

Learning Android Forensics

Table of Contents

Learning Android Forensics
Credits
About the Authors
About the Reviewers
www.PacktPub.com

Support files, eBooks, discount offers, and more
Why subscribe?
Free access for Packt account holders

Preface
What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback
Customer support

Errata
Piracy
Questions

1. Introducing Android Forensics
Mobile forensics
The mobile forensics approach

Investigation Preparation
Seizure and Isolation
Acquisition
Examination and Analysis
Reporting

Challenges in mobile forensics
The Android architecture

The Linux kernel
Libraries
Dalvik virtual machine
The application framework
The applications layer

Android security
Security at OS level through Linux kernel

Permission model
Application sandboxing
SELinux in Android
Application Signing

Secure interprocess communication
Android hardware components

Core components
Central processing unit
Baseband processor
Memory
SD Card
Display
Battery

Android boot process
Boot ROM code execution
The boot loader
The Linux kernel
The init process
Zygote and Dalvik
System server

Summary
2. Setting Up an Android Forensic Environment

The Android forensic setup
The Android SDK

Installing the Android SDK
Android Virtual Device

Connecting and accessing an Android device from the workstation
Identifying the device cable
Installing device drivers
Accessing the device

Android Debug Bridge
Using adb to access the device

Detecting a connected device
Directing commands to a specific device
Issuing shell commands
Basic Linux commands
Installing an application
Pulling data from the device
Pushing data to the device
Restarting the adb server
Viewing log data

Rooting Android
What is rooting?
Why root?
Recovery and fastboot

Recovery mode
Accessing the recovery mode

Custom recovery
Fastboot mode

Locked and unlocked boot loaders
How to root

Rooting an unlocked boot loader
Rooting a locked boot loader

ADB on a rooted device
Summary

3. Understanding Data Storage on Android Devices
Android partition layout

Common partitions in Android
boot loader
boot
recovery
userdata
system
cache
radio

Identifying partition layout
Android file hierarchy

An overview of directories
acct
cache
d
data

dalvik-cache
data

dev
init
mnt
proc
root
sbin
misc
sdcard
system

build.prop
app
framework

ueventd.goldfish.rc and ueventd.rc
Application data storage on the device

Shared preferences
Internal storage

External storage
SQLite database
Network

Android filesystem overview
Viewing filesystems on an Android device
Common Android filesystems

Flash memory filesystems
Media-based filesystems
Pseudo filesystems

Summary
4. Extracting Data Logically from Android Devices

Logical extraction overview
What data can be recovered logically?

Root access
Manual ADB data extraction

USB debugging
Using ADB shell to determine if a device is rooted

ADB pull
Recovery mode
Fastboot mode

Determining bootloader status
Booting to a custom recovery image

ADB backup extractions
Extracting a backup over ADB
Parsing ADB backups
Data locations within ADB backups

ADB Dumpsys
Dumpsys batterystats
Dumpsys procstats
Dumpsys user
Dumpsys App Ops
Dumpsys Wi-Fi
Dumpsys notification
Dumpsys conclusions

Bypassing Android lock screens
Lock screen types

None/Slide lock screens
Pattern lock screens
Password/PIN lock screens
Smart Locks

Trusted Face
Trusted Location
Trusted Device

General bypass information
Cracking an Android pattern lock

Cracking an Android PIN/Password
Android SIM card extractions

Acquiring SIM card data
SIM security

SIM cloning
Issues and opportunities with Android Lollipop
Summary

5. Extracting Data Physically from Android Devices
Physical extraction overview

What data can be acquired physically?
Root access

Extracting data physically with dd
Determining what to image
Writing to an SD card
Writing directly to an examiner's computer with netcat

Installing netcat on the device
Using netcat

Extracting data physically with nanddump
Verifying a full physical image

Analyzing a full physical image
Autopsy
Issues with analyzing physical dumps

Imaging and analyzing Android RAM
What can be found in RAM?
Imaging RAM with LiME
Imaging RAM with mem
Output from mem

Acquiring Android SD cards
What can be found on an SD card?
SD card security

Advanced forensic methods
JTAG
Chip-off
Bypassing Android full-disk encryption

Summary
6. Recovering Deleted Data from an Android Device

An overview of data recovery
How can deleted files be recovered?

Recovering data deleted from an SD card
Recovering data deleted from internal memory

Recovering deleted data by parsing SQLite files

Recovering deleted data through file carving techniques
Analyzing backups
Summary

7. Forensic Analysis of Android Applications
Application analysis

Why do app analysis?
The layout of this chapter

Determining what apps are installed
Understanding Linux epoch time

Wi-Fi analysis
Contacts/call analysis
SMS/MMS analysis
User dictionary analysis
Gmail analysis
Google Chrome analysis

Decoding the WebKit time format
Google Maps analysis
Google Hangouts analysis
Google Keep analysis

Converting a Julian date
Google Plus analysis
Facebook analysis
Facebook Messenger analysis
Skype analysis

Recovering video messages from Skype
Snapchat analysis
Viber analysis
Tango analysis

Decoding Tango messages
WhatsApp analysis

Decrypting WhatsApp backups
Kik analysis
WeChat analysis

Decrypting the WeChat EnMicroMsg.db database
Application reverse engineering

Obtaining the application's APK file
Disassembling an APK file
Determining an application's permissions
Viewing the application's code

Summary
8. Android Forensic Tools Overview

ViaExtract
Backup extraction with ViaExtract

Logical extraction with ViaExtract
Examining data in ViaExtract
Other tools within ViaExtract

Autopsy
Creating a case in Autopsy
Analyzing data in Autopsy

ViaLab Community Edition
Setting up the emulator in ViaLab
Installing an application on the emulator
Analyzing data with ViaLab

Summary
Conclusion

Index

Learning Android Forensics

Learning Android Forensics
Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher, except
in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the authors, nor Packt Publishing, and its dealers and distributors will be held
liable for any damages caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

First published: April 2015

Production reference: 2280415

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78217-457-8

www.packtpub.com

http://www.packtpub.com

Credits
Authors

Rohit Tamma

Donnie Tindall

Reviewers

Tom Anderson

Manish Chasta

Heather Mahalik

Gudipaty Laxmikant Pratap

Pujan P Shah

Vijay Kumar Velu

Commissioning Editor

Julian Ursell

Acquisition Editor

Rebecca Youé

Content Development Editor

Amey Varangaonkar

Technical Editor

Anushree Arun Tendulkar

Copy Editors

Karuna Narayanan

Vikrant Phadke

Aarti Saldanha

Project Coordinator

Suzanne Coutinho

Proofreaders

Safis Editing

Paul Hindle

Indexer

Tejal Soni

Graphics

Disha Haria

Production Coordinator

Aparna Bhagat

Cover Work

Aparna Bhagat

About the Authors
Rohit Tamma is a security consultant working for a Fortune 500 company. With over 6 years of
experience in the field of security, he is experienced in performing vulnerability assessments and
penetration testing for web and mobile applications. He is currently focusing on mobile forensics on
the Android platform. Rohit has also coauthored Practical Mobile Forensics, Packt Publishing. You
can contact him at <tamma.rohit5@gmail.com> or on Twitter at @RohitTamma.

I would like to dedicate this book to my parents, my friends, and the countless number of people on
whose shoulders we stand today.

Donnie Tindall is a digital forensics engineer at Dagger Networks, where he evaluates smartphone
application security for various use cases and provides unique solutions to challenging forensic
issues. Previously, he worked for Basis Technology, where he provided on-site mobile device
forensics support for the U.S. government, including the development and teaching of mobile
forensics courses to government and military users. Prior to that, he worked as a consultant for the
FBI Terrorist Explosive Device Analytical Center, where he was responsible for handling mobile
device forensics on media associated with improvised explosive devices. Donnie has performed
thousands of mobile device extractions on Nokia, BlackBerry, Android, iPhone, and other devices.
He is also an IACIS Certified Forensic Computer Examiner and instructor of FOR585, SANS
Institute's smartphone forensics course. Donnie can be reached at
<MobileForensicsResearch@gmail.com>.

First, I need to thank my wife, Amber, for putting up with me locking up myself in the office for hours
at a time while writing this book. Also, thank you to my son, Dominic, for allowing me to use the
computer long enough to get things done (without complaining—most of the time). And of course,
thanks to my parents for helping me get where I am today.

A huge thanks goes to Heather "Hank" Mahalik and Lee "Leroy/Crogs" Crognale for thinking of me
when this book was proposed. They have helped me immeasurably in my career. Much of what I
wrote in my chapters would be wrong if it wasn't for the help of Dustin Fraze—bowing before your
superior technical expertise is always a good idea, so thanks for trying to make me a little smarter.
Jim Connor, thank you for the test devices that I could not buy myself and for answering the questions
that were so dumb that Dustin ignored them. Finally, thanks to James Nuttall for his help with the mem
RAM analysis tool in Chapter 5 and for showing me a few Android tricks along the way.

mailto:tamma.rohit5@gmail.com
mailto:MobileForensicsResearch@gmail.com

About the Reviewers
Tom Anderson is a software developer and forensic researcher with over 10 years' experience in
mobile forensics. He currently works at NowSecure as the technical product manager for a forensics
product and is also involved in security research.

I would like to thank my wife and my two beautiful daughters for their continued support and
understanding. I would also like to thank my team at NowSecure for building an great forensics
product.

Manish Chasta is a security researcher, analyst, author, speaker, and enthusiast, working with
Indusface as the manager of managed security services. With an impressive career of over 9 years in
mobile security, web application security, and cyber forensics, he has also spoken at prestigious
security-related events and conferences.

Manish's vast experience includes auditing numerous mobile and web applications across the internet
banking, core banking, finance, healthcare, CRM, telecom and e-commerce sectors. He has even
authored numerous security-based articles. Over the years, many clients have benefitted from his
training and workshop sessions on digital forensics, application security, and ethical hacking.

I would like to thank my beloved wife, Archana, my beautiful daughter, Mishi, my family, and
teammates at Indusface for their encouragement and support that made it possible for me to review
this book.

Heather Mahalik is a project manager and leads the forensic effort at Oceans Edge. She is the
course leader for the FOR585 SANS Smartphone Forensics course and coauthors the Advanced
Smartphone Forensics and Macintosh Forensics courses. With over 12 years of experience in digital
forensics, she currently focuses her efforts on mobile device exploitation, forensic course
development, instruction, and research on smartphone forensics.

Prior to joining Oceans Edge, Heather was the mobile exploitation team leader at Basis Technology,
aiding the U.S. government. Previously, she worked at Stroz Friedberg and as a contractor for the
U.S. Department of State, Computer Investigations and Forensics Lab. Heather earned her bachelor's
degree from West Virginia University. She coauthored Practical Mobile Forensics, Packt
Publishing, and has authored white papers and forensic course material. She has taught hundreds of
courses worldwide to law enforcement, government, IT, e-discovery, and other forensic
professionals, focusing on mobile devices and digital forensics.

My work on this book is dedicated to my husband and son. You are the two greatest men and the most
important people in my life. Thank you for supporting me in my career and crazy endeavors!

Gudipaty Laxmikant Pratap is a digital forensics analyst, incident handler, cybercrime investigator,
and smartphone forensics examiner. He has a master's degree (MS) in digital forensics and
information assurance. He has expertise in imaging hard drives, flash drives, mobile devices, laptops,

and desktops using hardware and software currently recognized and approved in the forensics field.
He is proficient in automating forensic analysis using a wide array of tools currently recognized and
approved by the court of law.

Laxmikant specializes in smartphone and BYOD forensics on the latest devices and mobile platforms,
such as Android, Apple iOS, Windows, Symbian, and so on. He has conducted training sessions on
cybercrime investigations, smartphone forensics, and incident response for investigating officials of
law enforcement agencies (Anti Corruption Bureau, Central Detective Training School, Central
Crime Station, Forensic Sciences Laboratory, Crime Investigation Department, the income tax
investigation department, and a state police department) and corporate entities across India.

Laxmikant is an avid and passionate researcher on new artifacts. He likes developing automated
solutions for real-world forensic challenges.

I would like to express my special gratitude to Packt Publishing, who gave me the golden opportunity
to be a part of a book on a topic that is very dear to me. Reviewing this book gave me immense
pleasure. It also helped me learn so many things that were otherwise not known to me. My heartfelt
thanks to my fellow reviewers, authors, and the entire panel associated with this book. I would like to
acknowledge the people who mean the world to me: mom, dad, Ganesh, and Chaitanya. I consider
myself the luckiest person in the world to have such a supportive family, standing by me with their
love and support.

Pujan P Shah has been active in the field of information technology since 2007. During his learning,
he acquired knowledge and experience of working on Windows, Macintosh, Unix, networking,
programming, malware analysis, cloud security, digital forensics, and incident response. He has done
his master's degree in digital forensics and information assurance. While pursuing this degree, he
completed his training from the computer forensics division at the Directorate of Forensic Science,
Gujarat, India.

Currently, Pujan is working as a digital forensics researcher and security analyst with companies
giving training and services on cyber security and forensics to law enforcement and corporate
agencies. In the past, he worked on some major research projects related to malware analysis, cloud
forensics, cryptography, steganography, network security, and forensics of the virtual environment.
He also has experience of over 5 years in using programming languages such as C, Shell scripts,
Python, Java, and VB.Net. He has published an article called A Digital Forensics Case Study Using
Autopsy in the eforensics magazine.

A person can achieve his dreams only when there is support of his or her family. I am lucky to have a
family that supported and facilitated my pursuit of academic activities, overlooking other
responsibilities. Many thanks to all of them: my mom, dad, brother, and teachers. My father's
suggestion made me rethink, change, and remold my career. I acknowledge his valuable contribution.
I owe my accomplishment to my family. Finally, I would like to thank my mother for being my
constant source of motivation and my friends who had always helped and assisted me with the
programming.

Vijay Kumar Velu is a passionate information security practitioner currently working as technical
manager in KPMG Global Services, based in India. He has more than 8 years of IT industry
experience, is a licensed penetration tester, and specializes in providing technical solutions to a
variety of cyber problems. He holds multiple security qualifications, including certified ethical
hacker, EC-council-certified security analyst, and computer hacking forensics investigator.

Vijay has helped clients assess threats and vulnerabilities through penetration testing, web
application security assessments, social engineering, technical security diagnostic reviews, network
and application architecture reviews, and gap assessments with regulatory standards across the
banking, telecom, retail, government, services, and insurance sectors. Vijay has also lead security
investigations associated with sophisticated cyber intrusions. He has helped clients detect,
investigate, and respond to attacks believed to be orchestrated by transnational criminal enterprises
and state-sponsored hackers.

Vijay was invited to be a speaker at the Open Cloud Conference held in Bangalore, and he has also
delivered multiple guest lectures/training on the importance of information security at various
business schools in India.

I would like to thank my family, friends (HACKERZ), my mentor, Lokesh Gowda, and my team at the
workplace.

www.PacktPub.com
Support files, eBooks, discount offers, and
more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at
<service@packtpub.com> for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today
and view 9 entirely free books. Simply use your login credentials for immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.PacktPub.com

Preface
Learning Android Forensics uses free open source tools to show you how to forensically recover
data from Android devices. All of you, from beginners to experts, are encouraged to follow along
with step-by-step directions to learn how to acquire and examine evidence and gain a deeper
understanding of the Android forensic process. Commercial forensic tools typically give an examiner
a button to press (commonly called the Find Evidence button). This book goes behind the scenes and
shows what many of these tools are actually doing, giving you much deeper knowledge of how they
work. Commercial forensic tools also frequently fail to recover data from third-party applications;
there are simply too many apps available to write a tool that covers all of them. This book shows you
how to manually analyze over a dozen popular applications. It teaches techniques and procedures for
understanding data that can be carried over to analyzing almost any other application.

What this book covers
Chapter 1, Introducing Android Forensics, introduces mobile forensics, the general approach, and
the challenges faced. This chapter also provides an overview of the Android architecture, security
features, boot process, and so on.

Chapter 2, Setting Up an Android Forensic Environment, covers the steps to perform to get an
established forensic setup to examine Android devices. This chapter also explains the use of ADB
commands on the Android device.

Chapter 3, Understanding Data Storage on Android Devices, provides a detailed explanation of
what kind of data is stored in the device, where it is stored, how it is stored, and details of the
filesystems in which it is stored.

Chapter 4, Extracting Data Logically from Android Devices, covers various logical data extraction
techniques using free and open source tools. The logical methods covered include ADB pull, ADB
backup, ADB dumpsys information, and SIM card extractions. Bypassing device lock screens is also
covered.

Chapter 5, Extracting Data Physically from Android Devices, demonstrates various physical data
extraction techniques. Physical methods include dd and nanddump, as well as using netcat to write
data to the examiner's computer. RAM and SD card imaging is also covered.

Chapter 6, Recovering Deleted Data from an Android Device, provides an overview on recovering
data deleted from an Android device. This chapter explains procedures to recover data deleted from
an SD card and also from a phone's internal storage.

Chapter 7, Forensic Analysis of Android Applications, covers forensic analysis of Android
applications, data obfuscation methods used by popular applications, reverse engineering of Android
applications, and the methods required for it.

Chapter 8, Android Forensic Tools Overview, explains various open source and commercial tools
that are helpful during forensic analysis of Android devices.

What you need for this book
This book covers various forensic approaches and techniques on Android devices. The content is
organized in a manner that allows any user to examine an Android device and perform forensic
investigation. No prerequisite knowledge is needed because all the topics are explained, from basic
to in-depth. Knowledge of mobile platforms, especially Android, will definitely be an advantage.
Wherever possible, the steps required to perform various forensic activities using tools are explained
in detail.

Who this book is for
This book is intended for forensic examiners with little or basic experience in mobile forensics on the
Android platform. It will also be useful to computer security professionals, researchers, and anyone
seeking a deeper understanding of Android mobile internals. Finally, this book will come in handy for
those who are trying to recover accidentally deleted data (photos, contacts, SMS, and more) from an
Android device.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames,
dummy URLs, user input, and Twitter handles are shown as follows: "Until Android 4.4, all apps
present under /system were treated equally."

A block of code is set as follows:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.example.rohit">

 <uses-permission android:name="android.permission.INTERNET" />

</manifest>

Any command-line input or output is written as follows:

shell@android:/ $ cat default.prop
cat default.prop
#
ADDITIONAL_DEFAULT_PROPERTIES
#
ro.secure=1
ro.allow.mock.location=0
ro.debuggable=0
persist.sys.usb.config=mtp

New terms and important words are shown in bold. Words that you see on the screen, for example,
in menus or dialog boxes, appear in the text like this: "In Android devices, this option is usually found
by navigating to Settings | Developer options."

Note

Warnings or important notes appear in a box like this.

Tip

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—what
you liked or disliked. Reader feedback is important for us as it helps us develop titles that you will
really get the most out of.

To send us general feedback, simply e-mail <feedback@packtpub.com>, and mention the book's title
in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or contributing to
a book, see our author guide at www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to get the
most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you
find a mistake in one of our books—maybe a mistake in the text or the code—we would be grateful if
you could report this to us. By doing so, you can save other readers from frustration and help us
improve subsequent versions of this book. If you find any errata, please report them by visiting
http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission
Form link, and entering the details of your errata. Once your errata are verified, your submission will
be accepted and the errata will be uploaded to our website or added to any list of existing errata
under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/content/support and
enter the name of the book in the search field. The required information will appear under the Errata
section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt, we
take the protection of our copyright and licenses very seriously. If you come across any illegal copies
of our works in any form on the Internet, please provide us with the location address or website name
immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
<questions@packtpub.com>, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
mailto:copyright@packtpub.com
mailto:questions@packtpub.com

Chapter 1. Introducing Android Forensics
Mobile forensics is a branch of digital forensics which is evolving in today's digital era. Android
forensics deals with extracting, recovering and analyzing the data present on an Android device
through various techniques. However, it is important to have a clear understanding of the platform and
other fundamentals before we dive in and find out how to extract data. In this chapter, we will cover
the following topics:

Mobile forensics
Mobile forensics approach
Android architecture
Android security
Android hardware components
Android boot process

The world today is experiencing technological innovation like never before. This growth is almost
exponential in the field of mobile devices. Gartner, a technology research and advisory firm, in their
forecasts published in June 2014, predicted that mobile phone shipments are soon set to break 2.4
billion units. This statistic alone reflects the unprecedented growth of mobile devices. Mobile phones
have not only increased in number but also have become more sophisticated in terms of functionality.

The following screenshot referenced from
http://en.wikipedia.org/wiki/File:Mobile_phone_subscribers_1997-2014_ITU.svg shows the
increase in graph of mobile phone subscribers per 100 inhabitants from 1997 to 2014:

http://en.wikipedia.org/wiki/File:Mobile_phone_subscribers_1997-2014_ITU.svg

Mobile phone subscribers per 100 inhabitants from 1997-2014

Within mobile phones, smart phones are very much becoming the norm. Improvements in the
computing power and data storage of these devices enable us to perform a wide range of activities.
We are increasingly becoming dependent on these mobile devices for most of our activities. Apart
from performing routine tasks such as making calls, sending messages, and so on, these devices also
support other activities such as sending e-mails, surfing the Internet, recording videos, creating and
storing documents, identifying locations with Global Positioning System (GPS) services, managing
business tasks, and much more. In other words, mobile devices are now a repository of sensitive
personal information, containing a wealth of user data. Quite often, the data sitting on a device is
more valuable than the device itself. For instance, calls made from a device could be valuable
information for law enforcement agencies. The fact that mobile forensics played a crucial role in
solving high-profile cases, such as the 2010 Times Square car bombing attempt and the Boston
marathon bombings, reaffirms the increasing role of mobile forensics in many government and law
enforcement cases.

Mobile forensics

Mobile device forensics is a branch of digital forensics which deals with extracting, recovering and
analyzing digital evidence or data from a mobile device under forensically sound conditions. Simply
put, it deals with accessing the data stored on devices which includes SMS, contacts, call records,
photos, videos, documents, application files, browsing history and so on, and also recovering data
deleted from devices using various forensic techniques. It is important that the process of recovering
or accessing details from a device is forensically sound, if it has to be admitted in a court of law and
to maintain the integrity of the evidence. If the evidence has to be admitted in a court of law, it is
important that the original device is not tampered with.

Note

The term forensically sound is often used in the digital forensics community to clarify the correct use
of a particular forensic technology or methodology. Mobile forensics, especially Android forensics,
is evolving fast, owing to the fact that it has a market share of 84 percent (as per market research firm
IDC).

As explained by Eoghan Casey in his book Digital Forensics and Investigation, forensic soundness
is not just about keeping original evidence unaltered. Even the routine task of acquiring data from a
hard drive using a hardware write-blocker may cause alterations (for example, making a hidden area
of the hard drive accessible) on the drive. One of the keys to forensic soundness is documentation.
Documenting how the device is handled from the beginning is very important. Hence, an investigation
can be considered forensically sound if the acquisition process preserves the original data and its
authenticity and integrity can be validated. Evidence integrity checks ensure that the evidence has not
been tampered with from the time it was collected. Integrity checks are done by comparing the digital
fingerprint of the evidence taken at the time of collection with the digital fingerprint of the evidence in
current state.

There is a growing need for mobile forensics due to several reasons. Some of the prominent reasons
are:

Use of mobile phones to store personal information
Increased use of mobile phones to perform online activity
Use of mobile phones in several crimes

Mobile forensics on a particular device is primarily dependent on the underlying operating systems.
Thus we have different fields such as Android forensics, iOS forensics, Blackberry forensics, and so
on.

The mobile forensics approach
Once the data is extracted from a device, different methods of analysis are used based on the
underlying case. As each investigation is distinct, it is not possible to have a single definitive
procedure for all cases. However, the overall process can be broken into five phases as shown in the
following diagram:

Phases in mobile forensics

The following section discusses each phase in detail:

Investigation Preparation
This phase begins when a request for examination is received. It involves preparing all of the
paperwork and forms required to document the chain of custody, ownership information, the device
model, its purpose, the information that the requestor is seeking, and so on. The chain of custody

refers to the chronological documentation or paper trail, showing the seizure, custody, control,
transfer, analysis, and disposition of physical or electronic evidence. From the details submitted by
the requestor, it's important to have a clear understanding of the objective for each examination.

Seizure and Isolation
Handling the device during seizure is one of the important steps while performing forensic analysis.
The evidence is usually transported using anti-static bags which are designed to protect electronic
components against damages produced by static electricity. As soon as the device is seized, care
should be taken to make sure that our actions don't result in any data modification on the device. At
the same time, any opportunity that can aid the investigation should also not be missed.

Following are some of the points that need to be considered while handling an Android device during
this phase:

With increasing user awareness on security and privacy, most of the devices now have screen
lock enabled. During the time of seizure, if there is a chance to do so, disable the passcode.
Some devices do not ask the user to re-enter the passcode while disabling the lock screen
option.
If the device is unlocked, try to change the settings of the device to allow greater access to the
device. Some of the settings that can be considered to achieve this are as follows:

Enable USB debugging: Enabling this option gives greater access to the device through
Android debug bridge (adb) connection. We are going to cover adb connection in detail in
Chapter 2, Setting Up Android Forensic Environment. This will greatly aid the forensic
investigator during the data extraction process. In Android devices, this option is usually
found under Settings | Developer options, as shown in the following screenshot. In later
Android versions starting from 4.2, the developer options are hidden by default. To enable
them, navigate to Settings | About Phone and tap on Build number 7 times.
Enable stay awake setting: Enabling this option and charging the device will make the
device stay awake which means that, it doesn't get locked. In Android devices, this option
is usually found under Settings | Developer options, as shown in the following screenshot:

Stay awake and USB debugging options

Increase Screen timeout: This is the time for which the device will be active once it is
unlocked. Depending on the device model, this time can be set up to 30 minutes. In most
devices, it can be accessed under Settings | Display | Screen timeout, as shown in the
following screenshot:

Note

Please note that the location to access this item changes across different versions and models of
Android phones.

Screen timeout option on an Android device

In mobile forensics, it is of critical importance to protect the seized device so that our interaction
with the evidence (or for that matter, an attacker's attempt to remotely interact with the device) does
not change the evidence. In computer forensics, we have software and hardware write blockers that
can perform this function. But in mobile forensics, since we need to interact with the device to pull
the data, these write blockers are not of any use. Another important aspect is that we also need to
prevent the device from interacting with wireless radio networks. As mentioned earlier, there is a
high probability that an attacker can issue remote wipe commands to delete all data, including e-
mails, applications, photos, contacts, and other files on the device.

The Android Device Manager (ADM) and several other third-party apps allow the phone to be
remotely wiped or locked. This can be done by signing into the Google account that is configured on
the mobile device. Using this software, an attacker can also locate the device, which could pose a
security risk. For all these reasons, isolating the device from all communication sources is very
important.

Tip

Have you thought about remote wipe options that do not require internet access? Mobile Device
Management (MDM) software provides a remote wipe feature just by sending an SMS. Isolating the
device from all communication options is crucial.

To isolate the device from a network, we can put the device in Airplane mode if there is access to
the device. Airplane mode disables a device's wireless transmission functions, such as cellular radio,
Wi-Fi, and Bluetooth. However, this may not always be possible because most of the devices are
screen-locked. Also, as Wi-Fi is now available in airplanes, some devices now allow Wi-Fi access

in Airplane mode. Hence, an alternate solution would be to use a Faraday bag or RF isolation box, as
both effectively block signals to and from the mobile phone. But, one concern with these isolation
methods however, is that once they're employed, it is difficult to work with the phone because you
cannot see through them to use the touch screen or keypad. For this reason, Faraday tents and rooms
exist, as shown in the following screenshot (taken from http://www.technicalprotection.co.uk/), but
are very expensive.

Pyramid-shaped Faraday tent

Even after taking all these precautions, certain automatic functions, such as alarms can trigger. If such
a situation is encountered, it must be properly documented.

Acquisition
The acquisition phase refers to the extraction of data from the device. Due to the inherent security
features of mobile devices, extracting data is not always straight forward. Depending on the operating
system, make, and model of the device, the extraction method is decided. The following types of
acquisition methods can be used to extract data from a device:

Manual acquisition: This is the simplest of all acquisition methods. The examiner uses the user
interface of the phone to browse and investigate. No special tools or techniques are required
here, but the limitation is that only those files and data that are visible through a normal user
interface can be extracted. Data extracted through other methods can also be verified using this.
Logical acquisition: This is also called logical extraction. This generally refers to extracting the
files that are present on a logical store such as a filesystem partition. This involves obtaining
data types, such as text messages, call history, pictures and so on, from a phone. The logical
extraction technique works by using the original equipment manufacturer's APIs for
synchronizing the phone's contents with a computer. This technique usually involves extracting
the following evidence:

http://www.technicalprotection.co.uk/

Call Logs
SMS
MMS
Browser history
People
Contact methods
Contacts extensions
Contacts groups
Contacts phones
Contacts setting
External image media (metadata)
External image thumbnail media (metadata)
External media, audio, and misc. (metadata)
External videos (meta data)
MMSParts (includes full images sent via MMS)
Location details (GPS data)
Internet activity
Organizations
List of all applications installed, along with their version
Social networking apps data such as WhatsApp, Skype, Facebook, and so on.

Filesystem acquisition: This is a logical procedure and generally refers to the extraction of a
full file system from a mobile device. File system acquisition can sometimes help in recovering
deleted contents (stored in SQLite files) that are deleted from the device.
Physical acquisition: This involves making a bit-by-bit copy of the entire flash memory. The
data extracted using this method is usually in the form of raw data (as a hexadecimal dump),
which can then be further parsed to obtain file system information or human readable data. Since
all investigations are performed on this image, this process also ensures that original evidence is
not altered.

Examination and Analysis
In this phase, different software tools are used to extract the data from the memory image. In addition
to these tools, an investigator would also need the help of a hex editor, as tools do not always extract
all the data. There is no single tool that can be used in all cases. Hence, examination and analysis
requires a sound knowledge of various file systems, file headers, and so on.

Reporting
Documentation of the examination should be done throughout the process, noting down what was done
in each phase. The following points might be documented by an examiner:

Date and time the examination started
Physical condition of the phone
The status of the phone when received (ON/OFF)

Make, model, and operating system of the phone
Pictures of the phone and individual components
Tools used during the investigation
Data documented during the examination

The data extracted from the mobile device should be clearly presented to the recipient so that it can
be imported into other software for further analysis. In the case of civil or criminal cases, wherever
possible, pictures of data, as it existed on the cellular phone, should be collected, as they can be
visually compelling to a jury.

Challenges in mobile forensics
With the increased usage of Android devices and the wider array of communication platforms that
they support, demand for forensic examination has automatically grown. While working with mobile
devices, forensic analysts face a number of challenges. The following points shed light on some of the
mobile forensics challenges faced today:

Preventing data alteration on the device: One of the fundamental rules to remember in
forensics is to not modify the evidence. In other words, the forensic techniques that are applied
to a device to extract any information, should not alter the data present on the device. But this is
not practical with respect to mobile forensics because simply switching ON a device might also
change certain state variables that are present on the device. With mobile devices, background
processes always run and a sudden transition from one state to another can result in the loss or
modification of data. Therefore, there is a chance that data may be altered either intentionally or
unintentionally by the forensic analyst. In addition to this, there is a high possibility that an
attacker can remotely change or delete the content present on the device. As mobile phones use
different communication channels (cellular, Wi-Fi, Bluetooth, infrared, and so on) the possibility
of communicating through them should be eliminated. Features such as remote data wiping
would enable an attacker to remotely wipe the entire device just by sending an SMS or by
simply pressing a button that sends a wipe request to the Android device. Unlike computer
forensics, mobile device forensics requires more than just isolating the device from the network.
Wide range of operating systems and device models: The wide range of mobile operating
systems available in the market makes the life of a forensic analyst more difficult. Although
Android is the most dominant operating system in the mobile world, there are mobile devices
which run on other operating systems, including iOS, Blackberry, Windows, and so on, which
are often encountered during investigations. Also for a given operating system, there are millions
of mobile devices available that differ in OS versions, hardware, and various other features. For
example, within the Android operating system, there are around 10 versions, and for each
version, there are different customizations made by different manufacturers. Based on the
manufacturer, the approach to acquiring forensic artifacts changes. To remain competitive,
manufacturers release new models and updates so rapidly that it's hard to keep track of all of
them. Sometimes within the same operating system the data storage options and file structures
also change, making it even more difficult. There is no single tool that can work on all the
available types of mobile operating systems. Therefore, it is crucial for forensic analysts to
remain updated on all the latest changes and techniques.
Inherent security features: As the concept of "privacy" is increasingly gaining importance,
mobile manufacturers are moving towards implementing robust security controls on devices,
which complicates the process of gaining access to the data. For example, if the device is
passcode protected, the forensic investigator has to first find a way to bypass the passcode.
Similarly, full disk encryption mechanisms that are implemented on some of the latest devices
prevent law enforcement agencies and forensic analysts from accessing the information on the
device. Apple's iPhone encrypts all the data present on the device by default, using hardware
keys built into the device. It is very difficult for an examiner to break these encryption

mechanisms using techniques such as brute force.
Legal issues: Mobile devices can be involved in crimes that span across the globe and can
cross geographical boundaries. In order to tackle these multijurisdictional issues, the forensic
examiner needs to be aware of the nature of the crime and also regional laws.

The Android architecture
Before we proceed with the internals of Android forensics, this section introduces you to Android as
an operating system and covers various fundamental concepts that need to be understood to gain
experience in the area of forensics.

Any operating system (desktop or mobile) takes responsibility for managing the resources of the
system and provides a way for applications to talk to hardware or physical components in order to
accomplish certain tasks. The Android operating system is no different. It powers mobile phones,
manages memory and processes, enforces security, takes care of networking issues, and so on.
Android is open source and most of the code is released under the Apache 2.0 license. Practically,
this means that mobile phone device manufacturers can access it freely, modify it, and use the
software according to the requirements of any device. This is one of the primary reasons for its
popularity.

The Android operating system consists of a stack of layers running on top of each other. Android
architecture can be best understood by taking a look at what these layers are and what they do. The
following diagram referenced from http://elinux.org/images/c/c2/Android-system-architecture.jpg,
shows the various layers involved in the Android software stack:

http://elinux.org/images/c/c2/Android-system-architecture.jpg

Android architecture

Android architecture is in the form of a software stack comprising kernel, libraries, runtime
environment, applications, middleware, and services. Each layer of the stack (and also elements
within each layer) is integrated in a way that provides an optimal execution environment for mobile
devices. The following sections focus on the different layers of the Android stack, starting at the
bottom with the Linux kernel.

The Linux kernel
Android OS is built on top of the Linux kernel with some architectural changes made by Google.
Linux was chosen as it is a portable platform that can be compiled easily on different hardware. The
Linux kernel is positioned at the bottom of the software stack and provides a level of abstraction
between the device hardware and the upper layers. It also acts as an abstraction layer between the
software and hardware present on the device. To understand this better, consider the case of a camera
click. What actually happens when you click a photo using the camera button on your mobile device?
At some point, the hardware instruction, such as pressing a button, has to be converted to a software

instruction such as to take a picture and store it in the gallery. The kernel contains drivers which
can facilitate this process. When the camera button click is detected, the instruction goes to the
corresponding driver in the kernel, which sends the necessary commands to the camera hardware,
similar to what occurs when a key is pressed on a keyboard. In simple terms, the drivers in the kernel
control the underlying hardware. As shown in the preceding figure, the kernel contains drivers related
to Wi-Fi, Bluetooth, USB, audio, display, and so on.

All the core functionalities of Android, such as process management, memory management, security,
and networking, are managed by Linux kernel. Linux is a proven platform when it comes to security
and process management. Android has taken leverage of the existing Linux open source OS to build a
solid foundation for its ecosystem. Each version of Android has a different version of the underlying
Linux kernel. As of September 2014, the current Android version 4.2 is built upon Linux kernel 3.4 or
newer, but the specific kernel version depends on the actual Android device and chipset.

Libraries
On top of Linux kernel are Android's native libraries. It is with the help of these libraries that the
device handles different types of data. For example, the media framework library supports the
recording and playback of audio, video and picture formats. These libraries are written in the C or
C++ programming languages and are specific to a particular hardware. Surface Manager, Media
framework, SQLite, WebKit, OpenGL, and so on are some of the most important native libraries.

Dalvik virtual machine
Android applications are programmed using the Java programming language. The main reason for
choosing Java is because it's a well-known language and has a massive developer base. Android
wanted to take advantage of this existing developer community, rather than coming up with a new
language.

Note

This later prompted Oracle to file a case in court against Google claiming that its copyrights and
patents were violated. But the jury finally declared that Google did not infringe on Oracle's patents,
and the trial judge ruled that the structure of the Java APIs used by Google was not copyrightable.

When a Java program is compiled, we get byte code. A Java virtual machine (JVM) (a virtual
machine is an application that acts as an operating system) can execute this byte code. In the case of
Android, this Java byte code is further converted to Dalvik byte code by the dex compiler. This
Dalvik byte code is then fed into Dalvik virtual machine (DVM) which can read and use the code.
Thus, the .class files from the Java compiler are converted to .dex files using the dx tool. Dalvik
byte code is an optimized byte code suitable for low-memory and low-processing environments.
Also, note that JVM's byte code consists of one or more .class files, depending on the number of
Java files that are present in an application, but Dalvik byte code is composed of only one .dex file.
Each Android application runs its own instance of the DVM. The following diagram shows the

difference between the program compilation of a Java application and an Android application.

JVM vs DVM

Since Android 5.0, Dalvik has been replaced by Android Run Time (ART) as the platform default.
The ART was introduced in Android 4.4 on an experimental basis. Dalvik uses just-in-time (JIT)
compilation which compiles the byte code every time an application is launched. However ART uses
ahead-of-time (AOT) compilation by performing it upon the installation of an application. This
greatly reduces the mobile device's processor usage, as the overall compilation during the operation
of an application is reduced.

The application framework
Android applications are run and managed with the help of an Android application framework. It is
responsible for performing many crucial functions such as resource management, handling calls, and
so on. The Android framework includes the following key services, referenced from
http://fp.edu.gva.es/av/pluginfile.php/745396/mod_imscp/content/2/1_overview_of_the_android_architecture.html

Activity manager: This service controls all aspects of the application lifecycle and activity
stack.
Content providers: This service allows applications to publish and share data with other
applications.
Resource manager: This service provides access to non-code embedded resources such as
strings, color settings, and user interface layouts.
Notifications manager: This service allows applications to display alerts and notifications to
the user.
View system: This service provides an extensible set of views used to create application user
interfaces.
Package manager: The system by which applications are able to find out information about
other applications currently installed on the device.
Telephony manager: This service provides information to the application about the telephony
services available on the device such as status and subscriber information.
Location manager: This service provides access to the location services allowing an
application to receive updates about location changes.

The applications layer
The topmost layer in the Android stack consists of applications (called apps) which are programs that
users directly interact with. There are two kinds of apps discussed as follows:

System apps: These are applications that are pre-installed on the phone and are shipped along
with the phone. Applications such as default browser, e-mail client, contacts, and so on, are
examples for system apps. These cannot be uninstalled or changed by the user as they are read-
only on production devices. These are usually present mounted in the /system directory. Until
Android 4.4, all apps present under /system were treated equally. But from Android 4.4
onward, apps installed in /system/priv-app/ are treated as privileged applications and are
granted permissions with protection level signatureOrSystem to only privileged apps.
User-installed apps: These are the applications that are downloaded and installed by the user
from various distribution platforms such as Google Play. Google Play is the official app store
for the Android operating system, where users can browse and download the applications.
Based on December 2014 statistics from AppBrain, there are around 1,418,453 Android apps in
the Play Store. These apps are presently found in the /data directory. More information about
how security is enforced between them is discussed in the following sections.

http://fp.edu.gva.es/av/pluginfile.php/745396/mod_imscp/content/2/1_overview_of_the_android_architecture.html

Android security
Android as a platform has certain features built into its architecture that ensure the security of users,
applications, and data. Although they help in protecting the data, these security features sometimes
prevent investigators from gaining access to necessary data. Hence, from a forensic perspective, it is
first important to understand the inherent security features so that a clear idea is established about
what can or cannot be accessed under normal circumstances. The security features and offerings that
are incorporated aim to achieve three things:

To protect user data
To protect system resources
To make sure that one application cannot access the data of another application

The next sections provide an overview of the key security features in the Android operating system.

Security at OS level through Linux kernel
The Android operating system is built on top of the Linux kernel. Over the past few years, Linux has
evolved into a secure operating system trusted by many corporations across the world for its security.
Today, most of the mission critical systems and servers run on Linux because of its security. By
having the Linux kernel at the heart of its platform, Android tries to ensure security at the OS level.
Also, Android has built a lot of specific code into Linux to include certain features related to mobile
environment. With each Android release the kernel version also has changed. The following table
shows Android versions and the corresponding Linux kernel version:

Android Version

Linux Kernel Version

1.0

2.6.25

1.5

2.6.27

1.6

2.6.29

2.2

2.6.32

2.3

2.6.35

3.0

2.6.36

4.0

3.0.1

4.1

3.0.31

4.2

3.4.0

4.3

3.4.39

4.4

3.8

Linux kernel used in various Android versions

The Linux kernel provides Android with the below key security features:

A user-based permissions model
Process isolation
Extensible mechanism for secure IPC

Permission model

Android implements a permission model for individual apps. Applications must declare which
permissions (in the manifest file) they require. When the application is installed, as shown in the
following screenshot, Android will present the list to the user so that they can view the list to allow
installation or not:

Sample permission model in Android

Unlike a desktop environment, this provides an opportunity for the user to know in advance which
resources the application is seeking access to. In other words, user permission is a must to access any
kind of critical resource on the device. By looking at the requested permission, the user is more
aware of the risks involved in installing the application. But most users do not read these and just
give away a lot of permissions, exposing the device to malicious activities.

Note

It is not possible to install an Android app with a few or reduced permissions. You can either install

the app with all the permissions or decline it.

