI testing
 about �!#
 Espresso framework, setting up �!$
UI tests
 creating �!%, �!&, �"'
 creation, simplifying �"'
UIL
 about �'%
 reference link ��'
unit tests, creating
 about � !
 simple calculator application, writing � !, � "
unit tests
 creating � #, � $
 executing � %, �!'
 reference link �!�
user interface components
 dialogs �'
 Toasts �'�
user interfaces
 building, with ViewGroups $&
 building, with views $&
 creating, programmatically %$, %&
 creating, with layout files %'

V
versioning
 reference link �##
View Holder pattern ��#
ViewGroups
 about "&, #%
 CardView $'
 ConstraintLayout $$

 FrameLayout #%
 LinearLayout $�
 RecyclerView $#
 RelativeLayout $�
 ScrollView $
 used, for building user interface $&
views
 about "&
 Button #
 CheckBox ##
 EditText #�
 GridView $"
 ImageButton #"
 ImageView #�
 reference link "&
 Switch ##
 TextView "&
 used, for building user interface $&
 WebView #$
volley
 about �##, �#$
 reference link �##, �#$

W
WeakReferences
 reference link �&
WebP
 reference link �&�, �''
WebView
 about #$
 common operations #%
 reference link #%
wire
 reference link �$#

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Android Development
	Setting up Android Studio
	Getting the right version of Android Studio
	Installing Android Studio
	First run

	Creating a sample project
	Starting a new project
	Running your project
	Resource configuration qualifiers

	Additional elements
	Resources
	Modules
	Android Manifest
	Gradle build system
	ProGuard

	Summary

	Chapter 2: Activities and Fragments - The Backbone of Your App
	Activities
	Android design guidelines
	The Activity context and scope
	Activity lifecycle
	Activity states
	Activity lifecycle callbacks
	Activity states and callbacks
	The activity stack

	Creating activities
	Defining your activity
	Editing the app manifest
	Creating our Activity class
	Building the sample application
	Setting up your device for debugging
	Running the application

	Fragments
	When to use fragments
	Fragment lifecycle
	Fragment context
	Activity – fragment lifecycles
	Fragment lifecycle callbacks

	Creating fragments
	Creating our own fragment
	Creating a static fragment constructor
	Using values from the static factory implementation

	Adding a fragment to an activity
	Running the application

	Adding multiple fragments to a single activity
	Adding multiple fragments to an activity
	Adding two fragments in a single FragmentTransaction
	Running the application

	Navigating through an app
	Activity navigation

	Summary

	Chapter 3: Working with Views – Interacting with Your App
	Views and ViewGroups
	Common views
	TextView
	Common operations

	EditText
	Common operations

	ImageView
	Common operations

	Button
	Common operations

	ImageButton
	Common operations

	Switch and CheckBox
	Common operations

	WebView
	Common operations

	Common ViewGroups
	FrameLayout
	Common operations

	CardView
	Common operations

	LinearLayout
	Common operations

	RelativeLayout
	Common operations

	ScrollView
	Common operations

	ListView
	Common operations

	GridView
	Common operations

	RecyclerView
	Common operations

	ConstraintLayout
	Common operations

	Building a user interface using views and ViewGroups
	Creating interfaces using layout files
	Creating a basic layout
	Adding a TextView
	Previewing the layout
	Using your layout file
	Styling the TextView
	Testing the layout

	Creating user interfaces programmatically

	Creating custom views
	The first custom view example
	Custom drawing
	Drawing on a Canvas

	Hooking up the CustomView
	Adding the custom view programmatically
	Adding the custom view using a layout file
	Testing the CustomView

	The second custom view example
	Creating the CustomTextView class
	Adding on-click behavior
	Testing the CustomTextView
	Overriding the onTouchEvent method

	Additional user interface components
	Toasts
	Dialogs

	Summary

	Chapter 4: Lists and Adapters
	ListView and ListActivity
	ListView
	ListActivity
	Customizing the item view

	Adapters
	ArrayAdapter
	Performance considerations
	BaseAdapter

	RecyclerView
	Replacing ListView with RecyclerView
	CardView
	ItemAnimator
	ItemDecoration
	StaggeredGridLayoutManager

	Summary

	Chapter 5: Remote Data
	Permissions
	Android M permission mechanism
	Permission groups

	Background processing
	Java threads
	AsyncTask
	IntentService

	Network code
	Android standard libraries
	Volley
	Gson
	Retrofit
	Real case scenario

	Summary

	Chapter 6: Image Management
	Caching remote data
	Memory caches
	Disk caches
	Handling configuration changes

	Loading images
	Memory
	Handling large images
	Different image types
	Vector drawables
	Images in a RecyclerView

	Widely used third-party libraries
	Glide
	UIL
	Picasso
	Fresco

	Summary

	Chapter 7: Permanent Data
	Storing preferences
	Initialization
	Basic use
	Additional features

	Files
	Internal storage
	External storage
	Additional methods

	SQLite
	Schema and contract definition
	Helper implementation

	Third-party libraries
	Realm

	Summary

	Chapter 8: Testing Your Application
	Testing logic
	Simple calculator application
	Unit tests
	Discovering and fixing issues by creating tests
	Instrumentation tests
	Testing integrations
	Mocking Android dependencies

	Testing the UI
	Setup
	Creating UI tests
	Simplifying UI test creation

	Putting it all together
	Summary

	Chapter 9: Publishing Your Application
	Preparation steps
	Application signing
	Account creation

	Publishing your application on Google Play
	Adding a new application
	Preparing the Store Listing
	Uploading the application APK

	Summary

	Chapter 10: Monetization – Make Money with Your App
	Paid apps
	Creating a paid app
	Finance tracking

	In-app purchases
	Initial setup
	Adding in-app products
	Application code setup
	Purchasing in-app products from our application
	Consuming purchases

	In-app advertising
	Integrating with the Google Mobile Ads SDK

	Summary

	Index