As mentioned earlier, developers have to mention permissions in a file named
AndroidManifest.xml. For example, if the application needs to access the Internet, the permission
INTERNET is specified using the following code in the AndroidManifest.xml file:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.example.rohit">

 <uses-permission android:name="android.permission.INTERNET" />

</manifest>

Android permissions are categorized into four levels which are as follows:

Permission Type

Description

Normal

This is the default value. These are low risk permissions and do not pose a risk to other applications,
system or user. This permission is automatically granted to the app without asking for user approval
during installation.

Dangerous

These are the permissions that can cause harm to the system and other applications. Hence, user
approval is necessary during installation.

Signature

These are automatically granted to a requesting app if that app is signed by the same certificate as the
one that declared/created the permission. This level is designed to allow apps that are part of a suite,
or otherwise related, to share data.

Signature/System

A permission that the system grants only to the applications that are in the Android system image, or
that are signed with the same certificate as the application that declared the permission.

Application sandboxing

In order to isolate applications from each other, Android takes advantage of the Linux user-based
protection model. In Linux systems, each user is assigned a unique user ID (UID) and users are
segregated so that one user does not access the data of another user. All resources under a particular
user are run with the same privileges. Similarly, each Android application is assigned a UID and is

run as a separate process. What this means is that even if an installed application tries to do
something malicious, it can do it only within its context and with the permissions it has.

This application sandboxing is done at the kernel level. The security between applications and the
system at the process level is ensured through standard Linux facilities such as user and group IDs
that are assigned to applications. This is shown in the following screenshot, referenced from
http://www.ibm.com/developerworks/library/x-androidsecurity/.

Two applications on different processes on with different UID's

By default, applications cannot read or access the data of other applications and have limited access
to the operating system. If application A tries to read application B's data, for example, then the
operating system protects against this because application A does not have the appropriate privileges.
Since the application sandbox mechanism is implemented at the kernel level, it applies to both native
applications and OS applications. Thus the operating system libraries, application framework,
application runtime, and all applications run within the Application Sandbox. Bypassing this sandbox
mechanism would require compromising the security of Linux kernel.

SELinux in Android

Starting with Android 4.3, Security-Enhanced Linux (SELinux) is supported by the Android

http://www.ibm.com/developerworks/library/x-androidsecurity/

security model. Android security is based on discretionary access control, which means that
applications can ask for permissions, and users can grant or deny those permissions. Thus, malware
can create havoc on phones by gaining permissions. But SE Android uses mandatory access control
(MAC) which ensures that applications work in isolated environments. Hence, even if a user installs
a malware app, the malware cannot access the OS and corrupt the device. SELinux is used to enforce
MAC over all processes, including the ones running with root privileges.

SELinux operates on the principle of default denial. Anything that is not explicitly allowed is denied.
SELinux can operate in one of two global modes: permissive mode, in which permission denials are
logged but not enforced, and enforcing mode, in which denials are both logged and enforced. As per
Google's documentation, in the Android 5.0 Lollipop release, Android moves to full enforcement of
SELinux. This builds upon the permissive release of 4.3 and the partial enforcement of 4.4. In short,
Android is shifting from enforcement on a limited set of crucial domains (installd, netd, vold and
zygote) to everything (more than 60 domains).

Application Signing

All Android apps need to be digitally signed with a certificate before they can be installed on a
device. The main purpose of using certificates is to identify the author of an app. These certificates do
not need to be signed by a certificate authority and Android apps often use self-signed certificates.
The app developer holds the certificate's private key. Using the same private key, the developer can
provide updates to his applications and share data between applications. In debug mode, developers
can sign the app with a debug certificate generated by the Android SDK tools. You can run and debug
an app signed in debug mode but the app cannot be distributed. To distribute an app, the app needs to
be signed with your own certificate. The key store and the private key which are used during this
process need to be secured by the developer as they are essential to push updates. The following
screenshot shows the key store selection option that is displayed while exporting the application:

Keystore selection while exporting Android app

Secure interprocess communication

As discussed in the above sections, sandboxing of the apps is achieved by running apps in different
processes with different Linux identities. System services run in separate processes and have more
privileges. Thus, in order to organize data and signals between these processes, an interprocess
communication (IPC) framework is needed. In Android, this is achieved with the use of the Binder
mechanism.

The Binder framework in Android provides the capabilities required to organize all types of
communication between various processes. Android application components, such as intents and
content providers, are also built on top of this Binder framework. Using this framework, it is possible
to perform a variety of actions such as invoking methods on remote objects as if they were local,
synchronous and asynchronous method invocation, sending file descriptors across processes, and so
on. Let us suppose the application in Process 'A' wants to use certain behavior exposed by a service
which runs in Process 'B'. In this case, Process 'A' is the client and Process 'B' is the service. The
communication model using Binder is shown in the following diagram:

Binder Communication Model

All communication between the processes using the Binder framework occurs through the
/dev/binder Linux kernel driver. The permissions to this device driver are set to world readable
and writable. Hence, any application may write to and read from this device driver. All
communications between the client and server happen through proxies on the client side and stubs on
the server side. The proxies and the stubs are responsible for sending and receiving the data, and the
commands, sent over the Binder driver.

Each service (also called a Binder service) exposed using the Binder mechanism is assigned with a
token. This token is a 32-bit value and is unique across all processes in the system. A client can start
interacting with the service after discovering this value. This is possible with the help of Binder's
context manager. Basically, the context manager acts as a name service, providing the handle of a
service using the name of this service. In order to get this process working, each service must be
registered with the context manager. Thus, a client needs to know only the name of a service to
communicate. The name is resolved by the context manager and the client receives the token that is
later used for communicating with the service. The Binder driver adds the UID and the PID value of
the sender process to each transaction. As discussed earlier, each application in the system has its
own UID and this value is used to identify the calling party. The receiver of the call may check the
obtained values and decide if the transaction should be completed. Thus, the security is enforced,
with the Binder token acting as a security token as it is unique across all processes.

Android hardware components
Android is compatible with a wide range of hardware components. Having a Linux kernel made this
easy, as Linux supports large variety of hardware. This gives manufacturers a lot of flexibility as they
can design based on their requirement, without worrying about compatibility. This poses a significant

challenge for forensic analysts during investigations. Thus, understanding the hardware components
and device types would greatly help in understanding Android forensics.

Core components

The components present in a device change from one manufacturer to another and also from one
model to another. However, there are some components which are found in most mobile devices. The
following sections provide an overview of the commonly-found components of an Android device.

Central processing unit

The central processing unit (CPU), also known as processor, is responsible for executing everything
that happens on a mobile device. It tells the device what to do and how to do it. Its performance is
measured based on the number of tasks it can complete per second, known as a cycle. For example, 1
GHz processor can process one billion cycles per second. The higher the capacity of the processor,
the smoother the performance of the phone will be.

When dealing with smart phones, we come across the following terminologies—ARM, x86 (Intel),
MIPS, Cortex, A5, A7, or A9. ARM is the name of a company that licenses their architectures
(branded Cortex) with different models coming up each year such as the aforementioned A series
(A5, A7, and A9). Based on these architectures, chip makers release their own series of chipsets
(Snapdragon, Exynos, and so on) which are used in mobile devices. The latest smartphones are
powered by dual core, quad core and even octa core processors.

Baseband processor

Smartphones today support a variety of cellular protocols, including GSM, 3G, 4G and 4G LTE.
These protocols are complicated and require a large amount of CPU power to process data, generate
packets and transmit them to the network provider. To handle this process, smartphones now use a
baseband modem which is a separate chip included in smartphones that communicates with the main
processor. These baseband modems have their own processor called the baseband processor and run
their own operating system. The baseband processor manages several radio control functions such as
signal generation, modulation, encoding, as well as frequency shifting. It can also manage the
transmission of signals.

The baseband processor is generally located on the same circuit board as the CPU but consists of a
separate radio electronics component.

Memory

Android phones, just like normal computers, use two primary types of memory–random access
memory (RAM) and read-only memory (ROM). Although most users are familiar with these
concepts, there is some confusion when it comes to mobile devices.

RAM is volatile, which means its contents are erased when the power is removed. RAM is very fast
to access and is used primarily for the runtime memory of software applications (including the

device's operating system and any applications). In other words, it is used by the system to load and
execute the OS and other applications. So the number of applications and processes that can be run
simultaneously depends on this RAM size.

ROM (commonly referred to as Android ROM) is non-volatile, which means it retains the contents
even when the power is off. Android ROM contains the boot loader, OS, all downloaded
applications and their data, settings and, so on.

Note that the part of memory that is used for the boot loader is normally locked and can only be
changed through a firmware upgrade. The remaining part of the memory is termed by some
manufacturers as user memory. The data of each application stored here will not be accessible to
other applications. Once this memory gets filled up, the device slows down. Both RAM and Android
ROM are manufactured into a single component called as Multichip Package (MCP).

SD Card

The SD card has great significance with respect to mobile forensics because, quite often, data that is
stored in these can be vital evidence. Many Android devices have a removable memory card
commonly referred to as their Secure Digital (SD) card. This is in contrast to Apple's iPhone which
does not have any provision for SD cards. SD cards are non-volatile, which means data is stored in it
even when it is powered off. SD cards use flash memory, a type of Electrically Erasable
Programmable Read-Only Memory (EEPROM) that is erased and written in large blocks instead
of individual bytes. Most of the multimedia data and large files are stored by the apps in SD card. In
order to interoperate with other devices, SD cards implement certain communication protocols and
specifications.

In some mobile devices, although an SD card interface is present, some portion of the on-board
NAND memory (non-volatile) is carved out for creating an emulated SD card. This essentially means
the SD card is not removable. Hence, forensic analysts need to check whether they are dealing with
the actual SD card or an emulated SD card. SD memory cards come in several different sizes. Mini-
SD card and micro-SD card contain the same underlying technology as the original SD memory card,
but are smaller in size.

Display

Mobile phone screens have progressed dramatically over the last few years. Below is a brief
description of some of the widely used types of mobile screens as described at
http://www.in.techradar.com/news/phone-and-communications/mobile-phones/Best-phone-screen-
display-tech-explained/articleshow/38997644.cms.

The thin film transistor liquid crystal display (TFT LCD) is the most common type of screen found
in mobile phones. These screens have a light underneath them which shines through the pixels to make
them visible.

The active-matrix organic light-emitting diode (AMOLED) is a technology based on organic

http://www.in.techradar.com/news/phone-and-communications/mobile-phones/Best-phone-screen-display-tech-explained/articleshow/38997644.cms

compounds and known for its best image quality while consuming low power. Unlike LCD screens,
AMOLED displays don't need a backlight; each pixel produces its own light, so phones using them
can potentially be thinner.

Battery

Battery is the lifeblood of a mobile phone and is one of the major concerns with modern smartphones.
The more you use the device and its components, the more battery is consumed. The following
different types of batteries are used in mobile phones:

Lithium Ion (Li-ion): These batteries are the most popular batteries used in cell phones as they
are light and portable. They are well known for their high energy density and low maintenance.
However, they are expensive to manufacture compared to other battery types.
Lithium Polymer (Li-Polymer): These batteries have all the attributes of a Lithium Ion battery
but with ultra slim geometry and simplified packaging. They are the very latest and found only in
few mobile devices.
Nickel Cadmium (NiCd): These batteries are old technology batteries and suffer from memory
effect. As a result, the overall capacity and the lifespan of the battery are reduced. In addition to
this, NiCd batteries are made from toxic materials that are not environment-friendly.
Nickel Metal Hydrid (NiMH): These batteries are same as the NiCd batteries, but can contain
higher energy and run longer, between 30 and 40 percent. They still suffer from memory effect,
but comparatively less than the NiCd batteries. They are widely used in mobile phones and are
affordable too.

The battery type can be found by looking at the details present on its body. For example, the following
is an image of a Li-ion battery:

Lithium-ion battery

Most SD cards are located behind the battery. During forensic analysis, accessing an SD card would
require removing the battery which would power off the device. This can have certain implications
which will be discussed in detail in later chapters.

Apart from the components described above, here are some of the other components that are well
known:

Global Positioning System
Wi-Fi
Near field communication
Bluetooth
Camera
Keypad
USB
Accelerometer and gyroscope
Speaker
Microphone

Android boot process

Understanding the boot process of an Android device will help us to understand other forensic
techniques which involve interacting with the device at various levels. When an Android device is
first powered on, there is a sequence of steps that are executed, helping the device to load necessary
firmware, OS, application data, and so on into memory. The following information is compiled from
the original post published at http://www.androidenea.com/2009/06/android-boot-process-from-
power-on.html.

The sequence of steps involved in Android boot process is as follows:

1. Boot ROM code execution
2. The boot loader
3. The Linux kernel
4. The init process
5. Zygote and Dalvik
6. The system server

We will examine each of these steps in detail.

Boot ROM code execution

Before the device is powered on, the device CPU will be in a state where no initializations will have
taken place. Once the Android device is powered on, execution starts with the boot ROM code. This
boot ROM code is specific to the CPU the device is using. As shown in the the following diagram,
this phase includes two steps:

1. When, boot ROM code is executed, it initializes the device hardware and tries to detect the boot
media. Thus, the boot ROM code scans till it finds the boot media. This is similar to the BIOS
function in the boot process of a computer.

2. Once the boot sequence is established, the initial boot loader is copied to the internal RAM.
After this, the execution shifts to the code loaded into the RAM.

http://www.androidenea.com/2009/06/android-boot-process-from-power-on.html

Android boot process: Boot ROM code execution

The boot loader

The boot loader is a piece of program that is executed before the operating system starts to function.
Boot loaders are present in desktop computers, laptops and mobile devices as well. In an Android
boot loader, there are two stages—initial program load (IPL) and second program load (SPL). As
shown in the following diagram, this involves three steps explained as follows:

1. IPL deals with detecting and setting up external RAM.
2. Once external RAM is available, the SPL is copied into the RAM and execution is transferred to

it. The SPL is responsible for loading the Android operating system. It also provides access to
other boot modes such as fastboot, recovery, and so on. It initiates several hardware components
such as console, display, keyboard and file systems, virtual memory, and other features.

3. After this, the SPL tries to look for the Linux kernel. It will load this from the boot media and
copy it to the RAM. Once the boot loader is done with this process, it transfers the execution to
the kernel.

Android boot process: The boot loader

The Linux kernel

The Linux kernel is the heart of the Android operating system and is responsible for process
management, memory management, and enforcing security on the device. After the kernel is loaded, it
mounts the root file system (rootfs) and provides access to system and user data, as described in the
following steps:

1. When the memory management units and caches have been initialized, the system can use virtual
memory and launch user space processes.

2. The kernel will look in the rootfs for the init process and launch it as the initial user space
process.

Android boot process: The kernel

The init process

The init is the very first process that starts and is the root process of all other processes.

1. The init process will look for a script named init.rc that describes the system services, file
system, and any other parameters that need to be set up.

The init process can be found at:<android source>/system/core/init..
The init.rc file can be found in source tree at <android
source>/system/core/rootdir/init.rc.

Tip

More details about the Android file hierarchy will be covered in Chapter 3, Understanding
Data Storage on Android Devices.

2. The init process will parse the init.rc script and launch the system service processes. At this
stage, you will see the Android logo on the device screen.

Android boot process: The init process

Zygote and Dalvik

Zygote is one of the first init processes created after the device boots. It initializes the Dalvik virtual
machine and tries to create multiple instances to support each android process. As discussed in
earlier sections, the Dalvik virtual machine is the virtual machine which executes Android
applications written in Java.

Zygote facilitates using a shared code across the VM, thus helping to save the memory and reduce the
burden on the system. After this, applications can run by requesting new Dalvik virtual machines that
each one runs in. Zygote registers a server socket for zygote connections, and also preloads certain
classes and resources. This Zygote loading process has been more clearly explained at
http://www.kpbird.com/2012/11/in-depth-android-boot-sequence-process.html. This is also
explained as follows:

Load ZygoteInitclass: This class loads the ZygoteInit class. Source Code: <Android
Source>/frameworks/base/core/java/com/android/internal/os/ZygoteInit.java.
registerZygoteSocket(): This registers a server socket for zygote command connections.
preloadClasses(): This is a simple text file containing the list of classes that need to be
preloaded will be executed here. This file can be seen at <Android
Source>/frameworks/base.
preloadResources(): This deals with native themes and layouts. Everything that includes the
android.R file will be loaded using this method.

http://www.kpbird.com/2012/11/in-depth-android-boot-sequence-process.html

Android boot process: The Zygote

System server

All the core features of the device such as telephony, network, and other important functions, are
started by the system server, as shown in the following diagram:

Android boot process: System server

The following core services are started in this process:

Start Power Manager
Create Activity Manager
Start Telephony Registry
Start Package Manager
Set Activity Manager Service as System Process
Start Context Manager
Start System Context Providers
Start Battery Service
Start Alarm Manager
Start Sensor Service
Start Window Manager
Start Bluetooth Service
Start Mount Service

The system sends a broadcast action called ACTION_BOOT_COMPLETED which informs all the
dependent processes that the boot process is complete. After this, the device displays the home screen
and is ready to interact with the user. The Android system is now fully operational and is ready to
interact with the user.

As explained earlier, several manufacturers use the Android operating system on their devices. Most
of these device manufacturers customize the OS based on their hardware and other requirements.
Hence, when a new version of Android is released, these device manufacturers have to port their
custom software and tweaks to the latest version.

Summary
Understanding Android architecture and its security model is crucial to having a proper understanding
of Android forensics. The inherent security features in Android OS, such as application sandboxing,
permission model, and so on, safeguard Android devices from various threats and also act as an
obstacle for forensic experts during investigation. Having gained this knowledge of Android
internals, we will discuss more about what type of data is stored on the device and how it is stored,
in the next chapter.

Chapter 2. Setting Up an Android Forensic
Environment
It is crucial to have an established forensic environment set up before the start of any forensic
examination. The forensic analyst needs to be in total control of the workstation at all times. This
chapter will take you through everything that is necessary to have an established forensic set up to
examine Android devices. In this chapter, we will cover the following topics:

Installation of necessary software on the workstation
Connecting and accessing an Android device from the workstation
Using ADB commands on the device
Rooting Android devices

The Android forensic setup
Setting up a sound and well-controlled forensic environment is crucial before the start of any
investigation. Start with a fresh and forensically sterile computer. A forensically sterile computer is
one that prevents the potential of cross contamination, does not introduce unwanted data, and is free
from viruses and other malware. This is to ensure that the software present on the machine does not
interfere with the current investigation. Install basic software, such as the following ones; they are
necessary to connect to the device and perform analysis:

Android SDK
Mobile drivers
MS Office packages
Tools used for analysis

The Android SDK
It is important that we begin the discussion with the Android SDK. The Android Software
Development Kit (SDK) helps developers build, test, and debug applications to run on Android. It
includes software libraries, APIs, emulator, reference material, and many other tools. These tools not
only help create Android applications but also provide documentation and utilities that help
significantly in forensic analysis of Android devices. Having sound knowledge of the Android SDK
can help you understand the particulars of a device. This, in turn, will help you during an
investigation.

During forensic examination, the SDK helps us connect the device and access the data present on the
device. The SDK is supported in most of environments, including Windows, Linux, and OS X. It can
be downloaded for free from http://developer.android.com/sdk/index.html.

Installing the Android SDK
Google now offers Android Studio and SDK tools only as download options. Android studio contains
the Android IDE, SDK tools, Android 5.0 (Lollipop) platform, Android 5.0 system image with
Google APIs, and other newly introduced features. However, for a forensic lab setup, downloading
the SDK tools package alone would be sufficient. The following is a step-by-step procedure to install
the Android SDK on a Windows 8 machine:

1. Before starting the Android SDK installation, make sure that the system has the Java
Development Kit (JDK) installed, because the Android SDK is dependent on the Java SE
Development Kit. JDK can be downloaded from
http://www.oracle.com/technetwork/java/javase/downloads/index.html. Select the correct
download based on your operating system.

2. Download the latest version of the SDK tools package from
http://developer.android.com/sdk/index.html. The .exe version of the package is recommended
for download.

3. Run the installer file downloaded in step 2. A wizard window will appear, as shown in the
following screenshot. Then, click on Next.

http://developer.android.com/sdk/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://developer.android.com/sdk/index.html

The Android SDK setup wizard

4. The setup will automatically detect whether Java is installed on the system and select the path
where Java is installed.

5. Choose the installation location and remember it for future use. In this example, we will install it
in C:\Program Files (x86). In the case of a 32-bit operating system, the default location
would be C:\Program Files. All the necessary files will be extracted to this location, as
shown in the following screenshot:

The Android SDK tools installation

6. Once the installation is complete, open the C:\Program Files (x86)\Android\android-sdk
directory and double-click on SDK Manager.exe. Make sure that you select the Android SDK
Platform tools and any one release platform version of Android, as shown in the following
screenshot. Some of the items are automatically selected. For instance, Google USB Driver is
necessary to work with Android devices on Windows and is selected by default. Accept the
license terms and then proceed to install it by clicking the Install button:

Android packages installation

The last step in the preceding process takes some time to complete. Once it is done, the Android SDK
installation is complete. You can now update the system's environment variables (path) by pointing to
the executable files.

Note

The minimal ADB and fastboot tool, which is only 2 MB in size and available freely on XDA forums
(http://forum.xda-developers.com/showthread.php?t=2317790), can be used without installing the
complete Android SDK. This tool is a Windows installer that will install the latest version of ADB
and fastboot quickly and easily.

Android Virtual Device
With the Android SDK installed, you can create an Android Virtual Device (AVD), which is an
emulator that runs on the workstation. An emulator is often used by developers when creating new
applications. However, an emulator is also considered helpful during forensic investigations. It
allows the investigator to understand how certain applications behave and how the installation of an
application affects the device. Another advantage is that you can design an emulator with the desired
version. This is especially helpful when working with devices running on older versions of Android.

http://forum.xda-developers.com/showthread.php?t=2317790

Also, AVD comes with root as default.

The following steps will guide you to create an AVD on the workstation:

1. Open command prompt (cmd.exe). To start AVD manager from the command line, navigate to
the path where SDK is installed and call the android tool with the avd option as shown here:

C:\Program Files (x86)\Android\android-sdk\tools>android avd

This will automatically open AVD manager, as shown in the following screenshot. AVD
manager can also be started using the graphical AVD manager. To start it, navigate to the
location where the SDK is installed and double-click on AVD Manager.

The Android Virtual Device Manager

2. Click on Create in the AVD Manager window to create a new virtual device. Click on Edit to
change the configuration of an existing virtual device, as shown in the following screenshot:

AVD details

3. Enter the necessary details based on the following information:
AVD Name: Provide any name for the virtual device, for example, MyAVD.
Device: Select any device from the available options based on the screen size.
Target: This option helps you select the platform of the device. Note that only those
versions that were selected and installed during the SDK installation will be shown here
for you to select. The platform version can be selected based on the OS of the seized
device. For our example, the Android 4.4.2 platform is selected.
Hardware: You can select hardware features to customize the emulator, for example, the
size of internal storage memory, SD card, and so on. Once again, details such as screen
resolution, hardware, and so on can be selected based on the details corresponding to the
seized device.

4. Once this is done, the AVD Manager screen appears with the newly created AVD listed under
the Android Virtual Devices tab. Select the AVD and click on Start. Then, click on Launch.

5. The emulator will be automatically launched. This could take several minutes, depending on the

workstation's CPU and RAM. Here is a screenshot of an AVD after its successful launch:

The Android emulator

An emulator can be used to configure e-mail accounts, install applications, surf the Internet, send text
messages, and so on. Forensic analysts and security engineers can learn a great deal about Android
and how it operates by leveraging the emulator and examining the network, filesystem, and data
artifacts. The data created when working on an emulator is stored in your home directory, in a folder
named .android. For instance, in our example, the details about MyAVD emulator that we created
earlier are stored in C:\Users\Rohit\.android\avd\MyAVD.avd. There are several files present
under this directory, and here are some files of interest for a forensic analyst:

cache.img: This is the disk image of the /cache partition.
sdcard.img: This is the disk image of the SD card partition.
Userdata-qemu.img: This is the disk image of /data partition. The /data partition contains
valuable information about the device user.
config.ini: This is the configuration file that stores hardware options in AVD's local
directory.
emulator-user.ini: This file contains values that can reset the position of the window.

Androidtool.cfg: This file can be used to manually set proxy settings for the Android SDK.

Connecting and accessing an Android device
from the workstation
In order to extract information from an Android device, it first needs to be connected to the
workstation. As mentioned earlier, care should be taken to make sure that the workstation is
forensically sterile and used only for the purpose of investigation. A forensically sterile workstation
is one that has a proper build and is free from viruses and other malware. When a device is connected
to the computer, changes can be made to the device. Hence, it is crucial that the forensic examiner
maintains control over the device at all times. In the world of mobile forensics, using write-
protection mechanisms may not be of great help, as they prevent successful acquisition of the device.
This is because during acquisition, certain commands need to be pushed to the device to extract the
necessary data.

Identifying the device cable
An Android device can be connected to the workstation using the physical USB interface of the
device. This physical USB interface allows the device to connect, share data, and recharge from a
computer. USB interfaces might change from manufacturer to manufacturer and also from device to
device. There are different types, such as mini-USB, micro-USB, and other proprietary formats. Here
is a brief description of the most widely used connector types:

Connector type

Description

Mini—A USB

It is approximately 7 x 3 mm in size, with two of the corners on one long side lifted out.

Micro—B USB

It is approximately 6 x 1.5 mm in size, with two corners cut off to form a trapezoid.

Co-axial

It has a circular hole with a pin sticking up in the middle. There are different sizes, varying from 2 to
5 mm in diameter. This type is widely used with Nokia models.

D Sub-miniature

It has a rectangular shape with two rounded corners. The length of the rectangle varies, but the height
is always 1.5 to 2 mm. This type is used mostly by Samsung and LG devices.

Hence, the first step in acquisition is to identify what kind of device cable is required.

Installing device drivers
A mobile device can communicate with the computer only when the necessary device drivers are
installed on the computer. Without the necessary drivers, the computer may not be able to identify and
work with the connected device. Since Android may be modified and customized by the
manufacturers, there is no single generic driver that would work for all the Android devices. Each
manufacturer has their own proprietary drivers and distributes them along with the phone. So, it is
important to identify the specific device driver that needs to be installed. Of course, some of the
Android forensic toolkits come with some generic drivers or a set of most used drivers. They may not
work with all models of Android phones. Some Windows operating systems are able to auto detect
and install the drivers once the device is plugged in but, more often than not, Windows fails. The
device drivers for each manufacturer can be found on their respective websites.

Accessing the device
After installing the necessary device drivers, connect the Android device to the computer, directly
using the USB cable in order to access it. It is important to use genuine manufacturer-specific cables,
because universal cables may not work properly with certain devices. Also, the investigator may
encounter certain driver issues. Some of the devices may not be USB 3.0 compatible, which may lead
to failed driver installations. In this case, it is recommended that you try switching to USB 2.0 ports.
Once the device is connected, it will appear as a new drive, and you can access the files on the
external storage. Some older Android devices may not be accessible unless the Connect storage to
PC option (navigate to Settings | USB utilities) is enabled on the device. In this case, after
connecting the device through a USB, the Turn on USB storage option needs to be selected, as
shown in the following screenshot:

USB mass storage connection

This is because older Android devices required USB mass storage mode to transfer files between a
computer and the device. Latest Android devices use the Media Transfer Protocol (MTP) or the
Picture Transfer Protocol (PTP), as there were some issues with the USB mass storage protocol.
With USB mass storage, the drive makes itself completely available to the computer, just as if it were
an internal drive.

However, the problem is that the device that is accessing the storage needs exclusive access to it. In
other words, when the device drive is connected to the computer, it has to be disconnected from the
Android operating system running on the device in order to work. So, any files or apps stored on the
SD card or USB storage will be unavailable when it is connected to the computer. In MTP, the
Android device doesn't expose its entire storage to Windows. Instead, when you connect a device to
your computer, the computer queries the device, and the device responds with a list of files and
directories it offers. If the computer has to download a file, it would send a request to the file from
the device, and the device would send the file over the connection. PTP is also similar to MTP and is
commonly used by digital cameras. In this mode, the Android device will work with digital camera
applications that support PTP but not MTP. On the latest devices, you can select either MTP or PTP
options by going to Settings | Storage | USB computer connection.

Tip

On some Android devices, the option to select MTP and PTP protocols is provided only after

connecting the device to the computer. After the device is connected, watch out for the Notifications
bar at the top of your screen, and you will see a USB symbol appear. Pull down the notifications bar,
and you will find an option to switch between MTP and PTP.

As shown in the following screenshot, the MTP and PTP options are shown only after connecting the
device to a computer and pulling down the notifications bar:

USB PC connection in an Android device

In the case of certain Android devices (especially with HTC), the device may expose more than one
functionality when connected with a USB cable. For instance, as shown in the following screenshot,
when an HTC device is connected to the workstation, it presents a menu with four options:

Disk drive option on a HTC device

The default selection is Charge only. When the Disk drive option is selected, it is mounted as a disk
drive. When the device is mounted as a disk drive, you will be able to access the SD card present on
the device.

From a forensic point of view, the SD card has a significant value, as it may contain files that are
important for an investigation. Most of the images and large files related to multimedia are stored in
this external storage. SD cards are commonly formatted with the FAT16 filesystem, but you might
also encounter some SD cards that have FAT32 and other filesystems. As discussed in Chapter 1,
Introducing Android Forensics, note that most of the recent devices have the emulated SD card
feature that uses the device's NAND flash to create a non-removable SD card. Thus, all the sensitive
files present on the external storage can be accessed in this way. However, the core application data
stored under /data/data will remain on the device and cannot be accessed in this way.

Android Debug Bridge
In Android forensics, Android Debug Bridge (ADB) plays a very crucial role. It is present at
<sdk_path>/platform-tools. In order to work with ADB, the USB-debugging option needs to be
enabled. On a Samsung phone, you can access this by going to Settings | Developer options; as
shown in the following screenshot:

The USB debugging option in Android

However, this may not be the case with all the devices, as different devices have different

environments and configuration features. Sometimes, the examiner might have to use certain
techniques to access the developer options on a few devices. These techniques are device specific
and need to be researched and determined by the forensic analyst, based on the device type and
model.

Note

On some devices, the Developer options menu is hidden and can be turned on by tapping on the Build
Number field (navigate to Settings | About Device) seven times.

Once the USB debugging option is selected, the device will run the adb daemon (adbd) in the
background and will continuously look for a USB connection. The daemon usually runs under a non-
privileged shell user account and thus does not provide access to internal application data. However,
on rooted phones, adbd will run under the root account and thus provide access to the entire data. On
the workstation (where the Android SDK) is installed, adbd will run as a background process. Also,
on the same workstation, a client program will run that can be invoked from a shell by issuing the adb
command. We are going to see this in the following sections. When the adb client is started, it first
checks whether the adbd is already running. If it isn't, it initiates a new process to start the abdb. The
daemons communicate over their local host on ports 5555 through 5585. The even port communicates
with the device's console, while the odd port is for adb connections. The adb client program
communicates with the local adbd over port 5037.

Using adb to access the device
As stated earlier, adb is a powerful tool that allows you to communicate with the Android device. We
will now look at how to use adb and access certain parts of the device that cannot be accessed
normally. It is important to note that the collection of data through adb may or may not be accepted as
evidence in court. This will depend on the laws of respective countries. The following sections list
some of the commonly used adb commands, their meanings, and usage in a logical sequence.

Detecting a connected device

After connecting the device to the workstation and before issuing other adb commands, it is helpful to
know whether the Android device is properly connected to the adb server. This can be done using the
adb.exe devices command, which lists out all the devices that are connected to the computer, as
shown in the following command. This would also list the emulator if it is running at the time of
issuing the command:

C:\Program Files (x86)\Android\android-sdk\platform-tools>adb.exe devices
List of devices attached
4df16ac5115e4e04 device

Note

Remember that if the necessary drivers are not installed, then the preceding command would show a
blank message. If you encounter this situation, download the necessary drivers from the manufacturer

and install them.

As seen in the preceding commands, the output contains the serial number of the device, followed by
the connection state. The serial number is a unique string used by ADB to identify each Android
device. The possible values of the connection state and their meaning is explained in the following
lines:

offline: The instance is not connected to adb or is not responding.
device: The instance is connected to the adb server.
no device: There is no device connected.

Directing commands to a specific device

If more than one device is connected to the system, you must specify the target device while issuing
the commands. For example, consider the following case:

C:\Program Files (x86)\Android\android-sdk\platform-tools>adb.exe devices
List of devices attached
4df16ac5115e4e04 device
7f1c864544456o6e device

As shown in the preceding command-line output, there are two devices attached to the workstation. In
this case, adb needs to be used along with the –s option to issue commands to the device of your
choice:

adb shell -s4df16ac5115e4e04

Similarly, the –d command can be used to direct an adb command to the only attached USB device,
and the –e command can be used to direct an adb command to the only running emulator instance.

Issuing shell commands

As mentioned in Chapter 1, Introducing Android Forensics, Android runs on a Linux kernel and
provides a way to access the shell. Using ADB, you can access a shell to run several commands on an
Android device. For those who are not familiar with the Linux environment, the Linux shell refers to a
special program that allows you to interact with it by entering certain commands from the keyboard.
The shell will execute the commands and display their output.

More details about how things work on the Linux environment have been provided under the Rooting
Android device section in this chapter. The adb shell command can be used to enter into a remote
shell, as shown in the following command-line output. Once you enter the shell, you can execute most
of the Linux commands:

C:\Program Files (x86)\Android\android-sdk\platform-tools>adb.exe shell
shell@android:/ $

After executing the command, observe that the shell prompt is displayed to the user. In this shell
prompt, commands can be executed on the device. For instance, as shown in the following command

line, the ls command can be used to view all the files within a directory:

C:\Program Files (x86)\Android\android-sdk\platform-tools>adb.exe shell
shell@android:/ $ ls
ls
acct
cache
config
d
data
default.prop
dev
efs
etc
factory
fstab.smdk4x12

The following section explains some of the widely used Linux commands that are very helpful while
interacting with an Android device.

Basic Linux commands

We will now take a look at some of the Linux commands and their usage with respect to an Android
device:

ls: The ls command (with no option) lists files and directories present in the current directory.
With the -l option, it also shows their size, modified date and time, owner of file and it's
permission, and so on as shown in the following command-line output:

shell@android:/ $ ls -l
ls -l
drwxr-xr-x root root 2015-01-17 10:13 acct
drwxrwx--- system cache 2014-05-31 14:55 cache
dr-x------ root root 2015-01-17 10:13 config
lrwxrwxrwx root root 2015-01-17 10:13 d ->
/sys/kernel/debug
drwxrwx--x system system 2015-01-17 10:13 data
-rw-r--r-- root root 116 1970-01-01 05:30 default.prop
drwxr-xr-x root root 2015-01-17 10:13 dev
drwxrwx--x radio system 2013-08-13 09:34 efs
lrwxrwxrwx root root 2015-01-17 10:13 etc -> /system/etc

Similarly, here are a few options that can be used along with the ls command. Depending on the
requirement, one or more of these options can be used by the investigator to view the details:

Option

Description

a

Lists hidden files

c

Displays files by timestamp

d

Displays only directories

n

Displays the long format listing, with GID and UID numbers

R

Displays subdirectories as well

t

Displays files based on timestamp

u

Displays the file access time

cat: The cat command reads one or more files and prints them to standard output, as shown in
the following command lines:

shell@android:/ $ cat default.prop
cat default.prop
#
ADDITIONAL_DEFAULT_PROPERTIES
#
ro.secure=1
ro.allow.mock.location=0
ro.debuggable=0
persist.sys.usb.config=mtp

The > operator can be used to combine multiple files into one. The >> operator can be used to
append to an existing file.
cd: The cd command is used to change from one directory to another. This is used while
navigating from one folder to another. The following example shows commands used to change
to the system folder:

shell@android:/ $ cd /system
cd /system
shell@android:/system $

cp: The cp command can be used to copy a file from one location to another. The syntax for this

command is as follows:

$ cp [options] <source><destination>

chmod: The chmod command is used to change the access permissions to filesystem objects
(files and directories). It may also alter special mode flags. The syntax for this command is as
follows:

$ chmod [option] mode files

For example, chmod 777 on a file gives permission to everyone to read, write, and execute it.
dd: The dd command is used to copy a file, converting and formatting according to the operands.
With Android, the dd command can be used to create a bit-by-bit image of the Android device.
More details about the imaging are covered in Chapter 5, Extracting Data Physically from
Android Devices. Here is the syntax that needs to be used with this command:

dd if=/test/file of=/sdcard/sample.image

rm: The rm command can be used to delete files or directories. Here is the syntax for this
command:

rm file_name

grep: The grep command is used to search files or output for a particular pattern. The following
example shows searching a default.prop file for the word secure:

 shell@android:/ # cat default.prop | grep secure
ro.secure=1

pwd: The pwd command displays the current working directory. For example, the following
command-line output shows that the current working directory is /system:

shell@android:/system $ pwd
pwd
/system

mkdir: The mkdir command is used to create a new directory. The syntax for this command is
as follows:

mkdir [options] directories

exit: The exit command can be used to exit the shell you are in. Just type exit in the shell to
exit from it.

Installing an application

During forensic analysis, there might be cases where you need to install a few applications on the
device in order to extract some data. To do so, you can use the adb.exe install command. Along
with this command, as shown in the following command-line output, you need to specify the path to
the .apk file that you want to install:

C:\Program Files (x86)\Android\android-sdk\platform-tools>adb.exe install

C:\rohit\test.apk
4311 KB/s (13855934 bytes in 3.138s)
 pkg: /data/local/tmp/test.apk
Success

However, it is important to note that installing third-party apps may not be accepted in a court of law.
Hence, a forensic investigator needs to be cautious before installing any third-party app on the
device.

Pulling data from the device

You can use the adb pull command to pull the files present on the Android device to the local
workstation. Here is the syntax to use this command:

adb pull <remote><local>

Here, <remote> refers to path of the file on the Android device, and <local> refers to the location
on the local workstation where the file needs to be stored. For instance, the following command-line
output shows a Sample.png file being pulled from the Android device to a temp folder on computer:

C:\Program Files (x86)\Android\android-sdk\platform-tools>adb.exe pull
/sdcard/Pictures/MyFolder/Sample.png C:\temp
1475 KB/s (145039 bytes in 0.096s)

However, on a normal Android phone, you will not be able to download all the files using the adb
pull command, because of the inherent security features enforced by the operating system. For
example, files present under the /data/data folder cannot be accessed in this manner on an Android
device that is not rooted. More details about this topic have been covered in Chapter 4, Extracting
Data Logically from Android Devices.

Pushing data to the device

You can use the adb push command to copy files from the local workstation to the Android device.
Here is the syntax to use this command:

adb push <local><remote>

Here, <local> refers to location of the file on the local workstation, and <remote> refers to the path
on the Android device where the file needs to be stored. For instance, the following command-line
output shows a test.png file copied from the computer to the Pictures folder of an Android
device:

C:\Program Files (x86)\Android\android-sdk\platform-tools>adb.exe push
C:\temp\test.png /sdcard/Pictures
2950 KB/s (145039 bytes in 0.048s)

You can only push the files to the folders for which the user account has privileges.

Restarting the adb server

In some cases, you might need to terminate the adb server process and then restart it. For example, if
adb does not respond to a command. This may resolve the problem.

To stop the adb server, use the kill-server command. You can then restart the server by issuing any
other adb command.

Viewing log data

In Android, the logcat command provides a way to view the system debug output. Logs from various
applications and portions of the system are collected in a series of circular buffers which then can be
viewed and filtered by this command:

C:\Program Files (x86)\Android\android-sdk\platform-tools>adb.exe logcat
--------- beginning of /dev/log/main

I/InputReader(2841): Touch event's action is 0x0 (deviceType=0) [pCnt=1,
s=0.40234]

I/InputDispatcher(2841): Delivering touch to current input target: action: 0x0

I/InputDispatcher(2841): Delivering touch to current input target: action: 0x0

I/InputDispatcher(2841): Delivering touch to current input target: action: 0x0
...
I/SecCamera-JNI-Java(2841): stopPreview

V/SecCamera-JNI-Cpp(2841): release camera

V/SecCamera-JNI-Cpp(2841): release
...
D/STATUSBAR-BatteryController(3162): onReceive() - ACTION_BATTERY_CHANGED

D/STATUSBAR-BatteryController(3162): onReceive() - level:48

D/STATUSBAR-BatteryController(3162): onReceive() - plugged:2

D/STATUSBAR-BatteryController(3162): onReceive() - BATTERY_STATUS_CHARGING:

The log message shown here is just a sample message. During investigation, logs need to be carefully
analyzed to gather information on location details, data/time information, application details, and so
on. Each log begins with a message type indicator, as described in the following table:

Message Type

Description

V

Verbose

D

Debug

I

Information

W

Warning

E

Error

F

Fatal

S

Silent

The logcat command can also be used to view full cellular radio debugging, as shown in the
following command-line output:

C:\Program Files (x86)\Android\android-sdk\platform-tools>adb.exe shell logcat –
b radio –v time

03-22 17:06:22.155 E/RIL (12513): RX: 01
03-22 17:06:22.155 D/RILJ (2815): [UNSL]<
UNSOL_RESPONSE_VOICE_NETWORK_STATE_CHANGED
03-22 17:06:22.155 D/RILJ (2815): [7100]> OPERATOR
03-22 17:06:22.155 D/RILJ (2815): [7101]> DATA_REGISTRATION_STATE
03-22 17:06:22.155 E/RIL (12513): TX: Time: 1095039892 / 164875824
03-22 17:06:22.155 E/RIL (12513): TX: M:IPC_NET_CMD
S:IPC_NET_SERVING_NETWORK T:IPC_CMD_GET
 l:7 m:5e a:0
03-22 17:06:22.160 D/RILJ (2815): [7102]> VOICE_REGISTRATION_STATE
03-22 17:06:22.160 D/RILJ (2815): [7103]> QUERY_NETWORK_SELECTION_MODE
03-22 17:06:22.160 E/RIL (12513): RX: Time: 1095039894 / 164875826
03-22 17:06:22.160 E/RIL (12513): RX: M:IPC_NET_CMD
S:IPC_NET_SERVING_NETWORK T:IPC_CMD_RES
P l:12 m:ff a:5e
03-22 17:06:22.160 E/RIL (12513): RX: 02 02 04 34 30 34 34 39 23 19 79
03-22 17:06:22.160 D/RILJ (2815): [7100]< OPERATOR {Airtel, Airtel, 40449}
03-22 17:06:22.170 E/RIL (12513): TX: Time: 1095039906 / 164875839
03-22 17:06:22.170 E/RIL (12513): TX: M:IPC_NET_CMD S:IPC_NET_REGIST
T:IPC_CMD_GET l:9 m:5f
 a:0

03-22 17:06:22.170 E/RIL (12513): TX: FF 03
03-22 17:06:22.175 E/RIL (12513): RX: Time: 1095039909 / 164875841
03-22 17:06:22.175 E/RIL (12513): RX: M:IPC_NET_CMD S:IPC_NET_REGIST
T:IPC_CMD_RESP l:12 m:
ff a:5f
03-22 17:06:22.175 E/RIL (12513): RX: 04 03 02 0B 19 79 E1 4A 2E 01 00
03-22 17:06:22.175 E/RIL (12513): TX: Time: 1095039909 / 164875841
03-22 17:06:22.175 E/RIL (12513): TX: M:IPC_NET_CMD S:IPC_NET_REGIST
T:IPC_CMD_GET l:9 m:60...

Rooting Android
"Rooting" is a word that is very often heard with respect to Android devices. As a forensic examiner,
it is essential to understand this in detail. This will help you gain the knowledge that is required to
understand the internals of the device. It will also help you gain expertise on several issues that are
encountered during an investigation. Rooting Android phones has become a common phenomenon and
rooted phones are very often encountered during investigations. Also, depending on the situation and
data to be extracted, the examiner himself has to root the device in order to extract certain data. The
following sections talk about rooting an Android device and other related concepts.

What is rooting?
To understand rooting, it is essential to understand how Unix-like systems work. The original Unix
operating system on which Linux and other Unix-like systems are based was designed from the very
beginning as a multiuser system. This is primarily because personal computers did not yet exist, and
hence, it was necessary to have a mechanism to separate and protect the resources of the individual
users while allowing them to use the system simultaneously. However, in order to perform privileged
tasks, such as granting and revoking powers for ordinary users, accessing critical system files to
repair or upgrade the system, and so on, it was necessary to have a system administrator account that
has superuser access. So we have two types of accounts: normal user accounts, which have fewer
privileges, and a superuser or root account, which has all the privileges.

Hence, root is the user name or account that, by default, has access to all commands and files on a
Linux or other Unix-like operating system. It is also referred to as the root account, root user, and the
superuser. So, in Linux, the root user has the power to start or stop any system service, edit or delete
any file, change the privileges of other users, and so on. You have learned that Android uses the Linux
kernel, and hence, most of the concepts present in Linux are applicable to Android as well. However,
when you buy an Android phone, normally, it does not let you log in as a root user. Rooting an
Android phone is all about gaining this root access on the device to perform actions that are not
normally allowed on the device.

It is also important to understand the difference between rooting and jailbreaking, as they are often
wrongly assumed to be the same. Jailbreaking a device that runs Apple iOS allows you to remove
certain restrictions and limitations put in place by Apple. For instance, Apple does not allow us to
sideload an unsigned application on the device. So, by jailbreaking, you can install applications that
are not approved by Apple. In contrast, Android allows sideloading of applications. Jailbreaking a
phone involves bypassing several security restrictions simultaneously. Thus, gaining root access on
the device is only one of the aspects of jailbreaking a device.

Why root?
Rooting is often performed by many people with the goal of overcoming limitations that carriers and
hardware manufacturers put on Android devices. By rooting an Android device, you can alter or

replace system applications and settings, run specialized apps that require administrator-level
permissions, or perform operations that are otherwise inaccessible to a normal Android user. These
actions include uninstalling the default apps (especially the bloatware) that come along with the
phone. Rooting is also done for extreme customization; for instance, new customized ROMs could be
downloaded and installed. However, from a forensic analysis point of view, the main reason for
rooting is to gain access to those parts of the system that are normally not accessible. Most of the
public root tools will result in a permanent root, where the changes persist even after rebooting the
device. In the case of a temporary root, the changes are lost once the device reboots. Temporary roots
should always be preferred in forensic cases.

As explained in Chapter 1, Introducing Android Forensics, in Linux systems, each user is assigned a
unique user ID (UID), and users are segregated so that one user does not access the data of another
user. Similarly, in Android, each application is assigned a UID and is run as a separate process. App
UIDs are assigned usually in the order they are installed, starting from 10001. These IDs are stored in
the packages.xml file in /data/system. This file, in addition to storing UIDs, stores the Android
permissions of each program as described in its manifest file.

The private data of each application is stored in the /data/data location and is accessible only to
that application. Hence, during the course of investigation, the data present at this location cannot be
accessed. However, rooting a phone will allow you to access the data present in any location. It is
important to keep in mind that rooting a phone has several implications, as described here:

Security risk: Rooting a phone might expose the device to security risks. For instance, imagine a
malicious app that has access to the entire operating system and to the data of all the other apps
installed on the device.
Bricking of your device: If rooting is not done in a proper manner, it might result in the bricking
of your device. "Bricking" is a word commonly used with phones that are dead or cannot be
turned on in any way.
Voiding your warranty: Depending on the manufacturer and carrier, rooting a device may void
your warranty, since it exposes the device to several threats.
Forensic implications: Rooting an Android device will allow an investigator to access a larger
set of data, but it involves the alteration of certain portions of the device. Hence, the device
should be rooted only when it is absolutely necessary.

Recovery and fastboot
Before dealing with the process of rooting, it is necessary to understand boot loader, recovery, and
fastboot modes in Android. The following sections explain these in detail.

Recovery mode

An Android phone can be seen as a device having three main partitions: boot loader, Android ROM,
and recovery. The boot loader is present in the first partition and is the first program that runs when
the phone is powered on. The primary job of this boot loader is to take care of low-level hardware
initialization and boot the device into other partitions. It usually loads the Android partition,

commonly referred to as Android ROM, by default. Android ROM contains all the operating system
files that are necessary to run the device. The recovery partition, commonly referred to as stock
recovery, is the one that is used to delete all user data and files or to perform system updates.

Both of these operations can be started from the running Android system or by manually booting into
the recovery mode. For example, when you do a factory reset on your phone, recovery boots up and
erases the files and data. Likewise, with updates, the phone boots into the recovery mode to install the
latest updates that are written directly to the Android ROM partition. Hence, the recovery mode is the
screen that you see when you install any official update on the device.

Accessing the recovery mode

The recovery image is stored on the recovery partition, and it consists of a Linux image with a simple
user interface controlled by hardware buttons. The recovery mode can be accessed in two ways:

By pressing certain combinations of keys when booting the device (usually, by holding volume
+, volume -, and power buttons during the bootup)
By issuing the adb reboot recovery command to a booted Android system

Here is the screenshot of the stock recovery mode on an Android device:

Android stock recovery

The stock Android recovery is intentionally very limited in functionality. It has the options to reboot
the system, apply updates from adb and SD card, factory reset, and so on. However, custom recovery
offers many more options.

Custom recovery

Custom recovery is a third-party recovery environment. Flashing this recovery environment onto your
device replaces the default stock recovery environment with a third-party, customized recovery
environment. These are the most common features that are included in custom recovery:

Full backup and restore functionality (such as NANDroid)
Allow unsigned update packages or allow signed packages with custom keys
Selectively mounts device partitions and SD card
Provide USB mass storage access to SD card or data partitions
Provide full ADB access, with the ADB daemon running as root
Fully featured BusyBox binary (Busybox is a collection of powerful command-line tools in a
single binary executable)
There are several custom recovery images available in the market today, such as
ClockworkMod Recovery, TeamWin Recovery Project, and so on. The following screenshot
shows the options available with ClockworkMod Recovery v6.0.2.5:

ClockworkMod Recovery

Fastboot mode

Fastboot is a protocol that can be used to reflash partitions on your device. It is one of the tools that
comes along with the Android SDK. It is an alternative to the recovery mode to do installations and
updates and also to unlock the boot loader in some cases. While in fastboot, you can modify the
filesystem images from a computer over a USB connection. Hence, it is one of the ways to install the
recovery images and just boot in some cases. Once the phone is booted into fastboot, you can flash

image files in the internal memory. For example, the custom recovery images, such as ClockworkMod
recovery, discussed earlier can be flashed in this manner. One of the easiest ways to flash the
ClockworkMod recovery is through the ROM Manager app. Once this app is installed on a rooted
Android device, as shown in the following screenshot, the app provides a Flash ClockworkMod
Recovery option to install the recovery:

Flashing ClockworkMod Recovery from the ROM Manager app

Locked and unlocked boot loaders
Boot loaders may be locked or unlocked. Locked boot loaders do not allow you to perform
modifications to the device's firmware by implementing restrictions at the boot loader level. This is
usually done through cryptographic signature verification. Hence, unsigned code cannot be flashed to
the device. In other words, in order to run any recovery image or your own operating system, the boot
loader needs to be unlocked first. Unlocking the boot loader could result in serious security
implications.

If the device is lost or stolen, all data on it can be recovered by an attacker simply by uploading a
custom Android boot image or flashing a custom recovery image. Thus, the attacker has full access to
the data contained on the device. As a result of this, a factory data reset is performed on the phone
when unlocking a locked boot loader so that all the data is erased. Hence, it is important to perform
this only when it is absolutely necessary. Some devices have ways to unlock them officially. For
these devices, boot loader can be unlocked by putting the device into the fastboot mode and running
the fastboot oem unlock command. This will unlock the boot loader and do a complete wipe of
the Android device.

Some other manufacturers provide unlocking through different means, for instance, through their
websites and so on. The following screenshot shows the HTC website providing support to unlock
HTC devices:

The HTC website providing support to unlock boot loader

How to root
This section talks about how to deal with both a locked and an unlocked boot loader. Gaining root
access on a device with an unlocked boot loader is very easy, while gaining root access on a device
with a locked boot loader is not so straightforward. The following sections explain this in detail.

Rooting an unlocked boot loader

In Unix-like systems, superuser is a special user account used for system administration and has
privileges to access and modify all the files in an operating system. The process of rooting mainly
involves copying the superuser (su) binary to a location in the current process's path
(/system/xbin/su) and granting it executable permissions with the chmod command. Hence, the first
step here is to unlock the boot loader. As explained in the Locked and unlocked boot loaders section,
depending on the device in question, unlocking a boot loader can be done either through the fastboot
mode or through following vendor-specific boot loader unlock procedure. The su binary is usually
accompanied by an Android application, such as Superuser, that provides a graphical prompt each
time an application requests root access, as shown in the following screenshot:

Superuser request

Once the boot loader is unlocked, you can make all the desired changes to the device. Hence, copying
the su binary and granting it executable permissions can be done in many ways. The most common
method is to boot a custom recovery image. This allows us to copy the su binary into the system
partition and set the appropriate permissions through a custom update package.

On an unlocked boot loader device, follow these steps to root the device:

1. Download custom recovery image from http://www.clockworkmod.com/rommanager and su
update package from http://superuserdownload.com/. The custom recovery image can be

http://www.clockworkmod.com/rommanager
http://superuserdownload.com/

anything as long as it supports your device. Similarly, the su update package can be SuperSU,
SuperUser, or any other package of your choice.

2. Copy both custom recovery image and the su update package to the SD card of the Android
device.

3. Next, put the device into fastboot mode.
4. Open the command prompt, and enter the following command:

C:\Program Files (x86)\Android\android-sdk\platform-tools> fastboot boot
recovery.img

5. In the preceding command, recovery.img is the recovery image you downloaded.
6. From the recovery menu, select the To apply an update zip file option and browse to the

location on your device where the su binary update package is present.

Tip

Since Android 4.1 version, a new feature called the sideload mode has been introduced. This feature
allows us to apply an update zip over ADB without copying it to the device beforehand. To sideload
an update, run the adb sideload su-package.zip command, where su-package.zip is the
filename of the update package on your computer.

Alternately, you can also modify a factory image to add a su binary. This can be done by unpacking an
ext4 formatted system image, adding a su binary, and repacking it. If this image is flashed, it will
contain the su binary, and the device will be rooted.

Note

Rooting is a highly device-specific process. Hence, a forensic investigator needs to be cautious
before applying these techniques on any Android device.

Rooting a locked boot loader

When the boot loader is locked and cannot be unlocked through any available means, rooting the
device requires us to find a security flaw that can be exploited. However, before that, it is important
to identify the type of boot loader lock. It can vary depending on the manufacturer and the software
version. With some mobiles, fastboot access may not be allowed, but you can still flash using the
manufacturer's proprietary flashing protocol, such as Samsung ODIN. Some devices enforce signature
verification on selected partitions only, such as boot and recovery. Hence, it may not be possible to
boot into custom recovery. However, you can still modify the factory image to include the su binary,
as explained in the preceding section.

If the boot loader cannot be unlocked through any means, then the only option is to find some
vulnerability on the device that allows us to exploit and add the su binary. The vulnerability can be in
an Android kernel, in a process running as root, or any other issue. It is device specific and needs to
be researched extensively before trying it on any device. Here are some of the common exploits used
in rooting an Android device:

psneuter
asroot
Exploid
GingerBreak
RageAgainstTheCage
Volez
Levitator
zergRush
mempodroid
Razr blade

ADB on a rooted device
We have already seen how the ADB tool can be used to interact with the device and execute certain
commands on the device. However, on a normal Android phone, certain locations, such as
/data/data, cannot be accessed. For example, the following the command-line output appears when
you try to access /data/data on a normal device:

C:\Program Files (x86)\Android\android-sdk\platform-tools>adb.exe shell
shell@android:/ $ cd /data/data
cd /data/data
shell@android:/data/data $ ls
ls
opendir failed, Permission denied

This is because the private data of all the applications is stored in this folder. Thus, the security is
enforced by Android. Only the root user has access to this location. Hence, on a rooted device, you
will be able to see all the data under this location, as shown in the following commands:

C:\Program Files (x86)\Android\android-sdk\platform-tools>adb.exe shell
shell@android:/ # ls /data/data
ls /data/data
android.googleSearch.googleSearchWidget
com.android.MtpApplication
com.android.Preconfig
com.android.apps.tag
com.android.backupconfirm
com.android.bluetooth
com.android.browser
com.android.calendar
com.android.certinstaller
com.android.chrome
com.android.clipboardsaveservice
com.android.contacts
com.android.defcontainer
com.android.email
com.android.exchange
com.android.facelock
com.android.htmlviewer
com.android.inputdevices
com.android.keychain
com.android.mms

As shown in the preceding commands, the private data of all the applications can now be seen easily
by navigating to the respective folders. Hence, the ADB tool on a rooted device is very powerful and
allows an examiner to access all the data of applications installed on the device. This is possible
provided the device is not pattern or PIN protected or registered to the machine with an RSA key.

Note

Sometimes, even on a rooted phone, you will see the permission-denied message. In such cases, after
executing the adb shell command, try entering the superuser mode by typing su. If root is enabled, you
will see # without asking for password.

Summary
Setting up a proper forensic environment is crucial prior to conducting investigation on an Android
device. The Android SDK installation is necessary to use tools such as ADB that come along with it.
Using ADB, an examiner can communicate with the device, view folders on the device, and pull data
and copy data to the device. However, not all folders can be accessed on a normal phone in this
manner. This is because the device's security enforcements prevent an examiner from viewing the
locations that contain private data. Rooting a device solves this issue, as it provides unlimited access
to all the data present on the device. Rooting a device with an unlocked boot loader is
straightforward, while rooting a device with a locked boot loader involves exploiting some security
bug.

With this knowledge about accessing the device, you will now learn how data is organized on an
Android device and many other details in Chapter 3, Understanding Data Storage on Android
Devices.

Chapter 3. Understanding Data Storage on
Android Devices
The primary motive of forensic analysis is to extract necessary data from the device. Hence, for
effective forensic analysis, it is imperative to know what kind of data is stored on the device, where
it is stored, how it is stored, and the details of the filesystems on which the data is stored. This
knowledge is very important to a forensic analyst to take an informed decision about where to look
for data and the techniques that can be used to extract the data. In this chapter, we will cover the
following topics:

Android partition layout and file hierarchy
Application data storage on the device
An overview of the Android filesystem

Android partition layout
Partitions are logical storage units made inside the device's persistent storage memory. Partitioning
allows you to logically divide the available space into sections that can be accessed independently of
each other.

Common partitions in Android
The partition layout varies between vendors and versions. However, a few partitions are present in
all the Android devices. The following sections explain some of the common partitions found in most
of the Android devices.

boot loader

This partition stores the phone's boot loader program. This program takes care of initializing the low-
level hardware when the phone boots. Thus, it is responsible for booting the Android kernel and
booting into other boot modes, such as the recovery mode, download mode, and so on.

boot

As the name suggests, this partition has the information and files required for the phone to boot. It
contains the kernel and RAM disk. So, without this partition, the phone cannot start its processes.

recovery

Recovery partition allows the device to boot into the recovery console through which activities such
as phone updates and other maintenance operations are performed. For this purpose, a minimal
Android boot image is stored. This boot image serves as a failsafe.

userdata

This partition is usually called the data partition and is the device's internal storage for application
data. A bulk of user data is stored here, and this is where most of our forensic evidence will reside. It
stores all app data and standard communications as well.

system

All the major components other than kernel and RAM disk are present here. The Android system
image here contains the Android framework, libraries, system binaries, and preinstalled applications.
Without this partition, the device cannot boot into normal mode.

cache

This partition is used to store frequently accessed data and various other files, such as recovery logs
and update packages downloaded over the cellular network.

radio

Devices with telephony capabilities have a baseband image stored in this partition that takes care of
various telephony activities.

Identifying partition layout
For a given Android device, partition layout can be determined in a number of ways. The
partitions file under /proc gives us details about all the partitions available on the device. The
following screenshot shows the contents of the partitions file:

Partitions file in Android

The entries in the preceding screenshot show only the block names. To get a mapping of these blocks
to their logical functions, check the contents of the by-name directory present under

/dev/block/platform/dw_mmc. The following screenshot shows the contents of this directory:

Mapping of blocks to their logical functions

As you can see in the preceding output, various partitions such as system, user data, and so on are
present in the partition layout.

Android file hierarchy
In order to perform forensic analysis on any system (desktop or mobile), it's important to understand
the underlying file hierarchy. A basic understanding of how Android organizes its data in files and
folders helps a forensic analyst narrow down his research to specific locations. If you are familiar
with Unix-like systems, you will understand the file hierarchy in Android very well. In Linux, the file
hierarchy is a single tree, with the top of the tree being denoted as /. This is called the root. This is
different from the concept of organizing files in drives (as with Windows). Whether the filesystem is
local or remote, it will be present under the root. Android file hierarchy is a customized version of
this existing Linux hierarchy. Based on the device manufacturer and the underlying Linux version, the
structure of this hierarchy may have a few insignificant changes. To see the complete file hierarchy,
you need to have root access. The following screenshot shows the file hierarchy on an Android
device:

Folders present under / (root) in Android

An overview of directories

The following sections provide an overview of the directories present in the file hierarchy of an
Android device.

acct

This is the mount point for the acct cgroup (control group) that provides for user accounting.

cache

This is the directory (/cache) where Android stores frequently accessed data and app components.
Wiping the cache doesn't affect your personal data, but simply deletes the existing data there. There is
also another directory in this folder called lost+found. This directory holds recovered files (if any)
in the event of filesystem corruption, such as incorrectly removing the SD card without unmounting it
and so on. The cache may contain forensically relevant artifacts, such as images, browsing history,
and other app data.

d

This is a symbolic link to /sys/kernel/debug. This folder is used to mount the debugfs filesystem
and to debug kernel.

data

This is the partition that contains the data of each application. Most of the data belonging to a user,
such as the contacts, SMS, dialed numbers, and so on, is stored in this folder. This folder has
significant importance from a forensic point of view as it holds valuable data. The following
screenshot shows the folders present in this partition:

Contents of data partition of an Android device

The following sections provide a brief explanation of other important subdirectories present under
the data folder.

dalvik-cache

As discussed in Chapter 1, Introducing Android Forensics, Android applications contain .dex files
that are optimized versions of Java bytecode. When an application is installed on an Android device,
some modifications are performed on the corresponding .dex file, and a resultant file called .odex
file (optimized ,dex file) is created. It is then cached in the /data/dalvik-cache directory so that it
doesn't have to perform the optimization process every time it loads application.log.

This folder contains several logs that might be useful during examination, depending on the underlying
requirements. For example, the following screenshot shows one of the log files recovery_log.txt,
which gives details about the recovery log:

The recovery_log.txt file output

data

The /data/data partition contains the private data of all the applications. Most of the data belonging
to the user is stored in this folder. This folder has significant importance from a forensic point of
view as it holds valuable data. This partition is covered in detail in the Internal Storage section.

dev

This directory contains special device files for all the devices. This is the mount point for the tempfs
filesystem. This filesystem defines the devices available to the applications.

init

As discussed in Chapter 1, Introducing Android Forensics, when booting the Android kernel, the init
program is executed. This program present under this folder.

mnt

This directory serves as a mount point for all the filesystems, internal and external SD cards, and so
on. The following screenshot shows the mount points present in this directory:

proc

This is the mount point for the procfs filesystem that provides access to the kernel data structures.
Several programs use /proc as the source for their information. It contains files that have useful
information about the processes. For instance, as shown in the following screenshot, meminfo
present under /proc gives information about the memory allocation:

meminfo file under proc folder in Android

root

This is the home directory for the root account. This folder can be accessed only if the device is
rooted.

sbin

This contains binaries for several important daemons. This is not of much significance from a
forensic perspective.

misc

As the name suggests, this folder contains information about miscellaneous settings. These settings
mostly define the state, that is, ON/OFF. Information about hardware settings, USB settings, and so on
can be accessed from this folder.

sdcard

This is the partition that contains the data present on the SD card of the device. Note that this SD card
can be either removable storage or non-removable storage. Any app on your phone with the
WRITE_EXTERNAL_STORAGE permission may create files or folders in this location. There are some
default folders, such as android_secure, Android, DCIM, media, and so on, present in most of the
mobiles. The following screenshot shows the contents of /sdcard location:

Contents of the sdcard partition of an Android device

Digital Camera Images (DCIM) is the default directory structure for digital cameras, smartphones,
tablets, and related solid-state devices. Some tablets have a photos folder that points to the same
location. Within DCIM, you will find photos you have taken, videos, and thumbnails (cache) files.
Photos are stored in /DCIM/Camera.

Android developer's reference explains that there are certain public storage directories that are not
specifically tied to a specific program. Here is a quick overview of these folders:

Music: Media scanner classifies all media found here as user music.
Podcasts: Media scanner classifies all media found here as a podcast.
Ringtones: Media files present here are classified as ringtones.
Alarms: Media files present here are classified as alarms.
Notifications: Media files under this location are used for notification sounds.
Pictures: All photos, except the ones taken with a camera, are stored in this folder.

Movies: All movies, except the ones taken with a camera, are stored in this folder.
Download: Miscellaneous downloads are stored in this folder.

system

This directory contains libraries, system binaries, and other system-related files. The pre-installed
applications that come along with the phone are also present in this partition. The following
screenshot shows the files present in the system partition on an Android device:

Contents of the system partition of an Android device

Here are some of the interesting files and folders present in the /system partition that are of interest
to a forensic investigator.

build.prop

This file contains all the build properties and settings for a given device. For a forensic analyst, this
file gives an overview about the device model, manufacturer, Android version, and many other
details. Contents of this file can be viewed by issuing a cat command, as shown in the following
screenshot:

The build.prop file output

As shown in the preceding output, you can find out the product model, CPU details, and Android
version by viewing this file content. On a rooted device, tweaking the build.prop file could lead to
a change in several system settings.

app

This folder contains system apps and preinstalled apps. This is mounted as read only to prevent any
changes. The following screenshot shows various system-related apps that are present in this folder:

System apps present under the /system/app partition

Along with the APK files, you might have also noticed .odex files in the preceding output. In
Android, applications come in packages, with the.apk extension. These APKs contain .odex files
whose supposed function is to save space. The .odex files are collection of certain parts of an
application that are optimized before booting.

framework

This folder contains the sources for the Android framework. In this partition, you can find the
implementation of key services, such as the system server with the package and activity managers. A
lot of the mapping between the Java application APIs and the native libraries is also done here.

ueventd.goldfish.rc and ueventd.rc

These files contain configuration rules for the /dev directory.

To sum up, here is a screenshot of the Android file tree reference from
http://wiki.robotz.com/index.php/Android_File_System:

http://wiki.robotz.com/index.php/Android_File_System

Android file tree

Application data storage on the device
Android devices store a lot of sensitive data through the use of apps. Although we have earlier
categorized apps as system and user-installed apps, here is a more detailed split:

Apps that come along with Android
Apps installed by the manufacturer
Apps installed by a wireless carrier
Apps installed by the user

All of these store different types of data on the device. Application data often contains a wealth of
information that is relevant to the investigation. Here is a sample list of possible data that can be
found on an Android device:

SMS
MMS
Chat messages
Backups
E-mails
Call logs
Contacts
Pictures
Videos
Browser history
GPS data
Files or documents downloaded
Data that belongs to installed apps (Facebook, Twitter, and other social media apps)
Calendar appointments

Data belonging to different applications can be stored either internally or externally. In the case of
external storage (SD card), data can be stored in any location. However, in the case of internal
storage, the location is predefined. To be specific, internal data of all apps present on the device
(either system apps or user-installed apps) is automatically saved in the /data/data subdirectory,
named after the package name. For example, the default Android e-mail app has a package named
com.android.email, and the internal data is stored in /data/data/com.android.email. We will
discuss this in detail in the upcoming sections, but for now, this knowledge will be sufficient to
understand the following details.

Android provides developers with certain options to store data to the device. The option that can be
used depends on the underlying data that is to be stored. Data that belongs to applications can be
stored in one of the following locations:

Shared preferences
Internal storage

External storage
SQLite database
Network

The following sections provide a clear explanation about each of these options.

Shared preferences
This location provides a framework to store key-value pairs of primitive data types in the .xml
format. Primitive data types include boolean, float, int, long, and string. Strings are stored in the
Universal Character Set Transformation Format-8 (UTF-8) format. These files are typically
stored in the application's /data/data/<package_name>/shared_prefs path. For instance, the
shared_prefs folder for the Android e-mail app contains less than six .xml files, as shown in the
following screenshot:

Contents of the shared_prefs folder of the Android e-mail app

As explained in Chapter 2, Setting Up an Android Forensic Environment, contents of these files can
be viewed using the cat command. The following screenshot shows the contents of the
com.android.email_preferences.xml file:

Android e-mail app's shared preferences file content

As seen in the preceding screenshot, the data is stored in name-value pairs. Perhaps in the preceding
.xml file, account_name, account_password, recent_messages are some of the interesting
parameters from a forensic point of view. Many applications use shared peferences to store sensitive
data, because it is light weight. Thus, they can be a key source of information during a forensic
investigation.

Internal storage
The files here are stored in the internal storage. These files are located typically in the application's
/data/data subdirectory. Data stored here is private and cannot be accessed by other applications.
Even the device owner is prevented from viewing the files (unless they have root access). However,
based on the requirement, the developer can allow other processes to modify and update these files.

The following screenshot shows the details of the apps stored with their package name in the
/data/data directory:

Contents of the /data/data folder in Android

Internal data of each app is stored in their respective folders. For instance, the following screenshot
shows the internal storage that belongs to the Twitter app on an Android device:

Internal storage of the Android Twitter app

Usually, the databases, lib, shared_pref, cache folders are created for most of the applications.
The following table provides a brief description of these folders:

Sub directory

Description

shared_prefs

XML file of shared preferences

lib

Custom library files required by app

files

Developer-saved files

cache

Files cached by app

databases

SQLite and journal files

Folders other than these are custom folders created by the app developer. The databases folder is
the one that contains crucial data that helps in forensic investigations. As shown in the following
screenshot, data in this folder is stored in SQLite files:

SQLite files present under the databases folder of the Android browser app

This data can be viewed using tools such as SQLite Browser. More details about how to extract data
is covered in detail in Chapter 4, Extracting Data Logically from Android Devices.

External storage
Files can also be stored by the apps in external storage. External storage can be a removable media,
such as an SD card or non-removable storage that comes with the phone. In the case of a removable
SD card, data can be used on other devices just by removing the SD card and inserting it in any other
device. SD cards are usually formatted with the FAT32 filesystem, but other filesystems, such as
EXT3 and EXT4, are also being used increasingly. Unlike internal storage, external storage does not
have strict security enforcements. In other words, data stored here is public and can be accessed by
other applications, provided the requesting apps have the necessary permissions.

For example, the Twitter app discussed earlier also stores certain files on the SD card in the
/Android/data location. Large files, such as images and videos, loaded by the apps are usually
stored in the external storage for faster retrieval.

SQLite database
SQLite is a popular database format present in many mobile systems and is used for structured data
storage. SQLite is open source, and unlike many other databases, it is compact and offers lot of
functionality. Android supports SQLite through dedicated APIs, and hence, developers can take
advantage of it. SQLite databases are a rich source of forensic data. The SQLite files used by the
apps are generally stored at /data/data/<ApplicationPackageName>/databases. For example,
in the case of the Android e-mail app, the following screenshot shows the SQLite files present in its
databases folder. We will examine these files in more detail in the upcoming sections. From a
forensic point of view, they are highly valuable since they often store a lot of important data handled
by the application. The contents of the databases folder can be seen in the following screenshot:

The databases folder of the Android e-mail app

Network
You can use the network to store and retrieve data on your own web-based services. To do network
operations, the classes in the java.net.* and android.net.* packages can be used. These
packages provide developers with the low-level APIs that are necessary to interact with the network,
web servers, and so on.

Android filesystem overview
Understanding the filesystem is very important in Android forensics, as it helps us gain knowledge of
how the data is stored and retrieved. This knowledge about properties and the structure of a
filesystem will prove to be useful during forensic analysis. Filesystem refers to the way data is
stored, organized, and retrieved from a volume. A basic installation may be based on one volume
split into several partitions; here, each partition can be managed by a different filesystem. Microsoft
Windows users are mostly familiar with the FAT32 or NTFS filesystem, whereas Linux users are
more familiar with the EXT2 or EXT4 filesystem. As is true in Linux, Android also utilizes mount
points and not drives (that is C: or E:). Each filesystem defines its own rules to manage the files on
the volume. Depending on these rules, each filesystem offers a different speed for file retrieval,
security, size, and so on. Linux uses several filesystems and so does Android. From a forensic point
of view, it's important to understand what filesystems are used by Android and to identify the
filesystems that are of significance to the investigation. For example, the filesystem that stores the
user's data is of primary concern to us, as opposed to a filesystem used to boot the device.

As mentioned earlier, Linux is known to support a large number of filesystems. These filesystems
used by the system are not accessed by drive names, but instead are combined into a single
hierarchical tree structure that represents these filesystems as a single entity. Each new filesystem is
added into this single filesystem tree when it is mounted.

Note

In Linux, mounting is an act of attaching an additional filesystem to the currently accessible filesystem
of a computer.

Thus, the filesystems are mounted on to a directory, and files present in this filesystem are now the
contents of that directory. This directory is called a mount point. It makes no difference whether the
filesystem exists on the local device or on a remote device. Everything is integrated into a single file
hierarchy that begins with root. Each filesystem has a separate kernel module that registers the
operations that it supports with something called virtual file system (VFS). VFS allows different
applications to access different filesystems in a uniform way. By separating the implementation from
the abstraction, adding a new filesystem becomes a matter of writing another kernel module. These
modules are either part of the kernel or are dynamically loaded on demand. The Android kernel
comes with a subset of a vast collection of filesystems that range from the Journal File System (JFS)
to the Amiga filesystem. All the background work is handled by the kernel when a filesystem is
mounted.

Note

The preceding information is referenced from http://trikandroid.hol.es/page/100/.

Viewing filesystems on an Android device

http://trikandroid.hol.es/page/100/

The filesystems supported by the Android kernel can be determined by checking the contents of the
filesystems file that are present in the proc folder. The content of this file can be viewed using the
following command:

shell@Android:/ $ cat /proc/filesystems
cat /proc/filesystems
nodev sysfs
nodev rootfs
nodev bdev
nodev proc
nodev cgroup
nodev tmpfs
nodev binfmt_misc
nodev debugfs
nodev sockfs
nodev usbfs
nodev pipefs
nodev anon_inodefs
nodev devpts
ext2
ext3
ext4
nodev ramfs
vfat
msdos
nodev ecryptfs
nodev fuse
fuseblk
nodev fusectl
exfat

In the preceding output, the filesystems preceded by the nodev property are not mounted on the
device.

Common Android filesystems
The filesystems present in Android can be divided into three main categories, which are as follows:

Flash memory filesystems
Media-based filesystems
Pseudo filesystems

Flash memory filesystems

Flash memory is a type of constantly-powered non-volatile memory that can be erased and
reprogrammed in units of memory called blocks. Due to the particular characteristics of flash
memories, special filesystems are needed to write over the media and deal with the long erase times
of certain blocks. While the supported filesystems vary on different Android devices, the common
flash memory filesystems are as follows:

Extended File Allocation Table (exFAT): This type of filesystem is a Microsoft proprietary
filesystem optimized for flash drives. As a result of the license requirements, it is not part of the
standard Linux kernel. However, a few manufacturers provide support for this filesystem.
Flash Friendly File System (F2FS): This type of filesystem is introduced by Samsung as an
open source filesystem. The basic intention was to build a filesystem that takes into account the
characteristics of the storage devices based on the NAND flash memory.
Journal Flash File System version 2 (JFFS2): This type of filesystem is a log-structured
filesystem used in Android. JFFS2 is the default flash filesystem for Android Open Source
Project (AOSP) since the Ice Cream Sandwich version. Filesystems such as LogFS, UBIFS,
YAFFS, and so on have been developed as a replacement for JFFS2.
Yet Another Flash File System version 2 (YAFFS2): This type of filesystem is an open source,
single-threaded filesystem that was released in 2002. It is mainly designed to be fast when
dealing with NAND flash. YAFFS2 utilizes OOB. This is often not captured or decoded
correctly during forensic acquisition, which makes analysis difficult. YAFFS2 was the most
popular release at one point and is still widely used in Android devices. YAFFS2 is a log-
structured filesystem. Data integrity is guaranteed even in the case of sudden power outage. In
2010, there was an announcement stating that in releases after Gingerbread, devices were going
to move from YAFFS2 to EXT4. Currently, YAFFS2 is not supported in newer kernel versions,
but certain mobile manufacturers might still continue to support it.
Robust File System (RFS): This type of filesystem supports the NAND flash memory on
Samsung devices. RFS can be summarized as a FAT16 (or FAT32) filesystem where journaling
is enabled through a transaction log. Many users complain that Samsung should stick to EXT4.
RFS has been known to have lag times that slow down the features of Android.

Media-based filesystems

Besides the flash memory filesystems discussed earlier, Android devices typically support the
following media-based filesystems:

EXTended file system (EXT2/EXT3/EXT4): This filesystem was introduced in 1992
specifically for the Linux kernel. This was one of the first filesystems and used the virtual
filesystem. EXT2, EXT3, and EXT4 are the subsequent versions. Journaling is the main
advantage of EXT3 over EXT2. With EXT3, in the case of an unexpected shutdown, there is no
need to verify the filesystem. The EXT4 filesystem, the fourth extended filesystem, has gained
significance with mobile devices that implement dual-core processors. The YAFFS2 filesystem
is known to have a bottleneck on dual-core systems. With the Gingerbread version of Android,
the YAFFS filesystem was swapped for EXT4.
File Allocation Table (FAT): These filesystems, such as FAT12, FAT16, and FAT32, are
supported by the MSDOS driver.
Virtual File Allocation Table (VFAT): This filesystem is an extension of the FAT16 and
FAT32 filesystems. Microsoft's FAT32 filesystem is supported by most Android devices. It is
supported by almost all the major operating systems, including Windows, Linux, and Mac OS.
This enables these systems to easily read, modify, and delete the files present on the FAT32
portion of the Android device. Most of the external SD cards are formatted using the FAT32

filesystem.
Pseudo filesystems

In addition to these, there are pseudo filesystems that can be thought of as logical groupings of files.
Here are some of the important pseudo filesystems found in an Android device:

control group (cgroup): This type of pseudo filesystem provides a way to access and define
several kernel parameters. There are a number of different process-control groups present. As
shown in the following command-line output, the list of groups can be seen in the
/proc/cgroups file:

The cgroups file output

Android devices use this filesystem to track their jobs. They are responsible for aggregating the
tasks and keeping track of them.
rootfs: This type of filesystem is one of the main components of Android and contains all the
information required to boot the device. When the device starts the boot process, it needs access
to many core files and, thus, mounts the root file system. This filesystem is mounted at / (root
folder). Hence, this is the filesystem on which all the other filesystems are slowly mounted. If
this filesystem is corrupt, the device cannot be booted.
procfs: This type of filesystem contains information about kernel data structures, processes, and
other system-related information in the /proc directory. For instance, the /proc/filesystems
file displays the list of available filesystems on the device. The following command shows all
the information about the CPU of the device:

shell@Android:/ $ cat /proc/cpuinfo
cat /proc/cpuinfo
Processor : ARMv7 Processor rev 0 (v7l)
processor : 0
BogoMIPS : 1592.52
processor : 3
BogoMIPS : 2786.91
Features : swp half thumb fastmult vfp edsp neon vfpv3 tls
CPU implementer : 0x41
CPU architecture: 7
CPU variant : 0x3
CPU part : 0xc09

CPU revision : 0
Chip revision : 0011
Hardware : SMDK4x12
Revision : 000c
Serial : ****************

sysfs: This type of filesystem mounts the /sys folder, which contains information about the
configuration of the device. The following output shows various folders in the sys directory in
an Android device:

shell@Android:/ $ cd /sys
cd /sys
shell@Android:/sys $ ls
ls
block
bus
class
dev
devices
firmware
fs
kernel
module
power

Since the data present in these folders is mostly related to configuration, this is not usually of
much significance to a forensic investigator. However, there could be some circumstances
where we might want to check whether a particular setting was enabled on the phone. Analyzing
this folder could be useful under such conditions. Note that each folder consists of a large
number of files. Capturing this data through forensic acquisition is the best method to ensure that
this data is not changed during examination.
tmpfs: This type of filesystem is a temporary storage facility on the device that stores the files in
RAM (volatile memory). This is often mounted on the /dev directory. The main advantage of
using RAM is its faster access and retrieval. However, once the device is restarted or switched
off, this data will not be accessible anymore. Hence, it's important for a forensic investigator to
either examine the data in RAM before a device reboot happens or extract the data.

You can use the mount command to see different partitions and their filesystems available on the
device, as follows:

shell@Android:/sdcard $ mount
mount
rootfs / rootfs rw 0 0
tmpfs /dev tmpfs rw,nosuid,relatime,mode=755 0 0
devpts /dev/pts devpts rw,relatime,mode=600,ptmxmode=000 0 0
proc /proc proc rw,relatime 0 0
sysfs /sys sysfs rw,relatime 0 0
tmpfs /mnt/asec tmpfs rw,relatime,mode=755,gid=1000 0 0
tmpfs /mnt/obb tmpfs rw,relatime,mode=755,gid=1000 0 0
/dev/block/nandd /system ext4 rw,nodev,noatime,user_xattr,barrier=0,data=ordered

0 0
/dev/block/nande /data ext4
rw,nosuid,nodev,noatime,user_xattr,barrier=0,journal_checksum,data=or
dered,noauto_da_alloc 0 0
/dev/block/nandh /cache ext4
rw,nosuid,nodev,noatime,user_xattr,barrier=0,journal_checksum,data=or
dered,noauto_da_alloc 0 0
/dev/block/vold/93:64 /mnt/sdcard vfat
rw,dirsync,nosuid,nodev,noexec,relatime,uid=1000,gid=1015,fmask=0702,
dmask=0702,allow_utime=0020,codepage=cp437,iocharset=ascii,shortname=
mixed,utf8,errors=remount-ro 0 0
/dev/block/vold/93:64 /mnt/secure/asec vfat
rw,dirsync,nosuid,nodev,noexec,relatime,uid=1000,gid=1015,fmask=0702,
dmask=0702,allow_utime=0020,codepage=cp437,iocharset=ascii,shortname=
mixed,utf8,errors=remount-ro 0 0
tmpfs /mnt/sdcard/.Android_secure tmpfs ro,relatime,size=0k,mode=000 0 0
/dev/block/dm-0 /mnt/asec/com.kiloo.subwaysurf-1 vfat
ro,dirsync,nosuid,nodev,relatime,uid=1000,fmask=0222,dmask=0222,codep
age=cp437,iocharset=ascii, shortname=mixed,utf8,errors=remount-ro 0 0

As seen in the preceding command-line output, different partitions have different filesystems, and they
are mounted accordingly.

Summary
Having sound knowledge of Android's partition layout, filesystems, and important locations will help
the forensic investigator during the process of extracting data from the device. The user data location
on the Android device contains a bulk of user information that can be crucial for any forensic
investigation. However, most of these files may be accessed only on a rooted phone (especially, files
present in the /data/data location). You have also learned about Android data-storage options,
various filesystems used by Android, and their significance.

With this knowledge, you will now learn how to logically and physically extract the data from an
Android device in the upcoming chapters.

Chapter 4. Extracting Data Logically from
Android Devices
This chapter will be covering logical data extraction by using free and open source tools wherever
possible. The majority of the material covered in this chapter will use the ADB methods previously
discussed in Chapter 2, Setting Up an Android Forensic Environment.

By the end of this chapter, the reader should be familiar with the following:

What logical extraction means
What data to expect from logical extractions
What data is available with and without root
Manual ADB data extractions
ADB Backup extractions
ADB dumpsys information
How to bypass Android lock screens
SIM card extractions

Logical extraction overview
In digital forensics, the term logical extraction is typically used to refer to extractions that do not
recover deleted data, or do not include a full bit-by-bit copy of the evidence. However, a more
correct definition of logical extraction, also defined in Chapter 1, Introducing Android Forensics, is
any method that requires communication with the base operating system. Because of this interaction
with the operating system, a forensic examiner cannot be sure that they have recovered all of the data
possible; the operating system is choosing which data it allows the examiner to access.

In traditional computer forensics, logical extraction is analogous to copying and pasting a folder in
order to extract data from a system; this process will only copy files that the user can access and see.
If any hidden or deleted files are present in the folder being copied, they will not be in the pasted
version of the folder.

As you will see, however, the line between logical and physical extractions in mobile forensics is
somewhat blurrier than in traditional computer forensics. For example, deleted data can routinely be
recovered from logical extractions on mobile devices, due to the prevalence of SQLite databases
being used to store data. Furthermore, almost every mobile extraction will require some form of
interaction with the Android operating system; there is no simple equivalent to pulling a hard drive
and imaging it without booting the drive. For our purposes, we will define a logical extraction as the
process that obtains data visible to the user, and may include data that has been marked for deletion.

What data can be recovered logically?

For the most part, any and all user data may be recovered logically:

Contacts
Call logs
SMS/MMS
Application data
System logs and information

The bulk of this data is stored in SQLite databases, so it is even possible to recover large amounts of
deleted data through a logical extraction.

Root access

When forensically analyzing an Android device, the limiting factor is often not the type of data being
sought, but rather whether or not the examiner has the ability to access the data. Root access has been
covered extensively in Chapter 2, Setting Up an Android Forensic Environment, but it is important
enough to warrant repetition. All of the data listed above, when stored on the internal flash memory,
is protected and requires root access to read. The exception to this is application data that is stored
on the SD card, which will be discussed later in this book.

Without root access, a forensic examiner cannot simply copy information from the data partition. The
examiner will have to find some method of escalating their privileges in order to gain access to the
contacts, call logs, SMS/MMS, and application data. These methods often carry many risks, such as
the potential to destroy or "brick" the device (making it unable to boot), and may alter data on the
device in order to gain permanence. The methods commonly vary from device to device, and there is
no universal, one-click method to gain root access to every device. Commercial mobile forensic tools
such as MicroSystemation XRY and Cellebrite UFED have built-in capabilities to temporarily and
safely root many devices, but do not cover the wide range of all Android devices.

Throughout this chapter, we will make note of situations where root is required for each technique
demonstrated.

Note

The decision to root a device should be made in accordance with your local operating procedures
and court opinions in your jurisdiction. The legal acceptance of evidence obtained by rooting varies
by jurisdiction.

Manual ADB data extraction
The ADB pull command can be used to pull single files or entire directories directly from the device
on to the forensic examiner's computer. This method is especially useful for small, targeted
examinations. For example, in an investigation strictly involving SMS messages, the examiner can
choose to pull just the relevant files.

USB debugging
Setting up the ADB environment has been previously discussed in this book. However, the device
under examination must also be configured properly. USB debugging is the actual method through
which the examiner's computer will communicate with the device. The USB debugging option is
found under the Developer options in the Settings menu. However, as of Android 4.2, the Developer
Options menu is hidden; to reveal it, a user has to go to Settings | About Phone, and then tap the
Build Number field seven times. An on-screen dialog will appear that says You are now a
developer! At this point, Developer options is available in the Settings menu; simply open this
menu and select Enable USB debugging.

In addition to USB debugging, the correct drivers must be installed on the examiner's computer.
Generally they can be found online, either from the manufacturer's website or at www.xda-
developers.com. If commercial forensic tools are installed on the machine, the appropriate drivers
may already be installed.

Tip

Another excellent resource is the Universal ADB Driver that can be downloaded for free at
http://drivers.softpedia.com/get/MOBILES/Clockworkmod/Clockworkmod-Universal-Android-
ADB-Driver.shtml.

Prior to Android 4.2.2, enabling USB debugging was the only requirement to communicate with the
device over ADB. In Android 4.2.2, Google added Secure USB debugging option. The Secure USB
debugging option adds an additional requirement of selecting to connect to a computer on the
device's screen; this prevents ADB access to locked devices from untrusted computers:

http://www.xda-developers.com
http://drivers.softpedia.com/get/MOBILES/Clockworkmod/Clockworkmod-Universal-Android-ADB-Driver.shtml

RSA fingerprint dialog

If Always allow from this computer is selected, the device will store the computer's RSA key and
the prompt will not appear on future connections to that computer, even if the device is locked.

Tip

It may be possible, depending on the device and OS version, to circumvent the Secure USB
debugging protection. Find more information at
https://labs.mwrinfosecurity.com/advisories/2014/07/03/android-4-4-2-secure-usb-debugging-
bypass/.

It is also possible to bypass Secure USB debugging by using a computer previously authorized to
access the device, which is discussed in the Issues with Android Lollipop section later in this
chapter.

Once USB debugging has been enabled and the Secure USB debugging check passed (depending on
Android version), the device is ready for examination. To verify that the device is connected and
ready to use ADB, execute the following command:

adb devices

If no devices are shown, ensure that USB debugging is enabled and that the proper device drivers
have been installed:

If the device status is offline or unauthorized, the Secure USB debugging prompt needs to be

https://labs.mwrinfosecurity.com/advisories/2014/07/03/android-4-4-2-secure-usb-debugging-bypass/

selected on the screen:

If everything is running correctly, the device status should show device:

Using ADB shell to determine if a device is rooted

The simplest method to determine if a device is rooted is to use the ADB shell. This will open a shell
on the device that will be accessed on the examiner's computer; this means that any commands run in
the shell will be executed on the device. Once USB debugging is enabled and Secure USB
debugging is bypassed (or from recovery mode, as discussed in later in this chapter), open a terminal
on the local computer and run:

adb shell

The shell will appear one of two ways, either with $ or #:

On Linux systems, the # symbol is used to indicate a root user, and the $ symbol indicates a non-root
user. If the shell returns showing #, the shell has root access:

One further step may be required on some rooted devices. If the shell returns $, try running the su
command:

su

If the su binary is installed on the device, which is usually a part of the root process, this will

escalate the shell's permissions to root if it did not open with them.

Tip

Some older devices automatically ran the shell as root; simply opening the ADB shell may be enough
to give an examiner root access.

ADB pull
As discussed in Chapter 2, Setting Up an Android Forensic Environment, the ADB pull command
is used to transfer files from the device to the local workstation. The format for the ADB pull
command is:

adb pull [-p] [-a] <remote> [<local>]

The optional -p flag shows the transfer's progress, while the optional -a flag will copy the file's
timestamp and mode. The <remote> parameter is the exact path to the file on the device. The optional
<local> parameter is the path where the file will be written on the examiner's computer. If no local
path is specified, the file will be written to the present working directory. To see what an ADB pull
command may look like, run the following command:

adb pull –p /data/data/com.android.providers.telephony/databases/mmssms.db
C:/Users/Cases/Case_0001

This command would pull the SMS database file from the device, and write it to a directory for the
case. Again, note that the device must be rooted for this to work; otherwise, the output would simply
show that 0 files were pulled. In our case, the following output is obtained:

The preceding output shows that the file is 1020400 bytes in size. As a result of our command, the
mmssms.db database now resides in the Case_0001 folder:

The database pulled from the device, seen in Windows Explorer

The database can now be examined with a SQL Browser or other forensic tools, which will be
covered in Chapter 7, Forensic Analysis of Android Applications.

Similarly, if an investigator wishes to pull the files for an entire application, that can be done with
ADB pull also:

This time, the ADB pull command fetched every file in the com.google.android.gm directory,
which happens to contain all of the data for Gmail. The output was quite long, as it individually listed
all 31 pulled files, so the entire output is not shown in the following figure, in which we see the total
size of the transfer is shown as 1233373 bytes:

Now, the Case_0002 directory contains all of the files from the Gmail application, as shown in the
following screenshot:

All files pulled from the Gmail directory, seen in Windows Explorer

All files pulled from the Gmail directory, seen in Windows Explorer

It is even possible to do the following:

adb pull -p /data/data/ \Cases\Case_0003

This would pull every logical file available from the /data/data directory, and put them in the
examiner's Case_0003 folder. This is not equivalent to a physical image, as certain files are skipped
and deleted files will not be copied, but it is a simple method for pulling the vast majority of a user's
application data.

Another advantage of the ADB pull command is that it is highly useful for scripting purposes. A
knowledgeable examiner can maintain a list of paths for common files of interest, and write a script
that automatically pulls these files from a device, or even have the script automatically pull the entire
/data/data directory. A simple example of Python code that will perform this function is:

from subprocess import Popen
from os import getcwd

command = "adb pull /data/data " + getcwd() + "\data_from_device"
p = Popen(command)
p.communicate()

Note that code is not very refined; it's only purpose is to illustrate the ease with which ADB
commands can be scripted. At the very least, properly implementing the code should include the
option to specify an output directory and handle any errors. However, the six lines of the preceding
code would be sufficient to pull the entire /data/data directory logically assuming USB debugging
is enabled and the device is rooted.

Recovery mode
In order to truly be forensically sound, ADB data extractions should not be used against a phone
while it is turned on. While the device is running, timestamps can be modified and applications may
be running and updating files in the background. To avoid this, an examiner should place the device
into a custom recovery mode, as shown in Chapter 2, Setting Up an Android Forensic Environment,
if possible. ADB access is not available through the stock Android recovery mode. Typically, the
first step in the rooting process is to flash a custom recovery mode to allow a method for repairing the
device if something goes wrong. Rooted devices are far more likely to contain a custom recovery, but
it is possible to flash a custom recovery to a non-rooted device. This method also allows the
examiner to avoid the Secure USB debugging prompt on newer versions of Android, although our
testing shows that this does not work on Android Lollipop. Recovery mode also may not require USB
debugging to be enabled, which makes it an excellent option for bypassing a locked device.

Note

This method will not work against devices with full disk encryption enabled. Booting into Recovery

Mode will not decrypt the data partition.

The process to boot into recovery mode will vary for each device. Typically, it involves some
combination of powering the device off and holding the volume and power keys. Guides for specific
models can be found online.

The stock recovery mode will typically show a picture of an Android being operated on:

Stock Recovery mode

Custom recoveries look like the following screenshots. Also, stock recoveries will not allow ADB
communication; running adb devices will simply show no devices.

Note

Custom recovery images for many devices can be found at
https://www.clockworkmod.com/rommanager and http://teamw.in/project/twrp2.

If a device is in a custom Recovery Mode and the correct drivers have been installed on the
examiner's computer, the device can be accessed via ADB as if it were live. Note that its status using

https://www.clockworkmod.com/rommanager
http://teamw.in/project/twrp2

the adb devices command now shows that it is in recovery mode:

There is one final step before the examiner can begin extracting data over ADB: the data partition
must be mounted in order to access user data. Some custom recoveries may mount this automatically,
and others might not. If using either the Clockwork Mod Recovery or Team Win Recovery Project
(TWRP) images from the URLs above, the data partition can be mounted by selecting Mounts and
then selecting the data partition, as shown in the following screenshots. The recovery menu is
generally either navigated by using the volume keys to move up and down and the power button to
select, or may be touch-based depending on the custom recovery image used.

For a TWRP recovery, from the main recovery screen, select Mount:

After choosing Mount, select the partition(s) to be mounted:

In a Clockwork Mod Recovery, select mounts and storage:

Then select the partition(s) to mount:

Once the data partition (and any other partition the examiner wants to investigate) is mounted, the
examiner can perform ADB data extractions, as demonstrated earlier in this chapter.

If the device does not have a custom recovery, the following section will show how to boot into one.

Fastboot mode
Fastboot is another protocol utility built into the Android SDK, and is used for interacting directly
with a device's bootloader. Essentially, it is a much lower-level version of ADB, and is frequently
used to flash new images to a device. How can this be helpful to an examiner?

Fastboot can allow an examiner to boot from a custom recovery image, and temporarily gain root
access on a device, thus gaining access to data that would have been unavailable otherwise. Fastboot
does not require USB debugging to be enabled or root access. The process of loading a custom
bootloader onto a device is commonly used by commercial forensic tools to temporarily root a
device, but a skilled examiner can also perform the process manually. Using this method, the recovery
image is loaded into RAM; no permanent data on the device is altered in any way.

The most important requirement for using fastboot is an unlocked bootloader; locked bootloaders will
not allow a device to boot from code that isn't specifically signed by the manufacturer. Unfortunately
for forensic purposes, most devices no longer ship with an unlocked bootloader as it is a serious
security risk, and manually unlocking a bootloader typically erases the user data. As such, the number
of devices for which this is a feasible method is somewhat limited. But, when it works, it's an
absolutely invaluable tool for an examiner to have in their arsenal.

Note

This method will not work against devices with full disk encryption enabled. Booting into recovery
mode will not decrypt the data partition.

Determining bootloader status

Much like everything involving Android forensics, there is no one guaranteed method to determine if
a bootloader is locked, as it varies depending upon the manufacturer. To boot into the bootloader, use
the following ADB command:

adb reboot bootloader

The device should boot to a screen that shows information regarding the bootloader. Frequently, this
screen will display the bootloader status, as seen in the following screenshot.

Here's a generic, stock fastboot menu from a Nexus 5. Note that the Lock State indicates that the
bootloader is unlocked:

A standard HTC fastboot screen is as follows:

Following is a standard Samsung Odin mode screen; Odin is the Samsung proprietary equivalent to
fastboot:

Booting to a custom recovery image

Once the bootloader is determined to be unlocked, an examiner will need a custom recovery image
from which to boot. An excellent source of recovery images is either
https://www.clockworkmod.com/rommanager or http://teamw.in/twrp_view_all_devices. Both sites
offer coverage of a wide variety of devices, and will provide the same functionality for the purposes
of this method.

Note

It is absolutely critical to select the correct recovery image for the device being examined; they are
not interchangeable, and booting from the wrong image may brick the device.

Once a recovery image is selected and downloaded, the device needs to be placed into fastboot
mode. This can be accomplished in one of two ways:

ADB
Physical device buttons

To enter fastboot device over ADB, the device must already have USB debugging enabled. The
command to enter fastboot mode over ADB is:

adb reboot bootloader

If USB Debugging cannot be enabled or ADB cannot be used, there is also typically a combination of
buttons to press while the device is booting, similar to entering Recovery Mode. The exact
combination can be found online for each device specifically.

Once the device is in fastboot mode, running the following command will verify if the device is

https://www.clockworkmod.com/rommanager
http://teamw.in/twrp_view_all_devices

connected and ready to communicate:

fastboot devices

The following command will load the custom recovery image into RAM and boot the device into
Recovery Mode:

fastboot boot 'path to image'

The device should now reboot and enter Recovery Mode. As shown in the Recovery Mode section,
the /data partition may need to be mounted in order to access user data.

Entering the ADB shell will show that the examiner now has root access. The device will allow root
access until it is rebooted.

If the fastboot boot command fails, it is a likely indicator that the device's bootloader is locked, as
shown in the following screenshot:

ADB backup extractions
Google implemented ADB backup functionality, beginning in Android 4.0 Ice Cream Sandwich. This
allows users (and forensic examiners) to backup application data to a local computer over ADB. This
process does not require root, and is therefore highly useful for forensic purposes. However, it does
not acquire every application installed on the device. When a developer makes a new app, it is set to
allow backups by default, but this can be changed by the developer. In practice, it seems the vast
majority of developers leave the default setting, which means that backups do capture most third-
party applications. Unfortunately, most Google applications disable backups; full application data
from apps such as Gmail and Google Maps will not be included.

Tip

This method will not be useful against a locked device as user interaction with the screen is required.

Extracting a backup over ADB
The format of the ADB backup command is:

adb backup [-f <file>] [-apk|-noapk] [-obb|-noobb] [-shared|-noshared] [-all] [-
system|-nosystem] [<packages...>]

The flags are as follows:

-f: Names the path for the output file. If not specified, defaults to backup.ab in present working
directory.
[-apk|noapk]: Choose whether or not to back up the .apk file. Defaults to -noapk.
[-obb|-noobb]: Choose whether or not to back up .obb (APK expansion) files. Defaults to -
noobb.
[-shared|-noshared]: Choose whether or not to back up data from shared storage and the SD
card. Defaults to -noshared.
[-all]: Include all applications for which backups are enabled.
[-system|-nosystem]: Choose whether or not to include system applications. Defaults to -
system.
[<packages>]: Explicitly name application packages to be backed up. Not needed if using -all
or -shared.

An example ADB backup command to capture all possible application data would be:

adb backup –f C:/Users/Cases/Case_0001/backup.ab –shared –all

Alternatively, an example ADB backup command to capture a specific application's data would be:

adb backup –f C:/Users/Cases/Case_0001/facebook.ab com.facebook.katana

You should see something like:

When performing a backup, the user must approve the backup on the device. This means that backups
cannot be performed without bypassing screen locks:

Accepting the backup on the device

Depending on the number of applications installed, the backup process may take a significant amount

of time.

Parsing ADB backups
The resulting backup data is stored as a .ab file, but is actually a .tar file that has been compressed
with the Deflate algorithm. If a password was entered on the device when the backup was created,
the file would also be AES encrypted. It should also be mentioned that these files may exist on a
suspect's computer, and can be analyzed using the same methods.

There are many free utilities to turn the .ab backup file into a .tar that can be viewed. One such
utility is the Android Backup Extractor, found at http://sourceforge.net/projects/adbextractor/.

To use the Android Backup Extractor, simply extract its files into the directory with the backup. The
command to run the utility is:

java -jar abe.jar unpack backup.ab backup.tar

If the command runs properly, the command line will display as follows:

The first line of the output informs the examiner that the file was not encrypted. Had it been encrypted,
the examiner would have to pass the password as an argument at the end of the command line. As
seen in the output, the backup created in the previous section is approximately 4 GB, even though it is
still compressed. The .tar file will be at the path specified on the command line or the current
working directory if no path is specified. Decompressing the .tar file may be done manually on a
Linux command line or with one of the many Windows archive utilities, such as WinRAR or 7Zip:

http://sourceforge.net/projects/adbextractor/

Directories within the backup, seen in Windows Explorer

Data locations within ADB backups
Now that the backup has been converted to a .tar file and then extracted, the examiner can view the
data contained in the backup. In our example, there are two directories found in the root of the
backup:

apps: This folder contains data from /data/data for applications that were included in the
backup.
shared: This folder contains all data from SD card, only present if the –shared argument was
passed at the command line.

Note that the files within the apps directory are stored in directories by their package name (just as
seen in /data/data from within the ADB shell), and the shared directory is exactly what the user
would see if they accessed the SD card by plugging it into a computer.

For a benign example of user data that was pulled from the backup, the user's Pandora activity is
shown below. Pandora is a streaming music service with millions of downloads in the Google Play
Store. Pandora's application data will be contained in the apps folder of the backup in the folder

named com.pandora.android.

The Pandora directory from the backup

This is a fairly standard layout for an Android application, as discussed in Chapter 2, Setting Up an
Android Forensic Environment. The application's databases will be in the db folder:

Files within the db folder of the Pandora backup

XML configuration settings will be in the sp folder:

Files within the sp folder of the Pandora backup

Using a database viewer to view pandora.db reveals stations that the user has created, as well as the
timestamp for when it was created:

Contents of pandora.db from the backup

Looking in the XML preferences file, the timestamp of the app installation can be found under
firstInstallId. Note that the exact method for converting the timestamps is shown in Chapter 7,
Forensic Analysis of Android Applications:

Contents of the XML preferences file

If, for some odd reason, the user's Pandora usage was a major question in the investigation, what
could an examiner determine from these two seemingly innocuous files?

Firstly, the lastTransmission and firstInstallID timestamps are within milliseconds of each
other, indicating that the application was never used after it was installed. Furthermore, the creation
dates of each station precede the installation of the application, in some cases, by years. This would
be an indicator that the user has used Pandora on other devices, which may be highly relevant to the
investigation.

While Pandora is generally not germane to digital forensic investigations, it is an example of data that

can be gleaned from a simple backup over ADB. A more detailed application analysis will be
presented in Chapter 7, Forensic Analysis of Android Applications.

ADB Dumpsys
Dumpsys is a tool built into the Android OS, generally used for development purposes to show the
status of services running on the device. However, it can also contain forensically interesting
information. Dumpsys does not require root access, but like all ADB commands, it does require USB
Debugging to be enabled on the device and Secure USB Debugging to be bypassed.

The exact services that can be viewed differ across devices and Android versions. To view a list of
all possible services that can be dumped, run the following command:

adb shell service list

The output of the command will appear as a list, shown as follows:

The service name located before the colon is the argument we will pass to dumpsys. A valid dumpsys
command, using service number seven (iphonesubinfo) in the preceding screenshot, looks like this:

adb shell dumpsys iphonesubinfo

In the following screenshot, we see that the output of the iphonesubinfo service includes the device
IMEI:

There are many forensically interesting dumpsys services; following are several examples. As the
dumpsys services may vary by OS version and device, this list is not all-inclusive and is merely
intended to show the usefulness of dumpsys to a forensic examiner:

iphonesubinfo
batterystats
procstats
user

appops
Wi-Fi
notification

Dumpsys batterystats
Batterystats is used to show the usage of running applications. Its output can be very verbose,
depending on the number of applications in use. In the following screenshot , the output was
redirected to a file because it did not fit in the Windows command line:

This shows us the network usage of Google Chrome. This information can be used to show that the
application had been used recently, and this information will exist even if Chrome was used in
Incognito Mode and leaves no forensic evidence elsewhere.

Note

The wake lock section can be very useful for detecting malware. A wake lock is a method of keeping
the device awake (not entering sleep mode), and is indicative of an application attempting to stay
running in the background.

Dumpsys procstats
The procstats is a service to display the processor usage by running applications. Similar to
batterystats, it is another method that can be used to show that an application was recently used on a
device, as shown in the following screen shot:

Dumpsys user
Beginning with Android Jelly Bean, Google added support for multiple users on tablet devices. With
the release of Lollipop, Google extended this support to phones. One of the most challenging
problems in digital forensics for a long time has been to prove who was using a device when
incriminating actions were performed; "Who was behind the keyboard?"

Running dumpsys on the user service will show last login info for all users:

As only one user can be logged in at a time, looking at the user with the most recent login will identify
the account currently in use on the device.

Dumpsys App Ops
The App Ops may be the most interesting dumpsys service. The term App Ops is generally used to
refer to permissions accessible by an application. In older versions of Android, it was rumoured that
Google would include the ability for users to revoke specific permissions from an application. This
has never come to fruition, but this service at least remains, and shows the last time an application
used each permission that it can access. Following is another example from Google Chrome:

In the above output, we can see that approximately 1 hour and 7 minutes before App Ops was dumped
with dumpsys, Chrome used the TAKE_AUDIO_FOCUS permission, and later used
AUDIO_MEDIA_VOLUME. This indicates what Chrome was used to listen to and when.

A somewhat more interesting example is the following phone application:

44 minutes ago, the user used the phone application and required the READ_CONTACTS permission,
then immediately used the WRITE_CALL_LOG permission. We can surmise that the user made a phone
call 44 minutes ago; even if they had deleted the call from the records afterwards.

Dumpsys Wi-Fi
The Wi-Fi service will show a list of all SSIDs for which a connection has been saved. This could be
useful for showing that a user was at a certain location, for example. More detailed Wi-Fi
information is also available on the file system, but requires root to view. Using dumpsys, we can
access this data without requiring root:

Dumpsys notification
The notification service will provide information about currently active notifications. This can be
useful for recording the state of a device when it is seized, or identifying which application is
displaying a specific notification. Each notification can be rather large and contain a lot of
information, only some of which may be of use. The following example shows an incoming email
from the Gmail application, which includes the subject (This is a test email) and body (To see
a test notification):

Dumpsys conclusions
Running the dumpsys command with no service name will run dumpsys on all available services.
However, the output will be very large, and should be redirected into a text file. On most platforms,
the command to do this would be:

adb shell dumpsys > dumpsys.txt

This would write the output to dumpsys.txt in the current working directory. The output can then be
searched, or a parsing script can be run to pull out known relevant fields.

Dumpsys is an extremely powerful tool that can be used to show information that cannot be obtained
elsewhere on the device. We recommend running dumpsys on every Android device when it is
seized, prior to being shut down. This will save a wide variety of information that may be useful
later, and does not require root.

Bypassing Android lock screens
Lock screens are the most challenging aspect of Android forensic examinations. Frequently, the entire
investigation depends on the examiner's ability to gain access to a locked device. While there are
methods to bypass them, this can be highly dependent on the OS version, device settings, and
technical capabilities of the examiner. There is no magical solution that will work every time on
every device. Commercial forensics tools such as Cellebrite and XRY have fairly robust bypass
capabilities, but are far from infallible. This chapter will show how an examiner can increase their
odds of bypassing locked devices with free tools and methods.

Note

An examiner should never attempt to guess a Pattern/PIN/Password on the device. Many
manufacturers implement a setting that will wipe the device after a number of failed attempts. Many
also allow the user to lower that number.

Lock screen types
There are many methods used to secure a device, and the methods for bypassing each vary:

None/Slide
Pattern
PIN
Password
Smart Lock

Trusted Face
Trusted Location
Trusted Device

Other security options may exist; as Android is open source, the possibilities are only limited by the
developer's imagination. These are the options that are available in the stock version of Android
Lollipop released by Google. Most security options used by vendors generally use one of these stock
options as a failsafe, in case a user is unable to log in with their unique options. Versions in which the
setting was first used also refer to stock Android; various manufacturers may have implemented them
sooner.

None/Slide lock screens

The Slide to unlock screen is the default setting of most Android devices. It provides no level of
security, and is bypassed by sliding a finger on the screen in the indicated direction.

Pattern lock screens

Pattern lock screens are the iconic Android security method. Frequently referred to as swipe codes
and similar names, these require the user to trace a pattern on the device with a finger. A common

bypass for this lock is the smudge attack, looking for patterns left on the screen by the user's finger.

Password/PIN lock screens

Users familiar with Apple's iOS will recognize this option. It requires a user to type a password or
PIN in order to unlock the device. These are lumped together because forensically, they are identical:
they store their passwords the same way.

Smart Locks

The Smart Lock is a term introduced in Android Lollipop, although the Face unlock option was
previously available. They require a specific condition to unlock the device: a user's face must be
recognized, the user must be in a known location, or a specific other device must be nearby.

Trusted Face

Face unlock works exactly as it sounds: it uses facial recognition to determine if the user has been
previously been set up as a trusted user. Older versions of Face locks were easily fooled by pictures
of a trusted user, though newer versions may require the user to blink in order to unlock the device.

Trusted Location

Trusted Location is available in Android Lollipop and is also commonly referred to as geo-fencing.
If a user is in a location that has been marked as trusted (such as home or work), the device will not
lock. There is no input required from the user, but the GPS must be enabled.

Trusted Device

Trusted Device is available in Android Lollipop and works via Bluetooth; if a device that has been
setup as a trusted device is nearby, the lock screen will be disabled. This may be used with smart
watches, vehicles that pair over Bluetooth, Bluetooth headsets, or any other Bluetooth-capable
device.

Note

All Smart Lock options require a Pattern/PIN/Password as a backup security method. This means we
only have to learn how to bypass Patterns/PINs/Passwords in order to crack all of the security
options.

General bypass information
In all cases, bypassing the lock screen will require retrieving a file from the device. Pattern locks are
stored as hash values at /data/system/gesture.key and PIN/Password locks are stored as hash
values at /data/system/password.key. Additionally, the password.key hash is salted; the salt
value is stored at /data/data/com.android.providers.settings/databases/settings.db
prior to Android 4.4, and /data/system/locksettings.db on devices running Android 4.4 and
higher.

If the device is locked, how is an examiner supposed to access these files? Again, there is no magic
solution that works every time, but there are some options, which are as follows:

ADB
Requires root
Requires USB debugging
Requires Secure USB debugging pairing (depending on OS version)

Booting into a custom recovery mode
Does not require root (root will be given through the recovery image)
Does not require USB debugging (accomplished via fastboot)
Does not require Secure USB debugging (this is bypassed entirely)
Requires an unlocked bootloader

JTAG/Chip-off
Highly advanced
Does not require any specific device settings or options

The files that need to be pulled to crack a PIN/password on devices prior to Android 4.4 are:

/data/system/password.key
/data/data/com.android.providers.settings/databases/settings.db

The files that need to be pulled to crack a PIN/password on devices running Android 4.4 and higher
are:

/data/system/password.key

/data/system/locksettings.db

Only one file needs to be pulled to crack a Pattern lock on all versions of Android:

/data/system/gesture.key

Tip

It is not always necessary to actually crack the PIN or Password. They can also be bypassed by
simply overwriting or deleting the files. However, this is changing the original evidence and may not
be forensically valid in your jurisdiction.

Note that the below cracking sections do NOT apply to Lollipop devices. The pattern locks are no
longer unsalted, and as of the time of writing, no information has been published regarding how to
recover the salt. However, the lock screen can still be bypassed by deleting the relevant files.

Many tools exist that will bypass lock screens automatically; however, in this chapter, we will show
the manual process to explain what these tools are doing in the background. A good tool that is free
for law enforcement can be found at https://andriller.com/.

https://andriller.com/

Cracking an Android pattern lock
Now that we have gesture.key, which contains the pattern lock information, let's take a look at the
file contents:

Contents of gesture.key in a hex editor

The hex contents of the file are an unsalted SHA-1 hash of the swipe pattern. The fact that there are a
limited number of possible patterns (there is a four digit minimum and a nine digit maximum because
each number can only be used once), the simplest method for cracking this hash is a dictionary attack.
An examiner can create a dictionary consisting of every possible pattern, but re-inventing the wheel
isn't always necessary. CCL Forensics, based in the UK, provides a free Python script to create the
hash dictionary. It can be downloaded at http://www.cclgroupltd.com/product/android-pattern-lock-
scripts/.

The file is GenerateAndroidGestureRainbowTable.py. To run it, Python 3 must be installed on the
examiner's system. Python 3 can be downloaded at https://www.python.org/downloads/. Many
forensics tools provide Python support or use it themselves, so an examiner may already have it
installed. To execute the file, simply navigate to the directory containing it and run:

The script may take a while to run, possibly between 20 and 30 minutes. Once it completes, there
should now be a file called AndroidLockScreenRainbow.sqlite in the same directory as the
GenerateAndroidGestureRainbowTable.py script.

Now that we have a database containing the hash of every possible Android pattern, we simply need
to look up the hash we found in the gesture.key file. This can be done manually with a SQLite
viewer or even SQL commands. However, CCL Forensics also provides
Android_GestureFinder.py, a script that will look up the hash in the database created previously.

Unfortunately, this free script doesn't quite suit our purposes. It is built to look at a physical dump

http://www.cclgroupltd.com/product/android-pattern-lock-scripts/
https://www.python.org/downloads/

binary and find a lock screen pattern; we already have the file containing the pattern. In order for the
script to work properly, we will need to modify the code. Android_GestureFinder.py will need to
be opened in some sort of a code-friendly editor; Notepad++, Sublime Text, or the Python IDLE GUI
will all work. The following screenshots are from Sublime Text. Make a copy of the file, open the
original and find line 85, which says:

if regex.match(chunk) is not None:

This line needs to be commented out. To do so, just place a # sign at the beginning of the line:

#if regex.match(chunk) is not None:

Due to Python's formatting, we will now undo indents in the lines following the statement we
commented out. Lines 86, 89, 91, and 92 need to be moved to the left, so that they are in line with our
commented out statement. Finally, line 94 needs to move four backspaces to the left so that it is one
tab indented from the line above it. The final code should look like this:

Final code for Android_GestureFinder.py

Note that line 85 now begins with #, lines 86, 89, 91, and 92 are in line with line 85, and line 94 is
indented one tab to the right from the other lines (or four backspaces from its original location).

Now the code is ready to run against our file; save the changes to Android_GestureFinder.py.
Ensure that the AndroidLockScreenRainbow.sqlite and gesture.key files are in the same
directory as Android_GestureFinder.py, and run the following script:

The output should return very quickly, as it is performing a simple lookup in the hash database. The
Offset is negative, due to the fact that we used the script against a single file; if pointed at a binary
physical dump, it would display the offset of the lock screen hash within the blob. The Hash column
shows the hash value that was found, and the Pattern is the corresponding lock screen pattern:

Lock screen numbering

In this example, the pattern would begin at 0 in the top left corner, pass through 4 in the center, touch
8 in the bottom right corner, then cross the 7 in the bottom middle, and end at the 6 in the bottom left
corner. This pattern can now be used on the device to bypass the lock screen.

If the script encountered errors, the file was likely not modified correctly. The following result would
likely indicate that the script was not modified properly; perhaps the copy of the file was run instead
of the modified version:

To resolve this error, verify that the script was modified as shown above. The following error is
indicative of improper indentation:

To resolve this error, navigate to the specified line (86 in the example above), and ensure that the
alignment is as shown in the preceding modified code.

If the errors cannot be resolved, or if modifying the script is too daunting to an examiner, the hash
value can always be looked up manually in the hash database. An excellent free SQL viewer, DB
Browser for SQLite, can be found at http://sourceforge.net/projects/sqlitebrowser/.

Open AndroidLockScreenRainbow.sqlite with DB Browser for SQLite, and select the Browse Data
tab. Then, simply type the hash value found in gesture.key into the search field in the hash column.
Note that the characters in the database are lower case; the search field is case-sensitive:

Contents of the AndroidLockScreenRainbow.sqlite file in SQLite Browser

The results are the same as if the script had been run.

Cracking an Android PIN/Password
To crack the PIN/Password lock, we'll need to take a look in the contents of the files pulled earlier.
Password.key is very similar to gesture.key; it contains a hash of the password as shown in
following screenshot:

http://sourceforge.net/projects/sqlitebrowser/

Contents of password.key in a hex editor

However, this time the hash is salted. To have a chance at cracking it, the salt will have to be
recovered. As noted above, its location will be dependent on the version of Android the device is
running. If the device is running version 4.3 or lower, it will be located in the settings.db file
within the secure table. In 4.4 or higher, it will be in the locksettings.db within the
locksettings table. The following example shows locksettings.db, but the process is identical
for both.

Within the database file, we'll need to locate the lockscreen.password_salt key. This can be done
in a SQL browser, or just by opening the file in a hex editor and searching. The salt value is
highlighted as follows:

Contents of locksettings.db in a hex editor

For the Pattern lock, we were able to use a dictionary attack to quickly break the pattern, because
there were a relatively small number of possibilities. With a salted hash, dictionary attacks are
infeasible, so instead we will simply brute-force it.

Once again, CCL Forensics provides a useful Python script for this purpose. Other cracking tools,
such as hashcat, could also be used. The CCL Forensics PIN/Password tool can be downloaded for
free at http://www.cclgroupltd.com/product/android-pin-password-lock-tool/. Two files will be
downloaded, BruteForceAndroidPin.py and RecoverAndroidPIN.py. RecoverAndroidPIN.py
is for locating the necessary files within a physical image; we won't be needing it for our purposes.

The format for BruteForceAndroidPIN.py is:

python BruteForceAndroidPIN.py <hash> <salt> <max code length (4-16)> t

The t argument on the end is used to indicate the hash is of a password; it is not needed for cracking a
PIN and would simply increase the time it takes to run.

http://www.cclgroupltd.com/product/android-pin-password-lock-tool/

The hash value shown above is from a PIN, so we simply need to fill in the <hash>, <salt>, and
<max code length> fields:

The PIN from this example was 2587 as indicated in the output. It took less than a second for this PIN
to crack, however longer PINs or even short passwords may take significantly longer.

Android SIM card extractions
Traditionally, SIM cards were used for transferring data between devices. In the past, SIM cards
were used to store many different types of data, such as:

User data
Contacts
SMS messages
Dialed calls

Network data
Integrated Circuit Card Identifier (ICCID): Serial number of the SIM
International Mobile Subscriber Identity (IMSI): Identifier that ties the SIM to a specific
user account
MSISDN: Phone number assigned to the SIM
Location Area Identity (LAI): Identifies the cell that a user is in
Authentication Key (Ki): Used to authenticate to the mobile network
Various other network-specific information

With the rise in capacity of device storage, SD cards, and cloud backups, the necessity for storing
data on a SIM card has decreased. As such, most modern smartphones typically do not store much, if
any, user data on the SIM card. All network data listed above does still reside on the SIM, as a SIM
is necessary to connect to all modern (4G) cellular networks.

As with all Android devices, though there is no concrete stipulation that user data can't be stored on a
SIM, it simply doesn't happen by default. Individual device manufacturers can easily decide to write
user data to the SIM, and individual users can download applications to provide that functionality.
This means that a device's SIM card should always be examined during a forensic examination. It is a
very quick process, and should never be overlooked.

Acquiring SIM card data
The SIM card should always be removed from the device and examined separately. While some tools
claim to read the SIM card through the device interface, this may not recover deleted data or all data
on the SIM; the only way for an examiner to be certain all data was acquired is to read the SIM
through a standalone SIM card reader with a tool that has been tested and verified.

The location of the SIM will vary by device, but is typically either stored beneath the battery or in a
tray located on the side of the device. Once the SIM is removed, it should be placed in a SIM card
reader. There are hundreds of SIM card readers available in the marketplace, and all major mobile
forensics tools come with an included reader that will work with their software. Often, the forensic
tools will also support third-party SIM readers as well.

There is a surprising lack of thorough, free SIM card reading softwares. Any software used should
always be tested and validated on a SIM card that has been populated with known data prior to being

used in an actual forensic investigation. Also, keep in mind that much of the free software available
works for older 2G/3G SIMs, but may not work properly on a modern 4G SIM. We used the
Mobiledit! Lite, a free version of Mobiledit!, for the following screenshots. It is available at
http://www.mobiledit.com/downloads.

The following screenshot shows a sample 4G SIM card extraction from an Android phone running
version 4.4.4; note that nothing that could be considered user data was acquired, despite the SIM
being used actively for over a year, though fields such as the ICCID, IMSI, and MSISDN (own phone
number) could be useful for subpoenas/warrants or other aspects of an investigation.

SIM card extraction overview

The following screenshot highlights SMS messages on the SIM card:

http://www.mobiledit.com/downloads

The following image highlights the phonebook of the SIM card:

The following image highlights the phone number of the SIM card (also called the MSISDN):

SIM security
Due to the fact that SIM cards conform to established international standards, all SIM cards provide
the same security functionality: a 4- to 8-digit PIN. Generally, this PIN must be set through a menu on
the device. On Android devices, this setting is found at Settings | Security | Set up SIM card lock.
The SIM PIN is completely independent of any lock screen security settings, and only has to be
entered when the device boots. The SIM PIN only protects user data on the SIM; all network
information is still recoverable even if the SIM is PIN locked.

The SIM card will allow three attempts to enter the PIN. If one of these attempts is correct, the
counter will reset. On the other hand, if all of these attempts are incorrect the SIM will enter
Personal Unblocking Key (PUK) mode. The PUK is an 8-digit number assigned by the carrier, and
is frequently found on documentation when the SIM is purchased. Bypassing a PUK is not possible
with any commercial forensic software; because of this, an examiner should never attempt to enter the
PIN on the device as the device will not indicate how many attempts remain before the PUK is
activated. An examiner could unwittingly PUK-lock the SIM, and be unable to access the device.
Forensic tools, however, will show how many attempts remain before the PUK is activated, as seen
in the screenshots preceding.

Note

Common carrier defaults for SIM PINs are 0000 and 1234. If 3 tries remain before activating the
PUK, an examiner may successfully unlock the SIM with one of these defaults.

Carriers frequently retain PUK keys when a SIM is issued. These may be available through a
subpoena or warrant issued to the carrier.

SIM cloning

The SIM PIN itself provides almost no additional security, and can easily be bypassed through SIM
cloning. SIM cloning is a feature provided in almost all commercial mobile forensic software,
although the term cloning is somewhat misleading. SIM cloning, in the case of mobile forensics, is the
process of copying the network data from a locked SIM onto a forensically sterile SIM that does not
have the PIN activated. The phone will identify the cloned SIM based on this network data (typically
the ICCID and IMSI) and think that it is the same SIM that was inserted previously, but this time there
will be no SIM PIN. This cloned SIM will also be unable to access the cellular network, which
makes it an effective solution similar to Airplane mode. Therefore, SIM cloning will allow an
examiner to access the device, but the user data on the original SIM is still inaccessible as it remains
protected by the PIN.

We are unaware of any free software that performs forensic SIM cloning. However, it is supported by
almost all commercial mobile forensic kits. These kits will typically include a SIM card reader,
software to perform the clone, as well as multiple blank SIM cards for the cloning process.

Issues and opportunities with Android Lollipop
As noted several times in this chapter, the recent unveiling of Android Lollipop Version 5.0 has
introduced many strong security features, which of course creates complications for forensic
examiners. It was initially announced that Android Lollipop devices would ship with full disk
encryption by default, however, Google later retracted this requirement due to performance issues on
many devices. Instead of a requirement, Google only strongly suggests that full disk encryption be
enabled when the user first creates an account. Google has also hinted that this will be a requirement
in future OS versions, more information can be found in section 9.9 at
http://static.googleusercontent.com/media/source.android.com/en/us/compatibility/android-cdd.pdf.

Devices with full disk encryption enabled make bypassing locked devices all but impossible, because
even if the key files could be recovered, they would be encrypted; though surely the commercial tool
manufacturers will eventually catch up. At the time of this writing, there is no known method for
bypassing a locked, encrypted Lollipop device, unless it has USB debugging enabled and previously
remembered a computer's RSA key to bypass Secure USB debugging. In this case, the adbkey and
adbkey.pub files can be pulled from the suspect's computer and placed on an examination machine;
the device will then think it is communicating with a known, approved computer. The adbkey and
adbkey.pub files can be found at C:\Users\<username>\.android on Windows computers and
/Users/<username>/.android on Apple computers.

There is one significant advantage for examiners performing Lollipop forensics: the Smart Locks
mentioned earlier in this chapter. Smart Locks allow a user to set conditions that, if met, will leave
the device unlocked without the need to enter the password even once. If the examination is
performed at a Trusted Location that has been enabled, the examiner will not need to bypass the lock.
The same is true if a Trusted Device is nearby and turned on while the device is being examined.
However, there is no indication on the device that a trusted device is being used; the device just
appears to not have a lock screen. Thus, securing all digital evidence from a scene becomes even
more critical. Devices that would have previously been overlooked, such as Bluetooth headsets, may
turn out to be the key that gets the examiner past a locked device. It is becoming increasingly common
for devices to be paired with vehicles, so an examiner may have to perform an extraction while
sitting in the suspect's vehicle! The additional security of Lollipop means that examiners may have to
get more creative with the forensic process.

Android Lollipop also brings multi-user support to all devices, which was previously limited to
tablets. On a device with multiple accounts, data for all users is still found in the /data partition, but
resides in a slightly different location. If multiple accounts are setup on the device, the app data
directory for each account can be found in /data/user. Each user will have a unique number
assigned; 0 is the first account setup on the device. The /data/user/0 directory is actually a
symbolic link to /data/data. The second account was in the 10 directory, which directly contained
all application data for the second user. Each user added is stored in a directory incremented by 10;
i.e. the third user is in /data/user/20, the fourth user is in /data/user/30, and so on.

http://static.googleusercontent.com/media/source.android.com/en/us/compatibility/android-cdd.pdf

Summary
This chapter has covered many topics related to logical extractions of Android devices. As a recap,
the various methods and their requirements are as follows:

Method

Requirements

ADB pull

USB debugging enabled
Secure USB debugging bypassed on 4.2.2+
Root access to obtain user data

ADB pull from Recovery Mode

Must be a custom recovery to enable ADB access
Root access to obtain user data

Fastboot to boot from custom recovery image

Unlocked bootloader
Boot image for device

ADB backup

USB debugging enabled
Secure USB debugging bypassed on 4.2.2+
Must be done from a running device (not Recovery mode)

ADB dumpsys

USB debugging enabled
Secure USB debugging bypassed on 4.2.2+
Must be done from a running device (not recovery mode)

SIM card extraction

None, should be done independent of device

Additionally, valuable user data can be recovered from the SD card, which will be covered in
Chapter 5, Extracting Data Physically from Android Devices.

If a screen is locked, an examiner can pull the key files using the methods listed above and crack them
in order to bypass it.

There is a lot of data in this chapter. To help simplify it somewhat, a suggested best practices flow

chart is shown as follows:

.

Android Forensics Flow Chart

Chapter 5. Extracting Data Physically from
Android Devices
This chapter will be covering physical data extraction using free and open source tools wherever
possible. The majority of the material covered in this chapter will use the ADB methods previously
discussed in this book. By the end of this chapter, the reader should be familiar with the following
concepts:

What physical extraction means
What data to expect from physical extractions
Physical data extractions using the dd and nanddump commands
RAM imaging and analysis
SD card acquisitions
JTAG and chip-off methods

Physical extraction overview
In digital forensics, a physical extraction is an exact bit-for-bit image of the electronic media, and this
definition remains true for mobile devices too. In traditional computer forensics, this typically
involves removing the evidence drive from the suspect's computer and imaging it via a write blocker
without ever booting the drive, resulting in an image file containing an exact copy of the suspect's
drive. The output is frequently referred to as a raw image, or simply a bin (binary) file. Physical
extractions differ from logical, in that, they are an exact copy of the device's memory, and include
unallocated space, file slack, volume slack, and so on.

In mobile forensics, the result is the same; an exact bit-for-bit image of the device, but the methods
are somewhat different. For example, removing the flash memory from the device to image can be
both time-consuming and expensive, and requires a lot of specialized knowledge (though it can be
done as discussed in the chip-off section later in the chapter). Furthermore, short of using advanced
Joint Test Action Group (JTAG) or chip-off methods, the device must be booted to some degree
(and written to in many cases) in order to access the data. Finally, finding a tool that can even parse
the final image file can be very difficult. Hard drive images and file systems have long been
documented and studied, while mobile images and file systems change frequently; in some cases
mobile file systems are even unique to a specific manufacturer. Knowing what to do with the image
after it is acquired can be just as challenging as acquiring the image in the first place!

Many of the techniques discussed in Chapter 4, Extracting Data Logically from Android Devices,
will still apply here. Booting into a custom recovery is still the most forensically sound process;
physically acquiring a live device should be avoided if at all possible.

What data can be acquired physically?

The short answer is: everything. As a physical acquisition is an exact image of the device, every bit
of data on the device is in the image file. As mentioned previously, with a physical extraction, an
examiner is usually only limited by their ability to find the relevant data. Generally, this is due to a
lack of good image analysis tools in the mobile forensics space. To further compound the matter,
applications have been known to encode or otherwise obfuscate user data, so simply browsing
through the image in a hex editor will frequently miss valuable evidence. This chapter will show
various methods to mount or otherwise view the filesystem of a physical extraction, while Chapter 7,
Forensic Analysis of Android Applications, will focus on analyzing data from specific applications.

Root access

Once again, just as in logical extractions, root access is going to be a critically important aspect of
physical extractions. To manually image a device, we are going to have to execute commands on the
device from the ADB shell, and these will require root permissions. If root access cannot be
obtained, the SD card can generally still be imaged. The only recourse beyond that is JTAG or chip-
off methods.

Extracting data physically with dd
The dd command should be familiar to any examiner who has done traditional hard drive forensics.
The dd command is a Linux command-line utility used by definition to convert and copy files, but is
frequently used in forensics to create bit-by-bit images of entire drives. Many variations of the dd
commands also exist and are commonly used, such as dcfldd, dc3dd, ddrescue, and dd_rescue. As
the dd command is built for Linux-based systems, it is frequently included on Android platforms. This
means that a method for creating an image of the device often already exists on the device!

The dd command has many options that can be set, of which only forensically important options are
listed here. The format of the dd command is as follows:

dd if=/dev/block/mmcblk0 of=/sdcard/blk0.img bs=4096 conv=notrunc,noerror,sync

if: This option specifies the path of the input file to read from.
of: This option specifies the path of the output file to write to.
bs: This option specifies the block size. Data is read and written in the size of the block
specified, defaults to 512 bytes if not specified.
conv: This option specifies the conversion options as its attributes:

notrunc: This option does not truncate the output file.
noerror: This option continues imaging if an error is encountered.
sync: In conjunction with the noerror option, this option writes \x00 for blocks with an
error. This is important for maintaining file offsets within the image.

Tip

Do not mix up the if and of flags, this could result in overwriting the target device!

A full list of command options can be found at http://man7.org/linux/man-pages/man1/dd.1.html.

Note that there is an important correlation between the block size and the noerror and sync flags: if
an error is encountered, \x00 will be written for the entire block that was read (as determined by the
block size). Thus, smaller block sizes result in less data being missed in the event of an error. The
downside is that, typically, smaller block sizes result in a slower transfer rate. An examiner will have
to decide whether a timely or more accurate acquisition is preferred.

As discussed in the previous chapter, booting into recovery mode for the imaging process is the most
forensically sound method.

Determining what to image
When imaging a computer, an examiner must first find what the drive is mounted as; /dev/sda, for
example. The same is true when imaging an Android device. The first step is to launch the ADB shell
and view the /proc/partitions file using the following command:

cat /proc/partitions

http://man7.org/linux/man-pages/man1/dd.1.html

cat /proc/partitions

The output will show all partitions on the device:

In the output shown in the preceding screenshot, mmcblk0 is the entirety of the flash memory on the
device. To image the entire flash memory, we could use /dev/blk/mmcblk0 as the input file flag
(if) for the dd command. Everything following it, indicated by p1- p29, is a partition of the flash
memory. The size is shown in blocks, in this case the block size is 1024 bytes for a total internal
storage size of approximately 32 GB. To obtain a full image of the device's internal memory, we
would run the dd command with mmcblk0 as the input file.

However, we know from previous chapters that most of these partitions are unlikely to be
forensically interesting; we're most likely only interested in a few of them. To view the corresponding
names for each partition, we can look in the device's by-name directory. This does not exist on every
device, and is sometimes in a different path, but for this device it is found at
/dev/block/msm_sdcc.1/by-name. By navigating to that directory and running the ls -al
command, we can see to where each block is symbolically linked as shown in the following
screenshot:

If our investigation was only interested in the userdata partition, we now know that it is
mmcblk0p28, and could use that as the input file to the dd command.

If the by-name directory does not exist on the device, it may not be possible to identify every
partition on the device. However, many of them can still be found by using the mount command
within the ADB shell. Note that the following screenshot is from a different device that does not
contain a by-name directory, so the data partition is not mmcblk0p28.

On this device, the data partition is mmcblk0p34. If the mount command does not work, the same
information can be found using the cat /proc/mounts command. Other options to identify partitions
depending on the device are the cat /proc/mtd or cat /proc/yaffs commands; these may work

on older devices. Newer devices may include an fstab file in the root directory (typically called
fstab.<device>) that will list mountable partitions.

Writing to an SD card
The output file of the dd command can be written to the device's SD card. This should only be done if
the suspect SD card can be removed and replaced with a forensically sterile SD to ensure that the dd
command's output is not overwriting evidence. Obviously, if writing to an SD card, ensure that the SD
card is larger than the partition being imaged.

Note

On newer devices, the /sdcard partition is actually a symbolic link to /data/media. In this case,
using the dd command to copy the /data partition to the SD card won't work, and could corrupt the
device because the input file is essentially being written to itself.

To determine where the SD card is symbolically linked to, simply open the ADB shell and run the ls
-al command. If the SD card partition is not shown, the SD likely needs to be mounted in recovery
mode using the steps shown in Chapter 4, Extracting Data Logically from Android Devices.

In the following example, /sdcard is symbolically linked to /data/media. This indicates that the dd
command's output should not be written to the SD card.

In the example that follows, the /sdcard is not a symbolic link to /data, so the dd command's output
can be used to write the /data partition image to the SD card:

On older devices, the SD card may not even be symbolically linked.

After determining which block to read and to where the SD card is symbolically linked, image the
/data partition to the /sdcard, using the following command:

dd if=/dev/block/mmcblk0p28 of=/sdcard/data.img bs=512 conv=notrunc,noerror,sync

Now, an image of the /data partition exists on the SD card. It can be pulled to the examiner's
machine with the ADB pull command, or simply read from the SD card.

Writing directly to an examiner's computer with netcat
If the image cannot be written to the SD card, an examiner can use netcat to write the image directly
to their machine. The netcat tool is a Linux-based tool used for transferring data over a network
connection. We recommend using a Linux or a Mac computer for using netcat as it is built-in, though
Windows versions do exist. The examples below were done on a Mac.

Installing netcat on the device

Very few Android devices, if any, come with netcat installed. To check, simply open the ADB shell
and type nc. If it returns saying nc is not found, netcat will have to be installed manually on the
device. Netcat compiled for Android can be found at many places online. We have shared the version
we used at http://sourceforge.net/projects/androidforensics-netcat/files/.

If we look back at the results from our mount command in the previous section, we can see that the
/dev partition is mounted as tmpfs. The Linux term tmpfs means that the partition is meant to appear
as an actual filesystem on the device, but is truly only stored in RAM. This means we can push netcat
here without making any permanent changes to the device using the following command on the
examiner's computer:

adb push nc /dev/Examiner_Folder/nc

The command should have created the Examiner_Folder in /dev, and nc should be in it. This can be
verified by running the following command in the ADB shell:

ls /dev/Examiner_Folder

Using netcat

Now that the netcat binary is on the device, we need to give it permission to execute from the ADB
shell. This can be done as follows:

chomd +x /dev/Examiner_Folder/nc

We will need two terminal windows open with the ADB shell open in one of them. The other will be
used to listen to the data being sent from the device.

Now we need to enable port forwarding over ADB from the examiner's computer:

adb forward tcp:9999 tcp:9999

9999 is the port we chose to use for netcat; it can be any arbitrary port number between 1023 and
65535 on a Linux or Mac system (1023 and below are reserved for system processes, and require

http://sourceforge.net/projects/androidforensics-netcat/files/

root permission to use). Windows will allow any port to be assigned.

In the terminal window with ADB shell, run the following command:

dd if=/dev/block/mmcblk0p34 bs=512 conv=notrunc,noerror,sync |
/dev/Examiner_Folder/nc –l –p 9999

Tip

mmcblk0p34 is the user data partition on this device, however, the entire flash memory or any other
partition could also be imaged with this method. In most cases, it is best practice to image the entirety
of the flash memory in order to acquire all possible data from the device. Some commercial forensic
tools may also require the entire memory image, and may not properly handle an image of a single
partition.

In the other terminal window, run:

nc 127.0.0.1 9999 > data_partition.img

The data_partition.img file should now be created in the current directory of the examiner's
computer. When the data is finished transferring, netcat in both terminals will terminate and return to
the command prompt. The process can take a significant amount of time depending on the size of the
image.

Extracting data physically with nanddump
In all of the preceding examples, the partitions were all Multimedia Card (MMC) blocks, which is
typically seen in newer devices. Older devices, however, are far more likely to consist of Memory
Technology Device (MTD) blocks. We have seen cases in the past where the dd command was
unable to properly image an MTD block, although more often than not, it works fine. If dd fails, there
is a widely distributed utility called MTD-Utils used to read and write from MTD blocks; the
nanddump command is a part of MTD-Utils, and can be used similarly to dd in order to read from an
MTD block. In those cases where dd failed, nanddump was always successful.

Versions of nanddump compiled for Android can be found in many places online; we used the one
found at https://github.com/jakev/android-binaries/blob/master/nanddump.

The process to put nanddump on the device is the same as the one used previously for netcat:

adb push nanddump /dev/Examiner_Folder/nanddump
chmod +x /dev/Examiner_Folder/nanddump

Just like dd, the nanddump command can be used to write either to an SD card or the examiner's
computer via netcat. From a terminal window, run the following command:

adb forward tcp:9999 tcp:9999

From a separate terminal window within the ADB shell, run the following command:

/dev/Examiner_Folder/nanddump /dev/block/mmcblk0p34 | /dev/Examiner_Folder/nc –l
–p 9999

In the first terminal window where the adb forward command was used, run the following
command:

nc 127.0.0.1 9999 > data_partition.img

Verifying a full physical image
Verifying whether an image file is identical to the device is a critical step in traditional digital
forensics. On Android devices, it can be a little trickier, if not impossible. The image created can be
hashed using whatever tool the examiner typically uses. Verifying the memory on the device can be
done through the ADB shell using the following command, where the path given is the block or
partition that was imaged:

md5sum /dev/block/mmcblk0

However, the md5sum command is not included on all Android devices. If it is not included, an
examiner may be able to find a version compiled for their device online, and push it to the device in a
tmpfs partition as shown previously with netcat and nanddump.

https://github.com/jakev/android-binaries/blob/master/nanddump

Another issue is that if the image was acquired live, i.e. not in recovery mode as discussed in the
previous chapter, it is a virtual certainty that the MD5 hashes will not match, as data is constantly
changing on the device (even if it is radio frequency (RF) shielded or in Airplane mode). In this
case, an examiner would have to document that the device was live when acquired and explain that
the hashes are not expected to match.

Analyzing a full physical image
Once an image has been obtained using one of the discussed methods, an examiner could conceivably
go through the image manually and extract each partition, but would probably prefer to avoid doing
that. Luckily, there is a wide variety of mobile forensic tools that can ingest a physical image, such as
Cellebrite, XRY, Mobile Phone Examiner, and many others. Unfortunately, none of these are free or
open source. By far the most popular analysis tool that is free and open source is Autopsy by Brian
Carrier.

Autopsy
The Sleuth Kit began as a set of Linux-based command line tools for forensics; eventually, a browser-
based GUI named Autopsy was added. Recently, Autopsy has been released as a stand-alone platform
on Windows, and includes support for analyzing Android images. Version 3.1.1 is shown in the
following screenshots. The full process for loading and analyzing an image will be covered in
Chapter 8, Forensic Analysis of Android Applications.

Autopsy can be downloaded at http://www.sleuthkit.org/.

Once the image has been loaded, expanding the image will show all the volumes that Autopsy found,
as shown in the following screenshot:

http://www.sleuthkit.org/

Note

Far more volumes were found than the number of partitions on the device. They may either be false
positives created by the tool, or a result of wear-leveling on the device.

One of these volumes will be the data partition, seen as follows:.

Note that the media directory seen above is the SD card, as it was symbolically linked to the data
partition. The data folder within the data partition will contain application data:

As each application is installed, a directory is created for it. The directories shown in the preceding
screenshot with a red cross on the folder icon were deleted, indicating that the application was
removed from the device.

Finally, Autopsy does a good job pulling out some data automatically for an examiner, but as with all
forensic tools, this information should be verified manually, as seen in Chapter 7, Forensic Analysis
of Android Applications.

Issues with analyzing physical dumps
The most common problem we see on many forensic forums and email lists is examiners obtaining a
physical dump and then not being able to load that dump into a tool that claims to support the device.
Most of the time, this is because the examiner fails to account for the Out-of-Band (OOB) area.

The OOB area, sometimes called the spare area, is a small section of the flash memory reserved for
metadata. The metadata usually consists of error correcting code (ECC), information about bad
blocks, and in some cases, information about the filesystem. This causes an issue for examiners
because most mobile forensic tools do not account for the OOB area; they expect it to not be included
in the image. When presenting the tool with an image containing the spare area, the tool frequently
does not know what to do and fails to parse the data properly.

The reason that tools fail to account for the OOB area is that it is not included in dd images, which is
what most tools use to create their images. The OOB area may be included when using the nanddump
command, though depending on the binary used, there may be an option to exclude it. The OOB area
is included with chip-off and JTAG images.

To properly load the image into forensic tools, the OOB area will need to be removed first. A general
rule of thumb is that the OOB size is based on the page size of the device; for every 512 bytes of page
size there will be 16 bytes of OOB area. For example, a device with 2048 byte page sizes would
likely have 64 bytes of OOB area at the end of each page. However, this is completely up to the
memory manufacturer. Before attempting to remove the OOB area, an examiner should find the
datasheet for the specific memory chip to confirm the page and OOB area sizes. This can generally be
done by finding the memory chip on the phone's circuit board and searching for the model number of
the chip.

The following is some sample code for a Python script that will remove the OOB area from an image.
Just as in the last chapter, we don't claim to be Python experts and we're sure there are better, more
efficient ways to do this, but this one does work:

import sys
file_to_parse = open(sys.argv[1],'rb')
file_after_removal = open('file_out.bin','wb')
while file_to_parse:
 lines_out = file_to_parse.read(2048)
 if lines_out:
 file_after_removal.write(lines_out)
 file_to_parse.seek(64,1)
 if not lines_out:
 break
print 'Done'
file_to_parse.close()
file_after_removal.close()

This file, if named OOB_Remover.py, would be executed with the following command:

python OOB_Remover.py C:\Users\Android_Examiner\physicaldump.bin

The output file, with no OOB area, would be named file_out.bin in the directory where the script
was executed. The original is not edited or modified in anyway.

Note that the code as it is written assumes a page size of 2048 and an OOB size of 64; these two
numbers would have to be edited for the specific sizes of the memory chip the image was taken from.
The output should then be able to be loaded into commercial mobile forensic tools.

Imaging and analyzing Android RAM
Pulling Android memory is not applicable in a very large number of cases due to the fact that it
requires root access. Most public root processes involve rebooting the phone, which erases volatile
RAM, meaning that by the time an examiner gains root to image the RAM, it's too late because the
RAM has been erased. Because of this and possibly other reasons, there is not great support for
Android RAM imaging and analysis in the commercial forensic world. However, there are cases
where imaging RAM is applicable, and may prove invaluable. If a device is already rooted when it is
seized, imaging the RAM should be a mandatory step in the seizure process. As powering the phone
off will erase the RAM, the device should be placed in Airplane mode (any other network
connections such as Wi-Fi and Bluetooth disabled), and the RAM should be imaged immediately to
avoid the device battery dying before the RAM can be pulled.

The main challenge when it comes to RAM is the analysis. RAM is completely raw, unstructured
data; there is no filesystem. When viewed in a hex editor, RAM appears to just be a giant blob of data
with very little rhyme or reason to help examiners figure out what they are looking at. This difficulty
is compounded by the fact that modern devices commonly have gigabytes worth of RAM. RAM can
easily be searched for keywords using traditional forensic tools and methods, but that presumes an
examiner knows exactly what they are looking for.

What can be found in RAM?
Any data that is written to the flash memory must pass through RAM, there is no other way for the
processor to communicate with the flash memory. This means that almost anything done on the device
may be found in the contents of a RAM dump. Depending on the amount of device usage, data may
remain in RAM indefinitely, until it needs to be overwritten. RAM dumps frequently contain text
typed on the device, including usernames and passwords, and application data that is not stored
permanently on the device. For example, older versions of the Facebook application stored the
contents of a user's News Feed in a database in its application folder; newer versions do not save the
user's News Feed, but it exists in RAM.

Imaging RAM with LiME
The most common tool for Android RAM acquisition is the Linux Memory Extractor (LiME),
previously known as DMD. LiME is free and open source, but isn't highly user-friendly as it requires
the user to compile it from the source code, which can only be done on a Linux system. The
compilation process must also be done for each specific version of Android for each device being
examined, which somewhat limits its usability in the field. This is necessary because LiME is not a
binary (as were the netcat and nanddump tools we used before); instead it is a kernel module that
must be built specifically for each kernel it will be loaded into.

In order to ensure the proper kernel source code is downloaded, we will need to determine the model
and software version for a device, which can be done by scrolling through the phone menu to Setting

| About Phone. Alternatively, this information can be found in the ADB shell by running the following
command:

cat /system/build.prop

The software version in the model should be in the first few lines at the top of the file.

Luckily, most Android manufacturers do release their kernel source code; a quick Google search can
usually turn up source code for each model and software version. The following are the open source
release sites for a few major manufacturers:

Samsung: http://opensource.samsung.com/reception.do
Motorola: http://sourceforge.net/motorola/
HTC: http://www.htcdev.com/devcenter
Google Nexus: https://source.android.com/source/building-kernels.html

Tip

The correct model and version source must be used. Using the wrong kernel source to compile LiME
will, at the very least, not work on the device. Loading an incompatible kernel module could also
crash the device.

To obtain the source code for LiME, navigate to https://github.com/504ensicsLabs/LiME and choose
the Download ZIP option, then extract the zip.

There are many excellent resources online explaining how to compile LiME for a specific kernel, and
also how to create a custom Volatility plugin to examine the resulting RAM dump, so we won't
detail them here. A couple of them are listed here:

http://lime-forensics.googlecode.com/files/LiME_Documentation_1.1.pdf
https://code.google.com/p/volatility/wiki/AndroidMemoryForensics

One point missing from these sources is that the step that uses ADB pull to obtain the
/proc/config.gz file may not work on all devices. If the file does not exist, the correct config file
can be found in the source code, usually in the /arch/arm/configs folder. It is usually named after
the processor model, for example, apq8064_defconfig.

Imaging RAM with mem
As described in the preceding section, using LiME is not for the faint-hearted; it is a very daunting
process fraught with complications. It seems unlikely that an examiner in the field will download and
compile kernel source code. The mem tool was developed by James Nuttall to address these issues.
Rather than a kernel module that needs to be compiled on a device-specific basis, mem is a binary
similar to the netcat and nanddump examples used previously in this chapter. The mem tool can be
downloaded at http://sourceforge.net/projects/androidforensics-mem/files/.

Mem is an executable binary that needs to be pushed to the device and executed using the exact

http://opensource.samsung.com/reception.do
http://sourceforge.net/motorola/
http://www.htcdev.com/devcenter
https://source.android.com/source/building-kernels.html
https://github.com/504ensicsLabs/LiME
http://lime-forensics.googlecode.com/files/LiME_Documentation_1.1.pdf
https://code.google.com/p/volatility/wiki/AndroidMemoryForensics
http://sourceforge.net/projects/androidforensics-mem/files/

procedures detailed previously for netcat and nanddump. It may seem counter-intuitive to push
something to RAM in order to read the RAM, but this is an accepted necessity in computer forensics.
In our opinion, it is better to overwrite a small portion of RAM than to actually push it to the device
and overwrite evidentiary user data.

Mem has the capability to read the entire RAM, or to target specific, forensically-interesting
processes (applications). Assuming that mem is pushed to the same location on the device used for
netcat above, the format for running mem is as follows:

/dev/Examiner_Folder/mem <PID>

PID is the ID of the process to read; if it is set to 0, all of RAM will be imaged. To view the list of
processes within the ADB shell, use the following command:

ps

In the following screenshot, we can see that PID is the second column of the output:

The output can be quite large, though interesting processes can be found by simply reading through the
list:

In the above screenshot, we can see that Kik, Facebook, Calendar, and Gmail are all running. An
alternative to reading the entire output is to search for known applications using grep. For example,
to find Facebook in the output we could run the following command:

ps | grep facebook

The output of which would show only the entry for Facebook as follows:

We can see that the PID of Facebook is 2252. To avoid overwriting data on the device, mem is
written to be used in conjunction with netcat just as shown in the Writing directly to an examiner's
computer with netcat section of this chapter. So, capturing the RAM used by Facebook requires the
following steps:

1. In a terminal on the examiner's computer, run:

adb forward tcp:9999 tcp:9999

2. In a terminal window within ADB shell, run:

/dev/Examiner_Folder/mem 2252 | /dev/Examiner_Folder/nc –l –p 9999

3. In the terminal window on the examiner's computer run:

nc 127.0.0.1 9999 > FB_RAM.bin

4. When mem has finished running, there should be a file called FB_RAM.bin in the working
directory of the examiner's computer.

Output from mem
As mentioned previously, there aren't many good ways to examine RAM because there is no
filesystem; the output is just a blob of data. This is still true for data acquired with mem; the output
from the Facebook RAM pulled above is a 550 MB unstructured blob of data. The following
screenshot can be viewed as an example:

We suggest using strings or some other search function to narrow down the data to hopefully find
useful user data. The file can also be loaded into computer forensic tools like EnCase or FTK in
order to search for keywords, and carving tools can be used to locate images.

However, with enough patience and dedication, useful information can be found, such as this post
from a user's news feed:

Eventually, the mem developers hope to work on a volatility profile to help with analyzing the output.

Acquiring Android SD cards
As discussed above and in previous chapters, the SD card can refer to a physical, external SD card or
a partition within the flash memory. A removable external SD card can be imaged separately from the
device through a write-blocker with typical computer forensics tools, or using the dd/nanddump
techniques shown in the previous section, although the former is usually faster as it does not need to
write data over netcat.

Physically imaging an SD card is very similar to the physical imaging discussed above; in fact, if the
SD card is symbolically linked to the /data partition, it would be acquired as part of the /data
partition as seen in the Autopsy screenshots. The only difference in the process is that if the SD card
is being imaged, the output file cannot be written to the SD card! This means using the netcat methods
covered previously is the best option for physically imaging an internal SD card.

What can be found on an SD card?
By default, the SD card is typically used to store large files, including downloaded items and pictures
taken with the device. Many applications will also create their own directory on the SD card for
storing data such as images sent or received through chat applications. In some cases, as will be seen
in Chapter 8, Android Forensic Tools Overview, there even are applications that will routinely
perform a backup of all their data to the SD card. This is especially useful to forensic examiners
because they may not be able to access the internal memory due to security settings or the inability to
obtain root, but may be able to access the SD card.

Common SD card locations of interest include, but of course are not limited to, the following
locations:

/DCIM: This location includes pictures taken on the device
/Pictures/Screenshots: This location contains screenshots taken on the device
/Download: This location contains downloaded files
/Android/data: This is the storage location for many applications
/AppName: This is the storage location for many applications

Tip

The /Android/data and /AppName folders may persist even if the app has been deleted. Contents of
the folders will be deleted, but the folders may remain; which is an indication that the application
was previously installed on the device.

These are just common default locations. If a device is rooted, the user could place any data from the
internal memory onto the SD card.

SD card security

In older versions of Android, simply plugging a phone into a computer would logically mount the SD
card and allow an examiner access to its data. In some version of Android (possibly 3.0) this
changed, although the exact version could not be found in the various change logs that we examined.
Newer versions of Android will not automatically allow access to the SD card from a computer if a
screen lock is in use, meaning the screen lock will have to be bypassed in order to gain access to the
SD card. The obvious exception to this is a physical, external SD card can still be removed and
analyzed with traditional computer forensic methods.

SD cards can also be encrypted, either through the device full-disk encryption if it is an internal SD
card, or through third-party applications if it is external. In some cases, activating the full-disk
encryption will leave the SD card unencrypted, though this varies depending upon the device
manufacturer.

Tip

The full-disk encryption in Android Lollipop also encrypts the SD card.

Advanced forensic methods
In addition to the methods discussed in the previous chapters, there are also more advanced,
specialized methods available. JTAG and chip-off methods are both highly useful tools in many
common situations, but require advanced training (and a lot of practice before working on live
evidence!). The final advanced method, a cold boot attack to recover encryption keys, is far more
theoretical.

JTAG
JTAG is a standard developed by the Institute of Electrical and Electronics Engineers (IEEE).
During the device production process, it is used to communicate with the processor through a
specialized interface for testing purposes. Luckily for forensic examiners, it also allows them to
communicate directly with the processor and retrieve a full physical image of the flash memory.

To perform a JTAG extraction, the device must be taken apart down to the circuit board. The circuit
board will contain multiple taps (physical contacts on the device circuit board), though they are
commonly unlabelled and there are usually far more taps than required for JTAG. To determine the
correct taps, an examiner would have to either find a pin-out online (or included with their tool of
choice), or use electronic test equipment to determine what each tap is. The examiner will then have
to solder a wire to each tap, or use adapters (sometimes called jigs) that are commercially available,
and connect to their JTAG box through a provided adapter as shown in the following image:

HTC Evo before and after being hooked up for JTAG (courtesy of
http://lowcostwin4n6.blogspot.com/)

JTAG may sound complicated (perhaps it is), but it serves many useful purposes and two advantages
are listed here:

1. It does not require the device to be powered on and so:
Can be successful even if the device is damaged

There are no RF-shielding concerns
Does not require root, ADB, or USB debugging

2. It can be used to recover device PINs/passwords and so:
Can image the entire flash memory and recover/crack password files as shown in Chapter 4

Many manufacturers make JTAG tools; many of the common ones used for mobile forensics can be
found at http://teeltech.com/mobile-device-forensic-tools/jtag-equipment/. The RIFF box listed on the
site is probably the most frequently used for mobile forensics, as it comes with support (including
pin-outs) for a wide variety of devices.

JTAG is not always successful, or even possible. Though the interface is almost always on the circuit
board, the manufacturer can choose to disable it after the device is manufactured.

Chip-off
Chip-off involves heating the device's circuit board until the solder holding the components to the
board melts, and then removing the flash memory chip. The memory chip can then be read using
commercial tools, resulting in a full physical image. Chip-off techniques, like JTAG, stem from the
commercial electronic production process. The process of melting the solder (commonly called
reflow or rework) is used to place and remove components from a circuit board, and the readers used
to acquire the memory are used to both read and write to memory chips, often in bulk quantities.

A memory chip being removed from a damaged phone (courtesy of
www.binaryintel.com/services/jtag-chip-off-forensics/chip-off_forensics/)

http://teeltech.com/mobile-device-forensic-tools/jtag-equipment/

Chip-off has the same benefits as JTAG: it does not require the device to power on, and can be used
to acquire the PIN/password from a locked device; though acquiring the PIN/password is generally a
moot point, chip-off is normally considered to be a destructive process. While the memory chip can
be replaced on the device, it is a technically demanding process and requires further training. But, as
a last resort, chip-off is an excellent alternative for devices that would otherwise be impossible to
examine.

Chip-off is significantly more expensive than JTAG, as a specialized rework station and commercial
memory reader is required. There are dozens of rework stations available and they all provide
essentially the same functionality. There is also a wide range of memory readers, though we have had
great success with this reasonably priced model at
http://www.dataman.com/programmers/universal/dataman-48pro2-super-fast-universal-isp-
programmer.html. A rework station and reader aren't the only costs associated with chip-off; most
readers will also require a specific adapter for each model of chip to be read.

Bypassing Android full-disk encryption
Before going any further, please note that this section is highly impractical. However, we present it
here in the hopes that some aspiring forensic developer will see it and decide it is a worthy enough
cause to make it more widely applicable (and also because it's really neat).

Cold boot attacks have been demonstrated and used many times, but until recently could not be used
effectively against Android devices. A cold boot attack is based on the idea that RAM is less volatile
at lower temperatures (the data remains longer), so freezing a device can allow an examiner to access
RAM and find the key needed to decrypt the device. This was recently demonstrated successfully by a
team of researchers whose paper and research can be found here: https://www1.informatik.uni-
erlangen.de/frost.

Again, note that these techniques were only validated against one device (the Galaxy Nexus), and
their tool is a loadable kernel module, much like LiME, and relies on a custom recovery image that
would have to be created for each device it is used against.

http://www.dataman.com/programmers/universal/dataman-48pro2-super-fast-universal-isp-programmer.html
https://www1.informatik.uni-erlangen.de/frost

Summary
This chapter discussed several techniques used for physically imaging internal memory or SD cards
and some of the common problems associated with them:

Technique

Problems associated

dd

Usually pre-installed on device
May not work on MTD blocks
Does not obtain Out-of-Band area

nanddump

Not commonly found on the device, must be pushed to device
Works well with MTD blocks
May obtain Out-of-Band area, based on options in the binary used

Additionally, each imaging technique can be used to either save the image on the device (typically on
the SD card), or used with netcat to write the file to the examiner's computer:

Technique

Features

Writing to SD card

Easy, doesn't require additional binaries to be pushed to the device
Familiar to most examiners
Cannot be used if SD card is symbolically linked to the partition being imaged
Cannot be used if the entire memory is being imaged

Using netcat

Usually requires yet another binary to be pushed to the device
Somewhat complicated, must follow steps exactly
Works no matter what is being imaged
May be more time consuming than writing to the SD

Multiple tools used for RAM imaging were also demonstrated:

Tool

Features

LiME

Must be compiled for each device being examined
Very complicated process
Known, well-documented procedures for analysis
Output is a dump of all RAM

Mem

Can be used on any device with no additional steps
New tool, not as widely used and documented
Output is one file for each process running on the device

Finally, we briefly discussed chip-off and JTAG techniques on an introductory level.

The next chapter will demonstrate the recovery of deleted data from physical images like the ones
created in this chapter.

Chapter 6. Recovering Deleted Data from an
Android Device
The extraction and acquisition techniques that you have learned so far will help you access various
details such as call logs, messages, and so on. However, these techniques do not help us see the data
that is deleted from the device. In this chapter, you will learn about data-recovery techniques that will
enable you to view the data that is deleted on the device. Deleted data could contain highly sensitive
information, and thus, data recovery is a crucial aspect of mobile forensics. In this chapter, we will
cover the following topics:

An overview of data recovery
Recovering data deleted from an SD card
Recovering data deleted from a phone's internal storage

An overview of data recovery
Data recovery is a powerful concept within digital forensics. It is the process of retrieving deleted
data from a device or SD card when it cannot be accessed normally. Being able to recover data that
is deleted by a user could help solve several civil and criminal cases. This is because most of the
accused just delete the details on the device, hoping that the evidence will be destroyed. Thus, in
most of the criminal cases, deleted data can be crucial, because it may contain information the user
wanted to erase from the Android device. For example, consider the scenario where a mobile phone
has been seized from a terrorist.

Wouldn't it be of the greatest importance to know which items have been deleted by them? Access to
any deleted SMS messages, pictures, dialed numbers, and so on can be of critical importance, as they
may reveal a lot of sensitive information. From a normal user's point of view, recovering data that has
been deleted would usually refer to the operating system's built-in solutions, such as the Recycle Bin
in Windows. While it's true that data can be recovered from these locations, due to an increase in user
awareness, these options don't often work. For instance, on a desktop computer, people now use Shift
+ Delete whenever they want to delete a file completely from their desktop. Similarly, within mobile
environments, users are aware of restore operations provided by apps and so on. In spite of this, data
recovery techniques allow a forensic investigator to access the data that is deleted from the device.

With respect to Android, it is possible to recover most of the deleted data, including SMS, pictures,
application data, and so on. However, it is important to seize the device in a proper manner and
follow certain procedures, without which the data might be deleted permanently. To ensure that the
deleted data is not lost forever, it is recommended that you keep the following points in mind:

Do not use the phone for any activity after seizing it. The deleted data exists on the device until
the space is needed by some other incoming data. Hence, the phone must not be used for any sort
of activity so that the data is not overwritten.
Even when the phone is not used, without any intervention from our end, data can be overwritten.

For instance, an incoming SMS would automatically occupy the space that overwrites the
deleted data. Also, remote wipe commands can wipe the content present on the device. To
prevent the occurrence of such events, you can consider the option of placing the device in
Faraday bags, as explained in Chapter 1, Introducing Android Forensics. Thus, care should be
taken to prevent delivery of any new messages or data through any means of communication.

How can deleted files be recovered?
When a user deletes any data from the device, the data is not actually erased and continues to exist on
the device. What gets deleted is the pointer to this data. All filesystems contain metadata that
maintains information about the hierarchy of files, file names, and so on. Deletion does not actually
erase the data, but instead, it removes the filesystem metadata. Just deleting the metadata increases the
performance of operating systems; deleting the pointer and marking the space as available is an
extremely fast operation compared to actually erasing all the data. Thus, when text messages or any
other files are deleted, they are just made invisible to the user. However, the files are still present on
the device as long as they are not overwritten by some other data.

Hence, it is possible to recover them before new data comes in and occupies the space.

Recovering deleted data on Android involves two scenarios:

Recovering data that is deleted from an SD card, such as pictures, videos, and so on
Recovering data that is deleted from a device's internal storage, such as SMS, dialed numbers,
browsing history, application data, chat logs, and so on

The following sections cover the techniques that can be used to recover deleted data from both the SD
card and internal storage of an Android device.

Recovering data deleted from an SD card
Data present on an SD card can reveal a lot of information that is useful during a forensic
investigation. The fact that pictures, videos, voice recordings, application data, and so on are stored
on the SD card adds weight to this. As mentioned in the previous chapters, Android devices often use
the FAT32 filesystem on the SD card. The main reason for this is that the FAT32 filesystem is widely
supported in most operating systems, including Windows, Linux, and Mac OS X. The maximum file
size on a FAT32-formatted drive is around 4 GB. With increasingly high resolution formats that are
now available, this limit is commonly reached. Recovering the data deleted from an external SD can
be pretty easy if it can be mounted as a drive.

If the SD card is removable, it can be mounted as a drive by connecting it to a computer using a card
reader. Any files can be transferred to the SD card while it's mounted. Some of the older devices that
use USB mass storage also mount the device as a drive when connected through a USB cable. As
explained earlier, in forensics, in order to make sure that the original evidence is not modified, a
physical image of the disk is taken, and all further experimentation is done on the image itself.
Similarly, in the case of SD card analysis, an image of the SD card needs to be taken. The process of
imaging is similar to the one explained in Chapter 5, Extracting Data Physically from Android
Devices. Once the imaging is done, we get a dd image file. In our example, we will use a free tool,
FTK Imager. This tool is an imaging utility, and in addition to creating disk images, it can also be
used to explore the contents of a disk image.

The following steps are required to recover the contents of an SD card using FTK Imager:

1. Start FTK Imager. Click on File and then on Add Evidence Item in the menu.

Adding evidence in FTK Imager

2. Select Image File in the Select Source dialog and click on Next.
3. In the Select File dialog, browse to the location where you downloaded the sdcard.dd file.

Select the file and click on Finish:

Selecting the image file for analysis in FTK Imager

4. FTK Imager's default display will appear with the contents of the SD card visible in the View
pane in the lower-right corner. You can also click on the Properties tab below the lower left
pane to view the properties for the disk image.

5. In the left pane, the drive has opened. You can open folders by clicking on the + sign. When you
highlight a folder, its contents are shown on the right pane. When a file is selected, its contents
can be seen in the bottom pane.

6. As shown in the following screenshot, the deleted files will have a red cross over the icons
derived from their file extensions:

Deleted files shown with red cross over the icons

7. To export the file, right-click on the file that contains the picture and select Export Files:

Exporting the deleted files in FTK Imager

Sometimes, only a fragment of the file is recoverable. This file fragment cannot be read or viewed
directly. In this case, we need to look through unallocated spaces for more data. Carving can be used
to recover from unallocated spaces. Winhex, Scalpel, Foremost, and Photorec are some of the tools
that can help you do this. Most of the latest Android devices do not mount as a mass storage. This is
because these devices do not support USB mass storage and, instead, use the MTP or PTP protocol.
With USB mass storage, the computer would need exclusive access to the storage. In other words, the
external storage needs to be completely disconnected from the Android OS when it is connected to a
workstation. This leads to several other complications with respect to mobile apps. When an Android
device uses MTP, it appears to the computer as a media device and not as removable storage, as
shown in the following screenshot:

An Android device shown under Portable Devices in Windows

However, the normal data-recovery tools would need a mount drive in order to perform a scan,
though this is not a recommended procedure as it might result in changes being made to the device.
Hence, most of the latest devices that use MTP/PTP are not treated as mount drives. So, the
traditional data-recovery tools that work for computers do not work on these devices.

For the reasons mentioned earlier, when the device uses MTP/PTP and is not mounted as a drive, the
recovery can be done by certain Android-specific data-recovery tools that need the USB debugging
option to be turned on. Almost all the Android data-recovery tools on the market need you to enable
USB debugging so that your device and the SD card can be recognized before starting Android data
recovery. Also, these tools work only on rooted devices. We will now look at recovering data
deleted from the internal memory of an Android device.

Recovering data deleted from internal memory
Recovering files deleted from Android's internal memory, such as app data and so on, is not
supported by most analytical tools. This is for two main reasons. First, unlike the common filesystems
used in SD cards, the filesystems used by internal memory may not be recognized and mounted by
forensic tools. Second, the examiner cannot get access to the raw partitions of the internal memory of
an Android phone, unless the phone is rooted. The following are some of the other issues the
examiner may face when attempting to recover data from the internal memory on Android devices:

To get access to the internal memory, you can try to root the phone. However, the rooting
process might involve writing some data to the /data partition. This process could overwrite
valuable data on the device.
Unlike SD cards, the internal filesystem here is not FAT32 (which is widely supported by
forensic tools). The internal filesystem could be YAFFS2 (in older devices), EXT3, EXT4,
RFS, or something proprietary built to run on Android. Therefore, many of the recovery tools
designed for use with Windows filesystems won't work.
Application data on Android devices is commonly stored in the SQLite format. While most
forensic tools provide access to the database files, they may have to be exported and viewed in
a native browser. The examiner must examine the raw data to ensure that the deleted data is not
overlooked by the forensic tool.

For these reasons, recovering data deleted from the internal memory of an Android device is difficult,
but not impossible. The internal memory of Android devices holds the bulk of the user data and the
possible keys to your investigation. As mentioned earlier, the device must be rooted in order to
access the raw partitions. It's important to note that most of the Android-recovery tools on the market
do not highlight the fact that they work only on rooted phones. Hardware-based solutions, such as
UFED and XRY, are fully capable of recovering deleted data from internal memory as well as SD
cards. Let's now see how we can recover deleted data from an Android phone.

Recovering deleted data by parsing SQLite files
Most of the application data in Android is stored in SQLite files. Data related to text messages, e-
mails, and most app data is stored in SQLite files. SQLite databases can store deleted data within the
database itself. Files marked for deletion by the user no longer appear in the active SQLite database
files. Therefore, it is possible to recover the deleted data, such as text messages, contacts, and more,
by analyzing these SQLite files. There are two areas within a SQLite page that can contain deleted
data: unallocated blocks and free blocks. Most of the commercial tools that recover deleted data scan
the unallocated blocks and free blocks of the SQLite pages. Parsing the deleted data can be done
using the available forensic tools such as Oxygen Forensics SQLite Viewer. The trial version of the
SQLite Viewer can be used for this purpose. However, there are certain limitations on the amount of
data that you can recover.

For our example, we will recover the deleted SMS messages from an Android device. Recovering

deleted SMS messages from an Android phone is quite often requested as part of forensic analysis on
a device, mainly because it's the most popular form of communication. There are different ways to
recover deleted text messages on an Android device. However, with respect to recovery through
parsing SQLite files, we need to understand where the messages are being stored on the device. In
Chapter 4, Extracting Data Logically from Android Devices, we explained the important locations
on the Android device where user data is stored. Here is a quick recap:

Every application stores its data in the /data/data folder (again, this requires root access to
acquire data)
The files at /data/data/com.android.providers.telephony/databases contain details
about SMS/MMS

Deleted text messages can be recovered by examining an SQLite database file named mmssms.db
stored in /data/data/com.android.providers.telephony/databases. Here are the steps required:

Extract the SMS database SQLite file (mmssms.db). This can be done using logical data-
extraction techniques, which are covered under Chapter 4, Extracting Data Logically from
Android Devices.
Once the files are extracted to the local machine, you can use available tools such as Cellebrite.
These tools may extract the deleted details automatically. You can also manually check for
fragments using a Hex viewer or a SQLite Viewer, such as Oxygen Forensics SQLite Viewer.
One way to view the deleted data is by clicking on the Blocks containing deleted data tab in
the Oxygen Forensics SQLite Viewer, as shown in the following screenshot (referenced from
http://az4n6.blogspot.in/2013/02/finding-and-reverse-engineering-deleted_1865.html):

http://az4n6.blogspot.in/2013/02/finding-and-reverse-engineering-deleted_1865.html

Deleted data shown in Oxygen Forensics SQLite Viewer

You can also try the available open source Python scripts (http://az4n6.blogspot.in/2013/11/python-
parser-to-recover-deleted-sqlite.html) that parse the SQLite files for deleted records.

Recovering deleted data through file carving techniques
File carving is an extremely useful method in forensics, because it allows hidden or deleted data to
be recovered for analysis. In simple terms, file carving is the process of reassembling files from
fragments in the absence of filesystem metadata. In file carving, specified file types are searched for
and extracted across the binary data to create a forensic image of a partition or an entire disk. File
carving recovers files from the unallocated space in a drive based merely on file structure and
content, without any matching filesystem metadata.

Note

Unallocated space refers to the part of the drive for which there are no longer any pointers in file
system structures such as file tables .

Files can be recovered or reconstructed by scanning the raw bytes of the disk and reassembling them.
This can be done by examining the header (the first few bytes) and footer (the last few bytes) of a file.

File-carving methods are categorized based on the underlying technique in use. The header-footer
carving method relies on recovering the files based on the header and footer information. For
instance, the JPEG files start with 0xffd8 and ends with 0xffd9. The locations of the header and footer
are identified, and everything between these two endpoints is carved. Similarly, the file structure
carving method is based on the internal layout of a file to reconstruct the file. However, the
traditional file-carving techniques, such as the ones we've already explained, may not work if the data
is fragmented. To overcome this, new techniques, such as smart carving, use the fragmentation
characteristics of several popular filesystems to recover the data.

Once the phone is imaged, it can be analyzed using tools such as Scalpel. Scalpel is a powerful open
source utility to carve files. This tool analyzes the block database storage and identifies the deleted
files and recovers them. Scalpel is filesystem independent and is known to work on various
filesystems including, FAT, NTFS, EXT2, EXT3, HFS, and so on. The following steps explain how
to recover files using Scalpel on an Ubuntu workstation:

1. Install Scalpel on the Ubuntu workstation using the sudo apt-get install scalpel
command.

2. The scalpel.conf file present in the /etc/scalpel directory contains information about the
supported file types, as shown in the following screenshot:

http://az4n6.blogspot.in/2013/11/python-parser-to-recover-deleted-sqlite.html

Scalpel configuration file

This file needs to be modified in order to include the files that are related to Android. A sample
scalpel.conf file can be downloaded from https://asecuritysite.com/scalpel.conf.txt. You can also
uncomment the files and save the conf file to select the file types of your choice. Once this is done,
replace the original conf file with the one that is downloaded.

Scalpel needs to be run along with the preceding configuration file on the dd image being examined.
You can run the tool using the command shown in the following screenshot, by inputting the
configuration file and the dd file. Once the command is run, the tool starts to carve the files and build
them accordingly.

https://asecuritysite.com/scalpel.conf.txt

Running the Scalpel tool on the image file

The output folder specified in the preceding command now contains a list of folders based on the file
types. Each of these file types contains data based on the folder name. For instance, jpg 2-0 contains
the recovered files related to the .jpg extension:

Output of the Scalpel tool

As shown in the preceding screenshot, each folder contains recovered data from the Android device,
such as images, .pdf files, .zip files, and so on. While some pictures are recovered completely,
some are not recovered to a full extent, as shown in the following screenshot:

Data recovered using the Scalpel tool

Applications such as DiskDigger can be installed on Android devices to recover different types of
files from both the internal memory and SD cards. Applications such as DiskDigger include support
for .jpg files, .mp3 and .wav audio, .mp4 and .3gp video, raw camera formats, Microsoft Office
files (.doc, .xls, and .ppt), and so on. However, as mentioned earlier, the application requires root
privileges on the Android device in order to recover the content from the internal memory. Thus, file-
carving techniques play a very important role in recovering important deleted files from the device's
internal memory.

Analyzing backups
It is also recommended that you check whether the device has any backup applications or files
installed. The initial release of Android did not include a mechanism for the users to back up their
personal data. Hence, several backup applications have been used extensively by the users. Using
these apps, users have the ability to back up their data either to the SD card or to the cloud. For
example, the Super Backup app contains the options to back up call logs, contacts, SMS, and so on,
as shown in the following screenshot:

The Super Backup Android app

On detection of a backup application, the forensic examiners must attempt to determine where the data
is stored. The data saved in a backup may contain important information, so looking for any third-
party backup app on the device could be very helpful.

You can also restore the contacts on the device using the Restore Contacts option through the
Google account configured on the device. This would work if the user of the device has previously
synced their contacts using the Sync Settings option available in Android. This option synchronizes
the contacts and other details and stores them in the cloud. A forensic examiner with legal authority or

proper consent can restore the deleted contacts if they can get access to the Google account
configured on the device. Once the account is accessed, perform the following steps to restore the
data:

1. Log in to the Gmail account.
2. Click on Gmail in the top-left corner and select Contacts, as shown in the following screenshot:

The Contacts menu in Gmail

3. Click on More, which is present above the contacts list.
4. Click on Restore Contacts, and the following screen appears:

The Restore Contacts dialog box

5. Using this technique, you can restore the contact list to the state that it was in at any point within
the past 30 days.

Summary
Data recovery is the process of retrieving deleted data from the device. Thus, it is a very important
concept in forensics. In this chapter, we saw various techniques to recover deleted data from both an
SD card and internal memory. While recovering the data from a removable SD card is easy,
recovering data from internal memory involves a few complications. SQLite file-parsing and file-
carving techniques aid a forensic analyst in recovering the deleted items that are present in the
internal memory of the Android device. Checking for any installed backup apps on the device is
recommended as it saves both time and effort.

In the next chapter, we will try to understand the forensic perspective on analysis of Android apps.

Chapter 7. Forensic Analysis of Android
Applications
This chapter will cover application analysis, using free and open source tools. It will focus on
analyzing the data that would be recovered using any of the logical or physical techniques detailed in
Chapters 4 and Chapter 5. It will also rely heavily on the storage methods discussed in Chapter 2. We
will see numerous SQLite databases, XML files, and other file types from various locations within
the file hierarchy described in the second chapter. By the end of this chapter, you should be familiar
with the following topics:

An overview of application analysis:
Contacts/Calls/SMS
Wi-Fi
User dictionary

Third-party applications and various methods used by popular applications to store and
obfuscate data listed as follows:

Plain text
Epoch time
WebKit time
Misnaming file extensions
Julian dates
Base64 encoding
Encryption
Basic steganography
SQLCipher

Basic application reverse engineering

Application analysis
Forensically analyzing an application is as much of an art as it is a science. There are myriad ways an
application can store or obfuscate its data. Different versions of the same application may even store
the same data differently. A developer is really only limited by their imagination (and Android
platform restrictions) when it comes to choosing how to store their data. As a result of these factors,
application analysis is a constantly shifting target. The methods that an examiner uses one day may be
completely irrelevant the next.

The end goal of forensically analyzing an application is consistently the same, to understand what the
app was used for and find user data.

In this chapter, we will look at the current version of many common applications. As apps can, and
do, change how they store data through updates, nothing in this chapter is a definitive guide for how to
analyze that application. Instead, we will look at a broad range of applications to show a variety of

different methods used by applications to store their data. For the most part, we will look at very
common applications (millions of downloads from Google Play), except for cases where looking at
an obscure app can reveal interesting new ways of storing data.

Note

While we made every attempt to be thorough in our usage of each application when populating our
test data, it is entirely possible that not every feature of every application was used. The apps
analyzed in the following sections are examples of how to examine data from that application, but
may not include every possible bit of data that may be recovered.

All of our testing used the default settings of each application, as if the application was downloaded
and immediately used. Different settings may affect the data that is stored and the location of the data
on the device.

Also, this analysis was done on a Nexus 5 running Android 5.0.1. Certain manufacturers, such as
HTC and Samsung, may provide applications that duplicate functionality from these apps (such as a
home screen widget that accesses Facebook). These apps may store data in different locations. Some
files we analyze may not be present on other versions.

Why do app analysis?
For starters, even standard phone functions, such as contacts, calls, and SMS, are done through
applications on Android devices. So, even acquiring basic data requires us to analyze an application.
Second, a person's app usage can tell you a lot about them: where they've been (and when they were
there), who they've communicated with, and even what they may be planning in the future.

Many phones can come out of the box with more than 20 preinstalled applications. A Yahoo study in
2014 revealed that users have, on average, 95 apps installed on their device. A Nielsen study showed
that the average user uses 26 apps per month. An examiner has no real way of knowing which of these
apps could contain information useful for an investigation, and therefore, all of them must be
analyzed. An examiner may be tempted to skip over certain apps that would appear to have little
useful data, such as games. This would be a bad idea, though. Many popular games, such as Words
with Friends or Clash of Clans, have a built-in chat feature that could yield useful information. The
following analysis will focus heavily on messaging applications, as our experience shows that these
tend to be the most valuable in forensic analysis.

The layout of this chapter
For each application we examine, we will provide a package name, version number if possible, and
files of interest. For example:

Package name: com.android.providers.contacts

Version: Default version with Android 5.0.1 (not listed within app)

Files of interest:

/files/

photos/

All apps store their data in the /data/data directory by default. Apps could also use the SD card if
they ask for this permission when the app is installed. The package name is the name of the directory
for the application in the /data/data directory. Files of interest are from the root of the package
name (that is, /data/data/com.android.providers.contacts/files/photos for the preceding
example). Paths to data on the SD card are shown beginning with /sdcard (that is,
/sdcard/com.facebook.orca). Do not expect to find data paths beginning with /sdcard in the
/data/data directory of the application!

We will begin by looking at some of Google's applications, because these are preinstalled on the vast
majority of devices (though they do not have to be). Then, we will look at third-party applications
that can be found on Google Play.

Determining what apps are installed
To see what applications are on the device, an examiner could navigate to /data/data and run the
ls command. However, this doesn't provide well-formatted data that will look good in a forensic
report. We suggest that you pull the /data/system/packages.list file. This file lists the package
name for every app on the device and path to its data (if this file does not exist on the device, the adb
shell pm list packages -f command is a good alternative). For example, here is an entry for
Google Chrome (the full file on our test device contained 120 entries):

Note

This is the first method of data storage: plain text. Often, we will see apps store data in plain text,
including data you wouldn't expect (such as passwords).

Perhaps of greater interest is the /data/system/package-usage.list file, which shows the last
time a package (or application) was used. It's not perfect; the times shown in the file did not correlate
exactly with the last time we used the app. It appears that the app updating or receiving notifications
(even if the user does not view them) may affect the time. However, it is good for a general indication
of the last apps the user accessed:

If you're wondering where the time is in the preceding line, it's in a format known as Linux epoch
time.

Understanding Linux epoch time
Linux epoch time, also known as Unix time or Posix time, is stored as the number of seconds (or
milliseconds) since midnight on 1 January, 1970, UTC. A 10-digit value indicates it is in seconds,
while a 13-digit value is indicative of a millisecond value (at least for times likely to be found on a
smartphone, as 9-digit second and 12-digit millisecond values haven't occurred since 2001).

In the preceding example, the value is 1422206858650; Google Chrome was last used 1 billion, 422
million, 206 thousand, 858 seconds, and 650 milliseconds since midnight on 1 January, 1970! Don't
worry; we don't know what date/time that is either. There are many scripts and tools available for
download to convert this value to a human-readable format. We prefer the free tool DCode, which
can be found at http://www.digital-detective.net/digital-forensic-software/free-tools/.

http://www.digital-detective.net/digital-forensic-software/free-tools/

In DCode, simply select Unix: Millisecond Value from the drop-down list, type in the value in the
Value to Decode field, and click on Decode:

The Add Bias field can be selected to convert the time to the desired time zone.

Alternatively, there is also a very useful online epoch converter at http://www.epochconverter.com/.

Using either method, we can see that Google Chrome was actually last used on January 25, 2015, at
17:27:38.650 UTC. Linux epoch time is frequently used on Android devices to store date/time values
and will come up repeatedly in our application analysis.

Note

This is the second data storage method: Linux epoch time.

http://www.epochconverter.com/

Wi-Fi analysis
Wi-Fi is not technically an application (as evidenced by the fact that it is not recovered from
/data/data), but it is an invaluable source of data that should be examined. So, we'll briefly discuss
it here. Wi-Fi connection data is found in /data/misc/wifi/wpa_supplicant.conf. The
wpa_supplicant.conf file contains a list of access points that the user has chosen to connect to
automatically (this is set by default when a new access point is connected to). Access points that the
user has "forgotten" through the device settings will not be shown. If the access point requires a
password, that would also be stored in the file in plain text. In the following example, the NETGEAR60
access point required a password (ancientshoe601), while hhonors did not:

Note

The presence of a Service Set ID (SSID) in this file does NOT mean that this device connected to
that access point. These settings are saved to a user's Google account and added to the device when
that account is set up. An examiner can only conclude that the user connected to these access points
from some Android device, but not necessarily the device being examined.

Contacts/call analysis
Contacts and call logs are stored in the same database. Contacts do not have to be added explicitly by
the user. They may be autofilled when an e-mail is sent through Gmail, or a person is added on
Google+, or possibly many other ways.

Package name: com.android.providers.contacts

Version: Default version with Android 5.0.1 (not listed within app)

Files of interest:

/files/

photos/

profile/

/databases/

contacts2.db

The files directory contains photos for the user's contacts in the photos directory and the user's
profile photo in the profile directory.

The contacts2.db database contains all of the information about calls made to and from the device
and all contacts in the user's Google account. It contains the following tables:

Table

Description

accounts

This shows the accounts on the device that have access to the contacts list. At least one of the
accounts will show the user's Google account e-mail address. This list may include third-party apps
installed that have permission to access the contacts list (we will see this in the Tango, Viber, and
WhatsApp sections).

calls

This contains information regarding all calls to and from the device. The number column shows the
remote user's phone number, whether the call was sent or received. The date column is the date/time
of the call, stored in the Linux epoch format. The duration column is the length of the call, in
seconds. The type column indicates the type of call:

1 = incoming
2 = outgoing
3 = missed

The name column shows the remote user's name, if the number was stored in the contact list. The
geocoded_location column shows the location of the phone number based on the area code (for US
numbers) or country code.

contacts

This contains partial information for contacts (more data can be found in the raw_contacts table).
The name_raw_contact_id value corresponds to the _id value in the raw_contacts table. The
photo_file_id value corresponds to the filename found in the /files/photos directory. The
times_contacted and last_time_contacted columns show the number of times that contact was
called from or made a call to the device, and the time of the last call in the Linux epoch format.

data

This table contains all of the information for each contact: e-mail address, phone numbers, and so on.
The raw_contact_id column is a unique value for each contact that can be correlated with the _id
value in raw_contact_id to identify the contact. Note that each contact may have several rows, as
seen by the identical raw_contact_id values. There are 15 data columns (data1 to data15) that
contain some information about the contact, but there are no discernible patterns. The same column
may contain the contact name, an e-mail address, a Google+ profile, and so on. The value in the
data14 column correlates to the filenames of the images in the /files/profiles path. The data15
column contains a thumbnail of the contact's profile photo.

deleted_contacts

This contains a contact_id value and deleted_contact_timestamp in the Linux epoch format.
However, this cannot be correlated back to any other tables to identify the name of the contact that
was deleted. It may be possible to use the deleted data-recovery techniques in Chapter 6, Recovering
Deleted Data from an Android Device, to recover the contact names, though. The contact_id value
corresponds to the contact_id column in the raw_contacts table.

groups

This shows groups in the contact list, either automatically generated or created by the user. The title
of the group is the name of the group. There does not appear to be a way to identify users in each
group.

raw_contacts

This contains all information for every contact in the contact list. The display_name column shows
the contact's name, if it is available. To determine the contact's phone number, e-mail address, or
other information, the _id column value must be matched back to the raw_contact_id value in the
data table. The sync3 column shows a timestamp, but based on our testing, this cannot be assumed to
be the time the contact was added. We had contacts several years old that were synced this month.
The times_contacted and last_time_contacted columns only apply for phone calls; sending an
e-mail or SMS to a contact did not increment these values.

We were unable to identify any means to determine whether a contact was added through the phone
interface, added as a friend on Google+, or added through other methods.

SMS/MMS analysis
SMS and MMS messages are stored in the same database. In our experience, this database is also
used, regardless of what application is used to send the SMS/MMS (that is, sending an SMS through
Google Hangouts will populate this database, not the Hangouts database examined here). However,
third-party apps may also record the data in their own databases.

Package name: com.android.providers.telephony

Version: Default version with Android 5.0.1 (not listed within app)

Files of interest:

/app_parts

/databases/

mmssms.db

telephony.db

The app_parts directory contains attachments sent as an MMS, both sent and received.

The telephony.db database is small, but contains one potentially useful source of information. The
table in telephony.db is described as follows:

Table

Description

siminfo

This contains historical data for all SIMs that have been used in the device, including the ICCID,
phone number (if it was stored on the SIM), and the mobile country code (MCC) / mobile network
code (MNC), which can be used to identify the network provider.

The mmssms.db database contains all information regarding SMS and MMS messages as described in
the following table:

Table

Description

part

This contains information about files attached to an MMS. Each message will have at least two parts:
an SMIL header and the attachment. This can be seen in the mid and ct columns, as well as the file
type attached. The _data column provides the path to find the file on the device.

pdu

This contains metadata about each MMS. The date column identifies when the message was sent or
received, in the Linux epoch format. The _id column appears to correspond to the mid value in the
part column; correlating these values will show the time a specific image was sent. The msg_box
column shows the direction of the message (1 = received and 2 = sent).

sms

This contains metadata about each SMS (it does not include MMS information). The address column
shows the phone number of the remote user, regardless of whether it was a sent or received message.
The person column contains a value that can be looked up in the contacts2.db database and
corresponds with raw_contact_id in the data table. The person column would be blank if it was a
sent message or if the remote user is not in the contacts list. The date column shows the timestamp
when a message was sent in the Linux epoch format. The type column shows the direction of the
message (1 = received, 2 = sent). The body column displays the content of the message. The seen
column indicates whether or not the message was read (0 = unread, 1 = read); all sent messages will
be marked as unread.

words, words_content, words_segdir

This appears to contain duplicate content of messages; the exact purpose of this table is unclear.

User dictionary analysis
The user dictionary is an incredible source of data for an examiner. While it is not necessarily a
standalone application, its data is stored in /data/data directory as if it were. The user dictionary
is populated any time the user types a word that isn't recognized and chooses to save the word to
avoid it being flagged by autocorrect. Interestingly, our test device contained dozens of words that we
never typed or saved on the device. This data appears to sync with a user's Google account and
persists across multiple devices. Words synced from the account were added in alphabetical order at
the top of the database, while words added manually afterwards were populated in the order they
were added at the bottom.

Package name: com.android.providers.userdictionary

Version: Default version with Android 5.0.1 (not listed within app)

Files of interest:

/databases/user_dict.db

The table in the user dictionary is described as follows:

Table

Description

words

The word column contains the word that was added to the dictionary. The frequency column should
likely be ignored; it displayed the same value (250) regardless of the number of times we used the
word.

Here are sample entries from a user dictionary:

Gmail analysis
Gmail is an e-mail service provided by Google. A Gmail account is often asked for, though is not
required, when the device is being set up for the first time.

Package name: com.google.android.gm

Version: Default version with Android 5.0.1 (not listed within app)

Files of interest:

/cache

/databases/

mailstore.<username>@gmail.com.db

databases/suggestions.db

/shared_prefs/

MailAppProvider.xml

Gmail.xml

UnifiedEmail.xml

The /cache directory within the application folder contains recent files that were attached to e-mails,
both sent and received. These attachments are saved here even if they are not explicitly downloaded
by the user.

The mailstore.<username>@gmail.com.db file contains a variety of useful information. Interesting
tables within the database include the following:

Table

Description

attachments

This contains information about attachments, including their size and file path on the device (the
/cache directory mentioned earlier). Each row also contains a messages_conversation value.
This value can be compared with the conversations table to correlate an attachment with the e-mail
it was included within. The filename column identifies the path on the device where the file is
located.

conversations

In older versions, entire e-mail conversations could be recovered. In the current version, Google no
longer stores the entire conversation on the device, possibly assuming that the user will have a data
connection to download the full conversation. Instead, only the subject line and a "snippet" can be
recovered. The snippet is roughly the amount of text that would appear in the notification bar or inbox

screen of the app. The fromCompact column identifies the sender and any other recipients.

The suggestions.db database contains terms that were searched within the application.

The XML files within the shared_prefs directory can confirm the account(s) that were used with the
application. Gmail.xml contained another account that was linked with our test account, but never
used with the application. UnifiedEmail.xml contained a partial list of senders who e-mailed the
account, but with no discernible rationale. Many senders were on the list, but far from all, and they
appeared in no particular order. Gmail.xml also contained the last time that the application was
synced in the Linux epoch format.

Google Chrome analysis
Google Chrome is a web browser and is the default browser on Nexus and many other devices.
Chrome data on the device is somewhat unique, in that, it contains data not just from the device, but
from all devices on which the user has logged in to Chrome. This means that it is entirely possible
(even very likely) that data from the user browsing on their desktop computer will be found in the
databases on their phone. However, this also leads to huge amounts of data for an examiner to sort
through, but that's a good problem to have.

Package name: com.android.chrome

Version: 40.0.2214.89

Files of interest:

/app_chrome/Default/

Sync Data/SyncData.sqlite3

Bookmarks

Cookies

Google Profile Picture.png

History

Login Data

Preferences

Top Sites

Web Data

/app_ChromeDocumentActivity/

All of the files listed earlier in the /app_chrome/Default folder, except for the one .png file,
Bookmarks, and Preferences, are SQLite databases despite the lack of a file extension.

The SyncData.sqlite3 database is interesting because it appears to contain a list of data that has
been synced from the user's account on the device back to Google's servers. Our database, with a
very active Chrome account, contained over 2700 entries and included browsing history, autofill form
information, passwords, and bookmarks. As an example, we were able to find a term one of the
authors had searched for from 2012, seen in the following screenshot. This is interesting because the
user purchased this phone in 2014, but previous data is still synced to the device.

Table

Description

metas

There are many columns in the database that contain timestamps, and in our database, they all appear
to be within seconds of each other for each entry. It is unclear which time corresponds to the exact
time an entry was added, but all of the times roughly correspond with the time of the activity in the
user's account. The columns with timestamps are mtime, server_mtime, ctime, server_ctime,
base_version, and server_version.

The non_unique_name and server_non_unique_name columns show the content that was synced.
For example, one of our entries shows:

autofill_entry | LNAME | Tindall

Other entries in these columns include URLs visited, passwords, and even devices that the account
has used.

The Bookmarks file is a plain-text file that contains information about the bookmarks synced with the
account. It includes the name of each site that is bookmarked, the URL, and the date/time it was
bookmarked, stored in a format we have not come across yet: the WebKit format. To decode the
values, see the Decoding the WebKit time format section.

Note

This is the third method of data storage: the WebKit time format.

The Cookies database stores cookie information for sites visited (depending on the site and Chrome
settings), including the name of the site, date the cookie was saved, and the last time the cookie was
accessed, in the WebKit time format.

The Google Profile Picture.PNG file is the user's profile picture.

The History database contains the user's web history stored in the following tables:

Table

Description

keyword_search_terms

This contains a list of terms that were searched to use Google within Chrome. The term column
shows what was searched, while url_id can be correlated with the URLs table to see the time of the
search.

segments

This table contains some URLs that were visited, but not all. It is not clear what causes data to be
entered into this table.

urls

This contains the browsing history for the Google account across all devices, not just the device the
database was pulled from. Our history went back approximately 3 months and contained 494 entries,
although the Google account is much older than that, and we have certainly visited more than 494
pages in that time. It is unclear exactly what causes this discrepancy or determines the cut-off date for
the history.

The id column is a unique value for each row in the table. The url and title columns contain the
URL visited and the name of the page. The visit_count column appears to be an accurate count of
how many times the URL was visited. The value in typed_count column is always equal to or lesser
than the value in the visit_count column, but we do not know exactly what it indicates. For some
sites, the discrepancy can be accounted for by factoring in the number of times the site was visited
through a bookmark rather than typing the URL, but this does not hold true for all cases. The
last_visit_time column is the last time the URL was visited, in the WebKit time format.

visits

This contains a row for each visit to the URLs in the urls table; the number of entries in this table for
a URL corresponds to the value in the visit_count column of the url table. The url column value
correlates to the value in the id column of the url table. The time of each visit can be found in the
visit_time column, again in the WebKit time format.

The Login Data database contains login information saved in Chrome and is synced across all
devices that use the Google account.

Table

Description

logins

The origin_url is the site the user visited initially, and action_url is the URL of the login page if
the user is redirected to one. If the first page visited is the login page, then both URLs are the same.
The username_value and password_value columns show the username and password stored for
that URL in plain text; and no, we're not going to include a screenshot of our database! The
date_created is the date/time that the login information was first saved, in the WebKit time format.
The date_synced column is the date/time on which the login data was synced locally to the device,
again in the WebKit time format. The times_used column shows the number of times that login
information was autofilled by Chrome after it was saved (excluding the first login, so some values
may be 0).

Preferences file is a text file and contains the Google account(s) the user has signed into Chrome

with.

The Top Sites database contains the sites that are most frequently visited, as these are shown by
default when Chrome opens.

The Web Data database contains information the user has saved in order to automatically fill in forms
on websites.

Table

Description

autofill

This contains a list of fields on web-based forms and the value the user typed. The name column
shows the name of the field that was typed in, while the value column shows what the user typed.
The date_created and date_last_used columns are self-explanatory and are stored in the Linux
epoch format.

Note that while this is potentially very valuable information (for example, our database contained a
few usernames not stored elsewhere), there is also very little context available. The URL where the
information is not stored may not be determinable.

autofill_profile_emails

This contains all values the user has saved to autofill the e-mail field on a web form.

autofill_profile_names

This contains all values the user has saved to autofill the First, Middle, Last, and Full Name fields
on a web form.

autofill_profile_phonwa

This contains all values the user has saved to autofill the Phone Number field on a web form.

autofill_profiles

This contains all values the user has saved to autofill address information fields on a web form.

The /app_ChromeDocumentActivity/ directory contains files with history for recent tabs that were
open on the device. URLs can be recovered from these files for sites that were visited.

Decoding the WebKit time format
Here is a sample WebKit time value: 13066077007826684.

At first glance, it appears to be very similar to the Linux epoch time, just slightly longer (perhaps it is
storing nanoseconds?). An examiner who attempts to decode this as epoch time will get a date in May
2011, which may seem accurate, but is, in fact, several years off from the correct date!

The WebKit time is an epoch time. It is just based on a different starting point than the Linux epoch
time. The WebKit epoch time is the number of microseconds since midnight on January 1, 1601. Yes,
we said the year 1601. Once we know where the epoch begins, converting to a recognizable format
simply becomes a math problem. However, once again, we'd rather use DCode.

This time, in DCode, choose Google Chrome Value in the Decode Format drop-down selection and
click on Decode:

The actual value of our example is November 2, 2014 at 18:04:33 UTC. This is significantly different
from the value we would have come up with if we thought it was a Linux epoch time!

Google Maps analysis
Maps is a map/navigation application provided by Google.

Package name: com.google.android.apps.maps

Version: 9.2.0 (#902013124)

Files of interest:

/cache/http/

/databases/

gmm_myplaces.db

gmm_storage.db

The /cache/http folder contains many files, with .0 and .1 file extensions. The .0 files are web
requests for the corresponding .1 file. The .1 files are predominantly images and can be viewed by
changing their extension appropriately. On our test device, they were either .jpg or .png files. These
files were predominantly locations near the user, not necessarily locations the user specifically
searched for.

Note

This is the fourth data storage method: misnamed file extensions.

Always verify the header of a file that can't be opened, or use automated tools, such as EnCase, to
detect the mismatched header/file extension. A good resource to verify a file's signature is
http://www.garykessler.net/library/file_sigs.html.

The gmm_myplaces.db database contains locations saved by the user. This file syncs with the user's
Google account, so these locations were not necessarily saved using the application.

The gmm_storage.db database contains search hits and locations that were navigated to the
following table:

Table

Description

gmm_storage_table

The _key_pri column appears to identify the type of the location. bundled appears to be a hit that
came up on a search, while ArrivedAtPlacemark identifies locations that were actually navigated
to. The _data column contains the address for the location.

http://www.garykessler.net/library/file_sigs.html

Google Hangouts analysis
Hangouts is a chat/SMS application provided by Google. Hangouts is the default SMS client on
Android devices.

Package name: com.google.android.gm

Version: Default version with Android 5.0.1 (not listed within the app)

Files of interest:

/cache/volleyCache/

/databases/babel#.db (our device had babel0.db and babel1.db)
/shared_prefs/accounts.xml

The cache directory contains .0 files, as discussed in the Google Maps example earlier. The files
contain a URL to fetch the profile pictures of contacts, as well as a .jpg embedded within the file.
Visiting the URL or carving the .jpg from the file will recover the contact's picture.

The babel#.db file contains all messaging data. On our test device, babel0.db was blank, and
babel1.db had all of the data for the active account. There are many tables within this database
worth looking at:

Table

Description

conversations

This contains conversation data. There is a unique conversation_id value for each chat. The
latest_message_timestamp column is the time of the most recent chat, in the Linux epoch format.
The generated_name column has a list of all participants in the chat, minus the account on the
device. The snippet_text column is the content of the most recent message; like Gmail, the entire
chat is not stored on the device. The latest_message_author_full_name and
latest_message_author_first_name columns identify the author of the snippet_text column.
The inviter_full_name and inviter_first_name columns identify which person initiated the
conversation.

dismissed_contacts

This has a list of names of former contacts that had been messaged. These are labeled as "Hidden
Contacts" within the app.

messages

As expected, this contains a detailed message history for each conversation. The text column

contains the content of the message, and the timestamp column is the date/time in the Linux epoch
format. The remote_url column is, once again, a URL to retrieve images shared in the message.
Again, it can be accessed publically. The author_chat_id is a value that can be correlated with the
participants table to identify the author of each message.

participants

This contains a list of people chatted with. It includes full names, profile picture URLs, and a
chat_id value to identify the person in the messages table.

The accounts.xml file has a phone_verification field that contains the phone number associated
with the Google account when Hangouts is configured to send SMS. This could be highly useful,
because it is frequently difficult to obtain the device's phone number as it is often not stored on the
device.

Google Keep analysis
Keep is a note-taking application provided by Google. It can also be used to set reminders, either at a
certain date/time or when the user is at a specified location.

Package name: com.google.android.keep

Version: Default version with Android 5.0.1 (not listed within app)

Files of interest:

/databases/keep.db

/files/1/image/original

The files/1/image/original directory contains photos taken using the app. Notes and reminders
can both be associated with an image.

The keep.db contains all of the information about notes and reminders. There are, once again,
several tables of interest:

Table

Description

alert

This contains information about location-based reminders. The reminder_id column can be
correlated with entries in the reminder table. The reminder_detail table contains the latitude and
longitude set for the reminder. The scheduled_time column is the date/time the reminder was set, in
the Linux epoch time.

blob

This contains metadata about images in the /files directory mentioned earlier, including the
filename and size. The blob_id column can be correlated with the _id column in the blob_node
table.

blob_node

This contains the time-created value for the images in the /files directory, in the Linux epoch time.

list_item

This stores data for each note on the device. The text column contains the full text of each note. The
list_parent_id column is a unique value for each note. If multiple rows have the same value, it
means they were created as a list within the same note. The time_created and time_last_updated

columns are the time the note was created and the time it was last synced with the Google servers, in
the Linux epoch time.

reminder

This contains data about each reminder set within the app. If the reminder is time based, the
julian_date and time_of_day columns will be populated.

Converting a Julian date
Julian dates are similar to the Linux epoch format, simply starting with a different date. The Julian
date system counts the number of days since noon on January 1, 4713 BC. The United States Naval
Observatory has an excellent Julian date calculator. To obtain the Julian date from the database,
simply combine the two columns with a decimal in between. Here is an example:

The preceding date would correspond to the Julian date 2457042.46800000. When this value is input
to the website, we can find out that the date the reminder is set for is January 19, 2015 at 23:13:55:2
UTC. The location_name, latitude, longitude, and location_address columns would be
populated if a reminder is set as location based. Finally, the time_created and
time_last_updated columns are the time the note was created and the time it was last synced with
the Google servers, in the Linux epoch time.

Note

The fifth data-storage method is Julian date.

Google Plus analysis
Google Plus is the Google-based social network. It allows us to share text/videos/images, add
friends, follow people, and message. Google Plus may also, depending on the user's settings,
automatically upload all pictures taken on the user's device.

Package name: com.google.android.apps.plus

Version: 4.8.0.81189390

Files of interest:

/databases/es0.db

The Es0.db database contains all the information an examiner would expect to find from a social-
media account:

Table

Description

all_photos

This contains a URL to download images shared by and with the user as well as the creation
date/time in the Linux epoch format.

activites

This contains data displayed in the user's stream (that is, their news feed). The created and modified
time for each post is, once again, stored in the Linux epoch time. The title and comment columns will
contain the post title and at least some of the comments from it. The permalink column contains a
URL that can be followed to view the post, if it was shared publically. If the post is shared privately,
the content can still be recovered from the embed table. The relateds column contains the hashtags
automatically generated for the post by Google; this would also populate even if the post is private.

activity_contacts

This contains a list of names for people whose posts are in the activities table.

all_photos

This contains a list of all photos the user has backed up to Google Plus, whether they were shared or
not. The values in the image_url column can be used to download any of the user's photos and is
publically available. Removing -d at the end of the URL will view the image without downloading it.
The timestamp column is the date/time the image was taken, based on the image metadata. It does not
indicate when the image was uploaded.

all_tiles

This contains an unknown subset of all_photos, but also includes images shared with the user.

circle_contact

This contains a list of people the user has added to their circles. It does not include names, but some
of the link_person_id values include e-mail addresses. The link_circle_id value can be
correlated with the circles table to identify the name of each circle. The link_person_id value can
then be correlated with the contacts table to identify which user is in which circle.

circles

This has all the circles the user has created, as well as a count of the number of users in each one.

contacts

This contains a list of all contacts in the user's circles.

events

This lists all events the user has been invited to, whether they attended or not. The name column is the
title of the event. The creator_gaia_id column can be correlated with the gaia_id column in the
contacts table to identify the event creator. The start_time and end_time columns are the time of
the event, in the Linux epoch format. The event_data column has the description of the event entered
by the creator, as well as information about the location if added. It also lists all the other users who
were invited to the event.

squares

This contains a list of groups the user has joined.

Facebook analysis
Facebook is a social-media application with more than 1 billion downloads from Google Play.

Package name: com.facebook.katana

Version: 25.0.0.19.30

Files of interest:

/files/video-cache/

/cache/images/

/databases/

bookmarks_db2

contacts_db2

nearbytiles_db

newsfeed_db

notifications_db

prefs_db

threads_db2

The /files/video-cache directory contains videos from the user's newsfeed, though there does not
appear to be a way to correlate them back to the user who posted them.

The /cache/images directory contains images from the user's newsfeed as well as the profile photos
of contacts. This directory contains a multitude of other directories (65 on our test phone), and each
directory can contain multiple .cnt files. The .cnt files are typically .jpg files or other image
formats.

The bookmarks_db2 database is a list of items that appear on the side of the user's newsfeed, such as
groups and applications. Many of these bookmarks are automatically generated by Facebook, but may
also be created by the user.

Table

Description

bookmarks

This contains all of the info within the database. The bookmark_name column is the name of the
bookmark displayed to the user. The bookmark_pic column has a publically accessible URL to view
the bookmark icon displayed to the user. The bookmark_type column identifies the type of the group.
Our testing showed profile, group, app, friend_list, page, and interest_list. Finally, the
bookmark_unread_count column shows how many messages in the group have not been read by the
user.

The contacts_db2 database predictably contains information about all of the user's contacts stored
in the following tables:

Table

Description

contacts

This contains all information about the user's contacts. The fbid column is a unique ID that is used to
identify the contact in other databases. The first_name, last_name, and display_name columns
show the contact's name. The small_picture_url, big_picture_url, and huge_picture_url
columns contain public links to the contact's profile picture. The communication_rank column
appears to be a number identifying how often the contact communicates with the user (taking into
account messages, comments, and possibly other factors); a higher number indicates more
communication with that contact. The added_time_ms column shows the time (in the Linux epoch
format) the contact was added as a friend. The bday_day and bday_month columns show the
contact's birth date, but not the year. The data column contains a duplicate of all the rest of the data in
the database, but also contains the contact's location, which is not found elsewhere in the database.

The nearbytiles_db database contains locations near the user that may interest them. This is
apparently populated constantly, even if the user does not view the locations. It is interesting because,
while it isn't a fine location (most of our tests showed locations within 6–10 miles of our location), it
is a rough idea of places a user has been.

Table

Description

nearby_tiles

This contains the latitude and longitude values for locations near the user, as well as the time the
location was retrieved from the Facebook servers in the Linux epoch format.

The newsfeed_db database contains data shown to the user in their newsfeed. Depending on the
usage of the app, it can be a very large file containing the table:

Table

Description

home_stories

The fetched_at column shows the time the story was pulled from the Facebook servers and likely
corresponds closely with the time the user was using the application or saw the story. The
story_data column contains the story stored as a blob of data. When viewed in a hex or text editor,

the username of the person posting the story can be found. The content of the post can also be found in
plain text and is often preceded by a tag that says text. An example of this is shown in the following
screenshot.

Note

Note that the actual content of this one cell in the story_data column. It contained over 10,000 bytes
of data, though the actual message is only around 50 bytes.

The notifications_db database contains notifications sent to the user stored in the following table:

Table

Description

gql_notifications

The seen_state column shows whether or not the notification has been seen and read. The updated
column contains the time the notification was updated (that is, sent if it is unread or the time it was
read) in the Linux epoch format. The gql_payload column contains the content of the notification as
well as the sender, similar to the story_data column in newsfeed_db. The message content again is
frequently preceded by the flag text. A much smaller amount of data showing the text of the
notification can be found in the summary_graphql_text_with_entities and
short_summary_graphql_text_with_entities columns. The profile_picture_uri contains a
public URL to view the sender's profile picture, and the icon_url column has a link to view the icon
associated with the notification.

The prefs_db database contains application preferences stored as follows:

Table

Description

preferences

The /auth/user_data/fb_username row shows the user's Facebook username. The
/config/gk/last_fetch_time_ms value is the timestamp of the app's last communication with
Facebook servers, but may not be an exact time of the user's last interaction with the app. The

/fb_android/last_login_time value shows the last time the user logged in through the app. The
database contains many other timestamps. When put together, these timestamps can be used to build a
decent profile of the app's usage. The /auth/user_data/fb_me_user value contains data about the
user, including their name, e-mail address, and phone number.

The threads_db database contains messaging information described as follows:

Table

Description

messages

Each message has a unique ID in the msg_id column. The text column contains the message in plain
text. The sender column identifies the Facebook ID and name of the message sender. The
timestamp_ms column is the time the message was sent, in the Linux epoch format. The
attachments column contains a public URL to retrieve attached images. The coordinates column
would have the sender's latitude and longitude if they have opted to show their location. The source
column identifies whether the message was sent via the website or app.

Facebook Messenger analysis
Facebook Messenger is a messaging app separate from the main Facebook application. It has over
500,000,000 downloads in the Play Store.

Package name: com.facebook.orca

Version: 18.0.0.27.14

Files of interest:

/cache/

audio/

fb_temp/

image/

/sdcard/com.facebook.orca

/files/ rti.mqtt.analytics.xml

/databases/

call_log.sqlite

contacts_db2

prefs_db

threads_db2

The /cache/audio directory contains audio messages sent through the application. The files have a
.cnt file extension, but are actually .riff files that can be played with Windows Media Player,
VLC media player, and other programs.

The /cache/fb_temp path contains temp files for images and video sent through the application. It is
unclear how long these files will remain. In our testing, we sent and received a total of five files, and
all five were still in the temp folder one week later.

The /cache/image directory contains a multitude of other directories (33 on our test phone), and
each directory can contain multiple .cnt files. The file header should be verified on each file, as
some were video files and some were images. Several of the files from the fb_temp folder were
found, as well as the profile pictures of some contacts.

The fb_temp folder on the SD card contains sent images and video only.

The application also includes an option (disabled by default) to download all the received
images/video to the device's gallery. If this option is selected, all received images/video would be
found on the SD card.

The /files/rti.mqtt.analytics.xml file has the user's Facebook UID.

The call_log.sqlite database contains a log of calls made through the application. The
person_summary table contains the relevant data described as follows:

Table

Description

person_summary

The user_id column contains the Facebook ID of the remote user. This can be correlated with the
fbid column in contacts_db2 to determine the user's name. The last_call_time column contains
the time of the previous call in the Linux epoch format. This table does not contain information about
the direction of the call (sent or received).

The contacts_db2 file is a SQLite database, despite the lack of a file extension. Useful tables within
this database include the following ones:

Table

Description

contacts

This table includes the contacts the user has added, as well as the contacts that were scraped from the
user's phone book (if the phone book contact uses Facebook Messenger). It contains the first and last
names of each contact, as well as that contact's Facebook ID (as discussed in the call_log.sqlite
table earlier). The added_time_ms column shows the time each user was added into the app. This
can give some insight into whether the contact was added manually or automatically. A large group of
contacts added within milliseconds of each other were likely created automatically when the app was
installed. The small_picture_url, big_picture_url, and huge_picture_url columns contain
public links to the contact's profile picture. A contact's phone number can be found in the blob of
information within the data column.

It should be noted that we have no idea where some of the contacts in this database came from. They
were not Facebook friends with our account and were not contacts in our device's phone book, but
were added at the same time that the phone book was scraped. Our best guess is that some contacts in
our phone have phone numbers that Facebook associated with other users.

favorite_contacts

The favorite_contacts table shows contacts that have been added as favorites by the user. They
are identified by the fbid column, which can be correlated back to the contacts table.

The prefs_db database contains useful metadata about the app and the account:

Table

Description

preferences

The /messenger/first_install_time value indicates the time the application was installed, in the
Linux epoch time. The /auth/user_data/fb_username value shows the username associated with
the application. The /config/neue/validated_phonenumber value shows the phone number
associated with the application. The users first and last names can be found in the
/auth/user_data/fb_me_user value.

Finally, the threads_db2 database contains data about messages:

Table

Description

group_clusters

This shows folders the user has created.

group_conversations

This contains the thread_key value for each group chat. This can be correlated with the messages
table.

messages

The thread_key value is a unique ID generated for each chat session. The text column has the
contents of each text message sent and received. This also identifies voice calls using the phrases
"You called Facebook User.", "Facebook User called you.", and "You missed a call from Facebook
User.". The sender column identifies which user sent each message (or made each call). The
timestamp_ms column shows the time each message was sent, in the Linux epoch format. The
attachments column will show data for each sent or received attachment. The file type is also
visible in the data. The pending_send_media_attachment column shows the path on the device to
recover sent attachments. Finding received attachments directly does not appear possible, although
they were recovered in the /cache/images directory discussed earlier. There was no way to
correlate them with a specific message or sender.

Skype analysis
Skype is a voice-/video-calling app, as well as a messaging app owned by Microsoft. It has over
100,000,000 installs on Google Play.

Package name: com.skype.raider

Version: 5.1.0.58677

Files of interest:

/cache/skype-4228/DbTemp

/sdcard/Android/data/com.skype.raider/cache/

/files/

shared.xml

<username>/thumbnails/

<username>/main.db

<username>/chatsync

The /cache/skype-4228/DbTemp directory contained multiple files with no extension. One of these
files (temp-5cu4tRPdDuQ3ckPQG7wQRFgU on our device) was actually a SQLite database that
contained the SSID and Media Access Control (MAC) of the wireless access points it had been
connected to.

The SD card path will contain any images or files received in a chat. If a file is downloaded, it would
be in the Downloads folder in the root of the SD.

The shared.xml file listed the account's username as well as the last IP address that connected to
Skype:

The <username>/thumbnails directory contained the user's profile picture.

The main.db database, like it sounds, contains the app usage history. Some important tables to look
at are as follows:

Table

Description

Accounts

This shows the accounts used on the device and the associated e-mail addresses.

CallMembers

This includes call logs from the app. The duration table is the duration of the call, and the
start_timestamp column is the start time in the Linux epoch format; neither of these columns is
populated if the call is not answered. The creation_timestamp column is the actual beginning of the
call. It is populated as soon as the call is initiated within the app, so even unanswered calls are
shown in this column. The ip_address column shows the IP address of the user for connected calls.
The type column indicates whether the call was outgoing or incoming (1=incoming, 2=outgoing). The
guid column also shows the direction of the call, listing each participant from left to right, with the
user on the left-hand side being the one who initiated the call. The call_db_id column can be
correlated with the Calls table to find further information about the call.

Calls

This is very similar to CallMembers, but with less information. It is worth noting that the
begin_timestamp column in this table is identical to creation_timestamp in CallMembers. There
is an is_incoming column to show the direction of the call; 0 indicates outgoing, and 1 indicates
incoming. Finally, it should be noted that the duration of some calls did not match the CallMembers
table. One of the durations was a second longer than the other table indicated. It appears that the
CallMembers table calculates duration based on start_timestamp, while the Calls table
calculates duration based on begin_timestamp. The difference in duration is likely caused by the
amount of time it took the user to accept the call.

ChatMembers

This shows the users in each chat. The adder column lists the user that initiated the chat.

Chats

This lists each unique chat session. The timestamp column is the date/time the conversation began, in
the Linux epoch format. The dialog_partner column shows users in the chat, excluding the account
on the device. The posters column shows every user who has made a comment in the chat and
includes the account on the device if it has posted. The participants column is similar to the
dialog_partner column, but includes the user's account. Finally, the dbpath column contains the
name of the chat backup file found in the <username>/chatsync directory. This will become
important further in this analysis.

Contacts

This is actually a very misleading table. In our test, we added two users to our contact list; the

Contacts table has 233 entries! The is_permanent column indicates the status of the users listed in
this table; if it is 1, the user would be added as an actual contact within the application. The other 231
entries appear to be names that came up in results when we searched for contacts, but we never
communicated with or added them.

Conversations

We have no idea what the difference between Conversations and Chats is. They mostly contain the
same information and, in fact, appear to be referencing the same chat sessions.

Messages

This contains every individual message from chats/conversations. The convo_id column has a unique
value for each conversation; any messages with the same convo_id value are from the same
conversation. The author and from_dispname columns show who wrote each message. The
timestamp column, once again, shows the date/time of the message in the Linux epoch format. The
type column indicates the type of message that was sent. Here are the values from our testing:

50: friend request
51: request accepted
61: plain text message
68: file transfer
30: call begin (voice or video)
39: call end (voice or video)
70: video message

The body_xml column has the content of the message. For plain-text messages and friend requests, the
content is simply what the message said. File transfers show the size and name of the file. Video
messages say that they are video messages, but provide no other information. Calls would show the
duration if it was connected, and no duration if they were missed/ignored. The identities column
shows who sent each message, but may be blank if it was sent by the user account on the device. The
reason column appears to be for calls and shows either no_answer or busy to explain why a call
was not connected.

Participants

This is similar to ChatMembers. It shows each user involved with a chat/conversation.

SMSes

Our testing did not include SMS messaging. However, each column in this table appears self-
explanatory.

Transfers

This shows information about files transferred. This includes the filename, size, and path on the
device. The partner_dispname column identifies which user began the file transfer.

VideoMessages

This shows the author and creation timestamp of video messages. Note that video messages are not
stored on the device. Accessing them will be covered in a separate section later on in the chapter.

VoiceMails

Our testing did not include voice mails. However, each column in this table appears self-explanatory.

Recovering video messages from Skype
As noted earlier, video messages are not stored on the device. Luckily, for us, they can be accessed
via the Internet. The first step is to verify that a video message was sent by looking in the Messages
table in the body_xml column. Next, note the convo_id field for the message shown in the following
screenshot.

Our video message is in convo_id 257.

Third, look in the Chats table for convo_id in the conv_dbid column and find the dbpath value.
This will be the name of the conversation's backup file as shown in the following screenshot:

To find the backup file, look in files/<username>/chatsync. There will be a folder for each
conversation; the name of the folder is the first two digits of the backup name. Our backup will be in
folder 28.

Open the backup file in a hex editor, and search for videomessage. You should find a URL and a
code to access the video:

Note

Actually, accessing the URL may require an additional warrant or legal permission, depending on
your local jurisdiction. As this data is not on the device and is private, viewing it without legal
guidance could invalidate any evidence found in the video.

Snapchat analysis
Snapchat is an image-sharing and text-messaging service with over 100,000,000 downloads. Its
signature feature is that images and videos sent will "self-destruct" after a time limit set by the sender,
from 1-10 seconds. Furthermore, if a user takes a screenshot of the image, the sender is notified. Text
chats do not have an expiration timer.

Package name: com.snapchat.android

Version: 8.1.2

Files of interest:

/cache/stories/received/thumbnail/

/sdcard/Android/data/com.snapchat.android/cache/my_media/

/shared_prefs/com.snapchat.android_preferences.xml

/databases/tcspahn.db

The /cache/stories/received/thumbnail path contains thumbnails of pictures taken by the user
on the device. The /sdcard path contains full-sized images. These remain even after the time limit
has expired, and the recipient can no longer access them. The files in both of these locations may not
have proper file extensions.

The com.snapchat.android_preferences.xml file contains the e-mail address used to create an
account and the phone number of the device registered with the account.

The tcspahn.db database contains all other information about the app's usage:

Table

Description

Chat

This lists all text chats. It shows the sender, recipient, and timestamp in the Linux epoch time and the
text of the message.

ContactsOnSnapchat

This shows all the users in the user's phonebook who also have Snapchat installed. The
isAddedAsFriend column would show a 1 value if the user has actually been added as a contact.

Conversation

This has information about each open conversation. It includes the sender and recipient and the
timestamp of the last sent and received snaps in the Linux epoch format.

Friends

This is similar to ContactsOnSnapchat, but only includes users who have been added as a friend. It
includes the timestamp when each user added the other.

ReceivedSnaps

This contains metadata about received images and videos. Once the image/video is viewed, it
appears to be removed from this table at some point. It contains a timestamp for each message, a
status, information whether or not a snap was screenshot, and the sender.

SentSnaps

This contains metadata about sent images and videos. Once the image/video is viewed, it appears to
be removed from this table at some point. It contains a timestamp for each message, a status, and the
recipient.

Viber analysis
Viber is a messaging and voice-/video-calling app with over 100,000,000 downloads.

Package name: com.viber.voip

Version: 5.2.1

Files of interest:

/files/preferences/

activated_sim_serial

display_name

reg_viber_phone_num

/sdcard/viber/media/

/User Photos/

/Viber Images/

/Viber Videos/

/databases/

viber_data

viber_messages

The files in /files/preferences contain the SIM card's Integrated Circuit Card ID (ICCID), the
name the user displays in the app, and the phone number used to register with the app.

The files in the /sdcard/viber/media path are the profile photos of people in the user's contact list
who use Viber (regardless of whether they have been added as friends in the app) and all images and
video sent through the app.

The viber_data file is a database, even though it does not have the .db file extension. It contains
information about the user's contacts:

Table

Description

calls

This table did not populate, even though we made calls from within the app.

phonebookcontact

This table could be extremely valuable from a forensic standpoint. When Viber is first opened, it
scrapes the user's phonebook and adds all the entries it finds to this database. This means it may
contain historical data about the user's contacts. If he later deletes an entry from the phone book, it

may still be recovered in this database. This table only includes names of contacts in the phonebook.

phonebookdata

This is similar to phonebook contact, except that it includes e-mail addresses and phone numbers for
contacts in the device's phonebook.

vibernumbers

This shows the Viber phone number for each contact in the device's phonebook that uses the app. The
value in actual_photo corresponds with the filenames in the /sdcard/viber/media/User Photos
directory.

The viber_messages file is a database, even though it does not have the .db file extension. It
contains information about the app's usage:

Table

Description

conversations

This contains a unique ID, the recipient, and date for each unique conversation.

messages

This contains each individual message from all conversations. The address is the phone number of the
remote party in the conversation. The date column is in the Linux epoch format. The type column
corresponds to incoming or outgoing; 1 is an outgoing message, and 0 is incoming. The
location_lat and location_lng columns will be populated if a location is shared. Shared files
can be sent with text to describe them; this is found in the description column.

messages_calls

This table did not populate, even though we made calls from within the app.

participants_info

This has the profile information for each account that has been in a conversation with the user.

Tango analysis
Tango is a voice-/text-/video-messaging application. It has over 100,000,000 downloads in the Play
Store.

Package name: com.sgiggle.production

Note

This package name is seemingly innocuous and could be overlooked by an examiner thinking it was a
game. This is an example of why every application should be analyzed.

Version: 3.13.128111

Files of interest:

/sdcard/Android/data/com.sgiggle.production/files/storage/appdata/

TCStorageManagerMediaCache_v2/

conv_msg_tab_snapshots/

/files/

tc.db

userinfo.xml.db

The /TCStorageManagerMediaCache_v2 path on the SD card contains images that were sent and
received with the application as well as profile pictures of contacts. However, it also contains many
images that were never seen or used in the application. They appear to either be images for ads or
stock emoji-type images that can be attached to conversations. The filenames found here can be
correlated with tc.db to find the exact image that was used in a conversation.

The conv_msg_tab_snapshots path on the SD card contains files with a .dat extension. When
viewed in a hex editor, we were able to find snippets of conversations in plain text, as well as paths
and URLs to images sent and received in conversations. It is unclear what causes these files to exist,
but it may be possible to retrieve content from these files that may have been deleted in tc.db.

The tc.db database is what Tango uses to store all message information:

Table

Description

conversations

This contains a unique ID in the conv_id column for each conversation.

messages

This contains messages sent and received through the app. The msg_id column is a unique identifier
for each message, and the conv_id column identifies which conversation the message is from. The
send_time column identifies the time a message was sent or when it was received, depending on the
direction. The direction column shows the direction of the message; 1 = sent and 2 = received. The
type column identifies the type of the message. Based on our testing, they are as follows:

0 = plain text message
1 = video message
2 = audio message
3 = image
4 = location/coordinates
35 = voice call
36 = attempted voice call (missed by either party)
58 = attached stock image, such as the emojis found in the TCStorageManagerMediaCache_v2
path

Finally, the payload column contains the content of the message. The data is Base64 encoded, which
will be discussed in detail in the following section.

The user_info_xml.db database contains metadata about the account, such as the user's name and
phone number. However, its data is entirely Base64 encoded, like the messages in tc.db.

Note

The next data-storage method is Base64.

Decoding Tango messages
Base64 is an encoding scheme that is commonly used for data transport. It is not considered
encryption, because it has a known method for decoding and does not require a unique key to decode
the data. Base64 contains ASCII-printable characters, but the underlying data is binary (which will
make our output somewhat messy!). An example from the payload column in the messages table of
tc.db looks like this:

EhZtQzVtUFVQWmgxWnNRUDJ6aE44cy1nGAAiQldlbGNvbWUgdG8gVGFuZ28hIEhlcmUncyBob3cgdG8gY29ubmVjdCwgZ2V0IHNvY2lhbCwgYW5kIGhhdmUgZnVuIYABAKoBOwoFVGFuZ28SABoWbUM1bVBVUFpoMVpzUVAyemhOOHMtZyILCgcKABIBMRoAEgAqADD///////////8BsAHYioX1rym4AYKAgAjAAQHQAQDoAdC40ELIAgTQAgDqAgc4MDgwODg5yAMA2AMA2AXTHw==

Note

The equal signs at the end of our message. This is a strong indicator that the data is Base64 encoded.
The input that will be encoded needs to be divisible by 3, for the math behind Base64 to work
properly. If the input is not divisible by 3, it would be padded, resulting in the equal signs seen in the
output.

For example, consider the following table:

Input string

Number of characters/bytes

Output

Hello, World

12

SGVsbG8sIFdvcmxk

Hello, World!

13

SGVsbG8sIFdvcmxkIQ==

Hello, World!!

14

SGVsbG8sIFdvcmxkISE=

You can see that the 12-byte input (divisible by 3) has no padding, while the other two inputs have
padding because they are not divisible by 3. This is important because it shows that while the equal
signs are a strong indicator of Base64, the lack of an equal sign does not mean it isn't Base64!

Now that we understand a little about Base64 and recognize that our payload column is very likely
encoded in Base64, we need to decode it. There are websites that will allow the user to paste in
encoded data, and it will be decrypted (such as www.base64decode.org). However, it is
inconvenient for large amount of data as each message must be input individually (and putting
evidentiary data on the Internet is also frowned upon in most cases). Likewise, it can be decoded on
the command line of Linux-based systems, but is equally inconvenient for large amounts of data.

Our solution was to build a Python script that pulls the Base64 data from the database, decodes it, and
writes it back out to a new file:

import sqlite3
import base64

conn = sqlite3.connect('tc.db')
c = conn.cursor()
c.execute('SELECT msg_id, payload FROM messages')
message_tuples = c.fetchall()
with open('tcdb_out.txt', 'w') as f:
 for message_id, message in message_tuples:
 f.write(str(message_id) + '\x09')
 f.write(str(base64.b64decode(message)) + '\r\n')

To run the code, simply paste this code into a new file named tcdb.py, place the script in the same

http://www.base64decode.org

directory as tc.db, and on the command line, navigate to that directory and run:

python tcdb.py

The script will make a file named tcdb_out.txt in the same directory. Opening the file in a text
editor (or importing it into Excel as a tab-delimited file) will show the msg_id value so that the
examiner can correlate the message back to the messages table. The decoded payload shows a plain
text message (noted as type 0 in the database):

Note

Note that the message content is now visible in plain text and is preceded by the conversation ID.
There is also a ton of binary data cluttering up our output; this is likely metadata or other information
used by Tango. If the message was received, the user's name will also be in the output (above it is
Tango).

There are other message types worth looking at, also. Here is a decoded payload entry for a video
message:

Note that with the video message, we can see two URLs. They are both public, meaning anyone with
the link can access them. The URL ending in thumbnail is a thumbnail of the video, while the other
URL will download the complete video in the .mp4 format. The path to the SD card and filename for
the image is also shown.

Image and audio messages are stored in a very similar format and contain URLs to either view or
download the file. They also contain the path to the file on the SD card.

Here is a sample location message:

This time, we can see the exact coordinates the user was at as well as the address. Again, a path on
the SD card is also present and will show the map view of the location. As with other message types,
a received message would also show the sender's name.

Finally, let's take a look at the userinfo.xml.db database. Here is what it looks like before being
decoded properly:

We wrote another script very similar to the first to parse the userinfo.xml.db database:

import sqlite3
import base64

conn = sqlite3.connect('userinfo.xml.db')
c = conn.cursor()

c.execute('SELECT key, value FROM profiles')
key_tuples = c.fetchall()
with open('userinfo_out.txt', 'w') as f:
 for key, value in key_tuples:
 if value == None:
 value = 'Tm9uZQ=='
 f.write(str(base64.b64decode(key)) + '\x09')
 f.write(str(base64.b64decode(value)) + '\r\n')

The only difference in the code is that the filenames, table names, and values changed. This time, both
the columns in the database are base64 encoded. Again, the code can be run by placing it in the same
location as userinfo.xml.db and running it using the following command:

python userinfo.py

Here is the relevant portion of the resulting output file, showing the personal data the user used to
register the account:

Further down in the output, there is also a list of all of the user's contacts who use Tango. The output
also includes the contacts' names and phone numbers.

WhatsApp analysis
WhatsApp is a popular chat-/video-messaging service with over 500,000,000 downloads in Google
Play.

Package name: com.whatsapp

Version: 2.11.498

Files of interest:

/files/

Avatars/

me

me.jpeg

/shared_prefs/

RegisterPhone.xml

VerifySMS.xml

/databases/

msgstore.db

wa.db

/sdcard/WhatsApp/

Media/

Databases/

The /files/avatars directory contains thumbnails of the profile pictures of contacts that use the
app, and me.jpg is a full-size version of the user's profile picture. The me file contains the phone
number associated with the account

The phone number associated with the account can also be recovered in
/shared_prefs/RegisterPhone.xml. The /shared_prefs/VerifySMS.xml file shows the time
that the account was verified (in the Linux epoch format, of course), indicating when the user first
began using the app.

The msgstore.db database, like it sounds, contains messaging data:

Table

Description

chat_list

The key_remote_jid column shows each account the user has communicated with. The value in the
table is the remote user's phone number. For example, if the value is
13218675309@s.whatsapp.net, the remote user's number is 1-321-867-5309.

group_participants

This contains metadata about group chats.

messages

This shows all the message data. Once again, the key_remote_jid field identifies the remote sender.
The key_from_me value indicates the direction of the message (0 = received, and 1 = sent). The data
column contains the text of messages, and timestamp is the sent or received time in the Linux epoch
format.

For attachments, media_mime_type identifies the file format. The media_size and media_name
columns should be self-explanatory. If the attachment had a caption, the text would be shown in the
media_caption column. If the attachment was a location, the latitude and longitude columns
would be populated appropriately. The thumb_image column has a lot of useless data in it, but also
contains the path of the attachment on the device. The raw_data column contains thumbnails for
images and videos.

The wa.db database is used to store contact information:

Table

Description

wa_contacts

Like other apps, WhatsApp scrapes and stores the user's entire phone book and stores the information
in its own database. It contains the contacts' names and phone numbers, as well as their statuses if the
contacts are WhatsApp users.

The SD card is a treasure trove of WhatsApp data. The /sdcard/WhatsApp/Media folder contains a
folder for each type of media (Audio, Calls, Images, Video, and Voice Notes), and stores all
attachments of that type in the folder. Sent media is stored in a directory called, unimaginatively,
Sent. Received media is simply stored in the root of the folder.

The Databases directory is an even greater source of information. WhatsApp makes a backup of
msgstore.db nightly and stores the backups here. This allows an examiner to see historical data that
may have been deleted. If I delete a chat today, but you look at a backup from yesterday, you would
be able to access the data I deleted. The app is even kind enough to put the date in the filename, for
example, msgstore-2015-01-21.1.db. The only catch is that these backups are encrypted!

Decrypting WhatsApp backups
Luckily, there is a tool available to decrypt the backups. It can be found here, along with detailed
installation instructions at http://forum.xda-developers.com/showthread.php?t=1583021.
Unfortunately, it hasn't been updated in some time and doesn't seem to work on newer versions of the

http://forum.xda-developers.com/showthread.php?t=1583021

app.

We are not aware of an easy, automated extraction tool for newer versions of WhatsApp. However,
with the version of WhatsApp we tested, we had great success using the instructions at
http://forum.xda-developers.com/android/apps-games/how-to-decode-whatsapp-crypt8-db-files-
t2975313. Note that this must be done on a Linux computer. Once the steps have been successfully
followed, the result should be a database identical to msgstore.db explained earlier.

This is possible because WhatsApp stores the decryption key on the device, in the /files directory.

Note

Data storage method 7 is using encrypted files.

http://forum.xda-developers.com/android/apps-games/how-to-decode-whatsapp-crypt8-db-files-t2975313

Kik analysis
Kik is a messaging app with over 50,000,000 downloads from the Play Store.

Package name: kik.android

Version: 7.9.0

Files of interest:

/cache/

chatPicsBig/

contentpics/

profPics/

/files/staging/thumbs

/shared_prefs/KikPreferences.xml

/sdcard/Kik/

/databases/kikDatabase.db

The chatPicsBig and contentpics directories in /cache contain images that were sent and
received with the application. The files in contentpics contain what appears to be Kik metadata
embedded before the image. The .jpg has to be carved out of these files. In our testing, all of the files
in contentpics were also stored in chatPicsBig, though this may change with more extensive app
usage. The user's profile picture is found in the /profPics directory.

Note

Data storage method 8 is using basic steganography, which means, a file is stored within a larger file.

The /files/staging/thumbs directory contains thumbnails of images sent and received with the
application. Our testing found the same images in this location as the /cache directories, but again, it
is possible this would vary with more extensive application usage.

The KikPreferences.xml file in /shared_prefs shows the user's username and e-mail address
used with the application. Interestingly, it also contains an unsalted SHA1 hash of the user's
password.

The /sdcard/Kik directory contains full-sized images that were sent and received in the application.
The filenames can be correlated with messagesTable in the kikDatabase.db database to identify
which message contained the image.

The kikDatabase.db database contains all of the messaging data from the application stored in the
following tables:

Table

Description

KIKContentTable

This table contains metadata about sent and received images. Each message is assigned a unique
content_id value that corresponds to the filenames in the sdcard/Kik directory. The preview and
icon values for each image correspond to the filenames found at /files/staging/thumbs. Each
image also contains a file-URL value. This is a public URL that can be accessed to view the file.

KIKcontactsTable

This table shows the user_name and display_name values for each contact. The in_roster value
appears to be set for contacts the user has specifically added (if it is set to 1). Contacts with an
in_roster value of 0 appear to be default contacts added automatically. The jid column is a unique
value for each contact.

messagesTable

This table contains all data for messages sent and received with the app. The body column shows the
text data sent in a message. The partner_jid value can be correlated back to the jid column in
KIKcontactTable to identify the remote user. The was_me column is used to indicate the direction of
the message (0 = sent, and 1 = received). The read_state column shows whether the message has
been read or not; 500 = read and 400 = unread. The timestamp, yet again, is in the Linux epoch
format. The content_id column is populated for message attachments and can be correlated back to
KIKContentTable for more information.

WeChat analysis
WeChat is a messaging app with over 100,000,000 downloads in the Play Store.

Package name: com.tencent.mm

Version: 6.0.2

Files of interest:

Note

Some of the following paths contain an asterisk (*). This is used to indicate a unique string that will
differ for each account. Our device had 7f804fdbf79ba9e34e5359fc5df7f1eb in place of the
asterisk.

/files/host/*.getdns2

/shared_prefs/

com.tencent.mm_preferences.xml

system_config_prefs.xml

/sdcard/tencent/MicroMsg/

diskcache/

WeChat/

/sdcard/tencent/MicroMsg/*/

image2/

video/

voice2/

/MicroMsg/

CompatibleInfo.cfg

*/EnMicroMsg.db

The *.getdns2 files found in /files/host can be opened as text files or in a hex editor. There is a
section called [clientip] that shows the IP address from which the user connected as well as the
time of the connection in the Linux epoch format. Our device contained three of these files to show
three different connections, though increased application usage may generate more than three of these
files.

The com.tencent.mm_preferences.xml file in /shared_prefs records the device's phone number
in the login_user_name field. The system_config_prefs.xml file contains the path to the user's
profile picture on the device as well as a default_uin value that will be needed later.

The SD card contains a wealth of WeChat data. The /tencent/MicroMsg/diskcache directory
contained an image that was never used with the application. We think it was put there when attaching
a different image as WeChat loads a view of many images from the device's gallery. The /WeChat

directory within /sdcard/tencent/MicroMsg contained images sent from the device.

The /video, /voice, and /voice2 folders within /sdcard/tencent/MicroMsg/* contain exactly
what they say: video and voice files sent using the app.

WeChat is fairly unique, in that, it does not utilize a /databases directory within the app's directory
structure. MicroMsg is its equivalent. CompatibleInfo.cfg contains the device's IMEI, which will
be useful later.

The * directory within /MicroMsg contains the EnMicroMsg.db database. There's only one problem:
the database is encrypted using SQLCipher! SQLCipher is an open source extension for SQLite that
encrypts the entire database. Luckily, like other apps that use encryption that we've seen, the key to
decrypting the file is on the device.

Note

Data storage method 9 is using SQLCipher, which involves full-database encryption.

Decrypting the WeChat EnMicroMsg.db database
Fortunately for us, Forensic Focus has an excellent article on doing exactly this at
http://articles.forensicfocus.com/2014/10/01/decrypt-wechat-enmicromsgdb-database/.

They even provide a Python script to do the work for us at
https://gist.github.com/fauzimd/8cb0ca85ecaa923df828/download#.

To run the Python script, simply put the EnMicroMsg.db file and the system_config_prefs.xml files in
the same directory as the script and, in the command-line, type:

python fmd_wechatdecipher.py

The script will then prompt you for the International Mobile Station Equipment Identity (IMEI) of
the device. This can be found in the /MicroMsg/CompatibleInfo.cfg file, printed somewhere on
the device (behind the battery, on the SIM card tray or etched on the back of the device), or by typing
*#06# in the phone dialer.

The script should run. Place a file called EnMicroMsg-decrypted.db in the directory.

Finally, we can now examine the EnMicroMsg-decrypted.db database with respect to the following
tables stored in it:

Table

Description

ImgInfo2

http://articles.forensicfocus.com/2014/10/01/decrypt-wechat-enmicromsgdb-database/
https://gist.github.com/fauzimd/8cb0ca85ecaa923df828/download

This contains path information for sent and received images. The bigImgPath column contains the
filename for the image. This can be searched on the SD card to find the picture. Alternatively, images
are stored in the /sdcard/tencent/MicroMsg/*/image2 directory in folders that correspond to the
filename. For example, the file named 3b9edb119e04869ecd7d1b21a10aa59f.jpg can be found in
the image2 directory in the /3b/9e path. The folders are broken down by the first 2 bytes of the name
and then by the second 2 bytes of the name. The thumbImgPath column contains the name of
thumbnails for the images.

message

This contains all the message information for the app. The isSend column indicates the message
direction (0 = received, 1 = sent). The createTime table is the timestamp of the message, in the
Linux epoch format. The talker column contains a unique ID for the remote user. This can be
correlated with the rcontact table to identify the remote user. The content column shows the data
of messages sent as text and identifies video calls as "voip_content_voice". The imgPath column
contains the path to image thumbnails, which can be correlated with the ImgInfo2 table to locate the
full-sized images. It also includes filenames for audio files, which can be searched for or located in
the /sdcard/tencent/MicroMsg/*/voice2 directory.

rcontact

This contains a list of contacts and includes many that are added by default by the app. The username
column can be correlated with the talker column in the message table. The nickname column shows
the user's name. The type column is an indicator of whether the contact was added manually or
automatically (1 = device user, 3 = added by user, and 33 = added by app). The exception to this is
the user "weixin", which is automatically added, but has a type value of 3.

userinfo

This table contains information about the user, including their name and phone number.

Application reverse engineering
The vast majority of Android applications are written in Java. In order to truly reverse engineer Java
code, one should generally be able to engineer Java code first. Teaching Java is well beyond the
scope of this book. We will, however, show a few useful reversing methods that we think will be
useful and can be done by an average mobile forensic examiner. Many hundreds of tutorials and
guides have been written online for Android reversing, from the very basic to the highly advance.

Anyone looking for more information on the subject should easily be able to find what they are
looking for. As always, www.xda-developers.com is an incredibly useful resource, and entire books
have been dedicated to the subject. There is also an incredibly detailed, updated list of tools by
Ashish Bhatia that can be found at https://github.com/ashishb/android-security-awesome.

Obtaining the application's APK file
Applications are installed via .apk files. The APK file for an app is stored on the device, even after
the application is installed (and is removed when an app is deleted). This APK contains the compiled
Java code for the app, the icons and fonts used in the app, and an AndroidManifest.xml file that
declares the permissions the application needs.

The APK file for applications that are installed through Google Play can be found in the /data/app
directory. Another method to find the APK location is to use the adb shell pm path
<package_name> command. The APK file for preinstalled system applications (that cannot be
deleted without root) can be found in the /system/app directory. The APK file itself is stored in a
directory named after its package name, followed by a dash and a number. For example, the package
name for Kik is kik.android, and the APK in /data/app is stored as inkik.android-1.

Here is the list of APK directories in /data/app for the device we tested:

http://www.xda-developers.com
https://github.com/ashishb/android-security-awesome

Note that every application we tested has an APK file in this directory, as well as many apps that we
did not look at.

Obtaining the APK file is as simple as using the adb pull command. To pull the Kik APK, we will use
the following command:

adb pull /data/app/kik.android-1

This should pull a lib directory and a base.apk file, which will be in the current directory the
command was run from:

Disassembling an APK file

For starters, the APK file is actually just a ZIP compressed file. Renaming the extension to .zip will
allow an examiner to open the container and browse the files contained in it:

However, you might not be able to view the AndroidManifest.xml file. There are many tools and
methods to fully disassemble the APK, and these can be found in the list we linked to above. Our
personal favorite tool, though, is one that allows you to simply right-click on the APK and
disassemble it (on Windows only). The APK_OneClick tool can be found at http://forum.xda-
developers.com/showthread.php?t=873466.

The Java Runtime Environment (JRE) will have to be installed. It can be found at
http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html.

Once the tool and the JRE have been installed, an examiner can simply right-click on the APK and
select Disassemble APK and Decode Resources:

A pop-up window will appear to show the progress and will disappear if no problems are
encountered:

http://forum.xda-developers.com/showthread.php?t=873466
http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html

If the disassembly ended successfully, there will now be a folder called base-disasm in the same
directory as the APK. Browsing the directory will show many of the same files and folders we saw
when the APK was renamed to a .zip file:

Determining an application's permissions
Knowing what an app has permission for can be very useful for an examiner. For starters, it can help
narrow down where data is stored. An app without permission to write data to the SD card, for
example, won't store any data there. One of the most commonly heard defenses when a suspect is
caught with illicit material is that, of course, the suspect has no idea how it got there and it was
placed there by a virus. If he says a particular app put that data on his SD card, an examiner can show
that the app couldn't have done that because it didn't have permission to write to the SD card. These
are just a few basic examples, but again, this is very basic reverse engineering!

The AndroidManifest.xml file from the disassembled APK discussed earlier will contain the app's
permissions. These are the equivalent of what the user is shown and has to approve when the app is
installed:

For the specifics of what each permission allows the app to do, Google maintains a list at

http://developer.android.com/reference/android/Manifest.permission.html.

Viewing the application's code
To view the application's code using the APK_OneClick tool, simply right-click on the APK and
select Browse Java Code of APK. Again, a window will pop up temporarily showing progress and
will disappear if no errors are encountered. Once it completes, a Java Decompiler window will
appear, allowing the examiner to browse through the Java code as follows:

http://developer.android.com/reference/android/Manifest.permission.html

Summary
This chapter has been an in-depth study of specific Android applications, and how/where they store
their data. We looked at 19 specific applications and discovered 9 different methods of storing and
obfuscating data. Knowing that applications store their data in a variety of ways should help an
examiner have a better understanding of an app's data that they are examining. This knowledge should,
hopefully, push them to look harder when they can't find data they expect the app to have. An
examiner has to be able to adapt to the changing world of application analysis. As applications
constantly update, an examiner has to be able to update their own methods and abilities in order to
keep up.

The next chapter will take a look at several free and open source tools to image and analyze Android
devices and reverse engineer applications to discover where their data is stored.

Chapter 8. Android Forensic Tools Overview
This chapter is an overview of the free and open source Android forensic tools and will show you
how to use these tools for common investigative scenarios. By the end of this chapter, the reader
should be familiar with the following tools:

ViaExtract
Autopsy
ViaLab

ViaExtract
ViaExtract is a logical and physical extraction tool created by NowSecure (formerly known as
ViaForensics). Logical acquisitions (including backups) are available with the free version, while the
paid version adds physical extractions. It is freely distributed inside of a virtual machine file (either
VMWare or Virtual Box formats) running NowSecure's Santoku Linux distribution. An active Internet
connection is required while using the free version. The download and full feature list can be found at
https://www.nowsecure.com/forensics/community/. Registration is required.

The icons to register the tool and launch ViaExtract can be found on the desktop of the ViaExtract
virtual machine:

https://www.nowsecure.com/forensics/community/

Before launching ViaExtract, ensure that the device to be examined is connected to the computer via a
USB. This will ensure that the device is detected. The device will also need to be powered on. Note
the appropriate network-isolation measures as discussed in Chapter 1, Introducing Android
Forensics. In the following example, we will examine an LG Nexus 5 running Android Lollipop 5.1.
Note that this is shown in the bottom-left corner of the following screenshot.

Then, follow these steps:

1. Clicking on the New button in the upper-left corner will bring up the Create a new project
dialog box:

2. Choosing Forward will bring up the Device Info tab, which is where we will begin our
extractions. The list of supported extractions is shown in the following screenshot. In this case,
our two options are Android Backup or Android Logical:

Backup extraction with ViaExtract
To perform backup extraction, follow these steps:

1. Clicking on Extract (as seen in the preceding screenshot) will show the Select extraction type
dialog box. We choose to do a backup extraction first from the Type drop-down menu:

2. Once all of the fields are filled in, the OK button will become available. Selecting OK will

display instructions to accept the process on the device. However, this step will not be available
on the device yet:

3. After choosing Forward on the Android Backup: Allow backup screen, ViaExtract will give
you the option to attempt the recovery of deleted SQLite data. Though this is only a logical
extraction, it is possible, as discussed in detail previously in this book, because of the way
SQLite databases store their data.

4. Choosing Forward on the Android Backup: SQLite recovery screen will begin the backup. At
this point, the backup will have to be accepted on the device, as shown in the preceding
Android:Backup Allow backup screenshot:

5. After clicking on Close, the backup should now be seen progressing in the Tasks tab in the
upper-left corner as shown in the following screenshot:

Logical extraction with ViaExtract
To begin a logical extraction, follow these steps:

1. Select Extract from the Device Info tab, just as with the backup extraction we completed
earlier. This time, however, choose Android Logical from the Type drop-down menu. This will
launch the logical extraction wizard, which begins by noting that it will require us to install an
application on the device:

2. Choosing Forward will advance to the Logical extraction: Options menu. Here, certain file
types can be ignored to speed up the extraction process:

3. At this point, the ViaExtract application will be pushed to the device and further action may be
required on the device. We will choose DECLINE on the following pop-up message:

4. After declining the popup, the application can be seen running on the device:

5. Back on the computer, the following message will be displayed:

6. Once again, the progress will be visible in the Tasks tab in the upper-left corner, shown as
follows:

Examining data in ViaExtract
Once an extraction is complete, the data can be viewed in the Project tab in the upper-left corner:

To view the content, simply click on it, and it will be displayed on the right-hand side. Here is an
example of bookmarks found in a logical extraction:

When examining a backup, the process is the same. Here is an excerpt of the Tango tc.db file
analyzed in Chapter 7, Forensic Analysis of Android Applications:

Other tools within ViaExtract
ViaExtract can also attempt to root a device and bypass the passcode. Clicking on the Root button
from the Device Info tab will launch the rooting wizard. Simply follow the pop-up messages to root
the device. We did not have any success with this on our test devices, Nexus 5, Moto X (2013
model), and an HTC Droid DNA.

The lock screen bypass wizard is launched from the Tools menu in the upper-right corner. Then,
select Unlock Screen. This will push an app to the device (which requires USB debugging to be
enabled and the RSA authentication to be passed) that will remove the lock screen. This is a useful
tool because unlike the manual methods shown in Chapter 4, Extracting Data Logically from
Android Devices, it does not require root access. It was unsuccessful on our Nexus 5 and HTC Droid
DNA, but worked perfectly on our Moto X.

Autopsy
Autopsy is a free and open source analysis tool initially developed by Brian Carrier. Autopsy started
as a Graphical User Interface for the underlying Linux-based SleuthKit toolset, but the latest release
(version 3) is a standalone tool built for Windows. Autopsy can be downloaded at
http://www.sleuthkit.org/autopsy/.

Autopsy is not intended to perform acquisitions of mobile devices, but can analyze the most common
Android filesystems (such as YAFFS and ext). For this example, we will load a full physical image
obtained via dd from an HTC Droid DNA, as outlined in Chapter 5, Extracting Data Physically from
Android Devices.

Creating a case in Autopsy
On opening Autopsy, the user will be prompted to choose Create New Case, Open Recent Case, or
Open Existing Case:

We will create a new case. Follow these steps:

1. After filling in the Case Name field, the Next button will become available:

http://www.sleuthkit.org/autopsy/

2. On the next screen, an optional Case Number and Examiner can be entered:

3. Selecting Finish will bring up the Enter Data Source Information screen. Clicking on Browse
will allow the user to select an image file to load:

4. After choosing an image file, the Next button can be clicked to advance to the Configure Ingest
Modules wizard:

Ingest Modules are tools built into Autopsy that can be run when the case is started or at any
point afterwards. The default modules in this version of Autopsy are as follows:

Recent Activity: This extracts recent user activity such as Web browsing, recently used
documents, and installed programs.
Hash Lookup: This identifies known and notable files using supplied hash databases, such
as a standard NSRL database. It also allows importing custom hash databases.
File Type Identification: This matches file types based on binary signatures.
Archive Extractor: This extracts archive files (.zip, .rar, .arj, .7z, .gzip, .bzip2,
.tar). It automatically extracts these file types and puts their contents into the directory
tree.
EXIF Parser: This ingests JPEG files and retrieves their EXIF metadata.
Keyword Search: This performs file indexing and periodic search using keywords and
regular expressions in lists. It allows loading of custom keywords/lists.
Email Parser: This module detects and parses mbox and pst/ost files and populates e-mail
artifacts in the blackboard.
Extension Mismatch Detector: These are flag files that have a non-standard extension
based on their file types.
E01 Verifier: This validates the integrity of E01 files.
Android Analyzer: This extracts Android system and third-party app data.
Interesting Files Identifier: This identifies interesting items, as defined by interesting item
rule sets.

Note

Many of these modules will not be needed for Android devices (E01 Verifier and Email Parser,
for example). Only selecting useful modules will speed up the ingest time. Also, note that
clicking on a module may bring up more options, as seen in the preceding screenshot.

5. Clicking on Next will load the Data Source and begin the Ingest process. Any errors
encountered will be noted:

6. Choosing Finish will bring the examiner to the main screen for analysis of the ingested case:

Analyzing data in Autopsy
Even though the case is still being loaded and Ingest Modules are being run (as seen by the progress
bar in the bottom-right corner of the previous screenshot), an examiner can begin analyzing the case.
Expanding the image file in the upper-left corner will show partitions/volumes identified by Autopsy:

Autopsy identified 65 partitions on our device, the vast majority of which are unallocated. To find the
data partition (since we know this is where the vast majority of the data we are interested in is
stored), we can simply expand the allocated partitions until we find one that looks like the data
partition:

In our image, volume 124 is the data partition. We can see that it has an app directory (where APK
files are stored), a data directory (where app data is stored), and a media directory (the symbolically
linked location for the SD card).

Expanding the data directory will reveal information we should remember from Chapter 7, Forensic
Analysis of Android Applications. This can also be seen in the following screenshot:

Right away, we can see com.android.providers.telephony and userdictionary as well as
com.facebook.katana. How to analyze these applications is covered in Chapter 7, Forensic
Analysis of Android Applications; this is how to access the relevant files using Autopsy. For
example, expanding com.android.providers.telephony will show the mmssms.db file needed to
analyze SMS and MMS data.

Right-clicking on the file will allow the user to choose Extract File(s) or Open in External Viewer
for further analysis:

Now, let's take a look at the rest of Autopsy's features. Expanding the Views section on the left-hand
side of the screen will show results from a few of the Ingest Modules used, shown as follows:

The File Types view shows files identified by the File Type Identification module. Recent
Files shows the results from the Recent Activity module. In this case, it appears that the device
wasn't used for 6 days and then was used on the Final Day. Viewing the files identified here can
show the user's activity in that time period. Note the red cross, indicating that some of these files
were deleted but recovered by Autopsy:

In our case, we can see that the downloads.db and EmailProvider.db databases were modified.
Analyzing these files will show that an e-mail with an attachment was received, and the attachment
was then downloaded to the device.

Finally, the Views section identifies deleted files (which are very common on mobile devices as a
result of wear leveling), as well as large files (which can be useful o quickly find images/video or
identify steganography).

The Results section will show the output from the Android Analyzer and Keyword Search modules,
as shown in the following screenshot:

The Android Analyzer results seen under Extracted Content were mostly as expected. It is worth
noting that the Contacts (1) section only points to the contacts.db file and does not actually parse
data from it. For example, Call Logs displays data pulled from contacts2.db, as described in
Chapter 7, Forensic Analysis of Android Applications:

Extension Mismatch Detected results also show the data we found in Chapter 7, Forensic Analysis
of Android Applications. Several apps were described as having .cnt files that were actually JPEG
images, and these were appropriately identified by Autopsy, as shown in the following screenshot:

Double-clicking on any of the files seen above will take the user to the location where the file was
found in the filesystem.

The Keyword Hits section appropriately found many e-mail addresses and phone numbers. However,
many of these were found within application files (that is, contact information for the developer of the
app) and other places that were not actually stored by the user (this is very common with both mobile
and computer forensic tools).

There are many other more advanced features of Autopsy that aren't covered here. To learn more,
Basis Technology offers an Autopsy Training course that can be found at
http://www.basistech.com/digital-forensics/autopsy/training/.

http://www.basistech.com/digital-forensics/autopsy/training/

ViaLab Community Edition
ViaLab Community Edition is another free tool developed and released by NowSecure. It is shipped
as a standalone virtual machine and can be found at
https://www.nowsecure.com/apptesting/community/ (registration is required). The VM is actually
very similar to the Santoku download, which we discussed at the beginning of this chapter, but
includes the ViaLab Community Edition tool.

Tip

ViaLab requires the examiner's computer to have an Internet connection, in order to use the tool.

The main purpose of ViaLab is to analyze the behavior of an APK, although many of the features to do
so are unavailable in the free Community Edition. ViaLab allows you to either manually load an APK
file into the Android emulator or run the application on a rooted device. For our example, we
manually loaded the APK file for Kik into the Android emulator. We chose Kik because it was
analyzed thoroughly in Chapter 7, Forensic Analysis of Android Applications, so we had a good idea
of what to expect and could confirm our previous finding. A good forensic use case for this would be
researching an application to learn what data it stores. For example, if a prosecutor is looking for
saved videos, an examiner can determine whether the application has that capability and where they
are stored.

Setting up the emulator in ViaLab
To begin using ViaLab, it must first be activated. This is done through the ViaForensics Product
Activation tool found on the desktop. After registering, follow these steps to set up the emulator:

1. Click on the ViaLab icon on the desktop to launch the tool:

https://www.nowsecure.com/apptesting/community/

2. The program may prompt for the root password. In the ViaLab VM, the default password is
vialab1:

3. After the program launches, a system check will be run. Clicking on Close will finish the system
check. The Always run System Check on startup box can also be deselected to skip this step
in the future:

4. To enable the Android emulator (or to configure a real device for ViaLab), select the Device
Manager icon in the bottom-left corner of the main screen and make the appropriate selection in
the window that opens:

5. The first time the Android emulator is used, additional packages will have to be installed:

6. After the emulator package is installed and ViaLab is restarted, the Device Manager will now
show a Start Emulator option. Choose this to launch the Android emulator:

7. The Android emulator will launch and appear in a separate window. The Device Manager icon
in the bottom-right corner should show that ViaLab is now connected to the emulator:

Installing an application on the emulator
To begin the ViaLab analysis, follow these steps:

1. Select New in the upper-left corner. This will open a window to add a new project:

2. Selecting Forward from the Add a project dialog will bring you to the setup page:

3. To select an APK file to install into the emulator, choose Add app manually and select the file.
Once the APK file has been selected, the Download button will become usable. Select this to
push the APK to the emulator, and choose OK once it has completed:

4. You can now go to the emulator window and use the application to populate it with test data.
Note that performance may be quite slow, as the emulator is a virtual machine running within a
virtual machine:

Applications may perform differently when under emulation. For example, Kik required us to solve a
Captcha to prove that we were human! Other apps may have reduced functionality (such as anything
involving GPS data).

Analyzing data with ViaLab
After populating data within the application, let's analyze it! Follow these steps:

1. Return to ViaLab and choose the Forensics tab at the top of the screen. Selecting Refresh
Application Folder will pull the data from the device:

2. Once the data has been synced, the File List button can be selected to filter the files by type:

As an example, here is the contact data we populated within the app, stored in the database we
examined in Chapter 7, Forensic Analysis of Android Applications:

Summary
This chapter was an overview of a few free tools available for Android forensic examiners. These
tools are summarized in the following table:

Tool

Features

ViaExtract

Free, requires registration and an active Internet connection
Logical extractions via an application pushed to the device
Backup extractions
Filesystem extractions if device is rooted
Roots devices
Bypasses screen locks without root by pushing an application to the device

Autopsy

Free and open source
Used to examine extractions done by other tools
Allows keyword searching, hash lists, and other common forensic methods
Powerful timeline feature
Can recover deleted data from supported filesystems

ViaLab

Free, requires registration and an active Internet connection
Allows an examiner to run an application from the APK and determine data storage locations
Runs the application in an emulator or on a test device
Valuable tool to show an examiner where data is stored in an app's directory, as well as see the
functionality of the application

Conclusion
We'd like to wish all of you the best of luck with your future Android examinations. We sincerely
hope that something from this book will help you at some point. Our goal was to make an informative
guide to the entire Android forensic process, from beginning to end. We hope you've learned plenty
along the way (we certainly did while writing it). Thank you for reading!

Index
A

acct directory / acct
Acquisition phase, mobile forensics

about / Acquisition
manual acquisition / Acquisition
logical acquisition / Acquisition
filesystem acquisition / Acquisition
physical acquisition / Acquisition

active-matrix organic light-emitting diode (AMOLED)
about / Display

activity manager service / The application framework
ADB

backup, extracting over / Extracting a backup over ADB
ADB backup extractions

about / ADB backup extractions
ADB backups

parsing / Parsing ADB backups
data locations / Data locations within ADB backups

adb daemon (adbd)
about / Android Debug Bridge
used, for accessing Android device / Using adb to access the device

ADB Dumpsys
about / ADB Dumpsys
batterystats / Dumpsys batterystats
procstats / Dumpsys procstats
user / Dumpsys user
App Ops / Dumpsys App Ops
Wi-Fi / Dumpsys Wi-Fi
notification / Dumpsys notification
conclusions / Dumpsys conclusions

ADB pull command
about / ADB pull

adb pull command / Pulling data from the device
adb push command / Pushing data to the device
adb server

restarting / Restarting the adb server
advanced forensic methods

about / Advanced forensic methods
JTAG / JTAG
Chip-off / Chip-off

Airplane mode
about / Seizure and Isolation

Android
core components / Core components
deleted data, recovering on / How can deleted files be recovered?

Android Analyzer module / Creating a case in Autopsy
Android architecture

about / The Android architecture
Linux kernel / The Linux kernel
libraries / Libraries
Dalvik virtual machine / Dalvik virtual machine
application framework / The application framework
applications layer / The applications layer

Android Backup Extractor
URL / Parsing ADB backups

Android boot process
about / Android boot process
boot ROM code execution / Boot ROM code execution
boot loader / The boot loader
Linux kernel / The Linux kernel
init process / The init process
Zygote / Zygote and Dalvik
Dalvik / Zygote and Dalvik
system server / System server

Android Debug Bridge (ADB)
about / Android Debug Bridge
on rooted device / ADB on a rooted device

Android debug bridge (adb)
about / Seizure and Isolation

Android device
accessing, from workstation / Connecting and accessing an Android device from the
workstation
connecting / Connecting and accessing an Android device from the workstation
cable, identifying / Identifying the device cable
drivers, installing / Installing device drivers
accessing / Accessing the device
accessing, adb daemon (adbd) used / Using adb to access the device
connected device, detecting / Detecting a connected device
commands, directing to specific device / Directing commands to a specific device
shell commands, issuing / Issuing shell commands
basic Linux commands / Basic Linux commands
application, installing / Installing an application
data, pulling from / Pulling data from the device

data, pushing to / Pushing data to the device
log data, viewing / Viewing log data
rooting / Rooting Android
filesystems, viewing on / Viewing filesystems on an Android device

Android Device Manager (ADM)
about / Seizure and Isolation

Android file hierarchy
about / Android file hierarchy
directories / An overview of directories

Android filesystems
overview / Android filesystem overview
about / Common Android filesystems
flash memory filesystems / Flash memory filesystems
Extended File Allocation Table (exFAT) / Flash memory filesystems
Flash Friendly File System (F2FS) / Flash memory filesystems
media-based filesystems / Media-based filesystems
pseudo filesystems / Pseudo filesystems

Android forensic setup
about / The Android forensic setup

Android full-disk encryption
bypassing / Bypassing Android full-disk encryption

Android hardware components
about / Android hardware components

Android lock screens
bypassing / Bypassing Android lock screens, General bypass information
types / Lock screen types
None/Slide lock screens / None/Slide lock screens
pattern lock screens / Pattern lock screens
password/PIN lock screens / Password/PIN lock screens
Smart Locks / Smart Locks

Android Lollipop
issues / Issues and opportunities with Android Lollipop
opportunities / Issues and opportunities with Android Lollipop

Android Open Source Project (ASOP) / Flash memory filesystems
Android partition layout

about / Android partition layout
identifying / Identifying partition layout

Android pattern lock
cracking / Cracking an Android pattern lock

Android PIN/Password
cracking / Cracking an Android PIN/Password

Android RAM
imaging / Imaging and analyzing Android RAM

analyzing / Imaging and analyzing Android RAM
Android Run Time (ART)

about / Dalvik virtual machine
Android SD cards

acquiring / Acquiring Android SD cards, What can be found on an SD card?
security / SD card security

Android SDK
about / The Android SDK
URL, for downloading / The Android SDK
installing / Installing the Android SDK

Android Security
about / Android security
security at OS level, through Linux kernel / Security at OS level through Linux kernel
permission model / Permission model
application sandboxing / Application sandboxing
Application Signing / Application Signing
secure interprocess communication / Secure interprocess communication

Android SIM card data
acquiring / Acquiring SIM card data

Android SIM card extractions
about / Android SIM card extractions

Android Virtual Device (AVD)
about / Android Virtual Device
creating, on workstation / Android Virtual Device

APK_OneClick tool / Disassembling an APK file
application

installing, on emulator / Installing an application on the emulator
application data storage, on device

about / Application data storage on the device
Shared Preferences / Shared preferences
internal storage / Internal storage
external storage / External storage
SQLite database / SQLite database
network / Network

application framework, Android architecture
about / The application framework
activity manager / The application framework
content providers / The application framework
resource manager / The application framework
notifications manager / The application framework
view system / The application framework
package manager / The application framework
telephony manager / The application framework

location manager / The application framework
application reverse engineering

about / Application reverse engineering
APK file, obtaining / Obtaining the application's APK file
APK file, disassembling / Disassembling an APK file
permissions, determining / Determining an application's permissions
code, viewing / Viewing the application's code

application sandboxing, Android Security
about / Application sandboxing

Application Signing, Android Security / Application Signing
applications layer, Android architecture

system apps / The applications layer
user installed apps / The applications layer

apps / The applications layer
Archive Extractor module / Creating a case in Autopsy
Authentication Key (Ki) / Android SIM card extractions
Autopsy

about / Autopsy, Autopsy
URL, for downloading / Autopsy, Autopsy
case, creating in / Creating a case in Autopsy
data, analyzing in / Analyzing data in Autopsy

Autopsy Training course
reference link / Analyzing data in Autopsy

B
backup

extracting, over ADB / Extracting a backup over ADB
backup extraction

performing, with ViaExtract / Backup extraction with ViaExtract
backups

analyzing / Analyzing backups
Base64

URL / Decoding Tango messages
basic Linux commands, Android device

ls / Basic Linux commands
cat / Basic Linux commands
cd / Basic Linux commands
cp / Basic Linux commands
chmod / Basic Linux commands
dd / Basic Linux commands
rm / Basic Linux commands
grep / Basic Linux commands
pwd / Basic Linux commands

mkdir / Basic Linux commands
exit / Basic Linux commands

batteries, types
Lithium Ion (Li-ion) / Battery
Lithium Polymer (Li-Polymer) / Battery
Nickel Cadmium (NiCd) / Battery
Nickel Metal Hydrid (NiMH) / Battery

bin / Physical extraction overview
Binder mechanism

about / Secure interprocess communication
boot loader, Android boot process / The boot loader
boot loader partition / boot loader
boot partition / boot
boot ROM code execution, Android boot process / Boot ROM code execution

C
cache directory / cache
cache partition / cache
case

creating, in Autopsy / Creating a case in Autopsy
cat command / Basic Linux commands
CCL Forensics

URL / Cracking an Android pattern lock
CCL Forensics PIN/Password

URL / Cracking an Android PIN/Password
cd command / Basic Linux commands
Cellebrite UFED / Root access
challenges, mobile forensics / Challenges in mobile forensics
Chip-off

about / Chip-off
references / Chip-off

chmod command / Basic Linux commands
cold boot attacks

about / Bypassing Android full-disk encryption
component

determining, for imaging / Determining what to image
connector types

Mini-A USB / Identifying the device cable
Micro-B USB / Identifying the device cable
Co-axial / Identifying the device cable
D Sub-miniature / Identifying the device cable

contacts/call analysis
about / Contacts/call analysis

contacts2.db database / Contacts/call analysis
content providers service / The application framework
context manager

about / Secure interprocess communication
control group (cgroup) / Pseudo filesystems
core components, Android

about / Core components
central processing unit (CPU) / Central processing unit
baseband processor / Baseband processor
memory / Memory
Secure Digital (SD) card / SD Card
display / Display
battery / Battery

cp command / Basic Linux commands
custom recovery image

URL, for downloading / Rooting an unlocked boot loader
custom recovery images, for devices

URL / Recovery mode
cycle

about / Central processing unit

D
Dalvik

about / Dalvik virtual machine, Zygote and Dalvik
dalvik-cache

about / dalvik-cache
Dalvik Virtual Machine (DVM)

about / Dalvik virtual machine
Dalvik virtual machine, Android architecture

about / Dalvik virtual machine
data

pulling, from Android device / Pulling data from the device
pushing, to Android device / Pushing data to the device
extracting physically, with dd command / Extracting data physically with dd
extracting physically, with nanddump command / Extracting data physically with nanddump
examining, in ViaExtract / Examining data in ViaExtract
analyzing, in Autopsy / Analyzing data in Autopsy
analyzing, with ViaLab / Analyzing data with ViaLab

data deleted, from internal memory
recovering / Recovering data deleted from internal memory

data deleted, from SD card
recovering / Recovering data deleted from an SD card

data directory

about / data
dalvik-cache / dalvik-cache
/data/data partition / data

data locations, within ADB backups / Data locations within ADB backups
data recovery

about / An overview of data recovery
DCode

about / Understanding Linux epoch time
URL / Understanding Linux epoch time

dd command / Basic Linux commands
data, extracting physically with / Extracting data physically with dd

dd command
reference link, for options / Extracting data physically with dd

dd command, format
if / Extracting data physically with dd
of / Extracting data physically with dd
bs / Extracting data physically with dd
conv / Extracting data physically with dd
notrunc / Extracting data physically with dd
noerror / Extracting data physically with dd
sync / Extracting data physically with dd

d directory / d
Deflate algorithm

about / Parsing ADB backups
deleted data

recovering, on Android / How can deleted files be recovered?
recovering, by parsing SQLite files / Recovering deleted data by parsing SQLite files
recovering, through file-carving techniques / Recovering deleted data through file carving
techniques

deleted files
recovering / How can deleted files be recovered?

dev directory / dev
Digital Camera Images (DCIM) / sdcard
digital forensics

about / Physical extraction overview
directories

about / An overview of directories
acct / acct
cache / cache
d / d
data / data
dev / dev
Init / init

mnt / mnt
proc / proc
root / root
sbin / sbin
misc / misc
sdcard / sdcard
system / system
ueventd.goldfish.rc / ueventd.goldfish.rc and ueventd.rc
ueventd.rc / ueventd.goldfish.rc and ueventd.rc

Dumpsys App Ops / Dumpsys App Ops
Dumpsys batterystats / Dumpsys batterystats
Dumpsys conclusions / Dumpsys conclusions
Dumpsys notification / Dumpsys notification
Dumpsys procstats / Dumpsys procstats
Dumpsys user / Dumpsys user
Dumpsys Wi-Fi / Dumpsys Wi-Fi

E
E01 Verifier module / Creating a case in Autopsy
Electrically Erasable Programmable Read-Only Memory (EEPROM)

about / SD Card
Email Parser module / Creating a case in Autopsy
emulator

about / Android Virtual Device
setting up, in ViaLab / Setting up the emulator in ViaLab
application, installing on / Installing an application on the emulator

enforcing mode
about / SELinux in Android

error correcting code (ECC) / Issues with analyzing physical dumps
Examination and Analysis phase, mobile forensics

about / Examination and Analysis
EXIF Parser module / Creating a case in Autopsy
exit command / Basic Linux commands
exploits, for rooting Android device / Rooting a locked boot loader
Extended File Allocation Table (exFAT) / Flash memory filesystems
EXTended file system (EXT2/EXT3/EXT4) / Media-based filesystems
Extension Mismatch Detector module / Creating a case in Autopsy

F
Facebook analysis

about / Facebook analysis
bookmarks_db2 database / Facebook analysis
contacts_db2 database / Facebook analysis

nearbytiles_db database / Facebook analysis
newsfeed_db database / Facebook analysis
notifications_db database / Facebook analysis
prefs_db database / Facebook analysis
threads_db database / Facebook analysis

Facebook Messenger analysis
about / Facebook Messenger analysis
call_log.sqlite database / Facebook Messenger analysis
contacts_db2 file / Facebook Messenger analysis
prefs_db database / Facebook Messenger analysis
threads_db2 database / Facebook Messenger analysis

Fastboot / Fastboot mode
fastboot mode

about / Fastboot mode
fastboot mode, Manual ADB data extraction

about / Fastboot mode
bootloader status, determining / Determining bootloader status
booting, to custom recovery image / Booting to a custom recovery image

file-carving techniques
deleted data, recovering from / Recovering deleted data through file carving techniques

File Allocation Table (FAT) / Media-based filesystems
file carving

about / Recovering deleted data through file carving techniques
filesystems

viewing, on Android device / Viewing filesystems on an Android device
file tree, Android

reference link / ueventd.goldfish.rc and ueventd.rc
File Type Identification module / Creating a case in Autopsy
Flash Friendly File System (F2FS) / Flash memory filesystems
flash memory filesystems

about / Flash memory filesystems
Journal Flash File System version 2 (JFFS2) / Flash memory filesystems
Yet Another Flash File System version 2 (YAFFS2) / Flash memory filesystems
Robust File System (RFS) / Flash memory filesystems

forensically sound
about / Mobile forensics

forensic analysis, application
about / Application analysis
need for / Why do app analysis?
package name / The layout of this chapter

full physical image
verifying / Verifying a full physical image
analyzing / Analyzing a full physical image

G
geo-fencing / Trusted Location
Gmail analysis

about / Gmail analysis
suggestions.db database / Gmail analysis

Google Chrome analysis
about / Google Chrome analysis
SyncData.sqlite3 database / Google Chrome analysis
Cookies database / Google Chrome analysis
History database / Google Chrome analysis
Login Data database / Google Chrome analysis
Top Sites database / Google Chrome analysis
Web Data database / Google Chrome analysis
WebKit time format, decoding / Decoding the WebKit time format

Google Hangouts analysis
about / Google Hangouts analysis
babel#.db / Google Hangouts analysis

Google Keep analysis
about / Google Keep analysis
keep.db / Google Keep analysis
Julian date, converting / Converting a Julian date

Google Maps analysis
about / Google Maps analysis
gmm_myplaces.db database / Google Maps analysis
gmm_storage.db database / Google Maps analysis

Google Nexus
URL / Imaging RAM with LiME

Google Plus analysis
about / Google Plus analysis
Es0.db database / Google Plus analysis

grep command / Basic Linux commands

H
Hangouts

about / Google Hangouts analysis
Hash Lookup module / Creating a case in Autopsy
HTC

URL / Imaging RAM with LiME

I
imaging

component, determining for / Determining what to image

Init directory / init
initial program load (IPL) / The boot loader
init process, Android boot process / The init process
installed applications

determining / Determining what apps are installed
Institute of Electrical and Electronics Engineers (IEEE)

about / JTAG
Integrated Circuit Card ID (ICCID) / Viber analysis
Integrated Circuit Card Identifier (ICCID) / Android SIM card extractions
Interesting Files Identifier module / Creating a case in Autopsy
International Mobile Station Equipment Identity (IMEI) / Decrypting the WeChat
EnMicroMsg.db database
International Mobile Subscriber Identity (IMSI) / Android SIM card extractions
interprocess communication (IPC)

about / Secure interprocess communication
Investigation Preparation phase, mobile forensics / Investigation Preparation
issues, with analyzing physical dumps / Issues with analyzing physical dumps

J
jailbreaking / What is rooting?
Java Development Kit (JDK)

URL, for downloading / Installing the Android SDK
Java Runtime Environment (JRE) / Disassembling an APK file
Java virtual machine (JVM) / Dalvik virtual machine
Journal File System (JFS) / Android filesystem overview
Journal Flash File System version 2 (JFFS2) / Flash memory filesystems
JTAG

about / Physical extraction overview, JTAG
JTAG tools

reference link / JTAG
just-in-time (JIT) compilation

about / Dalvik virtual machine

K
Keyword Search module / Creating a case in Autopsy
Kik analysis

about / Kik analysis
kikDatabase.db database / Kik analysis

L
libraries, Android architecture

about / Libraries

LiME
RAM, imaging with / Imaging RAM with LiME
URL, for source code / Imaging RAM with LiME

Linux epoch time
about / Understanding Linux epoch time

Linux kernel, Android architecture
about / The Linux kernel

Linux kernel, Android boot process / The Linux kernel
Lithium Ion (Li-ion) batteries

about / Battery
Lithium Polymer (Li-Polymer) batteries

about / Battery
Location Area Identity (LAI) / Android SIM card extractions
location manager service / The application framework
locked boot loader

rooting / Rooting a locked boot loader
locked boot loaders

about / Locked and unlocked boot loaders
logical extraction

overview / Logical extraction overview, What data can be recovered logically?, Root
access
performing, with ViaExtract / Logical extraction with ViaExtract

ls command / Basic Linux commands

M
mandatory access control (MAC)

about / SELinux in Android
manual ADB data extraction

about / Manual ADB data extraction
USB debugging / USB debugging
ADB pull / ADB pull
recovery mode / Recovery mode
fastboot mode / Fastboot mode

media-based filesystems
about / Media-based filesystems
EXTended file system (EXT2/EXT3/EXT4) / Media-based filesystems
File Allocation Table (FAT) / Media-based filesystems
Virtual File Allocation Table (VFAT) / Media-based filesystems

Media Transfer Protocol (MTP)
about / Accessing the device

mem
RAM, imaging with / Imaging RAM with mem
reference link / Imaging RAM with mem

output / Output from mem
Memory Technology Device (MTD)

about / Extracting data physically with nanddump
MicroSystemation XRY / Root access
misc directory / misc
mkdir command / Basic Linux commands
mmcblk0p34 / Using netcat
mnt directory / mnt
Mobile Device Management (MDM)

about / Seizure and Isolation
Mobiledit!

URL / Acquiring SIM card data
mobile forensics

about / Mobile forensics, The mobile forensics approach, Physical extraction overview
need for / Mobile forensics
Investigation Preparation phase / Investigation Preparation
Seizure and Isolation phase / Seizure and Isolation
Acquisition phase / Acquisition
Examination and Analysis phase / Examination and Analysis
Reporting phase / Reporting
challenges / Challenges in mobile forensics

mobile screens
reference link / Display

modules, Autopsy
Recent Activity / Creating a case in Autopsy
Hash Lookup / Creating a case in Autopsy
File Type Identification / Creating a case in Autopsy
Archive Extractor / Creating a case in Autopsy
EXIF Parser / Creating a case in Autopsy
Keyword Search / Creating a case in Autopsy
Email Parser / Creating a case in Autopsy
Extension Mismatch Detector / Creating a case in Autopsy
E01 Verifier / Creating a case in Autopsy
Android Analyzer / Creating a case in Autopsy
Interesting Files Identifier / Creating a case in Autopsy

Motorola
URL / Imaging RAM with LiME

mount point / Android filesystem overview
MSISDN / Android SIM card extractions
Multichip Package (MCP)

about / Memory
Multimedia Card (MMC)

about / Extracting data physically with nanddump

N
nanddump

data, extracting physically with / Extracting data physically with nanddump
reference link / Extracting data physically with nanddump

netcat
used, for writing image to machine / Writing directly to an examiner's computer with netcat
installing, on device / Installing netcat on the device
reference link / Installing netcat on the device
using / Using netcat

Nickel Cadmium (NiCd) batteries
about / Battery

Nickel Metal Hydrid (NiMH) batteries
about / Battery

None/Slide lock screens / None/Slide lock screens
notifications manager service / The application framework
NowSecure

about / ViaExtract
URL / ViaExtract, ViaLab Community Edition

O
Odin mode screen / Determining bootloader status
online epoch converter

URL / Understanding Linux epoch time
OOB area

about / Issues with analyzing physical dumps
open source Python scripts

reference link / Recovering deleted data by parsing SQLite files
open source release sites

references / Imaging RAM with LiME
output file, dd command

writing, to SD card / Writing to an SD card
Oxygen Forensics SQLite Viewer / Recovering deleted data by parsing SQLite files

P
package manager service / The application framework
partition layout, Android

about / Android partition layout
identifying / Identifying partition layout

partitions, Android
about / Common partitions in Android
boot loader / boot loader
boot / boot

recovery / recovery
userdata / userdata
system / system
cache / cache
radio / radio

password/PIN lock screens / Password/PIN lock screens
pattern lock screens / Pattern lock screens
permission model, Android Security

about / Permission model
permissive mode

about / SELinux in Android
Personal Unblocking Key (PUK) / SIM security
physical dumps

issues, of analyzing / Issues with analyzing physical dumps
physical extraction

overview / Physical extraction overview, What data can be acquired physically?
root access / Root access

Picture Transfer Protocol (PTP)
about / Accessing the device

proc directory / proc
procfs

about / Pseudo filesystems
proxies

about / Secure interprocess communication
pseudo filesystems

about / Pseudo filesystems
control group (cgroup) / Pseudo filesystems
rootfs / Pseudo filesystems
procfs / Pseudo filesystems
sysfs / Pseudo filesystems
tmpfs / Pseudo filesystems

pwd command / Basic Linux commands
Python 3

URL, for downloading / Cracking an Android pattern lock

R
radio frequency (RF) / Verifying a full physical image
radio partition / radio
RAM

about / What can be found in RAM?
imaging, with LiME / Imaging RAM with LiME
imaging, with mem / Imaging RAM with mem

random access memory (RAM)

about / Memory
raw image

about / Physical extraction overview
read-only memory (ROM)

about / Memory
Recent Activity module / Creating a case in Autopsy
recovery images

URL, for source / Booting to a custom recovery image
recovery mode

about / Recovery mode
accessing / Accessing the recovery mode
custom recovery / Custom recovery

recovery mode, Manual ADB data extraction
about / Recovery mode

recovery partition / recovery
Reporting phase, mobile forensics

about / Reporting
resource manager service / The application framework
rm command / Basic Linux commands
Robust File System (RFS) / Flash memory filesystems
root directory / root
root file system (rootfs) / The Linux kernel
rootfs

about / Pseudo filesystems
rooting

about / What is rooting?
need for / Why root?

S
Samsung

URL / Imaging RAM with LiME
sbin directory / sbin
Scalpel

about / Recovering deleted data through file carving techniques
scalpel.conf file

URL, for downloading / Recovering deleted data through file carving techniques
sdcard directory / sdcard
second program load (SPL) / The boot loader
Secure Digital (SD) card

about / SD Card
secure interprocess communication, Android Security / Secure interprocess communication
Secure USB debugging protection

URL / USB debugging

Seizure and Isolation phase, mobile forensics
about / Seizure and Isolation
settings / Seizure and Isolation

SELinux
about / SELinux in Android
in Android / SELinux in Android

Service Set ID (SSID)
about / Wi-Fi analysis

SIM cloning / SIM cloning
SIM Security

about / SIM security
Skype analysis

about / Skype analysis
main.db database / Skype analysis
video messages, recovering / Recovering video messages from Skype

Smart Locks
about / Smart Locks
Trusted Face / Trusted Face
Trusted Location / Trusted Location
Trusted Device / Trusted Device

SMS/MMS analysis
about / SMS/MMS analysis
telephony.db database / SMS/MMS analysis
mmssms.db database / SMS/MMS analysis

smudge attack / Pattern lock screens
Snapchat analysis

about / Snapchat analysis
tcspahn.db database / Snapchat analysis

SQLCipher
about / WeChat analysis

SQLite
about / SQLite database

stubs
about / Secure interprocess communication

superuser (su)
about / Rooting an unlocked boot loader

su update package
URL, for downloading / Rooting an unlocked boot loader

swipe codes / Pattern lock screens
sysfs / Pseudo filesystems
system apps / The applications layer
system directory

about / system

build.prop folder / build.prop
app folder / app
framework folder / framework

system partition / system
system server, Android boot process / System server

T
Tango analysis

about / Tango analysis
tc.db database / Tango analysis
messages, decoding / Decoding Tango messages

Team Win Recovery Project (TWRP) / Recovery mode
telephony manager service / The application framework
thin film transistor liquid crystal display (TFT LCD)

about / Display
tmpfs / Pseudo filesystems
token

about / Secure interprocess communication
tools, within ViaExtract / Other tools within ViaExtract

U
unique user ID (UID) / Why root?
Universal ADB Driver

URL / USB debugging
Universal Character Set Transformation Format-8 (UTF-8) format / Shared preferences
unlocked boot loader

rooting / Rooting an unlocked boot loader
unlocked boot loaders

about / Locked and unlocked boot loaders
USB debugging, manual ADB data extraction

about / USB debugging
ADB shell, used for determining device rooting / Using ADB shell to determine if a device
is rooted

userdata partition / userdata
user dictionary analysis

about / User dictionary analysis
user ID (UID)

about / Application sandboxing
user installed apps / The applications layer

V
version, SDK tools package

URL, for downloading / Installing the Android SDK
ViaExtract

about / ViaExtract
launching / ViaExtract
backup extraction, performing with / Backup extraction with ViaExtract
logical extraction, performing with / Logical extraction with ViaExtract
data, examining in / Examining data in ViaExtract

ViaLab
emulator, setting up in / Setting up the emulator in ViaLab
data, analyzing with / Analyzing data with ViaLab

ViaLab Community Edition
about / ViaLab Community Edition

Viber analysis
about / Viber analysis
viber_data file / Viber analysis
viber_messages file / Viber analysis

view system service / The application framework
Virtual File Allocation Table (VFAT) / Media-based filesystems
virtual file system (VFS) / Android filesystem overview
Volatility plugin

reference link / Imaging RAM with LiME

W
wake lock section / Dumpsys batterystats
WeChat analysis

about / WeChat analysis
EnMicroMsg.db database, decrypting / Decrypting the WeChat EnMicroMsg.db database
EnMicroMsg-decrypted.db database / Decrypting the WeChat EnMicroMsg.db database

WhatsApp analysis
about / WhatsApp analysis
msgstore.db database / WhatsApp analysis
wa.db database / WhatsApp analysis
backups, decrypting / Decrypting WhatsApp backups

Wi-Fi analysis
about / Wi-Fi analysis

workstation
Android Virtual Device (AVD), creating on / Android Virtual Device
Android device, accessing from / Connecting and accessing an Android device from the
workstation

X
XDA forums

URL / Installing the Android SDK

Y
Yet Another Flash File System version 2 (YAFFS2) / Flash memory filesystems

Z
Zygote

about / Zygote and Dalvik
reference link, for loading process / Zygote and Dalvik

	Learning Android Forensics
	Table of Contents
	Learning Android Forensics
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders

	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Errata
	Piracy
	Questions

	1. Introducing Android Forensics
	Mobile forensics
	The mobile forensics approach
	Investigation Preparation
	Seizure and Isolation
	Acquisition
	Examination and Analysis
	Reporting

	Challenges in mobile forensics
	The Android architecture
	The Linux kernel
	Libraries
	Dalvik virtual machine
	The application framework
	The applications layer

	Android security
	Security at OS level through Linux kernel
	Permission model
	Application sandboxing
	SELinux in Android
	Application Signing
	Secure interprocess communication

	Android hardware components
	Core components
	Central processing unit
	Baseband processor
	Memory
	SD Card
	Display
	Battery

	Android boot process
	Boot ROM code execution
	The boot loader
	The Linux kernel
	The init process
	Zygote and Dalvik
	System server

	Summary

	2. Setting Up an Android Forensic Environment
	The Android forensic setup
	The Android SDK
	Installing the Android SDK
	Android Virtual Device

	Connecting and accessing an Android device from the workstation
	Identifying the device cable
	Installing device drivers
	Accessing the device

	Android Debug Bridge
	Using adb to access the device
	Detecting a connected device
	Directing commands to a specific device
	Issuing shell commands
	Basic Linux commands
	Installing an application
	Pulling data from the device
	Pushing data to the device
	Restarting the adb server
	Viewing log data

	Rooting Android
	What is rooting?
	Why root?
	Recovery and fastboot
	Recovery mode
	Accessing the recovery mode
	Custom recovery

	Fastboot mode

	Locked and unlocked boot loaders
	How to root
	Rooting an unlocked boot loader
	Rooting a locked boot loader

	ADB on a rooted device
	Summary

	3. Understanding Data Storage on Android Devices
	Android partition layout
	Common partitions in Android
	boot loader
	boot
	recovery
	userdata
	system
	cache
	radio

	Identifying partition layout

	Android file hierarchy
	An overview of directories
	acct
	cache
	d
	data
	dalvik-cache
	data

	dev
	init
	mnt
	proc
	root
	sbin
	misc
	sdcard
	system
	build.prop
	app
	framework

	ueventd.goldfish.rc and ueventd.rc

	Application data storage on the device
	Shared preferences
	Internal storage
	External storage
	SQLite database
	Network

	Android filesystem overview
	Viewing filesystems on an Android device
	Common Android filesystems
	Flash memory filesystems
	Media-based filesystems
	Pseudo filesystems

	Summary

	4. Extracting Data Logically from Android Devices
	Logical extraction overview
	What data can be recovered logically?
	Root access

	Manual ADB data extraction
	USB debugging
	Using ADB shell to determine if a device is rooted

	ADB pull
	Recovery mode
	Fastboot mode
	Determining bootloader status
	Booting to a custom recovery image

	ADB backup extractions
	Extracting a backup over ADB
	Parsing ADB backups
	Data locations within ADB backups

	ADB Dumpsys
	Dumpsys batterystats
	Dumpsys procstats
	Dumpsys user
	Dumpsys App Ops
	Dumpsys Wi-Fi
	Dumpsys notification
	Dumpsys conclusions

	Bypassing Android lock screens
	Lock screen types
	None/Slide lock screens
	Pattern lock screens
	Password/PIN lock screens
	Smart Locks
	Trusted Face
	Trusted Location
	Trusted Device

	General bypass information

	Cracking an Android pattern lock
	Cracking an Android PIN/Password

	Android SIM card extractions
	Acquiring SIM card data
	SIM security
	SIM cloning

	Issues and opportunities with Android Lollipop
	Summary

	5. Extracting Data Physically from Android Devices
	Physical extraction overview
	What data can be acquired physically?
	Root access

	Extracting data physically with dd
	Determining what to image
	Writing to an SD card
	Writing directly to an examiner's computer with netcat
	Installing netcat on the device
	Using netcat

	Extracting data physically with nanddump
	Verifying a full physical image

	Analyzing a full physical image
	Autopsy
	Issues with analyzing physical dumps

	Imaging and analyzing Android RAM
	What can be found in RAM?
	Imaging RAM with LiME
	Imaging RAM with mem
	Output from mem

	Acquiring Android SD cards
	What can be found on an SD card?
	SD card security

	Advanced forensic methods
	JTAG
	Chip-off
	Bypassing Android full-disk encryption

	Summary

	6. Recovering Deleted Data from an Android Device
	An overview of data recovery
	How can deleted files be recovered?

	Recovering data deleted from an SD card
	Recovering data deleted from internal memory
	Recovering deleted data by parsing SQLite files
	Recovering deleted data through file carving techniques

	Analyzing backups
	Summary

	7. Forensic Analysis of Android Applications
	Application analysis
	Why do app analysis?
	The layout of this chapter

	Determining what apps are installed
	Understanding Linux epoch time

	Wi-Fi analysis
	Contacts/call analysis
	SMS/MMS analysis
	User dictionary analysis
	Gmail analysis
	Google Chrome analysis
	Decoding the WebKit time format

	Google Maps analysis
	Google Hangouts analysis
	Google Keep analysis
	Converting a Julian date

	Google Plus analysis
	Facebook analysis
	Facebook Messenger analysis
	Skype analysis
	Recovering video messages from Skype

	Snapchat analysis
	Viber analysis
	Tango analysis
	Decoding Tango messages

	WhatsApp analysis
	Decrypting WhatsApp backups

	Kik analysis
	WeChat analysis
	Decrypting the WeChat EnMicroMsg.db database

	Application reverse engineering
	Obtaining the application's APK file
	Disassembling an APK file
	Determining an application's permissions
	Viewing the application's code

	Summary

	8. Android Forensic Tools Overview
	ViaExtract
	Backup extraction with ViaExtract
	Logical extraction with ViaExtract
	Examining data in ViaExtract
	Other tools within ViaExtract

	Autopsy
	Creating a case in Autopsy
	Analyzing data in Autopsy

	ViaLab Community Edition
	Setting up the emulator in ViaLab
	Installing an application on the emulator
	Analyzing data with ViaLab

	Summary
	Conclusion

	Index

